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Preface

Game theory has recently become a useful tool for modeling and studying various
networks. The past decade has witnessed a huge explosion of interest in issues that
intersect networks and game theory. With the rapid growth of data traffic, from any
kind of devices and networks, game theory is requiring more intelligent transfor-
mation. Game theory is called to play a key role in the design of new generation
networks that are distributed, self-organizing, cooperative, and intelligent.

This book consists of invited and technical papers of GAMENETS 2018,
and contributed chapters on game theoretic applications such as networks, social
networks, and smart grid.

Yongin, Republic of Korea Ju Bin Song
Knoxville, TN, USA Husheng Li
Paris, France Marceau Coupechoux
April 2018
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Game Theory for Networks



Chapter 1
Types of Nodes and Centrality Measures
in Networks

Vladimir Matveenko and Alexei Korolev

1.1 Introduction

In network games, players’ behavior in equilibrium is defined by their positions
in the network, which are described by one or other centrality measure. However,
different centrality measures prove important in different models: in particular,
degree centrality—in a model of systematic shift of social norms [7], betweenness
centrality—in a Medici of Florence power case (see [6]), eigenvalue centrality—in
a model of aggregation of information by society [5], Katz-Bonacich centrality—
in a model of criminal behavior [1], diffusion centrality—in models of diffusion
in networks [2], a special case of alpha centrality (hereinafter referred to as
alpha-gamma centrality)—in a model of production of knowledge [10, 11]. Such
variety of measures of centrality found to be of importance in various situations
leads naturally to open challenging questions about the nature of the centrality
measures themselves. There is an emergent literature on the interrelations of
different centrality measures and their relation with other structural characteristics
of networks (e.g., [3, 8, 9]).

In the present paper we show that there is a set of centrality measures which
characterize not just separate nodes of networks, but also types of nodes selected
by a rather universal structural characteristic—a network typology. The concept
of network typology is based on the fact that in any network (undirected graph)
〈M,N〉 with a set of nodes M = {1, . . . , n} and a set of edges M , the nodes may
be colored in a minimal number of colors, S, in such a way that any node of color
i = 1, . . . , S has a definite number, tij , of neighbors of color j, i = 1, . . .S. Such
coloring provides a division of the set of nodes M into S types. Correspondingly,

V. Matveenko (�) · A. Korolev
The National Research University Higher School of Economics, St. Petersburg, Russia
e-mail: vmatveenko@hse.ru
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4 V. Matveenko and A. Korolev

to each network a “type adjacency matrix” corresponds: T = (tij ) of size S×S. Two
networks are said to have the same typology if they have the same type adjacency
matrix T .

The concept of network typology differs of other approaches to the structure
of networks. We will see, for instance, that networks of similar size and similar
typology may have different topological structure. In the same time, networks of
similar size and similar distribution of degrees may have different typologies.

We consider a class of several centrality measures (degrees, eigenvector cen-
trality, Katz-Bonacich centrality, diffusion centrality, alpha-gamma centrality, and
alpha-beta centrality). The majority of them are familiar to the reader (see [6]).
Alpha-gamma centrality and alpha-beta centrality are special cases of alpha central-
ity. The definitions follow. The vector of α centralities of nodes is

Cα = (I − αA)−1h, (1.1)

where I is the identity matrix, A is the adjacency matrix, α is a number (may be
negative), h is a vector. Bonacich [4] introduced a special case of the alpha centrality,
called alpha-beta centrality1:

Cαβ = β(I − αA)−1A1, (1.2)

where 1 is the vector of all ones, α and β are parameters; may be positive or negative.
Another special case of alpha centrality—alpha-gamma centrality—was found by
Matveenko and Korolev [10, 11] in a model of knowledge production in a network.
The vector of alpha-gamma centralities of nodes is

Cαγ = γ (I − αA)−11, (1.3)

where α and γ are parameters such that αγ < 0.
We show that the centrality measures of our class are defined by the network

typology, i.e. depend on types of nodes. This implies that networks of different size
but with the same typology have common properties in many games. In particular,
this implies that game equilibria corresponding to any of these centrality measures
may be transplanted among networks of the same typology.

We show that information, needed for calculation of the above-mentioned
centrality measures for nodes of various types, relates only on knowledge of
typology, but knowledge of the full structure of the network is not needed. Thus,
the information containing in the type adjacency matrix T is enough for calculating
the listed centrality measures. Notice that the size of the type adjacency matrix T
may be several orders lower than the size of the adjacency matrix A.

1Bonacich [4] uses the letters α, β in the opposite order. We rewrite the definition to obtain a
formula of the same type as familiar definition of the Katz-Bonacich centrality.
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Opposite to some other centrality measures, the Katz-Bonacich centrality, the
alpha-gamma centrality and the alpha-beta centrality exist only in some regions of
parameter α. The Katz-Bonacich centrality exists under α ∈ (0, 1/λF ), where λF
is the Frobenius eigenvalue of both the adjacency matrix A and the type adjacency
matrix T . For the alpha-gamma centrality and the alpha-beta centrality the existence
conditions are more complex. Thus, possibilities to subjectively choose parameter
α are rather limited. For example, for the Katz-Bonacich centrality to be defined
for star network, parameter α has to decline unlimitedly when the star network
grows. The Bonacich centrality and the alpha-gamma centrality never coexist under
a joint α.

Konig et al. [9] and Bloch et al. [3] formulate the following problem: for which
classes of networks each centrality measure of a set of centrality measures defines
the same order on the set of nodes of network? In fact, two questions are here: about
the class of networks and about the set of centrality measures. In particular, Bloch
et al. [3] introduces a class of trees—so-called regular monotonous hierarchies—
and proves that, for any tree of this class, orders defined on the set of nodes by
the following set of centrality measures: degree centrality, decay centrality, Katz-
Bonacich centrality, diffusion centrality, intermediary centrality—do coincide. For
each tree not belonging the class, there exists a pair of centralities from listed above
which defines different orders on the set of nodes.

We show that such classes of networks are not limited by trees. We prove that
for any typology with two types of nodes, the orders defined on the set of nodes
by the following centrality measures: degree, eigenvalue centrality, Katz-Bonacich
centrality, diffusion centrality, alpha-gamma centrality, and alpha-beta centrality—
do coincide. The intersection of the classes of networks described in [3] and in our
paper is the class of star networks.

The rest of the paper is organized in the following way. In Sect. 1.2 we introduce
the concepts of type of node and network typology. In Sect. 1.3 we establish a
relation between the network typology and several centrality measures. In Sect. 1.4
we consider classes of networks, for which orders generated by several different
centrality measures do coincide. Section 1.5 concludes.

1.2 Types of Nodes and Network Topology

We consider a network (undirected graph) 〈M,N〉, where M = {1, . . . , n} is a set
of nodes and N is a set of edges. Our concept of network typology is based on
the fact that the nodes may be colored in a minimal number of colors, S, in such
a way that any node of color j (j = 1, . . . , S) has definite numbers of neighbors
of each of S colors. Such coloring provides a division of the set of nodes N into
S types.

More formally, a set of types of the nodes of the network is the minimal set
I = {1, . . . , S} for which there exists a mapping f : M → I such that if i, j ∈ M
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and f (i) = f (j), then f (v(i)) = f (v(j)), where v(i) is a set of neighbors of node
i. A polynomial algorithm of division of the set of nodes into types is described in
[10, 11].

To each network a “type adjacency matrix” corresponds. It is a matrix T = (tij )

of size S × S, where tij is the number of neighbors of type j for any node of type
i. Two networks are said to have the same typology if they have the same type
adjacency matrix.

A class of one-type networks is the familiar class of regular networks (i.e., such
that all nodes have the same degree). The next in the order of complexity is the class
of nodes with 2 types of nodes. It is a subclass of the class of networks with two
degrees.

Each tree possesses a unique typology. For each network which is not a tree there
is a sequence of networks of the same typology with increasing number of nodes.
Figure 1.1 demonstrates three networks of different size with the same typology.

Figure 1.2 shows that networks of similar size (6 nodes) and similar typology
(T = (

1 2
1 1

)
) may have different topological structure: in particular, the network in

Fig. 1.2a has a bridge (an edge, after removing of which the number of connected
components increases), while there are no bridges in the network in Fig. 1.2b. The
average clusterings of these networks are also different: 2/3 for the network in
Fig. 1.2a and 0 for the network in Fig. 1.2b.

It is also easy to show that networks of a similar size and a similar distribution of
degrees may have different typologies. An important structural property of networks
is provided by the following Lemma.

Lemma 1 Let i, j be types of nodes, which have, correspondingly, ni and nj nodes.
If tij �= 0, then tj i �= 0 and

nitij = nj tji , (1.4)

Proof Each of products in (1.4) expresses the number of all edges connecting nodes
of type i with nodes of type j . ��

2

2
2

2 2 2
2

2

1

2

22

1

1 1

1

1 1

1
1

1

11

2

Fig. 1.1 Networks of different size with the same typology
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Fig. 1.2 Networks of the
same typology and size but
with different topologies

b

a

Networks belonging to the same typology possess some common properties defined
by the type adjacency matrix. Let ni be the number of type i nodes in a network
(i = 1, . . . , S),md be the number of nodes of degree d, (d ∈ D) whereD is the set
of different degrees of nodes in the network.

Theorem 1 The following statistics are invariants of typology (they are the same
for any networks of given typology):

1. relative numbers of nodes of different types: ni/nj (i �= j ; i, j = 1, . . . , S);
2. distribution of nodes by types: ni/n (i = 1, . . . , S);
3. distribution of nodes by degrees: md/n (d ∈ D);
4. relative degree:

∑
d∈D mdd
n

.

Proof It is implied by Lemma 1. ��

1.3 Relation of Typology and Centralities

Theorem 2 In any class of networks with same typology, if i and j are nodes of
the same type (may be even belonging different networks of this typology), then
c(i) = c(j), where c is any of the following centrality measures: degree, eigenvalue
centrality, Katz-Bonacich centrality, diffusion centrality, alpha-gamma centrality,
alpha-beta centrality.

This implies that networks of different size but with the same typology have
common properties; in particular, game equilibria related to the centrality measures
may be transplanted among networks with the same typology.
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Theorem 2 is equivalent to the following Theorem 3.

Theorem 3 For calculation of any of the centrality measures listed in Theorem 2,
the type adjacency matrix T may be used instead of the adjacency matrix A.

Proof For degree, Katz-Bonacich centrality, diffusion centrality, alpha-gamma cen-
trality, alpha-beta centrality, it rather easily follows from corresponding definitions.
Let us prove it for eigenvalue centrality. It follows directly from the definitions that
(i) if λ is an eigenvalue of the type adjacency matrix T and b̃ is a corresponding
eigenvector, then λ is also an eigenvalue of the adjacency matrix A, and the
corresponding eigenvector is b, where bi = b̃

ĩ
if i ∈ M

ĩ
. (In other words, λb̃ = T b̃

implies λb = Ab). Let us prove that (ii) if λF is the Frobenius eigenvalue of the
type adjacency matrix T , then λF is also the Frobenius eigenvalue of the adjacency
matrix A.

To prove (ii) ad absurdum, assume that the Frobenius eigenvalue of matrix A is
μ �= λF . Part (i) implies that μ > λF . Let e be the Frobenius eigenvector of matrix
A and let ê be the n-vector with components

êi = max
j∈Mi

ej , i = 1, 2, . . . , n.

Evidently,

Aê ≥ μe.

Let f̂ be size S vector corresponding to ê, i.e. f̂
ĩ
= êi if i ∈ M

ĩ
. Then

T f̂ ≥ μf̂ , (1.5)

but according to the Perron-Frobenius theorem, since λF is the Frobenius eigen-
value, (1.5) implies λF ≥ μ Contradiction! ��

1.4 Classes of Networks, for Which Orders Generated by
Several Different Centrality Measures Do Coincide

Konig et al. [9] and Bloch et al. [3] formulate the following problem: for which
classes of networks each of a set of several centrality measures defines the same
order on the set of nodes of network? (Here are two questions: about the class of
networks and about the set of centrality measures). In particular, Bloch et al. [3]
introduces a class of trees—so called regular monotonous hierarchies. Applying to
undirected networks, the class of regular monotonous hierarchies might be defined
in the following way. Let ρ(i) be a distance between a node i and a root of the tree,
and di be degree of node i.
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Definition Tree g is called regular monotonous hierarchy if there exists a node i0
(root) such that the tree satisfies the following conditions:

• All nodes being at the same distance from the root have the same degree (i.e., if
ρ(i) = ρ(j), then di = dj ).

• For any two nodes i, j , if the distance between the root and i, ρ(i), is less than
the distance between the root and j , ρ(j), then di ≥ dj .

Bloch et al. [3] proves that if a tree g is a regular monotonous hierarchy, then the
following centrality measures: degree centrality, decay centrality, Katz-Bonacich
centrality, diffusion centrality, intermediary centrality order the nodes in the same
way. For each tree not of the class of regular monotonous hierarchies, there is a pair
of centralities from this list, which will give different orders on the set of nodes.

We show that such kind classes of networks are not limited by trees.

Theorem 4 For any typology with two types of nodes, the orders on the set of
nodes, defined by the following centrality measures: degree, eigenvalue centrality,
Katz-Bonacich centrality (under condition of existence), diffusion centrality, alpha-
gamma centrality (under condition of existence and a positive determinant of matrix
(I − αT ),Δ > 0), and alpha-beta centrality (under conditions βΔ > 0, d1 >

αΔ, d2 > αΔ) do coincide.

Proof (Degrees and Eigenvector Centrality) The vector C̃e of eigenvector centrali-
ties is defined by the equation

T C̃e = αF C̃e,

which implies

t11C̃
e
1 + t12C̃

e
2 = t11 + t22 +√

(t11 − t22)2 + 4t12t21

2
C̃e1.

Hence,

t12C̃
e
2 =

(
t11 + t22 +√

(t11 − t22)2 + 4t12t21

2
− t11

)

C̃e1,

C̃e1 > C̃
e
2 ⇔ 2t12 + t11 − t22 >

√
(t11 − t22)2 + 4t12t21

⇔ 4t212 + 4t12(t11 − t22) > 4t12t21 ⇔ d1 > d2.

��
Proof (Degrees and Bonacich Centrality) Let us proof that

C̃B1 − C̃B2 = 1

α
(

1
α

− λf
) (

1
α

− λ2

) (d1 − d2). (1.6)
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Indeed,

C̃B1 − C̃B2 = 1

Δ
[1 + α(t12 − t22)− 1 − α(t21 − t11)] = α

Δ
(d1 − d2),

Δ = 1 − αTrT + α2DetT = α2
(

1

α2
− 1

α
TrT +DetT

)

= α2
(

1

α
− λF

)(
1

α
− λ2

)
.

The Bonacich centrality exists iff

1

α
> λF ≥ λ2,

hence, as it is seen from (1.6), the orders do coincide. ��
Proof (Degrees and Diffusion Centrality) We will use the definition of diffusion
centrality with a free term:

Cdif = (I + αT + α2T 2 + · · · + αLT L)1̃. (1.7)

If L = 1, then the values of diffusion centrality of types are

C
dif

ĩ
= 1 + αd

ĩ
.

The value α is positive; thus, if L = 1, then the diffusion centralities induce on
the set of nodes the same order as degrees of nodes. Let us show that in a network
with two types of nodes, the order of nodes induced by diffusion centrality does not
depend on the natural number L. For the type adjacency matrix,

T =
(
t11 t12

t21 t22

)
, (1.8)

the eigenvalues are

λF = t11 + t22 +√
(t11 − t22)2 + 4t12t21

2
,

λ2 = t11 + t22 −√
(t11 − t22)2 + 4t12t21

2
.
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Let

Λ =
(
λF 0
0 λ2

)
, (1.9)

and let C be a matrix of transition to a basis constructed from the eigenvectors of
matrix T ; i.e. columns of matrix C are eigenvectors corresponding eigenvalues λF
and λ2. Elements of matrix C will be denoted cij , and elements of the inverse matrix
C−1 will be denoted c̃ij . Then:

(I + αT + α2T 2 + · · · + αLT L)1̃
= C(I + α	+ α2	

2 + · · · + αL	L)C−11̃

=
(
c11 c12

c21 c22

)
∗
⎛

⎝
1−λL+1

F

1−λF 0

0
1−λL+1

2
1−λ2

⎞

⎠ ∗
(
c̃11 c̃12

c̃21 c̃22

)
∗
(

1
1

)

=
⎛

⎝ c11
1−λL+1

F

1−λF c12
1−λL+1

2
1−λ2

c21
1−λL+1

F

1−λF c22
1−λL+1

2
1−λ2

⎞

⎠ ∗
(
c̃11 c̃12

c̃21 c̃22

)
∗
(

1
1

)

=
⎛

⎝ c̃11c̃11
1−λL+1

F

1−λF + c12c̃21
1−λL+1

2
1−λ2

c11c̃12
1−λL+1

F

1−λF + c12c̃22
1−λL+1

2
1−λ2

c21c̃11
1−λL+1

F

1−λF + c22c̃21
1−λL+1

2
1−λ2

c21c̃12
1−λL+1

F

1−λF + c22c̃22
1−λL+1

2
1−λ2

⎞

⎠
(

1
1

)

=
⎛

⎝ c11c̃11
1−λL+1

F

1−λF + c12c̃21
1−λL+1

2
1−λ2

+ c11c̃12
1−λL+1

F

1−λF + c12c̃22
1−λL+1

2
1−λ2

c21c̃11
1−λL+1

F

1−λF + c22c̃21
1−λL+1

2
1−λ2

+ c21c̃12
1−λL+1

F

1−λF + c22c̃22
1−λL+1

2
1−λ2

⎞

⎠

Hence, the difference of the 1st and 2nd types nodes diffusion centralities is

Dif = 1 − λL+1
F

1 − λF (c̃11 + c̃12)(c11 − c21)+ 1 − λL+1
2

1 − λ2
(c̃21 + c̃22)(c12 − c22).

This formula is true for any natural L, and also for L = 0. But for L = 0, obviously,
Dif = 0; hence,

(c̃11 + c̃12)(c11 − c21)+ (c̃21 + c̃22)(c12 − c22) = 0.

If degrees of the 1st type nodes are higher than of the 2nd type nodes, then for
L = 1 we have Dif > 0, which implies

(c̃11 + c̃12)(c11 − c21) > 0, (c̃21 + c̃22)(c12 − c22) < 0.
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But the difference of diffusion centralities has then the same sign for any other
natural L > 1, as

1 − λL+1
F

1 − λF = 1 + λF + λ2
F + · · · + λLF ,

1 − λL+1
2

1 − λ2
= 1 + λ2 + λ2

2 + · · · + λL2 ,

1 + λF + λ2
F + · · · + λLF > 0,

1 + λF + λ2
F + · · · + λLF > |1 + λ2 + λ2

2 + · · · + λL2 |,

i.e. if degrees of the 1st type nodes are higher than of the 2nd type nodes, then
Dif > 0 for any L. ��
Proof (Degrees and Alpha-Gamma Centrality) The vector of αγ centralities of
types is

C̃αγ = α

Δ

(
1 + α(t12 − t22)

1 + α(t21 − t11)

)
=
( γ
Δ

+ αγ
Δ
(t12 − t22)

γ
Δ

+ αγ
Δ
(t21 − t11)

)
.

As αγ < 0, if Δ < 0, then

C̃
αγ

1 > C̃
αγ

2 ⇔ t12 − t22 > t21 − t11 ⇔ d1 > d2.

If Δ < 0, then vice versa,

C̃
αγ

1 > C̃
αγ

2 ⇔ d1 > d2.

��
Proof (Degrees and Alpha-Beta Centrality) We have

1̃ − αT =
(

1 − αt11 −αt12

−αt21 1 − αt22

)
,

Δ = 1 − αt11 − αt22 + α2t11t22 − α2t12t21,

β(1̃ − αT )−1 = β

Δ

(
1 − αt22 −αt12

αt21 1 − αt11

)
,

β(1̃ − αT )−1T = β

Δ

(
t11 − αt11t22 + αt12t21 t12

t21 αt12t21 + t22 − αt11t22

)
,
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C̃αβ = β(Ĩ − αT )−1T 1 = β

Δ

(
t11 + t12 − α(t11t22 − t12t21)

t21 + t22 − α(t11t22 − t12t21)

)
.

Thus, the αβ centrality exists if

βΔ > 0; t11t22 > α(t11t22 − t12t21),

t21 + t22 > α(t11t22 − t12t21)

or

βΔ < 0; t11t22 < α(t11t22 − t12t21),

t21 + t22 < α(t11t22 − t12t21).

In the former case, the αβ centrality defines on the set of nodes the same order as
degrees, and in the latter case the opposite order. ��

1.5 Conclusion

Games on networks provide a productive way to analyze social and economic
networks. Numerous research studies show that behaviors of players in equilibrium
depend on network structure and, in particular, on positions of players in network,
described by centrality measures. However, the concepts of network structure and
player’s position do themselves need a deeper understanding. Commonly, a game
equilibrium is described by one or another particular centrality measure, but it is not
quite clear, what is the reason of correspondence of a particular centrality measure
to a particular game.

In the present paper we introduce two fundamental structural concepts—types
of nodes and network typology—and show their importance in analysis of game
equilibria. We find that centrality measures which belong to a class (consisting of
degree, eigenvalue centrality, Katz-Bonacich centrality, diffusion centrality, alpha-
gamma centrality, and alpha-beta centrality) do correspond, in fact, not to separate
nodes but to types of nodes. An important consequence is that if, in a game
equilibrium, behaviors of players are described by one of these centrality measures,
then the equilibrium may be transplanted to any network possessing the same
typology, independently on the size of network or on topological characteristics,
such as presence or absence of bridges. The transplantation means copying behavior
by players of the same type. Thus, in many games, the equilibrium behavior is
defined primarily by the network typology and types of nodes, while centrality
measures as structural characteristics of games are found to be secondary relatively
to the types of nodes.
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Another, more specific, problem discussed in the paper is the existence of a
class of networks for which all centrality measures of a class do generate the same
order of nodes. Staying in such class of networks, it is easy to compare equilibria
of different games. We find that any typology with two types of nodes has such
property for our class of network centralities (degree, eigenvalue centrality, Katz-
Bonacich centrality, diffusion centrality, alpha-gamma centrality, and alpha-beta
centrality). For any fixed typology with two types of nodes, all the above-mentioned
centrality measures provide the same order on the set of nodes.

Thus, we characterize a class of games for which it is proven by different
authors that the equilibrium strategies of players are described by one or another
of the above-mentioned centrality measures. For this class of games there is a
correspondence between typologies with two types of nodes and game equilibria. In
future work, it would be important to find any other joint properties characterizing
explicitly these games as representatives of one joint class

Acknowledgements The research is supported by the Russian Foundation for Basic Research
(project 17-06-00618).
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Chapter 2
The Time-Consistent Shapley Value
for Two-Stage Network Games
with Pairwise Interactions

Leon Petrosyan, Mariia Bulgakova, and Artem Sedakov

2.1 Introduction

Network games is a new and important part of modern game theory. Networks
illustrate the interaction of both individuals and groups. For the first time in
the literature, a non-cooperative form of pairwise interaction in a network was
considered in [3] meaning direct interactions between network neighbors. Finding
an equilibrium in online gaming as an example of a Designer–Adversary game was
described in [4]. Pairwise interaction was exposed in [1] on the example of the
dissemination of information and misinformation in social networks. The efficiency
and stability of networks depending on external factors such as marginal costs were
examined in [6]. An approach for finding optimal behavior in multistage games was
considered in [9]. Cooperation in network games and a model of interaction between
coalitions were considered in [5].

When cooperative behavior is investigated, it is important that players follow
a cooperative agreement during the whole game. If a solution of the cooperative
game is time-consistent, players have no reason to deviate from the accepted
agreement. An imputation distribution procedure (IDP) which is a payment scheme
that provides the implementation of the solution was introduced in [8] to prevent
players from deviating from the cooperative agreement. The conditions for the
time consistency of the core for two-stage games with pairwise interactions were
established in [2]. The dynamic properties of cooperative solutions in multicriteria
games were considered in [7]. In this paper, we provide analytic expressions for
characteristic functions in a two-stage game with pairwise interactions. Further,
similar to [11], we provide conditions for the time consistency of the Shapley value
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in this game. Moreover we simplify the formula of the Shapley value for a network
of a special type—a star.

2.2 Description of the Model

Let N be a finite set of players who make decisions in two stages, |N | = n � 2.
At the first stage z1 each player i ∈ N chooses his behavior b1

i = (b1
i1, . . . , b

1
in)—a

profile of offers to establish connections with other players:

b1
ij =

{
1, if j ∈ Mi,
0, otherwise,

with

∑

j∈N
b1
ij � ai .

Here Mi ⊆ N \ {i} is a given set of players whom player i can offer connections,
b1
ii = 0 for i ∈ N ; ai ∈ {0, . . . , n − 1} represents the maximum number of

connections for player i. If Mi = N \ {i}, player i can offer a connection to any
player; in particular, if ai = n−1, player i can have any number of connections. The
result of the first stage is a network g(b1

1, . . . , b
1
n) consisting of links (connections)

ij such that b1
ij = b1

j i = 1. For brevity, denote g(b1
1, . . . , b

1
n) by g. Define the

neighbors of player i in network g as elements of the set Ni(g) = {j ∈ N \ {i} :
ij ∈ g} or simply Ni . After the network formation stage z1, players proceed to the
second stage z2.

At second stage z2(g) which depends upon a network chosen at the first stage,
network neighbors play pairwise simultaneous bimatrix games {γij }. Namely, let
i ∈ N, j ∈ Ni , then at the second stage, player i plays with his neighbor j a
bimatrix game γij with non-negative payoff matrices Aij = [aijp
]p=1,...,m; 
=1,...,k

and Bij = [bijp
]p=1,...,m; 
=1,...,k for players i and j , respectively.
After receiving payoffs in these bimatrix games, the game ends. In other words,

we have a two-stage game Γ which is a special case of a multistage non-zero-sum
game. Adapting the definition of a strategy to this case, a strategy of player i ∈ N
will be a rule which assigns a set of his neighbors at first stage b1

i , and a behavior b2
i

in each of the bimatrix games at the second stage of the game taking into account a
network formed at the first stage. Denote the strategy of player i ∈ N in two-stage
game Γ by ui = (b1

i , b
2
i ). Let (z1, z2) be a trajectory realized under the strategy

profile u = (u1(·), . . . , un(·)) in Γ . Define the payoff of player i as hi(z2) which is
the sum of player i’s payoffs in all bimatrix games with his neighbors when b2

i , b
2
j ,

j ∈ Ni are chosen. Then player i’s payoff function in Γ starting at z1 is defined as
Ki(z1; ui(·), . . . , un(·)) = hi(z2).
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The rest of the paper will be devoted to a cooperative version of the two-stage
game Γ .

2.2.1 Cooperation at the Second Stage of the Game

A game Γz2 denoting a subgame of game Γ which starts at the second stage z2 can
be considered in cooperative form. In this case, we define characteristic function
v(z2; S) for any subset (coalition) S ⊂ N as the maxmin value of a two-person
zero-sum game between coalition S and its complement N \ S constructed with the
use of game Γz2 . The superadditivity of the characteristic function follows from its
definition. Denote the maxmin value of player i (j ) in game γij with his neighbor j
(i) as

wij = max
p

min


a
ij
p
, p = 1, . . . , m, 
 = 1, . . . , k,

wji = max



min
p
b
ji
p
, p = 1, . . . , m, 
 = 1, . . . , k.

Following [2], for any S ⊆ N , the characteristic function v(z2; S) is given by:

v(z2; S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∑

i∈N

∑

j∈Ni
max
p,

(a
ij
p
 + bjip
), S = N,

1

2

∑

i∈S

∑

j∈Ni∩S
max
p,

(a
ij
p
 + bjip
)+

∑

i∈S

∑

k∈Ni\S
wik, S ⊂ N, |S| > 2,

max
p,

(a
ij
p
 + bjip
)+

∑

r∈Ni\{j}
wir +

∑

q∈Nj \{i}
wjq, S = {i, j},

∑

j∈Ni
wij , S = {i},

0, S = ∅.

(2.1)

2.2.2 Cooperation at Both Stages of the Game

Consider a cooperative form of two-stage game Γ . Suppose that all players choose
strategies ū = (ū1, . . . , ūn) which maximize their joint payoff in game Γ , i.e.,

∑

i∈N
Ki(z1; ū1, . . . , ūn) = max

u

∑

i∈N
Ki(z1; u1, . . . , un)
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The strategy profile ū = (ū1, . . . , ūn) is called the cooperative strategy profile, and
the corresponding trajectory (z̄1, z̄2) is the cooperative trajectory.

As before for coalition S ⊆ N , we define characteristic function v(z̄1; S) as the
maxmin value of a two-person two-stage zero-sum game between coalition S and
its complement, where the payoff of S is the sum of players’ payoffs from S, and
the strategy of S is an element of the Cartesian product of sets of players’ strategies
belonging to S. Since players’ payoffs are non-negative, for player N \ S, the best
behavior to follow is to have no connections with S. Hence we get

v(z̄1; S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(z̄2;N), S = N,
1

2

∑

i∈S

∑

j∈Ni∩S
v(z̄1; {i, j}), S ⊂ N, |S| > 2,

max
p,

(a
ij
p
 + bjip
), S = {i, j},

0, |S| = 1, or S = ∅.

(2.2)

2.2.3 The Shapley Value and Time Consistency

Given a characteristic function v(z̄t ; ·), t = 1, 2, we define an imputation as a vector
ξ [v(z̄t )] = (ξ1[v(z̄t )], . . . , ξn[v(z̄t )]) which is (i) efficient, i.e.,

∑
i∈N ξi[v(z̄t )] =

v(z̄t ;N) and (ii) individually rational, i.e., ξi[v(z̄t )] � v(z̄t ; {i}) for all i ∈ N .
Denote the set of all imputations (an imputation set) in game Γ by I (v(z̄t )).
As an imputation we consider the Shapley value [12] denoted by ϕ[v(z̄t )] =
(ϕ1[v(z̄t )], . . . , ϕn[v(z̄t )]) where

ϕi[v(z̄t )] =
∑

S⊆N,i∈S

(|S| − 1)!(n− |S|)!
n! [v(z̄t ; S)− v(z̄t ; S \ {i})], i ∈ N.

(2.3)
Before the start of game Γ , players agree on choosing cooperative trajectory

(z̄1, z̄2), i.e., the trajectory that yields the maximum joint payoff v(z̄1;N), and
we suppose that players allocate this payoff according to the Shapley value. This
means that in Γ each player i ∈ N expects his payoff to be equal to ϕi[v(z̄1)].
If players recalculate the Shapley value after the network formation stage (at the
second stage), it turns out that the recalculated Shapley value ϕ[v(z̄2)] differs
from the previous one. This may lead to a violation of the cooperative agreement
because some players may refuse to use their cooperative strategies. We say that
the Shapley value as an allocation in the two-stage game is time consistent if
ϕ[v(z̄1)] = ϕ[v(z̄2)] (as players do not receive payoffs at the network formation
stage), otherwise we call the Shapley value time inconsistent. In the former case,
players follow the cooperative agreement not expecting that someone violate it. In
the latter case, to prevent players from violating the cooperative agreement, we use
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an imputation distribution procedure (IDP) β = {β1
i , β

2
i }i∈N (first introduced in [8])

for the Shapley value ϕ[v(z̄1)] which decomposes it over two stages of the game Γ :
ϕi[v(z̄1)] = β1

i + β2
i for each i ∈ N . Here β1

i can be interpreted as a stage payment
to player i at the network formation stage, and β2

i is his payment at the second stage
of the game under the cooperative agreement. We say that the IDP β of the Shapley
value ϕ[v(z̄1)] is a time-consistent IDP [10, 11] when it is given by:

β1
i = ϕi[v(z̄1)] − ϕi[v(z̄2)], β2

i = ϕi[v(z̄2)], i ∈ N. (2.4)

Introducing the time-consistent IDP β (2.4) of the Shapley value ϕ[v(z̄1)], players
can be sure that no one violates the cooperative agreement, hence it will be realized
in the game and player i ∈ N gets ϕi[v(z̄1)] as his cooperative payoff.

2.3 The Shapley Value for a Star

Since the calculation of the Shapley value ϕ[v(z̄t )], t = 1, 2, is a difficult task for
a large number of players in an arbitrary network, we simplify formula (2.3) for a
network of a special type—a star. Within this section we suppose the following. Let
Mi = N \ {i} for i ∈ N and a1 = n − 1, ai = 1, i �= 1. Further let maxj∈N wij =
wi1. Then in order to maximize the joint payoff, players should choose the following
behaviors at the first stage of the game: b1

1 = (0, 1, . . . , 1) for player 1, and b1
i =

(1, 0, . . . , 0) for player i �= 1. These behaviors form a star-network at this stage (see
Fig. 2.1). In the star-network, |N1| = n− 1 and |Ni | = 1, i �= 1.

For a star-network, the characteristic function is calculated using a specific
structure of the network. The network has central symmetry which suggests that
formula (2.3) can be simplified. Let mij = maxp,
(a

ij
p
 + b

ji
p
). Substituting

the adopted notation, as well as (2.1), (2.2), into (2.3), we obtain the following
expression for the components of the Shapley value:

ϕi[v(z̄t )] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

⎡

⎣v(z̄t ; {1})+
∑

j �=1

(
m1j − v(z̄t ; {j}))

⎤

⎦ , i = 1,

1

2
[m1i + v(z̄t ; {i})− w1i] , i �= 1.

(2.5)

Fig. 2.1 A star with n
players

2 3 . . . n

1
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2.3.1 Two Examples

Two examples below demonstrate that the Shapley value being an allocation in a
cooperative two-stage game with pairwise interactions can be both time consistent
and time inconsistent. The first example shows the time consistency of the Shapley
value.

Example 1 (Prisoner’s Dilemma) Consider the case, when n players play the same
game γ with their neighbors, i.e., Aij = A, Bij = B for all i ∈ N , j ∈ Ni where

A = BT =
(
b 0

a + b a

)
, 0 < a < b.

To find the Shapley value ϕ[v(z̄2)], we first determine characteristic function
v(z̄2; S) for all S ⊆ N . Following (2.1), we obtain

v(z̄2; S) =

⎧
⎪⎪⎨

⎪⎪⎩

2b(n− 1), S = N,
2b(|S| − 1)+ (n− |S|)a, S ⊂ N, 1 ∈ S,
|S|a, S ⊂ N, 1 /∈ S,
0, S = ∅.

Using the formula for the Shapley value (2.5) adapted to a star and noting that the
Shapley value is an efficient allocation satisfying the property of symmetry and that
m1j = 2b for any j ∈ N1, we obtain

ϕ1[v(z̄2)] = 1

2
[(n− 1)a + (n− 1)(2b − a)] = b(n− 1),

ϕi[v(z̄2)] = v(z̄2;N)− ϕ1[v(z̄2)]
n− 1

= b, i �= 1.

Similarly, to find the Shapley value ϕ[v(z̄1)], we determine characteristic
function v(z̄1; S) for all S ⊆ N . Following (2.2), we have

v(z̄1; S) =
⎧
⎨

⎩

2b(n− 1), S = N,
2b(|S| − 1), S ⊂ N, 1 ∈ S,
0, S ⊂ N, 1 /∈ S or S = ∅.

Again, using the formula for the Shapley value (2.5) adapted to a star, the Shapley
value ϕ[v(z̄1)] is given by

ϕ1[v(z̄1)] = 1

2
[2b(n− 1)] = b(n− 1),

ϕi[v(z̄1)] = v(z̄1;N)− ϕ1[v(z̄1)]
n− 1

= b, i �= 1.



2 The Time-Consistent Shapley Value for Two-Stage Network Games 21

Fig. 2.2 A star with four
players

2 3 4

1

Comparing ϕ[v(z̄1)] and ϕ[v(z̄2)], we note they coincide and hence the Shapley
value is time consistent.

In the next example we demonstrate the time inconsistency of the Shapley value.

Example 2 Consider a numerical example with N = {1, 2, 3, 4} in which players
form a star-network under a cooperative agreement (see Fig. 2.2). Let simultaneous
bimatrix games γ12, γ13, and γ14 be defined by means of the following payoff
matrices of players:

(A12, B12) =
(
(2, 2) (3, 0)
(5, 1) (1, 2)

)
, (A13, B13) =

(
(3, 1) (4, 2)
(6, 2) (2, 3)

)
,

(A14, B14) =
(
(1, 3) (3, 2)
(6, 6) (4, 1)

)
.

To compute the Shapley values ϕ[v(z̄1)] and ϕ[v(z̄2)], we use the corresponding
formulas (2.1), (2.2) for characteristic functions v(z̄2; ·) and v(z̄1; ·), respectively,
and the simplified formula (2.5). Hence we get

w12 = 2, w13 = 3, w14 = 4,
w21 = 1, w31 = 2, w41 = 3,
m12 = 6, m13 = 8, m14 = 12,

and therefore

v(z̄2; {1}) = 9, v(z̄2; {2}) = 1, v(z̄2; {3}) = 2, v(z̄2; {4}) = 3,
v(z̄1; {1}) = 0, v(z̄1; {2}) = 0, v(z̄1; {3}) = 0, v(z̄1; {4}) = 0,
v(z̄1;N) = 26, v(z̄2;N) = 26.

Thus the Shapley values are given by

ϕ[v(z̄1)] = (13, 3, 4, 6), ϕ[v(z̄2)] = (29/2, 5/2, 7/2, 11/2).

We observe that the Shapley value ϕ[v(z̄1)] in the two-stage game differs from the
Shapley value ϕ[v(z̄2)] in the one-stage game starting at the second stage. This
means the time inconsistency of the Shapley value. Since ϕ2[v(z̄2)] = 5/2 <

ϕ2[v(z̄1)] = 3, player 2 can break the cooperative agreement as his payoff can
get less (here we recall that players do not receive payoffs at the network formation
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stage). Similar holds for player 3: ϕ3[v(z̄2)] = 7/2 < ϕ3[v(z̄1)] = 4 and player 4:
ϕ4[v(z̄2)] = 11/2 < ϕ4[v(z̄1)] = 6. However introducing the time-consistent IDP
of the Shapley value ϕ[v(z̄1)] over two stages determined by formula (2.4), we
obtain

β1
1 = −3/2, β1

2 = 1/2, β1
3 = 1/2, β1

4 = 1/2,
β2

1 = 29/2, β2
2 = 5/2, β2

3 = 7/2, β2
4 = 11/2,

and therefore cooperation will be sustainable. Thus receiving β1
i at the first stage

and β2
i at the second stage, player i ∈ N will get ϕi[v(z̄1)] in two stages which is

exactly player i’s cooperative payoff prescribed by the Shapley value ϕ[v(z̄1)].

2.4 Conclusion

In this paper, we studied a two-stage network game for a special type of pairwise
interactions between players. This gave us the possibility of getting analytic
expressions for characteristic functions in this game. As a solution of the game
under consideration, we took the Shapley value and found its analytic form for a
star-network. The special structure of the network game gives us the possibility
of the implementation of other cooperative solutions what enriches the scope of
application. The time inconsistency of the Shapley value in the two-stage game
with pairwise interactions was demonstrated, and time-consistent IDP-based payoffs
were introduced to deal with time inconsistency.

Acknowledgements This research was supported by the Russian Science Foundation (grant
No. 17-11-01079).
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Chapter 3
Routing on a Ring Network

Ramya Burra, Chandramani Singh, Joy Kuri, and Eitan Altman

3.1 Introduction

Routing problems arise in networks in which common resources are shared by a
group of users. Examples of such scenario include flow routing in communication
networks, traffic routing in transportation networks, flow of work in manufacturing
plants, etc. Each user incurs a certain cost (e.g., delay) at each link on its route,
where the cost depends on the flows through the link. The routing problems, when
handled by a centralized controller, aim to optimize the aggregate cost of all the
users, e.g., average network delay. However, a centralized solution may not be
viable for several reasons. For instance, a very large network and its time varying
attributes (e.g., traffic and link states in a communication network) could lead
to excessive communication overhead for solving the problem centrally. In other
cases, the very premise of the network may be such that local administrators control
different portions of the network, e.g., different depots controlling different parts
of a transportation network. In either case, distributed controllers may compete to
maximize individual, and often conflicting, performance measures. It is imperative
to assess the performance of distributed control, especially how far it is from the
global optimal.
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Fig. 3.1 A ring network with
K = 2. For example, the
users at node 1 can use paths
(1, 0), (1, 2, 0), and
(1, 2, 3, 0)

Distributed control of routing has been widely modelled as noncooperative
games among self-interested decision makers. Nash equilibria of the games
(Wardrop equilibria in case of nonatomic games) characterize the system-wide
flow configuration resulting from such distributed control. Wardrop [10] introduced
Wardrop equilibrium in the context of transportation networks, and Dafermos and
Sparrow [4] showed that it can be characterized as a solution of a standard network
optimization problem. Orda et al. [8] showed existence and uniqueness of Nash
equilibrium in routing games under various assumptions on the cost function.
They also showed a few interesting monotonicity properties of the Nash equilibria.
Cominetti et al. [3] computed the worst-case inefficiency of Nash equilibria and
also provided a pricing mechanism that reduces the worst-case inefficiency. Altman
et al. [1] considered a class of polynomial link cost functions and showed that these
lead to predictable and efficient Nash equilibria. Hanwal et al. [5] studied routing
over time and studied a stochastic game resulting from random arrival of traffic.

We study a routing problem on a ring network in which users’ traffic originate
at nodes on the ring and are destined to a common node at the center (see Fig. 3.1).
Each user can use the direct link from its node to the center and also a certain number
of paths through the adjacent nodes, to transport its traffic. The users incur two costs:
(i) The cost of using a link between a node at the ring and the center, (ii) the cost of
redirecting the traffic through adjacent nodes. The number of users attached to the
node can be random. We characterize Nash equilibria of such routing games.

Scheduling problems are a class of resource allocation problems in which
resources are shared over time. In these problems, unlike simultaneous action
routing problems, each user may see the system state that results from its
predecessor’s actions. However, if we assume that such information is not available
to the users, our framework can also be used to analyze certain scheduling (or
temporal routing) problem.

In Sect. 3.2, we formally introduce our general framework and also illustrate
how it can be used to model several problems arising in communication networks,
transportation networks, etc. In subsequent sections, we analyze special cases of this
framework. Following is a brief outline of our contribution
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1. In Sect. 3.3, we show that routing games with only one and two hop paths
and linear costs are potential games. We also give explicit expressions of Nash
equilibrium flows for networks with any generic cost function and symmetric
loads.

2. In Sect. 3.4 we consider networks with random loads and linear routing costs. We
give explicit characterization of Nash equilibria for two cases: (i) General load
distribution and one and two hop paths, (ii) Bernoulli distributed loads.

The omitted proofs can be found in our technical report [2].

3.2 System Model

Let us consider a ring network with N nodes andMn users at each node n ∈ [N ] :=
{1, . . . , N}. Let us assume that the ith user at node n has a flow requirement φin to
be sent to the center. Let c(z) represent the cost per unit of flow at any link where z
is the aggregate traffic through this link. Throughout we assume that c(·) is positive,
strictly increasing and convex. We assume that each user can use the direct link to the
center and the K other links through K adjacent nodes in the clockwise direction.
For example, any user at node n can use links (n, 0), (n + 1, 0), . . . , (n + K, 0).1
We also assume that a user at node n incurs kd extra per unit flow cost for any flow
that it routes through link (n+k, 0). Note that we assume no cost for using the links
along the ring.

For each n ∈ [N ], i ∈ [Mn], l ∈ [n, n + K], let xinl be the flow of ith user at
node n that is routed through link l. We let xin denote the flow configuration of the
ith user at node n, x denote the network flow configuration, and xl denote the total
flow through link l; xin = (xinl, l ∈ [n, n + K]), x = (xin, n ∈ [N ], i ∈ [Mn]) and
xl = ∑

n∈[l−K,l]
∑
i∈[Mn] x

i
nl . Then the total cost of ith user is

Cin(x) =
∑

l∈[n,n+K]
xinl(c(xl)+ (l − n)d), (3.1)

and the aggregate network cost is C(x) = ∑
n∈[N ]

∑
i∈[Mn] C

i
n(x). Note that the

flows must satisfy

∑

l∈[n,n+K]
xinl = φin (3.2)

for all i ∈ [Mn], n ∈ [N ] in addition to nonnegativity constraints.
We now illustrate how this framework can model a variety of routing and

scheduling problems.

1Clearly, the addition here is modulo N .
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1. We can think of this framework as modeling routing in a transportation network
in a city. The ring and the center represent a ring road and the city center, respec-
tively. We have sets of vehicles starting from various entry points, represented as
nodes on the ring, all destined to the city center. The costs here represent latency.
We assume that the ring road has large enough capacity to render the latency
along it independent of the load. On the other hand, latency on the roads joining
the ring to the center is traffic dependent. Each node has a set of depots, each
controlling routing of a subset of vehicles starting at this node.

2. We can use this framework to model load balancing in distributed computer
systems [6].

3. We can also use this framework to model scheduling of charging of electric
vehicles at a charging station. Here, the nodes represent time slots and players
represent vehicles. The per unit charging cost in a slot depends on the charge
drawn in that slot. Each vehicle can wait up to K slots to be charged. We assume
that the vehicles do not know pending charge from the earlier vehicles when
making scheduling decision.

3.3 Deterministic Loads

Nash Equilibrium A flow configuration x is a Nash equilibrium if, for all i ∈
[Mn], n ∈ [N ],

Cin(x) = min
yin

Cin(y
i
n, x \ xin) (3.3)

subject to (3.2) and nonnegative constraints. Under our assumptions on c(·),
the routing game is a convex game [9]. Existence and uniqueness of the Nash
equilibrium then follows from [8]. It follows that the equilibrium is characterized
by the following Kuhn-Tucker conditions(using cost from Eq. (3.1)): for every i ∈
[Mn] there exists a Lagrange multiplier λin such that, for every link l ∈ [n, n+K],

c(xl)+ (l − n)d + xinlc′(xl) ≥ λin (3.4)

with equality if xinl > 0. From this,

λin =
∑
l:xinl>0

c(xl)+(l−n)d
c′(xl) + φin

∑
l:xinl>0

1
c′(xl)

, for all i ∈ [Mn], n ∈ [N ].

We observe that the equilibrium flow configuration is the solution of the following
system of equations.
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xinj = max

⎧
⎨

⎩
1

c′(xj )

∑
l:xinl>0

c(xl)−c(xj )+(l−j)d
c′(xl) + φin

∑
l:xinl>0

1
c′(xl)

, 0

⎫
⎬

⎭
, (3.5)

for all i ∈ [Mn], j ∈ [n, n+K], n ∈ [N ].
We can elegantly obtain Nash equilibria in special cases. In the following two

subsections we consider two such cases, the first allowing only one-hop and two-
hop paths to the center and linear costs, and the second having same number of
users, all with identical requirements, at all the nodes.

3.3.1 Maximum Two Hops and Linear Costs (K = 1
and c(x) = x)

Here, using xinn + xin(n+1) = φin, from (3.5),

xinn =
[
c(xn+1)− c(xn)+ d + c′(xn+1)φ

i
n

c′(xn)+ c′(xn+1)

]φin

0

for all i ∈ [Mn], n ∈ [N ].2 For linear costs, substituting c(x) = x for all x,

xinn =
[
xn+1 − xn + d + φin

2

]φin

0
. (3.6)

Further, using

xn =
∑

j∈[Mn]
x
j
nn +

∑

j∈[Mn−1]
(φ
j

n−1 − xj(n−1)(n−1))

and xn+1 =
∑

j∈[Mn]
(φ
j
n − xjnn)+

∑

j∈[Mn+1]
x
j

(n+1)(n+1),

xinn =
[

2φin +∑
j∈Mn\i (φ

j
n − 2xjnn)

4

+
∑
j∈Mn+1

x
j

(n+1)(n+1) −
∑
j∈Mn−1

(φ
j

n−1 − xj(n−1)(n−1))+ d
4

]φin

0

.

