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Preface

Heuristic methods are used when rigorous ones are either unknown or cannot be
applied, typically because they would be too slow. A metaheuristic is a general opti-
mization framework that is used to control an underlying problem-specific heuristic
such that the method can be easily applied to different problems. In the last two
decades metaheuristics have been successful for solving, or at least for obtaining sat-
isfactory results in, the optimization of many difficult problems. However, these tech-
niques, notwithstanding their common background and theoretical underpinnings,
are rather varied and not easy to grasp for the beginner. Most previous books on the
subject have been written for the specialist, with some exceptions, and therefore re-
quire knowledge that is not always available to undergraduates or scholars coming
from other disciplines and wishing to apply the methods to their own problems.

The present book is an attempt to produce an accessible introduction to meta-
heuristics for optimization for exactly these kinds of readers. The book builds on
notes written for full-semester lecture courses that both authors have been giving for
about a decade in their respective universities to advanced undergraduate students in
Computer Science and other technical disciplines. We realized during our teaching
that there were almost no texts at the level we targeted in our lectures; in spite of
the existence of several good books at an advanced level, many of those had pre-
requisites that were not matched by the typical students taking our courses, or were
multi-author compilations that assumed a large body of previous knowledge. Thus,
our motivation was to try to write a readable and concise introduction to the sub-
ject matter emphasizing principles and fundamental concepts rather than trying to
be comprehensive. This choice, without renouncing rigor when needed, should be an
advantage for the newcomer as many details are avoided that are unnecessary or even
obtrusive at this level. Indeed, we are especially concerned with “how” and “why”
metaheuristics do their job on difficult problems by explaining their functioning prin-
ciples in simple terms and on simple examples and we do not try to fully describe real
case studies, although we do mention relevant application fields and provide pointers
to more advanced material. One feature that differentiates our approach is probably
also due to our respective scientific origins: we are physicists who have done teach-
ing and research on computer science and interdisciplinary fields and we would like
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to bring a “computational science” and “complex systems” orientation to the book
rather than an application-based one.

The book should be useful for advanced undergraduates in computer science and
engineering, as well as for students and researchers from other disciplines looking
for a concise and clear introduction to metaheuristic methods for optimization. The
contents of the book reflect the choices explained above. Thus, we have given prior-
ity to well-known and well-established metaheuristics. After an introductory chapter
devoted to standard computability and complexity ideas, we describe a concept that
is fundamental in metaheuristics: the search space. After this basic knowledge we
describe the main metaheuristics in succeeding chapters: Tabu search, Simulated An-
nealing, Ant Colony methods, and Particle Swarms. Chapter 7 contains an introduc-
tion to newer metaheuristics, such as Fireflies, which are not yet as well established
but which could become important in the near future. Chapters 8 and 9 are devoted to
Evolutionary Algorithms. Chapters 1-9 constitute the fundamental part of the book;
altogether they present the basic notions that any student and practitioner should
possess about metaheuristics. The following chapters are a bit more specialized but
are still very accessible from the technical viewpoint. Chapter 10, which is a little
more technical than the others, is rather unique in current computer science books
at this level as it brings a statistical physics approach to computational complexity.
This chapter can be skipped without consequences but the ensemble mean difficulty
of a class of random problem instances is a valuable point of view when contrasted
with the standard worst-case complexity approach. Finally, Chapters 11 and 12 are
devoted to a more detailed statistical study of the performance of metaheuristics and
of the structure of problem search spaces.

In keeping with our general philosophy of simplicity, we have deliberately cho-
sen not to present multi-objective and constrained optimization, which are very im-
portant in practice but require a number of new concepts to be introduced. In the
same vein, there are no explicit problems for the reader to solve in the book. Theo-
retical problems doable with pencil and paper would probably be inappropriate for
the level of the book; on the other hand, numerical solutions to specific questions
would certainly be very useful. Today there exist a number of excellent download-
able open software systems for several languages and environments that cover most
of the methods presented in the book. The reader would be well advised to try out
one or more of these and, to this end, we provide a list of suggestions in an appendix.

We would like to thank many colleagues and collaborators for comments and dis-
cussions. They have, in one way or another, contributed to our present understanding
of metaheuristics. M. Tomassini acknowledges in particular P. Collard, M. Giacobini,
G. Ochoa, L. Vanneschi, and S. Vérel for many stimulating discussions during our
joint work. He also thanks his former Ph.D. student F. Daolio for his help with sev-
eral figures and numerical computations in Chapters 8 and 12. We would also like
to express our appreciation to the Springer staff, and in particular to Ronan Nugent,
whose help and support were key during the whole process. B. Chopard thanks E.
Taillard for hints and advice on the Traveling Salesman problem and simulated an-
nealing. He also thanks R. Monasson and G. Semerjian for their feedback on the
chapter on computational phase transitions.

September 2018
Bastien Chopard, Marco Tomassini
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1

Problems, Algorithms, and Computational Complexity

1.1 Computational Complexity

Metaheuristics are a family of algorithmic techniques that are useful for solving dif-
ficult problems. Roughly speaking, the difficulty or hardness of a problem is the
quantity of computational resources needed to find the solution. When this quantity
increases at a high rate with increasing problem size, in a way that will be defined
precisely later, we are facing a difficult problem. The theory of the computational
complexity of algorithmic problems is well known [34, 66] and, in this first chapter,
we shall look at the basics and the main conclusions since these ideas are needed to
understand the place of metaheuristics in this context.

By and large, computational problems can be divided into two categories: com-
putable or decidable problems and non-computable or undecidable ones. Non-
computable problems cannot be solved, in their general form, by any computational
device whatever the computational resources at hand. One of the archetypal problems
of this class is the halting problem: given a program and its input, will the program
halt? There is no systematic way to answer this question for arbitrary programs and
inputs. Computability is important in logic and mathematics but we shall ignore it in
the following. On the other hand, for computable and decidable problems there are
computational procedures that will give us the answer in finite time. These proce-
dures are called algorithms and once one or more algorithms are known for a given
problem, it is of interest to estimate the amount of work needed to obtain the result.
Under the hypothesis that the computational device is a conventional computer, the
relevant resources are the time needed to complete the computation and the memory
space used. However, in theory the use of an electronic computer is by no means
necessary: the “device” could be a mathematician equipped with pencils, an endless
tape of paper, and a lot of patience. Indeed, the fundamental theoretical results have
been established for an elementary automaton called a Turing machine; a modern
computer is computationally equivalent to a Turing machine but it is much faster. In
the present day memory space is usually not a problem and this is the reason why we
are more interested in computing time as a measure of the cost of a computation.
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Several decades of research on computable problems have led to the conclu-
sion that, to a first approximation, a problem may belong to one of two non-disjoint
classes: either the class of problems for which the computation time is bounded
by a polynomial of the size of the problem instance, or the class of problems for
which a correct answer can be checked in such time. The former class is called P ,
which stands for polynomial, and the second has been calledNP , which means non-
deterministic polynomial.

Many important algorithmic problems belong to the class P ; for example, search-
ing for an element in a data structure, sorting a list, finding the shortest path between
two vertices in a connected graph, finding a spanning tree of a graph, solving a system
of linear equations, and many others. All these problems admit of efficient solutions,
in the sense that there are algorithms for them that give the correct answer in time
that is a polynomial function of the size of the problem instance considered. Here
“instance” simply means a particular case of the problem at hand, e.g., a given graph
or a given list of numbers. In addition, it is found in practice that the polynomial is of
low degree, usually first, second, or third at most. It is clear that this kind of problem
does not need metaheuristics or other approximate methods to be solved efficiently
given that exact efficient algorithms already exist.

The situation is different for problems not belonging to the class P , which seem
to require an amount of time to be solved that grows exponentially with the instance
size, a time that becomes quickly impractical even for current-generation computers.
There are many problems of this kind and a non-exhaustive list can be found in the
classical book by Garey and Johnson [34]. Among these problems one can mention
the satisfiability problem in logic, the existence of Hamiltonian cycles in graphs,
graph partitioning, and many scheduling and sequencing problems. The important
point is that many of these problems are not only of theoretical interest; rather, they
arise naturally in several fields that are relevant in practice such as operations re-
search and logistics. For these, the possibility of obtaining a perhaps not optimal but
at least satisfying solution would be very valuable.

In the rest of the chapter we shall give an introduction to the issues of compu-
tational complexity and to the practical ways in which one can fight the inordinate
growth of computing times.

1.2 Analysis of Algorithms and Their Complexity

1.2.1 Operations and Data Size

To establish the efficiency of an algorithm we need to know how much time it will
take to solve one of a class of instances of a given problem. In complexity theory
one makes use of the following simplification: the elementary operations a computer
can perform such as sums, comparisons, products, and so on all have the same cost,
say one time unit. This is obviously imprecise since, for instance, a division actually
takes more machine cycles than a comparison but we will see later that this does not
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change the main conclusions, only the actual computing times. Under this hypothe-
sis, the time taken by an algorithm to return the answer is just the sum of the number
of elementary operations executed until the program stops. This is called the uniform
cost model and it is widely used in complexity studies. In the case of numerical algo-
rithms such as finding the greatest common divisor, or primality testing, very large
numbers may appear and the above hypothesis doesn’t hold as the running time will
depend on the number of digits, i.e., on the logarithm of the numbers. However, the
uniform cost model can still be used provided that the numbers are sufficiently small
such that they can be stored in a single computer word or memory location, which is
always the case for the problems we deal with in this book.

The data structures that an algorithm needs to compute an answer may be of
many different kinds depending on the problem at hand. Among the more common
data structures we find lists and sequences, trees, graphs, sets, and arrays. The con-
vention is to consider as an input size to a given algorithm the length of the data
used. Whatever the structure at hand, ultimately its size can be measured in all cases
by the number of bits needed to encode it.

1.2.2 Worst-Case Complexity

In computational complexity analysis one is not really interested in the exact time it
takes to solve an instance of a problem on a given machine. This is useful informa-
tion for practical purposes but the result cannot be generalized since it depends on the
machine architecture, on the particular problem instance, and on software tools such
as compilers. Instead, the emphasis is on the functional form T (N) that the compu-
tation time takes as the input data size N grows. However, instances of the same size
may generate different computational costs. For instance, in the linear search for a
particular element x in an unsorted list, if the element is at the first place in the list,
only one comparison operation will suffice to return the answer. On the other hand, if
x doesn’t belong to the list, the search will examine all the N elements before being
able to answer that x is not in the list. The worst case complexity analysis approach
always considers the case that will cause the algorithm to do the maximum work to
solve the problem, thus providing an upper bound to T (N).

Other possibilities exist. In average-case complexity analysis the emphasis is on
the execution cost averaged over all the problem instances of size N , assuming a
given distribution of the inputs. This approach seems more realistic but it quickly
becomes mathematically difficult as soon as the distribution of the inputs becomes
more complex that the uniform distribution in other words, it is limited by the prob-
ability assumptions that have been made about the input distribution. In the end,
worst-case analysis is more widely used since it provides us with a guarantee that
the given algorithm will do its work within the established bounds, and it will also
be used here, except in the cases that will be explicitly mentioned in the text.

Let’s focus our attention again on the behavior of the performance function
T (N). T (N) must be a strictly increasing function of N since the computational ef-
fort cannot stay constant or decrease with increasing N . In fact, it turns out that only
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a few functional forms appear in algorithm complexity analysis. Given such a func-
tion, we want to characterize its behavior when N grows without bounds; in other
words, we are interested in the asymptotic behavior of T (N). We do know that in the
finite world of actual computing machines such a limit cannot really be reached but
we can always take it in a formal sense. The result is customarily expressed through
the “O′′ notation (for the technical details see a specialized text such as [26]) thus

T (N) = O(f(N)) (1.1)

This is interpreted in the following way: there exist positive constants k and N0

such that T (N) ≤ k f(N), ∀N > N0, that is to say, for N large enough, i.e.,
asymptotically, f(N) will be an upper bound of T (N). Asymptotic expressions may
hide multiplicative constants and lower-order terms. For instance, 0.5 N2 + 2 N =
O(N2). It is clear that expressions of this type cannot give us exact computation
times but they can help us classify the relative performance of algorithms.

Recapitulating, the asymptotic interpretation of the computational effort of an
algorithm gives us a tool to group algorithms into classes that are characterized by
the same time growth behavior. Table 1.1 shows the growth of some typical T (N)
functions for increasing N . Clearly, there is an enormous difference between the
very slow growth rate of a logarithmic function, or even of a linear function, as
compared to an exponential function, and the gap increases extremely quickly with
N . Moreover, for the functions in the lower part of the table, computing times are
very large even for sizes as small as 50. The commonly accepted dividing line is
between problems that can be solved by algorithms for which the running time is
bounded by a polynomial function of the input size, and those for which running
time is super-polynomial, such as an exponential or a factorial function. Clearly, a
polynomial function of degree 50 would not be better than an exponential function
in practice but it is found that the polynomial algorithms that arise in practice are
of low degree, second or third at most. It is also to be noted that some functions on
the polynomial side, such as logN and NlogN , are not polynomial but they appear
often and are certainly bounded by a polynomial. Likewise, N ! is not exponential
but it dominates any polynomial function.

Function Function Value
logN 1 1.699 2 3
N 10 50 100 1,000

NlogN 23.026 765.2 460.52 6,907.75
N2 100 2,500 10,000 106

N3 1,000 125,000 106 109

2N 1,024 1.126× 1015 1.27× 1030 1.05× 10301

10N 102 1050 10100 101,000

N ! 3, 628.8× 103 3.041× 1064 10158 4× 102567

Table 1.1. Growth rate of some functions of the instance input size N
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The horizontal line in Table 1.1 separates the “good” functions from the “bad”
ones, in the sense that problems for which only exponentially bounded algorithms are
known are said to be intractable, which does not mean that they cannot be solved,
they would if we waited long enough, but the computation time can become so large
that in practice we cannot afford to solve them exactly. Clearly, the frontier between
tractable and intractable problems is a fuzzy and moving one and, thanks to advances
in computer speed, what was considered at the limits of intractability twenty years
ago would be tractable today. However, exponentially bounded algorithms only al-
low moderate increases in the size of the instances that can be solved exactly with
increasing computer power. In contrast, algorithms whose running time is bounded
by a polynomial function of N will fully benefit from computer performance in-
creases.

1.3 Decision Problems and Complexity Classes

Using the notions presented above, we shall now give a summary of the classification
of computational problems and their algorithms according to standard theoretical
computer science. The interested reader will find a much more complete description
in specialized books such as Papadimitriou’s [66]. The theory is built around the con-
cept of decision problems, i.e., problems that require a “yes” or “no” answer. More
formally, P is a decision problem if the set of instances IP of P can be partitioned
into two sets: the set of “positive” instances YP and the set of “negative” instances
NP . AlgorithmAP gives a correct solution to the problem if, for all instances i ∈ YP
it yields “yes” as an answer, and for all instances i ∈ NP it yields “no” as an answer.

The theory of computational complexity developed during the 1970s basically
says that decision problems can be subdivided into two classes: the class P of those
problems that can be solved in polynomial time with respect to the instance size, and
the classNP of those for which a correct “yes” answer can be checked in polynomial
time with respect to the instance size. The letter P stands for “polynomial”, while
NP are the initials of “non-deterministic polynomial”. Essentially, this expression
means that for a problem in this class although no polynomial-time bounded algo-
rithm is known to solve it, if x ∈ YP , i.e. x is a positive instance of P then it is
possible to verify that the answer is indeed “yes” in polynomial time. The corre-
sponding solution is called a certificate. Another equivalent interpretation makes use
of non-deterministic Turing machines, hence the term non-deterministic in NP . We
now describe a couple of examples of problems belonging, respectively, to the P and
NP classes.

Example 1: Connection of a graph.

LetG(V,E) be a graph with V representing the set of vertices andE the set of edges.
G is connected if there is a path of finite length between any two arbitrary vertices
v1, v2 ∈ V . In this case the decision problem P consists of answering the following
question: is the graph G connected?
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It is well known that the answer to the above question can be found in time
0(|V |+ |E|), which is polynomial in the size of the graph, by the standard breadth-
first search. Therefore, the problem is in P .

Example 2: Hamiltonian cycle of a graph.

The problem instance is a non-oriented graph G(E, V ) and the question is the fol-
lowing: does G contain a Hamiltonian cycle? A Hamiltonian cycle is a path that
contains all the vertices of G and that visits each of them only once, before returning
to the start vertex.
No polynomial-time algorithm is know for solving this problem, therefore the prob-
lem does not belong to P . However, if one is given a path {v1, v2, . . . , vN , v1} of G
pretending to be a Hamiltonian cycle, it is easy to verify the claim. Indeed, there is
only a polynomial amount of data to check, linear in this case, to see whether or not
the given cycle is a Hamiltonian cycle. Therefore, the problem is in NP .

We thus see that P ⊆ NP since any decision problem in P admits of a polyno-
mial algorithm by definition and, at the same time, the solution can itself be checked
in polynomial time. Thus far, researchers believe that P ⊂ NP , which means that is
it is unlikely that somebody will find tractable algorithms for many hard problems.

To conclude this summary of computational complexity, we note that there ex-
ists a class of decision problems called NP -complete that play a major role in the
theory. Problems in this class all belong to NP but they have an additional striking
feature: any NP -complete problem can be reduced to another problem in this class
in polynomial time. A reduction of problem Pa to problem Pb is a method to solve
Pa using an algorithm for Pb. The reduction is said to be polynomial if the trans-
formation from Pa into Pb can be performed in polynomial time. In this sense all
the NP -complete problems are equivalent. To show that that a problem P is NP -
complete one must first show that it belongs toNP , meaning that it does not admit of
a polynomial-time algorithm but that its positive instances can be validated in poly-
nomial time. After that, one needs to find a polynomial-time reduction of the given
problem to any other problem that is already known to belong to the NP -complete
class. It is clear that it has been necessary to find a first prototypical NP -complete
problem; this has been accomplished by S. Cook through the problem of the satis-
fiability of a Boolean formula [34, 66]. The important consequence of the theory is
that if we could find a polynomial-time algorithm for any NP -complete problem,
the consequence would be that all the other NP -complete problems would be solv-
able in polynomial time as well since they can all be transformed into each other by
definition. A list of NP -complete problems can be found in [34]. Finally, we remark
that there exist problems that are known not to be in NP . Thus, even if we find a
polynomial-time algorithm for NP -complete problems, those problems outside the
NP class would still be intractable.

Figure 1.1 graphically summarizes the relation between the complexity classes
P , NP , and NP -complete according to present knowledge and assuming that P ⊂
NP . This view is essentially correct but ignores some details that can be found
in [66] and in a simpler but extremely readable form in [64].
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Fig. 1.1. Relations between complexity classes of decision problems assuming that P ⊂ NP

1.4 The Complexity of Optimization Problems

Optimization problems are very important in practice and a class of methodologies
for solving them, namely metaheuristics, is the main subject of the present book. Un-
derstanding their relationship with the complexity classes briefly presented above is
a necessary step in the path that we will take. To this end, we give here a few defini-
tions and concepts about optimization problems especially in relation to their compu-
tational complexity. The optimization view will be further developed and deepened
in the next chapter, where optimization problems will be examined from the point of
view of the structure of the search spaces that characterize their instances.

Informally, an optimization problem consists of finding the solution, or solutions,
that maximize or minimize a given criterion variously called the objective function,
cost function, or fitness function (we will use these terms interchangeably here). A
solution may be required to obey certain constraints, when it is usually called an
admissible or feasible solution. Many important problems require the simultaneous
optimization of more than one objective; this branch of optimization is called multi-
objective optimization and it is very important in practical applications. However, it
is a more technical and specialized field of study. Thus, for the sake of simplicity, we
shall not take it up here and we refer the interested reader to the appropriate literature,
e.g., [28].

In more formal terms, if S is a finite set of feasible solutions to a problem and f
is a cost function f : S → R, then an instance of an optimization problem P asks
for x ∈ S such that 1:

f(x) ≥ f(s), ∀s ∈ S (1.2)

The optimization problem is the set IP of all the instances of P .
Computational complexity ideas, as presented in the previous sections, strictly

apply only to decision problems. Optimization problems, due to their importance in
many application areas, are very relevant and therefore it is important to understand
1 Here we assume maximization. If minimization is implied instead, we have f(x) ≤
f(s), ∀s ∈ S. The nature and properties of S will be explained in Chapter 2.

NP
P

NP-complete
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how complexity theory can be extended from decision to optimization problems.
The main ideas are as follows. Once the NP -complete class has been defined, one
may ask whether there are other problems at least as difficult as those that have been
proved to beNP -complete. A problem is calledNP -hard if, in terms of complexity,
it is at least as difficult to solve as any problem in NP , apart from a polynomial-
time reduction. Thus, if an optimization problem Po reduces to an NP -complete
one P , then Po is NP -hard. In this way, one can show that, in the sense of their
running times, NP -complete problems are contained in the more general NP -hard
class. Many NP -hard problems are optimization problems, which are not decision
problems, and thus cannot be NP -complete, but their solution is at least as hard as
that of NP -complete problems.

Let us look at a simple example of this relationship between a difficult optimiza-
tion problem and its decision form. Consider again a slightly different version of the
Hamiltonian cycle decision problem:

Given the undirected graph G(E, V ), we ask the following question: does G possess
a Hamiltonian cycle of length L ≤ k?

The optimization version of the problem goes under the name of “Euclidean sym-
metric traveling salesman problem”, or TSP for short, and can be defined thus:

Given the undirected graph G(E, V ) with the set of vertices V = {v1, . . . , vn} and
the n× n matrix of distances dij ∈ Z+, find a permutation Π(V ) of V such that the
corresponding tour length L(Π) =

∑n−1
i=1 dvi,vi+1 + dvn,v1 is minimal.

We already know that the Hamiltonian cycle problem belongs to NP , and it has also
been shown to be NP -complete. But the optimization version is at least as hard as
the decision problem for, once an optimal solution of length L has been found, the
decision version only asks us to compare L to k. In conclusion, although the TSP
cannot belong to NP because it is not a decision problem, it is at least as difficult to
solve since its solution implies the solution of the corresponding decision problem.
Indeed, having found the shortest tour, we are sure that the length we compare to
k is the minimal one and therefore the decision problem is solved as well since, if
L turns out to be larger than k, no other tour exists that gives a “yes” answer. The
preceding qualitative and intuitive ideas can be put into a rigorous form but doing
so would lead us out of the scope of the book. The interested reader will find the
corresponding technical details in a specialized book such as Papadimitriou’s [66].

1.5 Do We Need Metaheuristics?

From the previous pages, the reader might have got the impression that searching for
solutions to NP -hard optimization problems is a hopeless enterprise. Indeed, these
problems require quickly increasing computing times as the instance sizes we want to
solve grow, and at some point they become effectively impractical. The point is that
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the algorithms we know for solving them are essentially just complete enumeration
of the admissible solutions, whose number grows exponentially or worse with size. In
other words, we lack any shortcut that could save us checking most of the solutions,
which is so effective for problems in P like sorting. In sorting a list of N numbers
we can leverage an ordering principle that limits the work to be done to N logN , as
compared to checking all the N ! possible solutions. Nevertheless, the fact that large
hard problems are solved daily in many fields should encourage us to have a more
positive attitude toward these issues. In the following pages, we shall briefly review
a number of ideas that all help relieve the computational burden generated by these
algorithms.

Special cases of difficult problems.

We start by recalling that theoretical results on computational complexity have been
established mainly according to the worst-case scenario. In practice, however, many
instances of a hard problem might have a structure that makes them easier to solve
in spite of the fact that the worst case is hard. For example, the satisfiability problem
with two variables per clause (2-SAT) can be solved in polynomial time while the
general case belongs to NP and MaxSat, the optimization version, is NP -hard. An
important case is the simplex algorithm for linear programming problems, which
has exponential complexity in the worst case, but in practice it is fast and can be
routinely applied with success to very large problems. For another example, rather
large instances of the knapsack problem, which is NP -hard, can be solved by using
partial enumeration and dynamic programming. This is good news but the cases are
particular and cannot be generalized to the bulk of the hard problems that are at the
core of many real-life applications.

Brute-force computation.

We have already remarked that the constant increase in computer power, at least up
to a point where fundamental physical factors impede further progress, might al-
low us to just use the simplest and most direct method to solve a difficult problem:
just generate and test all admissible solutions. A few decades ago this was possible
only for small problem instances but today TSP instances with tens of thousands of
cities have been solved using partial enumeration and problem knowledge. Clearly,
to accomplish this, smart enumeration algorithms and powerful computers are re-
quired [25]. But there will always be limits to what can be done even with the fastest
computers. For instance, suppose that an algorithm with complexity ∝ 2N takes
an hour to solve an instance of size S with a present-day computer; then, with a
hundred-fold increase in performance, the instance we can solve in one hour is only
of size S + 6.64, and it is of size S + 9.97 with a computer 1, 000 times faster [34].
As another example, a brute-force attack to find the public key by factoring a large
prime in an RSA encryption system is doable with current technology only if the
integers used are less than 1, 000 bits in length [26].
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Approximation algorithms.

A reasonable way of tackling a difficult problem is perhaps just to satisfy oneself
with a good, but not necessarily globally optimal solution. After all, in many practi-
cal circumstances when limited time is available to get an answer, it is usually prefer-
able to get a quick satisfactory solution rather than to wait for much longer to get a
marginally better one. Thus, if we need to schedule a TSP tour for tomorrow, it is
probably better to compute a good tour in ten minutes rather than to wait for a week
to obtain an optimum that is only 10% better. Approximation algorithms [26] give
us just that: they take polynomial time in the size of the problem instance, and thus
are faster, and provide us with a certified guarantee that the solution will be nearly
optimal up to a certain constant factor. There are approximation algorithms for many
NP -hard problems, but sometimes the approximation is almost as difficult as the
original as the polynomial may be of high degree, and they are usually difficult to
program. It has also been proved that someNP -hard problems are “inapproximable”
and thus for them we are left with the original complexity result [66]. In conclusion,
approximation algorithms may be very useful when they exist and run sufficiently
fast but they cannot be considered to be a general solution to solve difficult problems.

Parallel computing.

We have already given some attention to the fact that improved computation technol-
ogy has the potential to make tractable what was once considered to be intractable,
up to a point. One might be tempted to extend the idea and reason that if a single
machine has made such a progress, what could a large number of similar machines
working together accomplish? In practice, it is a matter of having many computa-
tion streams active at the same time by connecting in some suitable way a number
of single machines or processors. Indeed, today even standard laptops are actually
multi-processor machines since parallelism in various forms is already present at the
chip level, and connecting together several such machines can provide huge comput-
ing power. These kinds of architectures are now popular and affordable owing to the
diminishing costs of processors, the introduction of cheap graphics processing units,
and the high performance of communication networks. These ideas have been fully
explored in the last three decades with excellent results. There are however some
limitations, both technological and theoretical. In the first place, many algorithms
are not easy to “parallelize,” i.e., to restructure in such a way that they can be run on
parallel hardware with high efficiency. This is mainly due to synchronization phases
between the computing streams and communication between the processor memo-
ries by message passing, or access to a common shared memory. When these factors
are taken into account, one realizes that the ideal speedup, which is n for n processors
working in parallel, is almost never achieved. Nevertheless, computer time savings
can be substantial and parallel computing is used routinely in many computer tasks.

However, there exist principled reasons leading experts to say that parallel com-
puting can help but cannot fundamentally change the easy/hard frontier delineated
previously in this chapter. Let us briefly recall the concept of a non-deterministic
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Turing machine, which was mentioned when the class NP of decision problems
was introduced. In problems of this class, positive solutions, i.e., those providing a
“yes” answer to a question can be checked in polynomial time by definition. Another
way of finding a solution is to use a non-deterministic Turing machine (NDTM),
an unrealistic but useful theoretical device that spawns computation paths as needed
until it either accepts its input or it doesn’t. Its computation can be seen as a tree of
decisions in which all the paths are followed simultaneously [66]. Thus, a problem
P belongs to NP if for any positive instance of P such an NDTM gives a “yes”
answer in polynomial time in the size of the instance. If we could use a parallel
machine to simulate the branching of decisions of the NDTM by allocating a new
processor each time there is a new decision to evaluate, we would obtain a physical
analogue of the NDTM. But for a problem in NP the number of decisions to make
increases exponentially if we want the NDTM to find the answer in polynomial time,
which would imply a number of processors that grows exponentially as well! Such
a machine is clearly infeasible if we think about physical space, not to speak of the
interconnection requirements. The conclusion is clear: parallelism can help to save
computer time in many ways and it is well adapted to most of the metaheuristics that
will be presented later in the book, however parallelism per se cannot fundamentally
change the frontier between easy and hard problems. To further explore these issues,
the reader is referred to, e.g., [14] for the algorithmic aspects, and to [66] for the
complexity theory part.

Linear programming relaxation.

In many cases the optimization task is to maximize or minimize a linear function of
non-negative real variables x1, . . . , xn subject to M linear constraints. This is called
a linear programming problem and can be formulated thus:

maximize
n∑
i=1

cixi (1.3)

subject to
n∑
i=1

ajixi ≤ bj , j = 1, . . . ,M (1.4)

and xj ≥ 0, j = 1, . . . , n (1.5)

This type of problem occurs in a variety of practical situations and many hard
combinatorial optimization problems can be expressed as linear programming prob-
lems using integer variables. The corresponding linear program with integrity con-
straints does not admit of a polynomial-time algorithmn and, in fact, it is NP -
complete [34].
Let us consider the knapsack problem, which is NP -hard, as an example.
There are n items with utility pj , j = 1, . . . , n and “volume” wj , j = 1, . . . , n.
The binary variable xj is equal to 1 if the object j is included, otherwise its value
is 0. The solution we look for is a string of objects x that maximizes the objective
function

∑n
j=1 pj xj , with the constraints

∑n
j=1 wj xj ≤ c, where c > 0 is the
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knapsack capacity. In other words, what is required is to fill a knapsack of capacity c
with items having the largest possible total utility.
The knapsack problem is equivalent to the following 0/1 integer linear programming
problem:

maximize
n∑
j=1

pjxj (1.6)

subject to
n∑
j=1

wjxj ≤ c (1.7)

We have seen above that integer linear programming is NP -complete; therefore,
as expected, the formal transformation of the knapsack problem into a 0/1 inte-
ger linear programming form does not change the problem complexity. However,
through this reformulation it is now possible to “relax” the problem to an ordinary
linear programming form by replacing integer variables by real ones 0 ≤ xi ≤ 1.
Now we can solve the standard linear programming problem with the simplex
method, which is usually fast enough, obtaining the optimal real variables xi, and
to round them to the closest integer. This rather old technique can be used on some
occasions but it is not without problems. To start with, many problems do not have
obvious reductions to integer linear programming. And there are other difficulties as
well. Although a purely integer solution to the relaxed problem is also an optimal so-
lution for the original problem, most often some or all of the variables of the solution
vector are fractional. In this case the optimal solution lies in the interior of the feasi-
ble region and rounding them to integers or searching in their neighborhoods is not
always an effective strategy. Nevertheless, the method at least gives a lower bound,
in the case of minimization, to the optimal cost of the original integer programming
problem. Relaxation to linear programming and its shortcomings are discussed in
detail in the book by Papadimitriou and Steiglitz [67].

Randomized algorithms.

Randomized algorithms try to exploit non-determinism to find a solution to in-
tractable problems in reasonable time. In contrast to standard deterministic algo-
rithms, randomized algorithms do not provide correctness guarantees for any allow-
able input. However, we can make the probability of error extremely small, which
makes the algorithms almost infallible while, at the same time, they run in reason-
able, i.e., polynomial, time with respect to their intractable deterministic counter-
parts. A well-known example of such an algorithm is primality testing of very large
numbers, a very important feature of cryptographic systems. Although a polynomial
algorithm for this task has been found, and thus the problem is in P , the algorithm
is inefficient and it is not used in practice; a randomized version is preferred instead.
If the randomized algorithm has a prime number as input the answer is guaranteed
to be “yes”. If the input number is composite, the answer will almost certainly be
negative and the probability that the answer is “yes” when it should be “no” can be
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made as small as 1/2200 or smaller by adding just a polynomial amount of computing
time. On the whole, randomized algorithms for difficult problems are very practical
and useful when they exist, but there are not many of them around and therefore, at
least for the time being, they cannot be considered a general solution to intractability.
Good sources for learning more about randomized algorithms are [26, 66].

Quantum computation.

While the ways we have described until now for alleviating the intractability of hard
problems are being used all the time, with some of them being rather old and well
known, the approach briefly described in this section is fundamentally different and
much more speculative in character. The main idea is to harness the quantum me-
chanical properties of matter to speed up computation; it has been in existence for
some time, perhaps since the suggestions of physicists Feynman and Benioff during
the eighties [39]. The main concept is to work with quantum bits, dubbed qubits,
instead of ordinary bits for storage and computation. Qubits can represent 0, 1, or
0 and 1 at the same time thanks to the quantum mechanical property of superpo-
sition, which means than with n qubits available one can in principle process 2n

states simultaneously. It is unfortunately impossible to explain the principles of quan-
tum computation without introducing a number of difficult physical concepts, which
would be inappropriate for a book such as this one. We just observe that the quantum
computation approach has the potential for turning an exponential-time algorithm
into a feasible polynomial one, as has been demonstrated in theory for a few algo-
rithms such as Shor’s algorithm for the integer factorization problem, for which no
polynomial-time algorithm is known in standard computation. A completely differ-
ent problem is whether a quantum computer can actually be built. At the time of
writing, only very small systems have been capable of operating with at most a few
tens of qubits. Maintaining the coherence and reliability of such machines involves
huge technical problems and exploitable quantum computers are not yet in sight
although physicists and engineers have made important advances. A very readable
introduction to quantum computation can be found in [64] and [18] offers a layman
a glimpse into the future of this exciting field.

Metaheuristics.

All the alternative approaches that we have seen so far offer, in different ways, the
possibility of limiting the impact of the intractability of hard optimization problems.
Some of them give up strict global optimality in exchange for quickly obtained good
enough solutions, a sacrifice that is often fully acceptable in large real-life applica-
tions. When easily available, these approaches are perfectly appropriate and should
be used without hesitation if their implementation is not too difficult, especially when
they are able to provide solutions of guaranteed quality. However, the main drawback
of all of them is to be found in their lack of generality and, sometimes, in the diffi-
culty of their implementation.

We now finally arrive at the family of methodologies collectively called meta-
heuristics, which are the main subject of the present book. The underlying idea is
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the following: we are willing to reduce somewhat our requirements about the quality
of solutions that can be found, in exchange for a flexibility in problem formulation
and implementation that cannot be obtained with more specialized techniques. In the
most general terms, metaheuristics are approximation algorithms that provide good
or acceptable solutions within an acceptable computing time but which do not give
formal guarantees about the quality of the solutions, not to speak of global optimal-
ity. Among the well-known and -established metaheuristics one might mention sim-
ulated annealing, evolutionary algorithms, ant colony method, and particle swarms,
all of which will be presented in detail later in the book. The names of these methods
make it clear that they are often inspired by the observation of some natural complex
process that they try to harness in an abstract way to the end of solving some difficult
problem. An advantage of metaheuristics is that they are flexible enough to include
problem knowledge when available and they can deal with the complex objective
functions that are often found in real-world applications.

Another advantage of many metaheuristics is that they can be used in conjunc-
tion with more rigorous methods through a process that we might call “hybridiza-
tion” thus improving their performance when needed. Furthermore, and in contrast
with many standard algorithms, most metaheuristics can be parallelized quite easily
and to good effect. Because of the reasons just explained we do think that meta-
heuristics are, on the whole, a sensible, general, and efficient approach for solving
or approximately solving difficult optimization problems. All these notions will be
taken up and explained in detail starting with the next chapter. Our approach in this
book is didactic and should be effective for newcomers to the field and for readers
coming from other disciplines. We introduce new concepts step by step using sim-
ple examples of the workings of the different metaheuristics. Our introductory book
should provide a basic and clear understanding of the mechanisms at work behind
metaheuristics. A more comprehensive treatment can be found, for example, in [78],
which also includes multi-objective optimization and many implementation details,
and in [74] which, in addition to the basic material, also presents interesting real-life
case studies. A good introduction at the level of the present text with an emphasis on
evolutionary computing and implementation can be found in Luke’s book [58].
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Search Space

2.1 Search Space

In this chapter we take up again the notion of an optimization problem from the
point of view of the structure of the search space associated with its instances, an
idea that has been only mentioned in the previous chapter. These concepts are a
prerequisite to understand all the metaheuristics that will follow in later chapters. For
the sake of clarity, let us repeat how the optimization of a given function is defined. In
optimization the goal is to find one or more solutions x to a problem which is often
defined by its objective function f and possibly by the constraints that a solution
must obey.

For example, the problem might ask for a point in the x = (x1, x2) plane that
minimizes the function f(x) = x21 + x22, subject to the constraint x1 + x2 = 3.
We shall say that the values of x that satisfy the constraints are the feasible, or ad-
missible, solutions of the problem. Among these solutions, those that maximize (or
minimize) f are called optimal solutions. Sometimes we shall also call a solution x a
configuration in the case of problems for which the word configuration is adequate.

Mathematically, the formulation of an optimization problem requires the specifi-
cation of a search space S such that the elements x ∈ S are the admissible solutions
of the problem. To obtain the solution(s) of a maximization problem we must explore
S and find the x that satisfy

f(x) ≥ f(y), ∀y ∈ S

The analogous conditions for a minimization problem are

f(x) ≤ f(y), ∀y ∈ S

These relations show that what we are looking for here are the global, as opposed to
local, optima, i.e., the x for which f(x) is maximal or minimal over the whole space
S.

The search space S and the objective function f are the two essential components
in the formulation of an optimization problem. When we choose them, we define the
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problem and a coding of the admissible solutions x. It is important to note that, for
a given problem, the coding is not unique, as we will see later, and this means that
the structure of the search space may be different for the same problem depending
on our choice.

Oftentimes x is a quantity specified by n degrees of freedom such as an n-
dimensional vector of real numbers, integers, or Booleans:

x = (x1, x2, . . . , xn)

The size of an optimization problem is defined as the number n of degrees of free-
dom it has. This value is not the same thing as the size of the corresponding search
space |S|, which is the number of elements, i.e., solutions or configurations, that it
contains. The latter can be infinite or uncountable, for instance when the xi are real
numbers. In this case we shall speak of a continuous optimization problem and its
difficulty will be characterized using the n degrees of freedom of the admissible so-
lutions x. If, on the other hand, the xi belong to a discrete countable space then we
have a combinatorial optimization problem, several examples of which were given
in Chapter 1. In this case the size of the search space is finite but it can contain a
number of solutions that is exponential in the number n of degrees of freedom. To
complete the main definitions let us recall that the objective function, also dubbed a
cost function or a fitness function, can sometimes be called an energy function, by
analogy with some fundamental problems in physics that call for the minimization
of the associated energy.

2.2 Examples

Here we are going to present some typical classes of optimization problems that are
important both in theory and in practical applications and, for each one of them, we
will give the general formulation and a description of the relevant search spaces.

2.2.1 Functions in Rn

To find the optima of a function f : Rn → R, assumed continuous and differentiable
in the domain of interest, one must look for the points at which all first-order partial
derivatives vanish, that is the solutions of

∇f = 0

where∇ denotes the gradient.
Then, if the second-order derivatives have the right properties we can conclude

that the point in question is an extremum. Usually, numerical methods must be used
to find the zeroes of derivatives. Now, in most cases where the objective function
f is not a simple one, the optima found in this way are only local optima and in
principle one must find all of them to locate the global one. Also, it is possible that
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the global optimum is on the boundary of the domain, in case it is bounded. Clearly,
for a non-convex function f , the problem of finding its optima may be difficult.

Note also that constraints of the form gi(x) = 0 can be added to the problem of
finding the optima of f . The way to solve the problem is to use the standard Lagrange
multipliers method. In short, one has to solve

∇f −
∑
i

λi∇gi = 0 (2.1)

for real values λi to be determined. These quantities λi are called Lagrange multipli-
ers. This method may not look very intuitive. A simple example is illustrated in R2,
for f(x, y) = ax2 + by2 and one single constraint g(x, y) = y − Ax − B (see also
Fig. 2.1). The explanation is the following: the optimum we are looking for must be
on the curve g(x, y) = 0 as this is the constraint. The optimal solution (x∗, y∗) is
then on a contour line of f which is tangent to the constraint. Otherwise, by “walk-
ing” along g = 0, one would find arbitrarily close to (x∗, y∗), a point for which f
is smaller or larger than f(x∗, y∗). Since f and g are tangent for (x∗, y∗) their gra-
dient must be co-linear. Thus, there must exist a real value λ such that ∇f = λ∇g
at (x∗, y∗). Equation (2.1) and the fact that g(x∗, y∗) = 0, together give enough
conditions to find λ and (x∗, y∗). We are not going to discuss this classical approach

-1 1
x 

-1

1

y

 

Fig. 2.1. The optimum (actually here a minimum) of f(x, y) = ax2 + by2 with constraint
g(x, y) = y−Ax−B, with a = 2, b = 5,A = 1.8 andB = −1. The red curves are contour
lines of f and the red arrow is proportional to∇f at the given (x, y). The blue line shows the
condition g(x, y) = 0 and the blue arrow is the gradient of g at the given point. The optimum
is the black point, at which the gradients of f and g are parallel

further as it can found in many mathematical books at the undergraduate level. We
remark, however, that metaheuristics are often the only practical way to solve real-
world mathematical optimization problems when the objective function f is highly
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multimodal, noisy, non-differentiable, or even not known in analytical form. In Chap-
ter 8 we will mention examples of continuous, differentiable, multimodal functions
whose global optimum is easily obtained with a genetic algorithm (see for instance
Figure 8.4).

2.2.2 Linear Programming

Linear programming was briefly introduced in Chapter 1. Its formulation, which is
repeated here for convenience, describes the following optimization problems: for
given ci, bj , aji, find positive and real x1, . . . , xn such that

z =

n∑
i=1

cixi (2.2)

is a maximum and obeys the M constraints
n∑
i=1

ajixi ≤ bj , j = 1 . . .M (2.3)

The search space in linear programming is in principle Rn but in practice it is
the set of vertices of a convex polygon, and the simplex algorithm, although theoret-
ically it can take exponential time in the worst case, generally finds the solution in
polynomial time even for large instances. This kind of problem is well known and
the standard solvers are very effective. Therefore, metaheuristics are not needed at
all in this case. However, you might remember from Chapter 1 that in the special
case in which the xi are 0/1 or just integers the general problem is known to be hard.

2.2.3 NK-Landscapes

NK-landscapes have been proposed by S. Kauffman as an abstract model of genetic
regulation and interaction [47]. They belong to the class of NP -hard problems as
they allow one to solve the satisfaction problems.NK problems include for instance
the problem of energy minimization in physical systems known as “spin glasses.”

To give an intuitive and more concrete idea of what NK problems are, let us
present the following example, based on an economics metaphor. We consider N
persons or agents, labeled with an index i, i = 1, . . . , N . Each agent i acts according
to two possible strategies, denoted xi = 0 or xi = 1. The success of an agent depends
on the strategy it chooses and the type of relation it has (competition or collaboration)
with the other persons it interacts with. If we assume that each agent i depends on
K other agents, we may define a function fi(xi, . . .) which gives the profit resulting
from the chosen strategy and that of the connected agents. The total profit of the N
agents is then f =

∑
fi. The problem of finding the strategies (the values of all xi)

that maximize the global profit is typically an NK problem.
More formally, NK problems are specified as a string (x1, x2, ..., xN ) of N

Boolean variables, each of which is linked to K other variables. The system can be
visualized as a graph with N vertices, each of which has degree K.
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In the framework of optimization problems, NK-landscapes generate search
spaces that are harder the larger K is for a given N . The problem calls for the opti-
mization of a fitness function

f(x1, . . . , xN ) =

N∑
i=1

fi(xj1(i), . . . , xjK(i)) (2.4)

with xi ∈ {0, 1} and given local fitnesses fi, often built randomly, with values cho-
sen uniformly in [0, 1]. It is thus an optimization problem with the N -dimensional
hypercube {0, 1}N as a search space. Note here that we defined K as the number of
arguments of the functions fi, which is not the usual definition1. Here, K = 0 corre-
sponds to constant functions fi, a case which is not included in the usual definition.

As an example of an abstractNK problem, let us consider the family of problems
with K = 3 and f defined by coupling between genes (variables) and next neighbor
genes in the string (x1, x2, ..., xN ) (coupling with randomly located genes is also
customary):

f(x1, . . . , xN ) =
N−1∑
i=2

h(xi−1, xi, xi+1) (2.5)

where h = fi is a known function of three Boolean variables with values in R that
does not depend on i.

If the objective is to maximize f , the problem difficulty depends on h. For
instance, if h(1, 1, 1) is the maximum then the optimal solution will clearly be
x = (1, 1, 1, . . . , 1). On the other hand, if h(1, 1, 0) is the maximum then the string
x = (110110110110...) will not necessarily be a global optimum of f ; the result will
depend on the values of h(1, 0, 1) and h(0, 1, 1).

This example shows that in NK-landscapes the search for the global optimum
is made difficult by the correlations between variables induced by the couplings. In
other words, the problem is not separable for K > 1 and we cannot search for the
optimum one variable at a time. This feature of NK-landscapes allows one to tune
the problem difficulty from easy with K = 1 to hard with K = N . The number of
local optima increases exponentially with increasingK and the corresponding search
spaces go from smooth to rugged and highly multimodal. Because of these proper-
ties, NK-landscapes are often used to test local search methods and metaheuristics.

However, these search spaces are often artificial and randomly constructed and
thus they are not always representative of real-world problems. Nevertheless, we
shall use them often in this book because of their didactic value.

In contrast to the case presented above with K = 3, in the following example
K = 1 and the variables are fully independent of each other

f(x1, . . . , xN ) =
N∑
i=1

h(xi) (2.6)

1 Usually, NK problems are defined with f(x1, . . . , xN ) =∑N
i=1 fi(xi, xj1(i), . . . , xjK(i)), which corresponds to K + 1 in our definition.
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where

h(x) =

{
1 if x = 1
0 otherwise (2.7)

and the global maximum is clearly x = (11111 . . .). This problem, in which the
objective is to maximize the number of “ones” in a binary string, is commonly called
“MaxOne” and it will be used again in Section 2.4 of this chapter and in Chapter 8
on evolutionary algorithms. The solution is clearly obvious for a human being but it
is interesting for a “blind” solver that cannot see the higher-level context.

2.2.4 Permutation Space

An important search space in combinatorial optimization is the permutation space
of n objects. This search space is key in the TSP problem,which was introduced in
Chapter 1 and will reappear in Chapters 4, 5, and 11, as well as in many other dif-
ficult combinatorial problems. In the TSP the salesman is looking for the shortest
route that allows him to visit each and every town once. For example, if the salesman
starts at city O and must visit towns A, B, and C, he must consider the following six
possible tours

OABCO OACBO OBACO OBCAO OCABO OCBAO

and choose the one that has minimum length. But here we put emphasis on the fact
that the six possible cycles are exactly the permutations of the symbols A, B, and C.
For a general n ≥ 1 the number of permutations is

n! = n(n− 1)(n− 2) . . . 1

which translates into n! admissible solutions for the search space of the TSP with
n cities. The size of such a search space grows exponentially with n, since Stirling’s
formula gives us

n! ≈ exp[n(lnn− 1)]

A permutation of a set of n elements ai, i = 1, . . . , n, is a linear ordering of the
elements and can be represented by a list (ai1 , ai2 , . . . , ain) where ik is the index of
the element at place k. For example, the expression

(a2, a4, a1, a3)

describes a permutation of four objects in which the element a2 is at position 1,
object a4 is at position 2, object a1 is at position 3, and object a3 is at position 4. A
shorter notation can also be used to specify the same permutation: (2, 4, 1, 3), and in
the general case, (i1, i2, . . . , in).

