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PC Chairs’ Preface

With its 22nd edition in 2018, the Pacific-Asia Conference on Knowledge Discovery
and Data Mining is the second oldest conference and a leading venue in the area of
knowledge discovery and data mining (KDD). It provides a prestigious international
forum for researchers and industry practitioners to share their new ideas, original and
latest research results, and practical development experiences from all KDD-related
areas, including data mining, data warehousing, machine learning, artificial intelli-
gence, deep learning, databases, statistics, knowledge engineering, visualization, and
decision-making systems.

This year, we received 592 valid submissions, which is the highest number of
submissions in the past 10 years. The diversity and reputation of PAKDD were also
evident from the various regions from which submissions came, with over 25 different
countries, noticeably from North America and Europe. Our goal was to continue to
ensure a rigorous reviewing process with each paper assigned to one Senior Program
Committee (SPC) member and at least three Technical Program Committee
(TPC) members, resulting in an ideal minimum number of reviews of four for each
paper. Owing to the unusually large number of submissions this year, we had to
increase almost doubling the number of committee members, resulting in 72 SPC
members and 330 TPC members. Each valid submission was reviewed by three PC
members and meta-reviewed by one SPC member who also led the discussion. This
required a total of approximately 2,000 reviews. The program co-chairs then consid-
ered recommendations from the SPCs, the submission, and the reviews to make the
final decision. Borderline papers were discussed intensively before final decisions were
made. In some cases, additional reviews were also requested.

In the end, 164 out of 592 papers were accepted, resulting in an acceptance rate of
27.9%. Among them, 58 papers were selected for long presentation and 107 papers
were selected for regular presentation. This year, we introduced a new track in Deep
Learning for Knowledge Discovery and Data Mining. This track was particularly
popular (70 submissions); however, in the end, the number of papers accepted as the
primary category for this track was moderate (six accepted papers), standing at 8.8%.
The conference program contained 32 sessions in total. Long presentations were
allocated 25 minutes and regular presentations 15 mins. These two types of papers,
however, are not distinguished in the proceedings.

We would like to sincerely thank all SPC members, TPC members, and external
reviewers for their time, effort, dedication, and services to PAKDD 2018.

April 2018 Dinh Phung
Vincent S. Tseng



General Chairs’ Preface

Welcome to the proceedings of the 22nd Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD). This conference has a reputable tradition in
bringing researchers, academia, developers, practitioners, and industry together with a
focus on the Pacific-Asian regions. This year, PAKDD was held in the wonderful city
of Melbourne, Australia, during June 3–6, 2018.

The single most important element of PAKDD is the technical contributions and
submissions in the area of KDD. We were very pleased with the number of submis-
sions received this year, which was well close to 600, showing a significant boost in the
number of submissions and the popularity of this conference. We sincerely thank the
many authors from around the world who submitted their work to the PAKDD 2018
technical program as well as its data competition and satellite workshops. In addition,
PAKDD 2018 featured three high-profile keynote speakers: Professor Kate
Smith-Miles, Australian Laureate Fellow from Melbourne University; Dr. Rajeev
Rastogi, Director of Machine Learning at Amazon; and Professor Bing Liu from the
University of Illinois at Chicago. The conference featured three tutorials and five
satellite workshops in addition to a data competition sponsored by the Fourth Paradigm
Inc. and ChaLean.

We would like to express our gratitude to the contribution of the SPC, TPC, and
external reviewers, led by the program co-chairs, Dinh Phung and Vincent Tseng. We
would like to thank the workshop co-chairs, Benjamin Fung and Can Wang; the tutorial
co-chairs, Wray Buntine and Jeffrey Xu Yu; the competition co-chairs, Wei-Wei Tu
and Hugo Jair Escalante; the local arrangements co-chairs, Gang Li and Wei-Luo; the
publication co-chairs, Mohadeseh Ganji and Lida Rashidi; the Web and content
co-chairs, Trung Le, Uyen Pham, and Khanh Nguyen; the publicity co-chairs,
De-Chuan Zhan, Kozo Ohara, Kyuseok Shim, and Jeremiah Deng; and the award
co-chairs, James Bailey, Bart Goethals, and Jinyan Li.

We are grateful to our sponsors: Deakin University as the host institution and gold
sponsor; Monash University as the gold sponsor, University of Melbourne, Trusting
Social, and the Asian Office of Aerospace Research and Development/Air Force Office
of Scientific Research as silver sponsors, Springer as the publication sponsor, and the
Fourth Paradigm, CodaLab and ChaLearn as the data competition sponsors.

April 2017 Tu-Bao Ho
Geoffrey I. Webb
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Discovering High Utility Itemsets Based
on the Artificial Bee Colony Algorithm

Wei Song(&) and Chaomin Huang

College of Computer Science and Technology,
North China University of Technology, Beijing 100144, China

songwei@ncut.edu.cn

Abstract. Mining high utility itemsets (HUI) is an interesting research problem
in data mining. Recently, evolutionary computation has attracted researchers’
attention, and based on the genetic algorithm and particle swarm optimization,
new algorithms for mining HUIs have been proposed. In this paper, we propose
a new algorithm called HUI mining based on the artificial bee colony algorithm
(HUIM-ABC). In HUIM-ABC, a bitmap is used to transform the original
database that represents a nectar source and three types of bee. In addition to an
efficient bitwise operation and direct utility computation, a bitmap can also be
used for search space pruning. Furthermore, the size of discovered itemsets is
used to generate new nectar sources, which has a higher chance of producing
HUIs than generating new nectar sources at random. Extensive tests show that
the proposed algorithm outperforms existing state-of-the-art algorithms.

Keywords: Data mining � High utility itemset � Artificial bee colony
Bitmap � Direct nectar source generation

1 Introduction

Unlike frequent itemset [1], high utility itemset (HUI) emphasizes quantity and profit,
and has received increasing attention. Although several algorithms [6, 11, 12] have
been proposed, enumerating all HUIs exactly cannot avoid the exponential problem of
a very large search space when the number of items or size of the database is large.

Evolutionary computation (EC) methods, such as genetic algorithm (GA) [3] and
particle swarm optimization (PSO) [9], are applied for mining HUIs recently. Using an
EC technique, discovering most HUIs is a promising solution to the problem of the
large search space of all HUIs. Two HUI mining algorithms, HUPEUMU-GARM and
HUPEWUMU-GARM, based on the GA are proposed in [8]. The difference between
them is that the minimum utility threshold is not required for the second algorithm.
Premature convergence is the main problem of these two algorithms; that is, the two
algorithms fall easily into local optima. Lin et al. proposed two algorithms,
HUIM-BPSOsig [5] and HUIM-BPSO [4], for mining HUIs based on PSO. According
to [4], HUIM-BPSO outperforms HUIM-BPSOsig using an OR/NOR-tree structure.

Unlike the GA and PSO, the artificial bee colony (ABC) algorithm [7] is an
algorithm inspired by the foraging behavior of bees. Two distinguishing characteristics
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of the ABC algorithm are self-organization and decentralized control. To the best of our
knowledge, there has not been any work applying ABC algorithm for mining HUIs.

Using the ABC algorithm, we propose a novel HUI mining algorithm called HUI
mining based on the ABC algorithm (HUIM-ABC). First, we model the problem of
mining HUIs from the perspective of the ABC algorithm. Second, a bitmap is used for
both information representation and search space pruning, which can accelerate the
HUI discovery process. Third, instead of randomly generating new candidates, the size
information of the discovered HUIs is used for producing new nectar sources. Thus,
more HUIs can be discovered within fewer iteration cycles. Extensive experimental
results show that the HUIM-ABC algorithm outperforms three existing algorithms
based on EC in terms of efficiency, number of results, and convergence speed.

2 Preliminaries

2.1 Problem of HUI Mining

Let I = {i1, i2,…, im} be a finite set of items. Then, set X � I is called an itemset. Let
D = {T1, T2, …, Tn} be a transaction database. Each transaction Ti2D, with unique
identifier tid, is a subset of I.

The internal utility q(ip, Td) represents the quantity of item ip in transaction Td. The
external utility p(ip) is the unit profit value of item ip. The utility of item ip in transaction
Td is defined as u(ip, Td) = p(ip) � q(ip, Td). The utility of itemset X in transaction Td is
defined as uðX; TdÞ ¼

P
ip2X^X�Td uðip; TdÞ. The utility of itemset X in D is defined as

uðXÞ ¼ P
X�Td^Td2D uðX; TdÞ. The transaction utility (TU) of transaction Td is defined

as TU(Td) = u(Td, Td).
The minimum utility threshold d, specified by the user, is defined as a percentage of

the total TU values of the database, whereas the minimum utility value is defined as
min_util = d � P

Td2D TUðTdÞ. An itemset X is called an HUI if u(X) � min_util.
Given a transaction database D, the task of HUI mining is to determine all itemsets that
have utilities no less than min_util.

The transaction-weighted utilization (TWU) of itemset X [6] is the sum of the
transaction utilities of all the transactions containing X, which is defined as
TWUðXÞ ¼ P

X�Td^Td2D TUðTdÞ. X is a high transaction-weighted utilization itemset
(HTWUI) if TWU(X) � min_util. An HTWUI with k items is called a k-HTWUI.

2.2 ABC Algorithm

The main components of the ABC algorithm are nectar sources and artificial bees, and
nectar sources (solutions) are refined by the artificial bees iteratively. The value of a
nectar source is usually represented by a single number, and there are three types of bee
in the ABC algorithm: employed bees, onlooker bees, and scout bees.

Let Si (i = 1, 2, …, SN) be the ith solution with a D-dimensional vector, where SN
is the number of nectar sources that are generated randomly initially.

The number of employed bees equals the number of nectar sources. Every
employed bee produces a new solution from the old solution using

4 W. Song and C. Huang



Vm;j ¼ Sm;j þu Sm;j � Sn;j
� � ð1Þ

where j is a random dimension index in {1, 2, …, D}, n is a randomly selected nectar
source differentiating from m, and u is a random number in the range [−1, 1]. If the
fitness value of the newly generated solution is better than that of the old solution, the
old solution is forgotten and the new solution is memorized. Otherwise, the old solution
is kept.

When all employed bees have finished their searching process, they share the
fitness (nectar) information of their solution (nectar sources) with the onlookers. The
number of onlooker bees is also SN. Each onlooker bee selects one of the memorized
nectar sources depending on the fitness value obtained from the employed bees. The
probability that a food source will be selected can be obtained from

Pi ¼ fitnessiPSN
j¼1 fitnessj

ð2Þ

where fitnessi is the fitness value of the ith nectar source.
After the nectar source is selected, Eq. 1 is used again by an onlooker bee to

generate a new solution. If the fitness value of the new solution is better than that of the
old solution, the bee memorizes the new solution and forgets the old solution.

If a nectar source cannot be improved further within a predetermined number of
cycles, that nectar source is assumed to be abandoned. Then the nectar source aban-
doned by the bees is replaced with a new nectar source by one scout bee using

Sm; j ¼ xminj þ cðxmaxj � xminj Þ ð3Þ

where c is a random number in [0, 1], and xminj and xmaxj are the lower and upper bounds
of dimension j, respectively.

The employed, onlooker, and scout bees’ phases repeat until the termination
condition is met.

3 Mining HUIs Using the ABC

3.1 Bitmap Item Information Representation

A bitmap is used to transform the original database. The bitmap of D is an n �
m Boolean matrix B(D) with entries from the set {0, 1}. The entry in B(D) that cor-
responds to transaction Tj (1 � j � n) and item ik (1 � k � m) is denoted by (j, k),
which is in the jth row and kth column of B(D). The value of (j, k) is defined by

Bj;k ¼ 1; if ik 2 Tj;
0; otherwise:

�
ð4Þ

that is, entry (j, k) of B(D) is one if and only if item ik is included in transaction Tj;
otherwise, it is set to zero.

Discovering HUI Based on the ABC Algorithm 5



In B(D), the bitmap cover of item ik, denoted by Bit(ik), is the kth column vector.
This naturally extends to itemsets: the bitmap cover of itemset X is defined as Bit
(X) = bitwise-ANDi2X(Bit(i)).

In addition to transforming the original database and representing itemset infor-
mation, a bitmap can also be used for pruning in the HUIM-ABC algorithm.

Definition 1. Let V be a bit vector that corresponds to a nectar source, employed bee,
onlooker bee, or scout bee; and X the itemset that V represents. If Bit(X) is only
composed of zeros, V is called an unpromising bit vector (UPBV); otherwise, V is
called a promising bit vector (PBV).

Thus, if a newly generated bit vector is an UPBV, the fitness value computation can
be avoided. This technique is called the PBV check (PBVC) pruning strategy in the
HUIM-ABC algorithm.

3.2 Modeling HUI Discovery Using the ABC

After transforming the database into a bitmap, it is natural to encode each nectar source
in a bit vector. The length of this vector is equal to the number of 1-HTWUIs. Based on
the bit vector, a new nectar source generation in the HUIM-ABC algorithm can be
achieved by only changing the value of 1 bit in the old nectar source, either from zero
to one, or from one to zero.

To discover HUIs from the transaction database, the utility of the itemset is used as
the fitness function directly:

fitnessðSiÞ ¼ uðXÞ ð5Þ

where X is the union of items in the nectar source Si if its value is set to one. Thus, X is
an HUI if fitness(Si) � min_util.

3.3 Direct Nectar Source Generation for Scout Bees

For the standard ABC algorithm, the scout bees search for a new nectar source ran-
domly. Because the search space of HUIs is huge, when using the simple random
search strategy, the number of discovered HUIs could be limited within a certain
number of cycles, and the computational cost is high. Thus, the question that arises is:
can we generate more promising new nectar sources as early as possible so that more
HUIs can be discovered within a certain number of cycles and the computational cost
can also be lowered? The answer is “yes” by using the sizes of discovered HUIs.

Park et al. [10] indicated that the processes in the initial iterations of the Apriori
algorithm dominate the total execution cost; that is, the candidate sets with smaller
sizes (number of items) are crucial to improving the performance of the Apriori
algorithm. This inspires us to deduce that the resulting itemsets’ sizes are not evenly
distributed. Thus, the scout bees can search more frequently in new nectar sources that
represent certain sizes that could generate more HUIs. This is called the direct nectar
source generation (DNSG) strategy in the HUIM-ABC algorithm.
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Specifically, we set m buckets, denoted by BK1, BK2,…, BKm, and each bucket
stores the number of HUIs whose sizes are within a certain range, denoted by BK1.ran,
BK2.ran,…, BKm.ran. For example, the first bucket BK1 stores the number of HUIs
with sizes in BK1.ran (from 1 to 5), and the second bucket BK2 stores the number of
HUIs with sizes in BK2.ran (from 6 to 10). Let BK1.num, BK2.num,…., BKm.num be
the number of itemsets in BK1, BK2,…, BKm. Once a new HUI X is generated, and the
size of X is in BKi.ran, then BKi.num is incremented by one. It should be noted that the
initial number of BK1.num, BK2.num,…., BKm.num is set to one because some HUIs
with certain sizes may not be discovered during the early cycles. If the initial value is
zero, then this type of HUI has no chance of being generated as a new nectar source
until the cycle for which the corresponding number is not zero.

For each cycle of the ABC algorithm, after the employed bee phase and onlooker
bee phase, the probability of generating new nectar sources whose sizes are in BKi.ran
(1 � i � m) is determined by

Pi
nec ¼

BKi:numPm
j¼1 BKj:num

ð6Þ

Using the DNSG strategy, the information about the discovered results is used.
Thus, the new nectar sources are more promising for HUI discovery than using the
simple random approach.

3.4 Algorithm Description

Based on the above discussion, the proposed HUIM-ABC algorithm for mining HUIs
is described in Algorithm 1.

Algorithm 1. HUIM-ABC
1 Scan database D once. Delete 1-LTWUIs;
2 Represent the reorganized database using a bitmap;
3 Initialization( );
4 gen=1;
5 while gen<=max_cyc do
6 Employed_bees( );
7 Onlooker_bees( );
8 Scout_bees( );
9 gen++;

10 end while
11 Output all discovered HUIs.

In Algorithm 1, the transaction database is first scanned once to determine the high
TWU single items (Step 1). In Step 2, the bitmap representation of the pruned database
is constructed. The procedure Initialization (described in Algorithm 2) is called in Step
3. Then, the number of cycles is set to one (Step 4). The main loop (Steps 5–10) repeats
the three phases of the employed bees, onlooker bees, and scout bees until the
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maximum cycle number is reached. The procedures of these three phases are described
in Algorithms 3, 4, and 5, respectively. Finally, Step 11 outputs all discovered HUIs.

Algorithm 2. Procedure Initialization( )
1 Initialize m buckets;
2 for each nectar source Si do
3 Si is initialized as a bit vector with length |1-HTWUI|;
4 If Si is an UPBV, generate a new Si by changing 1 bit until it is a PBV;
5 Get itemset X by unifying of items in Si if its value is set to 1;
6 while fitness(Si)≥min_util do
7 X→SHUI;
8 Update BKi.num (1≤i≤m) using X;
9 Initialize a new Si by changing 1 bit of the original one;

10 If Si is an UPBV, generate a new Si by changing 1 bit until it is a PBV;
11 Get itemset X by unifying of items in Si if its value is set to 1;
12 end while
13 Initialize an employed bee EBi that corresponds to Si;
14 Initialize an onlooker bee OBi that corresponds to Si;
15 end for

Algorithm 2 first initializes all buckets (Step 1). Then all nectar sources are ini-
tialized individually (Steps 2–15). Each source is first represented by a bit vector whose
length is equal to the number of 1-HTWUIs (Step 3). Steps 4 performs the PBVC
pruning discussed in Sect. 3.1. Step 5 determines the itemset that corresponds to the
enumerating nectar source. The loop from Step 6 to Step 12 repeats until a new nectar
source with a fitness value lower than the minimum utility value is generated. Step 7
records the newly discovered itemset. Here SHUI is the set of discovered HUIs. Step 8
updates the number of one bucket. A new nectar source is generated by randomly
changing 1 bit of the original vector (Step 9). Steps 10 also performs PBVC pruning.
Step 11 determines the itemset that corresponds to the enumerating nectar source. The
employed bees and onlooker bees are then initialized in Steps 13 and 14, respectively.

Algorithm 3 is used by the employed bees to generate the HUIs. The main loop
from Step 1 to Step 18 processes all nectar sources individually. In Step 2, count, which
is a parameter to indicate whether the loop (Steps 7–14) is executed, is set to zero.
Then, an employed bee EBi is mapped to the enumerating nectar source Si in Step 3.
A new employed bee is generated in Step 4. Step 5 performs PBVC pruning. Step 6
determines the itemset X that corresponds to EBi. The loop from Steps 7–14 repeats
until a new employed bee with a fitness value lower than the minimum utility value is
generated. Step 8 records the newly discovered HUI. Step 9 updates the number of the
bucket whose range covers the size of X. Step 10 generates a new employed bee. Step
11 also performs PBVC pruning. Step 12 determines the itemset X that corresponds to
EBi. Then the parameter count is incremented by one in Step 13. If the loop (Steps 7–
14) is executed, then Si is updated by the newest EBi (Steps 15–17); otherwise, Si.trial,
which is a parameter that indicates the number of trials that fail to generate a better
nectar source, is incremented by one in Step 17.

8 W. Song and C. Huang



Algorithm 3. Procedure Employed_bees( )
1 for i=1 to SN do
2 count=0;
3 Map EBi to Si;
4 Generate a new EBi by changing 1 bit of the original one;
5 If EBi is an UPBV, generate a new EBi by changing 1 bit until it is a PBV;
6 Get itemset X by unifying of items in EBi if its value is 1;
7 while fitness(EBi)≥min_util do
8 X→SHUI;
9 Update BKi.num (1≤i≤m) using X;

10 Generate a new EBi by changing 1 bit of the original one;
11 If EBi is an UPBV, generate a new EBi by changing 1 bit until it is a PBV;
12 Get itemset X by unifying of items in EBi if its value is 1;
13 count++;
14 end while
15 if count>0 then
16 Maps Si to EBi;
17 else  Si.trial++;
18 end for

Algorithm 4. Procedure Onlooker_bees ( )
1 for i=1 to SN do
2 count=0;
3 Map OBi to Sj using Eq.2;
4 Generate a new OBi by changing 1 bit of the original source;
5 If OBi is an UPBV, generate a new OBi by changing 1 bit until it is a PBV;
6 Get itemset X by unifying of items in OBi if its value is 1;
7 while fitness(OBi)≥min_util do
8 X→SHUI;
9 Update BKi.num (1≤i≤m) using X;

10 Generate a new OBi by changing 1 bit of the original one;
11 If OBi is an UPBV, generate a new OBi by changing 1 bit until it is a PBV;
12 Get itemset X by unifying the items in OBi if its value is 1;
13 count++;
14 end while
15 if count>0 then
16 Maps Sj to OBi;
17 else Sj.trial++;
18 end for

Algorithm 4 is used by the onlooker bees to generate the HUIs of the HUIM-ABC
algorithm. It is similar to Algorithm 3, except for Step 3; that is, instead of a one-to-one
mapping between employed bees and nectar sources, an onlooker bee maps to a nectar
source using the roulette wheel selection mechanism.

Discovering HUI Based on the ABC Algorithm 9



Algorithm 5. Procedure Scout_bees( )
1 for i=1 to SN do
2 if Si.trial≥LT then // LT is the maximum number of trials
3 Initialize a new nectar source Si using the DNSG strategy;
4 If Si is an UPBV, generate a new Si by changing 1 bit until it is a PBV;
5 Get itemset X by unifying of items in Si if its value is 1;
6 while fitness(Si)≥min_util do
7 X→SHUI;
8 Update BKi.num (1≤i≤m) using X;
9 Generate a new Si by changing 1 bit of the original one;

10 If Si is an UPBV, generate a new Si by changing 1 bit until it is a PBV;
11 Get itemset X by unifying of items in Si if its value is 1;
12 end while
13 end if
14 end for

Algorithm 5 examines the nectar sources individually. If the number of trial times
of one nectar source reaches the maximum number of trials (Step 2), then Step 3 uses
the DNSG discussed in Sect. 3.3 to generate a new nectar source. Steps 4–12 are
similar to the corresponding steps in Algorithms 3 and 4, with the function of recording
the discovered HUIs and generating a new promising nectar source.

4 Performance Evaluation

We evaluate the performance of our HUIM-ABC algorithm and compare it with the
HUPEUMU-GARM [8], HUIM-BPSOsig [5], and HUIM-BPSO [4] algorithms.

4.1 Experimental Environment and Datasets

The experiments were performed on a supercomputer with 16-Core 2.00 GHz CPU,
48 GB memory, and running on 64-bit Microsoft Windows 7. Our programs were
written in Java. Four datasets, downloaded from the SPMF data mining library [2],
were used for evaluation, and their characteristics are presented in Table 1.

Table 1. Characteristics of the datasets

Dataset Average transaction length Number of items Number of transactions

Chess 37 76 3,196
Mushroom 23 119 8,124
Accidents_10% 34 469 34,018
Connect 43 130 67,557
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Similar to the work in [4], only 10% of the total Accident dataset was used for our
experiment. For all experiments, the termination criterion was set to 2,000 iterations,
the number of nectar sources was set to 10, and the number of buckets was 10.

4.2 Running Time

Figure 1 shows the execution time comparisons for the four datasets.

As shown in Fig. 1, the HUIM-ABC algorithm was always faster than the other
three algorithms. In particular, the HUIM-ABC algorithm demonstrated relatively
steady execution times on the Mushroom dataset, it was 7.19 times faster than
HUPEUMU-GARM, 8.06 times faster than HUIM-BPSO, and had an order of magni-
tude faster than HUIM-BPSOsig, on average, for this dataset. The reason for the high
performance of the HUIM-ABC algorithm can be explained by the use of bitmap
representation. In addition to efficient bitwise operations, the PBVC pruning strategy
can avoid the unnecessary computation of fitness values as early as possible. Fur-
thermore, the real utility of PBVs can be verified from the recorded transactions rather
than by resorting to using the entire database.
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Fig. 1. Execution times for the four datasets
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4.3 Number of Discovered HUIs

Because the EC-based HUI mining algorithm cannot ensure the discovery of all
itemsets within a certain number of cycles, we also compared the number of discovered
HUIs. The Two-Phase algorithm [6] was used to discover the actual and complete
HUIs from the four datasets. The comparison results are shown in Fig. 2.

As shown in Fig. 2, the HUIM-ABC algorithm always discovered more HUIs than
the other three EC-based algorithms. On average, the HUIM-ABC algorithm discov-
ered 91.34%, 87.10%, 96.65%, and 91.59% of the total number of HUIs on the Chess,
Mushroom, Accidents_10%, and Connect datasets, respectively. When the minimum
utility threshold was high, for example, 30.5% for Chess, the HUIM-ABC algorithm
discovered all the HUIs.

4.4 Convergence

The convergence performance results of the four algorithms are shown in Fig. 3.
For this set of experiments, we can observe that the convergence speed of

HUPEUMU-GARM was lower than that of the other three EC-based algorithms. This is
because the GA-based algorithm suffered from the combination explosion problem in
the evolution process composed of selection, crossover, and mutation. For the two
PSO-based algorithms, HUIM-BPSOsig and HUIM-BPSO, the latter demonstrated
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better convergence speed because the OR/NOR-tree structure used by HUIM-BPSO
avoided invalid combinations of particles. Although HUIM-BPSO demonstrated sim-
ilar convergence performance to the HUIM-ABC algorithm on Accidents_10%, the
HUIM-ABC algorithm always converged faster than HUIM-BPSO. The main reason is
that the DNSG strategy of the HUIM-ABC algorithm generated new nectar sources by
making use of the discovered HUIs rather than completely at random.

5 Conclusions

In this paper, we proposed an HUI mining algorithm called the HUIM-ABC algorithm
based on the ABC algorithm. In the HUIM-ABC algorithm, the problem of HUI
discovery was modeled from the perspective of the ABC algorithm. A bitmap was used
for information representation. UPBVs could be detected by bitwise operations effi-
ciently. Thus, the useless operation of utility calculation could be avoided. Further-
more, the sizes of discovered HUIs were recorded by different buckets. Based on this,
new nectar sources were more likely to be generated within the range of most dis-
covered results’ sizes. Thus, more HUIs were mined within limited iteration cycles
composed of employed bees, onlooker bees, and scout bees. As a result of the efficient
strategies and optimizations introduced, the HUIM-ABC algorithm outperformed
existing state-of-the-art HUI mining algorithms based on EC.
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Abstract. Record linkage is a commonly used task in data integration
to facilitate the identification of matching records that refer to the same
entity from different databases. The scalability of multidatabase record
linkage (MDRL) is significantly challenged with the increase of both the
sizes and the number of databases that are to be linked. Identifying
matching records across subgroups of databases is an important aspect
in MDRL that has not been addressed so far. We propose a scalable
subgroup blocking approach for MDRL that uses an efficient search over
a graph structure to identify similar blocks of records that need to be
compared across subgroups of multiple databases. We provide an analysis
of our technique in terms of complexity and blocking quality. We conduct
an empirical study on large real-world datasets that shows our approach
is scalable with the size of subgroups and the number of databases, and
outperforms an existing state-of-the-art blocking technique for MDRL.

Keywords: Entity resolution · Apriori · Depth-first · P-partite graph
Cliques

1 Introduction

Many organisations, including government agencies, businesses, and research
centres, collect vast quantities of data on a daily basis [3]. To improve the effi-
ciency and effectiveness of decision making, organisations increasingly require
data from different databases to be integrated. Multidatabase record linkage
(MDRL) is the process of identifying records that match (i.e. correspond to the
same entities) across multiple databases [4]. The process of linking records across
different databases is also known as ‘data linkage’ or ‘entity resolution’ [3].
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A real-world example of MDRL would be a health surveillance system that
continuously links data from hospitals and pharmacies. The data collected from
these sources can facilitate the investigation of geographical and temporal effects
of diseases, or adverse drug reactions in certain patient groups [2]. Such anal-
yses require the linkage across subgroups of hospital and pharmacy databases
collected at different locations since the linkage across all databases would not
be sufficient to identify subsets of matching records such as cancer patients who
visited a certain number of hospitals in a country, but not all hospitals.

In a MDRL context, potentially each record from one database needs to
be compared with all records in all other databases to determine if a set of
records corresponds to the same entity or not [15]. This becomes computation-
ally expensive as the number of record pair comparisons grows exponentially
with the number of databases to be linked [12]. To overcome this issue, block-
ing is generally applied in the linkage process [10]. Blocking reduces the record
comparison space by grouping similar records, that likely correspond to true
matches, based on the values of a set of attributes into the same block, while
inserting records that likely correspond to non-matches into different blocks.

To identify subsets of matching records in multiple databases, it must be
possible to link records from subgroups of databases. Though various block-
ing techniques have been developed for MDRL [12,15], these techniques cannot
identify similar blocks across subgroups of databases because of two reasons. (1)
Existing blocking techniques for MDRL are only capable of generating candidate
blocks across all the databases, or for subgroups of a specific size [12], and (2)
the application of a blocking technique multiple times for linking subgroups of
different sizes is computationally infeasible due to the large number of potential
subgroup combinations that need to be considered. This makes subgroup linkage
for MDRL currently not scalable with an increasing number of databases.

We propose a subgroup blocking approach for MDRL which can efficiently
identify blocks of records within a user specific range of subgroup sizes. Assuming
d databases to be linked, we introduce two parameters, gα and gβ , with 2 ≤ gα ≤
gβ ≤ d, to specify the minimum and maximum number of databases, respectively,
that are to be included in a subgroup. Our approach accepts as input the sets
of blocks generated from the databases that are to be linked, and it generates a
set of candidate block tuples (CBT s) for each subgroup size from gα to gβ . The
records across the blocks in each CBT can then be compared in more detail [3].

To generate CBT s that need to be compared across subgroups of different
sizes, we first arrange the sets of blocks from different databases to be linked into
a graph structure G. We then introduce two constraints based algorithms for
the generation of CBT s by traversing over G. Additionally, our approach allows
for subgroups where some of the databases are fixed such that these databases
must appear in every subgroup combination that is generated by our approach.

Contributions: We propose (1) a scalable subgroup blocking approach for
MDRL that can be used under different real-world blocking scenarios, and (2)
two constraint based graph traversal algorithms to generate candidate block
tuples for subgroups of different sizes. (3) We analyse our subgroup blocking
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approach in terms of complexity and blocking quality, and (4) empirically eval-
uate the approach using large real-world databases with millions of records to
validate its efficiency and effectiveness under different subgroup blocking sce-
narios. The results show that our subgroup blocking approach outperforms a
state-of-the-art MDRL blocking approach [12] in terms of efficiency with no loss
in effectiveness.

2 Related Work

Papadakis et al. [10] recently provided a survey of blocking techniques that
have been proposed for record linkage. Most of these techniques are limited to
linking two databases, and only few techniques have been developed for MDRL.
Sadinle and Fienberg [15] proposed a probabilistic technique for linking multiple
databases by extending the seminal work of Fellegi and Sunter [5]. This technique
uses standard blocking [3] to group records into blocks, however it can only be
used to match records across all the databases that are being linked.

Kong et al. [9] recently proposed an unsupervised technique to link records
from multiple heterogeneous databases. This approach uses locality sensitive
hashing (LSH) [7] to block each database to improve efficiency when generating
candidate record tuples. The authors then adapted [5] to calculate the likelihood
of a candidate record tuple being a match or a non-match based on several
attributes. This approach, however, does not scale with the number of databases
due to the large number of probability calculations required for each record tuple
to be compared, and it cannot perform subgroup matching across databases.

Ranbaduge et al. [12] proposed a distributed blocking technique for privacy-
preserving MDRL. This approach allows each owner to block its database inde-
pendently by conducting a local clustering over their database to generate blocks.
These blocks are then hashed using LSH [7] to identify the blocks that need to
be compared across databases. While this approach can identify the blocks that
need to be compared for a single subgroup size, it has to be run repeatedly for
subgroups of different sizes, making the approach neither efficient nor effective
in terms of identifying subgroup block tuples of different sizes.

In contrast to these existing multidatabase blocking approaches, our app-
roach generates in one single run all candidate block tuples for subgroups of
different sizes. We also allow the user to specify the minimum and maximum
size of the subgroups, gα and gβ , that are to be generated. The approach effi-
ciently generates the most similar candidate block tuples by applying a con-
straints based pruning technique over a graph structure that is created based on
the generated blocks. Fu et al. [6] proposed a graph based approach to match
households across time in historical census data, while a MDRL meta-blocking
approach recently proposed by Ranbaduge et al. [11] also uses a graph structure
to remove redundant record pair comparisons. However, both these approaches
are not capable of performing subgroup blocking across databases.
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3 Subgroup Blocking Process

Let us assume d (≥2) de-duplicated databases are to be linked. We use the nota-
tion DA,DB ,DC , and so on to represent different databases, while Ai, Bj , Ck

and so on to represent the blocks generated for each corresponding database.
The aim of our approach is to generate candidate block tuples (CBT s) for sub-
group combinations across these d databases. A CBT is a tuple of blocks which
consists of a maximum of one block per database, and blocks from at least two
databases. As illustrated in Fig. 1, the approach consists of three steps:

1. Potential Candidate Grouping: As we discuss in Sect. 3.1, the block descrip-
tion pairs (BDP s) of each database are grouped into a set of candidate groups
(CG) based on the similarities between their block representatives.

2. Candidate Graph Generation: A candidate graph G is constructed based on
the generated CG. This requires an iteration over each group in the CG to
create vertices and edges in G. Then weights (w) are calculated for each edge
in G, as we discuss in detail in Sect. 3.2.

3. Subgroup Candidate Generation: CBT s are generated for each subgroup com-
bination using G. As we describe in Sect. 3.3, a weight threshold (wt) is used
to remove low weighted edges (w < wt) in G to ensure the block pairs that
have a low similarity are excluded from the CBT generation process.

Fig. 1. Overview of our subgroup blocking approach with its three main steps. First,
in step 1 the set of candidate groups (CG) is generated. A graph is constructed in step
2, where each block description pair (BDP ) in a candidate group cg ∈ CG becomes
a vertex. Two vertices are connected by an edge if they occur in the same cg. Each
edge is assigned with a weight which in this example is the number of cg ∈ CG that
contain a given pair of BDP s. In step 3, candidate block tuples (CBT s) are identified
for subgroups that need to be compared. In this example, (gα, gβ) is set to (2, 4).

The two user defined parameters, gα and gβ , with 2 ≤ gα ≤ gβ ≤ d, specify
the minimum and maximum number of databases that are to be included into
subgroup combinations, respectively. As an optional parameter, the user can also
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define the set of fixed databases (F ) that must be included in every subgroup
that is generated. Based on (gα, gβ), our approach is capable of generating CBT s
for the following three scenarios with d databases in a MDRL context:

1. gα = gβ = d: This setting gives the linkage between all databases only, i.e.
only sets of blocks that are to be compared across all databases are generated.

2. 2 ≤ gα ≤ gβ < d: This setting gives all possible linkages for subgroups with at
least gα to at most gβ databases, i.e. CBT s are generated for every subgroup
combination between sizes gα and gβ across all databases.

3. F = {Dx,Dy, · · · ,Dz}, |F | ≤ gα ≤ gβ < d: This setting generates CBT s for
subgroups with size at least gα to a maximum size of gβ out of d databases,
where databases Dx, Dy, · · · , Dz must appear in every subgroup.

As shown in Fig. 1, for example, if F = {DA} and (gα, gβ) = (2, 3) then the
subgroup combinations that will be considered in our approach are, for subgroups
of size 2: (DA,DB), (DA,DC), and (DA,DD); and for subgroups of size 3:
(DA,DB ,DC), (DA,DB ,DD), and (DA,DC ,DD).

To perform the linkage across subgroups of databases, as a prerequisite, first
each database needs to be blocked. Any blocking technique [3,10] can be used
to generate the set of blocks for each database, as long as the same technique is
used on all d databases. We assume each database is blocked independently, as
this provides flexibility and efficiency over the block generation process [12].

After blocking is completed, a block description pair (BDP ) is generated for
each block from each database. Each BDP (b, brep) consists of a block identifier
(b) and a block representative (brep). A brep can be generated in different forms,
such as a Min-Hash signature [7], a Bloom filter [12], or a phonetic encoding [3],
as long as the same technique is used on all databases to generate the breps for
all blocks. The set of generated BDP s of each database is then added to an
overall set of BDP s, B, which is used as input in our MDRL subgroup blocking
approach. Hence, we assume this local multidatabase blocking phase to be a
black box. We next describe the three steps of our approach in more detail.

3.1 Potential Candidate Grouping

In step 1 of our approach we identify the potential candidates among the sets
of blocks of each database by grouping the BDP s in B into a set of candi-
date groups (CG). The grouping technique is based on the similarities calcu-
lated between the corresponding breps that have been generated. For example,
a Jaccard based LSH [7] technique can be used with breps based on Min-Hash
signatures, where blocks that hash to the same bucket become candidates and
each bucket is considered as a candidate group (cg) that is added to the overall
set CG.

Each cg ∈ CG helps to identify the candidate blocks that need to be con-
sidered for comparison. If a pair of blocks appears in multiple cgs it is more
likely that these blocks are more similar. As in Fig. 1 (step 1), for example, the
pair (A1, C1) is more likely to be similar compared to (A1, C2), because (A1, C1)
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Algorithm 1. Apriori Candidate Generation

Input:
- G: Undirected candidate graph
- F : Set of fixed databases
- d: Number of databases
- wt: Weight threshold
- gα, gβ : Minimum and maximum subgroup size

Output:
- SBT: Inverted index of subgroup block tuples

1: SBT ← {}, K ← {}
2: k ← 2
3: if k < gα then:
4: K.add(getCombinations(k, gα, d, F ))
5: K.add(getCombinations(gα, gβ , d, F ))
6: foreach S ∈ K[2] do:
7: E ← identifyEdges(G, S, wt))
8: C2.add(E)
9: SBT[2] ← C2
10: k ← 3
11: while k ≤ gβ and Ck−1 �= ∅ do:
12: Ck ← getCliques(G, K[k], wt, Ck−1)
13: if gα ≤ k then:
14: SBT[k] ← Ck

15: k ← k + 1
16: return SBT

Algorithm 2. Depth-first Candidate Generation

Input:
- G: Undirected candidate graph
- F : Set of fixed databases
- d: Number of databases
- wt: Weight threshold
- gα, gβ : Minimum and maximum subgroup size
- B: Set of block description pairs

Output:
- SBT: Inverted index of subgroup block tuples

1: SBT ← {}, K ← {}
2: K.add(getCombinations(gα, gβ , d, F ))
3: foreach k ∈ K.keys() do:
4: foreach S ∈ K[k] do:
5: SBT[k].add(genCandidates(G, S, wt,B))
6: return SBT

Function genCandidates(G, S, wt,B):
7: if |S| = 2 then:
8: return identifyEdges(G, S, wt)
9: else:
10: C ← []
11: D, LBDP ← getDBWithMinBlocks(B, S)
12: foreach (bi, brep) ∈ LBDP do:
13: Lv ← getNeighbours(G, {S − D}, wt, bi)
14: C ← genCandidates(G, {S − D}, wt, Lv)
15: C.add(updateCandidates(C, bi))
16: return C

occurs in two cgs while (A1, C2) only occurs in one. Hence, this grouping reduces
the overall number of block comparisons since only the blocks in a cg will be
compared next in the linkage process. Reducing the number of block comparisons
therefore reduces comparisons between records that are unlikely to be similar.

3.2 Candidate Graph Construction

In step 2 we construct the candidate graph G = (V,E) from CG, where G is an
undirected d-partite graph [1]. The construction of G requires a pass over the
CG where each BDP that appears in a cg ∈ CG becomes a vertex v ∈ V in G.

An edge ei,j ∈ E is created between two vertices, vi and vj , if their corre-
sponding BDP s (BDPi and BDPj) appear in the same cg, with the constraint
that edges are created only between BDP s from different databases. As shown
in Fig. 1 (step 2), a weight wi,j is calculated for each ei,j . The weight wi,j of
edge (BDPi, BDPj) can be computed in different ways based on the gener-
ated breps, such as the similarity between the corresponding block representa-
tives bi

rep and bj
rep, or the normalised cardinality of (BDPi, BDPj) which is

wi,j = |{cg : ∀cg∈CG (BDPi, BDPj) ∈ cg}| / |CG|, where | · | represents the
cardinality of a given set. These weights are used in the next step to generate
the CBT s.

3.3 Subgroup Candidate Generation

In step 3 of our approach, CBT s are generated for each subgroup combination
required. For a given subgroup of size gα a CBT contains a maximum of one
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block identifier per database, and identifiers from at least gα databases. Each
CBT is a clique c ∈ G, where each c ⊆ V , such that all pairs of vertices in c
must be connected by an edge, i.e., ∀vi, vj ∈ c : (vi, vj) ∈ E. For generating
CBT s we propose two candidate generation algorithms, as detailed below:

– Apriori based Candidate Generation: CBT s for subgroup sizes from gα to gβ

are generated using an Apriori based breadth-first search over G [1,8].
– Depth-first based Candidate Generation: CBT s for subgroup sizes from gα to

gβ are generated using a depth-first traversal through graph G [1,14].

Apriori based Candidate Generation (ACG): The proposed ACG app-
roach is outlined in Algorithm 1. In lines 3 to 5, the function getCombinations()
generates all the required subgroup combinations from gα to gβ to be considered
in the candidate generation process which are then added to an inverted index K
using the subgroup sizes as keys. For example, with (gα, gβ) = (2, 3) of a linkage
between databases DA,DB , and DC ,K[2] contains the list of subgroup combi-
nations (DA,DB), (DA,DC), and (DB ,DC), while K[3] contains the subgroup
combination (DA,DB ,DC). If gα > 2 (line 3) ACG needs to generate the set of
subgroups of sizes 2 to gα because an Apriori based iterative approach [1,8] is
used to identify cliques (CBT s) of size k from the cliques of size k− 1 that were
identified in the previous iteration (starting from pairs, i.e. k = 2).

To control the number of CBT s generated for each subgroup, we use a con-
straint, named as weight threshold (wt), on the weight wi,j of each ei,j ∈ E,
which specifies the minimum weight that each ei,j must have in order to be con-
sidered in the CBT generation. wt helps to control the density of G by efficiently
pruning block pairs that have a low similarity. In practice, different wts can be
specified for different subgroup combinations depending on user requirements.

The function identifyEdges() generates the trivial cliques of size k = 2 for
each subgroup S which are the set of edges E ∈ G that satisfy wt (line 7). In line
12, the function getCliques() traverses through G to identify all cliques of size k
that satisfy wt. These cliques are then added to the set Ck. Following the Apriori
principle [1,8], in lines 11 to 15, ACG continues until k reaches gβ or no cliques
were generated in the previous iteration (i.e. Ck−1 = ∅). These generated CBT s
are added to an inverted index SBT using subgroup combinations as keys.

Depth-first based Candidate Generation (DCG): The proposed DCG
approach uses an iterative deepening depth-first search algorithm [14], as detailed
in Algorithm 2. DCG generates CBT s from size gα to gβ by incrementally
expanding the size of subgroups. DCG uses multi-branch recursion that allows G
to be searched progressively for similar blocks from the corresponding databases
of a subgroup combination until the required CBT size is reached.

Similar to ACG, DCG starts with generating subgroup combinations for all
databases by using the function getCombinations(). These combinations are then
added to K (line 2 of Algorithm 2). For each subgroup S in K the recursive
function genCandidates() is called to generate the set of CBT s (in lines 3 to
5). Similar to Algorithm 1, the function identifyEdges() is used to get the set of
edges from G for each subgroup of size |S| that satisfy the threshold wt (line 8).
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For subgroup sizes greater than 2, the function genCandidates() first selects
the database D with the minimum number of blocks using a function
getDBWithMinBlocks(). This function returns D and its list of BDP s LBDP

in B. This selection minimises the number of recursive branches in the CBT
generation (line 11). Next, for each (bi, brep) in LBDP the function getNeigh-
bours() retrieves the neighbouring vertices for the remaining set of databases
that connect with bi (line 13). Those pairs of vertices that have an edge weight
greater than or equal to wt are added to the list of neighbouring vertices Lv.

For each bi in LBDP the function genCandidates() is called recursively with
the list Lv, wt, and the set of remaining databases as inputs (line 14). Each
of these recursive calls returns a list of block tuples C, where each tuple in C
is updated with the current processed bi using the function updateCandidates()
(line 15). This allows DCG to progressively generate CBT s until they reach the
required size k. These CBT s are finally added to SBT (line 5).

4 Analysis of Subgroup Blocking

We analyse our approach in terms of complexity and blocking quality. We neither
consider the block generation nor the comparison and classification techniques
since they are outside the scope of our approach. Let us assume d databases are
to be linked and the blocks of all these databases are added into the set B.

Complexity: Though the generation of the set of candidate groups (CG) in
step 1 depends on the grouping technique used, it would require a complexity
of O(|B|). We assume each candidate group cg ∈ CG contains d BDP s from
different databases. In step 2, CG is used to construct the graph G. This requires
to iterate over each cg ∈ CG to add a vertex v to G, and to create edges between
vertices if they share the same cg. A cg with d BDP s generates d(d − 1)/2 edges
in G. Hence, the construction of G has a complexity of O(|CG| · d2).

In ACG the CBT generation would require a complexity of O(ngα) [8] if
each of the gα databases generates n = |B|/d BDP s. In line 10 of Algorithm
1, the generation of cliques of size k depends on the number of (k − 1) size
cliques, Ck−1, generated previously. Hence, the complexity of ACG is O(|E| +∑gβ

gα=3

(
gα

gβ

)|Cgα−1|2), where |E| is the number of edges (pairs of blocks) in G.
This becomes computationally infeasible when n, and gβ are increasing.

Based on the gα and gβ settings, DCG requires to generate CBT s for
nc =

∑gβ

gα=2

(
d

gα

)
subgroup combinations. For each combination, DCG uses a

multi-branch recursion to generate CBT s. In the function genCandidates() of
Algorithm 2, at each recursion a database D out of gα databases with the mini-
mum number of vertices is selected. Without loss of generality, let us assume the
number of BDP s selected for D is m. m defines the maximum recursion branch
factor of D. The total number of vertex traversals in G for a given subgroup com-
bination of size gα can be calculated as gα ·m+(gα−1)·m2+· · ·+2·mgα−1+mgα

which is
∑gα

i=1(gα +1− i) ·mi. Hence, for nc subgroup combinations DCG has a
complexity of O(

∑gβ

gα=2

∑gα

i=1

(
d

gα

)
(gα+1−i)·mi). However, DCG would require a

complexity of O(nc ·(|B|/d)gα) if G is a complete graph with ∀e ∈ E : e.w ≥ wt.
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Blocking Quality: In step 1 the effectiveness of the candidate grouping depends
on the breps and grouping technique used on those breps. In step 2 the density
of the graph G depends on the number of blocks in each cg ∈ CG from differ-
ent databases to be linked. A large number of blocks in a cg will increase the
effectiveness of CBT generation as more edges are created in G.

In step 3 of our approach, the weight threshold wt provides a trade-off
between the quality and efficiency of the CBT generation process. The thresh-
old wt is used to prune edges (block pairs) with weights lower than wt from the
candidate generation process. A lower wt will generate more cliques (CBT s) as
more edges are considered in the CBT generation process for a given subgroup.
This will increase the number of true matches as more block tuples are gener-
ated as cliques to be compared in the comparison and classification step, which
will improve the effectiveness of the overall linkage. However, a lower wt will
potentially increase the overall runtime and space requirements of our approach
because more edges are considered for a given subgroup combination.

Table 1. Datasets use in our experimental evaluation. ‘Dataset Size (min-max)’ is the
minimum and maximum number of records in the databases of a dataset, and ‘Avg.
overlap’ is the average percentage of records matched across the databases in a dataset.

Datasets Number of
databases (d)

Dataset size (min-max) Avg. overlap Provenance

NC-CLN 16 5,614,747–7,453,886 90% Real

NC-DRT 16 72,903–1,308,796 20% Real

NC-SYN 10 5,000–1,000,000 50% Synthetic

UKCD 6 17,033–31,059 5,000 records Real

5 Experiments and Discussion

For evaluation purposes we use two real-world datasets as outlined in Table 1.
NC contains registration records of around 8 million voters from the US state
of North Carolina (available from: http://dl.ncsbe.gov/). We use given name,
surname, city, and zipcode as the blocking key attributes, as these are commonly
used for record linkage [3,13].

We use 16 voter databases, collected at different points in time with two
months interval between each pair of databases. The records in these databases
can be grouped into three categories: (1) exact matching : those records (about
the same person) that are exactly matching with each other, (2) unique: those
records that are only appearing in one database, and (3) updated : those records
where at least one attribute value has changed across two consecutive databases.

We use three different variations of the NC datasets, named as NC-CLN,
NC-DRT, and NC-SYN. For NC-CLN we extracted unique and exact matching

http://dl.ncsbe.gov/
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records from each database. Due to the skewness of exact matching records NC-
CLN is only used to evaluate the scalability of our approach. For NC-DRT we
extracted unique and updated records from each database. Since each update
in an attribute value is considered as a modification in a record, NC-DRT is
used to evaluate the blocking quality of our approach. To evaluate our approach
with different levels of data quality, we use NC-SYN that contains 10 synthetic
databases, as used in and provided by [12], which was created by extracting
records from the original NC dataset. Some of these databases included corrupted
records, where the corruption levels were set to 20% and 40% [12].

UKCD is another real dataset used in and provided by [6], consisting of census
records collected from the years 1851 to 1901 in 10 year intervals for the town of
Rawtenstall and surrounds in the United Kingdom. It contains approximately
150,000 records of 32,000 households with partial gold standard data (records
manually linked by domain experts) for testing. Both NC and UKCD have been
used for the evaluation of various other RL approaches [6,11,12] and we are not
aware of any other available large real-world datasets that contain records from
more than two databases that could be used to evaluate MDRL.

Fig. 2. The average runtime required with different (a) number of databases; (b) weight
thresholds (wt); and (c) number of fixed databases (|F |) for the NC-CLN datasets.

For comparison we use the state-of-the-art MDRL blocking technique pro-
posed in [12] (named HDC for Hashing based Distributed Clustering) as this
is the only existing technique we are aware of that can be used for subgroup
blocking. For the prerequisites of our blocking approach, we use the same steps
and parameter settings as used in HDC. Each database is blocked using a hier-
archical clustering approach to generate an average of 100 to 1,000 blocks per
database. Next, Min-Hash signatures are generated for each block as breps. As
in HDC, we hash these breps into a set of buckets using locality sensitive hash-
ing (LSH) [7] in step 1. Each bucket is added to the set CG as a candidate
group. To measure the similarity between the breps in step 2 we use the Jaccard
coefficient [3].

We evaluated the complexity using runtime and memory, while the block-
ing quality was measured using pairs completeness (PC) and reduction ratio
(RR) [3]. PC was calculated as the ratio of the number of matched records against
the total number of true matched records across all databases. RR measures the
reduction in the number of compared record pairs against the total number of
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record pairs. All experiments were conducted on a server with 64-bit Intel Xeon
(2.4 GHz) CPUs, 128 GBytes of memory, and Ubuntu 14.04. We implemented all
approaches using Python (version 2.7), and to allow repeatability the programs
and test datasets are available from the authors.

Discussion: As shown in Fig. 2(a), the average runtime required for steps 1 and
2 of our approach increases linearly with the number of databases d. We noted
that the average runtime also increases linearly with the number of candidate
groups (|CG|), which suggests that more edges are being generated in the graph
G. The average runtime decreases with an increase in the weight threshold (wt)
because the edges with lower similarity between their corresponding breps are not
considered in the CBT generation (see Fig. 2(b)). However, the runtime increases
linearly with the size of subgroups as more combinations are considered in the
CBT generation while the runtime decreases when more databases are included
in the set of fixed databases F as shown in Fig. 2(c).

Fig. 3. Runtime results, where plots (a) to (c) and (d) to (f) show the results for the
NC-SYN and UKCD datasets, respectively. Plots (a) and (d) show the total runtime
with different number of databases, and (b) and (e) show the average runtime with
different weight thresholds for different subgroup sizes. Plots (c) and (f) show the
average runtime required for DCG compared with HDC and ACG.

Figures 3(a) and (d) show the total runtime increases exponentially as the
number of subgroup combinations grows exponentially with d, while the runtime
grows linearly with d for a given subgroup size. Similar to Fig. 2 the average run-
time decreases with an increase in wt as shown in Fig. 3(b) and (e). Figures 3(c)
and (f) show DCG requires less runtime compared to HDC and ACG, which
suggests that DCG is more efficient for CBT generation. However, ACG is still
competitive with DCG if the number of blocks from each database remains small.
We also measured the memory required for the CBT generation (not shown due
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Fig. 4. (a) RR and (b) PC for different weight thresholds for different subgroup sizes,
and (c) PC with different number of candidate groups (|CG|) for the NC-DRT datasets.

Fig. 5. (a) PC and RR for different weight thresholds (with 0% corruption), and PC
with different (b) corruption levels and (c) subgroup sizes for the NC-SYN datasets.

to limited space) where in average DCG only uses below 10% of the total memory
required by ACG and HDC. We were unable to conduct experiments for HDC
and ACG with subgroup size larger than 5 due to their memory requirements.

Figures 4(a) and 5(a) show RR increases with wt which suggests that less
CBT s are generated for a given subgroup size. This results in PC to decrease
as true matches are missed due to the lower number of CBT comparisons (see
Fig. 4(b)). However, a lower wt value increases PC by generating more CBT s,
which increases the overall runtime of our approach (see Figs. 2 and 3). Also, PC
increases with |CG| which suggests that CBT generation becomes more fine
grained as the graph G becomes more dense (see Figs. 4(c) and 5(b)). After step
3 of our approach, we applied the same ranking algorithm as used in HDC to
compare ACG and DCG with HDC [12]. HDC ranks the CBT s for comparison
according to an approximation of RR. As shown in Fig. 5(c), we observed that
ACG and DCG achieve the same PC as HDC which suggests that our approach
can perform subgroup blocking more efficiently with no loss in effectiveness.

6 Conclusions and Future Work

We proposed a subgroup blocking approach for multidatabase record linkage
(MDRL) based on a graph structure that is used for generating candidate block
tuples using cliques. The evaluation on real datasets showed that our approach
is scalable with the size of subgroups and it outperforms an existing MDRL
blocking approach in terms of subgroup blocking. In future we aim to adapt
pattern growth methodologies [1] and parallelisation into our blocking approach.
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Abstract. Digital marketing strategies can help businesses achieve bet-
ter Return on Investment (ROI). Big data and predictive modelling are
key to identifying these specific customers. Yet the very rich and mostly
irrelevant attributes(features) will adversely affect the predictive mod-
elling performance, both computationally and qualitatively. So selecting
relevant features is a crucial task for marketing applications. The feature
selection process is very time consuming due to the large amount of data
and high dimensionality of features. In this paper, we propose to reduce
the computation time through regularizing the feature search process
using expert knowledge. We also combine the regularized search with
a generative filtering step, so we can address potential problems with
the regularized search and further speed up the process. In addition, a
progressive sampling and coarse to fine selection framework is built to
further lower the space and time requirements.

1 Introduction

In order to effectively use their marketing budgets, more and more companies are
resorting to digital marketing to segment and target their customers. By exploit-
ing big data and utilizing predictive modelling techniques, such as logistic regres-
sion and random forest [2], companies can build all kinds of predictive models to
help them identify customers of interest, e.g., these who are likely to purchased a
product or those likely to churn. Usually each predictive model is trained using a
large amount of user data so that the predictive model is generalizable to unseen
data. In addition, each user is characterized by hundreds of attributes, including
both categorical and numeric attributes, e.g., “geo-location” (“United States”
or “Brazil”) and “referring domain” (“www.google.com” or “www.yahoo.com”),
“Revenue” and “Number of times activating a device”, etc. These “attributes”
serve as “features” for building predictive models and we use them interchange-
ably in this paper. The set of attributes is very comprehensive and covers all
aspects of user visits, so that there are always discriminative features for build-
ing different predictive models. On the other hand, most of the attributes are
redundant for each individual prediction task, i.e., the prediction output is usu-
ally determined by only a small number of influential attributes. Therefore, it
is not a good idea to use all available features to build predictive models. The
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large number of irrelevant features will lead to unnecessary heavy computational
cost, as well as causing overfitting, thus leading to inferior results [3].

In order to avoid using irrelevant features, one can ask users to select
good (relevant) features for the predictive module to work with. However, it
is extremely difficult for ordinary users to understand the high dimensional data
and know a priori which features are relevant for each prediction task. Usually
only a domain expert can choose a sensible set of features. The requirement of
user input is a significant hindrance for general users. Moreover, even inputs
from domain experts have no guarantee to be good enough. Therefore, we would
like to do automatic feature selection to alleviate the problem. This is a chal-
lenging task because we are dealing with a huge amount of data with hundreds
of millions of records, in addition to the large number of features. In this paper,
we propose a novel feature selection framework to address the problem. First, we
use semantic ranking to encode expert knowledge and guide the feature selec-
tion process, so it is more efficient. Second, we introduce a progressive sampling
and coarse to fine selection framework to further reduce the space and time
complexity.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes the overall feature selection framework. Section 4 presents
the semantic ranking guided feature selection algorithm. Section 5 presents the
progressive sampling framework. We discuss experiments in Sect. 6 and conclude
the paper in Sect. 7.

2 Related Work

Feature selection is a fundamental problem for data mining and machine learning
tasks. Past works can be found in several review papers [5,9,13,19]. And it is
still being actively investigated [22,23]. In general, feature selection methods can
be divided into three categories: wrappers, filters and embedded [5].

Wrapper methods search for the best subset of features by scoring features
using modelling algorithms (e.g., logistic regression). The brute force method
of evaluating all possible feature combinations is computationally prohibitive.
Greedy search strategies, including sequential forward search and backward elim-
ination, are much more efficient and exhibit robustness against overfitting [5],
although they can lead to local optima. The forward search procedure grows the
selected feature set sequentially, adding one feature at each time. The backward
elimination procedure starts with all features and progressively eliminates infe-
rior features. Note even the greedy search will have heavy computational cost
when the number features is large. The Minimum Redundancy Maximum Rele-
vance(MRMR) [16] is a well known greedy algorithm based on Mutual informa-
tion(MI). Along this line of research, Nguyen et al. [15] proposed an approximate
global Mutual information based approach. More recently, Berrendero et al. [1]
proposed to define relevance and redundancy in the MRMR algorithm using a
distance correlation association measure.
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Filter methods select features based on general measures, such as the cor-
relation and mutual information between each feature and the dependent vari-
able [17,21]. They are computationally more efficient than wrapper methods,
because wrapper methods usually run the learning module many times before
finding a good subset of features. Yet filter methods do not cater to any specific
prediction model, so they usually lead to lower prediction performance. Hybrid
approaches [6,7,11] exploit multiple feature selection algorithms to combine their
advantages. For example, Hsu et al. [6] propose to use the filter approach to select
a candidate set then refine them by the wrapper approach.

In this paper, we perform supervised feature selection as our data is labeled
(e.g., order placed, customer churned). Unsupervised feature selection is also
an important research field. Authors in [4,12] addressed the feature selection
problem based on selecting features that minimize the reconstruction error of
the data matrix. Tang et al. [20] used spectral clustering for multi-view data.
Shao et al. [18] proposed an online unsupervised multi-view feature selection
algorithm to deal with streaming data.

3 Overall Framework

We propose to incorporate expert knowledge into the greedy forward search
process, as shown in Algorithm 1. The expert knowledge is represented by a
semantic categorization scheme. A generative filtering step is applied to each
category of features before doing greedy search, which bears some resemblance
to the hybrid approach [6,7]. The generative filtering step is used mainly to elim-
inate extremely irrelevant features, which otherwise might be selected because
of the categorization based search (explained in Sect. 4.2). Therefore we can
use a very conservative criteria for filtering, without concerning that predictive
features might be filtered out. The emphasize is on the semantic classification
guided search algorithm, which lowers both the computational cost and the likeli-
hood of selecting inferior features. On average, the combination of the knowledge
guided search and the generative filtering yields almost 10× speedup over the
standard forward search algorithm. In order to further reduce the computation
and especially the space requirement, we introduce a progressive sampling and
coarse to fine selection framework, which will be described in Algorithm2. It
uses Algorithm 1 as its core feature selection module in both the coarse selecting
and the refining stages.

4 Feature Exploration Using Semantic Ranking
and Generative Filtering

The greedy forward search algorithm goes as follows. Starting from an empty
set S = {}, it first evaluates every single feature, then selects the one with the
best predictive power and adds it to S as the 1st selected feature. Then from
the remaining candidate features, it selects the 2nd feature which achieves the
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best predictive power together with the 1st feature. The process repeats until
some stopping criteria are met, such as reaching the desired number of features.
Let N be the number of original features, n be the number of selected features,
assuming the cost of building and evaluating a model using k features is C(k),
the complexity of the forward search algorithm is:

TFS = N × C(1) + (N − 1) × C(2) + . . . + (N − n + 1) × C(n)

N × C(1) is the computational cost of selecting the 1st features, because each
one of the N features has to be evaluated to determine which is the best. Then
there are N − 1 remaining features to be selected from, each time the model
is built and evaluated using 2 features (the 1st and one of the N − 1 features),
thereby the computational cost is (N − 1) × C(2) for selecting the 2nd feature,
so on and so forth. Usually N � n, so N − n + 1 ≈ N , thus the complexity is
approximately:

TFS ≈ N × (C(1) + C(2) + . . . + C(n)) (1)

So the time complexity of the forward search algorithm is approximately linear
to N .1

Besides the large number of features, the number of instances (visits in our
dataset) in the marketing data is huge, easily on the order of hundreds of millions.
Fortunately, it is not necessary to use the entire dataset to build a predictive
model, instead we take a sample of data to do it. However, to ensure the sample
has a reasonable coverage of the original data distribution and that the predictive
model can be generalizable, we found empirically the sample size needs to be on
the order of half million. Given this large sample size, the computational cost
is rather high. For example, using a single computing node, an implementation
based on the standard forward search algorithm took ∼20 min to select from
25 features and build a logistic regression model. It will take hours to process
hundreds of features, which is certainly not desirable to our customer. Thus, we
introduce a semantic feature classification scheme to reduce the computational
cost.

4.1 The Semantic Ranking Guided Feature Selection Algorithm

Although the complexity of the forward search algorithm is linear to N in gen-
eral, digital marketing applications exhibit special properties which we can utilize
to enhance the greedy search. As a result, we can reduce the time complexity
without sacrificing the predictive performance. We first classify features into
semantically meaningful categories and then do selection progressively. In addi-
tion, we use generative feature quality measures to eliminate features which are
highly irrelevant. Algorithm1 is a high level description of our feature selection
algorithm.
1 C(n) depends on the modelling algorithm. It is linear w.r.t. n for many commonly

used algorithms such as logistic regression and random forest [8]. In this case, the
complexity term C(1) + C(2) + . . . + C(n) ∝ n2. Without loss of generality, we use
Eq. 1 to represent the complexity. The derivation in Sect. 4.1 holds either way.
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Algorithm 1. The feature selection algorithm
1. Let S = {}, F = the set of all features.
2. Classify F into subsets, F = {F1, F2, . . . , Fk}, using the designed semantic based

classifier, k is the number of semantic categories.
3. for i = 1, 2, . . . , k

(a) Estimate the feature relevance for all features in Fi based on correlation, then
remove highly irrelevant features, and form a new subset F ∗

i .
(b) Do forward search within F ∗

i :

i. Select the feature f∗ from F ∗
i , so that the model Φ∗ build using {S, f∗}

gives the best performance among all models built using {S, f}, ∀f ∈ F ∗
i .

ii. Check if Φ∗ is better than the previous model (built using S), using model
quality measures such as BIC:
A. If not, stop selection within this category, i = i + 1, go to 3.
B. If yes, S = {S, f∗}, remove f∗ from F ∗

i , go to 3b.

4. Output S as the set of selected features.

Semantic Based Feature Ranking. Based on our experiences of dealing with
a large number of customer datasets, we have observed that there are direct rela-
tionships between customer behaviors (for example, conversion, revenue, etc.)
and the segments they belong to. Some classes of attributes can clearly segment
customers. For example, it is reasonable to expect that a customer’s traits (e.g.
“age”, “gender” and “geo-location”) will affect him/her purchasing a certain
product. Attributes like “Browsers”, “Operating systems” and “screen type”
(mobile/desktop) also segment the customer population fairly well, although
usually not as discriminatively as customer traits. Therefore, we propose to clas-
sify attributes based on their likelihood of segmenting the customer population,
which in turn has a direct impact on the predictive power of these attributes
with regard to prediction outputs such as conversion or revenue.

Designing the Semantic Classifier. We have formalized this observation and
defined the following semantic classes for grouping attributes, ordered based on
their likelihood of segmenting a customer population.

1. Visitor traits (attributes describing visitor traits like Age, Gender etc.)
2. Visitor sources (Browser, Operating System, mobile etc.)
3. Social channels (attributes describing interaction via social channels like Face-

book, Twitter)
4. Visitor actions (attributes related to visitor actions, like click, view, purchase

etc.)
5. Temporal (time related attributes.)
6. Others (attributes which cannot be classified such as customer defined

attributes.)

Classification Method. We use a dictionary based approach to solve the clas-
sification problem, where we have identified a list of keywords for each semantic
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class. For example, “visitor traits” contains keywords such as “age”, “gender”,
“city” and “zip”. So if an attribute name contains the keyword “gender”, it
is classified to the class “visitor traits”. The dictionary is designed by study-
ing digital marketing glossaries in the literature. An attribute can belong to
multiple classes at the same time. For instance, if we consider the attribute
“Mobile Purchase” it will match successfully to both keywords “mobile” and
“purchase”. Thus it will be classified to the class “visitor actions” (Purchase)
and “visitor source” (Mobile) simultaneously. Ultimately “Mobile Purchase” will
be processed in the “visitor source” category because it has a higher rank. Note
as the keywords in our dictionary may occur in various forms in the attribute
names, the dictionary only keeps the stem [10] of each keyword. For example,
“clicked” and “clicks” both appears in attribute names. They are converted to
their stem “click” in the dictionary, so that we can successfully match attribute
names to their corresponding keywords.