(3.7)

2[x]ba := min{max{x, a}, b}.
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Notice that flow configuration of ith user at node n is completely specified by xinn.
The above equation can be seen as the best response of this user.

Lemma 1 If the players update according to (3.7), round-robin or random update
processes converge to the Nash equilibrium.

Proof The routing game under consideration is a potential game with potential
function

V (x) = 1

2

⎛

⎝
∑

n∈[N ]

⎛

⎝x2
n +

∑

i∈[Mn]
((xinn)

2 + (xin(n+1))
2 + 2xin(n+1)d)

⎞

⎠

⎞

⎠ .

Hence it exhibits the improvement property and convergence as stated in the
lemma [7]. ��

3.3.2 Symmetric Loads (Mn = M and φi
n = φ)

Here, we can restrict to symmetric flow configurations owing to symmetry of the
problem. We can express any symmetric network flow configuration as a vector
β = (β0, β1 . . . , βK),

∑K
j=0 βj = φ where βj := xin(n+j) for all i ∈ [M], n ∈ [N ]

and j ∈ [0,K].
Theorem 1 If Mn = M and φin = φ for all i ∈ [Mn], n ∈ [N ], then the unique
Nash equilibrium is

βj =
{

φ
k∗+1 + (K∗−2j)d

2c′(Mφ) if l ∈ [n, n+K∗]
0 otherwise.

(3.8)

where K∗ = min{max{k : k(k + 1) < 2φc′(Mφ)
d

},K}
Proof From the Karush-Kuhn-Tucker conditions for optimality of β (see (3.4)),

c(βj + x−i
n(n+j))+ jd + βj c′(βj + x−i

n(n+j)) ≥ λ (3.9)

where x−i
n(n+j) is the total flow on link (n + j, 0) except that of ith user at node

n. Note that, for β to be a symmetric Nash equilibrium, βj + x−i
n(n+j) = Mφ.

Hence (3.9) can be reduced to

c(Mφ)+ jd + βj c′(Mφ) ≥ λ

with equality if βj > 0. So, we see that

βj = max

{
1

c′(Mφ)
(λ− c(Mφ)− jd), 0

}
(3.10)
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Note that βj is decreasing in j . Let us assume that βk > 0 for all k ≤ K ′ for some

K ′ ≤ K , and 0 otherwise. Then, using
∑K ′
i=0 βi = φ in (3.10),

λ(K ′)− c(Mφ) = φc′(Mφ)
(K ′ + 1)

+ K ′d
2
, (3.11)

where we write λ(K ′) to indicate dependence of λ on K ′. Substituting the above
back in (3.10),

βj = φ

1 +K ′ + d(K ′ − 2j)

2c′(Mφ)
, j ∈ [0,K ′]. (3.12)

To complete the proof, we claim that K ′ equals K∗ where

K∗ = min

{
max

{
k : k(k + 1) <

2φc′(Mφ)
d

}
,K

}
.

Let us first argue thatK ′ cannot exceedK∗. We only need to consider the case when
K∗ < K . In this case, from the definition of K∗, for any K ′ > K∗,

1

K ′ + 1
− dK ′

2φc′(Mφ)
≤ 0,

which contradicts the defining property of K ′ that βk > 0 for all k ≤ K ′. This
completes the argument. Now we argue that K ′ cannot be smaller than K∗, again
by contradiction. Let K ′ < K∗. Then, from (3.11),

λ(K ′)− λ(K∗) = φc′(Mφ)(K∗ −K ′)
(K∗ + 1)(K ′ + 1)

− (K∗ −K ′)d
2

= φc′(Mφ)(K∗ −K ′)
{

1

(K∗ + 1)(K ′ + 1)
− d

2φc′(Mφ)

}
> 0,

where the inequality follows from definition of K∗. Hence, from (3.10),

βK∗ ≥ 1

c′(Mφ)
(λ(K ′)− c(Mφ)−K∗d)

>
1

c′(Mφ)
(λ(K∗)− c(Mφ)−K∗d) > 0.

This contradicts K ′ < K∗ which would imply βK∗ = 0. ��
Optimal Routing The optimal strategy of any user will be β0 = φ and βj = 0, 1 ≤
j ≤ K .
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3.4 Random Loads

We now consider the scenario where the numbers of users at various nodes, Mn,
are i.i.d random variables with distribution (p1, p2 . . . , pM). We assume that a user
knows the number of collocated users but only knows the distribution of users at the
other nodes. Throughout this section we restrict to equal flow requirements for all
the users, i.e. φin = φ for all n ∈ [N ], i ∈ [Mn], and linear per unit flow cost, i.e.,
c(x) = x. In the following we analyze two special cases of this routing problem, the
first assuming the users can only use one-hop and two-hop paths to center, and the
second having Bernoulli user distribution.

3.4.1 Maximum Two Hops (K = 1)

We consider symmetric flow configurations where all the users with equal number
of collocated users adopt same flow configuration. We can then express the network
flow configuration as a vector γ = (γ (1), γ (2), . . . ) where γ (m) represents the
flow that a user with m collocated users redirects to its two-hop path. Let us define

P̄m = 1 −
M∑

l=m+1

lpl

l + 1
andQm =

m∑

l=0

lpl,

for all 0 ≤ m ≤ M .

Theorem 2 The unique Nash equilibrium is given by

γ (m) =
{

0, if 1 ≤ m ≤ mα
φ
2 − (d−α)

2(m+1) , otherwise,

where mα = min

{
min

{
m : d

φP̄m
+ Qm

P̄m
< m+ 2

}
,M

}

and α = d − d

P̄mα
− Qmαφ

P̄mα
.

Proof Let us consider a user i with m collocated users. Let us fix the strategies of
all other users in the network to γ = (γ (1), γ (2), . . . ). Then the best response of
user i, say γ ′(m), is the unique minimizer of the cost function

(φ − γ ′(m))((m− 1)(φ − γ (m))+ φ − γ ′(m)+
∑

lplγ (l))

+ γ ′(m)((m− 1)γ (m)+ γ ′(m)+
∑

l

lpl(φ − γ (l))+ d).
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γ ′(m) must satisfy the following optimality criterion

− 2(φ − γ ′(m))− (m− 1)(φ − γ (m))−
∑

lplγ (l)

+ 2γ ′(m)+ (m− 1)γ (m)+
∑

lpl(φ − γ (l))+ d ≥ 0

with equality if γ ′(m) > 0. For γ to be a symmetric Nash equilibrium, setting
γ ′(m) = γ (m) in the above inequality,

−(m+ 1)φ + 2(m+ 1)γ (m)+
∑

lplφ − 2
∑

lplγ (l)+ d ≥ 0

yielding

γ (m) = max

{
φ

2
+ 2

∑
lplγ (l)− φ∑ lpl − d

2(m+ 1)
, 0

}

Clearly, the above should hold for all m ∈ {0, 1, . . . ,M}. Setting,

α = 2
∑

lplγ (l)− φ
∑

lpl, (3.13)

and mα =
⌊
d − α
φ

− 1

⌋
, (3.14)

we get

γ (m) =
{
φ
2 + α−d

2(m+1) , if m > mα

0, otherwise.
(3.15)

We now show how to obtain α and mα . From (3.15),

mpm(2γ (m)− φ) =
{
(α−d)mpm
m+1 , if m > mα

−mpmφ, otherwise.

Using this in (3.13),

α = −d∑m>mα

mpm
m+1 − φ∑mα

m=0mpm(
1 −∑

m>mα

mpm
m+1

)

= d − d

P̄mα
− Qmαφ

P̄mα
,

and hence, from (3.14),

mα =
⌊

d

φP̄mα
+ Qmα

P̄mα
− 1

⌋
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Let us now turn to the expression of mα in the statement of the theorem. Clearly,
mα >

d

φP̄mα
+ Qmα

P̄mα
− 2. Also,

d

φP̄mα−1
+ Qmα−1

P̄mα−1
≥ mα + 1,

implying

d

φP̄mα
+ Qmα

P̄mα
≥ mα + 1,

or,
d

φP̄mα
+ Qmα

P̄mα
− 1 ≥ mα.

So, the two expressions of mα are equivalent, and γ (m)s in the statement of the
theorem indeed constitute a Nash equilibrium. Also note that existence of an optimal
γ ensures existence of at least one (α,mα) pair satisfying (3.13)–(3.14). It remains
to establish uniqueness of (α,mα) pair satisfying (3.13)–(3.14). We do this in
Appendix. ��
Optimal Routing The expected total routing cost will be N times the sum of
expected routing costs on links (n − 1, n) and (n, 0) for an arbitrary n. In the
following, we optimize the latter to get the optimal flow configuration.

Theorem 3 The unique optimal flow configuration is given by

γ (m) =
⎧
⎨

⎩

0, if 0 ≤ m ≤ mᾱ
φ
2 − (d−ᾱ)

4m , otherwise,

where mᾱ = min

{
min

{
m : d

2φPm
+ Qm

Pm
< m+ 1

}
,M

}

and ᾱ = d − d

Pmᾱ
− 2Qmᾱφ

Pmᾱ
.

3.4.2 Bernoulli Loads (p0 + p1 = 1)

We again focus on only symmetric flow configuration. As in Sect. 3.3.2, we let xinl =
βn−l for all i ∈ [M], n ∈ [N ] and l ∈ [n, n+K].
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Theorem 4 The unique Nash equilibrium is given by

βi =
⎧
⎨

⎩

φ
K∗+1 + d(K∗−2i)

2(2−p) , if 0 ≤ i ≤ K∗

0, otherwise,

where K∗ = min{max{k : k(k + 1) < 2φ(2−p)
d

},K}.
Optimal Routing The expected total routing cost will be N times the sum of
expected routing costs on links (n − 1, n) and (n, 0) for an arbitrary n. In the
following, we optimize the latter to get the optimal flow configuration.

Theorem 5 The unique optimal flow configuration is given by

βj =
{

φ
K∗+1 + d(K∗−2j)

4(1−p) , if 0 ≤ i ≤ K∗

0, otherwise,

where K∗ = min{max{k : k(k + 1) < 4(1−p)φ
d

},K}.

3.5 Conclusion and Future Work

We studied routing on a ring network. We studied both, non-cooperative games
between competing users and network optimal routing. We considered several
special cases of networks with deterministic and random loads. We provided char-
acterization of Nash equilibria and optimal flow configuration in these cases (see
Theorems 1–5).

Our future work entails extending this analysis to more general cases. We would
like to study price of anarchy, and also pricing mechanisms (tolls) that induce
optimality.

Acknowledgements The first and second authors acknowledge support from Visvesvaraya PhD
Scheme and INSPIRE Faculty Research Grant (DSTO-1363), respectively. This work is also partly
supported by CEFIPRA/Inria Grant IFC/DST-Inria-2016-01/448.

Appendix

We establish uniqueness via contradiction. Let (α,mα) and (α′,mα′) be two pairs
satisfying (3.13)–(3.14). We assume mα′ > mα without any loss of generality.
Recall that α = d − d

P̄mα
− φQmα

P̄mα
and d−α

φ
< mα + 2, implying

d

φ
< (mα + 2)P̄mα −Qmα . (3.16)
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Similarly, α′ = d − d

P̄m
α′

− φQm
α′

P̄m
α′

and d−α′
φ

≥ mα′ + 1, implying

d

φ
≥ (mα′ + 1)P̄mα′ −Qmα′ . (3.17)

We argue that (mα′ +1)P̄mα′ −Qmα′ ≥ (mα+2)P̄mα −Qmα , and hence both (3.16)
and (3.17) cannot hold simultaneously. Indeed note that

(mα′ + 1)P̄mα′ − (mα + 2)P̄mα

= (mα′ + 1)(P̄mα′ − P̄mα′−1)+ (mα′ + 1)P̄mα′−1 − (mα + 2)P̄mα

= mα′pmα′ +
mα′−1∑

m=mα+1

{(m+ 2)P̄m − (m+ 1)P̄m−1}

≥ mα′pmα′ +
mα′−1∑

m=mα+1

(m+ 1)(P̄m − P̄m−1) =
mα′∑

m=mα+1

mpm = Qmα′ −Qmα

This completes the argument.
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Chapter 4
Performance of Dynamic Secure Routing
Game

Ju Bin Song and Quanyan Zhu

4.1 Introduction

In distributed secondary networks, routing is inherently fragile and can easily be
compromised by unknown attacks [3]. Consequently, it is imperative to design
routing schemes that can enhance security of routing in distributed cognitive radio
networks [4]. Moreover, the primary users (PUs) can affect the spectrum oppor-
tunities available for the secondary users (SUs), leading to dynamically changing
network topology in multi-hop cognitive radio (CR) networks [6]. Therefore, the
secure routing scheme needs to allow secondary users to learn their environment
in a distributed and dynamic fashion and to yield optimal routing decisions
that can defend against malicious attacks with minimum level of compromise
in performances. The dynamic game framework has been applied to network
formation problems in wireless mobile networks [9, 18, 21]. In our early works
[19], users define their own hierarchies by their multi-stage exploration processes
of neighboring nodes. In addition, the secure routing games capture the conflicting
goals between the attackers and the users, whereas the network formation game
models have considered interactions among competing agents of the same nature.
Another challenge that we address here is the users’ lack of knowledge of the action
set of the attackers and their utility function in practice due to the distributed routing
mechanism without centralized information.
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Table 4.1 Summary of notations

Symbol Meaning

N Set of secondary user nodes

M Set of primary user nodes

J Set of jammers

s ∈ S System state

Li, i ∈ N Total number of explorations of secondary i till its destination

Ali Set of secondary nodes at stage li exploration of secondary i

Rj , j ∈ J Set of secondary user nodes within the jamming range of jammer j

Jli Set of jammers encountered at stage li exploration of secondary user i

γ
y
x , x, y ∈ N Signal to interference plus noise ratio (SINR)

between a generic node x and a generic node y

I
y
x , x, y ∈ N Interference between a generic node x and a generic node y

τ
y
x , x, y ∈ N Packet delay between a generic node x and a generic node y

(ni, li ) ∈ Ali Node that routes data from secondary user i at stage li
Pi (li , l

′
i ) Set of routing nodes between stage li and l′i

Qi (li , l
′
i ) Routing path of secondary user i from stage li to l′i

u(ni ,li ) Stage utility of secondary user node (ni , li ) at stage h = li
U(ni ,li ) Total utility along the path Q(ni ,li )(li , Li)

u(ni ,li ) Expected stage utility of secondary user node (ni , li )

U(ni ,li ) Expected total utility of secondary user node (ni , li )

U(ni ,li ) Upper value with source secondary user node (ni , li )

U(ni ,li ) Lower value with source secondary user node (ni , li )

U∗
(ni ,li )

Value of the zero-sum game with source secondary user node (ni , li )

In this paper, we analyze the multi-stage saddle-point equilibrium strategies
using backward induction and compute real-time strategies using distributed learn-
ing. In addition, we analyze the network performance of proposed dynamic securing
routing game framework using Network Simulator 2 (NS-2). The rest of this
paper is organized as follows. Section 4.2 presents related works on secure routing
techniques in cognitive radio networks. In Sect. 4.3, the system model is described.
The dynamic game-theoretic model is analyzed in Sect. 4.4. Section 4.5 presents
the saddle-point in mixed strategies for dynamic secure routing game. In Sect. 4.6,
simulation results are described. Finally, conclusions are drawn in Sect. 4.7.

We summarize some of the notations used in the paper in Table 4.1.

4.2 Related Work

In this section, we describe the related works on secure routing techniques against
unknown jamming attacks in distributed cognitive radio networks. Since secondary
users have limited opportunities to utilize idle spectrum resources left by primary
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users, the performance routing path for SUs is inevitably influenced by the state of
PUs as well as the communication activities of other SUs. In addition, in an adver-
sarial environment, the established routing path can be fragile to jamming attacks.
It is desirable that the implemented routing protocol establishes new path in event
of unanticipated adversarial attacks and allows quick recovery of the routing perfor-
mance between the source and destination. This requires us to provide online learn-
ing capabilities through intelligent sensing and computational mechanisms, and
build routing protocols that can achieve security and resilience to adversarial attacks.

The secure routing against unknown jamming attacks in nature is a highly
dynamic problem in distributed cognitive radio networks [4, 6, 9, 18]. We can
categorize the current physical layer attacks into two types in distributed CR
networks: jamming attacks and attacks for disturbing spectrum sensing.

In jamming, the attacker maliciously sends out packets to hinder legitimate
participants in a communication session, resulting in a denial-of-service situation.
The jammer sends continuously junk packets of data to a honest SU. The jammer
can also disrupt communications by blasting a radio transmission, leading to the
collision of packets in SUs [15].

Although simple energy-based detection and triangulation techniques can be
used to detect jamming attacks, the time that it takes to pinpoint and ban the
malicious user has a significant impact on the network performance. A jamming
detection technique investigates the relationship between signal strength and packet
delivery ratio [16]. If the signal strength is high, and yet the packet delivery ratio is
low, then an honest SU can conclude that it is jammed unless one of its neighbors has
a high signal strength and packet delivery ratio. Another technique called location
consistency check is proposed to detect jamming where the location of SU neighbors
is important [15]. Two strategies can be used to defend against jamming attacks. The
first strategy is channel surfing or frequency hopping to escape jamming attack. The
second strategy is spatial retreat where honest users change their location to escape
the interference range imposed by the attacker. When no idle channel is available
for honest SUs, the network topology is reconfigured to create new routing paths.
In the case where an attacker sends packets on the same channel that a SU wants to
use for transmission, the SU cannot pass the carrier-sensing and will be forced to
back off in MAC (medium access control) layer, and consequently, the SU becomes
aware of the jamming attack [15].

Primary user emulation (PUE) attack is a spectrum sensing attack that can be
carried out by a malicious secondary user to emulate a PU or masquerade as a PU to
obtain the resources of a given channel without having to share them with SUs [3].
As a result, the attacker can obtain full bands of a spectrum. An intelligent attacker
jams the common control channel that is used to exchange sensing information
between SUs in collaborative spectrum sensing. Furthermore, a malicious attacker
can report false sensing data in the collaborative sensing environment [13]. These
types of attacks can disturb the spectrum sensing function of honest SUs [15].

In [3], two approaches have been proposed to determine the location of the trans-
mitter source of PUE attacks. One is distance ratio test which is based on received
signal strength measurements and the other one is distance difference test which is
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based on signal phase difference. Both approaches follow a transmitter verification
procedure. The procedure uses a location verification method to distinguish between
primary signals and secondary signals masquerading as primary signals. In [13], a
collaborative spectrum sensing technique has been proposed to defend against the
malicious attackers who report false sensing data. However, the main drawback of
this approach is the information overhead for exchanging collaborative information
and the delay to recover routing paths.

In current literature, the effectiveness of these attacks in each layer and their
defense methods are mostly studied independently [15]. Distributed routing faces
various types of attacks that can lead to degraded network performance and
reliability in distributed wireless networks such as ad hoc sensor networks [8].
Existing works in this area have focused on resource allocation techniques in
multi-hop CR networks [5, 10]. In [7], private or public-key distribution schemes
have been proposed to enhance the security in AODV routing. However, even
with appropriate cryptographic techniques employed, the routing in CR networks
is also vulnerable to attacks at the physical layer, which can critically deteriorate
the performance and reliability. Smart attackers can coordinate attack activities
in different layers to better achieve their goals and the capability of attackers. A
cross-layer defense concept has been introduced to increase network efficiency
through information exchange among different layers [7, 8, 12, 14]. Even though
the mechanisms of multiple adversarial attacks have been well investigated in the
literature, however, the way how to find secure routing paths against jamming
attacks has not been much investigated in distributed CR networks. In this paper, we
establish a dynamic routing game framework to provide a secure routing protocol to
defend against malicious jamming attacks in distributed CR networks.

In the next section, we will describe the system model for dynamic secure
routing.

4.3 System Model

In this section, we describe the network system model for the secure multi-hop
cognitive radio networks. Let G := (N ,E ) be a topology graph for a multi-hop
cognitive radio network, where N = {n1, . . . , nN} is a set of N secondary user
nodes; and E := {e1, . . . eE} is a set of E links connecting the secondary users. In
addition, we let M := {m1, . . . , mK} be a set of K primary users and K be the
set of channels. We assume that a primary user is associated with one frequency
channel, and the set of frequency channels is identical to the set of primary users.
Primary user mp ∈ M is associated with a channel, which can be in an either
occupied state (sp = 1) or an unoccupied state (sp = 0). Let Sp := {0, 1},mp ∈
M , be the set of binary channel states of secondary user mp. A system state s =
[sp]mp∈M ∈ S := ∏K

p=1 Sp is a collection of individual states of each primary
user channel mp. We assume that the system state s is an identically distributed
random variable defined on the set S .
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In authors’ earlier work [19], it is considered a secure routing problem in which
secondary user ni ∈ N needs to find an optimal routing path to its destination
ndi ∈ N . To initiate the routing process, secondary user ni starts with an exploration
of neighboring nodes for connections by sending them request messages. After
ni obtains a list of confirming nodes, it chooses a connecting node among them.
Once the secondary user routes data to the selected node, the selected node initiates
another exploration process to discover adjacent nodes along the direction towards
the destination node. This process continues until the data of secondary user ni
reaches its destination. Denote by Li the total number of explorations until a
destination node is reached for secondary user ni , and by li ∈ {0, 1, . . . , Li} the
li th exploration process with ni as the initial node. Let Ali ⊆ N be the set of
nodes explored in li th exploration and A = ∪Lili=0Ali ⊆ N be the total set of
explored nodes along the path to the destination, including secondary user ni and its
destination node. By default, the exploration stage li = 0 refers to the initialization
process of the routing, i.e., A0 is the singleton set containing secondary user ni itself
alone, and the Li th exploration refers to the final stage of the routing, i.e., ALi is
the singleton set which includes the destination node ndi . In this work, we consider
single destination for each source node; however, it can be naturally extended to
multiple destinations by defining a set of destination nodes.

Let (ni, li) ∈ Ali be the node chosen after li th exploration to carry the data of
node ni . By default, at stage li = 0, we define (ni, 0) := ni , and at stage li = Li ,
we define (ni, Li) := ndi . Let Pi (li , l

′
i ) := {(ni, h), h = li , li + 1, . . . , l′i; l′i >

li, li , l
′
i ∈ {0, 1, . . . , Li}} be the set of connecting nodes along the multi-hop

path between node (ni, li) at stage li and node (ni, l′i ) at stage l′i that routes the
data of secondary user node ni . Hence the path Qi (li , l

′
i ) ⊂ E between (ni, li)

and (ni, l′i ) can be represented by the set of directed edges induced by Pi (li , l
′
i ),

i.e., Qi (li , l
′
i ) := {{(ni, li), (ni, li + 1)}, {(ni, li + 1), (ni, li + 2)}, . . . , {(ni, Li −

1), (ni, Li)}}. In particular, the complete multi-hop path from node ni to its
destination is denoted by Qi (0, Li). Note that the following composability property
of Pi ,Qi , i.e., Pi (li , l

′
i ) = Pi (li , l

′′
i )∪P(ni ,l

′′
i )
(l′′i , l′i ) and Qi (li , l

′
i ) = Qi (li , l

′′
i )∪

Q(ni ,l
′′
i )
(l′′i , l′i ), where li < l′′i < l′i , li , l′i , l′′i ∈ {1, 2, . . . , Li}.

The multi-hop cognitive radio network can be subject to jamming attacks from
multiple adversaries. Let J := {1, 2, . . . , J } be the set of jammers in the CR
network, and Rj , j ∈ J , be the set of nodes within the influence range of jammer
j . Since the range of an attacker Rj ⊂ N is wider than the effective jamming area
of a power constrained jammer with directed antenna, without loss of generality,
we can assume that the range Rj ⊂ N of an attacker can only affect one local
exploration stage, i.e., Rj ∪Ah �= ∅ for some h = 1, 2, . . . , Li−1, and Rj ∪Ah′ =
∅, for all h′ �= h, h′ = 1, 2, . . . , Li − 1. However, in the case where a jammer can
cover a wide area enabled by multiple antenna, we can view the jammer equivalently
as multiple local jammers over its covered area. Note that we have limited the stages
between 1 and Li because jamming at initial stage 0 can be easily detected by the
source. The objective of a jammer j is to choose a node rj ∈ Rj to jam and interrupt
the data transmission of node ni ∈ N to its destination. Let Jli be the set of
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Fig. 4.1 The random network topology for 15 secondary nodes with a jammer, a primary user, a
source, and a destination in 1×1 km2 area

jammers whose influence range affects Ali , i.e., Jli := {j ∈ J ,Rj ∩ Ali �= ∅}.
The action profile of jammers Jli is denoted by rli := [rj ]j∈Jli

. The joint action
profile of all the jammers is denoted by r = [rj ]j∈J . The set of nodes within
the jamming range by the set of jammers Jli is denoted by Rli := ∪j∈Jli

Rj .
Likewise, the set of nodes jammed by the set of jammers J is denoted by R =
∪j∈JRj . In general, ∪Lili=1Jli ⊆ J ; however, without loss of generality, we can

assume that ∪Lili=1Jli = J because we can exclude jammers that do not affect the
routing of secondary user ni .

The goal of secondary user node ni is to choose an optimal path from the source
to the destination that circumvents multiple jammers distributed along the path and
yields the best routing performance as shown in Fig. 4.1.

In the next section, we derive the saddle-point in mixed strategies for proposed
dynamic secure routing game.

4.4 Dynamic Game-Theoretic Model

The exploration and decision processes in the routing are composed of multi-stages.
The strategic behaviors of SUs and jammers can be modeled using dynamic games.
In this section, we define the utility functions and describe the game-theoretic model
for secure routing in distributed cognitive radio networks with presence of multiple
jamming adversaries.
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4.4.1 Utility Function

As shown in [19], the performance of routing can be characterized by signal to
interference plus noise ratio (SINR) that indicates physical-layer channel conditions,
and routing delay that indicates the network-level congestions. Hence the utility
function needs to capture these from the source to destination along the routing
path. The average SINR from node (ni, li − 1) to node (ni, li) is defined by

γ
(ni ,li )
(ni ,li−1) = α

(ni ,li )
(ni ,li−1) · P(ni ,li−1)

σ 2
(ni ,li )

+ I (ni ,li )(ni ,li−1)

, li = 1, 2, . . . , Li, (4.1)

where P(ni ,li−1) is the transmit power of node (ni, li − 1) and α(ni ,li )(ni ,li−1) = δ ·
(d
(ni ,li )
(ni ,li−1))

−ω is the channel gain between the node (ni, li − 1) and its selected node

at (ni, li) with d(ni ,li )(ni ,li−1) the distance between (ni, li − 1) and (ni, li); ω ∈ R++ is

the path loss exponent and δ ∈ R++ is the path loss constant; σ 2
(ni ,li )

is the variance

of Gaussian noise at (ni, li). The term I
(ni ,li )
(ni ,li−1) is the interference perceived by

neighboring nodes or malicious jammers at (ni, li) and is given by

I
(ni ,li )
(ni ,li−1) =

∑

n′∈N(ni ,li )
∪Jli

−{(ni ,li−1)}
α
(ni ,li )

n′ · Pn′ , (4.2)

where N(ni ,li ) ⊆ N is the set of nodes n′ communicating with (ni, li), including

(ni, li − 1), with each using transmission power Pn′ ; and α(ni ,li )
n′ is the channel gain

between n′ and (ni, li). The term I (ni ,li )(ni ,li−1) represents the interference from the other
nodes including jammers at (ni, li). An adversary jJli is assumed to jam one node
at his maximum power Pmax

j , and depending on which node the jammer chooses,
the term Pj in (4.2) takes the following form:

Pj =
{
Pmax
j if rj = (ni, li)

0 otherwise
, (4.3)

for every j ∈ Jli .
The primary goal of a jammer is to maximize the probability of packet error

rate (PER) of SU ni .The physical layer data communication PER q(ni ,li )(ni ,li−1) between

(ni, li − 1) and (ni, li) is related to SINR γ (ni ,li )(ni ,li−1) and the modulation and coding
schemes as follows:

q
(ni ,li )
(ni ,li−1) = φ(ni ,li )(ni ,li−1) exp

(
−ε(ni ,li )(ni ,li−1) · γ (ni ,li )(ni ,li−1)

)
, (4.4)

where φ(ni ,li )(ni ,li−1) is the maximum PER and ε(ni ,li )(ni ,li−1) is a parameter depending on the
modulation and coding schemes [11].
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Another metric for routing is the communication delay at higher layers such
as network or session layer. We recall the Pollaczek-Khinchin formula [2] for
the M/G/1 queueing system and define the expected total packet delay τ (ni ,li )(ni ,li−1)
perceived at node (ni, li) as follows:

τ
(ni ,li )
(ni ,li−1) = η(ni ,li−1)X2

(ni ,li )

2(1 − ρ(ni ,li )(ni ,li−1))
+X(ni,li ), (4.5)

where η(ni ,li−1) is the arrival rate of packets at the chosen node (ni, li);

ρ
(ni ,li )
(ni ,li−1) := η(ni ,li−1)/μ(ni ,li ) = η(ni ,li−1)X(ni ,li ),

with μ(ni ,li ) being the service time at the node (ni, li). X(ni,li ) is the mean service

time per packet at the chosen node and X2
(ni ,li ) is the expected variance of X(ni,li ).

When node (ni, li) experiences a higher volume of incoming data, more delay will
be perceived by (ni, li − 1) if (ni, li) is selected.

Remark 1 Note that in (4.4) and (4.5), we have suppressed the dependence of the
system state s and attacker’s actions rli in the notation. The parameters can be
dependent on the primary user state s, in particular, the interference term and the
path loss. In addition, the attackers’ decisions rli on which nodes to jam will affect
the utility through (4.3) in (4.2).

The goal of SU ni is to maximize its expected total utility Ui from the source
to the destination, which is measured by the overall probability of successful
transmission q and the total delay τ . Using (4.4) and (4.5), q and τ are defined,
respectively, by q(s,Pi (0, Li), r) = ∏Li

li=1 q
(ni ,li )
(ni ,li−1), and τ(s,Pi (0, Li), r) =

∑Li
li=1 τ

(ni ,li )
(ni ,li−1). Note that minimizing (the expected value of) q is equivalent to

minimizing (the expected value of)

q̃(s,Pi (0, Li), r) :=
Li∑

li=1

ln q(ni ,li )(ni ,li−1).

Let λ ∈ R++ be a weighting parameter. We can use q̃ and τ to construct the
multi-objective total utility as

Ui(s,Pi (0, Li), r) = −
Li∑

li=1

(
ln q(ni ,li )(ni ,li−1) + λτ (ni ,li )(ni ,li−1)

)
,

=
Li−1∑

li=1

u(ni ,li−1)(s, (ni, li), rli ), (4.6)
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from which we can define the stage utility of node (ni, li −1) selecting node (ni, li)
as follows: for li = 1, . . . , Li ,

u(ni ,li−1)(s, (ni, li), rli ) := − ln q(ni ,li )(ni ,li−1) − λτ (ni ,li )(ni ,li−1). (4.7)

Note that in general, λ can be interpreted as the Lagrange multiplier if we formulate
the problem as optimizing q̃ subject to hard delay constraint. In addition, λ can be
chosen to depend on the system state s. The stage utility and total utility are random
variables as they are functions of s.

4.4.2 Maximin Problem

With (4.6) and (4.7), SU node ni aims to find an optimal routing path that maximizes
the expected total utility Ui along the route to the destination node, i.e.,

max
Pi (0,Li )

EsUi(s,Pi (0, Li), r). (4.8)

The expected utility averages over the state space S . It can also be interpreted as the
time-average utility as s is an i.i.d. random variable over its support S . However,
the jammers intend to minimize the expected total utility (4.8) by choosing to attack
the nodes between ni and its destination. A jammer j at stage li can only jam a SU
node (ni, li) ∈ Ali within its range of influence Rj . Hence, in our framework we
will only need to concern with a set of SU nodes in Ali that have overlap with Rj .
It is easy to show that, for an adversary, an action in Rj ∪ Ali dominates an action
in Rj\Ali . Hence, without loss of generality, we can take Ali as the action spaces
for attackers and the SU node at stage li .

The security strategy1 for node ni is a sequence of nodes {(ni, li), li =
1, . . . , Li − 1} that achieves the lower value

Ui = max
Pi (0,Li )

min
r

EsUi(s,Pi (0, Li), r). (4.9)

The maximizing and minimizing strategies in (4.9) are denoted by P∗
i (0, Li) and

r∗, respectively.
The problem (4.9) has a very special structure. Every SU node can only choose

a connecting node for the next hop. The action space of SU ni is limited to the set
of neighboring nodes A1. In order for SU ni to optimize over the entire path, it
can select the best neighboring node that will yield the best utility in the future, or

1Note that “security strategy” is a game-theoretic term, referring the worst-case optimal strategies.
It should not be interpreted as “cyber security strategy” as the term in computer science and
engineering.
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utility-to-go. This can be observed by decomposing (4.9) into two components: one
is current stage utility and the other one is the utility-to-go. Given maximin strategy
pairs P∗

(ni ,1)
(1, Li) and {r∗

li
}Lili=1 for the exploration starting from SU node (ni, 1)

to the destination, the problem (4.9) can be decomposed into

Ui(P
∗
i (0, Li), r

∗) = max
(ni ,1)

min
r1

{Esui(s, (ni, 1), r1)

+EsU(ni ,1)(s,P
∗
(ni ,1)(1, Li), {r∗

li
}Lili=1)

}
(4.10)

where the first term is the current utility and the second term is the utility-to-go.
Solution to (4.10) yields a pair of maximin strategies P∗

i (0, 1) and r∗
1 for node ni .

Hence the optimal path can be obtained as P∗
i (0, Li) = P∗

i (0, 1)∪P∗
(ni ,1)

(1, Li).
Another special structure of the problem (4.9) is that, at each stage li , SUs face a
distinct set of attackers. Hence, given a routing path, minimizing over r is the same
as minimize over rli at every stage. However, an intelligent attacker will minimize
the current utility together with utility-to-go as in (4.10), taking into account the
future routes of the SUs.

Leveraging these special properties of the problem, we arrive at a backward
induction method to compute the maximin security strategies, which is summarized
as follows:

Theorem 1 Let (P∗
i (0, Li), r

∗) be the pair of maximin solution to the prob-
lem (4.9) andU(ni,li ) be the lower value of the utility from stage li to the destination,

achieved under
(
P∗
(ni ,li )

(li , Li), {r∗
h}Lih=li

)
of this strategy pair. Then, the solution

satisfies the following properties:

U(ni,li ) = max
(ni ,li+1)

min
rli+1

{
Esu(ni ,li )(s, (ni, li + 1), rli+1)

+EsU(ni ,li+1)(s,P
∗
(ni ,li+1)(1, Li), {r∗

h}Lih=li+1)
}

(4.11)

li = 0, 1, 2, . . . , Li − 2.

U(ni ,Li−1) = Esu(ni ,Li−1)(s, n
d
i , r

∗
Li
), (4.12)

where r∗
Li

= {ndi ,∀j ∈ JLi }, and U(ni,0)(P
∗
i (0, Li), r

∗) = Ui defined in (4.9).

Proof At the penultimate stage Li − 1, the chosen SUs (ni, Li − 1) ∈ ALi−1 only
need to connect to the destination ndi , which incurs a utility Esu(ni ,Li−1)(s, n

d
i , r

∗
Li
)

where all adversary at the stage will jam the destination node. Using the argu-
ment (4.10), at stage Li − 2, the utility function is composed of the stage utility
and utility-to-go, which is given by (4.22). Using backward induction, we arrive at
the relation (4.14) for an arbitrary stage li . ��
Remark 2 The above result provides a computation method to find the SU security
strategies. The solution can be found by starting from the very last stage and
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propagates backwards to the initial stage. Such dynamic programming-like solutions
have the properties of strong consistency or sub-game perfectness that will ensure
the robustness of the solution.

In the next section, we will analyze zero-sum game and saddle-point in mixed
strategies for dynamic secure routing game.

4.5 Zero-Sum Game and Saddle-Point in Mixed Strategies
for Dynamic Secure Routing Game

The maximin problem in (4.9) yields the security strategies for the secondary users.
On the other hand, intelligent jammers also intend to find their security strategies by
solving an associated minimax problem as follows:

Ui(P
◦
i (0, Li), r

◦) = min
r

max
Pi (0,Li )

EsUi(s,Pi (0, Li), r), (4.13)

where the strategy pair (P◦
i (0, Li), r

◦) is minimax solution to (4.13) and r◦ is a
security strategy for the jammers.

Theorem 2 Let (P◦
i (0, Li), r

◦) be the pair of minimax solution to the prob-
lem (4.13) and U(ni,li ) be the upper value of the utility from stage li to the

destination, achieved under
(
P◦
(ni ,li )

(li , Li), {r◦
h}Lih=li

)
of this strategy pair. Then,

the solution satisfies the following properties:

U(ni,li ) = min
rli+1

max
(ni ,li+1)

{
Esu(ni ,li )(s, (ni, li + 1), rli+1)

+EsU(ni ,li+1)

(
s,P◦

(ni ,li+1)(1, Li), {r◦
h}Lih=li+1

)}
(4.14)

li = 0, 1, 2, . . . , Li − 2.

U(ni ,Li−1) = Esu(ni ,Li−1)(s, n
d
i , r

◦
Li
), (4.15)

where r◦
Li

= {ndi ,∀j ∈ JLi }, and U(ni,0)(P
◦
i (0, Li), r

◦) = Ui defined in (4.9).

Following the problems defined in (4.9) and (4.13), we can define a zero-sum
secure routing game between jamming adversaries and SUs for a SU source ni ,
which is denoted by Ξi := {(ni,N ,J ), (Pi , r),Ui}. The solution to the zero-
sum game Ξi can be characterized by saddle-point equilibrium.

Definition 1 (Saddle-Point Equilibrium) Let (P�
i (0, Li), r

�) be a feasible strat-
egy pair. The zero-sum game Ξi has a saddle-point in pure strategies, if the
following inequalities hold, i.e.,

EsUi(s,Pi (0, Li), r�) ≤ EsUi(s,P
�
i (0, Li), r

�) ≤ EsUi(s,P
�
i (0, Li), r),
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for all feasible paths Pi (0, Li) and jamming actions r. The value of the game is
given by

U�i := EsUi(s,P
�
i (0, Li), r

�).

Saddle-point equilibrium, if exists, has many properties, which are described by the
following theorem.

Theorem 3 Suppose that the routing game Ξi for secondary user ni has its upper
value equal to its lower value, i.e.,Ui = Ui defined in (4.9) and (4.13), respectively.
Then,

(i) the game has a saddle-point in pure strategies;
(ii) an ordered pair of strategies provides a saddle point of Ξi if, and only if, the

first of these is a security strategy for node ni and the second one is a security
strategies for the jammers;

(iii) U�i is uniquely given by U�i = Ui = Ui .
The value of the game Ξi may not exist in pure strategies if Ui �= Ui .

In this subsection, we consider mixed strategies for the game Ξi . Let fi,li =
[fi,li (ni′)]ni′ ∈Ali ∈ Fi,li be the mixed strategy at exploration li , which is a
distribution over the action set Ali , where

Fi,li :=
⎧
⎨

⎩
fi,li :

∑

ni′ ∈Ali
fi,li (ni′) = 1, fi,li (ni′) ≥ 0,∀ni′ ∈ Ali

⎫
⎬

⎭
.

Likewise, let gj = [gj (rj )]rj∈Rj ∈ Gj be the mixed strategies of the jammer, where

Gj :=
⎧
⎨

⎩
gj :

∑

rj∈Rj
gj (rj ) = 1, gj (rj ) ≥ 0, ∀rj ∈ Rj

⎫
⎬

⎭
.

Let Fi = {fi,li }Lili=1 ∈ Fi := ∏Li
li=1 Fi,li be mixed strategies for SUs in the secure

routing game. Such strategies are also known as behavioral strategies, and Fi is the
set of all feasible behavioral strategies. Note that, at stage Li , the destination node
ndi will be chosen. Hence the mixed strategy fi,Li at stage Li is degenerated into a
point distribution over the singleton action space ALi . Let Gli = [gj : j ∈ Jli ] ∈∏
j∈Jli

Gj and G = [gj ]j∈J ∈ G := ∏
j∈J Gj . The average stage utility for

node i to send data from (ni, li − 1) to (ni, li) in mixed strategies is

u(ni ,li )(s, fi,li+1,Gli+1) = Es,fi,li ,Gli
u(ni ,li )(s, (ni, li + 1), rli+1). (4.16)

The total average utility for node i to reach its destination node in mixed strategies is

Ui (s,Fi ,G) =
Li−1∑

li=1

u(ni ,li−1)(s, fi,li ,Gli ). (4.17)
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The upper value and lower value of the game are given by

Ui := max
Fi∈Fi

min
G∈G

EsUi (s,Fi ,G),

Ui := min
Fi∈Fi

max
G∈G

EsUi (s,Fi ,G),

and the corresponding maximizing and minimizing pairs are (F∗
i ,G

∗) and (F◦
i ,G

◦),
respectively.

Theorem 4 Consider the game Ξi described in this section. Then,

(i) Ξi has a saddle-point in mixed strategies (F∗
i ,G

∗), satisfying

EsUi (s,Fi ,G∗) ≤ EsUi (s,F∗
i ,G

∗) ≤ EsUi (s,F∗
i ,G),

for all feasible mixed strategies Fi ∈ Fi ,G ∈ G .
(ii) The zero-sum game has a value in mixed strategies uniquely given by U

∗
i =

Ui = Ui .
(iii) A pair of mixed strategies provides a saddle point for Ξi if, and only if, the

first of these is a mixed security strategy for node ni , and the second one is the
mixed security strategy for the jammers.

Proof The multi-hop gameΞi with finite number of players and finite discrete pure-
strategy action spaces. Using Theorem 2.4 in [1], there exists a saddle-point in mixed
strategies. In addition, due to the multi-stage structure of the game, the behavioral
strategies can be found using backward induction. The results in (ii) and (iii) then
directly follow from Corollary 2.3 in [1]. ��

Theorem 4 provides the existence of saddle-point equilibrium, and the existence
and uniqueness of the value of the game Ξi . The saddle-point in mixed strategies
can be computed using backward induction similar to the security strategies. Let
val(·) be the value operator and the value of the game U

∗
i can be written as

U
∗
i = val{EsUi (s,Fi ,G)}, (4.18)

(F∗
i ,G

∗) ∈ arg val{EsUi (s,Fi ,G)}, (4.19)

where (F∗
i ,G

∗) ∈ Fi × G is the saddle-point equilibrium strategy pair achieved
under the val operator. We can use the result described in Theorem 5 to compute the
strategies.

Theorem 5 Let U∗
(ni ,li )

be the value of the game Ξ(ni,li ), which is a truncated
game of Ξi , which starts from stage li to the destination. Then, the saddle-point
equilibrium satisfies

U∗
(ni ,li )

= val
{
Esu(ni ,li )

(
s, fli+1, {gj }j∈Jli+1

)

+EsU
∗
(ni ,li+1)

(
s,F∗

(ni ,li+2), {g∗
j , j ∈ Jh}Lih=li+2

)}

(4.20)
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(f∗li+1, {g∗
j , j ∈ Jli+1}) ∈ arg val

{
Esu(ni ,li )

(
s, fli+1, {gj }j∈Jli+1

)

+EsU
∗
(ni ,li+1)

(
s,F∗

(ni ,li+1), {g∗
j , j ∈ Jh}Lih=li+1

)}

(4.21)

li = 0, 1, 2, . . . , Li − 2.

U∗
(ni ,Li−1) = Esu(ni ,Li−1)(s, f∗Li , {g∗

j , j ∈ JLi }), (4.22)

where the saddle-point strategies at last exploration stage Li are given by

f∗Li = ndi , w. p. 1,

g∗
j = ndi , w. p. 1, ∀ j ∈ JLi ,

The saddle-point equilibrium computed from (4.21) forms a behavioral mixed
strategy equilibrium (F∗

(ni ,li )
, {g∗

j , j ∈ Jh}Lih=li ) associated with the truncated

game. With li = 0, U∗
(ni ,0)

= U∗
i defined in (4.18) and (F∗

(ni ,0)
, {g∗

j , j ∈ Jh}Lih=0)

coincides with (F∗
i ,G

∗) defined in (4.19).

Proof Based on Theorem 4, there exists a game value and mixed saddle-point
strategies for each truncated game. At last stage, ndi is chosen for connection and
jamming. Using backward induction, we obtain the results above. ��

Novel distributed learning algorithms provide us tools towards design and imple-
mentation of practical protocols [19]. Depending on the initial knowledge of sec-
ondary users, we can adopt fictitious play for experienced nodes that have the knowl-
edge of their utility functions and adversaries. On the other hand, secondary users
without initial knowledge can use distributed Boltzmann-Gibbs learning algorithms
due to its capability of estimating the expected utility and making decision without
the complete knowledge of adversaries and the payoff structure. The Boltzmann-
Gibbs learning starts with a local procedure defining the set of nodes for direct links,
calculates his payoff, and selects the best routing node at the next hop with the max-
imum utility, i.e., the total path utility Ui , and dynamically updates whenever the
SUs acquire the new estimate system knowledge. Once the source to the destination
pair is determined, SUs learn and update their total path payoffs. Each node updates
its mixed strategies by the Boltzmann-Gibbs learning until the process converges to
an ε-saddle-point equilibrium. Under different learning rates on the strategies and
the average payoffs, the learning algorithm converges at each exploration site. Here,
we have assumed that the convergence of the learning algorithms is faster than the
speed of exploration. The employment of such learning algorithms at each stage will
lead to the mixed-strategy saddle-point equilibrium discussed.

Theorem 6 Suppose that payoff learning in the Boltzmann-Gibbs learning algo-
rithm is faster than the strategy learning at each stage for every SU (ni, li), li =
0, 1, . . . , Li, and jammer j ∈ Jli . Then, if the multi-stage learning algorithm
converges, it yields a mixed-strategy saddle-point equilibrium of the game Ξi as
t → ∞ and ε → 0.
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Proof At the last stage Li , the mixed-strategies for SU node (ni, Li − 1) and
adversary j, j ∈ Li are given in (4). The learning at stage Li − 1 under the B-G
algorithm will lead to ûki,li → U∗

(ni ,Li−2) as k → ∞, and fki,li → f∗li , g
k
j,li

→ g∗
j , j ∈

Jli (see [20] and [17]). After the learning at stage Li − 1 reaches its steady state,
we can conclude the same convergence results for stage Li−2. Hence, by backward
induction, at initial stage, the source ni will learn the game value U∗

i and saddle-
point equilibrium (Fi ,G) as t is sufficiently long and ε → 0 across the stages. ��

The proposed secure routing algorithm above is used to combat jamming attacks
in distributed cognitive radio networks. The state of primary channels evolves in
the network and hence the routing is state-dependent. The secure routing game
can spatially circumvent jammers along the routing path and can learn to defend
against malicious attackers as the state changes. In the algorithm, the first step of
the secure routing game is to establish an initial routing path from the source node
to the destination node by initializing local game for direct links and for global
paths. Once the initial path is established and it is converged to the saddle-point
equilibrium by the Boltzmann-Gibbs learning, the source node starts transmitting
packet data through the initial path. If the packet data transmission is terminated,
then the secure routing game is concluded for the session transmission and another
game will start for transmitting other session.