In the above representation the positions are the first-class quantities. We can
however choose another representation where the permutation is defined by indicat-
ing, for each object, the position it will occupy. The permutation we so obtain is then
just the inverse of the previous one. To illustrate the differences between these two
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representations, let us consider again the case of a traveling salesman who must visit
the following towns: Geneva, Lausanne, Bern, Zurich, and Lugano. A tour of these
towns can be described according to the order in which they are visited, for instance

towns=(Geneva, Bern, Zurich, Lugano, Lausanne)

The very same tour can also be expressed by indicating, for each town, at which step
of the tour it is reached. In our example, we would write

step={Bern:2,Geneva:1,Lausanne:5,Lugano:4,Zurich:3}

The reader might have noticed that we have used here the syntax of the Python pro-
gramming language to define the two representations, with the data structures that
best match their meaning. In the first case, a list is appropriate as it reflects the or-
dering of the towns imposed by the tour. In the second case, a dictionary is used be-
cause the data structure is accessed through the town names. The above list defines
a mapping from the set {1, 2, 3, 4, 5} to the space of names, whereas the dictionary
specifies a mapping from the space of names to the integers.

Obviously, one has

step[towns[i]]==i

for all integers i. And, for all towns v

towns[step[v]]=v

since each of these two representations is the inverse of the other.
In many cases, the space of names is actually replaced by a set of numbers. The

two representations are no longer easy to distinguish and care should be taken to
avoid confusion when specifying transformations on a permutation. Such transfor-
mations will be discussed in a more general way in Section 2.5 because they are an
essential element of metaheuristics.

We will for instance consider transformations denoted (i, j), which, by defini-
tion, exchange items i and j in a permutation. However, such a transformation (which
will also be called a move) has different results in the two representations. In the first
case one exchanges the towns visited at steps i and j of the given tour. In the second
case, one exchanges the town named i with the town named j.

In our example, if we name our five towns with a number corresponding to the
order in which they are specified in the data structure step, the transformation (2, 3)
amounts to exchanging Geneva and Lausanne, which then gives the following
tour

step={Bern:2,Geneva:5,Lausanne:1,Lugano:4,Zurich:3}

In the other representation, one exchanges the town visited at step 2 with that visited
at step 3. This gives the following new tour

towns=(Geneva, Zurich, Bern, Lugano, Lausanne)
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We clearly see from this example that transformation (2, 3) produces different tours,
depending on which representation it is applied to. It is therefore critical not to mis-
takenly mix these two representations while solving a problem.

Finally, note that we can also represent a permutation of n objects with a function
“successor”, s[a], which indicates which object follows a at the next position of the
permutation. In our example, the permutation

towns=(Geneva, Zurich, Bern, Lugano, Lausanne)

can also be expressed as

s[Geneva]=Zurich, s[Zurich]=Bern, s[Bern]=Lugano, etc.

We leave it to the reader to think of how to implement a given transformation with
this representation.

2.3 Metaheuristics and Heuristics

Exhaustive search and its variants is often the only way we have to find a globally
optimal solution in the search space generated by a given instance of a hard problem.
However, in many cases, even for discrete problems, the size is too large to enumerate
all the feasible solutions. For example, the search space for Boolean problems of n
variables is S = {0, 1}n and it contains 2n possible solutions, but for n larger than a
few tens of variables the computing times quickly become excessive.

Given this situation, what we are looking for is an “intelligent” way to traverse the
search space that ideally avoids sampling most uninteresting points and that allows
us to find an at least satisfying solution to the problem in reasonable time. Such a
methodology will of necessity be imperfect but, if we are clever enough, the hope
is that the solution will be of very good quality, in any event much better that a
randomly chosen one, and that the computational effort will be low with respect to
other approaches.

A heuristic is a method of exploration that exploits some specific aspects of the
problem at hand and only applies to it. For example, when solving a linear pro-
gramming problem by the simplex algorithm, a heuristic is often used for choosing
so-called entering and leaving variables.

A metaheuristic is a general exploration method, often stochastic, that applies
in the same way to many different problems. Examples are tabu search, simulated
annealing, ant colony, and evolutionary algorithms.

For the sake of clarity, it should be added at this point that the two terms are often
used interchangeably in the literature, but the modern trend is to call the general
methodology a metaheuristic and we shall follow this convention here.
Metaheuristics are characterized by the following properties:

• They don’t make any hypothesis on the mathematical properties of the objective
function such as continuity or derivability. The only requirement is that f(x) can
be computed for all x ∈ S.
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• They use a few parameters to guide the exploration. The values of these param-
eters have an influence on the quality of the solutions found and the speed of
convergence. However, the optimal values of the parameters are generally un-
known and they are set either empirically, based on previous knowledge, or as a
result of a learning process.

• A starting point for the search process must be specified. Usually, but not always,
the initial solution is chosen randomly.

• A stopping condition must also be built into the search. This is normally based
either on CPU time or number of evaluations, or when the fitness has ceased to
improve for a given number of iterations.

• They are generally easy to implement and can usually be parallelized efficiently.

In all cases, a metaheuristic traverses the search space trying to combine two
actions: intensification and diversification, also called exploitation and exploration
respectively. In an intensification phase the search explores the neighborhood of an
already promising solution in the search space. During diversification a metaheuristic
tries to visit regions of the search space not already seen.

2.4 Working Principle

Most metaheuristics are based on common algorithmic principles, although this is
not always made explicit in the definition of the different metaheuristics. The main
ingredients are the following:

• For a given problem we define a search space S and an objective function f :
S→ R.

• For each solution x ∈ S, we define a neighborhood V (x) which is the set of
solutions y that one can reach from x in one step and includes x itself. The neigh-
borhood is usually specified in an implicit manner by a set of transformations Ti
that generate y starting from x: if y ∈ V (x) then there is an i for which y = Ti(x).
The transformations are also called moves.

• We specify an exploration operator U such that the application of the operator
to the current point (solution) x0 generates the next point to explore in the search
trajectory. Operator U makes use of the fitness values in the neighborhood to
generate the next solution to explore and is often stochastic. ,

• The exploration process

x0 → x1 ∈ V (x0)→ x2 ∈ V (x1)→ . . .

continues until a suitably chosen stopping criterion is met. The result is then ei-
ther the last xn in the trajectory, or the xi found along the trajectory that produces
the best fitness value.

The efficiency of the search process depends, among other things, on the choice
of V (x) as larger neighborhoods allow one to explore more alternative solutions
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but also require more time. It also depends on the coding of the solutions and on
the choice of U , given that these choices determine the ability of a metaheuristic to
select a promising neighbor.

Note finally that the exploration process described above, consisting of moving
through the search space from neighbor to neighbor, is often referred to as local
search. The term “local” indicates that the neighborhood is usually small with respect
to the size of the search space S. For instance the successor of the current solution
may be taken from a subspace of S of size O(n2) whereas S contains O(exp(n))
possible solutions.

The limited size of the neighborhood is obviously important if all the neighbors
are evaluated to find the next exploration point. But, when the operator U builds one
successor without exploring the entire neighborhood, the size of the neighborhood
no longer matters. We will see many examples in this book where this happens. For
instance, in Chapter 8, we will see that a mutation can generate any possible solution
from any other one. In this case, we may no longer speak of a “local search.”

To complete this discussion, let us note that backtracking and branch-and-bound
methods [66] are not considered to be metaheuristics since they systematically ex-
plore the search space, which makes them expensive in computer time when applied
to large problems. They work by partitioning the space into a search tree and growing
solutions iteratively, eliminating many cases by determining that the pruned solutions
exceed a given bound for branch-and-bound, and reverting to an earlier search point
when further search is unprofitable in backtracking. In any event, these techniques
share some similarities with metaheuristics as they can be applied in a generic man-
ner to many different problems.

2.4.1 Fitness Landscapes

A fitness landscape or energy landscape is a representation of f that preserves the
neighborhood topology. Basically, it is the search space with a fitness value for each
configuration and a neighborhood relationship. Except in very simple cases, this ab-
stract space becomes difficult or impossible to visualize as soon as the neighborhood
is large enough. However, the “shape” of that space, in a statistical sense, will reflect
the problem instance difficulty: either almost flat or very rugged landscapes will intu-
itively correspond to difficult problems, while single-peak or few-peaks landscapes
will in general correspond to easy problems (wells will be considered, instead of
peaks, for minimization). It must also be noted that the optimization of mathemat-
ical functions gives rise to “almost” continuous energy landscapes, at the level of
approximation of the computer’s numerical accuracy. In contrast, the search spaces
generated by combinatorial optimization problem instances are of a discrete nature.
Figure 2.2 illustrates a rugged energy landscape in which the configurations are rep-
resented as discrete points in a one-dimensional space. A more direct representation
would require a binary hypercube with 210 points, which would be very hard to draw
in a two-dimensional figure.
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Fig. 2.2. Fitness landscape of an NK instance with N = 10, K = 3 and the local fitnesses
fi, i = 1, . . . , N randomly generated. The topology here is the one obtained by interpreting
the binary bit string representation of each search point as an unsigned decimal number. Two
points x and y are neighbors if x = y + 1 or x = y− 1

2.4.2 Example

The MaxOne problem nicely illustrates the importance of the choice of the search
space and of the neighborhood. In this problem we seek to maximize

f(x1, . . . , xn) =
n∑
i=1

xi (2.8)

which has the obvious solution x = (x1, . . . , xn) = (1, 1, . . . , 1). Actually, it is a
problem belonging to the NK family with K = 1.

We can see the search space as the set of integers from 0 to 2n − 1 defined by
the binary representation (x1, x2, . . . , xn). Then the natural neighbors of a number
x are the numbers x− 1 and x + 1.

The search space of the problem can thus conveniently be represented by the
graphics of Fig. 2.3 for n = 3 in this example. Let’s assume now that the chosen
search metaheuristic is such that the U operator always selects the neighbor having
the highest fitness or, in case of equality, the left neighbor. If the starting point of the
search is x = 0 we shall have the following search trajectory:

0→ 1→ 2→ 3→ 2→ 3 → . . . (2.9)

And the search process will get stuck at a local optimum.
But we could choose a search space with a different neighborhood: the n-

dimensional binary hypercube, which is also in a bijective relation with the inte-
gers from 0 to 2n − 1. The vertices of the hypercube are the n-bit strings and the
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Fig. 2.3. Fitness landscape of the MaxOne problem for n = 3 and a “closest neighbors”
neighborhood. Arrows show the search trajectory starting at x = 0 using a search operator that
always chooses the neighbor with the highest fitness or the left neighbor in case of equality

neighbors of a vertex x are the bit strings x’ that only differ by one bit from x. This
representation of the MaxOne search space is depicted in Fig. 2.4.

With the same U operator as above, the search will now find the global optimum
x = (1, 1, 1), for instance along the following search trajectory:

000→ 001→ 101→ 111 (2.10)

which is shown in the figure by arrows. Other successful search trajectories are
clearly possible. The point we want to emphasize here using this simple and un-
realistic example is that the choice of a problem representation can heavily influence
the efficiency of a search process.

It must be noted that problems that would be extremely simple to solve for a hu-
man may turn out to be difficult for a “blind” metaheuristic, for example, maximizing
the product

f(x1, . . . , xn) = x1x2 . . . xn

where xi ∈ {0, 1}. The solution is obviously x = (1, 1, 1, . . . , 1, 1) but the fitness
landscape is everywhere flat except at the maximum (this situation is customarily
called searching for a needle in a haystack). Thus, if no knowledge is available about
the problem, the search will be essentially random.

2.5 Moves and Elementary Transformations

The chosen neighborhood, as we have seen above, is a fundamental component of
a metaheuristic as it defines the set of possible successors of the current position
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Fig. 2.4. Search space of the MaxOne problem when possible solutions are represented by
an n-dimensional hypercube with n = 3 and the standard one-bit flip neighborhood. Using
a move operator U that always selects the best neighbor there are several trajectories from
x = (0, 0, 0) to the optimum x = (1, 1, 1), all of the same length, one of which is shown in
the figure

in the exploration trajectory. A large neighborhood offers more choices and gives a
more extensive vision of the fitness landscape around the current position. The draw-
back is that exploring larger neighborhoods to find the next configuration requires
more computer time. Thus, the neighborhood size is an important parameter of a
metaheuristic and, unfortunately, there is no principled way of choosing it since it
strongly depends on the problem at hand.

We are now going to explain how to specify the points or configurations y of the
search space S that are contained in the neighborhood V (x) of a given configuration
x. The usual way in which this is done is to prescribe a sequence of ` moves mi,
i = 1, . . . , `, which altogether will define the neighborhood of any point x ∈ S.
Formally this can be written thus:

V (x) = {y ∈ S|y = mi(x), i = 1, . . . `}

where the mi’s are given.
For example, in the discrete cartesian space Z2, the moves that generate the near-

est neighbors of each point are the displacements along the four main directions
north, east, south, west. Thus, for a point x = (x1, x2), the point y = north(x)
is y = (x1, x2 + 1), in other words, the point situated north of x. Of course, we
could also consider other moves if we wanted a larger neighborhood; for instance,
we could add north-east, south-east, south-west, and north-west to the list of moves.

100 101

110 111

000 001

010 011
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Let us now explain how the notion of move, or transformation, can be defined in
order to generate a suitable neighborhood in the space of permutations. This space
was introduced in Section 2.2.4 and it corresponds to the number of different or-
derings of n objects. This space is very important as it arises often in combinatorial
optimization problems. To illustrate the issue, let’s consider a permutation x ∈ S and
assume n = 5. A suitable neighborhood can be obtained, for example, by the trans-
position of two elements. Denoting by (i, j), j > i the transposition of the element
at position i with the one at position j, the ten moves m that generate the neighbors
of a permutation of five objects are

m ∈ {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}

For instance, the permutation (a3, a2, a4, a5, a1) has (a2, a3, a4, a5, a1) as a neigh-
bor, which is obtained by applying the move (1, 2), i.e., transposing the first two
elements. Such a choice for the neighborhood of a given permutation ensures that an
arbitrary point y in the search space can be reached from any other configuration x
in a finite number of moves. Actually, it can be proved that any permutation can be
decomposed into a sequence of transpositions of pairs of elements.

For arbitrary n, transpositions are of the form (i, j) with i = 1, 2, . . . , n− 1 and
j = i+ 1, i+ 2, . . . , n. Their number is (n− 1) + (n− 2) + . . .+ 1 = n(n− 1)/2
and thus the neighborhood of a point in S contains O(n2) elements, which can be a
large number if the exploration operator U must evaluate all those neighbors to find
the best one. Another way of generating a neighborhood in the permutation space is
described in Section 3.6.

The choice of the moves may have an impact on the quality of the search. It is
likely that some moves are better adapted to a given problem than others. We will
see in Chapter 4 that this actually happens with the TSP problem.

To illustrate this point, let us consider the permutation

p = (p0, p1, . . . , p9) = (v0, v1, v2, v3, v4, v5, v6, v7, v8, v9)

that corresponds to a tour of 10 cities vi, as shown in Figure 2.5. Let us now apply
two different types of moves to p. First, we consider the transposition introduced
previously, namely the exchange of, for instance, the towns visited at steps 2 and 6.
The result of this move is also illustrated in Figure 2.5 and corresponds to p2 = v6
and p6 = v2. It should be noted that the numbers indicated in the figure represent the
“names” of the towns and that the order of the visits is given by the arrows shown on
the links connecting successive towns. Initially, the order of the visits is given by the
names of the towns.

We can observe that the move (2, 6) as just performed has an important impact
on the tour. Four links of the original path have been removed, and four new links
have been created. This modification can lead to a shorter tour (as is the case in our
example), but it substantially modifies the topology of the tour.

We can however consider other moves that modify the path in a more progressive
way. The moves, often referred to as 2-Opt, only remove two sections of the path
and create two new ones. Figure 2.6 shows such a move for the situation presented
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2-6 transposition

Fig. 2.5. Example of a TSP tour of 10 cities v` labeled with numbers ` between 0 and 9. By
applying the transposition move (2, 6), four sections of the original tour disappear (blue links)
and are replaced by four new links (in red)

in Figure 2.5. This move swaps two towns, but also reverses the travel order between
them. There is less impact on the topology of the path, but more modifications to the
permutation vector (p0, . . . , p9) coding for the tour. Here we use the notation (i, j)-
2-Opt to indicate the move that replaces edges i → (i + 1) and j → (j + 1) of the
tour with edges i→ j and (i+ 1)→ (j + 1).
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1-6 "2-Opt" movement

Fig. 2.6. Example of a TSP tour of 10 cities numbered from 0 to 9 on which a 2-Opt move is
applied. The edges that are removed are shown in blue and the new ones in red
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The terminology 2-Opt comes from an algorithm proposed by G.A. Croes in
1958, to solve instances of the TSP problem. When a path contains the crossing
of an edge vpi → vpi+1

with another edge vpj → vpj+1
, as shown in blue color in

Figure 2.7, the length of the tour can easily be reduced by replacing these two edges
with the red ones, namely vpi → vpj and vpi+1 → vpj+1 . As noticed previously, this
also requires cities vpj to vpi+1

to be traversed in the reverse order.
This transformation guarantees a shorter path due to the famous triangle inequal-

ity, which here reads as

|vpi − vpi+1 |+ |vpj − vpj+1 | ≥ |vpi − vpj |+ |vpi+1 − vpj+1 | (2.11)

A path is called 2-Opt if it is optimal under any such transformation that replaces
edges vpi → vpi+1

and vpj → vpj+1
by edges vpi → vpj and vpi+1

→ vpj+1
. Such

an optimization can be performed in time O(n2) with an algorithm that considers
all pairs (i, j) of an n-town TSP tour and applies the (i, j)-2-Opt move whenever
inequality (2.11) is true.
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3-8 "2-Opt" movement

Fig. 2.7. Path with a crossing. Its length can be reduced with a 2-Opt move: blue edges are
removed and replaced by the red ones

Note that k-Opt algorithms can also be considered. They ensure that a path is
optimal under the destruction of any set of k links and the creation of k new links,
with the constraint that the new tour is still a TSP tour. By extension, it is now usual
to designate one such transformation by the word “k-Opt”, even though one single
move does not make the path k-optimal.

2.6 Population Metaheuristics

Instead of just considering a single point of the search space at a time, we could take
a whole population of solutions evolving in each time step. Figure 2.8 schematically
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shows the search trajectory in the case of a single individual metaheuristic (left),
and in the case of a population metaheuristic (right). The basic principles remain
the same: in the population case the search space becomes the cartesian product
SN = S × S × . . . × S where N is the number of individuals in the population
and S the search space for a single individual. The neighborhood of a population
P is the set of populations Pi that can be built from the the individuals of P by
using transformations to be defined. However, in population-based metaheuristics
one does not generate all the possible neighboring populations, as this would be too
time-consuming. Instead, only one successor population is generated according to
a stochastic process. The idea is that using a set of solutions allows one to exploit
correlations and synergies among the population members, one example being the
recombination of successful features from several candidate solutions. We shall see
examples of population-based metaheuristics in Chapters 8, 5, and 6.

Fig. 2.8. Three stages of a single point metaheuristic are illustrated in the left image. The right
image schematically shows three stages of a population-based maetaheuristic. In this example
population P0 contains the three individuals of S called x0, y0, and z0

2.7 Fundamental Search Methods

In the following we are going to give examples of the search operator U for some
widely used elementary metaheuristics. These simple search methods are important
because they form the basis for more elaborate operators that will be presented in
later chapters. In what follows we assume that the search space and the neighborhood
are given.

2.7.1 Random Search and Random Walk

The simplest search method is random search where the next point to test in the
search is chosen uniformly at random in the whole search space S. Usually, one
keeps the solution having the best fitness after having performed a prescribed number
of steps. Of course this kind of search offers a very low probability of falling on the
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global optimum, or at least on a high-fitness solution, given that the probability of
such an avent is equal to 1/|S|, a very small one indeed if |S| is large.

If we restrict the random search to the neighborhood of the current solution then
we have what is called a random walk in search space. Analogously to unrestricted
random search, this exploration method has a very low probability of finding the op-
timum in reasonable time. An example of random walk search is found in Chapter 3,
in Figure 3.2. We take up random walks again in Chapter 7.

2.7.2 Iterative Improvement: Best, First, and Random

A more intelligent local search approach is given by the metaheuristic called iterative
best improvement or hill climbing. In this case the U operator always chooses the
best fitness neighbor of the current solution as the next point in the search trajectory.
Clearly, this search method will get stuck at a local optimum unless the search space
is unimodal with a single maximum or minimum. If the search space has a plateau
of solutions with equal fitness values then the search will also get stuck unless we
slightly change the acceptance rule and admit new solutions with the same objective
function value. This method is often used with a restart device, i.e., if the search gets
stuck then it is restarted from another randomly chosen point. While this can work
in some cases, we shall see that better metaheuristics are available for overcoming
getting stuck at a local optimum.

A variation of iterative best improvement is iterative first improvement, which
checks the neighborhood of the current solution in a given order and returns the first
point that improves on the current point’s fitness. This technique is less greedy than
best improvement and evaluates fewer points on average, but it also gets stuck at a
local optimum.

2.7.3 Probabilistic Hill Climber

In order to prevent the search becoming stuck at a local optimum, one can consider
probabilistic moves. This is the case of randomized iterative improvements in which
improving moves are normally performed as above, but worsening moves can also
be accepted with some prescribed probability. Since worsening moves are allowed,
the search can escape a local optimum. The terminating condition is then based on
a predefined number of search steps. The ability to accept moves that deteriorate the
fitness is an important element of several metaheuristics, as discussed in Chapters 3
and 4.

The probabilistic hill climber is an example of a simple metaheuristic using ran-
domized moves. It achieves a compromise between best improvement and first im-
provement metaheuristics. The next search point x′ ∈ V (x) is selected with a prob-
ability p(x′) that is proportional to the fitness f(x′): thus, the higher the fitness of
the candidate solution, the higher the probability that this solution will be chosen
as the next search point. If f(x) is positive for all x in the search space then, for a
maximization problem, we can define p(x) as follows:
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p(x′) = f(x′)/
∑

y∈V (x)

f(y)

In this way, the best candidate solutions around x will be chosen with high prob-
ability but it will also be possible to escape from a local optimum with positive
probability. Section 2.8 offers a description of how to implement such a probabilistic
choice. Note also that this fitness-proportionate selection is popular in evolutionary
algorithms for replacing a population with a new one (see Chapter 8).

2.7.4 Iterated Local Search

Iterated local search, ILS for short, is a simple but efficient metaheuristic that is
useful for avoiding premature convergence towards a local optimum. The intuitive
idea behind ILS is straightforward. To start with, we assume the existence of a lo-
cal search metaheuristic localSearch(x) which, for any candidate solution x in
S, returns a local optimum x′. The set of points x that share this property is called
the attraction basin of x′. Conceptually, one could replace the S space by a smaller
one called S′ that only contains the local optima configurations x′. The search of
S′ for a global optimum would thus be facilitated. This vision requires that the local
optima of S are well defined and thus localSearch(x)must be deterministic, al-
ways returning the same optimum when applied to a given configuration x′. Ideally,
we should have a neighborhood topology on S′ that should allow us to reapply the
local search on the restricted search space. At least formally, such a neighborhood
relationship does exist since two optima x′ and y′ can be considered neighbors if
their corresponding basins of attraction are neighbors in S. However, determining
the neighborhood V (x′) in S′ is often impossible in practice. We are thus led to a
less formal implementation which can nevertheless give good results and does not
require localSearch(x) to be deterministic. The main idea is to perform “basin
hopping”, i.e., to go from a local optimum x′ to another y′ passing through an in-
termediate configuration y ∈ S obtained by a random perturbation of x′ ∈ S′. The
local optimum y′ obtained by applying localSearch to y is considered to be a
neighbor of x′. The following pseudo-code describes the implementation of the ILS
algorithm:

x=initialCondition(S)
x’=localSearch(x)
while(not end condition):
y=perturbation(x’)
y’=localSearch(y)
x’=acceptance(x’,y’)

Figure 2.9 schematically illustrates the principles of the method. The elements
of S′ are the local maxima of the fitness landscape of the whole search space S,
which is the blue curve. The local maximum x′ is the current solution obtained
from an initial random solution after a localSearch() phase. The perturbation
operation perturbation(x’) is symbolized by the red arrow and produces a
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new configuration y. Applying again the procedure localSearch() to y we
get a solution y′ ∈ S′. Whether or not to accept the new solution y′ is set by
acceptance(x’,y’). If the new solution is rejected the search starts again from
x′. The process is iterated until a termination condition is satisfied. The difficult

x’

y

y’

search space

fi
tn

es
s

Fig. 2.9. Schematic illustration of iterated local search (ILS)

point in this metaheuristic is the choice of the perturbation procedure. Too strong a
perturbation will lead the search away from a potentially interesting search region,
reducing it to a hill climbing with random restarts, while too weak a perturbation
will be unable to kick the search out of the original basin, causing a cycle if the local
search and the perturbation are deterministic. The interested reader will find more
details on ILS in [57].

2.7.5 Variable Neighborhood Search

This search strategy utilizes a family of neighborhoods V1(x), V2(x), . . . , Vk(x),
usually ordered by increasing size, for each x ∈ S . Let’s consider a metaheuristic
with a search operator U that returns the best neighbor y of x in V1(x). If the fit-
ness of the new solution y does not improve on the fitness of x then U is applied
on the following neighborhood V2(x) and so on, until we find a neighborhood V`
within which a solution is found that improves the fitness. This point then becomes
the current solution and the process is iterated until a stop condition is met. If no
improvement has been found on any of the k neighborhoods the search stops and
returns x. The advantage of using a hierarchy of neighborhoods is that one hopes
that most of the time using V1 will suffice. The search explores more points in the
solution space only when needed.

2.7.6 Fitness-Smoothing Methods

Fitness smoothing is a strategy that consists of modifying the original fitness func-
tion in order to reduce its ruggedness, thus making it easier to explore with a given
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metaheuristic. While the fitness is modified for the sake of limiting the number of un-
wanted local optima, the search space itself remains the same. For instance, consider
the following example in which the average objective function is defined as

f̄ =
1

|S|
∑
x∈S

f(x) (2.12)

A smoothed fitness fλ with a coefficient λ can be written as

fλ(x) = f̄ + λ(f(x)− f̄) (2.13)

When λ = 0 the landscape is flat, while we recover the original f(x) with λ = 1.
This is illustrated in Figure 2.10 in which the fitness of an NK problem has been
smoothed with λ = 0.4 (red curve) and λ = 0.8 (blue curve). In addition, a local
classical smoothing is applied to the λ = 0.4 and λ = 0.8 curves to eliminate small
fitness variations.
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Fig. 2.10. Fitness smoothing in an NK problem with N = 8 and K = 3. The non-smoothed
landscape is represented in black. The smoothed landscapes with a coefficient of 0.4 and 0.8
are shown in red and blue respectively

Clearly the smoothed problem does not have exactly the same solution as the
original one but the strategy is to solve a series of problems with landscapes that
become harder and harder. In fact, in the figure one can see that the maximum of
the red curve is a good starting point for finding the maximum of the blue curve,
which, in turn, having bracketed a good search region, should make it easier to find
the maximum of the original function.

The approach can be abstractly described by the following pseudo-code:

x=initialCondition
for lambda=0 to 1:

x=optimal(f,lambda,x)
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The problem with the above description, which was only intended to illustrate
the principles of the method, is that computing the mean fitness f̄ is tantamount
to enumerating all the points in S, which would give us the answer directly but is
undoable for problems generating an exponential-size search space. However, it is
sometimes possible to just smooth a component of the fitness function, rather than
the fitness itself. For example, in the traveling salesman problem one might smooth
the distances dij between cities i and j

dij(λ) = d̄+ λ(dij − d̄) (2.14)

where the average distance d̄ is computed as

d̄ =
1

n(n− 1)

∑
i6=j

dij (2.15)

This computation has complexity O(n2), much lower than O(n!), which is the orig-
inal problem instance complexity. With this choice for dij(λ) we have that all cycles
through the n cities are of identical length if we take λ = 0, and we could take this
approximation as the first step in our increasingly rugged sequence of landscapes that
are obtained when λ progressively tends to 1, i.e., to the original fitness landscape.

2.7.7 Method with Noise

This is another approach that, like the smoothing method, perturbs the original land-
scape, this time by adding random noise to the objective function, with the hope of
avoiding local optima that would cause premature convergence of the search. In prac-
tice, one starts with a given perturbation noise which is iteratively reduced towards
the original, unperturbed fitness function. One way of doing this is to add a uniformly
distributed random component in the interval [−r, r] to the fitness function f :

fr(x) = f(x) + ξ (2.16)

The problem is first solved for frmax followed by an iterative decrease of r to-
wards 0. The process is described by the following pseudo-code:

x=initialCondition

for r=r_max to 0:
x=optimal(f,r,x)

Reference [78] provides further information on this methodology. In Chapter 4
we shall describe a popular metaheuristic called simulated annealing which success-
fully exploits a similar idea.
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2.8 Sampling Non-uniform Probabilities and Random
Permutations

Most metaheuristics have an important stochastic component and, because of that,
they must generate and use random numbers of various kinds to generate initial con-
ditions or to make probabilistic choices during the search. Although the usual sci-
entific computer programming environments do provide many tools for generating
such values according to several probability distributions, it is still important to un-
derstand the main ideas if one wants to implement a given metaheuristic. In this sec-
tion we consider two cases that arise often: generating arbitrarily distributed random
numbers, and generating random permutations.

2.8.1 Non-uniform Probability Sampling

From a programming point of view, it is important to understand how one can select
a random event (for instance, a neighbor of the current solution) according to a given
probability distribution function. This problem will constantly reappear throughout
the book, for example in Chapter 5 to route artificial ants through a graph, or in
Chapter 8 to select solutions proportionally to their fitness.

All computer languages offer functions for generating pseudo-random “real”
numbers uniformly distributed in the interval [0, 1[. Starting from such equiprobable
random numbers, one can turn them into non-uniform ones according to an arbitrary
probability distribution by one of several different techniques, as illustrated below.

The simplest, but frequently needed case consists of executing an action A with
probability p or rejecting it with probability 1 − p. This is easily done according to
the following pseudo-code:

r=uniform(0,1)
if r<p: execute A

This works because the probability that r is less than p is just p, if r is drawn uni-
formly between 0 and 1.

When there are more than two choices the algorithm becomes a little more com-
plicated. Figure 2.11 visually shows how one can choose event i whose probability
is pi given that

∑
i pi = 1. In the example there are six possibilities, each with a

different probability. Once r has been drawn, the chosen event will be the one corre-
sponding to the largest i for which

∑i−1
j=1 pj < r. In the limit case for which r is less

than p1 the solution is i = 1.
The algorithm can be described by the following pseudo-code:

r=uniform(0,1)
s=0
i=1
for p in [p1,p2,...,p6]:

s+=p
if r<s: return i
i+=1



38 2 Search Space

i=1 i=2 i=3 i=4 i=5 i=6

r

p1 p2 p3 p4 p5 p6

Fig. 2.11. Example of the selection of an event among six possible events, each with given
probabilities. In the figure, event i = 5 would be chosen

Sampling a discrete distribution is an important problem in many applications of
computational science. The code above, although simple, is not the best one from
the efficiency point of view. The interested reader is referred to the web site [48] for
optimized versions of the algorithm.

In the case of continuous random variables the above method can be reformulated
in a similar way. Let us assume that we want to generate a random number s in a
given interval [a, b[, and distributed according to the probability density ps(s). Such
a value s can be obtained from a random number r drawn from a uniform distribution
over [0, 1[, as follows

r =

∫ s

a

ps(t)dt (2.17)

To understand this relation, we notice that it implies that the probability that s is
found between s0 and s1 > s0 is the same as the probability that r is between r(s0)
and r(s1). The latter is obviously r(s1) − r(s0) since r is uniformly distributed
between 0 and 1. But

r(s1)− r(s0) =

∫ s1

a

ps(t)dt−
∫ s0

a

ps(t)dt =

∫ s1

s0

ps(t)dt (2.18)

The last term of the above equation is the very definition of the probability that s is
between s0 and s1, thus showing the correctness of (2.17).

In Chapter 7, we will discuss a random process called Lévy flight. It is charac-
terized by a probability distribution

ps(s) = (α− 1)s−α α > 1, s ∈ [1,∞[ (2.19)

From relation (2.17) one can easily simulate such a process using uniformly dis-
tributed random numbers r. For this distribution ps, one can compute the integral
analytically and obtain

r = (α− 1)

∫ s

1

dt t−α = 1− s1−α (2.20)

Therefore s can be computed from r as

s = (1− r)
1

1−α (2.21)
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For other distributions ps, for instance Gaussian distributions, one cannot compute
the integral (2.17) analytically. However, there exist numerous algorithms that can
be used to produce Gaussian numbers from a uniform distribution. We refer the
interested reader to the specialized literature. But we remind the reader that many
software libraries, such as the module random in Python, contain many func-
tions for generating random numbers distributed according to discrete and continu-
ous probability distributions such as random.randint(), random.normal-
variate(), random.expovariate(), random.paretovariate(), as
well as several others. For C++, the library boost offers the same possibilities. At
this stage, it is good to remember that metaheuristics perform simple calculations,
but many are needed. Therefore the choice of the programming language should be
adapted to the size of the problem to be solved. Clearly Python decreases the pro-
gramming effort, but its performance may not match that of C++.

To finish this overview of how probability distributions are modified due to a
change of variable, let us mention the following result. If a random variable x is
distributed according to f(x), and if we define another random variable y through
the relation y = g(x), then y is distributed according to

p(y) = f(h(y))h′(y) (2.22)

where h is the inverse function of g, namely h(y) = x, and h′ is the derivative of h.
We leave it to the reader to check that relation (2.21) gives that s is indeed distributed
as (α−1)s−α when f(r) = 1. For further discussion on how to sample non-uniform
probability distributions we refer the reader to Knuth’s book [51].

2.8.2 Random Permutations

We already remarked in this chapter (see Section 2.2.4) that many combinatorial op-
timization problems can be formulated in a permutation search space. Thus, because
of their importance, it is useful to know how to generate random permutations of n
elements, for example the numbers from 0 to n − 1. Random permutations of this
kind will be used in Chapters 3 and 4.

Intuitively, any permutation can be built by imagining that the n objects are in a
bag and that we draw them randomly and with uniform probability one by one. From
an algorithmic point of view, a random permutation can be efficiently generated by
the method of Fisher and Yates, also called KnutShuffle [51]. With this method, a
random permutation among the possible n! is produced in time O(n) and all permu-
tations are equiprobable.

The method can be understood by using induction: we assume that it is correct
for a problem of size i and then we show that it is also correct for i+ 1. Suppose that
the algorithm has been applied to the first i elements of the list that we want to shuffle
randomly. This means that, at this stage, the algorithm has generated a sequence of
length i corresponding to one possible permutation of the first i objects. Now we
add the i + 1,th object at the end of the list and we randomly exchange it with any
element of the list, including the element i + 1 itself. There are thus i + 1 possible
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results, all different and equiprobable. Since we assumed that at stage i we were able
to generate the i! possible permutations all with the same probability, we now see
that at stage i+ 1 for each of these we get i+ 1 additional possibilities, which shows
that in the end we can create (i+ 1)! equiprobable random permutations. Extending
this reasoning up to i = n, a random permutation among the n! possible will be
obtained with n successive random exchanges, giving rise to time complexity O(n).

To illustrate, we give an implementation of the algorithm using the Python lan-
guage in the following program excerpt, where the elements to be randomly shuffled
are contained in the list listOfObjects.

import random

listOfObjects=["a", "b", "c", "d", "e", "f"]
n=len(listOfObjects)

permutation=listOfObjects[:]

for i in range(n):
j=random.randint(0,i)
permutation[i]=permutation[j]
permutation[j]=listOfObjects[i]

where the function randint(0,1) returns a random integer in the closed interval
[0, 1]. Furthermore, since the modifications in the loop over i only affect elements
with an index less than or equal to i, we do not need to define a permutation
array. The permutation can be performed in-place in the list listOfObjects by
saving the current value of listOfObjects in a temporary variable tmp:

for i in range(n):
j=random.randint(0,i)
tmp=listOfObjects[i]
listOfObjects[i]=listOfObjects[j]
listOfObjects[j]=tmp

In fact, there is a built-in function random.shuffle(permutation) in the
Python package random that accomplishes exactly this task using the Knuth Shuffle
algorithm. For an implementation using another language, it is important to be able
to generate good-quality uniformly distributed random integers j between 0 and i
for arbitrary i. For instance, it would be wrong to draw random numbers between 0
and M for a given M and to calculate their modulo i + 1. If M is not a multiple of
i + 1, the numbers between 0 and m − 1, where m = M mod (i + 1), would be
overrepresented.

The simplest way is probably to consider a standard good pseudo-random num-
ber generator that returns a real r in [0, 1[. One can now divide the interval [0, 1[
into i + 1 equal portions and choose j as the index of the sub-interval to which
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r belongs. Since all the intervals have the same size, it is immediate to see that
j=int(r*(i+1)), where int returns the integer part of a number.
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Tabu Search

3.1 Basic Principles

Tabu search was proposed in 1986 by F. Glover [36]. This metaheuristic gives good
results on combinatorial optimization problems such as quadratic assignment. The
principles of tabu search are simple and are based on the methodology discussed in
Section 2.4:

• The problem search space is explored by going from neighbor to neighbor, xn →
xn+1 ∈ V (xn), starting from an arbitrary admissible initial solution x0.

• The search operator selects xn+1 ∈ V (xn) as the non-tabu xn+1 that locally op-
timizes fitness and this choice is independent of the fitness of the current solution
f(xn). If there is more than one candidate solution respecting the constraints and
having the same fitness, one is chosen randomly.

• From the previous point, the specificity of tabu search is the existence of for-
bidden, or tabu, solutions. The idea is to prevent the search from going back to
previously explored configurations x. The tabu configurations are thus those that
have already been sampled. Actually, the situation is a bit more subtle, as we will
see in the sequel.

• The “tabu” attribute is not a permanent one. There is a short-term memory that
causes tabu points to become again non-tabu after a certain number of iterations.
It is also possible to introduce a long-term memory that maintains statistical in-
formation on all the solutions that have been visited during the whole search.
The long-term memory is useful to avoid systematic biases in the way the solu-
tion space is searched.

• The tabu method implements a list to enumerate the forbidden points and move-
ments. This memory is continuously updated during the search by suppressing
old forbidden configurations and by adding new ones.

In summary, the tabu metaheuristic can be expressed by the flow diagram of
Figure 3.1. We remark that the simplicity of the method is only apparent, as some
heuristics are needed to build and maintain the tabu list. We will come back to these
points in Section 3.4.
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Fig. 3.1. The flow diagram of tabu search

3.2 A Simple Example

As a simple illustration of how tabu search works, let us consider the example of the
objective function f(x, y) shown in the left part of Figure 3.2. The search space is a
subspace of Z2,

S = {0, 1, . . . , 19} × {0, 1, . . . , 19}

that is, a domain of size 20× 20.
The goal is to find the global maximum of f , which is located at P1 = (10, 10).

However, there is a local maximum at P2 = (6, 6), which should make finding the
global one slightly more difficult.

The neighborhood V (x, y) of a point (x, y) will be defined as being formed by
the four closest points in the grid

V (x, y) = {(x− 1, y), (x+ 1, y), (x, y − 1), (x, y + 1)} (3.1)

Clearly, for points belonging to the borders and corners of the grid the neighbor-
hood will be smaller since some neighbors are missing in these cases. For instance,
V(0,0) = {(1, 0), (0, 1)}.

In the right image of Figure 3.2 a random walk search of 50 iterations is shown
starting from the initial solution (7, 8) (in blue on the image). By chance, the ex-
ploration finds the second maximum at P2 = (6, 6). However, the region explored

Choose initial configuration x0;
Empty Tabu list;

Generate Neighbors of x0

Select the best non-tabu neighbor x1

Update the best solution so far

End Condition?

Update tabu list
with the movement

x0 to x1

Update the current solution:
x0=x1

Output Best solution;
Stop;

yes

no
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during the 50 steps contains only 29 distinct points, since the random walk often re-
samples points that have already been seen. We remark that for this toy problem an
exhaustive search would take 20× 20 = 400 iterations.

0 19
x

0

19

y

Random Search trajectory (50 steps)

Fig. 3.2. Left image: an example of a discrete fitness function defined on a two-dimensional
space of size 20 × 20. The global maximum is at P1 = (10, 10), and there is a second local
maximum at P2 = (6, 6). Right image: example of a 50-step random walk search trajectory
following the neighborhood V (x, y) defined in equation (3.1). The black point is the global
maximum P1; the grey point is the second-highest maximum P2. The blue point represents
the initial configuration of the search

In contrast with random walk, in tabu search configurations that have already
been visited are forbidden. In practice, the method saves the last M points visited
and declares them tabu. In each iteration a new point is added to the tabu list and,
if the list has reached the maximum size M , the oldest entry is suppressed to make
space for the newest point. This form of memory is called short-term because the
information on tabu points evolves during time and is not conserved for the whole
search duration.

Figure 3.3 illustrates the exploration that results from using tabu search starting
from the initial solution (0, 0) using a tabu list of size M = 4 (left) and M = 10
(right). In both cases, the search quickly reaches the second maximum P2 since tabu
behaves here as a strict hill climber that always chooses the best configuration in the
neighborhood of the current one. However, once there, the search trajectory is forced
to visit points of lower fitness since the local maximum has already been visited. As
a consequence, the trajectory will remain around the local optimum, trying not to
loose “height”. With a memory M of size four, after four iterations around P2, the
trajectory will visit the latter again, since this configuration is no longer in the tabu
list. However, the search will not be able to extract itself from the basin of attraction
of P2 and will never reach the global optimum. On the other hand, with a memory
size M = 10, the trajectory will be forced to get away from P2 and will be able
to reach the basin of attraction of P1. From there, it will be easy to finally find the
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global optimum. If the iterations continue, the trajectory will perform walks of length
10 around P1. With respect to random walk, we remark that the number of unique
points visited with tabu search is larger. When the search stops, the algorithm will
return point P1 since it is the best solution found during the search.

0 19
x

0

19

y

Tabu trajectory (50 steps)

tabu memory size=4

0 19
x

0

19

y

Tabu trajectory (50 steps)

tabu memory size=10

Fig. 3.3. Tabu search trajectory with a tabu list of length 4 (left), and 10 (right)

If the tabu list size is further increased, a larger portion of the search space is
explored, as illustrated in Figure 3.4. The space is visited in a systematic fashion
and, if there were another local maximum, it would have been found. However, we
also see that after 167 iterations the trajectory reaches a point (in red in the figure)
whose neighbors are all tabu. This means that the search will abruptly get stuck at
this point, preventing the algorithm from visiting further search space points that
could potentially be interesting (there are 400 − 167 = 233 points that have not yet
been visited).

3.3 Convergence

By convergence of the search process we refer to the question of knowing whether
tabu search is able to find the global optimum in a given fitness landscape. Conver-
gence depends on a number of factors and, in particular, on the way the tabu list is
managed. The following result can be proved:

If the search space S is finite and if the neighborhood is symmetric (s ∈ V (t)
implies that t ∈ V (s)), and if any s′ ∈ S can be reached from any s ∈ S in a finite
number of steps,
then:
a tabu search that stores all visited points, and also is allowed to revisit the oldest
point in the list, will visit the whole search space and thus will find the optimum
with certainty.
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Tabu trajectory (167 steps)

tabu memory size=200

Fig. 3.4. Tabu search trajectory with a memory size of 200 visited points. The red point is the
position reached after 167 steps. This situation represents a blockage since all neighbors of
the red point are in the tabu list
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Tabu trajectory (400 steps)
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Tabu trajectory (600 steps)

Fig. 3.5. Tabu search trajectory in the case of the example of Section 3.2. When the search
gets stuck, it is restarted from the oldest tabu point in the tabu list. If this point has no non-
tabu neighbors, the search is restarted from the second oldest point, and so on. The diagonal
lines show the jumps needed to find a suitable new starting point. Here we see that, after 600
iterations, the space has not yet been wholly visited

We thus see that this theoretical result implies a memory of size |S| which is
clearly unfeasible in practice for real problems. Moreover, this result doesn’t say
anything about the time needed for such an exploration; one can only hope that the



48 3 Tabu Search

search will be more efficient than a random walk. Reference [37] suggests that this
time can be exponential in the size of the search space |S|, that is, even longer than
what is required for a systematic exhaustive search.

With realistic implementations of tabu search having finite, and not too large
memory requirements, the example of Section 3.2 shows that the search process may
fail to converge to the global optimum and that the exploration may enter cycles in
the search space.

Restarting the search from the oldest tabu point in the tabu list may avoid getting
stuck, as shown in Figure 3.4. This strategy is depicted in Figure 3.5. When a point
is reached where all the neighbors are tabu, the search is restarted from the oldest
tabu point if it has some non-tabu neighbors, otherwise the next oldest point is used,
and so on. On the figure, these jumps are indicated by the grey lines. At the begin-
ning the oldest tabu point (0, 0) still has non-tabu neighbors to be visited. However,
this point will quickly become a blocking configuration too. At this point, it will
be necessary to go forward in the tabu list in order to find a point from which the
search can be restarted. Potentially, the process might require more iterations than
there are elements in S because of the extra work needed to find a good restarting
point. Figure 3.5 illustrates such a situation after 400 and 600 iterations, with an ar-
bitrarily large memory. Here we see that 600 iterations are not yet enough to explore
the whole search space, which only contains 400 points in our example, since there
are eight points left. An exhaustive search would have been better in this case.

3.4 Tabu List, Banning Time, and Short- and Long-Term
Memories

3.4.1 Principles

As we saw above, the goal of the tabu list is to avoid resampling configurations that
have already been visited, thus facilitating a more efficient exploration of the search
space. We will now discuss how to implement and manage the tabu list, and we will
also describe the short- and long-term memory mechanisms.

In Section 3.2 the visited solutions are directly placed on the tabu list. In practice,
a list of size M can be efficiently implemented using a circular buffer, as illustrated
in Figure 3.6. In this way, once the buffer becomes full, all the M configurations
visited last can be memorized by just deleting the oldest one, which is at the rear of
the queue, and adding the newest one to the front.

Usually, it is more convenient to store items in the tabu list that are related to the
visited solutions, rather than the solutions themselves. In general the stored items are

• attributes belonging to the visited solutions such as fitness values.
• the moves that have been used to explore the search space. The notion of move,

or transformation, has been introduced in Section 2.5.

