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Abstract. Due to the sparsity of network, some community detection
methods only based on topology often lead to relatively low accuracy.
Although some methods have been proposed to improve the detection
accuracy by using few known semi-supervised information or node con-
tent, the research of community detection not only pursues the enhance-
ment of community accuracy, but also pays more attention to the seman-
tic description for communities. In this paper, we proposed a unified non-
negative matrix factorization framework simultaneously for community
detection and semantic matching by integrating both semi-supervised
information and node content. The framework reveals two-fold commu-
nity structures as well as their coupling relationship matrix, which helps
to identify accurate community structure and at the same time assign
specific semantic information to each community. Experiments on some
real networks show that the framework is efficient to match each commu-
nity with specific semantic information, and the performance are superior
over the compared methods.
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1 Introduction

The complex network is constituted by a group of entities and their interactive
relationships. These direct or indirect interactions can partition the network into
several functional communities, making which interact densely in each commu-
nity and sparsely between them. For example, the protein network is partitioned
into different functional units via the interaction among protein molecule. There-
fore, the identification of these communities is helpful to understand how the net-
work works and how the functional unit interacts. However, for many networks
in real world, due to its community structure is very vague, it is very difficult to
identify solely using the observed interactions. How to integrate the structural
and semantic information to identify more accurate community structure and
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simultaneously assign an appropriate semantic description to each community is
a worthy studying heat.

The early community detection methods only use network topology, includ-
ing hierarchical clustering [1], spectral clustering [2], modularity optimization
[3,4] and methods based on generative model [5]. However, for networks with
sparse connections and vague community structure, these methods almost fail
to accurately identify its community structure.

In order to uncover the vague community hidden in networks, it is neces-
sary to exploit additional available prior information, and some semi-supervised
community detection methods [6–10] have been proposed. Specifically, combined
with both node labels and pairwise constraints, Eaton and Mansbach proposed a
semi-supervised spin-model for community detection, which penalizes the term
that violates the guidance and rewards the term that agrees with the guidance
[6]. Based on latent space graph regularization, Yang et al. utilized must-link
constraints to derive a unified semi-supervised community detection framework
[8]. Zhang et al. directly used the pairwise constraints to modify the adjacency
matrix of networks, and proposed a semi-supervised community detection frame-
work [9,11]. Considering that the heterogeneity of node degree and commu-
nity size may lower the utilization of prior constraints, Liu et al. developed a
semi-supervised NMF community detection method with node popularity [10].
Indeed, the integration of semi-supervised prior information and network topol-
ogy plays a vital role in assisting to reveal the vague community structure, but for
very sparse networks, the semi-supervised prior cannot be effectively used, and
usually has lower utilization. Moreover, it ignores the specific semantic of each
community.

In addition, the node contents are often available. For example, a user of a
social network often has a person profile with content information such as age,
male, education background and profession; a paper in citation network often
provides some contents information including author, title, abstract and key
words. It is generally assumed that nodes of more similar contents information
are more likely to belong to the same community. Therefore, node contents have
been widely used to guide the community detection and depict the community
semantic [12–14]. The early content-based methods handle the network topolo-
gies and content separately, and most of the methods just use node contents to
improve the community detection accuracy and compensate the insufficiency of
sparse topology. For example, by combining the user similarity, message similar-
ity and user interaction, Pei et al. proposed a nonnegative matrix tri-factorization
clustering framework to identify the community structure in a social network
[15]. Recently, some researchers often use node contents to describe the seman-
tic explanation for community, so as to further understand why some certain
nodes belong to the same community, and what characteristics the community
owns. From the perspective of content propagation, Liu et al. combined the
topological structure as well as the content information to detect the commu-
nity structure, and adopted the stable status of random walk to describe the
semantic information of communities [16]. By integrating network topology and
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semantic information of nodes, Wang et al. proposed a novel nonnegative matrix
factorization (NMF) model [17], and by defining two sets of parameters, the
community membership matrix and community attribute matrix respectively,
to infer the community structure and its corresponding semantic interpretation.