Computation Reduction Through Categorization. We now explain how
the computational cost can be reduced by categorizing features. Suppose that
we can divide the original feature set into two subsets of equal size N/2, and
select n/2 features respectively from each subset. In the end, we will still have
n features selected. Yet the time complexity becomes:

T ≈ N/2 × (C(1) + C(2) + . . . + C(n/2))
+N/2 × (C(n/2 + 1) + . . . + C(n))

(2)

The first part of the equation is the complexity of selecting n/2 features from the
1st subset, which has the size N/2. The 2nd part of the equation represents the
complexity of adding additional n/2 features from the 2nd subset to the selected
set. Equation 2 can be simplified as:

T ≈ N/2 × (C(1) + C(2) + . . . + C(n)) = TFS/2 (3)

So we can reduce the computation by half in this case. Dividing features into
more categories can bring more reduction in computation. The reduction will
ultimately be determined by how features are categorized. For example, if 99%
of features are put into one category, which is like no categorization at all, the
reduction would be trivial. Our feature classification scheme has 6 classes and
the numbers of features among categories are roughly balanced, so we avoid
this situation in practice. On average, our classification scheme brings a ∼3×
speedup.

The semantic classification based search can also be thought of as using the
expert knowledge to regularize the feature search process. Remember that we
are taking a sample of data to process. When using a sample instead of the entire
data, there is always some risk of performance degrading (in this case, meaning
selecting suboptimal features). Based on the expert knowledge, we put features
which are likely to be more influential in higher categories, so that they are more
likely to be selected, thereby reducing the likelihood of selecting inferior features
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by the greedy search. The combination of human knowledge and the computer
based search is one key to reaching our desired performance.

4.2 Combining with Generative Filtering for Better Performance

The user has the freedom of setting a wide variety of prediction targets, such as
the probability of placing an order, or conversion. We cannot guarantee that the
features in the top semantic category are good for all tasks. For some particular
tasks, it is possible that none of the features in the 1st category is predictive.
However, if we only do category based forward search, we will always select some
features from the 1st category, even though they may not be good features for
the particular task.

In order to address this problem, we apply a generative filtering process before
performing forward search within each category. We use a correlation filter [17]
to check the relevance of each feature, and screen out highly irrelevant features.
As a result, when the features in the top category are irrelevant for a particular
task, they will be removed and not affect the performance. This filtering step
not only helps us to address the potential problem of selecting inferior features,
it also lowers the computational cost since the number of candidate features is
reduced after filtering. Although we set the threshold very conservatively, usually
over 60% of the features can be eliminated as they are irrelevant.

5 Progressive Sampling and Feature Selection Framework

In order to build a predictive model, we have to query a cluster of servers to
obtain the training data. Let M represents the number of samples that we use
to build models. Usually M has to be large enough so that the model can be
generalizable to unseen data. We typically set M = 2.5 × 105. It may vary
depending on tasks, but we use it as an example. N is the number of features to
select from, which is also the number of attributes that we need to query from
servers. In the case of N = 1000 attributes, the size of the returned table is
M ×N = 1000×2.5×105 = 2.5×108. Each table entry is represented by 8 byte,
so that is 2 Gb of data to be queried and transferred. Clearly, querying too many
attributes will put a big burden on servers. In addition, transferring the data
back to the local workstation will also take more time and user experiences will
deteriorate.

5.1 Coarse to Fine Implementation

In order to mitigate the problem, we propose a progressive sampling and coarse
to fine selection framework as described in Algorithm2. The computational cost
for building and evaluating a model is typically linear (or superlinear) to the
number of samples M . For example, the time complexity of logistic regression
is O(MN) (depending on the implementation, can also be O(MN2)) [14], while
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Algorithm 2. The coarse to fine framework
1. Querying servers with a reduced number of M∗ samples, and use these samples to

do feature selection and select a subset of features.
(a) M∗ = M × K/N , where K is a constant, usually M∗ � M .
(b) Feed those samples to the feature selection module as described in Algorithm 1.
(c) A subset of attributes will be selected. Denote the number of selected attributes

as N∗, usually N∗ � N .
2. Regular sampling for final feature selection and model building.

(a) Query the server for M samples, but only for the selected N∗ attributes.
(b) Feed these samples again to the feature selection module and select predictive

features from these N∗ features.
(c) Use the final set of features to build the output predictive model.

the time complexity of random forest is O(NM log(M)) [8]. So the reduction in
the number of samples will significantly reduce the computation.

In Algorithm 2, we empirically set K = 50. The choice of K is based on two
factors: the number of the original features and the resulting M∗. M∗ can not
be too small as we need to build a meaningful model using these samples. For
instance, if N = 250, in the 1st round of query, we will request 250000×50/250 =
50000 samples, which is a decent number of samples and good for our purpose. In
the 1st stage of feature selection, the threshold for the correlation based filtering
is set even more conservatively to reduce the risk of removing good features
(because of partial data). Typically more than 85% of the features are passed
to the guided search in this stage. The 1st stage will screen out around 80%
of the features on average. The remaining features all show effectiveness in the
1st round of feature screening. This is like an expert preselecting a subset of
candidate features after going through a portion of the data.

With the reduced number of samples in the 1st stage, the data is not as
representative as that in the 2nd stage. If we use them for model building, the
model will be suboptimal. Nevertheless, this is just the coarse selection; we only
use it for eliminating the most unrelated attributes, not for building the final
model. The final model, which is built in the 2nd stage, is reliable because it
utilizes a large number of data and relevant features.

5.2 Time and Space Reduction Through Progressive Sampling

By coarse sampling with fewer data samples, we got a partial view of the data.
Although not as comprehensive as the regular sample, the partial view is good
enough for eliminating most non-predictive attributes. This is due to the fact that
most attributes are virtually irrelevant for each individual prediction task. The
reason is that our attribution set is overly comprehensive to cover all aspects of
customer visits. Consequently, it is enough to identify most irrelevant attributes
with a partial view of data (which still contains a significant number of samples,
e.g., M∗ = 50000 when N = 250 and K = 50). Therefore, in the 1st stage,



36 W. Zhang et al.

the coarse sampling and feature screening process can help to eliminate most
features. Then in the 2nd stage, we perform the full fledged sampling and feature
selection from these selected (good) attributes, so we can build a truthful model.

Table 1 shows the speed improvement when building a logistic regression
model, when setting K = 50. For simplicity, we omit the Big O notation, because
they have the same constant factor. For example, for the proposed framework,
when N = 300, the time complexity in the 1st stage is:

M∗N = M × K/N × N = MK = 50M

On average around 300 × 20% = 60 features will get through the 1st screening
stage. Then the time complexity in the 2nd stage will be ∼60M, so the overall
time complexity is roughly 50M + 60M = 110M . While for the baseline case,
which does feature selection directly without progressive sampling, the time com-
plexity is MN = 300M . When building other models such as the decision tree
and random forest, the reduction can be even higher since their time complexities
are superlinear with regard to the number of samples.

Table 1. Time complexity of the proposed coarse to fine framework vs. the baseline
(no progressive sampling), where N is the number of attributes and M is the number
of data points (visit records). Note the Big O notation is omitted, since they have the
same constant factors.

N Baseline Proposed Computation reduction

100 100M ∼70M 30%

200 200M ∼90M 55%

300 300M ∼110M 60%

500 500M ∼150M 70%

Improvement on the space complexity is more significant. Because the 2nd

stage is separate from the 1st stage and uses less space, the maximum space usage
only happens in the 1st stage, which is O(KM). While the space complexity for
the baseline is O(NM). N is usually several hundred as opposed to the typical
setting of K = 50.

6 Experiments and Discussion

We have carried out extensive experiments with the proposed feature selection
framework using Adobe.com web traffic data. The test dataset contains 42 mil-
lion visit records. The number of attributes are typically 200–500, including:
(1). 200 predefined attributes, such as “Page Views”, “Revenues” and “Geo-
country”; (2) hundreds of ad hoc attributes, which are customer defined and
different across users. They can have arbitrary names and meaning, for example
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a name can be “A Specific Search Event”. In our experiments, 80% of data are
used for training predictive models and the remaining 20% are used for testing.

We use the F-measure, which is defined as 2×(precision×recall)
(precision+recall) , as the perfor-

mance metric. The higher the F-measure, the better the performance, ranging
from 0 to 1. We compared the proposed algorithm with the baseline forward
search algorithm, using the same initial feature set. The resulting F-measures
were usually quite similar. On average, the difference is less than 0.03. On
balanced data samples, the F-measures are typically in the range of [0.6, 0.9]
depending on different prediction tasks. So the difference is less than 5% of the
F-measure. The selected features usually have significant overlaps although they
are not always the same. As we mentioned before, the features are very com-
prehensive and redundant. So it is not surprising that different combinations
of features lead to models with comparable performances. In addition, we are
processing a sample of data rather than the entire data. This also contributes
to some variations in the selected set of features, because data samples will be
different each time. Nevertheless, what we really care about is the predictive
performance. Our experiments show that the resulting model is as good as the
model produced by the standard algorithm. The proposed Algorithm1, which
combines the knowledge guided greedy search and the generative filtering, is on
average almost 10 times as fast as the baseline greedy forward search algorithm.
The speed and space improvements due to the progressive sampling framework
vary by the initial number of features, as explained in Sect. 5.2. In a typical
scenario of N = 300, we get approximately a 2× increase in speed and an 80%
reduction in the space requirement.

7 Conclusion

In this paper, we introduce an efficient feature selection framework for doing
predictive analytics in the digital marketing domain. We show that the com-
putational cost of the greedy feature search can be further reduced by feature
classification. First, we use the expert knowledge to categorize features and reg-
ularize the feature search process. Thus instead of the blind search, the features
which are more likely to be influential are evaluated before other features. This
helps us to retain good features and speed up the process. Second, we use gen-
erative filtering to alleviate the possible problem of category based search, and
reduce the computation as well. In addition, a progressive sampling and coarse
to fine selection framework is running on top of the core feature selection algo-
rithm, which effectively reduces the time and space complexities. The proposed
feature selection framework enables us to do feature selection from a large set of
attributes on a big amount of data. This greatly enhances our user experiences
for using the powerful predictive capability.
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Abstract. Feature selection is an important pre-processing step in
many fields, such as data mining, machine learning and pattern
recognition. This paper focuses on dynamically updating a subset of
features with new samples arriving and provides a hypergraph model
to deal with dynamic feature selection problem. Firstly, we discuss the
relationship between feature selection of information system and mini-
mum vertex cover of hypergraph, and feature selection is converted to
a minimum vertex cover problem based on this relationship. Then, an
algorithm for generating induced hypergraph from information system
is presented, the induced hypergraph can be divided into two part: the
original induced hypergraph and the added hypergraph with new sam-
ples arriving. Finally, a novel dynamic feature selection algorithm based
on minimum vertex cover of hypergraph is proposed, and this algorithm
only needs a small amount of computation. Experiments show that the
proposed method is feasible and highly effective.

Keywords: Feature selection · Hypergraph · Minimum vertex cover
Dynamic reduct

1 Introduction

In rough set theory, feature selection is also called attribute reduction [1,2], the
target of feature selection is to find a minimal feature subset from a problem
domain while retaining a suitably high accuracy in representing the original
features. Many static feature selection approaches have been developed in rough
set [1–4]. In recent years, dynamic feature selection has attracted many scholars,
which focus on dynamic data set.

Dynamic data set environment can be categorized along the following three
situations: variation of features, variation of feature values and variation of
samples. With variation of features, Wang et al. [5] developed a dimension incre-
mental algorithm for dynamic data sets based on information entropy. Shu and
Shen [6] presented an incremental attribute reduction algorithm based on incom-
plete decision system, which is based on the analysis of the update mechanism
c© Springer International Publishing AG, part of Springer Nature 2018
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of the positive region in the case of the feature changed. With variation of fea-
ture values, Shu and Shen [7] presented the update mechanism of the positive
region when the feature values of multiple samples vary simultaneously, and
proposed an incremental attribute reduction based on positive region. Xie and
Qin [8] proposed three update strategies of inconsistency degree for dynamic
incomplete decision systems and established the framework of the incremental
attribute reduction algorithm. With variation of samples, Fan et al. [9] proposed
a dynamic attribute reduction algorithm, when a new sample is added. Liang
et al. [10] proposed a group incremental attribute reduction algorithm, when
a group of sample are added. Shu and Qian [11] presented a positive region
update mechanism with respect to the adding and deleting of samples in incom-
plete decision systems and a dynamic attribute reduction algorithm is proposed.
Yang et al. [12] proposed two incremental algorithms for attribute reduction with
fuzzy rough sets are presented for one incoming sample and multiple incoming
samples.

The graph-based method has been used to solve feature selection problem for
static data [13], it is more effective to handle the large-scale data. The previous
algorithm based on graph theory is not designed to handle dynamic data sets
with sample arriving where one sample or multiple samples arrive successively.
At the arrival of new samples, this algorithm needs to generate new induced
hypergraph and re-compute a minimum vertex cover from the whole new dataset,
which includes the accumulated samples and new incoming samples. To the best
of our knowledge, graph-based feature selection for dynamic data with sample
arriving has not yet been discussed so far, which is the motivation for this paper.
We apply graph-based method in feature selection and propose a dynamic feature
selection algorithm for dynamic data with sample arriving.

The rest of the paper is organized as follows. In Sect. 2, several basic con-
cepts about rough set theory and graph theory are introduced. In Sect. 3, we
provide an algorithm for generating the induced hypergraph and a method for
updating the induced hypergraph with sample arriving, then a dynamic feature
selection algorithm based on minimum vertex cover of hypergraph is proposed.
In Sect. 4, Experimental comparisons are performed to show the effectiveness of
our proposed algorithm. Finally, the conclusions are presented in Sect. 5.

2 Preliminaries

This section introduces some basic concepts and definitions about rough set and
graph theory.

In rough set theory, data sets represented by a table called the informa-
tion system, which is composed of a 4-tuple S = (U,A, V, f), where U ={
x1, x2, · · · , x|U |

}
is the universe, a finite nonempty set of objects, the attribute

set is A = C ∪ D, C is a set of condition attributes and D is a set of decision
attributes, V is the domain of attribute a ∈ A, f : U × (C ∪ D) → V is an
information function.
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Table 1. An exemplary information system

U a1 a2 a3 a4 D

x1 1 0 1 0 1

x2 1 0 1 0 2

x3 1 1 1 0 3

x4 0 1 0 0 2

x5 0 1 1 1 2

Let S = (U,A, V, f) be an information system, given a subset of attributes
B ⊆ A, IND (B) = {(x, y) ∈ U × U |∀a ∈ B ∧ f (x, a) = f (x, b)} is the indis-
cernibility relation generated by B. U/B = {[x]B |x ∈ U} is the classification
induced by B, where [x]B = {y|∀a ∈ B ∧ f (x, a) = f (y, a)} is called an equiv-
alence class of x with respect to B. The positive region of d with respect
to B is expressed as POSB (D) = ∪

X∈U/D
B−(X), where B− (X) denotes the

B-lower approximation of X, i.e., B− (X) = {x ∈ U |[x]B ⊆ X} and U/B ={
B1, B2, · · · , B|U/B|

}
is the classification induced by decision attributes D.

Given an information system S = (U,A, V, f), B is a condition attribute set,
the discernibility matrix is defined as follows.

mij =

⎧
⎨

⎩

{a ∈ C : f (xi, a) �= f (xj , a) ∧ f (xi,D) �= f (xj ,D)} , xi, xj ∈ UPOS

{a ∈ C : f (xi, a) �= f (xj , a)} , xi ∈ UPOS , xi ∈ U ′

∅, else

where UPOS = POSC (D) and U ′ = delrep (U − UPOS), which denotes a set of
deleting the repetitive objects in U − UPOS .

A discernibility function of an information system S = (U,C ∪ D,V, f)
is a Boolean function of |C| Boolean variables a∗

1, a
∗
2, · · · , a∗

|C| corre-

sponding to the attribute set a1, a2, · · · , a|C|, i.e., f
(
a∗
1, a

∗
2, · · · , a∗

|C|
)

=
∧ {∨M |M ∈ M,M �= ∅}, where ∨M is disjunction of all attributes in M. An
attribute set B ⊆ C is a reduct of S iff∧ai∈Ba∗

i is a prime implicant of the
discernibility function fS . All the candidate reduct of S is denoted by RED (S).

A hypergraph is a pair H = (V,E), where V =
{
v1, v2, · · · , v|V |

}
is the set

of vertices and E =
{
e1, e2, · · · , e|E|

}
is the set of hyperedges. A vertex cover

of H is a subset K ⊆ V such that ∀ei ∈ E has at least one endpoint in K. A
minimum vertex cover is a vertex cover with the least number of vertices.

Given a hypergraph H = (V,E), the function fH for H is a Boolean
function of |V | Boolean variables v∗

1 , v
∗
2 , · · · , v∗

|V | corresponding to the vertices

v1, v2, · · · , v|V |, i.e., f
(
v∗
1 , v

∗
2 , · · · , v∗

|V |
)

= ∧ {∨N (ei) |ei ∈ E}, where N (ei) is
a set of vertices connected by the hyperedge ei. A subset K ⊆ V is a minimum
vertex cover of H iff∧vi∈Kv∗

i is a prime implicant of the Boolean function
fH . COV (H) is a set of all minimal vertex covers of H.
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Based on above, attribute reduction of an information system and minimum
vertex cover of a hypergraph both can be obtained via Boolean formula. There-
fore, finding a reduct of an information system can be translated into a minimum
vertex cover problem of a hypergraph.

3 Dynamic Feature Selection Algorithm Based
on Minimum Vertex Cover of Hypergraph

3.1 The Induced Hypergraph

Definition 1. Given an information system S = (U,C ∪ D,V, f), the discerni-
bility matrix is M = mij and M∗ = {M ∈ M|M = ∅}. The induced hypergraph
from S is H = (V,E), where V = C and E = M∗.

In Definition 1, each attribute in an information system is a vertex in the
induced hypergraph and each non-empty element of the discernibility matrix is
a hyperedge of the induced hypergraph. Obviously, non-empty elements M∗

i and
M∗

j corresponding to the hyperedges ei and ej , if M∗
i = M∗

j that hyperedges ei
and ej are the same hyperedge. According to E = M∗, we can get fS = fH , if
all the candidate reduct of S is RED (S) and all minimal vertex covers of H is
COV (H), then RED (S) = COV (H). In other words, if attributes B is a reduct
of S, then vertices K corresponding to attributes B is a minimum vertex cover
of the induced hypergraph of S, and if the vertices K is a minimum vertex cover
of the induced hypergraph of H, that the attributes B corresponding to vertices
K is a reduct of S. This is the connection between the reduct of information
system and the minimum vertex cover of the induced hypergraph.

Algorithm 1. The detailed process of generating the induced hypergraph
from an information system
Input: An information system S = (U,C ∪ D,V, f)
Output: The induced hypergraph H = (V,E)

1 Compute the discernibility matrix M = mij ;
2 Initialize hypergraph H = (V,E), where V = C and E = ∅;
3 for each M ∈ M and M �= ∅ do
4 Add the hyperedge e (corresponding to M) into E, E = E ∪ {e};
5 if the hyperedge e is a redundant hyperedge then
6 Remove the hyperedge e, E = E − {e};
7 end
8 end
9 Return the induced hypergraph H = (V,E);

Proposition 1. Given an information system S = (U,C ∪ D,V, f), the induced
hypergraph from S is H = (V,E), the discernibility matrix is M = mij, M∗ =
{M ∈ M|M �= ∅} and two non-empty elements M∗

i ,M∗
j ∈ M∗ corresponding to

the hyperedges ei, ej ∈ E. If the vertices K ⊆ V cover the hyperedge ei and
M∗

i ⊆ M∗
j , then the vertices K must cover the hyperedge ej.
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Proof. If M∗
i = M∗

j , then hyperedges ei and ej are the same hyperedge. The
vertices K ⊆ V cover the hyperedge ei, obviously, vertices K ⊆ V must cover
the hyperedge ej . If M∗

i �= M∗
j , i.e., M∗

i ⊂ M∗
j and the vertices K ⊆ V cover

the hyperedge ei. Therefore, ∃vk ∈ M∗
i , that vk ∈ K and M∗

i ⊂ M∗
j , i.e., vk ∈

M∗
i ⊂ M∗

j , hence, the vertices K must cover the hyperedge ej . This completes
the proof. �

According to Proposition 1, in the process of generating the induced hyper-
graph from an information system S = (U,C ∪ D,V, f), if the hyperedges ei, ej ∈
E corresponding to the non-empty elements M∗

i ,M∗
j ∈ M∗ and M∗

i ⊆ M∗
j , then

the hyperedge ej is a redundant hyperedge. The redundant hyperedge ej can
be deleted or merge into the hyperedge ei. The detailed process of generating
the induced hypergraph from an information system S = (U,C ∪ D,V, f) is
presented in Algorithm 1.

In Algorithm 1, the induced hypergraph can be obtained. Based on this
induced hypergraph, the reduct of the information system is the minimum vertex
cover of this induced hypergraph.

Example 1. Table 1 is an exemplary information system S = (U,C ∪ D,V, f),
where U = {x1, x2, x3, x4, x5} and C = {a1, a2, a3, a4}. Through calculating,
POSC (D) = {x3, x4, x5} is obtained, then the the discernibility matrix is

M =

⎡

⎣
∅ {a1, a3} {a1, a4} {a2}
{a1, a3} ∅ ∅ {a1, a2, a3}
{a1, a4} ∅ ∅ {a1, a2, a4}

⎤

⎦. According to Algorithm1, we can generate

the induced hypergraph H = (V,E), where E = {{a2} , {a1, a3} , {a1, a4}}. The
induced hypergraph is shown in Fig. 1(a), the minimum vertex cover of this
induced hypergraph is K = {a1, a2}. Therefore, the reduct of the information
system in Table 1 is R = {a1, a2}.

3.2 Updating Minimum Vertex Cover of Hypergraph

An information system changes over time, and the database has not been set
up from the beginning. Some new samples arrive into an information system,
the reduct of this information system may change. Obviously, we can generate
the new induced hypergraph and find the new minimum vertex cover of it. This
method is easily taken into consideration, but it is not a recommendable method.
How to dynamically update the minimum vertex cover is the task confronting
us. Based on the above analysis, the first problem we need to solve is how to
dynamically update the induced hypergraph.

Definition 2. Given an information system Sn = (U,C ∪ D,V, f), the
induced hypergraph from S is Hn = (V,E), x′ is a new sample arrive
into Sn, the new information system is Sn+1 = (U ∪ {x′} , C ∪ D,V, f)
and the new induced hypergraph is expressed as Hn+1 = (V,E ∪ Ead),
where Ead is new hyperedges generated by new sample x′, Ead =
∪

yi∈U
{a ∈ C|f (yi, a) �= f (x′, a) ∧ f (yi, d) �= f (x′, d)}.
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In Definition 2, adding new hyperedges to the original hypergraph Hn may
produce some redundant hyperedges in Hn. These redundant hyperedges are
expressed as Ede, hence, the original induced hypergraph is updated to Hn =
(V,E − Ede). In hyperedges Ead, if e ∈ Ead is a redundant hyperedge, we remove
it. Removing all redundant hyperedges in Ead, then the new induced hyper-
graph is updated to Hn+1 = (V, (E − Ede) ∪ E′

ad), where E′
ad ⊆ Ead is the

non-redundant hyperedges in Ead.

Proposition 2. Given an information system Sn = (U,C ∪ D,V, f), the
induced hypergraph from Sn is Hn = (V,E), x′ is a new sample arrive into
Sn. If ∃y ∈ U −POSC (D) and (x′, y) ∈ IND (C), and Hn+1 is the new induced
hypergraph from, then Hn+1 = Hn.

Proof. According to Definition 2, M is the non-empty element in original dis-
cernibility matrix M, Ead is new hyperedges generated by new sample x′ and
∃y ∈ U − POSC ∧ (x′, y) ∈ IND (C), each e ∈ Ead, the non-empty element
Me corresponding to e must satisfy ∃M ′ ∈ M ∧ M ′ = Me, that is to say e
is a redundant hyperedge in Hn, i.e., E′

ad = ∅ and Ede = ∅. Because the new
induced hypergraph is Hn+1 = (V, (E − Ede) ∪ E′

ad), Hn+1 = (V,E) is obtained.
Obviously, Hn+1 = Hn, this completes the proof. �
Proposition 3. Given an information system Sn = (U,C ∪ D,V, f), x′ is a new
sample arrive into Sn,the new induced hypergraph Hn+1 = (V, (E − Ede) ∪ E′

ad),
the original induced hypergraph Hn = (V,E − Ede), K1 is a minimum vertex
cover of Hn. Hn+1 is divided into two parts: the original part Hn = (V,E − Ede)
and the added part ΔHn+1 = (V,E′′

ad), where E′′
ad = E′

ad−{e ∈ E′
ad|e ∈ N (K1)},

e ∈ N (K1) indicates that vertices K1 cover hyperedge e. If K2 is a minimum
vertex cover of ΔHn+1, then K = K1 ∪ K2 is a minimum vertex cover of Hn+1.

Proof. Suppose that vertices K cannot cover at least one hyperedge in Hn+1,
i.e., vertices K cannot cover hyperedge e ∈ En+1. If this hyperedge e ∈ E −Ede,
then vertices K1 cannot cover e in Hn, i.e., K1 is not a minimum vertex cover
of Hn, this assumption is invalid. If this hyperedge e ∈ E′′

ad, then vertices K2

cannot cover e in ΔHn+1, i.e., K2 is not a minimum vertex cover of ΔHn+1, this
assumption is also invalid in this case. Therefore, K is a minimum vertex cover
of Hn+1. This completes the proof. �

Based on Propositions 2 and 3, if E′
ad �= ∅, then K = K1. Updating minimum

vertex cover of Hn+1 can be divided into two steps. Firstly, we update the original
induced hypergraph Hn and update its minimum vertex cover. Then, we obtain
the added hypergraph ΔHn+1 and compute its minimum vertex cover.

3.3 Dynamic Feature Selection Algorithm

As mentioned earlier, we can dynamically update the reduct, when some new
samples are added into an information system, a dynamic feature selection algo-
rithm is presented in the following.
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In Algorithm 2, the time complexity of Step 3 is O (|U |) in the worst case,
Steps 5–11 update the original induced hypergraph and its minimum vertex
cover, the time complexity of updating the original induced hypergraph is O (|U |)
in the worst case and the time complexity of updating the minimum vertex
cover is O (|R1|), Steps 12–14 initialize the added hypergraph and compute its
minimum vertex cover, the time complexity of initializing the added hypergraph
is O (|U |) and the time complexity of computing the minimum vertex cover of
the added hypergraph is O (|C| |E′′

ad|). So in the worst case, the time complexity
of Algorithm 2 is O (|U ′| · |C| · |U |).
Algorithm 2. Dynamic feature selection algorithm based on minimum
vertex cover of hypergraph (DFSMVC)
Input: An information system S = (U,C ∪ D,V, f), the induced

hypergraph Hn, the reduct of original information system R1, the
new samples U ′;

Output: A new reduct R.
1 Initialize the original induced hypergraph Hn and R = R1;
2 for each x′ ∈ U ′ do
3 Compute the new hyperedges E′

ad;
4 if Ead �= ∅ then
5 Compute Ede and E′′

ad;
6 Update the original induced hypergraph Hn;
7 for each v ∈ R do
8 if N (v) = ∅ then
9 R = R − {v};

10 end
11 end
12 Initialize the added hypergraph ΔHn+1 = (V,E′′

ad);
13 Compute the minimum vertex cover of ΔHn+1 is R2;
14 R = R ∪ R2;
15 end
16 end
17 return the new reduct R;

Example 2. Table 2 is an information system S = (U0, C ∪ D,V, f), with
some new samples U ′ are added, the reduct of original information system is
R1 = {a1, a2}, the detailed process of dynamic feature selection based on the
minimum vertex cover of hypergraph is as follows.

According to Example 1, we can see that the original induced hypergraph is
H1 = (V,E1), where E1 = {{a2} , {a1, a3} , {a1, a4}}, the minimum vertex cover
of H1 is K1 = {a1, a2}. Figure 1 displays the hypergraphs in the different states.

� Adding the new sample x6 to the information system, the original induced
hypergraph becomes H2 = (V,E2). Because of (x1, x6) ∈ IND (C), so
H2 = H1, i.e., the minimum vertex cover of H2 is K2 = K1 = {a1, a2}.
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Table 2. Original information system of Table 1 and the new added samples U ′

U a1 a2 a3 a4 D

U0 x1 1 0 1 0 1

x2 1 0 1 0 2

x3 1 1 1 0 3

x4 0 1 0 0 2

x5 0 1 1 1 2

U ′ x6 1 0 1 0 3

x7 1 1 0 1 3

x8 0 1 0 0 3

x9 0 1 0 1 3

(a) H1, H2, H3 and H ′
3 (b) ΔH4 (c) H4

(d) H ′
4 (e) ΔH4 (f) H5

Fig. 1. The hypergraphs in different states

� Adding the new sample x7 to the information system, the original
induced hypergraph becomes H3 = (V,E3), After calculation, we can get
Ead = {{a2, a3, a4} , {a1, a3} , {a1, a4}}, then E′

ad = ∅ is obtained. Hence,
H3 = H2 and K3 = K2 = {a1, a2} is a minimum vertex cover of H3.

� Adding the new sample x8 to the information system, the original
induced hypergraph becomes H4 = (V,E4). After calculation, we can get
Ead = {{a2, a3} , {a3, a4}}, then E′

ad = E′′
ad = {{a3, a4}} and Ede = ∅ are

obtained. Therefore, the original induced hypergraph is unchanged H ′
3 = H3

and the added hypergraph ΔH4 = (V, {{a3, a4}}), the minimal vertex of ΔH4
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is ΔK4 = a3 or ΔK4 = a4. According to this result, the minimum vertex cover
of H4 is K4 = K3 ∪ ΔK4 = {a1, a2, a3} or {a1, a2, a4}.

� Adding the new sample x9 to the information system, the original
induced hypergraph becomes H5 = (V,E5). After calculation, we can get
Ead = {{a2, a3, a4} , {a3} , {a4}}, then Ede = {{a1, a3} , {a1, a4} , {a3, a4}}
and E′

ad = E′′
ad = {{a3} , {a4}} are obtained. Therefore, the original induced

hypergraph is H ′
4 = (V,E4 − Ede), the minimum vertex cover of H ′

4 is
K4 = K4 − {a1, a3, a4} = {a2}, the minimum vertex cover of added hyper-
graph ΔH5 = (V, {{a3} , {a4}}) is ΔK5 = {a3, a4}. Therefore, the minimum
vertex cover of H5 is K5 = K4 ∪ ΔK5 = {a2, a3, a4}, R = {a2, a3, a4} is a
new reduct of the new information system.

4 Experimental Analysis

In this section, some experimental comparisons are conducted to evaluate the
performance of our proposed DFSMVC on four well-known UCI data sets [14].
The characteristics of four data sets are described in Table 3. To test the effec-
tiveness of our proposed algorithm, each dataset in Table 3 is divided into the
original dataset and the added dataset (the 3th and 4th columns of Table 3), and
the added dataset is divided into five equal part. We sort these five equal parts
randomly, each part denoted by ith arriving part. All the experiments have been
ran on a personal computer with Inter(R) Core(TM) 2 i3-2120 CPU, 3.3 GHz
and 4 GB memory. The programming language is Matlab R2016a.

Table 3. Description of the datasets.

Datasets Samples Original samples Added samples Features Classes

Zoo 101 21 80 16 7

Spect 267 67 200 22 2

Mushroom 8124 2124 6000 22 2

Letter 20000 5000 15000 16 26

We evaluate the feasibility of DFSMVC from the following two aspects. One
is to compare the runtime of DFSMVC with that of the non-incremental algo-
rithms, i.e., POSR in [4] and INCONR in [8]. The average computational time
(s) and the number of reduct are recorded and the experiment results shown in
Table 4. The other is to compare the classification accuracy of attributes selected
by POSR and INCONR. The classification accuracy is conducted on the selected
attribute reducts found by the three algorithms with classifier linear SVM, J48
and 3NN. All of the classification accuracies are obtained with 10-fold cross val-
idation. In 10-fold cross validation, a given data set is randomly divided into 10
nearly equally sized subsets, of these 10 subsets, 9 subsets are used as training
set, a single subset is retained as testing set to assess the classification accuracy.
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Experimental results on four data sets are listed in Fig. 2, where Raw denotes
the accuracies of classifiers on data sets with original feature set.

Table 4. Comparison of reduct size and computation time in six data set

Data set DFSMVC POSR INCONR

Size Time Size Time Size Time

Zoo 1th 4 0.031 5 0.218 4 0.046

2th 4 0.028 5 0.234 4 0.052

3th 4 0.044 4 0.187 4 0.031

4th 4 0.037 5 0.296 5 0.045

5th 5 0.043 5 0.281 5 0.059

Spect 1th 11 0.087 10 0.468 11 0.093

2th 15 0.069 15 0.453 15 0.145

3th 15 0.089 15 0.625 15 0.192

4th 17 0.128 17 0.796 17 0.218

5th 17 0.119 17 1.012 17 0.256

Mushroom 1th 1 2.591 1 6.187 1 5.156

2th 3 2.971 4 16.171 4 7.514

3th 3 3.424 4 26.484 4 9.846

4th 4 3.698 4 38.859 4 11.252

5th 4 4.192 5 52.391 4 14.531

Letter 1th 9 7.203 9 67.797 9 12.871

2th 9 9.641 9 113.578 9 16.976

3th 10 13.297 10 197.469 10 30.981

4th 10 15.082 10 304.078 10 58.098

5th 11 18.688 11 473.828 11 79.872

As shown in Table 4, the reduction results of these three algorithms are
almost identical, and the computational time of our proposed algorithm
DFSMVC can find a reduct in a much shorter time. The main reason is that our
proposed algorithm DFSMVC can avoid some recalculation. Figure 2 displays
the more detailed changes of the classification accuracy of features selected by
DFSMVC, POSR and INCONR. The four curves of classification accuracy are
non-monotonic with samples arriving and the trend of the curves DFSMVC,
POSR and INCONR are basically the same. The classification accuracy of our
proposed algorithm is higher than the other two algorithms in most cases.

Based on above analysis, we can conclude that our proposed algorithm is
feasible and highly effective.
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(a) Zoo on SVM
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(b) Spect on SVM
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(c) Mushroom on SVM

1 2 3 4 5
The ith added samples arriving

0.75

0.8

0.85

0.9

0.95

1

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Raw
DFSMVC
POSR
INCONR

(d) Letter on SVM
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(e) Zoo on J48
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(f) Spect on J48
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(g) Mushroom on J48
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(h) Letter on J48
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(i) Zoo on 3NN
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(j) Spect on 3NN
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(k) Mushroom on 3NN
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Fig. 2. Classification accuracy changes with respect to samples continuously arriving
on classifier SVM, J48 and 3NN

5 Conclusions

Toward dynamic information system with samples arriving, we apply graph-
based method for dynamic feature selection problem. Firstly, we introduce an
induced hypergraph from the information system and transform the feature selec-
tion problem into a minimum vertex cover of this induced hypergraph. Then,
we divide the new hypergraph into original party and added party with new
sample arriving. Finally, the update mechanism of minimum vertex cover of new
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hypergraph is established and the dynamic feature selection algorithm based on
minimum vertex cover of hypergraph is proposed, we only need a small amount
of computation for computing minimum vertex cover of the added hypergraph
and updating minimum vertex cover of the original induced hypergraph in our
proposed algorithm. The experimental results show that, the proposed algorithm
can obtain a reduct with a comparable classification accuracy in a much shorter
time. This paper focus on streaming samples, graph-based dynamic feature selec-
tion method for streaming features is our future work.
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Abstract. Feature selection in binary datasets is an important task in
many real world machine learning applications such as document classifi-
cation, genomic data analysis, and image recognition. Despite many algo-
rithms available, selecting features that distinguish all classes from one
another in a multiclass binary dataset remains a challenge. Furthermore,
many existing feature selection methods incur unnecessary computation
costs for binary data, as they are not specifically designed for binary data.
We show that exploiting the symmetry and feature value imbalance of
binary datasets, more efficient feature selection measures that can bet-
ter distinguish the classes in multiclass binary datasets can be developed.
Using these measures, we propose a greedy feature selection algorithm,
CovSkew, for multiclass binary data. We show that CovSkew achieves
high accuracy gain over baseline methods, upto ∼40%, especially when
the selected feature subset is small. We also show that CovSkew has low
computational costs compared with most of the baselines.

1 Introduction

Binary datasets are commonly used for machine learning tasks in many domains
including, text and document classification [1], image recognition [2] and gene
analysis [3]. They include either data collected in binary format or non-binary
data binarized for various purposes such as reducing data transmission costs
and reducing processing costs in image matching [4]. Most of these datasets
are large, with thousands of features [1,5] and require the removal of irrelevant
features before using them for machine learning tasks. Feature selection is pre-
ferred to feature extraction or projection (e.g.: Principal Component analysis,
deep learning) for removing irrelevant features because the latter can be hard to
interpret [6]. Therefore, computationally efficient and accurate feature selection
algorithms for binary datasets have wide applicability across many domains.

Despite many feature selection methods available in the literature [7–10],
selecting a high quality feature subset with low computation costs still remains
a challenge. However, the special properties of binary data, such as symmetry,
makes it easier to achieve this goal for binary data. For example, measures
equivalent to the commonly used measures such as mutual information can be
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 52–63, 2018.
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d1 d2 d3 d4 d5 d6 d7 d8 d9 d10d11d12
Cat 1 1 1 0 0 0 0 0 0 0 0 0
Compiler 0 0 0 0 1 1 0 0 0 0 0 0
Classifier 0 0 0 0 0 0 1 1 0 0 0 0
Dog 0 1 1 1 0 0 0 0 0 0 0 0
Class Z Z Z Z C C C C P P P P

(a) Dataset 1

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10d11d12
Cat 1 1 1 0 0 0 0 0 0 0 0 0
Dog 0 1 1 1 0 0 0 0 0 0 0 0
Virus 1 1 0 0 1 0 0 0 0 0 0 0
Milk 1 1 1 0 0 0 0 0 0 0 0 0
Fish 0 0 1 1 0 0 0 0 0 0 0 0
Class Z Z Z Z C C C C P P P P

(b) Dataset 2

Fig. 1. Example text document datasets. Row: a term, Column: a document, Class:
document type, 1/0: Presence/absence of the term

computed with less computation costs in the case of binary data, considering
only the probability distribution of a one feature value [11]. However, utilisation
of binary data properties for feature selection is a less investigated problem and
feature selection methods which are specifically designed for binary data are rare.

Previous works are either limited to two classes or text data for binary
data [5,11] or are general feature selection methods [8,9]. They improve global
prediction accuracy across all the classes and do not consider the accuracy for
individual classes. Therefore, they do not provide good class separation across
all classes in multiclass data, resulting in low overall accuracy. However, many
binary datasets in domains such as document classification and character recog-
nition are multiclass and require predicting each class equally well.

Example 1: Consider selecting three features from the binary dataset in Fig. 1a.
In this dataset, each document (di) is categorized into three types (classes), Zool-
ogy (Z), Computer Science (C) and Physics (P). The rows represent the feature
vector, the words appearing in the documents. Each feature value represents the
presence (1) or absence (0) of a word, in the given document.

The best three features are {Cat, Compiler, Classifier}, because “Cat” distin-
guishes 75% of instances in zoology class, “Compiler” and “Classifier” together
distinguish all the instances in the computer science class. Only one Zoology doc-
ument, d4, remains undistinguishable from the physics documents. This feature
subset includes more features (“Compiler” and “Classifier”) for distinguishing
class C, than for class Z (“Cat”), which shows that different classes require
different numbers of features to distinguish its instances from the rest.

However, existing feature selection methods do not consider these different
feature requirements of different classes. As a result, all feature selection meth-
ods discussed above, select {Cat, Dog, Compiler} as the best three features (see
Sect. 4 for details). In that case, 50% class C instances (d7 and d8) remain undis-
tinguishable from class P instances. Selecting features in a one vs. all approach
using the same measures, can improve the class separability quality to some
extent [12]. However, selecting the classes in a round-robin method does not
guarantee it [6,12]. For example, in the previous example, this also results in
the same feature subset, {Cat, Dog, Compiler} as other methods. Therefore,
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local feature selection measures, that focus on features that distinguish individual
classes are required for multiclass binary datasets.

Our Contribution

To select a better quality feature subset in multiclass binary datasets, we propose
two feature selection measures and a feature selection algorithm, which address
the shortcomings of the existing measures. Also, our proposed measures are
specifically designed for binary data, and therefore have lower computational
costs. The intuition is that in a binary dataset, feature selection is possible by
considering only the distribution of one feature value. We propose:

– Measures, skewness and total coverage, to accurately measure a feature’s pre-
dictive power in a feature value imbalanced binary dataset.

– A feature selection algorithm, CovSkew, which uses the proposed measures,
to gain high prediction accuracy for all the classes in a binary dataset, with
a minimal number of features.

2 Related Work

We select filter feature selection methods over wrapper and embedded meth-
ods [13] because filter methods are classifier independent and incur low compu-
tational costs. Many filter methods, such as minimum Redundancy Maximum
Relevancy (mRMR) [8,10], are designed for non-binary data and incur unnec-
essary computational costs for binary data [11]. Class-dependent density based
feature elimination (CDFE) is an efficient feature selection measure catered for
binary datasets, yet limited to two class classification problems. Distinguishing
Feature Selector (DFS) [5], Gini index (GINI) [7], maximum Information Gain
(IG) [9] and χ2 [5] are efficient algorithms (nlog(n) computational complexity,
n = number of features) which are commonly used for binary data. However,
they ignore the feature redundancy and do not ensure class separability in mul-
ticlass data, resulting in poor prediction accuracy. Algorithms which consider
the class separability are designed for non-binary data and select the same num-
ber of features for each class, irrespective of the different feature requirements
for different classes [6,12]. In summary, selecting a high quality feature subset
with low computational costs in multiclass binary data remains an open research
challenge.

3 Preliminary Concepts

In this section and in Table 1, we introduce some new terms, used in the paper.

Definition 1. Sparse Value: For a feature f in a binary dataset, consider n0

to be the number of 0 s and n1 to be the number of 1 s in the feature. If n0 > n1

then 1 is the sparse value and 0 is the common value and vice versa.
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Table 1. Frequently used definitions

D Binary dataset f A single feature f ∈ F

C Set of all classes in D t A single instance t ∈ T

F Set of all features in D Tc Set of instances with class label c, Tc ⊆ T

T Set of all instances in D kt,f Feature value of instance t for feature f

c A single class c ∈ C S Selected feature subset, S ⊆ F

We represent the sparse value with 1 and the common value with 0.

Definition 2. Given an instance ti ∈ T and S = {f1, · · · , fn} is the selected
feature subset, the feature value assignment for ti with respect to S is
defined as vi,S = [kti,f1 , · · · kti,fn

].

As described in Definition 3, we count the number of instance pairs in the
dataset with different class labels and out of them, count the number of pairs
with the same feature value assignment. We repeat the count for the instance
pairs with same class labels.

Definition 3. Let ti, tj ∈ T (i �= j), cx the class label of tx and vx,S is the
feature value assignment of tx with respect to S. Let T1 = set of all {ti, tj} pairs
where ci �= cj, T2 =set of all {ti, tj} pairs where ci = cj , T3 =set of all {ti, tj}
pairs where vi,S = vj,S.

1. The proportion of different class instances which have the same

feature value assignment is defined as pdiff (S ) = |T1∩T3|
|T1| .

2. The proportion of same class instances which have the same feature

value assignment is defined as psame(S ) = |T2∩T3|
|T2| .

4 Problem Formulation

Our objective is similar to the one proposed in [14], hence we use it as the
basis. Our objective is to (1) maximise the proportion of same class instances
which have the same feature value assignment and (2) minimise the proportion
of different class instances which have the same feature value assignment. That
is to select a feature subset S ⊆ F to

max
(
psame(S ) − pdiff (S )

)
s.t. |S| = n (1)

where n ∈ Z
+, and n ≤ |F |. In binary datasets the instances with same feature

value assignments are the ones with a zero Hamming distance [4]. Figure 2a shows
an example for an ideal six feature dataset according to the above objective.

Many existing feature selection methods fail to satisfy the above objective
for multiclass binary datasets. We demonstrate this using DFS algorithm [5],
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(a) An ideal fea-
ture subset for any
dataset

(b) An ideal feature
subset for a value im-
balanced dataset

(c) An example of a real
dataset

Fig. 2. Selecting features in a multiclass binary dataset. a column: an instance, a row
(fi): a feature, Ci: a class, C̄i: all classes excluding Ci, Si: feature subset selected to
distinguish Ci from the other classes

which has shown comparatively good accuracy for binary data, as a represen-
tative to solve Example 1. For each feature f , DFS assigns a score, DFS(f) =∑m

i=1
P (ci|t)

P (t̄|ci)+P (t|c̄i)+1 , and selects the top k features with highest score. t is any
of the two feature values of f , ci is a class and m is the number of classes.
DFS scores for features “Cat”, “Compiler”, “Classifier” and “Dog” are 0.8, 0.67,
0.67 and 0.8, respectively. Therefore, the selected feature subset, S′ = {Cat,
Dog, Compiler}. For S′, pdiff (S ′) = 8/48, psame(S ′) = 9/18 and psame(S ′)
- pdiff (S ′) = 0.33. Similar to DFS, other methods, such as mRMR [7–9], also
select the same feature subset. However, the optimal feature subset according
to the above objective is S = {Cat, Compiler, Classifier}, because it results in
pdiff (S ) = 4/48 and psame(S ) = 11/18 and psame(S ) - pdiff (S ) = 0.53.

5 Our Approach

As selecting an optimal feature subset according to the objective in Eq. (1) is
NP-hard [14], heuristic methods are required to find a nearly optimal feature
subset. However, selecting a feature at a time to directly achieve the objective
results in low prediction accuracy due to many local optimums. A more effective
method for a feature value imbalanced binary dataset is to select a feature subset
Si for each class Ci, to distinguish ci from the rest. As there are only two values
in a binary dataset, this is possible by selecting an Si which has a high sparse
value density in Ci, compared to the other classes. Figure 2b shows the ideal
feature subset, S =

⋃3
i=1 Si, we get in this one vs. all approach. To measure the

sparse value density, we propose two new measures: skewness and total coverage,
whose maximisation also achieves the above objective. Using these measures, we
propose CovSkew, a heuristic feature selection algorithm.
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5.1 Measuring the Sparse Value Distribution

In this section, we discuss our proposed measures, skewness and total coverage
in detail. The proof of the theorem is omitted due to space limitations.

Definition 4. Skewness of feature f in class c is given by:

skewness(f, c) = P (C = c|f = 1) =
No. of sparse values in f and c

No. of all sparse values in f
(2)

When a feature’s sparse values are scattered across many classes the
skewness is decreased. For example, in Fig. 1b, skewness(Cat, Z) = 1 and
skewness(V irus, Z) = 2/3. For a feature subset, Sc, with multiple features,
the total skewness of all features (

∑
f∈Sc

skewness(f, c)) is considered.

Definition 5. Given a feature subset S, and 0 and 1 are the common and sparse
values of a feature, respectively, the total coverage of S within class c is:

tcov(S, c) =
∏
t∈Tc

( ∑
fj∈S

kt,fj
+ 1

)
(3)

Total coverage measures the proportion of the class instances for which a
feature subset has sparse values. Total coverage of a feature subset within a
class increases with (1) the total number of sparse values its features have
within the class. (2) the distribution of sparse values of features across the
class instances. For example, in Fig. 1b, {Cat, Dog} has a higher number of
sparse values than {Cat, Fish} in Z (6 vs. 5) and tcov({Cat,Dog}, Z) = 36 and
tcov({Cat, F ish}, Z) = 24. {Cat, Dog} has the same number of sparse values
(6) as {Cat, Milk}, yet has a wider distribution of sparse values across the class
instances. tcov({Cat,Dog}, Z) = 36 and tcov({Cat,Milk}, Z) = 27.

Theorem 1. Given that Si is a feature subset in a feature value imbalanced
binary dataset, Ci is the ith class and S =

⋃|C|
i=1 Si where Sx ∩ Sy = ∅ for x �= y,

maximising
∑

f∈Si
skewness(f, Ci) and tcov(Si, Ci) for each Ci is equivalent to

maximising psame(S ) − pdiff (S ).1

As shown in Fig. 2c, selecting an Si, with a high total skewness for Ci is equiv-
alent to decreasing the corresponding horizontal striped areas in other classes.
Maximising the total coverage is equivalent to minimising the corresponding
vertical striped areas in Ci. Maximum total skewness of Si, is achieved when
all its features’ sparse values are concentrated within only Ci. Maximum total
coverage within Ci is achieved when all the features in Si have sparse values for
all the class instances. This results in no striped areas in Fig. 2c. Selecting an Si

for each Ci with maximum total skewness and maximum total coverage results
in the ideal feature subset S =

⋃3
i=1 Si in Fig. 2b, in which psame(S ) = 1 and

pdiff (S ) = 0. Theorem 1 describes this phenomenon.

1 https://sites.google.com/view/kushani/publications.

https://sites.google.com/view/kushani/publications
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5.2 New Feature Selection Objective

As selecting a feature subset S to maximise total skewness and coverage within
each class is analogous to maximising psame(S ) - pdiff (S ), we reformulate the
feature selection objective as follows. For a given class c, our objective is to
select a feature subset Sc ⊆ F to

max
Sc

(
tcov(Sc, c) ·

∑
f∈Sc

skewness(f, c)
)

s.t. |Sc| = nc.

where nc ∈ Z
+, and nc ≤ |F |. We refer to this product of the two mea-

sures as the predictive power of Sc for class c (predpow(Sc, c) = tcov(Sc, c) ·∑
f∈Sc

skewness(f, c)), as it measures Sc’s ability to distinguish c from the rest.
Considering all the classes, our objective is to maximise the total predictive power
of all classes. To ensure that each class is distinguished equally well, we also max-
imise the minimal predictive power. Therefore, given that N is the number of
features to be selected and Sc is the best feature subset for c, the new objective
is to select S ⊆ F to

max
S

( ∑
c∈C

predpow(Sc, c) + predpow(Sx, x)
)

s.t. |S| = N

where S =
⋃|C|

c=1 Sc, Si ∩ Sj = ∅, i �= j and x = argminc∈C predpow(Sc, c).

5.3 A Greedy Feature Selection Approach

As selecting a feature subset to maximise the total coverage is still NP-hard, we
propose a heuristic algorithm, CovSkew, to achieve the new objective. CovSkew
iteratively selects a class c such that

c = argmin
x∈C

( 1
|Tx|.|Sx|predpow(Sx, x)

)
(4)

where Sx is the already selected feature subset for class x and also selects a
feature f for c such that

f = argmax
y/∈Sc

(
skewness(y, c)α · tcov(Sc ∪ y, c)

)
(5)

where Sc is the already selected feature subset for class c and α a user defined
parameter (Line 3–4 in Algorithm1). f is moved from the unselected feature
subset, U , to Sc and the selected feature subset for all classes, S (Line 5 in
Algorithm 1). The steps are repeated until the required feature count is obtained.
In Eq. (4), to prevent the class imbalance problem, we normalise the class pre-
dictive power over the number of class instances. To prevent the bias towards
the number of features selected for each class, we normalise it over the number
of features in the subset. In Eq. (5), maximising the skewness of an individ-
ual feature maximises the total skewness of the selected feature subset because
the skewness of a feature is independent from other features. We refer to

1
|Tx|.|Sx|predpow(Sx, x) as the class score of c and skewness(y, c)α ·tcov(Sc∪y, c)
the feature score of f within c.



Feature Selection for Multiclass Binary Data 59

Algorithm 1. CovSkew algorithm
input : Dataset (D), Requested Feature Count (reqFeaCount)
output: Selected feature subset (S)

1 feaCount ← 0; U ← Set of features in D; C ← Set of classes in D;

2 while feaCount < reqFeaCount do
3 c ← argminx∈C

1
|Tx|.|Sx|predpow(Sx, x) (Equation (4));

4 f ← argmaxy /∈Sc
skewness(y, c)α · tcov(Sc ∪ y, c) (Equation (5));

5 S ← S + f ; Sc ← Sc + f ; U ← U - f ;
6 feaCount++;

7 end
8 return S;

Example 1 Revisited: Consider solving Example 1 with CovSkew. Assume α
= 1. As all class scores are initially zero, it randomly selects class Z and feature
“Cat”, which gives the highest feature score for Z (8). Class score of Z is now 2.
Next it selects “Compiler”, which has the highest feature score for class C (4).
Class score of C is now 1. No features have sparse values for class P , therefore
no features are selected for P . Out of Z and C, C has the minimum class score
and “Classifier” gives the highest maximum feature score for C (16). Therefore,
the selected feature subset by CovSkew is {Cat, Compiler, Classifier}, which is
the optimal feature subset according to the objective in Eq. (1).

Computational Complexity Analysis: Assume n and f , are the number of
instances and features, nc the number of instances in a single class, and s the
number of selected features. As a feature’s skewness is independent from other
features, skewness computation is performed only once, with a time complexity
linear to f (O(nf)). The total coverage and class predictive power computation
in a single iteration has only O(fnc) complexity, which is significantly low. This
is because these measures consider only the instances of a single class. As the
algorithm runs s iterations, the total time complexity is O(sf(nc) + nf).

6 Evaluation

Datasets: We evaluate CovSkew ’s accuracy and performance using publicly
available, real datasets. A summary of the datasets, which is presented in Table 2,
shows that the datasets have a wide variation in terms of the number of features,
instances and classes. For continuous data, zero threshold binarization is applied.

Experimental Setup: We design three sets of experiments using above
datasets. Default α = 2 and the classifier used is Support Vector Machine (SVM),
as they give the best average accuracy for all datasets. We have also evaluated
with different classifiers and settings (Logistic Regression and Naive Bayes), for
which all the classifiers give similar accuracy results as SVM, but due to space
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Table 2. Dataset description. n: # features, c: # classes, m: # instances

Dataset Type n c m Description

StudentLife (SL) [15] Continuous 7,483 39 117,000 Wi-Fi fingerprint data

UJIIndoorLoc (UJ) [16] Continuous 520 3 21,048 Wi-Fi fingerprint data

Citeseer (CS) [1] Binary 3,703 6 3,312 Text document data

Cora (CO) [1] Binary 1,433 7 2,708 Text document data

WebKB (WK) [1] Binary 1,703 5 877 Text document data

Terrorist Attack
(TA) [1]

Binary 106 5 1,293 Terrorist attack data

Genomic (GN) [17] Continuous 12,532 11 175 Genomic data

limits we leave their discussion to further work. The experiments are performed
on a Core i7, 2.60 GHz computer with 16 GB RAM.

– Experiment 1: Measures the classification accuracy obtained for the
datasets with selected features. The aim is to evaluate the prediction accuracy
of the feature selection algorithm.

– Experiment 2: Feature selection algorithm is executed 100 times to evaluate
its performance.

– Experiment 3: Performs feature selection for different α values (1–5). The
aim is to test the effect of the α parameter value on classification accuracy.

Baselines: As baseline feature selection methods, we use DFS [5], GINI [7],
CDFE [11], which are limited for binary data, IG [9] and mRMR [8], which
have achieved good accuracy and performance for both binary and non-binary
data. Among them, DFS has shown to have good prediction accuracy over many
existing binary feature selection methods and CDFE and GINI consider the dis-
tribution of one feature value, similar to our method. CDFE method is extended
for multiclass problems using the one vs. all approach. “Unselect” means no
feature selection is performed and the complete dataset is used.

Evaluation Criteria: The classifier’s prediction accuracy on the dataset with
selected features is considered as the prediction accuracy of the feature selection
algorithm. Using the 10-fold cross validation method, we compute the F1-score
for each class and report the average F1-score for all the classes (AVGF ), Macro-
F1 in other terms [5]. The performance is evaluated in terms of average runtime
for 100 algorithm executions. We also report the 95% confidence intervals.

6.1 Experimental Results

Figures 3, 4 and 5 show the results for Experiment 1, 2 and 3. For all the selected
feature numbers in all the datasets, CovSkew shows higher or same accuracy
compared to all the baselines, with only ∼5 exceptions in TA and UJ datasets.
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(a) CS (b) WK (c) CO

(d) TA (e) SL (f) UJ

(g) GN

Fig. 3. SVM classification accuracy variation with the number of selected features

CovSkew ’s average and maximum accuracy gains over baselines are ∼5% and
∼40%, respectively. Compared to baselines, CovSkew shows a significantly higher
accuracy for small numbers of selected features. CovSkew also shows a higher or
same accuracy as the “Unselect” case for most datasets. The second best accu-
racies are for DFS and mRMR, however, CovSkew ’s running time is significantly
lower than theirs (∼50 times lower for GN dataset). CovSkew has a higher run-
ning time than IG and GINI, yet has a high accuracy gain over them (∼8%
average accuracy gain than GINI). Figure 5 shows that different datasets have
different accuracy variation patterns with α value and both higher and lower
accuracies are possible than with default α. In Fig. 5, AUC is the Area Under
the Curve in AVGF vs. number of features graph (up to 50% of all features).

6.2 Evaluation Insights

CovSkew shows good classification accuracy for all the datasets compared to all
the baselines (∼5% average and ∼40% maximum accuracy gains). The accu-
racy gain is higher when the selected feature subset is small, which shows that
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(a) GN (b) CS (c) CO

(d) WK (e) UJ (f) TA

Fig. 4. Run time variation with the number of selected features

(a) CS (b) CO (c) SL (d) GN

Fig. 5. Average accuracy (AUC for 50% of features) for different α values

CovSkew gains good accuracy with a minimal number of features. By optimis-
ing the α parameter for the dataset, higher accuracy can be obtained than the
reported results. CovSkew has lower running time compared to most of the
baselines (∼50 times lower than mRMR and DFS for GN dataset). Although
the running time of CovSkew is higher than of IG and GINI, CovSkew has a
higher accuracy than these methods. The run time difference is smaller for small
numbers of selected features, which is acceptable given that CovSkew gives good
accuracy even for small numbers of selected features.

7 Conclusion

We propose two novel feature selection measures to select a better quality feature
subset in multiclass binary datasets to improve the classification accuracy. The
measures are based on the sparse value distribution of the dataset, therefore
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computationally efficient. Using these measures, we propose CovSkew, a feature
selection algorithm. We show that compared to existing algorithms, CovSkew
achieves high prediction accuracy, especially when the selected feature subset is
small. The experimental results also show that CovSkew has a lower running
time compared to most of the baselines. Future directions of this work include
automatically computing the optimal α for a dataset, using dataset properties.
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Abstract. Missing data is a common trait of real-world data that can
negatively impact interpretability. In this paper, we present Cascade
Imputation (CIM), an effective and scalable technique for automatic
imputation of missing data. CIM is not restrictive on the characteristics
of the data set, providing support for: Missing At Random and Miss-
ing Completely At Random data, numerical and nominal attributes, and
large data sets including highly dimensional data sets. We compare CIM
against well-established imputation techniques over a variety of data sets
under multiple test configurations to measure the impact of imputation
on the classification problem. Test results show that CIM outperforms
other imputation methods over multiple test conditions. Additionally, we
identify optimal performance and failure conditions for popular imputa-
tion techniques.

Keywords: Classification · Missing data · Imputation

1 Introduction

Missing data is a common phenomenon in real-world applications. It can be
introduced during data collection by human manipulation or by sensor failures,
or by hardware/software failures during data storage/transmission. The average
amount of missing data is estimated in a range between 5% and 20% [24,26].
Missing data has a negative effect on performance of supervised learning meth-
ods, according to [1], ratios between 5–15% require the usage of sophisticated
methods while above 15% of missing values can compromise data interpretation.

Missing data mechanisms describe the underlying nature of this phenomenon
and are classified into three major categories [18]: I. Missing Completely At Ran-
dom (MCAR), the events behind missing values are independent of observable
variables and the missing values themselves. II. Missing At Random (MAR),
missingness can be explained by observable variables. III. Missing Not At Ran-
dom (MNAR), when data is not MCAR nor MAR and the reason for missingness
c© Springer International Publishing AG, part of Springer Nature 2018
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of data is related to the value of the missing data itself. Consider X the matrix of
input attributes and y the corresponding labels, let D = (X, y). For the observed
values (not missing) Dobs, let Dobs = (Xobs, y). A missingness matrix M with
the same shape as X indicates if a value is missing on X by setting its ij th entry
to 1. It follows that:

MCAR : P (M |D) = P (M) (1)

MAR : P (M |D) = P (M |Dobs) (2)

In the presence of missing data, three approaches are usually considered [9]: (i)
Discard instances with missing values, (ii) let the learning algorithm deal with
missing values, (iii) impute (fill) missing data. Imputation is usually the recom-
mended approach. However, manual imputation of MCAR and MAR data is a
time consuming process and requires deep understanding of the data and the
phenomena that it describes. On the other hand, manual imputation is recom-
mended for MNAR data, given that data specialists are more likely to identify
the reasons behind this type of missing data and the proper way to handle it.
Additionally, current trends in data generation and collection have shifted the
data archetype in the Machine Learning community to larger and more com-
plex data. Under this scenario, imputing data manually is impractical, therefore
scalable automatic imputation solutions are required for real-world applications.

One of these applications is Classification, a type of Supervised Learn-
ing, where a model h is generated from labeled data (Xtrain, ytrain). This
model is applied to unlabeled data Xpredict to predict the corresponding class
ypredict = h(Xpredict) where Xtrain �= Xpredict. Two classes are considered in
binary classification, y ∈ {0, 1}, while K > 2 classes are used in multi-class clas-
sification, y ∈ {0, 1, . . . ,K}. For both binary and multi-class classification only
one class is assigned per instance.

The contributions of this paper are the following:

– A new scalable and effective model-based imputation method that casts the
imputation process as a set of classification/regression tasks.

– Different to well established imputation techniques, the proposed method is
non-restrictive on the type of missing data to process, supporting:

• MAR and MCAR missing data mechanisms.
• Numerical and Nominal data.
• Small to large data sets, including high dimensional data.

– Since the proposed method does not require additional tools to the ones for
Classification, implementing a pipeline imputation+classification is straight-
forward.

– We provide a comprehensive evaluation of different imputation methods, iden-
tifying optimal operation conditions as well as failure conditions.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work. Section 3 describes our imputation method. Test methodology
is described in Sect. 4 and results are discussed in Sect. 5. Section 6 presents our
conclusions and future directions.
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2 Related Work

Various approaches have been proposed for missing data imputation. Basic meth-
ods rely on simple statistical values such as mean [18,20] and covariance [18].
Other methods reconstruct incomplete data incrementally: kNN based meth-
ods [2,13,27] impute data based on the neighborhood of a missing value and show
good results when the data is small. However, these methods suffer the computa-
tional burden of the kNN algorithm making scalability an issue. Self-Organizing
Map Imputation (SOMI) [8] is a Neural-Network model that first ignores missing
data when finding patterns, and then imputes missing data based on the weights
of activation nodes of the previously estimated patterns. Expectation Maxi-
mization Imputation (EMI) [5] performs imputation based on the Expectation-
Maximization algorithm. EMI imputes values based on mean and covariance
during the expectation step, then updates them in the maximization step, this
process continues until convergence. Kernel methods [21,22,29] build imputa-
tion models based on kernel functions. These non-parametric methods usually
consist of two stages: kernel function selection and bandwidth adjustment. Fuzzy
C-Means Imputation (FCMI) [16] and k-Means clustering (KMC) [28], use clus-
ters generated from non-missing data. While some imputations methods use the
entire data set (EMI, Mean Imputation, Most Frequent Value), others use only
sections of it (kNNI, FCMI, KMI).

Table 1. Related imputation methods categorization

(a) (b) (c) (d) (e) (f)

Data Type Numerical ✓ ✓ ✓ ✗ ✓ ✓

Nominal ✗ ✓ ✓ ✓ ✓ ✗

Mechanism MAR ✗ ✗ ✗ ✗ ✗ ✗

MCAR ✓ ✓ ✓ ✓ ✓ ✓

Performance evaluation Classification ✓ ✗ ✗ ✓ ✗ ✗

Regression ✓ ✗ ✗ ✗ ✗ ✗

Imputation errora ✗ ✓ ✓ ✗ ✓ ✓

Data set sizeb S S-L S-L S-M S S

Missing values ratioc S-L S S M-L M-L M-L
a Respect to complete data set.
b (Instances×Attributes) → Small [<200K], Medium [200K–600K], Large [>600K]
c Small [<10%], Medium: [10%–25%], Large [>25%]

In the following, we summarize relevant imputation methods and categorize
them in Table 1: (a) Locally Linear Reconstruction (LLR) [13] determines the
number of neighbors k and the weights given to the neighbors in kNN learn-
ing. Imputation is limited to numerical values. Imputed data sets are used to
train classification/regression models. LLR assumes k to be ‘sufficiently large’
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which represents a compromise for large data sets. (b) A combination of EMI
with Decision Trees (DMI) and Decision Forest (SiMI) are proposed in [23]. The
goal is to identify segments of data where instances have higher similarity and
attribute correlation. A tree-based algorithm identifies partitions in the data,
given that leaves are sets of mutually exclusive instances. Imputation of numeri-
cal and nominal data is performed via EMI and Majority Class respectively. (c)
FEMI [24] uses the General Fuzzy C-Means (GFCM) [15] clustering algorithm to
find most similar instances for imputation via EMI. FEMI supports imputation
of numerical and nominal data. The required number of k clusters is manually
set. (d) A model-based approach is provided in [26]. Imputation of nominal data
is performed via a classification approach, based only on observed values. (e) A
non-parametric iterative imputation method for numerical and nominal values is
proposed in [29]. This method uses a mixed-kernel-based estimator and applies
a grid search strategy for selecting the optimal bandwidth. Imputed values are
used to impute missing values in subsequent iterations. (f) An iterative model-
based imputation method is presented in [25]. Imputation of numerical data is
carried by iteratively applying regression functions, first using observed data and
then including imputed data, until the difference between predictive values falls
bellow a user defined threshold.

3 Proposed Method

In this paper we present Cascade Imputation (CIM), a model-based incre-
mental imputation method. CIM casts the imputation process as a set of classi-
fication/regression tasks where unobserved values are imputed on a supervised
learning fashion. This approach is supported by the underlying presence of high
correlation/interaction between attributes [3,10,17]. In the following, we describe
the main steps performed by CIM, see Fig. 1.

(a) (b) (c) (d)

Fig. 1. CIM Steps. (1a) Original data with missing values marked in red. (1b) Updated
positions after sorting attributes by count of missing values. (1c–1d) Imputation itera-
tions, repeated until data set is complete. Imputed values in green are used in following
iterations of the algorithm. (Color figure online)

Given an incomplete data set D = (X, y), we want to find the corresponding
imputed data set D′ = (X ′, y). Figure 1a shows the original positions of missing
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data (in red) in X. First, CIM splits X column-wise, keeping complete data to
the left and incomplete data to the right. Columns are sorted in incremental
order depending on the amount of missing values. Figure 1b shows the updated
column order after sorting.