When storing solution attributes or moves, a circular buffer as schematized in
Figure 3.6 can be used, thus preventing the search from using a solution possessing
an attribute that has already been encountered in the previous M iterations.
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Fig. 3.6. A tabu list storing theM last-visited solutions can be implemented as an array of size
M with an index i pointing to the oldest element of the queue (white arrow), and a variable
n that stores the number of elements in the queue. Initially, i0 = 0. While n < M , the new
elements are added at position i0 + n (black arrow) followed by the operation n = n + 1.
When n = M , i0 is incremented and a new element is placed at i0 + n mod M

Often, a different approach will be chosen that takes into account the concept
of a banning time, also called tabu tenure. The idea can be applied to tabu lists
containing solution properties, as well as to lists containing forbidden moves. This
can be formulated thus:

If a move m has been used in iteration t, or the attribute h characterizes the
current solution at time step t, then the inverse move of m, or the attribute
h, will be forbidden until iteration t+ k, where k is the banning time.

The tenure’s duration k, as well as the size of the tabu list, are guiding param-
eters of the metaheuristic. The k value is often chosen randomly in each iteration
according to a specific probability distribution.

3.4.2 Examples

Below we will look at the tabu list concept and tenure times in simple situations, as
well as at the notion of long-term memory as opposed to short-term memory. A more
realistic example will be presented in Section 3.6.

Example 1:

Reference [31] suggests the following example: the tabu list is implemented as an
array T of size M and it uses a positive integer function h(s) which is defined at
all points s of the search space S. This function defines the attribute used to build
the tabu list. Let st be the current solution in iteration t. The attribute h(st) is trans-
formed into an index i in T through a hashing function. For example, we could have
i = h(st) mod M . Next, the value t + k is stored at T [i], where k is the chosen
tenure time, i.e., the duration of the prohibition for this attribute. A configuration s
will thus be tabu in iteration t′ if t′ < T [h(s) mod M ]. In other words, with this
mechanism, the points having the attribute h(st) will be forbidden during the next k
iterations.
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Example 2:

Let us consider a random walk in Z2 with a neighborhood defined by the four moves
north, east, south, and west. The tabu list might, for example, be represented
by the array below, with all zeroes initially in both columns :

tenure time move frequency
(short-term memory) (long-term memory)

north 0 0.5
east 0 0.5
south 2 0
west 4 0

The interpretation is as follows: let us suppose that in the first iteration t = 1
the move north has been selected. The inverse move south is now tabu, to avoid
going back to the same configuration for a time k = 1 iterations. Therefore, t+k = 2
is entered under the “tenure time” column at line south. In the next iteration t = 2
the move south is tabu since t is not strictly greater than 2. Let us suppose that the
move east is now chosen. If the banning time of the inverse move is now k = 2,
the entry west of the tabu list will be 2 + 2 = 4. In the the iteration t = 3, the move
west will thus be forbidden. On the other hand, the moves north, east, and
south are now possible. The latter is no longer tabu because now t > 2. It is easy
to see that if the tenure time k were large, the exploration would be biased towards
north and east since, each time these moves are chosen, they extend the tenure
times of the inverse moves south and west. For this reason, a second column is
added to the tabu list, representing the long-term memory of the exploration process.
Its entries are the frequencies of each move from the very beginning of the search.
In the present case, after two iterations, two moves have each been chosen once,
which gives a frequency 1/2 for north and east. Equipped with this information,
it would now be simple to allow a tabu move if the move has not been performed in
a long enough time interval.

3.5 Guiding Parameters

Like most metaheuristics, tabu search needs a number of parameters to be suitably
chosen to guide the search and make it as efficient as possible, in particular those that
specify the behavior of the tabu list. We now look at the impact of those parameters
on the way the search space is visited.

To start with, it is easy to see that the larger the number of forbidden moves, the
larger the probability of choosing as the next configuration x ∈ S a point of low
fitness, leading to more exploration of the search space. This is the diversification
aspect of the search. On the other hand, the shorter the tabu list, the larger the proba-
bility of choosing a high-fitness point in the neighborhood: this is the intensification
aspect of the search.
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In general, tabu search also implements aspiration criteria according to which
a solution can be included in the allowed set even if it is currently forbidden. For
example, this might be the case when a point is found which is in the tabu list but
whose fitness is better than the current solution.

The tabu list content’s evolution is managed according to the concepts of short-
term and long-term memories, of which we have already seen a simple example. This
is an aspect that is rather technical, as it should reflect detailed knowledge about the
tabu metaheuristic and the problem at hand. There is thus no established procedure
that is equally valid in all cases. This freedom translates into the choice of parameters
such as the list size M or the probability distribution used to define the tenure time.

Long-term memory collects information on the search trajectory during the
whole search process. This information can be used to more efficiently guide the
choice of the next configuration. For example, it has been observed that in the short
term it is useful to select the same move several times, whereas this would not work
in the long term. Using the long-term frequency of attributes or moves, one can pe-
nalize moves that have been performed too often in the long term, for example by
adding a penalizing contribution to the fitness, which will help diversify the search
by performing moves that have seldom been used.

In practice, tabu search will combine, or alternate, short- and long-term memo-
ries to update the tabu list according to control parameters that are defined for each
case, and possibly even on the fly, in order to attain a good compromise between
diversification and intensification.

3.6 Quadratic Assignment Problems

3.6.1 Problem Definition

The Quadratic Assignment Problem (QAP ) belongs to a class of important combi-
natorial optimization problems in which, given a number of objects and locations,
flow values between the objects, and distances between the locations, the goal is to
assign all objects to different locations in such a way that the sum of the products
of the flow values between pairs of objects and the distances between the respective
locations is minimal. QAP is NP -hard and the instances arising in applications are
very difficult to solve in practice. In fact, only small-size instances with a few tens
of locations can be solved by exact methods and there are no good approximation
algorithms. Metaheuristics are the only feasible approach for larger problems.
Formally, the problem can be expressed thus:

Let us consider n objects and n possible locations for the objects. Let fij be the
values of the flows between the pairs of objects i and j, and let drs be the distances
between locations r and s. The goal is to find an optimal placement i → ri of the n
objects such that the following objective function is minimized:

f =
∑
i,j

fijdrirj (3.2)
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where ri denotes the position chosen for object i. The search space S is all permuta-
tions of the n objects.

An example of a quadratic assignment problem is illustrated in Figure 3.7. The
squares A, B, C, and D in the figure can be seen as the possible locations of some
electronic component on a chip. The numbers 0, 1, 2, and 3 then correspond to the
type of component placed at those locations. Two of the 4! possible permutations of
the objects 0, 1, 2, and 3 on the locations A, B, C, D are shown in the figure.

The distances drs = dsr between any two locations r and s are defined by their
position in space. Here we assume dAB = 4, dAC = 3, dAD = 5, dBC = 5,
dBD = 3, and dCD = 4. The lines joining the locations represent the flows fij
whose values are given by the number of lines. In the example we have the following
flow values: f01 = f03 = 1, f23 = 3, f13 = 2, f02 = f12 = 0, with fij = fji.

In another context, one might also imagine that the squares are buildings and
the flows fij stand for the stream of people between the buildings according to their
function such as supermarket, post office, and so on. In both cases, what we look for
is the placement that minimizes wire length or the total distance traveled.

3 2

0 1

A B

C D

3 1

2 0

A B

C D

Fig. 3.7. Schematic illustration of a quadratic assignment problem. The squares represent lo-
cations and the numbers stand for objects. The figure shows two possible configurations, with
the right solution having a better objective function value than the left one

For the configuration shown in the left image of Figure 3.7, the fitness value is

f =
∑
i,j

fijdrirj

= f01dCD + f03dCA + f13dDA + f23dBA

= 1× 4 + 1× 3 + 2× 5 + 3× 4 = 29 (3.3)

For the configuration depicted in the right image the fitness is:

f = f01dDB + f03dDA + f13dBA + f23dCA

= 1× 3 + 1× 5 + 2× 4 + 3× 3 = 25 (3.4)
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We thus have that the permutation 0→ C, 1→ D, 2→ B, and 3→ A is worse
that the permutation 0→ D, 1→ B, 2→ C, and 3→ A. It is possible to conclude
by inspection that the latter represents the global minimum, although it is not unique
as the symmetric configurations lead to the same objective function value.

A particular case of theQAP problem is the well-know traveling salesman prob-
lem (TSP ) which has been introduced in Chapters 1 and 2 and will be treated in
detail in Chapter 5. In this case the locations are the cities to be visited, the objects
are the visiting order, and the flows are fi,i+1 = 1 and zero otherwise.

3.6.2 QAP Solved with Tabu Search

Choice of neighborhood

As already observed above, the search space of a quadratic assignment problem of
size n is the set of permutations of n objects. We are thus going to describe the
admissible solutions through permutations.

p = (i1, i2, . . . in)

where ik is the index of the object positioned at location k.
There is more than one way to define the neighborhood V (p) through basic

moves. For example

• By the exchange of two contiguous objects

(i1, i2, . . . ik, ik+1, . . . in)→ (i1, i2, . . . ik+1, ik, . . . in)

Such a neighborhood is thus defined by n− 1 possible moves.
• By the exchange of two arbitrary objects

(i1, i2, . . . ik . . . i`, . . . in)→ (i1, i2, . . . i`, . . . ik, . . . in)

In this case the corresponding neighborhood contains n(n− 1)/2 elements.

The behavior of tabu search will depend on the particular neighborhood chosen.
In practice, it has been observed that the second neighborhood type above gives
good results. Although in principle it requires a lengthier evaluation since its size is
quadratic in n, while the former is linear in n, we shall see below that the time can
be made shorter by using incremental evaluation.

Evaluation of the neighborhood

The computational burden for evaluating the fitness of the neighbors of a given con-
figuration grows as a function of the number of moves mi that define the neighbor-
hood. In the tabu method, the search operator U selects the non-tabu neighbor having
the best fitness. Therefore, starting from the current solution p, we must compute
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∆i = f(mi(p))− f(p)

for all the movesmi. If the movemi is a transposition, only two objects change their
places and most terms in the fitness function f =

∑
kl fikildkl stay the same. In this

case it can be shown that, instead of having to compute O(n2) terms, it is enough to
evaluate only O(n) of them to obtain ∆i.

The tabu list

Here we consider the case in which the allowed moves, called (r, s), correspond to
the exchange of the two objects at positions r and s

(. . . ir . . . is . . .)
(r,s)→ (. . . is . . . ir . . .)

The tabu moves are then defined as being the inverse moves of those that have
been just accepted. However, the tabu list structure is slightly more complex than
what we have seen in Section 3.4. In the short-term memory context, the move that
would switch back object i at location r and object j at position s is tabu for the next
k iterations, where k is a randomly chosen tenure time.

The tabu list takes the form of an n× n matrix of elements Tir whose values are
the iteration step numbers t in which the element i most recently left the site r plus
the tenure time k.

As a consequence, the move (r, s) will be forbidden if Tisr and Tirs both contain
a value that is larger than the current iteration count.

3.6.3 The Problem NUG5

The example in this section is borrowed from reference [31]. The termNUG5 refers
to a QAP benchmark problem class that is contained in the Quadratic assignment
problem library (QAPLIB)1. It is a problem of size n = 5 defined by its flow and
distance matrices F and D with elements fij and drs

F =


0 5 2 4 1
5 0 3 0 2
2 3 0 0 0
4 0 0 0 5
1 2 0 5 0

 D =


0 1 1 2 3
1 0 2 1 2
1 2 0 1 2
2 1 1 0 1
3 2 2 1 0

 (3.5)

The search process starts with an initial solution represented by the permutation

p1 = (2, 4, 1, 5, 3)

whose fitness f(p1) = 72 can be easily computed from the F and D matrices. The
tabu list is initialized to all zeroes: Tir = 0, ∀i, r.
1 The QAPLIB is to be found at http://anjos.mgi.polymtl.ca/qaplib/inst.
html.

http://anjos.mgi.polymtl.ca/qaplib/inst.html
http://anjos.mgi.polymtl.ca/qaplib/inst.html
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In iteration 1, the neighbors of p1 can be represented as a function of the 10
allowed moves mi and, for each of them, we find the fitness variation. This is shown
in tabular form as follows:

mi (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
∆i 2 -12 -12 2 0 -10 -12 4 8 6

We see that the three moves (1, 3), (1, 4), and (2, 5) are those that give the best
improvement in the objective function. We choose one at random among the three,
say m2 = (1, 3).

As the current solution is p1 = (2, 4, 1, 5, 3), the m2 move produces a new
configuration

p2 = (1, 4, 2, 5, 3)

whose fitness is f(p2) = f(p1) +∆(1, 3) = 72− 12 = 60. To update the tabu list,
we note that, as a consequence of the move, object 1 has left location 3 and object 2
has left location 1, which will cause matrix elements T13 and T21 to be updated. To
do that, as suggested in reference [31], a tenure time k will be drawn at random with
uniform probability in the interval

k ∈ [0.9× n, 1.1× n+ 4]

The bounds have been chosen empirically and belong to the guiding parameters that
characterize heuristic methods.

Assume that k = 9 has been drawn. Since we are in iteration 1, replacing object
1 at position 3 and object 2 at position 1 will be forbidden during the next k+1 = 10
iterations. The tabu matrix is thus

T =


0 0 10 0 0
10 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (3.6)

In iteration 2, we obtain the following table for the possible moves

mi (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
∆i 14 12 -8 10 0 10 8 12 12 6

Move (1, 3) is tabu since it is the inverse of the last accepted move. Move
m3 = (1, 4) is chosen as it is the only one that improves fitness. We get the new
configuration

p3 = (5, 4, 2, 1, 3)

whose fitness is f(p3) = 60− 8 = 52. This move affects the elements T11 and T54.
Assuming that now the random draw gives k = 6, the tenure time will extend from
the next iteration to iteration 2 + 6 = 8, giving
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T =


8 0 10 0 0
10 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 8 0

 (3.7)

In iteration 3, we have the following possibilities

mi (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
∆i 24 10 8 10 0 22 20 8 8 14

We remark that, at this stage, the (1, 4) move is tabu but move (1, 3) is no longer
tabu since it would place object 5 at location 3 and T53 = 0 (object 5 has never
been at position 3). The minimal cost move is m5 = (2, 3) although it doesn’t im-
prove fitness since ∆5 = 0. It is nevertheless chosen as the next point in the search
trajectory:

p4 = (5, 2, 4, 1, 3)

giving rise to an unchanged fitness f(p4) = 52 with respect to the current solution.
Assuming now that the random drawing gives k = 8, we obtain the new tabu list

T =


8 0 10 0 0
10 0 11 0 0
0 0 0 0 0
0 11 0 0 0
0 0 0 8 0

 (3.8)

which reflects the fact that object 2 has left position 3 and object 4 has left posi-
tion 2. These two moves thus become forbidden until iteration 11 = 3 + 8.

In iteration 4, the moves and costs table is

mi (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
∆i 24 10 8 10 0 8 8 22 20 14

There are now two tabu moves, m3 = (1, 4) and m5 = (2, 3). For m5 this is
obvious, as it would undo the previous move. Move m3 remains tabu as it would
replace objects 5 and 1 at locations that they have already occupied. The allowed
moves are m6 = (2, 4) and m7 = (2, 5), which both worsen fitness by 8 units. In
the fourth iteration we are thus witnessing a deterioration of the current objective
function value. Let’s assume that (2, 4) is chosen as the next move, giving

p5 = (5, 1, 4, 2, 3)

with fitness f(p5) = 60 = 52 + 8.
With a random choice k = 5, the elements T22 (object 2 leaving position 2) and

T14 (object 1 leaving position 4) take the value 9 = 4 + 5 and the tabu list is
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T =


8 0 10 9 0
10 9 11 0 0
0 0 0 0 0
0 11 0 0 0
0 0 0 8 0

 (3.9)

The above process is repeated until a given stopping criterion is attained.
In iteration 5, the chosen move is (1, 3), which corresponds to an improvement

in fitness of 10 units. We have thus

p6 = (4, 1, 5, 2, 3)

with fitness f(p6 = 50). This configuration is the best among all those explored so
far and it turns out that it is also the global optimum in the present problem. We thus
see that accepting a fitness degradation has been beneficial for reaching better quality
regions in the search space.

To conclude this chapter, we emphasize that tabu search has proved to be a suc-
cessful metaheuristic for solving hard combinatorial optimization problems (see, for
instance [41] for a number of applications of the algorithm). To provide worsen-
ing moves that allow the search to escape from local optima, tabu’s specificity is to
rely on search history instead of using random move mechanisms as in most other
metaheuristics. However, successful implementations of tabu search require insight
and problem knowledge. Among the crucial aspects for the success of tabu search
we mention the choice of a suitable neighborhood, and clever use of short-term and
long-term memories.



4

Simulated Annealing

4.1 Motivation

The method of simulated annealing (SA) draws its inspiration from the physical pro-
cess of metallurgy and uses terminology that comes from that field. When a metal is
heated to a sufficiently high temperature, its atoms undergo disordered movements
of large amplitude. If one now cools the metal down progressively, the atoms reduce
their movement and tend to stabilize around fixed positions in a regular crystal struc-
ture with minimal energy. In this state, in which internal structural constraints are
minimized, ductility is improved and the metal becomes easier to work. This slow
cooling process is called annealing by metallurgists and it is to be contrasted with
the quenching process, which consists of a rapid cooling down of the metal or alloy.
Quenching causes the cooled metal to be more fragile, but also harder and more re-
sistant to wear and vibration. In this case, the resulting atomic structure corresponds
to a local energy minimum whose value is higher than the one corresponding to the
arrangement produced by annealing. Figure 4.1 illustrates this process. Note finally
that in practice metallurgists often used a process called tempering by which one
alternates heating and cooling phases to obtain the desired physical properties. This
term will be reused in Section 4.7 to describe an extension of the simulated annealing
algorithm.

We can intuitively understand this process in the following way: at high temper-
ature, atoms undergo large random movements thereby exploring a large number of
possible configurations. Since in nature the energy of systems tends to be minimized,
low-energy configurations will be preferred, but, at this stage, higher energy config-
urations remain accessible thanks to the thermal energy transferred to the system.
In this way, at high temperature the system is allowed to explore a large number of
accessible states. During the exploration, the system might find itself in a low-energy
state by chance. If the energy barrier to leave this state is high, then the system will
stay there longer on average. As temperature decreases, the system will be more and
more constrained to exploit low-amplitude movements and, finally, it will “freeze”
into a low-energy minimum that may be, but is not guaranteed to be, the global one.

© Springer Nature Switzerland AG 2018 59 
B. Chopard, M. Tomassini, An Introduction to Metaheuristics for Optimization,  
Natural Computing Series, https://doi.org/10.1007/978-3-319-93073-2_4
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Fig. 4.1. Illustration of the metallurgical processes of annealing and quenching. The upper
disk represents a sample at high temperature, in which atoms move fast, in a random way. If
the sample is cooled down slowly (annealing), the atoms reach the organized state of minimal
energy. But if the cooling is too fast (quenching), the atoms get trapped in alternating ordered
and disordered regions, which is only a local minimum of energy

In 1983, Kirkpatrick et al. [50], taking inspiration from the physical annealing
process, had the idea of using an algorithm they called simulated annealing to search
for the global minimum of a spin glass system, which can be shown to be a diffi-
cult combinatorial optimization problem. In the following years, simulated annealing
has been successfully used in a large number of optimization problems unrelated to
physics.

4.2 Principles of the Algorithm

The simulated annealing method is used to search for the minimum of a given ob-
jective function, often called the energy E, by analogy to the physical origins of the
method. The algorithm follows the basic principles of all metaheuristics. The pro-
cess begins by choosing an arbitrary admissible initial solution, also called the initial
configuration. Furthermore, an initial “temperature” must also be defined, following
a methodology that will be described in Section 4.6.

Next, the moves that allow the current configuration to reach its neighbors must
also be defined. These moves are also called elementary transformations. The algo-
rithm doesn’t test all the neighbors of the current configuration; instead, a random
move is selected among the allowed ones. If the move leads to a lower energy value,
then the new configuration is accepted and becomes the current solution. But the
original feature of SA is that even moves that lead to an increase of the energy can be
accepted with positive probability. This probability of accepting moves that worsen
the fitness are computed from the energy variation ∆E before and after the given
move:

∆E = Enew − Ecurrent
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The probability p of accepting the new configuration is defined by the exponential

p = min(1, e−(∆E/T )) (4.1)

This relation is called the Metropolis rule for historical reasons, and its graphical
representation is indicated in Figure 4.2. As the figure shows, the rule says that for
∆E ≤ 0, the acceptance probability is one, as the exponential is larger than one in
this case. In other words, a solution that is better than the current one will always be
accepted. On the other hand, if ∆E > 0, which means that the fitness of the new
configuration is less good, the new configuration will nonetheless be accepted with
probability p < 1 computed according to equation (4.1). Thus, a move that worsens
the fitness can still be accepted. It is also clear that the larger ∆E is, the smaller p
will be and, for a given ∆E, p becomes larger with increasing temperature T . As a
consequence, at high temperatures worsening moves are more likely to be accepted,
making it possible to overcome fitness barriers, providing exploration capabilities,
and preventing the search being stuck in local minima. In contrast, as the temperature
is progressively lowered, the configurations will tend to converge towards a local
minimum, thus exploiting a good region of the search space. Indeed, in the limit for
T → 0, p→ 0, and no new configuration with ∆E > 0 is accepted.
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Fig. 4.2. Acceptance probability function according to equation (4.1) for two different tem-
peratures T

The choice of the Metropolis rule for the acceptance probability is not arbitrary.
The corresponding stochastic process that generates changes and that accepts them
with probability p = e−(∆E/T ) samples the system configurations according to a
well-defined probability distribution p that is known in equilibrium statistical me-
chanics as the Maxwell-Boltzmann distribution. It is for this reason that the Metropo-
lis rule is so widely used in the so-called Monte Carlo physical simulation methods.

A fundamental aspect of simulated annealing is the fact that the temperature is
progressively decreased during the search. The details of this process are specified by
a temperature schedule, also called a cooling schedule, and can be defined in differ-
ent ways. For instance, the temperature can be decreased at each iteration following
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a given law. In practice, it is more often preferred to lower the temperature in stages:
after a given number of steps at a constant temperature the search reaches a stationary
value of the energy that fluctuates around a given average value that doesn’t change
any more. At this point, the temperature is decreased to allow the system to achieve
convergence to a lower energy state. Finally, after several stages in which the tem-
perature has been decreased, there are no possible fitness improvements; a state is
reached that is to be considered the final one, and the algorithm stops. Figure 4.3
summarizes the different stages of the simulated annealing algorithm.

Another interpretation of equation (4.1) can be obtained by taking logarithms and
writing it as

∆E = −T ln(p) (4.2)

for positive ∆E.
This is the amplitude of a worsening energy difference that can be accepted with

probability p. For example, an energy barrier of ∆E = 0.69T will be overcome
with probability 1/2. If we were able to estimate the energy variations in the fitness
landscape, this would allow us to determine the temperature that would be needed to
traverse the energy barriers with a given probability. In Section 4.6 we will use this
idea to compute a suitable initial temperature for a simulated annealing run.

The behavior of simulated annealing is illustrated in Figure 4.4. Two search tra-
jectories generated as described in the flowchart of Figure 4.3 are shown in the figure.
The energy landscape is unidimensional with several local optima. Both search tra-
jectories find the global minimum but with paths of different lengths. The grey part
of the figure shows the amplitude ∆E of the energy differences that are accepted
with probability p = 1/2 according to the Metropolis criterion. Initially, this am-
plitude is chosen to be rather large in order to easily traverse and sample the whole
search space. However, as exploration progresses, this amplitude decreases, stage
by stage, following the chosen temperature schedule. At the end of the process only
small amplitude variations are possible and search converges, one hopes to the global
minimum.

4.3 Examples

To illustrate the SA method, here we will look at the traveling salesman problem,
or TSP , already introduced in Chapter 1, Section 1.4 and Chapter 2, Section 2.2.4.
This problem will be taken up again with a different metaheuristic in Chapter 5.

The problem instance considered here is extremely simple by modern standards
but it will be useful to illustrate the workings of simulated annealing. The points
(cities) are uniformly distributed on a circle of radius r = 1, as shown in Figure 4.5.
The goal is to find the shortest path that goes through all the cities once and back to
the starting point. Given the placement of the cities in this case, it is easy to see that
the solution is a 30-vertex polygon whose vertices are the cities and whose length is
close to 2πr. However, there exist a priori 30! possible paths through these points.
The SA metaheuristic will start the exploration of this search space from an initial
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Start

Generate initial state S_current
Set initial temperature T

N_iter=0;  N_accept=0

Generate S_new
N_iter ++

reduce temperature
IF rand(0,1)<exp(-∆E/T)

THEN (S_current=S_new;

    N_accept ++)

Equilibrium state?
no

yes

End condition?
no

yes

output: S_current

Stop

Fig. 4.3. Flowchart for the simulated annealing algorithm
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Fig. 4.4. An example of two simulated annealing trajectories (in red and black respectively)
of a search for the global minimum of the multimodal fitness landscape shown on top of the
figure. The grey area indicates the energy variation amplitude ∆E that is accepted by the
Metropolis rule with probability 1/2
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random tour going through these points. In the present case it is the tour at the upper
left corner of Figure 4.5 whose length, i.e., fitness, is f = 42.879.

f=42.879 T=0.1 f=26.739 T=0.09 f=20.213 T=0.081 f=17.524 T=0.072

f=15.394 T=0.065 f=14.211 T=0.059 f=13.336 T=0.053 f=13.3 T=0.047

f=11.887 T=0.043 f=11.471 T=0.038 f=10.698 T=0.034 f=9.502 T=0.031

f=8.676 T=0.028 f=7.889 T=0.025 f=7.491 T=0.022 f=6.271 T=0.02

f=6.271 T=0.018 f=6.271 T=0.016 f=6.271 T=0.015 f=6.271 T=0.013

Fig. 4.5. Simulated annealing iterations for finding the shortest tour for a salesman wishing
to visit n = 30 cities uniformly distributed on a circle. The figure shows the configuration
obtained at each temperature step, the corresponding temperature value, and the tour’s length

The initial temperature is empirically chosen to be T0 = 0.1. In this example,
fewer than 5,000 iterations were needed to find the minimum-length tour starting
from the given initial condition. An iteration corresponds to the exchange of two
cities in the tour. If this move shortens the tour, then it is accepted. Otherwise, it may
be accepted as well, but with a probability that decreases with decreasing temperature
and that also decreases the more the move degrades the tour length.

Figure 4.5 shows 20 steps of the search, each one corresponding to a new, and
lower, temperature step. The new temperature at step k + 1 is obtained from the
temperature at step k by the relation Tk+1 = 0.9Tk. In this example, it has been
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empirically decided to change the temperature step after 20 accepted moves at a
given temperature.

We also note that during the last five temperature steps there has been no im-
provement in tour length. This is an indication that the search is trapped in a mini-
mum of the energy function. In the present case, it happens to be the globally optimal
solution, which is easy to verify thanks to the specific geometric features of the prob-
lem. As we have already remarked several times, this need not always be the case as
metaheuristics do not give guarantees of the quality of the solution they find.

To experiment a bit, the algorithm was rerun with a higher initial temperature
T0 = 0.5, and longer stages at the same temperature, 200 accepted moves instead of
20. The optimal solution was obtained again but required about 55,000 iterations in
total. The optimal solution was already obtained at temperature stage T15 = 0.114
but it disappeared in the following temperature stages. Indeed, a worse fitness value
of f = 6.685 was reached at T16 = 0.092. However, the optimal value was found
again later.

The choices that have to be made before running the algorithm amount to setting
the values of several parameters: initial temperature T0, number of accepted moves
before changing the temperature, how to decrease the latter, and the stopping crite-
rion. These are the guiding parameters of the metaheuristic and there is no principled
way to satisfactorily set their values for all problems. We shall try to better under-
stand their role later in the chapter, and in Section 4.6 we will give some rules of
thumb for their choice.

We said in Section 2.5 that the kind of move used to explore a permutation space
such as the one generated by a TSP problem, can influence the quality of the solu-
tions obtained through a given metaheuristic. We now illustrate this by considering
SA for the solution of a TSP problem with 500 cities randomly distributed on a
square domain of side 2 (in arbitrary length units), a larger but still moderate prob-
lem size by modern standards. In Figure 4.6 we show on the left a randomly chosen
tour as the initial solution to start the simulated annealing search.

In the middle image of Figure 4.6 the moves used to go from the current solution
to the next one are transpositions of two randomly chosen cities, as explained in
chapter 2. The best tour found after SA convergence is clearly not optimal, as there
are crossings that could be eliminated in order to shorten the total tour length.

In the same Figure 4.6, right image, the same problem is solved with SA but this
time using 2-Opt moves, instead of transpositions. This kind of move was explained
in Chapter 2. The final result is clearly better, both visually and in terms of tour
length: L = 34.628 here compared to L = 50.703 using transpositions. Apart from
the choice of moves, the runs have exactly the same initial conditions and the same
parameters: an initial temperature of T0 = 0.5 and the same temperature schedule.
The latter is defined by Tk+1 = 0.95Tk and stages at the same temperature were of
length 20×n = 10,000 accepted moves, or 150×n = 75,000 tried moves, whichever
comes first. The search was stopped when there was no fitness improvement during
three successive temperature stages. The results suggest that 2-Opt moves give better
results in this problem compared to transpositions. That said, it is still possible to
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f=515.479 T=0.5

initial path

f=50.703 T=0.000668829

transposition

f=34.628 T=0.00111707

2-Opt

Fig. 4.6. Simulated annealing results on a TSP problem with 500 cities randomly distributed
in the plane. On the left, the initial tour with its length f , and the initial temperature T . In the
middle image, the solution found by SA using transposition moves. On the right, the solution
found using moves of type 2-Opt, with the same temperature schedule and the same initial
conditions. It is apparent that 2-Opt moves lead to a better quality solution

improve the results with transpositions by fine-tuning the temperature schedule, but
at the expense of longer computing times.

In Chapter 5 we shall see that it is possible to find the optimal solution to this
problem by using the Concorde algorithm, a state-of-the-art specialized program for
solving large-scale TSP problems. As shown in Figure 4.7 the optimal tour in this
problem has length L∗ = 33.0015. Thus, the result obtained with SA using 2-Opt
moves is just less than 5% worse. While Concorde takes about 40 seconds on a laptop
to solve the problem to optimality, the tour found by simulated annealing (Figure 4.6,
right image) only took 1 second on the same laptop computer.

When considering moves of the 2-Opt type, the variation ∆f in tour length is
easy to compute. For a move (i, j)-2-Opt, as described in Section 2.5, we have

∆f = di,j + di+1,j+1 − di,i+1 − dj,j+1

where di,j is the distance between the cities visited in steps i and j. If the move is
accepted, the order of travel between cities i + 1 and j must be reversed. Still, it is
possible to deal with relatively large problems in reasonable time: about 10 seconds
for 5,000 cities and about 40 seconds for 10,000 cities on a standard laptop. The
optimal tours found in these two cases are depicted in Figure 4.8.

The previous discussion has shown that optimizing the guiding parameters of the
search is not an easy matter. Problem knowledge would surely help, for example in
the choice of the best adapted move operator. However, we have seen that even a
relatively naive and conservative choice may lead to satisfactory results.

In the TSP problem discussed above the moves are more or less complex city
exchanges. However, in other applications the suitable moves can be very different.
For instance, in the graph layout problem, one looks for a placement of the graph
vertices that minimizes the number of edge crossings. In this case, the moves might
be random displacements of a graph vertex. Such an approach is illustrated in Fig-
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f=33.0015

Fig. 4.7. Optimal tour obtained with the Concorde algorithm (see Chapter 5 for details) for the
500 cities problem of Figure 4.6. The minimal length is L = 33.0015

Initial Fitness=5204.42 T=0.5
Best Fitness=115.137 T=1.04937e-05

5000 towns

Initial Fitness=10424.2 T=0.5
Best Fitness=163.057 T=3.71984e-08

10000 towns

Fig. 4.8. Simulated annealing results for a TSP problem with 5,000 and 10,000 cities respec-
tively. The SA parameters are the same as those used to generate Figure 4.6

ure 4.9. In this example the graph edges are given and simulated annealing looks for
the minimum of the following fitness function:

f =
∑
i,j

Aij(dij − d0)2 +
∑
i,j

V0
dij

(4.3)

Here Aij is the graph adjacency matrix and dij is the distance between vertices i
and j. The quantities d0 and V0 are constants. This objective function corresponds to
the criterion that pairs of vertices must be as far apart as possible, which minimizes
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the second term, but connected vertices should ideally be at a distance d0, thus mini-
mizing the first term. This fitness function is appropriate for the graph considered in
the example. We also note that the f function defined in equation (4.3) can be mini-
mized by using straightforward classical methods, without help from metaheuristics.
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Fig. 4.9. Solution to a graph layout problem obtained with simulated annealing. On the left,
the initial graph layout. On the right, the solution found by simulated annealing

4.4 Convergence

An important question in all metaheuristics is to know whether they will be able
to find the global optimum of a problem after a sufficient number of iterations, or
whether they will get stuck in a local optimum. We speak of “convergence” when we
describe the long-term behavior of a metaheuristic.

For simulated annealing, theoretical analyses based on Markov chains have
shown that, under certain conditions, SA converges in probability to the global opti-
mum. This means that SA obtains a solution arbitrarily close to the global optimum
with probability arbitrarily close to 1. The conditions that must be satisfied are:

• The temperature must not be decreased too quickly during the search process.
• The elementary transformations (moves) must be reversible: if we go from a

configuration A to a configuration B through an elementary transformation, then
it should be possible to go from B to A as well.

• Any feasible state of the system must be reachable from any other state in a finite
number of moves.

The function T (t) that dictates how the temperature T is progressively decreased
is the temperature schedule, as we might recall from above. It can be shown that
if T doesn’t decrease faster than C/ log(t) for large time step t then convergence is
assured.C is a constant whose value is related to the “depth” of the “energy wells” of
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the problem, which amounts to the amplitude of fitness variations in the search space.
Of course, this quantity is not known a priori because it would require a previous
exploration of the space. Another reason that renders such a temperature schedule
impractical is the slowness of the process owing to the logarithmic dependence.

In conclusion, simulated annealing is based on a more solid mathematical theory
than several other metaheuristics. In spite of this, when applied in practice, the algo-
rithm requires good empirical choices for the parameters if it is to be efficient, since
their values affect both the computing time and the quality of the results.

4.5 Illustration of the Convergence of Simulated Annealing

Let us consider the search space S = {1, 2, . . . , nx} × {1, 2, . . . , ny}, with a neigh-
borhood of the point (x, y) ∈ S formed by the following points:

V (x, y) = {(x+ 1, y), (x− 1), y), (x, y + 1), (x, y − 1)} (4.4)

The fitness, or energy, E(x, y) of the problem is indicated in Figure 4.10, in
which nx = ny = 10 has been chosen. The goal is to find the global minimum,
which is at (xm, ym) = (9, 2). We also see that the space is multimodal and the
energy has several minima. The most important one after the global minimum is
the minimum at (6, 7). This local minimum has the potential for attracting search
trajectories since its basin is rather large.

Fig. 4.10. Example of an energy landscapeE(x, y), which is a subset of Z2. The left and right
images correspond to two different views of the same landscape E(x, y)

This search space contains only nx × ny = 100 possible solutions and an ex-
haustive search would be trivial to conduct. However, we use this problem here for
didactic reasons, in order to study in detail how simulated annealing behaves when
the search space S is sufficiently small to allow the process to be followed in detail.

In order to analyze the behavior of SA, we denote the elements of S by i, where
i takes the values from 1 to |S| = nx × ny = 100. The relationship between i and
the spatial coordinates (x, y) is
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i = nx(y − 1) + x

x = mod(i− 1, nx) + 1 y = int((i− 1)/nx) + 1 (4.5)

Let P (t, i) be the probability that the current SA configuration in iteration t is i.
The probability that the current solution becomes j at the next iteration is given by
the joint probability P (t+ 1, j, t, i) of having j at time step t+ 1 and i at time step
t, summed over all the i’s. Therefore

P (t+ 1, j) =
∑
i

P (t+ 1, j, t, i) =
∑
i

P (t, i)Wij(t) (4.6)

where Wij(t) is called the transition probability from state i to state j. For all possi-
ble state transitions, this is a matrix of size (nx×ny)2 = 100×100 which is defined
by the neighborhood and the Metropolis rule.

For the neighborhood (4.4) and the relation (4.5), at most four other states j
are accessible from state i. If i belongs to the border of the domain S there are
three neighbors, and only two if it is a corner. Let kout(i) denote the number of
i’s neighbors, Ei the fitness of state or configuration i, and Pmetro(Ei, Ej , T ) the
probability according to the Metropolis rule of accepting a move from a state with
energy Ei to a state with energy Ej at temperature T . Since the temperature depends
on the iteration number, we thus have

Wij(t) =

{
0 if j is not a neighbor of i

1
kout(i)

Pmetro(Ei, Ej , T (t)) if j is a neighbor of i (4.7)

Finally, we denote by

Wii(t) = 1−
∑

j=j is a neighbor of i
Wij(t)

the probability that simulated annealing rejects the chosen move and thus no change
of state takes place.

For our problem, the transition matrix is given in Figure 4.11 (left image) for
temperature T = 2.

From equation (4.6) we can compute P (t, k) as a function of P (0, `). We first
remark that using (4.6) twice we obtain

P (t, k) =
∑
j

P (t− 1, j)Wjk(t− 1)

=
∑
j

∑
i

P (t− 2, i)Wij(t− 2)Wjk(t− 1)

=
∑
i

P (t− 2, i) [W (t− 2)W (t− 1)]ik (4.8)
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Fig. 4.11. On the left, the SA transition matrix corresponding to the energy landscape of
Figure 4.10, for temperature T = 2 and with states numbered according to equation (4.5). On
the right, the transition matrix after 500 iterations (W 500) at the same temperature T = 2. It
is seen that simulated annealing visits the whole search space

where the term W (t− 2)W (t− 1) is the matrix product of W (t− 2) and W (t− 1).
By iterating this process we get

P (t, k) =
∑
`

P (0, `)
[
Πt−1
t′=0W (t′)

]
`k

=
∑
`

P (0, `) [W (0, t− 1)]`k (4.9)

which means that the transition matrix that makes the system go from iteration 0 to
iteration t is the product W (0, t− 1)

W (0, t− 1) = W (0)W (1) . . .W (t− 1)

of the transition matrices at each stage.
For the example of Figure 4.10, and a given temperature schedule T (t), we can

numerically compute the SA evolution at time t thanks to formula (4.9). The hope is
that for t large enough, P (t, k) is independent of P (0, `) and P (t, k) is zero for all
k except for the global minimum.

Indeed, as shown in Figure 4.12, we find numerically that for large enough T (0),
the rows of W (0, t− 1) all have identical entries; thus, for instance,

[W (0, t− 1)]`k = [W (0, t− 1)]1k

and thus

P (t, k) =
∑
`

P (0, `) [W (0, t− 1)]`k

=
∑
`

P (0, `) [W (0, t− 1)]1k

= [W (0, t− 1)]1k
∑
`

P (0, `)

(4.10)
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which shows that
P (t, k) = [W (0, t− 1)]1k

where the index 1 has been arbitrarily chosen among the nx×ny possible values. On
the other hand, if the initial temperature is too low, some regions of the search space
will be more or less accessible depending on the starting point. It follows that P (t)
depends on P (0), where P (0) and P (t) are the probability distributions at time 0
and time t respectively. The consequence is that it is important to start the simulated
annealing search with a sufficiently high temperature.

When P (t) does not depend on P (0), we can represent P (t, i) in the space
S, taking into account that i and (x, y) are related by equations (4.5). This allows
us to visualize the effects of a too-fast temperature schedule. In Figure 4.13 we
show two simulated annealing runs with different temperature schedules. On the
left, T (t + 1) = 0.998T (t) and we see that the global minimum at (x, y) = (9, 2)
has a significantly higher probability of being found than the second deepest one at
(x, y) = (6, 7). On the other hand, the evolution depicted in the right image with
temperature schedule T (t + 1) = 0.95T (t) is too fast-paced. As a result, the two
main minima are attainable with similar probabilities and some secondary minima
are still present. This example shows numerically that choosing the right tempera-
ture schedule is very important in simulated annealing if we want to increase the
likelihood of finding the global optimum.

Finally, Figure 4.14 shows the time evolution of P (t) with a temperature sched-
ule T (t+ 1) = 0.999T (t). We can see that the global minimum is more likely to be
selected and the width of the peaks decreases. However, even for times t > 8,000, the
second deepest minimum still has a non-zero probability of being reached since, for
large t, T (t) = 0.999tT (0) decreases more rapidly than the theoretical prescription
T (t) = C/ log(t). We see here that, as we already remarked, the slow temperature
decrease that guarantees convergence of the process to the global optimum is not
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Fig. 4.12. Transition matrix W (0, t − 1) for two different values of the initial temperature
after t = 1,500 iterations. On the left, T (0) = 2. Each matrix column has identical entries,
which means that equilibrium has been reached and the probability distribution is independent
of the starting state. On the right, T (0) = 0.1 and P (t) depends on P (0)
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acceptable in terms of computing time. The 8,000 iterations of the example mean a
much larger computational effort than a straightforward exhaustive search.

Fig. 4.14. Probability P (t) of finding the current solution at point (x, y) after 4,000 iterations
(left) and 8,000 iterations (right), with T (0) = 2 and T (t+1) = 0.999T (t). Note the different
vertical scales in the two images

4.6 Practical Guide

In this section we give a series of recommendations borrowed from reference [31]
that should help implement simulated annealing for practical applications.

Problem coding.

This consists of choosing the associated search space and the data structures that
allow us to describe and code the admissible configurations of the problem. It is also
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Fig. 4.13. On the left, the probability P (t) of finding the current solution by simulated anneal-
ing after 3,000 iterations with T (0) = 2 and a temperature schedule T (t + 1) = 0.998T (t),
giving T (3,000) = 0.0049. On the right image, the temperature schedule is T (t + 1) =
0.95T (t) and T (3,000) = 2.96× 10−7
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necessary to define the elementary transformations and their effect on the chosen
data structure. The choice of the representation must also be such that the variations
∆E following a move can be quickly computed. The possible constraints of the
problem must be either easily translated into restrictions on the acceptable moves, or
implemented by adding a suitable positive penalizing term to the fitness.

Choice of the initial temperature.

In order to start a simulated annealing search, an initial temperature T0 must be
specified. The following heuristic is useful to determine a suitable value for T0:

• Perform 100 elementary transformations randomly starting from the initial con-
figuration.

• Compute 〈∆E〉, that is, the average of the energy variations observed in these
100 moves.

• Choose an initial acceptance probability p0 for worsening moves according to
the assumed quality of the initial solution. Typically, p0 = 0.5 if the quality is
assumed to be average, and p0 = 0.2 if it is assumed to be good.

After that, T0 can be computed such that

exp

(
−〈∆E〉

T0

)
= p0

which means that the temperature is high enough to allow the system to traverse en-
ergy barriers of size 〈∆E〉 with probability p0. This idea is illustrated in Figure 4.15.

<∆E>

<∆E>

search space
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n
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y

Fig. 4.15. Illustration of the choice of the initial temperature T0. T0 must be such that energy
barriers separating the attraction basins of the initial condition and the optimal configuration
can be overcome with a sufficiently high probability. The barrier heights depend on the quality
of the initial solution
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Temperature stages.

The temperature is modified when an equilibrium state is reached. In practice, we
assume that an equilibrium state has been attained if 12N elementary transforma-
tions have been accepted over a total quantity of 100N tried moves. N is the number
of degrees of freedom of the problem, i.e., the number of variables that define the
solution.

Temperature schedule.

When the equilibrium as defined above has been reached, the system goes to another
temperature stage by decreasing T according to a geometric law

Tk+1 = 0.9Tk

where k is the stage number.

Termination condition.

The stopping condition of a simulated annealing is typically the following: if during
the last three successive temperature stages the energy E didn’t improve then the
process is halted.

Validation.

In order to check that the optimal value found is sufficiently reliable, we can run
SA again with a different initial condition, or with a different sequence of pseudo-
random numbers. The final solution may change because it is not necessarily unique,
but the optimal fitness value must be close from one execution to the next.

By applying this advice to the example withN = 30 we discussed in Section 4.3,
we would typically have T0 = 0.65 (assuming p0 = 0.2), with temperature stage
changes after 12 × 30 = 360 acceptances or 100 × 30 = 3,000 tried moves. In the
example a rapid convergence was obtained with T0 = 0.1 and with more frequent
temperature changes (after 20 acceptances). The example also showed that starting
from a higher T0 = 0.5 and with temperature stage changes after 200 accepted moves
also led to the global optimum, only using more computing time.

The values of the guiding parameters given in this section are “generous” enough
to allow us to tackle more difficult practical problems than the very simple one treated
in Section 4.3.

4.7 The Method of Parallel Tempering

The parallel tempering method finds its origin in the numerical simulation of pro-
tein folding [35]. The idea consists of considering several Monte Carlo simulations
of proteins at similar temperatures. If the temperatures are close enough to each
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other, the probability distributions will overlap to some extent and it will be possi-
ble to exchange two configurations obtained in two simulations at different but close
temperatures. This approach improves the sampling of the configuration space and
prevents the system from getting stuck in a local energy minimum.

The idea can be adapted to the metaheuristics framework in the form of a parallel
simulated annealing scheme. To this end, we consider M replicas of the problem,
each at a different temperature Ti where i is the replica index. In parallel tempering,
differently from SA, Ti is held constant during the search process. However, some
adjustments may occur during the run, as explained later.

The name “parallel tempering” comes from the process called tempering, which
consists of heating and cooling some material several times. The process is notably
used in the production of chocolate.

The key idea in parallel tempering is that a constant-temperature annealing at
high temperature will sample the search space in a coarse-grained fashion, while a
simultaneous process at low temperature will explore a reduced region but runs the
risk of being blocked into a local fitness optimum. To take advantage of these two
behaviors, which clearly correspond to diversification and intensification, the current
solutions of the two processes are exchanged from time to time. This procedure is
illustrated in Figure 4.16. Roughly speaking, instead of running a single simulated
annealing with a given cooling schedule, we now have several of them that together
cover the whole temperature range. Thus, the temperature variation here is between
systems, rather than during time in a single system.

More precisely, the exchange of two configurations Ci and Cj is possible only if
Ti and Tj are close enough to each other (j = i ± 1), as suggested by Figure 4.17.
The two energy configurations Ei and Ej are exchanged with probability

p = min(1, e−∆ij ) (4.11)

where ∆ij is defined as

∆ij = (Ei − Ej)
(

1

Tj
− 1

Ti

)
(4.12)

This relationship is symmetric with respect to the exchange of i and j. Moreover,
we see that if the system at high temperature, say system j, has a current configura-
tion of energy Ej lower than the system at lower temperature Ti, then Ei −Ej > 0,
1/Tj − 1/Ti < 0, ∆ij < 0, and the exchange probability p equals one. This means
that the natural tendency is for good solutions to go from a system at high temper-
ature to a system at low temperature. The reverse is also possible, but with a lower
probability, the more so the higher the energy variation and the higher the tempera-
ture difference between Ti and Tj .