4.6 Simulation Results

In this experiment, we used network simulator 2 (NS-2) to determine the
performance of proposed Distributed Secure Routing Protocol (DSRP). In
simulation set up, we used an omni-directional antenna with two-ray-ground as
propagation model. IEEE 802.11b protocol is employed for medium access by
wireless nodes, where we used standard values for all the parameters defined by
the IEEE802.11b. Each wireless node interface has queue length of 50 packets
and follows drop tail queuing mechanism. Nodes are placed according to the
topology depicted in Fig. 4.1 in the area 1000 × 1000 m2. Each wireless node’s
transmission range is set to 250 m, while the wireless link data rate used is 1 Mbps.
Transmission Control Protocol (TCP) is employed as transport layer protocol, while
File Transfer Protocol (FTP) is used as a source for the generation of data traffic.
Different pairs of source-destination are used with single data flow. We compared
our proposed DSRP with the Ad-hoc On-demand Distance Vector (AODV) routing
protocol. The proposed DSRP targets to reduce the path recovery in case of node
failures to defense any jamming attacks. In the proposed DSRP, each node tends
to employ learning from the environment. In this experiment, we tend to show
the effectiveness of proposed DSRP against node failure such as jamming attack,
Primary User Emulation (PUE) attack, and primary users.

In Fig. 4.2, instantaneous throughput performance of the proposed DSRP is
compared with throughput performances of no-attack and AODV when a jamming
attacks. The initial path was from source node 1 to destination node 15 via 1, 2, 5,
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Fig. 4.2 Instantaneous
throughput performance of
the proposed DSRP
algorithm, when a jammer
attacks node 2 at time
between 15 and 20, compared
with no-attack and AODV.
The source is node 1 and the
destination is node 15 in
Fig. 4.1
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Fig. 4.3 Instantaneous
throughput performance of
the proposed DSRP algorithm
against different jamming
attacks such as a jammer
attack and a PUE attack
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9, 11, 14, 25 in Fig. 4.1. The jamming attack is launched at time between 15 and
20 s, the attack compromised the node 2 and the path to destination via node 2 is no
more valid. The alternate path that can lead to destination go via node 4, 7, 11, 12,
14. Instantaneous throughput degrades at the time attack is launched, the proposed
DSRP fast recovers the path while the typical AODV is slower as shown in Fig. 4.2.
Further, the instantaneous throughput of DSRP is still better than AODV, because
DSRP employs continuous learning mechanism at each node and keeps updating
the fluctuations of link conditions.

The impact of different attacks such as jamming attacks and PUE attacks
affects throughput of the network and results in higher delay and lower through-
put. Figure 4.3 depicts the comparison of instantaneous throughput performances
between different attacks such as a jamming and a PUE attack and shows how
much delay is encountered for path recovery and how much throughput degrades
in the simulations. Source and destination nodes are 7 and 15, respectively, and the
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Fig. 4.4 Instantaneous
throughput performance of
the proposed DSRP algorithm
and AODV under multiple
attacks
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attack is launched in the time between 15 and 20 s. In Fig. 4.3, node 10 becomes
un-available to connect due to PUE attack, so the route establishment delay is
encountered. In the PUE attack, the path established is changed from original path,
when there is no attack (10, 11, 14), to secondary path (4, 8, 11, 14). Since, the path
established is still better, so the throughput is not degraded too much. While in case
of jamming attack the path followed is longer and throughput is degraded more than
previous case. In our topology, the jammer node (node 11) becomes unavailable due
to attack. So, after delay of route establishment, data transmission starts, but the
path followed is longer (4, 8, 6, 9, 12) as compared to previous case.

In Fig. 4.4, we demonstrate the comparison of the proposed DSRP and AODV
under multiple jamming attacks. In this scenario, node 10 is in range of primary user
and node 5 and node 11 are under simultaneous jamming attacks which decreases
their utilities at 35 s, so the path to destination becomes (4, 8, 6, 9, and 12).
The impact of multiple attacks degrades throughput as shown in Fig. 4.4, but the
proposed DSRP still fast recover and outperforms AODV.

Figure 4.5 shows the end-to-end recovery delay which is the required time to
establish route from source to destination after any node on the initial path is
attacked by a jammer. Figure 4.5 compares the end-to-end recovery delays between
the proposed DSRP and AODV. The increasing number of jammers affects the delay
required for the alternate path recovery due to the route establishment overhead and
change in routing paths. Proposed DSRP takes less time to recover compared to the
typical AODV routing protocol.

Figure 4.6 compares the overhead required to recover the end-to-end path
between the proposed DSRP and AODV. Since AODV broadcasts route error
messages to all neighbors and the source node reinitiate the route discovery to
recover a new path whenever there is a jammer, the overhead is steeply increase
by increasing number of jammer while the proposed DSRP algorithm recover it
locally and dynamically, the overhead for recover paths is smaller than the overhead
of AODV.
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Fig. 4.5 The end-to-end
recovery delay time for the
proposed DSRP compared
with AODV versus the
number of jammers
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Fig. 4.6 The overhead for
recovery paths for the
proposed DSRP compared
with AODV versus the
number of jammers
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4.7 Conclusion

In this paper, we have presented an on-line secure routing scheme based on a
dynamic zero-sum game framework. The proposed secure routing game model
dynamically defenses against malicious attacks such as jamming in cognitive radio
network in distributed manner. The proposed algorithm defenses against unknown
attackers for their routing and minimizes the packet error probability and delay
along the routing path from the source to the destination in optimal and distributed
manner. Unlike typical distributed routing algorithm such as an AODV routing
scheme, the suggested secure routing game algorithm supports a novel recovery
of routing path failure against unknown attackers. We have seen that the proposed
scheme allows nodes to recover from path failure caused by unknown attacks and
that the delay and throughput performances are optimized in comparison to its
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AODV shortest path routing counterpart. The future work includes a generalization
of the secure routing framework for applications in 5G license-assisted access
distributed networks and sensor networks.
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Chapter 5
Content Sponsoring with Inter-ISP
Transit Cost

Abylay Satybaldy and Changhee Joo

5.1 Introduction

As demand for mobile data increases, Internet service providers (ISPs) are turning
to new types of smart data pricing to bring in additional revenue and to expand the
capacity of their current network [7]. One way to keep up funding such investment
is content sponsorship. Content providers (CPs) split the cost of transferring mobile
data traffic, and sponsor the user’s access to the content by making direct payment
to the ISPs. For example, GS Shop, a Korea TV home shopping company, has
partnered with SK Telecom to sponsor data incurred from its application, so
consumers are incentivized to continue browsing and making purchases from their
mobile devices without ringing up data charges [1]. Content sponsoring may benefit
all players in the market: the ISPs can generate more revenue with CP’s subsidies,
and users can enjoy free or low-cost access to certain services, which in turn
increases the demand and attracts more traffic, resulting in higher revenue of the CP.

There are several studies on content sponsoring despite a short history. Most
of the works either focus on a simple model with a single ISP and a single
CP interacting in a game theoretic setting or consider Quality-of-Service (QoS)
prioritization and its implications for net neutrality [4, 5]. In a two-sided market
with a single ISP providing connection between CPs and EUs, profit maximization
of the players under sponsoring mobile data has been studied in [2, 8]. In [2],
single monopolistic ISP determines optimal price to charge the CPs and the EUs,
while the authors in [8] study the contractual relationship between the CPs and
the ISP under a similar model. Nevertheless, none of them consider the interaction
between multiple ISPs. Although the authors in [9] propose a model with a transit
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ISP and a user-facing ISP, their understanding of the interaction between these non-
cooperative ISPs is limited to the environments without content sponsoring. Other
works, e.g. [3, 10], have analyzed content sponsorship from the economic point of
view. They examine the implications of sponsored data on the CPs and the EUs, and
identify how sponsored data influence the CP inequality.

In many Internet markets, there are multiple ISPs that cooperate to provide
end-to-end connectivity service between the CPs and the EUs, in which case the
assumption of a single representative ISP no longer holds. Since each ISP aims
to maximize its own profit, the establishment of interconnection among multiple
ISPs is a thorough process that depends on specific profit sharing/inter-charging
arrangements.

As the most commercial traffic originates from the CPs and terminates at the
EUs, some ISPs positioned on the middle of the traffic delivery chain will have more
power and request a transit-price. An ISP serving a large population of users might
have a dominant influence in determining the transit price paid by other relatively
weak ISPs for traffic delivery. For example, a large entertainment company Netflix
directly uses the service provided by ISPs such as Level 3, which is connected with
residential broadband ISPs like Comcast to get access to the customers [6]. Level
3 charges Netflix and Comcast charges the users. Netflix may partially or fully
sponsor its traffic, which is likely to increase the amount of traffic through both ISPs.
Due to high traffic volume, the access ISP (Comcast) may require additional transit
price for traffic delivery, which will impact on the pricing decision at Level 3 and
subsequently on the sponsoring decision at Netflix. In this work, we are interested
in the dynamics between the players with focus on content sponsoring and transit
pricing. To this end, we study the interplay among two ISPs, CP, and EU, where each
player selfishly maximizes its own profit. We model this non-cooperative interaction
between ISP1, ISP2, CP, and EU as a four-stage Stackelberg game. Specifically, in
our model, we assume that the EU-facing ISP has a dominant power and can be
considered as the game leader who decides the transit cost preceding the choice
of the follower ISP. We aim to understand the behaviors of the players in non-
cooperative equilibrium and their decisions to maximize their own utility.

The rest of the paper is organized as follows. We present the basic system
model in Sect. 5.2, and investigate the strategies of the CP, the EU, and the ISPs
to maximize their utility in Sect. 5.3. Numerical results are presented in Sect. 5.4,
followed by the conclusion and future work in Sect. 5.5.

5.2 Two-ISP Pricing Model

We consider an Internet market model with one CP and two ISPs as shown in
Fig. 5.1. Two interconnected ISPs have their own cost structures and each provides
connectivity to either the CP or the EU. The CP-facing ISP (ISP1) obtains its profits
by directly charging the CP (CP ) by pcp for per unit traffic while the EU-facing ISP
(ISP2) charges the EU (EU ) by peu for per unit traffic. Further ISP2 charges ISP1
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Fig. 5.1 Two-sided Internet market

with transit-price ptr for traffic delivery. Letm1 andm2 denote the marginal costs of
traffic delivery for ISP1 and ISP2, respectively. We denote x as the traffic amount
of flow between CP and EU .

We assume that the players in this non-cooperative game make decisions in four
stages as follows:

1. ISP2 sets prices peu and ptr to charge EU and ISP1, respectively.
2. ISP1 determines the optimal value of pcp to charge CP .
3. CP decides how much content to sponsor, i.e., the value of s.
4. The traffic volume is decided by both EU and CP .

Each player selfishly maximizes its own profit subject to the others’ decisions. We
model this non-cooperative interaction as a four-stage Stackelberg game and use the
backward induction method to find optimal strategy of each player.

Let us define the utility of EU by the multiplication of a scaling factor σeu ≥ 0
and a utility-level function. The utility represents user’s desire to obtain traffic. We
assume a concave and non-decreasing function ueu(x) with decreasing marginal

satisfaction, i.e., ueu(x) = x1−αeu
1−αeu with parameter αeu ∈ (0, 1). Given unit price peu

that ISP2 charges user, EU will maximize its utility minus the payment by solving

(EU − P)(EU − P)(EU − P) max
x

σeu · ueu(x)− (1 − s) · x · peu,

s.t. x ≥ 0, (5.1)

where s ∈ [0, 1] denotes the sponsored percentage, and (1 − s) · x · peu denotes the
payment of EU to ISP2. The solution x∗

eu to (5.1) can be obtained as x∗
eu(s, peu) =

(
σeu

(1−s)peu
) 1
αeu .

Similarly, we model the behavior ofCP . The utility ofCP is given by σcpucp(x),
where σcp ≥ 0 is a scaling factor (e.g., the popularity of the content) and ucp(x) is

a concave utility-level function ucp(x) = x1−αcp
1−αcp with parameter αcp ∈ (0, 1). CP

will maximize its payoff by solving
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(CP − P)(CP − P)(CP − P) max
x,s

σcp · ucp(x)− s · x · peu − x · pcp,

s.t. x ≥ 0 and 0 ≤ s ≤ 1. (5.2)

In the objective, the first term denotes its utility, the second term denotes the cost
due to sponsorship, and the third term is from the network usage cost to ISP1. Given
s, pcp, and peu, it can be easily shown that the optimal amount of traffic for CP is

x∗
cp(s, pcp, peu) =

(
σcp

speu+pcp
) 1
αcp .

Since ISP1 obtains its revenue from charging CP , it decides the optimal value
of pcp to maximize its total profit as

(ISP1 − P)(ISP1 − P)(ISP1 − P) max
pcp

(pcp + s∗ · peu − ptr −m1) · x∗(pcp, peu),

s.t. pcp ≥ 0, (5.3)

wherem1 is the marginal cost for traffic delivery and thus pcp+ s∗ ·peu−ptr −m1
is the net-gain of ISP1 per unit traffic.
ISP2 obtains its revenue from charging ISP1 with transit-price ptr and charging

EU with traffic-price peu. Therefore, in order to maximize its total profit, it will
solve

(ISP2 − P)(ISP2 − P)(ISP2 − P) max
peu,ptr

((1 − s∗) · peu + ptr −m2) · x∗(pcp, peu),

s.t. peu ≥ 0 and ptr ≥ 0, (5.4)

where m2 is the marginal cost for traffic delivery.
Through the sequential decision, we investigate the interactions of the players

described in (5.1), (5.2), (5.3), (5.4), and find the optimal strategies for pricing and
sponsoring.

5.3 Strategies for Utility Maximization

In this section, we sequentially find the optimal strategies of CP , ISP1, and ISP2
by exploiting the backward induction.

5.3.1 Sponsoring of Content Provider

Note that each solution to (5.1) and (5.2) results in user-side traffic demand x∗
eu and

CP-side traffic amount x∗
cp, respectively, and the actual traffic amount x∗ between
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CP and EU will be determined by their minimum, i.e., x∗ = min{x∗
cp, x

∗
eu}. In

general x∗
eu �= x∗

cp. For instance, a certain website may restrict the number of
simultaneous on-line clients, which implies x∗

cp ≤ x∗
eu.

Suppose that peu and pcp are given. The actual traffic x∗(s) will be determined
by the sponsoring rate s, and CP will decide its optimal sponsored percentage s∗
by solving the following problem:

(CP − P)(CP − P)(CP − P) max
s

σcp · ucp(x∗(s))− s · x∗(s) · peu − x∗(s) · pcp,
s.t. 0 ≤ s ≤ 1. (5.5)

We assume αeu = αcp = α ∈ (0, 1), i.e., EU and CP utility components have
the same utility shape. This assumption is reasonable in the scenarios where CP
makes its pricing decision according to the user response. On the other hand, the
scaling factors σeu and σcp of EU and CP can be quite different. The sponsoring
behavior will be affected by whether the traffic volume is constrained by EU or
CP . If x∗

eu ≤ x∗
cp, we have s ≤ σcppeu−σeupcp

(σeu+σcp)peu and x∗ = x∗
eu. Similarly, if x∗

eu ≥ x∗
cp,

we have s ≥ max
(
σcppeu−σeupcp
(σeu+σcp)peu , 0

)
and x∗ = x∗

cp. We consider each case.

Case (i) When x∗ = x∗
cp. The profit of the CP can be written as

V (s) = σcp · ucp(x∗
cp(s))− s · x∗

cp(s) · peu − x∗
cp(s) · pcp. (5.6)

By substituting x∗
cp(s, pcp, peu) =

(
σcp

speu+pcp
) 1
α

into (5.6), it can be easily shown

that V (s) is a decreasing function of s, and we have the optimal value s∗ =
max

(
σcppeu−σeupcp
(σeu+σcp)peu , 0

)
. Thus, the traffic amount and the sponsoring rate will be

(x∗, s∗) = (x∗
cp, s

∗) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((
σcp
pcp

) 1
α
, 0

)
, if

σcp
σeu

≤ pcp
peu
,

((
σcp+σeu
pcp+peu

) 1
α
,

σcppeu−σeupcp
(σeu+σcp)peu

)
, if

σcp
σeu
>
pcp
peu
.

(5.7)
The maximum profit of CP is given as

V ∗(x∗
cp, s

∗) =

⎧
⎪⎪⎨

⎪⎪⎩

α(σcp)
1
α

1−α (pcp)
1− 1

α , if
σcp
σeu

≤ pcp
peu
,

ασcp
1−α

(
peu+pcp
σeu+σcp

)1− 1
α
, if

σcp
σeu
>
pcp
peu
.

(5.8)

Case (ii) When x∗ = x∗
eu. In this case, we have s ≤ σcppeu−σeupcp

(σeu+σcp)peu , x∗
eu(s, peu) =

(
σeu

(1−s)peu
) 1
α

and σcp
σeu
>
pcp
peu

.CP will optimize its sponsorship percentage by solving
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max
σcp

(
σeu
peu

) 1
α −1

1−α (1 − s)1− 1
α − (speu+pcp)

(
σeu
peu

) 1
α

(1−s) 1
α

,

s.t. 0 ≤ s ≤ σcppeu−σeupcp
(σeu+σcp)peu ,

σcp
σeu
>
pcp
peu
. (5.9)

From the first order condition, the optimal data rate x∗ and the optimal sponsoring
rate s∗ can be obtained as

(x∗
eu, s

∗) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((
σeu
peu

) 1
α
, 0

)
, if

pcp
peu
<
σcp
σeu

≤ α + pcp
peu
,

((
σcp+(1−α)σeu
pcp+peu

) 1
α
,

σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α

)
, if

σcp
σeu
> α + pcp

peu
,

(5.10)
and the maximum profit of CP is

V ∗(x∗
eu, s

∗) =

⎧
⎪⎪⎨

⎪⎪⎩

(
σeu
peu

) 1
α
[
σcppeu
(1−α)σeu − pcp

]
if

pcp
peu
<
σcp
σeu

≤ α + pcp
peu
,

α(pcp+peu)
1−α

(
σcp+(1−α)σeu
pcp+peu

) 1
α
if

σcp
σeu
> α + pcp

peu
.

(5.11)
From the two-case response of CP , we can obtain the following Proposition.

Proposition 1 Given prices pcp and peu, the optimal sponsorship rate s∗ of the
CP is

case (1) if
σcp
σeu

≤ pcp
peu
, s∗ = 0,

case (2) if
pcp
peu
<
σcp
σeu

≤ α + pcp
peu
, s∗ = 0,

case (3) if
σcp
σeu
> α + pcp

peu
, s∗ =

σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α .

(5.12)

Proof For case 1, the maximum available profit of CP can be easily obtained as

V ∗(x∗
cp, s

∗) = α(σcp)
1
α

1−α (pcp)
1− 1

α from (5.8).

For σcp
σeu

>
pcp
peu

, the CP will choose the largest one among available profits of

V ∗(x∗
cp, s

∗) and V ∗(x∗
eu, s

∗), given in (5.8) and (5.11), respectively. Let σ = σcp
σeu

and p = pcp
peu

. We decompose it into two subcases as below.

(1) When p < σ ≤ α + p, each profit function can be written as

V ∗(x∗
cp, s

∗) = (σeu)
1
α (peu)

1− 1
α

(1−α)
(

1+p
1+σ

) (
1+p
1+σ

)− 1
α
ασ,

V ∗(x∗
eu, s

∗) = (σeu)
1
α (peu)

1− 1
α

(1−α) (σ − (1 − α)p).
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Consider the ratio V ∗(x∗
eu,s

∗)
V ∗(x∗

cp,s
∗) . By using the generalized form of Bernoulli’s

inequality (1 + x)r ≥ 1 + rx for r ≤ 0 or r ≥ 1 and x > −1, we can
obtain

V ∗(x∗
eu,s

∗)
V ∗(x∗

cp,s
∗) ≥

(
σ−(1−α)p

ασ

) (
1+σ
1+p

) (
1 + p−σ

(1+σ)α
)

= 1 + (1−α)(σ−p)(p+α−σ)
σα2(1+p) .

Hence, if p < σ ≤ α + p, we have V ∗(x∗
eu,s

∗)
V ∗(x∗

cp,s
∗) ≥ 1, implying x∗ = x∗

eu and

s∗ = 0 from (5.10)
(2) When σ > α + p, we have

V ∗(x∗
cp, s

∗) =
(
α

1−α
)
(peu + pcp)1− 1

α (σeu)
1
α (σ )(1 + σ) 1

α
−1,

V ∗(x∗
eu, s

∗) =
(
α

1−α
)
(peu + pcp)1− 1

α (σeu)
1
α (1 + σ − α) 1

α .

Again we consider the ratio V ∗(x∗
eu,s

∗)
V ∗(x∗

cp,s
∗) = 1+σ

σ

(
1 − α

1+σ
) 1
α

. Applying the gen-

eralized form of Bernoulli’s inequality, we have V
∗(x∗

eu,s
∗)

V ∗(x∗
cp,s

∗) ≥ 1+σ
σ

(
1 − 1

1+σ
)

=
1, and thus we have x∗ = x∗

eu and s∗ =
σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α from (5.10).

According to Proposition 1, CP has no incentive to invest in sponsored data plan
when σcp

σeu
≤ α + pcp

peu
. On the other hand, when σcp

σeu
> α + pcp

peu
, CP will invest in

sponsoring as in (5.10). The data rate under sponsoring will be

case (1) if
σcp
σeu

≤ pcp
peu
, x∗(pcp, peu) =

(
σcp
pcp

) 1
α
,

case (2) if
pcp
peu
<
σcp
σeu

≤ α + pcp
peu
, x∗(pcp, peu) =

(
σeu
peu

) 1
α
,

case (3) if
σcp
σeu
> α + pcp

peu
, x∗(pcp, peu) =

(
σcp+(1−α)σeu
pcp+peu

) 1
α
.

(5.13)

5.3.2 Utility Maximization of ISP1

ISP1 also tries to maximize its total profit in each region specified in (5.13). We
obtain the optimal response of ISP1 in each case.

Case (1) When x∗ =
(
σcp
pcp

) 1
α

and s∗ = 0. From (5.3), ISP1 maximizes (pcp −

ptr −m1) ·
(
σcp
pcp

) 1
α

subject to σcp
σeu

· peu ≤ pcp. The best response p∗
cp of ISP1 can

be easily obtained as p∗
cp = ptr+m1

1−α .
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Case (2) When x∗ =
(
σeu
peu

) 1
α

and s∗ = 0. From (5.3), ISP1 has the objective of

max
pcp≥0

(pcp −ptr −m1) ·
(
σeu
peu

) 1
α

subject to pcp
peu

− σcp
σeu

≤ 0 and σcp
σeu

− α− pcp
peu

≤ 0.

From the constraints, we have pcp ∈
[(
σcp
σeu

− α
)
peu,

σcp
σeu
peu

]
. Note that since the

objective is an increasing function of pcp, we set the largest pcp = σcp
σeu

· peu for the

optimal solution, which gives us maximum utility P ∗ =
(
σcp
σeu

· peu − ptr −m1

)
·

(
σeu
peu

) 1
α

. By differentiating it with respect to peu, we can find p∗
eu = σeu

σcp
·
(
ptr+m1

1−α
)

that maximizes P ∗, which results in the optimal p∗
cp = ptr+m1

1−α .

Case (3) When x∗ =
(
σcp+(1−α)σeu
pcp+peu

) 1
α

and s∗ =
σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α . The problem can

be rewritten as max
pcp≥0

(pcp + s∗peu − ptr −m1) ·
(
σcp+(1−α)σeu
pcp+peu

) 1
α

, subject to pcp ≤
(
σcp
σeu

− α
)
peu. From the first order condition, we can obtain the optimal price p∗

cp =
(k+1)(ptr+m1)

k(1−α) − peu, where k = σcp
σeu

− α.

5.3.3 Utility Maximization of ISP2

For the behaviors of ISP2, we also consider the three cases of (5.13) and find the
best strategy of ISP2 for each case.

Case (1) When x∗(p∗
cp, peu) =

(
σcp
p∗
cp

) 1
α

and s∗ = 0. We already have p∗
cp =

ptr+m1
1−α . From (5.4) and (5.13), the ISP2 determines its prices peu and ptr by solving

max
peu≥0,ptr≥0

((1 − s∗) · peu + ptr −m2) ·
(
σcp
p∗
cp

) 1
α

, subject to σcp
σeu

− p∗
cp

peu
≤ 0.

Let P denote the objective function. From the Karush-Kuhn-Tucker (KKT)

conditions, we have ∂P
∂peu

= 0, ∂P
∂ptr

= 0, and λ ·
[
σcp
σeu

− p∗
cp

peu

]
= 0. By solving

these equations, we have the optimal prices

p∗
eu = (m1+m2)

(1−α)(1+(k+α)(1−α)) and p∗
tr = (k+α)(m1+m2)

(1+(k+α)(1−α)) −m1, (5.14)

at which the maximum profit P ∗ is
[
α(m1+m2)
(1−α)

] (
σcp(1−α)(1+(k+α)(1−α))

(k+α)(m1+m2)

) 1
α

,

where k = σcp
σeu

− α.
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Case (2) When x∗(p∗
cp, peu) =

(
σeu
peu

) 1
α

and s∗ = 0. In this case, we have

p∗
cp = ptr+m1

1−α . From (5.4) and (5.13), the ISP2 determines its prices by solving
the following problem.

(ISP2 − P)(ISP2 − P)(ISP2 − P) max
peu≥0,ptr≥0

((1 − s∗) · peu + ptr −m2) ·
(
σeu
peu

) 1
α
,

s.t.
p∗
cp

peu
− σcp
σeu

≤ 0 and
σcp
σeu

− α − p∗
cp

peu
≤ 0. (5.15)

From the KKT conditions, we have ∂P
∂peu

= 0, ∂P
∂ptr

= 0, λ1 ·
(
p∗
cp

peu
− σcp
σeu

)
= 0

and λ2 ·
(
σcp
σeu

− α − p∗
cp

peu

)
= 0, where λi ≥ 0, pcp ≥ 0, and peu ≥ 0. There are

three possible subcases: (i) λ1 = 0, λ2 �= 0, (ii) λ1 �= 0, λ2 = 0, (iii) λ1 = 0 and
λ2 = 0.

(i) When λ1 = 0 and λ2 �= 0, the optimal prices will be

p∗
eu = m1+m2

(1−α)(1+k(1−α)) and p∗
tr = k(m1+m2)

1+k(1−α) −m1, (5.16)

where k = σcp
σeu

− α, and we have the maximum profit P ∗
λ1

=
[
α(m1+m2)
(1−α)

] (
(σcp−σeuα)(1−α)2+σeu(1−α)

m1+m2

) 1
α

.

(ii) When λ1 �= 0 and λ2 = 0, the optimal prices will be

p∗
eu = (m1+m2)

(1−α)(1+(k+α)(1−α)) and p∗
tr = (k+α)(m1+m2)

(1+(k+α)(1−α)) −m1, (5.17)

and the maximum profit P ∗
λ2

=
[
α(m1+m2)
(1−α)

] (
σcp(1−α)2+σeu(1−α)

m1+m2

) 1
α

.

(iii) When λ1 = 0 and λ2 = 0, the two inequality constraints of (5.15) should be an
active constraint (i.e., the equalities hold). However, it is not possible to satisfy
both equalities, and hence, this case is infeasible.

From P ∗
λ2
> P ∗

λ1
, we should have λ2 = 0 and the best response of the ISP2

is (5.17), which equals the result of case 1 in (5.14).

Case (3) In this case, we have the optimal sponsoring rate s∗ =
σcp
σeu

−α− pcp
peu

σcp
σeu

+1−α and the

traffic demand is x∗(p∗
cp, peu) =

(
σcp+(1−α)σeu
pcp+peu

) 1
α

.

As shown in Sect. 5.3.2, the best-response p∗
cp of ISP1 is (k+1)(ptr+m1)

k(1−α) − peu.
From (5.4) and (5.13), ISP2 determines its prices by solving max

peu≥0,ptr≥0
((1 − s∗) ·



66 A. Satybaldy and C. Joo

peu + ptr − m2) ·
(
σcp+(1−α)σeu
p∗
cp+peu

) 1
α

, subject to
p∗
cp

peu
+ α − σcp

σeu
≤ 0. From the KKT

conditions, we have ∂P
∂peu

= 0, ∂P
∂ptr

= 0, and λ ·
[
p∗
cp

peu
+ α − σcp

σeu

]
= 0.

By solving the equations, we can obtain without difficulty that

p∗
eu = (m1+m2)

(1−α)(1+k(1−α)) and p∗
tr = k(m1+m2)

(1+k(1−α)) −m1. (5.18)

The maximum profit P ∗ will be
[
α(m1+m2)

1−α
] (

(σcp(1−α)+σeu(1−α)2)(1+k(1−α))
(k+1)(m1+m2)

) 1
α

.

We have shown the optimal responses of the EU, the CP, and two ISPs in a non-
cooperative equilibrium. They describe the sponsoring rate s∗ and the pricing of
p∗
cp, p∗

eu, and p∗
tr when each player maximizes its own utility in a greedy manner.

5.4 Numerical Simulations

We verify our analytical results through numerical simulations. We consider one
CP, one EU, and two ISPs, where the CP and the EU share the same utility-level
function αeu = αcp = α ∈ (0, 1). Figure 5.2a shows that CP has incentive to invest
in sponsored data plan if σcp

σeu
> α + pcp

peu
. It means that as CP has higher utility

level and EU consuming the content has relatively lower utility level (or similarly,
the price charged to CP is relatively lower than the price charged to EU ), CP tries
to provide a higher sponsorship rate. In contrast, when σcp

σeu
≤ α + pcp

peu
, CP best

strategy is not sponsoring the user access, i.e., s∗ = 0.
Next we observe the payoff of ISP2 as we change the price per unit traffic peu

that charges to the user. Figure 5.2b illustrates the results and show that the payoff
of ISP2 linearly rises till some point, and then declines exponentially, which is
due to the fact that the demand of users is inversely proportional to peu. Although
ISP2 obtains its revenue from charging ISP1 with transit-price ptr , the results show

Fig. 5.2 Payoff changes of CP and ISP2 when α = 0.5. (a) CP . (b) ISP2 with σcp = 2, σeu = 1
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Fig. 5.3 The optimal sponsoring rate with respect to pcp , peu, σ , and ptr . (a) peu = 4, α = 0.3.
(b) pcp = 2, α = 0.3. (c) pcp = 2, peu = 2. (d) peu = 4, α = 0.3

that increasing the ptr does not necessarily increase the payoff of ISP2. As the
transit price becomes higher, CP is forced to increase pcp which in turn results in
a decline of the traffic demand. Hence, the maximum point is achieved at ptr = 1
and peu = 2.

We now examine the impact of ISP prices (pcp, peu, and ptr ) and σ on the
optimal sponsoring rate with different parameter sets. Figure 5.3a shows that as pcp
increases, the sponsoring rate drops sharply. The decreasing rate can be mitigated
with higher σ . Figure 5.3b shows that with the increase of the peu, the marginal
increase of the sponsoring rate is decreasing. Moreover, a larger σ value indicates a
higher and rapidly growing sponsorship rate. Figure 5.3c demonstrates the change
of the optimal sponsoring rate with respect to σ under different α values. The
sponsorship rate logarithmically increases as σ increases. It can be explained from
the fact that the CP with higher revenue level can afford more investment on the
sponsoring content. We can also observe that the variation in α has a little impact
on the traffic demand. Figure 5.3d will help us to understand the effect of the transit
cost ptr to the optimal sponsoring rate s∗. We can observe that the increase of the
transit cost results in a sharp drop of s∗. The rise of transit cost will incur significant
loss in ISP1’s revenue, which forces ISP1 to increase its charge to CP , resulting
in a rapid drop of the sponsoring rate.
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5.5 Conclusion

In this work, we studied the sponsored data and non-cooperative inter-pricing among
ISPs that jointly deliver traffic from CPs to EUs. We derived the best response of
the EU, the CP, and the ISPs, and analyzed their implications for the sponsoring
strategy of the CP. We investigate the interactions between strategic EU, CP, and two
interconnected ISPs through a sequential Stackelberg game, and verify our results
through numerical simulations. Our results clarify the high impact of the transit
price of intermediate ISP on the sponsoring strategies of the CP, and demonstrate
in what scenarios sponsoring helps. There are a couple of interesting direction to
extend our results. A cooperation between the two ISPs will change the system
dynamics and bring a different structure of pricing and sponsoring, and may improve
the total payoff of the ISPs at the cost of the EU and the CP. On the other hand,
multiple ISPs for the service to the EU or the CP may result in competition between
the ISPs and can lead to a higher social welfare.
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Chapter 6
Matching Games for 5G Networking
Paradigms

S. M. Ahsan Kazmi, Nguyen H. Tran, and Choong Seon Hong

6.1 Introduction

The number of connected network devices in the current cellular network is
witnessing an unprecedented growth that is expected to even further grow due to
the emergence of novel applications in 5G and beyond networks [8, 21, 45]. In
order to serve this tsunami of devices, a number of new networking paradigms have
also taken birth [4, 5, 9, 22, 37, 48]. Dense network of small cells coexisting with
the traditional networks typically named as heterogeneous networks (HetNets) has
witnessed tremendous success in serving these devices [12, 25, 26, 34]. Similarly,
non-orthogonal multiple access (NOMA) is also under consideration lately to serve
this tsunami of connected devices [20, 30, 41, 44]. Moreover, other notable novel
paradigm that is expected to enhance the number of connections economically in the
existing networks is wireless network virtualization (WNV) [19, 24, 28, 31, 32, 39].
Furthermore, in order to meet the stringent requirements set by the 5G networks,
these paradigms need to coexist leading to a complex heterogeneous multi-tiered
network architecture[48]. Resource allocation (RA) in such complex architecture is
among one of the biggest challenges and traditional resource allocation approaches
based on centralized solution do not apply and fail in such complex networks [5, 38].
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Centralized resource allocation solutions for such multi-tier network will incur
huge message passing to attain global information, higher delays and will be more
computationally complex [26]. Thus, these solutions will eventually fail for a dense
setting. Therefore, a significant challenge is to design efficient resource allocation
approaches that can be implemented in a distributed and self-organizing fashion.
Game theory based distributed resource allocation solutions have been recently
under consideration as a promising alternative over the traditional optimization
based centralized solutions [25, 26, 28, 43, 49]. However, there exist several
drawbacks in classical game theoretic based solutions. One major drawback is that
each player requires some sort of information from its competing players, thus,
significantly increasing the overhead for a dense setting [15].

Matching game is a mathematical framework based on matching theory that
has gained recent attention for the resource allocation problems in the field of
wireless networks [15, 17]. This is due to its ability to provide distributed solution
when considering combinatorial problems which is the case in resource allocation
problems. Moreover, other factors to apply matching theory for resource allocation
problem are the following [17]:

• It has the capability to capture various wireless communication features.
• It has the ability to model complex environments through preference relations.
• It can be implemented in a distributed fashion and provide low-complexity.

The matching games can be categorized into multiple categories [15, 17, 36].
In this chapter, we focus on two-sided matching game problems as they readily
translate to the resource allocation problems for wireless networks. In two-sided
matching games, the set of players are typically divided into two distinct non-
overlapping sets. Then, the matching problem is defined as to find a match between
the players of one set and the players of the corresponding other set, given their
individual preferences derived from different objectives. In two-sided matching
games, three types of games exist based on the quota values [15, 17, 36, 40]. The
first type can be classified as one-to-one matching games. In such games, each player
from one set is matched only with a single player of the corresponding set, i.e., the
quota is one for both sides. Typical example of this type of matching is the stable
marriage problem [14]. The second type corresponds to one-to-many matching
games in which a set of players of one side are allowed to match with multiple
players (i.e., quota is greater than 1 on one side) of the corresponding side. The
college admission problem is an example of these type of games [14]. The final type
is the many-to-many classification in which both sides are allowed to match with
multiple players of the corresponding sides. The firms and consultants matching
problem can be considered as an example of many-to-many matching games [11].

A comprehensive survey on the matching games for future wireless networks
has been presented in [15]. Moreover, they also present detailed applications for
resource allocation in cognitive radio networks, heterogeneous small cell networks,
and device-to-device communications. Similarly, the work in [17] also presents a
comprehensive survey on matching games for future wireless networks including
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other novel paradigms such as Vehicle-to-everything (V2X), millimeter wave
communication and LTE-unlicensed. This work can be considered as an extension
of these works in which we consider novel paradigms which were not discussed in
the aforementioned areas such as dense HetNets, WNV, and NOMA.

The rest of the chapter is organized as follows: In Sect. 6.2, we discuss about
the matching theory and its preliminaries. In Sect. 6.3, we investigate the dense
heterogeneous paradigm and present its challenges, analytical technique along with
its solution concept. In Sect. 6.4, we discuss the details of matching game in the area
of wireless network virtualization. Similarly, we present our matching game solution
for enabling NOMA in cellular communication in Sect. 6.5. Finally in Sect. 6.6, we
conclude our chapter.

6.2 Matching Game Preliminaries

Matching theory is a mathematical framework through which mutual beneficial
relations are derived between a set of players. In matching games, the most popular
type of games are the two-sided matching games (also known as bipartite matching
games) in which the set of players are divided into two sides. Then, each side ranks
the corresponding side via a preference relation [15, 17, 36]. The preference relation
generally depends upon the local information of a side. Moreover, the players do
not require to know other players’ preferences and actions to take a decision. The
goal is to match players of both sides with each other in the best way. Typical
examples include the stable marriage problem in which men and women form the
two sides of matching games. Then, both men and women define their preferences
over the opposite side based on their local information, i.e., height, color, beauty,
intelligence, etc. Finally, the goal is to match men and women with each other in an
optimal way [14].

The main goal of the matching game is to design a solution such that the matched
players on both sides find the best match. This property is defined as the stability
in the context of the matching games and is the key solution concept in this domain
[15, 17, 26]. A matching game is stable only if there exists no blocking pair in a
matching. A blocking pair is defined as a matched pair (e.g., man, woman pair in
case of stable marriage problem) such that it can leave its current matched partner to
form a new better pair. The Gale-Shapley (GS) algorithm has been widely used for
many matching problems in order to find the stable solution. Note that, in matching
games, both sides achieve stability in contrast to the classical game theory Nash
equilibrium concept in which only one side stability is generally guaranteed [15].

In wireless communication, the resource allocation problem can be mapped
to a two-sided matching game. The two sides here are represented as users and
resources. The goal is to match users that form one side to the resources that
form the corresponding side in the matching game. Note that the resources in
wireless communication can be defined based on the problem scenarios, i.e.,
physical spectrum, power levels, physical base stations, etc. Similarly, the users can
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be represented as end user devices, applications, etc. Then, the goal is to define
the preference function of each side and rank the corresponding side based on
the preference function. Once preferences are defined, we have to design a stable
matching scheme for the proposed problem. Next, we present multiple matching
games designed for different novel 5G networking paradigms and discuss the
challenges and benefits achieved by employing matching theory.

6.3 Matching Game for Dense Heterogeneous Networks

The dense and pervasive deployment of wireless small cells can boost the perfor-
mance of existing macrocellular networks; however, it poses significant challenges
pertaining to the cross-tier interference management. In next-generation 5G net-
works, the macro base station (MBS) must serve a large coverage area with a
high number of connected devices [5]. One important challenge in deploying a
large number of small cell base stations (SBSs) is to reduce the signaling and
communication overhead at the MBS. A centralized RA approach such as in [35, 47]
can require the MBS to exchange various information continuously with all SBSs
which increases the signaling overhead and computational load for the MBS and
becomes impractical for the dense deployment of SBSs. Similarly, a distributed
approach with heavy message exchanges among network entities over the control
channel such as in [2, 42] would again increase signaling and communication
overhead. In this work, the downlink resource allocation problem for an underlay
small cell network is studied and the protection of the macrocell tier is achieved
by imposing cross-tier interference constraints in the resource allocation problem
for a dense setting. In a nutshell, a distributed approach with minimum message
passing would be more practical and important for the proposed resource allocation
problem, because of the reasons mentioned above. To solve this problem, we devise
a solution based on matching theory.

6.3.1 System Model

Consider a HetNet consisting of a set of SBSs, B = {1, 2, . . . , J }, located
within the coverage of one MBS as shown in Fig. 6.1. The set of macro-cell users
(MUEs) and small cell users (SUEs) are denoted by M = {1, 2, . . . ,M} and
S = {1, 2, . . . , S}, respectively. The MBS and SBSs use the same set of orthogonal
resources R = {1, 2, . . . , R}.1 However, for any given resource r ∈ R, a predefined
interference threshold I rmax must be maintained for protecting the MUEs. Moreover,
we assume that all SBSs transmit using a fixed power (e.g., any feasible power for

1One resource corresponds to one subcarrier or subchannel of the LTE network [2].
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Fig. 6.1 Proposed system model. Solid line showing the downlink information links while dotted
line showing the cross tier interference

each SBS transmitter) [42]. However, each SBS can have its own, and different
power budgets. In addition, we assume that the transmit power of each SBS is
equally divided among its resources and, thus, the interference power on each
resource is constant. In this network, our objective is to maximize the sum rate
of all SBSs by reusing the macrocell resources.

6.3.2 Problem Statement

Our objective is to maximize the sum rate of all SBSs by reusing the macrocell
resources. In order to calculate the sum rate, we need to calculate the received signal
to noise ratio (SINR) at each SUE. The received SINR pertaining to the transmission
of SBS j to SUE k over resource r with transmit power P rj is:

γ rj,k = P rj g
r
j,k

P rMg
r
M,k + ∑

i∈Ωr,
P ri g

r
i,k + σ 2

, (6.1)

where P rM and P ri ,∀i ∈ Ωr , represent the transmit powers of the MBS and SBS,
respectively, in the set Ωr which are using resource r . The channel gain between
SBS j and SUE k is grj,k whereas grM,k and gri,k are, respectively, the channel gains
from the MBS and other underlay SBSs i to SUE k. The noise power is assumed to
be σ 2. Then, the data rate of user k associated with SBS j on resource r is given by
Rrj,k = Wr log(1 + γ rj,k) whereWr is the bandwidth of resource r .

Moreover, the interference experienced by MUE m on resource r is given by
I r = ∑

j∈B
∑
k∈S xrj,kP rj grj,m, where grj,m is the channel gain between SBS j and

MUE m, on resource r . Note that the binary RA variables xrj,k ensure that we only
account for the interference created by SUEs that are assigned the same resource.
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The considered RA problem can be stated as follows:

RA: maximize
xrj,k∈X ,∀k,j,r

∑

j∈B Rj (6.2)

subject to
∑

k∈S x
r
j,k ≤ 1, ∀r ∈ R,∀j ∈ B, (6.3)

I r ≤ I rmax, ∀r ∈ R. (6.4)

In RA, constraint (6.3) ensures that each resource can be allocated to at most
one user in each SBS to avoid strong intra-cell interference; additionally, con-
straint (6.4) ensures the MUE protection by keeping its aggregate interference
below a predefined threshold. Problem RA is a non-convex, integer problem, which
is difficult to solve for a practical setting with large sets of users and resources
[6]. Typically, solutions presented for problems similar to RA require significant
message exchanges [2, 42]. Therefore, by using matching theory, we present a
distributed novel and practical algorithm with minimal message passing which is
suitable for a large-scale dense networks of HetNets.

6.3.3 Proposed Solution

The RA problem can be formulated as a two-sided matching game. We assume each
SUE can use a single resource from (6.3). However, different SBSs can use the same
resource to improve the spectrum efficiency. Our design corresponds to a many-
to-one matching given by the tuple (B,R, qr ,�B,�R). Here, �B � {�j }j∈B
and �R � {�r}r∈R represent the set of the preference relations of the SBSs and
resources, respectively.

Definition 1 A matching μ is defined by a function from the set B ∪
R into the setof elements ofB ∪ R such that:

(i) |μ(j)| ≤ 1 and μ(j) ∈ R,
(ii) |μ(r)| ≤ qr and μ(r) ∈ B ∪ φ, where qr is the quota of r,

(iii) μ(j) = r if and only if j is in μ(r).

6.3.3.1 Preferences of the Players

Matching is performed on the basis of preference profiles that can be built by the
SBSs Pj and the controller Pr to rank potential matchings based on the local
information. Note that, on each r , each SBS j will choose its user k with highest
data rateRrj = maxk Rrj,k . Then, an SBS j ranks a resource r based on the following
preference function:

Uj (r) = Rrj . (6.5)
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Similarly, for the controller side, each resource r also ranks the SBSs according
to the following preference function:

Ur (j) = Rrj − βI rj , (6.6)

where I rj = P rj grj,m represent interference produced by SBS j to the MUE assigned
that resource. The first term in (6.6) represents the achievable data rate on resource
r , the second term accounts for a penalty due to the interference produced by
SBS j , and β represents a weight parameter. The second term implies that the
controller gives less utility to the SBSs which cause higher interference to the MUE
on resource r .

For the formulated two-sided matching game, our goal is to seek a stable
matching, which is a key solution concept [40]. To find a stable matching, the
deferred-acceptance algorithm can be employed [40]. Traditionally, in one-to-many
matching, a fixed, per player quota on one side is assumed according to which a fixed
number of players of the opposite side can be matched. However, our formulated
matching game involves a dynamic quota as the controller allows a number of SBSs
(with heterogeneous interference) to use each resource as long as the interference
constraint on that resource is not violated. This heterogeneous interference of SBSs
and dynamic quota of resources introduces new challenges that prevent the use of
standard deferred-acceptance algorithm. Therefore, we formally define the blocking
pair for the formulated game as follows:

Definition 2 A pair (j, r) is a blocking pair for μ if:

a. I rres ≥ I rj , j �r ∅ and r �j μ(j),
b. I rres < I

r
j , I

r
res +∑

j ′∈μ(r) Ij ′ r ≥ I rj , j �r j ′ and r �j μ(j),
where I rres = I rmax − I r represent the residual of the interference tolerance
(remaining quota) on the resource r . The quota of a resource r ∈ R is filled when
I rres < I

r
j for a requesting j ∈ B. Definition 2 is based on the following intuition

[50]. Whenever an SBS j prefers a resource r to its assigned resourceμ(j), if either:
(i) r has sufficient interference tolerance I rres and is willing to admit j (i.e., j �r ∅),
or (ii) its quota is filled but it is able to admit j by rejecting some accepted SBSs
which are ranked lower than j , then j and r can deviate from their assigned μ(j)
and μ(r), respectively. A matching is stable if no blocking pair exists.

Next, we discuss the “matching” in Definition 1, and then explain the “blocking
pair” in Definition 2.

Figure 6.2 shows an example with two set of players, i.e., 3 SBSs and 2 resources.
According to Definition 1 (one-to-many matching). A matching μ is an assignment
between the two sets of players such that:

1. Each SBS is assigned to at most one resource based on the tolerable interference
levels. For example, SBS j1 is matched to resource r1. SBS j2 and SBS j3 are
matched to resource r2.
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Fig. 6.3 Two matchings μ and μ′

2. No resource is oversubscribed. For example, assume r1 and r2 have limited quota
of 1 and 2 players, respectively. Then, r1 can be matched to one SBS only (j1)
whereas r2 can support two SBSs, i.e., j2 and j3.

