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Abstract. Weighted frequent subgraph mining comes with an inherent
challenge—namely, weighted support does not support the downward
closure property, which is often used in mining algorithms for reducing
the search space. Although this challenge attracted attention from sev-
eral researchers, most existing works in this field use either affinity based
pruning or alternative anti-monotonic weighting technique for subgraphs
other than average edge-weight. In this paper, we propose an efficient
weighted frequent subgraph mining algorithm called WFSM-MaxPWS.
Our algorithm uses the MaxPWS pruning technique, which significantly
reduces search space without changing subgraph weighting scheme while
ensuring completeness. Our evaluation results on three different graph
datasets with two different weight distributions (normal and negative
exponential) showed that our WFSM-MaxPWS algorithm led to signif-
icant runtime improvement over the existing MaxW pruning technique
(which is a concept for weighted pattern mining in computing subgraph
weight by taking average of edge weights).

1 Introduction

As frequent pattern mining has been an appealing area of data mining, many
algorithms have been developed for general pattern mining [5,12,13] to specific
pattern mining (e.g., mining sequential patterns, weighted patterns, web access
sequences, data streams). To deal with complex data, graph mining [3,7] has
emerged as an inevitable area. When compared to unweighted graphs, weighted
graphs have strong representational power. Weighted frequent subgraphs describe
underlying graph database more accurately, and thus contribute greatly in areas
like feature extraction for graph classification, association rule mining, graph
clustering. For example, it is impossible to identify sophisticated metamorphic
malwares using signature based approaches. Runtime behavior, though very
accurate, is hardly used due to its slower detection rate. As an alternative, mal-
ware call-graph analysis has been shown to be very effective. However, insertion
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of huge benign codes in malwares reduces the chance of identifying comparatively
less frequent suspicious subgraphs when using traditional subgraph mining algo-
rithms. So, the malware detection task can take advantage of weighted frequent
subgraph mining by giving higher weights to those call sequences.

Frequent subgraph mining is a tedious task partially because of subgraph
isomorphism checking and exponential growth of candidate patterns. Luckily,
canonical ordering of graphs and anti-monotonicity of downward closure prop-
erty have made frequent subgraph mining a feasible task. However, for weighted
frequent subgraph mining, the downward closure property no longer holds. Exist-
ing algorithms handle general weighted frequent itemset mining in FP-tree based
mining algorithms by considering GMaxW (weight of maximum weighted item
from the initial global FP-tree) and then recursively considering LMaxW (weight
of maximum weighted item in local conditional FP-trees) as the maximum pos-
sible itemset weight for pruning [1]. The completeness is ensured by sorting
itemsets in weight ascending order. This approach generates a moderate number
of candidate patterns because recursively lighter weights are considered for prun-
ing. However, as MaxW is usually much heavier than the actual average weight
of subgraph, a huge number of unnecessary candidate subgraphs are generated,
and thus leading to long runtime. Although attempts to reduce the number of
generated candidate sets have been made, most of the existing approaches either
use affinity based pruning (which usually imposes extra conditions to measure
interestingness of a subgraph) or other alternative weighting techniques (which
redefines subgraph weights such that the downward closure property is satisfied).

In this paper, we aim to reduce the number of generated candidate sets via our
non-trivial adoption of affinity-based conditions and subgraph-weighting tech-
niques. The work is inspired by our observation that, when considering MaxW
as the maximum possible weight of extended subgraph, those already-seen aver-
age weights of the subgraph are often ignored. So, we decided to make good use of
(i) these already-seen weights of a subgraph and (ii) some statistical information
about the dataset to calculate the maximum possible weight and frequency for
extensions of subgraph up to many edges. Consequently, the Maximum Possible
Weighted Support (MaxPWS) can be computed for a subgraph. Moreover, by
making an intelligent change in canonical ordering for weighted subgraphs, the
magnitude of MaxPWS can further be brought closer to the actual weighted
support, which then leads to safe and effective pruning of unnecessary candidate
subgraphs. Hence, our key contributions of this paper are as follows:

– a tighter pruning technique MaxPWS for weighted subgraph mining, and
– a canonical ordering for weighted subgraphs that makes MaxPWS tighter,
– a weighted frequent subgraph mining algorithm called WFSM-MaxPWS,

which uses the MaxPWS pruning technique.