However, most of these newly proposed methods have three potential prob-
lems. Firstly, users tend to form a community due to their interactions. For
sparse network, the relatively vague community structure is difficult to accu-
rately identify, and node contents cannot assign appropriate semantic topic for
each community when the identified community structure is wrong. Secondly,
they generally believe that network topology and node content share the same
community membership, but there may be more than one semantic topic for
each community. Therefore, although the above methods can identify accurate
community structure, they cannot assign correct semantic interpretation to a
community. Finally, most of the existing methods utilize network topology and
node contents separately, ignoring the relation between topology and content.

In this paper, for sparse networks we propose a unified weakly supervised
framework for community detection and semantic matching (WSCDSM). Firstly,
we incorporate network topology with must-link prior to derive an accurate
topology-driven community (TC) membership, and then utilize node content
information to obtain a semantic-driven community (SC) membership. Finally,
by introducing a coupling matrix to portray the matching relation between TC
and SC community structure, we integrate the above two process into WSCDSM
framework to simultaneously detect community structure and match semantic.
In our framework, two types of auxiliary information are seamlessly integrated
to reveal the vague community structure and help to understand the practical
semantic of communities. Consequently, the prior information and node contents
are not only more effectively utilized, but also can complement some missing
information of each other. We adopt an iterative method to train the TC (SC)
community membership and its coupling relationship. Experimental results on
several real networks validate that the proposed framework not only improves,
as expected, the detection accuracy of vague communities, but also assign an
appropriate semantic interpretation to each community.

The contributions of this work are as follows:

(1) Integrating with topological and content information as well as semi-
supervised prior, we proposed a unified framework simultaneously for com-
munity detection and semantic matching. In this framework, we introduce
coupling matrix to depict the relationship between community and semantic
topic. Besides, it can also adjust the semantic information of each commu-
nity.

(2) On the basis of using semi-supervised prior to improve the community accu-
racy, our proposed framework can integrate content information to compen-
sate the insufficiency of topological information, and further assign more
appropriate semantic information to each community.

(3) Our proposed framework is superior over the compared methods in most
cases, and the improvement is more obvious on vary sparse network.
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2 Proposed WSCDSM Framework

Considering an undirected attributed graph G = (V,E,S) of n nodes V and e
edges E, which often can be represented by a binary-valued adjacency matrix
A ∈ R

n×n and an attribute matrix S ∈ R
n×m where m indicates the dimension

of attributes each node has. aij = 1 if there is an edge between nodes vi and vj
and sij = 1 if node vi has the j-th attribute, and 0 otherwise. Our main task of
this paper is to partition the network G into k communities with well matched
semantic interpretation, and the goal is twofold:

(1) Partition the nodes into TC communities based on network topology and
must-link prior, and separate the nodes into SC clusters based on nodes
content;

(2) Finding the best matching relationship between the two type communities so
as to best describe and understand the practical meaning of each community.

2.1 Modeling TC Communities

In this subsection, we utilize must-link constraint to derive an accurate TC
community structure. Must-link constraint is a kind of commonly used prior
information, which depicts whether two nodes belong to the same community
and is helpful to improve the accuracy of community structure. We random
select a few of must-link constraints and denote them as Cml. The corresponding
must-link constraint matrix M ∈ Rn×n is defined as:

(M)ij =

⎧
⎨

⎩

1, if i = j,
2, if (vi, vj) ∈ Cml,
0, others.