CIM iterates trough the columns with missing values, incrementally per-
forming imputation via predictive models, hence cascade imputation. For each
column with missing values i, CIM trains a classification model if the attribute
is nominal or a regression model if it is numerical. On each iteration i, CIM
sorts rows in X, placing all instances where the value of i is known (observed) at
the top and instances with unknown (missing) values at the bottom. Figure 1c
shows the updated row positions after sorting.

Columns 0 → i correspond to the setup of a classification/regression prob-
lem. Known inputs Xtrain and their responses ytrain are used to train a model
hi. Imputed values result from applying the corresponding model imputed =
hi(Xpredict). This process is repeated until all attributes with missing values
have been processed. Imputed values (in green) are used on following iterations
of the algorithm, Fig. 1d.

Additionally, CIM calculates for each instance j a missingness weight wj ,
ranging from 0 (all values missing) to 1 (no missing values). In practice,
0 < wj ≤ 1. wj represents the level of noise that may be introduced by the
imputation process, and is used in the final classification task where it assigns
higher importance to complete instances over imputed ones.

Although CIM can be paired with different classifiers/regressors, we propose
two configurations based on popular algorithms in the research community [4].
CIM-LR uses Logistic Regression and Linear Regression, while CIM-RF uses
Random Forest. Logistic and Linear Regression are both types of generalized
linear models which solve

y = φ(Xβ) + ε (3)

where y is continuous in the regression case; while for classification, y is the
probability of a categorical outcome, a two states variable for the most basic
case. Random Forest, a type of Ensemble Trees, creates n independent and
fully grown Decision Trees Ti. For regression, the average value of the trees is
calculated. For classification, a majority vote is applied for the class predictions
Ci(x) = k of each tree.

Regression, f(x) =
1
n

n∑

i=1

Ti(x) (4)

Classification, C(x) = arg max
k

n∑

i=1

(Ci(x) = k) (5)

Resources required by CIM are upper bounded by the classification task on
the complete attributes set X. On each independent iteration, a subset Xtrain ∈
X is used. The number of iterations m required is limited by the number of
attributes d where m ≤ d. If all attributes have at least one missing value, then
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CIM starts the cascade immediately after the attribute with less missing values.
For each iteration, if an instance in Xtrain has missing values, it is removed; if a
missing values is in Xpredict, it is replaced with zero. Once the cascade ends, CIM
imputes the first attribute. The worst case scenario is to have missing values in
all the attributes of a high dimensional data set. We discuss this scenario in the
test section.

4 Methodology

We are interested in the impact of imputation on classification. In order to
thoroughly evaluate our proposed method, we use 10 data sets (Table 2) from a
variety of domains and with the following characteristics: Classification type:
Our tests focus on binary and multi-class classification. Although we use multi-
label data sets, we test binary classification by learning and evaluating only one
label (first label by default). Data type: Numerical, nominal or a combination
of both. Size: Defined by the number of instances × the number of attributes.
Data sets range from small (< 200K values) to large (> 600K values). Tests fall
into the following categories:

Table 2. Data sets.

Name Domain Instances Attributes Source Classification

Num. Nom.

Adult Demography 48, 842 6 8 UCI Rep. Binary

Census-IKDDa Demography 299, 285 7 33 UCI Rep. Binary

Music Music 593 72 0 MEKA Rep. Binaryb

Enron Text 1, 702 0 1, 001 MEKA Rep. Binaryb

Genbase Biology 661 0 1, 186 MULAN Rep. Binary

Llog Text 1, 460 0 1004 MEKA Rep. Binaryb

Medical Text 978 0 1, 449 MEKA Rep. Binaryb

Scene Image 2, 407 294 0 MEKA Rep. Binaryb

Yeast Biology 2, 417 103 0 MEKA Rep. Binaryb

Covtype Biology 581, 012 10 44 UCI Rep. Multi-class
a Census-Income (KDD)
b Multi-label data set. We use only the first class-label to test binary classification.

1. Imputation-Classification tests. We compare performance of classifiers
trained on imputed data with multiple ratios of missing data vs the (baseline)
performance of a classifier trained using complete data. This test is performed
as follows:
(a) Generate missing data. First, we remove all original missing values

from each data set. Then, for each complete set we generate incomplete
versions with 4 missing values ratios (5%, 10%, 25% and 50%) and 2
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mechanisms (MCAR and MAR). For MCAR, we draw at random a num-
ber from a uniform distribution fU (vi,j) = xi,j for each value vi,j in the
data set, if xi,j ≤ t then we mark the value as missing. The threshold t
is defined by the ratio of missing values. For MAR, we draw at random
a pair of attributes (A,B) and a threshold tA ∈ A. A value Bj is marked
as missing if Aj ≤ tA. This process is repeated until the ratio of missing
values is reached. We generate 10 different versions of each configuration
for a total of 10 × 4 × 2 incomplete sets for each complete data set.

(b) Impute missing data. We compare CIM against 4 well established
imputation techniques. Constant Imputation (Constant) where a con-
stant value is used to fill missing values. We use 0 for numerical values and
define a ‘missing’ class for nominal values. Simple Imputation (Simple),
fills missing values using the mean value for numerical attributes and
the most-frequent value for nominal attributes. Expectation-Maximization
Imputation (EMI) [5,12,14] is an iterative method with two steps. Expec-
tation (E), where values are imputed based on observed values. And Max-
imization (M), where imputed values are evaluated and updated if nec-
essary according to the data distribution. The EM algorithm converges
to imputed values consistent with the observed distribution. k-Nearest
Neighbor Imputation (kNNI) [2] uses the neighborhood of a missing value
to estimate the corresponding imputation value. Defining the optimal k
value is challenging and has important implications on performance at
the cost of computational burden [6,19]. In our tests we use k = 3, as a
compromise given the range of data set sizes. Although parameter tuning
can improve performance of predictive models, it would increase the com-
plexity of CIM. In our tests, we set the classifiers/regressors in CIM-LR
and CIM-RF to default values, using 100 trees for Random Forest.

(c) Use imputed data for classification. We train classification models
using the imputed data and compare the performance of these models
against the baseline performance of models generated using complete
data. In order to control the complexity of our tests we use Logistic
Regression and Random Forest as final classifiers. We use 10-fold cross
validation for a total of 90 × 2 × 10 tests for each data set.

2. Scalability test. To test the scalability of CIM, we focus on three large
data sets, Adult, Covtype and Llog. We compare the two versions of CIM
against EMI and kNNI. Simple and Constant are not included given their
low complexity. For each complete data set D, we create subsets Di ∈ D
corresponding to 5%, 10%, 25%, 50%, 75% and 100% of the complete data set
sizes. Then, for each complete subset Di we generate 10 incomplete versions
with 5%, 10%, 25% and 50% missing values ratios using MCAR and MAR. In
total, we measure imputation time for 6×10×5×2 incomplete sets. Reported
times are the average of imputing each incomplete sets for each combination
of set size, missing values ratio and missingness mechanism.

The data sets in Table 2 present different degrees of class imbalance. In this
context, accuracy can be misleading [11], therefore we use two metrics that
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account for the actual amount of correctly classified instances, namely: Area
Under the Receiver Operating Characteristic Curve (AUROC) [7] to evaluate
performance of binary classifiers and F1-Score for multi-class classifiers.

Given the multiple configurations in our test setup, we define an Overall Per-
formance Ranking to simplify the interpretation of results. Since we are inter-
ested in robust methods, we focus on the general behavior of imputation methods
over multiple configurations rather than on isolated cases. We use the Root Mean
Square Error (RMSE) to measure the performance difference between a classifier
trained on complete data (zbase), and the same classifier trained on imputed data
(zi), where i corresponds to n missing values ratios. The RMSE is calculated as:

RMSE =

√√√√ 1
n

n∑

i=1

(zbase − zi)2 (6)

Then, we rank each imputation method based on its RMSE within a test set.
One test set contains results grouped by [data-set, supervised learning algorithm,
missing data mechanism] for n missing values ratios. We award points based on
the following criteria:

3: Top: If the method is the best performer and there are no ties.
2: Tie: If multiple methods fall in a 5% band from the top performance.
1: Runner-up: Methods bellow 5% from the top.
0: If the imputation method fails for all the files in the test set.
0: If the method is the last among non-fail methods and the difference with
the best runner-up is larger than 1x the difference between top and best
runner-up.

5 Discussion of Experimental Results

Tests results for Imputation-Classification tests are shown in Fig. 2 for Logistic
Regression and Random Forest. Due to space limitations, we only show results
for 3 data sets with one metric, AUC ROC for binary data sets and F1-Score
for multi-class data sets. Test results indicate that the operating range (condi-
tions under which imputation is successful) of EMI and kNNI is rather small,
and they fail under multiple test configurations. Table 3 shows the number of
successful imputations over 40 incomplete data sets for each mechanism. kNNI
fails when the number of values in the data set is large, regardless of the missing
data mechanism or missing values ratio. On the contrary, when the number of
values is small, kNNI performance is in the top-tier. On the other hand, EMI
is sensitive to high dimensionality, and success ratio drops as the missing values
ratio increases, especially on MCAR data. This indicates that EMI is sensitive
to data size, missingness mechanism and ratio of missing values. In contrast,
CIM-LR, CIM-RF, Constant and Simple methods successfully impute data
for all test configurations. However, Constant’s performance is mostly inconsis-
tent with worst performance on small data sets and on MCAR. Simple performs
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Fig. 2. Performance of classification models trained on imputed data vs baseline (com-
plete).

remarkably well through our tests. It is interesting that such simplistic solution
performs in overall better than EMI and kNNI across multiple test configura-
tions. Finally, the two versions of CIM show the best overall performance, being
CIM-RF the top performer.

The ranking of overall performance across multiple test configurations is
available in Table 4. Top performer is CIM-RF, followed by CIM-LR and Sim-
ple. Notice that optimal performance is achieved by CIM without using param-
eter tuning for the internal classification/regression tasks. Although Constant
imputes data successfully for all tests, its overall performance is low. kNNI is
next as it shows good performance with small to medium size data sets but fails
on large data sets. The worst performer in our tests is EMI given its narrow
operating range. However, it is important to remark its good performance when
the missing values ratio and the data set size are small.

The impact of the supervised learning algorithm on performance is also
important to consider. In Table 4 we see that Logistic Regression and CIM-RF
are a good combination for both MAR and MCAR. Results show that Random
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Table 3. Number of successful imputations (out of 40) for each test set.

Table 4. Overall performance ranking over multiple test configurations. Larger num-
bers are better. Top performer is CIM-RF, followed by CIM-LR and Simple.

Classifier Mechanism CIM-LR CIM-RF Constant EMI kNNI Simple

Logistic regression MAR 13 17 14 1 2 12

MCAR 15 21 5 0 4 10

Random forest MAR 16 11 13 1 2 18

MCAR 13 18 7 0 3 16

Forest does a better job at exploiting imputed data from CIM-LR and Sim-
ple. In particular, we see a significant boost in performance when Simple is
paired with Random Forest. This explains the close gap between CIM-LR and
Simple in the overall performance ranking. Covtype with more than 31M values
provides insight on the suitability of sophisticated imputation methods for big
data sets. The top performer in this case is CIM-LR, followed closely by Sim-
ple and CIM-RF. This suggests that Simple represents a good compromise
for extremely large data sets, given the computational burden of sophisticated
imputation methods.

Scalability test results are shown in Fig. 3 for Adult, Llog and Covtype. We
observe that CIM takes longer to impute MCAR data. This is expected given
that missing values are equally distributed across the data attributes, requiring
more iterations of the cascade. CIM is faster on MAR data with low missing
values ratio, but as the ratio increases (≥ 25%) there are more attributes to
process and imputation time gets closer to the time for MCAR. Notice that for
kNNI and EMI, imputation time increases along with the missing values ratio,
while the contrary happens for CIM-LR and CIM-RF. This is explained by the
fact that there is less training data as the number of missing values increases,
which results in less training time for the classification/regression models within
CIM. In Adult, kNNI is the slowest imputation method. On the other hand, Llog
presents the worst case scenario for CIM given its high dimensionality, especially
with MCAR data. Nonetheless, notice that the gap between CIM and kNNI
decreases as data size and missing values ratio increase. For Covtype, kNNI is
again the slowest to impute data and starts to fail at 25% of the original data
set size, while CIM-LR and CIM-RF successfully impute data for all subset
sizes. EMI fails to impute data for all subsets of Llog and Covtype.
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Fig. 3. Scalability test results for CIM, EMI and kNNI. CIM imputation time
decreases with larger missing values ratios, while EMI and kNNI are weak against
large data set sizes and ratio of missing values.

Test results show that CIM performs well on a variety of conditions, expand-
ing beyond the operating range of EMI and kNNI. An additional consideration
is the straightforward implementation of an imputation+classification pipeline
using CIM, given that it does not require extra tools to the ones used for Clas-
sification.

6 Conclusions

We presented CIM, an effective and scalable imputation method. CIM imputes
both numerical and nominal data and mitigates the impact of MAR and MCAR
data on binary and multi-class classification. Test results show that CIM per-
forms well over a wide range of missing values ratios and does not require param-
eter tuning to achieve optimal performance. CIM is scalable to large data sets,
including highly dimensional data sets, a limitation of well established meth-
ods such as EMI and kNNI. Additionally, CIM always results in an imputed
data set, something that is not guaranteed by EMI. Implementing an imputa-
tion+classification pipeline is straightforward given that CIM does not require
additional tools to the ones related to Classification.
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In future work we will improve the selection of training instances in the cas-
cade; by accounting for the correlation between attributes we aim to reduce the
computational burden from unrelated attributes while maintaining data inter-
pretability. A natural extension of the method we propose is a multi-imputation
solution based on multi-label classification and regression techniques, in an
ensemble to improve robustness.
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Abstract. We address the problem of reducing dimensionality for
labeled data. Our objective is to achieve better class separation in latent
space. Existing nonlinear algorithms rely on pairwise distances between
data samples, which are generally infeasible to compute or store in the
large data limit. In this paper, we propose a parametric nonlinear algo-
rithm that employs a spherical mixture model in the latent space. The
proposed algorithm attains grand efficiency in reducing data dimension-
ality, because it only requires distances between data points and cluster
centers. In our experiments, the proposed algorithm achieves up to 44
times better efficiency while maintaining similar efficacy. In practice, it
can be used to speedup k-NN classification or visualize data points with
their class structure.

1 Introduction

Dimensionality reduction is an important task in machine learning. Although the
canonical objective for reducing data dimensionality is the perseverance of data
similarity, we argue that manifesting class structure is also desirable. Intuitively,
the idea is to project high-dimensional data points to a low-dimensional latent
space, such that points from the same class locate at nearby regions, and they
are distant from points of other classes. We refer to this idea as collapsing classes.

Collapsing classes expedites k-nearest neighbor (k-NN) classification. k-NN
is a competitive algorithm in applications such as document classification [8],
kinship verification [16] and animal behavioral classification [1]. Yet its time
complexity for classifying a point is linear in the size of training data and data
dimensionality, which prohibits application on large-scale datasets. Because the
neighborhood of classes are explicitly considered, by collapsing classes we can
accelerate k-NN while retaining classification performance for k-NN.

Besides, it also reduces memory consumption of k-NN. k-NN requires storing
the entire training data, which is problematic for large-scale datasets or real-
time applications. The idea of collapsing classes is closely related to several data
compression algorithm for k-NN. Stochastic Neighbor Compression (SNC) [12]
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and Learning Discriminative Projections and Prototypes (LDPP) [21] project
training data to a few class-specific reference vectors, which are considered as
proxies for data. The idea of collapsing classes is incorporated to ensure the
discriminability of reference vectors.

Yet another use case is data visualization. Visualizations facilitate inspec-
tion of data. Algorithms such as t-SNE [17] and Elastic Embedding [2] take
as input pairwise distances of data. When proper similarity metric is unavail-
able, it is challenging to generate satisfactory visualizations. For labeled data we
may instead visualize their class information with discriminative dimensionality
reduction techniques. Collapsing classes is advantageous for this purpose because
it improves readability by emphasizing separation of classes.

However, existing algorithms for collapsing classes are not satisfactory when
for large-scale datasets. Algorithms such as Neighborhood Component Analysis
(NCA) [6] and Maximally Collapsing Metric Learning algorithm (MCML) [5]
compute pairwise distances of data, which means they are of quadratic space
and time complexity. Meanwhile, the Parametric Embedding (PE) algorithm [10]
computes only distances between data points and reference vectors of classes and
has better efficiency. Nevertheless, PE takes as input posterior probability distri-
bution of labels given data and outputs embedding vectors of data directly. It is
not a tempting choice when such distribution is unavailable, or when embeddings
of new data points are constantly queried.

In this paper, we propose an efficient algorithm called Nonlinear Parametric
Embedding (NPE) for collapsing classes. NPE takes as input pairs of features
and labels, and outputs a nonlinear projection function parametrized by neural
networks. NPE computes only distance between data points and reference vectors
of classes, thus it is more efficient than nonlinear extensions of NCA (NNCA)
and that of MCML (NMCML). Meanwhile, NPE is more generic than PE. PE
takes as input posterior distribution of classes given features, and it outputs
embedding vectors of data points. In many cases, estimating such distribution is
itself a challenging task. Moreover, PE determines representations of test points
by invoking optimization routines, which is in general more time-consuming than
applying a neural network.

We evaluate NPE on five datasets in terms of efficiency and efficacy. Our
results show that compared to existing nonlinear methods, NPE can be up to
44 times faster. The contribution of this paper are three-folds: 1. we address the
efficiency issue when collapsing class with nonlinear transformation, which is
rarely considered in literature; 2. we propose a parametric model and a learning
algorithm which solve the task efficiently; 3. we extensively evaluate the proposed
method.

The rest of this paper is organized as the following. Section 2 briefly reviews
the related literature. Section 3 describes the proposed algorithm. Section 4
describes our evaluation of the proposed algorithm. In the final section we
conclude this paper.
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2 Related Work

2.1 Metric Learning

Metric learning is concerned with learning a metric for high-dimensional data.
Often, by learning a projection matrix and restricting its rank, one can reduce
the dimensionality of data at the same time [5,6]. Nonlinear metric learning
incorporates non-linearity to capture higher-order correlations among feature
dimensions, which can be achieved either by kernel density estimation [7] or
nonlinear distance measure [11]. In this paper, we consider incorporating non-
linearity with neural networks, which is highly flexible and generic in practice.

2.2 Nonlinear Algorithms for Collapsing Classes

Tow linear algorithms for collapsing classes have been extended to nonlinear
setting. In [20] the authors propose a nonlinear extension of NCA (NNCA)
using feedforward neural networks. In [18] the authors propose nonlinear MCML
(NMCML) and compare performance of NNCA and NMCML on image recog-
nition tasks. However, as explained below, the high time complexity of NNCA
and NMCML hampers applying them to large datasets.

NMCML assumes a non-parametric distribution over data points in latent
space. Denote by N the number of data points. A Student-t distribution with
degree of freedom α is centered at each point in latent space. Each point f(xj)
is associated with a Categorical distribution, modeling the identity of its nearest
neighbor. This distribution is parameterized by qij :

qij =

⎧
⎨

⎩

(1+α−1‖f(xi)−f(xj)‖2)− 1+α
2

∑
k �=i(1+α−1‖f(xi)−f(xk)‖2)− 1+α

2
, j �= i,

0 , j = i.

(1)

When classes in data are ideally collapsed, a point and its nearest neighbor
should belong to the same classes. A sufficient specification of qij for this ideal
case, pij is:

pij ∝
{

1, cj = ci, j �= i,

0, otherwise.
(2)

NMCML minimizes the sum of KL divergence between Eq. 2 and Eq. 1 so as
to collapse classes in data. Dropping the term for entropy of pij , its objective
function is:

C(f) = −
∑

i

∑

j∈Ck,j �=i

pij log(qij). (3)

Meanwhile, NNCA also utilizes Eq. 1, but it tries to maximize accuracy of 1-NN
classification.

In fact, Eq. 1 manifests the flaws of NNCA and NMCML. The optimization
problems involved in NNCA and NMCML have to solved iteratively, and qij is
re-computed in every iteration. Computing qij requires computing the pairwise
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distances between projected points, which is of quadratic time complexity. This
high complexity hinders applying NNCA and NMCML on large datasets. More-
over, it can be infeasible to load the entire distance matrix of large-scale datasets
into memory. In such cases objective functions of NNCA and NMCML can only
be optimized in a stochastic batch optimization setting. However, in that case
qij is not properly normalized, causing large variance in optimization. Therefore,
there is still need for efficient nonlinear algorithm for collapsing classes.

2.3 Parametric Embedding

Parametric Embedding (PE) is an algorithm for visualizing posterior probability
distribution [10]. It takes as input conditional probability of class given features
p(ck|xi), and outputs coordinates zi for each data point and a reference vector
φk for each class k. It assumes a spherical Gaussian mixture model in latent
space, and learns zi by minimizing the KL divergence between p(ck|xi) and
p(ck|zi). This parametric formulation gives rise to high efficiency, as only the
distance between data points and class centers are iteratively computed. How-
ever, a proper posterior distribution has to be estimated prior to appling PE.
Moreover, determining low-dimensional representations of new data can be time
consuming, since optimization procedures must be invoked.

3 Nonlinear Parametric Embedding

In this section we describe the proposed algorithm. Denote by D the dimension-
ality of data and by K the number of classes. We assumes each data point is
associated with one class, so the data samples can be represented as {(xi, ci)},
where i ∈ {1, 2, . . . , N}, xi ∈ RD, and ci ∈ {1, 2, . . . ,K}. We seek for a nonlinear
transformation f(·) to project data points onto a latent space with dimension-
ality D′, where D′ < D. f(·) is parameterized with feedforward neural network.

The proposed method, Nonlinear Parametric Embedding (NPE), learns a
reference vector for each class in latent space. Denote the reference vector for
kth class as φk, where k ∈ {1, 2, . . . ,K} and φk ∈ RD′

. The Euclidean distance
between f(xi) and φk depicts how likely xi belongs to class k in latent space.
Intuitively, to collapse class, NPE pulls f(xi) to φci

and pushes away reference
vectors of other classes.

The class structure in data are modeled with a mixture of K Student’s
t-distribution with uniform class probability. The kth mixture component is cen-
tered at φk. The conditional probability of xi belonging to class k in latent space
is:

w(ci = k|xi) =
(1 + α−1 ‖f(xi) − φk‖2)− 1+α

2

∑K
�=1(1 + α−1 ‖f(xi) − φ�‖2)− 1+α

2

, (4)

where α is the degrees of freedom of the Student’s t-distribution. We choose the
Student’s t-distribution because it enhances class separation [17,18]. We set α
to D′ − 1 throughout this paper, as suggested by [18].



On Reducing Dimensionality of Labeled Data Efficiently 81

To collapse classes, NPE reduces the distance between the projected point
f(xi) and the reference vector of the corresponding class φci

and increases the
distances between f(xi) and φj where j �= ci. It minimizes the KL divergence
between the one-hot encoding of label ci, v(ci|xi) and w(ci|xi). Specifically,
v(ci|xi) is a K-dimensional vector with cthi element equals to one and all other
elements equal to zero. This corresponds to the case where data points are per-
fectly classified in latent space. Dropping the term for entropy of v(ci|xi), the
objective function of NPE is:

C(f, {φk}) = −
N∑

i

K∑

k=1

v(ci = k|xi)log(w(ci = k|xi)). (5)

One may notice the connection between Eq. 5 and the soft-max output layer
used in neural networks for classification tasks. Indeed, NPE can be considered
as a discriminative probabilistic classifier parameterized by neural network. It
relaxes PE’s dependency over posterior distribution by estimating it jointly with
reducing data dimensionality. Note that training PE on {(xi, ci)} yields a trivial
case, in which projections of data points belonging to some class locate very
close to the reference vector of that class. The correlation between classes are
totally discarded.

The derivatives of C with respective to f(xi) and derivatives with respective
to φk are the following:

∂C

∂f(xi)
=

K∑

k=1

βk,i
1 + α

α

(f(xi) − φk)
(1 + α−1 ‖f(xi) − φk‖2) ,

∂C

∂φk
=

N∑

i=1

βk,i
1 + α

α

(φk − f(xi))
(1 + α−1 ‖f(xi) − φk‖2) ,

(6)

where βk,i = v(ci = k|xi) − w(ci = k|xi). From Eq. 6 we can make two obser-
vations. On the one hand, βk,i ≥ 0 only if k = ci, and βk,i < 0 otherwise.
That is to say, minimizing the objective function poses attraction between f(xi)
and φk, and repulsion between f(xi) and φj where j �= k. On the other hand,
since f(xi) − φk are computed for k ∈ 1, 2, . . . ,K and for i ∈ 1, 2, . . . , N , the
computational complexity in one iteration of optimization is O(NK). In many
real-word datasets, K << N , and NPE will be much more efficient than existing
algorithms.

4 Evaluation

4.1 Experiment Settings

Datasets. We use five datasets to evaluate NPE: MNIST [14], 20 news-
groups [13], isolet [4], sensorless and satimage. Statistics of datasets are shown in
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Table 1. MNIST contains images of handwritten digits. In experiments we con-
verting pixel values to [0, 1]. 20 newsgroups dataset (20NEWS) contains news-
groups posts on 20 topics. We remove stop-words and 100 most frequent words.
We then select 10,000 most frequent words as vocabulary and vectorize docu-
ments using tf-idf algorithm. Isolet is a dataset for spoken letter recognition.
Satimage dataset consists of multi-spectral satellite images. Sensorless dataset
contains data extracted from electric current drive signals. We use the scaled
version of satimage dataset and sensorless dataset provided by LIBSVM data
repository [3]. For isolet we use the version provided by UCI Machine Learning
Repository [15].

Table 1. Dataset statistics

Dataset # of Train # of Test D K

MNIST 60, 000 10, 000 784 10

SENSORLESS 43, 881 14, 628 48 11

20NEWS 11, 314 7, 532 10, 000 20

ISOLET 6, 238 1, 559 617 26

SATIMAGE 4, 435 2, 000 36 6

Evaluation Method. The extent to which classes are collapsed is can be
revealed with k-NN test accuracy. A k-NN classifier is constructed on repre-
sentations of training data, and it is then used to classify representations of test
data. Its performance reflects how well data points from different classes are
separated. Because the appropriate latent dimensionality and number of neigh-
bors used in k-NN may vary for different datasets, we perform experiments with
k in k-NN as 1, 2, 5, 10, 15, 20, 50, 100 on all five datasets and perform exper-
iments with latent dimensionality 2, 5, 10, 20, 30, 40, 50, 100 on three relatively
high-dimensional datasets MNIST, 20NEWS, and ISOLET.

To evaluate efficiency of algorithms, we compare the time that algorithms
need to converge. We first smooth the loss values with the moving average index
of window size 10. From the smoothed loss values we calculate the total loss
drop in training. We report as execution time the elapsed time when loss drop
reaches 99% of the corresponding total loss drop. Efficiency is evaluated with
dimensionality of latent space equals to 30.

Alternative Methods. In experiments we compare performance of the pro-
posed NPE with NNCA and NMCML. To demonstrate how collapsing class
facilitate classification, we also include k-NN classification results on embed-
dings generated by PCA, latent discriminant analysis (LDA) and using k-NN
algorithm directly, which we denote as “Direct” in results. On account of non-
convex optimization we repeat evaluation of NPE, NMCML and NNCA for ten
times and report the mean values.



On Reducing Dimensionality of Labeled Data Efficiently 83

Implementation Details. We use five layers of feedforward networks to
parameterize nonlinear mappings. The first four layers have the same number of
latent units. For MNIST, ISOLET, 20NEWS, we set it to 512; for SENSORLESS
and SATIMAGE we set it to 128. We set D′ to 30 for evaluation of dimensional
reduction and two for visualization purpose. The final layer is an affine transfor-
mation with the number of latent units equals to D′. For the first three layers we
use the Rectified Linear Unit [19] as activation function, and use the hyperbolic
tangent function for the fourth layer.

We add batch normalization [9] to the output of every layer in order to use
large batch size as 512 in training. The reason to select such a large batch size is
that NNCA and NMCML are vulnerable to noise introduced in mini-batch opti-
mization, despite merit of stochastic optimization in training neural networks.
All networks are trained using stochastic gradient descent with momentum, using
10−2 as learning rate. Optimizations are executed for 500 epoch to ensure con-
vergence. To palliate over-fitting problem, we use weight decay with rate 10−6

and add drop-out after the third layer with rate 0.5.

4.2 Results

Efficiency. Figure 1 shows execution time of NPE, NMCML and NNCA. In all
cases NPE is much faster than NNCA and NMCML by more than a magnitude.
Specifically, on large datasets such as MNIST and SENSORLESS, NPE only
takes two and five minutes, whereas NMCML and NNCA take more than one
hour. These results demonstrate NPE’s superiority on large-scale datasets.

Fig. 1. Execution time of NPE, NMCML and NNCA on five datasets. The minimum
and maximum speedup of the proposed method (NPE) with respective to NMCML
are 11.4x on 20NEWS and 44.6x on MNIST, respectively. The minimum and maxi-
mum speedup of NPE with respective to NNCA is 14.8x on ISOLET and 31.5x on
SATIMAGE, respectively.

Dimensionality Reduction. In Table 2 we show the test accuracy of 10-NN
classification on five datasets. On all datasets, the three nonlinear methods have
better performance than PCA, LDA and using kNN directly. These results sup-
port our claim that using nonlinear transformation to reduce dimensionality ben-
efits kNN classification. The proposed method outperforms NMCML and NNCA
on 20NEWS, ISOLET and SATIMAGE datasets. Particularly, on 20NEWS supe-
riority of NPE is significant. These results demonstrate efficacy of NPE.



84 G. Zhang et al.

Table 2. 10-NN test accuracy on five datasets. Except for direct method, the dimen-
sionality of latent space is set to 30. The proposed method, NMCML and NNCA have
similar performance on four of five datasets, and they are better than PCA, LDA, and
using k-NN directly.

Dataset NPE NMCML NNCA Direct PCA LDA

MNIST 0.981 0.985 0.981 0.967 0.974 0.919

SENSORLESS 0.999 0.998 0.999 0.989 0.989 0.949

20NEWS 0.661 0.574 0.573 0.414 0.565 0.539

ISOLET 0.959 0.955 0.952 0.913 0.896 0.949

SATIMAGE 0.908 0.905 0.905 0.895 0.895 0.87

Fig. 2. k-NN test accuracy for different k. The proposed method (NPE), NMCML and
NNCA are note sensitive to choice of k, indicating well class separation in the latent
space.

In Fig. 2 we show test accuracy of k-NN with different values of k when
dimensionality of latent space is set to 30. For NPE, NMCML and NNCA we
draw the standard errors. It is shown in the figure that performance of all the
three nonlinear methods is not sensitive to k, demonstrating well class separation
in latent space.

In Fig. 4 we show test accuracy of 10-NN classification on five datasets,
with different latent dimensionality. Nonlinear method becomes beneficial when
dimensionality of latent space is greater than five. On MNIST and ISOLET, the
three nonlinear methods being compared have similar performance. On 20NEWS
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Fig. 3. Visualization. The proposed method (NPE) and NMCML generate similar visu-
alizations. The separation of classes makes visualization easy to read. NNCA fails to
generate good visualization on MNIST and 20NEWS. In visualizations generated by
LDA classes are not well separated, so we might not determine class of test points
easily. t-SNE fails to generate global patterns in visualization on SENSORLESS.

dataset, the proposed method achieves high test accuracy at much lower dimen-
sionality. Because computational complexity of k-NN grows linearly in dimen-
sionality of data, being able to generate good embeddings at low dimensionality
makes NPE more practical on large datasets.

Visualization. In Fig. 3 we present visualization of training data, generated by
NNCA, NPE, NMCML, LDA and t-SNE. Due to memory limit, for MNIST and
SENSORLESS datasets we sample 10, 000 data points to use tSNE algorithm.
The perplexity parameter of tSNE is set to 50.
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Fig. 4. k-NN test accuracy for different latent dimensionality. The proposed method
(NPE), NMCML and NNCA begin to improve performance of k-NN classification after
dimensionality of latent space is greater than five. On 20NEWS NPE outperforms
NMCML and NNCA in the sense that it improves k-NN performance with smaller
dimensionality.

For SENSORLESS dataset (second row from above), classes are not well
separate in visualization generated by LDA and t-SNE algorithm. Specifically,
there are no global patterns but smaller clusters in visualization of t-SNE. This
can be result of periodical characteristic in electrical signals recorded in this
dataset. Although tuning perplexity parameter might improve the visualization,
this provide an example where with class information we could generate better
visualization.

On all the five datasets visualizations generated by NPE and NMCML have
similar quality. Clusters of points from different classes are well separated. On
MNIST and 20NEWS visualization generated by NNCA are of poor quality. This
can be explained by the fact that NNCA performs well only when dimensionality
is relatively large, as shown in Fig. 4.

5 Conclusion

In this paper we address the idea of collapsing classes for reducing dimensionality
of labeled data, and propose an efficient algorithm that learns nonlinear trans-
formation from high-dimensional space to low-dimensional space. The proposed
NPE algorithm utilizes parametric formulation in latent space and thus is more
efficient than algorithms with nonparametric formulation. We demonstrate the
efficacy and efficiency of the proposed Nonlinear Parametric Embedding algo-
rithm with experiments on five multi-class classification dataset. Specifically,
the proposed method can be up to 44.6 times faster. In addition, it can achieve
best class separation with relatively low dimensionality. Future directions include
extension to other form of data, such as multi-label datasets or continuous labels.
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Abstract. Record linkage is the process of identifying records that refer
to the same real-world entities in situations where entity identifiers are
unavailable. Records are linked on the basis of similarity between com-
mon attributes, with every pair being classified as a link or non-link
depending on their similarity. Linkage is usually performed in a three-
step process: first, groups of similar candidate records are identified using
indexing, then pairs within the same group are compared in more detail,
and finally classified. Even state-of-the-art indexing techniques, such as
locality sensitive hashing, have potential drawbacks. They may fail to
group together some true matching records with high similarity, or they
may group records with low similarity, leading to high computational
overhead. We propose using metric space indexing (MSI) to perform
complete linkage, resulting in a parameter-free process combining index-
ing, comparison and classification into a single step delivering complete
and efficient record linkage. An evaluation on real-world data from sev-
eral domains shows that linkage using MSI can yield better quality than
current indexing techniques, with similar execution cost, without the
need for domain knowledge or trial and error to configure the process.

Keywords: Entity resolution · Data matching · Similarity search
Blocking

1 Introduction

Record linkage, also known as entity resolution, data matching and duplicate
detection [4], is the process of identifying and matching records that refer to the
same real-world entities within or across datasets. The entities to be linked are
often people (such as patients in hospital or customers in business datasets), but
record linkage can also be applied to link consumer products or bibliographic
records [4]. Record linkage is commonly challenged by the lack of unique entity
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identifiers (keys) in the datasets to be linked, which prevents the use of a database
join. Instead, the linkage of records requires the comparison of the common
attributes (or fields) that are available within the datasets, for example the
names, addresses and dates of birth of individuals.

DA

DB

MatchesNon−matches

DA

DB

Matches

Classification
Metric space

indexing
Indexing

(blocking)
Record pair
comparison

Fig. 1. Overview of the steps of the traditional record linkage process (left side) and
our proposed metric space indexing based approach (right side), as described in Sect. 1,
where records from two datasets, DA and DB , are being linked.

To overcome data quality issues such as typographical errors and variations
(common in name and address values [4]), approximate string comparison func-
tions (e.g. edit distance, the Jaro-Winkler comparator, or Jaccard similarity [4])
are used to compare record pairs, leading to a vector of similarities (one sim-
ilarity per attribute compared) for each pair. These are used to classify the
record pairs into links (where it is assumed both records correspond to the same
real-world entity) and non-links (where they are assumed to correspond to dif-
ferent entities). Various classification methods have been employed in record
linkage [4,10], ranging from simple threshold-based to sophisticated clustering,
supervised classification, and active learning approaches [30].

Besides a lack of unique entity identifiers, and data quality issues, linkage
is also challenged by dataset scale [10]. To avoid full pair-wise comparison of
all possible record pairs (quadratic in the dataset sizes), blocking techniques,
commonly known as indexing [5], are used. These split the datasets into smaller
blocks in an efficient way, grouping together records that are likely to correspond
to the same entity. Only records within blocks are then compared in detail.

While indexing allows efficient linkage of large datasets [10], scalability is at
the cost of reduced linkage quality, because potentially matching record pairs
are ignored, leading to lower recall [4]. Indexing techniques, discussed in more
detail later, range from simple phonetic based blocking [4] and sorting of the
datasets [11] to locality sensitive hashing based techniques [18,29], and unsuper-
vised [17,26] and supervised [1,22] learning of optimal blocking schemes.

Traditional linkage systems that perform indexing prior to comparison and
classification (on the left in Fig. 1) add a further complexity. Indexing, com-
parison and classification are often conducted using algorithms and parameters
selected using domain expertise, followed by manual assessment of the linkage
outcomes [4]. If the resulting link quality is too low for a certain application,
the process is repeated with different parameter settings or algorithms, giving
a time-consuming iterative process [13]. The choice of an appropriate indexing
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technique as well as suitable parameter settings (including which attributes to
use in indexing) will significantly affect the final linkage outcome.

We focus on approaches using a similarity threshold to classify links. These
are fundamentally limited by the extent to which true matching records are simi-
lar, and true non-matches are dissimilar—this is dataset-dependent. Within this
domain, we define a technique to be complete if it guarantees to find all record
pairs within the specified threshold. Many indexing techniques are incomplete,
since they reduce computational cost at the expense of potentially overlooking
some true matches. By definition, incomplete techniques yield lower recall than
complete ones. Conversely, and counter-intuitively, complete techniques can yield
lower precision with some datasets. This is discussed further in Sect. 3.

Metric space indexing (MSI) is a complete technique with lower computa-
tional cost than a brute force approach. It allows indexing, comparison and clas-
sification to be combined into a single step (on the right in Fig. 1), making the
process simpler, more efficient and more effective than incomplete approaches.

The motivation for this work is the Digitising Scotland project [9], which aims
to transcribe and link all civil registration events recorded in Scotland between
1856 and 1973. This dataset will include around 14 million birth records, 11
million death records and 4 million marriage records.

Contribution: Our primary contribution is the novel application of MSI to
achieve complete and efficient record linkage, without the need for complex
parameter tuning. We evaluate our approach on several real-world datasets and
demonstrate its advantages over existing indexing techniques for record linkage.

2 Related Work

We review relevant work in the areas of indexing for record linkage (for recent
surveys see [5,25]), and metric space indexing [31]. Techniques to link records
have been investigated for over five decades [12,24], with scalability being an
ongoing challenge as datasets grow in size and complexity. Traditional block-
ing [5] uses a set of attributes (a blocking key) to insert records with the same
value(s) in their blocking key into the same block. Only records within the same
block are compared to each other. To overcome variations and misspellings, the
values can be phonetically encoded using functions such as Soundex, NYSIIS, or
Double-Metaphone [4]. These convert a string into a code according to its pro-
nunciation, assigning the same code to similar sounding names (such as ‘Gail’
and ‘Gayle’). Multiple blocking keys may also be used to deal with missing
attribute values.

A different approach uses sorted neighbourhoods [23], where the datasets are
sorted according to a sorting key (usually a concatenation of several attribute
values). A sliding window is moved over the datasets and only records within the
window are compared. Techniques that adaptively shrink or expand the window
size based on the characteristics of the sorting key values have been shown to
improve both linkage efficiency and quality [11].
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These techniques are heuristics, requiring domain knowledge, such as the
choice of appropriate blocking or sorting keys. Poor choices of blocking attributes
result in records being inserted into inappropriate blocks, and thus true matches
being missed, giving incomplete linkage. Conversely, many pairs compared in a
block may have low similarity, being non-matches, giving inefficient linkage.

Locality sensitive hashing (LSH), proposed for efficient nearest-neighbour
search in high-dimensional spaces [16], has been used for record linkage indexing.
Attribute values are hashed multiple times, and blocks are created from those
records that share some hash values. HARRA [18] is a linkage approach based on
MinHash [3] and LSH which blocks, compares, and then merges linked records
iteratively. [29] evaluates two LSH variations, concluding that to get good results,
they must be tuned to the datasets. This requires good ground truth data which
may be unavailable in real-world applications or expensive to obtain.

Metric space indexing (MSI) techniques [31] support similarity search.
They require a distance measure between records, with certain properties
including the triangle inequality [31]. Similarity search operations include
range-search(q , d), identifying all records within a distance d of a query record
q; nearest-neighbour(q), returning the record with smallest distance to q; and
nearest-n(q , n), returning the n closest records to q. Here we choose one MSI
structure, the M-tree [6], and investigate its efficacy for record linkage. The
M-tree is dynamically balanced. Every node contains a reference to a record
being indexed, a pointer to its parent, the distance to its parent, and the node’s
radius. The radius of a node is the distance from it to its furthest child. For a
parent node with radius r, all its children may be visualised as being contained
within a ball of radius r from it.

A linkage method using R-trees [15] was described in [20], demonstrating
that high linkage quality can be achieved using Jaccard similarity. [6] shows that
M-trees are almost always more efficient than R-trees, hence their use here.

3 Approach

We address the following general linkage problem: for two datasets DA and
DB , we wish to find, for each record in DA, all the records in DB that match
it with regard to a certain distance threshold d (i.e. have a distance of d or
less). We compare several linkage algorithms: traditional blocking, an incomplete
similarity search method, LSH-MinHash, and a complete method, M-tree. We
also use a complete brute force technique as a baseline, though this can only
feasibly be applied to our smallest dataset. All experiments have a number of
parameters to configure the search space and algorithm behaviour, including the
distance function and the threshold, d, specifying the maximum distance for two
records to be classified as a link (i.e. referring to the same entity). We focus on
a single distance function in these experiments, to constrain the experimental
space. In Sect. 5 we return to the selection of alternative distance functions.
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Brute force: Every record in DA is compared with every record in DB . Each
pair is classified as a link if the distance between the records is less than or equal
to the threshold d. This always finds all links, with complexity O(|DA| · |DB |).
Traditional Blocking: The parameters are the set of blocking keys and (option-
ally) the phonetic encodings applied to each attribute. These are selected as
described in [5], exploiting knowledge of the domain and of the data, and chosen
with the intention of giving the best possible results. Each record in DA is placed
into the appropriate block based on its blocking key value. The algorithm then
iterates over the records in DB , and for each one compares it with each of the
records from DA in the block with the same blocking key value.

LSH-MinHash: The parameters for LSH-Minhash are [3] shingle size (lss),
band size (lbs) and number of bands (lnb). First, the attributes of each record in
DA are concatenated, and the result shingled into a set of n-grams with n = lss.
Next, a set of deterministically generated hash functions is applied to each n-
gram in the set and the smallest result (the MinHash) of each hash application
is added to a signature for the record. The number of hashes used, and thus the
size of the signature, is set to lnb × lbs. Finally, the signature is split into lnb
bands and the values from each band are hashed again to create a number of
keys. The original record is added to a map associated with each of the keys.
To perform linkage, the algorithm iterates over the records in DB . Each record
is hashed as described above, to obtain a set of keys. Each key is looked up in
the data structure, and the associated records from DA added to the result set.
Finally, the record from DB is compared in turn with each record in the result
set, with the pair being classified as a link or non-link based on their distance.

In some circumstances, incomplete approaches such as traditional blocking
and LSH-MinHash can yield higher precision than complete techniques. This
can occur when a significant number of non-matches nonetheless have high
similarity. In this situation, the fact that an incomplete technique omits consider-
ation of some potential links can serve to improve precision, since a classification
decision based on a certain similarity threshold is incorrect for high-similarity
non-matches. By definition, recall can never be higher for incomplete techniques.

M-tree: The linkage algorithm has no additional parameters. As with LSH-
MinHash, each record in DA is inserted into an M-tree. To perform linkage,
the algorithm iterates over each record b ∈ DB . A range-search(b, d) opera-
tion is performed on the M-tree, passing the distance threshold d as the second
parameter. All the returned records are directly classified as links.
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4 Experiments and Results

We now describe the datasets and method used in our evaluation1. We used three
datasets from two domains in our experiments, as summarised in Table 1. The
first is Cora [21], which contains 1,295 records that refer to 112 machine learning
publications. Cora is commonly used as a benchmark dataset in the literature
for assessing linkage algorithms. Ground truth is provided via a unique paper id
identifier of the form “blum1993”. In this experiment linkage is performed over
the same set of records (i.e. a de-duplication [4]).

Table 1. Characteristics of datasets used in the experiments.

Dataset
name(s)

Records in
dataset DA

Records in
dataset DB

Number of true
matching pairs

Entities linked

Cora 1, 295 1, 295 17, 184 Publication–
Publication

Isle of Skye 17, 612 12, 284 2, 900 Birth–Death

Kilmarnock 38, 430 23, 714 8, 300 Birth–Death

The other two datasets are historical Scottish records of vital events (birth,
marriages and deaths), one registered on the Isle of Skye, a rural district, and the
other records from Kilmarnock, an industrial town. These datasets were created,
curated and linked by historical demographers [27,28]. Both include the names
and genders of individuals and their parents. Ground truth was generated by
the demographers based on their extensive domain knowledge.

In all of our experiments we use a single distance metric: the sum of the
attribute-level Levenshtein [19] edit distances.

4.1 Cora Results

We perform linkage on the Cora dataset using all approaches presented in this
paper: brute force, traditional blocking, LSH and M-tree, using several selected
configurations for blocking and LSH. The distance threshold is varied between 0
and 2502. For traditional blocking, the following attributes are used individually
as blocking keys: author, title, venue, location, publisher and year. We also use
a combined blocking key comprising all attributes.

Figure 2 shows the precision, recall, and F-measure [4] for various thresholds3.
As expected, low thresholds give high precision and low recall, and the reverse
for high thresholds. Brute force and M-tree give identical results, as expected.
1 Experimental data, additional figures and source code can be downloaded from:

http://github.com/digitisingscotland/pakdd2018-metric-linkage.
2 Relatively high Levenshtein edit distances are included since Cora contains a number

of low-similarity true matches.
3 Noting that recent research identifies some problematic aspects with using the F-

measure to compare record linkage procedures at different similarity thresholds [14].

http://github.com/digitisingscotland/pakdd2018-metric-linkage
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(a) Brute Force (b) M-tree

(c) Blocking on ‘authors’ attribute (d) Blocking on ‘title’ attribute

(e) Blocking on ‘publication year’ attr. (f) Blocking using the union of all attrs.

(g) LSH using 2 bands of size 2 (h) LSH using 2 bands of size 10

(i) LSH using 10 bands of size 2 (j) LSH using 10 bands of size 10

Fig. 2. Linkage results on the Cora dataset.
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The best linkage quality, with an F-measure of around 0.7, is achieved by sev-
eral linkers, including brute force, M-tree, blocking on authors, blocking on all
attributes, and two of the LSH configurations. All of these give similar overall
results, apart from blocking on authors, which gives much better quality at very
high distance thresholds. This is due to the incomplete nature of the approach,
avoiding comparisons of significant numbers of high-similarity non-matches and
thus avoiding these becoming false positives and keeping precision high.

For a more detailed investigation of selected linkers, the brute force approach
is used to establish a good threshold value for the Cora dataset. The maximum
F-measure is observed at a threshold value of d = 70. This value is dataset-
dependent; for different datasets the maximum F-measure will occur at different
thresholds. In the rest of this section we fix the threshold value at d = 70.

Table 2 shows greater detail for selected linkers, showing the parameters for
the experiment, the number of distance comparisons made, and the precision,
recall and F-measure achieved by each algorithm. In the Linker column the
algorithm name is followed by its parameters: for LSH the number of the bands
followed by the band size, and for traditional blocking the attributes used for
blocking. The number of distance comparisons is reported as a machine-
independent proxy for execution cost, since code profiling shows that distance
calculations are dominant.

Table 2. Linkage quality on Cora dataset with distance threshold d = 70.

Linker Comparisons Precision Recall F-measure

Brute force 1, 677, 025 0.84 0.57 0.68

M-tree 902, 693 0.84 0.57 0.68

LSH-2-2 192, 199 0.95 0.47 0.63

LSH-5-2 342, 849 0.91 0.55 0.69

LSH-10-2 513, 947 0.88 0.57 0.69

LSH-2-5 14, 329 0.99 0.28 0.43

LSH-5-5 22, 057 0.99 0.36 0.53

LSH-10-5 26, 167 0.98 0.40 0.57

LSH-2-10 4, 711 1.00 0.15 0.27

LSH-5-10 6, 501 1.00 0.19 0.32

LSH-10-10 10, 627 0.99 0.27 0.43

Block-year 115, 893 0.99 0.35 0.51

Block-authors 11, 039 0.94 0.16 0.28

Block-title 27, 407 0.95 0.42 0.58

Block-venue 36, 647 0.85 0.29 0.44

Block-location 1, 009, 957 0.83 0.43 0.57

Block-publisher 833, 079 0.85 0.44 0.58

Block-combined 1, 214, 269 0.84 0.56 0.67
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M-tree yields the same linkage quality as brute force, although using a signif-
icantly lower number of comparisons. This is as expected, since both techniques
are complete. Several of the incomplete linkers give similar quality, for example
LSH-2-2, LSH-5-2, LSH-10-2 and Block-combined. These, and a number of other
incomplete linkers, give better precision than the complete techniques. This is
due to high-similarity non-matches, as discussed in Sect. 3. Although several of
the incomplete linkers give as good quality as M-tree, and in some cases at lower
cost, this is offset by the need to select appropriate configuration parameters.
Some other linkers give very poor results.

4.2 Demographic Dataset Results

Birth records were linked to death records, separately for the Skye and Kil-
marnock datasets, using M-tree and a range of LSH configurations. It was not
computationally feasible to run the brute force linker. Of the incomplete linkers,
LSH was selected as it gave slightly better results for Cora. The shingle size was
set to lss = 2 for all the LSH experiments reported, as this was found to give
good results and LSH was not especially sensitive to this parameter. Results
for other shingle sizes are omitted from this paper for brevity. A lower range of
distance thresholds was explored, based on domain knowledge of the datasets.

(a) M-tree on Isle of Skye dataset (b) M-tree on Kilmarnock dataset

(c) F-measure on Isle of Skye dataset
with M-tree and all LSH configurations

(d) F-measure on Kilmarnock dataset
with M-tree and all LSH configurations

Fig. 3. Linkage results on the demographic datasets.

Figure 3 plots (a) and (b) show the M-tree precision, recall, and F-measure for
various thresholds. In both datasets, the best F-measure values are obtained with
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a low distance threshold of d = 2. Plots (c) and (d) compare the F-measure curves
for M-tree with those obtained from a range of LSH configurations. The best
F-measure value for M-tree is higher than that of any of the LSH configurations,
for both datasets. This demonstrates both the competitiveness of M-tree with
respect to linkage quality, and its important characteristic of being parameter-
free—the linkage quality is obtained without the need to tune for the dataset.

Tables 3 and 4 show greater detail for selected linkers. In both cases the F-
measure achieved is better for M-tree than any of the LSH linkers. The better
linkage quality achieved by M-tree is largely due to recall for M-tree being much
higher than for any of the LSH configurations. In most cases, LSH out-performs
M-tree in terms of precision. More significantly, LSH linkage quality is heavily
dependent on the configuration parameters. For plausible settings for the number
of bands and band size, F-measure varies from 0.01 (extremely poor) to 0.47
(relatively good) for Skye and from 0.03 to 0.49 for Kilmarnock. In both cases
LSH-10-2 performs best, but since this is data-dependent there is no guarantee
that these parameters would work well with another dataset.

The number of distance comparisons varies dramatically among the various
linkers. M-tree always performs the most comparisons, since they are intrinsic
to the range-search algorithm. The core part of the LSH linker performs Jaccard
similarity comparisons and hashing; distance comparisons are only performed in
the final step to determine whether a candidate pair is a link. The LSH configu-
rations yielding the best results perform distance comparisons of the same order

Table 3. Linkage quality on Isle of Skye dataset with distance threshold d = 2.

Linker Comparisons Precision Recall F-measure

M-tree 102, 318, 525 0.65 0.46 0.54

LSH-2-2 3, 109, 250 0.63 0.03 0.06

LSH-5-2 10, 412, 496 0.64 0.11 0.19

LSH-10-2 53, 874, 127 0.68 0.36 0.47

LSH-5-5 36, 566 0.76 0.01 0.01

LSH-10-5 129, 873 0.72 0.01 0.02

Table 4. Linkage quality on Kilmarnock dataset with distance threshold d = 2.

Linker Comparisons Precision Recall F-measure

M-tree 514, 871, 153 0.76 0.45 0.57

LSH-2-2 99, 145, 887 0.81 0.16 0.27

LSH-5-2 130, 721, 338 0.79 0.23 0.36

LSH-10-2 177, 168, 848 0.79 0.36 0.49

LSH-5-5 239, 368 0.84 0.01 0.02

LSH-10-5 855, 431 0.87 0.02 0.03
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of magnitude as M-tree. This indicates that the good LSH linkers return many
candidates beyond the distance threshold. Thus, in order to get good results,
LSH tends towards a brute force search over the candidate results. Despite this,
LSH is faster due to the efficiency of the hashing process.

5 Conclusions and Future Work

In this paper we have demonstrated the efficacy of MSI in achieving complete
and efficient record linkage, without the need for complex parameter tuning. In
conclusion, this claim deserves some careful unpacking. It is always possible to
achieve high quality linkage using a brute force approach. However the quadratic
complexity of this approach prevents its practical application for datasets of
even moderate size. We have shown that MSI techniques such as M-tree can
deliver high precision, high recall results that are the same as those delivered by
brute force. Furthermore this is achieved with fewer distance comparisons, and
consistently without the need for complex parameter tuning.

We contrast this to traditional blocking and LSH-based approaches. Their
major drawback is that whilst they can produce extremely good results, they
can also produce extremely poor results. It was our observations of low recall
given by these approaches that originally led us to experiment with M-trees.

We note that the good results obtained by both traditional blocking and LSH
are partly due to the fact that (in the limit) they tend towards brute force as
the number of records in the blocks increase. A second, unexpected, result is
that illustrated in Table 2, namely that incomplete approaches such as LSH can
in some cases yield higher precision than that achieved by a complete method
such as M-tree. This is due to the incomplete linker masking the inability of
a classifier based solely on record similarity to correctly classify high-similarity
non-matches or low-similarity matches.

We have focused on a single distance function: the sum of attribute-level
Levenshtein distances. This gives a straightforward intuition of record-level dis-
tances, but it is more common to normalise metrics to the range 0–1.

Many distance functions, such as Jaro-Winkler, are not metric, and therefore
cannot be used with MSI techniques. Care must be taken to preserve metric
properties when combining metrics over individual fields, as is highlighted in [2],
since this may yield a function that is not metric. It is then possible for MSI
techniques to yield results that are subtly incorrect.

Different metrics can give different distributions of inter-record distances,
which can affect both the linkage results and the number of comparisons made,
and hence the efficiency of the algorithm. Datasets with low variation in inter-
record distances are said to have high intrinsic dimensionality, and tend to
require high numbers of comparisons. The Scottish vital event datasets [28],
combined with Levenshtein-based metrics, appear to have high intrinsic dimen-
sionality. We are now, therefore, investigating the application of various differ-
ent metrics to this domain, including Jensen-Shannon, Cosine and Structured
Entropic Distance, as described in [7]. We are also investigating the applicability
of a novel technique for dimensionality reduction [8].
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Abstract. Real world networks constructed from raw data are often
characterized by complex community structures. Existing dimensional-
ity reduction techniques, however, do not take such characteristics into
account. This is especially important for problems with low number of
samples where the curse of dimensionality is particularly significant.
Therefore, in this paper, we propose FeatureNet, a novel community-
based dimensionality reduction framework targeting small sample prob-
lems. To this end, we propose a new method to directly construct a net-
work from high-dimensional raw data while explicitly revealing its hid-
den community structure; these communities are then used to learn low-
dimensional features using a representation learning framework. We show
the effectiveness of our approach on eight datasets covering application
areas as diverse as handwritten digits, biology, physical sciences, NLP,
and computational sustainability. Extensive experiments on the above
datasets (with sizes mostly between 100 and 1500 samples) demonstrate
that FeatureNet significantly outperforms (i.e., up to 40% improvement
in classification accuracy) ten well-known dimensionality reduction meth-
ods like PCA, Kernel PCA, Isomap, SNE, t-SNE, etc.

1 Introduction

Many Artificial Intelligence (AI) and Machine Learning (ML) problems use very
high-dimensional datasets. This high dimensionality leads to the curse of dimen-
sionality where the performance of ML models decreases with increasing data
dimensions [9]. The curse of dimensionality is particularly profound if in addi-
tion to the large number of features, the problem also suffers from the availabil-
ity of a low number of samples [5,9,10,16]. Specifically, as theoretically estab-
lished in [5,9,10,16], in order to obtain high classification performance in high-
dimensional spaces, the number of samples must also be very large (e.g., ∼105

samples). Therefore, for problems with a low number of samples (say, 100–1500
samples), extracting a set of useful features from the high-dimensional data is
a very challenging task [23]. Consequently, in this paper, we address the well-
known dimensionality reduction problem specifically in a high dimensions and
low sample-size setting. This important class of problems has many engineering
and scientific applications such as on-device mobile applications, remote sensing,
fMRI processing, sustainability, finance, and biological systems.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 102–114, 2018.
https://doi.org/10.1007/978-3-319-93040-4_9
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Dimensionality reduction can also be seen as an automatic feature extraction
problem which yields low-dimensional features from the initial high-dimensional
raw data. Indeed, a major goal in AI and representation learning is to enable
machines to learn such useful, low-dimensional features automatically from the
raw data rather than using manually engineered features. Towards this auto-
matic feature learning, deep learning has emerged for vision, speech, and natural
language processing (NLP) applications [3]. However, deep learning often needs
enormous training datasets (∼105–106 samples) and results in significant overfit-
ting for problems with small sample-size and high dimensions [4]. Therefore, for
small sample-size problems, new dimensionality reduction techniques are needed
to automatically extract useful features from the initial high-dimensional data.

Several outstanding dimensionality reduction techniques exist ranging from
linear methods such as Principal Component Analysis (PCA), Probabilistic PCA
(PPCA), to graph-based non-linear techniques like Maximum Variance Unfold-
ing (MVU) [21], Isomap [19], etc. (see [12] for a review). Other techniques include
Kernel PCA, deep learning autoencoders [8], stochastic proximity embedding
(SPE) [1], stochastic neighbor embedding (SNE) [7] and t-distributed SNE (t-
SNE) [11]. The graph-based techniques build a neighborhood graph to learn a
lower-dimensional embedding [12]. For example, Isomap builds a neighborhood
graph based on a fixed parameter which controls the neighborhood size or the
number of nearest-neighbors of each node in the graph.

In real world, however, networks constructed from raw data often possess
complex characteristics such as communities (i.e., groups of tightly connected
nodes) and structural equivalence (i.e., nodes with similar roles in network, e.g.,
hubs) [17]. Therefore, such network characteristics must be accounted for while
computing network neighborhoods for dimensionality reduction as they can lead
to more accurate feature learning. Specifically, the neighborhood of a given node
must depend on the community it belongs to. By contrast, prior techniques like
Isomap assume a rigid (fixed) neighborhood for all nodes in the network. Simi-
larly, stochastic graph-based methods such as SNE/t-SNE use a fixed parameter
called perplexity which measures the effective number of neighbors for each node.
Hence, the complex community structure hidden within the raw data has not
been explicitly taken into account in prior dimensionality reduction methods.

Recently, representation learning has been proposed in the context of
learning features on networks while accounting for community structure, e.g.,
node2vec [6], DeepWalk [15], community preserving embedding [20], LINE [18],
etc. We refer to this problem space as “Representation Learning on Networks”
throughout the paper. However, the networks considered in this prior art do
not come from high-dimensional raw data, but rather from social networks (e.g.,
blogs, Youtube, Flickr), authorship networks or Wikipedia webpage networks.
Hence, the prior representation learning on networks research does not directly
address the problem of dimensionality reduction. In contrast, we argue that
by capturing communities and structural equivalence, ideas from “representa-
tion learning on networks” problem space can have significant implications for
dimensionality reduction. Therefore, in this paper, we address the following two
key questions:
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1. Can representation learning on networks have more general implications in
dimensionality reduction if we leverage the hidden communities in raw data?

2. If so, how can we best construct a network from high-dimensional data to
optimally capture its latent communities for dimensionality reduction?

To answer these questions, we propose FeatureNet, a new community-based
dimensionality reduction framework. We further contribute a new method to
construct a network directly from the raw data while explicitly revealing its hid-
den communities; this enables us to employ network representation learning ideas
to learn low-dimensional community- and structural equivalence-based features
from this network, thereby reducing the dimensions of the dataset.

We evaluate our proposed approach on five very diverse application areas
ranging from handwritten digit recognition, biology, physical sciences, NLP, to
computational sustainability. As mentioned earlier, our datasets are relatively
small with sizes mostly between 100 and 1500 samples. This is because, auto-
matic feature engineering for relatively small datasets still remains an important
problem as deep learning models often lead to overfitting for such datasets.

To summarize, we make the following key contributions:

1. We propose FeatureNet, a novel community-based dimensionality reduction
framework. We also propose a new method to construct a network directly
from high-dimensional raw data, thereby revealing its hidden communities
explicitly. To the best of our knowledge, we are the first to employ community-
based representation learning ideas for dimensionality reduction.

2. We evaluate FeatureNet on eight datasets spanning five diverse real-world
applications like handwritten digit recognition, biology, physical science, NLP,
and computational sustainability. Our new sustainability datasets can be used
by research community to further benchmark dimensionality reduction.

3. We further compare FeatureNet against ten most notable dimensionality
reduction techniques such as PCA, deep learning autoenoders, t-SNE, Isomap,
etc. Overall, the proposed FeatureNet significantly outperforms (in terms of
accuracy) all of these techniques on the above diverse datasets by 3%–40%.

4. Finally, we introduce a new challenging computational sustainability problem
as a case study: Given high-dimensional Carbon Emissions data, how can we
learn optimal low-dimensional features to best classify the GDP growth of
nations? Again, FeatureNet achieves the state-of-the-art performance.

Next, we review the related work reported in the literature.

2 Related Work

As mentioned earlier, prior techniques such as node2vec, DeepWalk, community-
preserving embedding, LINE, etc. explicitly require a network as an input [6,15,
18,20]. In contrast, we start with high-dimensional (raw) data that does not
exist in predefined network forms and learn the network structure directly from
the raw data to explicitly reveal its latent communities. For example, consider
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Arcene, a high-dimensional cancer benchmark dataset, where each sample comes
from a patient and features specify the abundance of certain proteins1. This
dataset does not have a predefined network structure like in social networks.
Hence, methods like node2vec, LINE, etc. are not a natural choice. This is where
our key contribution lies – in representing any kind of dataset as a network
which reveals hidden communities in raw data; we then use this network for
dimensionality reduction using ideas from community-based feature learning.

To summarize, prior work in representation learning on networks focuses only
on network-based classification tasks (e.g., classify interests of a blogger based
on communities/homophily in a blog social network). Our work, however, truly
generalizes this “network representation learning” space to any classification
problem which has high-dimensional data and does not restrict it only to network
classification tasks (see Supplementary Sect. 1 for detailed related work2).

3 Proposed Approach

Given a classification problem {X, y}, let X ∈ R
n×p denote the original dataset

with n samples and p features, while y ∈ R
n×1 denotes the labels. Also, let

x(i) ∈ R
p×1 be the i-th sample in X. Then, dimensionality reduction is a function

f : R
n×p → R

n×d, where d is the number of features in the reduced space
(d << p). Since prior neighborhood graph-based methods [11,19] do not take
communities into account, this results in loss of important network information.

Let X be the low-dimensional mapping of X, and X
(i) ∈ R

d×1 be the i-th sam-
ple of X (i.e., the reduced representation of initial x(i)). Then, the problem is to
find X which accounts for the latent community structure and structural equiv-
alences hidden within the raw data. Hence, unlike established techniques such as
Isomap, the network neighborhood for each sample in our approach is not fixed,
but rather takes communities and structural equivalences into account. To find
such a mapping, therefore, we maximize the probability of observing a certain
neighborhood N of sample x(i), conditional on its low-dimensional representa-
tion, as well as on its latent community structure and structural equivalences:

max
X={X

(i)|i=1:n}

∑

x(i)∈X

logPr(N (x(i))|X(i), C(x(i)),S(x(i))) (1)

where, C(x(i)) and S(x(i)) are latent variables containing information about com-
munities and structural equivalence of sample x(i) hidden within the raw data.

To solve problem (1), we propose FeatureNet, a two stage solution for dimen-
sionality reduction which: (i) transforms the raw data into a network space to
explicitly reveal data’s inherent communities, and (ii) performs representation
learning on this network (see Fig. 1). Next, we present our proposed network
construction technique to reveal hidden communities naturally.

1 https://archive.ics.uci.edu/ml/datasets/Arcene.
2 Supplementary material available at: https://goo.gl/LvkmjB.

https://archive.ics.uci.edu/ml/datasets/Arcene
https://goo.gl/LvkmjB
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Fig. 1. Complete flow of FeatureNet: (a) First, construct a network of samples using
the proposed correlations-based method to explicitly reveal hidden communities in raw
data (Sect. 3: Step 1). (b) Next, use representation learning on this network to find the
community-based low-dimensional features (Sect. 3: Step 2).

Step 1: Proposed K-τ Method for Network Construction
We create a network directly from raw data as follows: (i) construct a correlation-
based network (τ -step), and (ii) improve the density of network communities
(K-step). For the τ -step, we transform the initial high-dimensional data into a
correlation-based network of samples (i.e., each sample now becomes a node).
This first step is a mapping l : Rn×p → R

n×n, which yields G = l(X). Here,
G ∈ R

n×n is the adjacency matrix of the network of samples with elements:

Gij =

{
c(x(i), x(j)) if c(x(i), x(j)) ≥ τ

0 if c(x(i), x(j)) < τ or i = j
(2)

where, c(·, ·) is the Pearson’s correlation function, and τ is a threshold used on
c(·, ·) to remove weakly correlated links from the network.