The remainder of this paper is organized as follows. The next section presents
background and related works. Section 3 describes our MaxPWS pruning tech-
nique, canonical order modification, and WFSM-MaxPWS algorithm. Experi-
mental results and conclusions are given in Sects. 4 and 5, respectively.
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2 Background and Related Works

Let us give some background information about weighted graph mining,
which aims to find weighted frequent subgraph. An edge-weighted graph G is
a collection of nodes V , edges E, together with a mapping between edge-set E
and weights. For a function W (e) that returns the weight of edge e , the weight
of a subgraph g can be defined as: W (g) = 1

n

∑n
i=1 W (ei), where each ei is an

edge of g. Given a graph database GDB of weighted graphs and a minimum
weighted support threshold τ , a subgraph g is said to be weighted frequent if
wsup(g) ≥ τ where wsup(g) = W (g) × sup(g). In this paper, we focus on the
condition that “all edges with same edge label and end-point node label have
the same weight”.

As the base for our proposed MaxPWS pruning technique, the gSpan algo-
rithm [16] represents each subgraph by using DFScode, and it uses an extended
tuple comparison rule to rank the DFScode of a subgraph by following the right-
most path extension. Among several isomorphism of a subgraph, the one with
the lowest rank is said to be canonical. In this paper, we have modified such an
extended tuple comparison rule for weighted graphs. A challenge is that such a
modification affects the rank and changes the canonical DFScode of a subgraph.

In terms of related works, both GWF-mining and CWF-mining algorithms
[15]—as extensions of utility based itemset mining (which considers non-weighted
support)—mine internally and externally weighted graphs respectively by con-
sidering external weighted frequency for complex data. Along this direction,
further extensions include closed and maximal subgraph mining [14]. In con-
trast, we consider individual subgraph weight calculated from edge weights and
non-weighted frequency.

Eichinger et al. [4] showed that frequent subgraph mining task yields more
precise results when considering weight-based constraints. As these weight-based
constraints are not anti-monotonic, their algorithm returns approximate and
thus incomplete results. In contrast, our proposed algorithm is complete.

Yang et al. [17] performed weighted subgraph mining on single individual
weighted graphs. In contrast, our proposed algorithm focuses on mining weighted
frequent patterns from a set of weighted graphs.

Three subgraph weighting techniques—namely, Average Total Weighting
(ATW), Affinity Weighting (AW), and Utility Based Weighting (UBW) were
proposed [9] and adapted for longitudinal social network data [8]. Among them,
ATW requires redefining the subgraph weight as a ratio between total graph
database weight and subgraph support set weight. Although ATW is anti-
monotonic, it fails to discriminate between two subgraphs having the same sup-
port set. AW prunes a subgraph if its edges fail to satisfy some weight correla-
tion condition, whereas UBW discards a subgraph if its weight-share falls below
a weight-share threshold λ. On the contrary, our MaxPWS does not require
redefining subgraph weight as it takes an average of edge weights. Hence, it can
discriminate between two subgraphs even if they have exactly same support set.
Moreover, MaxPWS can be applied to any affinity or utility conditions.
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Lee and Yun [10] applied weighted-support affinity to reduce search space.
Length-decreasing support constraints [11] were used as a weighted smallest-
valid extension for frequent graph mining because graph patterns extracted from
a given graph database can have various features (e.g., different pattern lengths).
Moreover, a distributed approach of weighted frequent subgraph mining using
ATW weighting technique [2] was proposed. Another approach [6] finds regular
patterns from weighted-directed dynamic graphs with jitter. These four algo-
rithms focus on special or specific weighted frequent subgraph mining tasks. In
contrast, our algorithm focuses on the general weighted pattern mining task.

3 Our Proposed Algorithm

To reduce candidate subgraph generation, we propose (i) a tight pruning con-
dition MaxPWS for weighted frequent subgraph mining and (ii) an algorithm
called WFSM-MaxPWS for Weighted Frequent Subgraph Mining by using
the MaxPWS condition. In this section, we first show our proposed canonical
ordering for edge-weighted graphs, and then discuss details about MaxPWS.

3.1 WFSM-MaxPWS Canonical Ordering of Subgraph

For edge-weighted graphs, we add weight-property in the extended edge-tuple
representation used in gSpan. Consequently, the new extended tuple for an edge
(u, v) is of the following form as a 6-tuplet:

〈disu, disv, L(u), L(v), L(u, v),W (u, v)〉,
where W (u, v) is the weight of edge (u, v). To give a rank of a DFScode of
subgraph, the WFSM-MaxPWS canonical order gives the highest priority to
(disu, disv) as in gSpan. The second highest priority is given to edge weight
W (u, v). The higher the weight, the smaller is the tuple for the same discovery
times. The third priority is given to a lexicographic comparison on node and
edge label trio. To elaborate, let

t1 = 〈vi, vj , L(vi), L(vj), L(vi, vj),W (vi, vj)〉; and
t2 = 〈vx, vy, L(vx), L(vy), L(vx, vy),W (vx, vy)〉.