Assume the TC community membership of all nodes in the network to be H ∈
Rn×k, and hiz represents the propensity that node vi belongs to the z-th TC
community. If two nodes belong to the same community, it is often believed that
they have similar community membership and close with each other in their
geometrical distance. In order to keep this property, we use the following graph
regularization to incorporate the must-link constraint for helping reveal the TC
community structure:

min
∑

ij

‖hi − hj‖2Mij

s.t. H ≥ 0.
(1)

2.2 Modeling SC Communities

Define the semantic driven community membership to be W ∈ Rn×k where
wir denotes the propensity that node vi belongs to the r-th SC community.
For each SC community, it carries some common semantic information which
are summarized from the nodes’ contents. On one hand, nodes in the same
community usually have common contents. For another, if the contents of a
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node are highly similar to the semantic information of one SC community, the
node may belong to this SC community with a high propensity. Therefor, nodes
of the similar content may have high propensity constitute one SC community.
Assume the common semantic matrix to be C ∈ Rm×k, and cr is the contents
distribution of community r. Then for a node vi, its propensity belonging to the
r-th SC community can be written as:

Wir = si · cr
where si represents the contents of node vi.

In addition, we realize that each node has multiple contents, but only a small
number of contents are relevant to each community and most of contents are
background information. For this case, we adopt an l1 norm to keep the sparse
semantic interpretation of each community. Further more, in order to keep the

balance of these sparse contents, it needs to impose a constraint
k∑

r=1
‖c(:, r)‖21

on C. We can derive the SC community detection model as follows:

min ‖W − SC‖2F + ξ
k∑

r=1
‖c(:, r)‖21

s.t. C ≥ 0.
(2)

2.3 The Unified Model: Matching TC with SC Communities

According to the above defined TC community membership H and SC com-
munity membership W, we introduce a coupling matrix Λ ∈ Rk×k to measure
how to match semantic information with topological communities, and simul-
taneously use the relationship of this three matrices to generate the observed
network.

In our proposed WSCDSM framework, for any node vi, it generates a link
with node vj based on the following rule:

(1) According to the SC community structure, node vi has one kind of common
content l with propensity wil;

(2) Then the l-th SC community assign its semantic information to the k-th TC
community with coupling probability λlk;

(3) As a result, the probability of existing a link between node vi with common
content l and node vj of the k-th TC community is wilλlkhjk.

Summing over all the l and k, we derive the expect number of edge between
nodes vi and vj is:

âij =
∑

lk

wilλlkhjk.

Using the square error to measure the difference between expected and
observed network, it can be further written in matrix formulation:

min ‖A − WΛHT ‖2F
s.t. W,Λ,H ≥ 0.

(3)
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By combining the model (3) with the models to derive TC community (1)
and SC community (2), we obtain our proposed WSCDSM framework as follows:

min ‖W − SC‖2F + ξ
k∑

r=1
‖c(:, r)‖21 + α‖A − WΛHT ‖2F

+
μ

2

∑

ij

‖hi − hj‖2Mij + γ‖Λ‖1
s.t. W,H,Λ,C ≥ 0

(4)

where the parameters α and μ are, respectively, used to adjust the contribution
of network topology and must-link prior. The parameter ξ and γ respectively
control the sparsity of community common contents and coupling relationship.

3 Optimization

Due to the objective function in (4) is not convex with respect to W, H, Λ
and C, it is unreasonable to find its global minimum. Here we use an iteration
algorithm to derive the update rule for each matrix by fixing other matrices.

Firstly, the update of W can be realized by optimizing the following W-
subproblem with H, Λ and C fixed:

min ‖W − SC‖2F + α‖A − WΛHT ‖2F
s.t. W ≥ 0.

(5)

For the problem (5), we introduce a Lagrange multiplier matrix Ψ for the con-
straint W ≥ 0, and set the derivative of L with respect to W to 0, we obtain:

2W − 2SC − 2αAHΛT + 2αWΛHTHΛT + Ψ = 0.

Using the KKT condition Ψikwik = 0, we obtain the following update rule for
W:

Wik ← Wik · (αAHΛT + SC)ik
(αWΛHTHΛT + W)ik

, (6)

Similarly, the update rules for H and Λ are as follows:

Hik ← Hik · (αATWΛ + μMH)ik
(αHΛTWTWΛ + μQH)ik

, (7)

Λ ← Λ · αWTAH
αWTWΛHTH + γE

, (8)

where E is a k × k matrix with all element to be 1, and Q is a n × n diagonal
matrix (qii =

∑

j

Mij and qij = 0 if i �= j).