Next, we explain the idea of a blocking pair. Figure 6.3 shows an example with
two matchings μ and μ′. Additionally, the quota of resources and preference profile
for both sides, i.e., SBSs and resources, is provided. Generally, if an SBS j prefers
resource r more than its current matched resource, and similarly resource r prefers
SBS j more than its current matched SBS. Then, the pair can deviate from the
current matching in order to be matched to each other. This is called a blocking
pair [40]. In Fig. 6.3, according to the preference profile, it can be seen that the
matching produced by μ does not contain any blocking pair. However in μ′, SBS
j2 is matched to resource r1 but SBS j2 prefers resource r2 over resource r1 and
similarly resource r2 also prefers SBS j2. Thus, a blocking pair exists, i.e., (j2, r2)
in μ′, as both prefer to be matched to each other, over their current partners.

Now, according to Definition 2, if any of the following two condition occurs,
then the matching will have a blocking pair:
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1. I rres ≥ I rj , j �r ∅ and r �j μ(j).
Whenever an SBS j prefers a resource r to its assigned resource μ(j) (can be

φ, meaning it is unassigned), and resource r has sufficient interference tolerance
I rres and also prefers to admit SBS j . Then, SBS j and resource r have a strong
incentive to deviate from current matching and form a new matching.

2. I rres < I
r
j , I

r
res +∑

j ′∈μ(r) Ij ′ r ≥ I rj , j �r j ′ and r �j μ(j).
Whenever an SBS j prefers a resource r to its assigned resource μ(j),

however, resource r quota is filled but it is able to admit SBS j by rejecting
some previously accepted SBSs j ′ which are ranked lower than SBS j according
to the preference profile of resource r . Then, SBS j and resource r can deviate
from their assigned matching and block the current matching.

6.3.3.2 Proposed Algorithm

As a solution to this game, we propose a novel RA scheme to produce a stable
matching in Algorithm 1 which guarantees macro-tier protection captured in

Algorithm 1 Matching-Based Resource Allocation
1: input: Pj , Pr , ∀r, j
2: initialize: t = 0, μ(t) � {μ(j)(t), μ(r)(t)}j∈B,r∈R = ∅, I rres

(t) = I rmax, Kr (t) = ∅, Pj
(0) =

Pj , Pr
(0) = Pr , ∀r, j

3: repeat
4: t ← t + 1
5: for r ∈ R do
6: for j ∈ B with r as its most preferred in Pj

(t) do

7: while j /∈ μ(r)(t) and P
(t)
j �= ∅ do

8: if I rres
(t) ≥ I rj , then

9: μ(r)(t) ← μ(r)(t) ∪ {j}; I rres (t) ← I rres
(t) − I rj ;

10: else
11: P ′(t)

r = {j ′ ∈ μ(r)(t)|j �r j ′}
12: jlp ← the least preferred j ′ ∈ P ′(t)

r ;

13: while (P ′(t)
r �= ∅) ∪ (I rres (t) < I rj ) do

14: μ(r)(t) ← μ(r)(t) \ {j ′}; P ′(t)
r ← P ′(t)

r \ {jlp};
15: I rres

(t) ← I rres
(t) + I r

j ′ ;

16: jlp ← the least preferred j ′ ∈ P ′
r
(t);

17: if I rres
(t) ≥ I rj , then

18: μ(r)(t) ← μ(r)(t) ∪ {j}; I rres (t) ← I rres
(t) − I rj ;

19: else
20: jlp ← j ;

21: Kr
(t) = {k ∈ Pr

(t)|jlp �r k} ∪ {jlp}
22: for k ∈ Kr

(t) do
23: Pk

(t) ← Pk
(t) \ {r}; Pr

(t) ← Pr
(t) \ {k};

24: until μ(t) = μ(t−1)

25: output: μ(t)
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constraint (5). At each iteration t , each r receives proposals from unassigned SBSs
j that rank r as the highest in Pj

(t) (lines 5–7). (i) If r has sufficient quota I rres
(t)

to admit j , it accepts the proposal and updates I rres
(t) and μ(r)(t) (lines 8–9). (ii)

Otherwise, if the quota of r is filled, then r finds all of its current matched j ′ which
have a lower ranking than j according to Pr

(t) (lines 10–11). Each least preferred
SBS jlp ∈ P ′

r
(t) is then sequentially rejected, and I rres

(t), P ′
r
(t), and jlp are updated

until j can be admitted or there is no additional j ′ to reject (lines 12–16). After
rejecting all j ′ ∈ P ′

r
(t), if r still has an insufficient quota to admit j , then j is

rejected and j is set to the jlp (lines 17–20). Finally, the controller removes jlp and
its less preferred SBSs from the Pr

(t), and similarly these SBSs also remove r from
their respective Pj

(t) (lines 21–23). With this process, we guarantee that any less
preferred SBS will not be accepted by that resource even if it has sufficient quota
to do so, which is crucial for the matching stability of our design. This process is
repeated until the matching converges (line 24).

Theorem 1 Algorithm 1 converges to a stable allocation.

Proof We prove this theorem by contradiction. Assume that Algorithm 1 produces
a matching μ with a blocking pair (j, r) by Definition 2. Since r �j μ(j), j must
have proposed to r and has been rejected due to interference violation on r (lines
19–20). When j was rejected, then j ′ was rejected either before j (lines 13–16),
or was made unable to propose because r is removed from j ′ preference list (lines
22–23). Thus, j ′ /∈ μ(r), a contradiction. ��
The output μ(t) of Algorithm 1 can be transformed to a feasible allocation vector
X of problem RA (line 25). Note that the worst case running time complexity of
Algorithm 1 is linear in the size of input preference profiles (i.e., O(JR) where J
and R represent SBSs and resources, respectively).

6.3.3.3 Practical Implementation

To elaborate the practical implementation of matching games for HetNets in detail,
we discuss and explain the required overhead that needs to be communicated
between both side of players.

1. Initialization phase: Initially, the preference list is set up. SBSs/controller
collect information locally, i.e., Interference, propagation gain, transmission rate,
monetary offers, etc. However, in our case the maximum interference value on
all resource blocks (RBs) is required by each player. Such information can be
sent to the players via the Physical Broadcast Channel (PBCH) of LTE. PBCH
carries part of the system information, required by the UE terminal in order to
access the network, specifically PBCH carries the Master Information Block of
24 bits which has the following information:

i. DL Bandwidth (3 bits; i.e., 1.4–20 MHz)
ii. Physical HARQ Indicator Channel (PHICH) Configuration (3 bits)
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iii. System Frame Number (8 bits)
iv. Spare bits (10 bits)

These spare bits can be used to transmit the maximum interference value required
to build the preference profile.

2. Proposing phase: Communication signals are sent from each player to the
controller for acquiring resource blocks. This incurs an additional proposal
overhead which is not currently supported by the 3GPP standard of LTE.
However, this information can be sent via the Physical Uplink control Channel
(PUCCH) of each proposing transmitter. Typically, PUCCH carries Uplink
Control Information (UCI) which is basically bits and pieces of information
that eNB requires from user equipment (UE) in order to understand what UE
needs and carries other information like channel quality that UE is observing
in downlink. UCI is divided into three main subbranches, i.e. Channel State
Information (CSI), Scheduling Requests (SR), and HARQ ACK/NACK. To
facilitate these functions, PUCCH has been categorized by seven formats. We
can adopt the format 1 and format 1a for sending the proposals. We can see that
the proposing message, i.e., scheduling request will be very small, i.e., 1 bit per
transmission time interval (TTI).

3. Accepting/rejecting phase: The controller makes decision and sends commu-
nication signals with reject/accept overhead. Such information can be sent via
Physical Downlink Control Channel (PDCCH) where the set of accepted players
will be allocated the RBs and the other will wait. Typically, PDCCH is a physical
channel that carries downlink control information (DCI) that carries scheduling
assignments and other control information for all network users. There are four
formats of PDCCH. The matched lists are then updated by both sides of players.
Finally, termination takes place when there is no more RBs to propose or all
players are matched with resources. This complete procedure is also shown via
the sequence diagram (Fig. 6.4).

6.3.4 Performance Analysis

For our simulations, we consider a network with 5 SBSs each of which supports
3 UEs, and 5 MUEs using 5 resources. All users are randomly located inside the
coverage of an MBS which has a radius of r1 = 1000 m, whereas the coverage
distance of each small cell is r2 = 100 m. The bandwidth of each resource Wr

is set equal to 1 and the weighting parameter β is set to a normalized value of
1, whereas the background noise power is assumed to be −90 dBm. The channel
power gain is modeled as grj,k = 10(−L(dj,k))/10, where L(dj,k) represents the
path loss and dj,k is the distance between BS j and user k. We assume that
L(dM,k) = 16.62 + 37.6 log10(dM,k) for the channel gain from the MBS to UE
k and L(dj,k) = 37 + 32 log10(dj,k) for the channel gain from SBS j to UE k.
The SBSs transmit with varying power over simulation runs ranging from 15 to
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Fig. 6.4 Sequence diagram with communication overhead

23 dBm. For comparison purposes, we compare the proposed matching algorithm
with a centralized greedy scheme that sequentially allocates resources to users in
each SBS until the interference constraint is violated. Moreover, we also compare
the matching based results with an optimization based approach in which the
interference threshold (i.e., (6.3)) is equally divided among all SBSs and solved
via the dual decomposition approach. All results are obtained by averaging over
a large number of independent simulation runs, each of which realizes random
locations of base stations, users, and channel power gains. Results corresponding
to the optimization-based, matching-based, and greedy algorithms are denoted as
“O-DRA,” “M-DRA,” and “Greedy,” respectively.

Figure 6.5 compares the average number of iterations required by both M-DRA
and O-DRA versus the number of users (i.e., network size) as I rmax = −80 dBm.
We can see that, as the number of users increases, the average number of iterations
also increases. Moreover, M-DRA has a reasonable convergence time that does not
exceed an average of 11 iterations for all network sizes with 5 resources. Moreover,
for O-DRA, the maximum number of iterations is smaller than 7 for all network
sizes. This fast convergence time can be achieved due to a completely distributed
design of O-DRA with no message passing.

In Fig. 6.6, the average sum rate of all UEs versus the number of UEs is shown
for the proposed and greedy algorithms as I rmax = −80 dBm. Moreover, we use
the upper bound (UB) of problem RA which is obtained by relaxing the binary
indicator variable so that it can take any value in the range [0, 1] as a benchmark
here. It can be inferred that the matching-based, optimization-based, and Greedy
approaches achieve up to 96.8, 82.6, and 80.2% of the average sum rate obtained by



6 Matching Games for 5G Networking Paradigms 81

Fig. 6.5 Average number
iterations of M-DRA vs
O-DRA, for different number
of users
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the UB, respectively, for a network with 20 UEs. Thus, it is clear that the matching-
based approach is close to optimal. Furthermore, it can be observed that the sum rate
increases with more UEs, which, however, saturates as the number of UEs becomes
sufficiently large. This is because of the limited number of resources at each SBS
(r = 5). Additionally, the optimization-based approach achieves a performance
benefit up to 4% compared to the greedy approach while the matching-based
approach achieves 17 and 21% higher sum rate compared to the optimization-based
and greedy approaches, respectively, for a network with 20 UEs.

6.4 Matching Game for Wireless Network Virtualization

Wireless network virtualization (WNV) is a promising candidate to support the
deluge of cellular traffic for the forthcoming fifth generation (5G) networks [32]. In
a WNV, infrastructure providers (InPs) provide their physical resources as a service
to the mobile virtual network operators (MVNOs) to serve its users. The physical
resources (i.e., spectrum, power, backhaul/fronthaul, and antennas) of an InP are
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abstracted into isolated virtual resources (i.e., slices) which are then transparently
shared among different MVNOs. Efficient allocation of physical resources to
end users has received significant attention in a single-cell WNV scenario [31].
However, a practical deployment of a WNV involves a multi-cell scenario where
the coverage area of a specific region will be serviced by a set of InPs. Then,
a significant challenge pertaining to such a scenario is the efficient allocation of
the resources such that the total performance of WNV over a specific region is
improved. Moreover, traditional resource allocation approaches based on single-cell
WNV do not directly apply to multi-cell WNV.

Typically resource allocation in WNV can be implemented either by directly
allocating resources from an InP-BS to MVNO users (see the works [39, 46]
and the reference therein for such approaches) or allocating resources from an
InP to an MVNO that further decides the allocation for its users, i.e., works
in [33, 53] and the reference therein. This work focuses on the latter approach
which makes the resource allocation problem a hierarchical (i.e., two-level) problem
[51, 52]. Then, to address this two-level resource allocation problem, we design a
hierarchical matching mechanism which can solve the hierarchical (i.e., two-level)
WNV problem. In our model, first, service selection is performed in which users
are associated to the MVNOs and then each MVNO is provided slices from InPs
to serve its users. By adopting such a model, the computational load of an InPs is
reduced because now InP is only responsible for allocating resources to each MVNO
compared to existing works [39] where the resource allocation has to be obtained
directly for all users.

6.4.1 System Model

Consider a downlink of a cellular network consisting of a set of N base stations
(BSs), each representing a cell which is owned by an InP.2 The InP provides its
virtual network service to a set of M MVNOs by individual contracts. Moreover,
an MVNO m ∈ M provides its service to a set Km of subscribed UEs. Then,
K = ∪mKm represent the total number of UEs. We use notation |K| to denote
the cardinality of a set K . Figure 6.7 illustrates our system model.

6.4.2 Channel Model and Assumptions

Each InP owns a set of Cn orthogonal channels, each with bandwidth W . We con-
sider a system with static inter-InP interference such that the interference from other
InPs is absorbed into the background noise σ 2. Note that in this work, we assume
that all InPs own orthogonal channels, i.e., no interference between InPs allocation.

2InPs belong to different vendors that own orthogonal frequency channels through administrative
licensing.
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Fig. 6.7 System model: the InP owns the physical resources, virtualizes them into slices, and
allocates to multiple MVNOs

The motivation for such an assumption is based on the fact that in our scenario, the
InP-BSs belong to different vendors that always own orthogonal frequency channels
through administrative licensing (e.g., in the USA, the Federal Communications
Commission determines the specified spectrum portions, as well as the vendors who
will have access to them). Moreover the current work does not consider the case
such as in some existing works [13, 23] in which a single vendor owns multiple
BSs and spectrum reuse is applied for spectrum efficiency. Furthermore, we assume

equal power on every channel of an InP n, i.e., Pn = Pmax
n|Cn| , where Pn is the power

on each channel and Pmax
n is the maximum power of an InP n. Moreover, InP n

provides isolated services by a set of Sn slices, where each slice sn allocated by InP
n to MVNOs m will include heterogeneous number of channels based on MVNO’s
m demand. Then, the data rate for a UE k on a slice sn of an InP n is:

R
sn
n,k =

∑

c∈sn W log
(
1 + γ cn,k

)
, (6.7)

where γ cn,k = Png
c
n,k

σ 2 , gcn,k represents the channel gain between InP-BS n and UE k
on channel c of slice sn.

6.4.3 Problem Formulation

The goal in WNV is to maximize the objectives of all UEs, MVNOs, and InPs. Each
UE k ∈ K chooses its service as follows:

UE : min.
xk,m∈{0,1}

∑

m∈M xk,mβ
M
m dk, (6.8)

s.t.
∑

m∈M xk,m = 1, (6.9)



84 S. M. A. Kazmi et al.

where xk,m ∈ X is the binary variable with xk,m = 1 indicating that UE k proposes
to MVNOm for service selection and xk,m = 0 otherwise, dk represents the demand
of the UE k, and βMm represents the per unit price of MVNO m. Minimizing (6.8)
achieves the UE’s goal to pay the minimum for its demand and the constraint in (6.9)
represents that a UE can be serviced by only one MVNO. Moreover, we consider
the assumptions for constant pricing and constant demand in this work. Typically
the solutions (i.e., distributed) presented for joint pricing and allocation problems
(i.e., dynamic pricing and demands) assume that the price and demand is kept
fixed during the allocation phase and can be updated in the pricing phase. Such
an assumption is aligned for a number of joint allocation problems [13]. In our
work, by stating the assumption that the price and demand is fixed, we mean that
these assumptions hold during the allocation phase only. Moreover, it is certainly of
interest, for future work, to design an algorithm that jointly considers the pricing and
allocation for WNV. Thus, the current work would constitute a key building block
for such future framework. Next, each MVNOm aims to serve its UEs by determin-
ing the required channels with the least cost and optimizing its bandwidth according
to the slice price offered by the InP. Then, the MVNO m problem is given as:

MVNO : max.
x̃k,m,ỹ

sn
m,n∈{0,1}

∑

k∈K x̃k,mβ
M
m dk

−
∑

n∈N
∑

sn∈Sn ỹ
sn
m,nβ

I
n |sn|, (6.10)

s.t.
∑

m∈M x̃k,m ≤ 1, ∀k, (6.11)

∑

k∈K x̃k,mlk,n ≤ ỹsnm,n|sn|, ∀n, (6.12)

where x̃k,m ∈ X̃ is the binary service selection decision variable with x̃k,m = 1
indicating that UE k proposal is accepted by MVNO m, ỹsm,n ∈ Ỹ is the binary
variable with ỹsnm,n = 1 denoting that MVNOm proposes to buy slice sn of InP n and
ỹ
sn
m,n = 0 otherwise. βIn is the InP n’s per unit price, and lk,n is the required channels

to fulfill dk on InPs n which is calculated by MVNO (details in Sect. 6.4.4.1).
Moreover, (6.11) ensures that k is serviced by at most one MVNO and (6.12)
ensures that the allocated resources on slice are less than the capacity of slice
provided to a MVNO m by InP n.

Finally, the InP aims to satisfy the demands of MVNOs such that the contracts
agreements are not violated by solving the following:

InP : max.
y
sn
m,n∈{0,1}

∑

m∈M

∑

sn∈Sn
ysnm,n

⎛

⎝
∑

k∈Km
log(Rsnn,k)+ ωβIn |sn|

⎞

⎠ (6.13)

s.t.
∑

m∈M
∑

sn∈Sn y
sn
m,n ≤ |Sn|, (6.14)

∑

k∈Km
∑

sn∈Sn y
sn
m,nR

sn
n,k ≥ dm, ∀m, (6.15)
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where ysnm,n ∈ Y is the binary resource purchasing decision of InP with ysnm,n = 1
indicating that InP n accepts the slice sn buying proposal of MVNO m and dm
represents the UE demand of the MVNO m (i.e., dm = ∑

k∈Km dk). The objective
function in (6.13) represents the proportional fairness among UEs’ [29] and InP
revenue in the first and second term, respectively. ω is a weight characterizing the
trade-off between fairness and InP’s revenue. One of the fundamental requirements
of WNV is the isolation among different MVNOs which is achieved by guaranteeing
certain predetermined requirements or contract service agreement (e.g., minimum
share of resource or data rate) by the InP. We consider isolation at the physical
resource level, i.e., channels [53]. Through (6.14) we ensure that allocated slices
are less than total slices owned by an InP and the constraint in (6.15) ensures the
contract agreement that is considered as an isolation constraint.

Unfortunately, the optimization problem that optimizes the objectives of all UEs,
MVNOs, and InPs is a mix integer linear programming problem, which is NP-hard
due to its combinatorial nature [6]. Obtaining a central optimal solution (e.g., using
exhaustive search) for this problem incurs: (i) heavy computational workload, and
(ii) privacy issues between UEs, MVNOs, and InPs. Therefore, by using matching
theory which has the ability to solve combinatorial problems [40], we present a
distributed approach. Our approach consists of two-level matchings that is able
to find a suboptimal solution without any third party rule-enforcing authority and
achieve lower-complexity.

6.4.4 Proposed Solution

Our aim in the high-level is to allocate slices from InPs to MVNOs such that the
isolation among slices is maintained and maximum demand for each MVNO is
fulfilled. Note that we assume a dense network, thus, all MVNO demands cannot be
met. However, through our approach (in the high-level), each InP chooses a set of
MVNO’s demand to serve which maximizes its objective, i.e., maximizes the InP
revenue while achieving proportional fairness among the UEs. Similarly, in low-
level, the aim is to choose the set of UEs for each MVNO. Moreover, we do not
restrict an MVNO to buy slices from only one InP. Then, the MVNO can select a set
of UEs for each InP such that the demands of these UEs are less than the available
resources of each InP. Furthermore, an MVNO accepts a set of UE such that it can
maximize its revenue.

The proposed hierarchical matching game consists of two levels in which
matching between UE and MVNO is performed in the low-level while matching
between MVNO and InP is at high-level as shown in (Fig. 6.8). Both matching
problems can be formulated as a two-sided matching game. Specifically, in the
high-level, the InP, who owns the physical resources, acts as the vendor and the
MVNOs act as the buyer. In the low-level, each MVNO plays the vendor role and
the UEs act as the buyers. It is assumed that each buyer can be associated to only
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Fig. 6.8 Block diagram of
hierarchical matching scheme

one vendor. However, a vendor can accommodate multiple buyers. Thus, our design
corresponds to a many-to-one matching given by the tuple (B, V, qv,�B,�V ).
Here, �B � {�b}b∈B and �V � {�v}v∈V represent the set of the preference
relations of the buyers B and vendors V , respectively.

Definition 3 A matching μ is defined by a function from the set B ∪ V into the set
of elements of B ∪ V such that:

(i) |μ(b)| ≤ 1 and μ(b) ∈ V ,
(ii) |μ(v)| ≤ qv and μ(v) ∈ 2|B| ∪ φ, where qv is the quota of v,

(iii) μ(b) = v if and only if b is in μ(v).

6.4.4.1 Low-Level Matching Game Between MVNO and UE

In our model, we assume that the available channels and price per channel are
broad-casted in the network by each InP before the matching procedure starts. Thus
each MVNO attains the knowledge of available channels in the network by each
InP. Moreover, as stated above that each MVNO can buy resources from multiple
InPs. Therefore, inspired by the works in [7], for each MVNO m, we create i
dummies (i ∈ N represents the InP-BS) where the quota of each dummy MVNO is
represented by qmn . Therefore, for clear presentation in the revised manuscript, we
have modified the MVNO (seller) preference profile representation to P l

mn
, where

P l
mn

represents the dummy MVNO’s mn preference profile with quota qmn . Then,
we consider each UE k builds a preference profile for each dummy MVNO mn
using (6.16) as follows:

U
bl
k (mn) = βMmndk, ∀mn. (6.16)
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Note that as the price of each MVNO m with i dummies will be same, the UEs
will have the same ranking for these dummy MVNOs. Therefore, to achieve a strict
ranking for each dummy MVNO mn in the preference profile of each UE k, we
simply break the tie among these dummy MVNOs mn by a random selection [27].
Similarly, each dummy MVNO mn also ranks all UEs based on the profit they yield
through (6.17) as follows:

Umn(k) = max(βMmndk − βIn lk,n, 0), ∀k. (6.17)

To rank a UE k, the dummy MVNO mn needs to calculate the value of lk,n (i.e.,
required number of channels) to full-fill dk . Specifically, all UEs are ranked based
on the profit they yield in a non-increasing order in the preference profile P l

mn
. In

the remainder of this work, we omit the term “dummy” without confusion. Note
that here, a UE k is assumed to be indifferent towards all the channels provided by
a single InP-BS n because of homogeneous channel gain values (i.e., the channel
gain values of different channels owned by an InP-BS are the same for a UE k,
while they can be different for different InP-BSs). This assumption is practical as
channel gains in current cellular systems (i.e., 4G) are computed by dividing the
available frequency band in sub-bands, thus, having a channel gain value for a group
of channels [27]. Furthermore, if the revenue from a UE k is negative, that UE is not
ranked in P l

mn
by the MVNO. However from (6.12), each MVNO can only serve

limited UEs, i.e., qmn
3 which is upper bounded by the slice provided to it by the InP.

Then, the goal is service selection of each UE k to an MVNO mn via matching.

6.4.4.2 High-Level Matching Game Between MVNO and InP

Once a solution to the low-level matching game is obtained, we can solve the high-
level game. Here, each MVNO (i.e., dummy MVNO) requires a slice from a specific
InP to serve the UEs matched to it in the low-level stage. We denote the demand
of each MVNO as dmn = ∑

k∈μ(mn) dk . Now both MVNOs and InPs define their
respective preference profiles as Pu

mn
and Pn. Here, an MVNO targets to reduce

its cost to obtain a slice using (6.18) as follows:

Ubhmn(n) = βIndmn, ∀n. (6.18)

For the InPs, through (6.13), the goal is to maximize its revenue while maintaining
proportional fairness among the UEs. Therefore, it ranks the buyers in a non-
increasing manner:

Ushn (mn) =
∑

k∈μ(mn) log(Rsnn,k)+ ωβInγmn, ∀mn. (6.19)

3qmn represents the available channels of InP-BS n.
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Here, we assume that the values of dmn and the set of UEs that are matched in the
low-level stage (i.e., k ∈ μ(mn)) are sent to the InPs in the proposal phase. Then, InP
calculates the required slice size, i.e., γmn to fulfill MVNO’s mn demand and γmn
represents the number of channels in a slice, i.e., |sn|. This information is required
by the InP to rank an MVNO mn through (6.19). Once this information is acquired,
each InP can rank all the MVNOs.

6.4.4.3 Hierarchical Game Challenges

For the two-sided hierarchical matching game, our goal is to seek a stable matching,
which is a key solution concept in matching theory [40]. To find a stable matching,
the deferred-acceptance algorithm can be employed. However, our formulated game
involves a hierarchal structure and heterogeneous demands of buyers. Due to
heterogeneous demands, a vendor allows variable numbers of buyers until its quota
constraint is not violated [26]. These aforementioned challenges prevent the use of
standard deferred-acceptance algorithm. Therefore, we formally define the blocking
pair for the formulated game as follows:

Definition 4 A matching μ is stable if there exists no blocking pair (A′, v) ∈ 2|B| ∪
V with A′ �= φ, such that v �b μ(b), ∀b ∈ A′ and (A ∪ A′) �v μ(v), A ⊆
μ(v), where μ(b) and μ(v) represent, respectively, the current matched partners of
vendors and buyers.

Definition 4 is based on the following intuition, a pair (A′, v) blocks a matching
μ, if vendor v is willing to accept the buyers in A′, possibly after rejecting some
of its current buyers in μ(v), i.e., A ⊆ μ(v) and all buyers b ∈ B prefer v over
their current match μ(b). In our game, a stable solution ensures that no matched
vendor v would benefit from deviating from their assigned buyers b with a new
buyer b′. To tackle this challenge, we propose a novel stable matching algorithm
in Algorithm 2. The algorithm has two stages, namely, the Low-Level Matching-
Service Selection stage and the High-Level Matching- Resource Purchasing stage.
However, Definition 4 is not enough for stating the stability for our proposal as our
game involves a hierarchal structure. In hierarchical games, a change in player’s
strategy at a low-level will cause changes in strategy set of players at higher level
and, thus, the convergence cannot be achieved until the strategy set of players at
low-level is fixed. Therefore, to find a stable solution, we have to guarantee that
no change in players’ strategy occurs at the low-level once convergence is achieved
[16, 18]. We address this challenge by creating a group Gn for each InP n which is
formed as a result of both low-level (i.e., μ(mn)) and high-level (i.e., μ(n)) stages.
Formally, we define the group stability as:

Definition 5 The group Gn,∀n ∈ N is said to be stable if it is not blocked by any
group G ′

n which is represented by the following two conditions:

(i) No UE k outside the group Gn can join it.
(ii) No UE k inside the group Gn can leave it.
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Algorithm 2 Hierarchal matching algorithm (HM)
1: initialize: τ = 0,G τn = 0,∀n.
2: while G τn �= G τ+1

n do
3: τ = τ + 1.

Stage 1: Low-Level Matching - Service Selection:
4: input: t = 0, q(0)mn = qτmn , Pk

(0) = Pk , Pmn
(0) = P l

mn
,∀mn, k /∈ G τn .

5: t ← t + 1, ∀k ∈ K , propose to mn according to Pk
(t).

6: while k /∈ μ(mn)(t) and P
(t)
k �= ∅ do

7: if q(t)mn ≤ lk,n then
8: P ′(t)

mn
= {k′ ∈ μ(mn)(t)|k �mn k′} ∪ {k}.

9: k′lp ← the least preferred k′ ∈ P ′(t)
mn

.

10: while (P ′(t)
mn

�= ∅) ∪ (q(t)mn ≥ lk,n) do

11: μ(mn)
(t) ← μ(mn)

(t) \ k′lp , P ′(t)
mn

← P ′(t)
mn

\ k′lp .

12: q
(t)
mn ← q

(t)
mn + lk′lp,n, k′lp ← k′ ∈ P ′

mn

(t).

13: Remove rejected players from Pk
(t) and Pmn

(t).
14: else
15: μ(mn)

(t) ← μ(mn)
(t) ∪ {k}, qmn (t) ← qmn

(t) − lk,n.

16: X̃ ← μ∗
Stage 2: High-Level Matching- Resource Purchasing:

17: input: t = 0, q(0)n = qτn , Pmn
(0) = Pu

mn
, Pn

(0) = Pn, ∀mn, n.

18: t ← t + 1, ∀mn, propose to n according to Pmn
(t).

19: while mn /∈ μ(n)(t) and P
(t)
mn �= ∅ do

20: if q(t)n ≤ |γmn | then
21: P ′(t)

n = {mn′ ∈ μ(n)(t)|mn �n mn′} ∪ {mn}.
22: mn

′
lp ← the least preferred mn′ ∈ P ′(t)

n .

23: while (P ′(t)
n �= ∅) ∪ (q(t)n ≥ |γmn |) do

24: μ(n)(t) ← μ(n)(t) \mn′ , P ′(t)
n ← P ′(t)

n \mn′
lp .

25: q
(t)
n ← q

(t)
n + |γmn ′

lp|, mn′
lp ← mn

′ ∈ P ′
n
(t).

26: Remove rejected players from Pmn
(t) and Pn

(t).
27: else
28: μ(n)(t) ← μ(n)(t) ∪ {mn}, qn(t) ← qn

(t) − |γmn |.
29: Y ← μ∗
30: Update G τn ,∀n.

31: output: Convergence to group stable Gn,∀n.

6.4.4.4 Proposed Algorithm

After initialization (line 1), all UEs that do not belong to any group G τn join the low-
level stage and build the preference profiles for iteration τ . Then, each unassigned
UE k proposes to its most preferred MVNO mn according to Pk (lines 5–6). (i) If
MVNO mn quota is full, then it finds the current matched UEs k′ that ranks lower
than k in its preference profile, i.e., P ′(t)

mn
. Each least preferred UE k′lp ∈ P ′

mn
t)

is then sequentially rejected until k can be admitted or there is no additional k′ to
reject (lines 7–12). If MVNO mn still has insufficient quota to admit k, then k is
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also rejected. All rejected UEs and MVNOs then update there respective preference
profiles by deleting the rejected players (line 13). (ii) Otherwise, k is accepted
and the MVNO mn updates its quota (lines 14–15). This process is carried out
iteratively until either all the UEs are assigned to MVNOs or there are no more
MVNOs to propose. This stage terminates when the outcome of two consecutive
stage iterations t remains unchanged [40]. The output of this stage μ∗ can be
transformed to a feasible service selection vector X̃. After the low level matching,
MVNOs and InPs build their respective preference profiles based on the output of
low-level matching.

Similar to stage 1, after building the preference profile of both sides, each
unassigned MVNO mn proposes to its most preferred InP n according to Pbh

mn .
(i) If InP n quota is full, then it finds the current matched MVNOs mn′ that ranks
lower than mn in its preference profile, i.e., P ′(t)

n . Each least preferred MVNO
mn

′
lp ∈ P ′

n
(t) is then sequentially rejected until mn can be admitted or there is no

additional mn′ to reject. If InP n still has insufficient quota to admit mn, then mn is
also rejected. All rejected MVNOs and InPs then update their respective preference
profiles by deleting the rejected players. (ii) Otherwise, mn is accepted and the InP
updates its quota. This process is carried out iteratively until either all the MVNOs
are assigned to InPs or there are no more InPs to propose. Then, the outcome of
this stage can be transformed to a feasible resource purchasing vector between
MVNOs and InPs, i.e., Y for high-level matching. Each InP n then updates the
group Gn = {(k,mn)|k ∈ μ(mn),mn ∈ μ(n),∀k,∀mn} which constitutes both the
accepted UEs and MVNOs at both the low- and high-level stages. After completion
of both these stages, the rejected buyers in both stages, i.e., UE k in low-level
and MVNO mn (consists of UEs that were accepted in low-level by MVNO mn)
will enter into the next iteration τ + 1 as new UEs. Then, both these stages will
be executed again with updated values of remaining InP and MVNO quotas. The
algorithm terminates once the groups Gn,∀n do not change for two consecutive
iterations τ . This means that there are no further requests from UEs or the available
quota is not enough to fulfill any further UEs’ request. Finally we claim that the
revised Algorithm 2 will converge when there are no new UEs that can enter or
leave the stable group Gn, ∀n ∈ N . Now based on the presented definition of group
stability, we claim that Algorithm 2 converges to group stability. Formally we state
this as follows:

Theorem 2 Algorithm 2 converges to group stable output Gn,∀n ∈ N .

Proof Consider a stable group Gn of (k,mn) pairs that is formed at the end of the
iteration τ . Assuming there exists a UE buyer k′ such that k′ /∈ Gn, k′ �= k. Then,
for condition (i) of Definition 1, there can exist two cases.

Case 1 This case states that both UEs k and k′ are selected by an MVNO mn in the
low-level stage, i.e., k′ and k ∈ μ(mn). Sincemn ∈ Gn, then all members ofmn also
belong to Gn. Thus, (k′,mn) ∈ Gn which implies k′ = k.



6 Matching Games for 5G Networking Paradigms 91

Case 2 This case states that there exist a k′ ∈ μ(m′
n) and k ∈ μ(mn). As k′ /∈ Gn,

then m′
n is rejected at iteration τ as InP n has higher preference for MVNO mn

compared to MVNO m′
n at the high-level stage, i.e., mn �n m′

n. Thus, all members
of MVNOm′

n including UE k′ are also rejected at iteration τ and cannot be included
in the stable group Gn. This implies that no UE k outside the group Gn can joint it.

Now consider the second condition of Definition 1, i.e., no UE k can leave a
stable group. A stable group Gn is formed by stable pairs (k,mn) using stable
matching following the preference relation in both levels, i.e., μ �mn μ′ at low-
level and μ �n μ′ at high-level. Thus there exists no matching μ′(n) and μ′(mi)
which is better than the current match. Therefore, no UE k ∈ μ(mn) has an incentive
to leave the stable group Gn for any other group G ′

n. ��

6.4.5 Performance Analysis

To simulate our proposal, we used the MATLAB tool in which we consider the
standard parameters of cellular technologies that follow the system guidelines given
in [1]. We consider a network with 5 MVNOs that rent slices from N InP-BSs
to serve randomly located K UEs inside the coverage area of 1000 × 1000 m.
Each InP owns a band of 1.4 MHz (i.e., six channels or resource blocks). Moreover,
the bandwidth W of each channel and weight parameter ω are set to a normalized
value of 1. In our simulation, each UE k has a traffic demand (generated randomly)
which is uniformly distributed in the range of dk = {1 ∼ 3} bps/hz. Note that in
this work we do not differentiate between the priority of UEs’ traffic demands and
assume all users’ demand have homogeneous priority. Moreover, we assume that the
traffic dynamics do not change during the execution of allocation process. Such an
assumption is in line with many existing works [26, 53]. Moreover, we set the prices
for MVNOs and InPs that is also uniformly distributed in the range of βMm = {4 ∼ 8}
and βIn = {2 ∼ 4} monetary units/bps/hz, respectively. Furthermore, all results are
obtained by averaging over a large number of independent simulation runs (i.e., 500
runs), each of which realizes random traffic demands, pricing, locations of InP-BSs,
UEs, and channel power gains.

For comparison purposes, we compare the proposed algorithms with two baseline
schemes. First, a fixed sharing scheme (FS), where each MVNO reserves equal
number of the channels. This fixed sharing can also be viewed as the case in
which there is no wireless virtualization and a comparison of the proposal with FS
scheme reflects the benefits achieved by WNV over the traditional cellular networks.
Second, a general sharing scheme (GS) in which the MVNOs are not involved and
the InP directly performs a single-level matching for the channel allocation, which
is in line with some existing works such as [39].

In Fig. 6.9, the average sum-rate versus the network size (i.e., number of UEs)
is shown for the different schemes. It is observed that the sum-rate increases with
network size, which, however, saturates as the network size becomes sufficiently
large. This is due to the limited network bandwidth for each InP (i.e., 1.4 MHz).
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Fig. 6.9 Average sum-rate of
HM, GS, and FS schemes
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Fig. 6.10 Average iteration
vs. network size for varying
InP-BS bandwidth
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We also observe that the sum-rate obtained by HM and GS schemes results in
an indistinguishable performance. Specifically, the HM scheme can achieve up to
97.5% of the average sum-rate obtained by the GS scheme, for a large network size
(i.e., |K| > 20). Thus, it can be inferred that the HM scheme is close to optimal.
Moreover, a performance benefit up to 32% can be achieved when compared to
the FS approach for |K| > 15. Then, a comparison of average iterations of HM
scheme under different network sizes with varying InP-BS bandwidth is shown
in Fig. 6.10. The HM scheme achieves convergence under all scenarios in few
iterations. However, the iterations increase with the network size because of the
increasing number of UE’s proposal and accept–reject procedure of HM. Moreover,
we also infer that as the InP-BS bandwidth is increased from 1.4 to 20 MHz, the
average iterations decrease. This can be explained as bandwidth increases, there are
sufficient channels to meet the demands. Therefore, less iterations are required to
converge to a stable group as most of the proposals are accepted by the sellers due
to large available quota (i.e., channels).
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6.5 Matching Game for Non-orthogonal Multiple Access

The explosive growth of data traffic in mobile Internet and the dramatical increase in
the number of mobile devices, high spectrum efficiency and massive connectivity in
5G wireless communications will be required. Moreover, the biggest disadvantage
of current orthogonal multiple access (OMA) schemes (i.e., the OFDMA scheme)
is the number of served users, which will be limited by the number of spectrum
resources (i.e., subchannels, resource blocks). NOMA has been considered as
a key enabling technique for 5G cellular systems [41, 44], which can alleviate
the aforementioned challenge of OMA schemes and boost WNV development
by exploiting the spectrum sharing for guaranteeing isolation among multiple
MVNOs. In NOMA, by exploiting the channel gain differences, multiple users
are multiplexed into the transmission power domain and then non-orthogonally
scheduled for transmission over the same spectrum resources. This technique can
provide massive device connectivity in comparison to traditional OMA schemes.

In NOMA, users with significantly different channel gains over a resource block
are grouped together as shown in (Fig. 6.11). Therefore, our aim is to find a set of
users that can be grouped into the same cluster. Note that the number of clusters in
a network depends on the network users’ channel conditions, i.e., a large number

Fig. 6.11 System Model for NOMA
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of good channel users (or bad channel users) cannot be grouped together as they
would experience strong interference. Thus, our first aim is to classify users based
on channel conditions. We classify the network users into two classes of users: A
and B corresponding to strong and weak users depending on their respective channel
gain. Any number of users’ classification can be defined, however, more number of
users in a class increases the complexity of the receivers.

6.5.1 System Model

We consider the downlink of a single cell consisting of one MBS. The MBS serves
a set of cellular users (CUs) denoted by M and the number of CUs isM . The MBS
works on a system bandwidth which is divided into a set of subchannels denoted
S , each of bandwidth B as shown in (Fig. 6.11). In our model, users who are
packed or scheduled over non-orthogonal subchannel form a NOMA cluster. Each
NOMA cluster operates on a subchannel which is orthogonal to other subchannels
allocated to other clusters. Furthermore, the number of users per NOMA cluster can
range between 1 and |M |. However, in practical scenarios, the number of users per
NOMA cluster is generally set to two in order to reduce the hardware complexity
for successive interference cancellation (SIC).

Let Mk be the set of active CUs grouped into the kth cluster, the maximum MBS
transmission power budget is PT , and the maximum transmission power budget per
downlink NOMA cluster is Pt . The power allocated to CU m ∈ M is denoted by
Pm. The complex coefficient of channel between CU m and the MBS is denoted
by hm = χm/D(dm), where χm denotes the Rayleigh fading channel gain, D(·) is
the path loss function, and dm is the geographical distance between CU m and the
MBS. Let xm be the transmitted symbol of CU m. The signal that CU m received
from MBS in the kth cluster is then given by

ykm = hm
√
Pmx

k
m +

∑

m′ �=m|m′∈Mk

hm
√
Pm′xkm′ (6.20)

where zm is the additive white Gaussian noise.
Since all CUs belonging to the same cluster can utilize same subchannel allocated

to that cluster, the signal of any user causes interference to others. To demodulate the
target message, each CU performs SIC after receiving the superposed signals [10].
In general, the users with higher channel gains are allocated low power levels and
their signals can be recovered after all users with higher power levels are recovered
in the SIC decoding. Similarly, the users with lower channel gains have high power
assignment levels and their signals are recovered by treating the users’ signals with
lower power levels as the noise in the SIC decoding [3, 10].

The optimal order of SIC decoding is in the order of the increasing channel gains
normalized by the noise. To be specific, the receiver of CU m ∈ Mk can cancel the
interference from any other CUm′ ∈ Mk with channel gain |hm′ |2/zm′ < |hm|2/zm,
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i.e., CUm first decodes the signal from UEm′ then subtracts it and decodes its target
signal xkm correctly from the received signal ykm in kth cluster. We now define a user
clustering (grouping) variable βkm as follows:

βkm =
{

1 if CU m is grouped into cluster k

0 otherwise,

Then, the achievable throughput for CU m in downlink NOMA kth cluster can be
expressed as

Rkm,CU = log2

(
1 + Pm|hm|2

I km + zm
)
, (6.21)

where I km is the interference that CU m ∈ Mk receives due to the other CUs in kth
cluster

I km =
∑

m′∈M | |h
m′ |2
z
m′ >

|hm|2
zm

βkm′Pm′ |hm|2. (6.22)

6.5.2 Problem Formulation

Our goal is maximize the network throughput by maximizing the number of service
users in the network. Thus, we aim to cluster users and present the problem of user
clustering as follows:

max
β

∑

k∈S

⎛

⎝
∑

m∈M
βkmR

k
m,CU

⎞

⎠

s.t.:

C1 :
∑

k∈S

∑

m∈M
βkmPm ≤ PT ,

C2 :
∑

k∈S
βkm = 1, ∀m ∈ M ,

C3 : βkm ∈ {0, 1} ∀m ∈ M ,

(6.23)

The user clustering problem in (6.23) is still a combinatorial problem, and
finding the solution becomes NP-hard, for a large set of users and subchannels in a
practical amount of time [27]. Note that problem (6.23) is desired to be solved in a
distributed manner. Therefore, we use matching theory to map the problem (6.23)
into a matching game which has the ability to solve combinatorial problems.
Furthermore, matching theory allows each player (i.e., users and subchannels) to
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define its individual utilities depending upon its local information. Moreover, for
the user clustering problem, we present a distributed matching in which the CUs
and subchannels act as players. In this game, our aim is to find the set of CUs that
can be grouped into the same subchannels to form a NOMA cluster. The details of
this game are discussed in the following sections.

6.5.3 Proposed Solution

In NOMA, users with significantly different channel gains over a subchannel are
grouped together to form a NOMA cluster. Therefore, our aim is to find the set of
CUs that can be grouped into the same subchannel to form a NOMA cluster.

To classify CUs, it is assumed that the MBS first obtains CSI of all the CUs.
Then, it sorts them in a decreasing order. Finally, we can use a pre-defined threshold
to classify the users into two classes, i.e., CUs greater than a certain threshold fall
into the same class. Users in one class are similar to each other in terms of channel
gain and dissimilar to the users belonging to other classes. The similarity between
users is based on a measure of the channel gains between them and the MBS.

6.5.3.1 Game Formulation

Once user classification is executed, the next goal here is to perform CUs grouping
into clusters. In this game there are two disjoint sets of agents, the set of clusters,
S , and the set of CUs, M . Each cluster s has a strict, transitive, and complete
preference profile Ps defined over users, i.e., 2M . Note that, in this game, from
constraint C3 in (6.23), it is given that each user can be assigned to a single
cluster. However, different users can exist in same cluster, i.e., property of NOMA.
Therefore, the preference profile Pm of CUs is defined over the clusters, i.e.,
S . Note that other users m′′ operating in the same cluster implicitly affect the
preference ranking of user m. Therefore, our design corresponds to the one-to-
many matching given by the tuple (M ,S ,�M ,�S ). Here, �M � {�j }j∈M
and �S � {�k}k∈S represent the set of the preference relations of the users and
clusters, respectively. Formally, we define the matching as follows:

Definition 6 A matching β is defined on the set M ∪ S which satisfies for all
k ∈ S and j ∈ M :

1. |β(j)| ≤ 1 and β(j) ∈ S ∪ φ,
2. |β(k)| ≤ qk and β(k) ∈ 2M ∪ φ,
3. If j ∈ β(k), then β(j) = k,
4. If β(j) ∈ k for cluster k, then β(k) = j ,

where qk denotes the quota of cluster k, |β(.)| denotes the cardinality of matching
outcome β(.). The first condition here represents the constraint C3 in (6.23). The
second condition represents the quota of a subchannel k. In this game, we restrict
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the value of qk to 2 CUs to reduce the receiver complexity. Here, β(j) = φ means
that j is not matched to any cluster. Similarly, if β(k) = φ, then there is no user
matched to cluster k.

6.5.3.2 Preference Profiles of Players

In our formulated game, both sides need to rank each other using the preference
profile. However, the preference profiles of users here depend on the clusters as well
as other users assigned to that cluster. Such interdependence relations are known in
matching theory as externalities, and have important implications in the design of
the proposed solution. Due to these externalities, an agent may continuously change
its preference order, in response to the formation of other agents and never reach a
final assignment, unless externalities are well-handled.

In order to build the preference profile of users (Pj ), each user calculates the
achievable data rate for each cluster and then ranks them in descending order.
Therefore, the utility of each CU can be defined as follows:

Uj(k, β) = Rkj,CU , ∀k. (6.24)

Thus, for any user jn, a preference relation �jn is defined over the set of clusters
S such that, for any two clusters k, k′ ∈ S , k �= k′, and two matchings β and
β ′ ∈ M × S , k = β(j), k′ = β ′(j)

(k, β) �j (k′, β ′)⇔ Uj(k, β) > Uj (k
′, β ′). (6.25)

Similarly, the goal of each cluster is to choose a set of users that can maximize
the rate over each cluster k. Therefore, it uses the following utility to create its
preference profile (Pk):

Uk(A , β) =
∑

j∈A
Rkj,CU , ∀A , (6.26)

According to (6.26), each subchannel k chooses a subset of CUs A that can
maximize the achievable rate of a cluster. Moreover, for any cluster k a preference
relation �k is defined as follows, for any two subset of CUs A ,A ′ ∈ M , where
A �= A ′, and A = β(k),A ′ = β ′(k):

(A , β) �s (A ′, β ′)⇔ Uk(A , β) > Uk(A
′, β ′). (6.27)

Once the matching game and preference profiles of both the agent sides have been
defined, we now aim at finding a stable clustering scheme for the proposed game.

However, it is evident from (6.24) and (6.26) that our preferences are a function
of the existing matching β and from (6.22), it is clear that users affect each other’s
performance through interference produced by high SINR users. Therefore, in the
next section, we present a novel approach adopted to handle such externalities.
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6.5.3.3 Preferences and Externalities

Next, we develop a novel approach to handle externalities in the proposed game and
analyze its solution.