Threshold (τ -step): Setting a higher τ removes the noise from the network
by encouraging connections only among samples of the same class (intra-class
links) and not among samples of different classes (inter-class links). Ideally, a
network should mostly have intra-class links and not many inter-class links. To
elaborate, we consider MNIST handwritten digit dataset where each sample has
784 features. Since our focus is on relatively small datasets, we randomly select
1000 samples (100 images for each digit 0–9) from the MNIST database.

Next, we create a Pearson’s correlation-based network of samples from this
1000 × 784 dataset using Eq. 2 and a threshold τ = 0.7. Figure 2(a) illustrates the
adjacency matrix of this network. Clearly, the ten diagonal clusters in Fig. 2(a)
represent the intra-class links, thus revealing the hidden communities of each
digit. Moreover, using a high threshold of 0.7, most of the noisy links in the net-
work (i.e., the inter-class links) are removed. We note, however, that a too high
threshold can also result in some samples getting completely disconnected from
the network and very sparse communities (see digits 2 and 5 in Fig. 2(a) zoomed
inset). To overcome this problem, we introduce a network density parameter, K.
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Fig. 2. Adjacency matrix for MNIST dataset network. (a) Threshold τ = 0.7 removes
noise from the network and reveals a clear community structure (i.e., the diagonal clus-
ters). (b) Introducing a density parameter K fixes the problem of sparse communities
without adding significant noise and yields reliable low-dimensional representations.

Network Density (K-step): To connect the disconnected nodes and increase
the density of network communities, we next connect each sample to its cor-
responding K highest correlated samples; i.e., after the thresholding step, if a
sample x(i) has less than K links, we connect it to samples x(j)’s until it has
K links. Here, samples x(j)’s are selected based on the K-highest correlations.
This step is a variant of the K-nearest neighbor approach to handle correlations
rather than euclidean distances (i.e., instead of K neighbors with minimum dis-
tances, we use K neighbors with maximum correlations). As shown in Fig. 2(b),
introducing a network density parameter of K = 7, (i) connects all disconnected
nodes, and (ii) increases the density of diagonal clusters significantly without
too much additional noise (see the zoomed-in inset of Fig. 2(b)). Hence, the
threshold and density steps yield a K-τ method-based network of samples, G.

To summarize, our proposed approach creates a network from raw data using
two parameters: Threshold τ and density K, which provide a tradeoff between
the noise and the density of communities. Best K and τ can be selected via cross-
validation and a simple grid search which would generate an optimal neighbor-
hood for each sample. Hence, in our approach, the neighborhood of each sample is
not rigid, rather is determined automatically by its community structure. Explic-
itly revealing these hidden communities in raw data, therefore, enables the use
of community-based representation learning in dimensionality reduction.

Step 2: Community-Based Representation Learning
The network of samples, G, often possesses characteristics such as communities
and structural equivalence. Once in the network space, problem (1) reduces to:

max
X={X

(i)|i=1:n}

∑

v∈V(G)

log Pr(N R
G (v)|X(i)) (3)

where, V(G) denotes the set of nodes in network G, and sample x(i) is now rep-
resented by a node v in the network of samples. Finding the neighborhood of
x(i), N (x(i)), now becomes the problem of finding the network neighborhood
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Algorithm 1. FeatureNet(X, τ,K)
1: Input: Raw Data X ∈ R

n×p, τ , K
2: Output: Low-dimensional representation X ∈ R

n×d

——— K -τ method to reveal communities———
3: A ← corr(X′) /* Pairwise correlations b/w samples */
4: G ← A, G(G < τ) ← 0 /* Remove links below threshold */
5: NODES ← V(G)
6: for all i in NODES do
7: a(i) ← A(i, :), g(i) ← G(i, :) /* ith row of A (G) */

8: while ||g(i)||0 < K do /* # links for node i < K */

9: {m, j} ← max(a(i)), Gij ← m, g(i) ← G(i, :)

10: aij ← φ /* Remove max element from a(i) */
11: end while
12: end for

——————————————————————
13: X ← h(G) /* Learn low-dimensional representation by solving problem (3). Use node2vec

search strategy to explicitly account for communities revealed by G */

N R
G (v) of node v in G. This network neighborhood can be found using a strategy

R, which can account for the latent community structure C(x(i)) and struc-
tural equivalence S(x(i)). However, note that, this is precisely the skip-gram
objective which the recent research on network representation learning aims to
optimize [6,13,15]. Therefore, once the high-dimensional raw data is transformed
into a network which explicitly reveals the community structure, the final low-
dimensional representation can be learned using techniques such as node2vec
[6]. Specifically, node2vec acts as a mapping h : R

n×n → R
n×d, which yields

X = h(G). The n×d matrix X contains the final low-dimensional features based
on hidden communities in raw data. Algorithm1 shows these two stages of Fea-
tureNet. For more information on the classic word2vec skip-gram objective [13]
and node2vec search strategy [6], please refer to Supplementary Sect. 2.

4 Experimental Setup and Results

4.1 Experimental Setup

We implement the K-τ method in MATLAB, while node2vec-neighborhood
search, optimization, and the subsequent classification are all carried out in
Python. We use one-vs-rest logistic regression with L2 regularization and a broad
range of inverse regularization strength parameter, C ∈ {10−2, 10−1, . . . , 104}
for multi-class classification. Of note, node2vec parameters (return parame-
ter p, and in-out parameter q) which control a trade-off between communi-
ties and structural equivalence, are optimized via a grid search on p, q ∈
{0.25, 0.75, 0.9, 1.5, 2, 4}. Finally, the two parameters of FeatureNet (K, τ) are
also optimized using a grid search. τ is varied in steps of 0.05 from 0.6 to 0.95,
while K varies from 1 to 9. The best parameter values are selected using 10-fold
cross-validation (CV).
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To show the effectiveness of FeatureNet on many applications, we conduct
experiments on eight datasets coming from five very different application areas as
summarized in Table 1. Our focus in this paper is on dimensionality reduction for
relatively small datasets which explains why the sample sizes are mostly between
100 and 1500 in Table 1. Reuters subset data is used to analyze the scalability
of our approach. Table 1 contains five benchmarks from UCI ML repository3.

Table 1. Characteristics of the datasets

Area Dataset X (n × p) #classes Area Dataset X (n × p) #classes

Cancer (Bio.) Arcene 100 × 10000 2 Comp. Sust. CE-GDP 1980 1015 × 1095 17

Phys. Sci. Musk1 476 × 166 2 Comp. Sust. CE-GDP 1990 1420 × 1095 16

Hand Digits MNIST 1000 × 784 10 Comp. Sust. CE-GDP 2000 1448 × 1095 11

NLP CNAE-9 1079 × 856 9 NLP Reuters (subset) 5946 × 18933 65

Table 2. 10-fold CV F1-Macro and F1-Micro (Accuracy) scores for UCI benchmarks
(d = 16): Best six prior methods shown.

Dimension

reduction

Arcene Musk1 MNIST Dimension

reduction

CNAE-9

F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro

PCA 0.7596 0.76 0.7502 0.7563 0.8069 0.808 PCA 0.855 0.852

PPCA 0.7681 0.7699 0.7502 0.7563 0.805 0.806 PPCA 0.855 0.8535

KPCA (Poly.) 0.7493 0.75 0.7034 0.7037 0.6655 0.679 SNE 0.8728 0.8721

SPE 0.6124 0.62 0.7354 0.7436 0.7872 0.789 SPE 0.8527 0.8535

t-SNE 0.7312 0.7399 0.709 0.7142 0.8837 0.884 t-SNE 0.8068 0.81

Isomap 0.6386 0.64 0.726 0.7331 0.8338 0.8349 Isomap 0.8317 0.8331

FeatureNet 0.8164 0.82 0.829 0.834 0.9128 0.913 FeatureNet 0.9229 0.923

Table 1 also shows three datasets from the computational sustainability
domain in which quantitatively inferring economic growth from anthropogenic
carbon emissions remains an active area of research [14]. Here, we make a twofold
contribution: First, we propose the following new computational sustainability
problem: “Given multiple years of daily carbon emissions (CE) data across the
world, can we correctly classify the Gross Domestic Product (GDP) growth of
different regions?” Second, we contribute three new datasets to further bench-
mark dimensionality reduction. The datasets are compiled using a carbon dioxide
database [2] and the World Bank [22] data (see Supplementary Sect. 3).

Finally, we compare our approach against ten4 well-established dimension-
ality reduction techniques: (1) PCA, (2) PPCA, (3) Polynomial Kernal PCA
(KPCA - Poly.), (4) KPCA – gaussian kernel, (5) Linear Discriminant Analysis
(LDA), (6) SPE, (7) Deep Autoencoders, (8) SNE, (9) t-SNE, and (10) Isomap.
We used a dimensionality reduction toolbox [12] for these techniques.
3 http://archive.ics.uci.edu/ml/index.php.
4 For the ease of presentation, we will report only the top six performers.

http://archive.ics.uci.edu/ml/index.php
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4.2 Results

UCI Machine Learning Repository Benchmarks. In our experiments, we
reduce the dimensions of each dataset from initial p features to d = 16 features.
We then conduct logistic regression on the reduced features and report its 10-
fold CV F1-Macro and F1-Micro scores. Note that, F1-Micro scores have the
same interpretation as classification accuracy for multiclass classification prob-
lems. Table 2 presents these results for FeatureNet and the best six traditional
techniques for all UCI datasets. As shown, our proposed FeatureNet significantly
outperforms all six (and, implicitly, all ten!) prior techniques.

Fig. 3. F1-Micro for varying FeatureNet parameters (K, τ): (a) Arcene, (b) MNIST,
and (c) CNAE-9. Red (blue) indicates higher (lower) accuracy. For all datasets, Fea-
tureNet outperforms prior methods for many combinations of K and τ . (Color figure
online)

For Arcene, FeatureNet achieves a F1-Micro of 0.82 improving over the best
performing PPCA method by 6.5%. Arcene is a challenging dataset because
3000 out of its 10000 features are ‘probes’ with no predictive power. This shows
that our proposed FeatureNet is able to handle such noisy datasets. Next, for
Musk1, we achieve an improvement of 10.27% in F1-Micro scores over the best
traditional methods – PCA and PPCA. Similarly, for MNIST, we observe an
improvement of 3.28% in F1-Micro over the best performing t-SNE technique.
Recall that, we are only using 1000 samples for MNIST and not all 60,000 images
for training. In fact, all datasets used in the present work are “relatively small”
with number of samples mostly between 100 and 1500. This is why, deep learning-
based autoencoders do not perform very well and, as expected, overfit the data.

Finally, for the CNAE-9 dataset (NLP), we improve the F1-Micro by 5.83%
over the best performing SNE method. CNAE-9 is a business description text
data for certain companies classified according to economic sectors. Each doc-
ument is processed using standard NLP techniques (e.g., stop-word removal,
stemming, etc.) and is converted to a term frequency vector. This results in a
very sparse dataset wherein 99.22% of the raw data is all zeros. In summary, our
results demonstrate that FeatureNet can handle dimensionality reduction prob-
lems on very diverse applications and can also handle noisy and sparse datasets.
Similar improvements are observed for F1-Macro scores.
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Table 3. 10-fold CV F1-Micro (Accuracy) for CE-GDP problems (d = 16): Six best
prior methods are shown.

Years PCA PPCA KPCA (Poly.) KPCA (Gauss.) t-SNE Isomap FeatureNet

1980 0.5123 0.6137 0.4108 0.4059 0.398 0.5241 0.86

1990 0.6098 0.6661 0.483 0.4845 0.5366 0.6443 0.8161

2000 0.625 0.6609 0.4544 0.4171 0.4682 0.6153 0.8411

Empirical Evaluation of FeatureNet in the K-τ Parameter Space.
Figure 3 shows the impact of varying density K (y-axis) and threshold τ (x-axis)
for various UCI datasets (see Supplementary Fig. S2(a) for Musk1 dataset). As
shown, FeatureNet outperforms the traditional methods for several combinations
of K and τ (see orange/red portions in Fig. 3). For instance, for MNIST, CNAE-
9 (Fig. 3(b, c)) and Musk1 (Fig. S2(a)), almost any combination of parameters
gives a high classification accuracy. Indeed, for Arcene (Fig. 3(a)), we observe
that only a few parameter combinations give high performance (e.g., for τ = 0.95
and all K values). A possible reason for FeatureNet’s behavior for Arcene could
be due to the additional noise in this dataset. We leave the theoretical analysis
of stability of FeatureNet as a future work (e.g., analyzing impact of noise, etc.).

Why We Achieve Performance Gains? As mentioned before, the param-
eters τ and K control the tradeoff between noise in the network and density
of communities. Consider the case τ = 0.85 and varying K’s for MNIST (i.e.,
the rightmost column of Fig. 3(b)). For a high threshold of 0.85, the diagonal
communities are even more sparse than those shown in Fig. 2 where the thresh-
old used was only 0.7 (see also supplementary Fig. S1). Now, if we increase the
density K, the F1-Micro increases from 0.873 for K = 2, to 0.904 for K = 5,
to 0.902 for K = 9 (probably too much noise for K = 9). This clearly demon-
strates the tradeoff between the noise and density, and how it can affect the
model performance. Therefore, our K-τ method for network construction suc-
cessfully captures the best tradeoff and thus yields a high classification accuracy.
Hence, our results show that choosing a good network construction approach for
revealing hidden communities in data is very important for obtaining higher
performance.

Computational Sustainability – A Case Study and New AI Datasets.
Table 3 shows F1-Micro for the competitive methods across the three years for
the CE-GDP datasets. As evident, FeatureNet significantly outperforms the best
PPCA method by 40.13%, 22.51%, and 27.26% for 1980, 1990, and 2000, respec-
tively. We also observed results like Fig. 3 for the CE-GDP datasets (see sup-
plementary Fig. S2(b)). Moreover, Fig. S3 shows results for varying the number
of target dimensions from d = 16 to 32. Again, FeatureNet outperforms other
techniques for all d. Therefore, the CE-GDP datasets can also be used by the
ML community to benchmark dimensionality reduction.
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Fig. 4. (a) K-τ network for CE-GDP 2000 shows
communities with very different sizes that are
accurately modeled by FeatureNet. (b) Varying
fixed neighborhood size in Isomap and other
methods cannot capture such variable size com-
munities (d = 32).

Finally, the K-τ network
shown in Fig. 4(a) for CE-GDP
2000 dataset demonstrates that
FeatureNet models the hidden
communities with significantly
different sizes very accurately,
thus explaining the excellent
performance of FeatureNet (see
Fig. S4 for the 1980 network).
Hence, fixed neighborhood size
or perplexity methods (e.g.,
Isomap, t-SNE) cannot capture
such massive heterogeneity in
raw data’s community struc-
ture. To show this, we vary
the fixed neighborhood size for
Isomap in Fig. 4(b). As shown,
FeatureNet is far superior (with F1-Micro nearly 0.9 for d = 32) to Isomap for
all neighborhood sizes.

Note on Scalability. In order to analyze the scalability of FeatureNet, we
consider a subset of Reuters-21578 dataset in which documents with multiple
category labels were removed. This yielded 8293 documents from 65 classes with
18933 distinct terms. Of the total 8293 documents, we focus on the given training
dataset5 of 5946 documents and report 10-fold CV classification F1-Micro after
reducing its dimensions from 18933 to 16. We compare FeatureNet with some
of the top performers from the above experiments – SPE, PCA, and t-SNE as
these were amongst the only few techniques that were able to finish execution in
a reasonable time (e.g., about 2–4 h) using reasonable computational resources
(an 8-core Intel i7 desktop).

For relatively small datasets like MNIST, the number of links is not very big
(e.g., 6669 links for 1000 nodes). However, for larger datasets like Reuters, the
number of links can increase rapidly (719, 080 links for (τ = 0.7, K = 30) case
and 2.1 million links for (τ = 0.5, K = 50) case; see Table S1). Figure S5 shows
the diagonal communities for the Reuters τ = 0.7 and K = 30 case (≈700,000
links), whereas Fig. S6 shows the same for τ = 0.5 and K = 50 (>2.1M links;
to create this network, MATLAB takes only 10 s and up to 7 GB of memory.).
Clearly, the diagonal communities of the former are significantly more sparse
than those of the latter. Consequently, our proposed FeatureNet successfully
reduced the dimensions and finished executing for the former but not for the
latter. In terms of the classification accuracy, F1-Micro for SPE, PCA, and t-
SNE were 0.725, 0.82 and 0.823 respectively, whereas FeatureNet again signif-
icantly outperformed these techniques with a F1-Micro score of 0.867 (5.34%
improvement). These results demonstrate that currently FeatureNet can indeed
5 See details at http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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scale up to large datasets provided their networks contain several hundreds of
thousands of links. However, optimizing FeatureNet to handle datasets which
result in more than several million links, is left for future research.

5 Conclusion and Future Work

We have proposed FeatureNet, a new community-based dimensionality reduc-
tion framework for small sample problems. To this end, we have proposed a
new technique to construct a network from any general raw data while reveal-
ing its hidden communities. Community-based low-dimensional features are then
learned using a representation learning framework. We have demonstrated the
effectiveness of FeatureNet across five very different application domains rang-
ing from handwritten digit recognition, biology, physical science, NLP, to com-
putational sustainability. We have further shown that FeatureNet significantly
outperforms many well-known dimensionality reduction techniques such as PCA,
PPCA, deep autoencoders, t-SNE and Isomap. This ultimately shows how repre-
sentation learning ideas can have huge implications for dimensionality reduction.

As a future work, we plan to develop even stronger algorithms and paral-
lelization techniques to scale FeatureNet to hundred-thousand samples/features.
Finally, we plan to provide an in-depth theoretical analysis for FeatureNet.
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Abstract. Feature selection is a crucial pre-processing step in machine
learning and data mining. A popular approach is based on information
theoretic measures. Most of the existing methods used low-dimensional
mutual information terms that are ineffective in detecting high-order fea-
ture interactions. To fill this gap, we employ higher-order interactions for
feature selection. We first relax the assumptions of MI-based methods to
allow for higher-order interactions. A direct calculation of the interac-
tion terms is computationally expensive. We use four-dimensional joint
mutual information, a computationally efficient measure, to estimate the
interaction terms. We also use the ‘maximum of the minimum’ nonlinear
approach to avoid the overestimation of feature significance. Finally, we
arrive at an effective feature selection method that makes use of higher-
order interactions. To evaluate the performance of the proposed method,
we compare it with seven representative feature selection methods, includ-
ing RelaxMRMR, JMIM, IWFS, CIFE, MIFS, MIM, and reliefF. Experi-
mental results on eighteen benchmark data sets demonstrate that higher-
order interactions are effective in improving MI-based feature selection.

Keywords: Feature selection · Mutual information
Feature interaction

1 Introduction

In machine learning and data mining, the data under processing have become
increasingly larger, both in terms of the number of features and the number of
instances. Such data significantly increase the computation time and memory
requirements for data analytics. Moreover, irrelevant and redundant features
widely exist in the data, which not only increase computational burden but also
have negative impact on learning models. Towards this issue, a straightforward
solution is feature selection. Feature selection methods can be broadly classified
as wrapper [1], filter [2,3] and embedded [4]. Feature selection does not alter the
physical meaning of the original features. The readability and interpretability of
feature selection is better than feature extraction [5].

In this paper, we focus on studying mutual information (MI) based feature
selection. The goal of MI-based feature selection is to select a feature subset that
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 115–125, 2018.
https://doi.org/10.1007/978-3-319-93040-4_10
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maximizes the Multidimensional Joint Mutual Information (MJMI) between the
selected features and the class label. However, accurate estimation for MJMI
entails estimating a high-dimensional joint probability distribution, which is a
long-standing challenge in statistics. Many MI-based feature selection meth-
ods address this issue by making a set of assumptions to decompose MJMI
into low-dimensional MI terms. Brown et al. [6] proposed a unifying framework
for MI-based feature selection methods. The framework consisted of two two-
dimensional and one three-dimensional MI terms, i.e., relevancy, redundancy
and conditional redundancy. Many well-known methods are special cases of this
framework, such as MIM [7], mRMR [3], MIFS [8], and CIFE [9]. One limitation
of these methods is that they neglected some important higher-dimensional MI
terms.

Recently, studies showed that higher-dimensional MI terms can improve the
performance of feature selection [10]. Our study is inspired by the following
works. First, a comparative study [6] showed that the Joint Mutual Information
(JMI) method achieved a good trade-off between accuracy and stability. The
reason was that JMI balanced the relevancy/redundancy terms and included
the conditional redundancy. The drawback of JMI was that it allowed the over-
estimation of the significance of some features. Bennasar et al. [11] used the
‘maximum of the minimum’ method to overcome this problem. Their method
was referred to as Joint Mutual Information Maximization (JMIM). Our method
not only use the ‘maximum of the minimum’ method, but also employ a higher-
dimensional JMI term. Second, Vinh et al. [10] studied higher-order dependen-
cies and proposed a new feature selection method (RelaxMRMR). It introduced
a three-dimensional MI term to estimate redundancy. The author identified a
relaxed assumption of conditional independence as a theoretical underpinning for
RelaxMRMR. We further relaxed the assumptions to allow higher-dimensional
MI terms. Third, Zeng et al. [12] showed that three-way interaction can improve
the performance of feature selection. Shishkin et al. [13] proposed a modifi-
cation of the Conditional Mutual Information Maximization (CMIM) method
[14] to identify interactions. It used greedy algorithm to reduce computational
complexity and binary representatives to reduce sample complexity. Therefore,
higher-order interactions have great potential for improving the performance of
feature selection. Inspired by these works, we propose a new feature selection
method that takes into account higher-order interactions.

Our contributions are summarized as follows: (1) We identify a relaxed
assumption, which allows us to decompose the MI-based feature selection into a
sum of interactions. (2) We propose a new feature selection method that takes
into account higher-order feature interactions. We conduct comprehensive exper-
iments to show the effectiveness of the proposed method.

2 Proposed Method for Feature Selection

In this section, a new MI-based feature selection method is proposed. We first
introduce some concepts on information measures for feature interaction. Then,
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a preliminary method that directly takes into account higher-order interactions
is proposed. Finally, we propose an improved feature selection method.

2.1 An Information Measure for Feature Interaction

This section introduces an information measure for evaluating feature interac-
tion. To begin with, some necessary notations are introduced.

The mutual information between a feature X and a class label Y quantifies
the information shared by X and Y . It is defined as,

I(X;Y ) =
∑

xi∈X

∑

yj∈Y

p(xi, yj)log
p(xi, yj)

p(xi)p(yj)
= H(X) + H(Y ) − H(X,Y ) (1)

where H(·) denotes entropy.

Definition 1 (Interaction information). Interaction information quantifies
the information shared by multi-variables [15]. We also adopt interaction infor-
mation to quantify feature interactions. It is defined as,

I(S) � −
∑

T ⊆S

(−1)|S |−|T |H(T ) (2)

where S = {Xi1 , · · · ,Xis} is a subset of features, and T = {Xj1 , · · · ,Xjt}
is a subset of S. I(S) = I(Xi1 ; · · · ;Xis) is the interaction information of all
the features in S, where the semicolon ‘;’ refers to an interaction information.
H(T ) = H(Xj1 , · · · ,Xjt) is the joint entropy of all the features in T , where the
comma ‘,’ refers to a joint variable.

The following equation shows the connection between three-dimensional joint
mutual information and interaction information.

I(Xi,Xj ;Y ) = I(Xi;Y ) + I(Xj ;Y ) + I(Xi;Xj ;Y ) (3)

2.2 An Interaction Based Feature Selection Method

In this section, we first identify a relaxed assumption, and then propose a inter-
action based feature selection method.

For a feature set X = {X ′
1, · · · ,X ′

N} of N features, the feature selection
process selects the most informative feature subset S = {X1, · · · ,Xk} ⊂ X,
where k < N . Ideally, the MI-based methods should maximize the joint mutual
information between the selected features S and the class label Y :

Sopt = arg max
S⊂X

I(S;Y ) (4)

However, exhaustive search of the optimal feature subset S is impractical. A
popular sub-optimal search strategy is the sequential forward selection (SFS)
[13]. The MI-based methods usually use low-dimensional MI terms to estimate
I(S;Y ). Balagani and Phoha [16] proposed a set of assumptions to decompose
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high-dimensional dependency I(S;Y ) into a sum of very low-dimensional MI
terms (E.g., relevancy I(Xi;Y ) and redundancy I(Xi;Xj)). The assumptions
are: (1) The selected features are independent; (2) The selected features are
conditionally independent given the candidate feature; (3) Each feature inde-
pendently influences the class label. Vinh et al. [10] relaxed assumption (2) as
follows: the selected features are conditionally independent given the candidate
feature and any feature Xj ∈ S.

However, studies have shown that higher-order interactions are also informa-
tive. For example, in Natural Language Processing, the N-gram language model
[17] is widely used to capture term dependencies. The n-gram of size one (uni-
gram), two (bigram) and three (trigram) are popular. Trigram consists of three
features, which can be viewed as a special case of four-way interaction. Therefore,
we make a relaxed assumption to enable higher-order interactions.

Assumption 1. Given a candidate feature Xk ∈ X \ Sk, a selected feature
Xi ∈ Sk, and a class label Y , then each feature in set Si independently interact
with the given variables:

I(Si;Xi;Xk;Y ) =
i−1∑

j=1

I(Xj ;Xi;Xk;Y ) (5)

where Si = {X1, · · · ,Xi−1} are the selected features before Xi.

By this assumption, we make a balance between accuracy and efficiency. As
n increases, the accuracy of an n-way interaction based feature selection method
increases. However, the estimation of n-way interaction information become less
reliable. Since it requires much more data and computation.

Based on Assumption 1, the MI-based feature selection problem of Eq. 4 is
written as,

arg max
Xk∈X \Sk

I(Sk ∪ Xk;Y )

=arg max
Xk∈X \Sk

I(Xk;Y ) +
m∑

i=1

I(Xi;Xk;Y ) +
m∑

i=2

i−1∑

j=1

I(Xi;Xj ;Xk;Y )
(6)

Proof. Let Xk ∈ X \Sk be a candidate feature, and Sk = {X1, · · · ,Xk−1} be a
feature subset that contains all the selected features before the kth round.

Using Eq. 3, the MI-based feature selection problem can be transformed into:

I(Sk ∪ Xk; Y ) = I(Sk, Xk; Y ) = I(Sk; Xk; Y ) + I(Sk; Y ) + I(Xk; Y )

= I(Sk−1, Xk−1; Xk; Y ) + I(Sk; Y ) + I(Xk; Y )

= I(Sk−1; Xk−1; Xk; Y ) + I(Sk−1; Xk; Y ) + I(Xk−1; Xk; Y ) + I(Xk; Y ) + Ω

= I(Sk−1; Xk−1; Xk; Y ) + I(Sk−2; Xk−2; Xk; Y ) + I(Sk−2; Xk; Y ) + I(Xk−2; Xk; Y )

+ I(Xk−1; Xk; Y ) + I(Xk; Y ) + Ω

= · · · =
k∑

i=2

I(Si; Xi; Xk; Y ) +
k∑

i=1

I(Xi; Xk; Y ) + I(Xk; Y ) + Ω

(7)
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Under Assumption 1, Eq. 7 is turned to Eq. 8:

k∑

i=2

i−1∑

j=1

I(Xi;Xj ;Xk;Y ) +
k∑

i=1

I(Xi;Xk;Y ) + I(Xk;Y ) + Ω (8)

where Ω is a constant w.r.t Xk. Therefore, we finish the proof.

However, the goal function in Eq. 6 has O(|S|2) interaction terms. So the
computational complexity is high. We employ four-dimensional joint mutual
information to address the drawbacks of Eq. 6. The proposed method is referred
to as Four-way Interaction Maximization (FIM). The goal function is written as:

JFIM (Xk) = arg min
Xi,Xj∈S

I(Xi,Xj ,Xk;Y ) (9)

where Xk ∈ X \ S is a candidate feature, and S contains the selected features
before Xk.

Theorem 1. The four-way joint mutual information I(X1,X2,X3;Y ) equals
to a sum of interaction information of all the feature subsets of its component
features:

I(X1,X2,X3;Y ) =
3∑

i=1

I(Xi;Y ) +
2∑

i=1

3∑

j=i+1

I(Xi;Xj ;Y ) + I(X1;X2;X3;Y )

(10)

where X1,X2,X3 and Y are random variables.

Proof. Using Eq. 1, the left-hand side of Eq. 10 can be transformed to

I(X1,X2,X3;Y ) = H(X1,X2,X3) + H(Y ) − H(X1,X2,X3, Y ) (11)

Using Eqs. 1 and 2, the right-hand side of Eq. 10 can be transformed to,

3∑

i=1

I(Xi;Y ) +
2∑

i=1

3∑

j=i+1

I(Xi;Xj ;Y ) + I(X1;X2;X3;Y )

=
3∑

i=1

{H(Xi) +H(Y )−H(Xi, Y )} −
2∑

i=1

3∑

j=i+1

{H(Xi)−H(Xj)−H(Y ) +H(Xi, Xj)

+H(Xi, Y ) +H(Xj , Y )−H(Xi, Xj , Y )}+ {H(X1) +H(X2) +H(X3) +H(Y )

−H(X1, X2)−H(X1, X3)−H(X1, Y )−H(X2, X3)−H(X2, Y )−H(X3, Y )

+H(X1, X2, X3) +H(X1, X2, Y ) +H(X1, X3, Y ) +H(X2, X3, Y )−H(X1, X2, X3, Y )}
=H(Y ) +H(X1, X2, X3)−H(X1, X2, X3, Y )

Therefore, Eq. 10 holds.
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Theorem 1 shows that the four-dimensional joint mutual information equals
to the sum of all the interactions of its component variables. The goal function
in Eq. 9 has many advantages. First, a direct computation of I(Xi,Xj ,Xk;Y )
avoids the calculation of a large number of interaction terms in Eq. 6. An effective
method for estimating I(Xi,Xj ,Xk;Y ) is the histogram method based on the
frequency of occurrences in the data [18]. Second, the goal function in Eq. 9
employs the ‘maximum of the minimum’ method [11] to avoid the over estimation
of some features, such as redundant features.

Algorithm 1. The FIM feature selection algorithm
Input: The original features {X1, · · · , Xn}; the number of features to be selected k.
Output: The selected feature subset S.
1: Initialize S = Φ; T = {X1, X2, · · · , Xn}.
2: for i = 1 to k do
3: for j = 1 to n − i do
4: Calculate JFIM (Tj) using Eq. 9.
5: end for
6: z = maxXt∈T (JFIM (Xt)).
7: S = S ∪ z.
8: T = T \ z.
9: end for

For filter methods, conventional search strategies are forward and backward
search. The proposed method FIM is a filter method with forward search, which
is summarized in Algorithm 1.

2.3 Complexity Analysis

We analyze the computational complexity of the proposed method FIM. Recall
that the input data set D ∈ RM×N has M instances and N features, and the
number of features to be selected is k. The complexity of mRMR, JMI and other
similar methods are O(k2MN) [10].

FIM and RelaxMRMR generally have higher complexity since more MI terms
are taken into account. Compared with mRMR, RelaxMRMR needs an addi-
tional loop over the selected feature subset to compute I(Xi;Xk|Xj). The time
complexity for RelaxMRMR is O(k3MN). Similarly, the time complexity for
FIM is O(k3MN). The reason is that, compared with JMI, FIM needs an addi-
tional loop over the selected features to compute I(Xi,Xj ,Xk;Y ). In future
works, we plan to use parallel computing and quantum computing technologies
to accelerate FIM.

3 Experiments

We conduct experiments to evaluate the performance of the proposed FIM
method. The experiments are performed on eighteen data sets, including thirteen
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UCI data sets and five microarray data sets [3,10]. Table 1 shows that the data
sets cover a wide range of conditions, i.e., different number of features, instances
and classes.

Table 1. Dataset summary.

Dataset #Features #Instances #Class

Wine 13 178 3

Segment 19 2310 7

Cardio 21 2126 3

Waveform 21 5000 3

Parkinsons 22 195 2

Steel 27 1941 7

Breast 30 569 2

Ionosphere 33 351 2

Landsat 36 6435 6

Spambase 57 4601 2

Musk 166 476 2

Semeion 256 1593 10

Arrhythmia 257 430 2

Lung 325 73 7

Colon 2000 62 2

Lymphoma 4026 96 9

Leukemia 7129 73 2

NCI60 9996 60 10

For classification, we use SVM with linear kernel, k-Nearest Neighbor (kNN)
with 3 neighbors, and Decision Tree (DT) with the CART algorithm. All the
classifiers are available in the Matlab Statistics and Machine Learning Toolbox.
The classification accuracy is used to compare the performance of the feature
selection methods.

The experimental settings are as follows. For each data set, the 10-fold cross-
validation (or leave-one-out cross validation if the number of instances < 100)
is used to divide the data into train/test sets. For each partition of the data,
do the following feature selection and classification process: (1) each feature
selection method selects a subset of k = 50 features based on the train data. (2)
The train/test data are updated according to the selected features (from 1 to
k features). Then, each classifier is trained on the train data, and classification
accuracy is obtained by applying the trained classifier to the test data. Finally,
we compute the mean± std classification accuracy across a range of feature size
(from 1 to k). We also obtain a plot of the classification accuracy vs. the number
of selected features.
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The proposed FIM method is compared with seven popular feature selection
methods. Specifically, FIM is compared with some well-known MI-based feature
selection methods, including RelaxMRMR [10], JMIM [11], IWFS [12], CIFE,
MIFS, and MIM [6]. To make a more comprehensive comparison, FIM is also
compared with a non-MI-based method, i.e., reliefF [2]. All the features selection
methods are implemented in Matlab/C++. Specifically, the MI terms of the MI-
based methods are implemented using a C++ implementation called Mutual
Information Toolbox1. Each continuous feature is discretized into five equal-size
bins [10]. The relieff function is a Matlab built-in function for reliefF.

3.1 Overall Performance

Table 2 shows the average classification accuracy of all the feature selection meth-
ods. The last row of each table shows the win-tie-loss values, which are used to
indicate that FIM performs better (+), equally well (=), or worse (−) than the
competitor. It is obtained by the one-sided paired t-test at the 5% significance
level.

In general, for all the three classifiers, FIM achieves better performance than
other methods in over half of the cases. While in about ten percent of the cases,
one of the competitors wins. In the remaining cases, the performance of FIM and
the other approaches are similar. Therefore, FIM performs better or equally well
than all the other methods in about ninety percent of the cases. The methods
that take into account feature interactions (e.g., reliefF, JMIM, and RelaxM-
RMR) generally have better performance than others.

When kNN and Decision Tree are used as classifier, for each of the competing
feature selection method, the number of wins is bigger than the number of loss.
FIM tend to outperform other methods. When the classifier is SVM, FIM out-
performs all the competing method except RleaxMRMR. One possible reason is
that SVM does not make full use of the four-way interactions.
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Fig. 1. Performance comparison with respect to #features.

1 http://home.penglab.com/proj/mRMR/.

http://home.penglab.com/proj/mRMR/
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Table 2. Classification accuracy (mean% ± std) comparison of different feature selec-
tion methods.

Dataset FIM MIM MIFS CIFE IWFS JMIM RelaxMRMR reliefF
kNN
Wine 75.4±6.5 72.4±2.2(=) 79.8±6.8(-) 74.5±5.8(=) 72.1±2.9(+) 73.8±7.4(+) 72.1±5.3(+) 70.8±1.5(+)
Parkinsons 83.4±1.1 84.6±2.1(-) 82.1±1.1(+) 82.1±1.3(+) 83.2±1.1(=) 82.9±0.8(+) 83.3±0.8(=) 83.0±2.3(=)
Ionosphere 86.7±2.2 85.4±1.4(+) 86.7±3.0(=) 86.4±2.7(=) 85.5±3.0(+) 86.6±1.8(=) 86.8±1.9(=) 85.2±1.9(+)
Breast 92.1±0.8 91.9±1.1(=) 91.8±0.8(+) 92.0±0.7(=) 91.9±0.8(+) 92.3±0.8(-) 91.8±0.9(+) 89.6±6.0(+)
Segment 92.9±8.4 89.9±8.4(+) 89.8±7.8(+) 88.3±8.6(+) 92.1±8.2(+) 92.8±8.3(+) 92.6±8.3(=) 87.9±14.7(+)
Cardio 89.0±3.8 88.9±3.8(=) 84.4±5.3(+) 84.1±5.4(+) 88.9±4.2(=) 89.2±3.8(=) 88.2±4.0(+) 88.7±3.2(=)
Steel 43.6±11.6 44.5±7.2(=) 28.6±10.8(+) 29.0±10.1(+) 35.4±17.6(+) 47.2±10.4(-) 44.6±11.8(=) 32.2±8.7(+)
Musk 81.6±6.3 75.2±4.7(+) 78.1±7.1(+) 78.4±7.5(+) 79.3±6.2(+) 79.2±5.9(+) 80.0±7.6(+) 77.2±6.6(+)
Waveform 76.7±7.9 73.7±10.0(+) 71.2±8.4(+) 70.9±8.5(+) 75.8±7.4(+) 76.8±8.0(=) 76.6±7.8(=) 72.8±8.6(+)
Arrhythmia 59.2±2.5 58.5±3.0(+) 58.9±1.7(=) 58.2±1.6(+) 55.7±1.4(+) 59.6±2.7(=) 59.2±2.2(=) 59.2±3.6(=)
Landsat 88.1±8.4 87.3±8.5(+) 87.3±8.4(+) 87.3±8.6(+) 87.8±8.3(+) 87.9±8.3(+) 88.0±8.5(=) 85.4±11.6(+)
Spambase 78.9±9.1 77.9±9.2(+) 78.9±11.4(=) 76.9±12.7(=) 76.9±9.0(+) 78.2±9.7(+) 82.5±10.9(-) 79.9±6.2(=)
Semeion 68.0±18.1 54.6±18.2(+) 70.3±17.7(-) 67.4±16.8(=) 58.8±13.9(+) 64.1±17.1(+) 63.7±16.2(+) 48.7±18.6(+)
Lung 77.1±10.9 67.6±11.0(+) 74.0±13.5(+) 75.1±13.0(+) 65.2±9.9(+) 74.1±11.0(+) 76.0±11.2(+) 69.6±11.4(+)
Colon 84.5±2.3 78.6±3.0(+) 78.4±2.9(+) 77.5±6.1(+) 79.6±3.3(+) 81.1±2.0(+) 83.9±1.9(=) 84.3±2.5(=)
Leukemia 94.8±4.1 95.3±4.0(-) 88.2±3.6(+) 89.5±3.2(+) 94.3±4.3(=) 95.6±3.9(-) 94.7±4.0(=) 95.2±4.1(=)
NCI60 47.4±9.8 46.4±10.0(+) 28.6±4.5(+) 34.8±3.0(+) 24.5±5.1(+) 47.8±6.5(=) 46.8±5.9(=) 39.8±11.3(+)
Lymphoma 85.6±8.9 73.0±10.8(+) 75.3±6.7(+) 81.5±9.9(+) 66.5±5.7(+) 83.8±9.9(+) 87.1±9.9(-) 77.6±12.5(+)
Win/Tie/Loss       - 12/4/2 13/3/2 13/5/0 15/3/0 10/5/3 6/10/2 12/6/0
SVM
Wine 93.6±4.7 92.7±4.5(=) 93.3±4.5(=) 93.9±4.7(=) 93.3±4.5(=) 93.7±4.7(=) 93.7±4.7(=) 91.4±8.1(+)
Parkinsons 89.3±2.0 87.8±1.9(+) 89.3±2.2(=) 89.1±2.3(=) 89.0±2.5(=) 87.6±1.8(+) 89.7±2.1(=) 89.1±2.1(=)
Ionosphere 84.4±2.7 85.0±2.0(=) 85.1±2.6(-) 85.1±2.5(-) 84.4±2.7(=) 84.6±2.1(=) 84.6±2.2(=) 82.6±2.4(+)
Breast 95.2±1.0 94.5±1.2(+) 93.6±1.1(+) 94.2±0.9(+) 93.8±0.8(+) 94.8±1.0(+) 95.0±1.1(=) 93.7±5.3(=)
Segment 94.5±7.9 91.6±8.5(+) 94.6±8.0(=) 92.3±8.6(+) 94.8±8.0(-) 94.6±8.0(=) 94.5±7.9(=) 93.8±11.4(=)
Cardio 88.8±7.1 88.9±6.8(=) 70.5±13.5(+) 71.7±13.1(+) 89.0±7.5(=) 89.4±6.0(=) 77.8±8.4(+) 76.4±10.1(+)
Steel 69.1±6.7 64.8±6.6(+) 69.3±6.5(=) 68.5±7.4(=) 69.1±6.6(=) 67.9±6.8(+) 69.9±6.9(-) 66.6±6.7(+)
Musk 84.5±7.1 76.0±3.6(+) 76.1±5.4(+) 76.4±5.4(+) 80.2±6.0(+) 80.3±5.7(+) 78.7±5.8(+) 76.1±7.5(+)
Waveform 77.6±5.3 75.1±6.7(+) 72.3±5.1(+) 72.2±5.1(+) 76.1±5.0(+) 77.3±5.3(+) 77.5±5.4(=) 73.5±6.2(+)
Arrhythmia 59.5±3.0 59.2±3.0(=) 56.5±2.8(+) 63.2±1.5(-) 56.0±3.2(+) 59.4±2.5(=) 60.8±2.9(-) 60.7±3.5(-)
Landsat 87.8±5.5 87.1±5.5(+) 86.9±5.4(+) 86.9±5.5(+) 87.5±5.4(+) 87.5±5.4(+) 87.6±5.5(+) 84.8±9.5(+)
Spambase 83.6±4.4 83.4±4.7(=) 85.4±3.9(-) 86.0±4.0(-) 86.1±4.6(-) 83.6±4.3(=) 88.8±3.9(-) 83.5±4.7(=)
Semeion 73.3±15.3 60.4±15.6(+) 77.6±15.7(-) 75.1±15.0(-) 65.9±12.0(+) 69.8±14.8(+) 68.7±12.7(+) 55.1±17.1(+)
Lung 60.3±6.8 58.7±7.0(+) 60.2±7.8(=) 59.0±7.1(+) 59.8±8.4(=) 60.1±8.1(=) 62.4±8.3(-) 59.9±6.0(=)
Colon 78.5±2.2 74.6±3.1(+) 77.8±4.5(=) 75.9±3.4(+) 75.4±4.1(+) 75.4±3.9(+) 80.8±2.3(-) 75.7±3.4(+)
Leukemia 94.9±2.0 96.1±1.2(-) 86.2±4.4(+) 87.6±3.0(+) 88.1±4.9(+) 94.9±2.0(=) 92.5±1.9(+) 93.7±1.7(+)
NCI60 30.4±3.9 33.2±4.6(-) 19.9±6.8(+) 31.4±4.8(=) 20.4±7.7(+) 38.8±3.8(-) 32.2±4.6(-) 30.3±3.2(=)
Lymphoma 71.6±3.1 71.2±5.9(=) 58.9±6.1(+) 68.4±4.2(+) 54.7±4.9(+) 71.5±3.3(=) 74.2±4.0(-) 68.8±7.0(+)
Win/Tie/Loss       - 10/6/2 9/6/3 10/4/4 10/6/2 8/9/1 5/6/7 11/6/1
Decision Tree
Wine 89.8±5.0 90.4±5.3(=) 90.0±5.1(=) 89.5±4.8(=) 89.7±5.1(=) 89.5±4.9(=) 89.1±4.8(+) 88.1±6.3(+)
Parkinsons 85.5±1.8 84.9±1.7(=) 86.1±1.9(=) 86.4±1.9(-) 85.3±1.6(=) 85.6±1.9(=) 86.2±1.6(-) 84.6±2.1(+)
Ionosphere 87.0±1.7 85.6±2.0(+) 87.6±2.1(=) 87.4±1.9(=) 87.9±2.7(-) 86.9±1.7(=) 87.1±1.6(=) 87.6±3.0(=)
Breast 93.2±1.2 92.2±1.2(+) 92.7±1.0(+) 92.7±1.0(+) 92.7±1.2(+) 92.3±1.0(+) 92.9±1.0(=) 91.2±5.9(+)
Segment 93.9±7.4 90.8±7.9(+) 93.9±7.5(=) 91.9±7.8(+) 93.8±7.4(=) 93.9±7.4(=) 93.9±7.4(=) 93.3±10.6(=)
Cardio 91.1±2.9 91.2±2.9(=) 88.4±3.5(+) 88.5±3.6(+) 91.6±3.5(-) 91.2±2.9(=) 90.6±3.4(+) 91.3±3.1(=)
Steel 71.3±3.7 68.1±4.4(+) 71.2±4.3(=) 69.5±4.9(+) 71.2±3.8(=) 71.5±3.7(=) 71.6±4.1(=) 70.9±3.7(=)
Musk 78.6±3.8 75.9±3.8(+) 74.1±2.6(+) 75.7±3.4(+) 76.4±3.1(+) 77.2±3.7(+) 76.8±3.8(+) 75.1±4.3(+)
Waveform 72.7±5.7 69.3±7.7(+) 68.0±6.2(+) 67.6±6.3(+) 72.0±5.4(+) 72.2±5.7(+) 72.5±5.7(+) 69.4±6.8(+)
Arrhythmia 57.1±1.9 56.9±3.3(=) 56.3±1.1(+) 61.5±1.8(-) 51.3±1.1(+) 56.5±2.6(+) 55.5±1.5(+) 58.2±1.3(-)
Landsat 84.9±4.7 84.2±4.7(+) 83.5±4.6(+) 83.5±4.6(+) 84.7±4.6(+) 84.7±4.6(+) 84.7±4.7(=) 81.9±9.1(+)
Spambase 90.9±2.7 90.7±2.6(+) 88.8±2.6(+) 88.0±3.0(+) 91.0±2.7(-) 90.9±2.6(=) 91.2±2.8(-) 91.0±3.2(=)
Semeion 66.2±11.0 57.5±13.6(+) 67.7±10.8(-) 67.4±10.8(-) 60.9±9.3(+) 64.1±10.9(+) 65.3±10.6(+) 50.5±13.4(+)
Lung 51.4±4.9 50.7±8.0(=) 49.1±6.3(+) 54.7±6.7(-) 49.4±5.3(+) 50.7±4.9(=) 53.5±5.8(-) 51.2±4.5(=)
Colon 72.5±4.5 72.4±3.4(=) 72.7±3.0(=) 77.9±3.0(-) 83.8±1.4(-) 70.9±4.2(+) 75.5±3.1(-) 75.3±4.7(-)
Leukemia 93.2±1.2 94.4±0.0(-) 91.7±0.4(+) 91.9±0.6(+) 93.1±0.2(=) 93.0±1.0(=) 93.1±0.4(=) 93.9±1.7(-)
NCI60 30.9±2.9 38.0±5.2(-) 28.6±4.3(+) 38.1±2.4(-) 27.2±2.9(+) 37.5±4.4(-) 39.2±3.2(-) 43.5±7.9(-)
Lymphoma 62.8±3.3 61.8±5.1(=) 64.8±1.6(-) 64.8±3.2(-) 57.6±1.1(+) 62.1±5.1(=) 62.1±4.1(+) 67.2±7.1(-)
Win/Tie/Loss       - 9/7/2 10/6/2 9/2/7 9/5/4 7/10/1 7/6/5 7/6/5



124 X. Tang et al.

For the data sets with high dimensionality and small sample size (such as
Lymphoma, NCI60, Leukemia, Colon, and Lung), the estimation error of the
four-way joint mutual information could be high. Interestingly, kNN still achieves
considerably higher accuracy than SVM and Decision Tree. One possible reason
is that kNN makes better use of the selected interactions.

3.2 Performance with Respect to the Number of Features

We compare the performance of feature selection methods with increasing num-
ber of features. Fig. 1 shows the classification accuracy of SVM. The data sets
are Musk and Waveform, which vary in the number of features and instances.
We can see that FIM (round marker) is competitive to other methods, especially
for the Musk data set. A possible explanation is that higher-order interactions
can improve the performance of feature selection.

The performance is also affected by the data size. Large data size is necessary
for a better estimation of MI terms. Therefore, FIM tends to perform better on
the data sets with large instance/feature ratio.

4 Discussion and Conclusion

We presented a new feature selection method FIM that took into account two-
through four-way interaction between features and the class label. Theoretic
derivation showed that two- through four-way interactions can be merged into
four-dimensional joint mutual information, which is computationally more effi-
cient. Thus, instead of directly calculating the interaction information terms,
FIM calculated joint mutual information to reduce computational complexity.
In addition, the problem of overestimating the feature significance widely exist
in almost all methods that used the cumulative sum of MI terms. FIM employed
the ‘maximum of the minimum’ method to address this problem. Experiments on
eighteen benchmark data sets demonstrated that FIM was effective in identifying
informative features.
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Abstract. Selecting features that represent a specific corpus is impor-
tant for the success of many machine learning and text mining applica-
tions. In information retrieval (IR), fusion-based techniques have shown
remarkable performance compared to traditional models. However, in
text feature selection (FS), popular models do not consider the fusion of
the taxonomic features of the corpus. This research proposed an innova-
tive and effective extended random-sets model for fusion-based FS. The
model fused scores of different hierarchal features to accurately weight
the representative words based on their appearance across the docu-
ments in the corpus and in several latent topics. The model was evalu-
ated for information filtering (IF) using TREC topics and the standard
RCV1 dataset. The results showed that the proposed model significantly
outperformed eleven state-of-the-art baseline models in six evaluation
metrics.

Keywords: Feature selection · Data fusion · Topic modelling
Term weighting · Extended Random Set

1 Introduction

Over the last three decades, fusion-based techniques have been effective in IR [9,
30]. These techniques have shown that by combining different representations
of documents and queries instead of using a single IR model, search systems
outputs and ranking and scoring algorithms can maintain better results with
substantial improvements [9]. However, applying similar techniques to FS is still
limited. FS plays a crucial role in improving the accuracy and scaling down the
complexity of many classifiers [19]. Improvements are achieved by selecting some
relevant features and discarding irrelevant ones [17].

Analogous to most data fusion models that reward highly ranked documents
in retrieved lists [4], FS models reward highly representative features. Thus, the
scoring function is the most important component in a text FS model. It gives
weights to features and specify how informative those features are to a corpus
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that describes a specific topic of interest [12]. Most low-level, term-based1 fusion
FS models apply the early fusion concept [31] by combining different terms’
scores (frequencies) heuristically [9] based on the flat Bag-of-Words (BoW) rep-
resentation. Adopting a representation where no relationships between features
were assumed made these models susceptible to noise and caused them to suffer
from polysemy and synonymy [17].

Alternatively, phrase-based, pattern-based and topic-based FS models
adopted the late fusion strategy [31]. They combine the term weights (scores)
based on the relationships between the high-level features (phrases, patterns,
topics or a mixture of them) and the documents in a specific corpus. How-
ever, phrase-based models suffer from a low frequency of specific phrases [18],
and pattern-based techniques do not assume that a corpus can discuss multi-
ple subjects or themes [12]. Topic-based techniques, such as the probabilistic
latent semantic analysis (pLSA) [13] and latent Dirichlet allocation (LDA) [7],
can alleviate the polysemy problem [13] and are built on the assumption that
documents can exhibit more than one topic [7].

LDA is the most popular unsupervised topic modelling technique with mul-
tiple applications. However, LDA calculates term weights on a document-by-
document basis using the hierarchical local topics-document probability dis-
tributions and global (corpus level) term-topics assignments [12]. It does not
automatically consider the sub-hierarchal features of a document, such as its
paragraphs-topics distributions, or the features higher up in the hierarchy that
represent the whole corpus. Thus, term weights assigned by the LDA term scor-
ing function do not accurately reflect the importance of these terms in their local
documents or the corpus. Recent studies [3,5,6,12] have confirmed that the LDA
scoring function negatively influenced the LDA’s FS performance.

Relevant terms can be identified in a specific corpus by fusing various
instances (evidence) of these terms in different representations [31]. At the corpus
level, the global statistics of terms, such as document frequency (df), are impor-
tant pieces of evidence that represent terms more discriminatively [15]. Never-
theless, in IR, representing words using global term-weighting schemes could not
give better retrieval results [20] because term global statistics could not reveal
the term’s local, document-level importance [22], and neither can the LDA. This
research asked whether there was a method to significantly fuse the LDA’s hier-
archal features with corpus statistical features (particularly df) to overcome their
limitations in representing the local and global importance of terms.

This research aimed to develop an effective, fusion-based text FS model
called (SIF2)2. SIF2 adopts a complex hierarichal representation for the corpus
(documents, their paragraphs, latent topics from the paragraphs and all terms
in the corpus). SIF2 then models the complicated and imprecise relationships
between these hierarichal features using multiple Extended Random-Sets (ERS)
to effectively weight terms. The model provides an elegant way to combine the

1 Words, keywords and terms are used interchangeably in this paper.
2 SIF stands for Selection of Informative Features, and the ‘2’ refers to the utilisation

of both local and global statistics.
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advantages of both topic modelling and terms’ global statistics. The experimental
results showed that the framework was highly effective and significantly outper-
formed state-of-the-art FS methods in IF regardless of the fusion technique or
the type of text features they utilised.

This research made two major contributions: (a) a new fusion-based model
for FS that combines the advantages of unsupervised learning (topic modelling)
and corpus statistics and (b) a new method for adapting the LDA for feature
weighting by modelling it with multiple ERSs.

2 Related Work

FS techniques that adopt the early fusion strategy are efficient and were devel-
oped based on sophisticated mathematical and statistical weighting theories [18].
Popular examples are TF*IDF, Information Gain, the Gini-index, the Chi-
Square (X2) [15], BM25 [26], the ranking SVM [14], Rocchio, LASSO, Mutual
Information and many others. These methods use low-level terms, which makes
them noise sensitive and causes them to suffer from the problems of polysemy
and synonymy [17]. Also, because they use the BoW representation, they ignore
the order of words in documents, and consequently, they lose the semantic rela-
tionships between these words.

Many late fusion models have been developed to overcome the limitations
of term-based methods. Phrase-based approaches use n-grams, but they do not
show encouraging results in FS [12] because phrases are statistically inferior
to words and can be noisy [18]. Patterns are more frequent than phrases and
are used to mine specific features [1,2]. However, patterns are sensitive to noise
and redundant. A topic can be discovered by topic modelling techniques like
pLSA [13] and LDA [7]. However, using LDA and pLSA for relevant FS does
not show encouraging results [6,12]. For better performance, researchers in [12,
17,18,29] integrated different types of high-level features, but these mix-based
models could inherit the limitations of each feature and could be expensive.

3 Problem Formulation and Background

Let assume that a researcher maintains a corpus of long documents D+ that
describe a particular topic of interest that might also have multiple sub-topics.
For further investigation, the researcher wants to enrich the corpus by collecting
documents from the Web. To achieve this goal, the researcher needs a model
that can select and accurately weight terms to effectively describe the corpus.
The weighted terms are used to gather relevant documents.

We assumed that the corpus D+ = {d1, d2, d3, . . . , dx} has X documents that
are related to a particular topic of interest, which is different from a latent topic.
A document d consists of a set of paragraphs S and a paragraph g consists of
a bag of words. The set of all paragraphs in the corpus is G = ∪d∈D+{g|g ∈ d}
and S ⊆ G. The set of all unique words in G is Ω = {w1, w2, w3, . . . , wK}, where
K = |Ω|. SIF2 uses the LDA to discover a set of latent topics T from G where V
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is the number of topics. The LDA is an effective model to discover hidden topics
from a corpus, but it does not show sufficient performance in FS.

3.1 Latent Dirichlet Allocation and Limitations

LDA describes a topic tj ∈ T as a probability distribution over all words in Ω

using p(wi|tj), in which
∑|Ω|

i p(wi|tj) = 1 where 1 ≤ j ≤ V and wi ∈ Ω. Also,
LDA describes a document d by a probabilistic mixture of topics using p(tj |d).
All hidden variables, p(wi|tj) and p(tj |d), are inferred statistically by the Gibbs
sampler [28]. As a result, and based on T , the local score (probability) of word
wi in a document d can be estimated by p(wi|d) =

∑V
j=1 p(wi|tj)p(tj |d).

For every topic, estimating p(wi|d) requires the fusion of two hierarchal fea-
tures, the word-topic assignment p(wi|tj) and the topic-document distribution
p(tj |d). However, we argue that using only these features made the LDA inef-
fective for selecting informative terms in a specific corpus (see LDA’s results in
Table 1). Adapting the LDA to estimate words informativeness has two chal-
lenges: (a) how to fuse other hierarchal features for a better weight estimation
for words, and (b) how to decide the optimal number for hidden topics.

3.2 Extending Random-Sets

A random set (RS) is an arbitrary entity that contains a subset of values selected
from existing space [24]. Random sets can measure uncertainty when inaccurate
data are used for some decision analysis applications [25]. To effectively fuse
the local score of word w in document d, we proposed the set-valued function
Γ : T → 2Ω from T onto Ω. Let us call T the evidence space, and P is a
probability function specified on T . Then, we call the (P, Γ ) pair a RS [24]. Γ
can also be extended as ξ :: T → 2Ω×[0,1] and is called an extended set-valued
mapping [16] given that

∑
(w,p)∈ξ(t) p = 1 for each t ∈ T .

4 The Proposed SIF2 Model

Distinct hierarchal entities and their relationships to each other can affect the
term scoring in a specific corpus. As can be seen in Fig. 1, SIF2 uses four entities,
which are the corpus documents D+, their paragraphs G, the LDA latent top-
ics T and the corpus keywords Ω. SIF2 also models the complex relationships
between these entities using the ERS theory to fuse and, thus, generalise the
LDA weight of a local term to a global one that can be combined with a more
representative global statistic.

SIF2 proposed two ERSs Γ1 and Γ2 and their inverse to model the one-to-
many relationships between the used entities. In every ERS, including its inverse,
a function is used to describe a specific relationship and to assign a score that
represents the rank of the targeted entity. Then, a new term scoring function is
developed by integrating the proposed ERSs.
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Fig. 1. The proposed SIF2 model and the mapping of Γ and Γ−1.

4.1 Fusing Hierarchical Features

Given a topic t ∈ T , let us define a probability function P that satisfies∑
t∈T P (t) = 1. Thus, we can call the pair (ξ, P ) an extended Random-Set. Also,

for every ti ∈ T , we define Pi(w|ti) as a conditional probability function on the
set of keywords Ω such that the mapping Γ (ti) = {w|w ∈ Ω,Pi(w|ti) > 0}.
Further, Γ−1 is the inverse function of Γ and we define it as Γ−1 : Ω →
2T ; Γ−1(w) = {t ∈ T |w ∈ Γ (t)}. Thus, to estimate the fused local score of word
w, the extended set-valued mapping is used to define the probability function
prd(w) on Ω such that prd :: Ω → R as follows:

prd(w) =
∑

ti∈Γ−1(w)

(P (ti) × Pi(w|ti)) (1)

where prd(w) is the fused local score of word w at the document d level.
The ERS Γ1 defines the conditional probability function Pxy(t|gxy) on the set

of paragraphs G to describe the one-to-many relationship between a paragraph
and a topic as Γ1 : G → 2T×[0,1]; Γ1(gxy) = {(t1, Pxy(t1|gxy)), . . .}. Similarly,
as a topic can have many terms, Γ2 defines Pi(w|ti) on T as another conditional
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probability function that estimates the probability of a word based on its appear-
ance in each topic ti ∈ T as Γ2 : T → 2Ω×[0,1]; Γ2(ti) = {(w1, Pi(w1|ti)), . . .}.

Inversely, as a topic also can appear in one or more paragraphs that belong
to a certain document, Γ−1

1 is proposed to describe such relationship using the
Pt(ti) function in which a subset of paragraphs S will only be mapped to its
document d as Γ−1

1 (t) = {gxy|t ∈ Γ1(gxy), gxy ∈ S}. Similarly, as a word w in a
specific document can occur in multiple topics, Γ−1

2 is also proposed to govern
this relationship using the probability function prd(w) as Γ−1

2 (w) = {t|w ∈
Γ2(t)}.

Fusing Topic Scores. To calculate the fused weight of word w in document
dx, Γ−1

1 and Γ−1
2 are used to estimate two probabilistic scores. The first score

is the topic marginal probability Pt(ti) for every topic appears in paragraph
gy ∈ dx by fusing the topic-paragraph distribution Pxy(ti|gxy) to estimate its
topic-document marginal probability in which we assume PG(gxy) = 1

N where
N = |S| as follows:

Pt(ti) =
∑

gxy∈Γ−1
1 (ti)

(PG(gxy) × Pxy(ti|gxy))

=
1
N

∑

gxy∈Γ−1
1 (ti)

Pxy(ti|gxy) (2)

where Pxy(ti|gxy) is estimated by LDA, and gxy denotes to paragraph y of doc-
ument x.

Fusing Local Word Scores. To calculate the second probability, for each topic
ti ∈ T , the conditional probability Pi(w|ti) needs to be estimated for the word
w in topic ti (which was estimated by LDA in this study). Thus, the fused, word
weight at a document d level can be estimated by substituting Pt(ti) in Eq. 1 by
its formula in Eq. 2 as follows:

prd(w) =
∑

ti∈Γ−1
2 (w)

(Pt(ti) × Pi(w|ti))

=
∑

ti∈Γ−1
2 (w)

⎡

⎣

⎛

⎝ 1
N

∑

gxy∈Γ1
−1(ti)

Pxy(ti|gxy)

⎞

⎠ × Pi(w|ti)
⎤

⎦

=
1
N

∑

ti∈Γ−1
2 (w)

⎡

⎣Pi(w|ti) ×
⎛

⎝
∑

gxy∈Γ−1
1 (ti)

Pxy(ti|gxy)

⎞

⎠

⎤

⎦ (3)

Fusing Global Word Scores. As the LDA does not explicitly provide a global
score for a word at a corpus level, we estimated the global score for a word w
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as the sum of its prd(w) in every document di ∈ D+. Finally, the fused, global
word score sr(w) at the corpus level is estimated as follows:

sr(w) = df(w) ·
∑

w∈di,di∈D+

prdi
(w) (4)

where df(w) is the document frequency of word w, and prdi
(w) is the fused score

of w in document di.

5 Evaluation

The evaluation experiments aimed to show (a) how the integration of late fusion
hierarchical LDA features and early fusion global statistics (e.g., df) can accu-
rately weight terms and effectively represent a specific corpus, and (b) how sen-
sitive this integration can be to some hyper-parameters, mainly the number of
latent topics and top-selected features (top-n). This research hypothesised that a
late fusion of topical taxonomic features could provide an effective term weight,
especially after it was fused with an appropriate global statistic. We used an IF
system-based methodology for evaluating this hypothesis.

5.1 Dataset and Evaluation Measures

The Reuters Corpus Volume 1 (RCV1) dataset and its TREC3 relevance judg-
ments were used to evaluate SIF2 and the baseline models. RCV1 has 806,791
documents that were grouped into 100 collections that discuss 100 different top-
ics of interest. However, we used the first 50 collections only because they were
assessed at NIST [27] by subject-matter experts. Fifty collections are sufficient
for a reliable experiment [8]. Every collection has a set of training and testing
documents and each set has some relevant D+ and irrelevant D− documents.
Each document is a news story that has some paragraphs (a title and several text
XML elements). The SIF2 model was trained and tested on these paragraphs
after their terms were stemmed and the stop-words were removed.

Six metrics were used to measure the performance of the SIF2 model and the
baselines. The measures are the average precision of the top-20 ranked documents
(P@20), break-even point (b/p), 11-point interpolated average precision (IAP),
mean average precision (MAP), interpolated precision averages at 11 standard
recall levels (11-point) and F-score (F1). More information about these measures
can be found in [21]. The Student’s t-test was used to analyse the significance
of the difference between the results of the SIF2 and the baselines.

5.2 Baseline Models and Settings

For an extensive evaluation, we compared the performance of the SIF2 model to
major FS models. We selected eleven baseline models that were grouped based
on the fusion strategies they adopted.
3 http://trec.nist.gov/.

http://trec.nist.gov/
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Early Fusion Models. SVM [14] and Okapi BM25 [26] were selected to repre-
sent the early fusion category. They are state-of-the-art, supervised, term-based
models. Since IF can be considered another type of binary classification prob-
lem, the rank-based SVM was used in this research similarly to how it was used
in [2]. BM25 is a popular document ranking algorithm in IR, and we set its
experimental parameters to b = 0.75 and k1 = 1.2 as recommended in [21].

Late Fusion Models. Nine state-of-the-art FS models were selected for this
category. They use different high-level features. The standard n-Grams model,
where n = 3, was selected because it was the best value reported in [10] for
RCV1. PDS [32] and SCSP [1] represented the pattern-based FS models. PDS
and SCSP utilise frequent patterns and closed sequential patterns, respectively.
LDA [7] and its predecessor, pLSA [13], were used to represent the topic-based
group. pLSA and LdaDoc were trained on D+ while LdaPara was trained on D+

paragraphs. Four mixed-based models were selected for the experiment. PBTM-
FP [10], PBTM-FCP [10] and SPBTM [11] discovered frequent patterns, closed
frequent patterns and significant matched patterns, respectively. The Topical
N-Grams(TNG) [29] used n-Gram-based topics to represent the corpus.

The MALLET toolkit [23] was used to implement all the topic-based models
including our SIF2, but for the pLSA, the Lemur toolkit4 was used instead. As
recommended in [28], we set the hyper-parameters β and α for the LDA-based
models to (0.01) and (50/V ) respectively, and the Gibbs sampler iterations to
1000. The default value (1000) was accepted for the pLSA.

5.3 Experimental Design

To demonstrate the validity of our evaluation hypothesis, we used our SIF2 model
as a FS step for an IF system based on TREC filtering track [27]. We did exten-
sive experiments on the RCV1 50 assessed collections and their TREC relevance
judgements. For each collection, we trained the SIF2 on the paragraphs of D+ in
the training set. We used LDA to generate 10 topics, as in [12], but unlike [12],
SIF2 was insensitive to this hyper-parameter (see Fig. 3). Then, SIF2 was used
to score and rank terms using Eq. 4, and a top-n(n = 15) feature was selected as
a query Q to the IF testing system. The IF system used a new document from
the testing set and decided its relevance to the corpus. Determining the value of
n was experimental, and the SIF2’s performance was stable even with higher n
features (see Fig. 3). A similar process was also separately applied to each base-
line. If the six metrics of the IF system’s results were significantly better than
the baseline’s, then we could say that our SIF2 outperformed a baseline model.

5.4 Results

The experimental results of the SIF2 and the baseline models (averaged over the
50 collections) are presented in Table 1 and Fig. 2. Table 1 results are grouped
4 https://www.lemurproject.org/.

https://www.lemurproject.org/
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Table 1. SIF2 results compared with the baselines.