Then, t1 < t2 if and only if

1. (vi, vj) <e (vx, vy); or
2. (vi, vj) = (vx, vy) and W (vi, vj) > W (vx, vy); or
3. (vi, vj) = (vx, vy) and W (vi, vj) = (vx, vy) and

〈L(vi), L(vj), L(vi, vj)〉 <l 〈L(vx), L(vy), L(vx, vy)〉.
Here, <e is an ordering on edge, and <l is an ordering on vertex and edge labels.
Note that <l follows lexicographic order. The edge order (<e) rule is derived
from the rightmost path extension sequence. The edge that extended earlier is
smaller.



668 M. A. Islam et al.

Fig. 1. Canonical code comparison with gSpan (without edge label)

Figure 1 shows a comparison between the canonical representations in gSpan
[16] and our WFSM-MaxPWS algorithm. For simplicity and readability, tuples
are shown as 5-tuplets by omitting the edge labels L(u, v). As gSpan puts an
edge ordering during the mining time of endpoint nodes and compares the (node
labels-edge label)-trio in lexicographic order, tuple t11 becomes the smallest for
graph in the figure. On the other hand, after performing edge ordering during
the node mining time, the second importance of our WFSM-MaxPWS is put on
edge weight. The higher the weight, the smaller is the tuple. As the first tuple
of any DFScode has node discovery pair (0, 1), the highest weighted edge would
be the smallest. So, WFSM-MaxPWS would consider tuple 〈0, 1, b, d, 0.9〉 as the
smallest. DFScode with other edges as first tuple would not be canonical.

Lemma 1. No tuple can have a weight higher than the weight of the first tuple
in a canonical WFSM-MaxPWS DFScode.

Proof. (By induction on edge count m) For the base case (when m = 1), first
tuple is the only tuple. Hence, there is no other tuple with a heavier weight.

For the inductive step, let us assume that the first tuple in DFScode Cx for
1 < m ≤ x is tx0 = 〈0, 1, L(v1), L(v2), L(v1, v2),W (v1, v2)〉. If we extend the
subgraph with a tuple having a weight lower or equal to the first tuple, then the
condition continues to hold. However, if we extend with a higher weighted tuple
txk = 〈∗, ∗, L(u1), L(u2), L(u1, u2),W(u1, u2)〉, then there exists a new possible
DFScode Cy having ty0 = 〈0, 1, L(u1), L(u2), L(u1, u2),W (u1, u2)〉 as first tuple.
Here, tx0 > ty0 implies that Rank(Cy) < Rank({Cx, txk}). So, {Cx, txk} cannot
be canonical. Thus, we cannot extend a subgraph with a higher weighted tuple
while preserving canonicity. ��

3.2 MaxPWS Pruning Technique

We divide the entire graph database into partitions p1, p2, p3, . . . , px, . . . , pM .
Partition p1 is the set of graphs in the database having the minimum number of
edges; partition pM is the collection of graphs having the maximum number of
edges. Graphs in the same partition have the same number of edges. Each graph
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Fig. 2. Sample graph database GDB

Fig. 3. Sample subgraph gx

in partition px contain at least one more edge than any graphs in partition px−1

and contain at least one fewer edge than graphs in partition px+1. We called these
partition-collection Edge-Class (EC). For the sample graph database in Fig. 2,
there are three partitions. Hence, EC = {p1 = {G1}4; p2 = {G3, G4}6; p3 =
{G2}7}, where the subscript after each curly brackets indicates the edge count
of the partition. For any subgraph of consideration, we calculate its occurrence
list, which is a collection of subsets from each Edge-Class partition entry where
each member graph of the collection is a superset for that subgraph.

Definition 1. Let g be a subgraph. Its occurrence list (OL) is defined as
OL(g) = {q1, q2, q3, . . .} where ∀qi ∈ OL(g)[qi ⊆ pi and g is a subgraph of each
member of qi]. We call qi an occurrence list member (OLM).

For example, for the database in Fig. 2, the occurrence list for subgraph gx
shown in Fig. 3 is OL(gx) = {q1 = {G1}4; q2 = {G3}6; q3 = {G2}7}.