In the proposed game if user j is assigned to a cluster k, it will produce
interference to the other users using the same cluster k if its gain is higher than
those users of clusters. Consequently, an agent may change its preference order
with regard to a given cluster k in response to the action of other agents, i.e., user j ′
which have been assigned to the same cluster k. This may lead to a case in which
agents never reach a final clustering.

Therefore, for building the user preference which can also handle the exter-
nalities, we propose that the initial network information (i.e., CSI of all UEs) is
broadcasted to the CUs by the InPs after collecting it from each individual CUs.
Through this information, each user can find the set of CUs that have a higher
gain with MBS. Note that, in NOMA, we aim to cluster CUs that have significant
difference in channel gains. Then, we assume that CUs only care about other CUs
that fall in the same class. Moreover, each CU would have a different set of CUs.
We name this set as an externality set for user j that has a set of conflicting users
and represent it by Cj as follows:

Cj =
{

j ′ ∈ M : |hj ′ |2
zj ′

>
|hj |2
zj

, j, j ′ ∈ B

}

, (6.28)

where B represents the set of CUs that fall in the same class. From (6.28), we select
the CUs that belong to the same class of user j and have a higher gain compared
to user j . The main idea is to restrict the users that belong to the same class to be
grouped into same cluster.

6.5.3.4 Proposed Algorithm

In order to find a stable clustering scheme, we need to first define the blocking pair
for our game. Note that in the formulated game there is an additional challenge
of externalities. Thus, traditional solution designed for one to many games based on
Gale-Shapley does not apply over our game. Therefore, first, we design the blocking
pair for the formulated game with externalities followed by a stable algorithm. The
blocking pair for the formulated game is defined as follows:

Definition 7 A matching β is said to be stable if there exists no blocking pair (j, k)
such that j �k β(k), k �j β(j), and β(k) /∈ Cj .

Definition 7 is based on the following intuition. Whenever a user j prefers a cluster
s over its assigned cluster β(j) that does not contain a conflicting user (i.e., β(k) /∈
Cj ), and cluster k is also willing to admit j (i.e., k �k β(k)) by rejecting some
accepted users in β(k) which are ranked lower than j , then j and k can deviate
from their assigned matching to form a blocking pair. A matching is stable only if
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there exists no blocking pair. Moreover, to achieve stability, a sufficient condition
is that formation of any new agent pair does not undermine the stability of existing
matched pairs. By employing such a condition, the preference profile of currently
matched users on a cluster will remain unaltered even after this new pair formation.
Stability in our solution ensures that after clustering, no matched pair (user-cluster)
in the network would benefit from replacing their assigned cluster with a new better
cluster, and vice versa. This property is important to ensure the stable matching for
one to many matching problems with externalities.

Next, we present a novel and stable user clustering algorithm. In this algorithm,
the MBS first decides the proposing order based on the set of available classes.
The intuition behind this assumption comes from the fact that in NOMA we would
like to restrict users from same class to be in the same cluster. Thus by allowing
a sequential proposing manner in terms of classes will allow same class users to
compete with each other. Therefore, in our algorithm, we assume proposal starting
by the strongest class A to the weakest class B. Note that by allowing this proposing
order, we can guarantee that no matched user from a higher class can be affected
by lower class users. The algorithm starts by using the local information to build
the preference profiles (lines 1–3). At each iteration t , each user j that belongs to
a specific class first calculates its utility and re-ranks all the clusters based on the
previous matching β(k)(t−1) (line 4).

Then, each user j proposes to the most preferred cluster k (line 6). On receiving
the proposals, each cluster k first investigates if there exists a conflicting user j ′
in β(k) that can result in either of the two cases. The first case is that there exists
a conflicting user, i.e., Ck is non-empty (line 8). In this case, k removes all lower
ranked users j ′ compared to j from its current matching (lines 9–12) and rechecks
the conflict set (line 13). If still conflict set is non-empty, j is also rejected along
with other removed users and is considered as the least preferred user jlp (line 14)
otherwise it is accepted (lines 15–16). The second case is the conflict set is empty.
In this case, the quota of cluster k (qk4) is first checked, if enough quota exists
to accommodate j , then user j is accepted by the cluster k, otherwise user j is
rejected by the cluster k and considered as least preferred (lines 17–21). Finally, the
least preferred user, i.e., jlp and all users ranked lower than jlp are removed from
Pk

(t), and similarly these users also remove k from their respective Pj
(t) (lines

22–24). Once all users of a class have either been accepted or rejected by all the
clusters, the next class starts the proposal process. Note that here the matching for
a specific class terminates when the results of two consecutive iterations t remain
unchanged (line 25). With this process, we guarantee that any less preferred user
will not be accepted by that cluster even if it has sufficient quota to do so, which is
crucial for the matching stability of our design. This process is repeated until the
matching converges.

Theorem 3 Algorithm 3 converges to a stable allocation.

4The quota qk is set to two users per clusters as we assume two classes.
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Algorithm 3 Matching-based User Clustering Algorithm

1: input: P(t)
j , P(t)

k , Cj , ∀k, j .

2: initialize: t = 0, β(1) � {β(j)(1), β(k)(1)}j∈M,k∈S = ∅, Jk
(1) = ∅, C(1)s = ∅, q(1)k = |U |,

∀k, j .
3: repeat
4: t ← t + 1.
5: Update ∀j , Pj

(t) for given β(s)(t−1).

6: ∀j ∈ same class with k as its most preferred in P
(t)
j .

7: while j /∈ β(k)(t) and P
(t)
j �= ∅ do

8: if C(t)k = {j ′ ∈ β(k)(t) ∪ Cj } �= ∅ then

9: X ′(t)
k = {j ′ ∈ β(k)(t), k′ ∈ Cj |j �k j ′}.

10: jlp ← the least preferred j ′ ∈ X ′(t)
k .

11: for jlp ∈ X ′(t)
k do

12: β(k)(t) ← β(k)(t) \ jlp , qk(t) ← qk
(t) + 1.

13: if C(t)k = {j ′ ∈ β(k)(t) ∪ Cj } �= ∅ then
14: jlp ← j .
15: else
16: β(k)(t) ← β(s)(t) ∪ j , qk(t) ← qk

(t) − 1.
17: else
18: if Check qk(t) > 0 then
19: β(k)(t) ← β(k)(t) ∪ j , qk(t) ← qk

(t) − 1.
20: else
21: jlp ← j .

22: Jk
(t) = {j ∈ X ′

k
(t)|jlp �k j} ∪ {klp}.

23: for j ∈ Jr
(t) do

24: Pj
(t) ← Pj

(t) \ kPk
(t) ← Pk

(t) \ j .

25: Check: β(t−1) = β(t).
26: until ∀ classes, i.e., A, B.

Proof We prove this theorem by contradiction. Assume that Algorithm 3 produces
a matching β with a blocking pair (j, k) by Definition 7. Since k �j β(j), j must
have proposed to k and has been rejected due to a more preferred conflicting user
j ′ on cluster k (lines 13–14). Thus, in this case (j, k) cannot form a blocking pair
as j ′ �k j , a contradiction. Moreover, when j was rejected, then any lower ranked
user j ′ was rejected either before j (lines 9–12) or was made unable to propose
because k is removed from j ′ preference list (lines 22–24). Thus, any lower ranked
j ′ cannot be matched by k, i.e., j ′ /∈ β(r), a contradiction. ��

6.5.4 Performance Analysis

We consider a downlink system in which the BS is assumed to be deployed at a
fixed location, and we randomly deploy C cellular users following a homogeneous
Poisson point process (PPP). We assume the system bandwidth to be 3 MHz. Note
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that the methodologies developed in this work can also be applied to any value of
system bandwidth. The motivation for our choice (i.e., 3 MHz) is to analyze the
performance under dense environment with peak network traffic and for the sake
of simulation simplicity. Moreover, the wireless parameters are chosen according
to the system model guidelines in [1]. Moreover, we compare the performance of
our proposed scheme with the traditional OFDMA scheme. In the OFDMA scheme,
users are assigned with an orthogonal number of RBs, i.e., no interference between
the users. Note that all statistical results are averaged over 500 runs of random
locations of cellular users, and RB gains.

In Fig. 6.12, we illustrate the total network sum rate vs. the number of users under
two schemes, NOMA and OFDMA. We evaluate the total throughput by obtaining
the average total sum-rate over different number of users. It can be seen that the total
throughputs of NOMA increase when the number of users increases until it becomes
saturated, i.e., when the number of users in the network increases significantly. It
can be observed that when the number of users is larger than 15, the total throughput
continues to increase due to the multiuser diversity gain, but grows at a slower speed
and becomes saturated when the number of users is sufficiently large. Moreover,
we can see that the performance of proposed scheme outperforms the traditional
OFDMA scheme significantly. This signifies the importance of NOMA in bringing
5G networks into fruition.

In Fig. 6.13, we compare the number of admitted users in the system for the
proposed NOMA and OFDMA schemes by varying the number of network users.
It can be seen that only 15 users (i.e., 3 MHz bandwidth) can be accepted using
the OFDMA scheme, whereas in the NOMA the number of admitted users is
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significantly higher, i.e., double of the OFDMA scheme. Thus, we can infer that
NOMA will play a crucial role in enhancing the number of admitted users in the 5G
networks.

6.6 Conclusions

This chapter provides a comprehensive overview of matching theory and its
role in bringing novel 5G networking paradigms into fruition. Specifically, we
have provided theoretical analysis for three 5G networking paradigms such as
dense heterogeneous networks, wireless network virtualization, and non-orthogonal
multiple access. Moreover, we have also provided the numerical analysis for all
these paradigms. Numerical results reveal that matching theory can significantly
enhance the performance of the 5G networks in terms of average sum-rate and
average number of admitted users. Furthermore, the distributed control of matching
games will play a very crucial role in realizing many novel applications for future
wireless networks.
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Chapter 7
Enhanced Design of Stochastic Defense
System with Mixed Game Strategies

Song-Kyoo Kim

7.1 Introduction

Game theory is a mathematical model that has been applied to various strategic
situations of conflict and cooperation between system operations. A mixed strategy
is a probability distribution over all possible pure strategies. Consider two players,
player 1 and player 2, who plays against each other. It may be that player 1 is
uncertain about the behavior of his opponent (i.e., player 2), which implies that the
behavior of the opponent is random rather than fixed. After a player has determined
a mixed strategy at the beginning of the game by randomizing, that player might
pick one of those pure strategies and then adhere to it. The fluctuation theory is
determining the behavior of one- and two-dimensional marked point processes on
some fixed level. For example, Dhsalalow [1] developed a joint transformation of
the first exceed level, first passage time, and the index of the point process. Basically,
the observation process checks whether the system crashed, and indicates when is
the moment to make the decision for a preliminary operation prepared before the
system crashes.

In the past decade, we have observed intense cyber attacks, some of which have
hindered proper operations of the network systems. The denial of services (DoS)
is one of the common cyber attacks which targeted for specific network systems
including servers, media gateways, routers even WiFi hotspots. In a denial-of-
service (DoS) attack, an attacker attempts to prevent legitimate users from accessing
information or services. It makes a network system to deny its service operations by
flooding data to overflow the system capacity [7]. Thus, it stands to reason to offer
defense operations that could avoid the crash of a network system by a DoS attack.
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This article lays out a foundation for predicting the time and caliber of potentially
destructive shutdown to a system by means of operational calculus. In this study,
one player (player 1) makes the decision at the present time and mainly deals with
decision making while the other player (player 2) deals with the future moment,
which is uncontrollable. The brief for player 1 is given by the probability distribution
over strategies of the opponent, mostly obtained by analytically solving the special
process rather than from statistical data. Solving the probability distribution of the
opponent by using the basic fluctuation theory [1, 5] is another core contribution of
this research.

7.2 Mixed Strategy Under Stochastic Time Series

7.2.1 Preliminaries

The moment of the preliminary operation is one step before crashing the system
being the same as the time for decision making. The second part is finding
the probability of the system being crashed when the next observation moment
comes. Let us consider a two-person mixed strategy game, and the player 1 is the
person who has two strategies at the observation moment, one step before crashing
the system. Player 1 has the following strategies: (1) DoNothing—doing nothing,
which implicates that the system is running as usual, and (2) Action—taking the
preliminary action for preparing the damage (or crash). In the view of player 2, the
system could either crash or be ongoing at the expected observation moment right
after the system crash, and the strategies for player 2 would be either “Running”
or “Crashed.” Let us assume that the cost for the defense operation is α and, if the
crash occurred, it would take β amount of this cost. As such, it is rational to assume
that the cost for the defense operation will be smaller than cost of encountering a
shutdown and recovery; this gives us the normal form games:

. Players: N = {1, 2} ,

. Strategy sets: S1 = {“DoNothing”, “Action”} ,
S2 = {“Running”, “Crashed”},

Based on the above conditions, the general payoff matrix could be composed as
follows:

and the brief of Player 1 depends on the probability of the damage which denoted
by �∗. It is noted that the operation payoffs could be different, depending on the
actual payoff status of the system operations, and the payoff matrix (Table 7.1)
should be composed accordingly.

Table 7.1 Payoff matrix Running Crashed

DoNothing 0 −β
Action −α −α
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Let Ck be the number of quantity that indicates the level of the system damage
when the number passes the limit (i.e., first exceed level) and Dk be the duration
during the kth observation period [τk−1, τk). The player will make the decision at
some τk−1 if Ak−1 = C0 + C1 + · · · + Ck−1 < S, while Ak ≥ S. A value of k for
which the first excess occurs at τk is called the termination index which denoted by ν
[1]. It is the moment when the crash (or disaster) is observed (i.e., first observation
moment after crashing) which is called the first passage time (denoted by τν). In
addition, the moment one step before the first passage time is considered as the
decision point for the preliminary action which denoted by τν−1. The probability of
the observation of right after the system damage �∗ could be determined as follows:

�∗
Idle = P

{
τν ≥ _

τ
}
,

_
τ := E [τν] , (7.1)

and, automatically, the probability of sustaining the system is 1 − �∗. Based on the
payoff matrix and the crashing probability, Nash equilibrium of the mixed strategy
is as follows:

0 · (1 − �∗)− β · �∗ = −α · (1 − �∗)− α · �∗, (7.2)

�∗
payoff = α

β
.

Therefore, we can clearly note the analogy between the two players. The best
strategy for the player 1 at moment (τν−1) depends on the chance of crashing the
system and the payoff values. The criteria for choosing the best strategy is as follows
from (7.2):

s∗1 =
{

“DoNothing”, �∗ ≤ α
β
,

“Action”, �∗ > α
β
.

(7.3)

Player 1 would have the chance to make the strategic decision whether to take
the preliminary operation or not at one step before exceeding the system capacity
(i.e., τν−1), and the decision will be taken based on the above criteria. Basically,
the defense operation will be taken at the moment τν−1 before the crash occurs
(Ak ≥ S and S is the limit considered as “crash of the system”). The more rigorous
description of this process is rendered by means of a generic marked point process:

(A, τ) =
∑

k≥0

Ck · ετk , (7.4)

where εa is the point mass with the position (τ ) dependent marking. The two-
variated sequences of random vectors (Ck,Dk = τk − τk−1) are iid. The joint
transformation
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μ (z, θ) = E

[
zCke−θDk

]
(7.5)

of the random vectors (Ck,Dk) could be found. The initial observation moment
after the action of exiting status may have different but similar from (7.5):

μ0 (z, θ) = E

[
zC0e−θτ0

]
. (7.6)

To describe the behavior of the process at the first passage time, the termination
index is:

ν = min {k : Ak ≥ S} . (7.7)

The joint functional of the first exceed model is as follows:

LS (ξ, z, θ, ϑ) = E

[
ξνzAν e−θτν e−ϑτν−1

]
, (7.8)

where S indicates the observation moment that is the first moment after crashing the
system and (7.8) is solved by using the first exceed level process [1]. The operator
Dp is defined as

Dp f (p) = (1 − z)
∑

p≥0

f (p) zp, ‖z‖ < 1, (7.9)

where {f (p)} is a sequence, with inverse

Dkx (•) =
{

1
k! limx→0

∂k

∂xk
1

1−x (•) , k ≥ 0,

0, k < 0.
(7.9a)

The functional D from (7.9a) is defined on the space of all analytic functions at
0 and has the following properties:

(i) Dkx is a continuous and linear functional with fixed points at constant functions,
(ii)

Dkx
(
xmf (x)

) =
{
Dk−mx

(
f (x)

)
, k ≥ m,

0, k < m,
(7.9b)

(iii)

Dkx

∞∑

m=0

amx
m =

k∑

m=0

am. (7.9c)
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Since the observation is a marked process, the probability of crash at the first
exceed observation time is equivalent with the termination index of the first exceed
observation:

P

{
τν ≤ _

τ
} = P

{
ν ≥ _

ν
}
,

_
ν := E [ν] . (7.10)

It is notable that finding the probability of the index is easier than the probability
of the first exceed level period. This probability is used for finding the probability
of crashing, �∗.

7.2.2 The Moment of the Decision for Preliminary Operations

This section utilizes analysis of the random vector and the explicit probability
distribution function for the first exceed observation moment after the system
crashes. The main result is included in the following theorems:

Theorem 1 The functional LS (ξ, z, θ, ϑ) of (8) satisfies the following expression:

LS (ξ, z, θ, ϑ) = DSw
μ0 (wz, θ + ϑ)
μ (wz, θ + ϑ) · μ (z, θ)− μ (wz, θ)

1 − ξμ (wz, θ + ϑ) . (7.11)

Proof We find the explicit formula of the joint function LS (ξ, z, θ, ϑ). The joint
functional (7.11) is as follows:

L (ξ, z, θ, ϑ) =
∞∑

n=0

ξnE
[
1{νp=n}zAne−θτne−ϑτn−1

]
,

and

� (ξ, z, θ, ϑ;w) = (1 − w)
∑

p≥0

L (ξ, z, θ, ϑ)

=
∞∑

n=0

ξnE
[
(wz)An−1 e−(θ+ϑ)τn−1

]
μ (z, θ)

−
∞∑

n=0

ξnE
[
(wz)An−1 e−(θ+ϑ)τn−1

]
μ (wz, θ) ,

and, from [5],

E

[
(wz)An−1 e−(θ+ϑ)τn−1

]
= μ0 (wz, θ + ϑ) [μ (wz, θ + ϑ)]n−1 .
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Finally, we have

� (ξ, z, θ, ϑ;w) = μ0 (wz, θ + ϑ)
μ (wz, θ + ϑ) · μ (z, θ)− μ (wz, θ)

1 − ξμ (wz, θ + ϑ) . (7.12)

From (7.9)–(7.9c), the joint transform of the vector satisfies the formula

LS (ξ, z, θ, ϑ) = DSw� (ξ, z, θ, ϑ;w) . (7.13)

From (7.12)–(7.13),

LS (ξ, z, θ, ϑ) = DSw

[
μ0 (wz, θ + ϑ)
μ (wz, θ + ϑ) · μ (z, θ)− μ (wz, θ)

1 − ξμ (wz, θ + ϑ)
]
. (7.14)

��
Theorem 2 The probability distribution of the termination index ν denoted by
γk := P [ν = k] satisfies the following expression:

γk = DSw

(
μ0 (w, 0) [1 − μ (w, 0)]μ (w, 0)k−1

)
, k = 0, 1, . . . , (7.15)

Proof From (7.8), the probability generating function g (ξ) of ν could be found as
follows:

g (ξ) := E

[
ξν
] = LS (ξ, 1, 0, 0) , (7.16)

and

g (ξ) =
∑

k≥0

γk · ξk =
∞∑

l=0

[
DSw

[
μ0 (w, 0) [1 − μ (w, 0)]

μ (w, 0)

]
μ (w, 0)l

]
ξ l.

(7.17)
Therefore,

γk = DSw

(
μ0 (w, 0) [1 − μ (w, 0)]μ (w, 0)k−1

)
. (7.18)

��
The decision parameters such as the first exceed observation index ν and the

period between starting and hitting the crash level are as follows:

_
ν = E [ν] = DSw

μ0 (w, 0)

1 − μ (w, 0) , (7.19)

_
τ ν−1 = E [τν−1] = DSw

μ′ (w, 0) (1 − μ (w, 0)) (1 − 2μ (w, 0))
(
μ (w, 0)− μ2 (w, 0)

)2 . (7.20)
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Table 7.2 Detailed description of the parameters

Parameter Description
_
τ ν−1 (= E [τν−1]) The moment when Player 1 makes the decision
_
ν (= E [ν]) The average number of observation until the system is crushed

�∗ (= P

{
ν ≥ _

ν
})

The probability of the first observation time after crashing

Player 1 Decision maker to do the preliminary action

Player 2 The system that might be observed at τν after crashing

Based on the above details (Table 7.2), the payoff matrix could be composed and
the strategic decision is chosen accordingly from (7.3).

7.3 Defense Operation for Network System

This section provides practical applications to demonstrate how this research could
be applied into cyber attack situations. The case deals with the operational strategy
for defense operations from the attack. Combating cyber crime involves various
mathematical modeling and methods, as well as those of non-mathematical nature.
Thus, a few area of current research on this topic and some literature known to the
authors. Game and the fluctuation theories are an important hybrid framework and
modeling of interest [2, 4]. A router is a network system which is commonly used
for connecting servers and the Internet. The hitless-restart mode, as a function of
a defense system, which is a special operation mode of a router to be protected
from a DoS attack could stay on the forwarding path and the network topology
remains stable. In the hitless-restart mode, a router could even restart the entire
system software without any shutdown [3]. But this mode could be run only in the
limited situation because the router in the hitless-restart mode could not be fully
functional (i.e., forwarding only). More importantly, this defense mode should be
executed before the router crashes. Thus, forecasting the moment of the system
damage is vital to use the hitless-restart mode properly. The hitless-prediction router
which capable to predict the moment of queue overflow and takes the preliminary
operation, such as nonstop forwarding before the flow hits queue size limitation
has been proposed [5]. The hitless-prediction router could choose the mode either
by keeping the regular mode or switching the hitless restart mode automatically.
The decision making parameters could be the average recycle time, the overflow
(or crashing) probabilities, and the payoff values. As it is assumed, the observation
process is exponentially distributed with the average observation time

∼
χ . The queue

size of input stream (Ck) at τk is a Poisson process with the parameter λ0 and the
service time process is exponentially distributed with the mean (1/ρ), As such (7.5)
can be written as follows:
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μ (z, θ) = 1

1 + ∼
χ (λ− λz+ θ)

, (7.21)

where

λ := λ0 − ρ.

As previously mentioned, the initial observation period (7.6) could have different
parameters because the initial stream could have existed at the beginning:

μ0 (z, θ) = 1

1 + ∼
χ (λ0 − λ0z+ θ)

. (7.22)

If we know the observation index ν after the system crashes, the optimal hitless
prediction point is the (ν − 1)th observation point that is one step before the first
exceed point. In this case, we find the average index that indicates queue overflows.
From the previous research [5] and (7.19),

_
ν = (S + 1)

∼
χλ

+ 1 − (λ0/λ)(
1 + ∼

χλ0

) ·
1 −

[∼
χλ0/

(
1 + ∼

χλ0

)]S+1

1 −
[∼
χλ0/

(
1 + ∼

χλ0

)] , (7.23)

and

�∗
Idle = P

{
ν ≥ _

ν
} =

∑

k≥_
ν

γk, (7.24)

where

γk =
[ ∼

χλ

1 + ∼
χλ0

](
1

1 + ∼
χλ

)k
·
⎡

⎢
⎣

S∑

m=0

(
k − 1 +m

m

)
⎛

⎝

[∼
χλ0

] [∼
χλ
]

(
1 + ∼

χλ0

) (
1 + ∼

χλ
)

⎞

⎠

m
⎤

⎥
⎦ .

(7.25)
It is noted that �∗

Idle could be the indicator for the optimal pay off ratio
�∗

Payoff from (7.2). Alternatively, the average recycle period of the hitless restart
_
τ ν−1 (:= E [τν−1]), which is the moment of decision making whether hitless-restart
mode or not, is:

_
τ ν−1 = ∼

μ0 + ∼
μE [ν − 1] , (7.26)

where

∼
μ0 = −∂μ0 (1, θ)

∂θ

∣∣∣
θ=0
,

∼
μ = −∂μ (1, θ)

∂θ

∣∣∣
z=0
.
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Table 7.3 The payoff matrix
for hitless-restart routing
operations

Unit: [USD] Regular flow Overflow (shutdown)

Regular routing mode 0 −30,000

Hitless-restart mode −8000 −8000

From [5] and (7.26), the recycling period between the starting point and the
hitless-prediction point is

_
τ ν−1 = ∼

μ0 + ∼
μ ·

⎡

⎢
⎣
(S + 1)

∼
χλ

− 1 + 1 − (λ0/λ)(
1 + ∼

χλ0

) ·
1 −

[∼
χλ0/

(
1 + ∼

χλ0

)]S+1

1 −
[∼
χλ0/

(
1 + ∼

χλ0

)]

⎤

⎥
⎦ .

(7.27)
According to the research [6], the operational cost of a router for typical critical

service is USD 30,000 for each shutdown time because of a cyber attack. Before
shutdown, the router could be protected by the hitless-restart mode for the defense
operation. Because of potential business losses, the defense operation could be
increased to USD 8000 in the case of the cost of the business operations under
the defense mode.

According to the payoff matrix for the router operation modes (Table 7.3), the
best strategy s∗1 for the router operations at the moment

_
τ ν−1 is as follows:

s∗1 =
{

“Regular routing mode”, �∗ ≤ 8
30 ,

“Hitless-restart mode”, �∗ > 8
30 .

(7.28)

Consequently, the best strategy at the moment of
_
τ ν−1 is determined by the

payoff matrix (Table 7.3) and the probability of the router overflow from (7.25).

7.4 Simulated Results

In the simulation, two core functional router systems with the 1 GB capacity that
deal with 80% of the forwarding flow and 20% of the routing flow are considered
for the comparison. One system has the algorithm for the hitless prediction (i.e., the
defense operations) and the other system is a regular router which does not have the
defense operation algorithm. The trials are continued until the data size of the queue
is exceeding the limit. The regular router could not take any action to avoid the crash
of the system. The hitless-prediction router might take the action which is called
the defense mode. Unlike the shutdown cost of typical routers which is around
30,000 USD, we assume that the cost of crash is 75,000 USD per an hour and the
repair (and reboot) takes 1 h in any status [6] because the cost of the shutdown for
a core functional router is very high. The system with the hitless-prediction mode
could be over provisioned but we assume that there is no additional cost for over
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Fig. 7.1 Simulation comparison graph

provisioning (i.e., the cost for the defense operation only). The cost for running
defense operations is assumed 15,000 USD per an hour because the router can still
forward the flows during the repair time (or the rebooting time). The efficiency of
the hitless-prediction router ε that compares to the cost of a regular router can be
solved as follows:

ε = Cd − Cr
Cr

, (7.29)

where Cd is the cost of the defense operation mode and Cr is the crash cost of a
regular mode.

After 30 trials, the average cost of the hitless-prediction router which has the
defense operation mode is 995,000 USD (2,985,000 USD per 30 trials) and a regular
router (without the defense operation mode) costs 132,500 USD (3,975,000 USD
per 30 trials). From (7.29), the comparison graph (Fig. 7.1) also shows that the
efficiency of the hitless-prediction router is 0.249 that means the hitless-prediction
router saves about 25% more than the cost of a regular router.

7.5 Conclusion

The objective of this paper is establishing the theoretical framework and the explicit
equations of the mixed strategic decision model with the hybrid of the two-person
game and the basic fluctuation theory. This research makes possible estimating the
best time for decision making and the mixed strategies to take preliminary defense
operations. So, the player could choose the best strategy accordingly. Additionally,
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the special case supports the general explicit equation for any observation processes
with memoryless properties. This analytic approach supports the theoretical back-
ground of the decision making time and strategic choice to prevent the crash of
the system. This simple framework could be also applied in any practical case of
disaster preparedness, stock markets besides a cyber attack defense.
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Chapter 8
Optimal Impulse Control of SIR
Epidemics Over Scale-Free Networks

Vladislav Taynitskiy, Elena Gubar, and Quanyan Zhu

8.1 Introduction

Malware spreading becomes a more prevalent issue recently as the number of
devices and their connections grow exponentially. Many devices that are connected
to the Internet do not have strong protections, and they contain cyber vulnerabilities
that create a fast spreading of malware over large networks. A higher level of
connectivity of the network is often desired for information spreading. However,
in the context of malware, the high connectivity can exacerbate the spreading and
makes the containment and control of the malware more challenging. One example
is the recent Ransomware [10, 11] that spreads over the Internet with the objective
to lock the files of a victim using cryptographic techniques and demand a ransom
payment to decrypt them. The worldwide spread of WannaCry ransomware has
affected more than 200,000 computers across 150 countries and caused billions of
dollars of damages. Hence it is critical to take into account the network structure
when developing control policies to control the infection dynamics.

In this paper, we investigate a continuous-time Susceptible-Infected-Recovered
(SIR) epidemic model over large-scale networks. The malware control mechanism
is to patch an optimal fraction of the infected nodes at discrete points in time. Such
mechanism is also known as an optimal impulse controller. The hybrid nature of
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discrete-time control policy of continuous-time epidemic dynamics together with
the network structure poses a challenging optimal control problem. We leverage
the Pontryagin’s minimum principle for impulsive systems to obtain an optimal
structure of the controller and use numerical experiments to demonstrate the
computation of the optimal control and the controlled dynamics. This work extends
the investigation of previous related works [7, 9, 15] to a new paradigm of coupled
epidemic models and the regime of optimal impulsive control.

The rest of the paper is organized as follows. Section 8.2 presents the controlled
SIR mathematical model. Section 8.3 shows the structure of optimal control
policies. Section 8.4 presents numerical examples. Section 8.5 concludes the paper.

8.2 The Model

In this section, we formulate a model to describe the spreading of malware in the
network of N nodes by extending the classical SIR model. As in previous works
[7, 14] two different forms of malware with different strengths spread over the
network simultaneously, we denote them as M1 and M2. We also assume that a
structure of population is described by the scale free network [8, 12]. Normally,
as SIR model points, all nodes in the population are divided into three groups:
Susceptible (S), Infected (I ), and Recovered (R). Susceptible is a group of nodes
which are not infected by any malware, but may be invaded by any forms of
virus. The Infected nodes are those that have been attacked by the virus and the
Recovered is a group of recovered nodes. In modified model subgroup of Infected
nodes also is brunched into two subgroups I1 and I2, where nodes in Ii are infected
by malware Mi, i = 1, 2, respectively. We formulate the epidemic process as a
system of nonlinear differential equations, where nS , nM1 , nM2 , and nR correspond
to the number of susceptible, infected, and recovered nodes, respectively. In current
model the connections between nodes are described by the scale-free network, then
we will use the following notation: Sk(t) and Rk(t) are fractions of Susceptible
and Recovered nodes with degree k at time moment t , I 1

k (t), I
2
k (t) are fractions of

Infected nodes with degree k. At each time moment t ∈ [0, T ] the number of nodes
is constant and equalN , and the following condition Sk(t)+I 1

k (t)+I 2
k (t)+Rk(t) =

1 is satisfied. The process of spreading is defined by the system of ordinary
differential equations:

dSk

dt
= −δ1kSkI 1

k Θ1 − δ2kSkI 2
k Θ2;

dI 1
k

dt
= δ1kSkI 1

k Θ1 − σ 1
k I

1
k ;

dI 2
k

dt
= δ2kSkI 2

k Θ2 − σ 2
k I

2
k ,

dRk

dt
= σ 1

k I
1
k + σ 2

k I
2
k ,

(8.1)
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where δik(k) is the infections rate for the first type of malware i if a susceptible node
has a contact with infected node with the degree k, σ ik is recovery rate.

We consider the graph generated by using the algorithm devised in [2]. We start
from a small number m0 of disconnected nodes; every time step a new node is
added, withm links that are connected to an old node i with ki links according to the
probability ki/

∑
j kj . After iterating this scheme a sufficient number of times, we

obtain a network composed by N nodes with connectivity distribution P(k) ≈ k−3

and average connectivity 〈k〉 = 2m. In this work we take m = 4.
At the initial time moment t = 0, the most number of nodes belong to Susceptible

group and only a small fraction of Infected by malwares M1 or M2. Initial state
for system (8.1) is 0 < Sk(0) < 1, 0 < I 1

k (0) < 1, 0 < I 2
k (0) < 1, R(0) =

1 − Sk(0)− I 1
k (0)− I 2

k (0). Analogously with [6, 12] we define parameter Θi(t) as

Θi(λi) =
∑

k′

δikP (k
′|k)I i

k′
k′

, i = 1, 2, (8.2)

where δik denotes the infectivity of a node with degree k and λi = δik/σ
i
k an

effective spreading rate. P(k′|k) describes the probability of a node with degree k
pointing to a node with degree k′, and P(k′|k) = k′P(k′)

k′ , where 〈k〉 = ∑

k′
kP (k). For

scale-free node distribution P(k) = C−1k−2−γ , 0 < γ ≤ 1, where C = ζ(2+γ ) is
Riemann’s zeta function, which provides an appropriate normalization constant for
sufficiently large networks. In the SF model considered here, we have a connectivity
distribution P(k) = 2m2/k−3, where k is approximated as a continuous variable.
According to [12] we can rewrite (8.2) as

Θi(λi) = e−1/mλi

mλi
, i = 1, 2. (8.3)

8.3 Impulse Control Problem

Previously it was shown in [12] a small fraction of the infected nodes might
be survived on small segments of the network and can provoke new waves of
epidemics. This cycled process recalls the behavior of the virus of influenza which
causes a seasonally periodic epidemic [1]. Hence the control of the epidemic process
can be formulated as an impulse control problem in which a series of impulses of
antivirus patches are designed to reduce the periodically incipient zones of infected
nodes. We extend the model (8.1) to present an impulse control problem for episodic
attacks of the malware and obtain the optimal strategy of application of antivirus
software to damp the spreading of malware at discrete time moments.
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We suppose that impulses occur at time τ ik,1, . . . , τ
i
k,qi (k)

, where qi(k) describes
the number of launching of impulse controls for nodes with k degrees, index
i indicates the type of malware. We also assume that on the time intervals
(τ ik,j , τ

i
k,j+1] system (8.1) describes the behavior of malware in the network. We

have reformulated epidemic model to describe the situation with two types of
malware for all time periods except the sequence of times τ i+k,j , j = 1, . . . , qi(k),

i = 1, 2. Additionally, we set S(τ ik,j ) = S(τ i−k,j ), I1(τ
i
k,j ) = I1(τ

i−
k,j ), I2(τ

i
k,j ) =

I2(τ
i−
k,j ), R(τ

i
k,j ) = R(τ i−k,j ).

The system after activation of impulses at time moment τ i+k,j is:

Sk
(
τ i+k,j

) = Sk
(
τ ik,j

)
,

I 1
k

(
τ i+k,j

) = I 1
k

(
τ ik,j

)− ν1
k

(
τ ik,j

)
,

I 2
k

(
τ i+k,j

) = I 2
k

(
τ ik,j

)− ν2
k

(
τ ik,j

)
,

Rk
(
τ i+k,j

) = Rk
(
τ ik,j

)+ ν1
k

(
τ ik,j

)+ ν2
k

(
τ ik,j

)
.

(8.4)

Variables νik = (νik,1, . . . , ν
i
k,qi (k)

), i = 1, 2, correspond to control impulses
applied at the discrete time moments τk,1, . . . , τk,qi (k) and represent the fraction of
recovered nodes. Let be νik,j = cik,j δ(t − τ ik,j ), where δ(t − τ ik,j ) is Dirac function,

cik,j ∈ [0, uik,j ] is the value of impulse, leads to changes of the dynamical system,

uik,j is the maximum value for control [1].

Functional The objective function of the combined system (8.4) is represented
by the aggregated costs on the time interval [0, T ] including the costs of control
impulses. The aggregated costs for continuous system (8.1) are defined as follows:
at time moment t �= τ ik,j , j = 1, . . . , qi(k), i = 1, 2, we have the costs from

infected nodes f 1
k (I

1
k (t)) and f 2

k (I
2
k (t)). Functions f ik (·) are non-decreasing and

twice-differentiable, such that f ik (0) = 0, f ik (I
i
k(t)) > 0 for I ik(t) > 0 with

t ∈ (τ ik,j−1, τ
i
k,j ]. For system (8.4), we define the treatment costs as functions

hik(ν
i
k,j (τ

i+
k,j )), j = 1, . . . , qi(k), where hik(ν

i
k,j (τ

i+
k,j )) > 0, νik,j (τ

i+
k,j ) > 0 for

i = 1, 2. Functions g(Rk(t)) are non-decreasing and capture the benefit rates from
Recovered nodes. The aggregated system costs are defined by the functional:

J = ∑

k∈N

[ ∫ T
0 f

1
k

(
I 1
k (t)

)+ f 2
k

(
I 2
k (t)

)− g (R(t)) dt

+
q1(k)∑

j=1
h1
k

(
ν1
k,j (τ

1
k,j )

)
+
q2(k)∑

j=1
h2
k

(
ν2
k,j (τ

2
k,j )

) ]
.

(8.5)
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8.4 The Structure of Impulse Control

According to principle maximum in impulse form [3–5, 15] we write Hamiltonian
for dynamic system (8.1)

H 0
k (t) = −

(
f 1
k

(
I 1
k (t)

)+ f 2
k

(
I 2
k (t)

)− g(Rk(t)
))

+(λI 1
k
(t)− λSk (t)

)
δ1kSk(t)I

1
k (t)Θ1(t)

+(λI 2
k
(t)− λSk (t))δ2kSk(t)I 2

k (t)Θ2(t)+ (λRk − λI 1
k
)σ 1
k I

1
k

+(λRk − λI 2
k
)σ 2
k I

2
k ;

(8.6)

and construct adjoint system as follows:

λ̇Sk (t) = (
λSk (t)− λI 1

k
(t)
)
δ1kI

1
k (t)Θ1(t)+

(
λSk (t)− λI 2

k
(t)
)
δ2kI

2
k (t)Θ2(t);

λ̇I 1
k
(t) = df 1

k

(
I 1
k (t)

)

dI 1
k

+(λSk (t)− λI 1
k
(t)
) (
δ1kSk(t)Θ1(t)+ (δ1k)

2Sk(t)I
1
k (t)P (k)〈k〉

)

+(λI 1
k

− λRk
)
σ 1
k ;

λ̇I 2
k
(t) = df 2

k

(
I 2
k (t)

)

dI 2
k

+(λSk (t)− λI 2
k
(t)
) (
δ2kSk(t)Θ2(t)+ (δ2k)

2Sk(t)I
2
k (t)P (k)〈k〉

)

+(λI 2
k

− λRk
)
σ 2
k ;

λ̇Rk (t) = −dg
(
Rk(t)

)

dRk
,

(8.7)
with transversality conditions λSk (T ) = λI 1

k
(T ) = λI 2

k
(T ) = λRk (T ) = 0.

Following the maximum principle for impulse control (see [3, 4, 13]), we
formulate necessary optimality conditions as in Theorem 1.

Theorem 1 Let (x∗, N, τ j∗i , ν∗
i ), i = 1, 2, be an optimal solution for the

impulse control problem. Then, there exists an adjoint vector function λ(t) =
(λS(t), λI1(t), λI2(t), λR(t)) such that the following conditions hold:

λ̇x(t) = − ∂H0
∂x
(x∗(t), λ(t), t), (8.8)

where x(t) = S(t), I1(t), I2(t), R(t).
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At the impulse or jump points, it holds that

∂Hci
∂νi

(
x∗
(
τ
j∗−
i

)
, νi, λ

(
τ
j∗+
i

)
, τ
j∗
i

) (
ν
j
i − νj∗i

)
≥ 0,

(8.9)

λx

(
τ
j∗+
i

)
− λx

(
τ
j∗−
i

)
= ∂Hci

∂x

(
x∗
(
τ
j∗−
i

)
, ν
j∗
i , λ

(
τ
j∗+
i

)
, τ
j∗
i

)
,

(8.10)

H0

(
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(
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i

)
, λ
(
τ
j∗+
i

)
, τ
j∗
i

)
−H0

(
x∗
(
τ
j∗−
i

)
, λ
(
τ
j∗−
i

)
, τ
j∗
i

)

− ∂Hci

∂τ
j
i

(
x∗
(
τ
j∗−
i

)
, ν
j∗
i , λ

(
τ
j∗+
i

)
, τ
j∗
i

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> 0 for τ j∗i = 0,

= 0 for τ j∗i ∈ (0, T ),
< 0 for τ j∗i = T .

(8.11)

For all points in time at which there is no jump, i.e. t �= τj (j = 1, . . . , ki), it
holds that

∂Hcj
∂νj

(
x∗(t), 0, λ(t), t

)
νj ≤ 0, (8.12)

with the transversality condition λ(T ) = 0.

Hamiltonian in impulsive form is

Hck

(
τ 1+
k,j

) = −h1
k

(
ν1
k,j (τ

1+
k,j )

)+ (
λRk (τ

1+
k,j )− λI 1

k
(τ 1+
k,j )

)
ν1
k,j

(
τ 1+
k,j

);
Hck

(
τ 2+
k,j

) = −h2
k

(
ν2
k,j (τ

2+
k,j )

)+ (
λRk (τ

2+
k,j )− λI 2

k
(τ 2+
k,j )

)
ν2
k,j

(
τ 2+
k,j

)
.

(8.13)

Here we assume that for each type of malwares M1 and M2 and for each
k we have own set of control impulses ν1

k = (ν1
k,1, . . . , ν

1
k,q1(k)

) and ν2
k =

(ν2
k,1, . . . , ν

2
k,q2(k)

).
Adjoin system for system(8.4) is (i = 1, 2):

λSk
(
τ i+k,j

) = λSk
(
τ ik,j

);
λI 1
k

(
τ i+k,j

) = λI 1
k

(
τ ik,j

);
λI 2
k

(
τ i+k,j

) = λI 2
k

(
τ ik,j

);
λRk

(
τ i+k,j

) = λRk
(
τ ik,j

)
.

(8.14)
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Here are the conditions for Δi for each I ik from the Theorem 1:

Δ1 = f 1
k

(
I 1
k (τ

1
k,j )

)− f 1
k

(
I 1
k (τ

1+
k,j )

)− g(Rk(τ 1
k,j )

)+ g(Rk(τ 1+
k,j )

)

+c1
k,j

[
dg
(
Rk(τ

1+
k,j )

)

dRk(τ
1+
k,j )

+ df 1
k

(
I 1
k (τ

1+
k,j )

)

dI 1
k (τ
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k,j )

]

+ 2σ 1
k c

1
k,j

(
λRk (τ

1+
k,j )− λI 1

k
(τ 1+
k,j )

)

δ1kSk(τ
1
k,j )c

1
k,j

(
λSk (τ

1
k,j )− λI 1

k
(τ 1
k,j )

) [
2Θ1(τ

1+
k,j )+

δ1kP (k)

〈k〉
(
1 + I 1

k (τ
1
k,j )

−c1
k,j

)]
.

(8.15)
Here are the conditions for Δ for each Δ for each I 2

k from Theorem 1:

Δ2 = f 2
k
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2
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k,j )

]

+ 2σ 2
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2
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(
λRk (τ

2+
k,j )− λI 2
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(τ 2+
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δ2kSk(τ
2
k,j )c

2
k,j

(
λSk (τ

2
k,j )− λI 2

k
(τ 2
k,j )

) [
2Θ2(τ

2+
k,j )+

δ2kP (k)

〈k〉
(
1 + I 2

k (τ
2
k,j )

−c2
k,j

)]
.

(8.16)
According to Theorem 1 at time τ ik,j ∈ (0, T )Δi should be equal to zero.

Therefore, we deal with two different problems: firstly, if the intensity of impulses
cik,j are fixed, then from (8.15) and (8.16), we can find the optimal time τ i∗k,j of using

impulses; secondly, if the sequence of time τ ik,j are fixed, then we obtain the optimal

level of the intensity of impulses ci∗k,j , j = 1, . . . , qi , i = 1, 2.

8.5 Numerical Simulations

In this paragraph we present numerical experiments to depict theoretical results and
to study the behavior of malwares and show the application of control impulses.
Here we use the following set of the initial states and values of parameters of the
system (8.1): initial system states and parameters are Sk(0) = 0.4, I 1

k (0) = 0.3,
I 2
k (0) = 0.2, and Rk(0) = 0, spreading rates are δ1k = 0.075k, δ2k = 0.1k, self-

recovery rates are σ 1
k = 0.0005k and σ 1

k = 0.0003k. We set costs functions for
infectious subgroups as f ik (I

i
k(t)) = AikI

i
k(t) with coefficients A1

k = 2k, A2
k = 3k

and treatment costs functions as hik(ν
i
k,j (τ

i+
k,j ) = Bikc

i
k,j I

i
k(τ

i+
k,j ), where coefficients

are equal to B1
k = 3k, B2

k = 4k, c1
k,j = 0.1, c2

k,j = 0.08 for i = 1, 2, utility function
is g(Rk(t)) = 0.1Rk(t).
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Fig. 8.1 Evolution of the
system in Case 1. Number of
links: k = 4, spreading rates:
δ1k = 0.075k and δ2k = 0.1k
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Fig. 8.2 Aggregated system
costs are equal to J = 37.65
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Case 1 In case 1 we present the initial example of the behavior of the system and
aggregated system costs if an average number of links between ith node and its
neighbors is k = 4. Figures 8.1 and 8.2 show the spreading on two modification of
malwares and corresponding total system costs.

Aggregated system costs in this case are equal to J = 37.65. By applying the
control impulses at discrete time moments we received that an amount of impulses
are equal to p1(4) = 37 and p2(4) = 49.

Case 2 In this experiment we use the same parameters for initial data, but in
contrast to case 1 an average number on neighbors is equal k = 7. In this case,
we obtain that the aggregated costs are J = 73.93, and an amount of impulses are
equal to p1(7) = 29 and p2(7) = 44. We may notice that increasing the number
of neighbor links increases the costs of the system. Since there are less nodes with
connectivity k = 7 which is more than average connectivity 〈k〉 = 4, we need less
impulse treatment to vaccinate the network, thereby if we apply control to more
connected nodes we reduce the costs of treatment (Fig. 8.3).
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Fig. 8.3 (a) Evolution of the
system in Case 2. Number of
links: k = 7, spreading rates:
δ1k = 0.075k and δ2k = 0.1k.
(b) Aggregated system costs
are equal to J = 73.93
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Case 3 In case 3, by using the same initial set of data we variate the spreading rate
for malwares and consider δ1k = 0.075k and δ2k = 0.1k. Here we receive that the
aggregated costs are J = 122.27 and a number of impulses are p1(4) = 43 and
p2(4) = 55, then increasing the spreading rates is leading to increasing aggregated
costs and number of impulses which are needed to heal the network (Fig. 8.4).

8.6 Conclusion

This work addresses the spreading of cyber threats over large-scale networks by
investigating the optimal control policies in the impulsive form for SIR-type of
epidemics over scale-free networks. We have applied the impulse optimal control
framework to the epidemics over networks to devise impulsive protection policies
to mitigate the impact of the epidemics and contain the spreading of the malware.
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Fig. 8.4 (a) Evolution of the
system in Case 3. Number of
links: k = 4, spreading rates:
δ1k = 0.1k and δ2k = 0.2k.
(b) Aggregated system costs
are equal to J = 122.27
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With the application of the maximum principle, we have obtained the structure of
the optimal control impulses where actions are taken at discrete-time moments. We
have corroborated the obtained results using numerical examples.
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Chapter 9
Fault-Tolerant Hotelling Games

Chen Avin, Avi Cohen, Zvi Lotker, and David Peleg

9.1 Introduction

Background The Hotelling game, originated in Hotelling’s seminal work in 1929
[9], modeled the competition of two servers on a linear market (e.g., two ice-cream
vendors on a beach strip) as follows. Two servers choose a location on the line
segment [0, 1], and the payoff of each server is equal to the length of the segment of
points closer to it than the other server (a.k.a. its Voronoi cell). Hotelling showed that
if both servers locate themselves at the center of the line, then a Nash equilibrium
would be reached, i.e., a situation in which neither server would rather relocate
unilaterally.

