
Chapter 2
The Time-Consistent Shapley Value
for Two-Stage Network Games
with Pairwise Interactions

Leon Petrosyan, Mariia Bulgakova, and Artem Sedakov

2.1 Introduction

Network games is a new and important part of modern game theory. Networks
illustrate the interaction of both individuals and groups. For the first time in
the literature, a non-cooperative form of pairwise interaction in a network was
considered in [3] meaning direct interactions between network neighbors. Finding
an equilibrium in online gaming as an example of a Designer–Adversary game was
described in [4]. Pairwise interaction was exposed in [1] on the example of the
dissemination of information and misinformation in social networks. The efficiency
and stability of networks depending on external factors such as marginal costs were
examined in [6]. An approach for finding optimal behavior in multistage games was
considered in [9]. Cooperation in network games and a model of interaction between
coalitions were considered in [5].

When cooperative behavior is investigated, it is important that players follow
a cooperative agreement during the whole game. If a solution of the cooperative
game is time-consistent, players have no reason to deviate from the accepted
agreement. An imputation distribution procedure (IDP) which is a payment scheme
that provides the implementation of the solution was introduced in [8] to prevent
players from deviating from the cooperative agreement. The conditions for the
time consistency of the core for two-stage games with pairwise interactions were
established in [2]. The dynamic properties of cooperative solutions in multicriteria
games were considered in [7]. In this paper, we provide analytic expressions for
characteristic functions in a two-stage game with pairwise interactions. Further,
similar to [11], we provide conditions for the time consistency of the Shapley value
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in this game. Moreover we simplify the formula of the Shapley value for a network
of a special type—a star.

2.2 Description of the Model

Let N be a finite set of players who make decisions in two stages, |N | = n � 2.
At the first stage z1 each player i ∈ N chooses his behavior b1

i = (b1
i1, . . . , b

1
in)—a

profile of offers to establish connections with other players:

b1
ij =

{
1, if j ∈ Mi,

0, otherwise,

with ∑
j∈N

b1
ij � ai .

Here Mi ⊆ N \ {i} is a given set of players whom player i can offer connections,
b1
ii = 0 for i ∈ N ; ai ∈ {0, . . . , n − 1} represents the maximum number of

connections for player i. If Mi = N \ {i}, player i can offer a connection to any
player; in particular, if ai = n−1, player i can have any number of connections. The
result of the first stage is a network g(b1

1, . . . , b
1
n) consisting of links (connections)

ij such that b1
ij = b1

j i = 1. For brevity, denote g(b1
1, . . . , b

1
n) by g. Define the

neighbors of player i in network g as elements of the set Ni(g) = {j ∈ N \ {i} :
ij ∈ g} or simply Ni . After the network formation stage z1, players proceed to the
second stage z2.

At second stage z2(g) which depends upon a network chosen at the first stage,
network neighbors play pairwise simultaneous bimatrix games {γij }. Namely, let
i ∈ N, j ∈ Ni , then at the second stage, player i plays with his neighbor j a
bimatrix game γij with non-negative payoff matrices Aij = [aij

p�]p=1,...,m; �=1,...,k

and Bij = [bij
p�]p=1,...,m; �=1,...,k for players i and j , respectively.

After receiving payoffs in these bimatrix games, the game ends. In other words,
we have a two-stage game Γ which is a special case of a multistage non-zero-sum
game. Adapting the definition of a strategy to this case, a strategy of player i ∈ N

will be a rule which assigns a set of his neighbors at first stage b1
i , and a behavior b2

i

in each of the bimatrix games at the second stage of the game taking into account a
network formed at the first stage. Denote the strategy of player i ∈ N in two-stage
game Γ by ui = (b1

i , b
2
i ). Let (z1, z2) be a trajectory realized under the strategy

profile u = (u1(·), . . . , un(·)) in Γ . Define the payoff of player i as hi(z2) which is
the sum of player i’s payoffs in all bimatrix games with his neighbors when b2

i , b2
j ,

j ∈ Ni are chosen. Then player i’s payoff function in Γ starting at z1 is defined as
Ki(z1; ui(·), . . . , un(·)) = hi(z2).
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The rest of the paper will be devoted to a cooperative version of the two-stage
game Γ .