We can also calculate the possible occurrence list (pol) and maximum
possible frequency (mpf) for a subgraph based on its OL for extension
of that subgraph up to a different edge count. For example, from the OL of
gx, if we extend the subgraph gx up to 4 edges, then the corresponding pol
of the extended subgraph gx→4 is still pol(gx→4) = {{G1}4; {G3}6; {G2}7}.
Similarly, the mpf of gx→4 becomes mpf(gx→4) = 3. However, if we extend
gx beyond 4 edges, graph G1 can no longer be a part of its OL because
it contains only 4 edges in total. For extension up to 6 edges, pol(gx→6) =
{{G3}6; {G2}7} and mpf(gx→6) = 2. Similarly, for extension up to 7 edge,
pol(gx→7) = {{G2}7} and mpf(gx→7) = 1. Now, the heaviest possible exten-
sion of gx up to 4, 6 and 7 edges can contain 2, 4 and 5 more MaxW-weight
edges, respectively. For the database in Fig. 2, it is 2.0 (edge b–c). According to
Lemma 1, this extension can be canonical if and only if the first tuple in the
canonical DFScode of gx has a weight at least 2.0. However, canonical DFScode
of gx is {〈0, 1, a, b, 1.6〉, 〈0, 2, a, c, 0.75〉}. (For simplicity, we omitted edge labels
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here.) Thus, to be canonical, any extended subgraph of gx cannot have an edge
with a weight heavier than 1.6.

In general, to preserve canonicity, the heaviest possible extension of any sub-
graph is its first tuple weight (FTW). With this concept, for any subgraph g,
we can calculate its possible weighted support (PWS) after extending up to
m-edges by the following equation:

PWS(g→m) =
|g| × W (g) + (m − |g|) × FTW

m
× mpf(g→m), (1)

where |g| is the number of edges in g. In this calculation, g is assumed to be
extended up to m edges with each new edge having the FTW weight to ensure
that this imaginary extended supergraph has the maximum possible weight w.r.t.
the graph database (because extension with a heavier weighted edge would not
be canonical). We calculate MaxPWS by taking the maximum among all PWS
values for g. If MaxPWS fails to satisfy the minimum weighted support thresh-
old τ , then we can safely prune g. Otherwise, we need to extend g because its
extended subgraph have potential to be weighted-frequent.

For example, consider subgraph gx in Fig. 3 with W (gx) = 1.6+0.75
2 = 1.175.

For graph database in Fig. 2, PWS values are as follows:

• PWS(gx→4) = 2×1.175+(4−2)×1.6
4 × 3 = 1.3875 × 3 = 4.1625

• PWS(gx→6) = 2×1.175+(6−2)×1.6
6 × 2 ≈ 1.4583 × 2 = 2.9166

• PWS(gx→7) = 2×1.175+(7−2)×1.6
7 × 1 ≈ 1.4786 × 1 = 1.4786

Hence, MaxPWS(gx) = 4.1625. In contrast, the MaxW measure for gx is 2×3 =
6 (because MaxW = 2 and frequency = 3), which is greater than MaxPWS.

Note that, if we do not use the modified canonical ordering for weighted
graphs as proposed in Sect. 3.1, then the PWS calculation would have to use
MaxW (instead of FTW as shown in Eq. (2)):

PWS(g→m) =
|g| × W (g) + (m − |g|) × MaxW

m
× mpf(g→m) (2)

The resulting algorithm (which uses MaxW) is called MaxPWS-gSpan algo-
rithm, which can be considered as a variant of our WFSM-MaxPWS algorithm
(which uses FTW).

Lemma 2. MaxPWS-measure is anti-monotonic.

Proof. (By contradiction) Suppose that MaxPWS is not anti-monotonic. Then,
there exists an extended subgraph gx of g for which MaxPWS(gx) ≥ τ even
though MaxPWS(g) < τ . If |gx| − |g| = k, then

W (gx) × |gx| ≤ W (g) × |g| + k × FTW. (3)