Parallel tempering amounts to the execution of M different simulated annealing
processes, each one at a given constant temperature. If the SAs are run in parallel
on M processors, there is almost no time overhead due to process communication
to exchange solutions as this phase requires little time. With respect to the execution
of M independent standard SAs of which we keep the best result found, it has been
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Fig. 4.16. Illustration of the parallel tempering principle. The energy landscape is represented
by the blue tones and the level curves. The energy minimum is in the dark zone at the bottom
right. The other dark zone at the top right of the image is a local minimum. The light blue
trajectory corresponds to an annealing at low temperature, while the red one represents a
high-temperature annealing. In the left image, the low-temperature annealing is stuck at a local
minimum, while the high-temperature process explores the space widely but without finding a
better energy region than the low-temperature one. There are no exchanges of trajectories. On
the other hand, in the right image, the red trajectory enters a low-energy zone by chance. Now,
after configuration exchange, the light blue annealing quickly reaches the global minimum.
Because of its higher temperature, the red annealing doesn’t get stuck in the local minimum

T1

Annealing 1
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Annealing 3
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Annealing 4

Fig. 4.17. Parallel tempering amounts to running M annealing processes in parallel, each one
at constant temperature T1 < T2 < . . . < TM . The configuration exchanges take place
between processes at similar temperatures, as suggested in the image by the arrows between
the M = 4 replicas

observed that, in general, parallel tempering converges to a good solution faster. The
reason is the communication of information between the systems, which happens in
a manner that conceptually resembles the exchange of information between popula-
tions in a multipopulation evolutionary system (see Chapter 9).

Figure 4.18 shows a possible scenario of the exchange of configurations between
neighboring systems (in the sense of their annealing temperature). There are, how-
ever, several guiding parameters that must be set in a suitable way:

• The number M of replicas is often chosen to be M =
√
N , where N is the

problem size, i.e., the number of degrees of freedom.
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• The frequency of configuration exchanges is often based on the annealing process
state, and it is done when the two replicas have reached a stationary state.

• The number of different temperatures is chosen such that the SA at the highest
temperature samples the space widely enough, together with the requirement that
the temperature levels are close enough.

 

Fig. 4.18. Graphical illustration of configuration exchanges between SA processes at similar
temperatures. The colors allow us to follow the exchanges between parallel processes

Finally, let’s note that the replicas’ temperatures can be adjusted if the exchange
rates between neighbors are judged to be either too rare or too frequent. For example,
if this rate goes below 0.5%, all temperatures are decreased by an amount ∆T =
0.1(Ti+1 − Ti). In the opposite case, for example a frequency larger than 2%, all
temperatures are increased by ∆T .
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5

The Ant Colony Method

5.1 Motivation

The metaheuristic called the ant colony method has been inspired by entomology,
the science of insect behavior. An interesting observation is that ants are apparently
capable of solving what we would call optimization problems, such as finding a
short path between the nest and a source of food. This result will be discussed in
detail in Section 5.2. The ants’ ability to collectively find optimal or nearly optimal
solutions for their development and survival is witnessed by their biomass, which is
estimated to be similar to that of humans. This also means that, being much lighter
than humans, their number must be huge; it has indeed been estimated to be around
1016 on Earth.

Ants, in spite of their individually limited capabilities, seem to be able to collab-
orate in solving problems that are out of reach for any single ant. We speak in this
case of the emergence of a recognizable collective behavior in which the whole is
more than the sum of the individual parts. The term swarm intelligence is also used,
especially in connection with other insects such as bees. Moreover, in certain tasks
that ants perform, such as the construction of a cemetery for dead ants [19], there
seems to be no centralized control but, despite the short-sighted local vision of each
single insect, a global coherence does emerge. This kind of phenomenon is typical
of complex systems and one also speaks of self-organization in this context.

The absence of a centralized control is called heterarchy in biology, as opposed
to a hierarchy in which an increasing degree of global knowledge is assumed as we
climb towards the top of the organizational structure. The self-organization of ant
populations is the key to robustness and flexibility of the problem-solving processes.
In particular, the system appears to be highly fault-tolerant, as it continues to function
with almost no disruption even when ants disappear or do a wrong action, and it
quickly adapts to a change of a problem’s constraints.

The above considerations, together with the parallel nature of the ants’ actions,
led Dorigo, Maniezzo, and Colorni [30] to propose in 1992 an optimization algorithm
inspired by the ants’ ability to solve a global problem with only a local appreciation
of it. The key ingredient of the idea is the use of artificial pheromone (see below)

© Springer Nature Switzerland AG 2018 81 
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to mark promising solutions, thus stimulating other ants to follow and explore the
corresponding region.

5.2 Pheromones: a Natural Method of Optimization

To carry out a collective task, ants must be able to communicate in some way. Ento-
mologists have known for a long time that ants deposit a chemical substance called
pheromone when they move. These pheromone trails are then used to attract, or
guide, other ants along the trail. This process of indirect coordination is known in
biology as stigmergy or chemotaxis: ants that perceive the smell of pheromones in
their environment orient their movements towards the region were the presence of
pheromone is high. Pheromones do not last forever however; after a certain time
they evaporate thus, “erasing” a path that is not reinforced by the continuous passage
of other ants.

The efficiency of such a communication tool for finding the global optimal solu-
tion to a problem is illustrated by the following experiment carried out by Goss et al.
in 1989 [38] with true ants (Linepithema humile, Argentine ant).

Figure 5.1 defines the experimental setting. A food source is connected to an ant
nest by tubes, which provide the ants with paths of different lengths. What was ob-

Nest Food

Fig. 5.1. Schematic representation of Goss et al.’s experiment to show the ants’ ability to find
the shortest path between the nest and a food source. Dots stand for the presence of ants along
the trails. The image suggest that, even if most ants are using the shortest path, there are always
some that go the wrong way

served is that, at the beginning, ants leaving their nest in search of food distribute
randomly and nearly equally on all possible paths. However, after a certain adapta-
tion time, almost all ants tend to follow the same trail, which also happens to be the
shortest one. The histogram of Figure 5.2 shows that between 80 and 100% of the
ants end up finding the shortest path in about 90% of the experiments. In about 10%
of the experiments only 60 to 80% of the ants follow the optimal trail.

A possible explanation of these results could be the following: at the beginning
there is no pheromone on the paths connecting the nest and the food. Ants have no
signals to rely upon and thus they choose the branches randomly. But while moving
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Fig. 5.2. Results of Goss et al.’s experiment. The histogram gives the observed frequency of
ants having found the shortest path over several repetitions of the experiment

they start deposing pheromones to mark the path. The ants that have by chance cho-
sen the shortest path will be the first to reach the food and to carry it back to the nest.
They will return using the same path, which is the only one that is heavily marked.
By doing so, they will depose more pheromone, thus amplifying the attractiveness
of the path.

The ants that arrive at the destination later following other, possibly longer trails
will discover the shortest path on their way back to the nest because it will be more
heavily marked. By taking that trail, they will depose more pheromone, thus strength-
ening the path still further. After a while, most of the ants will have converged on the
optimal path.

This plausible scenario has been confirmed by a simpler experiment that can be
described by a mathematical model using the amplification of the pheromone trail.
The experiment was performed in 1990 by Deneubourg et al. [29], according to the
schema of Figure 5.3. In this case, the nest and the food are accessible through two
paths of the same length. Ants thus have no advantage in choosing one path rather
than the other. However, here too, after a transient period during which ants use the
two branches equally, almost all of them end up choosing one of the two paths.

The results of a typical experiment are shown in Figure 5.4, in which the per-
centage of occupation of the two paths is given as a function of time. It appears that,
after a few minutes hesitating over the direction to take, a decisive fluctuation causes
the ants to follow the upper trail, and the pheromone reinforcement that follows is
enough to attract the other ants to this path. In this experiment, it is the upper trail that
ends up being chosen, but it is clear that the argument is also valid for the other trail
and in other experiments the latter will be chosen instead. This experiment shows
that the final choice is indeed a collective effect and does not only depend on the
length of the path. If the latter was the only crucial factor, then both branches should
be used during the experiment.
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Nest Food

Fig. 5.3. Schematic setting of the Deneubourg et al.’s experiment. Two paths of identical length
are available to the ants. One of them ends up being chosen
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Fig. 5.4. Percentage of occupation of the two paths by the ants during the experiment. The
blue curve corresponds to the lower path in Figure 5.3, the black curve represents the upper
one. The sum of the values on the two curves at any time is 100% since ants are necessarily
on one path or the other

Deneubourg et al. proposed a mathematical model of their experiment [29]. They
assumed that the probability of choosing one of the two branches depends on the
quantity of pheromones that have been deposited by all the ants that have gone
through each one of them since the beginning of the experiment.

Let m be the number of ants that have already transited through the system by
one or the other of the two paths. We denote by Um and Lm the number of ants that
have chosen the upper branch and the lower branch respectively. It is assumed that
the probability PU (m+ 1) that the ant (m+ 1) chooses the upper branch is

PU (m+ 1) =
(Um + k)h

(Um + k)h + (Lm + k)h
(5.1)
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where k and h are parameters to be specified. The probability PL(m+ 1) according
to which the ant chooses the lower branch is symmetrically given by

PL(m+ 1) =
(Lm + k)h

(Um + k)h + (Lm + k)h
(5.2)

and, of course, PU (m+1)+PL(m+1) = 1. These expressions suggest that ants will
choose their path as a function of the fraction of pheromone that has been deposited
on each path since the beginning of the experiment.

Deneubourg et al.’s measures show that the above formulas represent the ob-
served behavior quite well by choosing k = 20 and h = 2.

A possible interpretation of the parameters k and hmight be the following. If Um
and Lm are small with respect to k, the probability of choosing the upper branch is
close to 1/2. Therefore, k is of the order of the number of ants that must initially run
through the system before the pheromone track becomes sufficiently selective. The
h coefficient indicates the ants’ sensitivity to the quantity of pheromone deposited.
Since h 6= 1 the sensitivity is non-linear with respect to the quantity of pheromone.

5.3 Numerical Simulation of Ant Movements

The results reported in the previous section suggest that an ant chooses its way in a
probabilistic fashion, and that the probability depends on the amount of pheromone
deposited on each possible path by the ants that have gone through the system pre-
viously. Equations (5.1) and (5.2) are a quantitative attempt to estimate these proba-
bilities.

We might nevertheless ask whether these hypotheses are really sufficient to ex-
plain the observation that ants find the shortest paths between their nest and food
sources. The hypothesis was made that the shortest path emerges because the first
ant to reach the food is the one that, by chance, used the shortest path. This same
ant will also be the first one to return to the nest, thus reinforcing its own path. This
shortest path will then become more attractive to the ants that will arrive later at the
food source.

To check whether these ideas are sufficient in themselves to explain the phe-
nomenon, and in the absence of a rigorous mathematical model, we can numerically
simulate the behavior of artificial ants obeying the proposed principles. Here we will
consider a discrete-event simulation in which the evolution of a system is modeled
as a discrete sequence of events in time. If we consider the situation schematized in
Fig. 5.5, the typical events are the following: (1) an ant leaves the nest; (2) an ant
reaches the food either from the upper path or from the lower one; (3) an ant leaves
the food and travels back to the nest; (4) an ant reaches the nest either from the upper
path or from the lower path.

Each event is characterized by the time at which it takes place and by an associ-
ated action. For instance, the action associated with the event “leave the nest” calls
for (a) choosing a path according to the quantity of pheromone already present on the
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Nest Food

Fig. 5.5. Geometry of the paths considered in the discrete-event simulation of the ants’ move-
ment. The upper branch is half as long as the lower branch

two branches (probabilities (5.1) and (5.2) will be used for this choice); (b) adding
some pheromone to the chosen branch; (c) going along the path and creating a new
event “arrived at the nest by the upper/lower branch,” with a total time given by the
present time plus the time needed to go along the path. This time will be twice as
large for the lower path than for the upper path.

In a discrete-event simulation, the next event to take place is the one whose time
is the smallest among all the events not yet realized. In this way, the events caused by
the ants choosing the shortest path will take place before those associated with the
ants choosing the longest path. One thus hopes that this mechanism will be sufficient
to asymmetrically strengthen the concentration of pheromone on the shorter path, in
order to definitely bias the ants’ decision towards the optimal solution.

Figures 5.6 and 5.7 present the results of the simulation with a total of 500 ants,
which leave the nest at a rate of 2 ants/second, choose one of the two paths, reach the
food, and go back to the nest. We assume that the short path takes ∆t = 5 seconds
to be traveled, whereas the long one takes ∆t = 10 seconds. As explained before,
at each branch, a direction is chosen probabilistically according to the quantity of
pheromone placed at the path entrance. The choice of the branch creates a new event
in the simulation, which consists of exiting the chosen branch after a time ∆t.

Figure 5.6 shows, for a particular simulation, the number of ants, as a function
of time, that are either on the short path or on the long path. Ants leave the nest at
t = 0, one every half second, and their number increases in both branches. After
approximately 30 seconds, the shorter path becomes more attractive and, as a con-
sequence, the density of ants on the long path strongly decreases. After about 250
seconds all 500 ants have returned to the nest and the occupation of the paths goes
to zero. The dashed lines indicate the number of ants that would be on each path if it
were the only one. For example, consider the shorter path, which takes 5 seconds to
traverse. Given that two ants leave the nest every second, there would then be 10 ants
on average in each direction, thus a total of 20 ants, on the shorter path. Similarly,
for the long path, we would expect to find 40 ants. However, the simulation shows
an average o less than five, in agreement with the fact that most ants take the other
path after a transitional period.
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Although the previous simulation shows quite convincingly that the shorter path
is indeed selected, this is not the case when the numerical experiment is repeated.
Figure 5.7 shows the histogram, averaged over 100 runs, of the fraction of ants that
have taken the shorter path, over the entire simulation time. The results are less clear-
cut than in Goss et al.’s experiment (see Figure 5.2); however, the asymmetry favor-
ing the shorter path is statistically clearly visible.

The following parameter values have been used in the simulations: k = 30 and
h = 2 for computing the probabilities (5.1) and (5.2), and a pheromone evaporation
rate of 0.01/s.

Fig. 5.6. Results of an instance of the discrete-event simulation where ants clearly find the
shortest path. Dotted lines show the expected number of ants in each branch if it were the only
one available

5.4 Ant-Based Optimisation Algorithm

In Section 5.5 we shall give the classical formulation of “ant” algorithms for com-
binatorial optimization as applied to the traveling salesman problem. For the time
being, we present a simpler version that explores a one-dimensional search space
S = {0, 1, . . . , 2k − 1}, where k is an integer that defines the problem size. Each
element x ∈ S is a k-bit string x = x0x1 . . . xk−1. For example, for k = 3 we would
have

S = {000, 001, 010, 011, 100, 101, 110, 111}.

This space can be represented as a binary tree in which, at each level ` of the
tree, we can choose 0 or 1 as the value of x`. A solution x ∈ S is thus a path from
the root of the tree to a leaf, as illustrated in Figure 5.8 for k = 6. In this figure we
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Fig. 5.7. Fraction of ants that find the shorter path averaged over 100 simulations. We see that,
although this is not always the case, in more than 70% of the cases, more than half of the ants
have found the shorter path

see in grey the 64 possible paths, each one corresponding to a particular solution in
S = {0, . . . 63}. The heavier paths in black are six particular paths x1 = 000110,
x2 = 001000, x3 = 001110, x4 = 100011, x5 = 100101, and x6 = 110110.

We then make the hypothesis that these paths are the result of the movements
of artificial ants, starting from the root and reaching the leaves, where some food is
supposed to be found. We can also imagine, for the sake of the example, that the
quality of the food at the leaves is defined by a fitness function f which depends on
the particular “site” in S. In the example of Figure 5.8, the fitness function has been
arbitrarily chosen to be

f(x) = 1 +
x

63
cos
(

2π
x

63

)
and it is graphically represented at the bottom of the figure.

We can now propose the following “ants” algorithm to explore S and search for
the maximum of f , which is placed at x = 111111 = 63 in this example, where the
function value is f(63) = 2.

At each iteration, we letm ants explore the 2k possible paths in the tree. Initially,
we assume that all paths are equiprobable. This means that there are no pheromone
traces on any trail yet. Thus, when it arrives at a branching point, an ant chooses
the left or the right branch uniformly at random. When it arrives at leaf of the tree,
it observes the fitness associated with the particular leaf it has reached. This value
is interpreted as a pheromone quantity, which is then added to each branch of the
particular path that has been followed.

From the ants’ point of view, we may imagine that they deposit the pheromone
on each path segment on their way back to the tree root, following in reverse the
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Fig. 5.8. Top: binary tree to explore the search space S. Bottom: fitness values associated with
each point in S

same path used to find the leaf. From the programming point of view it is easier to
carry out this reinforcement phase in a global fashion, without asking whether ants
really do it. The important point is to mark the paths proportionally to their quality. It
is also important to note that path segments can be “shared” by several ants traveling
to different destinations; in this case, the segment will be enhanced by each ant that
is using it, in an additive way.

At the next iteration, m ants will again travel from the root to the leaves, but
this time they will find a pheromone trace that will guide them at each branching
point. The decision to follow a particular branch can be implemented in a number of
ways. If τleft and τright are the current quantities of pheromone in the left and right
branches respectively, an ant will choose the left branch with probability pleft =
τleft/(τleft + τright) or the right branch with probability pright = 1 − pleft. To
avoid a branch that has never been traversed by any ant having τ = 0, which would
make its probability of being chosen to be zero when compared to a branch having
τ 6= 0, all pheromones are initialized to a constant value τ0, making the choice of a
left or right branch in the first iteration equally likely, as required.

Another possibility for guiding the ants along the pheromone trails is to choose
with probability q the better of the two branches, and to apply the method just de-
scribed with probability 1 − q. It is this last version that has been used to produce
the trajectories shown in Figure 5.9. The four iterations that follow the one depicted
in Figure 5.8 are indicated. The grey level of each tree node stands for the quantity
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of pheromone on the incident branch: the darker the node, the more pheromone de-
posited. Now it is clearly seen that the ants’ movement is no longer random; rather,
it is biased towards the paths that lead to high-fitness regions. That said, statistically
speaking, other paths are also explored, and this exploration can potentially lead to
even better regions of the search space.

In this algorithm the parameters have been set empirically by trial and error as
follows: τ0 = 0.1, q = 0.8, and a pheromone evaporation rate equal to a half of
the pheromone deposited in each iteration. Furthermore, the best path found in each
iteration is rewarded with a quantity equal to twice its fitness value.
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Fig. 5.9. Iterations number 2, 3, 4, and 5 in the exploration of the search space S by six ants
starting from the pheromone trail created at iteration 1, shown in Figure 5.8

In Figure 5.9 it can be seen that the optimal solution x = 111111 has been found
in iterations 2 and 5 but it disappeared in iterations 3 and 4. This shows that it is
fundamental to keep track of the best-so-far solution at all times since there is no
guarantee that it will be present in the last iteration. As in other metaheuristics, there
is also the question of how to set the termination condition of the algorithm. Here it
was decided to stop after six iterations. The reason for such a choice is to limit the
computational effort to a value smaller than the exhaustive enumeration of S, which
contains 64 points. With six ants and six iterations, the maximum number of points
explored is 36.



5.4 Ant-Based Optimisation Algorithm 91

In spite of the reduced computational effort, the optimal solution has been ob-
tained. Was this due to chance? Repeating the search several times may shed some
light on the issue. For 10 independent runs of the algorithm we found the perfor-
mances reported in Table 5.1. We see that seven times out of ten the optimal solution
has been found. This ratio is called the success rate or success probability. It is also
apparent from Table 5.1 that the success rate increases if we are ready to give up
something in terms of solution quality; in nine executions out of ten the best fitness
is within 3% of the optimal fitness.

computational effort 6× 6 = 36
success rate 7/10

success rate within 3% of the optimum 9/10

Table 5.1. Performances of the simple “ants” algorithm on a problem of size k = 6. Values
are averages over 10 executions, each with six ants and six iterations

It is interesting to compare the 70% success rate obtained with this simple algo-
rithm to a random search. The probability of finding the global optimum in a random
trial is p = 1/64. In 36 random trials, the probability of finding it at least once is
1−(1−p)36 = 0.43, that is, one minus the probability of never finding it in 36 trials.
As expected, even a simple metaheuristic turns out to be better than random search.
The concepts briefly introduced here to discuss the performance of metaheuristics
will be discussed in detail in Chapter 11.

To conclude the analysis of this toy problem, Figure 5.10 gives the empirical
probability, or frequency, of each of the 64 possible paths after 100 iterations with
6,400 ants. The computational effort is evidently disproportionate with respect to the
problem difficulty. But the goal here is to illustrate the convergence of the probability
of attaining any given point in the search space. We see that the two maxima are
clearly visible, but with a probability that is higher for the global optimum. There
are also non-optimal paths whose probability is non-vanishing. It is unlikely that
they would completely disappear if we increased the number of iterations since there
would always be ants depositing some pheromone on these paths. However, with
a probability of about 0.3 of reaching the global optimum (see Figure 5.10), the
probability that at least one ant among the 6,400 will find it is essentially equal to
one.

We remark that the simple “ants” algorithm is a population-based metaheuristic
since there are m possible solutions at each iteration. Thus, formally, the search
space is the cartesian product Sm. The next iteration is a new set of m solutions
that can be considered as a neighbor of the previous set, if one is to be faithful to
the basic metaheuristic concept of going from neighbor to neighbor in the search.
In the present case, the neighbor is generated by a stochastic process based on the
attractiveness of the paths starting from the m current solutions.
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Fig. 5.10. Fitness function of the problem and probability of each of the 64 possible paths
for exploring S. This empirical probability is obtained with 6,400 ants and corresponds to the
paths chosen after 100 iterations of the algorithm

5.5 The “Ant System” and “Ant Colony System” Metaheuristics

The ant behavior described in Section 5.2 inspired Dorigo et al. to propose an opti-
mization metaheuristic they called Ant System (AS) [30]. The metaheuristic was first
formulated in the context of the traveling salesman problem, followed by quadratic
assignment problems. Successively, the AS algorithm has been modified in its de-
tails to improve on some of its weaknesses. The resulting metaheuristic was called
Ant Colony System (ACS). As is often the case with metaheuristics, there exist sev-
eral variants and there is little in the way of theoretical arguments that would explain
why one particular version performs better than another on a class of problems. In
the next section, we will follow the description of the AS and ACS algorithms given
in [31].

5.5.1 The AS Algorithm Applied to the Traveling Salesman Problem

The traveling salesman problem (TSP for short) calls for the shortest tour that passes
exactly once through each of n cities and goes back to the starting city. This problem
has already been mentioned several times, especially in Chapter 2.

The AS algorithm for solving the TSP can be formulated as follows. For the n
cities, we consider the distances dij between each pair of cities i and j. Distances can
be defined as being the usual Euclidean distances or in several other ways, depending
on the type of problem. From the dij values, a quantity ηij called visibility can be
defined through the expression

ηij =
1

dij
(5.3)

Thus, a city j that is close to city i will be considered “visible”, while a more distant
one won’t.

We consider m virtual ants. In each iteration, the ants will explore a possible
path that goes through the n cities, according to the TSP definition. The m ants
choose their path as a function of the quantity τij of virtual pheromones that has
been deposited on the route joining city i to city j as well as the visibility of city
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j seen from city i. The quantity τij is called the track intensity and it defines the
attractiveness of edge (i, j).

With respect to the simple ant algorithm described in Section 5.4, the main dif-
ference here is that ants are given supplementary information, the visibility of the
next town, which they use to guide their search.

After each iteration, the ants generatem new admissible solutions to the problem.
The search space S is thus the cartesian product

S = Sn × . . .× Sn︸ ︷︷ ︸
m times

where Sn is the set of permutations of n objects.
As explained in the previous section, the neighborhood of the current solution,

which consists of m possible tours, is not explicitly represented. Instead, the neigh-
bor that will be chosen in the search space is built using a stochastic method based
on the aggregated quality of the m paths obtained in the previous iteration.

In more concrete terms, let us consider the way in which ant k builds, in iteration
t + 1, the k-th tour out of m tours of the new current solution. Let us suppose that
ant k has reached city i after having visited a certain number of other cities. Let
the set J denote the set of cities not yet visited by the ant. Among these cities, the
ant will choose as the next stage in the tour city j ∈ J with probability pij , which
depends on the visibility ηij of city j and on the current intensity τij(t) of edge
(i, j). Specifically, pij is defined as

pij =

{
[τij(t)]

α[ηij ]
β∑

`∈J [τi`(t)]
α[ηi`]β

if j ∈ J
0 otherwise

(5.4)

where α and β are control parameters whose values must be chosen in a suitable
way. The above formula computes the transition probabilities, giving a weight to
the j selection with respect to all the choices ` that are still available. With this
construction, one also guarantees that an ant cannot visit the same city twice in the
tour it builds in iteration t+ 1.

It can be seen that a high value of the α parameter will attribute more weight to
edges whose pheromone intensity is high. In this way, potentially promising edges
will be favored in the exploration. This is tantamount to intensifying the good so-
lutions already found. In contrast, a high β will favor local geographic information,
independent of the importance that edge (i, j) may have in the global tour. This factor
helps the diversification by trying new paths.

To complete the algorithm description, we must still say how the pheromone
track is updated in iteration t + 1. Once the m ants have generated their respective
tours Tk, k = 1, . . .m, the pheromone intensity τij on each edge is updated as
follows:

τij(t+ 1) = (1− ρ)τij(t) +∆τij(t+ 1) (5.5)
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where∆τij(t+1) is the pheromone contribution resulting from the global quality of
the m new tours and ρ ∈ [0, 1] is an evaporation factor that allows us to deconstruct
a sub-optimal solution; such a solution can result from a chance process and may
lead to a premature search convergence without evaporation.
The quantity ∆τij is obtained as the sum of the contributions of the m ants. We set

∆τij(t+ 1) =
m∑
k=1

∆τ
(k)
ij (5.6)

with

∆τ
(k)
ij =

{
Q
Lk

if (i, j) ∈ Tk
0 otherwise

(5.7)

where Q is a new control parameter and Lk is the length of tour Tk associated with
ant k. We see that only the edges effectively used by the ants are strengthened ((i, j)
must belong to Tk). The enhancement is larger for edges that have been used by
many ants and for edges that are part of a short tour, i.e., small Lk.

It is important to attribute a non-zero initial value to τij in order for the proba-
bilities pij to be correctly defined at iteration t = 1. In practice, a small pheromone
value is chosen

τij(0) =
1

nL

where L is an estimate of the TSP tour length, which can be obtained, for example,
by running a greedy algorithm.

Suitable values of the parameters m, α, β, ρ, and Q that give satisfactory results
for solving the TSP problem with the AS metaheuristic have been found empiri-
cally:

m = n, α = 1, β = 5, ρ = 0.5, Q = 1

Finally, we note that in the AS algorithm the m ants build the m tours in itera-
tion t in an independent manner. In fact, ant k chooses its path on the basis of the
pheromone deposited in iteration t − 1 and not as a function of the paths already
chosen by the first k − 1 ants in iteration t. As a consequence, the algorithm is easy
to parallelize with a thread for each of the m ants.

5.5.2 The “Ant Colony System”

The algorithm of the previous section has been applied with success to the bench-
mark “Oliver30,” a 30-city TSP [65]. The AS was able to find a better solution than
the best one known at the time, which had been obtained with a genetic algorithm,
with a computing time comparable to or shorter than that required by other methods.
However, when tackling a larger problem, AS was unable to find the known optimum
within the time allowed by the benchmark, although convergence to a good optimum
was fast.
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This stimulated several researchers to propose variants of the AS algorithm to
improve its performance. The Ant Colony System (ACS algorithm modifies the AS
in two ways: (1) the choice of the next city to visit, and (2) the pheromone track
update. In practice, these two points are redefined in ACS as follows:

(1)

A new parameter q0, whose value is between 0 and 1, is introduced such that in
iteration t + 1 ant k, having reached city i, chooses the next city j according to the
rule

j =

{
argmax`∈J [τi`(t)η

β
i`] with probability q0

u with probability 1− q0
(5.8)

where
argmaxxf(x)

is, by definition, the argument that maximizes the function f .
The quantity u ∈ J is a randomly chosen city in the set J of allowed cities which

is drawn with probability piu

piu =
τiu(t)ηβiu∑
`∈J τi`(t)η

β
i`

(5.9)

Thus, with probability q0 the algorithm exploits the known information as it chooses
the best edge available. Otherwise, with probability 1 − q0, the exploration of new
paths is privileged.

(2)

The amount of pheromone deposited on the graph edges now evolves both locally
and globally going from iteration t to t + 1. After the passage of m ants, a local
provision of pheromone is supplied. Each ant deposits a quantity of pheromone φτ0
on each edge (i, j) that it has traversed; at the same time, a fraction φ of the already
present pheromone evaporates. We thus have

τ ′ij = (1− φ)τij(t) + φτ0 (5.10)

Next, an amount of pheromone∆τ = 1/Lmin is added only to the edges (i, j) of
the best tour Tbest among them tours of iteration t+1. Simultaneously, a fraction ρ of
pheromone evaporates from the edges of the best tour. Due to the global pheromone
update, the τ ′ij obtained in the local pheromone update phase are corrected thus:

τij(t+ 1) =

{
(1− ρ)τ ′ij + ρ∆τ if (i, j) belongs to the best tour

τ ′ij otherwise (5.11)

The aim here is to reinforce the best path the length of which is Lmin.
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5.5.3 Comments on the Solution of the TSP Problem

The traveling salesman problem has a long history of research and many algorithms
have been developed to try to solve the largest instances possible. Since this em-
blematic problem has a large number of applications in many areas, the results of
this research have often been applied to other domains. Metaheuristics are just one
approach among the many that have been proposed.

Since the early 2000s, the Concorde algorithm, which is a TSP specialized code,
allows us to find the optimal solution of problems with a large number of cities1.

The algorithm, much more complex than any metaheuristic approach, is de-
scribed in the book of Applegate et al. [7]. It is based on a linear programming
formulation combined with the so-called cutting-planes method and uses branch-
and-bound techniques. The program comprises about 130,000 lines of C code.

Concorde computing time can be significant for large difficult instances. For ex-
ample, in 2006, a TSP instance with 85,900 cities needed 136 CPU years to be
solved2. But computing time does not depend only on problem size; some city con-
figurations are more difficult to solve than others. For instance, in [6] the authors
mention the case of a 225-city problem (ts225) that took 439 seconds to solve,
while another 1,002-city problem (pr1002) only took 95 seconds.

Let us remind the reader that Concorde is essentially based on linear program-
ming, for which the simplex algorithm can take an exponential amount of time in
the problem size in the worst case. Although polynomially bounded algorithms for
linear programming do exist, they are often less efficient in practice than the simplex
algorithm and the latter remains the method of choice. As a consequence, Concorde
does not question the fact that TSP is NP -hard. Indeed, in many practical cases,
notably many of those contained in the TSPLIB library [83], we do not face city
positions that generate the most difficult instances.

In [3], the authors propose techniques for generating TSP instances that are
difficult for Concorde to solve. The results indicate that for unusual city placements,
such as those based on Lindenmayer systems (L-Systems) [70], which have a fractal
structure, the computing time of Concorde may become unacceptable.

The use of a metaheuristic is thus justified for such pathological problems or,
more generally, for large problems if a good solution obtained in reasonable time is
considered sufficient. In Chapter 4 we saw that a standard simulated annealing ap-
proach was able to find a solution to a 500-city problem in less than one second, i.e.,
at least 30 times faster than Concorde, with a precision of 5%. The same SA solves
a 10,000-city problem in 40 seconds with a precision of the same order. Moreover,
there exist specialized metaheuristics for the TSP , offering much better performance
than those presented in this book, both in computing time and solution quality. For
example, some researchers work on methods that can deal with one million cities in
one minute, with 5% precision [77].

1 See, for instance, the sites http://www.math.uwaterloo.ca/tsp/index.
html and http://www.math.uwaterloo.ca/tsp/world/countries.html

2 https://en.wikipedia.org/wiki/Travelling_salesman_problem

http://www.math.uwaterloo.ca/tsp/index.html
http://www.math.uwaterloo.ca/tsp/index.html
http://www.math.uwaterloo.ca/tsp/world/countries.html
https://en.wikipedia.org/wiki/Travelling_salesman_problem
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Particle Swarm Optimization

6.1 The PSO Method

Inspired by animal behavior, Eberhart and Kennedy [49, 22] proposed in 1995 an
optimization method called Particle Swarm Optimization (PSO). In this approach, a
swarm of particles simultaneously explore a problem’s search space with the goal of
finding the global optimum configuration.

6.2 Principles of the Method

In PSO the position xi of each particle i corresponds to a possible solution to the
problem, with fitness f(xi). In each iteration of the search algorithm the particles
move as a function of their velocity vi. It is thus necessary that the structure of the
search space allows such movement. For example, searching for the optimum of a
continuous function in Rn offers such a possibility.

The particles’ movement is similar to a flock of birds or a school of fish, or to a
swarm of insects. In these examples, it is assumed that the animals move by following
the individual in the group that knows the path to the optimum, perhaps a source of
food. In addition, however, the individuals also follow their instinct and integrate the
knowledge they have about the optimum into their movements.

In the PSO method two quantities xbesti (t) and B(t) have to be defined and up-
dated in each iteration. The first one, xbesti (t), which is often called particle-best,
corresponds to the best fitness point visited by particle i since the beginning of the
search. The second quantity, B(t), called global-best, is the best fitness point reached
by the population as a whole up to time step t:

B(t) = argmaxxbesti
f(xbesti (t))

In certain variants of PSO the global-best position B(t) is defined with respect to
a sub-population to which a given individual belongs. The subgroup can be defined
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by a neighborhood relationship, either geographical or social. In this case, B will
depend on i.

Therefore, as illustrated in Figure 6.1, the particles’ movement in PSO is deter-
mined by three contributions. In the first place, there is a term accounting for the
“inertia” of the particles: this term tends to keep them on their present trajectory.
Second, they are attracted towards B(t), the global best. And third, they are also
attracted towards their best fitness point xbesti (t).

Fig. 6.1. The three forces acting on a PSO particle. In red, the particle’s trajectory; in black,
its present direction of movement; in blue, the attraction toward the global-best, and in green,
the attraction towards the particle-best

Mathematically, the movement of a particle from one iteration to the next is de-
scribed by the following formulas:

vi(t+ 1) = ωvi(t) + c1r1(t+ 1)[xbesti (t)− xi(t)]

+c2r2(t+ 1)[B(t)− xi(t)]

xi(t+ 1) = xi(t) + vi(t+ 1) (6.1)

where ω, c1 and c2 are constants to be specified, and r1 and r2 are pseudo-random
numbers uniformly distributed in the interval [0, 1]. We remark that a different ran-
dom number is used for each velocity component.

The c1 parameter is called the cognitive coefficient since it reflects the individ-
ual’s own “perception,” and c2 is called the social coefficient, since it takes into
account the group’s behavior. For example, c1 ≈ c2 ≈ 2 can be chosen. The ω pa-
rameter is the inertia constant, whose value is in general chosen as being slightly less
than one.

Besides formulas (6.1), one must also impose the constraints that each velocity
component must not be allowed to become arbitrarily large in absolute value. To this
end, a vmax cutoff is prescribed. In the same way, the positions xi are constrained to
lie in a finite domain having diameter xmax.
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In the initialization phase of the algorithm the particles are distributed in a uni-
form manner in the search domain and are given zero initial velocity. The relations
above make it clear that it is necessary to work in a search space in which the
arithmetic operations of sum and product make sense. If the problem variables are
Boolean it is possible to temporarily work in real numbers and then round the re-
sults. The method can also be extended to combinatorial problems [56], although
this is not the natural frame for this approach, which is clearly geared towards math-
ematical optimization.

Similarly to the ant colony method, PSO is a population-based metaheuristic.
In each iteration, n candidate solutions are generated, one per particle, and the set
of solutions is used to construct the next generation. PSO is characterized by rapid
convergence speed. Its problem-solving capabilities are comparable to those of other
metaheuristics such as ant colonies and evolutionary algorithms, with the advantage
of simpler implementation and tuning. There have been several applications of the
method [68, 75, 1], and it has proved very competitive in the field of optimization of
difficult continuous functions.

6.3 How Does It Work?

In order to intuitively understand how and why PSO can find an optimum in a given
fitness landscape, perhaps the global one, we shall consider a toy example. Figure 6.2
illustrates a PSO with two particles in a one-dimensional space (x ∈ [−1, 8]) with a
simple fitness function f(x) that is to be maximized. We find that, after a sufficient
number of iterations, the two particules have traveled towards the maximum of f , as
they should.

According to the general PSO equations (6.1), here the following system must
be solved for i = 1, 2:

vi(t+ 1) = 0.9vi(t) + [bi(t)− xi(t)] + [B(t)− xi(t)]
xi(t+ 1) = xi(t) + 0.2vi(t+ 1)

where t is the iteration number of the process, bi(t) is the particle-best, and B(t) is
the global-best.

Initially the two particles are at rest, randomly placed in the search space. Their
bi(0) are thus their respective positions xi(0). The global-best B(0) corresponds to
the position of the “best” particle, represented here by the black one.

• The grey particle is attracted towards the black particle but the latter, being al-
ready the global-best, doesn’t move.

• Since the grey particle is increasing its fitness, its local-best continues to be its
current position, which doesn’t modify its attraction towards the black particle.

• Thanks to its momentum, the grey particle will overtake the black one and will
reach a better fitness value.

• In this way, the grey particle becomes the new global-best, slows down progres-
sively and stops.
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Fig. 6.2. PSO example with two particles in the one-dimensional space x ∈ [−1, 8] with a
parabolic fitness function of which the maximum is sought. To better illustrate the evolution,
particles are shown here moving on the fitness curve; actually, they only move along the x axis

• Once the grey particle has passed it, the black particle starts moving towards the
grey particle.

6.4 Two-Dimensional Examples

In this section we look at two examples of PSO in which several particles explore
a relatively complex subspace of R2. For the sake of the numerical simulation, the
continuous space has been discretized as a grid of 80 × 60 points. It is interesting
to observe the trajectory of the moving particles and their approach to the global
maximum. The problem is simple enough for an exhaustive search to be applied
since there are only 80× 60 = 4,800 points in the search space.
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Fig. 6.3. An example of PSO in 2D on a single-maximum fitness landscape

The example, illustrated in Figure 6.3, has the following properties:

• Global optimum at: (75, 36); fitness value at the global optimum: 0.436,
• With five particles, 50 iterations, the best solution found in a single run (Fig-

ure 6.3) was

B = (75, 39) f(B) = 0.384

• With 20 particles, 100 iterations, the optimal solution was found in each run.
• We note that the particles are grouped around the maximum at the end.
• In this example r1 = r2 = 1 (see eq. 6.1), and the particles are reflected by the

domain borders.

Figure 6.4 gives an example of a more difficult search space with several maxima.
The global optimum is at (22, 7), with a fitness value of 0.754. With 10 particles and
200 iterations the best solution found by PSO in one run was

B = (23, 7) f(B) = 0.74

This is very close to the global optimum. The computational effort can be esti-
mated as the product of the number of particles times the number of iterations, that is
10× 200 = 2,000, which is less than half the effort needed for an exhaustive search
of the 4,800 points in the space.
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Fireflies, Cuckoos, and Lévy Flights

7.1 Introduction

In this chapter we shall present some newer metaheuristics for optimization that are
loosely based on analogies with the biological world. In contrast with the meta-
heuristics described in the previous chapters, these algorithms have been around for
a comparatively short time and it is difficult to know whether they are going to be as
successful as more classical methods. Be that as it may, these metaheuristics contain
some new elements that make them worth knowing. Some versions make use of Lévy
flights, a probabilistic concept that, besides being useful in search, is interesting in
itself too. Before getting into the main subject matter, we shall devote some space
to an elementary introduction to some probability and stochastic processes concepts
that will be needed later and that are of general interest in the fields of metaheuristics
and computational science.

7.2 Central Limit Theorem and Lévy Distributions

The central limit theorem (CLT) is one of the most fundamental results in probability
theory. Let (Xi) be a sequence of identically distributed and independent random
variables, with mean m and finite variance σ2, and let Sn =

∑n
i=1Xi be their sum.

The theorem says that the sum
Sn − nm
σ
√
n

converges in law to the standard reduced normal distribution

Sn − nm
σ
√
n
→ N (0, 1), n→∞

A proof can be found in [15]. The theorem also holds under weaker conditions such
as random variables that are not identically distributed, provided they have finite
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variances of the same order of magnitude, and for weakly correlated variables. Be-
sides, although the result is an asymptotic one, in most cases n ∼ 30 is sufficient for
convergence to take place.

The importance of the central limit theorem cannot be overemphasized: it pro-
vides a convincing explanation for the appearance of the normal distribution in many
important phenomena in which the sum of many elementary independent actions
leads to a regular global behavior. Examples of phenomena that are ruled by the
normal distribution are diffusion and Brownian motion, errors in measurement, the
number of molecules in a gas in a container at a given temperature, white noise in
signals, and many others.

However, sometimes the conditions required for the application of the CLT are
not met, in particular for variables having a distribution with infinite mean or infinite
variance. Power-law probability distributions of the type

P (x) ∼ |x|−α

provide a common example. One may ask the question whether a result similar to
the CLT exists for this class of distributions. The answer is positive and has been
found by the mathematician P. Lévy [55]. Mathematical details, which are not ele-
mentary, can be found, for example, in Boccara’s book [15]. Here we just summarize
the main results. Lévy distributions are a class of probability distributions with the
property of being “attractors” for sums of random variables with diverging variance.
Power-laws are a particular case of this class; therefore, if X1, X2, . . . , Xn are dis-
tributed according to a power-law with infinite variance, their sum asymptotically
converges to a Lévy law. One can also say that such random variables are “stable”
under addition, exactly like the Gaussian case, except that now the attractor is a Lévy
distribution, not the normal. The invariance property under addition is very useful in
many disciplines that study rare events and large statistical deviations.

In order to illustrate the above ideas, Figure 7.1 shows an ordinary random walk
and a Lévy walk in the unidimensional case.

In both cases the starting position is at the origin. In the standard random walk
(magenta curve) 1 is added or subtracted to the current position in each time step with
the same probability p = 1/2. On the y-axis we represent the current value of the sum
X(0)+X(1)+. . .+X(t). In the case of a Lévy walk (black curve) each random step
is drawn from the distribution P (x) = αx−(1+α) with x > 1 and α = 1.5 (we refer
the reader to Section 2.8 for the way to generate such values). The sign of the term to
be added to the current position is positive or negative with the same probability p =
1/2. One sees clearly that while the random walk has a limited excursion, the Lévy
walk shows a similar behavior except that some large fluctuations appear from time
to time. The difference is even more striking in two dimensions. Figure 7.2 (upper
image) shows an example of a random walk in the plane in which the new position is
determined by drawing a random number from a normal distribution with zero mean
and a given σ. The corresponding stochastic process is called “Brownian” and it was
intensively studied at the end of the nineteenth century by Perrin, Bachelier, Einstein,
and others.
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Fig. 7.1. The magenta curve represents on the y-axis the sum of random displacements on the
line at time step t. The result is a random walk in one dimension. Displacements with respect
to the current position on the line are either 1 or −1 with the same probability 1/2. The black
curve depicts the same sum but this time the single displacements are drawn from a power-law
distribution with exponent α = 1.5. The corresponding stochastic process is a Lévy walk

In both cases the starting point is the origin at (0, 0) and the process is stopped
after 2,000 time steps. Brownian motion is a Gaussian process: being drawn from a
normal distribution, the random changes in direction are of similar size as the fluc-
tuations around the mean are limited. According to the central limit theorem, the
distribution of the sum of all those displacements is itself normal. The corresponding
Lévy process is depicted in the lower image of figure 7.2. Here the random displace-
ments are drawn from a power-law with exponent α = 1.8. In the case of Lévy
flights the process is very different: the probability of large movements is smaller but
not negligible as in the Gaussian case. As a consequence, the rare events dominate
the global behavior to a large extent.

The general properties of Lévy flights have been known for a long time but it is
only recently that their usefulness in understanding a number of natural phenomena
has been fully recognized. A nice summary can be found in [12], which is a short
review of the subject that mentions the main references. In particular, it has been
found that the movement patterns of several animal species do not follow a random
walk; rather, they perform Lévy flights in which the displacement lengths d follow a
power-law P (d) ∼ d−α, as illustrated in the right image of Figure 7.2. These patterns
of movement seem to provide an optimal foraging strategy if the exponent is suitably
chosen, and this fact has found confirmation in the data coming from experimental
field observations.
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Fig. 7.2. A typical Brownian process is shown on the top panel, whereas a Lévy fly (see text) is
illustrated on the bottom panel. The red and blue lines correspond to independent trajectories,
showing that the typical features of these two stochastic processes are present in all instances.
In this example we chose the parameters of the Brownian motion so that both random walks
have the same average jump length

The results of this research have not gone undetected in the metaheuristics com-
munity and Lévy flights are now employed in single-trajectory searches, as well as in
population-based search such as PSO. They help avoid search stagnation and allow
us to overcome being trapped in local optima. There are many uses for Lévy flights
in optimization metaheuristics but reasons of space prevent us from dealing with the
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issue more deeply. In the rest of the chapter we shall see how these processes can be
harnessed in two new metaheuristics: firefly and cuckoo search. The reader will find
a more detailed description of those new metaheuristics in [87].

Note that there exist several other recent metaheuristics based on the collective
behavior of insects or animals. As an example we just mention here the bee colony
method [46, 87], the antlion optimization method (ALO) [61] and the Grey Wolf
Optimizer (GWO) [62]. They will not be further discussed here for reasons of space.

7.3 Firefly Algorithm

This new metaheuristic for optimization has been proposed by Xin-She Yang [87].
The main ideas come from the biological behavior of fireflies but the algorithm is also
clearly inspired by PSO methods. The metaheuristic is geared towards continuous
mathematical optimization problems but there exist versions for discrete problems
too.

Fireflies are insects that emit light to attract mates and prey. The degree of at-
traction is proportional to the intensity of the light source, and the metaphorical
exploitation of this phenomenon is at the heart of the metaheuristic, as explained
below.

The Firefly metaheuristic considers a colony of n virtual fireflies, identified by
an index i between 1 and n. The fireflies are initially randomly distributed on a given
search space S. At iteration t of the search, firefly i occupies position xi(t) ∈ S (for
example S ⊂ Rd).

A given objective function f is assumed to be defined on the search space and
the goal is to maximize (or minimize) f . To this end, each firefly i emits light with
intensity Ii, which depends on the fitness of the search point occupied by i. Typically,
Ii(t) is set as follows:

Ii(t) = f(xi(t)) (7.1)

The algorithm has the following steps: at each iteration t it cycles over all firefly
pairs (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ n and compares their light intensities. If Ii <
Ij then firefly imoves towards firefly j according to the perceived attractiveness of j,
a quantity that is defined below. Note that firefly i’s position is immediately updated,
which means that imight move several times, for example after comparison between
the intensities of i and j and between i and k.