2.2.1 Cooperation at the Second Stage of the Game

A game Γz2 denoting a subgame of game Γ which starts at the second stage z2 can
be considered in cooperative form. In this case, we define characteristic function
v(z2; S) for any subset (coalition) S ⊂ N as the maxmin value of a two-person
zero-sum game between coalition S and its complement N \ S constructed with the
use of game Γz2 . The superadditivity of the characteristic function follows from its
definition. Denote the maxmin value of player i (j ) in game γij with his neighbor j

(i) as

wij = max
p

min
�

a
ij
p�, p = 1, . . . , m, � = 1, . . . , k,

wji = max
�

min
p

b
ji
p�, p = 1, . . . , m, � = 1, . . . , k.

Following [2], for any S ⊆ N , the characteristic function v(z2; S) is given by:

v(z2; S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∑
i∈N

∑
j∈Ni

max
p,�

(a
ij
p� + b

ji
p�), S = N,

1

2

∑
i∈S

∑
j∈Ni∩S

max
p,�

(a
ij
p� + b

ji
p�) +

∑
i∈S

∑
k∈Ni\S

wik, S ⊂ N, |S| > 2,

max
p,�

(a
ij
p� + b

ji
p�) +

∑
r∈Ni\{j}

wir +
∑

q∈Nj \{i}
wjq, S = {i, j},

∑
j∈Ni

wij , S = {i},

0, S = ∅.

(2.1)

2.2.2 Cooperation at Both Stages of the Game

Consider a cooperative form of two-stage game Γ . Suppose that all players choose
strategies ū = (ū1, . . . , ūn) which maximize their joint payoff in game Γ , i.e.,

∑
i∈N

Ki(z1; ū1, . . . , ūn) = max
u

∑
i∈N

Ki(z1; u1, . . . , un)
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The strategy profile ū = (ū1, . . . , ūn) is called the cooperative strategy profile, and
the corresponding trajectory (z̄1, z̄2) is the cooperative trajectory.

As before for coalition S ⊆ N , we define characteristic function v(z̄1; S) as the
maxmin value of a two-person two-stage zero-sum game between coalition S and
its complement, where the payoff of S is the sum of players’ payoffs from S, and
the strategy of S is an element of the Cartesian product of sets of players’ strategies
belonging to S. Since players’ payoffs are non-negative, for player N \ S, the best
behavior to follow is to have no connections with S. Hence we get

v(z̄1; S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(z̄2;N), S = N,

1

2

∑
i∈S

∑
j∈Ni∩S

v(z̄1; {i, j}), S ⊂ N, |S| > 2,

max
p,�

(a
ij
p� + b

ji
p�), S = {i, j},

0, |S| = 1, or S = ∅.

(2.2)

2.2.3 The Shapley Value and Time Consistency

Given a characteristic function v(z̄t ; ·), t = 1, 2, we define an imputation as a vector
ξ [v(z̄t )] = (ξ1[v(z̄t )], . . . , ξn[v(z̄t )]) which is (i) efficient, i.e.,

∑
i∈N ξi[v(z̄t )] =

v(z̄t ;N) and (ii) individually rational, i.e., ξi[v(z̄t )] � v(z̄t ; {i}) for all i ∈ N .
Denote the set of all imputations (an imputation set) in game Γ by I (v(z̄t )).
As an imputation we consider the Shapley value [12] denoted by ϕ[v(z̄t )] =
(ϕ1[v(z̄t )], . . . , ϕn[v(z̄t )]) where

ϕi[v(z̄t )] =
∑

S⊆N,i∈S

(|S| − 1)!(n − |S|)!
n! [v(z̄t ; S) − v(z̄t ; S \ {i})], i ∈ N.

(2.3)
Before the start of game Γ , players agree on choosing cooperative trajectory

(z̄1, z̄2), i.e., the trajectory that yields the maximum joint payoff v(z̄1;N), and
we suppose that players allocate this payoff according to the Shapley value. This
means that in Γ each player i ∈ N expects his payoff to be equal to ϕi[v(z̄1)].
If players recalculate the Shapley value after the network formation stage (at the
second stage), it turns out that the recalculated Shapley value ϕ[v(z̄2)] differs
from the previous one. This may lead to a violation of the cooperative agreement
because some players may refuse to use their cooperative strategies. We say that
the Shapley value as an allocation in the two-stage game is time consistent if
ϕ[v(z̄1)] = ϕ[v(z̄2)] (as players do not receive payoffs at the network formation
stage), otherwise we call the Shapley value time inconsistent. In the former case,
players follow the cooperative agreement not expecting that someone violate it. In
the latter case, to prevent players from violating the cooperative agreement, we use
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an imputation distribution procedure (IDP) β = {β1
i , β2