If MaxPWS of gx occurs in m-edge extension, then PWS(gx→m) > PWS(g→m).
This means |gx|×W (gx)+(m−|gx|)×FTW

m ×mpf(gx→m) > |g|×W (g)+(m−|g|)×FTW
m ×
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mpf(g→m). Due to the downward closure property of frequency, mpf(gx→m)
must be less than or equal to mpf(g→m). So, by removing the mpf terms from
both side, |gx|×W (gx)+(m−|gx|)×FTW > |g|×W (g)+(m−|g|)×FTW . By
using Eq. (3) and |gx| = |g| + k, we get W (g) × |g| + k × FTW + (m − |g| − k) ×
FTW > |g| × W (g) + (m − |g|) × FTW . Consequently, k × FTW + (m − |g| −
k)×FTW > (m−|g|)×FTW , and thus (m−|g|)×FTW > (m−|g|)×FTW ,
which is impossible. Thus, MaxPWS(gx) cannot be greater than MaxPWS(g).
So, MaxPWS-measure is anti-monotonic. ��
Corollary 1. If MaxPWS(g) < τ , then g has no potential weighted frequent
extension. ��
Corollary 2. Due to MaxPWS-measure ≤ MaxW-measure, MaxPWS pruning
technique prunes more unnecessary patterns. ��

3.3 The WFSM-MaxPWS Algorithm

A pseudocode for WFSM-MaxPWS is shown in Algorithm1. Here, our WFSM-
MaxPWS algorithm takes the following four input parameters: (i) the canonical
DFScode of a graph C, (ii) graph database D, (iii) weighted support threshold τ ,
and (iv) occurrence list OLC of C. With the initial call, C = ∅ and OLC = EC
(edge class). WFSM-MaxPWS puts all frequent weighted subgraphs in a result
set.

Algorithm 1. Algorithm WFSM-MaxPWS
1: procedure WFSM-MaxPWS(C, D, τ,OLC)
2: OL vec = rightmost-path-extension(C,OLC , D)
3: for each (t,OLt) ∈ OL vec do
4: C′ = C ∪ t
5: if IS CANONICAL(C′) = false then continue.

6: Set supC′ = 0 and MaxPWS = 0
7: for each qi ∈ OLt in reverse order (last to first) do
8: mi = edge count of qi
9: supC′ = supC′ + |qi| //cardinality of qi

10: PWS i = |C′|×W (C′)+(mi−|C′|)×FTW
mi

× supC′

11: if MaxPWS < PWS i then MaxPWS = PWS i

12: wsupC′ = W (C′) × supC′

13: if wsupC′ ≥ τ then
14: result = result ∪ C′ //Enlist C′ as frequent weighted subgraph
15: WFSM-MaxPWS(C′, D, τ, OLt)
16: else if MaxPWS ≥ τ then WFSM-MaxPWS(C′, D, τ,OLt)

The function “rightmost-path-extension” in line 2 enumerates all possible
extensions on rightmost path of the given DFScode and returns a vector of those
extensions as new edge tuples and their corresponding occurrence list OL vec.
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Each entry in OL vec is then checked for canonicity (lines 4 & 5). The support
of code C ′ is updated while iterating through each entry in OL (line 9). Simul-
taneously, possible weighted support from the highest to the lowest OLM(qi)
is calculated to find MaxPWS (lines 8–11). The actual weighted support wsup
of the code/subgraph is calculated in line 11. If it satisfies weighted support
threshold condition (line 13), then it is enlisted as a frequent weighted subgraph
(line 14) and sent for further extension (line 15). Otherwise, if MaxPWS satisfies
weighted support threshold condition, though it will not be enlisted as frequent
weighted subgraph, then it will be sent to the WFSM-MaxPWS algorithm for
further extension (line 16) as its extended graph still has a chance to be frequent
weighted subgraph.

4 Experimental Results

To evaluate the performance of our proposed algorithm WFSM-MaxPWS, we
conducted several experiments on a PC with an Intel Core i3-2100 CPU at
3.10 GHz and 4 GB RAM running MS Windows 10 operating system. We ana-
lyze performance of WFSM-MaxPWS w.r.t. runtime, search-space reduction effi-
ciency, and memory requirement. For comparison, we used MaxW-gSpan (which
uses MaxW pruning technique with gSpan) as the baseline algorithm. Both
WFSM-MaxPWS and MaxW-gSpan were implemented in Python.

Regarding the test datasets, several graphs datasets1 were selected from Pub-
Chem2, which provides information on biological activities of small molecules and
contains the bioassay records for anti-cancer screen tests with different cancer
cell lines. Each dataset captures a certain type of cancer screen with the outcome
active or inactive. In particular, we used MCF-7, P388 and Yeast datasets.
Since these datasets come with no weights, we added weights according to two
different weight distributions—namely, normal and negative exponential. Dataset
statistics after adding weight is given in Table 1.