The strength of attraction Aij of firefly i towards firefly j, which has more lumi-
nosity, corresponds to the intensity perceived by i. It is defined thus:

Aij = β0 exp(−γr2ij) (7.2)

where rij is the distance, Euclidean or of another type, between xi and xj . Attrac-
tion thus decreases exponentially with increasing distance between two fireflies, an
effect that simulates the fact that perceived intensity becomes weaker as the distance
increases. The quantities β0 and γ are suitable free parameters. Writing the argu-
ment of the exponential as (rij/γ

−1/2)2 one sees that γ−1/2 provides a distance
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scale. Typically, γ ∈ [0.01, 100] is chosen depending on the unities of the xi’s. The
β0 parameter gives the attractiveness Aij at zero distance and it is typically set at
β0 = 1.

The displacement of firefly i towards firefly j is defined by an attractive part
determined by the relative light intensities, and a random part. The updated position
x′i is given by the expression

x′i = xi + β0 exp(−γr2ij)(xj − xi) + α (randd −
1

2
) (7.3)

where randd is a d-dimensional random vector whose components belong to [0, 1[.
The α parameter is typically chosen as α ∈ [0, 1] and the product is understood to be
performed componentwise.

The passage from the random noise represented by the third term in equation 7.3
to Lévy flights is straightforward: it is enough to replace the random uniform draw
of displacements with a draw from a power law distribution:

x′i = xi + β0 exp(−γr2ij)(xj − xi) + α sgn(randd −
1

2
) Levyd (7.4)

where the term randd − 1
2 now gives the sign of the displacement, the magnitude

of which is determined by the random vector Levyd whose components are drawn
from the power law. Note that here the product sgn(randd − 1

2 )Levyd corresponds
to an elementwise multiplication.

The parameter α controls the degree of randomness and, consequently, the degree
of diversification or intensification of the search. The introduction of Lévy flights
allows more diversification with respect to uniform or Gaussian noise, which, ac-
cording to the originators of the method, is an advantage for the optimisation of
high-dimensional multimodal functions [86].
The algorithm just discussed can be described by the following pseudo-code:

iteration = 0
Initialize the firefly population xi, i = 1, . . . , n
The light intensity Ii at xi is given by f(xi)
while iteration < Max do

for i = 1 to n
for j = 1 to n

if Ii < Ij then
firefly i moves towards j according to (7.3) or (7.4)
update distances rij and the intensity Ii
update attractiveness according to new distances (eq. 7.2)

end for
end for
rank fireflies by fitness and update the current best
iteration = iteration + 1

end while
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Figure 7.3 depicts the first two iterations of the algorithm without noise, i.e., with
α = 0. We illustrate this in a simplified environment in order to make the dynamics
easier to understand. The objective function we are seeking to maximize here is
f(x, y) = −(x− 5)2 − (y − 3)2, which has its global optimum at x = (5, 3), in the
middle of the contour levels shown in the figure. The left image corresponds to the
first iteration. We see the firefly i = 0 moving under the influence of firefly j = 1,
and then towards firefly j = 2. At this point firefly 0 has attained a better fitness
than that of firefly j = 3 and is not attracted to it. Following the loop, now firefly
i = 1 moves towards the new position of firefly j = 0, reaching a better fitness than
fireflies j = 2 and j = 3 and thus stopping there for this iteration. It is now the turn
of fireflies i = 2 and i = 3 to move depending on the current position of the fireflies
j 6= i.

The right image of Figure 7.3 shows the second iteration of the outer loop of the
algorithm. Firefly i = 0 first moves towards firefly j = 1, then it is attracted by
j = 2, and finally towards firefly j = 3. Following this, fireflies i = 1, i = 2, and
i = 3 move in turn. With no noise and with β = 1, all the fireflies quickly converge
to a point (x, y) = (4.77, 3.23) close to the current positions of fireflies 0 and 3,
which is suboptimal but close enough to the optimum.
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Fig. 7.3. Two stages of the dynamics of four fireflies in a search space described by the dashed
contour levels. The global optimum is at the middle of the drawing. The left image shows
the first iteration of the outer loop of the algorithm. The right part is the continuation of the
left part, with a zooming factor to better illustrate the movement of the fireflies towards the
optimum

7.4 Cuckoo Search

We end this chapter on the new metaheuristics with a brief description of a method
recently introduced by Yang and Deb [88] and called by them Cuckoo search. This
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search method was inspired by the behavior of certain bird species, generally called
“cuckoos,” whose members lay their eggs in the nests of other hosts birds and de-
velop strategies to make the “host” parents take care of their offspring. The behavior
described is opportunistic and parasitic and, while sometimes it goes undetected, it
elicits a number of reactions on the part of the cheated birds such as recognizing and
eliminating the stranger’s eggs. This can give rise to a kind of “arms race” in which
better and better ways are employed to defend oneself from parasites on one hand,
and to improve the mimicry strategies on the other.

7.4.1 Principle of the Method

The cuckoo metaheuristic uses some of these behaviors in an abstract way. Here is a
summary of how it is implemented:

• Each cuckoo lays one egg (i.e., a solution) at a time and leaves it in a randomly
chosen nest.

• A fraction of the nests containing the better solutions are carried over to the next
generation.

• The number of available nests is fixed and there is a probability pa that the host
discovers the intruder egg. In this case, it either leaves the nest and builds another
elsewhere, or it disposes of the egg. This phase is simulated by replacing a frac-
tion pa of the nests among those that contain the worst solutions by new nests
chosen at random with a Lévy flight.

The algorithm belongs to the family of population-based metaheuristics. In more
detail, it begins by generating an initial population of n host nests containing the
initial solutions xi, which are randomly chosen. Then, each solution’s fitness f(xi)
is evaluated. After that a loop is entered that, as always, is executed until a prede-
fined stopping criterion is met. In the loop a new solution xi is generated, a cuckoo’s
“egg,” by performing a Lévy flight starting from an arbitrary nest. The new solution
is evaluated and compared with the one contained in a random nest. If the new solu-
tion is better than the one already in the nest, it replaces the previous one. The last
part of the algorithm consists of substituting a fraction pa of the n nests containing
the worst solutions and of building an equivalent number of new nests containing so-
lutions found by Lévy flights. Metaphorically speaking, this phase corresponds to the
discovery of the intruder’s eggs and their elimination or the abandoning of the nest
by the host. The new solutions are evaluated and ranked, the current best is updated,
and a fraction of the best solutions are kept for the next generation.

When a new solution x′i is generated through a Lévy flight, it is obtained as
follows:

x′i = xi + α sgn(randd −
1

2
) Lévyd (7.5)

where α > 0 is a problem-dependent parameter that dictates the scale of the displace-
ments and the product α sgn(randd − 1

2 )× Lévyd is to be taken componentwise, as
usual. It is worth noting that, with respect to other metaheuristics, the number of free
parameters is smaller. In practice, it seems that only α is relevant, while pa does not
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affect the behavior of the search to a noticeable extent. As we have seen previously
in this chapter, Lévy flights are such that most moves will be short around the cur-
rent solution, giving a local flavor to the search. From time to time, though, longer
moves will appear, just as illustrated in Figure 7.2, thus providing a global search
and diversification component.
The following pseudo-code describes the cuckoo search algorithm, assuming maxi-
mization of the objective function:

Initialize the nest population xi, i = 1, . . . , n
while stopping criterion not reached do

choose a random nest i and generate a new solution through a Lévy flight
evaluate fitness fi of new solution
choose a random nest j among the n available

if fi > fj then
replace j with the new solution

end if

a fraction pa of the worst nests are abandoned and
the same number of nests with new solutions
are generated randomly through Lévy flights

solutions are ranked by fitness and the best current
solution is stored

keep the best solutions for the next iteration

end while

According to the authors [88], their simple metaheuristic gives better results in the
search for the global optimum on a series of standard benchmark functions when
compared with an evolutionary algorithm and even with respect to PSO, which is
considered highly efficient in difficult function optimization. Nevertheless, we shall
see in Chapter 12 that it is dangerous to generalize from a few successful cases. There
also exist modified versions of the algorithm which try to increase the convergence
speed by progressively reducing the flight amplitude by lowering the parameter α
as a good solution is approached. This technique is reminiscent of the temperature
schedule used in simulated annealing (see Chapter 4). Furthermore, similarly to what
happens in PSO methods, one can create an information exchange between eggs
thus relieving the independence of the searches in the original method described
above. The results so far are encouraging but it is still too early to judge the general
efficiency of the approach in solving a larger spectrum of problems, especially those
arising in the real world.
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7.4.2 Example

In this section we propose a simple example of the cuckoo method, the search for the
maximum of the fitness function f from [0, 1]→ R, shown in Figure 7.4.

The code of the method can be formulated using the syntax of the Python pro-
gramming language. Here the variable nest contains the number of nests, that is
the number of solutions xi (eggs) that are considered at each step of the explo-
ration. These eggs are stored in a list called solution, randomly initialized with
the Python uniform random generator random(). In the main loop, which here
contains a maximum number of iterations maxIter, a first nest i is chosen and its
solution is modified with a Lévy increment. If this value x′i is better than the solution
contained in another randomly chosen nest j, xj is discarded and replaced by x′i.
The Lévy flight used here has exponent 1.5 and the amplitude a is chosen arbitrarily
with a value 0.1.

iter=0
solution=[random() for i in range(nest)]
while(iter<maxIter):

iter+=1
i=randint(0,nest-1) # selection of a nest
x=solution[i]+ a*levy() # random improvement of the "egg"
x=x-int(x) # wrap solution in [0,1]
j=randint(0,nest-1) # selection of a recipient nest
if fitness(x)>fitness(solution[j]):solution[j]=x
solution.sort(key=fitness)
solution[0:nest/4]=[random() for i in range(nest/4)]

best=solution[nest-1]

Figure 7.4 shows the first six iterations of the cuckoo search with four nests,
numbered from 0 to 3. Each image, except that corresponding to the initial state
(iteration 0), contains the indices i and j of the chosen nests. In addition, the variable
accept in the figure indicates whether the replacement of xj by x′i was accepted or
not.

The current solutions xi (the eggs) are shown as black disks, with the correspond-
ing nest index. Note that the solutions are sorted at the end of each iteration. Thus,
nest number 3 always contains the best of the four current solutions.

Figure 7.5 shows iterations 11 to 16. The optimal solution (x∗ = 0.4133,
f(x∗) = 187.785) is obtained with a precision of about 5% (x = 0.399, f(x) =
180.660). Figure 7.6 displays the evolution of the three best solutions throughout
the iterations. The fourth solution here is random, and it is not shown in the figure.
The curves increase monotonically because of the sorting operation performed at
each step. As a result of this sorting, the non-randomly renewed solutions can only
increase their fitness.

A more detailed analysis that would include steps 6 to 10 reveals that the cuckoo
strategy (namely the replacement of xj with x′i) was beneficial only four times out
of the 16 iterations. Therefore, most of the improvement is the result of the new,
randomly generated, solution in nest i = 0. To better understand this element of
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Fig. 7.4. The first six steps of the cuckoo search, with four solutions (nests). Indices i and j
indicate the choices of “improvement” and “replacement” nests, as defined in the above code

the method, Figure 7.6 shows in blue the evolution of the best nest when the other
three are randomly repopulated at each iteration. In this case, the number of accepted
modifications increases to seven. One also sees that values close to the optimal so-
lution are quickly reached. The best solution x = 0.4137, f(x) = 187.780 is found
at iteration 15, now with a precision of less than 0.1%. The computational effort of
the method can be estimated with the number of fitness evaluations. At each iteration
one has to evaluate the fitness of the m new random solutions, as well as the fitness
of the modified solution x′i. In the case m = 1, i.e., only nest i = 0 is repopulated
at each step, the computational effort is 2 per iteration. In the second case, m = 3,
nests i ∈ {0, 1, 2} are regenerated, and the computational effort is 4 per iteration.

To get the same order of accuracy, Figure 7.6 indicates that 15 iterations are
needed in the first case, (upper black curve) whereas five iterations are enough in the
second case (blue curve). The corresponding computational effort is then 30 and 20,
respectively. This hints again at the importance of introducing enough new random
solutions at each steps.
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Fig. 7.5. Steps 11 to 16 of the cuckoo search described in Figure 7.4
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iterations of the cuckoo search, where only nest i = 0 is randomly repopulated. In blue, the
best solution is shown for the case where the other three solutions are randomly recreated at
each iteration
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Evolutionary Algorithms: Foundations

8.1 Introduction

Evolutionary algorithms (EAs) are a set of optimization and machine learning tech-
niques that find their inspiration in the biological processes of evolution established
by Darwin [27] and other scientists in the ninenteenth century. Starting from a popu-
lation of individuals that represent admissible solutions to a given problem through a
suitable coding, these metaheuristics leverage the principles of variation by mutation,
and recombination, and of selection of the best-performing individuals in a given en-
vironment. By iterating this process the system finds increasingly good solutions and
generally solves the problem satisfactorily.

A brief history of the field will be useful to understand where these techniques
come from and how they evolved. The first ideas were conceived in the United States
by J. Holland [40] and L. Fogel and coworkers [33]. Holland’s method is known as
genetic algorithms while Fogel’s approach is known as evolutionary programming.
Approximately at the same time and independently Ingo Rechenberg, while working
at the Technical University in Berlin, started to develop related evolution-inspired
methods that were called evolution strategies [71]. In spite of their common origin in
the abstract imitation of natural evolutionary phenomena, these strands were differ-
ent at the beginning and evolved separately for some time. However, as time passed
and researchers started to have knowledge of the work of their peers, the different
techniques influenced each other and gave birth to the family of metaheuristics that
are collectively known today as evolutionary algorithms (EAs). In fact, although the
original conceptions were different, the fundamental idea of using evolution to find
good solutions to difficult problems was common to all the techniques proposed.
Today EAs are a rich class of population-based metaheuristics that can profitably
be used in the optimization of hard problems and also for machine learning pur-
poses. Here, in line with the main theme of the book, we shall limit ourselves to
optimization applications, although it is sometimes difficult to distinguish between
optimization and learning in this context. For pedagogical reasons, since evolution-
ary methods are certainly more complex than most other metaheuristics, we believe
that it is useful to first present them in their original form and within the frame of
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their historical development. Thus, we shall first describe genetic algorithms and
evolution strategies in some detail in this chapter. Other techniques such as genetic
programming will be introduced, together with further extensions, in Chapter 9.

8.2 Genetic Algorithms

We shall begin by giving a qualitative description of the structure and the function-
ing of Holland’s genetic algorithms (GAs) with binary coding of solutions, one of
the best-known evolutionary techniques. The idea is to go through a couple of sim-
ple examples in detail, to introduce the main concepts and the general evolutionary
mechanisms, without unnecessary complications.

8.2.1 The Metaphor

Let us dig deeper into the biological inspiration of genetic algorithms. The metaphor
consists in considering an optimization problem as the environment in which simu-
lated evolution takes place. In this view, a set of admissible solutions to the problem
is identified with the individuals of a population, and the degree of adaptation of
an individual to its environment represents the fitness of the corresponding solution.
The other necessary ingredients are a source of variation such that individuals (solu-
tions) may undergo some changes and, possibly, the production of new individuals
from pairs or groups of existing individuals. The last ingredient is, most importantly,
selection. Selection operates on the individuals of the population according to their
fitness: those having better fitness are more likely to be reproduced while the worst
ones are more likely to disappear, in a such a way that the size of the population
is kept constant. It is customary to not submit the best or a small number of best
solutions to selection in order to keep the best current individuals in the population
representing the next generation. This is called elitism.

8.2.2 Representation

In EAs the admissible solutions to a given problem, i.e., the individual members of
the population, are represented by suitable data structures. These structures may be
of various types, as we will see later on. For the time being, let’s stick to the simplest
representation of all: binary coding. Binary strings are universal in the sense that any
finite alphabet of symbols can be coded by a suitable number of binary digits, which
in turn means that any finite data structure can be represented in binary. We shall
indeed use binary coding for our first examples, although from the efficiency point
of view other choices would be better in some cases. Classical genetic algorithms
were characterized by Holland’s choice to use binary-coded individuals.
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8.2.3 The Evolutionary Cycle

A genetic algorithm begins by establishing a population of individuals, which are
binary-coded solutions to a problem we want to solve. The size of the population is
small with respect to the number of admissible solutions, from some tens to a few
thousands of individuals. This initial population is usually chosen at random but it is
also possible to “seed” it with solutions found with another approach or determined
by a human.

The algorithm then enters a loop and a new population will be produced in each
iteration starting from the previous populations and applying a certain number of
stochastic operators to it. Such an iteration is usually dubbed a generation.

The first operator to be applied is called selection. The goal of selection is to sim-
ulate the Darwinian law of the survival of the more adapted individuals. Historically,
the first selection method in genetic algorithms was fitness-proportionate selection
but other methods have been introduced subsequently and we will describe them in
detail in the next chapter. Selection proportional to fitness works by choosing popu-
lation members with probability proportional to their fitness, which of course must
be evaluated previously. In a population of size n, selection is repeated n times with
replacement. In other words, individuals are selected one at a time, saved in an in-
termediate population, and a copy is replaced in the original population from which
the draw is being made. In the intermediate population high-fitness individuals may
appear more than once, while low-fitness individuals may never be selected and thus
disappear from the population.

The intermediate population contains the “parents” from which the new popu-
lation will be generated thanks to further genetic operators, the original ones being
mutation and crossover.

For crossover one first forms pairs from the intermediate population; pairs can
be taken simply in the order in which they have been previously selected. Next,
pairs of individuals are mixed or recombined with a certain probability called the
crossover probability, which is usually about 0.5. In the simplest case, crossing them
over means choosing at random an interior point in the strings and then, for example,
exchanging the sections to the right of the cut point between the two individuals.
In the end, we are left with two new individuals that contain “genetic material” of
both parents, imitating sexual reproduction in biology. This type of recombination
is called one-point crossover; there exist more complicated crossovers that will be
introduced in due course.

After crossver, one can possibly apply the mutation operator to the individuals of
the new population. Mutation applies to single individuals and its purpose is to simu-
late transcription and other errors, or noise from outside, both of which are known to
occur in biological reproduction. In genetic algorithms mutation is typically applied
with lower probability than crossover. In binary strings it simply consists in flipping
bits with the given mutation probability.

The following schema in which P (t) stands for a whole population at time step,
or generation, t illustrates the cycle we have just described.
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P (t)
selection−−−−−→ P ′(t)

crossover−−−−−→ P ′′(t)
mutation−−−−−→ P ′′′(t) ≡ P (t+ 1)

The loop selection/crossover/mutation terminates according to different criteria cho-
sen by the user. The more commons ones are the following:

• a predetermined number of generations has been reached;
• a satisfactory solution to the problem has been found;
• fitness has ceased to improve during a predetermined number of generations.

The evolutionary cycle just described can be represented by the following pseudo-
code:

generation = 0
Initialize population
while exit criterion not reached do

generation = generation + 1
Compute the fitness of all individuals
Select individuals
Crossover
Mutation

end while

The above evolutionary algorithm schema is called generational. As the name
implies, the entire population is replaced by the offspring before the next generation
begins, in a synchronized manner. In other words, generations do not overlap. It is
also possible to have generations overlap by producing some offspring, thus changing
only a fraction of the population, and having them compete for survival with the
parents. These steady-state evolutionary algorithms are also used but are perhaps
less common and more difficult to understand than generational systems. For these
reasons, we will stick to generational EAs in the rest of the book, with the exception
of some evolution strategies to be studied later in this chapter. For some discussion
of the issues see, e.g., [60].

8.2.4 First Example

This first example lacks realism but it is simple enough to usefully illustrate the
mechanisms implemented by genetic algorithms, as described in an abstract manner
in the previous sections. Indeed, we shall see that powerful and flexible optimization
techniques can result from the application of biological concepts to problem solving.
The example is based on the MaxOne, problem which was introduced in Chapter 2.

We recall that in this problem the objective is the maximization of the number of
1s in a binary string of length l. We know that the problem is trivial for an intelligent
agent but we also know that the algorithm has no information whatsoever about
the “high-level” goal, it only sees zeros and ones and has to blindly find a way to
maximize the 1s, i.e., to find the string (1)l. Moreover, if we take l = 100, the search
space is of size 2100, a big number indeed when one has no clue as to how to proceed.
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Let’s start by defining the fitness f(s) of a string s: it will simply be the number of
1s in s and this is coherent with the fact that the more 1s in the string, the closer we
are to the sought solution.

Let us start with a population of n randomly chosen binary strings of length l.
For the sake of illustration, we shall take l = 10 and n = 6 although these numbers
are much too small for a real genetic algorithm run.

s1 = 1111010101 f(s1) = 7
s2 = 0111000101 f(s2) = 5
s3 = 1110110101 f(s3) = 7
s4 = 0100010011 f(s4) = 4
s5 = 1110111101 f(s5) = 8
s6 = 0100110000 f(s6) = 3

(8.1)

The selection operator is next applied to each member of the population. To
implement fitness-proportionate selection, we first compute the total fitness of the
population, which is 34, for an average fitness of 34/6 = 5.666. The probability
with which an individual is selected is computed as the ratio between its own fit-
ness and the total population fitness. For example, the probability of selecting s1 is
7/34 = 0.2059, while s6 will be selected with probability 3/34 = 0.088. Selection
is done n times, where n = 6 is the population size. Whenever an individual is se-
lected, it is placed in an intermediate population and a copy is replaced in the original
population. Let us assume that the result of selection is the following:

s′1 = 1111010101 (s1)
s′2 = 1110110101 (s3)
s′3 = 1110111101 (s5)
s′4 = 0111000101 (s2)
s′5 = 0100010011 (s4)
s′6 = 1110111101 (s5)

(8.2)

We remark that string s5 has been selected twice, while s6 has not be selected
and it is thus bound to disappear. This behavior is normal: selection tends to concen-
trate search on solutions that are better than average. After a number of generations,
this phenomenon causes an homogenization of the population. However, the progres-
sive loss of diversity is partially thwarted by the other genetic operators, especially
mutation.

Until now what has happened is that individuals of better quality have enjoyed
more chance of finding themselves in the next population. Clearly, this is not enough
to create novelty: with selection alone, only an already existing solution in the popu-
lation may come to dominate. The required variation is provided by the operators of
crossover and mutation. To apply crossover we first form pairs of strings in the order
from s′1 to s′6. Next, the pairs s′1 and s′2, s′3 and s′4, and s′5 and s′6 will be recombined
with probability of crossover 0.6. For the sake of illustration, let’s assume that, after
drawing the random numbers, only the pairs (s′1, s

′
2) and (s′5, s

′
6) undergo crossover.

For each pair to be recombined we draw another random number between 1 and 9 to
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determine the crossover point; for example 2 for the first pair of strings and 5 for the
second. For the first pair, this will give us

s′1 = 11 · 11010101
s′2 = 11 · 10110101

(8.3)

before crossover, and
s′′1 = 11 · 10110101
s′′2 = 11 · 11010101

(8.4)

after crossover. By chance, in this case no new strings will be produced as the off-
spring are identical to the parents. For the other pair (s′5, s

′
6) we will have

s′5 = 01000 · 10011
s′6 = 11101 · 11101

(8.5)

before crossover, and
s′′5 = 01000 · 11101
s′′6 = 11101 · 10011

(8.6)

after crossover. This time the offspring are new individuals.
The last phase for the production of a new population makes use of the random

mutation of one or more “genes”, here represented by binary digits, in the single
individuals that have been included in the intermediate population. For each string
and for each bit in the string we allow the inversion of the bit with a low probability,
e.g., 0.1. Over the total 60 binary digits of our population we would thus expect
that about six will be flipped. Of course in a such small population fluctuations will
be high but this will be less of a problem in the large populations that are used in
practice. In the end, the result might be the following, where the bits to be flipped
have a bar on them:

s′′1 = 111011̄0101
s′′2 = 11110̄10101̄
s′′3 = 111011̄110̄1
s′′4 = 0111000101
s′′5 = 0100011101
s′′6 = 111011001̄1

(8.7)

Looking carefully at the result we see that four out of the six mutations turn a
1 into a 0, which will cause the fitness of the corresponding individual to decrease
in the present problem. This is not illogical: at this stage, selection will have built
strings that tend to have more 1s than 0s on average because better solutions are
more likely to be chosen. Crossover may weaken this phenomenon to some extent
but 1s should still prevail. So, mutations should be more likely to produce a negative
effect. The interplay between selection, crossover, and mutation will be studied in a
quantitative way in Section 8.3.

After mutation, our population looks like this:
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s′′′1 = 1110100101 f(s′′′1 ) = 6
s′′′2 = 1111110100 f(s′′′2 ) = 7
s′′′3 = 1110101111 f(s′′′3 ) = 8
s′′′4 = 0111000101 f(s′′′4 ) = 5
s′′′5 = 0100011101 f(s′′′5 ) = 5
s′′′6 = 1110110001 f(s′′′6 ) = 6

(8.8)

Thus, in just one generation the total population fitness has gone from 34 to 37, an
improvement of about 9%, while the mean fitness has increased from 5.666 to 6.166.
According to the algorithm, the process may now be iterated a number of times until
a given termination criterion is reached. However, the mechanism remains the same
and the description of the workings of a single generation should be enough for the
sake of the example.

In a more realistic way, let us consider now the evolution of a larger popula-
tion of 100 binary strings each of length l = 128 and let’s suppose that the al-
gorithm stops when either it finds the optimal solution, or when 100 generations
have elapsed. Crossover and mutation probabilities are 0.8 and 0.05 respectively and
fitness-proportionate selection is used. Figure 8.1 shows the evolution of the fitness
of the best individual and the average fitness for one particular execution of the ge-
netic algorithm. In this case the optimal solution with fitness 128 has been found in
fewer than 100 iterations. We remark that the average fitness in the final phase is also
close to 128, which means that the whole population is close to optimality. Another
typical trait of genetic algorithms, and of evolutionary algorithms in general, is the
fast increase of the fitness in the first part of the process, while improvements become
slower later on. Indeed, as the population becomes fitter it is also more difficult to fur-
ther improve the solutions and the search tends to stagnate as time goes by. Finally,
it is to be remarked that the MaxOne problem is an easy one for genetic algorithms
as fitness improvements are cumulative: each time a 1 is added to the string there is a
fitness improvement that can only be undone by an unlucky crossover or a mutation.
On the whole, strings with many 1s will tend to proliferate in the population. This is
far from being the case for harder problems.

Figure 8.2 refers to the same run as above and it illustrates another aspect of the
population evolution that is different, but related, to the fitness curves. The graphics
here depict two different measures of the diversity of the individuals in the popula-
tion: entropy and fitness variance. Without getting into too many details that belong
to elementary statistics, we clearly see that diversity is maximal at the beginning
because of the random initialization of the population. During the execution diver-
sity, by either measure, tends to decrease under the effect of selection, which causes
good individuals to be replicated in the population and is only slightly moderated by
crossover and mutation. But even those sources of noise cannot thwart the curse of
the algorithm and diversity becomes minimal at convergence since good solutions
are very similar.
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Fig. 8.1. Evolution of the average population fitness and of the best individual fitness as a
function of generation number. The curves represent a particular execution of the genetic
algorithm on the MaxOne problem but are representative of the behavior of an evolutionary
algorithm

Fig. 8.2. Evolution of population diversity in terms of fitness variance and fitness entropy for
the same genetic algorithm run as in the previous figure
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8.2.5 Second Exemple

In this section we shall introduce a second example of the use of genetic algorithms
for optimization. This time the example falls within the more classical continuous
real-valued function optimization domain. The problem is again very simple and it
is possible to solve it by hand but it is still interesting to see how it is treated in a
genetic algorithm context, thus preparing the ground for more realistic cases.

We remind the reader (see Chapter 2) that the non-constrained minimization of a
function f(x) in a given domain D ∈ Rn of its real variables can be expressed in the
following way: find x∗ such that

f(x∗) = min{f(x) | ∀x ∈ D}

where x = (x1, x2, . . . , xn)T .
Let us consider the following function (see Figure 8.3):

f(x) = − | x sin(
√
| x |) | + C.

C

C=419

Xopt=421.016

Optimal fitness=0.0176086

-512 512
x

0

500

f(
x
)

 

Fig. 8.3. Graph of f(x), x ∈ [−512, 512]

We are asked to find x∗ in the interval D = [−512, 512] such that f(x∗) takes its
globally minimal value in this interval. Since f(x) is symmetric, it will suffice to
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consider the positive portion of the interval and zero. Here are the genetic algorithm
ingredients that are needed to solve the problem. An admissible solution is a real
value x in the interval [0, 512]. The initial population is of size 50 and the candidate
solutions, i.e., the individuals in the population, are randomly chosen in the interval
[0, 512]. An admissible solution will be coded as a binary string of suitable length;
therefore, in contrast with the MaxOne problem where the solutions were intrinsi-
cally binary, we will need to decode the strings from binary to real numbers in order
to be able to evaluate the function.

In the computer memory, only a finite number of reals can actually be represented
because of the finite computer word length. The string length gives the attainable
precision in representing reals: the longer the string, the higher the precision.1 For
example, if strings have a length of ten bits, then 1,024 values will be available to
cover the interval [0, 512], which gives a granularity of 0.5 meaning that we will be
able to sample points that are 0.5 apart. The strings (0000000000) and (1111111111)
represent the extremities of the interval, i.e., 0.0 and 512.0 respectively, all the other
strings will correspond to an interior point.

The genetic algorithm mechanism is identical to the previous case and corre-
sponds to the pseudo-code presented in Section 8.2. The following Table 8.1 shows
the evolution of the best fitness and the average fitness as a function of the generation
number for a particular run of the algorithm.

Generation Best Average

0 104.30 268.70
3 52.67 78.61
9 0.00179 32.71
18 0.00179 14.32
26 0.00179 5.83
36 0.00179 2.72
50 0.00179 1.77
69 0.00179 0.15

Table 8.1. Evolution of best and average fitness for a particular run of an EA

The average fitness as well as the fitness of the best solution found are high at the
beginning, but very quickly the population improves under the effect of the genetic
operators, and the optimal solution is already found in generation nine, within the
limits of the available precision. Average fitness continues to improve past this point,
a sign that the population becomes more and more homogeneous. We point out that,
because of the stochastic nature of evolutionary algorithms, performance may vary
1 In actual practice, real numbers are represented in the computer according to the IEEE

floating-point formats, which comprise a sign bit, a mantissa, and an exponent. Modern
evolutionary algorithms take advantage of this standard coding, as we shall see below.
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from one execution to the next unless we use the same seed and the same pseudo-
random number generator across executions. A better indicator of the efficiency of
the algorithm would be the average performance over a sufficient number of runs, a
subject that will be treated in detail in Chapter 12.

In this example the probability of getting stuck in one of the suboptimal local
minima is negligible, but this need not be the case in more difficult problems. Ide-
ally, the algorithm should strive to find a compromise between the exploitation of
promising regions of the search space by searching locally, and the exploration of
other parts of the space where better solutions might be found. This is a manifesta-
tion of the diversification/intensification compromise we found in Chapter 2.

For the optimization of mathematical real-valued functions the naive binary rep-
resentation used in the example for pedagogical purposes is not efficient enough.
Indeed, let’s assume that the function to be optimized is defined in a 20-dimensional
space, which is current in standard benchmark problems, and let’s also assume
that we use 20 binary digits for each coordinate. This gives us strings of length
20 × 20 = 400 to represent a point x in space. The size of the search space is
thus 2400, which is huge. Crossover and mutation are not likely to be efficient in
such a gigantic space and the search will be slow. For real-valued functions modern
evolutionary algorithms work directly with machine-defined floating-point numbers;
they are much more efficient because this choice significantly limits the scope of the
variation operators and prevents the search from wandering in the space. This coding
choice needs specialized operators that take into account the real-valued format but
it’s worth the effort. We shall take up the subject again in Section 8.4 of this chap-
ter on evolution strategies and more information is available in the literature, see,
e.g., [9, 60].

It turns out that genetic algorithms and evolutionary algorithms in general are,
together with PSO, among the best known metaheuristics for the optimization of
highly multimodal functions of several variables. The two-dimensional functions
represented in Figures 8.4 and 8.5 illustrate the idea, considering that functions sim-
ilar to these, but with many more variables, are often used as benchmarks to evaluate
the quality of a given optimization method. One of the reasons that make evolution-
ary algorithms interesting in this context is their capability to jump out of a local
optimum thanks to crossover and mutation, a feat that is in general not achievable
with classical mathematical optimization methodologies. An additional advantage is
that they don’t need derivatives in their workings, and can thus also be used with
discontinuous and time-varying functions.

8.2.6 GSM Antenna Placement

To complete the rather idealized examples presented above, in this section we briefly
describe a real-world optimization problem solved with the help of a GA. The ob-
jective is to find the optimal placement of GSM antennas of a provider of mobile
telephone services in a town [20]. The problem calls for covering a whole urban
zone such that the intensity of the signal at each point is sufficient to guarantee a
good telephone communication. The technical difficulty consists in doing that while
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obeying a number of physical and cost constraints. Waves are absorbed and reflected
by the buildings in an urban environment and a zone, called a microcell, is created
around each antenna such that the intensity of the signal there is higher than a given
threshold. The size of a microcell should not be too large, in order for the number
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of potential users in that zone to be adequate with respect to the capabilities of the
telephonic relays associated with the microcell.

Figure 8.6 provides an example of an antenna layout (black spots) and of their
corresponding microcells (colored areas). It should be pointed out that the set of
possible placements is limited a priori by technical and legal factors.

The fitness function for this problem is too technical and complex for a meaning-
ful expression to be given here; the interested reader is referred to [20] for a detailed
description. Roughly speaking, the algorithm must find the placement of a given
number of antennas such that the number of non-covered streets is minimized and
the adjacent microcells are of maximal size, including sufficient microcell overlap to
allow mobile users to move from one zone to the next without service disruption.

To compute the fitness function one has to simulate the wave propagation emitted
by each antenna, and the effect of the buildings and other obstacles must be calcu-
lated. This kind of computation can be difficult and needs appropriate computing
power to be done. The result is an intensity map similar to Figure 8.6. Starting from
these data, we must evaluate the quality of the corresponding coverage according to
the given fitness function.

From the point of view of the genetic algorithm implementation, which is the
most interesting aspect here, one must first define an individual of the population. In
the solution chosen here, each individual is a geographical map on which a choice
of antenna layout has been made. Mutation is then performed by moving a randomly
chosen antenna from its present position to another possible point. Crossover of a pair
of individuals consists of merging two adjacent pieces of the corresponding maps.
Intuitively, the hope is that crossover should be able to recombine two pieces that are
partially good, but still representing sub-optimal individuals, into a new better map.

8.3 Theoretical Basis of Genetic Algorithms

Now that we are somewhat familiar with the workings of a GA, it is time to take
a look at their theoretical basis, which was established by Holland [40]. Holland’s
analysis makes use of the concept of schemas and their evolution; in the next section
we provide an introduction to these important ideas and their role in understanding
how a genetic algorithm works.

Evolution of schemas in the population.

The concept of a schema is very important in the analysis of classical, binary-coded
genetic algorithms. From a population point of view, a schema is a subset S of the
set of all the 2l binary strings of length l. Formally, it is a pattern that consists of l
symbols belonging to the set {0, 1, ?}. The symbol ? plays the role of a “wild card,”
that is, it matches both a 0 and a 1. A schema thus defines a family of binary strings,
all the strings that have a 0 or a 1 at positions marked as 0 or 1 respectively, and all
the possible combinations of 0 and 1 at the positions marked as ?. For instance, the
schema
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700 [m]

Fig. 8.6. An example of GSM antenna placement in an urban environment, and of the range
of the waves emitted

S = (0 ? 1 ?) (8.9)

represents the following family of binary strings:

(0010)
(0011)
(0110)
(0111)

(8.10)

There are 3l different schemas of length l. A schema S can also be seen as a
hyperplane in binary space whose dimension and orientation in the l-dimensional
binary space depends on the number and positions of the ? symbols in the string. We
now give some useful definitions for schemas.

The order o(S) of a schema S is defined as the number of fixed positions (0 or
1) in the string that represents it. For example, for the schema (8.9) o(S) = 2. The
cardinality of a schema S depends on its order according to the following expression:
|S| = 2l−o(S).

The defining length δ(S) of a schema S is the distance between the first and
the last fixed positions in S. For example, for the schema defined in equation (8.9),
δ(S) = 3− 1 = 2. The defining length of a schema can be understood as a measure
of the “compactness” of the information contained in it.
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The goal of Holland’s analysis is the description of the dynamics of schemas
when the population of binary strings evolves under the effects of the operators of
the standard genetic algorithm, i.e., selection, crossover, and mutation. We will start
by describing the role of selection alone.

Let Nt(S) be the number of instances of schema S in the population at time t
and let ft(S) be the average fitness at time t of all strings represented by schema S;
f̄t denotes the average fitness of the whole population. Under the effect of fitness-
proportionate selection, the number of instances of S at time t + 1 is given by the
following recurrence:

Nt+1(S) = Nt(S)
ft(S)

f̄t
(8.11)

Assuming that S defines a set of strings with an average fitness higher than the
mean fitness of the population, we have that

ft(S) = f̄t + c f̄t, c > 0 (8.12)

By replacing ft(S) in equation (8.11) with the expression in equation (8.12) we get:

Nt+1(S) = Nt(S)
f̄t + c f̄t

f̄t
= Nt(S) (1 + c). (8.13)

This recurrence is of the type xt+1 = kxt with k constant, one of the simplest.
The closed solution is easy to find: if x0 is the initial value of x then we have:

x1 = kx0, x2 = kx1 = k(kx0) = k2x0, . . . , xt = kxt−1 = . . . = ktx0

Therefore, replacing k by (1 + c) and xt by Nt(S) we are led to

Nt(S) = N0(S) (1 + c)t (8.14)

where N0(S) is the fraction of strings belonging to S in the initial population. The
last equation says that schemas that are better than the average reproduce exponen-
tially in the population under the action of fitness-proportionate selection. Instead,
the frequency of schemas with a fitness lower than the average (c < 0) will decay
exponentially given that in this case the factor (1 + c) is less than one.

Selection alone would simply make the dynamics converge on the best individ-
uals in the population but this is not how a genetic algorithm works for, otherwise,
it would be unable to find still unknown solutions, possibly better than those already
contained in the initial population. Thus, we must investigate the effect of the vari-
ation operators that provide for novelty: crossover and mutation. Owing to the fact
that they modify individuals, crossover and mutation have an adverse effect on the
rate of growth of the best individuals when they disrupt or diminish the number of
instances of a good schema S.

To investigate these effects, let Psc[S] be the survival probability of a schema
S with respect to crossover and let Psm[S] be the survival probability of S with
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respect to mutation. The “survival” of a schema S means that a crossover or mutation
operation generates a string of the same family S.

Let us first investigate the effects of crossover. The defining length of a schema
plays an important role in its survival. If the crossover point falls in the interior of
the portion defined by δ(S) the schema may be destroyed. But the crossover point
is chosen with uniform probability among the l − 1 possible points; it follows that
the probability that the chosen point fragments the schema is given by δ(S)

l−1 , and,

consequently, the probability of survival is 1− δ(S)
l−1 . Now, crossover is applied with

probability pcross, which gives in the end

Psc[S] = 1− pcross
δ(S)

l − 1
. (8.15)

In the mutation case, the probability that a fixed position of a schema is altered
is pmut and thus the probability that it stays the same is 1− pmut. But there are o(S)
fixed positions in a schema S and each position may mutate independently, which
gives the following probability for the survival of a schema, i.e., for the probability
that no bit in a fixed position is changed:

Psm[S] = (1− pmut)o(S) ≈ 1− o(S) pmut (8.16)

where it has been taken into account that pmut � 1.
We can now combine equation (8.11) describing the growth of schema fre-

quency with the equations that give the probability of schema survival when we add
crossover and mutation (eqs. 8.15 and 8.16). The result is the following expression,
which is customarily called the schema theorem of genetic algorithms:

Nt+1(S) ≥ Nt(S)
ft(S)

f̄t(S)

(
1− pcross

δ(S)

l − 1
− o(S)pmut

)
(8.17)

The last inequality is a lower bound on the rate of growth of schemas and it
is interpreted in the following way: short, high-fitness schemas of low order have
a tendency to increase exponentially in the population. The growth is limited by
the effects of crossover and mutation, with the former being more important since
usually pcross � pmut in genetic algorithms. The result is a lower bound because
crossover and mutation are not only destructive operators; from time to time they
may create new instances of a schema S.

The building-block hypothesis and deceptive functions.

The results of the previous section are due originally to Holland but equivalent or
similar results have been obtained more recently for individual representations other
than binary. These results thus extend the important concept of growth of good indi-
viduals in evolving populations to other evolutionary algorithms, also in the presence
of more complex genetic operators.

One of the consequences of the growth equation for schemas is the so-called
“building block hypothesis.” The idea is that a GA increases the frequency in the pop-
ulation of high-fitness, short-defining-length, low-order schemas, which are dubbed
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“building blocks” and which are recombined through crossover into solutions of in-
creasing order and increasing fitness. The building-block hypothesis is interesting
but its importance has probably been overemphasized. As an example, let us con-
sider again the MaxOne problem. It is easy to see that building blocks do exist in this
case: they are just pieces of strings with 1s that are adjacent or close to one another.
With positive probability, crossover will act on pairs of strings containing more 1s
on opposite sides of the crossover. This will produce offspring with more 1s than ei-
ther parent, thus effectively increasing the fitness of the new solutions. However, this
behavior, which is typical of additive problems, is not shared by many other problem
types. For an extreme example of this, let us introduce deceptive functions, which are
problems that have been contrived to expose the inability of a GA to steer the search
toward a global optimum. The simplest case arises when for a schema S, γ∗ ∈ S
but f(S) < f(S̄), where γ∗ is the optimal solution and S̄ is the complement of S.
This situation easily leads the algorithm to mistakenly take the wrong direction, and
that is why such functions are called deceptive. The basic example of this behavior is
given by a trap function. A trap is a piecewise linear function that divides the space
into two distinct regions, a smaller one that leads to the global optimum, and the
second leading to a local optimum (see Figure 8.7). The trap function is defined as
follows:

t(u(s)) =

{
a
z (z − u(s)), u(s) ∈ [0, z]
b
l−z (u(s)− z), u(s) ∈ [z, l]

where u(s) is called “unitation,” that is, the number of 1s in the string s. It is in-
tuitively clear that, unless the search starts in the region between z and l, evolution
is much more likely to steer the search towards the suboptimal maximum a, which
has a much larger basin of attraction, and the hardness of the function increases
with increasing z. In conclusion, although deceptive functions are not the norm in
real-world problems, the example shows that the building-block hypothesis might
be overoptimistic in many cases. For details on this advanced subject the reader is
referred to the specialized literature.

Convergence in probability.

The successive application of the genetic operators of selection, crossover, and mu-
tation to an initial population X0 is a discrete stochastic process that generates a se-
quence {Xt}t=0,1,2,... of populations (states) because the genetic operators contain
random components. The finite set of states of this process is the set of all possible
finite-size populations. In the case of the generational genetic algorithm as described
previously, the population X(t) at time step t only depends on the previous pop-
ulation Xt−1. This implies that the stochastic process is of Markovian type and it
has been shown that it converges with probability one to the global optimum of the
associated problem. Convergence is guaranteed under weak conditions: it must be
possible to choose any individual as a parent with positive probability, reproduction
must include elitism in the sense that the best current solution goes unchanged into
the next generation, and any admissible solution must be obtained with positive prob-
ability by the variation operators to ensure ergodicity. This result is theoretically use-
ful since few metaheuristics are able to offer such a proof of convergence. However,
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Fig. 8.7. The trap function described in the text. The abscissa represents the number of 1s in
the string. The corresponding fitness is shown on the y-axis

it is not very relevant in practice since it doesn’t tell us anything about the speed at
which the optimal solution will be found. This time can be very long indeed because
of the fluctuations of the random path to the solution. In the end, the situation can
be even worse than complete enumeration, which takes an exponential, but known,
time to solution. Of course, these considerations are not very important for practi-
tioners who, in general, are ready to sacrifice some marginal fitness improvement in
exchange for a quickly obtained good enough solution.

8.4 Evolution Strategies

Together with genetic algorithms, the other two original methods based on evolu-
tionary ideas are evolution strategies and evolutionary programming. For reasons of
space, and also because they have been adopted more widely over the years, we shall
limit ourselves to the description of evolution strategies, a family of metaheuristics
that is very useful in optimizing continuous real-valued functions with or without
constraints.

As we said in the introduction to this chapter, during the 1960s optimization
methods based on random changes of intermediate solutions were being designed
and implemented at the Technical University of Berlin and applied to engineering
hydrodynamics problems. In 1965, H.-P. Schwefel implemented the method on a
computer in the framework of his Ph.D. work and called it a two-membered evolution
strategy. The algorithm works as follows. A vector x of n real objective variables de-
scribing the parameters of the problem at hand is formed and a mutation drawn from

0 z l

a

b
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a normal distribution N (0, σ2), with zero mean and the same variance σ2 for all
variables, is applied to each and every variable. The choice of a normal distribution
is motivated by the observation that small variations are more common in nature than
large ones. The new individual is evaluated with respect to the problem; if its objec-
tive function is higher (assuming maximization), then the new individual replaces the
original one, otherwise another mutation is tried. The method was named Evolution
Strategy (1 + 1) or (1 + 1)-ES by Schwefel, where (1 + 1) simply means that there
is one “parent” individual from which one generates an “offspring” by the kind of
mutation described above. The process is iterated until a given stopping condition is
met, according to the following pseudo-code:

t = 0
xt = (x1, x2, . . . , xn)t
while not termination condition do

draw zi from N (0, σ2), ∀i ∈ {1, . . . , n}
x
′

i = xi + zi, ∀i ∈ {1, . . . , n}
if f(xt) ≤ f(x

′

t) then xt+1 = x′t
else xt+1 = xt
t = t+1

end while

This first version of ES was not really an evolutionary algorithm in the sense we
have given to the term since the concept of a population was absent. However, pop-
ulations have been incorporated in later versions of ES, giving birth to the evolution
strategies called (µ + λ)-ES and (µ, λ)-ES. The main difference between the two
types is in the selection method used to form the new population in each generation.
In contrast with GAs and other EAs, evolution strategies make use of deterministic
selection methods instead of probabilistic ones.

Let µ be the constant population size. Strategy (µ + λ)-ES selects the µ best
individuals for the next generation starting from a population formed by the union of
µ parents and λ offspring. On the other hand, in (µ, λ)-ES the µ survivors are chosen
among the offspring only, which implies λ > µ. Strategies (µ + λ) do guarantee
elitism but they have disadvantages in multimodal functions and can interfere in the
auto-adaptation of strategy parameters, an important feature of modern ES. For these
reasons, in today’s ES the (µ, λ) selection/reproduction is the preferred one.

Let us now go into more detail on the concepts and notations involved in us-
ing evolution strategies as they are rather different from what we know in genetic
algorithms, in spite of the common evolutionary inspiration. First, we explain the
individual representation. In an l-dimensional parameter space solutions are repre-
sented by vectors x with l real components. However, the strategy itself manipulates
l-dimensional vectors that are composed of three parts, (x, σ2, α). σ2 may contain
up to l variances σ2: either all the variances are the same for all xi, or there are l
distinct variances. The third vector α may contain up to l(l− 1)/2 “rotation angles”
αij . The variances and the αij are the parameters of the strategy but the rotation
angles can be omitted in the simpler versions.
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Mutation.