i }i∈N (first introduced in [8])
for the Shapley value ϕ[v(z̄1)] which decomposes it over two stages of the game Γ :
ϕi[v(z̄1)] = β1

i + β2
i for each i ∈ N . Here β1

i can be interpreted as a stage payment
to player i at the network formation stage, and β2

i is his payment at the second stage
of the game under the cooperative agreement. We say that the IDP β of the Shapley
value ϕ[v(z̄1)] is a time-consistent IDP [10, 11] when it is given by:

β1
i = ϕi[v(z̄1)] − ϕi[v(z̄2)], β2

i = ϕi[v(z̄2)], i ∈ N. (2.4)

Introducing the time-consistent IDP β (2.4) of the Shapley value ϕ[v(z̄1)], players
can be sure that no one violates the cooperative agreement, hence it will be realized
in the game and player i ∈ N gets ϕi[v(z̄1)] as his cooperative payoff.

2.3 The Shapley Value for a Star

Since the calculation of the Shapley value ϕ[v(z̄t )], t = 1, 2, is a difficult task for
a large number of players in an arbitrary network, we simplify formula (2.3) for a
network of a special type—a star. Within this section we suppose the following. Let
Mi = N \ {i} for i ∈ N and a1 = n − 1, ai = 1, i �= 1. Further let maxj∈N wij =
wi1. Then in order to maximize the joint payoff, players should choose the following
behaviors at the first stage of the game: b1

1 = (0, 1, . . . , 1) for player 1, and b1
i =

(1, 0, . . . , 0) for player i �= 1. These behaviors form a star-network at this stage (see
Fig. 2.1). In the star-network, |N1| = n − 1 and |Ni | = 1, i �= 1.

For a star-network, the characteristic function is calculated using a specific
structure of the network. The network has central symmetry which suggests that
formula (2.3) can be simplified. Let mij = maxp,�(a

ij
p� + b

ji
p�). Substituting

the adopted notation, as well as (2.1), (2.2), into (2.3), we obtain the following
expression for the components of the Shapley value:

ϕi[v(z̄t )] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

⎡
⎣v(z̄t ; {1}) +

∑
j �=1

(
m1j − v(z̄t ; {j}))

⎤
⎦ , i = 1,

1

2
[m1i + v(z̄t ; {i}) − w1i] , i �= 1.

(2.5)

Fig. 2.1 A star with n

players

2 3 . . . n

1
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2.3.1 Two Examples

Two examples below demonstrate that the Shapley value being an allocation in a
cooperative two-stage game with pairwise interactions can be both time consistent
and time inconsistent. The first example shows the time consistency of the Shapley
value.

Example 1 (Prisoner’s Dilemma) Consider the case, when n players play the same
game γ with their neighbors, i.e., Aij = A, Bij = B for all i ∈ N , j ∈ Ni where

A = BT =
(

b 0
a + b a

)
, 0 < a < b.

To find the Shapley value ϕ[v(z̄2)], we first determine characteristic function
v(z̄2; S) for all S ⊆ N . Following (2.1), we obtain

v(z̄2; S) =

⎧⎪⎪⎨
⎪⎪⎩

2b(n − 1), S = N,

2b(|S| − 1) + (n − |S|)a, S ⊂ N, 1 ∈ S,

|S|a, S ⊂ N, 1 /∈ S,

0, S = ∅.

Using the formula for the Shapley value (2.5) adapted to a star and noting that the
Shapley value is an efficient allocation satisfying the property of symmetry and that
m1j = 2b for any j ∈ N1, we obtain

ϕ1[v(z̄2)] = 1

2
[(n − 1)a + (n − 1)(2b − a)] = b(n − 1),

ϕi[v(z̄2)] = v(z̄2;N) − ϕ1[v(z̄2)]
n − 1

= b, i �= 1.

Similarly, to find the Shapley value ϕ[v(z̄1)], we determine characteristic
function v(z̄1; S) for all S ⊆ N . Following (2.2), we have

v(z̄1; S) =
⎧⎨
⎩

2b(n − 1), S = N,

2b(|S| − 1), S ⊂ N, 1 ∈ S,

0, S ⊂ N, 1 /∈ S or S = ∅.