P@20 b/p MAP Fβ=1 IAP

SIF2 0.594 0.494 0.522 0.485 0.541

SVM 0.457 0.408 0.409 0.421 0.435

BM25 0.445 0.407 0.407 0.414 0.428

Improvement% +30.1 +20.9 +27.5 +15.2 +24.4

SPBTM 0.527 0.448 0.456 0.445 0.478

PDS 0.496 0.430 0.444 0.439 0.464

LdaPara 0.492 0.414 0.442 0.437 0.468

PBTM-FP 0.470 0.402 0.427 0.423 0.449

PBTM-FCP 0.489 0.420 0.423 0.422 0.447

SCSP 0.480 0.407 0.420 0.423 0.442

LdaDoc 0.457 0.391 0.400 0.413 0.434

pLSA 0.423 0.386 0.379 0.392 0.404

TNG 0.447 0.360 0.372 0.386 0.394

n-Gram 0.401 0.342 0.361 0.386 0.384

Improvement% +12.7 +10.1 +14.4 +8.9 +13.2

Table 2. p-values of SIF2 compared with the best baselines.

P@20 b/p MAP Fβ=1 IAP

SVM 1.50E−05 2.03E−04 1.31E−06 6.43E−06 2.32E−06

SPBTM 1.10E−02 2.98E−02 1.26E−03 4.81E−03 1.74E−03

based on the fusion strategy utilised by the baseline model, and the improve-
ment% is the difference between the SIF2’s performance and the best result of
the baseline model. Any improvement greater than 5.0% was considered signifi-
cant.

Table 1 demonstrates that our SIF2 model outperformed the baselines in all
metrics. Compared to the best baseline in the early fusion category (SVM),
SIF2 was significantly better on average by a minimum increase of 15.2% and a
maximum of 30.1%. Compared to SPBTM, which was the best baseline in the
late fusion group, SIF2 was significantly better on average by a minimum increase
of 8.9% and a maximum of 14.4%. The 11-points measure in Fig. 2 illustrated the
superiority of SIF2 and confirmed the significant increases presented in Table 1.
The t-test p-values in Table 2 also confirmed the statistical significance (p-value
< 0.05) of the improvements in the SIF2 model.
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5.5 Discussion

As seen in Table 1 and Fig. 2, adopting the late fusion strategy for taxonomic top-
ical features enabled a significant improvement over all other types of FS method-
ologies. The results showed that using topic modelling can be effective for FS and
more efficient than mix-based techniques. Also, modelling the complex relation-
ships between all entities in the taxonomy using the ERS made it more effective to
adapt LDA feature weights and accurately estimate local and global term weights.
This enabled their combination with representative global statistics.
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Fig. 2. 11-point result of SIF2 compared with baselines (left), and SIF2 combined with
other global statistics (right).
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Fig. 3. SIF2 sensitivity to the selected top-n features (left) and to the number of latent
topics (right).

As seen in Fig. 3, adopting a combination of topic modelling and global statis-
tics made the SIF2 insensitive to the number of latent topics, which is one of the
major advantages of using such an approach. Selecting the number of best fea-
tures that represent a specific collection was, and still is, challenging. However,
SIF2 maintained a stable performance after selecting the top-15 terms from the
vocabulary, which is another important advantage. Overall, even though most
of the documents in the RCV1 were in the testing set, and only a small number



136 A. S. Alharbi et al.

Table 3. Equation 4 using other global statistics.

P@20 b/p MAP Fβ=1 IAP

sr(w) × df(w) 0.594 0.494 0.522 0.485 0.541

sr(w) × pf(w) 0.543 0.460 0.485 0.465 0.510

sr(w) × tf(w) 0.532 0.454 0.480 0.462 0.505

sr(w) × tfidf(w) 0.390 0.344 0.349 0.373 0.376

sr(w) × idf(w) 0.357 0.328 0.332 0.361 0.359

Improvement% +9.4 +7.4 +7.6 +4.2 +6.1

(minimum 3 documents) of D+ were in the training set with an average of fewer
than 13 documents used out of the 50 collections, the SIF2 model showed that
it was very effective in discovering informative terms.

Several statistics can reveal the global importance of terms in a corpus.
Table 3 and Fig. 2 (the right graph) show that the document frequency of a word
(df(w)) was the most representative statistic with a minimum improvement of
4.2% and a maximum of 9.4% when compared to paragraph frequency. The para-
graph frequency of a word (pf(w)), which is the number of paragraphs in the
corpus that contain the word w, and the term frequency (tf(w)), which is the
total number of times a word w appears in the collection, are the next representa-
tive global statistics, as they underperformed the df . The term frequency-inverse
document frequency tfidf(w) and the inverse document frequency (idf(w)) [15]
scored the worst results, and should not be combined with LDA for FS.

6 Conclusions

This paper presents SIF2, an innovative model for selecting informative terms
from specific corpora. The model extends random-sets to fuse hierarchical LDA-
based features and to accurately weight terms on a document-by-document basis.
SIF2 also combines the aggregated terms’ weights with their document frequen-
cies to estimate a global score. This fused global score effectively reflects the
informativeness of a term to the key topic of interest discussed in a specific cor-
pus. The experimental results showed that SIF2 attained significant performance
improvements compared to the baseline models. SIF2 demonstrates a promising
methodology for combining the advantages of unsupervised topic modelling and
corpus statistics.
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Abstract. Solving minimal attribute reduction (MAR) in rough set theory is a
NP-hard and nonlinear constrained combinatorial optimization problem. Ant
colony optimization (ACO), a new intelligent computing method, takes strate-
gies of heuristic search, which is characterized by a distributed and positive
feedback and it has the advantage of excellent global optimization ability for
handling combinatorial optimization problems. Having considered that the
existing information entropy and information gain methods fail to help to select
the optimal minimal attribute every time, this paper proposed a novel attribute
reduction algorithm based on ACO. Firstly, the algorithm adopts an improved
information gain rate as heuristic information. Secondly, each ant solves a
problem of minimum attributes reduction and then conduct redundancy test to
each selected attribute. What’s more, redundant detection of all non-core attri-
butes in the optimal solution will be perfomed in each generation. The result of
the experiment on several datasets from UCI show that the proposed algorithms
are more capable of finding the minimum attribute reduction and can faster
converge and at the same time they can almost keep the classification accuracy,
compared with the traditional attribute reduction based on ACO algorithm.

Keywords: Rough set � Ant colony optimization � Information gain rate
Attribute reduction

1 Introduction

With the rapid development of Internet and cloud computing technology, the scale of
data grows exponentially. There are many important information hidden behind mas-
sive data. Facing the massive data, how to extract the key and effective information is
the current research hotspot. Rough set theory (RST) was proposed by Polish scientist
Pawlak in 1982 [1], which provides a mathematical methodology to deal with
imprecision and uncertainty in information system. The method of using rough set
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theory to reduce the dimension and feature selection of data has been widely used in
many fields such as data mining, machine learning. Attribute reduction is one of the
most important research contents, and also the key step of knowledge acquisition in
rough set theory. However, relying solely on rough set theory can’t solve the prob-
lem well. Therefore, how to integrate attribute reduction algorithms with various
intelligent methods according to the actual situation is one of the future development
directions [2].

Intelligent computing is also called “soft computing”, which is inspired by the laws
of nature (Biology), and invent inventions according to their principles and structures.
People have designed the tabu search, genetic algorithm, particle swarm optimization
algorithm, which have been widely used [3–5]. In the 1990s, the Italian scholar Dorigo,
Maniezzo, Colorni, etc., by simulating the behavior of the natural ant search path,
proposed a new simulation evolutionary algorithm ant colony algorithm [6, 7]. Ant
colony optimization (ACO) is a general heuristic algorithm developed in recent years
[8]. This method is used to solve the TSP problem, distribution problem and has
achieved good results. It has a good global optimization ability in combinatorial
optimization problems, heuristic search and parallel distributed computing. Besides,
this method is easy to combine with other problems.

The method of attribute reduction based on the traditional rough set theory is
mainly based on the positive region method proposed by Pawlak [1]. Miao proposed
attribute reduction algorithm based on information entropy [9]. The algorithm based on
discernibility matrix proposed by Skowron [10] and other forms of methods [11–13]. In
[14], it pointed out that traditional attribute reduction algorithm can’t guarantee the
MAR of the decision table. Searching for minimal attribute reduction has been proved
to be a NP-hard problem [15]. Concerning the ACO algorithm has a good optimization
ability in dealing with combinatorial optimization problems. Jensen and Shen [16] first
introduced the ant colony algorithm into the field of attribute reduction in rough sets,
and proposed an attribute reduction algorithm based on ACO. Ke et al. [17] proposes
the ACOAR algorithm based on the attribute positive region as heuristic information,
and each ant randomly selects the starting node. Literature [18, 19] uses information
entropy and information gain rate respectively as the heuristic information, and pro-
poses an attribute reduction algorithm based on ACO. But it is easy for both to add
redundant attributes to the reduced set as selected attributes. In [20], the ant colony
optimization algorithm is applied to deal with the attribute reduction of continuous
attributes.

In this research, a new ant colony optimization algorithm for attribute reduction is
proposed. An improved information gain rate designed by document [21] is used as
heuristic information and add redundancy judgment to the process of attribute selection
in each ant. At the same time, the non-core attributes redundancy detection is per-
formed for each generation optimal result. The experiment is validated by selecting
data sets in UCI and the reduction results verified by C4.5 and Naive Bayes. Which can
verify that the algorithm has good attribute optimization ability and fast convergence
ability.
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This paper is organized as follows. Section 2 introduces the basic concepts and
definitions of RST. In Sect. 3, the principle of ant colony optimization algorithm is
introduced and three improved algorithms are proposed to overcome the shortcomings
mentioned above. Experimental results and comparative analysis are presented in
Sect. 4. Section 5 gives the conclusion of this paper.

2 Preliminary

2.1 Rough Set Theory

This section recalls some basic and essential definitions from RST that are used for
attribute reduction. Detailed description and formal definitions of the theory can be
found in [1].

Definition 1. In RST, a decision system S is defined as S ¼ ðU;C [D;V ; f Þ, where
U called universe, is a nonempty set of finite objects. C and D are the set of conditional
attributes and the set of decision attributes. V is the union of feature domains such that
V ¼ [ a2CVa for Va denotes the value domain of feature a, any a 2 A determines a
function fa : U ! Va, where Va is the set of values of a. For an attributes set B�C,
there is an associated indiscernibility relation IND(B):

INDðBÞ ¼ fðx; yÞ 2 U � U j 8a 2 B; f ðx; aÞ ¼ f ðy; aÞg ð1Þ

U=INDðBÞ called an equivalent partition called U. The equivalence class includes
multiple equivalence classes, each of which is called a Knowledge Granule.

Definition 2. (Upper and Lower Approximation of Set) Given an information table
S ¼ ðU;C [ D;V ; f Þ, for a subset X�U and equivalence relation IND(B) on domain
U. The subsets X-lower and X-upper approximation of R defined as:

RðXÞ ¼ fx j ð8x 2 UÞ ^ ð½x�R �XÞg ¼ [fY j ð8Y 2 U =RÞ ^ ðY �XÞg ð2Þ

RðXÞ ¼ fx j ð8x 2 UÞ ^ ð½x�R \X 6¼ ;Þg ¼ [fY j ð8Y 2 U =RÞ ^ ðY \X 6¼ ;Þg ð3Þ

2.2 Information Representation in Decision Table

In attribute reduction problem, different attributes contain different information. The
task of attribute reduction is to find those conditions attributes that contain as much
information as possible about decision attributes. For this purpose, Shannon’s infor-
mation theory [22] provides us with a possible way to measure the information of data
set with entropy and mutual information.
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Definition 1. Let S ¼ ðU;C [D;V ; f Þ be a decision table. For any B�C, let
INDðBÞ ¼ fX1;X2; � � � ;Xng denote the partition induced by equivalence relation IND
(B). Similarly INDðDÞ ¼ fY1; Y2; � � � ; Ymg. The information entropy H(B) of feature set
B is defined as:

HðBÞ ¼ �
Xn
i¼1

pðXiÞ log2 pðXiÞ ð4Þ

The conditional entropy of D conditioned to B is defined as:

HðDjBÞ ¼ �
Xn
i¼1

pðXiÞ
Xm
j¼1

pðYj jXiÞ log2 pðYj jXiÞ ð5Þ

Where pðXiÞ ¼ Xij j= Uj j; pðYjjXiÞ ¼ p Xi \ Yj

�� ��� Xij j, 1� i� n, 1� j�m, Xij j is the
cardinality of Xi.

Definition 2. Let S ¼ ðU;C [D;V ; f Þ be a decision table, with B�C. IND(B) and
IND(D) represents equivalence relations of conditions and decisions attribute. The
mutual information between B and D is defined as:

IðB;DÞ ¼ HðDÞ � HðD jBÞ ð6Þ

Definition 3. [8] Let S ¼ ðU;C [D;V ; f Þ be a decision table. For every a 2 C,
IfIðC � fag;DÞ \IðC;DÞ, then a is a core attribute of S.The integration of all core
attributes is called attribute core. Attribute core can be used as the starting point of
reduction computation.

Definition 4. Let S ¼ ðU;C [D;V ; f Þ be a decision table. For any B 2 C of attribute,
and any attribute a 2 C � B, the significance of attribute a with respect to B and D is
defined as:

sgnða;B;DÞ ¼ IðB[fag;DÞ � IðB;DÞ ð7Þ

The significance of feature attributes can be used as heuristic information in greedy
algorithms to compute the minimal attribute reduction.

3 Ant Colony Optimization for Attribute Reduction

3.1 Ant Colony Optimization Principle

In nature, ants can leave pheromones on the path they walk through. Ants in the
process of movement to perceive the existence and strength of pheromones are more
likely to move toward higher intensity pheromones. It is through the exchange of
information that the ants can realize the goal of searching for food.
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Based on this positive feedback mechanism to find the shortest path. Inspired by the
behavior of real ants, Dorigo and Caro proposed ACO to solve combinatorial opti-
mization problems [3]. Jensen and Shen (2003) propose a method for feature selection
based on rough sets and ACO (JSACO) [6]. The algorithm idea is as follows: given a
colony of k artificial ants randomly to select the initial node (attribute). Then, the next
attribute is selected based on pheromones and heuristic information. During every
iteration k, each ant searches for a set of attribute reduction and updates pheromone
according to the optimal attribute path. The algorithm stops iterating when a termi-
nation condition is met.

3.2 Local Solution

In ACO, we need first to find a local solution, and then obtain the global optimal
solution according to the positive feedback mechanism of the ant colony. Ants ran-
domly selects the initial attribute, and then select the next probability of the largest
attribute according to the probability formula. The formula is defined as follows:

pkijðtÞ ¼
saijg

b
ijðtÞP

l2allowedk
sailg

b
ilðtÞ

; j 2 allowedk ð8Þ

Where k and t denote the number of ants and iterations, respectively. a > 0 and b >
0 are two parameters which determine the relative importance of the pheromone trail
and heuristic information. If a is larger than b, the ant select the attribute path when the
main consideration pheromone trails. If b is much larger than a, ants will select those
edges with higher heuristic information in a greedy manner. a and b should be chosen
in the range 0–1 and be determined by experimentation. allowedk denotes the set of
conditional attributes that have not yet been selected. sij and bij are the pheromone
value and heuristic information of choosing attribute j when at attribute i.

A construction process is terminated by one of the following two conditions:

(1) IðC;DÞ ¼ IðRk;DÞ, where Rk is local attribute solution constructed by the k-th
ants.
(2) The cardinality of the current solution is larger than that of temporary minimal
attribute reduction.

The first condition to stop the search means that the current reduction set of
attributes has achieved the reduction effect. If the local solution attribute set cardinality
is less than the current global optimal solution, the local solution is taken as a new
global optimal solution. The second condition implies that the cardinality of attribute
reduction set for the k-th ant is greater than the cardinality of the current global optimal
solution.
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3.3 Pheromone Updating

After each ant has find a set of reduction, which represents the completion of an
iteration. The pheromone on each edge should be updated according to the following
rule:

sijðtþ 1Þ ¼ qsijðtÞþDsijðtÞ ð9Þ

Parameter sijðtÞ is the amount of pheromone on a given edge (i, j) at iteration t, and
sijðtþ 1Þ is the amount of pheromone on a given edge (i, j) at next iteration.
qð0� q� 1Þ represents constant used to simulate the evaporation of pheromone, and
DsijðtÞ is the amount of pheromone deposited, typically given by:

DsijðtÞ ¼
P q

jRðtÞj if edge ði,j) has been traversed
0 otherwise

�
ð10Þ

Where parameter q is a given constant, |R(t)| is the cardinality of the minimal attribute
reduction at iteration t.

3.4 The Proposed Algorithm

RSFSACO algorithm [19] uses information gain as heuristic (7), which tends to choose
attributes that contain more values. From the perspective of information theory, it is the
property that tends to choose a more chaotic value. With the information gain rate as
the heuristic information, there is a preference for the attributes with less number of
values. Therefore, the first contribution of this paper is to use the improved information
gain rate [21] as heuristic information (11). This not only considers the increment of
mutual information after adding the selected attributes, but also takes the information
entropy of the selected attribute itself into account.

The heuristic information formula is as follows:

gr;p ¼ sgnðr; fCore[ pg;DÞ=HðDjrÞ ð11Þ

Suppose Core denote the core of C with respect to D in decision table. All ants start
from Core set, and the given ant is currently at node p. The next selected attribute
r 2 C � fCoreþ pg.
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Algorithm IGRARACO (Improved-information Gain Rate Attribute Reduction based 
on ACO)
Input: a decision table ( , , , )= US U C D V f and parameters
Output: a minimal feature reduction minR and its cardinality minL

1: Initial min min, , 0R C L C iteration= = = , 
ijη and ijτ , 1 ,i j C≤ ≤ ;

2: Compute ( ; )I C D and Core; 
3:  For every C∈c do
4:    If ( -{ }; ) ( ; )<I C c D I C D then { }= UCore c ;
5:   end If
6: end For
7:  For 1←iteration to maxcycle do
8:    For every k Ant∈ do 
9:      , | |k kR Core L Core= = , Select a feature { }ka C Core∈ − random
10:        { }, 1k k k k kR R a L L= = +U ; 
11:     Do: 
12:         Calculate ( ; )kI R D ; 
13:         Select next attribute { }k kb C R∈ − by formula (8);
14:         Calculate ( { }; )k kI R b DU ; 
15:       If ( ; ) ( { }; )k k kI R D I R b D≠ U then { }, 1k k k k kR R b L L= = +U ; 
16:        end If
17:      Until ( ; ) ( ; )kI R D I C D= or minkL L> ; 
18:    end For 
19:    For every k kx R Core∈ − do
20: If ( { }; ) ( ; )k kI R x D I C D− = then { }k k kR R x= − ; 
21:      else  select next attribute; 
22:      end If
23:    end For
24:    If ( ; ) ( ; )kI R D I C D= and minkL L< then min min,k kR R L L= = ; 
25:    end If
26:    Update ( 1) ( ) ( )ij ij ijt t tτ ρτ τ+ = + Δ ; 
27:  end For
28:  Output minR and minL ;

Whether traditional attribute reduction algorithm or an attribute reduction are based
on ACO algorithm, they usually only focus on the choice of heuristic information and
how to optimize and improve it. However, the redundant detection of selected attributes
is ignored, which can easily lead to the addition of redundant attributes to the reduction
set. Therefore, the second contribution of this paper is to make redundant judgement for
each ant’s attribute selection process, which can effectively avoid adding redundant
attributes to the reduction result. Although the optimal solution of each generation has
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been obtained by the above method, there may still be redundant attributes, that is, the
local optimal solution is not the global optimal solution. The third contribution is to
redundantly detect the optimal solution of each generation again, thus eliminating the
possibility of redundancy due to the random selection of the initial attributes and
bringing the result closer to global optimal.

It should be pointed out that the purpose of the article is to find the MAR, that is,
the fewer the number of attributes in the reduction set is, the better it can be. The
comparison between the local optimal solution and the global optimal solution can be
expressed as the comparison of reduction length.

4 Experimental Analysis

4.1 Comparison with Other Methods

In order to verify the effectiveness of the proposed algorithm, IEACO [18] and
RSFSACO [19] are compared experimentally, and the effects of dimension reduction
are compared as well. The performance of the algorithm is evaluated as follows:
(1) Comparison of minimum reduction capability; (2) The change of fitness value in
iterative updating process is used to evaluate the convergence speed of the algorithm.
The algorithm is tested on a personal computer running Windows10 with 2.60 GHZ
processor and 8 GB memory. In our experiments, we set the parameters a = 1,
b = 0.01, = 0.9, q = 0.1 and the initial pheromone η was set to 0.5 with a small
random perturbation added, the number of ants was 1.5 times the number of attributes.
Each dataset is tested for twenty times and the halting condition is reaching the
maximum cycle or getting the same attribute reduction under five consecutive itera-
tions. We also compare with other metaheuristic algorithm GenRSAR [3]. The
experiments are carried out on four UCI datasets, Zoo, Audiology, Soybean and Vote.
The experimental results are shown in Tables 1 and 2.

Table 1. Comparison of performances between RSFSACO, IEACO and IGRARACO

Data set Inst. Feat Min-
Redu

RSFSACO IEACO IGRARACO
Redu Time Redu Time Redu Time

Audiology 200 70 13 1415155 78 20 25.8 13 76
Breastcancer 699 10 4 4 5.42 141258 1.11 4 6.7
Chess-king 3196 37 29 2983012 1563 36 2226 29 3753
Monk1 124 7 3 3 <0.1 31347 <0.1 3 <0.1
Monk3 122 7 4 4 <0.1 4 <0.1 4 <0.1
Mushroom 8124 23 4 5 2431 49511 973 41555 2675
Vote 435 17 9 9 5.91 1261312 2.78 9 7.4
Wine 178 14 4 4 1.57 4 0.19 4 2.1
Zoo 101 17 5 52618 0.53 6871181 0.2 5 0.5
Glass 214 10 5 51466 1.73 5461274 0.25 5 1.9
Soybean 307 36 9 1519201 59 1111219 5.8 971013 41
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From the results, we can see that IGRARACO outperforms other algorithms with
respect to ability of finding optimial reduction. For example, the results in IGRAR-
ACO, IEACO and GenACO all contain redundant attributes for dataset Audiology,
Soybean. For other datasets, although the comparison algorithm can get the MAR, but
some results are not optimal, with redundant attributes. The reason is that the redun-
dancy attribute is added to the reduction set in the process of attribute selection and also
lacks redundant detection of the reduction results. At the same time, we find that the
running time of IGRARACO is greater than other algorithms since in the process of
computing, we have redundant detection of each attribute and result.

4.2 Analysis of Convergence Rate

In order to compare the optimization ability and convergence speed of the algorithm
and IEACO and RSFSACO algorithm in the reduction process. We compare the fitness
values of three algorithms in the experiment, and calculate the fitness value by the
weight of attributes and the weighted length of attributes [16]. The fitness calculation is
as follows:

fitenss ¼ k
IðRk;DÞ
IðC;DÞ þ ð1� kÞ jCj � jRkj

jCj ð12Þ

Experiments are carried out by using multiple data sets in UCI. In order to show the
effectiveness of the algorithm more clearly, the variable design is the optimal attribute
reduction after each ant search. Number of searches = iteration times * ant number. The
datasets are Audiology, Breastcancer, Glass, Vote, Zoo and Mushroom. The fitness
value are shown in Fig. 1.

The convergence rates of IGRARACO and the GenRSAR algorithm are analyzed
in Fig. 2. The fitness value of each generation is used to reflect the change trend of
fitness value, and the number of iterations is set to 500 times. The datasets are Soybean
and Zoo.

From the convergence rate analysis Figs. 1 and 2 can be seen that the algorithm
designed in this research has faster convergence rate than other comparison algorithms.
IGRARACO has the ability to quickly converge in locating the optimal solution, which
is obtained in fewer iterations through the detection of selected attributes and reduction
results In most cases, a satisfying solution can be achieved within five iterations.

Table 2. Comparison of performances between GenRSAR and IGRARACO

Data set Inst. Feat Min-Redu GenRSAR IGRARACO
Redu Time Redu Time

Zoo 101 17 5 5561471 0.8 5 0.5
Soybean 307 36 9 111123, >1316 6.3 971011112 41
Audiology 200 70 13 1511611718 29.4 13 76
Vote 435 17 9 951015115 10.3 9 7.4
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The performance of the proposed algorithm is evaluated by training C4.5 classifier
and Naive Bayes classifier on the original data sets and the reduced data sets. We
have used the implementation WEKA software [23]. Classification accuracies uses
10-fold-cross validation approach for validation, the results of experiments are shown
in Tables 3 and 4.

0 100 200 300 400 500
0.7

0.75

0.8

0.85

0.9

0.95

iterations

fit
ne

ss

RSFSACO
IGRARACO
IEACO

0 20 40 60 80 100 120
0.76

0.78

0.8

0.82

0.84

0.86

0.88

iterations

fit
ne

ss

RSFSACO
IGRARACO
IEACO

0 20 40 60 80 100 120
0.72

0.74

0.76

0.78

0.8

0.82

0.84

iterations

fit
ne

ss

RSFSACO
IGRARACO
IEACO

0 50 100 150 200
0.72

0.74

0.76

0.78

0.8

0.82

0.84

iterations

fit
ne

ss

RSFSACO

IGRARACO

IEACO

0 50 100 150 200
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

iterations

fit
ne

ss

RSFSACO
IGRARAC
IEACO

0 50 100 150 200 250 300
0.9

0.91

0.92

0.93

0.94

0.95

0.96

iterations

fit
ne

ss

RSFSACO

IGRARACO
IEACO

Fig. 1. The change of fitness value over successive iterations for IGRARACO, RSFSACO and
IEACO.
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Fig. 2. The change of fitness value for IGRARACO and GenRSAR.

Table 3. Classification accuracy before and after reduction obtained by C4.5 classifier

Data set Before reduction IGRARACO reduction IEACO
reduction

RSFSACO
reduction

Audiology 77.8761 73.8938 73.8938 74.3363
Breastcancer 94.8498 95.4220 95.4220 95.4220
Chess-king 99.4368 99.2157 99.4368 99.2157
Mushroom 100 100 100 100
Vote 96.3218 96.3218 96.3218 96.3218
Wine 92.1348 91.5730 91.5730 91.5730
Zoo 92.0792 94.0594 96.0396 94.0594
Glass 66.8224 69.6262 69.6262 58.8785
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From the experimental results obtained, we conclude that the three algorithms have
little differences in classification quality after most data reduction and the reduced
attribute results can ensure the classification of the original data is valid. Most of the
reducts found by IGRARACO exhibit higher classification accuracy.

5 Conclusion

This paper discusses the shortcomings of conventional ACO attribute reduction. The
results of attribute reduction in these algorithms are often fail to find minimal attribute
reduction. Meanwhile, they need to iterate many times to get an appropriate result.
These techniques usually fail to find optimal reductions, as no perfect heuristic can
guarantee optimality [19].

We proposed a novel attribute reduction based on rough set and ACO. ACO has the
ability to quickly converge. It has a strong search capability in combinatorial opti-
mization problem to find minimal reduction. Our algorithm has the following char-
acteristics: (a) Its heuristic information use an improved information gain rate as
attribute selected significance; (b) Attribute redundancy judgment is carried out in each
ant attribute selection process; (c) Redundant attributes are deleted for each generation
of optimal attribute reduction results. Experimental results on real datasets demonstrate
the effectiveness of our method to attribute reduction.

At the same time, through the experimental results we found that when the data set
is larger, the algorithm need much longer time and the experiment lacks large data sets
for verification. Therefore, the next step is to combine with parallel technology to deal
with attribute reduction in large-scale datasets.
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Table 4. Classification accuracy before and after reduction obtained by Naive Bayes classifier

Data set Before reduction IGRARACO reduction IEACO
reduction

RSFSACO
reduction

Audiology 73.4513 73.8938 73.8938 69.0265
Breastcancer 95.7082 94.2775 94.2775 94.2775
Chess-king 87.8911 89.8592 87.8911 89.8592
Mushroom 95.8272 98.6091 98.6091 98.5229
Vote 90.1149 92.3333 91.2644 92.3333
Wine 96.6292 94.3820 94.3820 94.3820
Zoo 95.0495 90.0990 89.1089 90.0990
Glass 48.5981 47.1963 47.1963 53.7383
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Abstract. The Closest Pair Problem (CPP) is one of the fundamental
problems that has a wide range of applications in data mining, such
as unsupervised data clustering, user pattern similarity search, etc. A
number of exact and approximate algorithms have been proposed to solve
it in the low dimensional space. In this paper, we address the problem
when the metric space is of a high dimension. For example, the drug-
target or movie-user interaction data could contain as many as hundreds
of features. To solve this problem under the �2 norm, we present two novel
approximate algorithms. Our algorithms are based on the novel idea of
projecting the points into the real line. We prove high probability bounds
on the run time and accuracy for both of the proposed algorithms. Both
algorithms are evaluated via comprehensive experiments and compared
with existing best-known approaches. The experiments reveal that our
proposed approaches outperform the existing methods.

Keywords: Closest pair · High dimension · Approximate algorithms

1 Introduction

Similarity search has been widely used in data mining. Example applications
include finding the similarity between user patterns from online merchant trans-
actions, analysis of social media connections, unsupervised data clustering,
knowledge discovery from semantic data, etc. Two of the fundamental problems
in data mining are finding the Nearest Neighbor (NN) and finding the Closest
Pair (CP). These two problems are closely related. For instance, CP could be
seen as an extension of NN, which requires more computation and thus is more
challenging. In general, multi-feature data could be modeled as points in a high
dimensional metric space. Among all the different similarity measurement met-
ric, �p norm is commonly used. In this paper, �2 norm, or Euclidean distance, is
employed as it is one of the most widely applicable measurements.

The Closest Pair Problem (CPP) we are addressing is that of identifying the
closest pair of points from a given set of N points ∈ �m when m is not small.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 151–163, 2018.
https://doi.org/10.1007/978-3-319-93040-4_13
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This classical problem has been studied extensively [19]. A straightforward algo-
rithm for solving this problem takes O(N2m) time, where m is the dimension of
the input space. Research works have been carried out in different domains for
different purposes to solve this problem in an efficient way. In 1979, Fortune and
Hopcroft presented a deterministic algorithm with a run time of O(N log log N)
assuming that the floor operation takes O(1) time [8]. In [1], another divide-and-
conquer deterministic algorithm was introduced. Later improvements include
[9,11,17,18]. In his seminal paper, Rabin proposed a randomized algorithm with
an expected run time of O(N) [7] (where the expectation is in the space of all
possible outcomes of coin flips made in the algorithm). Rabin’s algorithm also
used the floor function as a basic operation. In 1995, the sieve method was pro-
posed to eliminate points in a randomized way such that the actual comparison
of the remaining candidates could be dramatically reduced [14]. A sample-based
randomized approach was proposed in [6] in 1997 to solve several issues existing
in [7]. Yao has proven a lower bound of Ω(N log N) on the algebraic decision tree
model (for any dimension) [21]. All these algorithms assume a constant dimen-
sional space (i.e., m = O(1)), and the run times are exponentially dependent on
the dimension, making them not applicable for a dimension of several hundreds.

In recent years, database applications have driven the research on CPP. By
exploring the connection between CPP and matrix multiplication, Indyk [10]
has presented an O(N (w+3)/2) time algorithm for CPP in �1 and �∞ norms,
where O(Nw) is the time needed to multiply two N × N matrices. This algo-
rithm is not applicable for �2 norm. Corral et al. [3] have provided a method
that uses tree data structures. Besides exact algorithms, Lopez and Liao [15]
have provided an approximate algorithm to address this problem by making
copies of the original data and employing random shifting on each copy. More
recently, Locally Sensitivity Hashing (LSH) has gained attention in solving the
NN problem. As a consequence, approximate algorithms based on LSH for CPP
are proposed in the literature. Datar [5] has proposed a sub-quadratic time algo-
rithm using LSH that solves the c-approximate problem (output neighbors that
are no further than c times the distance between the nearest neighbors). Later
Tao [20] improved Datar’s algorithm and extended it to out-of-core CPP, where
the I/O costs are optimized. The comparison in [20] shows that their algorithm
outperforms the methods in [3,15]. These algorithms mainly focus on the NN
problem, or address the problem for efficiency in I/O cost, making them fit for
out-of-core computation with many applications such as in database query pro-
cessing. However, they are not very suitable for in-memory computation. Also,
the construction of special data structures (such as LSB tree in [20]) will bring
significant overhead for in-core tasks. In addition, the approximate methods in
this domain are addressing the c-approximate problem that introduces a relax-
ation factor c.

Mueen et al., have presented an elegant exact algorithm called MK for the CPP
[16]. Though this algorithm was originally proposed to solve a special case of the
CPP, known as the time series motif mining problem, it can be used to solve the
CPP very well. Although MK is an O(N2m) time algorithm, it improves the per-
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formance of the brute-force algorithm in practice using the triangular inequality
and a technique called early-abandoning. MK is a deterministic algorithm that
always finds the closest pair. To the best of our knowledge, MK is still one of the
best performing algorithms for high dimensional CPP in practice, even though it
is no longer the state-of-the-art choice for time series motif mining problem. In
this paper we use MK as the baseline to evaluate our proposed algorithms. To
provide a fair comparison, we use the original MK code that is publicly available
in http://alumni.cs.ucr.edu/mueen/MK/. The code for our proposed approaches
can be found at https://github.com/TideDancer/ACPP.git.

In this paper we present two approximate algorithms for the CPP. One of
them revisits the divide-and-conquer approach but modifies it to high dimen-
sional settings. The other uses a novel idea in random projection: The original
Johnson-Lindenstrauss Lemma shows the existence of a random projection of
O(log N) dimension that preserves all pairwise distances with a high probabil-
ity. For the CPP we only have to preserve the distance between the closest pair.
We use random projection of points into 1D. We show that if we perform this
projection O(log N) times, then the distance between the closest pair will be
preserved at least once with a high probability. Note that although the proposed
algorithms are sequential, all these algorithms along with MK, could be easily
parallelized due to the independence of their subroutines.

The rest of this paper is organized as follows: In Sect. 2, we present two
approximate algorithms for the high dimensional CPP. Running time and accu-
racy bounds are proved for both of the approaches (refer to Appendix for details).
Comprehensive experiments are carried out to evaluate the performance of both
algorithms in Sect. 3, and some conclusions are provided at the end.

2 Proposed Approximate Algorithms

Two approximate approaches for the high dimensional CPP are provided: ACP-P
and ACP-D. Both algorithms always keep an upper bound δu on the distance δ∗

between the closest pair of points. The common initial step for both algorithms
is to obtain an upper bound on δ∗ by picking a random sample of

√
N points

and identifying the distance between the closest pair of points in the sample.
Even a brute-force algorithm will only take O(N) time for doing this.

2.1 ACP-D

The divide-and-conquer algorithm of [1] performs well on low dimensional (e.g.,
2D and 3D) data with a run time of O(N log N). Its performance degrades
significantly on high dimensional data since the run time has an exponential
dependence on the dimension. The divide-and-conquer algorithm proceeds by
partitioning the input into two using the median along one of the dimensions.
The closest pairs are recursively found for each of the two parts. Followed by
this, we have to find the closest among the cross-part pairs. When the input is

http://alumni.cs.ucr.edu/mueen/MK/
https://github.com/TideDancer/ACPP.git
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Fig. 1. Illustration of search within a range s around the partition line along a partic-
ular coordinate

from 2D (i.e., m = 2), the number of cross-pairs that have to be considered is
proved to be O(N). When the input is from an m-dimensional space, the number
of candidate cross-pairs to be considered goes up to O(N × 3m). This number
can be Ω(N2) or worse. Thus the performance could be as bad as that of the
brute force algorithm.

Algorithm 1. ACP-D

Input: N points pi ∈ �m (1 ≤ i ≤ N),
brute-force subset size T , search range
constant α. Initialize left = 1, right =
N , depth = 1

Output: function ACP-D(depth,
left, right) finds the closest pair (l, r)
with the smallest Euclidean distance
D(l, r)

1: len = right - left + 1
2: if depth = 1 then
3: Randomly select one coordinate

c(H), c(H) ∈ [1, d];
4: Sort the points based on values

pi[c
(H)] along the coordinate c(H);

5: end if
6: if len ≤ T then
7: Use brute-force to find best-so-far

d(i, j) where left ≤ i ≤ j ≤ right;
8: if d(i, j) < D(l, r) then
9: l = i; r = j; D(l, r) = d(i, j);

10: end if
11: return D(l, r);
12: else
13: mid = left + len/2;
14: ACP-D(depth+1, left, mid);
15: ACP-D(depth+1, mid+1, right);
16: Obtain two sets of indices: S =

{pi}, i < mid, pmid − pi ≤ αD/
√

N
and S′ = {pj}, j > mid, pj −pmid ≤
αD/

√
N ;

17: for i ∈ S do
18: for j ∈ S′ do
19: if dist(pi, pj) < D(l, r) then
20: l = i; r = j; D(l, r) =

dist(pi, pj);
21: end if
22: end for
23: end for
24: end if

In this section we propose an enhanced divide-and-conquer algorithm. The
idea is to choose the candidate cross-part pairs appropriately. Here again we
partition the input into two and recursively find the closest pair in each part.
To find the closest cross-part pair we do the following: Let H be the hyperplane
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that partitions the input into two (based on the median along one of the coor-
dinates). We have to consider all pairs of the form (a, b) where a is one side of
the hyperplane H and b is on the other side of H. Instead of checking all such
pairs we only consider pairs where a and b are on different sides of H but within
a distance of s. We refer to s as the search range (see Fig. 1). This procedure is
repeated by partitioning along different coordinates to increase the chances of
finding the closest pair.

To begin with, ACP-D randomly chooses a coordinate to do partition. It
then recursively finds the closest pair’s distance from the left and the right par-
titions (denote the distances as δ(L), δ(R)). Next we look at all the points that
reside within a search range s around the partition hyperplane H along this
coordinate, and find the closest pair (distance as δ(s)) among these candidates.
Followed by this we update the pair with the minimum distance denoted as
δ(H) = min(δ(L), δ(R), δ(s)). The detailed pseudocode of ACP-D is given in Algo-
rithm1. An illustration of searching within a range s is shown in Fig. 1. We
establish the following theorem and provide the proof in Appendix. This the-
orem offers a probabilistic bound on success rate and run time of ACP-D. To
boost the success rate, we repeat ACP-D and output the closest pair seen as the
closest pair of points.

Theorem 1. Let p[c] represent vector p’s c-th element, or equivalently p’s c-
coordinate value. Assume that the coordinate values in each dimension are uni-
formly distributed and let the spread length of points be r = maxi pi[c(H)] −
minj pj [c(H)] on the partition coordinate c(H). Use a search range of s =

√
α δ(H)√

m
.

As long as r2 = Ω(N) where m is the dimension, ACP-D algorithm’s expected
run time will be T (N) = O(N log N), with a high probability.

Corollary 1. We have the following probability bound on the run time:

Prob{T (N) ≥ (β + 1)α(δ(H))2N log N} ≤ e−β , for any β > 0.

2.2 ACP-P

Random projection lemma [12] states that pairwise distances are closely pre-
served in a random O(log N)-dimensional space with a high probability. In this
paper we prove that, if we repeat projecting the input points from �m to �d

randomly (d < m) a total of k times, as long as kd satisfies a certain condition,
the closest pair’s distance will be closely preserved in at least one of the projec-
tions, with a high probability. In addition, d = 1 would significantly reduce the
computation cost. We exploit this property in the ACP-P algorithm.

After the projection, all the pairs in the projected space that are within a
distance of δ(P ) = (1 + ε)δu (in �d) needs to be identified, where ε is a small
constant. For the case of d > 1, identifying these close pairs in �d still remains a
difficult task. One can use hyper-sphere centered at each point with a radius of
δ(P ), and check if there are other points in the hyper-sphere. However, this might
be even harder than directly computing all pairwise distances in �d, which takes
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O(N2d) running time. On the other hand, if in 1-D space (d = 1), the hyper-
sphere becomes left and right intervals, making the job of identifying close points
within an interval of δ(P ) extremely easy. To be specific, one can use any sorting
algorithm to first sort all the projected points because all the points are identified
by a scalar value in 1-D space. Then a scanning from left to right is performed
and all the adjacent points within a certain range are detected. In total it only
requires an O(N log N) running time. In fact, sorting could be replaced by a
griding approach to identify pairs within an interval (see Appendix 4.4). After
identifying these pairs, the Euclidean distance between each pair is computed in
�m. The pair with the least distance is kept and δu is updated.

Algorithm 2. ACP-P

Input: N points in �m: p1, p2, . . . , pN .
Output: The closest pair of input points.

1: j = 1
2: repeat
3: Randomly generate a projection

vector Φ ∈ �1×n

4: for i = 1 to N do
5: p′

i = ΦpT
i

6: end for
7: Sort p′

1, p
′
2, . . . , p

′
N ;

8: for i = 1 to N do
9: Identify the interval that p′

i

belongs to;
10: end for

11: for every interval do
12: Generate all possible pairs from

the points that have fallen into
this interval. These are candidate
pairs;

13: end for
14: For each candidate pair compute

the distance in �m and pick the pair
with the least distance. Let this dis-
tance be δj ;

15: j = j + 1;
16: until j = k
17: Find δo = min{δ1, δ2, . . . , δk};
18: return δo

The above projection-identification process is repeated k times. We show (in
Appendix) that if kd = Θ(log N), then the closest pair would come within a
distance of (1+ ε)δu in the projected space at least once with a high probability.
Note that in the original Johnson-Lindenstrauss Lemma, d = O(log N). The
reason that we can push the limit to d = 1 is because we only have to
preserve the distance between the closest pair, and not all pairwise
distances. We provide the following theorems and the corresponding proofs (in
Appendix).

Theorem 2. Let the closest pair have a distance of δ∗. If we repeat the random
projection �m → �d for a total of k times, then the probability that (δ(P ))2 <
(1 + ε)(δ∗)2 at least once is high (i.e., ≥ 1 − N−α where α is some constant), as
long as dk ≥ 4α

ε2−ε3 log N , for any ε ∈ [0, 1].

Corollary 2. Let d = 1. In each iteration of ACP-P, let the projected points
be quantized with intervals of length 2(1 + ε)δu. The probability that the closest
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pair (in �m) will fall into the same interval is ≥ 1
2 [1− e−(ε2−ε3)/4]. This in turn

means that the number of iterations taken by ACP-P to identify the closest pair
of points with a high probability is k = O

(
α log N
ε2−ε3

)
.

In practice, we have found that the sorting based implementation in 1-D does
not introduce an observable overhead. A detailed pseudocode of ACP-P that
employs sorting is given in Algorithm2. It is worth pointing out that the key
difference between ACP-P and the LSH method used in [20] is after projection.
The linear search based on the sorted list of points is much more efficient to
identify each points’ close neighbors, rather than a grid scheme using hashset
technique. In our experiments we have realized that neither C++/boost hashset
nor google’s hashset could achieve desirable in-core performance, making the
method in [20] not suitable for in-memory computations. Besides, the probability
bound analyses in Appendix are also different.

3 Experiments

We have conducted experiments to evaluate the performance of ACP-P and
ACP-D against MK. We have employed an Intel Xeon E5 CPU @ 3.2 GHz
machine. The experiments have been performed on synthetic datasets, with dif-
ferent numbers of points and dimensions. Coordinate values have been generated
uniformly randomly from the range: [0, 1000]. The following values have been
used: N = 10, 20, 30, 40, 50 × 103 and m = 128, 256, 512, 1024 and 2048.

To further boost the success rate, in each run we repeat the approximate
algorithms Q times and output the best among them. Q is designed as QACP-D =
h N
10×103 and QACP-P = h( N

10×103 )2 for ACP-D and ACP-P, respectively. N is the
input size and h is the hyper parameter. For instance if N = 30k, h = 2, then
Q = 6 for ACP-D and Q = 18 for ACP-P. We perform 10 runs and provide
the average running time, average rank and the hit rate (i.e., the fraction of the
number of times the closest pair is found in 10 runs). Clearly, the larger the h,
the better is the accuracy and the worse is the run time.
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Fig. 2. Run time comparison
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Fig. 3. Hit rate comparison

Table 1. Average rank (the smaller the better)

m = 128 m = 256 m = 512 m = 1024 m = 2048

h = 1 ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P

N=10k 2.7 7.1 4 6.2 4.4 8.5 4 6.6 3.9 7.9

N=20k 1.7 4.7 2 3.7 3.5 4.9 3.6 5 3.2 5.5

N=30k 2.1 1.9 1.7 2.7 1.9 2.3 1.5 3.2 1.8 2.9

N=40k 1.5 1.9 1.2 3.3 2.4 2 1.3 2.9 2.1 2.2

N=50k 1.6 1.5 1.4 2.6 1.2 1.4 1.7 2 2 3.5

h = 2 ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P

N=10k 1.6 4.8 2.5 3.7 1.7 5.5 2.2 5.8 3.5 5.7

N=20k 1.5 1.9 1.2 3.3 1.8 2.4 1.5 4.6 2.2 3.1

N=30k 1 1.2 1 2.1 1.2 1.5 1.5 2 1.3 1.6

N=40k 1.1 1.2 1 1.4 1.1 1.1 1.3 1.7 1.3 1.3

N=50k 1 1 1.1 1.1 1.1 1.2 1 1.8 1 1.4

Figure 2 shows the run time comparison. Clearly, for all settings, ACP-D and
ACP-P are significantly faster than the MK algorithm. As expected, the run
time when h = 2 (the right plot) is longer than when h = 1 (the left plot)
for both approximate algorithms. When N is smaller, ACP-D could be slightly
faster, but when N is larger, ACP-P becomes the fastest. For instance, when
N = 50k,m = 1, 024, h = 1, ACP-D’s run time is 1,252 s and ACP-P’s is 832 s,
while MK is much slower using 5,230 s.

To illustrate the accuracy, in Fig. 3, the hit rate is presented. Again in the
case of h = 2, the overall hit rate is higher as expected. When m is higher, the
hit rate tends to be better than in smaller dimension cases. The average rank
is also provided in Table 1. From the table we can see that for larger N , the
proposed algorithms are more robust because the average ranks are closer to 1.
And the overall average rank for h = 2 is also better than that for h = 1.

In addition to the rank of the best pair identified, we also report the difference
between the output pair’s distance and the true closest pair’s distance. We define
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the distance ratio as ρ = d/d∗, where d∗ is the distance between the closest pair
of points and d is the distance between the output pair of points. In Table 2,
we show the mean and variance of ρ when h = 2, and demonstrate that for our
synthetic dataset, the distance ratio is very close to 1 with a small variance. This
also proves the robustness of our proposed approximate algorithms.

Table 2. Distance ratio ρ (mean and standard deviation) when h = 2

h = 2 m = 128 m = 256 m = 512 m = 1024 m = 2048

Mean ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P

N=10k 1.010 1.034 1.004 1.008 1.002 1.012 1.001 1.004 1.006 1.006

N=20k 1.008 1.015 1.000 1.002 1.002 1.004 1.001 1.003 1.005 1.007

N=30k 1.000 1.004 1.000 1.002 1.000 1.001 1.000 1.001 1.001 1.002

N=40k 1.001 1.003 1.000 1.012 1.000 1.000 1.001 1.001 1.001 1.001

N=50k 1.000 1.000 1.002 1.002 1.000 1.000 1.000 1.005 1.000 1.001

Std ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P

N=10k 0.011 0.029 0.004 0.003 0.002 0.006 0.001 0.002 0.002 0.004

N=20k 0.015 0.015 0.000 0.003 0.003 0.003 0.001 0.003 0.005 0.005

N=30k 0.000 0.011 0.000 0.002 0.001 0.002 0.000 0.001 0.002 0.003

N=40k 0.004 0.006 0.000 0.014 0.001 0.001 0.001 0.002 0.001 0.001

N=50k 0.000 0.000 0.007 0.007 0.001 0.001 0.000 0.005 0.000 0.001

4 Conclusions

In this paper we have offered two approximate algorithms for solving the CPP.
Both of them are based on the idea of converting high dimensional search into line
search. We provide theoretical bounds on the run time and prove the accuracy
of ACP-D. For ACP-P, we exploit random projections but push the limit to
1-D space because we only identify the closest pair rather than preserving all
pairwise distances. A theoretical analysis is also provided. In the experiments,
we perform comprehensive simulations to evaluate both the run time and the
accuracy for the proposed approximate algorithms. The results reveal that our
approach runs much faster than the state-of-the-art method while still keeping
a very good accuracy. Our algorithms could be easily parallelized for further
speedups.

Acknowledgments. This work has been partly supported by NSF Grants 1447711 &
1743418 to SR; and the National Natural Science Foundation of China Grants 61472357
& 61571063 to FZ.
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Appendix

4.1 Proof of Theorem1

Proof. In the recursive algorithm ACP-D, the initial data size is N and each
recursion splits the input into two halves. Recursion ends when the size is below
the threshold T . The brute-force or MK algorithm can be used when the final
input size is ≤ T . Thus the total number K of recursions is K = log(N/T ).

In each iteration, the closest pair (pa, pb) may not be captured only if this pair
is neither in the left half nor the right half, and also not captured by the search
range in the middle. So the probability of failure in this iteration equals the
probability that pa, pb is split into left and right halves (denote this probability
as P(sep)), multiplied by probability that (pa, pb) is missed in the search range
s (denote this probability as P(miss)) conditioned on P(sep). Denote iteration k

with a superscript such as P k
(sep).

Assume a uniform distribution of points’ coordinate values. In the randomly
chosen coordinate c(H), denote pM as the index of the median point along this
coordinate. Then, for the first iteration,

P 1
(sep) = Prob{pa[c(H)], pb[c(H)] are split by pM [c(H)]} = 1/2.

In the second iteration, probability that pa, pb are split again in both halves is

P 2
(sep) = 2 × (Prob{pa[c(H)], pb[c(H)]in same half} × Prob{They are separated})

= 2 × (
1
4

× 1
2
) =

1
4
.

Thus we can easily see that P k
(sep) = 1

2k
.

Next let us compute P(miss). Let the distance between the closest pair
(pa, pb) be δ∗ and let δ(D) = min(δ(L), δ(R)). Clearly, δ(D) ≥ δ∗. Since
there are m dimensions, the expected contribution of δ∗ to coordinate c(H) is
E[lc(H)(pa, pb)] = δ∗/

√
m, which means there are at least (m − m

α ) coordinates
for which lc(pa, pb) ≤ √

α δ(D)√
m

, α > 1.

If we set the search range as s =
√

α δ(D)√
m

, meaning we check pairs (pi, pj)
such that pi[c] ∈ [pM [c]− s, pM [c]] and pj [c] ∈ [pM [c], pM [c]+ s], then choosing a
random coordinate would give Prob{Capture the closest pair| P 1

(sep)} ≥ 1−1/α.
As a result, for any iteration k, the conditional probability of failure is

P k
(miss){Fail | P k

(sep)} = (1 − Prob[Capture| P k
(sep)]) ≤ 1/α.

So the probability of failure through all the recursions is

Prob[Fail] =
K∑

k=1

P k
(sep)P

k
(miss) ≤ 1

α

log N/T∑
k=1

1
2k

≤ 1
α

.

Thus we arrive at the following Lemma:
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Lemma 1. Assuming a uniform distribution of points, if we set the search range
as s =

√
α δ(D)√

m
, α > 1, where δ(D) is minimum of the closest distances returned

by the left and the right halves, ACP-D will find the closest pair with a probability
of ≥ 1 − 1/α. Q.E.D.

Assuming a uniform distribution and letting the spread length of points be
r = maxi pi[c(H)]−minj pj [c(H)] on the chosen coordinate, within search range s,
the expected number of points residing in will be sN/r. Thus the expected num-
ber of pairs that we need to compute distances for would be (sN/r)2. Therefore,
the expected running time will be

T (N) = 2T (
N

2
) + Õ(

s2N2

r2
m) = 2T (

N

2
) + Õ(

α(δ(D))2N2

r2
)

assuming that each distance computation takes O(m) time. As long as r2 =
Ω(N) ACP-D algorithm’s expected run time will be:

T (N) = 2T (N/2) + Õ(α(δ(D))2N) = Õ(N log N) as α and δ(D) are some
constants.

4.2 Proof of Corollary 1

Proof. Applying the probabilistic recurrence relationship [13] and the revised
version [2], under the same assumptions of Theorem 1, for a positive β, we have

Prob{T (N) ≥ (β + 1)α(δ(D))2N log N} ≤ e−β .

4.3 Proof of Theorem2

Proof. In the proof for the JL lemma [4], the following lemma is also given:

Lemma 2. For any fixed vector v ∈ �m, projection matrix Φ : �m → �d with
i.i.d. Gaussian entries, i.e., Φij = 1√

d
N (0, 1), the following statements are true:

E[||Φv||2] = ||v||2 and Prob[||Φv||2 ≥ (1 + ε)||v||2] ≤ e−(ε2−ε3)d/4, as well as
Prob[||Φv||2 ≤ (1 − ε)||v||2] ≤ e−(ε2−ε3)d/4.

For simplicity in both analysis and implementation, we use Gaussian projec-
tions. Let the closest pair (in �m) be (pa, pb) with a distance of δ∗. Using the
second equation of the above theorem, we obtain:

Prob{||Φ(pb − pa)||2 ≥ (1 + ε)||(pb − pa)||2} ≤ e−(ε2−ε3)d/4.

Let the distance between pa and pb in �d be δ(P). The above equation becomes:

Prob{(δ(P))2 ≥ (1 + ε)δ∗2} ≤ e−(ε2−ε3)d/4.
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The probability that the above event happens at least once in the k iterations
is:

Prob{(δ(P))2 < (1 + ε)δ∗2]} ≥ 1 − e−(ε2−ε3)dk/4.

We want this to be a high probability. By high probability we mean a probability
of ≥ (1 − N−α), α being a probability parameter (normally assumed to be a
constant ≥ 1). We want 1 − e−(ε2−ε3)dk/4 ≥ 1 − N−α. This happens when:

e−(ε2−ε3)dk/4 ≤ N−α ⇒ (ε2 − ε3)dk/4 ≥ α log N ⇒ dk ≥ 4α

ε2 − ε3
log N.

4.4 Proof of Corollary 2

Proof. Projecting the input points into real numbers, i.e., d = 1, has a great
computational advantage. To identify pairs within a specific distance in O(N)
time, we use quantization technique. Let the minimum and maximum projected
values be m1 and m2, respectively. We partition the range [m1,m2] into intervals
of length L = 2(1 + ε)δu each. Each such interval has an integer index (starting
from 1). We also extend the range [m1,m2] by a random number r in the range
[0, (1 + ε)δu]. Specifically, we use the range: [m1 − r,m2]. Then for each point
pi we identify the interval that it falls into as: ID(pi) = 	(pi/L)
. This can be
done in a total of O(N) time for all the points. For each interval, we generate
all possible pairs from out of the points that belong to this interval. From out
of all of these candidate pairs we pick the one with the least distance (in �m).
Clearly, the probability that two points that are within a distance of ≤ (1+ ε)δu

(in �m) will fall into the same interval is ≥ 1/2. Thus the number of iterations
k can be computed in the same manner as above.
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Abstract. Recent growth in internet has generated large amount of
data over web. Representations of most of such data are high-dimensional
and sparse. Many fundamental subroutines of various data analytics
tasks such as clustering, ranking, nearest neighbour scales poorly with
the data dimension. In spite of significant growth in the computational
power performing such computations on high dimensional data sets are
infeasible, and at times impossible. Thus, it is desirable to investigate
on compression algorithms that can significantly reduce dimension while
preserving similarity between data objects. In this work, we consider the
data points as sets, and use Jaccard similarity as the similarity mea-
sure. Pratap and Kulkarni [10] suggested a compression technique for
high dimensional, sparse, binary data for preserving the Inner product
and Hamming distance. In this work, we show that their algorithm also
works well for Jaccard similarity. We present a theoretical analysis of
compression bound and complement it with rigorous experimentation
on synthetic and real-world datasets. We also compare our results with
the state-of-the-art “min-wise independent permutation [6]”, and show
that our compression algorithm achieves almost equal accuracy while
significantly reducing the compression time and the randomness.

1 Introduction

We are at the dawn of a new age. An age in which the availability of raw compu-
tational power and massive data sets gives machines the ability to learn, leading
to the first practical applications of Artificial Intelligence. The human race has
generated more amount of data in the last 2 years than in the last couple of
decades, and it seems like just the beginning. As we can see, practically every-
thing we use on a daily basis generates enormous amounts of data and in order
to build smarter, more personalised products, it is required to analyse these
datasets and draw logical conclusions from it. Therefore, performing computa-
tions on big data is inevitable, and efficient algorithms that are able to deal
with large amounts of data, are the need of the day. We would like to emphasize
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 164–176, 2018.
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that many of these datasets are high dimensional and sparse – the number of
possible attributes in the dataset are large, however, only a small number of
them are present in most of the data points. Sparsity is also quite common in
web documents, text, audio, video data. Therefore, it is desirable to investigate
the compression techniques that can compress the dimension of the data while
preserving the similarity between data objects.

In this work, we focus on sparse, binary data, which can also be considered
as sets, and the underlying similarity measure as Jaccard similarity. Given two
sets A and B the Jaccard similarity between them is denoted as JS(A,B) and is
defined as JS(A,B) = |A ∩ B|/|A ∪ B|. Jaccard similarity is popularly used to
determine whether two documents are similar. Broder [3] showed that this prob-
lem can be reduced to set intersection problem via shingling1. For example: two
documents A and B first get converted into two shingles SA and SB, then simi-
larity between these two documents is defined as JS(A,B) = |SA∩SB|/|SA∪SB |.
Experiments validate that high Jaccard similarity implies that two documents
are similar. Broder et al. [5,6] suggested a technique to compress a collection of
sets while preserving the Jaccard similarity between every pair of sets. For a set
U of binary vectors {ui}n

i=1 ⊆ {0, 1}d, their technique includes taking a random
permutation of {1, 2, . . . , d} and assigning a value to each set which maps to
minimum under that permutation. Throughout this paper, we represent sets as
binary vectors.

Theorem 1 (Minhash [5,6]). Let π be a permutations over {1, . . . , d}, then
for a set u ⊆ {1, . . . d} hπ(u) = arg mini π(i) for i ∈ u. Then,

Pr[hπ(u) = hπ(v)] =
|u ∩ v|
|u ∪ v| .

1.1 Revisiting Compression Scheme of [10]

Pratap and Kulkarni [10] suggested a compression scheme for binary data that
compress the data while preserving both hamming distance and inner product.
A major advantage of their scheme is that the compression-length depends only
on the sparsity of the data and is independent of the dimension of data. We
briefly revisit their compression scheme. Consider a set of n binary vectors in
d-dimensional space, then, given a binary vector u ∈ {0, 1}d, their scheme com-
presses it into a N-dimensional binary vector (say) u′ ∈ {0, 1}N as follows, where
N to be specified later. It randomly assigns each bit position (say) {i}d

i=1 of the
original data to an integer {j}Nj=1. Further, to compute the j-th bit of the com-
pressed vector u′ we check which bits positions have been mapped to j, and
compute the parity of bits located at those positions, and assign it to the j-th
bit position. Figure 1 illustrates this with an example. In continuation of their
analogy we call it as BCS.
1 A document is a string of characters. A k-shingle for a document is defined as a

contiguous substring of length k found within the document. For example: if our
document is abcd, then shingles of size 2 are {ab, bc, cd}.
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Fig. 1. Binary compression scheme (BCS) of [10]

1.2 Our Result

Using the above mentioned compression scheme, we are able to prove the fol-
lowing compression guarantee for the Jaccard similarity.

Theorem 2. Consider a set U of binary vectors {ui}n
i=1 ⊆ {0, 1}d with max-

imum number of 1 in any vector is at most ψ, and ε > 0. If we set N =
O(ψ2 log2 n), and compress them into a set U′ of binary vectors {u′

i}n
i=1 ⊆

{0, 1}N using BCS. Then for all ui,uj ∈ U, the following is true with proba-
bility at least 1 − 2/n,

(1 − ε)JS(ui,uj) ≤ JS(ui
′,uj

′) ≤ (1 + ε)JS(ui,uj).

Remark 1. A major benefit (as also mentioned in [10]) of BCS is that it also
works well in the streaming setting. The only prerequisites are an upper bound
on the sparsity ψ, and the number of data points.

Parameters for Evaluating a Compression Scheme
The quality of a compression algorithm can be evaluated on the following param-
eters: (1) Randomness is the number of random bits required for compression,
(2) Compression time is the time required for compression, (3) Compression
length is the dimension of data after compression, (4) The amount of space
required to store the compressed matrix. Ideally, the compression length and
the compression time should be as small as possible while maintaining a desired
accuracy.

1.3 Comparison Between BCS and Minhash and Its Variants

We evaluate the quality of our compression scheme with minhash on the param-
eters stated earlier.

Randomness: One of the major advantages of BCS is the reduction in the
number of random bits required for compression. We quantify it below.
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Lemma 1. Let a set of n d dimensional binary vectors, which get compressed
into a set of n vectors in N dimension via minhash and BCS, respectively. Then,
the amount of random bits required for BCS and minhash are O(d log N) and
O(Nd log d), respectively.

Compression Time: BCS is significantly faster than minhash algorithm in
terms of compression time. This is because, generation of random bits requires a
considerable amount of time. Thus, reduction in compression time is proportional
to the reduction in the amount of randomness required for compression. Also,
for compression length N, minhash scans the vector N times - once for each
permutation, while BCS just requires a single scan.

Space Required for Compressed Data: Minhash compression generates an
integer matrix as opposed to the binary matrix generated by BCS. Therefore,
the space required to store the compressed data of BCS is significantly less as
compared to minhash.

Search Time: Binary form of our compressed data leads to a significantly faster
search as efficient bitwise operations can be used.

In Sect. 3, we numerically quantify the advantages of BCS on the later three
parameters via experimentations on synthetic and real-world datasets.

Li et al. [7] presented “b-bit minhash” an improvement over Broder’s minhash
by reducing the compression size. They store only a vector of last b-bits of
the corresponding binary representation of hash values. However, this approach
reduces the accuracy. If we compare BCS with b-bit minhash, then we have same
the advantage as of minhash in savings of randomness and compression time.
We also get benefited in the search time, as our sketch is more succinct than [7].

Mitzenmacher [9] suggest a compression technique – Oddsketch – that gives a
compression for Jaccard similarity. Oddsketch is similar to BCS in the sense that
mapping (random bucketing and parity) is the same in both of these approaches,
and after compression both gives binary sketch. However, a major difference
between them is that Oddsketch is build on the top of minhash signatures of the
input sets, while BCS is directly applied on the input data. For BCS sparsity
assumption over data is required, while there is no such assumption is needed
for Oddsketch. Our analysis technique is simple and gives a bound which is
quadratic in the sparsity, and is based on simple birthday-paradox type analysis,
while Oddsketch analysis is tight, and is based on concentration inequalities.

1.4 Applications of Our Result

In cases of high dimensional, sparse data, BCS can be used to improve numerous
applications where currently minhash is used. We discuss a few of them below.
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Faster Ranking/De-duplication of Documents: Given a corpus of docu-
ments and a set of query documents, ranking documents from the corpus based
on similarity with the query documents is an important problem in information-
retrieval. This also helps in identifying duplicates, as documents that are ranked
high with respect to the query documents, share high similarity. Broder [4] sug-
gested an efficient de-duplication technique for documents – by converting doc-
uments to shingles; defining the similarity of two documents based on their
Jaccard similarity; and then using minhash sketch to efficiently detect near-
duplicates. As most the datasets are sparse, BCS can be more effective than
minhash on the parameters stated earlier.

Scalable Clustering of Documents: Clustering is one of the fundamental
information-retrieval problems. Broder et al. [2] suggested an approach to cluster
data objects that are similar. The approach is to partition the data into shingles;
defining the similarity of two documents based on their Jaccard similarity; and
then via minhash generate a sketch of each data object. These sketches preserve
the similarity of data objects. Thus, grouping these sketches gives a clustering on
the original documents. However, when documents are high dimensional such as
webpages, minhash sketching approach might not be efficient. Again exploiting
the sparsity, BCS can be more effective.

Beyond above applications, minhash compression has been widely used in
applications like spam detection [3], all pair similarity [1]. As in most of these
cases, data objects are sparse, BCS can provide almost accurate and more effi-
cient solutions to these problems. We experimentally validate the performance
of BCS for ranking experiments on UCI [8] “BoW” dataset, and achieved signif-
icant improvements over minhash. We discuss this in Subsection 3.2. Similarly,
other mentioned applications can also be validated.

Organization of the Paper: Below, we first present some necessary notations
that are used in the paper. In Sect. 2, we first revisit the results of [10], then
building on it we give a proof on the compression bound for Jaccard similarity.
In Sect. 3, we complement our theoretical results via extensive experimentation
on synthetic as well as real-world datasets. Finally, in Sect. 4 we conclude our
discussion and state some open questions.

Notations

N Dimension of the compressed data

ψ Upper bound on the number of 1’s in binary data

u[i] i-th bit position of vector u

JS(u,v) Jaccard similarity between binary vectors u and v

dH(u,v) Hamming distance between binary vectors u and v

〈u,v〉 Inner product between binary vectors u and v



Efficient Compression Technique for Sparse Sets 169

2 Analysis

We first revisit the results of [10] which discuss compression bounds for hamming
distance and inner product, and then building on it, we give a compression bound
for Jaccard similarity. We start with discussing the intuition and a proof sketch
of their result. Consider two binary vectors u,v ∈ {0, 1}d, we call a bit position
“active” if at least one of the vector between u and v has value 1 in that
position. Further, given the sparsity bound ψ, there can be at most 2ψ active
positions between u and v. Then let via BCS, they compressed into binary
vectors u′,v′ ∈ {0, 1}N. In the compressed version, we call a bit position “pure”
if the number of active positions mapped to it is at most one, and “corrupted”
otherwise. The contribution of pure bit positions in u′,v′ towards hamming
distance (or inner product similarity), is exactly equal to the contribution of
the bit positions in u,v which get mapped to the pure bit positions. Further,
the deviation of hamming distance (or inner product similarity) between u′ and
v′ from that of u and v, corresponds to the number of corrupted bit positions
shared between u′ and v′. Figure 2 illustrate this with an example, and the
lemma below analyse it.

Fig. 2. Illustration of pure/corrupted bits in BCS.