Mutation has always been the main variation operator in evolution strategies. It is
simple enough in its original version, which we have seen above in two-membered
strategies, but it has become more efficient, and also more complex, over the years.
Therefore, we are going to discuss it in some detail. In the simplest case, the vector x
is mutated by drawing random deviates from the same normal distribution with zero
mean and standard deviation σ =

√
σ2 and adding them to the components of vector

x:

x
′

i = xi +N (0, σ
′
), i = 1, . . . , l (8.18)

It is important to point out that the variance itself is subject to evolution, hence
the new standard deviation σ

′
in equation (8.18). We shall come back to variance

evolution below. For the time being, we just remark that in equation (8.18) the muta-
tion of σ takes place before the mutation of the parameter vector components, which
means that the new components are computed with the new variance.

A more efficient approach to the mutation of the objective vector components
consists of using different standard deviations for each component. The motivation
for this lies in the observation that, in general, fitness landscapes are not isotropic,
and thus mutations should be of different amplitudes along different directions to
take this feature into account. This is schematically depicted in Figure 8.8. With a
single variance for both coordinates, the new mutated point is bound to lie inside a
circle around the original point, while two different variances will cause the mutated
points to lie inside an ellipse. For the time being, we shall make the assumption that
the l mutations are uncorrelated. In this case equations (8.19) describe the mutation
mechanism of a vector x.

Fig. 8.8. Schematic illustration of mutation distributions with respect to a two-dimensional
normal distribution. On the left the variance is the same for both coordinates. In the mid-
dle image variances are different for x and y. In the right image variances are different and
covariance is introduced, which causes a rotation of the ellipsoid

● ● ●
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x
′

i = xi +Ni(0, σ
′
), i = 1, . . . , l, (8.19)

where Ni(0, σ
′
) stands for a distinct normal deviate drawn for each variable of the

problem.

Let us come back now to the variance auto-adaptation mechanism. In the simpler
case in which mutations are drawn with a single variance for all variables (eq. 8.18),
σ is mutated in each iteration by multiplying it by a term eT , where T is a random
variable drawn from a standard normal distribution N (0, τ) with 0 mean and stan-
dard deviation τ . Thus we have N (0, τ) = τ · N (0, 1). If the deviations σ

′
are too

small their influence on the optimization process will be almost negligible. For this
reason, it is customary to impose a minimal threshold ε on the size of mutations; if
σ
′
< ε, then we set σ

′
= ε. The standard deviation τ is a parameter to be set exter-

nally, and it is usually chosen to be inversely proportional to the square root of the
problem dimension l.

Recalling equation (8.18), the complete equations describing the mutation mech-
anism read

σ
′

= σ · exp(τ · N (0, 1)) (8.20)

x
′

i = xi + σ
′
· Ni(0, 1), i = 1, . . . , l (8.21)

The multiple-variance case, one for each problem dimension (eq. 8.19), can be
treated in a similar manner except that each coordinate gets a specific variation. We
are led in this case to the following equations describing the evolution of the vari-
ances and of the corresponding objective variables:

σ
′

i = σi · exp(τ · Ni(0, 1) + τ
′
· N (0, 1)), i = 1, . . . , l (8.22)

x
′

i = xi + σ
′

i · Ni(0, 1), i = 1, . . . , l (8.23)

Equation (8.22) is technically correct since the sum of two normally distributed
variables is itself normally distributed. Conceptually, the term eτ

′
·N (0,1), which is

common to all σ, provides a mutability evolution shared by all variables, while the
term eτ ·Ni(0,1) is variable-specific and gives the necessary flexibility for the use of
different mutation strategies in different directions.

With the above explanations under our belt, we are now able to present the most
general formulation of evolution strategies with the auto-adaptation of all the strategy
parameters (x, σ, α) [9]. So far, we have used uncorrelated mutations, meaning that
each coordinate-specific mutation is independent of the others. In two dimensions,
this allows mutations to spread according to ellipses orthogonal to the coordinate
axes, as depicted in Figure 8.8 (middle picture), instead of being limited to a circle
(left picture), and the idea can easily be generalized to l dimensions. To get even more
flexibility in positioning the mutation zones in order to cope with different problem
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landscapes, we can also introduce the ellipsoid rotation angles αij , as schematically
shown in the right picture of Figure 8.8. These angles are related to the variances and
covariances of the joint normal distribution of l variables with probability density

p(x) =

√
detC−1

(2π)l
e−

1
2x

TC−1x, (8.24)

where C = (cij) is the covariance matrix of p(x). In this matrix, the cii are the
variances σ2

i and the off-diagonal elements cij with i 6= j represent the covariances.
In the previous uncorrelated case matrix C is diagonal, i.e., cij = 0, i 6= j. The l
variances and l(l− 1)/2 covariances (the matrix is symmetric) needed for parameter
evolution are drawn from this general distribution, and the link between covariances
and rotation angles αij is given by the expression

tan(2αij) =
2cij

σ2
i − σ2

j

(8.25)

Clearly, αij = 0 for uncorrelated variables xi and xj since cij = 0 in this case.
Finally, we can summarize the most general adaptation mechanism of ES parameters
according to the following steps:

1. update the standard deviations according to the auto-adaptive lognormal method;
2. perturb the rotation angles according to a normally distributed variation;
3. perturb the objective vector by using the mutated variances and rotation angles.

This translates into the following equations:

σ
′

i = σi · e(τ ·Ni(0,1)+τ
′
·N (0,1)) (8.26)

α
′

j = αj + β · N (0, 1) (8.27)
x′ = x +N (0,C′) (8.28)

Here N (0,C′) is a random vector drawn from the joint normal distribution (equa-
tion 8.24) with 0 mean and covariance matrix C

′
. The latter is obtained from the

σ
′

i and the α
′

j previously computed. Notice that we have passed from a matrix
notation for the αij to a vector notation thanks to the correspondence between
(i, j) ∈ {1, . . . , l−1}×{1, . . . , l(l−1)/2} and the interval {1, . . . , l(l−1)/2} [9].
The suggested value for β is ≈ 0.087.

We conclude by saying that the usage of the normal distribution to generate per-
turbations is traditional and widely used because of its well-known properties and
because it is likely to generate small perturbations. However, different probability
distributions can be used if the problem needs a special treatment, without changing
the essence of the methodology.



8.4 Evolution Strategies 137

Recombination.

Recombination is the production of one or more offspring individuals starting from
two or more parent individuals. While recombination, under the name of crossover,
has always been a fundamental operator in genetic algorithms, it has been introduced
later in evolution strategies, which are based on a sophisticated mutation mechanism.
There exist a few recombination types in ES but the two most commonly used forms
are discrete recombination and intermediate recombination, both taking two parent
individuals and producing a single offspring. In discrete recombination the offspring
parameter values are randomly chosen from one parent or the other with probability
1/2. Thus, if xi and yi are the components of parents x and y, the components of the
product of their recombination z will be

zi = xi or yi, i = 1, . . . , l

In intermediate recombination the parents’ components are linearly combined:

zi = α xi + (1− α) yi, i = 1, . . . , l

Often α = 0.5, which corresponds to the average value.
The above recombination mechanisms are the commonest ones in ES but more

than two parents are sometimes used too. Another recombination method, called
global recombination, takes a randomly chosen parent in the population and, for
each component of the offspring, a new individual is randomly chosen from the same
population. In this technique, the offspring components can be either obtained by
discrete or intermediate recombination.

To conclude this section, we note that usually not only the objective variables of
the problem but also the other strategy parameters are submitted to recombination,
possibly using different methods. For instance, discrete recombination is often used
for the objective variables and intermediate recombination for variances and rotation
angles. The interested reader will find more details in, e.g., [9].

An overview of theoretical results in evolution strategies.

It is out of the question to go into the details of this mathematically highly developed
field. Here we can only give a glimpse of the various results that have been obtained
over the years by stating a classical result, but the reader will find a good introduction
to the theory of ES in [9] and in the original literature.

One of the first remarkable theoretical results is the so-called “1/5 success rule”
proposed by I. Rechenberg in 1973 for the two-membered strategy (1 + 1)-ES.
Rechenberg derived this rule for two specific basic objective functions: the “corri-
dor” function and the “sphere” function. By using the convergence rate expressions,
he was able to derive the optimal value of the standard deviation of the mutation
operator and the maximal convergence rate. The rule states that the ratio between the
improving mutations and their total number should be 1/5. Thus, if the ratio is larger
σ should be increased, while it should be decreased if it is smaller.
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This rule is historically interesting but only applies to old-style (1 + 1)-ES and
not really to modern ES using a population and parameter evolution. More recently,
theoreticians have obtained more general and rigorous results about the convergence
in probability for (µ + λ)-ES and more. Again, we refer the reader to the book [9]
for a good introduction to the field.
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Evolutionary Algorithms: Extensions

9.1 Introduction

In this chapter we give a more detailed description of genetic operators, and in par-
ticular of selection. We will also introduce a more advanced evolutionary method
called Genetic Programming, which makes use of complex, variable-sized individ-
ual representations. Finally, we will discuss the possibilities that arise when there is
a topological structure in the evolving populations.

Formally, we can make a distinction between variation operators and selection/re-
production. The classical variation operators are crossover and mutation. Their role is
the creation of new individuals in order to maintain some diversity in the population.
These operators depend on the particular representation that has been chosen. For ex-
ample, in the last chapter we saw the binary representation used in classical genetic
algorithms, and the real-number-based representation typical of evolution strategies.
The corresponding genetic operators, although they are inspired by the same biologi-
cal idea of reinjecting novelty into the population, are implemented in different ways
that are suited to the representation being used. We will see that the same happens in
genetic programming, a more recent evolutionary algorithm that will be introduced
later in the chapter, and also when we must deal with combinatorial optimization
problems, for which specialized individual representations are needed. Selection is
different from this point of view. All a selection method needs is a fitness value to
work with. It follows that, in a way, all selection methods are interchangeable and
independent of other parts of evolutionary algorithms, in the sense that different se-
lection methods can be “plugged” into the same evolutionary algorithm according
to the user’s criteria. Because of their fundamental role, selection methods deserve a
detailed treatment and this is what we are going to do in the next section.

9.2 Selection

As we have recalled several times already, the goal of selection is to favor the more
adequate individuals in the population, and this in turn means that selection leads the
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algorithm to focus the search on promising regions of the space. Again, we draw the
attention of the reader to the distinction between exploitation/intensification of good
solutions and exploration/diversification, a compromise that is common to all meta-
heuristics. Exploration by itself is unlikely to discover very good solutions in large
search spaces. Its limiting case is random search, which is extremely inefficient.
Conversely, when exploitation is maximal the search degenerates into hill climbing,
which, considered alone, is only useful for monomodal functions, a trivial case that
does not arise in practice in real applications. Therefore, in order for an evolution-
ary algorithm to function correctly, the available computational resources must be
allocated in such a way as to obtain a good compromise between these two extreme
tendencies. Admittedly, this goal is easy to state but difficult to attain in practice.
However, selection may help to steer the search in the direction sought: weak selec-
tion will favor exploration, while more intense selection will favor exploitation of the
best available individuals. In what follows we shall present the more common selec-
tion methods and their characteristics, and we will define the intensity of a selection
method in a more rigorous way in order to compare them.

9.2.1 Selection Methods and Reproduction Strategies

Selection methods can be classified according to a few different criteria; here we
will divide them into deterministic and stochastic methods. Deterministic methods
attribute to an individual a probability of survival of zero or one; in other words, the
individual either survives or it is eliminated from the population with certainty. This
type of selection method is typical in evolution strategies and we refer the reader to
the last chapter for the details. Stochastic methods, on the other hand, attribute a pos-
itive probability of survival to any individual and this probability will be higher, the
higher the quality of the solution that the individual represents. According to some
researchers, stochastic selection is to be preferred over deterministic selection as it
allows the survival of relatively weak individuals that would otherwise be eliminated.
This improves population diversity and may help avoid too much exploitation.

In the framework of generational evolutionary algorithms, as we have described
them here, it is useful to consider three populations: the current population in itera-
tion t, P (t), the intermediate population P

′
(t), and the next-generation population

P (t + 1). This situation was schematized in the previous chapter in Section 8.2.3,
in which the crossover and mutation phases, which we need not take into account
here, were also present. Selection operates on P (t) and the selected individuals go
into the intermediate population P

′
(t) one by one until the original population size

n is reached1. As we have already remarked in the previous chapter, it may well be
that some good individuals are selected more than once and some weak ones could
disappear altogether. The process of forming a population with the selected individ-
uals is called reproduction. Following this, the variation operators are applied to the
individuals in the intermediate population to produce the next generation population
1 Evolutionary algorithms with variable-size populations have been sometimes used but they

are rather uncommon.
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P (t + 1) and, after fitness evaluation, the cycle starts again until a termination con-
dition is reached.

Below, we now present in some detail the stochastic selection methods more
commonly used starting with fitness-proportionate selection.

Proportionate selection.

This is the original GA selection method proposed by J. Holland that we already met
a few times in the previous chapter. It will be analyzed in more detail here. In this
method, the expected fraction of times a given individual is selected for reproduction
is given by its fitness divided by the total fitness of the population. The corresponding
probability pi of selecting individual i whose fitness is fi, is given by the following
expression:

pi =
fi∑n
j=1 fj

In the program codes that implement EAs with fitness-proportionate selection
these probabilities are computed numerically by using the so-called “roulette wheel”
method. On this biased virtual roulette, each individual gets a sector of the circle
whose area is proportional to the individual’s fitness. The roulette wheel is “spun” n
times, where n is the population size, and in each spin the individual whose sector re-
ceives the ball will be selected. The computer code that simulates this special roulette
uses an algorithm analogous to the general one presented in Chapter 2, Section 2.8.1.
It is rewritten here in EA style for the reader’s convenience:

1. compute the fitness fi of each individual i = 1 . . . n
2. compute the cumulated fitness of the population S =

∑n
j=1 fj

3. compute the probability pi for an individual i to be selected: pi = fi/S
4. compute the cumulated probability Pi for each individual i: Pi =

∑n
j=1 pj

• repeat n times:
1. draw a pseudo-random number r ∈ [0, 1]
2. if r < P1 then select individual 1, otherwise select the ith individual such

that Pi−1 < r ≤ Pi

This method is straightforward but it can suffer from sampling errors because
of the high variance with which individuals are selected in relatively small popu-
lations. Countermeasures to this effect have been documented in the literature, for
example stochastic universal sampling, whose description is beyond our scope. For
more details see, e.g., [9]. However, there can be other problems when using fitness-
proportionate selection. In rare cases, the occasional presence in the population of
an individual with much better fitness than the rest, a so-called superindividual, may
cause the roulette wheel method to select it too often, leading to a uniform population
and to premature convergence.
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Another more common and more serious problem with this selection method
is that it directly employs the fitness values of the individuals. To start with, fit-
ness cannot be negative otherwise probabilities would be undefined. Next, even
for positive fitness values, minimization values cannot be treated directly, they
must first be transformed into equivalent maximization ones using the fact that
max(f) = −(min(−f)). Finally, even if we can solve all of the above problems,
it remains the fact that, as evolution progresses, the population tends to lose its di-
versity to a growing extent with time. This means that the fitness values associated
with the individuals become more and more similar (see, e.g., Figure 8.1 and Ta-
ble 8.1 in Chapter 8). In the roulette wheel analogy this would produce circular sec-
tors of very similar size; thus selection probabilities would also be similar, leading
to an almost uniform random choice with a consequent loss of selection pressure.
To overcome this problem, researchers have proposed to transform the fitness func-
tion as time goes by (fitness scaling) in various ways such that fitness differences
are amplified, thus allowing selection to do its job. These methods are described in
the specialized literature, see, e.g., [60]. Fortunately, most of the problems inherent
to fitness-proportionate selection can be avoided by using the alternative methods
described below.

Ranking selection.

In this method, individuals are sorted by rank from rank 1, attributed to the individual
with the best fitness, down to rank n. The probability of selection of an individual
is then calculated as a function of its rank, higher-ranking individuals being more
likely to be selected. The remarkable thing with this method is that the actual fitness
values do not play a role anymore; only the rank counts. This method maintains a
constant selection pressure as long as the individuals have different fitnesses and thus
avoids most of the problems caused by the fitness-proportionate method. The original
ranking method is linear ranking. It attributes selection probabilities according to a
linear function of the rank:

pi =
1

n

[
β − 2(β − 1)

i− 1

n− 1

]
, i = 1, . . . , n (9.1)

where index i refers to the rank of the considered individual and 1.0 < β ≤ 2.0 is a
parameter representing the expected number of copies of the best-ranked individual.
The intensity of selection can be influenced by the β parameter: the higher it is, the
higher the selection pressure.

The value of pi as a function of the rank i is reported in Figure 9.1 for n = 20
and β = 1.8. The horizontal dashed line corresponds to β = 1, which causes the
probability of choosing any individual to be uniform and equal to 1/n, as the reader
can readily check by substituting values in equation (9.1). When β becomes larger
than 1, the best-ranked individuals see their selection probability increase, while the
low-ranked ones have lower probabilities. The difference increases with growing β
up to its maximum value β = 2.

Non-linear ranking schemes have also been proposed as a means of increasing
the selection pressure with respect to linear ranking.
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Fig. 9.1. The probability pi of choosing the ith-ranked individual in linear-ranking selection.
The case with n = 20 and β = 1.8 is shown

Tournament selection.

This method is probably the simplest one in theoretical terms and it is also easy to
implement. The main advantage is that there is no need to make hypotheses on the
fitness distribution in the population, the only condition is that individual fitnesses
be comparable. For example, if the EA goal is to evolve game strategies, we can just
compare two strategies by simulating the game and decide which one is better as a
function of the result. As another example, it is rather difficult to precisely define the
fitness of an autonomous robot when it performs a given task but, thanks to suitable
measures, roboticists will be able to attribute an overall fitness to two different paths
and compare them to decide which one is better. Other examples come from evolu-
tionary art, or evolutionary design, in which humans look at given designs, compare
them, and decide which ones must be kept.

The simplest form of tournament selection is a binary tournament. Two indi-
viduals are randomly drawn from the population with uniform probability and their
fitnesses are compared. The “winner”, i.e., the individual that has the better fitness,
is copied into the intermediate population for reproduction, and it is replaced in the
original population. Since the extraction is done with replacement, an individual may
be chosen more than once. The process is repeated n times until the intermediate
population has reached the constant initial size n.

The method can be generalized to tournaments with k participants, where k � n
and typically of the order of two to ten. The induced selection pressure is directly
proportional to the tournament size k. The stochastic aspect of this method comes
primarily from the random draw of the tournament participants. The winner can be
chosen deterministically, as above, or with a certain probability, which has the effect
of lowering the selection pressure.
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9.2.2 Selection Intensity

We have already alluded several times to the idea of selection intensity without re-
ally defining the concept in a clear manner. We do this now by using the concept
of takeover time that characterizes the intensity of selection induced by the differ-
ent selection mechanisms described above. The takeover time τ is defined as being
the time needed for the best individual to conquer the whole population under the
effect of selection alone. At the beginning there are two types of individuals in the
population: one individual with a higher fitness, and n − 1 individuals with a lower
fitness. The application of the selection operator to such a population causes the
best individual to increase its frequency in the population by replacing the less good
individuals, until the whole population is constituted by copies of the high-fitness
individual. The idea is that short τ characterizes strong selection, while longer τ is
typical of weaker selection methods. The theoretical derivation of the takeover times
is tricky (but see Section 9.2.3 for examples of how this can be done). The general
results are that those times are O(log n), where n is the population size. The pro-
portionality constants may differ according to the particular method used. Thus, we
know that, in general, ranking and tournament selection are more intense than fitness-
proportionate selection. With respect to evolution strategies, without giving technical
details, it has been found that the selection pressure associated with (µ+ λ)-ES and
(µ, λ)-ES is even stronger than for ranking and tournament selection. This implies
that evolution strategies must rely on variation operators to maintain sufficient diver-
sity in the population, since the selection methods are rather drastic and they tend to
exploit the current solutions. The interested reader will find details in the book [9].

The theoretical predictions can easily be tested by numerical simulations. The
growth curves of the best individual are of the “logistic” type since the problem is
formally analogous to the growth of a population in a limited capacity environment.
This situation, in the continuum approximation, is described by the Verhulst differ-
ential equation

dm

dt
= rm(1−m/n),

where r is the growth rate, m is the current number of copies of the best individual,
and n is the maximal capacity, i.e., the number of individuals that can be sustained.
The solution of this equation, denoting by m0 the number of copies of the best indi-
vidual at time 0, is

m(t) =
m0ne

rt

[n+m0(ert − 1)]

which explains the term logistic function. There is an exponential increase of the
population at the beginning but, after the inflection point, the growth rate decreases
and asymptotically tends to the carrying capacity n since for t→∞, m(t)→ n.

Figure 9.2 shows the results of numerical simulations; it reports the average of
one hundred numerical runs showing such a behavior for binary tournament selection
and a population size of 1,024.
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Fig. 9.2. Takeover time curve for binary tournament selection in a population of 1,024 indi-
viduals. The curve is the average of 100 executions

9.2.3 Analytical Calculation of Takeover Times

In this section we give an analytical proof of the general results mentioned in the
previous section, i.e., that the number of copies of the best individual is bounded by
a logistic curve and that the takeover time is logarithmic in the population size, at
least in fitness-proportionate selection and tournament selection. This section can be
omitted on a first reading.

Fitness-proportionate selection

Let m(t) be the average number of copies at time t of the best individual in a pop-
ulation P (t) of size n. In fitness-proportionate selection (all fitnesses are assumed
positive and fitness is maximized) we have

m(t+ 1) = n
m(t)f1
Ftot(t)

≥ n m(t)f1
m(t)f1 + (n−m(t))f2

(9.2)

where Ftot(t) > 0 is the total fitness of population P (t), f1 > 0 is the fitness of the
best individual, and f2 is the fitness of the second-best individual: 0 < f2 < f1. The
above inequality is justified since

Ftot(t) ≤ m(t)f1 + (n−m(t))f2 (9.3)

To simplify, we take m(t) = m. We can now write

m(t+ 1) ≥ m+ n
mf1

mf1 + (n−m)f2
−mmf1 + (n−m)f2

mf1 + (n−m)f2

= m+
nm(f1 − f2)−m2(f1 − f2)

mf1 + (n−m)f2
(9.4)
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We set
∆ = f1 − f2 (9.5)

with ∆ > 0 and ∆/f1 < 1 since 0 < f2 < f1. The equation becomes

m(t+ 1) ≥ m+
nm∆(1−m/n)

nf1 − (n−m)∆
(9.6)

= m+m
∆

f1

(
1− m

n

)( 1

1−
(
1− m

n

)
∆
f1

)
(9.7)

Given that m ≤ n and ∆/f1 ≤ 1, 1

1−
(

1− m
n
∆
f1

)
 ≥ 1 (9.8)

We thus get

m(t+ 1)−m(t) ≥ m∆

f1

(
1− m

n

)
(9.9)

We can solve this equation by reformulating it as the following differential equation

ṁ = m
∆

f1

(
1− m

n

)
(9.10)

whose solution is (with r = ∆/f1)

m(t) =
n

1 + n−m0

m0
e−rt

(9.11)

where m0 = m(0) = 1. With

τ =
ln(n− 1)

r
(9.12)

we obtain that
m(τ) =

n

2
(9.13)

which shows that the takeover time of the discrete process is

τ ≤ O(lnn) (9.14)

The above derivations are illustrated by the numerical simulation results depicted
in Figure 9.3. In this figure, we consider a population size of n = 100. The fitnesses
of each individual are randomly chosen to lie between 0 and f2 = 100. The fitness
of the individual n/2 is then readjusted to f1 > 100 in order to guarantee that there
is only one best individual. We observe that the number of copies of the best indi-
vidual grows faster than what is predicted by the logistic equation (9.11), as stated in
equation (9.9).
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Fig. 9.3. Numerical simulation of the takeover time for fitness-proportionate selection for
different values of f1 and f2. The dashed line is the solution of equation (9.11)

Tournament selection

In the case of tournament selection with k individuals, the probability of not drawing
the best individual k times is (1−m/n)k, where m is the current number of copies
of the best individual and n the population size.

Thus, the average number of copies of the best individual in iteration t+ 1 is

m(t+ 1) = n

(
1−

(
1− m

n

)k)
≥ n

(
1−

(
1− m

n

)2)
(9.15)

The inequality results from k ≥ 2, which implies (1−m/n)k ≤ (1−m/n)2.
The equation becomes

m(t+ 1) ≥ n
(

2
m

n
− m2

n2

)
(9.16)

and, after rearranging and recalling that m = m(t) this gives

m(t+ 1)−m(t) ≥ m
(

1− m

n

)
(9.17)

which is again a logistic equation with a takeover time that is logarithmic in n.

9.3 Genetic Programming

Genetic programming (GP) is a more recent evolutionary approach to problem solv-
ing that was essentially introduced by J. Koza and others towards the end of the
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1980s [52]. The basic idea in genetic programming is to make a population of pro-
grams evolve with the goal of finding a program that solves, exactly or approxi-
mately, a predefined task. At first sight the idea would seem almost impossible to
put into practice. There are indeed many questions that seem to have no satisfactory
answer. How are we going to represent a program in the population? And what do
we mean exactly by program mutation and program crossover? If we use an ordi-
nary procedural programming language such as Java or C++, it is indeed difficult
to imagine such genetic operations. The random unrestricted mutation of a program
piece would almost certainly introduce syntax errors or, in the unlikely case that the
resulting program is syntactically correct, it would hardly compute something mean-
ingful. However, a program can be expressed in computationally equivalent forms
that do not suffer from such problems or, at least, that can be more easily manipu-
lated. Functional programming in particular is suitable for artificial evolution of pro-
grams and J. Koza used LISP in his first experiences with GP. However, even with
an adequate syntactic form, unrestricted evolution of programs would have to search
a huge space and it would be unlikely to find interesting results. It is enough to try to
imagine how such a system would find a working compiler or operating system pro-
gram: very unlikely indeed, in a reasonable amount of time. But a complex program
such as a text-processing system or a compiler is certainly best produced by using
solid principles of algorithmics and software engineering. In this case, designers can
make use of modules and abstractions that encapsulate functionalities and can com-
bine them in meaningful ways. It would be almost hopeless to find such abstractions
and their hierarchies and structures by evolution alone. Koza clearly realized these
limitations and proposed to work with a restricted set of operations and data struc-
tures that are task-specific. In this reduced framework, GP has become a powerful
method of problem solving by program evolution when the problem at hand is well
defined and has a restricted scope. In this sense, GP can be seen as a general method
for machine learning rather than a straight optimization technique. However, many
automated learning problems can be seen from an optimization point of view and GP
is a powerful and flexible way of approximately solving them. In our opinion, it is
thus perfectly justified to present the basis of the methodology here.

9.3.1 Representation

The choice of individual representation in GP is more difficult compared to other
evolutionary algorithms. When faced with a problem to solve by evolving a suitable
program, the first step for the user is to define two sets of objects: the Terminal set T
and the Function set F . The function set contains the functions that are considered
useful a priori for solving the problem at hand, and the terminal set is constituted by
the variables and the constants that characterize the problem. The F and T sets must
obey the closure property: each function must accept as arguments all the value types
returned by the other functions, and all the values in T . The space of the possible
programs is then formed by all the function compositions possible from the elements
of F and T , a huge and potentially infinite space, but we shall see that practical
constraints will be effective in bounding it.
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A simple example, which is unrealistic but good enough for illustrating the ideas,
is arithmetic expressions. Suppose that we wish to use GP to generate and evolve
arbitrary arithmetic expressions with the usual operations and four variables at most.
In this case the sets F and T may be defined as follows:

F = {+,−, ∗, /}

and
T = {A, B, C, D}

The following programs, for instance, would be valid in such a restricted lan-
guage universe: (+ (* A B) (/ C D)), and (* (- (+ A C) B) A).

A second example, equally simple but more useful in practice, is Boolean logic.
In this case, a reasonable function set might be the following:

F = {AND, OR, NOT}

together with a set of terminals that includes some Boolean variables and constants:

T = {b1, b2, b3, . . . , TRUE, FALSE}

It is important to point out that genetic programs need not be expressed directly
in a functional form such as a subset of LISP S-expressions; it is equally possible
to use the corresponding parse tree form. Thus, in Figure 9.4 the expressions above
are illustrated in equivalent tree form, where the internal nodes are functions and the
leaves are terminals. Today, most GP software systems are written in conventional
languages such as C++ or Java and use dynamic memory allocation to build and
manage the trees. Trees are combinatorial structures whose size tends to increase
exponentially fast, causing increasing evaluation times. This practical limitation has
led researchers to bound the tree depth in order to avoid too-heavy computations.
Finally, trees are not the only possibility: linear genomes (see section 9.4 in this
chapter), graphs, and grammars have also been used.

*

+

B C D

/

A
A C

B

A-

+

*

Fig. 9.4. Two trees that are equivalent to the S-expressions in the text

While we have just seen that the individual representation is fundamentally dif-
ferent in GP with respect to other evolutionary algorithms, the evolutionary cycle
itself is identical to the GA pseudo-code shown at the beginning of Chapter 8. Once
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suitable sets F and T for the problem have been found, an initial population of pro-
grams is randomly created. The fitness of a program is simply the score of its eval-
uation (see below), and suitable genetic operators are then applied to the population
members.

9.3.2 Evaluation

Attributing a fitness score to a GP individual, that is, evaluating the corresponding
program, is different from evaluating the fitness of a fixed-length bit string or a vector
of reals. In GP, the program is executed and its performance evaluated: this value
corresponds to its fitness. Formally, the individual coding and its evaluation take
place in the same space, the space of programs generated by the F and T sets. A
program can be evaluated exactly if all the possible inputs to the program are known
and if this number is not too large; otherwise, an approximate evaluation can be
done. The first case may be represented by a Boolean problem with k variables. The
number of possible inputs is 2k and, if k is not too large, all the possible cases can
be tested. In other situations we might use a restrained number of representative test
cases. Once the test cases have been defined, the performance f(Pi) of a program Pi
can be computed as the sum of the differences between the expected outputs Gk and
the actual outputs gk of the program Pi:

f(Pi) =
N∑
k=1

‖ gk −Gk ‖ (9.18)

Consequently, the fitness of a program is maximal when the performance f(Pi) =
0.

9.3.3 Genetic Operators

Using the tree representation for the programs in the population, there exist different
forms for the genetic operators of crossover and mutation. The following two are
the original ones introduced by Koza and still in wide use. Mutation of a program
is implemented by selecting a random subtree and replacing it with another tree
randomly generated from the problem’s F and T sets. The process is schematized in
Figure 9.5.

Crossover is performed by starting from two parent trees and selecting a ran-
dom link in each parent. The two subtrees thus defined are then exchanged (see
Figure 9.6). The links to be cut are usually chosen with non-uniform probability, so
as to favor the links that are closer to the root because the latter are obviously less
numerous than the links that are lower in the tree, which would be more likely to be
chosen with uniform probability.

Finally, we remind the reader that the operators presented here are adapted to
the tree representation of programs. If other representations are used, such as lin-
ear, graphs, or grammars, different operators must be designed that are suited to the
adopted representation.
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Fig. 9.5. Example of mutation of a tree representing an arithmetic expression
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Fig. 9.6. Example of crossover of two program trees

9.3.4 An Example Application

Genetic programming has been applied with great success to all kinds of problems in
many fields from analogical and digital circuit design, to game programming, non-
linear systems, and autonomous robotics just to name a few. The interested reader
will find more information on the many uses of this powerful technique in Koza’s
review article [54]. However, genetic programming is a more complex technique
than standard evolutionary algorithms. The first step, which consists of choosing
the appropriate primitives for the problem, is a delicate point. The problem itself
usually suggests what could be reasonable functions and terminals but the choice
has an influence on the results. In fact, choosing the right functions and terminals is
still a trial-and-error process; a good idea is to start small and to possibly add new
primitives if needed.

To give an example of the use of GP on a real problem, we now briefly summarize
its application to a problem in the financial field. The application consists of devel-
oping trading models, which are decision support systems, in the field of foreign
exchange markets [21]. The model is built around a system of rules that combine rel-
evant market indicators, and its output is a signal of the type “buy,” “sell” or “hold”
as an explicit recommendation of the action to be taken. For example, a very simple
trading model could have the following flavor:
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IF |I| > K THEN G := SIGN(I) ELSE G = 0

I is an indicator that models the current market trend and that can be technically
complex. Indicators of this kind are based on price time series and can be calculated
in advance. K is a threshold value imposed by the human trader. The result G is
a signal that can take the values 0, 1, or −1, which correspond, respectively, to a
neutral position (hold), to sell, or to buy the currency in question. Real models are
more complex but the ideas are the same.

For this application the following functions were chosen:

F = {AND, OR, NOT, IF}

The terminals are
T = {+1,−1, 0, Ii},

where the Ii are indicators computed as moving averages of price time series. The
logical operations have been redefined in order to function correctly in this context.
Thus, the function OR returns the sign of the sum of its arguments, function NOT re-
turns the inverse of the decision of its argument, and function AND returns the neutral
signal 0 when one of its arguments is 0, otherwise it returns the OR of its arguments.
The function IF takes three arguments and returns the second if the first is TRUE,
otherwise it returns the third argument.

The fitness of a trading model is its performance measure. Performance quantifies
the return provided by the application of the trading model, but it also takes into
account the associated risk. The return is the total gain accumulated over all the
transactions in the sequence of test cases. The technical details are relatively complex
and can be found in the original works. Here we just recall that the fitness function
for a trading model tmi is defined as

f(tmi) = 〈R〉 − C

2
σ2

In the previous expression 〈R〉 is the annualized average gain, C = 0.1 is a
risk aversion constant, and σ2 is the variance of the accumulated gain during the
considered period. A desirable quality for a trading model is robustness, which in this
context means that the model should not overfit the data and that it should be able to
generalize correctly. In the present application this is obtained by using several time
series belonging to different currency exchange rates.

The GP system that was implemented for the problem is a standard one, with
tree mutation and crossover as defined above. Selection is done by tournament and
the best trading model of the current generation goes without change into the next-
generation population. Because of the lengthy indicator computation, the application
was executed on a computer cluster with a maximal time corresponding to 100 gen-
erations as a termination criterion. The population size was 100 and the algorithm
was executed 10 times on the training data. The best models resulting from each ex-
ecution have been tested on unseen data to evaluate their generalization capabilities.
For the sake of illustration, we remark that one of the best trading models in terms
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Fig. 9.7. A decision tree evolved by genetic programming in the field of trading models

of performance that has been evolved by the GP system corresponds to the tree in
Figure 9.7. In this tree, I1, I2, I3, and I4 are complex indicators based on moving
averages of price time series of different lengths. The constants are suitable empirical
values dictated by experience.

9.3.5 Some Concluding Considerations

In this section we try to summarize some aspects of GP that appear when the sys-
tem is used in practice. A common problem in GP is the inordinate growth of
the trees representing the programs in the evolving population. This growth, also
called “bloat” in the field, is due to the application of genetic operators, especially
crossover. Program bloat has unpleasant consequences such as stagnation in the fit-
ness evolution and a slowdown in the evaluation of trees as they become larger and
larger. Some simple measures may be effective at fighting bloat. The first thing to do
is to limit the maximum tree depth from the beginning, a feature that all GP systems
possess. Another approach consists of introducing a penalty term in the fitness func-
tion that depends on program length, in such a way that longer programs see their
fitness reduced.

Genetic programming is at its best on well-defined problems that give rise to
relatively short programs. We have seen that this also depends on the choice of the
terminal and function sets. GP can be extended to more complex problems but in
this case a hierarchical principle becomes necessary. This can be accomplished by
encapsulating subprograms and pieces of code that seem to play the role of building
blocks in the evolution of good solutions. The inspiration here comes from standard
software engineering techniques and, to dig deeper into the subject, we refer the
reader to the specialized literature, starting with the books [53, 10].

To conclude, we observe that GP has opened up a whole new chapter in evolu-
tionary problem solving and design. The theory of GP turns out to be more difficult
than that of ordinary EA and it would be out of scope to present it here, even in
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summarized form. We can just say that, among other things, results that generalize
schema theories to GP have been obtained.

In the next section we present another style of genetic programming called linear
genetic programming. Although the main principles are the same as in tree-based
GP, linear genetic programming possesses some particularities that make it worth a
separate discussion.

9.4 Linear Genetic Programming

In this section we present a different and much less well-known approach to genetic
programming than the tree-based version. This version is based on a linear represen-
tation of a program, much closer to standard procedural languages than the functional
form. The interest of the approach lies in its simplicity and in the fact that programs
are of fixed size; besides, control structures such as branching and looping are easier
to construct. Such a program is constituted by a set of instructions that are executed
sequentially on one side, and a stack that can contain an arbitrary number of numeri-
cal values on the other. The program instructions take their arguments from the stack
and push their results onto the same stack. The final result is also to be found on the
stack, for example as the most recent value on top of it.

We are now going to describe this process in more detail with inspiration coming
from other stack-based languages such as Forth or Postscript. Let us first consider
the program variables that were called terminals in tree-based GP. For instance, the
variable A is considered here as an instruction that places the value of A on the stack.
The program that computes (A+B)×C√

2
, where A, B, and C are three variables, is

given by

A B ADD C MUL 2 sqrt DIV

where ADD is an instruction that takes the two top elements on the stack and pushes
their sum onto the stack. The instructions MUL and DIV do the same for multiplica-
tion and division respectively. The instruction sqrt takes the element on top of the
stack and returns its square root to the stack.

Clearly, to guarantee program execution and avoid faults and exceptions, the be-
havior of instructions must be defined when the number of parameters is insufficient,
or when values are inconsistent, for example taking the square root of a negative
number. Here such exceptions are simply ignored and the operation is not executed.
Thus, for instance, instruction 2 ADD will leave the stack unchanged with the value
2 on top of it.

An execution engine for linear GP programs is easy to build, for example using
the Python language, by making a correspondence through a dictionary, i.e., a hash
table, between each program identifier and a preprogrammed function that uses the
stack.

With linear programs, the genetic operations of mutation and crossover are very
similar to those presented in Chapter 8 for genetic algorithms. For example, one
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can use one-point crossover, as shown below for the two programs P1 and P2. The
symbol | marks the crossing point and is randomly chosen.

P1: A B ADD | C MUL 2 sqrt DIV
P2: 1 B SUB | A A MUL ADD 3

After crossover, the following two programs will result:

P1’: A B ADD A A MUL ADD 3
P2’: 1 B SUB C MUL 2 sqrt DIV

We can verify that P1’ leaves two values on the stack: A + B + A2 and 3, while
P2’ leaves only one value: (1−B) ∗ C/(

√
2).

A mutation is generated by randomly exchanging an instruction or a variable
with another instruction or variable and the probabilities of choosing a variable or an
instruction may be different.

9.4.1 Example

As an illustration of the workings of linear genetic programming, we will let the
system find the Boolean function f of three variables x0, x1, x2 given by the truth
table

x0 x1 x2 f(x0, x1, x2)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

By simple inspection, we can see that the sought function is

f(x0, x1, x2) = x0 and x1 and x2

but we would like to have GP discover it by itself. Let’s consider the terminal set

T = {X0, X1, X2}

and the function set
F = {AND,OR,NOT}

which is clearly sufficient to express any Boolean function.
For this example, we consider programs consisting of only five instructions. The

output of the program is to be found as the top element of the stack after its execu-
tion. With six different possible choices for each instruction the number of possible
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different programs is 65 = 7,776. Clearly, an exhaustive search would be possible in
this case but the method cannot be extended to large program space sizes.

Let’s suppose a small population of n = 12 linear programs of length five, ini-
tially chosen at random. We let them evolve during 50 generations according to the
standard cycle: selection, crossover, and mutation. A program’s fitness function is
the number of f values of the function table above that are correctly computed.
The training set is given by the eight possible combinations of the variable triplet
(x0, x1, x2), therefore the optimal program has a fitness of eight.

Below, we see a population of 12 programs that has been randomly generated at
time 0:

Initial population:
[’OR’, ’NOT’, ’X2’, ’OR’, ’X0’] fitness= 5
[’X1’, ’X2’, ’OR’, ’X0’, ’OR’] fitness= 2
[’OR’, ’X2’, ’OR’, ’X0’, ’X0’] fitness= 5
[’OR’, ’X2’, ’X2’, ’X1’, ’X1’] fitness= 5
[’X2’, ’X0’, ’X0’, ’OR’, ’X0’] fitness= 5
[’OR’, ’OR’, ’AND’, ’X1’, ’X0’] fitness= 5
[’X0’, ’X0’, ’X1’, ’X2’, ’X0’] fitness= 5
[’X0’, ’OR’, ’X2’, ’X0’, ’OR’] fitness= 3
[’AND’, ’X2’, ’NOT’, ’OR’, ’X0’] fitness= 5
[’OR’, ’AND’, ’X2’, ’X1’, ’AND’] fitness= 7
[’X0’, ’AND’, ’AND’, ’X0’, ’NOT’] fitness= 3
[’X2’, ’X2’, ’X2’, ’X0’, ’X0’] fitness= 5

After 50 generations, a typical population looks like this:

Final population:
[’X2’, ’OR’, ’X1’, ’X0’, ’AND’] fitness= 7
[’X2’, ’X2’, ’NOT’, ’X2’, ’AND’] fitness= 7
[’X1’, ’X2’, ’AND’, ’X0’, ’AND’] fitness= 8
[’X2’, ’OR’, ’X1’, ’X0’, ’AND’] fitness= 7
[’X2’, ’OR’, ’X1’, ’X0’, ’AND’] fitness= 7
[’X2’, ’OR’, ’X1’, ’X0’, ’AND’] fitness= 7
[’X2’, ’OR’, ’X0’, ’OR’, ’AND’] fitness= 3
[’X2’, ’OR’, ’NOT’, ’X2’, ’AND’] fitness= 7
[’X2’, ’OR’, ’AND’, ’X0’, ’AND’] fitness= 7
[’X2’, ’OR’, ’AND’, ’X0’, ’AND’] fitness= 7
[’X2’, ’X0’, ’X0’, ’OR’, ’AND’] fitness= 7
[’X2’, ’OR’, ’NOT’, ’X2’, ’AND’] fitness= 7

With a computational effort of 50 × 12 = 600 it has been possible to find an
optimal program having a fitness of eight, that is the program P=[X1 X2 AND X0
AND]. This is faster than exhaustive search which, on average, would have taken
7,776/2 evaluations. We must point out, however, that with the chosen parameters,
linear GP doesn’t find an optimal program each time it is run.
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The following observation is interesting: the function (x0 and x1) or x2 is, strangely
enough, more difficult to find with the GP search. However, any program that termi-
nates with x2 has a fitness of 7, a very good fitness that makes evolution pressure
weak.

9.4.2 Control Structures

An interesting particularity of the linear representation is the possibility of easily
defining branches and loops in a genetic program. Here, we will limit ourselves to
indicating a robust syntax for implementing such fundamental control structures.

Branching

The branching instructions IF and ENDIF can be introduced thus:

• IF pops the element a at the top of the stack and compares it to 0.
• If a ≥ 0, the instructions that follow the IF are executed.
• If a < 0 no further instructions are executed until ENDIF is found. For this, it is

enough to add to the execution engine an indicator with values 0 or 1, which say
whether or not the current instruction must be executed. The instruction ENDIF
resets the indicator to 1. If an ENDIF is not found, all the instructions following
the IF will be ignored if a < 0, but the program will still be executable.

• IF instructions can be nested and will work correctly provided that the pairs IF–
ENDIF are balanced. If this is not the case, perhaps after a crossover operation,
the program will still be executable.

Loop

To implement the loop control structure it is necessary to introduce the instructions
LOOP and END-LOOP. We must also add a control stack, besides the data stack.
Each element of the control stack contains two values: the position in the program
of the most recent LOOP instruction, and the number of remaining iterations. This
works in the following way:

• When a LOOP instruction is found at position i in the program, the top element
a of the data stack is used to specify the number of iterations. The tuple (a, i) is
pushed onto the control stack. If the number of iterations is undefined or negative
LOOP does nothing.

• When an END-LOOP is found the number of iterations a is decremented on the
control stack and the control flow returns to position i except when a = 0, in
which case the tuple (a, i) is suppressed in the control stack.

• Loops can be nested by pushing pairs (a, i) onto the control stack. The END-LOOP
always acts on the pair (a, i) currently on the top of the stack.

• This program construction is robust even when the pairs LOOP-END-LOOP are
not balanced.
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9.5 Structured Populations

Up to now it has been implicitly assumed that the populations used in evolutionary
algorithms do not possess any particular structure. In other words, any individual
can interact with any other individual in the population. Such populations are called
panmictic or well mixed and they are the norm both in biology and in EA. How-
ever, observation of animal and vegetal species in Nature shows that often population
structures reflect the geographical nature of the world and cannot always considered
to be well mixed. Indeed, Darwin himself based some of his fundamental observa-
tions on the fact that certain species had some different traits on different islands
of the Galápagos archipelago and attributed this to the isolation caused by distance.
Many biological phenomena can be better explained when one assumes that there is
some structure and locality in the populations such as migration, diffusion, territori-
ality, and so on. This was thus the source of inspiration but we would like to point
out that EAs are artificial systems and therefore do not need to obey the constraints
by which natural systems are limited. Any suitable structure can be used and, in the
end, if assuming a structure makes an EA more efficient or more capable of deal-
ing with certain problems, there is no need for any other justification, although there
is no doubt that analogous biological phenomena have played an important role in
inspiring these changes.

There are many ways of attributing a structure to an EA population, but simple
solutions are often the best ones. Thus, two main types of structure have been used in
the literature: multipopulations, also called islands, and cellular populations. To have
a uniform notation for these populations we shall represent them as simple graphs
G(V,E), where V is the set of vertices and E is the set of edges, or arcs, if the
graph is an oriented one. In multipopulations, each vertex is a whole subpopulation,
while in cellular populations a vertex is a single individual. Let’s start by describing
multipopulations first. They are constituted by a number of populations that may
communicate with each other, as schematically depicted in Figure 9.8.

Fig. 9.8. An example structure of communicating populations
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The system is clearly hierarchical since within a subpopulation the structure is
well mixed, and this can be represented as a complete graph, since each individual
may interact with any other member of the population.

In contrast, cellular populations enjoy a high degree of locality. As said above,
each vertex in the corresponding graph represents a single individual, and a given
individual can only interact with the individuals that are directly connected to it or,
in other terms, only with the individuals belonging to a small neighborhood around
the focal one. Cellular graphs can have any structure but most of the time they are
regular, such as meshes or rings, as shown in Figure 9.9. Actually, grids are usually
taken with cyclic boundary conditions, which means that vertices at the border are
connected to the opposite side vertices (not shown in the figure). This transforms the
grid into a torus, which is a regular graph.

Fig. 9.9. Two possible structures for cellular populations

Now, if these structured populations didn’t have any effect on the progression
of an evolutionary algorithm, they would only be a scientific curiosity. But this is
not the case, as we shall see in the following sections. Indeed, these new population
structures cause an EA to change its behavior with respect to well-mixed populations
in ways that can be exploited to improve its performance. We will start by describing
the multipopulation model in more detail below.

Multipopulations.