Again, using the formula for the Shapley value (2.5) adapted to a star, the Shapley
value ϕ[v(z̄1)] is given by

ϕ1[v(z̄1)] = 1

2
[2b(n − 1)] = b(n − 1),

ϕi[v(z̄1)] = v(z̄1;N) − ϕ1[v(z̄1)]
n − 1

= b, i �= 1.
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Fig. 2.2 A star with four
players

2 3 4

1

Comparing ϕ[v(z̄1)] and ϕ[v(z̄2)], we note they coincide and hence the Shapley
value is time consistent.

In the next example we demonstrate the time inconsistency of the Shapley value.

Example 2 Consider a numerical example with N = {1, 2, 3, 4} in which players
form a star-network under a cooperative agreement (see Fig. 2.2). Let simultaneous
bimatrix games γ12, γ13, and γ14 be defined by means of the following payoff
matrices of players:

(A12, B12) =
(

(2, 2) (3, 0)

(5, 1) (1, 2)

)
, (A13, B13) =

(
(3, 1) (4, 2)

(6, 2) (2, 3)

)
,

(A14, B14) =
(

(1, 3) (3, 2)

(6, 6) (4, 1)

)
.

To compute the Shapley values ϕ[v(z̄1)] and ϕ[v(z̄2)], we use the corresponding
formulas (2.1), (2.2) for characteristic functions v(z̄2; ·) and v(z̄1; ·), respectively,
and the simplified formula (2.5). Hence we get

w12 = 2, w13 = 3, w14 = 4,

w21 = 1, w31 = 2, w41 = 3,

m12 = 6, m13 = 8, m14 = 12,

and therefore

v(z̄2; {1}) = 9, v(z̄2; {2}) = 1, v(z̄2; {3}) = 2, v(z̄2; {4}) = 3,

v(z̄1; {1}) = 0, v(z̄1; {2}) = 0, v(z̄1; {3}) = 0, v(z̄1; {4}) = 0,

v(z̄1;N) = 26, v(z̄2;N) = 26.

Thus the Shapley values are given by

ϕ[v(z̄1)] = (13, 3, 4, 6), ϕ[v(z̄2)] = (29/2, 5/2, 7/2, 11/2).

We observe that the Shapley value ϕ[v(z̄1)] in the two-stage game differs from the
Shapley value ϕ[v(z̄2)] in the one-stage game starting at the second stage. This
means the time inconsistency of the Shapley value. Since ϕ2[v(z̄2)] = 5/2 <

ϕ2[v(z̄1)] = 3, player 2 can break the cooperative agreement as his payoff can
get less (here we recall that players do not receive payoffs at the network formation
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stage). Similar holds for player 3: ϕ3[v(z̄2)] = 7/2 < ϕ3[v(z̄1)] = 4 and player 4:
ϕ4[v(z̄2)] = 11/2 < ϕ4[v(z̄1)] = 6. However introducing the time-consistent IDP
of the Shapley value ϕ[v(z̄1)] over two stages determined by formula (2.4), we
obtain

β1
1 = −3/2, β1

2 = 1/2, β1
3 = 1/2, β1

4 = 1/2,

β2
1 = 29/2, β2

2 = 5/2, β2
3 = 7/2, β2

4 = 11/2,

and therefore cooperation will be sustainable. Thus receiving β1
i at the first stage

and β2
i at the second stage, player i ∈ N will get ϕi[v(z̄1)] in two stages which is

exactly player i’s cooperative payoff prescribed by the Shapley value ϕ[v(z̄1)].

2.4 Conclusion

In this paper, we studied a two-stage network game for a special type of pairwise
interactions between players. This gave us the possibility of getting analytic
expressions for characteristic functions in this game. As a solution of the game
under consideration, we took the Shapley value and found its analytic form for a
star-network. The special structure of the network game gives us the possibility
of the implementation of other cooperative solutions what enriches the scope of
application. The time inconsistency of the Shapley value in the two-stage game
with pairwise interactions was demonstrated, and time-consistent IDP-based payoffs
were introduced to deal with time inconsistency.

Acknowledgements This research was supported by the Russian Science Foundation (grant
No. 17-11-01079).
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