Lemma 1 (Lemma 14 of [10]). Consider two binary vectors u,v ∈ {0, 1}d,
which get compressed into vectors u′,v′ ∈ {0, 1}N using the BCS, and suppose
ψ is the maximum number of 1 in any vector. Then for an integer r ≥ 1, and
ε ∈ (0, 1), probability that u′ and v′ share more than εr corrupted positions is at

most
(
2ψ/

√
N

)εr

.

The lemma below generalise the above result for a set of n binary vectors,
and suggest a compression bound so that any pair of compressed vectors share
only a very small number of corrupted bits, with high probability.

Lemma 2 (Lemma 15 of [10]). Consider a set U of n binary vectors {ui}n
i=1 ⊆

{0, 1}d, which get compressed into a set U′ of binary vectors {u′
i}n

i=1 ⊆ {0, 1}N
using the BCS. Then for any positive integer r, and ε ∈ (0, 1),

– if εr > 3 log n, and we set N = O(ψ2), then probability that for all u′
i,u

′
j ∈ U′

share more than εr corrupted positions is at most 1/n.
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– If εr < 3 log n, and we set N = O(ψ2 log2 n), then probability that for all
u′
i,u

′
j ∈ U′ share more than εr corrupted positions is at most 1/n.

After compressing binary data via BCS, the hamming distance between any
pair of binary vectors can not increase. This is due to the fact that compression
doesn’t generate any new 1 bit, which could increase the hamming distance from
the uncompressed version. In the following, we recall the main result of [10],
which holds due the above fact and Lemma 2.

Theorem 3 (Theorem 1, 2 of [10]). Consider a set U of binary vectors
{ui}n

i=1 ⊆ {0, 1}d, a positive integer r, and ε ∈ (0, 1). If we set N = O(ψ2 log2 n),
and compress them into a set U′ of binary vectors {u′

i}n
i=1 ⊆ {0, 1}N using BCS.

Then for all ui,uj ∈ U,

– if dH(ui,uj) ≤ r, then Pr[dH(ui
′,uj

′) ≤ r] = 1,
– if dH(ui,uj) ≥ (1 + ε)r, then Pr[dH(ui

′,uj
′) ≤ r] < 1

n .

For inner product, the following is true with probability at least 1 − 1/n,

(1 − ε)〈ui,uj〉 ≤ 〈ui
′,uj

′〉 ≤ (1 + ε)〈ui,uj〉.

The following proposition relates Jaccard similarity with inner product and ham-
ming distance. The proof follows as for a pair binary vectors their Jaccard sim-
ilarity is the ratio of the number of positions where 1 is appearing together,
with the number of bit positions where 1 is present in either of them. Clearly,
numerator is captured by the inner product between those pair of vectors, and
denominator is captured by inner product plus hamming distance between them
– number of positions where 1 is occurring in both vectors, plus the number of
positions where 1 is present in exactly one of them.

Proposition 4. For any pair of vectors u,v ⊆ {0, 1}d, we have JS(u,v) =
〈u,v〉/ (〈u,v〉 + dH(u,v))

A proof of Theorem 2 follows by combining the results of Proposition 4, and
Theorem 3, and applying probability union bound analysis.

3 Experimental Evaluation

We performed our experiments on a machine having the following configura-
tion: CPU: Intel(R) Core(TM) i5 CPU @ 3.2 GHz x 4; Memory: 8 GB 1867 MHz
DDR3; OS: macOS Sierra 10.12.5; OS type: 64-bit. We performed our experi-
ments on synthetic and real-world datasets, we discuss them one-by-one as fol-
lows:
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3.1 Results on Synthetic Data

We performed two experiments on synthetic dataset and showed that it preserve
all-pair-similarity, that is, given a set of n binary vectors in d-dimensional space
with the sparsity bound ψ, we showed that after compression Jaccard similarity
between every pair of vector is preserved. We performed experiments on dataset
consisted of 1000 vectors in 100000 dimension. Throughout synthetic data exper-
iments, we calculate the accuracy via Jaccard ratio, that is, if the set O denotes
the ground truth result, and the set O′ denotes our result, then the accuracy of
our result is calculated by the Jaccard ratio between the sets O and O′ – that
is JS(O,O′) = |O ∩ O′|/|O ∪ O′|. To reduce the effect of randomness, we repeat
the experiment 10 times and took the average.

Dataset Description: We generated 1000 binary vectors in dimension 100000
such that the sparsity of each vector is at most ψ. If we randomly choose binary
vectors respecting the sparsity bound, then most likely every pair of vector will
have similarity 0. Thus, we had to deliberately generate some vectors having
high similarity. We generated 200 pairs whose similarity is high. To generate
such a pair, we choose a random number (say s) between 1 and ψ, then we
randomly select those many position (in dimension) from 1 to 100000, set 1 in
both of them, and set remaining to 0. Further, for each of the vector in the
pair, we choose a random number (say s′) from the range 1 to (ψ − s), and
again randomly sample those many positions from the remaining positions and
set them to 1. This gives a pair of vectors having similarity at least s

s+2s′ and
respecting the sparsity bound. We repeat this step 200 times and obtain 400
vectors. For each of the remaining 600 vectors, we randomly choose an integer
from the range 1 to ψ, choose those many positions in the dimension, set them
to 1, and set the remaining positions to 0. Thus, we obtained 1000 vectors of
dimension 100000, which we used as an input matrix.

Data Representation: We can imagine synthetic dataset as a binary matrix of
dimension 100000 × 1000. However, for ease and efficiency of implementation,
we use a compact representation which consist of a list of lists. The number of
lists is equal to the number of vectors in the binary matrix, and within each list
we just store the indices (co-ordinate) where 1s are present. We use this list as
an input for both BCS and minhash.

Evaluation Metric: We performed two experiments on synthetic dataset –
(1) fixed sparsity while varying compression length, and (2) fixed compression
length while varying sparsity. We present these experimental results in Fig. 3.
In both of these experiments, we compare and contrast the performance BCS
with minhash on accuracy, compression time, and search time parameters. All-
pair-similarity experiment result requires a quadratic search – generation of all
possible candidate pairs and then pruning those whose similarity score is high,
and the corresponding search time is the time required to compute all such pairs.
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In order to calculate the accuracy on a given support threshold value, we first run
a simple brute-force search algorithm on the entire (uncompressed) dataset, and
obtain the ground truth result. Then, we calculate the Jaccard ratio between
our algorithm’s result/ minhash’s result, with the corresponding exact result,
and compute the accuracy.

Fig. 3. Experiments on synthetic data: (1) fixed sparsity ψ = 200 and varying com-
pression length, and (2) varying sparsity and fixed compression lenght 5000.

Insight: In Fig. 3, we plot the result of BCS and minhash for all-pair-similarity.
For this experiment, we fix the sparsity ψ = 200 and generate the datasets as
stated above. We compress the datasets using BCS and minhash for a range of
compression lengths from 50 to 10000. It can be observed that BCS performs
remarkably well on the parameters of compression time and search time. Our
compression time remains almost constant at 0.2 s in contrast to the compression
time of minhash, which grows linearly to almost 50 s. On an average, BCS is 90
times faster than minhash. Also accuracy for BCS and minhash is almost equal
above compression length 300, but in the window of 50–300 minhash performs
slightly better than BCS. Further, the search-time on BCS is also significantly
less than minhash for all compression lengths. On an average search-time is 75
times less than the corresponding minhash search-time.
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In Fig. 3, we plot the result of BCS and minhash for all-pair-similarity. For
this experiment, we generate datasets for different values of sparsity ranging
from 50 to 10000. We compress these datasets using BCS and minhash to a fixed
value of compression length 5000. In all-pair-similarity, when sparsity value is
below 2200, average accuracy of BCS is above 0.85. It starts decreasing after
that value, at sparsity value is 7500, the accuracy of BCS stays above 0.7, on
most of the threshold values. The compression time of BCS is always below 2 s
while compression time of minhash grows linearly with sparsity – on an average
compression time of BCS is around 550 times faster than the corresponding
minhash compression time. Further, we again significantly reduce search time –
on an average our search-time is 91 times less than minhash.

3.2 Results on Real-World Data

Dataset Description: We compare the performance of BCS with minhash
on the task of retrieving top-ranked elements based on Jaccard similarity. We
performed this experiment on publicly available high dimensional sparse dataset
of UCI machine learning repository [8] (described in Table 1). These datasets
are binary “BoW” representation of the corresponding text corpus. We consider
each of these datasets as a binary matrix, where each document corresponds to
a binary vector, that is if a particular word is present in the document, then the
corresponding entry is 1 in that position, and it is 0 otherwise. For ENRON and
NYTimes we take a uniform sample of 10000 documents from their corpus.

Table 1. Real-world dataset description

Data Set No. of points Dimension Sparsity

NYTimes news articles 10000 102660 871

Enron Emails 10000 28102 2021

NIPS full papers 1500 12419 914

KOS blog entries 3430 6906 457

Evaluation Metric: We split the dataset in two parts 90% and 10% – the
bigger partition is use to compress the data, and is referred as the training par-
tition, while the second one is use to evaluate the quality of compression and
is referred as querying partition. We call each vector of the querying partition
as query vector. For each query vector, we compute the vectors in the training
partition whose Jaccard similarity is higher than a certain threshold (ranging
from 0.1 to 0.9). We first do this on the uncompressed data inorder to find the
underlying ground truth result – for every query vector compute all vectors that
are similar to them. Then we compress the entire data, on various values of com-
pression lengths, using our compression scheme/minhash. For each query vector,
we calculate the accuracy of BCS/minhash by taking Jaccard ratio between the
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Fig. 4. Experiments on real-world datasets [8].
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set outputted by BCS/minhash, on various values of compression length, with
set outputted a simple linear search algorithm on entire data. This gives us the
accuracy of compression of that particular query vector. We repeat this for every
vector in the querying partition, take the average, and we plot the average accu-
racy for each value in support threshold and compression length. We also note
down the corresponding compression time on each of the compression length for
both BCS and minhash. Search time is time required to do a linear search on
the compressed data, we compute the search time for each of the query vector
and take the average in the case of both BCS and minhash.

Insights: We plot experiments of real world dataset [8] in Fig. 4, and found
that performance of BCS is similar to its performance on synthetic datasets.
NYTimes is the sparsest among all other dataset, so the performance of BCS
is relatively better as compare to other datasets. For NYTIMES dataset, on an
average BCS is 135 times faster than minhash, and search time for BCS is 25
times less than search time for minhash. For BCS accuracy starts dropping below
0.9 when data is compressed below compression length 300. For minhash, accu-
racy starts dropping below compression compression length 150. Similar pattern
is observed for ENRON dataset as well, where BCS is 268 times faster than
minhash, and a search on the compressed data obtained from BCS is 104 times
faster than search on data obtained from minhash. KOS and NIPS are dense,
low dimensional datasets. However here also, for NIPS, our compression time is
271 times faster and search-time is 90 times faster as compared to minhash. For
KOS, our compression time is 162 times faster and search time is 63 times faster
than minhash.

To summarise, BCS is significantly faster than minhash in terms of both -
compression time and search time while giving almost equal accuracy. Also, the
amount of randomness required for BCS is also significantly less as compared to
minhash. However, as sparsity is increased, accuracy of BCS starts decreasing
slightly as compared to minhash.

4 Concluding Remarks and Open Questions

We showed that BCS is able to compress sparse, high-dimensional binary data
while preserving the Jaccard similarity. It is considerably faster than the “state-
of-the-art” minhash permutation, and also maintains almost equal accuracy
while significantly reducing the amount of randomness required. Moreover, the
compressed representation obtained from BCS is in binary form, as opposed to
integer in case of minhash, due to which the space required to store the com-
pressed data is reduced, and consequently leads to a faster search on the com-
pressed representation. Another major advantage of BCS is that its compression
bound is independent of the dimensions of the data, and only grows polynomi-
ally with the sparsity and poly-logarithmically with the number of data points.
We present a theoretical proof of the same and complement it with rigorous
and extensive experimentations. Our work leaves the possibility of several open
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questions – improving the compression bound of our result, and extending it to
other similarity measures.
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Abstract. Record linkage (RL) is a process of identifying records that
refer to the same real-world entity. Many existing approaches to RL apply
supervised machine learning (ML) techniques to generate a classification
model that classifies a pair of records as either linked or non-linked. In
such techniques, the labeled data helps guide the choice and relative
importance to similarity measures to be employed in RL. Unsupervised
RL is therefore a more challenging problem since the quality of similarity
measures needs to be estimated in the absence of linkage labels. In this
paper we propose a novel optimization approach to unsupervised RL.
We define a scoring technique which aggregates similarities between two
records along all attributes and all available similarity measures using a
weighted sum formulation. The core idea behind our method is embodied
in an objective function representing the overall ambiguity of the scoring
across a dataset. Our goal is to iteratively optimize the objective function
to progressively refine estimates of the scoring weights in the direction
of lesser overall ambiguity. We have evaluated our approach on multiple
real world datasets which are commonly used in the RL community.
Our experimental results show that our proposed approach outperforms
state-of-the-art techniques, while being orders of magnitude faster.

1 Introduction

RL, also referred to as data matching or entity resolution, is the task of find-
ing records that correspond to the same entity from one or more data sources.
Given two data sources, each pair of records can be classified into one of two
classes: linked and non-linked. Table 1 shows a simple example of RL. The table
contains records from two bibliographic data sources, viz., DBLP and ACM dig-
ital library. The aim is to identify those pairs of records referring to the same
publications, which in this case are (ACM1, DB1) and (ACM2, DB2). Any other
pairs of records should be identified as non-linked. If records have error-free and
unique identifiers, such as social security numbers, RL is a straightforward pro-
cess that can be easily performed by the standard database join operation. In
many practical scenarios, however, such a unique identifier does not exist and
the linkage process needs to be performed by approximate matching of the cor-
responding fields of two records. It is also notable that the same data can be
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 177–190, 2018.
https://doi.org/10.1007/978-3-319-93040-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93040-4_15&domain=pdf


178 A. Jurek and Deepak P.

Table 1. An example of RL.

ID Title Authors Venue

ACM1 A compact B-tree Peter Bumbulis, Ivan
T. Bowman

International
conference on
management of data

ACM2 A theory of redo
recovery

David Lomet, Mark
Tuttle

International
conference on
management of data

DB1 A compact B-tree Peter Bumbulis, Ivan
Bowman

SIGMOD conference

DB2 A theory of redo
recovery

Mark R. Tuttle, David
B. Lomet

SIGMOD conference

DB3 The nimble integration
engine

Denise Draper Alon Y.
Halevy Daniel S. Weld

SIGMOD conference

represented in different ways in different data sources due to factors such as
different conventions, typographical errors, missing and out of date values. This
makes similarity matching and aggregation of similarity scores to perform record
linkage, a challenging task.

Efficiency and Effectiveness in RL: The problem of RL can be seen as
comprising two main fields of research which are: (1) developing time-efficient
algorithms for RL [21] and (2) efforts on developing techniques for effective link
discovery [6,7,23]. The former focuses on improving the turnaround time for
record linkage through heuristically avoiding comparison between records that
hold a low apriori chance of getting linked. The space of candidate record pairs
for record linkage is evidently quadratic in the size of the datasets. This quadratic
space is often pruned out through indexing and filtering, collectively referred to
as blocking methodologies. The latter field of research, that towards effective
RL, focuses on the orthogonal problem of accurately determining which among
compared candidate pairs are to be labelled as linked/non-linked. In this work,
we will focus on the second research problem, which is the development of models
for accurately determining the linkage status of record pairs.

Effective Record Linkage: Techniques for effective RL may be seen as com-
prising two major streams, based on whether labelled data is exploited for the
task. The large majority of techniques for effective RL rely on the usage of a
training dataset comprising record pairs that are labelled as linked/non-linked
to learn a classifier, thus treating it as a supervised learning problem. In these
techniques, each pair of records is represented as a similarity vector representing
a set of numeric similarities, each calculated with a similarity measure on a pair
of field values of the two records. The task of RL is then considered as a binary
classification problem over similarity vectors [6]. The second category address RL
in the absence of training data. Traditionally, this task has been addressed by
replacing training data with assistance from a domain expert, who would hand-
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craft bespoke domain-specific rules that aid determining the linkage likelihood of
a candidate record pair [7,23]. Drawing up rules for record linkage requires deep
topical expertise in the domain, an impractical or costly proposition in many sce-
narios. This makes unsupervised machine learning for RL, the task that targets
to tackle RL without the aid of training data or a domain expert, a promising
avenue of research in RL. It is notable that unsupervised machine learning for
RL is much more challenging than the supervised or expert-assisted variants;
this explains the relative dearth of research.

Our Contribution: In this paper, we address the problem of unsupervised RL
and propose a novel method for unsupervised scoring of record pairs modeling
the task as an optimization problem. Our core idea is that a good record linkage
method would be able to make conclusive decisions on the linkage of most pairs
of records, if not all; we look for methods that can achieve conclusive decisions,
while staying strictly within the space of RL models that make linkage decisions
on a weighted sum aggregate of similarity scores. Accordingly, we outline a model
for the ambiguity of record linkage, and progressively refine the weightings asso-
ciated with similarity measures in the direction of reducing overall ambiguity.
Through an empirical analysis over multiple real-world datasets, we illustrate
that our method is able to outperform existing methods.

2 Related Work

We briefly survey recent RL methods under two separate heads.

Semi-supervised Record Linkage. In semi-supervised learning, a small set of
labeled instances and a large set of unlabeled instances are used in the training
process. A popular approach to semi-supervised RL is that using active learning
(AL) [1]. AL identifies highly informative instances for manual labeling that are
later used for training classification models. In [18] the instances that are not
assigned to the same class by majority of the classifiers are selected for man-
ual labeling. A different approach, where a set of similarity vectors are ranked
and those in the middle (ambiguous) region are selected for manual labeling, is
proposed in [4]. In the work presented in [24], all the record pairs are clustered
by their similarity vectors and randomly selected similarity vectors from each
cluster are selected for manual labeling. Depending on the output of the manual
labeling, similarity vectors in each cluster are automatically labeled as linked
or non-linked, or the cluster is further divided into sub-clusters. The system
reported in [12] takes as input a small set of training examples, referred to as
seeds, to initially train the classification model, which is then used over unseen
data.

Unsupervised Record Linkage. In [6], k-means clustering is used to predict
the status of a small set of similarity vectors (seeds). Following this, the seeds
are used as training set for a supervised learning algorithm. Automatic seed
selection, referred to as nearest based, was applied with the self-training process
in [2]. In [13] an entity matching algorithm is proposed, which allows to identify
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best k results for a user-specific scoring function. Unsupervised approaches to RL
based on maximizing the value of pseudo f -measure were investigated in [15,16].
Pseudo f -measure, an unsupervised variant of the f-measure, is formulated using
the assumption that while different records often represent the same entity in
different repositories, distinct record within one dataset is expected to denote
distinct entity. It can be calculated using sets of unlabeled records. The idea is
to find the decision rule for record matching which maximizes the value of the
pseudo f -measure applying genetic programming [16] or hierarchical search [15].
In more recent work the authors proposed to address the problem of unsupervised
record linkage using graphical models [20] and multi view ensemble self-learning
[10].

Discussion. While semi-supervised learning significantly reduces the number of
manually labeled examples required for generating a classification model, it still
requires a certain amount of human input in the training process. Methods that
require labeled data for RL are not applicable in many real-world situations; in
particular for privacy preserving RL, where the data is private and confidential
[22]. While unsupervised methods such as [2] do not require any labeled data,
there is much gap to close between them and supervised methods in terms of
accuracy.

3 Problem Definition

Consider a dataset of relational records R = {r1, r2, . . . , rn} where each record
comprises values it takes for attributes from a schema A = [a1, a2, . . . , am].
Accordingly, we can represent a record ri as [ri1, ri2, . . . , rim] where rij is
the value that the ith record takes, for the jth attribute in the schema. For
each attribute aj ∈ A, we use Sj to denote the set of similarity measures
that are available for the attribute. There could be many similarity measures
available for each attribute type [5]. Examples of common similarity measures
include Jaccard, and inverses of edit-distance, or L1 and L2 distances. Thus,
Sj : dom(aj)×dom(aj) → R, where dom(aj) denotes the domain of the attribute
aj . Here, we address the task of unsupervised record linkage scoring, that of lever-
aging R and Sjs to learn a scoring method for pairs from R, the score quantifying
the likelihood that both records relate to the same entity. Notationally:

[R, {S1, . . . ,Sm}]
Unsupervised
========⇒

Learning
RLS : R × R → R (1)

Thus, RLS(ri, rj) would be a numeric score directly related to the likelihood
that ri and rj relate to the same entity. A few points are in order; first, unlike
the bulk of literature in supervised record linkage [3] - i.e., pairs of records
that are known to be linked or not-linked - we make use of no such labeled
information, and thus address the unsupervised problem. Second, in the interest
of retaining generality, we do not necessitate that the scoring by RLS needs to be
in [0, 1], or have a probabilistic or possibilistic semantics since that would require
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corresponding semantics on the similarity measures as well. In other words, for
an accurate estimate of RLS, we only expect that pairs that are scored higher are
more likely to be linked to the same entity than those are scored lower, i.e., that
the relative ordering of pairs on RLS scores is meaningful. Third, record linkage
scoring is a direct building block for the record linkage problem of classifying
pairs of records as either linked or not linked. Applying an appropriate threshold
to the RLS scores would yield an intuitive solution to the record linkage problem;
one with the pairs that score above the threshold marked as linked, and others
as not-linked.

3.1 Evaluating Record Linkage Scoring

As is the case with any unsupervised machine learning task, we would like to
evaluate the quality of RLS against gold-standard labeled data. This is done
by checking the relative ordering between record pairs which are known to be
‘linked’ and pairs that are known to be ‘not linked’. With a threshold on RLS
scores yielding a record linkage method, the precision, recall and f-measure on
the linked and non-linked classes can be measured on varying values of the
threshold. However, most record linkage datasets are very unbalanced [3] with a
much larger fraction of unlinked records (recall that this was also the case even in
the small example outlined in Table 1). This lopsided distribution makes it easier
for RLS methods to achieve high precision and recall on the unlinked class. Thus,
rank-aware measures that can incentivize RLS methods that put linked record
pairs at the top of the ordering would help better evaluate the quality of RLS
methods. Accordingly, we outline two simple evaluation measures below. Let L
and U be the set of labeled data comprising linked record pairs and unlinked
pairs respectively. Our evaluation measure is then:

ARL(RLS,L,U) = average{RankL,U (RLS, l)|l ∈ L}
MRL(RLS,L,U) = median{RankL,U (RLS, l)|l ∈ L}

where RankL,U (RLS, l) denotes the rank of the record pair l ∈ L in the decreas-
ing RLS-score ordering of record pairs in (L ∪ U). Since our gold standard
labellings may not be comprehensive, (L ∪ U) ⊆ R × R. Thus, ARL(. . .) and
MRL(. . .) measures the mean and median ranks of the record pairs in L in the
RLS score ordering. Since we would like to see the record pairs in L at the top
of the ordering, numerically lower values of ARL and MRL are desirable. These
metrics differ in their character in that ARL is affected by all changes in order-
ings of record-pairs, whereas MRL is less sensitive to outliers at the ends of the
ordering.

4 Our Method

4.1 The Scoring Formulation

Consider a record pair pxy = (rx, ry) where {rx, ry} ⊆ R. The similarity between
the two records in pxy can be measured along each of the m attributes in A.
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Further, for each attribute aj ∈ A, similarity between the records in pxy can be
measured using each of the similarity measures in Sj . Thus, there are

∑m
j=1 |Sj |

signals of similarity that are available for each record pair, across the similarity
measures. Given a set of weights to associate with each of these similarity signals,
collectively denoted as W, our method aggregates these similarities using a linear
aggregation (weighted sum) into a single value yielding the RLS scores:

RLSW(rx, ry) =
∑

aj∈A

∑

S∈Sj

w2
jS × S(rx.aj , ry.aj) (2)

with S(rx.aj , ry.aj) denoting the similarity measure between the values for
attribute aj on rx and ry, as measured using the similarity measure S ∈ Sj .
The square of the weights, wjS ∈ W, is used in the formulation for optimization
convenience to automatically disallow negative weights. Thus, the crux of our
method is in learning the set of weights, W, so that the RLSW scores estimate
the linkage likelihood effectively.

4.2 Developing the Objective Function

Our interest is in ensuring that the set of weights, W, leads to an RLSW scoring
that is similar to an “ideal” RLS scoring. Within our unsupervised setting, the
notion of ideal-ness needs to be outlined without the luxury of knowing infor-
mation such as the balance of the L-U split in R. Thus, we choose to go with a
simple goal motivated by unambiguity - we would like to learn an estimate of W
such that the resultant weighted-sum based RLSW scoring can decidedly deter-
mine whether each pair of records from R is to be linked or not. In other words,
for every pair of records, we would like the RLSW scoring to be either close to
the lower extreme (unlinked) or close to the higher extreme (linked), avoiding
the (ambiguous) bay between the extremes as much as possible. Since it is evi-
dently impractical to enforce this strictly for all record pairs in R for such a W
may not even exist, we use an approach of iteratively optimizing an objective
function to progressively refine W in the direction of lesser overall ambiguity.

We now outline an objective function. Consider a record-pair pxy = (rx, ry)
and an estimate of weights W, the ambiguity for pxy may be modeled as follows:

AMBW(rx, ry) = min
{
RLSW(rx, ry) − ρ, τ − RLSW(rx, ry)

}
(3)

where the RLSW scores for all record-pairs in R reside in [ρ, τ ], ρ being the
lower extreme and τ being the upper extreme for the RLSW scores. Informally,
AMBW(rx, ry) measures the extent to which the RLS score computed using
W deviates from either ends. The min aggregation ensures that scores in the
extremes, i.e., both RLSW(rx, ry) = ρ and RLSW(rx, ry) = τ , would bring the
ambiguity score down to zero. This is a desirable condition since these extreme
scorings indicate that RLSW is in no way uncertain about the linkage status
for the record pairs in pxy. Analogously, as the RLSW score moves into the gulf
between the extremes, the AMBW correspondingly goes up.
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In most practical cases, similarity functions return non-negative values since
negative values for similarity do not make much practical sense. This non-
negativity assumption makes 0.0 an intuitive lower bound (ρ) for RLSW scores.
The upper extrem for the RLSW scores (τ) is set as 1. Incorporating it, we refine
the ambiguity notion as:

AMBW(rx, ry) = min
{
RLSW(rx, ry), τ − RLSW(rx, ry)

}
(4)

We would like to aggregate this across record-pairs in R to arrive at a notion
of overall ambiguity of W as follows:

AMBW(R) =
∑

{rx,ry∈R,x �=y}
min

{
RLSW(rx, ry), τ − RLSW(rx, ry)

}
(5)

Connecting back to our original goal of reducing ambiguity, our task is simply
to learn a set of weights W that minimizes the overall ambiguity across the
dataset.

W∗ = arg min
W

AMBW(R) (6)

Our intent in the optimization approach is to ensure that the initial estimates
of W are re-balanced over iterations to orient them towards those similarity
signals that can play a role in reducing overall ambiguity. Specifically, all the
weights increasing (or decreasing) together do not benefit us much since that
would mostly change the range of RLSW rather than altering the ordering among
pairs. In order to be robust and to avoid such cases, we use an add-to-one
constraint in our optimization approach.

∑

aj∈A

∑

S∈Sj

wjS = 1 (7)

This enforces that all the weights in W sum up to 1.0. It may be noted that
the optimization problem in Eq. 6, in combination with the constraint in Eq. 7,
while simple to state, involves searching over all possible settings of W such that
its components add up to 1.0. This is evidently a massive search space, making
brute force search impossible. In the next section, we will outline a gradient
co-ordinate descent formulation.

4.3 Optimization Formulation

The objective to be minimized (from Eq. 6) can be written by expanding RLSW :
∑

{rx,ry∈R,x �=y}
min

{ ∑

aj∈A

∑

S∈Sj

w2
jS × Sxyj , τ −

∑

aj∈A

∑

S∈Sj

w2
jS × Sxyj

}
(8)

where Sxyj is a shorthand for S(rx.aj , ry.aj). The min aggregation func-
tion, being not differentiable, does not easily yield to optimization. We observe
that exponentiation can be used to approximate the min aggregation (similar to
another approximation [17]).
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min{a, b} ≈ 1
φ

log

(

exp(φa) + exp(φb)
)

(9)

This approximation holds for high negative values of φ for any numbers a and
b. In this paper we set φ = −50. The inner multiplication of a and b separately
with φ enables spacing out the two terms due to the large numeric value of φ;
observe that |a−b| << |φa−φb|. For cases where a > b holds, φa would be much
smaller than φb, given that φ is a large negative value. Consequently, exp(φa)
would be much lesser than exp(φb), making their sum much closer to the latter
than the former. Thus, the log of their sum would be closer to φb, making the
entire term in the RHS of Eq. 9 a good approximation of b. It is notable that
this approximation works reasonably well when a = b too, since the RHS would
reduce to a + log(2)/φ; the second term is a very small term, due to having a
numerically large φ in the denominator, thus yielding a good approximation for
min. We simply apply this approximation to re-write our objective:

1

φ

∑

{rx,ry∈R,x �=y}
log

(
exp

[
φ

∑

aj∈A

∑

S∈Sj

w2
jSSxyj

]
+ exp

[
φ

(
τ −

∑

aj∈A

∑

S∈Sj

w2
jSSxyj

)])

(10)

Towards optimizing this more convenient and differentiable objective func-
tion, we adopt a gradient descent approach, optimizing for one variable within
W, at a time. Consider the variable wj′S′ ; the partial derivative, ∂AMBW(R)

∂wj′S′ is
then

∑

{rx,ry∈R,x �=y}

2wj′S′S′
xyj′

(
exp

[
φ

∑
aj∈A

∑
S∈Sj

w2
jSSxyj

]
− exp

[
φ

(
τ − ∑

aj∈A
∑

S∈Sj
w2

jSSxyj

)])

(
exp

[
φ

∑
aj∈A

∑
S∈Sj

w2
jSSxyj

]
+ exp

[
φ

(
τ − ∑

aj∈A
∑

S∈Sj
w2

jSSxyj

)])

(11)

The update for wj′S′ follows gradient descent1, using a learning rate, μ.

wj′S′ = wj′S′ − μ × ∂AMBW(R)
∂wj′S′

(12)

4.4 Overall Approach

Our iterative approach targets arriving at a good estimate of W by updating
each wjS in turn using the values of W from the previous iteration, followed
by re-normalizing them to sum up to 1.0 within each iteration. This approach

1 https://en.wikipedia.org/wiki/Gradient descent.

https://en.wikipedia.org/wiki/Gradient_descent
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Algorithm 1: Our Unsupervised Record Linkage Scoring Method
input : Set of Records R and similarity functions {. . . , Sj , . . .}
output : Set of weights W = {. . . , wjS , . . .} to define the scoring RLSW

1 Initialize all wjSs uniformly satisfying
∑

aj∈A
∑

S∈Sj
wjS = 1 ;

2 While (iterations limit not reached and not converged)
3 Initialize a new set of weights W ′

4 SumW′ ← 0 ;
5 ∀ wjS ∈ W
6 w′

jS ← wjS − μ × ∂AMBW (R)
∂wjS

;

7 SumW′ = SumW′ + w′
jS ;

8 ∀ w′
jS ∈ W

9 w′
jS ← w′

jS

SumW′ ;

10 W ← W ′ ;
11 Output W ;

is outlined in Algorithm1. Line 6 denotes the gradient descent update, whereas
Line 9 performs the normalization.

Complexity: The update in Eq. 12 has terms for each record pair to be eval-
uated hidden within the slope term, i.e., ∂AMBW(R)

∂wjS
, and needs to be run for

each similarity measure for each attribute (notice the iteration over wjSs). From
a computational perspective, consider the construction of the slope term (Ref.
Eq. 12); it may be observed that the inner term in the numerator (difference
between exponentiated terms) and the inner term in the denominator (sum of
exponentiated terms) are both independent of j′ and S′, and thus, can be com-
puted once per record pair. This makes the full complexity O(

∑m
j=1 |Sj | × P)

per iteration where P is the number of record pairs. It may be noted that the∑m
j=1 |Sj | term is small, there being only a handful of attributes and a handful

of similarity measures, making the complexity largely dependent on the size of
P. We will show later that our method stabilizes to reasonable accuracy in 100s
of iterations in our experimental section. Coming to P, though the number of
possible record pairs in R is quadratic in |R|, typical record linkage scenarios
use efficient blocking strategies to rule out a large fraction of record pairs from
being considered for linkage determination making P << |R|2. Usage of better
blocking strategies would benefit our method since they reduce P, leading to our
method running faster.

5 Experiments and Results

5.1 Experimental Setup

In the experiments, we use gold standard linkage labellings to evaluate the meth-
ods. It may be emphasized here that the gold standard labellings were used only
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for the evaluation purposes. All experiments were run on a workstation with
Intel(R) Core(TM) i7-4790 CPU @ 3,60 GHz processor, 16 GB (RAM) and 64-bit
Windows 7. As with a typical RL approach, we perform blocking as the first step
to reduce the number of record pairs for each of the RL methods. Any blocking
method could be employed, blocking being orthogonal to the task we evaluate;
we used the recently proposed unsupervised blocking scheme learner [11] in our
evaluation.

Baselines. As baselines for our method, we used two unsupervised RL methods
[15,16] based on the pseudo f -measure. To compare the two methods against
our approach we used the similarity scoring configurations output by each of
the method to rank all record pairs. Following this, we use ARL and MRL to
evaluate each of the rankings. All baseline parameters were set to the values
recommended in respective papers.

Data. The experiments were conducted with three real world datasets com-
monly used for evaluating RL methods: Restaurant, Cora and ACM-DBLP. The
Restaurant dataset contains 864 restaurant records (with 112 pairs of matching
records), each with five fields, including name, address, city, phone and type.
The Cora dataset is a collection of 1,295 (with 14,184 pairs of matching records)
citations to computer science papers. Each citation is represented by 4 fields
(author, title, venue, year). The ACM-DBLP is a bibliographic datasets of Com-
puter Science bibliography records represented by four attributes (author, title,
venue, year). The total number of entity pairs is 6,001,104.

Parametrization of the algorithms. One parameter needs to be set to run our
method, which is the number of iterations. The reported results were obtained
for number of iterations equals to 200 for each of the 3 datasets. For each of the
evaluated methods we applied five commonly used similarity measures for RL,
namely Jaro [9], Winkler [25], Jaccard [8], Q-Gram [19], and Levenshtein edit
distance [14].

5.2 Comparative Evaluation of Record Pairs Ordering

Effectiveness. Table 2 lists the results of the comparative evaluation of our
method against the genetic algorithm and linear classifiers baselines, among
the latest methods for unsupervised ML-based record linkage. For each of the
evaluation measures, ARL and MRL, lower values are better, as seen in Sect. 3.1.
Recall measures the fraction of correctly linked record pairs among the top |L|
pairs; thus, this is the recall of the method if the top-L pairs according to the
scoring were output as the result set. We additionally have also included the
values of the measures that can be achieved by a perfect scoring, one that puts
all linked record pairs at the top, followed by the unliked pairs; this implicitly
has a recall of 1.0. This enables understanding the gap between our method
and the best possible scoring. It can be observed that our method obtained
better result than two baseline methods for Cora and DBLP-ACM datasets. For
the Restaurant dataset, our method was outperformed by the genetic algorithm
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Table 2. Evaluation over rank-aware metrics and recall (best numbers highlighted).

Genetic algorithm Linear classifier Our method Perfect scoring

ARL MRL Rec. ARL MRL Rec. ARL MRL Rec. ARL MRL
Restaurant 59.6 56 0.92 79.42 67 0.72 65.2 61 0.89 55.5 55.5

Cora 8514.5 7006.5 0.79 9396.2 8858.5 0.75 8077.3 6836.5 0.82 6756 6756

DBLP-ACM 1475.2 1444.5 0.65 1769.6 1009.5 0.84 1100 926.5 0.85 851 851

Table 3. The execution time: hours: minutes: seconds (best numbers highlighted).

Genetic algorithm Linear classifier Our method

Restaurant 00:19:42 30:26:06 00:15:07

Cora 17:34:01 22:55:34 00:07:27

DBLP-ACM 30:26:47 72:00:00+ 02:14:58

based approach, which is able to navigate the search space using the randomized
approach effectively for the small dataset. However, as expected, our method,
due to it’s rather highly focused search along the space of solutions, is able to
achieve better effectiveness over large datasets (and their correspondingly larger
solution spaces). This character is well pronounced in the large DBLP-ACM
dataset where our method is able to make massive improvements.

Efficiency. For each of the evaluated methods we measure their execution time,
baselines implemented according to our best understanding from the respective
papers. The run times of each of the methods are reported in Table 3. We can
observe that our method was able to perform the linkage process significantly
faster.
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Fig. 1. F-measure obtained with different values of cut off point.

5.3 Further Analysis of Our Method

F-Measure at Different Cut-offs. For usage of our record linkage scoring
method in a practical scenario, one would need to apply a cut-off point in the
ranked list, so that record pairs above that cut-off could be regarded as linked,
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and those below may be considered as unlinked. The recall (for the linked class)
reported in the previous section is precisely equal to the recall when the cut-
off point is chosen after L records; at this cut-off, the precision and recall are
equivalent due to the usage of the same denominator. However, information
about L is part of the gold-standard data and is not available within a realistic
record linkage setting. Thus, we evaluate the recall, precision and F-measure for
the linked class over varying cut-offs, to illustrate the effectiveness trends of our
methods at varying cut-offs. We plot the F-measure achieved by our method
against that of the perfect ordering for each of the datasets in Fig. 1, with the
choice of the percentage of all record pairs in the dataset used for the cut-off
point indicated in the X-axis. The range of cut-off points studied differ for the
Cora dataset due to the higher ratio of matching records. Our method is seen
to trail the perfect scoring quite closely in some parts of the space, with the gap
widening, though not significantly, at other parts. This further illustrates the
effectiveness of our method.

Resilience to Noisy Similarity Measures: We now study the resilience of
our method to highly ambigious similarity measures (abbreviated to HASs), those
that hold no utility in separating the linked and unlinked record pairs. We con-
duct this study through the usage of similarity measures that simply sample
from a normal distribution centered at 0.5, the value midway between the link-
age favoring extreme of 0.0 and the other extreme of 1.0; we use a standard
deviation of 0.2. Table 4 lists the results of our method when one or two HASs
are added to the dataset. The results show that the effectiveness deteriorations
of our methods in the presence of HASs are decidedly miniscule.

Table 4. Evaluation of resilience to ambigious similarities.

With one HAS With two HASs Without HAS

ARL MRL Rec. ARL MRL Rec. ARL MRL Rec.

Restaurant 65.5 62 0.88 65.5 62 0.88 65.2 61 0.89

Cora 8073.8 6837.5 0.82 8169.7 6939.5 0.81 8077.3 6836.5 0.82

DBLP-ACM 1101.8 927 0.85 1099 926 0.85 1100 926.5 0.85

6 Conclusions

In this paper we addressed the problem of unsupervised RL and proposed a novel
approach to RL, which models the task as an optimization problem. Our opti-
mization formulation searches for RL methods that use a weighted sum scoring
to determine linkages between records, favoring those that are less ambiguous
overall, in the linkage decisions they make. Our experimental results indicate
that our method is highly effective in making accurate linkage decisions, while
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also being orders of magnitude faster than existing approaches, especially on
large datasets. We also illustrated that our method is fairly accurate as an RL
method at different cut-off points, and that our optimization approach is exceed-
ingly robust to noisy similarity measures.
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Abstract. The clustering ensemble paradigm has emerged as an effec-
tive tool for community detection in multilayer networks, which allows for
producing consensus solutions that are designed to be more robust to the
algorithmic selection and configuration bias. However, one limitation is
related to the dependency on a co-association threshold that controls the
degree of consensus in the community structure solution. The goal of this
work is to overcome this limitation with a new framework of ensemble-
based multilayer community detection, which features parameter-free
identification of consensus communities based on generative models of
graph pruning that are able to filter out noisy co-associations. We also
present an enhanced version of the modularity-driven ensemble-based
multilayer community detection method, in which community member-
ships of nodes are reconsidered to optimize the multilayer modularity
of the consensus solution. Experimental evidence on real-world networks
confirms the beneficial effect of using model-based filtering methods and
also shows the superiority of the proposed method on state-of-the-art
multilayer community detection.

1 Introduction

Multilayer networks are pervasive in many fields related to network analysis and
mining [2,8]. Particularly, community detection in multilayer networks (ML-CD)
has attracted lot of attention in the past few years, as witnessed by a relatively
large corpus of studies (see, e.g., [7] for a survey).

An effective approach to ML-CD corresponds to aggregation methods, whose
goal is to infer a community structure by combining information from commu-
nity structures separately obtained on each of the layers [16–18]. A special class
of such methods resembles theory on clustering ensemble [6,15]: given a set of
clusterings as different groupings of the input data, a consensus criterion func-
tion is optimized to induce a single, meaningful solution that is representative
of the input clusterings. A key advantage of using a consensus clustering app-
roach is that the inconvenience of guessing the “best” algorithm selection and
parametrization is avoided, and hence consensus results will be more robust and
show higher quality when compared to single-algorithm clustering.
c© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-93040-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93040-4_16&domain=pdf


194 D. Mandaglio et al.

Despite the well-recognized benefits of using the consensus/ensemble clus-
tering paradigm, its exploitation to ML-CD is, surprisingly, relatively new in
the literature [9,16,18]; actually, to the best of our knowledge, only the most
recent of these works goes beyond the use of a clustering ensemble approach
as a black-box tool for ML-CD, by proposing the first well-principled formu-
lation of the ensemble-based community detection (EMCD) problem. Indeed,
in [16], aggregation is not limited at node membership level, but it also accounts
for intra-community and inter-community connectivity; moreover, the consen-
sus function is optimized via multilayer modularity analysis, instead of being
simply based on the sharing of a certain minimum percentage of clusters in the
ensemble.

The EMCD method proposed in [16] relies on a co-association-based con-
sensus clustering scheme, i.e., the consensus clusters are derived from a co-
association matrix built to store the fraction of clusterings in which any two
nodes are assigned to the same cluster. Low values in this matrix would reflect
unlikely consensus memberships, i.e., noise, and hence should be removed; to
this purpose, the matrix is subjected to a filtering step based on a user-specified
parameter of minimum co-association, θ. Unfortunately, setting an appropriate
θ for a given input network is a challenging task, since too low values will lead
to few, large communities, while too high values will lead to many, small com-
munities. Moreover, this approach generally fails to consider properties related
to node distributions and linkage in the network.

In this work, we aim to overcome the above issue, by proposing a new EMCD
framework featuring a parameter-free identification of consensus clusters from
which the consensus community structure will be induced. Our idea is to exploit
a recently developed class of graph-pruning methods based on generative models,
which are designed to filter out “noisy” edges from weighted graphs. A key
advantage of these pruning models is that they do not require any user-specified
parameter, since they enable edge-removal decisions by computing a statistical p-
value for each edge based on a null model defined on the node degree and strength
distributions. We originally introduce these models to multilayer community
detection and propose an adaptation to multilayer networks.

Another limitation of EMCD is that the community membership of nodes
remains the same through the process of detecting the modularity-driven con-
sensus community structure. In this work, we also address this point, by defining
a three-stage process in the EMCD scheme, which iteratively seeks to improve
the multilayer modularity of the consensus community structure based on intra-
community connectivity refinement, community partitioning, and relocation of
nodes from a community to a neighboring one.

Two main findings are drawn from experimental results obtained on real-
world multiplex networks: (i) some of the model-filters are effective in simplifying
an input multilayer network to support improved community detection, and
(ii) our proposed framework outperforms state-of-the-art multilayer community
detection methods according to modularity and silhouette quality criteria.
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In the rest of the paper, we provide background on generative-model-based
filters and on the existing EMCD method (Sect. 2). Next, we present our pro-
posed framework (Sect. 3). Experimental evaluation and results are discussed in
Sects. 4 and 5. Section 6 concludes the paper.

2 Background

2.1 Generative Models for Graph Pruning

Pruning is a graph simplification task aimed at detecting and removing irrele-
vant or spurious edges in order to unveil some hidden property/structure of the
network, such as its organization into communities. A simple technique adopted
in weighted graphs consists in removing all edges having weight below a pre-
determined, global threshold. Besides the difficulty of choosing a proper thresh-
old for the input data, this approach tends to remove all ties that are weak at
network level, thus discarding local properties at node level.

A relatively recent corpus of study addresses the task of filtering out “noisy”
edges from complex networks based on generative null models. The general idea is
to define a null model based on node distribution properties, use it to compute a
p-value for every edge (i.e., to determine the statistical significance of properties
assigned to edges from a given distribution), and finally filter out all edges having
p-value above a chosen significance level, i.e., keep all edges that are least likely
to have occurred due to random chance.

Methods following the above general approach have been mainly conceived to
deal with weighted networks, so that the node degree and/or the node strength
(i.e., the sum of the weights of all incident edges) are used to generate a model
that defines a random set of graphs resembling the observed network. One of
the earliest methods is the disparity filter [14], which evaluates the strength and
degree of each node locally. This filter however introduces some bias in that
the strength of neighbors of a node are discarded. By contrast, a global null
model is defined with the GloSS filter [13], as it preserves the whole distribution
of edge weights. The null model is, in fact, a graph with the same topological
structure of the original network and with edge weights randomly drawn from
the empirical weight distribution. Unlike disparity and GloSS, the null model
proposed by Dianati [1] is maximum-entropy based and hence unbiased. Upon
it, two filters are defined: the marginal likelihood filter (MLF ), which is a linear-
cost method that assigns a significance score to each edge based on the marginal
distribution of edge weights, and the global likelihood filter, which accounts for
the correlations among edges. While performing similarly, the latter filter is more
costly than MLF; moreover, both consider the strength of nodes, but not their
degrees. Recently, Gemmetto et al. [5] proposed a maximum-entropy filter, ECM,
for keeping only irreducible edges, i.e., the filtered network will retain only the
edges that cannot be inferred from local information. ECM employs a null model
based on the canonical maximum-entropy ensemble of weighted networks having
the same degree and strength distribution as the real network [11]. Due to space
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limits, we report details of the MLF, GloSS and ECM filters in the Online
Appendix available at http://people.dimes.unical.it/andreatagarelli/emcd/.

2.2 Ensemble-Based Multilayer Community Detection

Let GL = (VL, EL,V,L) be a multilayer network graph, with set of layers L =
{L1, . . . , L�} and set of entities V. Each layer corresponds to a given type of
entity relation, or edge-label. For each pair of entity in V and layer in L, let
VL ⊆ V ×L be the set of entity-layer pairs representing that an entity is located
in a layer. The set EL ⊆ VL × VL contains the undirected links between such
entity-layer pairs. For every layer Li ∈ L, Vi and Ei denote the set of nodes and
edges, respectively. Also, the inter-layer edges connect nodes representing the
same entity across different layers (monoplex assumption).

Given a multilayer network GL, an ensemble of community structures for
GL is a set E = {C1, . . . , C�}, such that each Ch (with h = 1..�) is a community
structure of the layer graph Gh. This ensemble could be obtained by applying
any non-overlapping community detection algorithm to each layer graph.

Given an ensemble of community structures for a multilayer network, the
problem of ensemble-based multilayer community detection (EMCD) is to com-
pute a consensus community structure, as a set of communities that are rep-
resentative of how nodes were grouped and topologically-linked together over
the layer community structures in the ensemble. In order to determine the com-
munity membership of nodes in the consensus structure, a co-association-based
scheme is defined over the layers, to detect a clustering solution (i.e., the con-
sensus) that conforms most to the input clusterings. Given GL, and E for GL,
the co-association matrix M is a matrix with size |V|× |V|, whose (i, j)-th entry
is defined as |mij |/�, where mij is the set of communities shared by vi, vj ∈ V,
under the constraint that the two nodes are linked to each other [16].

EMCD is modeled in [16] as an optimization problem in which the consen-
sus community structure solution is optimal in terms of multilayer modularity,
and is to be discovered within a hypothetical space of consensus community
structures that is delimited by a “topological-lower-bound” solution and by a
“topological-upper-bound” solution, for a given co-association threshold θ. Intu-
itively, the topological-lower-bound solution may be poorly descriptive in terms
of multilayer edges that characterize the internal connectivity of the communi-
ties, whereas the topological-upper-bound solution may contain superfluous mul-
tilayer edges connecting different communities. The modularity-optimization-
driven consensus community structure produced by the method in [16], dubbed
M-EMCD, hence produces a solution that is ensured to have higher modularity
than both the topologically-bounded solutions.

3 EMCD and Parameter-Free Graph Pruning

As previously discussed, the EMCD framework has one model parameter, i.e.,
the co-association threshold θ, which allows the user to control the degree of con-
sensus required to every pair of nodes in order to appear in the same consensus

http://people.dimes.unical.it/andreatagarelli/emcd/
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Fig. 1. Community structures (denoted by dotted curves) on a 3-layer network, and
corresponding co-association graph.

community. Given a selected value for θ and any two nodes vi, vj , we say that
their community linkage, expressed by M(vi, vj), is considered as meaningful to
put the nodes in the same consensus community iff M(vi, vj) ≥ θ.

However, choosing a fixed value of θ equally valid for all pairs of nodes raises
a number of issues. First, there is an intrinsic difficulty of guessing the “best”
threshold — since too low values will lead to few, large communities, while too
high values will lead to many, small communities. Second, the approach ignores
any property of the input network, and consequently a single-shot choice of θ
may fail to capture the natural structure of communities. Of course, to overcome
the two issues in practical cases, one could always try different choices of the
parameter and finally select the best-performing one (e.g., in terms of modularity,
as done in [16]), but it is clear that the approach does not scale for large networks.

It would instead be desirable to evaluate the significance of the co-associations
by taking into account the topology of the multilayer network, so that a rela-
tively low value of co-association might be retained as meaningful provided that
it refers to node relations that make sense only for certain layers, while on the
contrary, a relatively high value of co-association could be discarded if it corre-
sponds to the linkage of nodes that have high degree and co-occur in the same
community in many layers — in which case, the co-association could be consid-
ered as superfluous in terms of community structure.

In order to fulfill the above requirement, we define a parameter-free approach
to EMCD that exploits the previously discussed pruning models. Since such
models are only designed to work with (monoplex) weighted graphs, our key
idea is to first infer a weighted graph representation of the co-association matrix
associated to a multilayer network and its ensemble of community structures,
and then apply a pruning model on it to retain only meaningful co-associations.

Definition 1 (Co-association graph). Given a multilayer graph GL, an
ensemble E of community structures defined over it, and associated co-association
matrix M, we define the co-association graph GM = 〈VM , EM , w〉as an undi-
rected weighted graph such that VM = V, EM = {(vi, vj) | mij �= ∅, wij = |mij |}.

Below is an example of how the pruning of the co-association graph based on a
user-specified threshold could lead to poorly meaningful consensus communities.
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Algorithm 1. Co-association matrix filtering
Input: Multilayer graph GL = (VL, EL, V, L), ensemble of community structures E = {C1, . . . , C�}

(with � = |L|), generative model for graph pruning WGP.
Output: Filtered co-association matrix M for GL and E.
1: Let α be a statistical significance level (i.e., α = 0.05) {Co-association matrix initialization}
2: M ← matrix(|V|, |V|)
3: for (i, j) ∈ M do
4: mij ← {h | Lh ∈ L ∧ ∃C ∈ Ch, Ch ∈ E, s.t. vi, vj in C ∧ (vi, vj) ∈ Eh}
5: M(i, j) ← |mij |/�
6: end for
7: GM = 〈VM , EM , w〉 ← build coassociation graph(GL,M) {Using Def. 1}
8: (e, γij)e=(vi,vj)∈EM

← compute pValues(GM ,WGP) {Using Def. 2}
9: for (vi, vj) ∈ EM do
10: if γij ≥ α then M(i, j) ← 0 {Null hypothesis cannot be rejected}
11: return M

Example 1. Consider the 3-layer network and associated co-association graph in
Fig. 1. Focusing on the community membership of nodes, consider the following
settings of a cutting threshold θ. For any θ ≤ 1/3, all edges will be kept (as the
minimum valid weight is 1) and hence the co-association graph will be partitioned
into the two communities corresponding to its two connected components, i.e.,
{1, .., 8} and {9, 10, 11}; setting 1/3 < θ ≤ 2/3 will lead to {1, .., 4}, {5, .., 8},
and {9}, {10}, {11}; finally, for 2/3 < θ ≤ 1, the communities will be {1, 2, 3},
{5, 7} and all the other nodes as singletons. It should be noted that no setting
of θ can enable the identification of the three “natural” consensus communities,
i.e., {1, .., 4}, {5, .., 8}, and {9, 10, 11}.

Definition 2 (Co-association hypothesis testing). Given a co-association
graph GM = 〈VM , EM , w〉, let WGP denote a statistical inference method whose
generative null model is parametric w.r.t. node degree and strength distributions
in GM . We define the co-association hypothesis testing as a parametric testing
based on WGP, whose null hypothesis for every observed edge is that its weight
has been generated by mere chance, given the empirical strength and degree dis-
tributions, and the associated p-value is the probability that the null model pro-
duces a weight equal to or greater than the observed edge weight. If the p-value is
lower than a desired significance level, then the null hypothesis can be rejected,
which implies that the co-association of the two observed nodes is considered as
statistically meaningful.

Algorithm 1 shows the general scheme of creation of the co-association
matrix, for a given multilayer network and associated ensemble of community
structures, and its filtering based on the co-association hypothesis testing.

Enhanced M-EMCD (M-EMCD*). We propose an enhanced version of M-
EMCD that has two main advantages w.r.t. the early M-EMCD method in [16]:
(1) it incorporates parameter-free pruning of the co-association matrix described
in Algorithm 1, and (2) it fixes the inability of the early M-EMCD in reconsidering
the community memberships of nodes during the consensus optimization.

Algorithm 2 shows the pseudo-code of our proposed enhanced M-EMCD,
dubbed M-EMCD∗. Initially, the filtered co-association matrix computed by
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Algorithm 2. Enhanced Modularity-driven Ensemble-based Multilayer Com-
munity Detection (M-EMCD∗)
Input: Multilayer graph GL = (VL, EL, V, L), ensemble of community structures E = {C1, . . . , C�}

(with � = |L|), generative model for graph pruning WGP.
Output: Consensus community structure C∗ for GL.
1: M ← co-associationMatrixFiltering(GL, E, WGP) {Algorithm 1}
2: Clb ← CC-EMCD(GL,M) {Compute topological-lower-bound consensus community structure}
3: C∗ ← Clb

4: repeat
5: for Li ∈ L do
6: Q ← Q(C∗)

{Refine intra-community connectivity of Cj}
7: for Cj ∈ C∗ do
8: 〈C′

j , Q′
j〉 ← update community(C∗, Cj , Li)

9: j∗ ← argmaxQ′
j

10: if Q′
j∗ > Q then Q ← Q′

j∗ , C∗ ← C∗ \ Cj ∪ C′
j∗

{Refine inter-community connectivity between Cj∗ and each of its neighbors}
11: for Ch ∈ N(Cj∗ ) do

12: 〈CIC
h , QIC

h 〉 ← update community structure(C∗, Cj∗ , Ch, Li)

13: 〈CR
h , QR

h 〉 ← relocate nodes(C∗, Cj∗ , Ch)

14: 〈Ch, Qh〉 ← argmax{QIC
h , QR

h }
15: h∗ ← argmaxQh

16: if Qh∗ > Q then
17: Q ← Qh∗ , C∗ ← Ch∗
18: if Qh∗ = QR

h∗ then 〈Ch, Qh〉 ← update community structure(C∗, Cj∗ , Ch∗ , Li)

19: else 〈Ch, Qh〉 ← relocate nodes(C∗, Cj∗ , Ch∗ )
20: if Qh > Q then Q ← Qh, C∗ ← Ch

{Evaluate partitioning of Cj∗ into smaller communities}
21: 〈C′

s, Q′
s〉 ← partition community(C∗, Cj∗ )

22: if Q′
s > Q then Q ← Q′

s, C∗ ← C∗ \ Cj∗ ∪ C′
s

23: end for
24: until Q(C∗) cannot be further maximized
25: return C∗

a selected model-filter WGP is provided as input to CC-EMCD, which com-
putes the initial (i.e., lower-bound) consensus community structure (Line 2) [16].
This is iteratively improved in a three-stage modularity-optimization process: (i)
refinement of connectivity internal to a selected community, (ii) refinement of
connectivity between the community and its neighbors also involving relocation
of nodes, and (iii) partitioning of the community.

The within-community connectivity refinement step (Lines 7–10) consists in
seeking in the current solution C∗ the community Cj∗ whose internal connectivity
modification leads to the best modularity gain. The internal refinement of a com-
munity Cj , applied to the layer Li, is performed by function update community
(Line 8) which tries to add as many edges of type Li as possible between nodes
belonging to Cj , i.e., the set of edges in Ei whose end-nodes are both in Cj

and are not present in the current solution C∗. The function then returns the
modified Cj and the updated modularity.

Once identified the community Cj∗ at the previous step, the algorithm tries
to relocate nodes from Cj∗ to its neighbor communities N(Cj∗) and/or to refine
its external connectivity with them (Lines 11–20). The inter-community connec-
tivity refinement is carried out by function update community structure (Line 12)
which, for any layer Li and neighbor communities Cj ,Ch, evaluates the resulting
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Table 1. Main features of real-world multiplex network datasets used in our evaluation.

#entities #edges #layers #entities #edges #layers

(|V|) (�) (|V|) (�)

AUCS [7] 61 620 5 FF-TW-YT [2] 6 407 74 836 3

EU-Air [7] 417 3 588 37 London [19] 369 441 3

FAO-Trade [4] 214 318 346 364 VC-Graders [19] 29 518 3

modularity of adding and/or removing edges of type Li in the current consensus
C∗ between Cj ,Ch, compatibly with the set of edges of Li in the original graph.
The relocation of one node at a time from Cj∗ to a neighbor community Ch is
evaluated by relocate nodes (Line 13) until there is no further improvement in
modularity. The ordering of node examination is determined by a priority queue
that gives more importance to nodes having more edges (of any type) towards
Ch than edges linking them to nodes in their current community in C∗.

The step of partitioning of Cj∗ into smaller communities is carried out
by function partition community (Line 21). While this can in principle refer to
the use of any (multilayer) modularity-optimization-based community detection
method, we choose here to focus on the membership of nodes, and hence to
devise this step in the simplified scenario of flattened representation of the con-
sensus community Cj∗ , i.e., a weighted monoplex graph with all and only the
nodes belonging to Cj∗ and weights expressing the number of layers on which two
nodes are linked in C∗. Upon this representation, we apply a graph partitioning
method based on modularity optimization (cf. Sect. 4) and finally maintain the
resulting partitioning only if it led to an improvement in modularity.

4 Evaluation Methodology

Datasets. We used six networks for our evaluation (Table 1), which are among
the most frequently used in relevant studies in multilayer community detection.

Competing Methods. We selected four of the most representative methods
for multilayer community detection: Generalized Louvain (GL) [12], Multiplex
Infomap (M-Infomap) [3], Principal Modularity Maximization (PMM) [17], and
the consensus clustering approach in [9] (hereinafter denoted as ConClus). Note
that the latter two are aggregation-based methods; in particular, ConClus is a
simple approach for consensus clustering in weighted networks.

Assessment Criteria and Setting. We employed the multilayer modularity
defined in [16], the multilayer silhouette defined in [16], and NMI [15].

To generate the ensemble for each evaluation network, following the lead of
the study in [16], we used the serial version of the Nerstrand algorithm [10],
a very effective and efficient method for discovering non-overlapping communi-
ties in (single-layer) weighted graphs via modularity optimization. We also used
Nerstrand for the community-partitioning step in our M-EMCD∗.
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Table 2. Size and modularity (upper table) and silhouette (bottom table) of lower-
bound (CC-EMCD) and M-EMCD∗consensus (in brackets, when applicable, the incre-
ments over M-EMCD), with or without model-filters.

CC-EMCD modularity M-EMCD∗ modularity M-EMCD∗ #communities
θ-based MLF ECM GloSS θ-based MLF ECM GloSS θ-based MLF ECM GloSS

AUCS 0.60 0.68 0.66 0.21 0.86 (+0.03) 0.91 0.91 0.25 14 13 18 52
EU-Air 0.73 0.60 0.60 0.07 0.91 0.91 0.90 0.09 274 39 45 397 (-2)

FAO-Trade 0.74 0.59 0.30 0.20 1.00 1.00 0.99 (+0.29) 0.99 (+0.56) 41 (+1) 1 (-2) 11 (+3) 40 (-17)
FF-TW-YT 0.48 0.44 0.44 0.05 0.73 (+0.12) 0.94 0.94 0.05 119 (+33) 115 133 5134

London 0.89 0.85 0.85 0.41 0.90 0.97 0.97 0.49 (+0.06) 45 46 46 340 (-3)
VC-Graders 0.22 0.33 0.27 -0.01 0.88 (+0.54) 0.44 0.43 0.03 (-0.01) 3 (-8) 16 17 26 (-1)

CC-EMCD silhouette M-EMCD∗ silhouette
θ-based MLF ECM GloSS θ-based MLF ECM GloSS

AUCS 0.07 0.23 0.28 0.14 0.37 (+0.01) 0.38 0.40 0.15
EU-Air 0.01 0.16 0.18 -0.05 0.09 0.27 0.30 0.04 (-0.02)

FAO-Trade -0.06 0.01 0.02 0.01 0.08 1.00 (+0.91) 0.06 (-0.05) 0.06 (-0.05)
FF-TW-YT 0.00 0.06 0.06 0.03 0.00 (-0.04) 0.15 0.12 0.03

London 0.14 0.06 0.06 0.03 0.18 0.20 0.20 0.12 (+0.04)
VC-Graders 0.24 0.20 0.21 0.05 0.52 (+0.23) 0.24 0.28 0.83 (+0.77)

As concerns the competing methods, we used the default setting for GL and
M-Infomap. We varied the number of communities in PMM from 5 to 100 with
increments of 5, and finally selected the value corresponding to the highest mod-
ularity. Also, we equipped ConClus with Nerstrand (for the generation of the
clusterings), set np to the number of layers, and varied θ in the full range (with
step 0.01) to finally select the value that determined the consensus clusters with
the highest average NMI w.r.t. the initial ensemble solutions.

More details about the evaluation networks and the competing methods can
be found at http://people.dimes.unical.it/andreatagarelli/emcd/.

5 Results

5.1 Impact of Model-Filters on M-EMCD∗

For every network, we analyzed size, modularity and silhouette of the consensus
solution obtained before (i.e., at lower-bound CC-EMCD) and at convergence of
the optimization performed by M-EMCD∗, when using either global threshold θ
pruning or one among MLF, ECM, and GloSS; in the former case, the value of
modularity refers to the consensus solution corresponding to the best-performing
θ value. Results are reported in Table 2 and discussed next. At the end of this
section, we also mention aspects related to time performance evaluation.

Size of Consensus Solutions. MLF and ECM tend to produce similar number
of communities. By contrast, GloSS is in general much more aggressive than the
other models, which causes proliferation of communities in the co-association
graph. Also, the final solution by M-EMCD∗can differ in size from the initial
consensus by CC-EMCD, due to the optimization of modularity.

http://people.dimes.unical.it/andreatagarelli/emcd/
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Modularity Analysis. Looking at the modularity results, besides the expected
improvement by M-EMCD∗over CC-EMCD in all cases, the following remarks
stand out. First, MLF and ECM again behave similarly in most cases, while
GloSS reveals to be much weaker; this is clearly also dependent on the tendency
by GloSS of heavily pruning the co-association graph, as discussed in the previ-
ous analysis on the size of consensus solutions. Second, using MLF or ECM leads
to higher modularity w.r.t. the best-performing global threshold, in all networks
but VC-Graders. This would support the beneficial effect deriving from the use
of a model-filter for the co-association graph matrix; note however that such
results should be taken with a grain of salt, since modularity is computed on dif-
ferently prunings of the same network. Also, FAO-Trade deserves a special men-
tion, since its much higher multigraph density (13.97) and dimensionality (i.e.,
number of layers) (cf. Table 1) also caused a densely connected co-association
graph, with average degree of 74, average path length of 1.67, clustering coef-
ficient of 0.64, and 1 connected component. This makes FAO-Trade a difficult
testbed for a community detection task, which explains the outcome reported
in Table 2: 11 consensus communities are produced when using ECM, 41 and
40 with θ-based approach and GloSS, respectively, with most of them singletons
and disconnected, and even 1 community for MLF.

It is worth noting that most of the performance gains by M-EMCD∗over M-
EMCD are obtained for θ-based pruning, but not for model-filter pruning. This
would suggest the ability of M-EMCD∗of achieving high quality consensus even
when a refined model-filter would not be used.

Silhouette and NMI Analysis. In terms of silhouette, the use of model-
filter pruning is beneficial to both CC-EMCD and M-EMCD∗consensus solutions,
where the latter achieve significantly higher silhouette in most cases. Among the
filters, again MLF and ECM tend to perform closely—with a slight prevalence
of ECM—and better than GloSS (except for VC-Graders, where the number of
communities is close to the number of nodes in the co-association graph).

We also measured the NMI of M-EMCD and M-EMCD∗model-filter consensus
solutions vs. the corresponding solutions obtained by θ-based pruning (results
not shown). NMI was found very high (above 0.8, up to 1.0) in EU-Air, AUCS,
and VC-Graders, around 0.60–0.70 in FF-TW-YT and London, and around 0.40–
0.50 in FAO-Trade. Overall, this indicates that the model-filter pruning has sim-
ilar capabilities as the best θ-based pruning in terms of community membership,
though with the advantage of not requiring parameter selection.

Time Performance Analysis. Considering the execution time of model-filter
pruning (results not shown), ECM is in general more costly than GloSS, and this
in turn more costly than MLF. This gap—at least one order of magnitude—of
ECM against the other two filters can be explained since its higher requirements
due to its capability of preserving both degree and strength distributions. Details
are reported at http://people.dimes.unical.it/andreatagarelli/emcd/.

http://people.dimes.unical.it/andreatagarelli/emcd/
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Table 3. Increments of number of communities, modularity, silhouette and NMI of
M-EMCD∗solutions, by varying model-filters, w.r.t. corresponding solutions obtained
by GL, PMM, M-Infomap, and ConClus.

Gains by M-EMCD∗ vs. GL
#communities Modularity Silhouette NMI w.r.t.