These structures are rather close to the standard single panmictic populations. In
fact, within each well-mixed subpopulation evolution takes place as usual. The only
difference is that now islands (subpopulations) may exchange individuals with each
other from time to time. These exchanges are sometimes called “migrations,” by
analogy with biological populations. With respect to the fully centralized standard
evolutionary algorithm, there are several new parameters to be set in a suitable way:

• the number of subpopulations and their size;
• the communication topology between the subpopulations;
• the number and type of migrant individuals;
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• the frequency of migration.

A detailed discussion of the above parameters would lead us out of the scope of
the book. Their values are difficult to justify theoretically but many empirical stud-
ies have provided “ranges” that seem to work well in many cases. The number of
subpopulations depends on the problem difficulty. The idea is to determine an ap-
propriate single population size and then to distribute those many individuals among
a sufficient number of communicating populations. The main danger is to use too
many small subpopulations since this would negatively impact the search.

With respect to the communication pattern between the populations several solu-
tions are available. The interconnection can range from the complete graph, in which
each island communicates with all the other islands, to the very simple ring topol-
ogy in which subpopulations are connected in a ring shape and communicate only
with adjacent subpopulations. After many studies and experiments, it appears that
the precise choice of the communication topology only has a marginal importance
for the performance. As a consequence, a ring or a random graph structure is often
used because of their simplicity.

The number and quality of migrant individuals, and the replacement method used
in the destination subpopulation are important parameters. In practice, it has been
found that the “right” number of individuals to send out is between 5% and 10%
of the subpopulation size. How to choose those individuals? The usual solution is
to send the best individuals of the origin population and, at the destination island,
to replace an equal number of the worst individuals with the new ones. Sometimes
another policy is used that consists of replacing the same number of randomly chosen
local individuals. In any case, it is customary to keep the subpopulations’ sizes equal
and constant.

For the last parameter, the migration frequency, experience indicates that about
ten generations is a good choice. In other words, populations evolve independently
running a standard EA during about ten iterations, after which the fixed number of
migrants is sent and received between the populations in a synchronized manner,
according to a pre-established communication pattern. The exchange can also be
asynchronous but this requires more care in setting up the distributed programming
environment. In some variants, the EA parameters for each subpopulation may be
different, or the subpopulations may be arranged in a hierarchical fashion, but these
more complicated settings are seldom used.

Now that we have described the main elements that influence the design of a
distributed EA, we might ask whether the added complexity is worth the effort. In
general, we can say that the practical experience accumulated clearly indicates that
the answer is positive. To illustrate this, we compare the results obtained on a stan-
dard difficult benchmark problem in GP, the even-parity problem 2, using a single
population and several multipopulations with the same total size of individuals.

The graphics in Figure 9.10 show some performance measures on the even-parity
problem with a single population of 500 individuals and with multipopulations in
2 The Boolean even parity problem takes a bit string as input and returns True if there is an

even number of 1s in the string and False otherwise.
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Fig. 9.10. Computational effort and quality of solutions found for the even-parity problem
with genetic programming in the single-population case and with a multipopulation structure

which the same number of individuals is distributed into 2, 5, 10, and 50 subpopula-
tions connected in a ring structure. We will come back to performance evaluation in
much more detail in Chapter 12. For the time being, let us note that the upper left
image reports the mean fitness over 100 runs of the algorithm for this problem as a
function of the computational effort expended. The optimal fitness is zero. The table
at the left in the lower part of the figure gives the success rate, i.e., the number of
times the algorithm found the global optimum over 100 runs. Finally, the histograms
on the right of the panel show the frequency of solutions having a given fitness for
the single population (upper image), and for a multipopulation system with 10 sub-
populations of 50 individuals each (lower image), when using the maximum allowed
computational effort, which is 12× 107.

The mean-fitness curves clearly show that the multipopulation systems perform
better than the single population, except when there are 50 populations of size 10, in
which case the performance is worse or similar depending on the effort. In this case
the size of the subpopulations is too small to allow for the rapid evolution of good
individuals. This is confirmed by the success rates in the table and by comparing the
single population with a multipopulation system with 10 subpopulations (right im-
ages), which seems to be the best compromise. This example is not an unusual case:
the research published to date confirms that multipopulations perform better than,
or at least equally well as, single well-mixed populations. The drawback of multi-
population EAs is that they are slightly more difficult to implement than centralized
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ones. On the other hand, they also have the advantage that they can be executed on
distributed networked systems in parallel, as the overhead caused by the communi-
cation phases is not too heavy given the low migration frequencies normally used.

What are the reasons behind the better performance of multipopulation systems?
It is difficult to give a clear-cut answer as the systems are very hard to analyze rig-
orously, but in qualitative terms it appears that the systematic migration of good
individuals from other populations has a positive effect on the diversity of the tar-
get population. Indeed, we have seen that a characteristic of evolution is the loss
of population diversity due to selection. The multipopulation system helps fight this
tendency by periodically reinjecting new individuals. This phenomenon can be ap-
preciated in Figure 9.11, jagged curve, where migrants are sent and received every
ten generations.
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Fig. 9.11. Population diversity measured as fitness entropy for the even-parity problem.
Turquoise curve: a well-mixed population of size 500. Black curve: five populations of 100
individuals each

Cellular evolutionary algorithms.

As shown in Figure 9.9, cellular populations bring about a major change in the popu-
lation structure. While multipopulation evolutionary algorithms are, after all, similar
to standard EAs, cellular evolutionary algorithms show a rather different evolution
when compared to well-mixed EAs. The reasons are to be found in the way genetic
operators work which, is now local instead of global.

The situation is easy to understand from Figure 9.12 where an individual i and its
neighborhood V (i) have been highlighted. The neighborhood shown is not the only
one possible but the idea is that V (i) has a small cardinality with respect to the popu-
lation size: |V (i)| � n. Within these populations, selection, crossover, and mutation
are restricted to take place only in the neighborhood of a given focal individual. To
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Fig. 9.12. A population structured as a mesh. An individual and its immediate neighborhood
are highlighted

be more precise, let us describe tournament selection, the selection method of choice
in cellular populations. For example, the central individual might play a tournament
with all the neighbors and be replaced by the winner, if the latter is not itself, or we
might randomly draw a neighbor and let it play a binary tournament with the central
individual. Crossover might then be performed between the central individual and
a randomly chosen neighbor, followed by mutation of the offspring with a certain
probability. Clearly, what we describe for a single individual will have to take place
for all the individuals in the population. This, in turn, can be done synchronously or
asynchronously. In synchronous updating an intermediate grid is kept in which the
new individuals are stored at their positions as soon as they are generated. Evolution
takes place sequentially using the current-generation individuals and their fitness val-
ues. When all the individuals have been updated, the intermediate grid becomes the
new one for the next generation. In asynchronous updating, an updating order has
to be decided after which individuals are updated in that order and are integrated
into the population as soon as they are produced. In the following we will assume
synchronous updating, which is more common and easier to understand.

To better understand the nature of evolution in cellular populations, we shall
briefly discuss the takeover times generated by binary tournament selection in cellu-
lar populations as compared to panmictic ones. In the case of a cellular population
with a ring structure and with a neighborhood formed by the central individual and
its immediate right and left neighbors (see Figure 9.13), the maximum propagation
speed of the best individual depends linearly on time. This is easy to understand
considering that at time step 1 only the immediate two neighbors can be replaced in
the best case; at time step 2 the two new neighbors at the extremity of the propa-
gating front will be replaced, and so forth. In this case, which is an upper bound on
the growth speed, it is easy to write the recurrence (9.19) for the number N(t) of
individuals conquered by the best one at time step t:
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Fig. 9.13. Propagation speed of the best individual on a ring of size 1,024 using binary tour-
nament selection. The neighborhood includes an individual and its right and left neighbors at
distance one

Fig. 9.14. Propagation speed of the best individual on a torus. Selection is by binary tourna-
ment and the population size is 1,024

{
N(0) = 1,
N(t) = N(t− 1) + 2r,

(9.19)

where r = 1 is the radius of the neighborhood. This recurrence can be given in the
closed form N(t) = 1 + 2rt which shows the linear nature of the growth.
The two-dimensional case is treated in a similar way and gives rise to the curve of
Figure 9.14 for binary tournament selection. In spite of its “S” shape, this curve is
not a logistic. Indeed, the growth speed is bounded by a quadratic expression. Before
the inflection point, the curve is convex, while after that point the population starts to
saturate and the trend is reversed, following a concave curve. This behavior can be
understood from Figure 9.15 in which neighbors are replaced deterministically, i.e.,
with probability one, by the best individual in each time step. We see in the figure
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that the perimeter of the propagating region grows linearly, which means that the
enclosed area, which is proportional to the population size, grows at quadratic speed.

Fig. 9.15. Illustration of the maximum growth rate of the best individual in a grid-structured
population

We thus come to the conclusion that the selection pressure is lower on rings
than on grids, and both are lower with respect to well-mixed populations. Numerical
simulations do indeed confirm these results, as can be seen in Figure 9.16. This
result offers a rather flexible method for regulating the selection pressure by varying
the ratio of the lattice diameter to the neighborhood diameter and the adjustment can
also be made dynamically adaptive and performed on the fly.

Fig. 9.16. Numerical simulation of the growth speed of the best individual in a ring (left), a
torus (middle), and a panmictic population, all of the same size

In practice, cellular evolutionary algorithms have been mainly used with popu-
lations structured as meshes, because rings, although easy to deal with, have a very
slow evolution speed. It is also worth noting that cellular structures are very well
suited for parallel computation, either by decomposing the grid and having different
machines in a cluster compute each piece independently, or by using modern graph-
ical processing units (GPUs) to compute each new cell in parallel in data-parallel
style. The first solution only requires the boundary of the subgrid to be commu-
nicated to other processors at the end of each generation step, while GPUs allow
an even simpler implementation and have an excellent cost/performance ratio. To
conclude this part, we remind the reader that much more detailed descriptions of
multipopulation and cellular evolutionary algorithms can be found in [79, 4].

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

B
es

t I
nd

iv
id

ua
l C

op
ie

s

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

B
e
s
t 
In

d
iv

id
u
a
l 
C

o
p
ie

s

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

900

1000

Time Steps

B
e
s
t 
In

d
iv

id
u
a
l 
C

o
p
ie

s



166 9 Evolutionary Algorithms: Extensions

9.6 Representation and Specialized Operators

The efficiency of an EA depends on several factors, but one of the most important is
the individual representation adopted. We have already seen in the last chapter that
a good encoding for the real numbers can make a big difference in the efficiency
of the optimization of mathematical functions. We have also hinted at the fact that
a critical choice in GP is the determination of the primitives that are going to be
used. And the idea can be extended, in a different way, to other optimization do-
mains, especially combinatorial optimization. Thus, it is always worth trying to use
an adapted data structure to represent the individuals. For example, as far as possi-
ble, the representation and the genetic operators should be matched in such a way
that they can only produce admissible solutions. This is sometimes a difficult goal to
achieve, especially in combinatorial optimization where several choices are equally
good a priori. In fact, the problem that arises if the representation and the operators
are not matched correctly is that many solutions produced during the evolution turn
out to be non-admissible. There exist some remedies to this problem:

• the fitness of non-admissible solutions can be penalized in order to drastically
decrease their probability of being selected;

• the non-admissible solutions can be “repaired”;
• an encoding of solutions and genetic operators that can only produce admissible

solutions can be used.

Penalizing individuals that do not respect the problem constraints is a simple,
general, and useful technique but it can be costly in terms of computing, and mak-
ing viable non-viable solutions is even more expensive. The third solution is more
difficult to implement but it is surely the best. To illustrate some of the issues that
may arise when the representation is not adequate we shall make use of the travel-
ing salesman problem (TSP) once more. In this problem, computing the fitness of a
tour is trivial but producing viable tours through genetic operators is more difficult.
Indeed, what follows applies to the TSP but similar considerations could be made on
many other combinatorial optimization problems.

A tour on the set of cities {1, 2, . . . , N} can be represented as a permutation
of these numbers. Let us take N = 8 for the sake of simplicity and consider the
following two tours:

1− 2− 4− 3− 8− 5− 6− 7

1− 3− 4− 8− 2− 5− 7− 6

If we try to cross them over by using one-point crossover, the following situation
might present itself:

1− 2− 4 | 3− 8− 5− 6− 7
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1− 3− 4 | 8− 2− 5− 7− 6

in which case we would get the clearly non-admissible solution

1− 2− 4− 8− 2− 5− 7− 6

Therefore, standard crossover cannot work with the permutation representation
since offspring will be non-admissible in most cases. However, one can search for
other non-standard genetic operators that do not have this drawback. For instance, an
operator that does work with the permutation representation is the random displace-
ment of a city in the list:

1− 2− 4− 3− 8− 5− 6− 7 → 1− 4− 3− 8− 2− 5− 6− 7

Another popular operator that always generates a valid tour selects a subtour and
reverses the sequence of cities in the subtour:

1− 2− 3− |4− 5− 6| − 7− 8 → 1− 2− 3− |6− 5− 4| − 7− 8

If we really want to use crossover on two tours T1 and T2 represented by permu-
tations of cities, the following method produces a viable offspring:

T1 = 1− 4− |3− 5− 2| − 6− 7− 8

T2 = 1− 3− 2− 6− 4− 5− 7− 8

The section between the random cut points in parent T1 is transferred to the
offspring T3; then the cities of parent T2 that are not already present in the offspring
are inserted in succession:

T3 = 3− 5− 2− 1− 6− 4− 7− 8

One can also make use of representations other than permutations. For example,
the adjacency representation encodes a tour as a list of N cities. In the list, city k
is at position i if there is a connection between city k and city i. For example, the
following individual

(2 4 8 3 6 1 5 7)

corresponds to the tour

1− 2− 4− 3− 8− 7− 5− 6

Standard crossover does not work with this representation but there are other
ways of recombining tours. For example, to obtain a new tour starting from two
parent tours, one can take a random edge from the first parent, then another from
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the second parent, and so on, alternating parents. If an edge introduces a cycle in a
partial tour, it is replaced by a random edge from the remaining edges that does not
introduce a cycle.

The examples presented above were selected to illustrate the problems that may
arise from a bad choice of a representation and some ways of fixing them. We hope
that the reader has been convinced by these few examples that the issue is an im-
portant one in EAs and that it must be taken into account when implementing an
algorithm. In the end, however, even if the representation and the associated varia-
tion operators are correct in the sense of always producing admissible solutions, it
does not mean that the EA will solve the problem efficiently. In fact EAs are probably
not the first choice for solving TSP problems. Other metaheuristics and approaches
based on more classical techniques have proved to be superior in general.

9.7 Hybrid Evolutionary Algorithms

Evolutionary algorithms are very general and flexible and can be applied to many
different search and optimization problems. However, this generality is paid for in
terms of efficiency and precision. It appears that EAs are very good at finding good
regions of the search space but they have some trouble rapidly converging toward the
best solutions. This behavior is partly due to the stochastic nature of EAs and, intu-
itively, calls for adding a local search phase around good solutions in order not to lose
them by jumping far away with crossover or mutation. This algorithmic schema has
indeed been frequently used, configuring what can be called a hybrid evolutionary al-
gorithm. To give an example, in the MaxOne problem of the previous chapter, when
we approach a good solution a random bit mutation makes it difficult to progress,
i.e., mutating a 0 into a 1, given that the opposite mutation has the same probability.
Clearly, hill climbing in which a mutation is accepted only if it increases the fitness
would be more efficient at this point. The example is not really well chosen because,
from the start, hill climbing is a better search method in this problem, but the idea
is to illustrate how local search may help an EA to find good solutions. The gen-
eral schema of a hybrid evolutionary algorithm can be described by the following
pseudo-code:

generation = 0
Initialize population
while not termination condition do

generation = generation + 1
Compute the fitness of each individual
Select individuals
Apply genetic operators to selected individuals
Perform local search

end while

After the local search phase, the new solutions may replace the solutions from
which local search started or not. In the first case, the algorithm is called “Lamar-
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ckian,” meaning that the solutions obtained with local search are incorporated in
the population, symbolically keeping the “new genes” that have been obtained by
learning. Of course, modern molecular biology denies the possibility of genetically
transmitting acquired traits, but EAs need not be faithful to biology and can include
this kind of evolution. In the second case, we take into account the fitness of the new
solutions in terms of optimization obtained by local search, for example by keeping
track of a few current best solutions, but they are not incorporated into the population.
Other forms of hybridization are possible too. For example, if we could somehow ob-
tain solutions of rather good quality by another quick method, we could start from
those in the EA, instead of generating them randomly; or we could seed the initial
population with a fraction of those solutions. This might speed up convergence of the
EA but there is also the danger of premature convergence toward a local optimum
due to early exploitation.
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Phase Transitions in Combinatorial Optimization
Problems

10.1 Introduction

The goal of this chapter, which is based on reference [63], is to better characterize
the nature of the search space of particular problems where the number of optimal
solutions, and the difficulty of finding them, varies as a function of a parameter that
can be modified at will. According to the value of the parameter, the system goes
from a situation in which there are many solutions to the problem to a situation in
which, suddenly, there are no solutions at all. This type of behavior is typical of phase
transitions in physics and the term has been adopted in the computational field by
analogy with the physical world. In fact, there are many natural phenomena in which
some quantity varies wildly, either continuously or discontinuously, at critical points
as a function of an external parameter. For instance, the volume of a macroscopic
sample of water varies discontinuously when the temperature goes from positive to
negative, during the phase transition from the liquid phase to the solid phase, that
is, when water freezes. We will also see that the phase transition concept applies as
well to the behavior of a given metaheuristic itself. For small size N problems the
solution is quickly found in timeO(N), but if the size increases the complexity may
quickly become exponential.

This chapter has a different flavor from the rest of the book as it provides a view
of complexity that comes from a statistical mechanics approach applied to compu-
tational problems. Although it may turn out to be slightly more difficult to read for
computer scientists, and although it applies mostly to randomly generated problem
instances, we think that it is worth the effort since it provides a statistical view of
problem difficulty that, in some sense, is complementary to the classical worst-case
complexity analysis summarized in Chapter 1.

The problem we are going to consider in this chapter to illustrate this kind of
behavior is the satisfiability problem (SAT) in Boolean logic. In this problem, the
objective is to find the value of the variables in a Boolean formula that satisfy a num-
ber of given logical conditions (constraints), that is, that make the formula evaluate
to True. The following expression is an example of a formula in conjunctive normal
form, that is, a collection of clauses related by the logical ∧ (AND) operation, each
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of which is the disjunction ∨ (OR) of several literals, where each literal is either a
Boolean variable v or the negation of a variable v̄:

(x1 ∨ x3) ∧ (x3 ∨ x̄2) ∧ (x2 ∨ x̄1).

For instance, the assignments x1, x2, x3 = (0, 1, 1), and x1, x2, x3 = (0, 0, 1) both
make the formula to evaluate to 1 (True) and thus the formula is satisfiable. However,
it may happen that such a problem has no solution if there are too many constraints, in
which case the formula is said to be unsatisfiable. In this case one can ask how many
constraints are satisfied, transforming the decision problem into an optimization one
which is called MAXSAT. SAT is the prototypical NP-complete problem having
exponential complexity (see chapter 1) except when there are only two variables
per clause (2-SAT). The interested reader is referred to [76, 59, 17, 43, 2, 23] for
further discussions. In what follows we are going to study in detail a particular case
of the satisfiability class of problems to illustrate the kind of phenomena that may
appear.

10.2 The k-XORSAT Problem

The XORSAT problem is a particular satisfiability problem in which the Boolean
variables are combined only using the logical operator XOR or, in an equivalent fash-
ion, by addition modulo 2. In this arithmetic modulo 2, the constraints, also called
clauses, are built with the XOR operation and can be expressed by linear equations.
For instance, the problem below is a XORSAT problem with three constraints:x1 + x2 + x3 = 1

x2 + x4 = 0
x1 + x4 = 1

(10.1)

where the + sign stands for the addition modulo 2, i.e., the XOR logical operation.
The variables xi are Boolean, meaning that xi ∈ {0, 1}. Such a system is said to be
satisfiable if it has one or more solutions. In the present case, one finds by inspection
that the only two solutions are:

(x1, x2, x3, x4) =

{
(1, 0, 0, 0)
(0, 1, 0, 1)

(10.2)

It is easy to contrive a problem that has no solution. For example{
x1 + x2 + x3 = 1
x1 + x2 + x3 = 0

(10.3)

cannot be satisfied since the two constraints contradict each other. In this case the
problem is unsatisfiable and the maximum number of satisfied constraints is one.

In general, a XORSAT problem can be solved by using Gaussian elimination (in
modulo 2 arithmetic) in time O(N3), where N is the number of variables and also



10.3 Statistical Model of k-XORSAT Problems 173

the number of equations in the system. In contrast with SAT, XORSAT problems are
thus not hard to solve.

In what follows we shall limit ourselves to the particular case of k-XORSAT prob-
lems. Let us denote by N the number of variables xi ∈ {0, 1}, i = 1, . . . , N , and let
M be the number of equations (or constraints) to be satisfied. If the M equations all
contain exactly k variables among the N possible ones, we say that the problem is
of type k-XORSAT.

10.3 Statistical Model of k-XORSAT Problems

Our goal is the analysis of the solution space of the k-XORSAT problems. Our ap-
proach is statistical in nature and considers a large population of problems, all having
the same N , M , and k. For each problem in the set, we shall numerically compute
whether it is satisfiable or not using Gaussian elimination. In the limit of a very large
number of problems we will thus be able to estimate the probability PSAT (N,M, k)
that a randomly generated instance is satisfiable. This probability will be evaluated
according to the standard frequency interpretation, that is, it will be the fraction of
problems that have at least one solution divided by the total number of generated
problems.

We introduce a new variable α defined as the ratio of the number of clauses to
the number of variables:

α =
M

N
(10.4)

and we consider the probability of satisfaction PSAT as a function of N and α,
PSAT (N,α) for fixed k. It is intuitive to expect that this probability should be a
decreasing function of α since increasing the number of constraints should make it
more difficult to find a solution. In fact the behavior, shown in Figure 10.1, is more
surprising than that: the drop becomes sharper as the number of variablesN increases
and, in the limit for N → ∞ and for k ≥ 2, a phase transition occurs at a critical
value αc(k) ≈ 0.9179 of the control parameter α. For α < αc all the systems are
satisfiable, while they all become unsatisfiable past this point.

To generate a random sample of k-XORSAT problems for given N , α, and k we
can proceed in two different ways.

In the first method we choose uniformly at random k distinct indices among the
N and a Boolean ν, thus generating the equation

xi1 + xi2 + . . .+ xik = ν (10.5)

where i1, i2, . . . , ik are the k randomly chosen indices. The procedure is repeated
M times to obtain an instance of the problem with M constraints. Clearly, there is
the risk that several equations will be the same if the same sequence of indices is
drawn more than once, or even contradictory if, in addition, the second member ν is
different. This is the method that has been used to produce the curves in Figure 10.1.
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Fig. 10.1. Typical phase transition behavior for the satisfaction probability as a function of
the clauses to variables ratio α = N/M . As the number N of variables xi increases and α
reaches the critical value 0.9179, the curve PSAT goes in an increasingly steeper way from 1,
where formulas are typically easily satisfiable, to 0, where there are no solutions. The curves
have been obtained through Gaussian elimination for k = 3, N = 1,000 and N = 200 and
they represent averages over 100 randomly generated problems

Another approach for generating the statistical sample is to consider all the pos-
sible equations with k variables among theN . Moreover, since there are two ways of
choosing the right-hand side of an equation (0 or 1), the number of possible equations
is given by

H = 2

(
N
k

)
(10.6)

Each one of these H equations is then selected with probability p = M/H which in
the end will give pH = M equations in the system on average.

For both sampling methods proposed, the process is repeated a sufficient number
of times N � 1 in order to correctly sample the space of possible problems. The
probability PSAT is defined according to these ways of generating the k-XORSAT
problems.

10.4 Gaussian Elimination

As a reminder, and in order to introduce a number of notions that will be used in
the sequel, this section illustrates the well known Gaussian elimination procedure for
solving systems of linear equations. Given the form of a XORSAT problem, Gaussian
elimination is well suited for the task, as we saw above.

As an example, consider the 3-XORSAT system below, which has been randomly
generated and contains N = 10 variables and M = 8 equations.
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0 0 0 1 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 0 1
1 1 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0
0 0 1 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0 1





x0
x1
x2
x3
x4
x5
x6
x7
x8
x9


=



1
1
1
1
1
0
1
1


(10.7)

Gaussian elimination consists of performing a series of operations on the matrix
of coefficients in such a way that the initial system of equations is transformed into
an equivalent one. The latter is obtained by replacing certain equations with a linear
combination of the others. We proceed in the following way: we consider the column
j1 that contains the first 1 on the first matrix line. We add this line to all the other
lines that have a 1 in the same column position j1 and we do the same on the right-
hand side of the equation. Since we work here in modulo 2 arithmetic, the result of
the operation is that column j1 contains only one 1, on line 1. We repeat the same
procedure for each of the remaining lines and, as a result, a different column with
only one 1 is created for each line. Iterating this procedure on the above system, one
gets the following transformed system:



0 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 1 0 0 1
1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1





x0
x1
x2
x3
x4
x5
x6
x7
x8
x9


=



0
1
1
0
1
1
0
0


(10.8)

This system can also be written as

x3 = x6 + x9

x4 = x6 + 1

x5 = x6 + x9 + 1

x0 = x6

x1 = x6 + x9 + 1

x8 = x9 + 1

x2 = 0

x7 = x9

(10.9)
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where we have kept the ordering given by the original equations instead of number-
ing them according to the variable number. From the above formulation the solution
of the system is apparent. There are eight constrained variables, that is, x3, x4, x5,
x0, x1, x8, x2, and x7, whose values are determined by the two free variables x6
and x9. These free variables can take any value in {0, 1}, giving here four possible
solutions. The system is thus clearly satisfiable. Interpreting variables as bit strings,
the four solutions are generated by x6x9 ∈ {00, 01, 10, 11}. For x6x9 = 10, the
solution is x3x4x5x0x1x8x2x7 = 10010100. The set of solutions can be graphically
represented by placing the numbers x6x9 expressed in decimal on the x axis and the
corresponding number x3x4x5x0x1x8x2x7 on the y axis, also in decimal notation.
In the present case we obtain

x6x9 = 0→ x3x4x5x0x1x8x2x7 = 108

x6x9 = 1→ x3x4x5x0x1x8x2x7 = 193

x6x9 = 2→ x3x4x5x0x1x8x2x7 = 148

x6x9 = 3 → x3x4x5x0x1x8x2x7 = 57

(10.10)

This representation will be used in Figure 10.7.
In Gaussian elimination one does not always obtain a matrix in which all lines

and columns are non-zero. A column j with all zeroes indicates that the xj variable
does not appear in the system. A line i with all zeroes indicates that equation i is a
linear combination of other lines, if the right-hand side is also zero. We then get a
“0 = 0” equation, which gives no information. On the other hand, if the right-hand
side is different from zero we get an equation of the type “0 = 1,” which indicates
a non-satisfiable system. The number of “0 = 1” equations obtained after Gaussian
elimination gives the minimal “energy” of the system.

10.5 The Solution Space

In this section we look at the k-XORSAT problem’s solution space for k = 1, 2, and
3. For these k values it is possible to obtain analytical results that show the presence
of the phase transition mentioned at the beginning of the chapter [63]. Here we shall
only outline the main results, avoiding complicated mathematical derivations; the
reader wishing to know the details is referred to [63].

10.5.1 The 1-XORSAT Case

This simple case is not interesting in itself as a satisfiability problem but it allows us
to illustrate the probability concepts introduced in this chapter in a straightforward
way. Here is an example of a 1-XORSAT problem
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. . .

xiM = νM

(10.11)

with ik ∈ {1, 2, . . . , N}. A system like this one is satisfiable if no xi appears more
than once in the constraints list. If it appears more than once, then the right-hand
sides must be equal, otherwise we face a contradiction.

The probability P that we never draw the same variable twice when we randomly
draw M equations is equal to

P = 1×
(

1− 1

N

)
×
(

1− 2

N

)
× . . .×

(
1− M − 1

N

)
= ΠM−1

i=0

(
1− i

N

)
(10.12)

Indeed, the first variable can be chosen in N different ways and so its probability
is N/N = 1. For the second draw, since one variable has already been chosen, there
areN−1 possible choices out ofN , which gives a probability (N−1)/N = 1−1/N .
For the third draw, since two variables have already been chosen, the probability is
(N − 2)/N = 1 − 2/N , and so on until all the M variables have been drawn. An
alternative view is that for the first draw any choice is possible; for the second draw
the probability of not choosing the variable drawn first is the total probability minus
the probability corresponding to the draw of a single variable out ofN , i.e., 1−1/N ,
and so on. Interestingly, this problem is equivalent to the birthday problem, that is,
the one that calls for finding the probability that, among M persons, no two persons
have their birthday the same day, with N = 365 days.

The probability PSAT that the system (10.11) has a solution is strictly greater
than P since there are cases in which we draw the same variable and the same right-
hand side ν twice. Therefore

PSAT > P

P can be estimated by taking logarithms in equation 10.12

logP =

M−1∑
i=0

log

(
1− i

N

)
(10.13)

But log(1− x) = −x+ x2/2 + . . ., which gives

logP = −
M−1∑
i=0

i

N
+
M−1∑
i=0

i2

2N2
+ . . . (10.14)

Now, for N sufficiently large with respect to M , we have M/N � 1 and the domi-
nant term in the sum will be

logP = −M(M − 1)

2N
+O

(
M3

N2

)
(10.15)

because
∑M−1
i=0 i = M(M−1)

2 by the arithmetic summation formula. Therefore
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PSAT > P ≈ exp

(
−M(M − 1)

2N

)
≈ exp

(
−α

2N

2

)
(10.16)

where α = M/N . From the last equation we see that in order to have a constant
satisfaction probability, M2/N has to be constant. In other words, if we increase
the number of variables by a factor of 100, then an increase by a factor of 10 in the
number of equations will give rise to the same probability of satisfaction, i.e., to the
same average problem difficulty. Figure 10.2 depicts the behavior of P as a function
of α for N = 10 and N = 50. We see that P tends to zero more rapidly with in-
creasing N but its value at α = 0 is non-vanishing. There is a phase transition for
a critical value αc(N) that tends to zero when N tends to infinity. The phase transi-
tion becomes crisp only in this limit; for finite-size systems, the transition between
the satisfiable and unsatisfiable phases is smoother, as hinted at in the figure. As a
consequence, there is an interval of α values for which 1-XORSAT problems have
an intermediate probability of being satisfiable.

Fig. 10.2. Estimated satisfaction probability for 1-XORSAT as a function of α from equa-
tion (10.16). The continuous line corresponds to N = 10, the dotted line is for N = 50

10.5.2 The 2-XORSAT Case

We now look at the 2-XORSAT case. The M equations that make up the system
are of the following form:

xi1 + xi2 = ν (10.17)

where i1, i2 ∈ {1, . . . , N} and i1 6= i2.

0 1
alpha

0

2

P
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We can represent such a system by a graph that has the N variables as vertices.
If two vertices, i.e., two variables, appear in the same equation they are joined by
an edge with a label given by the ν value. Thus, the graph corresponding to a 2-
XORSAT problem will have M = αN edges, that is as many edges as there are
equations.

To illustrate, the system x1 + x3 = 0
x2 + x3 = 1
x3 + x4 = 0

(10.18)

can be represented by the graph of Figure 10.3.

Fig. 10.3. Graph representation of the 2-XORSAT system in equation (10.18)

If the graph thus obtained is a tree, as in Figure 10.3, or a forest, that is a set
of disjoint trees, it is easy to see that the system is satisfiable. Indeed, it suffices
to arbitrarily choose the value of any leaf of the tree, and to attribute the following
variable values depending on the edge value: if the edge is labeled 0, the two incident
vertices will have the same value; if its value is 1, the opposite value. This procedure
is illustrated in Figure 10.4.

Fig. 10.4. Step-by-step construction of the solution by assigning an arbitrary value to a tree
leaf

On the other hand, if the system of equations gives rise to a graph that contains
cycles, satisfiability is not guaranteed. For an example, see Figure 10.5, which cor-
responds to the following system

x1

x2

x3

x4

0

1 0

x1

x2

x3

x4

0

1 01
x1

x2

x3

x4

0

1 01

1

x1

x2

x3

x4

0

1 01

1

0 1
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x1 + x2 = 1
x2 + x3 = 1
x3 + x4 = 0
x4 + x1 = 0

(10.19)

In this example there are two solutions. If one starts by attributing an arbitrary
0/1 value to a vertex belonging to the cycle and then one travels along the cycle, the
previous value is reversed if the arc is labeled 1, while it is the same if the label is 0.
Therefore, when the loop is closed, the solution is consistent if the number of edges
labeled 1 traversed is even. This is the case in Figure 10.5 and the cyclic path gives

x2 = x̄1 x3 = x̄2 = x1 x4 = x3 = x1 x1 = x4 = x1 (10.20)

which is consistent for any value of x1.

Fig. 10.5. A 2-XORSAT example that gives rise to a cycle

Given that the number of 1 labels on a cycle is either even or odd, the probability
that a cycle is satisfiable is 1/2. Therefore, the question of the satisfiability of a
2-XORSAT problem boils down to the estimation of the probability that a random
graph has cycles with an odd number of edges of value 1. This depends on the number
of edges in the graph. The more arcs there are, the greater the risk that there is a non-
satisfiable cycle.

In the above graphical construction of 2-XORSAT systems the probability of
choosing any given variable is 1/N . Likewise, the probability that the same variable
is at the other end of the edge is also 1/N . Thus, with M randomly drawn edges, the
average degree of each vertex in the graph is M(1/N + 1/N) = 2α.

Random graphs have been investigated by Erdös and Renyi among others and
their properties are well known (see, e.g., [16] and references therein). Some of the
most important ones can be summarized thus:

• If 2α < 1 the 2-XORSAT system graph is essentially composed of independent
trees. This is understandable for, if 2α < 1, there is on average less than one edge
per vertex and thus a low probability of having a cycle.

x1

x2

x3

x4

1 0

1 0

1

0

1

1
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• if 2α > 1, the graph possesses a giant component that contains O(N) vertices.
There are many cycles and the probability that there exists a solution decreases
with increasing N .

From these observations we can conclude that the satisfiability of a problem
changes for a critical value of αc = 1/2. In fact, if α is small the problem is al-
most surely satisfiable. When α approaches 1/2 PSAT slowly decreases at first, and
then more quickly in the vicinity of α = 1/2. For α > 1/2 the probability that the
problem is satisfiable tends to 0 as N →∞. The relation PSAT as a function of α is
illustrated in Figure 10.6 (see [63] for the mathematical details).

Fig. 10.6. Probability of satisfiability of a 2-XORSAT problem as a function of α in the limit
for N →∞. See [63] for details

10.5.3 The 3-XORSAT Case

3-XORSAT problems are constituted by M equations of the form

xi1 + xi2 + xi3 = ν

where each equation contains three distinct variables among the N total variables.
If some variables only appear in one equation in the system of equations the

problem can be simplified. For instance, if x0 only appears in the equation

x0 + xi + xj = ν

we can conclude that

0.0 0.5
alpha

0

2

P
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x0 = ν + xi + xj

thus eliminating the variable x0 and the corresponding equation. The process is an it-
erative one in the sense that after a variable and equation elimination, other variables
may appear in only one equation and be eliminated as well. The following example
shows this: x1 + x2 + x3 = ν1

x2 + x4 + x5 = ν2
x3 + x4 + x5 = ν3

(10.21)

The x1 variable is eliminated first by solving x1 = ν1 + x2 + x3. We are then left
with two equations {

x2 + x4 + x5 = ν2
x3 + x4 + x5 = ν3

(10.22)

in which we can eliminate x2 and x3. As a result, there are no equations left and we
conclude that the problem is satisfiable; in fact, we can choose any values for x4 and
x5.

In a general way, through this iterative elimination procedure the original prob-
lem S is reduced to a smaller problem S′. In the limit of large N one can show [63]
that with high probability S′ is empty if

α < αd = 0.8184 (10.23)

and therefore the problem is satisfiable. For

αd ≤ α < αc = 0.9179 (10.24)

it turns out that S′ is not empty but solutions may still exist. In contrast, for α > αc
there are no solutions and the problem becomes unsatisfiable with high probability
for N → ∞. There is thus a hardness phase transition for α = αc = 0.9179, as
shown in Figure 10.1.

In addition to showing the phase transition from states in which solutions exist
with high probability to states in which the system is unsatisfiable, it is also of interest
to investigate the structure of the search space, that is, how solutions are distributed
in the N -dimensional hypercube describing the set of all possible xi values. What is
found (see [63]) is that, for α < αd = 0.8184, solutions are uniformly distributed
in the hypercube. In contrast, for αd ≤ α < αc = 0.9179, solutions are clustered
without connections between the clusters. There is thus another kind of transition,
this time in the solution space structure: instead of having solutions that become
increasingly rare in a homogeneous fashion with increasing α, we find for α = αd
a discontinuous rarefaction of solutions. This is illustrated in Figure 10.7. In this
figure, two 3-XORSAT systems are considered, with N = 50 and M = 30 and
M = 40, which gives α = 0.6 and α = 0.8 respectively. These two linear systems
have been solved by Gaussian elimination as explained in Section 10.4. Figure 10.7
shows all the solutions of these two systems. On the x-axis all the values of the bit
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string xi1xi2 . . . xin are reported in decimal, the xi` being the free variables. On the
y-axis the constrained variables xj1xj2 . . . xjm are reported, also in decimal format.
We refer the reader to Section 10.4 for an example of this type of representation.
Here, what we wanted to point out is the phase transition in the structure of the
solution space.
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Fig. 10.7. An example of structural phase transition in the solution space of a 3-XORSAT
problem for the different difficulty regimes: in the left image α < αd, in the right image
αd ≈ α < αc. One can see a transition from a situation with solutions homogeneously
distributed in space to a situation in which solutions tend to form clusters on a global scale.
For α > αc the system becomes unsatisfiable and there are no solutions at all in the space

10.6 Behavior of a Search Metaheuristic

In this section we will look at the behavior of a metaheuristic for solving 3-
XORSAT problems. We recall that 3-XORSAT problems can be solved by Gaus-
sian elimination, which takes polynomial time. Therefore, there is no need to use a
metaheuristic to know whether a given problem instance is satisfiable or not. How-
ever, if a problem is non-satisfiable, an optimization metaheuristic will tend to min-
imize the number of non-satisfied constraints. It is interesting to watch the behavior
of such a metaheuristic according to the problem difficulty as specified by the α pa-
rameter value. As one would expect, when solutions become rare, the metaheuristic
will be less and less effective at finding them. Indeed, we shall see that there can be
a phase transition linear/exponential in the mean time complexity.

10.6.1 The RWSAT Algorithm

The algorithm called “Random Walk SAT” (RWSAT) was proposed in 1991 by C.
Papadimitriou to solve 3-XORSAT problems using a simple metaheuristic. The
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idea is to choose a random variable assignment of the N variables and, while there
are unsatisfied equations, pick any unsatisfied equation and flip a random variable in
it. This will satisfy the corresponding equation but other equations that were previ-
ously satisfied may become unsatisfied. The process is repeated until either all the
equations are satisfied, or a prescribed number of iterations t has been reached.

The algorithm can easily be described in pseudo-code form. We first define a
quantity E which equals the number of non-satisfied equations. The objective of the
algorithm is to minimize E. In a physical interpretation, E would represent a kind
of system energy which corresponds to the cost of having unsatisfied equations. The
optimal situation obviously corresponds to no unsatisfied equation, i.e., to E = 0.
The pseudo-code of the algorithm follows:

initialize all N variables at random
compute E
t=0
while(E>0 and t<max)

choose at random a non-satisfied equation
choose at random one of its k variables
change the value of that variable to its complement
compute E
t=t+1

end while
print E, t

One might ask how long it would take to conclude that the problem is unsatisfi-
able (UNSAT) if E > 0 and that the result is not simply due to bad luck. Actually,
as we know from previous chapters, nothing guarantees a priori that, if a solution
exists, this metaheuristic will find it in finite time. However, it can be shown that if
we iterate the algorithm T times, each time with max= 3N , if no solution has been
found during the T repetitions, the probability that the problem is satisfiable is

PSAT ≤ e−T( 3
4 )
N

(10.25)

We now look at the behavior of RWSAT for different values of α = M/N . In
particular, we want to investigate how e = E/M varies as a function of the iteration
number t. In Figures 10.8 and 10.9 (blue curve) we see that for small α the energy
decreases toward E = 0 with increasing t (blue curve), meaning that a variable
assignment that satisfies the formula has been found.

For higher values of α (Figure 10.9, red curve), E starts decreasing in a similar
way but the solution condition E = 0 is not attained. Instead, E(t)/M oscillates
about a plateau value ep > 0. Only a larger random fluctuation may make E(t) go to
zero. But it is also seen in Figure 10.9 that the amplitude of the fluctuations decreases
with increasing N , which implies that the probability that RWSAT produces a large
enough fluctuation to reach E = 0 tends to zero for N →∞.

The behavior described above can be quantified by measuring the average time
〈Tres〉 the RWSAT algorithm needs to solve a sample of randomly generated 3-
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α<1/3

  M=100
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1
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RWSAT algorithm

Fig. 10.8. RWSAT behavior on a 3-XORSAT problem with α = 0.1, α = 0.2, and α = 0.3.
The indicated T value when the energy goes to zero gives the resolution time for each problem

Fig. 10.9. Typical behavior of RWSAT on a 3-XORSAT problem with α > 1/3. Blue curve:
α = 0.35; red curve: α = 0.40. The indicated T values give the respective resolution times

XORSAT instances, time being counted here as the number of iterations. For a sam-
ple size of 100 systems, we obtain the typical behavior shown in Figure 10.10. For
a given α close to 1/3 one sees that the resolution time increases in a dramatic way,
probably exponentially, since simulations become prohibitively lengthy and cannot
be run in reasonable time.

In reference [63] the above behavior is described by introducing a new critical α
value called αE :

α>1/3N=500    M=200

T

N=1,000    M=350

T0 11,000
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0

1

E
/M

RWSAT algorithm, k=3



186 10 Phase Transitions

α1/30 1
0

80,000

re
so

lu
ti

o
n
 t

im
e

RWSAT algorithm, k=3

Average over 100 systems

N=1,000

Fig. 10.10. RWSAT average solution times on 3-XORSAT problem instances as a func-
tion of α for instance size N = 1,000. The average is taken over 100 randomly generated
instances. Note the sudden increase of solution time when α > 1/3

• If α < αE = 0.33 then ep = 0 and solution time increases linearly with the
problem size N : 〈Tres〉 = Ntres, where tres is a factor that increases with α.
This linear behavior is illustrated in the left part of Figure 10.11.

• If αE ≤ α < αc then ep > 0 and solution time becomes exponential in N :
〈Tres〉 = A exp(Nτres), where A is a coefficient and τres is a factor that grows
with α, as seen in the right part of Figure 10.11.

We therefore have a new phase transition, this time for the time complexity of
the algorithm.

The slopes of the straight lines

log(〈Tres〉) = log(A) +Nτres

shown in Figure 10.11 suggest here that A(α = 0.4) = 102.43, τres(α = 0.4) =
0.0018 and A(α = 0.5) = 102.02, τres(α = 0.4) = 0.015.

10.6.2 The Backtracking Algorithm

The reason why the RWSAT metaheuristic finds it increasingly difficult to discover
a solution as α increases is related to the rarefaction of solutions in the search space,
and also to the fact that an increasing number of clauses contain the same variables,
creating conflicts when a variable is modified by RWSAT.

It is interesting to consider another well-known algorithm for the k-XORSAT
problem: backtracking. Backtracking is an exact algorithm, not a metaheuristic. It
systematically explores the search space and always finds the existing solutions if
the problem is small enough to allow such an exhaustive exploration. Backtracking
is a general algorithmic method that applies to many problems of different natures.
The specificity of backtracking is in the stopping criterion: if a partial solution has no
chance of success, we must back up and reconsider the earlier choices, to continue the
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Fig. 10.11. Mean solution times for RWSAT. Measured points are shown, as well as their linear
fits. Left image: illustration of RWSAT’s O(N) mean complexity growth for α < 1/3. Right
image: beyond α = 1/3 RWSAT’s mean complexity increases exponentially, in agreement
with 〈Tres〉 = exp(Nτres). To better appreciate the exponential behavior, log10〈Tres〉 is
represented as a function of N , giving a straight line in this semi-logarithmic plot

process until either a solution is found, or all the possibilities have been exhausted.
We shall see by numerical experimentation that if α goes beyond a threshold the size
of the space that has to be searched grows abruptly.

The 3-XORSAT problem can be solved by backtracking in the following way.
The binary variables xi are progressively assigned according to a binary tree that is
traversed in depth-first fashion. For instance, one can start by attributing the value
0 or 1 to x1. Suppose we choose 1 and then go on to the assignment of the value
of x2. Here too two values are possible. Let’s assume that 1 is chosen, i.e., x2 = 1.
The process continues with the remaining variables and, in each step, we check that
the equations for which the variable values are known are satisfied. If we face a
contradiction, we change the last assigned variable from 1 to 0. If, again, there is a
contradiction, we back up one more step and so on until we find a partial variable
assignment x1, . . . , xi that is compatible with the system equations. At this point, we
assign the following variable xi+1 starting with the value 1 and continue the process
in a recursive manner. We note that, in each step, before checking the termination
criterion, we can also assign all the variables that belong to equations where the
other two variables are known. The backtracking algorithm finds a solution only if
the equations are satisfiable; otherwise it can be concluded that the problem is unsat-
isfiable. Thus, the algorithm is a complete one, always providing the exact answer.