He next showed that three servers competing on the line reach no equilibrium
state—in every configuration of servers there will be one server who can increase
its profit by moving.

This initial idea sparked decades of research. Notably, in 1975, Eaton and Lipsey
[5] completely characterized all Nash equilibria of the n server game, for every n.
Over the years numerous variations were made to each component of the game,
including the number of players, the pricing policy, the behavior of clients, and
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the geometry of the market. Eiselt et al. [7] provide an annotated bibliography
categorized by these features (for a more recent survey see Eiselt et al. [6]).

Motivation In this paper, we consider the Hotelling game in a failure prone setting,
and explore how the Hotelling game behaves differently in a world where faults
may occur either in the environment or in the servers themselves. In day to day
life, uncertainly must be accounted for. For instance, one of the players may fail
to open their store due to illness or vacation, or the road might be blocked due to
infrastructure work or safety issues, denying clients access to their preferred vendor.
While it is uncertain whether such an event occurs on a given day or not, it is certain
to happen one day. It therefore stands to reason that failures would be accounted for
in player strategies and payoffs. Indeed, fault-tolerant problems constitute a fertile
area of research in Computer Science. Yet, to the best of our knowledge, this paper
is the first to consider fault-tolerance aspects of the Hotelling game.

Contributions We analyzed two types of failure models. In the first variant, we
consider a failure prone environment, wherein it is possible that the line would be
blocked at a random point, denying the passage of clients through it. We refer to this
variant of the game with n players as the Line Failure Hotelling game and denote it
byHLF(n). We characterize all existing equilibria ofHLF(n) (Theorem 3). Moreover,
we show that each Nash equilibrium of HLF(n) corresponds to a Nash equilibrium
of the non-failure Hotelling game H(n) (Theorem 2).

The second variant we consider assumes a reliable environment, but failure prone
players. Each player (independently) has some probability of being removed from
the game. This version of the game (with n players) is referred to as the Player
Failure Hotelling game, denoted HPF(n). We show that for n ≥ 3 players, the game
admits no Nash equilibrium (Theorem 4).

Related Work Fault tolerant facility location problems have been studied exten-
sively from an optimization perspective in the operations research and computer
science communities [2, 3, 10–13]. However, relatively little work has been done
from a game theoretic approach. Two recent papers do consider fault tolerant
location games. Wang and Ouyang studied a failure prone competitive location
game in a two-dimensional environment [14]. However, they studied a variant in
which two players position several facilities each, and did not extend the model
to a greater number of players. Zhang et al. considered a discrete competitive
location model in which there are finitely many clients and finitely many potential
facility locations [15]. Their model, while similar to our model in theme, bears little
resemblance to Hotelling’s original game.

In 1987, De Palma et al. [4] introduced randomness into the Hotelling game,
though in a manner different than we do. Rather than uncertainty in the reliability of
the environment or the players, their paper studied uncertainty in client behaviors.
That is, clients normally shop at the closest vendor, but with some probability, due
to unquantifiable factors of personal taste, they skip a seller and travel further to the
next one. This paper has a similar approach to our paper, but considers a different
problem than ours.
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Other types of fault tolerant games have recently been studied. For example,
Gradwohl and Reingold [8] studied the immunity and tolerance of games with many
players. Immunity means that faults have a small affect on the utility of non-faulty
players. Tolerance means that optimal strategies remain optimal when faults are
introduced to the game (even though the utilities may be different from the case
without faults). The authors show that the games themselves are resilient to faults
and quantify the strength of their resilience. We, on the other hand, consider a game
that is very sensitive to faults and ask how would the players adapt their strategies
in a given fault model.

Organization The paper is organized as follows. Section 9.2 presents the Hotelling
game formally along with known results. Sections 9.3 and 9.4 analyze the Hotelling
game with line disconnections and server crashes, respectively. Section 9.5 con-
cludes the paper and offers future directions of research.

9.2 Model and Preliminaries

The Game The Hotelling game on the line segment [a, b], denoted as H(n, [a, b]),
involves n servers, si for i = 1, . . . , n, who place themselves at different points xi
on the segment. Each point on the line also represents a client, who will be served
by the nearest server. The market of each server is the line segment containing the
clients that will be served by it (this segment is also known as the server’s Voronoi
cell). The payoff of each server si , denoted p(si), is the length of his market. Servers
strive to maximize their payoff.

We assume clients are uniformly distributed over the line. We also assume that
no more than one server can occupy a given location; the minimal distance between
two servers is some arbitrarily small ε > 0. (Setting a minimal distance between
servers is common practice in the Hotelling game literature. This prevents servers
from infinitely moving closer and closer to each other to slightly improve their
payoff. However, the servers choose their location simultaneously and thus two
servers might inadvertently choose the same location. We assume that in this case
players make small corrections until they meet the constraint. Alternatively, we
could say that two servers can be located at the same point and split the payoff in
half. However, this leads to unnatural equilibria and thus makes the analysis more
complicated. For example, in the two-server game, locating both servers at the same
point, anywhere on the line, yields an equilibrium.) When two servers are separated
by a distance of ε they are said to be paired. We say two servers si and sj are paired
at location x if xi = x − ε/2 and xj = x + ε/2; with a slight abuse of notation,
we hereafter denote this as xi = xj = x. Conversely, a server is isolated if it is not
paired to another server.

Each server si divides its market into two sides, referred to as half-markets. We
denote byL(si) andR(si) the lengths of si’s left and right half-markets, respectively.
Therefore, the payoff of si is p(si) = L(si) + R(si). Two servers are said to be
neighbors if no server is located between them. A server that has neighbors on
both sides is called an interior server. A server that has one neighbor is called a
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Fig. 9.1 A possible configuration of the game. Servers s1 and sn are the peripheral servers, s1 and
s2 are paired, and the half-markets of s3 are marked in the figure

peripheral server. That is, the two peripheral servers are the server closest to 0 and
the server closest to 1 (See Fig. 9.1).

By definition, the market of an interior server extends half the distance to its
two neighbors. The length of an interior server’s market is thus half the distance
between its neighbors, wherever the server is located between those neighbors.
The line segment between the boundary and the corresponding peripheral server
is called a hinterland. The market of a peripheral server includes its hinterland in
one direction, and extends half way to its neighbor in the other direction.

The game is in a Nash equilibrium if no server can increase its payoff by moving
to a location other than its present location.

Known Results Eaton and Lipsey [5] proved that the following are necessary and
sufficient conditions for an equilibrium:

(EL1) Each peripheral server is paired.
(EL2) No server’s whole market is smaller than any other server’s half-market.

The proof that these conditions are sufficient is a bit involved, but it is easy to see
why they are necessary. If (EL1) does not hold, a peripheral server would increase
its profit by locating closer to its neighbor. (EL2) follows from the fact that any
server can obtain a market equal to any other server’s half-market by pairing with it.

By applying these equilibrium conditions, Eaton and Lipsey determined the
equilibria of the game depending on the number of servers, as follows.

One Server The payoff of a single server s1 is p(s1) = 1, wherever it is located.

Two Servers As shown by Hotelling, there is a unique equilibrium, where the two
servers are paired at x1 = x2 = 1/2, with payoffs p(s1) = p(s2) = 1/2.

Three Servers No equilibrium exists. It follows from the fact that (El1) and (El2)
contradict one another in this case.

Four Servers There is a unique equilibrium, with equal payoffs of 1/4, where two
servers are paired at x1 = x2 = 1/4, and the other two at x3 = x4 = 3/4.

Five Servers There is a unique equilibrium, where two servers are paired at x1 =
x2 = 1/6, two others are paired at x4 = x5 = 5/6, and an isolated server is located
at x3 = 1/2. Note that here, the payoffs are not uniform: s3 has payoff p(s3) = 1/3,
while all other servers have payoff 1/6.

More than Five Servers There exist infinitely many equilibria, characterized as
follows: peripheral servers are paired with their neighbors and have identical
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Fig. 9.2 Equilibrium with six servers

hinterlands. Each peripheral pair is separated from the closest server by a distance
twice as long as the hinterland. The interior servers are paired or isolated.

As an example, consider the game H(6, [0, 1]). Let the length of the hinterland
be x, and without loss of generality let the servers be ordered such that x1 < x2 <

. . . < x6. From the above characterization of equilibria, it follows that in every
equilibrium s1 and s2 are paired at x1 = x2 = x, s3 is located at x3 = 3x, s4 is
located at x4 = 1 − 3x and s5 and s6 are paired at x5 = x6 = 1 − x. The distance
between s3 and s4 is at least ε and at most 2x (by condition (El2)).

That is, the above described configuration is an equilibrium for every x such that
ε ≤ (1 − 3x)− 3x ≤ 2x, or rather 1/8 ≤ x < 1/6. (See Fig. 9.2.)

9.3 Hotelling Game on the Line with Link Failures

Let us now consider the game with environmental failures. For concreteness, let
us assume that the only possible failure is a disconnection of the line at point f ,
chosen uniformly from [0, 1], which severs the line into two separate markets, and
forces some of the clients (specifically, those disconnected from their originally
chosen server) to change their server selection. For simplicity, assume at most one
disconnection may occur, with constant probability 0 < r < 1, at a location f ∈
[0, 1] chosen uniformly at random. We call this game the Line Failure Hotelling
game and denote it as HLF(n, r, [0, 1]). The new payoff function is denoted as p LF

and becomes the expected profit under these assumptions (i.e., the payoff of player
si is 1 − r times its payoff in the fault-free case plus r times its expected payoff in
case a disconnection occurred at point 0 < f < 1).

Let us begin by considering this game with only one server. Unlike the basic
Hotelling game, in which the location of a single server is inconsequential, in this
setting the optimal location of a single server is at the center of the line, x1 = 1/2,
as we show next. Let x1 ∈ [0, 1] be the location of the server s1. If no failure occurs,
the payoff is 1. If the line is disconnected at 0 < f < x1, then the payoff is 1 − f .
If the line is disconnected at x1 < f < 1, then the payoff is f . It follows that the
payoff of s1 is

pLF(s1) = E[p(s1)] = (1 − r) · 1 + r ·
[∫ x1

0
(1 − f )df +

∫ 1

x1

f df

]

= 1 − r

2
+ rx1 − rx2

1 .
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That is, pLF(s1) is a function of x1 that attains its maximum at x1 = 1/2. Hence
the only equilibrium is when the server is at the center of the market.

We next consider the two server variant. Without loss of generality let x1 < x2,
i.e., s1 is located to the left of s2. Observe that the payoff of s1 is pLF(s1) = LLF(s1)+
RLF(s1), where LLF(s1) is the length of its hinterland, and RLF(s1) is the length of
its half-market on the right.

• Calculating LLF(s1): if the line is disconnected at location 0 < f < x1, then the
length of s1’s hinterland is L(s1) = x1 −f . Otherwise, L(s1) = x1. The expected
length is therefore

LLF(s1) = E[L(s1)] = (1 − r) · x1 + r ·
[∫ x1

0
(x1 − f )df +

∫ 1

x1

x1df

]

= x1 − r · x2
1

2
.

• Calculating RLF(s1): if no failure occurs, or if the line is disconnected at location
0 < f < x1 or x2 < f < 1, then the length of the half-market is R(s1) =
(x2 − x1)/2. If, on the other hand, an edge is disconnected at x1 < f < x2, then
R(s1) = f − x1. Therefore,

RLF(s1) = E[R(s1)] = (1 − r) · x2 − x1

2
+ r ·

∫ x2
x1
(f − x1)df

x2 − x1
= x2 − x1

2
.

It follows that the payoff of s1 is

pLF(s1) = LLF(s1)+ RLF(s1) = x1 − r · x2
1

2
+ x2 − x1

2
= x2 + x1

2
− r · x2

1

2
.

This function attains its maximum at x1 = 1/(2r). That is, as long as s1 remains
on the left of s2, s1 would move to 1/(2r). If 1/2 ≤ x2 < 1/(2r), then s1’s best
response would be pairing with s2.

Note that 1/(2r) > 1/2 for every 0 < r < 1 and thus if x1 = 1/(2r) and x2 >

1/(2r), then s2 would prefer to move to the left of s1. It follows that x2 < 1/(2r).
By symmetry, it also holds that x1 > 1−1/(2r). Hence, condition (EL1) holds, and
as in the basic Hotelling game, the only equilibrium is when both servers are paired
at the center of the line, i.e., x1 = x2 = 1/2.

Consequently, for the general game, with n ≥ 3 servers, we have the following.

Observation 1 In the Hotelling game HLF(n, r, [0, 1]), the following holds:

1. A peripheral server located at distance x from the boundary has a hinterland
with an expected length of x − rx2/2.

2. Two neighboring servers at distance x gain a half-market of expected length x/2
each in the direction of the other (as in the basic Hotelling game).
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3. Each peripheral server would increase his hinterland up to 1/(2r). That is,
condition (EL1) holds unless the neighbor of a peripheral server is at a distance
of more than 1/(2r) from the boundary.

In light of the observation above, if the game is played with three servers, then
no equilibrium exists. To see why, observe that if the interior server s2 is located
between 1 − 1/(2r) and 1/(2r), then the peripheral servers s1 and s3 would pair
with s2 on both sides leaving it with 0 payoff, and thus s2 would move. If, on the
other hand, s2 is located at x2 > 1/(2r), then s1 would locate at 1/(2r) and s3
would pair with s2. But then s3 could improve its payoff and would thus move. Due
to symmetry, a similar argument holds if we suppose s2 is located at x2 < 1−1/(2r).

Next, consider the four server gameHLF(4, r, [0, 1]). Let us consider the strategy
profile where the location 0 < x < 1 satisfies that when s1 and s2 are paired at x
and s3 and s4 are paired at 1 − x all four servers receive the same expected payoff.
The detailed calculation is deferred to the full paper [1], but this occurs when x =
(2 − √

4 − r)/r , and by Observation 1 this is a Nash equilibrium.
Moreover, this Nash equilibrium is unique due to the following considerations.

First, by Observation 1, the peripheral servers must be paired with their neighbors.
Second, the peripheral servers must have hinterlands of the same length, otherwise
one would take the hinterland of the other. Third, every two paired servers must have
the same expected payoff, otherwise one would take the half-market of the other. It
follows that the configuration above is the only Nash equilibrium.

We next consider the general n-server game HLF(n, r, [0, 1]). By Observation 1,
for any given configuration of servers, adding link failures to the game only affects
the expected payoff gained from the hinterlands. Namely, a hinterland of length x
shrinks by rx2/2 in expectation, while every other half-market retains its length in
expectation. This leads to the following theorem. (Hereafter, proofs are deferred to
the full paper, see [1].) Let a = rx2

1/2 and b = 1 − rx2
n/2, hence

[a, b] =
[
r · x2

1

2
, 1 − r · (1 − xn)2

2

]

.

Theorem 2 Let 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1. The configuration (x1, x2, . . . , xn)

is a Nash equilibrium of the game HLF(n, r, [0, 1]) if and only if it is a Nash
equilibrium of the game H(n, [a, b]).

Theorem 2, in conjunction with conditions (El1) and (EL2) for an equilibrium of
the basic Hotelling game, yields the following conditions for an equilibrium of the
Hotelling game with line disconnections.

Corollary 1 The following conditions are sufficient and necessary for an equilib-
rium of the Hotelling game on the line with line disconnections.

(1) The peripheral servers are paired, and are located at an identical distance from
the boundary, x.

(2) No interior server’s whole market is smaller than x − r · x2/2.
(3) No interior server’s half market is larger than x − r · x2/2.



140 C. Avin et al.

To summarize, this section established the following theorem.

Theorem 3 In the n-server Hotelling game HLF(n, r, [0, 1])
(i) For n = 1, a Nash equilibrium exists with x = 1/2.

(ii) For n = 2, there exists an equilibrium with x1 = x2 = 1/2.
(iii) For n = 3, no equilibrium exists.
(iv) For n = 4, there exists an equilibrium with x1 = x2 = (2 − √

4 − r)/r ,
x3 = x4 = 1 − (2 − √

4 − r)/r .
(v) For n = 5, there exists an equilibrium with x1 = x2 = (3 − √

9 − 4r)/(2r),
x4 = x5 = 1 − (3 − √

9 − 4r)/(2r) and x3 = 1/2.
(vi) For n ≥ 6, there exist infinitely many equilibria, characterized as follows:

peripheral servers are paired with their neighbor and have identical hinter-
lands of length x. Each peripheral pair is separated from the closest server by
a distance twice as long as x − r · x2/2. The interior servers are paired or
isolated such that no server’s whole market is smaller than x − r · x2/2, and
no server’s half-market is larger than x − r · x2/2.

9.4 Hotelling Game on the Line with Server Crashes

Let us now consider a different failure setting, where the environment is resilient,
but the servers might crash. For concreteness, let us assume that each server might
fail with probability 0 < r < 1 independently of the others. Once a server has failed,
the clients who chose this server originally must change their server selection. We
call this game the Player Failure Hotelling game and denote it as HPF(n, r, [0, 1]).
The new payoff function is again the expected profit under these assumptions and is
denoted as pPF.

For n = 1, it is clear that the server’s expected payoff is pPF(s1) = 1−r wherever
its location is. For n = 2, it is easy to see that server crashes have no impact; the
game is equivalent to the basic Hotelling game and the only Nash equilibrium is
when the servers are paired at the center.

Let us now analyze the case where there are three servers on the line. In every
equilibrium, the peripheral servers are paired with the interior server on both sides,
and the interior server is located at 1/2. This is because when pairing with the
interior server, each peripheral server is closest to its neighbor regardless of which
servers crash. Moreover, if they are not located at the center, then one peripheral
server could improve its payoff by taking the hinterland of the other. Note that, in
this state, the expected payoff of the peripheral server s1 is

pPF(s1) = E[p(s1)] = (1 − r)
(

1

2
+ 1

2
· r2

)
,

since it always gets its hinterland (provided it did not fail), and it gets the remainder
of the line only if both other servers have failed. By a similar case analysis, the
expected payoff of the interior server s2 is
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pPF(s2) = E[p(s2)] = (1 − r)
(

0 + 1

2
· r(1 − r) · 2 + 1 · r2

)
,

since (provided it did not fail) it gets nothing if both other servers do not fail, it gets
half the line if one of the other servers has failed, and it gets the entire line if both
other servers have failed. Note that s2 can move to take s1’s hinterland, hence this
state would be a Nash equilibrium only if pPF(s1) = pPF(s2), i.e.,

(1 − r)
(

1

2
+ 1

2
· r2

)
= (1 − r)

(
0 + 1

2
· r(1 − r) · 2 + 1 · r2

)
,

which yields r2 − 2r + 1 = 0, whose only solution is r = 1, i.e., all servers crash
in every game, which is obviously an equilibrium, but not an interesting one. This
proves that no equilibrium exists when there are three servers in the game.

We expand this logic to make a general claim about the game.

Theorem 4 For every n ≥ 3, the Player Failure Hotelling game HPF(n, r, [0, 1])
has no Nash equilibrium in pure strategies.

Proof Sketch Observe that in this game, interior servers must “think” like periph-
eral servers, i.e., each server si tends to move away from a boundary and towards
one of its neighbors. This holds because each interior server si has some probability
of becoming a peripheral server, in which case si would profit by increasing the hin-
terland. However, si is more likely to become the peripheral server of the boundary
closest to it (separated by fewer servers), and thus would do better in expectation by
moving away from this boundary and towards the center. It follows that all servers
would converge towards the center, which clearly never results in an equilibrium.

9.5 Conclusion

In this paper we considered two fault tolerant variants of the Hotelling game: link
failures and player faults. On the one hand, we have shown that the game is resilient
to link failures in some sense—each equilibrium is related to an equilibrium of the
no-faults Hotelling game by rescaling the interval along with player positions. On
the other hand, we have shown that the game is vulnerable to player failures. No
equilibrium exists because players tend to converge towards the center.

There are many possible future directions for this research. A large number of
variants of the Hotelling game have been studied and each would be interesting to
consider in a faulty setting, such as: the Hotelling game on graphs, on the plane or
over Rn, the Hotelling game with sequential entry, and so on. Another interesting
direction would be to try other fault models. Some examples are models where the
number of faulty players is bounded, where faulty players remain in the game but
act unexpectedly (or “Byzantinely”), or where faults are injected adversarially rather
than at random.
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Chapter 10
A Social Choice Theoretic Approach
for Analyzing User Behavior in Online
Streaming Mobile Applications

Neetu Raveendran, Kaigui Bian, Lingyang Song, and Zhu Han

10.1 Introduction

Social choice theory is a framework that analyzes how a group of individuals arrives
at a collective decision, called the social choice, from among a set of individual
preferences or opinions. It is assumed that each individual has a preference
relation for a given set of alternatives [9]. Social choice deals with combining
these preference relations into a single preference relation that represents the
preference of the whole group. The set of individual preference relations is called a
preference profile [4]. Decision making scenarios in which social choice theory finds
application are ubiquitous; electing a leader from among a set of political candidates
in a democracy, choosing a chairman from among the union members, selecting a
winner from among the contestants in a reality television show, and so on.

Social choice theory is prevalent in many research areas. Geist and Peters [6]
relies on computer-aided methods like SAT solvers to solve NP-complete problems
in social choice. A few research directions in the inter-disciplinary field known as
computational social choice, which combines social choice theory and computer
science, are discussed in [4]. Anshelevich and Postl [2] studies a scenario where
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each individual has a cost associated with each alternative, and also, evaluates the
effectiveness of randomized social choice algorithms. A novel decision making
scheme known as Maximal Recursive (MR), which has better efficiency and
computability compared to an existing alternative is proposed in [3].

The current era of enormous social network and live streaming traffic shows great
potential for a social choice study, in order to better learn user behavior. Social
choice theory is used to study decision making in choices of online services by
users in [7]. A user preference matrix is created firstly, according to each user’s
preferences. Subsequently, using this matrix, 0–1 Integer Linear Programming
(ILP) is performed on Kemeny’s social choice functions, which is discussed in detail
later. As a result, an optimal ranking of the online services, along the lines of the
common social preference is obtained.

Even though social choice analysis is performed on online services using
Kemeny’s functions in [7], an evaluation of online live streaming applications,
considering other important aspects of social choice has not been performed
previously, according to the authors’ knowledge. Therefore, in this paper, the
concepts of social choice theory are employed in exploring the characteristics of
the online live streaming paradigm. Accordingly, we utilize the social choice model
to analyze a real-time dataset from an online live streaming application and draw
insights on the user behavior. We also formulate our considered scenario as an ILP
optimization problem similar to [7], and validate the results from the social choice
study with the results obtained by simulating the ILP optimization. The results
achieved through our analysis depict the effectiveness of the model in evaluating
the group preferences of users in online live streaming applications, and also imply
the feasibility of the model in other similar research.

We organize the rest of this paper as follows. In Sect. 10.2, we firstly introduce
the system model, and then, formulate the considered social choice model as an
ILP. We discuss the results of the analysis performed on the procured live streaming
dataset in Sect. 10.3. Here, we explore the application of social choice theory on the
dataset, and discuss a few insights in Sect. 10.3.1. Thereafter, we validate the results
obtained from this social choice analysis through the formulated ILP in Sect. 10.3.2.
Finally, based on our analysis, we draw conclusions in Sect. 10.4.

10.2 System Model and Problem Formulation

We consider an online live streaming scenario, where performers can transmit
their performances through a live multimedia streaming platform, and users can
stream and watch these performances live on their mobile devices or computers.
Accordingly, we consider a scenario with n performers and m users. Each of the m
users have their individual preferences for each of the n performers, according to
their interests in the streamed content. The users can also send messages and virtual
gifts to their preferred performers.
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In order to utilize the concepts of social choice theory to better analyze the
considered scenario, we need to combine the individual preference relations of the
users into a single preference relation representing all the users. To this end, we
represent a preference relation of user ui , where i ∈ {1, 2, . . . , m}, over the set of
alternatives, which is the set of performers {p1, p2, . . . , pn}, as

pj �i pk, (10.1)

which denotes that user ui prefers performer pj to performer pk .
Next, we define three matrices, R,C, and E, which reflect the user preferences

on performers, and an S matrix reflecting the group preferences on performers, as
shown below, similar to [7].

• R = [
rij
]
m∗n, where rij ∈ {1, 2, . . . , n},∀i ∈ {1, 2, . . . , m}, and ∀j ∈

{1, 2, . . . , n} consists of scores assigned by the users to the performers according
to their preferences. Here, each of the m rows of the matrix, representing the
m users consists of n columns, containing the scores assigned to each of the
n performers. The higher the score assigned, the more preferred the performer;
for example, if r11 > r12, then p1 �1 p2, i.e., user u1 prefers performer p1 to
performer p2.

• C = [
cjk

]
n∗n,∀j, k ∈ {1, 2, . . . , n} consists of the count of users preferring

each of the n performers to each of the other n − 1 performers, which can be
expressed as

cjk =
m∑

i=1

I (pj �i pk), (10.2)

where I is an indicator function, which can be defined as

I (pj �i pk) =
{

1, pj �i pk,
0, pj ≺i pk. (10.3)

• E = [
ejk

]
n∗n,∀j, k ∈ {1, 2, . . . , n} denotes the ratio of the difference between

the number of users who prefer performer pj to performer pk and the number of
users who prefer performer pk to performer pj , to the number of users, which
can be defined as

ejk = (cjk − ckj )
m

. (10.4)

• S = [
sjk
]
n∗n,∀j, k ∈ {1, 2, . . . , n} denotes the group preferences on performers,

which is the social choice in our scenario, and can be defined as

sjk =
{

1, pj � pk,
0, pj ≺ pk. (10.5)
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Note that the preferences here are denoted by � and ≺ rather than �i and ≺i , as
these are the preferences of the whole group.

As discussed before, social choice is a model to combine individual preferences
into a single preference representing a whole group. In such a model, a function
that maps the preference profiles of the individuals to the most preferred alternative
of the group is called a social choice function. There are different social choice
functions like the majority rule, the Borda count [13], and so on. Kemeny’s
functions is a category of social choice functions for group decision making like
voting, and maximizes the similarity between the preference of the group and the
individual preferences [7]. Kemeny’s function assigns a value for each ranking to
indicate this similarity, and the social choice is the ranking with the maximum value.

Computation of Kemeny’s functions have been mentioned to be NP-hard in
[1]. Therefore, [7] determines the optimal social ranking of online services for
Kemeny’s functions using a 0–1 ILP. ILP problems are constraint optimization
problems, where the optimization of linear functions with binary integer variables
is the objective [8].

The 0–1 ILP to obtain the Kemeny’s functions as in [7] can be formulated for
our scenario as

fkem = 2 max
n∑

j,k=1

ejksjk,

s.t.

⎧
⎨

⎩

sjk ∈ {0, 1},
0 ≤ shj + sjk − shk ≤ 1,

(10.6)

∀h < j < k, where fkem gives the Kemeny’s function value.

Here, the first constraint makes sure that the sjk values are in the range given
by (10.5). The second constraint assures that the preferences are transitive, i.e.,
if performer ph is preferred to performer pj , and performer pj is preferred to
performer pk , then, performer ph is preferred to performer pk , ∀h < j < k. The
above optimization yields the social choice matrix values, S = [

sjk
]
n∗n,∀j, k ∈

{1, 2, . . . , n}, which can be considered as an indicator function taking a value equal
to 1, if the number of users preferring performer pj to performer pk is more than
the number of users preferring performer pk to performer pj , and taking a value of
0, otherwise. In short, the values of the social choice matrix S, obtained through the
above optimization, provides the group preference relation for the m users on the n
performers.
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10.3 Analysis and Discussion

In this section, firstly, we show the results from the analysis of a real-time dataset
acquired from an online live streaming platform, in Sect. 10.3.1. Thereafter, in
Sect. 10.3.2, we utilize the 0–1 ILP formulation as shown before, to validate the
results from the real-time data analysis.

10.3.1 Analysis of Real-Time Dataset

Online live streaming has been gaining tremendous popularity in China since 2015,
with more than 325 million total viewers [11, 12]. Hence, a real-time dataset from
such a set of users would be a microcosm of the overall online live streaming
audience. Accordingly, we were able to obtain a dataset from a Chinese live
streaming mobile application named Bangyang. We performed an analysis of the
dataset obtained for the months of May 2015–March 2016, with a monthly average
of around 1344 users and 53,386 chat messages, with the help of SQL. The chat
messages were sent by the users to the performers; the more preferred the performer,
the higher the number of chat messages sent by the user. Therefore, we made use of
the number of chat messages as a parameter to understand the preference relations
of the users, and those of the whole group.

As the platform went through around thousands of users and around 50, 000
of chat messages per month, we needed a subset of this traffic, in order to better
understand the preference profiles of the users and the social choice of the whole
group. For this purpose, we short-listed ten users who contributed the largest shares
of chat message traffic to the performers. Then, we analyzed the top five performers
to whom each of these users sent the most number of messages, which forms the
preference profiles of these ten users. We also analyzed the data to determine the
top three performers receiving the most number of chat messages overall.

Figure 10.1 demonstrates the results of this analysis using the data for May 2015,
a month which witnessed 77,839 chat messages, 1934 performers, and 2167 users.
Due to privacy reasons, the performer IDs are denoted as P1, P2, and P3 here.
We can observe that the first preference for user 1 is P1, second preference is P2,
but the third, fourth, and fifth preferences are not among the top three performers,
and hence, we have marked those as irrelevant. Similarly, we can also observe the
preference lists of users 2–10 in the figure. Additionally, the topmost row denotes
the overall top three performers, which is indeed the preference profile of the group,
i.e., the social choice.
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Fig. 10.1 Preference profiles of users and social choice

We can clearly observe from Fig. 10.1 that out of the top ten users, 90% had
P1, 50% had P2, and 20% had P3 in the top five preferences. This reinforces
the group preference profile, i.e., the social choice obtained through the data
analysis, as P1 � P2 � P3.

Such a function which maps the preference profiles of the users to a preference
relation for the whole group, as seen from the above analysis, is called a social
welfare function, which is the key element in one of the most important results of
social choice theory. This concept, known as the impossibility theorem put forward
by Kenneth Arrow [5, 9, 14], can be applied in our scenario after understanding the
independence of irrelevant alternatives property, which is demonstrated using our
analysis results in Fig. 10.2.

According to this property, when the alternatives which are irrelevant to the
obtained group preference relation are removed from the set of alternatives, and
then a group preference relation is reevaluated, it should not be different from the
initially obtained group preference relation. We can observe that from Fig. 10.1, if
we remove the performers marked as irrelevant, we obtain the preference profiles
as shown in Fig. 10.2. Now, if we reevaluate the group preference relation, we still
get P1 � P2 � P3, which is the group preference initially obtained. Hence, our
considered scenario satisfies this property.

Now, we consider the relevance of the much celebrated Arrow’s theorem in our
scenario. According to this theorem, when there are three or more alternatives, a
social welfare function will either not select unanimously from a set of individual
preferences, or will be similar to a dictatorship, where one particular individual’s
preference is selected to be the group preference, or will not hold the independence
of irrelevant alternatives property [9, 10].
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Fig. 10.2 Independence of irrelevant alternatives

From Figs. 10.1 and 10.2, we can observe that even though our scenario,
which consists of more than three alternatives, satisfies the independence
of irrelevant alternatives and the non-dictatorship properties, the group
preference relation (P1 � P2 � P3) is not chosen unanimously by all the top
ten users in our dataset, i.e., P1 � P2 � P3 is not the preference relation for
all the ten users. This clearly demonstrates the relevance of Arrow’s theorem
in our scenario.

10.3.2 Validation Using ILP

Next, we utilize the 0–1 ILP formulation to obtain the Kemeny’s functions as
shown in (10.6), to validate the data analysis results we discussed. To this end,
we implement MATLAB simulations to obtain the values in the group preference
matrix, S = [

sjk
]
n∗n,∀j, k ∈ {1, 2, . . . , n}.

Figure 10.3 shows the values used in the R matrix, which are the scores assigned
by the users to the performers according to their individual preferences. These are
the scores determined by considering the preference profile of each of the top ten
users, as shown in Fig. 10.1. For example, for user 9, out of the top five preferences,
P1 comes first, P2 comes third, and P3 comes fifth, and hence, the scores for
performers 1, 2, and 3 are 5, 3, and 1, respectively. Similarly, we can comprehend
the scores assigned by the other users to the performers.
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Fig. 10.3 R matrix with user
scores for performers
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Fig. 10.4 S matrix obtained
using ILP demonstrating the
social choice Performer 1 0
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The values in the S matrix obtained by simulating the 0–1 ILP in (10.6)
are shown in Fig. 10.4. The value of 1 in the first row and second column
indicates that in the group preference relation, performer 1 is preferred to
performer 2. Similarly, the remaining values of 1 denote that performer 1 is
preferred to performer 3, and performer 2 is preferred to performer 3 in the
group preference relation, resulting in P1 � P2 � P3 as the social choice,
which is exactly the same as observed in the analysis results in Fig. 10.1. Thus,
the results from the ILP formulation substantiate the data analysis results in
Sect. 10.3.1.

10.4 Conclusions

This paper makes use of social choice theory as a model to aggregate individual
preferences in a group to a single preference relation for the entire group. It is
clearly demonstrated in the analysis that social choice is an effective framework for
exploring the behavior of online live streaming applications, which have immense
popularity among current internet users. We observe from the Bangyang dataset
analysis results that social choice distinctly represents the aggregated performer
preferences of the considered group of users. We also underline the prominence
of concepts like the independence of irrelevant alternatives and Arrow’s theorem
in the considered scenario. Furthermore, we validate the results obtained through
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the social choice model analysis using an ILP model simulation of our scenario.
In this paper, as the scope of evaluation is a real-time dataset obtained from a live
streaming platform with huge traffic, it is conspicuous that the social choice model
can be employed to further research similar scenarios.
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Chapter 11
Social Coordination and Network
Formation with Heterogeneous
Constraints

Qingchao Zeng

11.1 Introduction

In many economic and social situations, people can benefit from choosing the same
action or following the same standard. Coordination games with multiple Nash-
Equilibria can explain the internal mechanisms in those situations. Many literature
have explored the mechanisms by which conventions become established under
fixed interaction structures in coordination games. And the most important result
is that under myopic best response rules risk dominate conventions will be the long-
run equilibria.

In this paper, we set up a model where players decide which action to choose in a
coordination game and who they connect with. We aim to understand the mechanism
in a setting where agents are divided into two groups via different constraints of
links. We encompass two groups of agents called N1 and N2. The agents in the N1
support a smaller limit number of links than the players in the N2 for the reason
of less resources, which is different with the scenario where the overall population
shares the same limit number of links à la Staudigl and Weidenholzer [23]. This
linking constraints are reasonable since the number of population with whom one
agent links is fairly small compared with the overall population in many situations.
Moreover, giving a example of Weibo (a social network application which is similar
with Twitter), general users can only follow no more than 2000 others, where
the upper bound of users that VIP users can follow is 20,000, where the daily
average number of active users is more than 1 billion. For instance, such constrained
interactions will arise in many circumstances where the time agent can spend on
social network is limited and different, and there are increasing marginal costs where
agents’ affordability is different.
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In our model, we consider a model of one side network formation where each
agent can decide on the set of players whom to connect with costly à la Staudigl
and Weidenholzer [23]. The agents in the groupN1(andN2) may connect with other
agents both in group N1 and N2, and those two connected players play a 2 × 2
coordination games with each other. In each period, players in the two groups select
an action to play in all of her connections and the choice of linking sets to maximize
their respected payoffs under the myopic best response rules.

The structure of this paper is as follows. Section 11.2 reviews the related
literature of social coordination and network formation. Section 11.3 describes
the model and introduces the significant methods used. Section 11.4 considers the
constrained interactions and indicates the main results we find. Section 11.5 presents
the conclusion on our discussion.

11.2 Related Literature

There are lots of previous works related to interactions within the same population,
for global interaction models see, e.g., Kandori et al. [22], Kandori and Rob [21],
Young [25] and for local interaction models see, e.g., Blume [7, 8], Ellison [10, 11]
and Alós-Ferrer and Weidenholzer [2]. A branch of present literature related to
social coordination and network formation considers scenario where the agent has
to decide on both the action choice and the set of interaction partners. In Goyal and
Vega-Redondo [16], agents unilaterally decide on whom to connect with costly. And
the payoff of coordination games is received by both sides of the link whereas in our
model the payoff is only received by the active side. They find that when the linking
costs are relatively low, the risk-dominate convention is selected whereas the payoff-
dominate convention emerges when the costs of maintaining a link are relatively
high. In Hojman and Szeidl [18] , they set up a model where agents only have to pay
for their out-degree links but can receive payoffs from all path-connected partners.
Weidenholzer [24] presents a local interaction model where agents only can interact
with a small subset of the population rather than the overall population. They show
that on the scenario where myopic best response rules is used and the interaction
structure is fixed, the risk-dominate convention will emerge in long run. In Jackson
and Watts [19], they propose a setup in which forming a link needs the agreement
of both sides of the interactions. They find that the selection of conventions depends
on the level of linking cost: the risk dominate convention is selected for low linking
costs whereas when the linking costs are high, both risk dominate convention
and payoff dominate convention are selected. Nevertheless, they do not find any
evidence indicating that constrained interactions have a significant impact on the
selection of conventions. Staudigl and Weidenholzer [23] discuss the effect of
constrained interactions in their model. In their discussion, when the constraint
of actively linking number is relatively smaller than the overall population, payoff
dominate convention will be selected finally, and when the limit number is large
enough, risk dominate convention can be observed in long run. The main difference
between our model and the model in Staudigl and Weidenholzer [23] is that there
are two groups with different constraints of actively linking number in our model.
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There is a different branch of literature where in those model agents not only
decide which action to play in the coordination game, but also choose among
several locations in which they interact with other agents and play the coordination
game. The previous works in this branch include Ely [14], Bhaskar and Vega-
Redondo [6], or Jackson and Watts [20]. In these literature, agents can simply move
away from one location to another instead of changing their actions to coordinate
with interaction partners for maximizing their respected payoffs. Therefore, by
“voting by feet,” agents most likely select payoff dominate convention. Dickmann
[9] proposed a model where there are multiple locations and barriers on mobility
through different locations. In his discussion, compared with unrestricted mobility
where only payoff dominate convention emerge in the long run, if there are
constraints on mobility, both two different conventions are co-existent. In Anwar
[4], this result is reinforced.

The present works are also related to the recent literature in the discussion of
learning through imitation of successful behavior. In the early literature (see, e.g.,
Ellison and Fudenberg [12, 13], or Bala and Goyal [5]), in the scenario where the
information received by agents is only from their own past experience and the
experience of neighbors, the overall population will select efficient outcomes in
the long run. Later Alós-Ferrer and Weidenholzer [1] show that payoff dominate
convention will emerge uniquely in the scenario where the interactions are neither
too global nor too local, based on the circular city model in Ellsion [10] and learning
by imitation rules. Alós-Ferrer and Weidenholzer [3] expand their discussion to
arbitrary networks in a local interaction model. As in Alós-Ferrer and Weidenholzer
[1], agents learn by imitation of neighbors’ successful actions. They show that if
information on successful actions is capable of streaming through the network, as
well as the minimal number of neighbors is relatively small compared with the
maximal number of neighbors without interactions, efficient conventions will be
selected ultimately. In Fosco and Mengel [15], they consider a Prisoners’ Dilemma
model where agents learn by imitation of successful behaviors of both action choices
and interaction partners. They find that in the long run, defectors and cooperators
both exist, yet two types of agents are fully separated into two disconnected
components. The main difference between our model and these models in this
branch of literature is in the revision process of agents’ strategies, we consider a
model of myopic best response rules à la Kandori et al. [22] and Young [25] instead
of learning by imitation rules.

11.3 The Model

Consider N agents who play a 2 × 2 coordination games with each other. Each
agent i can choose an action ai ∈ {A,B}. We denote by u(ai, aj ) the payoff agent i
receives from the interaction with agent j. The following table is the payoff matrix
of this coordination game.
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A B

A a, a c, d

B d, c b, b

Assume that b > c and a > d, so that the strategy (A,A) and (B,B) are strict
Nash-Equilibria. We assume b > a, so (B,B) is Pareto-Efficient in the sense that
the payoffs are larger. Further assume that a + c > b + d, hence (A,A) is risk-
dominate, according to Harsanyi and Selton [17]. In addition we assume that a > c,
so that A-player will be more willing to interact with A-players. Thus, the payoffs
in the coordination game is ordered in b > a > c > d.

Besides action choices, agents also decide whom to interact with. We denote
gij = 1 if agent i actively forms a link to agent j . Otherwise gij = 0. Agents
cannot link to themselves, so we have gii = 0 for all i ∈ I . We divide the entire
population into two groups N1 and N2, and denote by n1 = |N1| and n2 = |N2| the
number of population in two groups whereN = n1+n2. Every agent inN1 can only
support a limited number k1 of active links and every agent inN2 can only support at
most k2 active links, where 1 ≤ k1 < k2 ≤ N − 1. And there is no restriction in the
number of incoming links for each agent in I . One linking strategy of agent i can be
summarized by an N-tuple gi = (gi1, gi2, . . . , gin1 , . . . , gi(n1+1), . . . , giN ) ∈ Gi =
{0, 1}N .

A pure strategy si of agent i includes two parts: action choice ai ∈ {A,B} and
linking strategy gi ∈ Gi . Hence, si = (ai, gi) ∈ Si = {A,B} × Gi . We denote the
strategy profile by a tuple S , where s = (si)i∈I ∈ S = Πi∈I . We assume that
douti = Σjgij is the number of players i actively links to, and dini = Σjgji is the
number of players he passively links to. Hence, ∀i ∈ N1, we have douti ≤ k1 and
∀j ∈ N2, we have doutj ≤ k2. Further, we assume that m is the number of A-players
in the whole group I at the given strategy profile s. Hence, the number of B-players
is N −m.

We assume that payoff only flows to the active side of a link. And the payoff of a
agent is determined by the sum of payoffs he received from the coordination games,
minus the entire linking cost γ . So given the strategy profile s = (si)i∈I , the overall
payoff is given by:

Ui(s, s−i ) =
N∑

j=1

giju(ai, aj )− γ douti (11.1)

The first term in Function 11.1 is the total payoffs he received from the coordination
games with his neighbors he actively links with. The second term is the total linking
costs. In a more general model, there is a third term that means the payoffs from
the coordination games with agents he passively linked with. So the payoff function
should be:

Ũi(s, s−i ) =
N∑

j=1

giju(ai, aj )− γ douti + p(dini ) (11.2)
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In Function 11.2, p(dini ) is an increasing function depending on the number of
passive connections dini , but not on the actions used by those neighbors. And since
the payoff of the coordination games is only on the active side, agents need not to
consider the passive links when they make a decision on action choice and linking
strategy. Hence, for a best responding agent, Function 11.1 equals to Function 11.2.

In the following, we denote by:

−−−−−−−−→
Ai[k1]Bj [k2] = {s ∈ S |ai = A, aj = B and douti = k1, d

out
j (11.3)

= k2,∀i ∈ N1, j ∈ N2}

the set of monomorphic states, where all agents in group N1 choose the same action
A and support k1 links, moreover, all agents in group N2 choose the same action B
and support k2 links. We consider all states in this set as absorbing sets.

We assume that time is discrete, denoted by t = 1, 2, 3, . . .. At each period t ,
the strategy profile of all agents is determinate. But at each period t , each agent
has a chance to modify their strategy with an independent probability λ ∈ (0, 1).
When such a modification opportunity arises, each agent chooses a best response to
the other agents’ strategies to maximize her payoff in the preceding period. More
formally, the period t , agent i chooses the strategy:

si(t) ∈ arg max
si∈Si

Ui(si , s−i (t − 1)) (11.4)

where s−i (t − 1) indicates the strategy profile of the other agents except i in the
previous period. If agents have multiple best response strategies, we assume that
they choose one of them at random. We assume that each agent may make mistakes
that she updates her strategy—including action or links—at random, with a positive
probability ε. We further assume that ε is independent across agents, time, and
payoffs.

Note that agents make a decision of action and linking choice only depending
on the distribution of actions in the overall population. Since the action choices and
linking decision is synchronous, an agent has to analyze which particular action she
will choose taking into account her optimal linking decision. Therefore, the decision
problem is divided into two steps: First, given the distribution of both actions A
and B, decide the optimal linking set. Second, given the optimal set in the first
step, determine which action to play. To solve the question in the first step, we use
the concept of link optimized payoff function, for short LOP given by Staudigl and
Weidenholzer [23]. The LOP is given by:

v(ai,m) = max
gi∈Gi

Ũ ((ai, gi),m) (11.5)

where Ũ ((ai, gi),m) denotes the payoff of agent i when she chooses strategy si =
(ai, gi) and the total number of A-players is m. Given the LOP, we can solve the
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problem in the second step. Assume that agent i played action ai,t−1 in the period
t−1, and meanwhile there weremt−1 agents playing action A. The action in period
t played by agent i is determined in the following way.

First, if ai,t−1 = A, switch to B when v(B,mt−1 − 1) > v(A,mt−1), randomize
between A and B when v(B,mt−1 − 1) = v(A,mt−1), and stay with A otherwise.

Second, if ai,t−1 = B, switch to A when v(A,mt−1 + 1) > v(B,mt−1),
randomize between A and B when v(A,mt−1 + 1) = v(B,mt−1), and stay with B
other wise.

11.4 Constrained Interactions

We start our discussion by analyzing the optimal linking strategies of agents on a
scenario of low linking cost (0 ≤ γ ≤ d). Note that because of the constrained
condition a > c, an A-player is more willing to interact with another A-player over
with a B-player. Hence, an A-player will link with other A-players first. Only in
the case that the limited number of active links do not less than the total number of
A-players, an A-player will consider to link up to B-players after they have already
formed links to all other A-players. Similarly, the constraint b > d implied that B-
players will first choose to interact with other B-players. And for the reason that the
linking cost is low, all agents will first link up to all agents with the same action and
then if there were slots remained, agents would fill up the slots with other agents of
different kind. Consequently, given a distribution of actions (m,N −m), the LOPs
of any A-player and B-player in N1 are given by:

vi(A,m) = amin{k1,m− 1} + c(k1 − min{k1,m− 1})− γ k1 (11.6)

vi(B,m) = bmin{k1, N −m− 1} + d(k1 − min{k1, N −m− 1})− γ k1 (11.7)

Similarly, ∀j ∈ N2, the LOPs of A-players and B-players are given by:

vj (A,m) = amin{k2,m− 1} + c(k2 − min{k2,m− 1})− γ k2 (11.8)

vi(B,m) = bmin{k2, N −m− 1} + d(k2 − min{k2, N −m− 1})− γ k2 (11.9)

An A-player will switch to action B with positive probability if v(B,m − 1) ≥
v(A,m). Depending on the relationship between m, N, k1 and k2, we have seven sub-
cases to analyze when solving the problem of switching thresholds for A-players.
Similarly, a B-player will switch to A if v(A,m + 1) ≥ v(B,m), and there are
seven sub-cases of switching thresholds for B-players as well. We report our results
of switching thresholds in Table 11.1 as well. With the help of Table 11.1 we can
characterize all absorbing sets.
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Lemma 1 The sets
−−−−−−−→
A[k1]A[k2] and

−−−−−−−→
B[k1]B[k2] and

−−−−−−−→
B[k1]A[k2] are the three

absorbing sets.