θ-based pruning
MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS

AUCS +6 +8 +48 +0.09 +0.08 -0.39 +0.11 +0.10 -0.01 +0.06 +0.21 +0.47
EU-Air -23 -27 +364 +0.12 +0.11 -0.23 +0.26 +0.29 +0.08 +0.51 +0.48 +0.3

FAO-Trade -5 +4 +30 +0.53 +0.60 +0.70 +0.97 +0.07 +0.07 -0.55 -0.28 +0.21
FF-TW-YT +111 +130 +5131 +0.29 +0.27 -0.29 -0.07 -0.10 -0.05 +0.02 +0.05 +0.4

London +23 +23 +318 +0.05 +0.05 -0.42 +0.08 +0.08 -0.30 -0.14 -0.13 -0.06
VC-Graders 0 +2 +18 -0.23 -0.26 -0.40 +0.15 +0.21 +0.71 +0.3 +0.31 +0.08

Gains by M-EMCD∗ vs. PMM
#communities Modularity Silhouette NMI w.r.t.

θ-based pruning
MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS

AUCS -1 +4 +38 +0.43 +0.29 0.00 +0.12 +0.13 -0.04 +0.24 +0.26 +0.18
EU-Air -47 -41 +311 +0.66 +0.65 +0.04 +0.30 +0.33 +0.12 +0.61 +0.61 +0.47

FAO-Trade -39 -29 0 +0.91 +0.90 +0.90 +1.02 +0.06 +0.07 -0.61 -0.4 +0.06
FF-TW-YT +104 +122 +5123 +0.66 +0.60 -0.03 -0.14 -0.15 -0.12 -0.1 -0.11 -0.13

London +1 +1 +295 +0.26 +0.28 0.00 +0.03 +0.03 -0.02 +0.06 +0.07 +0.16
VC-Graders +1 +2 +11 -0.05 -0.01 -0.13 +0.25 +0.27 +0.95 +0.24 +0.2 -0.29

Gains by M-EMCD∗ vs. M-Infomap
#communities Modularity Silhouette NMI w.r.t.

θ-based pruning
MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS

AUCS +4 +4 +45 +0.18 +0.23 -0.12 +0.17 +0.11 +0.11 +0.48 +0.46 +0.38
EU-Air -255 -251 +167 +0.38 +0.37 -0.20 +0.35 +0.37 +0.18 +0.74 +0.74 +0.56

FAO-Trade 0 +10 +39 +1.00 0.00 +0.99 +2.00 +1.06 +1.06 0 +0.22 +0.66
FF-TW-YT +113 +130 +5132 +0.20 +0.24 -0.53 -0.15 -0.15 -0.23 +0.4 +0.3 +0.23

London +37 +38 +338 +0.52 +0.52 +0.05 +0.21 +0.20 +0.12 +0.39 +0.4 +0.84
VC-Graders +15 +16 +25 -0.49 -0.50 -0.58 +1.24 +1.28 +1.83 +0.66 +0.64 +0.47

Gains by M-EMCD∗ vs. ConClus
#communities Modularity Silhouette avg NMI of

ensemble
MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS

AUCS +5 +9 +42 +0.33 +0.38 -0.26 +0.13 +0.17 -0.11 -0.03 +0.00 +0.03
EU-Air -25 -18 +323 +0.71 +0.71 -0.07 +0.23 +0.27 +0.06 -0.05 -0.04 +0.20

FAO-Trade -16 -11 +21 +0.59 +0.77 +0.74 +0.92 -0.02 -0.01 -0.55 -0.27 +0.01
FF-TW-YT +17 +74 +4885 +0.48 +0.47 -0.33 +0.15 +0.12 +0.02 -0.06 -0.04 +0.18

London +16 +21 +298 +0.15 +0.14 -0.30 +0.09 +0.10 -0.01 +0.01 +0.02 +0.12
VC-Graders +10 +10 +20 +0.21 +0.24 -0.20 +0.09 +0.11 +0.68 +0.02 -0.04 -0.14

5.2 Evaluation with Competing Methods

Table 3 summarizes the increments in terms of size, modularity, silhouette
(Table 2), and NMI of M-EMCD∗solutions w.r.t. the corresponding solutions
obtained by each of the competitors, by varying model-filters. For the NMI
evaluation, we distinguished two cases: the one, valid for GL, PMM, or M-
Infomap, whereby the reference community structure is the solution obtained
by the method in case of θ-based pruning, with θ selected according to the best-
modularity performance; the other one, valid for ConClus, whereby we computed
the average NMI over the layer-specific community structures.

This comparative analysis was focused on the impact of using the various
model-filters on the methods’ performance. To this end, for every network and
model-filter, we first generated an ensemble of layer-specific community struc-
tures via Nerstrand, then we built the co-association graph and applied the filter,
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finally we removed from the original multilayer network the edges pruned by the
model-filter, before providing it as input to each of the competing methods.

One general remark is that M-EMCD∗equipped with MLF or ECM outper-
forms all competing methods in terms of both modularity and silhouette, and
tends to produce more communities, with very few exceptions. Concerning NMI
results for the first three methods, again the increments by M-EMCD∗are mostly
positive, thus implying that model-filter pruning appears to be more benefi-
cial, w.r.t. a global threshold based pruning approach, for M-EMCD∗than GL,
followed by PMM and M-Infomap. Also, it is interesting to observe that, with
the exception of FAO-Trade for MLF and ECM, M-EMCD∗has average NMI of
ensemble comparable to or even better than ConClus, whose performance values
are optimal in terms of NMI (i.e., the parameter threshold corresponded to the
best NMI over each network).

6 Conclusion

We proposed a new framework for consensus community detection in multi-
layer networks. This is designed to enhance the modularity-optimization process
w.r.t. existing EMCD method. Moreover, by exploiting parameter-free genera-
tive models for graph pruning, our framework overcomes the dependency on a
user-specified threshold for the global denoising of the co-association graph.
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Abstract. Community discovery is a comprehensive problem associat-
ing with sociology and computer science. The recent surge of Location-
Based Social Networks (LBSNs) brings new challenges to this problem
as there is no definite community structure in LBSNs. This paper tack-
les the multidimensional community discovery in LBSNs based on user
check-in characteristics. Communities discovered in this paper satisfy two
requirements: frequent user interaction and consistent temporal-spatial
pattern. Firstly, based on a new definition of dynamic user interaction,
two types of check-ins in LBSNs are distinguished. Secondly, a novel
community discovery model called SRTST is conceived to describe the
generative process of different types of check-ins. Thirdly, the Gibbs Sam-
pling algorithm is derived for the model parameter estimation. In the end,
empirical experiments on real-world LBSN datasets are designed to vali-
date the performance of the proposed model. Experimental results show
that SRTST model can discover multidimensional communities and it
outperforms the state-of-the-art methods on various evaluation metrics.

Keywords: Community discovery · LBSNs · Temporal-spatial topics
Topic model

1 Introduction

Community discovery has long been a hot issue in online social network research
as it contributes valuable knowledge to practical scenarios, such as user behav-
ior prediction and product recommendation. However, with the increasing preva-
lence of Location-Based Social Networks (LBSNs) in recent years, new challenges
have been brought to traditional community discovery methods since definite
community definition is missing in such heterogeneous networks. Abundant user
check-in records generated in LBSNs provide a new perspective for community
discovery, as a consequence, additional knowledge needs to be mined reasonably
considering both user-user and user-location relations.

In our real life, a community can be viewed as a multidimensional cluster
[1], where people should have close social relations and similar behavior charac-
teristics including temporal and spatial preferences. Therefore, multiple factors
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 206–217, 2018.
https://doi.org/10.1007/978-3-319-93040-4_17
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should be considered when addressing community discovery problem in LBSNs.
In this paper, the concept of community is tightly related to four elements, i.e.
WHO, WHEN, WHERE and WHAT. Among the four elements, WHO
refers to the friend(s) that a user chooses to go out with. It is the reflection
of user social relationship. A community considering ‘WHO’ can keep the close
social links within itself. WHEN refers to the time when a user conducts his
check-in. It is the reflection of user temporal pattern. Users in a community
should have consistent temporal pattern. WHERE refers to the place where a
user plans to go. It is the reflection of user spatial pattern. Users who frequently
check-in within the same area should be deemed in the same community, and
a community considering ‘WHERE’ can keep consistent spatial pattern within
itself. WHAT refers to what the place is when a user decides to visit. It is
the reflection of user location preference coming from the user’s interest. In this
sense, users in a community should have consistent location preference.

Unlike the concepts of W4 proposed by studies [15,16] which focus on mod-
eling individual user’s behavior, our concept is devoted to characterizing com-
munities in LBSNs. Communities discovered in this paper satisfy two require-
ments: frequent user interaction and consistent temporal-spatial pattern, thus
can describe user clustering in LBSNs more properly and comprehensively.

Inspired by the generative process of different types of check-ins, this paper
proposes a novel community discovery model based on Social Relations and
Temporal-Spatial Topics (SRTST). We show that SRTST model is able to iden-
tify multidimensional communities using real-world LBSN datasets. Besides, we
demonstrate its effectiveness and superiority from the perspective of topic mod-
eling, community structure and temporal-spatial consistency, respectively.

2 Related Works

Community Discovery in LBSNs. Up to now, studies on community discov-
ery in LBSNs are relatively rare compared to that in traditional online social
networks. Some basic assumptions within LBSN community include that users
in the same community should live near each other [3] or have the same topic and
location preference [11]. In [5], a new measure of partition quality named ‘spa-
tial nearness modularity’ is proposed to ensure that communities are not only
tightly-knit in terms of topology, but also spatially near in geographic distance.
In [11], the user-venue check-in network and user/venue attributes are integrated
into an edge-centric coclustering framework to detect overlapping communities.
Similarly, based on user check-in records, research in [12] proposes an edge cut-
ting algorithm in order to identify community structure in LBSNs.

Topic Model for Community Discovery. Recently, topic modeling has been
widely accepted in community discovery as it is able to detect semantic rela-
tions. The common practice is to introduce community related variables into
traditional topic model such as LDA and construct a brand new model, enabling
specific variables in community to be probability distributions. In Twitter net-
work, a mixed membership stochastic block model is proposed so that each user
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has a probability distribution over communities [8]. In citation network, as edges
between authors are generated by citation relations and similar research inter-
ests, a topic model called Author-Topic-Community is presented to depict the
generative process of citation edges [7]. Several other studies try to find commu-
nities in content sharing networks considering topology and content information
at the same time [9].

So far, research that applies topic models for community discovery in LBSNs
is rare. Although existing studies such as [6,14] can discover community struc-
ture in LBSNs through topic models, they can not satisfy the community require-
ments raised in this paper. The desirable community not only requires close user
relations, but also reflects consistency in temporal and spatial preference. Hence,
new mechanism is urgently needed to solve the multi-requirement community
discovery problem.

3 Community Discovery Model

3.1 Preliminaries

Conventionally, friendship relation in social networks lacks discrimination of
closeness, and each friend is treated equally. However, the closeness of friends is
unfixed in real life. So the static social relation is unsatisfying when user closeness
needs to be described. To emphasize the real situation, we propose a dynamic
user interaction definition by combining friendship and user check-in records.

Definition 1 User interaction. There is one user interaction between u1 and
u2 when (1) u1 and u2 are online friends, and (2) u1 and u2 visit the same
location in the same windowed time.

In this paper, week mode [4] is adopted to transfer the absolute time into
windowed time. In this sense, we formalize time t as the windowed time r(t),
and r(t) ∈ {1, 2, 3, . . . 168} represents each of the 168 h in a week.

We also give a formalized definition of user check-in:

Definition 2 User check-in. A check-in is denoted by o =< u, v, f, t >, which
means user u visits location v at time t with friends f . According to whether f is
empty, check-ins are further classified into two types. Check-ins of the first type
correspond to nonempty set f , which means visiting a place along with friends;
check-ins of the second type correspond to empty set f , which means visiting a
place alone.

To discover communities from massive check-ins, we need a static snapshot
of the global LBSN dataset, which is defined as follows:

Definition 3 Network Snapshot. The check-in set in a windowed time tw is
treated as the network snapshot of tw, denoting by sntw = {< u, v, f, t > |r(t) =
tw}.

Based on Definition 3, the whole LBSN dataset can be denoted by SN =
{sn1, sn2, sn3, . . . snT }, where T = 168 as there are 168 time windows under
week mode.
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3.2 Basic Idea of SRTST Model

Traditional topic modeling methods mainly pay attention to latent semantic
topics while ignoring the reason that forms user community. Unlike existing
methods, we consider not only temporal-spatial topics, but also the role of com-
munities in the real situation. We take all the four aspects into account: frequent
user interaction, consistent temporal pattern, consistent spatial pattern and sim-
ilar location preference.

With regard to the first type of check-ins (See Fig. 1), we describe the gen-
erative process as follows. User u firstly chooses the companion friend set f
from community c which u belongs to. Then the activity topic z is considered
according to user u and friends f (community c). Next, based on geography and
transportation factors, the visiting area, i.e. the region r, is determined. Finally,
user u chooses the destination location v considering both topic z and region
r. This process involves topic, region as well as community, bringing spatial
pattern, location preference and social relations into the model.

With regard to the second type of check-ins (See Fig. 1), the generative pro-
cess is described as follows. User u firstly decides the purpose of visiting, i.e. the
topic z. Then the visiting area, i.e. the region r, is determined. In the end, des-
tination location v is chosen combing topic z and region r. This process involves
topic and region, bringing spatial pattern and location preference into the model.

To sum up, in the overall generative process of two types of check-ins, we
take social relations and temporal-spatial topics into consideration in each time
window.

3.3 Model Construction

According to the above analysis, a Bayesian graphical model for community
discovery based on Social Relations and Temporal-Spatial Topics (SRTST) is
conceived. Figure 1 illustrates the structure of our model, and the notations of
the model parameters are listed in Table 1. In SRTST model, all the check-ins
are divided into T parts according to the time windows. Check-ins in each time
window are further divided into two types in order to describe the different
generative processes separately. By jointly considering the two types of check-
ins, we believe SRTST model can better depict the role of user community in
LBSNs.

4 Parameter Estimation

To obtain the posterior distribution of the latent variables conditioned on the
existing data, we use Gibbs Sampling for parameter estimation. The updating
rules for probability distributions {λ, θ, ϕ, θ′, ϕ′, π} are given as follows.

I. λ, i.e. P (u|c). The probability of user u under community c is:

λc,u =
n
(c)
u + n

(c)
f.u + γu

∑
u′∈U (n(c)

u′ + n
(c)
f.u′ + γu′)

(1)
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Fig. 1. Graphical Representation of
SRTST model. User u and location v
are observable variables, which are rep-
resented in gray circles. Community c,
topic z and region r are latent variables.
Subscript o in some symbols represents
the current check-in o =< u, v, f, t >.

Table 1. Notations of Parameters

Parameters Interpretation

O1, O2 check-in set of the first type and

second type respectively

Nt number of check-ins within

windowed time t

o.f set of friends with check-in o

λ probability distribution P (u|c)
π probability distribution P (v|z, r)

θ probability distribution P (z|u, c)

θ′ probability distribution P (z|u)
ϕ probability distribution

P (r|u, c, z)

ϕ′ probability distribution P (r|u, z)

γ, α, α′ Dirichlet prior distribution to λ, θ

and θ′

β, β′, μ Dirichlet prior distribution to ϕ,

ϕ′ and π

ηt the initial uniform distribution

parameter of the model

where n
(c)
u is the number of times that user u belongs to community c; n

(c)
f.u

is the number of times that user u belongs to community c as a companion
friend; γu is the Dirichlet prior to λu.

II. θ, i.e. P (z|c, u). The probability of topic z under community c and user u
is:

θc,u,z =
n
(c,u)
z + αz

∑
z′∈Z(n(c,u)

z′ + αz′)
(2)

where n
(c,u)
z is the number of times that topic z belongs to community-user

pair < c, u >; αz is the Dirichlet prior to θz.
III. ϕ, i.e. P (r|c, u, z). The probability of region r under community c, user u

and topic z is:

ϕc,u,z,r =
n
(c,u.z)
r + βr

∑
r′∈R(n(c,u,z)

r′ + βr′)
(3)

where n
(c,u,z)
r is the number of times that region r belongs to community-

user-topic tuple < c, u, z >; βr is the Dirichlet prior to ϕr.
IV. θ′, i.e. P (z|u). The probability of topic z under user u is:

θ′
u,z =

n
(u)
z + α′

z
∑

z′∈Z(n(u)
z′ + α′

z′)
(4)

where n
(u)
z is the number of times that topic z belongs to user u; α′

z is the
Dirichlet prior to θ′

z.
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V. ϕ′, i.e. P (r|u, z). The probability of region r under user u and topic z is:

ϕ′
u,z,r =

n
(u,z)
r + β′

r
∑

r′∈R(n(u,z)
r′ + β′

r′)
(5)

where n
(u,z)
r is the number of times that region r belongs to user-topic pair

< u, z >; β′
r is the Dirichlet prior to ϕ′

r.
VI. π, i.e. P (v|z, r). The probability of location v under topic z and region r is:

πz,r,v =
n
(z,r)
v + μv

∑
v′∈V (n(z,r)

v′ + μv′)
(6)

where n
(z,r)
v is the number of times that location v belongs to topic-region

pair < z, r >; μv is the Dirichlet prior to πv.

The detailed Gibbs Sampling algorithm for parameter estimation in SRTST
model is shown in Algorithm 1. Theoretically, the time complexity of Algorithm1
is O(I × T × |SNt| × (|C| + |Z| + |R|)), where I is the predefined number of
iterations.

Algorithm 1. Gibbs Sampling Algorithm for SRTST model
Input: |C|, |Z|, |R|, α, β, α′, β′, γ, μ, ηt

Output: λ, θ, θ′, ϕ, ϕ′, π

1: I = Number of Iterations;
2: /* Initialization for all check-ins in T time windows. */
3: for t = 1 to T do
4: for each o ∈ SN t do
5: c, z, r ∼ uniform();
6: assign 〈c, z, r〉 to o;
7: end for
8: end for
9: /* Iteration */

10: for t = 1 to I do
11: for t = 1 to T do
12: for each o ∈ SN t do
13: if o ∈ O1 then

14: c ∼ n
(co)
−o,uo

+n
(co)
f.uo

+γuo
∑

u∈U (n
(co)
−o,u+n

(co)
f.u +γu)

n
(co,uo)
−o,zo

+αzo
∑

z∈Z(n
(co,uo)
−o,z +αz)

n
(co,uo,zo)
−o,ro

+βro
∑

r∈R(n
(co,uo,zo)
−o,r +βr)

;

15: z ∼ n
(co,uo)
−o,zo

+αzo
∑

z∈Z(n
(co,uo)
−o,z +αz)

n
(co,uo,zo)
−o,ro

+βro
∑

r∈R(n
(co,uo,zo)
−o,r +βr)

n
(zo,ro)
−o,vo

+μvo
∑

v∈V (n
(zo,ro)
−o,v +μv)

;

16: r ∼ n
(co,uo,zo)
−o,ro

+βro
∑

r∈R(n
(co,uo,zo)
−o,r +βr)

n
(zo,ro)
−o,vo

+μvo
∑

v∈V (n
(zo,ro)
−o,v +μv)

;

17: end if
18: if o ∈ O2 then

19: c ∼ n
(co)
−o,uo

+n
(co)
f.uo

+γuo
∑

u∈U (n
(co)
−o,u+n

(co)
f.u +γu)

;
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20: z ∼ n
(uo)
−o,zo

+α′
zo

∑
z∈Z(n

(uo)
−o,z+α′

z)

n
(uo,zo)
−o,ro

+β′
ro

∑
r∈R(n

(uo,zo)
−o,r +β′

r)

n
(zo,ro)
−o,vo

+μvo
∑

v∈V (n
(zo,ro)
−o,v +μv)

;

21: r ∼ n
(uo,zo)
−o,ro

+β′
ro

∑
r∈R(n

(uo,zo)
−o,r +β′

r)

n
(zo,ro)
−o,vo

+μvo
∑

v∈V (n
(zo,ro)
−o,v +μv)

;

22: end if
23: assign 〈c, z, r〉 to o;
24: end for
25: end for
26: /* Update parameters */
27: update paremeters λ, θ, θ′, ϕ, ϕ′, π according to Eq.(1) ∼ (6).
28: end for
29: return λ, θ, θ′, ϕ, ϕ′, π;

5 Experiments

The experiments are conducted in the PC machine with Intel Core i7-6700 pro-
cessor, 24G RAM and 64bit Ubuntu operating system. The program is mainly
coded using Python.

5.1 LBSN Datasets and Evaluation Metrics

Foursquare. The Foursquare dataset was collected by Zhou et al. in [17]. It
consists of three parts: social relations (undirected), check-in records and location
categories. Each check-in is associated with a location as well as the location
category. For the sake of alleviating sparseness, users with less than 10 check-ins
and locations which have been visited less than 5 times are removed.

Brightkite. The Brightkite dataset was collected by Cho et al. in [2]. It contains
check-in data of users across the United States. In order to facilitate the experi-
ments, we only use a subset of the original dataset covering the New York city area
specified by a bounding box (−74.257159, 40.915568,−73.572489, 40.576913). The
user network in this dataset is also undirected. Although the location category
information is originally missing in the check-in data, the venue category system
of Brightkite is almost the same to that in Foursquare1. Table 2 summarizes the
detailed statistics of the two datasets.

Table 2. Statistics of LBSN datasets.

Dataset # Users # Edges # Check-ins # Locations # Avg. check-ins per user

Foursquare 6,291 120,154 788,208 19,905 125.3

Brightkite 1,308 9,248 112,993 17,618 86.4

1 https://developer.foursquare.com/docs/resources/categories.

https://developer.foursquare.com/docs/resources/categories
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Evaluation Metrics. We use different metrics from three aspects to evaluate
the performance of the community discovery model.

The first metric is perplexity, which is often used to evaluate a topic model
[10]. Theoretically, a lower perplexity value corresponds to a better topic model
for a given dataset. It should be noted that both datasets are split into two parts
according to the size ratio 9:1, and the metric perplexity is computed using the
latter 10% check-in data.

The second metric is modularity, which is widely used to measure the topo-
logical quality of community structure [5]. Theoretically, a larger modularity
value indicates a better community discovery model.

The third metric is designed to evaluate the temporal-spatial consistency
within the discovered communities. Specifically, we verify the consistency from
two aspects, i.e. temporal consistency and spatial consistency.

5.2 Parameter Configuration

As there are 10 top categories for Foursquare locations, and the number of latent
variables is normally set to a multiple of 5 [13], so we set |Z| = 10 in SRTST
model on both datasets. Besides, as the check-ins in our datasets are made in
New York, and there are 5 boroughs in New York city, so we set |R| = 5. With
regard to the hyperparameters γ, α, α′, β, β′ and π, for simplicity, we choose
a fixed value 0.1 according to [13]. With regard to the number of communities
|C| and the number of iterations |I|, we plot the relation between perplexity
and these two variables using both datasets. We find that perplexity decreases
dramatically when |C| = 10, I = 1000 on Foursquare dataset, and |C| = 15,
I = 1200 on Brightkite dataset. As a result, we set |C| = 10, I = 1000 for
Foursquare dataset, and |C| = 15, I = 1200 for Brightkite dataset, respectively.

5.3 Comparison Algorithms

State-of-the-art algorithms for comparison in the experiments include TURCM
[10], W4 [15], ASTC [13] and UCGT [14]. All these approaches are constructed
based on topic models, combining community (except W4), topic, region as well
as location. As for W4, we add a latent community variable in the original graph-
ical model so as to serve community discovery in LBSNs. The hyper-parameters
of comparison algorithms are set at their suggested values. Besides, we fix |R| = 5
and |Z| = 10 for all the methods on both datasets. With regard to the num-
ber of communities, we set |C| = 10 and |C| = 15 for Foursquare dataset and
Brightkite dataset as mentioned in Sect. 5.2.

5.4 Experimental Results

Perplexity. The comparison results on perplexity with different iterations are
shown in Fig. 2. As we can see, SRTST model has lower perplexity than other
methods on both datasets when the metric is to converge, which proves the
superiority of SRTST model in terms of topic modeling.
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(a) Foursquare dataset (b) Brightkite dataset

Fig. 2. Perplexity comparison results on two datasets.

Modularity. Due to the sparseness of edges in the datasets, the overall mod-
ularity for the entire network is very small. Besides, the modularity values of
different methods are pretty close. In order to distinguish the performance of
different methods, we report the modularity values of different community size
k2 ranging from 10 to 100. Figure 3 displays the final results. From Fig. 3(a),
we observe that the modularity curve of SRTST model fluctuates in the very
beginning, and it gradually levels off as k increases. When k > 20, the curve of
SRTST model is almost always in the highest place compared with other meth-
ods. From Fig. 3(b), we observe a similar advantage of SRTST model, even if the
numeric values of modularity are fairly small. Since user network in Brightkite
dataset is much sparser than that in Foursquare dataset, the discovered com-
munity structure may not be desirable in terms of topology. As a result, the
modularity values of various models on Brightkite dataset are smaller than that
on Foursquare dataset. In a nutshell, the comparison results above indicate the
superiority of SRTST model in terms of community structure.

(a) Foursquare dataset (b) Brightkite dataset

Fig. 3. Modularity comparison results on two datasets.

2 We extract the top-k nodes based on user membership distribution from the corre-
sponding community.
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Temporal-Spatial Consistency. We firstly verify the temporal consistency
within the communities discovered by SRTST model in an intuitive way. Figure 4
shows the check-in heatmaps of three communities corresponding to nightlife,
professionals and entertainments respectively. Limited by paper space, only the
results based on Foursquare dataset are reported. For community 1, check-ins are
mainly concentrated during 18:00PM to 23:00PM throughout a week, and only
a small amount of check-ins take place in the daytime. Besides, there are more
check-ins distributed at weekends than that in weekdays, indicating the inherent
temporal pattern of nightlife activities. For community 2, check-ins taking place
during 10:00AM to 20:00PM are more intensive than other time. In addition,
check-ins in weekdays occupy a greater proportion compared with weekends.
These characteristics well correspond to professional circumstances. In the end,
for community 3, check-ins are densely distributed in the early evening of week-
days and daytime of weekends, indicating this community probably corresponds
to entertainments.

(a) Community 1 (b) Community 2 (c) Community 3

Fig. 4. Check-in heatmaps of three communities on Foursquare dataset. Darker colors
represent more check-ins, and vice versa.

Secondly, we evaluate the spatial consistency within the discovered commu-
nities. To quantify the spatial consistency, an entropy based measure proposed
in [6] is adopted. Specifically, the entropy of venue category distribution within
each community is calculated. As a general rule, a lower entropy value indicates
a more consistent category distribution, namely, a more consistent location pref-
erence within a community. The minimum, maximum as well as the average
entropy values of all communities are compared in Table 3. Note that location
category is originally missing in Brightkite dataset, so we only report the results
on Foursquare dataset. As Table 3 shows, the SRTST model consistently has
lower entropy in terms of minimum, maximum as well as average values than
other models. This means the discovered communities by SRTST model are
more spatially consistent than that by other models, which further reflects the
superiority of the proposed model.

In summary, as the above experimental results indicate, the SRTST model
proposed in this paper can discover multidimensional communities in LBSNs,
and it outperforms state-of-the-art methods with regard to topic modeling, com-
munity structure as well as temporal-spatial consistency.
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Table 3. Entropy comparison results using Foursquare dataset.

Min. Entropy Max. Entropy Avg. Entropy

SRTST 2.756 2.904 2.806

TURCM 2.930 3.122 2.980

UCGT 2.782 3.064 2.917

W4 2.763 2.934 2.816

ASTC 2.797 3.036 2.962

6 Conclusion

In this paper, we explore the multidimensional community discovery in LBSNs.
A probability model called SRTST for community discovery based on social
relations and temporal-spatial topics is proposed. Extensive experiments on per-
plexity, modularity and consistency metrics validate the superiority of SRTST
model over many state-of-the-art methods from different perspectives.

For future work, we will consider using the communities for user check-in
location prediction. Besides, the parallel implementation of SRTST model to
speed up the calculation will be studied.
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Abstract. Due to the sparsity of network, some community detection
methods only based on topology often lead to relatively low accuracy.
Although some methods have been proposed to improve the detection
accuracy by using few known semi-supervised information or node con-
tent, the research of community detection not only pursues the enhance-
ment of community accuracy, but also pays more attention to the seman-
tic description for communities. In this paper, we proposed a unified non-
negative matrix factorization framework simultaneously for community
detection and semantic matching by integrating both semi-supervised
information and node content. The framework reveals two-fold commu-
nity structures as well as their coupling relationship matrix, which helps
to identify accurate community structure and at the same time assign
specific semantic information to each community. Experiments on some
real networks show that the framework is efficient to match each commu-
nity with specific semantic information, and the performance are superior
over the compared methods.

Keywords: Community detection · Nonnegative matrix factorization
Semi-supervised learning · Semantic matching

1 Introduction

The complex network is constituted by a group of entities and their interactive
relationships. These direct or indirect interactions can partition the network into
several functional communities, making which interact densely in each commu-
nity and sparsely between them. For example, the protein network is partitioned
into different functional units via the interaction among protein molecule. There-
fore, the identification of these communities is helpful to understand how the net-
work works and how the functional unit interacts. However, for many networks
in real world, due to its community structure is very vague, it is very difficult to
identify solely using the observed interactions. How to integrate the structural
and semantic information to identify more accurate community structure and
c© Springer International Publishing AG, part of Springer Nature 2018
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simultaneously assign an appropriate semantic description to each community is
a worthy studying heat.

The early community detection methods only use network topology, includ-
ing hierarchical clustering [1], spectral clustering [2], modularity optimization
[3,4] and methods based on generative model [5]. However, for networks with
sparse connections and vague community structure, these methods almost fail
to accurately identify its community structure.

In order to uncover the vague community hidden in networks, it is neces-
sary to exploit additional available prior information, and some semi-supervised
community detection methods [6–10] have been proposed. Specifically, combined
with both node labels and pairwise constraints, Eaton and Mansbach proposed a
semi-supervised spin-model for community detection, which penalizes the term
that violates the guidance and rewards the term that agrees with the guidance
[6]. Based on latent space graph regularization, Yang et al. utilized must-link
constraints to derive a unified semi-supervised community detection framework
[8]. Zhang et al. directly used the pairwise constraints to modify the adjacency
matrix of networks, and proposed a semi-supervised community detection frame-
work [9,11]. Considering that the heterogeneity of node degree and commu-
nity size may lower the utilization of prior constraints, Liu et al. developed a
semi-supervised NMF community detection method with node popularity [10].
Indeed, the integration of semi-supervised prior information and network topol-
ogy plays a vital role in assisting to reveal the vague community structure, but for
very sparse networks, the semi-supervised prior cannot be effectively used, and
usually has lower utilization. Moreover, it ignores the specific semantic of each
community.

In addition, the node contents are often available. For example, a user of a
social network often has a person profile with content information such as age,
male, education background and profession; a paper in citation network often
provides some contents information including author, title, abstract and key
words. It is generally assumed that nodes of more similar contents information
are more likely to belong to the same community. Therefore, node contents have
been widely used to guide the community detection and depict the community
semantic [12–14]. The early content-based methods handle the network topolo-
gies and content separately, and most of the methods just use node contents to
improve the community detection accuracy and compensate the insufficiency of
sparse topology. For example, by combining the user similarity, message similar-
ity and user interaction, Pei et al. proposed a nonnegative matrix tri-factorization
clustering framework to identify the community structure in a social network
[15]. Recently, some researchers often use node contents to describe the seman-
tic explanation for community, so as to further understand why some certain
nodes belong to the same community, and what characteristics the community
owns. From the perspective of content propagation, Liu et al. combined the
topological structure as well as the content information to detect the commu-
nity structure, and adopted the stable status of random walk to describe the
semantic information of communities [16]. By integrating network topology and
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semantic information of nodes, Wang et al. proposed a novel nonnegative matrix
factorization (NMF) model [17], and by defining two sets of parameters, the
community membership matrix and community attribute matrix respectively,
to infer the community structure and its corresponding semantic interpretation.

However, most of these newly proposed methods have three potential prob-
lems. Firstly, users tend to form a community due to their interactions. For
sparse network, the relatively vague community structure is difficult to accu-
rately identify, and node contents cannot assign appropriate semantic topic for
each community when the identified community structure is wrong. Secondly,
they generally believe that network topology and node content share the same
community membership, but there may be more than one semantic topic for
each community. Therefore, although the above methods can identify accurate
community structure, they cannot assign correct semantic interpretation to a
community. Finally, most of the existing methods utilize network topology and
node contents separately, ignoring the relation between topology and content.

In this paper, for sparse networks we propose a unified weakly supervised
framework for community detection and semantic matching (WSCDSM). Firstly,
we incorporate network topology with must-link prior to derive an accurate
topology-driven community (TC) membership, and then utilize node content
information to obtain a semantic-driven community (SC) membership. Finally,
by introducing a coupling matrix to portray the matching relation between TC
and SC community structure, we integrate the above two process into WSCDSM
framework to simultaneously detect community structure and match semantic.
In our framework, two types of auxiliary information are seamlessly integrated
to reveal the vague community structure and help to understand the practical
semantic of communities. Consequently, the prior information and node contents
are not only more effectively utilized, but also can complement some missing
information of each other. We adopt an iterative method to train the TC (SC)
community membership and its coupling relationship. Experimental results on
several real networks validate that the proposed framework not only improves,
as expected, the detection accuracy of vague communities, but also assign an
appropriate semantic interpretation to each community.

The contributions of this work are as follows:

(1) Integrating with topological and content information as well as semi-
supervised prior, we proposed a unified framework simultaneously for com-
munity detection and semantic matching. In this framework, we introduce
coupling matrix to depict the relationship between community and semantic
topic. Besides, it can also adjust the semantic information of each commu-
nity.

(2) On the basis of using semi-supervised prior to improve the community accu-
racy, our proposed framework can integrate content information to compen-
sate the insufficiency of topological information, and further assign more
appropriate semantic information to each community.

(3) Our proposed framework is superior over the compared methods in most
cases, and the improvement is more obvious on vary sparse network.
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2 Proposed WSCDSM Framework

Considering an undirected attributed graph G = (V,E,S) of n nodes V and e
edges E, which often can be represented by a binary-valued adjacency matrix
A ∈ R

n×n and an attribute matrix S ∈ R
n×m where m indicates the dimension

of attributes each node has. aij = 1 if there is an edge between nodes vi and vj
and sij = 1 if node vi has the j-th attribute, and 0 otherwise. Our main task of
this paper is to partition the network G into k communities with well matched
semantic interpretation, and the goal is twofold:

(1) Partition the nodes into TC communities based on network topology and
must-link prior, and separate the nodes into SC clusters based on nodes
content;

(2) Finding the best matching relationship between the two type communities so
as to best describe and understand the practical meaning of each community.

2.1 Modeling TC Communities

In this subsection, we utilize must-link constraint to derive an accurate TC
community structure. Must-link constraint is a kind of commonly used prior
information, which depicts whether two nodes belong to the same community
and is helpful to improve the accuracy of community structure. We random
select a few of must-link constraints and denote them as Cml. The corresponding
must-link constraint matrix M ∈ Rn×n is defined as:

(M)ij =

⎧
⎨

⎩

1, if i = j,
2, if (vi, vj) ∈ Cml,
0, others.

Assume the TC community membership of all nodes in the network to be H ∈
Rn×k, and hiz represents the propensity that node vi belongs to the z-th TC
community. If two nodes belong to the same community, it is often believed that
they have similar community membership and close with each other in their
geometrical distance. In order to keep this property, we use the following graph
regularization to incorporate the must-link constraint for helping reveal the TC
community structure:

min
∑

ij

‖hi − hj‖2Mij

s.t. H ≥ 0.
(1)

2.2 Modeling SC Communities

Define the semantic driven community membership to be W ∈ Rn×k where
wir denotes the propensity that node vi belongs to the r-th SC community.
For each SC community, it carries some common semantic information which
are summarized from the nodes’ contents. On one hand, nodes in the same
community usually have common contents. For another, if the contents of a
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node are highly similar to the semantic information of one SC community, the
node may belong to this SC community with a high propensity. Therefor, nodes
of the similar content may have high propensity constitute one SC community.
Assume the common semantic matrix to be C ∈ Rm×k, and cr is the contents
distribution of community r. Then for a node vi, its propensity belonging to the
r-th SC community can be written as:

Wir = si · cr
where si represents the contents of node vi.

In addition, we realize that each node has multiple contents, but only a small
number of contents are relevant to each community and most of contents are
background information. For this case, we adopt an l1 norm to keep the sparse
semantic interpretation of each community. Further more, in order to keep the

balance of these sparse contents, it needs to impose a constraint
k∑

r=1
‖c(:, r)‖21

on C. We can derive the SC community detection model as follows:

min ‖W − SC‖2F + ξ
k∑

r=1
‖c(:, r)‖21

s.t. C ≥ 0.
(2)

2.3 The Unified Model: Matching TC with SC Communities

According to the above defined TC community membership H and SC com-
munity membership W, we introduce a coupling matrix Λ ∈ Rk×k to measure
how to match semantic information with topological communities, and simul-
taneously use the relationship of this three matrices to generate the observed
network.

In our proposed WSCDSM framework, for any node vi, it generates a link
with node vj based on the following rule:

(1) According to the SC community structure, node vi has one kind of common
content l with propensity wil;

(2) Then the l-th SC community assign its semantic information to the k-th TC
community with coupling probability λlk;

(3) As a result, the probability of existing a link between node vi with common
content l and node vj of the k-th TC community is wilλlkhjk.

Summing over all the l and k, we derive the expect number of edge between
nodes vi and vj is:

âij =
∑

lk

wilλlkhjk.

Using the square error to measure the difference between expected and
observed network, it can be further written in matrix formulation:

min ‖A − WΛHT ‖2F
s.t. W,Λ,H ≥ 0.

(3)
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By combining the model (3) with the models to derive TC community (1)
and SC community (2), we obtain our proposed WSCDSM framework as follows:

min ‖W − SC‖2F + ξ
k∑

r=1
‖c(:, r)‖21 + α‖A − WΛHT ‖2F

+
μ

2

∑

ij

‖hi − hj‖2Mij + γ‖Λ‖1
s.t. W,H,Λ,C ≥ 0

(4)

where the parameters α and μ are, respectively, used to adjust the contribution
of network topology and must-link prior. The parameter ξ and γ respectively
control the sparsity of community common contents and coupling relationship.

3 Optimization

Due to the objective function in (4) is not convex with respect to W, H, Λ
and C, it is unreasonable to find its global minimum. Here we use an iteration
algorithm to derive the update rule for each matrix by fixing other matrices.

Firstly, the update of W can be realized by optimizing the following W-
subproblem with H, Λ and C fixed:

min ‖W − SC‖2F + α‖A − WΛHT ‖2F
s.t. W ≥ 0.

(5)

For the problem (5), we introduce a Lagrange multiplier matrix Ψ for the con-
straint W ≥ 0, and set the derivative of L with respect to W to 0, we obtain:

2W − 2SC − 2αAHΛT + 2αWΛHTHΛT + Ψ = 0.

Using the KKT condition Ψikwik = 0, we obtain the following update rule for
W:

Wik ← Wik · (αAHΛT + SC)ik
(αWΛHTHΛT + W)ik

, (6)

Similarly, the update rules for H and Λ are as follows:

Hik ← Hik · (αATWΛ + μMH)ik
(αHΛTWTWΛ + μQH)ik

, (7)

Λ ← Λ · αWTAH
αWTWΛHTH + γE

, (8)

where E is a k × k matrix with all element to be 1, and Q is a n × n diagonal
matrix (qii =

∑

j

Mij and qij = 0 if i �= j).

As for the common content matrix C, it is equivalent to the problem of Wang
et al. [17]. The corresponding update rule for C is:

C ← C · ST
newWnew

ST
newSnewC

, (9)
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where Snew =
(

S√
ξe1×m

)

, Wnew =
(

W
01×k

)

and e1×m is a row vector with

all elements equal to 1, 01×k is a zero vector.

4 Experimental Results

We evaluate our WSCDSM framework on several real networks with well known
communities to validate its accuracy of community detection, and on an online
music system Last.fm to visualize the semantic information of communities.

4.1 The Performance of Community Detection

The real networks used in the experiments are shown in Table 1.

Table 1. Some real-world networks used.

Dataset Nodes (n) Edges (e) Attributes (m) Communities (k)

Cora 2708 5429 1433 7

Citeseer 3312 4732 3706 6

Texas 187 328 1703 5

Cornell 195 304 1703 5

Washington 230 446 1703 5

Wisconsin 265 530 1703 5

The Cora and Citeseer networks are both paper citation networks with nodes
representing publications and edges denoting that one publication is cited by
the other publication. The other four networks are all webpage citation net-
works where nodes representing webpages gathered from four different univer-
sities and edges denoting that one webpage is cited by the other webpage. The
node attributes of all six networks are binary-valued word attributes indicat-
ing whether each word in the vocabulary is present (indicated by 1) or absent
(indicated by 0).

In order to validate the efficiency of prior information and content infor-
mation for community detection, we compare with the following four types of
methods: the first type is only topology-based SNMF method [18]; the second
type is only attribute-based SMR method [19] and the third type is two meth-
ods based on both network topology and node content, including SCI [17] and
NEMBP [20]. In addition, we also compare with one method extracted from
our WSCDSM framework, but it ignores the coupling matrix and only combines
with must-link constraint. This method is denoted as MLNMF.

In the specific experiments, the number of communities is set to be the same
as the ground truth specified. During each experiment, we iterate 2000 times and
run 20 times. As for the parameter setting, we set α = 10, μ = 20, ξ = 100, γ = 5
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for Cora and Citeseer networks and γ = 0.5 for the other four small networks.
For the comparative methods, their parameters are set to be their default values.

In this paper, we only focus on the detection of disjoint community struc-
ture, and adopt the normalized mutual information (NMI) and accuracy (AC)
to measure the performance of all methods against the ground truth. The results
of our WSCDSM framework as well as other 5 comparative methods on Cora
and Citeseer networks are shown in Tables 2 and 3, and on the remaining net-
works are shown in Figs. 1 and 2. From the Tables 2 and 3 and Figs. 1 and 2,
we find that due to the sparsity of network and vagueness of community struc-
ture, the method only based on topology (SNMF) or content (SMR) almost
fail to accurately identify its community structure. However, the detection accu-
racy can be further improved by integrating both topology and content. In our
WSCDSM framework, we believe that the content and topology don’t share the
same community structure, and on the basis of using few semi-supervised prior
to improve the accuracy of community detection, content information can be
more effectively utilized to make up for the insufficiency of topology. Therefore,
WSCDSM framework outperforms the other five comparative methods on most
of networks, especially for Cora and Cornell networks, the improvement is more
obvious. Although the randomness of prior information causes that the results
of WSCDSM are not always higher than NEMBP on Wisconsin network, it will
achieve superior performance when proper prior information is integrated.

Table 2. Comparative results in terms of NMI, and the best results are in bold.

Information used Method Cora Citeseer

Only topology SNMF 0.1994 0.0403

Only content SMR 0.0078 0.0032

Topology+Content SCI 0.1780 0.0922

NEMBP 0.4408 0.2427

Topology+Prior MLNMF 2% 5% 8% 2% 5% 8%

0.3159 0.3239 0.3451 0.2664 0.278 0.3081

Topology+Prior+Content WSCDSM 0.5254 0.7522 0.8083 0.3532 0.4297 0.4435

Table 3. Comparative results in terms of AC, and the best results are in bold.

Information used Method Cora Citeseer

Only topology SNMF 0.4173 0.2539

Only content SMR 0.3002 0.2111

Topology+Content SCI 0.4169 0.3442

NEMBP 0.5757 0.4951

Topology+Prior MLNMF 2% 5% 8% 2% 5% 8%

0.4088 0.4106 0.4387 0.4109 0.4233 0.4598

Topology+Prior+Content WSCDSM 0.5373 0.7692 0.7906 0.4761 0.5136 0.5444
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Fig. 1. Comparative results in terms of NMI on (a) Cornell network; (b) Texas network;
(c) Washington network; (d) Wisconsin network.
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Fig. 2. Comparative results in terms of AC on (a) Cornell network; (b) Texas network;
(c) Washington network; (d) Wisconsin network.
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Fig. 3. The coupling relationship between TC and SC community structure on Citeseer
network. (a) 2% prior used; (b) 5% prior used; (c) 8% prior used.

Based on the above results, we believe that the higher detection accuracy of
TC community structure, the better matching of TC communities and semantic
information. Due to the limited space, here we only take Citeseer network for
an example to present the better matching between TC and SC community
structure, as shown in Fig. 3. We find that each community has different semantic
explanations with each other, and the semantic matching is robust to the increase
of prior information.

4.2 The Matching Between Semantic and Communities

The Lsat.fm system contains 1892 users, and each user has 11,946 dimensional
contents, including a list of most-listened-musical to artists and tag assignments,
i.e. [user, tag, artist] tuples. Due to the Lsat.fm network has no ground truth
with respect to the community label of node, we use Louvain method [3] as did
in Wang et al. [17], but we set the number of communities to be 31, and the
corresponding community structure is regarded as the ground truth.

The coupling relationship and semantic information of some communities are
presented in Fig. 4. From the Fig. 4(a), we find that our WSCDSM framework
can match most TC communities with one specific semantic topic, and only
several TC communities have two or three semantic topics. Besides, there are
also few communities that they have no semantic topic, which demonstrates the
content information of such communities maybe background words. Figure 4(b)
depicts a community of only one topic related to Britney Spears, a legend and
amazing singer in Louisiana, USA. Her music often has characteristics of “pop”,
“dance”, “rnb” and “electronic”. An example community of two topics are shown
in Fig. 4(c), this community is composed by a group fans who like “rock” and
“heavy metal” two styles of music, and among which the style of “rock” music
contains hard rock, classic rock and progressive rock. A community of three
topics are illustrated in Fig. 4(d), which is characterized by three types of music
including “synthpop”, “new wave” and “electronic”. For these three types music,
Depeche Mode, a representative band, is very popular and active in British.
Based on the above analysis, we find that our WSCDSM framework can relatively
accurately match the community structure and semantic information.
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Fig. 4. The matching relationship between SC and TC community, as well as some
examples of community interpretation on Lsat.fm network. (a) coupling relationship;
community with (b) one topic; (c) two topics; (d) three topics.

5 Conclusion

In this paper, we proposed a unified weakly supervised framework simultane-
ously for community detection and semantic matching. In our framework, the
semi-supervised information is firstly utilized to improve the community accu-
racy. Then by introducing a coupling matrix, the node content information is
used to adjust the TC community structure and simultaneously match semantic
interpretation for each community. The results on several real networks demon-
strated that, for one thing, integrating with few percentage of must-link prior
our framework can improve the accuracy of community detection. For another,
under the guidance of coupling matrix, the TC community and SC community
structure can realize fully interaction with each other, and further derive a well
semantic description for communities.
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Abstract. Prediction of trust relations between users of social networks
is critical for finding credible information. Inferring trust is challenging,
since user-specified trust relations are highly sparse and power-law dis-
tributed. In this paper, we explore utilizing community memberships
for trust prediction in a principled manner. We also propose a novel
method to model homophily that complements existing work. To the
best of our knowledge, this is the first work that mathematically for-
mulates an insight based on community memberships for unsupervised
trust prediction. We propose and model the hypothesis that a user is
more likely to develop a trust relation within the user’s community than
outside it. Unlike existing work, our approach for encoding homophily
directly links user-user similarities with the pair-wise trust model. We
derive mathematical factors that model our hypothesis relating com-
munity memberships to trust relations and the homophily effect. Along
with low-rank matrix factorization, they are combined into chTrust, the
proposed multi-faceted optimization framework. Our experiments on the
standard Ciao and Epinions datasets show that the proposed framework
outperforms multiple unsupervised trust prediction baselines for all test
user pairs as well as the low-degree segment, across evaluation settings.

1 Introduction

Trust relations between users are crucial for finding reliable information amidst
massive volumes of social media data. While some web portals enable users to
explicitly specify trust relations, these relations are usually very sparse [11],
resulting in the need for trust inference. The objective of trust prediction is to
estimate the likelihood of a trust relation for any ordered user pair in the network,
using a relatively tiny number of user-specified trust relations and available
auxiliary information such as the users’ item ratings in the case of product
review datasets. Explicit (given) trust relations on social media follow a power
law distribution [11,13]. This combined with the huge ratio of user pairs without
trust relations to those with trust relations makes trust inference challenging.

c© Springer International Publishing AG, part of Springer Nature 2018
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Prior work on trust prediction can be categorized into unsupervised [2,3,7,11,
15] and supervised [6,8,16] approaches. Supervised techniques typically perform
classification for an ordered user pair, represented by features extracted from the
network structure and sometimes contextual data such as users’ item ratings or
reviews. Most unsupervised approaches employ trust propagation [2,3,7] or low-
rank matrix factorization [11,15]. The success of propagation-based methods,
which strongly rely on explicit connections, is jeopardized by the sparsity and
power-law distribution of available trust relations [11]. Social theories, namely
homophily and status theory, have been modeled for trust prediction in [11,15]
respectively using matrix factorization.

In this paper, we investigate how community membership information can
be tapped for the task of inferring trust relations. To the best of our knowledge,
this is the first work that mathematically models an insight based on commu-
nity memberships for trust prediction through an optimization framework. We
hypothesize that a user’s likelihood of forming a trust relation within the user’s
community is higher than (or equal to) that of trusting a user outside the com-
munity. Communities can be extracted either by clustering users on the basis
of users’ item ratings or from the available sparse trust network using any well-
performing community detection technique. We then encode this insight into a
matrix factorization based optimization framework through the derivation of a
mathematical factor.

Moreover, we formulate a new method for modeling the homophily effect [12],
which suggests that similar user pairs are more likely to have trust relations than
dissimilar ones. Unlike in [11], which also performs homophily-based trust pre-
diction, user-user similarities and the pair-wise trust model are directly linked in
our optimization. Our approach to modeling homophily for learning the matrix
factorization based trust model imposes costs directly in accordance with the
degrees to which the pair-wise user similarities and the corresponding trust esti-
mates as per the model follow the homophily effect. Moreover, our homophily-
based factor comprises terms involving similar user pairs as well as dissimilar
ones. We combine it with a complementary term from [11], matrix factorization
and the proposed community-based factor to create a versatile, unsupervised
trust prediction framework named chTrust.

Our main contributions are as follows. (1) We provide the hypothesis that a
user’s within-community trust propensity is higher than the across-community
trust propensity and propose an approach for mathematically modeling it for
inferring trust relations. (2) We devise a new formulation for modeling homophily
that directly measures the extents to which the pair-wise trust estimates as per
the matrix factorization model and the corresponding user-user similarity values
conform to the homophily theory. We combine it and the community-based app-
roach into chTrust, our multi-faceted unsupervised trust prediction framework.
(3) Our results on two real-world datasets find our framework outperforming
multiple unsupervised trust prediction baselines across evaluation settings, for
the entire set of test user pairs as well as the low-degree segment.
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2 Related Work

Binary classification based trust prediction approaches [6,16] use features
extracted from network structure and/or users’ items ratings or reviews. Besides
the obvious drawback of requiring labeled data, classification-based methods face
a severe class imbalance issue, because usually the user pairs without specified
trust relations hugely outnumber the pairs with trust relations.

Unsupervised methods of trust prediction are usually based on trust propaga-
tion [2,3,7] or low-rank matrix factorization [11,15]. The efficacy of propagation-
based methods may get adversely affected by the sparsity of available trust
relations and the power law distribution (most users having few trustees and
trustors) [11]. Tang et al. [11] capitalize on the social theory of homophily to
predict trust by using low-rank matrix factorization to represent the matrix of
trust relations. The homophily effect conveys that similar users are more likely
to form trust relations. In [15], trust inference using matrix factorization is per-
formed by tapping status theory, which suggests that a user is more likely to
trust users with high statuses than those with low statuses. Our work falls in
this direction of research where we hypothesize and model our intuition about
the role of community memberships in trust formation for inferring trust rela-
tions. We also formulate a novel, direct approach for modeling homophily which
is complementary to and combinable with [11].

3 Inferring Trust Using Community Memberships
and Novel Homophily Modeling

In this section, we propose a principled formulation for taking advantage of the
community memberships of users for predicting trust relations. We also develop
a method for modeling homophily which is different from and complementary to
existing work. We begin by briefly laying out the problem setting and the trust
model based on low-rank matrix factorization that we use. We then discuss how
to encode the community membership information mathematically into that
trust model. Next, we devise a new homophily modeling approach that directly
connects user-user rating similarities to the pair-wise trust model.

3.1 Problem Setting

Let u = {u1, u2, ..., un} denote the set of users where n is the number of users.
The matrix G ∈ Rn×n represents trust relations where G(i, j) = 1 if we observe
that ui trusts uj and G(i, j) = 0 otherwise. As G is typically very sparse and
low-rank, the matrix factorization model for trust relations aims to obtain a
low-rank representation of users through the following optimization [11,15].

min
U,H

‖G − UHUT ‖2F + α‖U‖2F + β‖H‖2F s.t., U ≥ 0,H ≥ 0 (1)

Here, U ∈ Rn×d captures user representations with d being the dimension of each
representation. H ∈ Rd×d encodes the correlations among these latent factors
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with the aim of expressing G(i, j) as U(i, :)HUT (j, :). ||·||F denotes the Frobenius
norm of a matrix. Note that besides the matrix factorization term, we also have
two regularization terms, whose impacts are controlled by the parameters α and
β.

3.2 Encoding Community Membership Information for Trust
Prediction

We offer the hypothesis that a user’s tendency to develop a trust relation outside
the user’s community is typically lower than that of trusting a user within the
community. We do not claim that this phenomenon holds true for all individuals.
However, we postulate that, for most users, the likelihood of trusting a fellow
community member is greater than (or equal to) that of trusting a user outside
the community.

We now mathematically encode our hypothesis such that it can be leveraged
through an optimization framework for trust prediction. The hypothesis implies
that, for every user ui, the average of the trust estimates from ui to the users
outside the community that ui belongs to should be no higher than ui’s average
within-community trust.

Let Kw ∈ Rn×n be a matrix such that Kw(i, j) = 1 if users ui and uj belong
to the same community, and Kw(i, j) = 0 otherwise. Similarly, let Ka ∈ Rn×n

denote the across-community counterpart of Kw. Thus, Ka = 1 − Kw, where 1
is a matrix of all ones. We perform a user-wise (row-wise) normalization on the
matrices Kw and Ka to get Sw and Sa respectively.

Sw(i, j) =
Kw(i, j)

∑
j′ Kw(i, j′)

, Sa(i, j) =
Ka(i, j)

∑
j′ Ka(i, j′)

(2)

Then, the average within-community trust for a user ui can be expressed as
follows.

n∑

j=1

Sw(i, j)U(i, :)HUT (j, :) (3)

Further, the difference between ui’s average across-community and within-
community trust estimates can be written as follows.

n∑

j=1

Sa(i, j)U(i, :)HU
T
(j, :) −

n∑

j=1

Sw(i, j)U(i, :)HU
T
(j, :) =

n∑

j=1

U(i, :)HU
T
(j, :)(Sa(i, j) − Sw(i, j)) (4)

The quantity that we propose to minimize to encode our community-based
hypothesis for trust relations is the sum of squares of the above term over all
users. We now give a relaxed version in which we minimize the term above only
if the average of the estimated across-community trust values is higher than the
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average of the estimated within-community trust values. The final community-
based factor that we propose to minimize is as follows.

n∑

i=1

⎛

⎝max

⎧
⎨

⎩
0,

n∑

j=1

U(i, :)HUT (j, :)(Sa(i, j) − Sw(i, j))

⎫
⎬

⎭

⎞

⎠

2

(5)

3.3 Proposed Homophily Modeling Using Users’ Item Ratings

The homophily theory suggests that the more similar the users are to each other,
the more likely they are to establish trust relations [12]. In order to incorporate
the notion of similarity between users into our approach, we utilize the product
ratings of users. More precisely, the cosine similarity between the rating vectors
of two users is taken to be the similarity value for that user pair. Unlike [11]
wherein the rating similarity between user ui and uj is used to influence the dis-
tance between U(i, :) and U(j, :), our approach for modeling homophily is aimed
at linking the rating similarity directly to the pair-wise trust model. Our opti-
mization formulation to update the model parameters involves penalties that are
calculated directly as per the degrees to which the user-user rating similarities
and the corresponding trust estimates by the model conform to the homophily
theory. And, our mathematical factor for modeling homophily is composed of
terms involving both similar and dissimilar user pairs. The most basic minimiza-
tion formulation that we propose for modeling homophily for trust prediction is
as follows.

n∑

i=1

n∑

j=1

{
wd(1 − Z(i, j))U(i, :)HUT (j, :) + wsZ(i, j)(1 − U(i, :)HUT (j, :))

}2

(6)

We observe that the homophily theory implies two qualities to be desired.
Firstly, for dissimilar user pairs, high estimated trust values should be penalized.
Secondly, for similar user pairs, low estimated trust values should be penalized.
The proposed formulation encodes precisely these two desirabilities, with the left
term factoring in the first desirability and the right term applying the second
one. Here, Z is the homophily coefficient matrix, where Z(i, j) is the rating
similarity between users ui and uj (e.g., the cosine similarity between the two
users’ rating vectors). wd and ws are hyper-parameters to be tuned to achieve
the best combination of the two terms.

Equation 6 can be expressed compactly using matrices in the following way.

‖{wd(1 − Z) − wsZ} � (UHU
T
) + wsZ‖2

F (7)

= Tr

{[
Q � (UHU

T
) + wsZ

]T [
Q � (UHU

T
) + wsZ

]}
, where Q = wd(1 − Z) − wsZ (8)

= Tr
{[

W � (UH
T

U
T
)
]
(UHU

T
) + 2

[
Q

T � (UH
T

U
T
)
]
(wsZ)

}
, where W = Q

T � Q
T (9)

= Tr
{[

W � (UH
T

U
T
)
]
(UHU

T
) + 2(UH

T
U

T
L)

}
, where L = ws(Z � Q) (10)
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We modify Q as max {0, wd(1 − Z) − wsZ} in Eq. 10 based on empirical and
optimization-related observations.

4 The Overall Optimization Framework

Having proposed mathematical factors that model our insight involving com-
munity memberships of users and the homophily theory in novel ways, we now
present chTrust, our complete optimization framework for trust prediction.

4.1 Trust Inference Using the Community-Based Factor

We incorporate the proposed mathematical factor that models our community-
based hypothesis for trust prediction (Eq. 5) into the standard matrix factoriza-
tion optimization (Eq. 1) by writing the following optimization problem.

minU,H‖G−UHUT ‖2
F + λcTr(M � M) + α‖U‖2

F + β‖H‖2
F s.t., U ≥ 0, H ≥ 0, (11)

where M = max
{
0, UHUT (Sa

T − Sw
T )

}
is the matrix form of Eq. 5. λc con-

trols the contribution of the proposed community-based term on the objective
function. Before proceeding with the optimization method, we reformulate the
above equation without the max function in M . Let P ∈ Rn×n be a diagonal
matrix defined as follows.

P (i, i) =

{
1, if (UHUT (Sa

T − Sw
T ))(i, i) > 0

0 otherwise
(12)

If the strict version of the community-based factor is desired, P (i, i) should
always be set to 1. In this work, we use the relaxed variant. Using P , the opti-
mization problem can be rewritten as follows.

minU,H‖G − UHUT ‖2F +λcTr((P � (UHUT (Sa
T − Sw

T )))2) + α‖U‖2F
+β‖H‖2F s.t., U ≥ 0,H ≥ 0 (13)

Owing to P being a diagonal matrix, P � (UHUT (Sa
T − Sw

T )) is also a
diagonal matrix, allowing us to replace the � product in Eq. 11 with a square.
This reformulation makes the objective function easier for us to optimize. The
constraint that the elements of U and H must be non-negative entails that the
standard gradient descent method used for unconstrained optimization problems
is not applicable here. We adopt a multiplicative update approach [1,4,11] to
solve Eq. 13.

Let ∧1 and ∧2 denote the Lagrangian multiplier matrix variables used to
incorporate the non-negativity constraints for U and H. Then, the Lagrangian
function for Eq. 13, after removing constants, can be written as follows.

L = λcTr((Ma − Mw)2) + Tr(−2GT UHUT + UHT UT UHUT ) (14)
+αTr(UT U) + βTr(HT H) − Tr(∧1U) − Tr(∧2H),
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where Ma = P � (UHUT Sa
T ) and Mw = P � (UHUT Sw

T ).
To obtain the multiplicative update rules, partial derivatives of L w.r.t. U

and H need to be computed. Differentiating the community-based factor part of
L w.r.t U , we get the following.

∂(T r((Ma − Mw)2))

∂U
= 2

{
((Ma − Mw)T � P )(Sa − Sw)UHT + (Sa − Sw)T ((Ma − Mw) � P T )UH

}

= 2
{
((Ma − Mw) � P )(Sa − Sw)UHT + (Sa − Sw)T ((Ma − Mw) � P )UH

}
, (15)

because, for diagonal matrices Ma, Mw and P , Ma
T = Ma, Mw

T = Mw and
PT = P . Next, differentiating the community-based factor part of L w.r.t. H,
we get the following.

∂(T r((Ma − Mw)2))

∂H
= 2U

T
{
(Ma − Mw)T � P

}
(Sa − Sw)U = 2U

T {(Ma − Mw) � P } (Sa − Sw)U (16)

Using Eqs. 15 and 16, the partial derivatives of L can be written as follows.

∂L
∂U = 2λc

{
((Ma − Mw) � P )(Sa − Sw)UHT + (Sa − Sw)T ((Ma − Mw) � P )UH

}
(17)

−2GT UH − 2GUHT + 2UHT UT UH + 2UHUT UHT + 2αU − ∧T
1

∂L
∂H = 2λcUT {(Ma − Mw) � P} (Sa − Sw)U − 2UT GU + 2UT UHUT U + 2βH − ∧T

2 (18)

Given partial derivatives, the multiplicative updates [1,4,11] are constructed
with a term based on the negative part of the partial derivative in the numerator
and a term based on the positive part of the partial derivative in the denomina-
tor. Using the above equations, the multiplicative update rules can be written
as follows.

U(l, k) ← U(l, k)
√

T1(l,k)
T2(l,k)

, H(l, k) ← H(l, k)
√

T3(l,k)
T4(l,k)

, (19)

where

T1 = λc

{
(Ma � P )SwUHT + Sw

T (Ma � P )UH + (Mw � P )SaUHT + Sa
T (Mw � P )UH

}

+GT UH + GUHT (20)
T2 = λc

{
(Ma � P )SaUHT + Sa

T (Ma � P )UH + (Mw � P )SwUHT + Sw
T (Mw � P )UH

}

+UHT UT UH + UHUT UHT + αU (21)
T3 = λc

{
UT (Ma � P )SwU + UT (Mw � P )SaU

}
+ UT GU (22)

T4 = λc

{
UT (Ma � P )SaU + UT (Mw � P )SwU

}
+ UT UHUT U + βH (23)

It can be easily seen that U and V remain non-negative throughout this
updation process. We now prove the correctness of these update rules by show-
ing that they satisfy the Karush-Kuhn-Tucker (KKT) complementary slackness
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condition like in [1]. The KKT condition for the proposed optimization problem
is as follows.

U(l, k) ∧T
1 (l, k) = 0, ∀l ∈ [1, n], k ∈ [1, d], H(l, k) ∧T

2 (l, k) = 0, ∀l, k ∈ [1, d] (24)

To prove the correctness of the update rules, we first set ∂L
∂U (Eq. 17) and ∂L

∂H
(Eq. 18) to 0, resulting in the following.

(T2 − T1) = ∧T
1 , (T4 − T3) = ∧T

2 (25)

From the update rules in Eq. 19, it is easy to observe the following.

U(l, k)2(T2(l, k) − T1(l, k)) = 0, H(l, k)2(T4(l, k) − T3(l, k)) = 0 (26)

By combining Eq. 26 with Eq. 25, we have the following.

U(l, k)2 ∧T
1 (l, k) = 0, H(l, k)2 ∧T

2 (l, k) = 0 (27)

These equations are equivalent to the KKT complementary slackness condi-
tion (Eq. 24), thus proving the correctness of the update rules.

4.2 Trust Inference Through Homophily Modeling Using Users’
Item Ratings

Now, we combine the homophily-based factor proposed in Sect. 3.3 with our
community-based factor. For tapping users’ item ratings based on the homophily
phenomenon, in addition to the proposed term, we also use the homophily reg-
ularization term from [11]. Building further on Eq. 13 in Sect. 4.1, we write the
overall optimization as follows.

minU,H‖G − UHUT ‖2
F + λcTr((P � (UHUT (Sa

T − Sw
T )))2) + λtTr(UT (D − Z)U) (28)

+λhTr
{[

W � (UHT UT )
]
(UHUT ) + 2(UHT UT L)

}
+ α‖U‖2

F + β‖H‖2
F s.t., U ≥ 0, H ≥ 0

As defined in [11], D is a diagonal matrix such that D(i, i) =
∑n

j=1 Z(j, i).
λh and λt control the effects of the homophily-based terms.

The update rules for this modified optimization problem can be worked
out in a manner similar to the one in Sect. 4.1. They involve adding the
terms

[
W � (UHT UT )

]
UH +

[
WT � (UHUT )

]
UHT + LUHT + LT UH and

UT
[
WT � (UHUT )

]
U + UT LU to Eqs. 21 and 23 respectively.

4.3 The chTrust Algorithm

Algorithm 1 outlines the steps involved in the proposed framework, chTrust.
In line 1, we calculate matrices based on community detection. Communities
can be detected either from the existing (sparse) trust network using algorithms
like Infomap [10] or by clustering users based on their item ratings. Line 2
involves computing the static matrices required to model our community-based
hypothesis and homophily, using the community-based matrices computed in
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line 1 and the input data, in accordance with the equations in Sects. 4.1 and 4.2.
Between lines 4 and 12, we show how to update our model parameters U and
H alternately based on the multiplicative update rules detailed in Sects. 4.1 and
4.2 using the static matrices computed in line 2. Line 13 computes the estimated
user-user matrix Ĝ, where Ĝ(i, j) captures the likelihood of a trust relation from
user ui to user uj . Finally, we perform the ranking of the input list of user pairs
in accordance with Ĝ.

Algorithm 1. Infer Trust by Modeling Community Membership Information: chTrust

Input Sparse user-user matrix G capturing given trust relations; Hyper parameters λc, λt, λh, α and β;

Set L of ordered user pairs to be ranked based on trust estimates; User-item ratings matrix R

Output Ranked list of ordered user pairs in L based on the corresponding estimated trust likelihoods

1: Perform community detection on G; construct Kw and Ka.