Table 1. Datasets

Dataset #graphs Distinct
#edges

Avg
#edges

Distribution MinW MaxW

MCF-7 2,293 54 36 normal (μ = 0.5, σ = 0.07) 0.13 0.86

negExpo (f = 1) 0.07 0.98

P388 2,297 64 30 normal (μ = 10, σ = 1.5) 3.16 16.84

negExpo (f = 18) 1.55 16.86

Yeast 9,567 125 26 normal (μ = 2, σ = 0.3) 0.46 3.55

negExpo (f = 3.6) 0.23 3.53

1 http://www.cs.ucsb.edu/∼xyan/dataset.htm.
2 https://pubchem.ncbi.nlm.nih.gov/.

http://www.cs.ucsb.edu/~xyan/dataset.htm
https://pubchem.ncbi.nlm.nih.gov/
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Fig. 4. Runtime

To analyze the performance of our proposed algorithm WFSM-MaxPWS
(which uses Eq. (1) for the PWS calculation), we compared it with MaxPWS-
gSpan (which uses Eq. (2) for the PWS calculation) and the baseline MaxW-
gSpan algorithm (which simply uses the MaxW pruning technique) by using
the three datasets in Table 1. We examined the following aspects: (i) runtime
(ii) search-space reduction, and (iii) memory usage.

Figure 4 shows the runtimes on three datasets (each with two distributions).
Here, both our WFSM-MaxPWS and MaxPWS-gSpan algorithms ran signif-
icantly faster than MaxW-gSpan. Between the former two, WFSM-MaxPWS
ran faster than MaxPWS-gSpan, and the margin was wider for datasets hav-
ing negative exponential weight distributions because WFSM-MaxPWS takes
full advantage of distribution by considering FTW (instead of MaxW) in the
MaxPWS calculation. When the weights follows positive exponential, WFSM-
MaxPWS still ran faster than MaxPWS-gSpan or MaxW-gSpan, though the gap
between the latter two was smaller.

A reason behind the runtime improvement of WFSM-MaxPWS over the other
two algorithms is its efficiency in search-space reduction. Specifically, WFSM-
MaxPWS generates a very small number of candidates when compared with the
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Table 2. P388 candidate count

(a) Normal distribution
τ WFS WFSM- MaxPWS- MaxW-

cnt MaxPWS gSpan gSpan
5,000 616 711 1,259 2,053
6,000 362 415 750 1,104
7,000 257 278 478 739
8,000 173 199 330 487

(b) Negative exponential
τ WFS WFSM- MaxPWS- MaxW-

cnt MaxPWS gSpan gSpan
2,300 248 399 30,869 91,053
2,500 192 319 12,148 38,312
2,700 142 266 7,145 27,944
2,900 111 212 4,953 22,455
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other two algorithms. Table 2 shows the numbers of generated candidates for
the P388 dataset. In the table, the second column shows the actual weighted
frequent subgraph count (WFS cnt). The third to fifth columns show candidate
counts for WFSM-MaxPWS, MaxPWS-gSpan and MaxW-gSpan. Our WFSM-
MaxPWS generated the smallest number of candidates when compared with the
other two algorithms, especially with negative exponential distribution. Such a
reduction in search space effectively reduced runtime.

As for memory usage, both WFSM-MaxPWS and MaxPWS-gSpan
required just slightly more memory than MaxW-gSpan due to the occurrence
list storage. As shown in Fig. 5 on both MCF-7 and Yeast datasets, the slight
increase in memory requirement was insignificant, especially when compared
with fruitful benefits of reduction in both runtime and the number of generated
candidates.

5 Conclusions

In this paper, we proposed a weighted frequent subgraph mining algorithm called
WFSM-MaxPWS, which uses MaxPWS-measure to reduce search-space. Max-
PWS is calculated using a modified canonical ordering for weighted graphs to
achieve smallest possible upper bound of maximum possible weighted support for
any extensions of a particular subgraph along with ensuring no loss of weighted
frequent subgraph patterns. Experimental results and comparative analysis on
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three real datasets with normal and negative exponential distribution show that
our WFSM-MaxPWS algorithm outperforms the existing MaxW-gSpan algo-
rithm w.r.t. runtime and reduction in the number of generated candidates.
Moreover, our modified canonical ordering for weighted graphs facilitates Max-
PWS calculation to achieve even better performance. This concept of modified
canonical ordering and MaxPWS pruning have potential to be further utilized
in uncertain or utility-based graph databases.
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