The performance of the algorithm can be measured by the number of search
tree nodes that the backtracking procedure generates before either finding a solution,
i.e., a complete assignment of xi, i = 1, . . . , N that verifies the M equations, or
concluding that no solution exists. Again, we observe a threshold behavior typical of
phase transitions. Beyond a critical value αE1, the backtracking algorithm spends a
time which is exponential in N to solve the problem, while for α < αE this time is
linear [63]:

1 This value is not the same as the one found for RWSAT.
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〈Tres〉 =

{
Nt if α < αE

exp (Nτ) if α > αE
(10.26)

This behavior is illustrated in Figure 10.12, which shows the number of nodes ex-
plored by backtracking as a function of α. We see that the maximum times are found
around α = αc, beyond which the 3-XORSAT problems become unsatisfiable in
the limit for N → ∞. For α > αc we note that the time taken by the backtracking
algorithm decreases. This is simply due to the fact that in this region, the larger α is,
the sooner the algorithm will realize that there are no chances of finding a solution
and the stopping function will be activated, avoiding the generation of many search
tree nodes. We note also that in the non-satisfiable phase τ ∝ 1/α.
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Fig. 10.12. Median value of the number of nodes explored by the backtracking algorithm to
solve 3-XORSAT problems with N variables and α = M/N , where M is the number of
equations. The algorithm terminates either when a solution is found or when all possibilities
have been exhausted

Another way to understand the reason for the computational phase transition
is given by the analysis of the path taken on the search tree by the backtracking
algorithm. Figure 10.13 shows that in the linear phase the algorithm does little or no
backtracking: only a small part of the tree is explored since there are many solutions
and it is easy to find one of them. In contrast, in the exponential-complexity phase
a large part of the whole tree, which contains 2N nodes in total, must be generated
before finding a solution or deciding that there is none.
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The αE value depends of the way the variables xi are assigned at each tree level.
If the assignment is done in the order specified by the variables’ indices then in
reference [63] it is shown that

αE = 2/3

But if one is more clever and first assigns the variables that appear in the equations
that still contain two free variables, then it is found numerically that

αE = 0.7507

N=15 M=5 k=3

N=15 M=10 k=3

Fig. 10.13. Typical backtracking path on the search tree as a function of α. Left side: a small
value of α = 1/3; right side: larger value of α = 2/3. There is a phase transition between a
regime in which a solution is found with a short exploration, and a regime in which a signifi-
cant fraction of the search tree must be explored

From the computational point of view, we thus remark that algorithms such as
backtracking and a metaheuristic such as RWSAT also show a phase transition in
their ability to solve a 3-XORSAT problem. The “easy” phase is characterized by
a linear computing time in the problem size, while the “hard” phase requires a time
that is exponential in the problem size. The α values that define these transitions are
lower than the theoretical values αc and αd, and they have a strong dependence on
the algorithm considered.
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Performance and Limitations of Metaheuristics

11.1 Empirical Analysis of the Performance of a Metaheuristic

In contrast with exact algorithms whose worst-case time complexity is known (see
Chapter 1), metaheuristics do not provide that kind of bound. They can be very ef-
fective on a given instance of a problem and, at the same time, show long running
times on another without finding a satisfactory solution. On the other hand, for ex-
ample, the selection sort algorithm could spend different amount of time on an al-
ready sorted list, and on a list sorted in the opposite order, but we know that, on any
list permutation, its time complexity function T (n) will be bounded by a second-
degree polynomial and the list will be sorted correctly. However, for hard problems
of increasing size such guarantees are useless in practice since the problems become
intractable. This was exactly why we looked at metaheuristics as a generally efficient
way of tackling hard problems. As we remarked in Chapter 1, more rigorous meth-
ods giving performance guarantees do exist for difficult problems but they are not as
general and easy to apply.

In the case of metaheuristics, the hope is clearly to get polynomial-time-boun-
ded computations for difficult problems, but we cannot be sure that this will be the
case; moreover, we have no guarantee that the solution found will be globally op-
timal either, or at least of high quality. The computing time can vary depending on
the problem, the particular instance at hand, the chosen metaheuristic and its parame-
ters. In addition, almost all the metaheuristics illustrated in this book employ random
choices, which means that the computing time, as well as the solution quality, are ac-
tually random variables. The stochastic nature of most metaheuristics makes their
rigorous analysis difficult. We have seen that this kind of analysis is possible in cer-
tain cases such as evolutionary algorithms or simulated annealing [8], but the results,
being in general asymptotic, are of little help.

Given these considerations, researchers have been led to take into account em-
pirical methods to measure the performance of a metaheuristic and to compare meta-
heuristics with each other. The approach is essentially based on standard statistical
methods and the goal is to be able to ensure that the results are statistically significant.
In what follows we assume that the parameters that characterize a given metaheuris-
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tic have been chosen and that they do not change during the measurement. As we
have seen in the previous chapters, correctly setting these parameters is very impor-
tant for the efficiency of the method, for example the initial temperature in simulated
annealing (see Chapter 4), or the mutation rate in an EA (Chapter 8). Usually, these
parameters are either set by using standard values that worked on other problems
or the algorithm is run a few times and suitable values are found. To simplify and
unify the treatment, here we shall assume that this choice has already been made. In
a similar vein, we will ignore more sophisticated metaheuristics in which parameters
are dynamically changed online as a result of learning during the search.
To test a given metaheuristic on one or more classes of problems, or to compare
two metaheuristics with each other, the computational experimental methodology is
much the same and goes through the following phases:

• Choice of problems and of their instances;
• Choice of performance measures and statistical analysis of the results;
• Graphical or tabular presentation of results and their discussion.

11.1.1 Problem Choice

There are fundamentally two broad classes of problems to choose from: real-world
instances that come from operations research, engineering, and the sciences, and
“synthetic” problems, which are those that are artificially constructed with the goal
of testing different aspects of search. The approach is essentially similar in both
cases; however, given the didactic orientation of our book, we shall make reference
only to constructive and benchmark problems in the rest of the chapter.

Problem-based benchmark suites are a good choice because they allow one to
conceive of problems with different features. Benchmark functions for continuous
optimization are very widely used because of the practical importance of the problem
in engineering, economics, and the sciences. These benchmarks must contain diverse
functions so as to test for different characteristics such as multimodality, separability,
nonlinearity, increasing dimensions, and several others. A recent informative review
on test functions for mathematical optimization can be found in [44]. For reasons of
space, in the rest of the chapter we will limit ourselves to combinatorial optimiza-
tion test problems. In this case, the important features that are offered in standard
repositories of problem instances such as SATLIB or TSPLIB are a range of instance
sizes, the amount of constrainedness, and the way in which the problem variables
are chosen. On the last point, and roughly speaking, there are two types of instances
in benchmark suites for discrete problems: artificially built instances and randomly
generated instances. Artificial instances can be very useful: they can incorporate cer-
tain characteristics of real-world instances, and they can also help expose particular
aspects that are difficult to find in real-life problems. Randomly generated instances
are very frequently used too, for example in SAT problems or TSP problems. They
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have the advantage that many instances can be generated in an unbiased way, which
is good for statistical analysis; on the other hand, deviations from randomness are
very common in combinatorial problems and thus these instances might have little to
do with naturally occurring problems. In any case, as we discussed above for global
mathematical optimization, we should use sufficiently varied sets of test functions,
including at least both random and structured instances, once the parameters of the
metaheuristics have been set.

11.1.2 Performance Measures

Among the most interesting data to measure about the search behavior of a meta-
heuristic we mention the computational effort, that is, the computing time, and the
solution quality that can be obtained with a given computational effort. Computing
time can be measured in two ways: either as the physical time elapsed, which is
easily recorded through calls to the operating system, or as a relative quantity such
as the number of operations executed. In optimization, an even simpler often-used
quantity is the number of objective function evaluations. Using the clock time is use-
ful for practitioners who are only interested in the behavior of a solver on a given
computer system for a restricted class of problems. However, there are several draw-
backs. Clock times depend on the processor used and also on other hardware and
software details such as memory, cache, operating system, languages, and compilers.
This makes comparisons across different systems difficult, if not impossible. On the
other hand, the number of function evaluations is system-independent, which makes
it useful for comparisons. A possible drawback of this measure is that it becomes
inadequate if the problem has a time-varying fitness function, or when the objective
function evaluation only accounts for a small fraction of the total computing time,
giving results that cannot reliably be generalized. In spite of some limitations, fitness
evaluation counts are widely used in performance evaluation measures because of
their simplicity and independence from the computing system.

We remind the reader at this point that the most important metaheuristics belong
to the class of Las Vegas algorithms, which are guaranteed to only return correct so-
lutions but whose running time may vary across different runs for the same input.
Such an algorithm may run arbitrarily long without finding a global solution. Con-
sequently, the running times, as well as the solution quality, are random variables.
To measure them in a statistically meaningful way, the algorithm must be run many
times on each given instance under the same conditions in order to compute reliable
average values. In other words, as in any statistical application, the sample size must
be large enough. In the performance evaluation domain it is considered that at least
100 executions are needed.

Several metrics have been suggested to characterize the performance of a meta-
heuristic and an established common methodology is still missing. However, there
is a general agreement on a number of fundamental measures. Here we shall present
two very common ones: the empirical distribution of the probability of solving a
given problem instance as a function of the computational effort, and the empiri-
cal distribution of the obtained solutions. The success rate, which is the number of
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times that the algorithm has found the globally optimal solution divided by the total
number of runs, is a simple metric that can be derived from the previous two and it
is often used. Clearly, it is defined only for problems of which the globally optimal
solution is known, which is the case for most benchmark problems.

11.1.3 Examples

We have already mentioned some results that are in the spirit of the present chapter in
Chapter 5 on ant colony methods, and in Chapter 9 on GP multipopulations. In order
to further illustrate the above concepts, in this section we present a couple of simple
case studies. We focus our discussion on two particular metaheuristics: simulated
annealing (see Chapter 4) as applied to the TSP problem, and a genetic algorithm
on NK problems. The latter class of problems has been already used a few times in
the book and is defined in Section 2.2.3.

From the perspective of performance evaluation, it is interesting to find the mean
computing time that a metaheuristic needs to solve problem instances of a given
class when the size N of the instance increases. Indeed, the main motivation behind
the adoption of metaheuristics is the hope that they will solve the problem in polyno-
mial time inN , whereas deterministic algorithms, essentially complete enumeration,
require exponential time on such hard problems. It would certainly be reassuring to
verify that we may actually obtain satisfactory solutions to the problem in reasonable
time, otherwise one might question the usefulness of metaheuristics.

We recall here that the RWSAT metaheuristic presented in Chapter 10 hasO(N)
complexity for “easy” problems, that is, those problems for which the ratio α of the
number of clauses to the number of variables is small. However, the complexity sud-
denly becomes exponential O(exp(N)) when α > αc, where αc is the critical point
at which the computational phase transition occurs. It is thus natural to investigate
the complexity behavior of simulated annealing and of genetic algorithms. But, as
we have already pointed out above, owing to their stochastic character, we can only
define the time complexity of metaheuristics in a statistical way. Another distinctive
point is that metaheuristics, being unable to guarantee convergence to the optimal
solution in bounded time, must have a built-in stopping criterion. For example, we
might allow a maximum of m iterations during which there are no improvements
to the best fitness found and then stop. We might therefore measure the mean time
to termination as a function of the instance size N . In this case we will not be able
to obtain any precise information about the quality of the found solution, only the
expected computational effort to obtain an answer.

Figure 11.1 shows the results obtained with simulated annealing on TSP in-
stances with a number of cities N between 20 and 50,000. For each N value, N
cities are first randomly placed on a square of given size and then an SA run is started
using the parameters proposed in Section 4.6. The movements we consider here are
of type 2-Opt. The search stops when, during the last three temperature levels, there
was no improvement of the current best solution. A priori, we have no indication of
the quality of the solution. However, we remember from Section 4.3 that the solution
found was within 5% of the exact optimum obtained with the Concorde algorithm.
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In Figure 11.1 we can see that the time to obtain a solution for the TSP problem
with random city placement grows almost linearly in the range N = 20 to N =
2,000. The curve can be fitted by the following second-degree polynomial

T (N) = 7,100×N1.14 (11.1)

Here T (N) is measured as the number of iterations of the SA run until conver-
gence. It corresponds to the total number of accepted and rejected configurations,
that is the number of fitness evaluations1. For N in the range 5,000-50,000, the com-
putational effort, T (N), is more important2. We obtain the following relation

T (N) = 35.5×N1.78 < O(N2) (11.2)

Thus, there is a change of complexity regime between small and large problems.
However, for these values of N , the complexity is less than quadratic.
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Fig. 11.1. Left image: average time complexity for simulated annealing in solving a TSP
problem with N cities randomly placed in a square of size 2 × 2. Right image: simulated
annealing performance on a TSP problem with 50 cities of which the optimal solution is
known. The SA computational effort is varied by changing the temperature schedule

Now we consider the SA performance from the point of view presented in Sec-
tion 11.1.2. The goal here is to determine the quality of the solution found with a
given computational effort. First of all, we should explain how to vary the effort of a
metaheuristic. This is easy to do by simply changing the termination condition. For
simulated annealing, it is also possible to change some parameter of the algorithm,
for example the temperature schedule, that is the rate at which the temperature T
is decreased. We remember that practical experience suggests that Tk+1 = 0.9Tk.
However, we might replace 0.9 by 0.85 for faster convergence and less precision,
1 The actual computational time varies from 0.03 to 4.3 seconds with a standard laptop.
2 The CPU time varies from 11 to 1,000 seconds on a laptop.
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or take 0.95 or 0.99 for slower convergence and better solution quality. This is the
approach adopted here.

The numerical experiment is performed on a benchmark problem of which the
globally optimal solution is known, which allows us to compare the error of the
tour returned by SA at a given computational effort with respect to the length of the
optimal tour. The problem is of size 50 cities distributed on a circle of radius one.
The optimal tour is a polygon with 50 sides and length L = 6.27905. The results are
averages over 100 problem instances that differ in their initial conditions and in the
sequence of random numbers generated.

Figure 11.1 (right) shows two indicators of performance as a function of the com-
putational effort measured as the number of function evaluations. The black curve
plots the mean error of the solution found with respect to the optimal tour of length
L = 6.27905 over 100 SA runs. It is easy to see that the precision of the answer
improves if we devote more computational resources to simulated annealing.

The points on the blue curve are estimates of the success rate, or of the probability
Pε of success on this problem if we require a precision of ε = 0.05. The Pε value is
obtained as follows for each computational effort:

Pε =
number of solutions with an error less than ε

number of repetitions
(11.3)

One can see here that the probability of a correct answer at the ε = 5% level
tends to 1 for a computational effort exceeding 2 × 106 iterations. This means that
almost all the 100 runs have found a solution having this precision. To appreciate the
magnitude of the computational effort, we may recall here that the search space size
for this problem is 50! ≈ 1.7× 1063.

Clearly, if we increased the required precision by taking a smaller ε, the suc-
cess rate would correspondingly decrease. Also, while the performance measured is
specific to this particular problem, that is, all the cities lie on a circle, the observed be-
havior can be considered qualitatively general. We should thus expect that finding the
optimum would be increasingly difficult, without adding computational resources, if
we are more demanding on the quality of the solution we want to achieve.

This is true in general whatever the metaheuristic examined. To see this, we shall
now consider the performance of a genetic algorithm in solving problems in the
NK class. As in the TSP case above, we describe first the empirical average time
complexity of a GA for an NK problem with varying N and constant K = 5.

For each N value, 500 NK problem instances are randomly generated. Periodic
boundary conditions are used in the bit strings representing configurations of the
system. The fitness of a bit string x = x0x1 . . . xN−1 of length N is given by

f(x) =
N−1∑
i=0

h(xi−2, xi−1, xi, xi+1, xi+2) (11.4)

where h is a table with 32 entries (2K in the general case), randomly chosen among
the integers 0 to 10. This allows us to generate landscapes that are sufficiently dif-
ficult but not too hard. For each of the 500 generated instances the optimal solution
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is found by exhaustive enumeration, that is, by evaluating all the 2N possible solu-
tions. The goal here is clearly to have an absolute reference for the evaluation of the
performance of the GA on this problem.

The chosen GA has a population size of 100 individuals, one-point crossover with
crossover probability 0.6, and a mutation probability of 0.01 for each of the N bits
of x. The best individual of each generation goes unchanged to the next generation,
where it replaces the worst one. We allow a maximum number of 80 generations and
we compute the computational effort as the number of function evaluations.

After each generation ` a check is made to see whether the known exact solution
has been found. If this is the case, the computational effort for the instance at hand
is recorded as 100 × `. If the best solution has not been found, the GA iteration
continues. The maximum computational effort is thus 100 × 80 = 8,000. If the
solution has not been found after 80 generations, we shall say that the GA has failed,
which will allow the computation of an empirical failure probability at the end. If the
empirical failure probability is denoted by pf , the corresponding success probability
is 1−pf . The motivation for introducing a failure probability is the observation that,
if the exact solution is not found in a reasonable number of generations, it will be
unlikely to be found later. In fact, if we increase the number of allowed generations
beyond 80, the probability of failure doesn’t change significantly. For this reason, it
is necessary to separate solvable instances from those that are not in order not to bias
the computational effort; otherwise the latter would be influenced by the choice of
the maximum number of allowed generations, which can be arbitrarily large.

Figure 11.2 depicts the results that have been obtained. Here the number of fit-
ness evaluations is the average value over all the problem instance that have been
solved optimally within a computing time corresponding to at most 80 generations.
We see that this time is indeed small when compared with the upper limit of 8000
evaluations.

We also remark that the empirical average computational complexity grows es-
sentially linearly, which is encouraging, given that NK landscapes have an expo-
nentially increasing complexity. On the other hand, it is also seen in the figure that
the failure probability increases with N , and there are more and more problems that
the GA cannot solve exactly.

We now characterize the GA performance in a slightly different way on the same
class of problems. Thus, we keep the same GA parameters and the same problem in-
stance generation as above but we change the termination condition into a stagnation
criterion instead of a hard limit on the number of generations. The condition now
becomes the following: if during m consecutive generations the best fitness has not
been improved, the GA stops. We then save the best solution found up to this point
and the number of generations elapsed. As before, the baseline for comparing the
results is the exhaustive search for the optimal solutions for each N .

After the 500 repetitions for each value of N , we can compute and plot the av-
erage computational effort, given that we know how many generations were needed
in each run. We can also compute the mean relative error with respect to the known
optimum, and the number of times the best solution found was within a precision
interval ε around the exact solution. Finally, we can vary the computational effort by
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Fig. 11.2. Black curve: average computational complexity of a genetic algorithm in terms
of function evaluations for solving NK problems with N between 8 and 20 and K = 5.
Each point is the average of 500 randomly generated instances of the corresponding problem.
Blue curve: fraction of problems for which the global optimum has not been found within
the allowed time limit corresponding to 8,000 evaluations. Red curve: number of function
evaluations required by exhaustive search of the 2N possible solutions

varying the value ofm. The results presented in Figure 11.3 are form between 3 and
15, N = 18, two values of K, K = 5 and K = 7, and two values of the precision,
ε = 0.1 and ε = 0.02.

As expected, the average error decreases with increasing computational effort;
the solution quality is improved by using more generations, and the problems with
K = 5 are easier than those with K = 7.

The previous results make it clear that there is a compromise to be found be-
tween the computational effort expended and the quality of the solutions we would
like to obtain. High-quality solutions require more computational effort, as seen in
the figure. It should be said that in the present case the solution quality can be com-
pared with the ideal baseline optimal solution, which is known. Now, very often the
globally optimal solution is unknown, typically for real-life problems or for very
large benchmark and constructive problems, for instance NK landscapes with, say,
N = 100 and K = 80. In this case, the best we can do is to compare the obtained
solutions to the best solution known, even if we don’t know whether the latter is glob-
ally optimal or not. For some problems, one can get a reliable approximate value for
theoretical lower bounds on solution quality by using Lagrangian relaxation or inte-
ger programming relaxation (see Chapter 1). In these cases, the solutions found by
the metaheuristic can be compared with those bounds.

Quite often performance measures similar to the ones just described are obtained
in the framework of comparative studies between two or more different metaheuris-
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Fig. 11.3. Performance curves for the GA described in the text for solving NK problems as
a function of the computational effort. The left graphic corresponds to K = 5 and the right
curve is for K = 7. On both panels the probability of success is in blue for two values of the
precision, ε = 0.1 and 0.02. The black curves give the average relative error

tics with the goal of establishing the superiority of one of them over the others. This
kind of approach can be useful when it comes to a particular problem or a well-
defined class of problems that are of special interest for the user. However, as we
shall see in the next section, it is in principle impossible to establish the definitive
superiority of a stochastic metaheuristic with respect to others. This doesn’t pre-
vent researchers from trying to apply robust statistical methods when comparing
metaheuristics with each other. The approach is analogous to what we have just
seen applied to a single metaheuristic. However, when comparing algorithms, one
must be able to establish the statistical significance of the observed differences in
performance. In general, since samples are usually not normally distributed, non-
parametric statistical tests are used such as the Wilcoxon, Mann-Whitney, and the
Kolmogorov-Smirnov or Chi-squared tests for significant differences in the empiri-
cal distributions [69].

To recapitulate, performance evaluation in the metaheuristic field is a necessary
and useful step. The examples illustrated here were chosen for their simplicity and
familiarity to the reader rather than their importance, in order to bring the main mes-
sage home without unnecessary complication. The message is twofold: on the one
hand, we discussed some common metrics that are useful for characterizing the per-
formance of a metaheuristic and, on the other hand, using those measures, we showed
that two metaheuristics on a couple of difficult but not extremely hard versions of the
problems require much less computational resources than exhaustive enumeration
to obtain very good solutions. Of course, these conclusions cannot immediately be
generalized to other problems and other metaheuristics without studying their perfor-
mance behavior, but at least the examples suggest that the metaheuristics approach
to hard problem solving is a reasonable one.
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The field of performance measures and their statistics is varied and complex; here
we have offered an introduction to this important subject but, to avoid making the text
more cumbersome, several subjects have been ignored. Among these, we might cite
the robustness of a metaheuristic and the parallel and distributed implementations
of metaheuristics and their associated performance measures. The robustness of a
method refers to its ability to perform well on a wide variety of input instances of
a problem class and/or on different problems. Concerning parallel and distributed
metaheuristics, it is too vast a subject to be tackled here. The reader wishing to pur-
sue the study of the issues presented in this chapter is referred to the specialized
literature, e.g., [41, 13] for details and extensions of performance evaluation and sta-
tistical analysis, and [78, 32] for parallel and distributed implementations and their
performance.

11.2 The “No Free Lunch” Theorems and Their
Consequences

We hope that the reader is convinced at this point that metaheuristics, without be-
ing a silver bullet, do nevertheless provide in practice a flexible, general, and rel-
atively easy approach to hard optimization problems. Metaheuristics work through
some kind of “intelligent” sampling of the solution space, both for methods in which
the search follows a trajectory in space, such as simulated annealing, as well as for
population-based methods such as evolutionary algorithms or particle swarms, for
example.

In the previous sections of this chapter we discussed a number of approaches for
evaluating the performance of a metaheuristic on a given problem or class of prob-
lems, and for comparing the effectiveness of different algorithms on a problem or
a set of problems. Especially when comparisons between metaheuristics are called
for, a number of questions arise naturally. Can we really compare the performance
of different metaheuristics on a problem class? What if we include different problem
types or problem classes in the comparison? Is there a principled way of choosing
the best-adapted metaheuristic on a given problem? All these questions are legit-
imate because metaheuristics are general problem-solving methods that can be ap-
plied to many different problems, not specialized exact algorithms such as those used
for sorting or searching. Thus, it has very frequently been the case in the literature
that different metaheuristics or differently parameterized versions of the same meta-
heuristic are compared using a given suitable set of test functions. As we explained
in Section 11.1.1, there are several well-known sets of test functions that typically
contain a few tens of functions chosen according to various important criteria.

On the basis of numerical experiments, often using only a handful of test func-
tions, one can obtain performance measures of two or more metaheuristics by fol-
lowing the methodology explained in the previous sections. Often the authors of
such studies quickly extrapolate the results to unseen cases and sometimes affirm the
superiority of one search method over others. Implicitly, their conclusion is that if
methodA(fi) applied to instance fi of a given test function has a better performance
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than method B(fi) on the same instance, and the result is the same for all or the ma-
jority of n test functions {f1, f2, . . . , fn}, with n typically between 5 and 10, then
the result is probably generalizable to many other cases. But experience shows that
one can reach different conclusions according to the particular metaheuristics used,
their parameterization, and the details of the test functions. In this way, rather ster-
ile discussions on the superiority of this or that method have often appeared in the
literature. However, in 1997 Wolpert and Macready’s work [85] on “no free lunch
theorems” (NFL) showed that, under certain general conditions, it is impossible to
design a “best” general optimization method.

In Wolpert and Macready’s article the colloquial expression “no free lunch,”
which means that nothing can be acquired without a corresponding effort or cost,
is employed to express the fact that no metaheuristic can perform better than another
on all possible problems. More precisely, here is how the ideas contained in the NFL
theorems might be enunciated in a nutshell:

For all performance measures, no algorithm is better than another when they are
compared on all possible discrete functions.

Or, equivalently:

The average behavior of any two search methods on all possible discrete functions
is identical.

The latter formulation implies that if method A is better than method B on a
set of problems, then there must exist another set of problems on which B outper-
forms A. In particular, and perhaps surprisingly, on the finite set of discrete prob-
lems, random search has the same average performance as any more sophisticated
metaheuristic. For example, let’s consider a deterministic local search such as best
improvement (see Chapter 2). For reasons that will become clear below, let’s assume
that the search can restart from an arbitrary configuration when it reaches a local
optimum. Such a metaheuristic, though simple, should provide at least reasonably
good results on many conceivable functions. Let’s consider now a local search that
always chooses a random neighbor along its trajectory in the search space. Perhaps
contrary to intuition, although on many functions best improvement would perform
better, there must be other functions on which the random walk search outperforms
hill climbing since both must have the same performance on average. It goes without
saying that many of the functions that would favor random walk search are essen-
tially random functions, or functions of a particular nature which are not important
in problems that present themselves in real applications. However, those functions
do exist and they influence the results from a statistical point of view.

We now summarize the theoretical framework under which the NFL theorems
have been established without going into too much mathematical detail. The inter-
ested reader will find the full discussion in the original work [85].

11.2 The “No Free Lunch” Theorems and Their Consequences
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• The theory considers search spaces S of size |S|, which can be very large but
always finite. This restricts the context to combinatorial optimization problems
(see Chapters 1 and 2). On these spaces the objective functions f : S → Y are
defined, with Y being a finite set. Then the space F = Y S contains all possible
functions and has size |Y ||S|, which is in general very large but still finite.

• The point of view adopted is that of black box optimization, which means that
the algorithm has no knowledge of the problem apart from the fact that, given
any candidate solution, it can obtain the objective function value of that solu-
tion. Wolpert and Macready use the number of function evaluations as the ba-
sic measure of the performance of a given search method. In addition, to avoid
unbounded growth of this number, only a finite number m of distinct function
evaluations is taken into account. That is to say the search space points are never
resampled. The preceding scenario can easily be applied to all common meta-
heuristics provided we ignore the possibly resampled points.

Under the previous rather mild and general conditions, Wolpert and Macready estab-
lish the following result by using probability and information theory techniques:∑

f

P (dym|f,m,A1) =
∑
f

P (dym|f,m,A2)

In the previous expression P (dym|f,m, a) is the conditional probability of obtaining
a given sample dym of size m from function f , corresponding to the sampled search
space points dxm, when algorithm A is iterated m times. Summations are performed
on all functions f ∈ F and A1 and A2 are two particular search algorithms. In
other words, the expression means that the probability of generating a particular
sequence of function values is the same for all algorithms when it is averaged over
all functions, or, equivalently, that P (dym|f,m,A) is independent of algorithm A
when the probability is averaged over all objective functions f .

Now, if Φ(dym) is any sampling-based performance measure, the average of
Φ(dym) is independent of A as well:∑

f

Φ(dym|f,m,A1) =
∑
f

Φ(dym|f,m,A2)

meaning that no algorithm can outperform any other algorithm when their perfor-
mance is averaged over all possible functions. Wolpert and Macready show that the
results are also valid for all sampling-based performance measures Φ(dym), and that
they also apply to stochastic algorithms and to time-varying objective functions.

What are the lessons to be learned from the NFL theorems? The most important
positive contribution is that the theorems imply that it cannot be said any longer that
algorithm A is better than algorithm B without also specifying the class of problems
for which this is true. This means that no search method that is based on sampling and
without specific knowledge of the search space can claim to be superior to any other
in general. It is also apparent that performance results claimed for a given benchmark
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suite or for specific problems do not necessarily translate into similar performance
on other problems. As we saw above, this behavior is the result of the existence
of a majority of random functions in the set of all possible functions. However, the
interesting functions in practice are not random, which means that the common meta-
heuristics will in general be more effective on the problems researchers are normally
confronted with.

Moreover, the NFL theorems hold in the black box scenario only. If the user
possesses problem knowledge beyond that this knowledge can, and should, be used
in the search algorithm in order to make it more efficient. This is what often happens
in real applications such as scheduling or assignment in which problem knowledge is
put to good use in the algorithms to solve them. Thus, the conclusions reached in the
NFL theorems are not likely to stop the search for better metaheuristics, but at least
we now know that some discipline and self-restraint must be observed in analyzing
and transferring performance results based on a limited number of problems.

The above results trigger a few considerations that are mainly of interest for the
practitioner. Since it is impossible to prove the superiority of a particular metaheuris-
tic in the absence of specific problem knowledge, why not use simpler and easy to
implement metaheuristics first when tackling a new problem? This approach will
save time and does not prevent one from switching to a more sophisticated method
if the need arises.

In the same vein, we now briefly describe a useful and relatively new approach
to problem solving that somehow exploits the fact that different algorithms perform
better on different groups of functions, and also assumes a context similar to the
black box scenario. In this case, since we do not know how to choose a suitable
algorithm Ai in a small set {A1, A2, . . . , Ak} the idea is to use all of them. This
leads to the idea of an algorithm portfolio, in which several algorithms are combined
into a portfolio and executed sequentially or in parallel to solve a given difficult
problem. In certain cases, the portfolio approach may be more advantageous than
the traditional method. The idea comes from the field of randomized algorithms but
it is useful in general [42]. Another way of implementing the approach is to select
and activate the algorithms in the portfolio dynamically during the search, perhaps as
a consequence of some statistical measures of the search space that are generated on
the fly during the search. Clearly, the portfolio composition as well as the decision
of which algorithm to use at which time are themselves difficult problems but some
ideas have been proposed to make these choices automatic or semi-automatic. A
deeper description of this interesting approach would lead us beyond our scope in
this book and we refer the reader to the specialized literature for further details.

11.2 The “No Free Lunch” Theorems and Their Consequences
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Statistical Analysis of Search Spaces

12.1 Fine Structure of a Search Space

In contrast to the classical theoretical computational complexity point of view sum-
marized in Chapter 1 according to which a given problem belongs to a certain com-
plexity class, the common practice in the metaheuristics community is to consider
the specific search space of a given problem instance or class of problem instances
(see Chapter 2). This is natural to the extent that metaheuristics can be seen as clever
techniques that exploit the search space structure of a problem instance in order to
find a quality solution in reasonable time. And it is not in contradiction with the fact
that a problem may be classified as being hard in general as, in practice, not all in-
stances will be equally difficult to solve, as we have learned in the chapter on phase
transitions in computational hardness, where we have seen that intractable problems
may possess easy-to-solve instances under some conditions. It therefore becomes
important in the field of metaheuristics to be able to build tools that allow us to ob-
tain quantitative measures of the main features of a search space. This analysis has
a double value: it may provide indirect quantitative information about the problem
difficulty, and it can be helpful, at least in principle, for improving the efficiency
of the metaheuristics used to solve the problem. The subject is relatively advanced
but we have decided to provide at least a glimpse of it for it helps to understand
the factors that may affect the behavior of a metaheuristic. The prerequisite to ben-
efit from reading the present chapter is a good understanding of the ideas presented
in Chapter 2. For more detailed treatments, the reader is referred to the following
books [41, 78, 73].

We briefly remind the reader that the search space of a problem1 (see Chapter 2)
is essentially constituted by the set of admissible solutions to the problem, a move
1 To simplify the writing, the term “problem” will be informally interpreted as referring to a

particular instance of a problem or to the general problem itself depending on the context.
In the same way, the terms “search space” and “fitness landscape” will sometimes be used
interchangeably.
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operator that generates a neighborhood for any solution, and a fitness measure that
associates a generally real value to each solution.

There exist a number of useful quantities that can be computed from a knowledge
of the search space. Without pretending to be exhaustive, we shall now describe some
of the most important and commonly used. It is important to point out that all these
measures rely on sampling the search space since the size of the latter grows expo-
nentially with problem size and quickly becomes impossible to enumerate. Clearly,
in those cases, if we could enumerate all the points, then we could also directly solve
the problem. Let’s start with indicators that globally characterize the fitness land-
scape.

12.2 Global Measures

Two important global features of a search space are the number of local optima and
the associated size of the basins of attraction. For example, Table 12.1 shows the
number of optima for randomly generated instances of NK problems, which were
introduced in Chapter 2, with N = 18 and increasing values of K < N . Given the
relatively small size of the problem, it has been possible to exhaustively enumerate
all the optima in this particular case and thus the table entries are exact in this sense,
although they represent an average over 30 randomly drawn instances for each K
because of the statistical nature ofNK landscapes. In general, complete enumeration
is out of the question for computational reasons except for small problems, which
means that this statistic must normally be computed on a suitable sample of the
whole search space.

Table 12.1. Average number n̄ of optima of NK landscapes with N = 18 as a function of
K. Values are averages over 30 randomly generated instances for each value of K. Standard
deviations in parentheses

N = 18

K n̄

2 50(25)
4 330(72)
6 994(73)
8 2,093(70)
10 3,619(61)
12 5,657(59)
14 8,352(60)
16 11,797(63)
17 13,795(77)

We remark that the number of optima rapidly increases withK, making the land-
scape more and more rugged and difficult to search, a well-known result [47]. Some
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researchers have suggested that in the search spaces of hard problems the number
of optima increases exponentially with the problem size, a hypothesis that has been
empirically verified in many cases but for which no rigorous theoretical background
is available yet. Anyway, it seems likely that a large number of optima constitutes a
hindrance in searching for the global one.

What is the shape of the attraction basins related to these optima? We recall that
an attraction basin is the set of solutions such that executing strict hill climbing from
any of them will lead the search to end in the same local optimum. Figure 12.1 shows
the complementary empirical cumulative distribution of the number of basins having
a given size for NK landscapes with the same N and K as in Table 12.1. Note the
logarithmic scale of the axes.

Fig. 12.1. Cumulative complementary distribution of basin size inNK landscapes forN = 18
and different values ofK. Curves represent averages over 30 independently generated random
instances for each K

The figure shows that the number of basins having a given basin size decreases
exponentially and the drop is larger for higher K, in other words the size of basins
decreases when K increases. This is in agreement with what we know about these
search spaces: there are many more basins for large K but they are smaller. For low
K the basins are more extended and this too is coherent with the intuitions we have
developed about the difficulty of searching these landscapes.

12.3 Networks of Optima

Another recently introduced global description of a problem’s search space is net-
works of optima [82]. Optima networks arise from a particular vision of a search
space. Instead of considering all the solutions s ∈ S, this approach consists of ex-
tracting either all the optima by an exhaustive search if the search space size allows
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it, or a representative fraction of them by a sampling process if this is not possible.
At the same time, connections among the optima are also determined. In the origi-
nal formulation of the optima network graph there is an arc eij between two optima
i and j if there is at least one transition from the attraction basin of i to the basin
of attraction of j; if this is the case, the two basins communicate. The arc eij will
have a normalized weight wij which is proportional to the number of transitions, the
weight representing then a probability of transition from the basin of i to the basin
of j. The arcs are oriented and need not be symmetric, i.e., it can be that wij 6= wji.
This construction gives rise to an oriented weighted graph G(V,E(w)) in which V
is the set of optima and E is the set of links (transitions) between the optima. G is
a complex network that can be studied with the tools that have been developed in
the last fifteen years in this field [11]. Among the features that can be studied we
mention the number of vertices, the number of links, the average length of shortest
paths, the graph diameter, the clustering coefficient, and several others. The idea is
that these graph statistics might provide interesting information on the search space
and its difficulty. To illustrate the idea, Figure 12.2 is a graphic representation of the
optima and the associated transitions between optima basins for a relatively small
instance of an NK landscape.

Fig. 12.2. An optima network for an NK instance with N = 18 and K = 2. The size of
nodes is proportional to the size of the corresponding basins of attraction and the thickness
of the oriented links is proportional to the probability of the transitions. We can see that most
transitions are intra-basin
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The concept of the graph of local optima and their transitions, although recent,
has already been useful in studying the relation between problem classes and the
difficulty of their search spaces. For example, it has been remarked that the correla-
tion between the average distances from the local optima to the global one is a good
indicator of problem hardness: the longer the distances, the harder the problem is.
The transition frequency between optima (i.e., between basins thereof) also provides
useful information: a high probability of transition out of a basin indicates that the
problem is easier since a local search is more likely to be able to jump out of it. On
the other hand, if most transitions are intra-basin and only a few lead outside the
search will be more difficult. Similarly, a weak incoming transition probability indi-
cates that a basin is difficult to reach. Another useful statistic that can be computed
on these networks is the fitness correlation between adjacent optima: a large positive
value suggests that the problem is likely to be easy. Here it has only been possible
to offer a glimpse of the usefulness of a complex network view in understanding the
nature of search spaces. A deeper discussion of the subject would lead us too far
away but the reader is referred to [73], a collective book that probably contains the
most up-to-date discussion on fitness landscapes in general.

12.4 Local Measures

In the previous sections some global quantities characterizing a fitness landscape
have been presented. Here we shall take a more local view of a landscape, similarly
to the way in which many metaheuristics work, e.g., by testing solutions in the land-
scape and using the values found in previous iterations to make choices influencing
the future of the search process. A simple example of this is straight hill climbing.
The two measures we are going to discuss are fitness-distance correlation and fitness
autocorrelation, both of which have proven useful in understanding how local fea-
tures of the landscape give information about the problem difficulty and how they
influence the search. Our description will stick to the basics; the interested reader
will find more information in, e.g., [41].

12.4.1 Fitness-Distance Correlation

This measure has been proposed by T. Jones [45] who conceived it mainly as a way
of classifying the difficulty of landscapes for search. It is based on the intuition that
there should be a negative correlation between the fitness value of a solution and
the distance of the solution from the global optimum in the case of maximization,
and a positive one for minimization. In other words, it assumes that if we move
towards the maximum in a search, then the shorter the distance to the maximum, the
higher the fitness should be. A mono-modal function is a trivial example in which,
effectively, the function value decreases (increases) if we move away from the global
maximum (minimum). To compute the Fitness-Distance Correlation (FDC) one has
to sample a sufficient number n of solutions s in the S space. For each sampled value
in the series {s1, s2, . . . , sn} we must compute the associated fitness values F =
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{f(s1), f(s2), . . . , f(sn)}, and their distances D = {d1, d2, . . . , dn} to the global
optimum, which is assumed to be known. The FDC is a number between −1 and
1 given by the following expression, which is just the standard Pearson correlation
coefficient:

FDC =
CFD
σFσD

where

CFD =
1

n

n∑
i=1

(fi − 〈f〉)(di − 〈d〉)

is the covariance of F and D, and 〈f〉, 〈d〉, σF , σD are their averages and standard
deviations respectively.

It will not have escaped the attentive reader that there is a problematic aspect
in the FDC calculation: how can we compute the distances to the global optimum
given that the latter is exactly what we would like to find? The objection is a valid
one but, when the global optimum is unknown, it may still be useful to replace it
with the best known solution. Thus, according to the FDC value, Jones proposed the
following classification of problems (assuming maximization):

• Misleading (FDC ≥ 0.15), fitness increases when the distance to the optimum
increases.

• Difficult (−0.15 < FDC < 0.15), there is no or little correlation between fitness
and distance.

• Straightforward (FDC ≤ −0.15), fitness increases when the distance to the op-
timum decreases.

According to Jones and other authors, FDC is a rather good indicator of the
difficulty of a problem as seen by a metaheuristic based on local search and even
for more complex population-based methods, such as evolutionary algorithms using
crossover, which is more puzzling. In any case, we should not forget that FDC, being
an index obtained by a sampling process, is subject to sampling errors. Indeed, it has
been shown that it is possible to contrive problems that exploit these weaknesses and
that make FDC malfunction, giving incorrect results [5]. However, when FDC is
applied to “naturally” occurring problems it seems that the results are satisfactorily
reasonable if one takes its limitations into account.

The following example is taken from [81], in which FDC is employed in ge-
netic programming. The studied function is analogous to the trap function defined
in Chapter 8 (see Figure 8.7) except that, instead of binary strings, individuals are
coded as trees and unitation is replaced by a suitable notion of distance in trees. Be-
fore showing the results of the FDC sampling, it is necessary to define a difficulty
measure in order to compare the prediction with the observed behavior. The empir-
ical measure used here is simply the fraction of times that the global optimum has
been found in 100 executions for each pair of values of the parameters of the trap
function (see also Chapter 11).
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Fig. 12.3. Left: fitness-distance correlation values for a set of trap functions with parameters a
and z, compared with genetic programming performance on the same functions with mutation
only (right)

The images of Figure 12.3 clearly indicate that there is a very good agreement
between difficulty as measured by performance and the FDC for a given trap, as a
function of the a and z parameters of the latter. Indeed, in regions where performance
is almost zero FDC approaches one, while it becomes negative or does not give
indications for the “easy” traps. It is important to point out that the above results
have been obtained with a special kind of genetic programming without the crossover
operator and with a particular mutation operator that preserves certain properties in
relation to tree distance in the solution space. When crossover is introduced, the
agreement between FDC and performance is less good but the correlation still goes
in the right direction.

A more qualitative and descriptive method than computing the FDC consists of
drawing a scatterplot of sampled fitness values against the distance to the global
optimum if it is known, or to the best solution found. To illustrate the point, let us
use once more the NK landscapes.

Figure 12.4 shows the scatterplots for two cases:K = 0 (left image) andK = 17
(right image) for N = 18. Even without computing a regression straight line, it is
visually clear that the case K = 0, which is easy, gives rise to a negative correlation,
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Fig. 12.4. Scatterplots of fitness/distance for two landscapes NK with N = 18 and K = 0
(left) and K = 17 (right). Samples are of size 1,000 and have been chosen uniformly at
random in the corresponding search spaces

while the much more difficult case K = 17, which corresponds to an almost random
and maximally rugged landscape, shows little or no correlation between fitness and
distance to the global optimum. It must be said that things are seldom so clear-cut
and one usually needs to compute several statistics on the search space to better
understand its nature.

12.4.2 Random Walks and Fitness Autocorrelation

As we have seen in Chapter 3, random walks are not an efficient method for search-
ing a fitness landscape. However, they can be used to collect interesting information
about the search space. Let’s choose a starting solution s0 in S, then a random walk
of length l is a sequence {s0, s1, . . . , sl} such that si ∈ V (si−1), (i = 1, . . . , l),
where si is chosen with uniform probability in the neighborhood V (si−1). This kind
of random walk may provide useful information about the search space and it is the
basis of several single-trajectory metaheuristics such as simulated annealing. Ran-
dom walks give better results as a sampling method if the search space is isotropic,
i.e., if it has the same properties in all directions. Starting from such a random walk,
one can compute the fitness autocorrelation function along the walk. The autocorre-
lation function is defined as follows [84]:

ρ(d) =
〈(f(st)− 〈f(st)〉)(f(st+d)− 〈f(st)〉)〉

〈f(st)2〉 − 〈f(st)〉2

in which f(st) is the value of the fitness of solution s sampled at step t, f(st+d) is
another fitness values shifted by a distance d from s, 〈.〉 is the expected-value opera-
tor, and the denominator is the variance of the process. Thus, for instance, ρ(1) only
takes into account a solution’s fitness and the fitness values of solutions at distance
one. The autocorrelation function normalized by the variance falls between −1 and
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1. To compute ρ(d), the averages must be calculated for all points in S and for all
pairs of points at distance d, which is too demanding except for small search spaces.
In practice, the autocorrelation function can be approximated by the quantity r(d),
which is computed on a sample of length l obtained by performing a random walk:

r(d) =

∑l−d
t=1 (f(st)− 〈f〉) (f(st+d)− 〈f〉)∑l

t=1 (f(st)− 〈f〉)2

We have seen that the difficulty of a problem is often associated with the rugged-
ness of the corresponding search space. The intuition is that in a “smooth” landscape
fitness changes moderately when going from one solution to a neighboring one.

In the limiting case of a “flat” or almost flat landscape we speak of a neutral
landscape [72]. Neutrality is a widespread phenomenon in difficult fitness landscapes
such as those generated by hard instances of many combinatorial optimization prob-
lems. For example, a high degree of neutrality has been found in the search spaces
of problems such as SAT and graph coloring. The presence of large neutral regions
in the landscape, also called neutral networks, has a remarkable influence on search
algorithms. Thus, hill climbers cannot exploit the fitness “gradient” and the search
becomes a time-consuming random drift with, from time to time, the discovery of a
better solution that allows the search to extract itself from the neutral region. There
exist search techniques more adapted to neutral landscapes. For details, we refer the
reader to the relevant literature, e.g., [24, 80].

On the contrary, a landscape in which fitness variations are abrupt at a short dis-
tance will be defined as being “rugged.” In general terms, a rugged search space will
be more difficult to explore because the numerous wells and peaks will easily cause
the search to get stuck at local optima2. By the way, the terms “wells,” “peaks,” and
the whole metaphor of a landscape being a kind of topographic object similar to a
mountain chain only makes sense for three-dimensional continuous functions. It is
almost impossible to picture, or even to imagine, for higher dimensions. And it is
wrong for discrete combinatorial spaces, where there are only isolated points (solu-
tions) and their fitnesses, which might be depicted as bars “sticking out” from solu-
tions with heights proportional to the solution’s fitness. Nevertheless, the metaphor
of a continuous landscape with peaks, wells, and valleys continues to be a useful one
if it is taken with a grain of salt.

Returning to the fitness autocorrelation function, we can say that it is a quantita-
tive tool for characterizing the amount of ruggedness of a landscape and therefore,
at least indirectly, for obtaining information about the difficulty of a problem. As
an example, let’s again use NK landscapes. Figure 12.5 shows the empirical fitness
autocorrelation coefficient computed on 1,000 steps of a random walk on NK land-
scapes with N = 18 and several values of K. It is apparent that for K = 0 the
fitness autocorrelation decreases slowly with distance since the landscape is smooth.
For small values of K the behavior is similar but as K increases the autocorrelation
2 Be aware, however, that a flat landscape with a single narrow peak is also very difficult to

search (or a “golf course” situation for minimization).
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drops more quickly and for K = 17, where the landscape is random, ruggedness is
maximal and the autocorrelation drops to zero even for solutions at distance one.

Fig. 12.5. Fitness autocorrelation coefficient as a function of distance forNK landscapes with
N = 18 and variable K
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Tools and Recommended Software

The following lists a few useful websites pertaining to the metaheuristics referenced
in this book. At the time of writing, these sites are active and maintained.

• ECJ is a Java environment for evolutionary programming that comprises the main
metaheuristics, including genetic programming and the parallelization of the al-
gorithms
https://cs.gmu.edu/˜eclab/projects/ecj/

• Optimization with particle swarms (PSO):
http://www.particleswarm.info/Programs.html
is a website that contains information about open PSO software

• CMA-ES: Modern evolution strategies. It is maintained by N. Hansen
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html

• Open Beagle: an integrated system for genetic programming
https://github.com/chgagne/beagle

• ACO Iridia: a software system providing programs that use ant colony strategies
on different types of problems
http://iridia.ulb.ac.be/˜mdorigo/ACO/aco-code

• METSlib is an open, public domain optimization tool written in C++. It includes
tabu search, various forms of local search, and simulated annealing
https://projects.coin-or.org/metslib

• Paradiseo is a complete software system that contains all the main metaheuris-
tics, including evolutionary computation and multi-objective optimization; par-
allelization tools are also provided
http://paradiseo.gforge.inria.fr

Tools and Recommended Software

https://cs.gmu.edu/~eclab/projects/ecj/
http://www.particleswarm.info/Programs.html
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html
https://github.com/chgagne/beagle
http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code
https://projects.coin-or.org/metslib
http://paradiseo.gforge.inria.fr
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7. D. L. Applegate, R. E. Bixby, V. Chvàtal, and W. J. Cook. The Traveling Salesman
Problem. Princeton University Press, 2007. ISBN-10: 0-691-12993-2.

8. A. Auger and T. B. Doerr (Eds.). Theory of Randomized Search Heuristics. World Scien-
tific, Singapore, 2011.
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permutation, 20, 27
permutation space, 20
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