Proof In each case in Lemma 1, if an agent’s optimal choice is to remain her action,
then it is optimal for agents with different action to switch. Consider a state s ∈−−−−−−−→
A[k1]A[k2]∪−−−−−−−→

B[k1]B[k2]∪−−−−−−−→
B[k1]A[k2], a revising agent i with action ai will always

remain that action. Further, consider that for each pair of states s, s′ ∈ −−−−−−−→
A[k1]A[k2]

(and also for each pair in
−−−−−−−→
B[k1]B[k2] or

−−−−−−−→
B[k1]A[k2] ), in the best response process

ties are broken randomly. There is a positive probability of moving from state s to

state s′ without mutation. Then the states in
−−−−−−−→
A[k1]A[k2] (and also in

−−−−−−−→
B[k1]B[k2] or−−−−−−−→

B[k1]A[k2] ) form an absorbing set.

Further, consider any state s /∈ −−−−−−−→
A[k1]A[k2] ∪ −−−−−−−→

B[k1]B[k2] ∪ −−−−−−−→
B[k1]A[k2], for

each group Ni of agents, with positive probability they will choose the same action

and move to a state
−−→
A[ki] (or

−−→
B[ki]) according to Staudigl and Weidenholzer [23].

Then for the entire group I , they will move to a state of
−−−−−−−→
A[k1]A[k2], −−−−−−−→

B[k1]B[k2],−−−−−−−→
A[k1]B[k2] and

−−−−−−−→
B[k1]A[k2] with positive probability. Consider that n1 < n2, we

find that any states in
−−−−−−−→
A[k1]B[k2] will finally move to

−−−−−−−→
B[k1]B[k2] without mutation.

After that, it follows that any state s /∈ −−−−−−−→
A[k1]A[k2] ∪ −−−−−−−→

B[k1]B[k2] ∪ −−−−−−−→
B[k1]A[k2] will

reach to a state s′ ∈ −−−−−−−→
A[k1]A[k2] ∪ −−−−−−−→

B[k1]B[k2] ∪ −−−−−−−→
B[k1]A[k2] ultimately.

11.5 Conclusion

We have developed a model of social coordination and network formation with
heterogeneous constraints, where agents are divided into two groups and supports
different constraint numbers of active links. Compared to the conclusion in Staudigl
and Weidenholzer [23], when constraints are homogeneous, the co-existence of
payoff dominate and risk- dominate absorbing sets at same period in long-run
will not emerge. However, in our discussion, when constraints are heterogeneous,
the co-existence of both absorbing set at same period is possible. We find that
in the situation of low linking costs, if the number of agents choosing efficient
action is relatively larger than the constrained linking number of agents in both two

groups,
−−−−−−−→
B[k1]B[k2] will be the only absorbing set. If the number of agents choosing

efficient action is larger than the limited linking number of agents in group N1 and
smaller than the limited linking number of agents in group N2, the co-existence of−−−−−−−→
B[k1]B[k2] and

−−−−−−−→
B[k1]A[k2] is observed. Otherwise, the set

−−−−−−−→
A[k1]A[k2] is one of the

absorbing sets.
We can extend our research to many natural aspects. First, it is acceptable to do a

further research on the long run equilibria as well as discuss the difference between
cases where constraints are homogeneous and heterogeneous. Second, as in Staudigl
and Weidenholzer [23], we could consider the scenario where the cost of active links
is high and study the diversification of absorbing sets.
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Chapter 12
Stable and Efficient Structures for the
Content Production and Consumption
in Information Communities

Larry Yueli Zhang and Peter Marbach

12.1 Introduction

Communities are an important structure that widely exists in real-world online and
offline social networks. A common type of community is the information community
in which the members of the community produce content and consume the content
produced by other members, with the most popular example being Reddit [10]
where each “subreddit” is essentially an information community with a specific
topic of interest. Real-world communities often exhibit inherent structures such
as the high density of interactions within the community and the existence of
a core set of active members who would contribute the majority of the content
in the community (“the Law of the Few”) [4, 12]. For example, in [12] it is
empirically shown that, in an online forum, only 12% of the users are actively
generating content while the majority of the users are almost silent. There have
been a large body of research work on community detection algorithms based
on such structures. However, there is still a lack of the formal understanding of
why these structures would consistently and naturally emerge during the forma-
tion process of real-world communities. Understanding the formation process of
these natural structures is important as it provides us a microscopic view of the
working mechanisms of communities and would enable us to utilize communities
more efficiently.

Our overall hypothesis is the following: real-world social network structures
have been going through an evolutionary process, and as a result of that only the
optimal structure (in terms of stability and efficiency) can survive, sustain therefore
exist widely in real-world social networks. In other words, if we observe a widely
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existing structure in real-world social networks, then this structure must be optimal
in the sense that it has stable user behaviours and it is efficient for the purpose of
the network.

In the case of information communities, each member in the community is
an agent who can choose to spend certain portions of their time in producing
content items or in consuming content produced by other members. In order for the
community to be stable, all members’ time allocation strategies should collectively
form a Nash equilibrium, i.e., each member would get penalized by deviating
from the equilibrium strategy. A member in the community can be rewarded by
either production or consumption. For consumption, the rewarded is from the
consumed content itself; for production, a member is rewarded when the content she
produces is consumed by other members of the community (the reputation effect).
A community structure is called “efficient” when it can provide its members the
highest possible amount of reward. If we use a mathematical model to formulate
the above behaviours and efficiency measures, we will then be able to formally
analyse the condition under which the community structure is optimally stable
and efficient, therefore obtain a mathematical description of the “surviving and
sustaining” community structure. The validity of the model would be verified if the
result of the analysis happens to agree with the widely existing structures observed
in real-world communities. Compared to the empirical observations, the formal
analytical results would provide us more refined understanding of the microscopic
working mechanisms of the real-world communities.

In this paper, we formulate a model that captures the production and consumption
behaviours inside an information community. Our analysis results show that the
structure with a small set of “celebrity producers” is the optimally stable and
efficient structure. These analysis results provide possible explanations to the
sociological observations such as “the Law of the Few” and also provide insights
into how to effectively build and maintain the structure of information communities.

12.2 Related Works

Social network analysis has been one of the fastest growing research fields in
the twenty-first century. We refer readers to Scott et al. [11] for a comprehensive
coverage of the development of the subject, rather than listing the large collection
of references in this paper. Experimental works observed interesting properties
of real-world complex networks such as the power-law degree distribution, the
small-world phenomena and the community structure. These observations lead to
modelling works that tried to explain why the observed properties would emerge,
such models include the preferential attachment models, the copying model and
the forest fire model. However, most of these works were studying macroscopic
structural properties rather than looking into the internal microscopic structures of
the network.
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The community structure has been an interesting topic for researcher in the
field of social network analysis. A large body of work has been devoted to
modelling and detecting community structures in large scale social networks (e.g.,
[2, 5, 6, 8, 9]). The networks are often represented by graphs in which the vertices
represent underlying social entities and the edges represent some sort of social tie
or interaction between pairs of vertices. Our model differs in the sense that it also
considers the user behaviours on top of the network connections.

In [1], the efficiency of a network in terms of information diffusion is studied, a
mathematical analysis is performed to investigate the optimal network structure to
achieve the best efficiency for information diffusion (high precision, high recall and
low diameter), and the result shows that a Kronecker-graph [6] would satisfy such
conditions. The approach taken in [1] is similar to the approach we take in this paper
except that we are more focussed on the community related aspects. The work in [3]
used a game-theoretic model to study the emergence of the “Law of the Few” but it
is also in the context of information diffusion rather than about communities. The
work in [7] is the closest to the interest of this paper. In [7], a game theoretic model
is formulated to analyse the community structures in terms of content production
and consumption. Each member’s strategy involves choosing a particular interest to
produce or consume content on. The result shows that in the Nash equilibrium of
the model the members’ choices form community structures. The difference of our
work from [7] is that we focus on the internal structure of a single community rather
than on the scale of multiple communities, and besides the Nash equilibrium, we
also take the social welfare into consideration.

12.3 Model

We will first describe the general configuration of the model and the payoff/reward
functions, then in Sects. 12.3.2 and 12.3.3, we introduce two variations of modelling
the internal relations between the community members. Both models will be
analysed and the results will be compared in Sect. 12.4.

12.3.1 General Configuration

We have a single community with n members indexed by 1 ≤ i ≤ n. Each member
is capable of both producing and consuming content items. The produced content
items could be chosen by all members or a subset of the members of the community
for consumption. Each member has a limited total amount of time which could be
allocated to either production or consumption, and each member makes a decision
about how much of their time to allocate to production and consumption. A member
is rewarded if their products are consumed by members of the community (the
production reward), or if the member consumes an item that is produced by a
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member of the community (the consumption reward). Each member’s objective is
to maximize their total individual reward from both production and consumption.

The time slot: In our model, we investigate everything that happens within a unit
time. The assumption is that the long-term behaviour of a member is the repetition
of their behaviour within a unit time.

Rates of content production and consumption: We define Np ≥ 0 to be the
number of content items that a member can produce if they were to spend 100%
of their unit time on production; and we let Nc ≥ 0 be the number of items that a
member can consume within a unit time slot if they were to spend 100% of their
time on consumption. We assume that all members share the same values of Np and
Nc, and we assume the following inequality:

0 ≤ Nc

nNp
≤ 1 (12.1)

This assumption is reasonable because nNp is the largest possible number of content
items that can be produced, anNc value that is larger than nNp would be unrealistic.

A member’s time allocation strategy: Let αi (0 ≤ α ≤ 1) be the portion of
the unit time that member i allocates to production (therefore 1 − α is allocated to
consumption). Each member chooses their own αi , we will investigate if a set of
choices of αi would lead to a Nash equilibrium. Within the unit time, a member can
consume at most (1 − αi) · Nc items. If the number of available items is less than
or equal to this number, then each member would consume all the available items
without any choice; if the total number of available items is greater than this number,
then the member would choose a subset (of size (1 −αi) ·Nc) of the available items
to consume, uniformly at random.

The production reward models the “reputation effect” in social networks, i.e.,
having content products consumed by other people is rewarding for the producer
of the content. The reward for each item that a member produces is proportional
to the number of members who consume the item, with a constant factor rp, i.e.,
if an item is consumed by m members, then the reward for this item is rp · m.
The total production reward for a member is the sum of the rewards of all items
that the member produces. The constant factor rp is the same for all members. The
consumption reward of a given item is a constant rc. The total consumption reward
of a member is rc multiplied by the number of items consumed by the member.
The total individual reward of a member in the community is the sum of their
production reward and consumption reward. The sum of the total individual rewards
of all members in the community is the social welfare. While each member tries to
maximize their own individual reward, the overall efficiency of the community is
measured by its social welfare.

The following two subsections will define two variations of the internal relational
structure of the community.
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12.3.2 The Celebrity-Follower Community Structure

Under the celebrity-follower relational structure, a subset of the members of the
community are “celebrities” that are followed by everyone in the community, i.e.,
the content items produced by a celebrity member can be seen by all members of
the community. A non-celebrity member has zero followers, i.e., an item produced
by a non-celebrity member cannot be seen or consumed by any member.

Let η be the portion of celebrity members, i.e., the number of celebrity members
is ηn. When η = 1, all members are connected via a complete graph. When η is
small, we have a small core of celebrities that would be responsible for producing
all content items in the community. If visualized as a directed graph, the structure
would have η · n2 edges in total. Note that we are assuming a member can be a
follower of themselves so the graph can have self-pointing edges. This would lead
to cleaner analysis results.

Note that we are not making any assumptions about how large the value of η
is, and it is interesting to see whether the efficiency of the community system can
be different with η’s value being in different ranges. In real-world communities,
we often observe patterns that are similar to the celebrity-follower structure, i.e., a
small subset of “elite contributors” would produce most of the content items that
are consumed by all members of the community, and a community typically has a
significant portion of “lurkers.” We will be able to provide a theoretical explanation
to this real-world phenomenon.

12.3.3 The Uniform Community Structure

In contrast to the celebrity-follower structure where the members play unequal roles
in the community, the uniform relational structure has all members with the equal
role, i.e., every member has the same number of followers and follows the same
number of other members. In terms of a graph, it is a regular graph where every
vertex has the same in-degrees and out-degrees.

To make this structure comparable with the celebrity-follower structure, we let
it have the same number of edges as the celebrity-follower graph. The celebrity-
follower graph discussed in the previous section has η · n2 edges, therefore, in the
uniform graph, we let each vertex have in-degree η · n as well as out-degree η · n.

12.3.4 Summary of the Model

Overall, our model is a game-theoretic model where each agent (member of the
community) chooses a strategy (αi) with the objective of optimizing their individual
reward. The efficiency of the whole community is measured by the social welfare
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(total reward of all members). The stability of the community is indicated by
whether the strategies of all members collectively form a Nash equilibrium.

12.4 Analysis

Our hypothesis is that, in order to exist and sustain in the real world, a social
structure must be stable and efficient. For an information community, this means
that the members’ strategies form a Nash equilibrium while the social welfare of the
community is maximized. Therefore, our analysis will take the following approach:
we first derive the set of members’ strategies that would maximize the social welfare
of the community, then we investigate the condition for this set of strategies to form
a Nash equilibrium.

In Sects. 12.4.1 and 12.4.2, we perform the analyses for the celebrity-follower
and uniform structures, respectively, then we will compare and discuss the analysis
results.

12.4.1 Analysis of the Celebrity-Follower Structure

The following theorem summarizes the analysis results for communities with the
celebrity-follower structure.

Theorem 1 For a community with the celebrity-follower structure where there are
η · n celebrity members, the maximum social welfare and the Nash equilibrium are
described in the following cases.

Case 1 If η < min( Nc
nNp
, 1 − Nc

nNp
, 1 − Ncrc

nNprp
), then the maximum social welfare is

reached when a member i of the community takes the following strategy:

αi =
⎧
⎨

⎩

1 if member i is a celebrity

0 otherwise
(12.2)

The maximum social welfare Gmax is the following:

Gmax = η(1 − η)n2Np(rp + rc) (12.3)

This set of strategies always forms a Nash equilibrium under this case.

Case 2 If 1
2 <

Nc
nNp

≤ 1 and 1 − Nc
nNp

≤ η ≤ Nc
nNp

, then the maximum social welfare
is reached when a member i of the community follows the following strategy.
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αi =
⎧
⎨

⎩

Nc
Nc+ηnNp if member i is a celebrity

0 otherwise
(12.4)

The maximum social welfare Gmax is the following:

Gmax = ηn2NcNp(rp + rc)
Nc + ηnNp (12.5)

However, this set of strategies never forms a Nash equilibrium under this case.

Case 3 If 0 ≤ Nc
nNp

≤ 1
2 and Nc

nNp
≤ η ≤ 1 − Nc

nNp
, then the maximum social welfare

is reached when a member i of the community follows the following strategy.

αi =
⎧
⎨

⎩

Nc
ηnNp

if member i is a celebrity

0 otherwise
(12.6)

The maximum social welfare under this strategy is

Gmax = Nc
(
n− Nc

Np

)
(rp + rc) (12.7)

This set of strategies never forms a Nash equilibrium under this case.

Case 4 η > max( Nc
nNp
, 1 − Nc

nNp
), the social welfare is maximized when a member

i of the community follows the following strategy.

αi =
⎧
⎨

⎩

Nc
Nc+ηnNp if member i is a celebrity

0 otherwise
(12.8)

The maximum social welfare under this strategy is

Gmax = ηn2NcNp(rp + rc)
Nc + ηnNp (12.9)

This set of strategies never forms a Nash equilibrium under this case.

The detailed proof of Theorem 1 can be found in the appendix of [13]. This
theorem shows that Case 1 is the only case where the members’ strategies reach a
Nash equilibrium while the social welfare is maximized. In other words, in order for
the community to be optimally stable and efficient, the portion of celebrity members
must be small enough, i.e., η < min( Nc

nNp
, 1 − Nc

nNp
, 1 − Ncrc

nNprp
).
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12.4.2 Analysis of the Uniform Structure

The following theorem summarizes the analysis results for communities with the
celebrity-follower structure.

Theorem 2 For a community with the uniform structure where each member has
ηn followers and follows ηn members, the maximum social welfare is reached when
the following set of strategies is applied.

αi = Nc

Nc + ηnNp ∀1 ≤ i ≤ n (12.10)

The maximum social welfare Gmax is the following:

Gmax = ηn2NpNc(rc + rp)
Nc + ηnNp (12.11)

The above set of strategies forms a Nash equilibrium if and only if the following
condition is true.

η ≤
(
Ncrc

nNprp
+ 1

n

)
(12.12)

The detailed proof of Theorem 2 can be found in the appendix of [13]. This
result shows that, assuming the uniform community structure, there exist a simple
set of strategies that is stable while the social welfare is maximized. What we are
interested in is how the optimal efficiency of the uniform structure compares with
that of a community with the celebrity-follower structure. The following theorem
provides us a formal result.

Theorem 3 Let Gmax-celebrity be the maximum social welfare with a Nash equilib-
rium for the celebrity-follower community structure (Eq. (12.3)) and Gmax-uniform

be the maximum social welfare with a Nash equilibrium for the uniform community
structure (Eq. (12.11)). The following is always true:

Gmax-celebrity ≥ Gmax-uniform (12.13)

The detailed proof of Theorem 3 can be found in the appendix of [13]. This
theorem provides a simple and clear result: given being in its optimally stable and
efficient state, a community with the celebrity-follower structure always has a better
optimal social welfare than a community with the uniform structure.
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12.5 Discussions

The combination of the analysis results in Sects. 12.4.1 and 12.4.2 provides us two
different angles of explaining the common “law-of-the-few” structural patterns that
widely exist in real-life information communities. A given community structure,
in order to exist and sustain, must be both stable and efficient, meaning that the
community can stably stay at the state with the maximum social welfare. Theorem 1
tells us that the community can only be stable and efficient if there is a small
enough “core” of celebrity members who will actively contribute all the content
to be consumed by all members of the community, while the majority of the
community members would simply consume the content produced by the core
members. A community structure that does not satisfy this condition would not be
stable therefore would not commonly exist in reality.

Moreover, among the different possible structure that are both stable and
efficient, some structures are more efficient than others. Theorem 3 shows that the
small-core celebrity-follower structure is not only stable and efficient, but also it is
more efficient than other stable structures such as the uniform structure.

With the above two factors taken into account, the celebrity-follower structure
with a small set of celebrities becomes the winner, therefore becomes the commonly
existing structure in real-world information communities.

In the equilibrium state, the strategies of the celebrity and non-celebrity members
are clearly differentiated: the celebrity members should dedicate all of their time in
production whereas the non-celebrity members should spend all of their time on
consumption. These specialized producing and consuming behaviours also coincide
with real-world observations: in a web service such as Reddit, the visitors of a
typical subreddit would often separate into two different roles, i.e., the “active
contributors” who frequently post content in the subreddit and the “lurkers” who
would always just consume content silently.

The analysis results also provide insights into how to effectively build and
maintain information communities. The most important takeaway from our analysis
results is that there should be mechanisms that encourage the formation of a
small-core celebrity-follower structure inside the community. For example, many
online social network applications use features such as “thumb-up” or “upvote”
to promote and reward high quality content that are liked by many community
members. Besides providing effective content filtering (ranking by votes), this
voting mechanism also encourages the optimally stable and efficient community
structure: since the production reward is only earned when a post is upvoted, the
members who would produce low-quality content would not be rewarded and would
essentially become the non-celebrity members in the celebrity-follower structure.
The members who produce high-quality content would be rewarded by the upvotes
and becomes the celebrities in the community. The size of the core of celebrities
will tend to be small if the display of the content in the community is ranked by
popularity: most members will only consume a small portion of the top-ranked
content items therefore only a small set of high quality producers would actually be
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rewarded and become the real core of the community. This analysis would lead to an
interesting and counter-intuitive hypothesis: if the content display of the community
is such that different members would see a diverse range of different items, then this
would cause the formation of a larger-sized celebrity core or a uniform-like structure
in the community which would make the community structure less stable. It would
be interesting to empirically verify if this hypothesis is true in practice.

Another interesting insight is that, in the optimal community structure, the
number of celebrity members in the core, i.e., η ·n, must satisfy that η ·n < Nc/Np.
This means that the size of the celebrities core does not increase as the size of
the community n increases. This could be a possible reason of why we have
communities in the first place: having a large number of people communicating
in a single giant community is inefficient in terms of the total amount of production
because it only allows a small number of core members to contribute in content
production. Larger total production rate can be achieved by dividing people into
different smaller communities each of which has its own core members, since
the total number of people who will contribute in content production would be
multiplied by the number of communities.

12.6 Conclusions

This paper attempts to obtain a formal understanding of the natural structural
patterns of real-world information communities. We formulate a mathematical
model that describes the generic content production and consumption behaviours
in a community. The analysis result shows that the small-core celebrity-follower
structure is the optimal structure that would lead to the optimally efficient and
stable community. These analytical results agree with the sociological observations
on real-world information communities. Besides providing a refined microscopic
view of the working mechanisms of information communities, the analysis results
also provide useful insights into how to better build and maintain the structure
of information communities. Designing efficient mechanisms that encourage the
formation of stable and efficient communities would be an interesting topic for
future works.
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Chapter 13
One-Player Game Based Influential
Maximization Scheme for Social Cloud
Service Networks

Sungwook Kim

13.1 Development Motivation

With the advance of the Internet of Things (IoT), Social Network Service (SNS) has
attracted billions of Internet users from all over the world in the past few years. SNS
connects people to provide online communication and collaboration environment
beyond the geographic limitations. It is considered to be a representative of the new
generation Internet applications, and many specialized SNSs have emerged [5].

Usually, the main goal of SNS is to seek reciprocal value creation to increase the
productivity, quality, and opportunities of online services. To satisfy this goal, SNS
users will expect more application services to fulfill their needs beyond fundamental
service functions. Therefore, how to link the needs of users and shape the designs
for better service utilization is an important issue in SNS research fields [6–16].

At present, Cloud Computing (CC) has been developed rapidly and becomes
very common. Usually, cloud is used in science to describe a large agglomeration of
objects that visually appear from a distance. In the Information and Communications
Technology (ICT) field, it is a kind of Internet-based computing paradigm that
provides shared processing resources and data to computers and other devices on
demand. In particular, this paradigm represents a distributing computing model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources. Therefore, CC technology provides flexible and
scalable services without having the computing resources installed directly on SNS
users’ systems [15–17].

For the interoperability of the SNS and CC services, a new concept, Social Cloud
(SC) was introduced based on the notion of resource and service collaboration. SC
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is a novel scalable computing model where resources are beneficially shared among
a group of Social Network (SN) users. From [2], we rehearsal the formal definition
of SC as—A social cloud is a resource and service sharing framework utilizing
relationships established between members of a social network. It is a resource and
service sharing framework utilizing relationships established between SNS users
and CC providers. Under a dynamic IoT environment, the idea of SC has been
gaining importance because of their potential for the system efficiency [10].

Despite the rapid development of the SC framework, there are some existing
problems. One of the most famous problems is to maximize the social welfare. It
can be likened to the influence maximization problem [3]. Consider the following
scenario as an example. A CC system operator wants to provide cloud services for
users of SNs. However, the CC system has a limited resource such that it can only
select a small number of users to provide CC services. The CC provider wishes that
these selected users would have strong relationship with their friends on the SN and
share the profit of provided CC services. Therefore, through the ripple effect, a large
population in the SN would be satisfied while maximizing their payoff. It’s a good
example of influence maximization. Simply, the influence maximization problem is
the problem of detecting a set of influential users, who strongly influence the largest
number of people in an SN [3].

Under widely dynamic SC system conditions, finding the best solution of the
influence maximization problem is very challenging; it is an NP-hard problem [8].
In this study, we focus on the game theory and reinforcement learning algorithms
to obtain an efficient solution for the influence maximization problem. Game theory
is the study of strategic interactions between multiple rational game players while
consistently pursuing their own objectives, which is measured in some utility scale.
The importance of game theory is evident in the fact that it is now widely applied
in various fields, such as economics, biology, political science, social psychology,
sociology, and anthropology. Since the early 2010s, SNS and CC management
issues have been added to this list [1–11]. Of course, as the critics of game theory
argue, the assumption of rationality in game theory does not always hold in realistic
environments. Therefore, the relaxation of the classical assumptions of game theory
and the incorporation of stochasticity into game players’ introspection process can
provide the leverage to overcome the traditional game theory. Due to this reason,
a part of game theory deals with reinforcement learning in games. Reinforcement
learning in games involves modeling the processes by which players change the
strategies they are using to play a game over time [1].

Motivated by the above discussion, S. Kim proposes a new SC management
scheme based on the combined methodology of game theory and reinforcement
learning. To effectively solve the influence maximization problem in SNs, the CC
provider adaptively selects the most influential users and dynamically allocates its
resource. By considering the real-world SC environments, the proposed approach
needs no complete knowledge of the topological social structure. According to the
combination of continuous probability distributions, the CC provider estimates each
user’s influential power, and adaptively selects a set of users to maximize the social
welfare. This procedure imitating the interactive sequential game process is practical
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and suitable for real-world SC implementation. Based on the key principles of the
repeated game model and reinforcement learning algorithm, the proposed scheme is
implemented in realistic point of view while ensuring the system practicality.

The major contributions of the proposed scheme are: (1) the adaptive dynamics
considering the current SC system environments, (2) the interactive game approach
to provide an appropriate tradeoff between optimality and practicality, (3) the
ability to solve effectively the real-world influence maximization problem, (4) the
reciprocal combination of SNS and CC technologies, and (5) the ability to capture
the reality of SC services. In this study, we pay serious attention to the practical
implementation of this problem with reasonable time complexity. It is an important
novelty of the proposed approach.

13.2 Related Work

Over the years, a lot of state-of-the-art research work on the influence maximization
problem has been conducted. The Cloud and SNS Supported Collaboration (CSSC)
scheme [7] presented novel cloud and SNS control algorithms based collaboration
platform, and designed collaboration functions. These functions were ensured by
privacy and permission policy and a resource allocation framework. The CSSC
scheme also proposed a three-pass mechanism which can dynamically allocate vir-
tual machines to physical machines within a low time complexity. Through the com-
mercial implementation, the CSSC scheme can be used in real-life application [7].

The Credit Distribution and Influence Maximization (CDIM) scheme [4]
extended the credit distribution model while incorporating the time-critical aspect
of influence in SNs. In particular, this scheme described node features from different
aspects and combined those components into user static influence for evaluating
the original node influence. First, the CDIM scheme adopted the user dynamic
influence to improve the credit assignment among adjacent nodes. And then, action
propagation paths were tracked and credits were assigned after learning from the
action-log and relational network structure. Finally, the CDIM scheme calculated
the average marginal gain for each user and identified the users who had maximum
marginal gain [4].

The Influence Maximization for Unknown Graphs (IMUG) scheme [14] pro-
posed a heuristic algorithm for the influence maximization problem. Unlike the
original influence maximization problem, this scheme assumed that the entire
topological structure of the SN was not given, and only limited knowledge of the
topological structure was obtained through probing. The basic idea of the IMUG
scheme was greedily probing and selecting the user with the highest expected
degree. As a probing strategy, snowball sampling strategy was adopted, and users
were selected based on their expected degrees. Therefore, this approach cannot
obtain complete knowledge of the entire topological structure of the graph. Even
when knowledge of the SN topology was severely limited, the IMUG scheme can
achieve a reasonable influence spread [14]. All the earlier work has attracted a lot
of attention and introduced unique challenges.
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13.3 Social Cloud Based Influential Maximization Algorithm

In this section, the main issue of influence maximization problem is presented. And
then, for the SC system, a novel CC resource allocation algorithm is developed
to maximize the social welfare. The proposed algorithm employs a reinforcement
learning mechanism while considering current SC system conditions. Finally, the
one-player game based algorithm in the seven-step procedures is explained in detail.

13.3.1 The Influential Maximization Problem for Social Cloud
Systems

Network diffusion formulates a scenario in which local interaction along edges in a
graph can generate global cascades in network state. Such diffusion processes have
attracted a significant amount of recent attention. Based on the network diffusion
model, a conventional influence maximization problem aims to select some nodes
so that the expected number of remaining nodes influenced by selected nodes will be
maximized [8–14]. In this study, we consider an SN as a directed graph G = {V,E}
where V and E are the set of nodes and edges, respectively. Nodes represent the
individual users in the SN and edges model the relationship between individual
users. Mathematically, the influence maximization problem addresses the top K
node set S from a graph G that satisfies

S = arg max
S⊆V

{F (S,G)}, s.t., |S| = K (13.1)

where {F (S,G)} : S × E → R
+ is a function of a node set S that provides the

expected number of the influenced nodes in the graph G. Therefore, the influence
maximization problem becomes an instance of a combinatorial optimization prob-
lem. According to the underlying graph structure, S can be varied dynamically [11].

Nowadays, successful social media platforms are attractive not only for commu-
nication but also for information dissemination. This information diffusion in SN is
regarded as an important mechanism that can improve social welfare. For example,
an individual SN user needs to execute a computation complex application. Due to
the limitation of embedded resource, some computation tasks can be offloaded to
the CC system. When this user receives an outcome of CC service, it can be shared
with his social friends. Therefore, from the viewpoint of CC provider, detecting
influential users is an important issue for effective and efficient SC operations.
However, the CC provider cannot perfectly know the SN’s topological structure
and social relationships. Therefore, the influence maximization problem is a very
difficult problem [3, 7–17].

In this study, a novel SC resource allocation scheme is developed to
maximize the social welfare in SN. In the proposed scheme, the cloud
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resource is effectively allocated while reducing the overhead of implemen-
tation complexity. To characterize the proposed scheme, there is a tuple
(G, CCp, fV, RSi , ψ(·), T, A, W , TS∈T , UCCp).

1. G is an SN as a directed graph G = (V,E).V = {S1 . . . Sn} is a set of SN users,
and E = {e1, . . . , em} is a set of user’s social relationships.

2. CCp is a CC provider in the SC system.
3. fV is the probability density function for the social relationship of individual

user Si ∈ V; the social relationship can be measured as number of friends.
4. RSi is the set of user Si’s friends; If the Sj is a member of RSi , the Si and the Sj

are connected in the SN. Based on their intimacy, ψ(Si, Sj ) is denoted as the
closeness of them; ψ(Si, Sj ) → [0, 1] represents the weighted connectivity
value between Si and Sj . In the proposed model, the profit sharing of CC
service can be measured by fV and ψ values. If there is no SN connection
between the user Si and Sj , ψ(Si, Sj ) = 0.

5. According to ψ(·) values, the primary influence power of Si and ΛSi =∑
Sj∈RSi (ψ(Si, Sj )) .

6. T is a team of individual SN users selected by the CCp to allocate the CC
resource.

7. A = {. . .ASK . . .} is a finite resource allocation set for users on being a team T,
and ASK means the amount of allocated CC resource for the selected SK ∈ T.

8. W is the CCp’s total computation resource amount for the CC services.
9. TSi∈T(ASi ) is the utility function to represent the social welfare generated by

the Si where TSi∈T (ASi )→ R
+.

10. U
CCp is the utility function of CCp. It represents the total social welfare of the

SC system, which is defined as
∑
Sk∈T TSk .

13.3.2 Reinforcement Learning-Based Team Formation
Process

When requesting the CC service, SN users (S1≤i≤n) have their social information
regarding the relational connectivity. In this study, we shall assume that Si reports
individually his local connection coefficient (θSi ), which is the number of social
connections. However, there is inherent uncertainty about the closeness of each
connection. Naturally, the CCp does not know the weight of each relationship; it is
the private information of each S. Therefore, the CCp’s problem is to infer what are
the true influence powers (	) of individual users from the announced information.
To maximize the social welfare in the SN, the CCp has to choose SN users to form a
team (T) whose members have higher influence powers for CC services. Therefore,
the 	-related uncertainty in the team formation problem can provide a rich agenda
of challenges and questions.

The degree of the successful social welfare maximization, i.e., the outcome of
the team action, would depend on the capabilities of the formed team. The choice of
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team members can be defined within a stochastic game model; this game-theoretic
method enables the CCp to better align his choices while maximizing the expected
U
CCp . According to his own evolving knowledge, the CCp implicitly takes into

account all eventualities concerning possible team formations. More specifically,
as a single game player, the CCp maintains and updates the individual 	 values
of SN users to make rational decisions regarding potential outcomes on behalf of
formed teams.

When scenarios of repeated team formation activities come into consideration,
the possibility of employing learning mechanisms in order to enhance the decision
making of the CCp presents itself. It is quite natural that the CCp should be capable
of exploiting the experience he gathered in the past in order to make more informed
decisions. Nowadays, reinforcement learning techniques can prove to be of value
to operate and interact under uncertainty. While engaging in the reinforcement
learning mechanism, we can answer the question of how to make decisions that
are sequentially rational [1].

In this study, S. Kim develops a one-player game model for the CCp to
take sequentially rational decisions to form teams sequentially. In particular, the
proposed game model deals with learning in games. During the repeated team
formation process, he suggests opportunities for the CCp to learn about each SN
user’s abilities through repeated interaction, refining how teams are formed over
time. Therefore, learning in games involves modeling the processes by a player,
i.e., the CCp, changes the strategies, i.e., selection of team members, over time to
maximize his payoff, i.e., UCCp .

Under the SN’s uncertainty, the proposed game model effectively integrates
decision making during repeated team formation. By the observation of the effects
of team actions, the role of CCp is to select adaptively team members who will
effectively act through CC services. This situation leads us to develop an expectation
mechanism to estimate the influence power (	) of each SN user. Based on the
principle from reinforcement learning algorithms, the proposed approach relaxes the
assumption that all information is completely known to predict the outcome of the
uncertainty. In the proposed scheme, the Si’s influence power (	Si), it is called the
Si’s type, is defined as the CCp’s belief for the Si’s reliability. In realistic settings,
the CCp will have to face the type uncertainty. However, the possibility of repeated
interaction can provide the CCp with the ability to learn, progressively updating
his beliefs about the type of Si. In the proposed algorithm, reinforcement learning
mechanism gives the CCp the opportunity, through observation of the outcome of
team actions, to update his beliefs about the types of team members. Belief updates
using the proposed reinforcement learning model will in turn influence future team
formation decisions, which will be taken in a manner that is sequentially rational.

In order to make the proposed reinforcement learning model apply to realistic
circumstances, we assume only limited observability of the realized outcomes: the
CCp only observes the outcome of team’s actions, and the process then repeats.
In this study, we cast the team formation problem as a learning-based repeated
stochastic game model. Let the CCp have belief vector B = [BS1 . . .BSi . . .BSn]
about the types of all SN users where 0 ≤ BSi ≤ 1 represents the belief of Si’s
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influence power; BSi is measured as the Si’s closeness to his locally connected
SN users. Therefore, the value of BSi is the expected value of (	Si /RSi ). At first,
the CCp doesn’t know each user’s B information, but can learn it based on the
reinforcement learning model.

In the reinforcement learning method, the basic idea of value is an expected
reward value of all future strategies, and the learner updates its value. Traditionally,
the learner considers the expected future value with a discount factor [1]. However,
unlike typical reinforcement learning equations, we focus on the recent outcome
and past histories of individual influence powers of SN users. Due to the SN’s
uncertainty and computational complexity, it is hard to consider all outcomes
when computing the value of any possible team formation. Therefore, the optimal
approach for the team formation problem would be impossible. In the proposed
scheme, the aim is to abstract away from the optimal team formation process; we
deal only with current belief of B while considering the resulting team outcome.
After the team formation at the time t , the Si’s belief at time t + 1(Bt+1

Si
) is

dynamically adjusted as follows:

Bt+1
Si

=
{
Bt
Si
, if Si /∈ Tt

min{max{[Bt
Si

+ (η × (B̂ − Bt
Si
))], 0}, 1}, if Si ∈ Tt ,

(13.2)

s.t., B̂ =
⎛

⎝ 1

|Tt | ×
⎛

⎝
∑

Sk∈Tk

(
QSi (A

t
Si
)

TSi (A
t
Si
)

)⎞

⎠

⎞

⎠

where Tt is the formed team at the time t , and η is the learning rate, which models
the rate of updating value. QSi (A

t
Si
) or TSi (A

t
Si
) the Si’s real outcome (or expected

outcome) due to the team formation Tt . It is estimated based on the Si’s friends,
i.e., directly connected Si’s neighbors (RSi ), and Si’s friends of friends, i.e., loosely
connected SN users to the Si . By considering the trickle down effect, QSi (A

t
Si
) and

TSi (A
t
Si
) are defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QSi

(
A t
Si

)
=
[

H (Si)× θSi × logΥx

(

exp

(
A t
Si

max
Sk∈Tt

{A t
Sk

}

))]

+∑
Sr∈V,Sr /∈RSi

(

(H (Si))
1

min{ρ(Si ,Sr )} × θSi × logΥx

(

exp

(
A t
Si

max
Sk∈Tt

{A t
Sk

}
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TSi (A
t
Si
) =

[

Bt
Si

× θSi × logΥx

(

exp

(
A t
Si

max
Sk∈Tt

{A t
Sk

}

))]

+∑
Sr∈V,Sr /∈RSi

((
Bt
Si

) 1
min{ρ(Si ,Sr )} × θSi × logΥx

(

exp

(
A t
Si

max
Sk∈Tt

{A t
Sk

}

)))

(13.3)
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where Υx is the control parameter for the requested application task, and
min{ρ(Si, Sr )} is the minimum number of social connections to reach the Si .
After each team formation time, the CCp observes the subsequent observation of
outcome and updates B values under the current obtained information. Based on
the updated B values, we consider the scenario that the CCp selects team members
to maximize the payoff function as follows:

max
At

(
U
CCp
t (At )

) = max
Sk∈Tt

⎧
⎨

⎩

∑

Sk∈Tt
TSk

(
A t
Sk

)
⎫
⎬

⎭
(13.4)

s.t.,
∑

Sk∈Tt
A t
Sk

≤ W

where U
CCp
t (At ), At , A

t
Sk

are UCCp(A), A, ASk values at the time t , respectively.

13.3.3 The Main Algorithm Steps of the Proposed Scheme

Influential maximization is a hot research topic in SNs. However, the current
research has strongly focused on the diffusion process of “word-of-mouth” effect.
In [8], Kempe et al. showed that the influential maximization problem is NP-Hard,
and an effective solution for this problem is left as an open problem. In this study,
SNS and CC technologies have captured to develop a novel SC system, and S. Kim
offers a new influential maximization algorithm through the flexible and effective
CC resource management. By adopting a reinforcement learning based one-player
game model, we can detect the most influential users in SNs. To maximize the SC
system performance, the type belief of each SN user is adaptively adjusted based on
the dynamics of the interactive feedback process, and the team formation process
will repeat at each time round. Therefore, the developed algorithm is formulated
as a repeated game model; one decision might affect the next decisions in a step-
by-step manner. This approach is realistic in real-world SC system operations. The
proposed algorithm is described by the following seven major steps.

• Step 1: Control parameters V, E, n, m, fV, ψ(·), W , η and Υx are given
from the simulation scenario.

• Step 2: Initial time, i.e., t = 0, B values for SN users are equally distributed.
This starting guess guarantees that each S enjoys the same benefit at the
beginning of the game.

• Step 3: At each time round (t), some users in the SN randomly requests the CC
services to execute their task applications, which have different Υx values and
require different amounts of the CC resource.

• Step 4: According to (13.4), the CCp dynamically selects some users to form a
team (T), and allocates the CC resource to maximize the social welfare.
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• Step 5: Based on the current resource allocation, the CCp adaptively adjusts
the B values using (13.2) and (13.3). This reinforcement learning approach can
predict the future influence power of each user based on the historical data.

• Step 6: During the step-by-step iteration, previous decisions are adaptively
adjusted based on the dynamics of repeated game process.

• Step 7: Under the real-world SC environments, SN users and the CCp are
mutually dependent on each other to maximize the social welfare, and they
constantly are self-monitoring the current SC system conditions; proceeds to
Step 3 for the next iteration.

13.4 Summary

In this work, S. Kim addresses a novel and challenging influential maximization
problem in the SC system. Unlike the traditional methods, the proposed scheme
sophisticatedly combines the SNS and CC technologies to maximize the social
welfare. According to the basic idea of repeated game model and reinforcement
learning algorithm, we can effectively select the most influential users while
maximizing the CS system performance. Based on the iterative feedback process, all
control decisions are dynamically adjusted. Under diverse SC system environments,
the proposed repeated game based approach is a more realistic methodology for
finding an effective solution with practical assumptions. For the future research, the
open issues and practical challenges are data mining, security, social bargaining,
and reinforcement learning in SC system operations. In particular, S. Kim plans
to investigate the social influence mining algorithm in SNs. The combination of
social influence mining and influence maximization will be a key issue that enables
a prevalent online marketing in social media. In addition, a higher resolution multi-
period scheme with inter-temporal constraints can be a potential direction and
another possible extension to this work. Another future direction is to look for
hybrid approaches that combine the advantages of different reinforcement algo-
rithms to further improve the efficiency and effectiveness of influence maximization
problem.
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Part III
Game Theory in Smart Grid



Chapter 14
Noncooperative Energy Charging and
Discharging Game for Smart Grid

Hung Khanh Nguyen and Ju Bin Song

14.1 Introduction

Since electric vehicles1 will be widely used in future transportation systems, a
significant new load requires on the existing energy distribution system. Thus, if
the charging process for a large number of electric vehicles is not coordinated, it
can easily overload the grid capacity at peak hours and endanger the safe operation
of the smart grid system [6, 9, 18, 23]. In the United States, the average car is driven
for approximately one hour a day, and for the rest of the day is parked, thus spending
most of its time in a garage and, in the case of PHEVs, connected to the smart grid
[10]. This provides great opportunities for the building that houses the garage as the
PHEV batteries can either serve as a distributed energy storage resource or add to the
load [25]. Therefore, by properly charging and discharging their batteries, PHEVs
can help to smooth a building’s energy consumption profile and reduce its energy
cost. A smooth building energy consumption profile, which includes peak clipping,
valley filling, load shifting, and flexible load shape [5], is one of the key design
objectives of the demand side management in the future smart grid [4, 13, 14].
Moreover, by discharging a vehicle’s battery into a building’s charging station,
which is defined as a vehicle-to-building (V2B) operation [17], we can increase
the flexibility and reliability of the electrical distribution operation. V2B operation
will provide extra benefits to the vehicle owners, and reduce the building energy

1Electric vehicles and PHEVs (Plug-in Hybrid Electric Vehicles) are interchangeable.
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cost based on the demand side management program. This motivated us to develop
an effective charging and discharging algorithm for multiple PHEV batteries in a
smart building to optimize the energy consumption profile.

In this chapter, we introduce a noncooperative game theoretical framework [8]
for the charging and discharging of multiple PHEV batteries to optimize the energy
load profile of a smart grid building, in which the players are the PHEVs and their
strategies are charging and discharging profiles, that we proposed in [15]:

• First, we design a centralized charging and discharging problem for multiple
PHEV batteries in a smart building to reduce the peak demand, which minimizes
the Square Euclidean Distance (SED) between the instantaneous load demand
and the average demand, called the SED minimization problem.

• Second, we design an energy cost sharing model and propose a distributed algo-
rithm to encourage PHEV owners to participate in the charging and discharging
process.

The rest of this chapter is organized as follows. We describe the current state
of the art of this research area in Sect. 14.2. The system model is introduced in
Sect. 14.3. In Sect. 14.4, we analyze noncooperative energy charging and discharg-
ing game model for the distributed design. We present our conclusions in Sect. 14.5.

14.2 Related Studies

In recent smart grid literature, a great number of papers report studies of charging
schedules for PHEV batteries. In [7], the authors studied the charging sequence
control problem for an electric vehicle in order to maximize its revenue in a given
charging period under some design constraints, such as the energy restriction of its
battery. By applying a dynamic programming technique, they derived the optimal
charging sequence that would maximize the profit while satisfying the state-of-
charge level required at the end of the charging period. In [2], the coordinated
PHEV charging problem for minimizing power loss and voltage deviations was
studied. The power losses minimization problem was formulated as a nonlinear
minimization problem, which could be addressed as a sequential quadratic opti-
mization. They proposed an algorithm for coordinated charging of PHEV batteries
when the daily load profile is deterministic. When the historical data for the daily
load profile were not available, the authors applied a stochastic programming
technique to find the optimal charging profile for PHEVs. They also analyzed the
optimal PHEV charging coordination using dynamic programming techniques and
studied its impact on the distribution grid. Deilami et al. [3] studied a novel load
management solution for coordinating the charging of multiple PHEVs in a smart
grid system to minimize power loss and improve voltage profile. A real-time smart
load management algorithm to coordinate multiple PHEV batteries was proposed
to reduce the energy generation cost by incorporating time-varying market energy
prices. Moreover, the algorithm also enables owners to start charging their PHEV as
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soon as possible considering priority-charging time zones while satisfying network
operation criteria, such as power loss, power generation limits, and voltage profile.

One of the greatest advantages of the wide deployment of PHEVs is that their
batteries can be served as distributed energy storage resources in the smart grid.
Most of the time vehicles are idle at homes, or in parking lots, or garages; hence
the vehicle’s battery can constitute either part of the load or a generator. Moreover,
the time during which electric vehicles are in parking lots is typically longer than
the time required to charge them, which provides an opportunity to implement
vehicle-to-grid (V2G) services [2, 24]. In [16], the authors studied an autonomous
distributed V2G control scheme that included charging request, battery condition,
and contribution to the smart grid. In [22], a fuzzy logic control technique was
applied to design a V2G infrastructure. Two controllers were implemented, at the
charging station and at the distribution node. The objective of a V2G controller
is to control the power flow between a particular node and the charging station
to meet peak power demand and reduce voltage sag. A model of an electric
vehicle storage system integrated with a standard power system was investigated
in [11]. The authors provided a decision-making strategy for the owners of electric
vehicles to determine how to utilize the stored energy effectively by controlling the
charging and discharging process, taking into consideration the vehicle battery’s
characteristics and, state of charge, the vehicle user’s driving habits, and electricity
prices. In [20], two algorithms to address the optimal charging control problem
for PHEVs in deregulated electricity markets were proposed. The optimal solution
that allowed the vehicle owner to achieve the minimum cost was obtained using
a dynamic programming technique. The first algorithm optimizes the charging
time and energy flow to reduce daily electricity costs without increasing battery
degradation, and the second takes into consideration the vehicle’s contribution to
the grid support by allowing PHEVs to inject energy back into the grid, which
additionally benefits to the PHEV owners.

Game theory has been applied to V2G as well as demand side management
problems. In [28], the authors proposed a novel model of interaction between
electric vehicles and aggregators in a V2G market in which electric vehicles
participate in providing a frequency regulation service to the grid. A smart pricing
model was introduced and a game theoretical approach was applied to a distributed
design in which the players were the electric vehicles and their strategies were the
control decisions on energy charging or discharging. The authors also showed that
the distributed system obtains the same performance as a centralized controlled
system. The non-cooperative game approach was applied to model the competitive
situation between a number of PHEV groups in an energy trading scenario involving
PHEVs and distribution grids in [21]. Each PHEV group determines the maximum
amount of energy surplus to sell in order to maximize a utility function.