As for the common content matrix C, it is equivalent to the problem of Wang
et al. [17]. The corresponding update rule for C is:

C ← C · ST
newWnew

ST
newSnewC

, (9)
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where Snew =
(

S√
ξe1×m

)

, Wnew =
(

W
01×k

)

and e1×m is a row vector with

all elements equal to 1, 01×k is a zero vector.

4 Experimental Results

We evaluate our WSCDSM framework on several real networks with well known
communities to validate its accuracy of community detection, and on an online
music system Last.fm to visualize the semantic information of communities.

4.1 The Performance of Community Detection

The real networks used in the experiments are shown in Table 1.

Table 1. Some real-world networks used.

Dataset Nodes (n) Edges (e) Attributes (m) Communities (k)

Cora 2708 5429 1433 7

Citeseer 3312 4732 3706 6

Texas 187 328 1703 5

Cornell 195 304 1703 5

Washington 230 446 1703 5

Wisconsin 265 530 1703 5

The Cora and Citeseer networks are both paper citation networks with nodes
representing publications and edges denoting that one publication is cited by
the other publication. The other four networks are all webpage citation net-
works where nodes representing webpages gathered from four different univer-
sities and edges denoting that one webpage is cited by the other webpage. The
node attributes of all six networks are binary-valued word attributes indicat-
ing whether each word in the vocabulary is present (indicated by 1) or absent
(indicated by 0).

In order to validate the efficiency of prior information and content infor-
mation for community detection, we compare with the following four types of
methods: the first type is only topology-based SNMF method [18]; the second
type is only attribute-based SMR method [19] and the third type is two meth-
ods based on both network topology and node content, including SCI [17] and
NEMBP [20]. In addition, we also compare with one method extracted from
our WSCDSM framework, but it ignores the coupling matrix and only combines
with must-link constraint. This method is denoted as MLNMF.

In the specific experiments, the number of communities is set to be the same
as the ground truth specified. During each experiment, we iterate 2000 times and
run 20 times. As for the parameter setting, we set α = 10, μ = 20, ξ = 100, γ = 5



A Framework for Community Detection and Semantic Matching 225

for Cora and Citeseer networks and γ = 0.5 for the other four small networks.
For the comparative methods, their parameters are set to be their default values.

In this paper, we only focus on the detection of disjoint community struc-
ture, and adopt the normalized mutual information (NMI) and accuracy (AC)
to measure the performance of all methods against the ground truth. The results
of our WSCDSM framework as well as other 5 comparative methods on Cora
and Citeseer networks are shown in Tables 2 and 3, and on the remaining net-
works are shown in Figs. 1 and 2. From the Tables 2 and 3 and Figs. 1 and 2,
we find that due to the sparsity of network and vagueness of community struc-
ture, the method only based on topology (SNMF) or content (SMR) almost
fail to accurately identify its community structure. However, the detection accu-
racy can be further improved by integrating both topology and content. In our
WSCDSM framework, we believe that the content and topology don’t share the
same community structure, and on the basis of using few semi-supervised prior
to improve the accuracy of community detection, content information can be
more effectively utilized to make up for the insufficiency of topology. Therefore,
WSCDSM framework outperforms the other five comparative methods on most
of networks, especially for Cora and Cornell networks, the improvement is more
obvious. Although the randomness of prior information causes that the results
of WSCDSM are not always higher than NEMBP on Wisconsin network, it will
achieve superior performance when proper prior information is integrated.

Table 2. Comparative results in terms of NMI, and the best results are in bold.