Therefore, in [15], we applied a non-cooperative game approach to model
the interaction between the charging and discharging process of multiple PHEV
batteries resulting in reducing the peak demand in a smart building, and provide
a distributed algorithm in which each PHEV battery tries to minimize the energy
charging cost.
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14.3 System Model

We consider a smart building with a charging station for a set N of N � |N
PHEVs in [15]. The charging station is assumed to be equipped with a bidirectional
charger and controller. Moreover, the charging station can allow the electric vehicle
batteries in either charge or discharge mode. This assumption is reasonable in the
future smart grid due to the recent advancements in smart grid technologies [12, 26].
The charging time horizon is divided into a set T of T � |T | equal length time
slots. We assume that the building has an energy consumption profile over T time
slots

l = [l1, . . . , lt , . . . , lT ]. (14.1)

For each user (PHEV) i, we define an energy charging and discharging vector as

xi = [x1
i , . . . , x

t
i , . . . , x

T
i ], (14.2)

where xti is the amount of energy user i uses to charge or discharge its battery at
time slot t . It should be noted that, in this paper, we use boldface letters to denote
vectors. The user i is charging when xti > 0, discharging when xti < 0, and idle
when xti = 0. We restrict the minimum and maximum energy charge/discharge for
each user i in a time slot

−xmax
i ≤ xti ≤ xmax

i , (14.3)

where xmax
i is the maximum charging/discharging of user i.

Let x0
i be the battery level when user i begins to charge. When charging is

complete, each user wants its battery to have a predetermined energy target level
Bi . Therefore, the energy demand that user i needs for charging its battery can be
calculated as

Ei = Bi − x0
i . (14.4)

Then, the constraint for total energy demand of user i is

T∑

t=1

xti = Ei. (14.5)

The constraint (14.5) means that the total energy consumption of user i over T time
slots must be equal to the total energy demand to reach the target level for its battery.

For each user, the charging and discharging schedule also depends on the
scheduling plan in the previous time slots. At each time slot, after charging or
discharging, the battery must not be over-charged or discharged. Therefore, we add
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the constraints:

0 ≤ x0
i +

t∑

k=1

xki ≤ Ci,∀t ∈ T , (14.6)

where Ci is the battery capacity of user i.
For each time slot t , the total energy consumption of a building cannot exceed

the maximum allowable load, to ensure safety operation, and cannot be less than
zero

0 ≤ lt +
N∑

i=1

xti ≤ Lmax, (14.7)

where Lmax is the maximum allowable load at each time slot. The first inequality
in the constraint (14.7) ensures that the building cannot provide power back to the
grid.

For each user i, we can define a feasible energy charging and discharging set as

XXX i = {xi | constraints (14.3), (14.5), (14.6), (14.7)} . (14.8)

Using the feasible set of energy charging and discharging vectors for each user,
we define the energy charging and discharging optimization problem for the smart
grid building in the next section.

14.4 Noncooperative Energy Charging and Discharging
Game Model

14.4.1 Centralized Problem

Firstly, we consider a centralized control system where the central planner schedules
the charging and discharging process of users to achieve the target system per-
formance. From the view-point of the building controller, the load profile should
be as constant as possible, taking into account the extra energy demand of the
vehicle’s battery charging. Any energy demand less than the average demand will
cause poor utilization of the existing infrastructure system and any energy demand
exceeding the average demand will increase the energy cost as well as endanger
the reliability of the building’s operation. Therefore, we formulate a centralized
optimization problem, the SED minimization problem, for the optimal charging
and discharging of multiple PHEV batteries. The central controller searches energy
charging and discharging schedules that minimize the square Euclidean distance
between the instantaneous load profile and average demand.
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Let Eavg denote the average energy demand of the smart building over T time
slots

Eavg =
∑T
t=1 l

t +∑N
i=1 Ei

T
. (14.9)

The square Euclidean distance between the instantaneous target load demand and
average demand can be calculated as

SED �
T∑

t=1

(

lt +
N∑

i=1

xti − Eavg
)2

. (14.10)

Then, the SED minimization problem can be formulated as

min
∀i, xi∈XXX i

T∑

t=1

(

lt +
N∑

i=1

xti − Eavg
)2

. (14.11)

Theorem 1 The optimization problem (14.11) is convex and thus has a unique
optimal solution.

Proof Since for each user i ∈ N , the feasible set XXX i contains only linear con-
straints, then it is convex and also compact. Since the objective function is quadratic,
it is a strictly convex function. Therefore, the optimization problem (14.11) is
convex and has a unique optimal solution. ��

The optimal solution of the optimization problem (14.11) can be obtained in
a centralized fashion using convex programming techniques such as the Interior
Point Method [1]. Thus, after collecting all the information from users, the building
controller solves the optimization problem (14.11) to obtain the optimal schedules
for the users. This requires users to reveal private data to the building and makes
the centralized system difficult to implement. To overcome this issue, in the next
section we propose a decentralized system by applying a game approach.

14.4.2 Decentralized Design

The optimization problem defined in the previous section can be solved in a
centralized fashion to obtain the optimal solutions for the SED minimization
problem. However, this system requires a central planner to collect all the user
information, such as energy demand, battery capacity, and initial battery level.
This causes a breach of the owner’s privacy and requires an exchange of much
information with the building controller, which is not practical due to the enormous
amount of signaling required for this purpose. Therefore, it is more advantageous to
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design a distributed algorithm in which users independently determine their energy
charging and discharging schedules to achieve the best system performance. This
fact motivated us to propose an alternative decentralized mechanism to achieve
the desired performance. In the distributed design, the users exchange only their
energy schedules with the building controller. Moreover, the SED minimization is
a preferable design objective for reducing the peak demand of the building, but
this is not a major concern for the PHEV owners. From their point of view, only
scheduling their energy charging and discharging process in such a way that the
total payment at the end of each day can be minimized is important. Therefore,
in this section, we introduce an energy cost sharing model to address the energy
charging and discharging problem in which each user’s objective is to minimize its
energy payment to the building.

14.4.2.1 Energy Cost Model

In this subsection, we define the energy cost model for the energy consumption of
users. At time slot t , the total energy demand Lt of the building is calculated as

Lt = lt +
N∑

i=1

xti . (14.12)

We define a cost function C(Lt ) which is the cost of buying an Lt unit of energy

C(Lt ) = δL2
t , (14.13)

where δ is a positive coefficient. The cost function C(Lt ) is an increasingly and
strictly convex function [27]. From (14.13), we see that when the total demand
increases, the energy cost increases. Then, the total energy cost of the building over
T time slots can be calculated as

Ctotal =
T∑

t=1

C(Lt ). (14.14)

For each user i ∈ N , the payment at the end of each day should reflect its total
charging energy demand; it also depends on the total cost of the building’s energy
demand. Let κi denote the proportion of user i’s energy demand of that of the
building

κi = Ei
∑T
t=1 l

t +∑N
j=1 Ej

. (14.15)
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Then, we assume user i’s payment is proportional to the building’s total energy
demand

Ci = κi
T∑

t=1

C(Lt ). (14.16)

From (14.16), we can see that the owner of user i’s payment will depend on the
proportion of user i’s total energy demand and the total energy cost of the building.
For example, if the total charging demand of user i is twice that of user j , then the
owner of user i will be charged twice as much as user the owner of user j . The exact
payment depends on the total cost, Ctotal , of the building, which is derived from the
cost at each time slot t .

14.4.2.2 Utility Function

For each user i ∈ N , we define the utility function as the negative total energy cost
for charging its battery over T time slots. Since the total energy cost for each user’s
charging depends not only on its own energy demand but also on that of other users
from (14.16), we can derive the utility function as

Ui(xi , x−i ) = −Ci

= −κi
T∑

t=1

δ
(
lt +

N∑

i=1

xti

)2
. (14.17)

where x−i � [x1, x2, . . . , xi−1, xi+1, . . . , xN ] is the energy consumption profile
vector chosen by all other users except user i. Using the utility function of each
user in (14.17), we apply a non-cooperative game for the optimal charging and
discharging of multiple electric vehicle batteries in the next section.

14.4.2.3 Noncooperative Energy Charging and Discharging Game Model

In a decentralized V2B system, each electric vehicle (or user) is an independent
decision maker. Therefore, each user i ∈ N independently determines the
energy charging strategy to minimize its total energy payment. Then, we can
define a Noncooperative Energy Charging and Discharging (NECD) game G =
{N , {Xi}i∈N , {U}i∈N } among end users, by its three components: (1) the players,
that is, the users in the set N ; (2) the strategy of each player i ∈ N , which
corresponds to an energy charging and discharging profile, xi ∈ XXX i ; and (3) the
utility function Ui of any user i ∈ N as in (14.17).

Based on the definition of the payoffs and strategies in the NECD game, the users
try to select charging and discharging profiles that will minimize their energy costs.
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We now consider the best response strategy, which is the user’s choice to maximize
its own payoff function assuming that all other users’ strategies are fixed. For the
NECD game, we define the concept of best response as:

Definition 1 For each user i ∈ N , the best response strategy x∗
i is

x∗
i ∈ arg max

xi∈XXX i

Ui . (14.18)

Thus, for any user i ∈ N , when the strategies of the other users x−i are fixed, any
best response strategy x∗

i is at least as good as every other strategy in XXX i

Definition 2 Consider the NECD game G = {N , {Xi}i∈N , {Ui}i∈N }. A vector
of strategies x∗ constitutes a Nash equilibrium, which is a state in which no player
can improve its utility by unilaterally deviating from its equilibrium strategy, if and
only if it satisfies the set of inequalities

Ui(x
∗
i , x

∗−i ) ≥ Ui(xi , x∗−i ), ∀xi ∈ Xi , ∀i ∈ N . (14.19)

Theorem 2 There exists a unique Nash equilibrium for the NECD game [19].

Proof Since for each user i ∈ N , the payoff function Ui is strictly concave with
respect to xi and the strategy set XXX i is convex and also compact. Therefore, the
NECD game is a strictly concave N-person game. Then, the Nash equilibrium
always exists based on the [19, Theorem 1] and is unique due to [19, Theorem 3].

��
In the following theorem, we demonstrate the effectiveness and optimality of the

Nash equilibrium.

Theorem 3 The unique Nash equilibrium of the NECD game is the optimal solution
of the SED minimization problem (14.11).

Proof We will show that the global optimal solution of the problem (14.11) forms a
Nash equilibrium for the NECD game. Let {x∗

1, . . . , x
∗
N } be the optimal solution of

the problem (14.11). We also define

J ∗ �
T∑

t=1

(

lt +
N∑

i=1

xt∗i − Eavg
)2

. (14.20)

We can express (14.20) with respect to variables x∗
i and x∗−i as

J ∗ �
T∑

t=1

(
lt + xt∗i + xt∗−i − Eavg

)2
, (14.21)
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where xt∗−i denotes the total energy demand of all users except user i at time slot t
at optimality

xt∗−i �
N∑

j �=i
xt∗j . (14.22)

Since J ∗ is the optimal value of the problem (14.11), we have the following
inequality for any arbitrary xi

J ∗ ≤
T∑

t=1

⎛

⎝lt + xti +
N∑

j �=i
xt∗j − Eavg

⎞

⎠

2

. (14.23)

From (14.21) and (14.23), we have

T∑

t=1

(
lt + xt∗i + xt∗−i − Eavg

)2 ≤
T∑

t=1

(
lt + xti + xt∗−i − Eavg

)2
, (14.24)

or

T∑

t=1

[
(lt + xt∗i + xt∗−i )2 − 2Eavg(l

t + xt∗i + xt∗−i )+ E2
avg

]

≤
T∑

t=1

[
(lt + xti + xt∗−i )2 − 2Eavg(l

t + xti + xt∗−i )+ E2
avg

]
. (14.25)

Since the average demand Eavg is constant, and we also have

Eavg

T∑

t=1

(
lt + xt∗i + xt∗−i

) = Eavg
T∑

t=1

(
lt + xti + xt∗−i

)

= Eavg
(
T∑

t=1

lt +
N∑

i=1

Ei

)

. (14.26)

We can rewrite the inequality (14.25) as

T∑

t=1

(
lt + xt∗i + xt∗−i

)2 ≤
T∑

t=1

(
lt + xti + xt∗−i

)2
. (14.27)

Multiplying both sides of the inequality (14.27) by −κiδ and expressing it as a utility
function in (14.17), we obtain

Ui(x
∗
i , x

∗−i ) ≥ Ui(xi , x∗−i ). (14.28)
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From a comparison of (14.28) and Definition 2, we can conclude that the optimal
solution {x∗

1, . . . , x
∗
N } forms a Nash equilibrium for the NECD game. However,

from Theorem 2, the NECD game has a unique Nash equilibrium. Therefore, the
optimal solution of the SED problem (14.11) is equivalent to the Nash equilibrium
of the NECD game. ��

From Theorems 2 and 3, we see that by offering them a cost sharing model,
the owners of PHEVs have an incentive to participate in the energy charging and
discharging schedule problem in order to reduce their energy cost, as well as
participate indirectly in solving the centralized optimization problem. The PHEV
owners would be willing to participate in scheduling their energy consumption in
order to pay less.

Consider user i ∈ N , given x−i , and assume that all other uses fixed their energy
consumption profiles according to x−i . The user i’s best response can be determined
by solving the local optimization problem

max
xi∈XXX i

Ui(xi , x−i ). (14.29)

The maximization problem (14.29) can be replaced by the minimization problem

min
xi∈X i

κi

T∑

t=1

δ

⎛

⎝lt + xti +
N∑

j �=i
xtj

⎞

⎠

2

. (14.30)

Let us denote the total demand of the building, except user i at time slot t , as

Lt−i = lt +
N∑

j �=i
xtj . (14.31)

We can rewrite (14.30) with respect to only the local variables of user i as

min
xi∈XXX i

κi

T∑

t=1

δ
(
Lt−i + xti

)2
. (14.32)

It should be noted that problem (14.32) now has only local variables for user i.
Therefore, user i can solve the optimization problem (14.32) in a distributed fashion
whenever receiving the load profile vector L−i from all other users. In [15], the
optimal solution of the whole problem can be obtained by the distributed scheduling
algorithm for charging and discharging multiple PHEVs based on the game setup.
Whenever user i receives the signal giving the total load of the building from the
building controller, it calculates the L−i by subtracting its own xi . Then user i
obtains the value of L−i and solves the local problem (14.32) to find the best
response xi . After receiving the best response, it checks whether the new one is
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different from the current one and updates it. The new value of its load profile xi
will be sent to the building controller. The building controller will update the new
total energy demand profile. This procedure will be repeated until convergence.

Theorem 4 If users update their energy consumption vectors asynchronously, i.e.,
the users i, j ∈ N do not update their energy consumption scheduling vectors
at the same time, then starting from any initial condition point, the distributed
Algorithm 1 in [15] will converge to the Nash equilibrium point of the NECD
game which coincides with the optimal solution of the centralized problem, the SED
minimization problem.

Proof In [15], the best response for each user i ∈ N is equivalent to solving the
optimization problem (14.32). Therefore, if users play the distributed algorithm to
choose the best responses sequentially in an asynchronous fashion, their energy
cost either decreases or remains unchanged when the users update their energy
consumption schedule. Since the energy cost of any user i ∈ N is bounded below
(e.g., the energy cost is always nonnegative, see (14.16), the convergence to some
fixed point is evident. At the fixed point of Algorithm 1 in [15], no user can improve
its payoff by deviating from the fixed point when choosing the best response. This
indicates that the fixed point is the Nash equilibrium of the NECD Game among
users. Moreover, from Theorem 3, we can conclude that the convergence point of
the Algorithm 1 coincides with the optimal solution of the SED problem (14.11).

��
Each user is required to send its energy charging and discharging scheduling

vector to the building controller. Therefore, it is possible that users will incorrectly
report their energy charging and discharging scheduling vectors if this misreporting
helps to achieve more benefits. However, we will show that all users will be truthful
in reporting their energy charging and discharging vectors to the building controller
as the following theorem.

Theorem 5 In the proposed NECD Game, by using Algorithm 1 in [15], no user
or group of users benefits by misreporting their energy charging and discharging
scheduling vectors xi ,∀i ∈ N . That is, each user i ∈ N will pay a higher energy
cost if it announces its energy charging and discharging schedule, xi , incorrectly.

Proof Let x∗
1, . . . , x

∗
N denote the optimal solution of the SED minimization

problem (14.11). It should be noted that x∗
1, . . . , x

∗
N is also the Nash equilibrium of

the NECD Game. Denote by x̄1, . . . , x̄N the Nash equilibrium of the NECD game
when a nonempty set of users M ⊆ N is untruthful. We will show that each user
i ∈ M would pay more to the building for energy than truthful users. We denote
the final utility of user i ∈ M by U∗

i and Ūi when user i is truthful and untruthful,
respectively. According to the NECD Game, we have

U∗
i = −κi

T∑

t=1

δ

⎛

⎝lt + xt∗i +
N∑

j �=i
xt∗j

⎞

⎠

2

(14.33)
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and

Ūi = −κi
T∑

t=1

δ

⎛

⎝lt + x̄ti +
N∑

j �=i
x̄j
t

⎞

⎠

2

, (14.34)

where x∗
i and x̄i are the truthful and untruthful energy consumption schedules of

user i, respectively. Then, we have

U∗
i − Ūi = κiδ

⎡

⎣
T∑

t=1

(

lt +
N∑

i=1

x̄i
t

)2

−
T∑

t=1

(

lt +
N∑

i=1

xt∗i

)2⎤

⎦ . (14.35)

Since the total energy consumption of users is fixed for both the truthful and
untruthful cases, we have

Eavg

T∑

t=1

(

lt +
N∑

i=1

x̄i
t

)

= Eavg
T∑

t=1

(

lt +
N∑

i=1

xt∗i

)

= Eavg
(
T∑

t=1

lt +
N∑

i=1

Ei

)

. (14.36)

From (14.35) and (14.36), we have

U∗
i − Ūi
κiδ

=
T∑

t=1

⎡

⎣
(

lt +
N∑

i=1

x̄i
t

)2

− 2Eavg

(

lt +
N∑

i=1

x̄i
t

)

+ E2
avg

⎤

⎦

−
T∑

t=1

⎡

⎣
(

lt +
N∑

i=1

xt∗i

)2

− 2Eavg

(

lt +
N∑

i=1

xt∗i

)

+ E2
avg

⎤

⎦

=
T∑

t=1

(

lt +
N∑

i=1

x̄i
t − Eavg

)2

(14.37)

−
T∑

t=1

(

lt +
N∑

i=1

xi
t∗ − Eavg

)2

≥ 0. (14.38)

where the inequality results from the fact that x∗
1, . . . , x

∗
N is the optimal solution of

the centralized problem (14.11).
From (14.37), we can obtain that U∗

i ≥ Ūi . Therefore, user i does not benefit
from untruthfully reporting its energy charging and discharging schedule. The best
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strategy of user i is to report its true optimal energy charging and discharging
schedule. There is no incentive for users to cheat since this may lead to a loss in
utility or an increased energy cost of the cheating users or the group of cheating
users as well as other users in the system. Therefore, the distributed Algorithm 1
[15] is strategy-proof. ��

From Theorem 5, we can guarantee that our proposed distributed algorithm will
achieve the Nash equilibrium point of the NECD game, which is also the optimal
solution of the centralized optimization problem (14.11).

14.5 Conclusion

In this chapter, we have formulated a noncooperative charging and discharging
game problem for smart grid. We have designed a cost sharing model in distributed
manner to achieve the Nash equilibrium, in which each PHEV tries to minimize its
energy charging cost. The game framework can reduce the peak energy demand
of smart grid building and the total energy cost. This game framework can be
extended in many ways. First, a pricing model should be designed for the V2B
operation mode, which will give greater incentive to PHEV owners to participate
in the discharging of energy back to the building. Second, the discharging process
should take into account the impacts on battery life. Third, we can consider this
problem under the assumption that the building is equipped with a renewable energy
generator. By using the PHEV batteries as energy storage systems, the building can
effectively reduce the total energy cost as well as the peak power demand. Finally,
we can apply stochastic optimization techniques to consider this problem under
some uncertainties, such as the power price and the load profile of the building.
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Chapter 15
Stackelberg Differential Game Based
Charging Control of Electric Vehicles
in Smart Grid

Haitao Xu, Hung Khanh Nguyen, Xianwei Zhou, and Zhu Han

15.1 Introduction

With the rapidly increasing demand for electricity, lots of renewable energies have
been introduced to smart grid to satisfy the increasing electricity demands and
to solve the pollution problems. Although the renewable energy has been widely
utilized in smart grid, their power supply is not stable enough compared to the
conventional grid. Equipped with the plug-in connector compatible, the electric
vehicles (EVs) can be charged or discharged with aggregations in power gird [1].
Charged electricity is stored in batteries of EVs. Then the EVs can be considered as
power resources in smart grid. Integrated EVs into smart grid networks have been
recognized as one essential way in reducing the emission of green-house gases [2].

As the electricity price of the conventional gird varies over the time, the
aggregation needs to pay more at the peak hour for electricity transactions. Through
considering the EVs as the power resources, the electricity transactions of the
aggregation can be reduced, because instead of charging from the aggregation,
the EVs can sell electricity back to the aggregation in a lower price to reduce the
energy cost [3]. In this paper, we study the charging control problems of the EVs
in smart grid to control the electricity transactions between the aggregation and
the EVs. The main challenge of the charging control problems are the transaction
price control and charing/discharging power control. The aggregation decides the
electricity price for transactions between the aggregation and the EVs. The EVs
decide the charing/discharging power amount based on the price.
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Lots of works have been down recently to the charging control problems of
electric vehicles in smart grid [4–6]. A framework for controlling the charging
and discharging processes of plug-in electric vehicles (PEVs) via pricing strategies
is investigated in [4]. The objective of the aggregation is to choose a pricing
strategy for the PEVs to sell the energy. The PEVs can seek the equilibrium through
the proposed iterative algorithm. In [5], the optimal charging/discharging problem
is formulated as a mixed discrete programming problem, and a decentralized
algorithm is proposed based on the iterative water-filling to solve the formulated
problem. In [6], cyber insurance is used for PEVs in V2G systems, and a Markov
decision process framework is used to formulate the energy cost optimization
problem. Each PEV can make the optimal decision on the charge or discharge based
on the proposed learning algorithm.

In this paper, we aim to propose a Stackelberg differential game model for the
charging control problem in smart grid. We use differential equations to describe
the dynamic characteristics of the batteries in the aggregation and EVs. The main
contributions of this paper are as follows:

• A Stackelberg differential game model is constructed to solve the charging
control problem in smart grid, which is a one-leader-many-followers Stackelberg
game model, combining the differential game to describe the dynamic of the
batteries. The aggregation acts as the leader of the game, while the EVs act as the
followers.

• The optimal electricity price and charging power are given based on the equilib-
rium solutions of the differential games. Through controlling the electricity price
by the aggregation, the EVs are encouraged to sell the bought electricity back to
the aggregation to earn some profits and to low the energy cost. The aggregation
can control their electricity price to maximize its payoff.

The remainder of the paper is organized as follows: Sect. 15.2 introduces the
system model and formulates the Stackelberg differential game based charging
control problem. Section 15.3 provides the equilibrium solutions for the game leader
and followers. Numerical simulations are given in Sect. 15.4. Finally, we conclude
the work in Sect. 15.5.

15.2 System Model and Problem Formulation

We consider a system with one aggregation and a finite set N � {1, 2, . . . , N}
EVs . The aggregation acts as the game leader, while the EVs act as followers. The
aggregation decides the price ua(t) for buying or selling electricity. EV i can decide
to charge or discharge pi(t) amount of energy during a continuous observation
period [0, T ]. Let xa(t) and xi(t) denote the battery level of the aggregation and EV
i at time t , respectively, which are called the system state. We have the following
differential equations to describe the dynamic variation of the state,
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dxa(t)

dt
= −

N∑

i=1

αi

βi
pi(t)+ εaxa(t), (15.1)

dxi(t)

dt
= αi

βi
pi(t)+ εixi(t), (15.2)

where αi is the energy conversion efficient of EV i. βi is the battery capacity of
EV i. εa and εi are the system consumption rate of the aggregation and EV i,
respectively, which are measured in units of electricity per time. The initial energy
level of the aggregation is denoted by xa(0), which is equal to the capacity βa of the
aggregation. The initial state (battery) level of EV i is assumed to be xi(0).

For the aggregation, its cost function consists of three parts. Firstly, compared to
buying electricity from the power grid, the aggregation controls the electricity price
ui(t) to earn profit for trading with electric vehicles. Specifically, the profit can be
calculated as follows:

Uapro(t) = [ua(t)− πa(t)]2, (15.3)

where πa(t) is the price for buying electricity from the power grid at time t .
Secondly, the aggregation also tries to control the payoff for trading electricity with
electric vehicles, which is denoted by

Uacos(t) =
N∑

i=1

ua(t)p
2
i (t). (15.4)

Thirdly, the aggregation aims to have enough energy available to cope with the
energy demands, even to serve more vehicles. Let x̄a denote the target energy level
for the aggregation, whose payoff function can be calculated by

Uaeng(t) = (xa(t)− x̄a)2. (15.5)

Based on the above assumptions, the instantaneous payoff function of the
aggregation at time t can be defined as follows:

Ua(t) = ηa[ua(t)− πa(t)]2 + ωa
N∑

i=1

ua(t)p
2
i (t)+ υa(xa(t)− x̄a)2 (15.6)

where ηa , ωa , and υa are positive weighted factors. Based on the payoff function,
we can find that the instantaneous payoff mainly depends on the transactions price
ua(t). The objective of the aggregation is to find the optimal electricity price u∗

a(t)

that can maximize its payoff function over time interval [0, T ]
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max
ua(t)

La(t) = max
ua(t)

{∫ T

0

{
ηa[ua(t)− πa(t)]2 + ωa

N∑

i=1

ua(t)p
2
i (t)

+ υa(xa(t)− x̄a)2
}
e−rt dt

} (15.7)

subject to (15.1). Here, r is the discount rate.
Next, we will discuss how electric vehicles control pi(t) to minimize their energy

cost. Generally speaking, the energy cost of each EV mainly consists of two parts.
One is the trading cost, and another one is the storage cost. For EV i, the trading cost
is mainly dependent on the energy control variable pi(t) and the trading price ua(t).
The instantaneous trading cost is defined as a linear quadratic form as follows:

Uitra(t) = u(t)p2
i (t). (15.8)

Each EV wants to sell electricity back to the aggregation to earn profits, under
the premise of enough energy when leaving, which will cause an additional storage
cost. It is guaranteed that the battery of EV i is no less than a threshold x̄i during
parking, to insure enough available energy when leaving the aggregation. Then the
storage cost is mainly dependent on the battery threshold, and the instantaneous
storage cost is defined as follows:

Uisto(t) = (xi(t)− x̄i )2. (15.9)

Based on the above assumptions, the total instantaneous cost of EV i at time t is
denoted by

Ui(t) = ωiua(t)p2
i (t)+ υi(xi(t)− x̄i )2, (15.10)

where ωi and υi are positive weighted factors. We can observe that the total
instantaneous cost depends on the charging/discharging power pi(t) adopted by EV
i, as well as the battery state xi(t) according to the differential equation in (15.2).
For EV i, the objective is to find the optimal power trading strategy p∗

i (t) that can
minimize its cost function over time interval [0, T ],

min
pi(t)

Li(t) = min
pi(t)

{∫ T

0

[
ωiua(t)p

2
i (t)+ υi(xi(t)− x̄i )2

]
e−rt dt

}
(15.11)

subject to (15.2).
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15.3 Game Analysis

In this section, we analyze the optimal electricity pricing and charging problems for
the aggregation and EVs, respectively. As it is a Stackelberg differential game, we
need to get the optimal solution for each EV first, then the aggregation can make
a decision on the electricity price based on the charging control solutions. In the
following subsections, we first discuss the optimal charging control problem for
each EV in a finite time horizon [0, T ]. Then, the optimal strategy of the leader (the
aggregation) can be obtained based on each EV’s solutions. All the optimization
problems can be solved based on the dynamic programming [7–9].

15.3.1 Equilibrium Solutions of the EVs

We firstly discuss the optimal charging control problem for the EVs and get the open
loop equilibrium solutions to the EVS based on the dynamic programming.

Definition 1 For EV i, the charging power strategy p∗
i (t) is optimal if the following

inequality holds for all feasible control pi(t) �= p∗
i (t),

Li(p
∗
i (t), x

∗
i (t), t) ≤ Li(pi(t), xi(t), t). (15.12)

With the definition of optimal strategy for the EVs, the definition of the open-
loop equilibrium and corresponding state trajectory are given as follows:

Definition 2 A set of controls {p∗
i (t)} constitutes an open loop equilibrium to the

problem in (15.11), and x∗
i (t) is the corresponding state trajectory, if there exists a

costate function Λi(t) such that the following relations are satisfied:

p∗
i (t) = arg min

pi(t)

{
Ui(t)e−rt +Λi(t)dxi(t)

dt

}
, (15.13)

Λ̇i(t) = −
∂

[
Ui(t)e−rt +Λi(t)dxi(t)

dt

]

∂xi(t)
.

(15.14)

where (15.14) is an adjoint equation to describe the dynamics of a costate variable.
The costate function is a function which associates with the state variable xi(t).

In order to get the equilibrium solutions to the optimal problem in (15.11),
we need to construct the Hamiltonian system for each EV, and solve the optimal
problems based on the Pontryagin’s maximum principle. Here, the equilibrium
solutions for the EVs are the solutions of the differential game, and also are the
Stackelberg equilibrium solutions for the followers. The Hamiltonian system of EV
i is as follows.
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Definition 3 The Hamiltonian system of EV i is given by the following equation:

Hi(t) = Ui(t)e−rt +Λi(t)dxi(t)
dt

, (15.15)

where Λi(t) is the costate function given by (15.14). With the definition of the
Hamiltonian function, the minimization of (15.11) is the corresponding minimiza-
tion of the Hamiltonian function, which is defined as follows:

H ∗
i (t) = min

p∗
i (t)
Hi(pi(t), xi(t), t), (15.16)

Lemma 1 The optimal power solutions to EV i is

p∗
i (t) = −αiΛi(t)

2βiωiua(t)
ert . (15.17)

where Λi(t) is given by (15.14).

Proof Taking (15.2) and (15.10) into the Hamiltonian system of EV i, we have

Hi(t) =
[
ωiua(t)p

2
i (t)+ υi(xi(t)− x̄i )2

]
e−rt +Λi(t)

[
αi

βi
pi(t)+ εixi(t)

]
.

(15.18)
Performing the indicated maximization yields

∂Hi(t)

∂pi(t)
= 2ωiua(t)pi(t)e

−rt +Λi(t)αi
βi
. (15.19)

Then we have

p∗
i (t) = −αiΛi(t)

2βiωiua(t)
ert . (15.20)

Performing the indicated maximization, we can also obtain the differential
equation for Λi(t) as follows:

Λ̇i(t) = −∂Hi(t)
∂xi(t)

= −2υi(xi(t)− x̄i )e−rt + εiΛi(t). (15.21)

As we have obtained the optimal equilibrium in Lemma 1, take p∗
i (t) into (15.2),

we have

dxi(t)

dt
= −α2

i Λi(t)

2β2
i ωiua(t)

ert + εixi(t). (15.22)



15 Stackelberg Differential Game Based Charging Control of Electric. . . 209

Solving the differential equations in (15.20) and (15.21), we can get the
corresponding state trajectory and costate functions.

15.3.2 Equilibrium Solutions of the Aggregation

Similarly, we can obtain the equilibrium solutions to (15.7) for the aggregation
based on the dynamic programming.

Definition 4 For the aggregation, the electricity price strategy u∗
a(t) is optimal if

the following inequality holds for all feasible control ua(t) �= u∗
a(t),

La(u∗
a(t), x

∗
a (t), t) ≥ La(ua(t), xa(t), t). (15.23)

Definition 5 A set of controls {u∗
a(t)} constitutes an open loop equilibrium to the

problem in (15.7), and x∗
a (t) is the corresponding state trajectory, if there exist

costate functions λa(t) and λi(t) such that the following relations are satisfied:

u∗
a(t) = arg min

ua(t)
Ha(t), (15.24)

λ̇a(t) = −∂Ha(t)
∂xa(t)

, (15.25)

λ̇i (t) = −∂Ha(t)
∂Λi(t)

, (15.26)

where the Hamiltonian function of the aggregation is given by

Ha(t) =
{
ηa[ua(t)− πa(t)]2 + ωa

N∑

i=1

ua(t)p
2
i (t)

+ υa(xa(t)− x̄a)2
}
e−rt + λa(t)

[

−
N∑

i=1

αi

βi
pi(t)

+εaxa(t)] +
N∑

i=1

λi(t)Λ̇i(t),

(15.27)

where λa(t) and λi(t) are costate functions for the aggregation. From the above
equation, we can observe that the Hamiltonian function of the aggregation is more
complex compared to that of the EVs. Acting as the game leader, the aggregation
should consider the strategies of the EVs before making a decision on the electricity
price. Then the aggregation considers the dynamics of the costate function Λi(t) of
all the followers in the Hamiltonian function.
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Lemma 2 The optimal electricity price for the aggregation is given by

u∗
a(t) = πa(t)− ωa

2ηa

N∑

i=1

p2
i (t). (15.28)

Proof Performing the indicated maximization yields

∂Ha(t)

∂ua(t)
=
{

2ηa[ua(t)− πa(t)] + ωa
N∑

i=1

p2
i (t)

}
e−rt . (15.29)

Then we have

u∗
a(t) = πa(t)− ωa

2ηa

N∑

i=1

p2
i (t). (15.30)

Performing the indicated maximization of the Hamiltonian function, we can also
obtain the following differential equations to the dynamics of costate functions λa(t)
and λi(t), i.e.,

λ̇a(t) = −∂Ha(t)
∂xa(t)

= −2υa(xa(t)− x̄a)e−rt − λa(t)εa, (15.31)

λ̇i (t) = −∂Ha(t)
∂Λi(t)

= εiλi(t). (15.32)

15.4 Numerical Simulations

In this section, we evaluate the performance of the proposed Stackelberg differential
game model with MATLAB. We consider a system with one aggregation and
three EVs. The time interval for the simulations is set to [0, 24]. To simulate the
equilibrium solutions of the EVs, we first set the price for the electricity transactions
as 1.5 cents per unit electricity. The battery capacity for each EVs is assumed to be
the same, and is set as 50 kWh. The energy conversion efficient of each EV is 0.7.
The system consumption rate is 0.05. The discount rate is set as 0.25. The other
weighted constant parameters settings are given in Table 15.1.

Table 15.1 Weighted
constant parameters setting

Parameters EV1 EV2 EV3 Aggregation

ω 20 12 16 2.5

υ 50 50 50 50

x̄ 25 30 20 400



15 Stackelberg Differential Game Based Charging Control of Electric. . . 211

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time

20

25

30

35

40

45

50
B

at
te

ry

Battery variation with time

EV3(ua =1.5)

EV2(ua =1.5)

EV1(ua =1.5)

Fig. 15.1 Battery variation of the EVs with time

We first investigate the variation of the battery state for the EVs with initial
state is 5, which means the EVs are fully charged at the beginning. The variation
of the optimal state trajectory indicates the results of the charging control for
each EV to minimize the energy cost. In Fig. 15.1, the battery level of each EV
decreases at the beginning of the observation, which means the EVs act as the
power resources to sell the electricity back to the aggregation. In this figure, the
price for electricity transactions is 1.5 cents. The EVs want to sell the electricity
to earn profits and to reduce their energy cost. When the battery level is less than
the threshold, the EVs begin to buy the electricity to have enough energy when
leaving.

For the aggregation, it controls the electricity price to maximize its payoff. Figure
15.2 shows the optimal electricity price variation of the aggregation with time. The
electricity price of the power grid in this figure is set to be a time-varying parameter
based on the price data form ComEd.com. We can observe that the electricity
price of the power grid will affect the electricity price for transactions between the
aggregation and EVs.
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Fig. 15.2 Electricity price of the aggregation when the grid price is varying

15.5 Conclusion

In this paper, we use the Stackelberg differential game to formulate the charging
control problem of the EVs in smart grid. In the Stackelberg differential game, the
aggregation acts as the leader to determine the optimal electricity transactions price
based on the equilibrium solutions. The EVs act as the followers to control their
charging power amounts to earn profits from electricity transactions and to minimize
the energy cost. The optimal solutions to the leader and followers can be obtained
based on the open-loop equilibriums. Numerical analysis has been performed to
show the correctness of the solutions. The impact of the leader’s strategy on the solu-
tions of the followers is investigated. We can also observe that the price of the power
grid has effects on the price for transactions between the aggregation and the EVs.
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Chapter 16
Day-Ahead Demand Management
in Multi-Supplier Power Grid
Under Transmission Constraints

Ivan V. Popov, Alexander Yu. Krylatov, Victor V. Zakharov, and Elena
A. Lezhnina

16.1 Introduction

Traditionally, power grids have a central structure with a clear hierarchy. There are
few power plants that produce and supply energy to a large area using transmission
and distribution networks, and these power plants respond to a changing demand
of consumers. However, due to the fast renewable energy development of recent
decades, this situation is starting to change. New power grid architectures need to
be created and studied in order to integrate smaller local renewable generators into
the power grid while maintaining sustainability of the system.

In this paper, we formulate and consider a multi-supplier power grid model,
where consumers need to conclude bilateral contracts with suppliers over a day-
ahead period of time divided in several time slots (e.g., 24 h) [3, 6]. The distribution
of flows in the network deserves special attention, since it is crucial for preventing
overloads and other disturbances in transmission lines [4]. We describe consumers’
costs as functions of their contract profiles, formulate a competitive game of
consumers, and discuss possible schemes of demand response management for this
model.
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16.2 Model Description

A network is represented by a directed graph (V ,A), where V is a set of nodes and
A is a set of arcs. Let us enumerate nodes in V in the following manner: VQ =
{1, . . . , m} is a set of m energy consumers, VP = {m + 1, . . . , m + n} is a set of n
producers, and VO = {m+ n+ 1, . . . , |V |} is a set of all other nodes.

In this work, we consider a day-ahead planning period divided into H intervals.
Each consumer concludes bilateral energy purchase contracts with several producers
for each time interval. By ehij we denote an amount of energy to be delivered
from producer j ∈ VP to consumer i ∈ VQ during the time interval h ∈ H =
{1, 2, . . . , H }. We also use the following notation:

ehi =
(
ehi(m+1), . . . , e

h
i(m+n)

)T
(16.1)

for a vector of i’s contracts at a time interval h, and

Ei = (
e1
i , . . . , e

H
i

)
(16.2)

for a matrix of all i’s contracts.
Consumers need to meet their energy demands, both total for the whole day and

minimal for each time interval h ∈ H. We denote the total demand of consumer i
by Di ≥ 0, and the minimal demand of the same consumer for a time interval h by
dmin
i (h) ≥ 0. Therefore, we can write the demand constraints for Ei :

1Tn · ehi ≥ dmin
i (h),

1Tn · Ei · 1H = Di,
(16.3)

where 1k = (1, 1, . . . , 1)T ∈ R
k .

Let us define energy balance bhk in a node k ∈ V for a time interval h ∈ H:

bhk = −1Tn · ehk , k ∈ VQ,

bhk =
m∑

i=1

ehik, k ∈ VP ,

bhk = 0, k ∈ VO.

(16.4)

This value reflects the amount of energy injected or withdrawn in a node during a
specific time interval. It is negative for consumers and non-negative for producers,
while we assume all other intermediate nodes to have zero energy balance.

Energy flows in a power grid are distributed according to Kirchhoff’s laws,
and we can find this distribution for a given set of energy balances and knowing
parameters of grid links [1]. By f hkl ≥ 0 we denote a flow in arc (k, l) ∈ A at time
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interval h, and set fh = {f hkl, (k, l) ∈ A} is a flow profile of all links at time h. We
also denote by fh(Eh) the dependence of current flow from contract profile. This
mapping is generally non-linear, and contract changes of a single consumer affect
the flow distribution in the whole grid. Non-negativity of flows allows us to use
traffic assignment algorithms for power load estimation [2, 4].

16.3 Game of Consumers

This section formulates and studies a consumer game as a model of interactions in
the grid. First, we describe cost functions of consumers and formulate a game as
a set of coupled cost minimization problems. In the second part of the section, the
existence of Nash equilibria for the described game is discussed.

16.3.1 Consumer Cost Minimization

Each consumer tries to minimize their total costs over time span H. These costs
consist of two parts: generation costs and transmission costs. Generation costs can
be assigned proportionally to the contracts between respective agents, while it is
non-trivial to define the shares for use of transmission network.

More specifically, let αhj (b
h
j ) denote a generation cost of a unit of energy at node

j ∈ VP during time interval h. It is a function of total energy bhj to be generated

at node j according to contracts with consumers Eh. Hence, generation cost of
consumer i during interval h can be determined in the following way:

Ghi
(
Eh
) =

m+n∑

j=m+1

ehij · αhj
(
bhj
)
. (16.5)

Transmission costs depend on the flow distribution fh(Eh). We define transmis-
sion cost for an arc (k, l) ∈ A as a function βhkl(f

h
kl) of the amount of flow using this

arc. We call a set of functions Δ = {δi,hkl (Eh)} a cost sharing rule, if it fulfills the
following conditions:

δ
i,h
kl (E

h) ≥ 0, ∀(k, l) ∈ A, i ∈ VQ, h ∈ H,

m∑

i=1

δ
i,h
kl (E

h) = 1, ∀(k, l) ∈ A, h ∈ H.
(16.6)

For a given cost sharing rule Δ the transmission cost of consumer i at interval h
takes the form:
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T hi (E
h) =

∑

(k,l)∈A
δ
i,h
kl (E

h) · βhkl(f hkl(Eh)). (16.7)

Hence, the total cost of consumer i is

Ci(E) =
H∑

h=1

(
Ghi (E

h)+ T hi (Eh)
)
, (16.8)

where E = {E1, . . . ,EH } is a total profile of all consumer contracts over the whole
time span H, and where the calculation of each transmission cost T hi (E

h) requires
fh(Eh) for a respective time interval h.

We now formulate the game of consumers:

minimize
Ei

Ci(E), 1 ≤ i ≤ m, (16.9)

subject to 1Tn · Ei · 1H = Di, ∀i ∈ VQ, (16.10)

1Tn · ehi ≥ dmin
i (h), ∀i ∈ VQ,∀h ∈ H, (16.11)

ehij ≥ 0, ∀i ∈ VQ,∀j ∈ VP ,∀h ∈ H. (16.12)

In this game, contract matrix Ei is a strategy of consumer i. We denote by Σ i

a set of all i’s feasible strategies, i.e., a set of all matrices {Ei} fulfilling the
conditions (16.10)–(16.12).

16.3.2 Existence of Nash Equilibria

The idea of Nash equilibrium proved to be the most appropriate solution concept
for competitive games. A set of agents’ strategies is in Nash equilibrium, if none
of agents may reduce their total cost by unilaterally changing their strategy. In our
model, a total profile E∗ is in Nash equilibrium, if the following conditions are
fulfilled:

Ci(E∗) ≤ Ci(Ei ,E∗−i ),∀Ei ∈ Σ i , (16.13)

where {Ei ,E∗−i} is a total profile that differs from E∗ only in component Ei .
The existence of Nash equilibria in a consumer game strongly depends on the

form of cost functions {αhj (·)}, {βhkl(·)} and the cost sharing rule Δ. Moreover,

arguments of {βhkl(·)} are flows in the corresponding arcs. Hence, establishing the
fact of equilibrium’s existence is a non-trivial task.
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Theorem 1 Assume that a network contains no cycles, functions {αhj (·)} are convex

and increasing, functions {βhkl(·)} are convex. Then game (16.9)–(16.12) has a Nash
equilibrium contract profile E∗.

Proof According to [5], an equilibrium exists for any n-person game with concave
payoff functions. Since we consider cost functions rather than payoff functions, the
same statement is true for games with convex cost functions. Therefore, we need to
check whether a cost function Ci(E) = Ci(E1, . . . ,Em) is convex in Ei for each
consumer i ∈ VQ.

Function Ci(E) consists of several summands:

Ci(E) =
H∑

h=1

(
Ghi (E

h)+ T hi (Eh)
)
.

If we show that each summand in this sum is convex, convexity of the whole sum
will be established as well. First, we study function Ghi (E

h):

Ghi (E
h) =

m+n∑

j=m+1

ehij · αhj (bhj ). (16.14)

When we fix the contract profiles of all consumers except i, function αhj (b
h
j + λ)

remains convex and increasing, and function in (16.14) is convex as a product of
two non-negative increasing convex functions.

Second, we rewrite function T hi (E
h) with fixed contract profiles of all consumers

except i:

T hi (E
h) =

∑

(k,l)∈A
δ
i,h
kl (E

h) · βhkl(f hkl(Eh)). (16.15)

The argument of βkl(·) in (16.15) is a linear combination of {eij , j ∈ VP },
components of consumer i’s contract profile. Therefore, βikl(E

h) remains convex
in Ehi , as well as T hi (E

h).
The convexity of cost functions in respective arguments is established, that

completes the proof.

16.4 Example

Consider a network with seven nodes that is depicted in Fig. 16.1. There are three
consumers (red nodes), three producers (green nodes), and one intermediate node.
Therefore, VQ = {1, 2, 3}, VP = {4, 5, 6}, and VO = {7}.
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Fig. 16.1 7-node network
with no cycles

4 2

5

3

6

7

1

All nodes are located in the same local area except for node 4 that depicts a
conventional energy generator, e.g. a power plant. Hence, arc (4, 2) is longer than
all other arcs, and transmission costs are higher for this arc.

Since there are no cycles in the network, we only need to check the first
Kirchhoff’s law. A flow on each arc is a linear combination of {ehij }, h = {1, 2, 3, 4}:

f̂ h25 = eh34 + eh36 − eh15 − eh25, f̂ h53 = eh34 + eh35 + eh36,

f̂ h42 = eh14 + eh24 + eh34, f̂ h27 = eh14 + eh15 − eh26 − eh36,

f̂ h71 = eh14 + eh15 + eh16, f̂ h67 = eh16 + eh26 + eh36.

The direction of flow in arcs (2, 5) and (2, 7) may differ depending on the values
{ehij }. If f̂ h25 < 0, we assign f̂ h25 = 0 and f̂ h52 = −f̂ h25. The same is true for f̂ h27.

Let us assume that functions {αhj (·)} and {βhkl(·)} have the following form:

αhj (x) = λhj · x1+ε + μhj , ∀j ∈ VP ,
βhkl(x) = λhkl · x1+ζ , ∀(k, l) ∈ A, (16.16)

where all coefficients are non-negative. We are ready now to solve the prob-
lem (16.9)–(16.12) with specific values of demands and coefficients in (16.16),
and evaluate the total cost reduction. Actually, it is clear that the problem is a
computationally difficult. Indeed, the presence of four time periods makes us to
compare numerous combinations of different contracts. Thus, we are dealing with
combinatorial optimization and the problem could be NP-hard. In future works we
will investigate these questions carefully.

16.5 Conclusion

In this work, we have introduced new model for multi-supplier power grid under
transmission constraints. Our model studies daily energy dynamics. The game of
consumers was formulated and the existence result was established given specific
properties of cost functions. There are several directions to improve and generalize
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the methods discussed in this work, and we name only few of them. First, real-world
production and transmission costs, as well as voltage change functions, should be
further studied in order to provide realistic representation of the network. Secondly,
one can investigate a setting with dynamic network topology. Though power grid
structures are relatively constant, there might be different applications of this model,
e.g. for planning an optimal modification of a grid, or for maintaining the stability
in a case of emergency such as blackouts.
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