Information used Method Cora Citeseer

Only topology SNMF 0.1994 0.0403

Only content SMR 0.0078 0.0032

Topology+Content SCI 0.1780 0.0922

NEMBP 0.4408 0.2427

Topology+Prior MLNMF 2% 5% 8% 2% 5% 8%

0.3159 0.3239 0.3451 0.2664 0.278 0.3081

Topology+Prior+Content WSCDSM 0.5254 0.7522 0.8083 0.3532 0.4297 0.4435

Table 3. Comparative results in terms of AC, and the best results are in bold.

Information used Method Cora Citeseer

Only topology SNMF 0.4173 0.2539

Only content SMR 0.3002 0.2111

Topology+Content SCI 0.4169 0.3442

NEMBP 0.5757 0.4951

Topology+Prior MLNMF 2% 5% 8% 2% 5% 8%

0.4088 0.4106 0.4387 0.4109 0.4233 0.4598

Topology+Prior+Content WSCDSM 0.5373 0.7692 0.7906 0.4761 0.5136 0.5444
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Fig. 1. Comparative results in terms of NMI on (a) Cornell network; (b) Texas network;
(c) Washington network; (d) Wisconsin network.
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Fig. 2. Comparative results in terms of AC on (a) Cornell network; (b) Texas network;
(c) Washington network; (d) Wisconsin network.
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Citeseer network with 8% prior
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Fig. 3. The coupling relationship between TC and SC community structure on Citeseer
network. (a) 2% prior used; (b) 5% prior used; (c) 8% prior used.

Based on the above results, we believe that the higher detection accuracy of
TC community structure, the better matching of TC communities and semantic
information. Due to the limited space, here we only take Citeseer network for
an example to present the better matching between TC and SC community
structure, as shown in Fig. 3. We find that each community has different semantic
explanations with each other, and the semantic matching is robust to the increase
of prior information.

4.2 The Matching Between Semantic and Communities

The Lsat.fm system contains 1892 users, and each user has 11,946 dimensional
contents, including a list of most-listened-musical to artists and tag assignments,
i.e. [user, tag, artist] tuples. Due to the Lsat.fm network has no ground truth
with respect to the community label of node, we use Louvain method [3] as did
in Wang et al. [17], but we set the number of communities to be 31, and the
corresponding community structure is regarded as the ground truth.

The coupling relationship and semantic information of some communities are
presented in Fig. 4. From the Fig. 4(a), we find that our WSCDSM framework
can match most TC communities with one specific semantic topic, and only
several TC communities have two or three semantic topics. Besides, there are
also few communities that they have no semantic topic, which demonstrates the
content information of such communities maybe background words. Figure 4(b)
depicts a community of only one topic related to Britney Spears, a legend and
amazing singer in Louisiana, USA. Her music often has characteristics of “pop”,
“dance”, “rnb” and “electronic”. An example community of two topics are shown
in Fig. 4(c), this community is composed by a group fans who like “rock” and
“heavy metal” two styles of music, and among which the style of “rock” music
contains hard rock, classic rock and progressive rock. A community of three
topics are illustrated in Fig. 4(d), which is characterized by three types of music
including “synthpop”, “new wave” and “electronic”. For these three types music,
Depeche Mode, a representative band, is very popular and active in British.
Based on the above analysis, we find that our WSCDSM framework can relatively
accurately match the community structure and semantic information.
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Fig. 4. The matching relationship between SC and TC community, as well as some
examples of community interpretation on Lsat.fm network. (a) coupling relationship;
community with (b) one topic; (c) two topics; (d) three topics.

5 Conclusion

In this paper, we proposed a unified weakly supervised framework simultane-
ously for community detection and semantic matching. In our framework, the
semi-supervised information is firstly utilized to improve the community accu-
racy. Then by introducing a coupling matrix, the node content information is
used to adjust the TC community structure and simultaneously match semantic
interpretation for each community. The results on several real networks demon-
strated that, for one thing, integrating with few percentage of must-link prior
our framework can improve the accuracy of community detection. For another,
under the guidance of coupling matrix, the TC community and SC community
structure can realize fully interaction with each other, and further derive a well
semantic description for communities.
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