2: Compute Sw and Sa for the community-based term, and W , Q, Z and D for the homophily-based terms.

3: Initialize U and H randomly.

4: while below the iteration upper bound do

5: Compute P , Ma and Mw .

6: Compute T1, T2, T3, and T4.

7: for l = 1 to n do

8: for k = 1 to d do

9: U(l, k) ← U(l, k)

√
T1(l,k)
T2(l,k)

10: for l = 1 to d do

11: for k = 1 to d do

12: H(l, k) ← H(l, k)

√
T3(l,k)
T4(l,k)

13: Set Ĝ = UHUT .

14: Rank ordered user pairs (ui, uj) in L as per Ĝ(i, j) in a decreasing order.

Computational Complexity Analysis. We go over Algorithm 1 step by step
to determine its computational complexity. Two of the methods explored for the
community detection part in line 1 are Infomap on the network of available trust
relations and k-means clustering on the item rating vectors constructed for the
users. The time complexities of these two methods are O(nlog(n)) and O(nm)
respectively, considering the network to be sparse for Infomap, and the iteration
count and the number of clusters to be constants for k-means, where n is the
number of users and m is the number of items [9]. Computing Kw, Ka, Sw, Sa,
W and L in lines 1 and 2 takes O(n2) operations. Computing Z and D from R
using cosine similarity in line 2 is O(n2 +nm). The cost of updating U and H in
each iteration is O(n2d), since each term in T1(l, k), T2(l, k), T3(l, k) and T4(l, k)
can be computed in O(n2d) as a sequence of multiplications of two matrices.
Factoring in everything, the overall computational complexity of Algorithm 1 is
O(n2d + nm).

In order to lower the computational cost, we employ sparse matrices for terms
involving P , Ma, Mw, Sw and G. Moreover, while computing a matrix multipli-
cation sequence, we choose the most computationally efficient parenthesization.

5 Experiments

In this section, we present the evaluation of the proposed framework and compare
it with several unsupervised trust prediction methods. We begin by describing
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the datasets, the evaluation metric and the experiment settings. The code is
available here: https://www.dropbox.com/s/co7qds5fr4xbdsk/chTrustCode.zip

5.1 Datasets

We use two real-world datasets1, namely Ciao and Epinions, corresponding to
product review sites wherein users explicitly mark trust relations and rate items.
We filter out users with one or no trustor and similarly items with less than two
ratings from each dataset, as done in prior works like [11]. Table 1 gives some
statistics of the pre-processed datasets.

Table 1. General statistics for Ciao and Epinions datasets

Ciao Epinions

Number of users 6261 8460

Number of trust relations 109524 299563

Number of items 35339 43218

Number of ratings 197162 233510

Trust network density 0.0028 0.0042

5.2 Evaluation Metric and Experiment Settings

In view of our focus on unsupervised trust prediction approaches, we employ
a ranking-based metric somewhat similar to the ones used in [5,11]. Let A =
{(ui, uj)|G(i, j) = 1} be the set of all ordered user pairs such that ui trusts uj .
The user pairs in A are sorted on the basis of the time stamps corresponding
to when the trust relations were formed, in the ascending order. The top x%
of the relations in A are chosen as old (training) trust relations O and the last
y% chosen as new (test) trust relations N . Let B = {(ui, uj)|G(i, j) = 0} be a
set of randomly chosen ordered user pairs such that a trust relation from ui to
uj is not specified. In our experimentation, |B| = 5 × |N | and test set fraction
y = 25%. In the case of Ciao, since the time stamps are not available, we assume
the given set of user-user trust relations to be in the ascending order w.r.t. the
time of trust formation.

Before using G as an input to a trust predictor, we eliminate new (test) trust
relations N from G by setting G(i, j) ← 0, ∀(ui, uj) ∈ N . Each trust predictor
ranks user pairs in B ∪ N in the descending order of confidence, i.e., estimated
trust likelihood. The top |N | pairs from the ranked list returned by the trust
predictor are taken as predicted trust relations C. Using these, the evaluation
metric that we use, referred to as the prediction accuracy (PA), is calculated as
PA = 100×|N∩C|

|N | .

1 http://www.cse.msu.edu/∼tangjili/trust.html.

https://www.dropbox.com/s/co7qds5fr4xbdsk/chTrustCode.zip
http://www.cse.msu.edu/~tangjili/trust.html
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Table 2. Trust prediction accuracy of various methods across different sizes of training
data

All user pairs Low-degree user pairs only

Ciao Epinions Ciao Epinions

Approach\ x 75% 65% 50% 75% 65% 50% 75% 65% 50% 75% 65% 50%

triMF 25.843 21.791 19.088 38.258 19.656 10.577 14.019 11.95 10.178 17.125 6.482 3.197

sTrust 21.385 19.115 15.684 37.445 28.662 17.28 11.16 10.056 8.644 21.972 17.43 10.315

hTrust 25.835 21.619 15.562 44.115 30.369 19.804 13.631 11.631 8.505 29.725 20.077 12.041

chTrust 35.705 29.526 28.067 44.339 30.54 19.952 24.574 20.53 17.154 29.804 20.111 12.218

5.3 Baselines

Since our work involves unsupervised trust prediction, we provide a comparison
against the following unsupervised methods. (1) triMF [11]: In this approach,
low-rank matrix factorization is performed on the explicit trust relations matrix
(Eq. 1) for trust prediction. (2) hTrust [11]: Trust relations are predicted by
tapping the social theory of homophily using the item ratings of users through an
approach involving matrix factorization. (3) sTrust [15]: This approach also uses
matrix factorization, but infers trust by utilizing status theory as well. We do not
compare against propagation-based trust prediction methods. As discussed in
Sect. 2, the success of propagation-based techniques is endangered by the sparsity
of available trust relations and the power law distribution [11]. For example, the
absence of a propagation path from user ui to uj may cause propagation-based
methods to fail to estimate trust from ui to uj [14]. Moreover, we compare
against approaches using matrix factorization, namely [11,15], which in turn
have reported superior performance to [3], a propagation-based method. The
baselines considered differ in terms of the types of information used. Baselines
1 (triMF) and 3 (sTrust) use only the (trust) network information. Baseline 2
(hTrust) combines the network information and item ratings.

5.4 Results

Comparison with Other Unsupervised Methods: Table 2 compares the predic-
tion accuracy (PA) of the proposed approach against various baselines for the
Ciao and Epinions datasets, for varying amounts of training data (controlled
by x denoting the % of available trust relations used for estimating trust like-
lihoods). The test data is kept fixed. For each method, the average prediction
accuracy over multiple runs is reported. We use the same initialization values
for U and H for all approaches using matrix factorization to provide a fair and
meaningful comparison. For the λ hyper-parameter in hTrust, the values are set
to 35 and 0.01 for Epinions and Ciao respectively. The values of the λ hyper-
parameter in sTrust are set to 6 and 2.5 for Epinions and Ciao respectively.
These hyper-parameter values are determined experimentally by searching over
various possible configurations. For the proposed approach, λt, λc, λh and ws

are set to 20, 0.4, 1.5 and 0.5 for Epinions, and 0, 7, 15 and 1 for Ciao. For gen-
erating the community-based matrices, we choose k-means clustering using the
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rating vectors of users that we construct after replacing missing ratings values
with appropriate averaged estimates. We set α = 0.1, β = 0.1 and wd = 1 across
datasets for all methods to which the hyper-parameters apply. Expectedly, the
accuracy numbers for all the methods improve, as we increase the size of the
training data (while keeping the test data fixed).
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Fig. 1. Performance of the proposed
approach for different λc values for
Ciao
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Fig. 3. Performance of the proposed
approach for different λh values for
Ciao
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Fig. 4. Performance of the proposed
approach for different λh values for
Epinions

Low Degree User Pairs: Further, we investigate the efficacy of the proposed app-
roach for users with relatively small numbers of trust relations. The right side
of Table 2 captures the prediction accuracy numbers of all the methods for the
low-degree user pairs in the test data. We define a user pair to be a low-degree
one if either of the two users has a degree less than the mean degree. As seen
in Table 2, our proposed approach (chTrust) outperforms all baselines across
datasets and training data settings, for the entire set of test user pairs as well
as the low-degree segment.
Impact of Hyper-parameters: Figures 1 and 2 show how the performance of our
framework changes as λc is varied for the Ciao and Epinions datasets resp.
Figures 3 and 4 capture chTrust ’s accuracy variations across different λh values
for Ciao and Epinions resp.

6 Conclusion

In this paper, we proposed a trust prediction approach by offering and modeling
a hypothesis relating users’ community memberships to trust relations. We also
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presented a new, direct way to model the homophily effect for inferring trust
relations. We derived mathematical factors using low-rank matrix factorization
based on these diverse entities, and combined them into our versatile unsuper-
vised optimization framework for trust prediction.
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Abstract. This study aims to visualize financial documents to swiftly
obtain market sentiment information from these documents and deter-
mine the reason for which sentiment decisions are made. This type of
visualization is considered helpful for nonexperts to easily understand
technical documents such as financial reports. To achieve this, we propose
a novel interpretable neural network (NN) architecture called gradient
interpretable NN (GINN). GINN can visualize both the market senti-
ment score from a whole financial document and the sentiment gradient
scores in concept units. We experimentally demonstrate the validity of
text visualization produced by GINN using a real textual dataset.

Keywords: Interpretable neural network · Text mining
Support system

1 Introduction

1.1 Motivation and Purpose

Understanding technical documents such as financial reports and legal docu-
ments is often difficult for nonexperts. One of the reasons is that the meaning
of a word or phrase in a specific domain may differ from the general mean-
ing. For example, the word “climb” generally has a neutral sentiment, but in
the financial domain, it means a price rise and has a positive sentiment; in
this context, its meaning is similar to “increase”, “rise”, “boost”, and “boom”.
This research aims to present sentiments and concepts included in words and
phrases that appear in specialized documents and help nonexperts understand
these documents. Therefore, a keyword list containing sentiments and similar-
ity information in specialized fields is necessary; however, manually building a
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Fig. 1. Previous visualization methods (left side) vs. our visualization goal (right side)

keyword list for each specialized area requires enormous effort. Therefore, we
develop a method for constructing a keyword list from specialized documents
using neural networks. We then propose a method of visualizing financial texts
for nonexperts.

As an example, consider the sentence “It developed strong and powerful tech-
nologies. Poor price will rebound and surge.” We aim to visualize this sentence
on the right side of Fig. 1 in the following steps.

Step 1. “Strong” and “Powerful” are positive in the sense of the Trend concept,
and “Rebound” and “Surge” are positive in the sense of Ability concept.

Step 2. “Trends” and “Ability” concepts are important in this context.
Step 3. Therefore, this sentence is positive.

We define a set of synonyms and antonyms as concept cluster and sense of each
concept cluster as concept. It would be helpful to describe some terms in each
concept cluster for capturing the sense of the concept. By visualizing texts in
the above manner, even nonexperts can easily capture the market sentiments of
financial documents and explain the process of market sentiment analysis.

1.2 Main Approach and Problem Settings

Our aim is to develop market sentiment analysis models that can visualize doc-
uments as shown on the right side of Fig. 1. It is certain that linear models like
support vector machine (SVM) [1] and methods for interpreting NNs [2,3] can
be useful for text visualization. Using these previous works, the visualization as
shown on the left side of Fig. 1 can be realized. However, visualizing texts as
shown on the right side of Fig. 1 by simply using these previous works is difficult
because they alone cannot represent concepts. To achieve our goal, we propose a
novel interpretable NN architecture called gradient interpretable neural networks
(GINN) as shown in Fig. 2. Layers of GINN can be interpreted as follows.
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Fig. 2. GINN architecture

The input layer represents the words in a document. Each node in the input
layer corresponds to a word.

The second layer (concept layer) represents the sentiment scores of con-
cept units. Each node in the second layer corresponds to a concept.

The output layer represents an entire sentiment value of the document.

Using GINN, we can visualize text in the following steps:

Step 1: Extract word sentiment scores from the weight matrix between the
input and second layers and concept sentiment scores from the second layer.

Step 2: Extract concept clusters that are important for the sentiment analysis
decision using the gradient method [2].

Step 3: Extract an entire sentiment score of a document from the output layer.

To conduct the above text-visualization accurately, GINN must satisfy the fol-
lowing three conditions:

Condition 1: the connections between input and second layer nodes are deter-
mined by cluster analysis: if word X is in concept cluster Y, there is a link
between X and Y,

Condition 2: when word X is in concept cluster Y, the value of the link between
X and Y corresponds to the sentiment score of X, and

Condition 3: the output layer value is valid.

To evaluate whether Conditions 1–3 are satisfied and the validity of the text
visualization by GINN, we evaluate the following Interpretability, Cluster inter-
pretability and Market mood predictability.

Interpretability refers to the degree of accuracy with which the sentiment
scores of words can be extracted from only weight matrix values between
the input and second layers. Here, we consider words that frequently appear
in positive (negative) documents than negative (positive) ones as positive
(negative). We aim to satisfy Condition 2 by improving the interpretability.
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Cluster interpretability refers to the validity of word clustering in the process
of developing GINN.

Market mood predictability refers to the validity of the output layer value.
We aim to satisfy Condition 3 by achieving high market mood predictability.
This is equivalent to the predictability for an entire document sentiment.

By clustering interpretability and interpretability, we can evaluate the validity of
Step 1 in the text visualization process by GINN. By market mood predictability,
we can evaluate the validity of Steps 2 and 3 in the text visualization process.
We aim to develop GINN whose structure satisfies Condition 1 and whose inter-
pretability, cluster interpretability and market mood predictability are high.

The main contributions of our research are as follows.

– We proposed and developed a novel interpretable NN architecture called
GINN that can visualize financial texts in the way as shown in Fig. 1 using a
novel method, Importance of infiltration (II) algorithm (Sect. 2).

– We experimentally demonstrated validity for the text visualizations by GINN.
(Sect. 3).

2 Importance of Infiltration (II) Algorithm

This section introduces the framework for developing GINN. We develop GINN
according to the following steps.

Step 1. Prepare a dataset of documents and their positive or negative tags.
Step 2. Cluster words and construct the NN model (Subsect. 2.1).
Step 3. Initialize parameter values using Init and obtain parameter values from

the learning process using Update (Subsect. 2.2).

We refer to the series of flows from Step 2 to Step 3 as the II algorithm. Condi-
tions 1 and 2–3 in Sect. 1.1 are realized by Step 2 and Step 3, respectively. We
develop the II algorithm based on the following two ideas:

1. Assigning sentiment scores from a manually created polarity dictionary to
specific edges between the input and second layers, and propagating the senti-
ment scores to the other edge values through the learning process. Consequently,
each unit in the second layer will represent its sentiment information.

2. Necessitating the addition of certain limitations for the polarity propagation
process, and such limitations should not reduce the market mood predictability
of the model.

Ideas 1 and 2 are realized by Init and Update in Step 3, respectively.

2.1 Setup of NN Model

To cluster words, we represent each word as a numerical vector using word2vec
[4]. For a given number of clusters, K, we cluster similar words into the same
cluster using the spherical K-means method [5] by their cosine distances. These
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clusters correspond to concept clusters. Using the results of clustering words, we
construct an NN model that satisfies Condition 1 using the following layers:

Input Layer: We assign a cluster number, k (k = 1, 2, · · · ,K) to each cluster
and an ID number in the cluster to each word. Let wk,i be a word that is included
in the kth cluster and whose ID number in the cluster is i, z(1,k)

j,i be the frequency
of the word wk,i in a document j, n(k) be the number of words included in

the kth cluster, m be
∑K

k=1 n(k), and z
(1,k)
j be

[
z
(1,k)
j,1 ,z

(1,k)
j,2 · · · ,z

(1,k)
j,n(k)

]T

. We

represent the input vector value v
(BOW)
j ∈ R

m (i.e., the frequencies of the words

that appear in document j) as v
(BOW)
j := [z(1,1)

j

T
,z

(1,2)
j

T
, · · · ,z

(1,K)
j

T
]T .

Second (Concept) Layer: We set the second-layer vector, v(CS)
j ∈ R

K , as

v
(CS)
j := tanh([z(1,1)

j · w(2)
1 , · · · ,z

(1,K)
j · w(2)

K ]T )

where w
(2)
k ∈ R

n(k) for each k. Let w
(2)
k,i be the ith element of w(2)

k and v
(CS)
k,j

be the kth element of v(CS)
j . If w

(2)
k,i represents the sentiment score of word wk,i,

then v
(CS)
j represent the sentiment scores of concept cluster units.

Output Layer: Let W (3) ∈ R
K2×K be the weight matrix between the second

and third layers, W (4) ∈ R
2×K2 be the weight matrix between the third and

output layers, w(l)
i

T
and w

(l)
i,j be the ith row and the (i, j) component of W (l)(l =

3, 4), and b0 ∈ R
2 be the bias vector. Here K2 is a scalar value. We represent

the output layer value as
yj = Softmax(W (4)f3(W (3)v

(CS)
j ) + b0), y

(cls)
j = argmax yj ,

where y
(cls)
j ∈ {0 (negative), 1 (positive)} is the output layer value that corre-

sponds to the predicted tag for the document j. We set f3 to be tanh.

2.2 Initialization and Learning of Parameters

Initialization. After constructing the NN model, we initialize w
(2)
k,i using a

manually-created polarity dictionary. Let PS(wk,i) be the sentiment score for
wk,i given by the polarity dictionary. We set the initial value of w

(2)
k,i as

w
(2)
k,i =

{
PS(wk,i) (wk,i is included in the polarity dictionary)
0 (otherwise) .

This initialization strategy realizes Idea 2, and we refer to this as Init.

Learning. We determine the parameter values not in {w(2)
k }K

k=1 via the general
backpropagation method with the softmax cross entropy as a loss function. How-
ever, we determine the values of {w(2)

k }K
k=1 by updating {w(2)

k }K
k=1 according to

Algorithm 1 (called as Update) in each training iteration. In Update, using H∗(j,t)

instead of H(j,t) is specific and necessary for realizing the high interpretability
of GINNs.

The values of w
(2)
k change during the learning process by the propagation

of the sentiment scores from the dictionary (Fig. 4). After the learning stage is
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completed, we obtain the sentiment scores of unknown words by extracting the
w

(2)
k values. The value of w

(2)
k,i corresponds to the sentiment score of word wk,i.

Algorithm 1 . Update strategy of {w(2)
k }K

k=1 in the th training iteration
(Update)

Input: {w(2)
k }K

k=1, W
(4), W (3), minibatch dataset in the tth training iteration Ωm;

1: for j ∈ Ωm do

2: dj :=

{
(0, 1)T (j is positive)
(1, 0)T (j is negative)

, u
(2)
j := tanh−1(v

(CS)
j ), u

(3)
j := W (3)v

(CS)
j ;

3: Δ
(4)
j := yj − dj ; H

(j,t) := W (4)diag(f ′
3(u

(3)
j ))W (3)(∈ R

2×K);

4: H∗(j,t) ∈ R
2×K ← zeros; Here, (H∗(j,t))l,k = h∗(j,t)

l,k and (H (j,t))l,k = h
(j,t)
l,k .

5: for k ← 1 to K do
6: if h

(j,t)
1,k < 0 then h∗(j,t)

1,k ← h
(j,t)
1,k ; if h

(j,t)
2,k > 0 then h∗(j,t)

2,k ← h
(j,t)
2,k ;

7: Δ
(2)∗
j := (1 − tanh2(u

(2)
j )) � (H∗(j,t)T

Δ
(4)
j ),

8: for k ← 1 to K do
9: ∂w

(2)∗
k := 1

N

∑
j∈Ωm

Δ
(2)∗
k,j z

(1,k)
j where Δ

(2)∗
k,j is the kth component of Δ

(2)∗
j ;

10: Update w
(2)
k using ∂w

(2)∗
k instead of using the gradient value of w

(2)
k ;

Fig. 3. GINN vs MLP (fully) Fig. 4. Polarity propagation process

2.3 Proposed and Baseline Models

We introduce two types of baseline models: base multilayer perceptron (MLP),
plus MLP, and our proposed model, GINN. Their structures are constructed as
discussed in Subsect. 2.1, but they exhibit the following differences (Fig. 3).

In base MLP, neither Init nor Update is used (i.e., developed by the general
backpropagation method).

In plus MLP, Init is not used; however, Update is used.
In GINN, both Init and Update are used (i.e., developed by the II algorithm).

Let t+ and t− be positive values, Ω
(k,t+)
pw (positive word set) be a set of words

that satisfy p+(wk,i) > t+ and whose cluster number is k, and Ω
(k,t−)
nw (negative
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word set) be a set of words that satisfy p−(wk,i) > t− and whose cluster number
is k. We can theoretically explain that the II algorithm develops GINNs whose
interpretability and market mood predictability are both high in the ideal case:
the II algorithm assigns the value of w

(2)
k,i to a positive value if wk,i ∈ Ω

(k,t+)
pw ,

and a negative value if wk,i ∈ Ω
(k,t+)
nw obtaining a local optimization solution in

the ideal case (from Propositions 1–3 in AppendixA).

3 Text Visualization Demonstration Using Real Data

This section applies our text-visualization method for financial textual data.
First, we evaluate our method in terms of interpretability, clustering inter-
pretability, and market mood predictability (introduced in Subsect. 1.2). Then,
we present an example of text-visualization produced by GINN.

3.1 Dataset and Model Development

We used a dataset constructed from posts on the Yahoo! Finance Board1 between
September 1, 2015 and September 30, 2015 and their sentiment tags (i.e., Yahoo!
dataset). We extracted all the posts tagged as negative (want to sell strongly)
or positive (want to buy strongly), and sorted them in descending order by the
date when they were posted. We then divided them into five equal parts while
maintaining the order for a five fold cross-validation. After that, we prepared
five train-validation and test dataset pairs by extracting each part in turn for
use as the test dataset and using the remaining four parts as the train-validation
dataset. We randomly extracted 10% of the train-validation data, taking equal
percentages of samples from each class, for use as validation data. The remaining
train-validation data were used as training data. The numbers of negative and
positive posts were 15,887 and 50,843, respectively, and m was 28,261.

Using each train-validation data, we developed the following five prediction
models for the evaluations: SVM, fully connected MLP (fully MLP), base MLP,
plus MLP and GINN. Here, fully, plus and base MLPs and GINN had four layers,
and the kernel of SVM was linear. The hyper-parameters were determined using
the validation data, and we used stratified sampling [6], the Adam optimizer
[7], and Dropout [8]. The number of words that were included in the manually
created polarity dictionary and used in the process of Init was 285. See the
supplementary material2 for the details.

3.2 Interpretability Evaluation

We evaluated each model’s interpretability by the following Fwt+,t−
Sew,D score.

1 http://textream.yahoo.co.jp/category/1834773.
2 In http://socsim.t.u-tokyo.ac.jp/wp/index.php/2017/11/15/titoh/ginn/.

http://textream.yahoo.co.jp/category/1834773
http://socsim.t.u-tokyo.ac.jp/wp/index.php/2017/11/15/titoh/ginn/
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Step 1: We set positive and negative word sets, Ω
(k,t+)
pw and Ω

(k,t−)
nw , for each k

using a document dataset D according to Subsect. 2.3. For each word w ∈ Sew,
we assign a positive (negative) label for the answer label if w ∈ ∪K

k=1Ω
(k,t+)
pw

(w ∈ ∪K
k=1Ω

(k,t−)
nw ).

Step 2: We assigned a positive or negative label for the prediction label to each
word w ∈ Sew using the prediction model. For the GINN and the plus and base
MLPs, we assigned word wk,i a positive (negative) label if w

(2)
k,i > 0 (w(2)

k,i < 0).
Step 3: We evaluated each method by the macro F1 score for the answer and
prediction labels (defined as FwSew,D(t+, t−)). We set Sew

D to be a set of words
that appear more than ten times in D and were not included in the manu-
ally created polarity dictionary, t+ to be the mean value of {p+(w)|w ∈ Sew

D }
and t− to be 1 − t+. We evaluated methods in both the case where D was
a training dataset and that where D was a union set of validation and test
datasets (i.e., test-valid dataset). We compared the results of plus and base MLPs
and GINN.

Results. The first and second columns of Table 1 summarize the results. GINN
shows significant improvement over baseline approaches: base and plus MLPs.

Table 1. Fw scores are F1 score results for interpretability: “train” and “test-valid”
mean the case where D is a training dataset and that where D is a test-valid dataset,
respectively. HF scores are F1 score results for human interpretability.

Methods Fw score HF

Training dataset Test-valid dataset

Base MLP (baseline model) 0.488 0.493 0.465

Plus MLP (baseline model) 0.516 0.506 0.484

GINN (proposed model) 0.739 0.630 0.742

Discussion: These results demonstrate that the II algorithm realized the high
interpretability of the GINN as intended. To measure the limit value for inter-
pretability, we also measured how much Fwt+,t−

Sew,D scores could be produced by
other high-performance methods for assigning sentiment scores to words: the
gradient method with fully MLP and the SVM method. Such methods can-
not achieve our goal because they cannot visualize concept cluster information.
For the gradient method with fully MLP, we assigned each word w ∈ Sew a
positive (negative) label if the input gradient value corresponding to the word
w calculated by the gradient method [2] and the fully MLP model was posi-
tive (negative) (See the supplementary material2 for the details). For the SVM
method, we assigned each word w ∈ Sew a positive (negative) label if the sup-
port vector value corresponding to word w was positive (negative). The Fwt+,t−

Sew,D
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scores in the case where D was a training dataset and that where D was a valid-
test dataset were 0.704 and 0.604, respectively, for the SVM method and 0.753
and 0.620, respectively, for the gradient method with fully MLP. These results
show that GINN was able to produce more satisfactory results than other meth-
ods when D was a valid-test dataset, demonstrating the high interpretability of
GINN.

Human Interpretability Evaluation (Additional Evaluation): We also
evaluated word sentiment scores given by GINN in terms of whether they fit
peoples’ feelings. We randomly extracted 100 posts tagged as negative and pos-
itive from the test dataset. Three individual investors then manually extracted
important words for the sentiment decision from each post and tagged them
as positive or negative. We evaluated the models by their ability to accurately
assign sentiment tags to these words in the same way as Step 3. We used the
mean F1 score for the three investors as the evaluate base (i.e., HF score). The
right column of Table 1 summarizes the result, showing that GINN had more
satisfactory results than the base and plus MLPs. Moreover, HF scores for the
SVM method and the gradient method with fully MLP were 0.753 and 0.759,
respectively, close to the HF score of GINN. Thus, we consider that sentiment
scores given to terms by GINN sufficiently fit peoples’ feelings.

3.3 Clustering Interpretability Evaluation

We briefly checked the validity of word clustering in the II algorithm. After decid-
ing the cluster number K as 1000 and clustering words appeared in the Yahoo!
dataset using the clustering method in Subsect. 2.1, we randomly extracted six
clusters and 100 words in total from these six clusters. We then randomly selected
one word that was not included in the extracted 100 words from each cluster
in the six clusters as a base word (total six words). Two individual investors
then manually reclustered the 100 words into six clusters by deciding the clos-
est word to each word in these words from six base words. We evaluated the
clustering result by measuring the proximity of the manually clustered result to
the clustering result that uses the clustering method in Subsect. 2.1 in terms of
macro F1 score. The mean F1 score between investors was 0.93(� 0.16). From
this result, we consider that the word clustering by our approach sufficiently fits
peoples’ feelings, and clustering interpretability is sufficiently high.

3.4 Market Mood Predictability Evaluation

We evaluate the market mood predictability by whether each model can accu-
rately predict sentiment tags of documents in the test dataset in terms of the
mean F1 scores for the five-fold cross-validation, and compare the results between
the following methods: SVM, fully, base and plus MLPs, and GINN. The F1

scores were 0.733, 0.737, 0.692, 0.681 and 0.743 for SVM, fully MLP, base MLP,
plus MLP and GINN, respectively. These results show that GINN produced
the more satisfactory result than the others in market mood predictability.
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Algorithm 2. Extract the important clusters for the sentiment analysis

Input: document j, the second and output layer unit values, v
(CS)
j and yj

1: loss ← maxyj , H
(2)
grad ← ∂loss

∂v
(CS)
j

� v
(CS)
j (by the gradient method[2]);

2: I
(3)
grad ← sorted indices in ascending order by the values of H

(2)
grad;

3: return the first four indices of I
(3)
grad;

Fig. 5. Text-visualization examples from GINN and Yahoo finance board posts.
The numbers in green that follow some words are their cluster numbers, and
these numbers are the results of the extraction of the most four important con-
cept clusters in Algorithm 2. This post was originally in Japanese and we manually
replaced each Japanese word to the corresponding English word for this study. (Color
figure online)

3.5 Text Visualization

From the evaluations for interpretability, clustering interpretability and market
mood predictability of GINN, we can demonstrate both the validity for visual-
ization by GINN and the improvement by the II algorithm.

We then present a text-visualization example produced by the GINN. We
visualized an input post in the following step. We colored each word wk,i in a
post as blue if w

(2)
k,i < −0.05 and red if 0.05 < w

(2)
k,i , and displayed concept clus-

ter information of words appeared in a post by displaying some words included
in the same clusters. We then extracted the four most important concept clus-
ters for the decision by Algorithm 2, and printed the cluster numbers after the
terms included in these clusters. Figure 5 shows a text-visualization example of
a document in the test dataset using the GINN (K = 1000,K2 = 100). By
visualizing documents as above, we can quickly capture in what sense each word
in a document is positive or negative and how the prediction was made.



Text-Visualizing Neural Network Model 257

4 Related Work

As for useful techniques for text-visualization, we can present methods using
linear models such as SVM [1] and the topic models [9,10]. Regarding methods
using NNs, methods for interpreting NNs [2,3,11] can be useful. Most of them
try to interpret NNs by obtaining the gradient of input values for output val-
ues. Using interpretable NNs can also be helpful, and various methods for the
development of interpretable NNs have been proposed. For example, a method
using interpretable tree structure [12], a method for improving convolution layer
[13] and methods using the attention mechanism [14–16] have been proposed.
Unfortunately, these previous works could not visualize in what sense each word
means positive or negative and could not be used to achieve our goal. One of the
solutions to this problem is to develop NNs, where the nodes in the hidden layers
have both concept and sentiment information. However, to our knowledge, there
are very few techniques for the development of such interpretable NNs.

5 Conclusion

In this paper, we proposed a novel NN architecture, GINN, to aid text visual-
ization and developed GINN using the II algorithm. GINNs allow us to easily
understand in what sense each word is positive or negative and how sentiment
tags were predicted. We experimentally demonstrated the validity of the text
visualization produced by GINN using a real financial dataset and presented a
text-visualization example produced by GINN. In future, we intend to research
how many word sentiment scores need for the success of our II algorithm, and
propose a method that can be applied to more complicated NNs.

Acknowledgment. This work was supported in part by JSPS Fellows Grant Number
17J04768.

A Theoretical Analysis of the II Algorithm

Let Ω
(k)
dw be a set of words included in the kth cluster and included in the polarity

dictionary, D(p) and D(n) be the positive and negative document sets, ∂w
(2)∗
k,i be

the ith component of ∂w
(2)∗
k , p−(wk,i) be p

(
j ∈ D(n)|z(1,k)

j,i > 0
)
, p+(wk,i) be

1 − p−(wk,i), and ∂H(j,t) be the gradient value of H(j,t) in Update. Then,

Proposition 1. If we utilize Update for the parameter updates, then,
⎧
⎪⎪⎨

⎪⎪⎩

E[∂w
(2)∗
k,i ] < 0

(
p+(wk,i)
p−(wk,i)

>
E[|Δ(2)∗

j,k ||z(1,k)
j,i =1∩j∈D(n)]

E[|Δ(2)∗
j,k ||z(1,k)

j,i =1∩j∈D(p)]

)

E[∂w
(2)∗
k,i ] > 0

(
p+(wk,i)
p−(wk,i)

<
E[|Δ(2)∗

j,k ||z(1,k)
j,i =1∩j∈D(n)]

E[|Δ(2)∗
j,k ||z(1,k)

j,i =1∩j∈D(p)]

) . (1)
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is established. Proposition 1 indicates that if Cond 1: the values of t+ and t−

are sufficiently large, and Cond 2: for every word wk,i+ ∈ Ω
(k)
dw ∩ Ω

(k)
pw , and

wk,i− ∈ Ω
(k)
dw ∩ Ω

(k)
nw , the initial values of w

(2)
k,i+ and w

(2)
k,i− given by Init are

positive and sufficiently large, and negative and sufficiently small, respectively,
are met for every k, then, the II algorithm is expected to award each positive
word ∈ Ω

(k)
pw (negative word ∈ Ω

(k)
nw) a positive (negative) sentiment score.

Let Hd(j,t) be H(j,t) − H∗(j,t). Then, the following propositions important
for explaining the market mood predictability of GINN are established.

Proposition 2. If the initial values of |W (3)| and |W (4)| are sufficiently small

(Cond 3) and for every j ∈ Ω
(t)
m , the values of z(2)

j are
{

positive (j ∈ D(p))
negative (j ∈ D(n))

,

then, the first and second row vector values of ∂H(j,t) are positive and negative

respectively, and
∑

j∈Ω
(t+1)
m

‖H d(j,t+1)‖1
∑

j∈Ω
(t+1)
m

‖H (j,t+1)‖1
≤

∑

j∈Ω
(t+1)
m

‖H d(j,t)‖1
∑

j∈Ω
(t+1)
m

‖H (j,t)‖1
.

Proposition 3. If, for every k, Cond 1–3 are established, the values |Ω(k,t+)
pw |,

|Ω(k,t−)
nw | and |Ωm| are sufficiently large, then, limt→∞

∑

j∈Ω
(t)
m

‖H d(j,t)‖1
∑

j∈Ω
(t)
m

‖H (j,t)‖1
= 0.

See the supplementary material (See footnote 2) for the proofs and the details.
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Abstract. Missing data is a significant problem impacting all domains.
State-of-the-art framework for minimizing missing data bias is multiple
imputation, for which the choice of an imputation model remains non-
trivial. We propose a multiple imputation model based on overcomplete
deep denoising autoencoders. Our proposed model is capable of han-
dling different data types, missingness patterns, missingness proportions
and distributions. Evaluation on several real life datasets show our pro-
posed model significantly outperforms current state-of-the-art methods
under varying conditions while simultaneously improving end of the line
analytics.

1 Introduction

Missing data is an important issue, even small proportions of missing data can
adversely impact the quality of learning process, leading to biased inference
[4,14]. Many methods have been proposed over the past decades to minimize
missing data bias [9,14] and can be divided into two categories. One that attempt
to model the missing data process and use all available partial data for directly
estimating model parameters, and two that attempt to fill in/impute missing
values with plausible predicted values. Imputation methods are preferred for
their obvious advantage. That is, providing users with a complete dataset that
can be analyzed using user specified models.

Methods for imputing missing data range from replacing missing values by
the column average to complex imputations based on various statistical and
machine learning models. All standalone methods share a common drawback,
imputing a single value for one missing observation. Which is then treated as
the gold standard, same as the observed data in any subsequent analysis. This
implicitly assumes that imputation model is perfect and fails to account for
error/uncertainty in the imputation process. This is overcome by replacing each
missing value with several slightly different imputed values, reflecting our uncer-
tainty about the imputation process. This approach is called multiple imputation
[10,15] and is the most widely used framework for missing data analytics. The
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biggest challenge in multiple imputation is the correct specification of an impu-
tation model [11]. It is a nontrivial task because of the varying model capabilities
and underlying assumptions. Some imputation models are incapable of handling
mixed data types (categorical and continuous), some have strict distributional
assumptions (multivariate normality) and/or cannot handle arbitrary missing
data patterns. Existing models capable of overcoming aforementioned issues are
further limited in their ability to model highly nonlinear relationships, high vol-
ume data and complex interactions while preserving inter-variable dependencies.

Recent advancements in deep learning have established state-of-the-art
results in many fields [6]. Deep architectures have the capability to automatically
learn latent representations and complex inter-variable associations. Which is not
possible using classical models. Part of the deep learning framework, Denoising
Autoencoders (DAEs) [18] are designed to recover clean output from noisy input.
Missing data is a special case of noisy input, making DAEs ideal as an imputa-
tion model. But, missing data can depend on interactions/latent representations
that are not observable in the input dataset space. Hence, we propose to use
an overcomplete DAE as an imputation model. Whereby projecting our input
data to a higher dimensional subspace from where we then recover missing infor-
mation. We propose a multiple imputation framework with overcomplete DAE
as the base model, where we simulate multiple predictions by initializing our
model with a different set of random weights at each run. Details of our method
are presented in Sect. 3. Our proposed method has several advantages over the
current methods, some of which we outline below.

– Previous studies on imputing missing data using machine learning methods
use complete observations for the training phase. We show that our model
outperforms state-of-the-art methods even when users do not have the luxury
of having complete observations for initial training, a common scenario in real
life.

– Our model is capable of preserving attribute correlations, which are of a
concern using traditional imputation methods and can significantly affect
end of the line analytics.

– Our model is better equipped to deal with different missing data generation
processes, such as data missing not at random, which is a performance bot-
tleneck for other imputation methods. Experimental results using real life
datasets show that our model outperforms state-of-the-art methods under
varying dataset and missingness conditions and improves end of the line ana-
lytics.

The rest of the paper is organized as following. Section 2 provides preliminary
background to missing data terminology and introduces denoising autoencoders.
Section 3 introduces our model with Sect. 4 presenting empirical evaluation and
the effect of imputation on end of the line analytics followed by our conclusions.
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2 Background

Missing data is a well researched topic in statistics. Most of the early work on
missing data, including definitions, multiple imputation and subsequent analysis
is attributed to works of Little and Rubin [9,10,14]. From machine learning
perspective, it has been shown that auto-associative neural networks are better
at imputing missing data when attribute interdependencies are of concern [12]. A
common scenario in real life datasets. Denoising autoencoders have been recently
used in completing traffic and health records data [1,5] and collaborative filtering
[8]. Below we provide some preliminary introduction to missing data mechanisms
and denoising autoencoders.

2.1 Missing Data

Mechanisms: Impact of missing data depends on the underlying missing data
generating mechanism. We define three missing data categories [10] with the aid
of data from Table 1, representing an income questionnaire in a survey where we
denote missing data with “?”. Data is Missing Completely At Random (MCAR)
if missingness does not depend on observed or unobserved data. Example: Survey
participants flip a coin to decide whether to answer questions or not. Data is
Missing At Random (MAR) if missingness can be explained using observed data.
Example: Survey participants that live in postal code 456 and 789 refuse to fill
in the questionnaire. Data is Missing Not At Random (MNAR) if missingness
depends on an unobserved attribute or on the missing attribute itself. Example:
Everyone who owns a six bedroom house refuses the questionnaire. Bigger house
is an indirect indicator for greater wealth and a better paying job, but we don’t
have the related data. When data are MAR or MCAR, it is known as ignorable
missing data as observed data can be used to account for missingness. But, given
the observed data, it is impossible to distinguish between MNAR and MAR [17]
and sometimes, missing data can be a combination of both.

Table 1. Data snippet for income questionnaire with missing data represented
using ‘?’

Id Age Sex Income Postal Job Marital status

1 50 M 100 123 a Single

2 45 ? ? 456 ? Married

3 ? F ? 789 ? ?

Multiple Imputation: In a multiple imputation scenario, we will create multi-
ple copies of the dataset presented in Table 1 with ‘?’ replaced by slightly differ-
ent imputed values in each copy. Multiple imputation accounts for uncertainty
in predicting missing data using observed data by modelling variability into the
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imputed values as the true values for missing data are never known. Multiple
imputed datasets are then analyzed independently and the results combined. A
single statistic such as classification accuracy or root mean square error (RMSE)
can be simply averaged from multiple imputations.

2.2 Autoencoders and Denoising Autoencoders

An autoencoder takes an input x ∈ [0, 1]d and maps (encodes) it to an interme-
diate representation h ∈ [0, 1]d

′
using an encoder. Where d′ represents a different

dimensional subspace. The assumption is, in the dataset, h captures the coor-
dinates along the main factors of variation. The encoded representation is then
decoded back to the original d dimensional space using a decoder. Encoder and
decoder are both artificial neural networks. The two stages are represented as

h = s(Wx + b) (1)

z = s(W ′h + b′) (2)

where z is the decoded result and s is any nonlinear function. Reconstruction
error between x and z is minimized during training phase.

Denoising autoencoders are a natural extension to autoencoders [18]. By cor-
rupting the input data and forcing the network to reconstruct the clean output
forces the hidden layers to learn robust features. Corruption can be applied in
different ways, such as randomly setting some input values to zero or using dis-
tributional additive noise. DAEs reconstruction capabilities can be explained
by thinking of DAEs implicitly estimating the data distribution as the asymp-
totic distribution of the Markov chain that alternates between corruption and
denoising [2].

3 Models

This section introduces our multiple imputation model and the competitors used
for comparison.

3.1 Our Model

Architecture: Our default architecture is shown in Fig. 1. We employ atypical
overcomplete representation of DAEs. That is, more units in successive hidden
layers during encoding phase compared to the input layer. This mapping of our
input data to a higher dimensional subspace creates representations capable of
adding lateral connections, aiding in data recovery. Usefulness of this approach
is empirically validated in the supplemental material. We start with an initial
n dimensional input, then at each successive hidden layer, we add Θ nodes,
increasing the dimensionality to n+Θ. For initial comparisons, we use Θ = 7. We
tried different values for Θ for various datasets and decided to use 7 as it provided
consistent better results. It is an arbitrary choice and can be dealt with by
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Fig. 1. Our basic architecture, encoder block increases dimensionality at every hidden
layer by adding Θ units with decoder symmetrically scaling it back to original dimen-
sions. Crossed out inputs represent stochastic corruption at input by setting random
inputs to zero. H1, H2, H3, H4, H5 are hidden layers with I and O being the input and
output layers respectively. Encoder and decoder are constructed using fully connected
artificial neural networks.

viewing Θ as another tuning hyperparameter. Our model inputs are standardized
between 0 and 1 to facilitate faster convergence for small to moderate sample
sizes. Our model is trained with 500 epochs using an adaptive learning rate with
a time decay factor of 0.99 and Nesterov’s accelerated gradient [13]. The input
dropout ratio to induce corruption is set to 0.5. So that in a given training
batch, half of the inputs are set to zero. Tanh is used as an activation function
as we find it performs better than ReLU for small to moderate sample sizes,
especially when some inputs are closer to zero. We use early stopping rule to
terminate training if desired mean squared error (MSE) of 1e-06 is achieved or
if simple moving average of length 5 of the error deviance does not improve.
The training-test split of 70-30 is used with all results reported on the test set.
Multiple imputation is accomplished by using multiple runs of the model with
a different set of random initial weights at each run. This provides us with the
variation needed for multiple imputations. Algorithm 1 explains our multiple
imputation process.

Usage: We start with imitating a real life scenario. Where the user only have
a dataset with pre-existing missing values. That is, the user does not have the
luxury of access to the clean data and user does not know the underlying missing
data generating mechanism or the distribution. In scenarios where missingness
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Algorithm 1. Multiple imputation using DAEs
Require: k: Number of imputations needed
1: for i = 1 → k do
2: Initialize DAE based imputation model using weights from random uniform dis-

tribution
3: Fit the imputation model to training partition using stochastic corruption
4: Reconstruct test set using the trained model
5: end for

is inherent to the datasets, training imputation models using complete data can
bias the learner. But as DAEs require complete data at initialization, we initially
use the respective column average in case of continuous variables and most fre-
quent label in case of categorical variables as placeholders for missing data at
initialization. Training phase is then initiated with a stochastic corruption pro-
cess setting random inputs to zero. Where our model learns to map corrupted
input to clean output. Our approach is based on one assumption, that is, we
have enough complete data to train our model. So the model learns to recover
true data using stochastic corruption on inputs, and is not learning to map
placeholders as valid imputations. The results show this assumption is readily
satisfied in real life scenarios. Even datasets with small sample sizes are enough
for DAE based imputation model to achieve better performance compared to
state-of-the-art.

3.2 Competitors and Comparison

Competitor: For multiple imputation, we need methods that can inject varia-
tion in successive imputations, providing slightly different imputation results at
each iteration. Simple models such as linear/logistic regression or deterministic
methods based on matrix decomposition fail to take this into account. Cur-
rent state-of-the-art in multiple imputation is the Multivariate Imputation by
Chained Equations (MICE) [3]. Which is a fully conditional specification app-
roach and works better than Joint Modelling approaches where multivariate
distributions cannot provide a reasonable description of the data or where no
suitable multivariate distributions can be found. MICE specifies multivariate
model on variable by variable basis using a set of conditional densities, one for
each variable with missing data. MICE draws imputations by iterating over con-
ditional densities. It has an added advantage of being able to model different
densities for different variables. Internal imputation model in MICE is vital and
a model with properties to handle different data types and distributions is essen-
tial for effective imputations. Predictive mean matching and Random Forest are
the best available options within MICE framework [16]. We compared them
both and found predictive mean matching to provide more consistent results
with varying dataset types and sizes. Hence it is used as the internal component
of our competitor MICE model.
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Comparison: Imputation results are compared using sum of root mean squared
error calculated per attribute on the test set, given as

RMSEsum =
m∑

i=1

√√√√E(
n∑

i=1

(t̂i − ti)) (3)

where we have m attributes, n observations, t̂ is the imputed value and t is
the observed value. RMSEsum is calculated on scaled datasets to avoid dispro-
portionate attribute contributions. RMSEsum provides us a measure of relative
distance, that is, how far the dataset completed with imputed values is from the
original complete dataset. For multiple imputation scenarios with k imputations,
we have k values for RMSEsum per dataset. The results are then reported using
average RMSEsum along with the range.

4 Experiments

We start our empirical evaluation for multiple imputation on several publicly
available real life datasets under varying missingness conditions.

4.1 Datasets

Table 2 shows the properties of various real life publicly available datasets [7]
used for model evaluation. Models based on deep architectures are known to
perform well on large sample, high dimensional datasets. Here we include some
extremely low dimensional and low sample size datasets to test the extremes and
to prove that our model has real world applications. Most of the datasets have
a combination of continuous, categorical and ordinal attributes. Which further
challenges the convergence of our model using small training samples.

4.2 Inducing Missingness

To provide a wide range of comparisons. Initially for each data set, we introduce
missingness in four different ways with a fixed missingness proportion of 20%
using the steps detailed below.

1. Append a uniform random vector v with n observations to the dataset with
values between 0 and 1, where n is number of observations in the dataset.

2. MCAR, uniform: Set all attributes to have missing values where vi ≤ t,
i ∈ 1 : n, t is the missingness threshold, 20% in our case.

3. MCAR, random: Set randomly sampled half of the attributes to have missing
values where vi ≤ t, i ∈ 1 : n.

4. MNAR, uniform: Randomly sample two attributes x1 and x2 from the dataset
and calculate their median m1 and m2. Set all attributes to have missing
values where vi ≤ t, i ∈ 1 : n and (x1 ≤ m1 or x2 ≥ m2).

5. MNAR, random: Randomly sample two attributes x1 and x2 from the dataset
and calculate their median m1 and m2. Set randomly sampled half of the
attributes to have missing values where vi ≤ t, i ∈ 1 : n and (x1 ≤ m1 or
x2 ≥ m2).
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Table 2. Datasets used for evaluation. Dataset acronyms are shown in parenthesis
that we will be using in the results section.

Observations Attributes

Boston housing (BH) 506 14

Breast cancer (BC) 699 11

DNA (DN) 3186 180

Glass (GL) 214 10

House votes (HV) 435 17

Ionosphere (IS) 351 35

Ozone (ON) 366 13

Satellite (SL) 6435 37

Servo (SR) 167 5

Shuttle (ST) 58000 9

Sonar (SN) 208 61

Soybean (SB) 683 36

Vehicle (VC) 846 19

Vowel (VW) 990 10

Zoo (ZO) 101 17

4.3 Main Results

Table 3 shows the multiple imputation results on real life datasets, comparing
five imputations by our model with five imputations by MICE. That is, each
missing value is imputed five times with a slightly different value. The results
show that our model outperforms MICE in 100% of cases with data MCAR
and MNAR with uniform missing pattern and in > 70% of cases with random
missing pattern. Our model’s superior performance in this scenario using small to
moderate dataset sizes with constrained dimensionality is indicative of it’s utility
when datasets are large and are of higher dimensionality. Which is a performance
bottleneck for other multiple imputation models whereas our model is capable of
handling massive data by design. Another advantage is that our model does not
need a certain proportion of available data to predict missing value. As in the
case of dataset VW-MNAR, MICE was unable to provide complete imputations.

Computational cost associated with our model is at par or better than impu-
tations based on MICE for small to moderate sized datasets. This might seem
counter-intuitive to some readers as our model is much more complex. But, com-
putational gains are significant when we are modelling a complete dataset in a
single attempt compared to iterative variable by variable imputation in MICE.
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Table 3. Imputation results comparing our model and MICE. Results are displayed
using sum of root mean square error (RMSEsum). Providing a measure of relative
distance of imputation from original data. As results are from multiple imputation
(5 imputations), mean RMSEsum from 5 imputations is displayed outside with min
and max RMSEsum inside parenthesis providing a range for imputation performance.
Value for MNAR is NA for dataset VW as MICE was unable to impute a complete
dataset.

Data Uniform missingness Random missingness

DAE MICE DAE MICE

MCAR BH 2.9(2.9,3) 3.7(3.5,3.8) 0.9(0.9,1) 0.9(0.7,1)

BC 2.9(2.9,2.9) 3.9(3.6,4.2) 1.2(1.2,1.3) 1.3(1.1,1.4)

DN 25.7(25.7,25.7) 36.5(36.3,36.6) 13.1(13.1,13.2) 16.9(16.9,17)

GL 1.1(1,1.1) 1.5(1.3,1.7) 1.3(1.2,1.4) 1.4(1.3,1.6)

HV 2.4(2.4,2.4) 3.4(3.1,3.7) 1.1(1.1,1.2) 1.2(0.9,1.3)

IS 13(12.9,13.1) 17.1(16.2,17.7) 5.8(5.6,6.2) 7(6.7,7.5)

ON 2.1(2.1,2.1) 3.1(3,3.3) 0.9(0.9,1) 1(1,1.2)

SL 3.6(3.6,3.7) 4.5(4.4,4.6) 1.8(1.7,1.8) 0.7(0.7,0.7)

SR 1.2(1.,1.2) 1.5(1.4,1.7) 0.4(0.4,0.5) 0.4(0.4,0.5)

ST 16.5(16.5,16.7) 27.9(27.5,28.2) 6.5(6.4,6.7) 13(12.5,13.8)

SN 5.1(5,5.1) 7.3(7.2,7.5) 2.3(2.2,2.3) 3.2(3.2,3.3)

SB 1.8(1.8,1.8) 2.4(2.3,2.4) 1.2(1.1,1.2) 1.1(1,1.1)

VC 4.1(4,4.1) 5.6(5.5,5.7) 1.6(1.6,1.6) 2.2(2.1,2.3)

VW 5.8(5.7,6.2) 7.7(7,8.1) 2.6(2.4,2.9) 3.8(3.3,4.2)

ZO 2.1(2.1,2.1) 3.4(3.1,4.3) 1.1(1.1,1.2) 1.1(1.1,1.1)

MNAR BH 2.3(2.2,2.4) 3.2(2.9,3.4) 0.9(0.8,1) 0.7(0.7,0.8)

BC 2.9(2.8,3) 3.6(3.4,3.8) 1.7(1.7,1.8) 1.4(1.3,1.5)

DN 25.3(25.2,25.3) 34.5(34.5,34.7) 5.7(5.7,5.8) 7.2(7.1,7.2)

GL 1.3(1.3,1.4) 1.5(1.3,1.8) 0.4(0.3,0.4) 0.2(0.11,0.2)

HV 2.6(2.6,2.6) 3.5(3.3,3.7) 1.3(1.2,1.3) 1.3(1.3,1.4)

IS 11.7(11.5,11.8) 15.4(14.9,16.5) 4.8(4.5,5.1) 6.3(5.6,6.8)

ON 1.5(1.5,1.5) 2.2(2,2.4) 1.2(1.1,1.2) 1.3(1.1,1.5)

SL 3.4(3.4,3.4) 3.8(3.8,3.9) 1.6(1.6,1.6) 0.5(0.5,0.5)

SR 1.2(1.2,1.2) 1.6(1.5,1.7) 0.4(0.3,0.4) 0.3(0.2,0.3)

ST 11.8(11.7,11.9) 22.4(22.1,22.7) 4.5(4.3,4.7) 9.5(8.4,10.3)

SN 4.6(4.6,4.6) 6.8(6.5,7.1) 2.3(2.3,2.4) 3.1(3,3.2)

SB 1.7(1.7,1.7) 2.3(2.2,2.4) 0.6(0.6,0.6) 0.9(0.9,0.9)

VC 3.5(3.4,3.7) 4.6(4.4,4.8) 1.7(1.7,1.8) 2.4(2.3,2.4)

VW 5.9(5.9,5.9) NA 2.3(2.1,2.5) NA

ZO 3.3(2.8,5.5) 3.9(3.6,4.6) 0.9(0.8,1.0) 1.1(0.7,1.7)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Results for imputation with increased missingness proportions. Figures (a),
(b), (c), (d) show imputation results with 40% missing data and figures (e), (f), (g),
(h) show imputation results with 60% missing data. Red line is drawn as a reference
line at y-intercept of 1 to signify superior/inferior performance of our model vs MICE.
Results are displayed using ER where values less than one signify our model performing
better and values greater than one signify MICE’s superior performance. X-axis show
different datasets (1–15) and Y-axis display ER. For some cases, MICE has trouble
imputing dataset 14 (VW) whereas our model provides consistent imputations. (Color
figure online)

4.4 Increased Missingness Proportion

Missing data proportion is known to affect imputation performance. Which dete-
riorates with increasing missing data proportion. To test the impact of varying
missing data proportion on our model, we introduce missingness in all 15 datasets
with missingness proportion set at 40% and 60% using methods described in
experimental setup section. Keeping all model parameters same for our model
and MICE, we multiple imputed datasets with five imputations each. For a bet-
ter visual representation, we compare the imputation results between our model
and MICE using mean error ratio ER, given as

ER =

1
n

∑n
i=1 EDi

1
n

∑n
i=1 EPi

(4)

where ED is imputation error of our model, EP is imputation error of MICE and
n is number of imputations. ER values of less than one signify average superior
performance of our model over MICE, whereas values greater than one signify
MICE performing better.

Figure 2 shows the results, a reference line at y-intercept of 1 is drawn to aid
visual comparisons. Our model performs better on average compared to MICE,
irrespective of missing data proportion. Results echo the findings of our main
results, where we observe our model performing better than MICE on average
of >85% cases.



270 L. Gondara and K. Wang

Table 4. Average accuracy and RMSE estimates for end of the line analytics using
random forest on imputed datasets. As we have used multiple imputation, results are
averaged over all imputed datasets. * signifies where RMSE is reported because target
variable is numeric, hence lower values the better. All other datasets report average
classification accuracy, higher the better. For dataset VW, as MICE was unable to
impute a full dataset, end of the line analytics is not possible.

Data Uniform missingness Random missingness

DAE MICE DAE MICE

MNAR BH* 3.9 4.5 3.7 4.1

BC 96.0 96.0 97.0 96.1

DN 91.6 87.6 93.3 93.7

GL 70.2 64.1 74.6 70.4

HV 98.5 99.2 95.0 98.2

IS 90.5 86.6 90.7 90.3

ON* 4 3.8 3.6 4.2

SL 90.0 80.9 89.6 89.6

SR* 6.6 8.1 6.9 6.4

ST 86.4 80.8 76.5 72.9

SN 90.9 70.5 85.3 84.2

SB 72.6 62.7 73.7 77.1

VC 74.7 63.8 72.7 70.6

VW 93.9 NA 77.7 NA

ZO 99.9 98.5 99.9 99.9

4.5 Impact on Final Analysis

Main goal of imputing missing data is to generate complete datasets that can
be used for analytics. While imputation accuracy provides us with a measure of
how close the imputed dataset is to the complete dataset, we still do not know
how well inter-variable correlations are preserved. Which severely impacts end
of the line analytics. To check the imputation quality in relation to a dataset’s
overall structure and to quantify the impact of imputation on end of the line
analytics. We use all imputed datasets as the input to classification/regression
models based on random forest with 5 times 5 fold cross validation. The task
is to use the target variable from all datasets and store the classification accu-
racy/RMSE for each dataset imputed using our model and MICE. Higher values
for classification accuracy and lower RMSE will signify a better preserved pre-
dictive dataset structure. We calculate mean accuracy/RMSE from all five runs
of multiple imputation. Datasets with data MNAR (uniform and random) are
used as MNAR datasets pose greatest challenges for imputation.

Results in Table 4 show that multiple imputation using our model provides
higher predictive power for end of the line analytics compared to MICE imputed
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data. The difference is even more significant when data are MNAR uniform
compared to when data are MNAR random.

5 Conclusion

We have presented a new method for multiple imputation based on deep denois-
ing autoencoders. We have shown that our proposed method outperforms current
state-of-the-art using various real life datasets and missingness mechanisms. We
have shown that our model performs well, even with small sample sizes, which is
thought to be a hard task for deep architectures. In addition to not requiring a
complete dataset for training, we have shown that our proposed model improves
end of the line analytics.
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Abstract. We formulate the task of treatment recommendation as a
sequence-to-sequence prediction model that takes the time–ordered med-
ical history as input, and predicts a sequence of future clinical procedures
and medications. It is built on the premise that an effective treatment
plan may have long–term dependencies from previous medical history.
We approach the problem by using a memory–augmented neural net-
work, in particular, by leveraging the recent differentiable neural com-
puter that consists of a neural controller and an external memory module.
Differing from the original model, we use dual controllers, one for encod-
ing the history followed by another for decoding the treatment sequences.
In the encoding phase, the memory is updated as new input is read; at
the end of this phase, the memory holds not only the medical history
but also the information about the current illness. During the decoding
phase, the memory is write–protected. The decoding controller generates
a treatment sequence, one treatment option at a time. The resulting dual
controller write–protected memory–augmented neural network is demon-
strated on the MIMIC-III dataset on two tasks: procedure prediction and
medication prescription. The results show improved performance over
both traditional bag-of-words and sequence-to-sequence methods.

1 Introduction

A core task in healthcare is to generate effective treatment plans. Machine-
assisted treatment recommendations have potential to improve healthcare effi-
ciency. We approach the task by learning from rich electronic medical records.
An electronic medical record (EMR) is a digital record of patient health informa-
tion over time such as details of symptoms, data from monitoring devices, and
clinicians’ observations. Amongst these data elements, diagnosis, clinical pro-
cedure and drug prescription codes form core information, and are temporally
correlated. A medical history is a sequence of clinic visits, each of which has a
set of diagnoses, treatment procedures, and discharge medications. In MIMIC-III
dataset [9], diagnoses are “ordered by priority”, procedures follow the order that
“the procedures were performed” and the drugs follow the prescription dates1.
1 https://mimic.physionet.org/mimictables/.

c© Springer International Publishing AG, part of Springer Nature 2018
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The temporal dependency in EMR clinical codes can be long-term. For example,
once diagnosed with diabetes (Type I or II), the conditions (and hence its medi-
cations, if any) are persistent through the patient’s life, even though it might not
be coded at every visit. Since EMR data are temporally sequenced by patient
medical visits, clinical codes at current admission may be related to other codes
appearing in previous admissions.

These long-term dependencies pose a great challenge for prediction models.
Recent efforts dealing with medical prediction have largely focused on model-
ing the admission’s diagnoses and treatments as two sets of codes and capture
sequential dependencies between codes from different admissions, i.e., sequence
of sets [3,11,13–15]. This approach may expose limitations since using the admis-
sion set representation ignores internal sequential dependencies.

To tackle these issues, we propose a novel treatment recommendation model
using a memory-augmented neural network (MANN) to capture the long-term
dependencies from EMR data. Our model is built upon Differentiable Neural
Computer (DNC) [6], a recent powerful and fully differentiable MANN. A DNC is
an expressive recurrent neural network consisting of a controller augmented with
a memory module. At each time step, the controller reads an input, updates the
memory, and generates an output. DNC has demonstrated its efficacy in various
tasks that require long chains of computation such as graph prediction and
question-answering suggesting its power of solving sequence prediction problems.
Despite its potential, DNC has yet to be applied to healthcare, especially in
clinical treatment sequence prediction.

We adapt the DNC to the task of treatment recommendation with two key
modifications. We formulate the treatment recommendations as a sequence-to-
sequence prediction problem, where the entire medical history sequence stored in
EMR is used to produce a sequence of treatment options. The output sequence
allows modeling dependencies between current treatments, and between treat-
ment and the distant history. We modify the DNC by using two controllers to
handle dual processes: history encoding and treatment recommendations. Each
controller will employ different “remembering” strategies for each process help-
ing improvement in prediction and increasing the learning speed. In the second
modification, we apply a write-protected policy for the decoding controller, that
is, memory is read-only in the decoding phase.

In summary, our main contributions are: (i) handling long-term dependencies
in treatment recommendations by solving the sequence prediction problem, (ii)
proposing a novel memory-augmented architecture that uses dual controllers and
write-protected mechanism (DCw-MANN) to suit sequence-to-sequence task,
(iii) empirically evaluating our model on a real-world EMR dataset (MIMIC-III)
and showing that our method outperforms existing methods in treatment recom-
mendations. The significance of DCw-MANN lies in its versatility as our model
can be applied to other sequential domains with similar data characteristics.
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2 Methods

2.1 Problem Formulation

In EMR data, a hospital visit is documented as one admission record consisting
of diagnosis and treatment codes for the admission. Diagnoses are coded using
WHO’s ICD (International Classification of Diseases) coding schemes. For exam-
ple, in the ICD10 scheme, E10 encodes Type 1 diabetes mellitus, E11 encodes
Type 2 diabetes mellitus and F32 indicates depressive episode. The treatment
can be procedure or drug. The procedures are typically coded in CPT (Current
Procedural Terminology) or ICHI (International Classification of Health Inter-
ventions) schemes. The drugs are often coded in ATC (Anatomical Therapeutic
Chemical) or NDC (National Drug Code). Once diagnoses are confirmed, we
want to predict the output sequence (treatment codes of the current visit) given
the input sequence (all diagnoses followed by treatments from the first visit to
the previous visit plus the diagnoses of the current visit). More formally, we
denote all the unique medical codes (diagnosis, procedures and drugs) from the
EMR data as c1, c2, ..c|C| ∈ C, where |C| is the number of unique medical codes.
A patient’s n-th admission’s input is represented by a sequence of codes:
[
c1d1

, c1d2
, ...,�, c1p1

, c1p2
...,�, ..., cn−1

d1
, cn−1

d2
, ...,�, cn−1

p1, , cn−1
p2

, ....,�, cnd1
, cnd2

, ...,�]

(1)
Here, ckdj

and ckpj
are the j-th diagnosis and treatment code of the k-th admis-

sion, respectively. �, � are special characters that informs the model about the
change from diagnosis to treatment codes and the end of an admission respec-
tively. This reflects the natural structure of a medical history, which is a sequence
of clinical visits, each of which typically includes a subsequence of diagnoses,
and a subset of treatments. A diagnosis subsequence usually started with the
primary condition followed by secondary conditions. In a subset of treatments,
the order is not strictly enforced, but it may reflect the coding practice. The
output of the patient’s n-th admission is :

[
cnp1

, cnp2
, ..., cnpLout

,�]
, in which Lout

is the length of the treatment sequence we want to predict and � is used to
inform the model to stop predicting. Finally, each code is represented by one-
hot vector vc ∈ [0, 1]‖C‖, where vc = [0, ..., 0, 1, 0.., 0] (vc[i] = 1 if and only if vc
represents ci). Unlike set encoding of each admission, representing the data in
this way preserves the admission’s internal order information allowing sequence-
based methods to demonstrate their power of capturing sequential events.

2.2 DNC Overview

In this subsection, we briefly review DNC [6]. A DNC consists of a controller,
which accesses and modifies an external memory module using a number of
read and write heads. In DNC, the memory module is more powerful and can
“remember” a longer sequence than recurrent neural nets such as LSTM [8] or
other MANNs such as NTM [5]. Given some input xt, and a set of R read values
from memory rt−1 =

[
r1t−1, r

2
t−1, ..., r

R
t−1

]
, the controller produces the output:
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ot ∈ R
|Cp|, where |Cp| is the number of possible output and the key kt ∈ R

D,
where D is the word size in memory. This key will be used for locating the
read/write slots in memory matrix Mt using cosine similarity:

D (Mt(i), kt) =
kt · Mt(i)

||kt|| · ||Mt(i)|| (2)

This is used to produce a content-based read-weight and write-weight vector
wcr

t , wcw
t ∈ R

Nwhose elements are computed according to a softmax over mem-
ory’s locations. N is the number of memory locations.

Dynamic Memory Allocation and Write Weightings: DNC maintains a
memory usage vector ut ∈ [0, 1]N to define the allocation write-weight:

at [Φt [j]] = (1 − ut [Φt [j]])
j−1∏

i=1

ut [Φt [i]] (3)

in which, Φt contains elements from ut sorted by ascending order from least to
most used. Given the write gate gwt and allocation gate gat , the final write-weight
then can be computed by the following interpolation:

ww
t = gwt [gat at + (1 − gat ) wcw

t ] (4)

Temporal Memory Linkage and Read Weightings: DNC uses a temporal
link matrix Lt ∈ [0, 1]N×N to keep track of consecutively modified memory
locations, and Lt [i, j] represents the degree to which location i was the location
written to after location j. Each time a memory location is modified, the link
matrix is updated to remove old links to and from that location, and add new
links from the last-written location. The final read-weight is given as follow:

wrk
t = πk

t [1]L�
t wrk

t−1 + πk
t [2] wcrk

t + πk
t [3] Ltw

rk
t−1 (5)

The read mode weight πk
t is used to balance between the content-based read-

weight and the forward Ltw
rk
t−1 and backward L�

t wrk
t−1 of the previous read.

Then, the k-th read value rkt is retrieved using the final read-weight vector:

rkt =
N∑

i

wrk
t (i)Mt(i) (6)

2.3 Proposed Model

We now present our main contribution to solve the task of treatment recom-
mendations – a deep neural architecture called Dual Controller Write-Protected
Memory Augmented Neural Network (DCw-MANN) (see Fig. 1). Our DCw-
MANN introduces two simple but crucial modifications to the original DNC:
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Fig. 1. Dual controller write-protected memory augmented neural network. LSTME

is the encoding controller. Both are implemented as a LSTM. LSTMD is the decoding
controller.

(i) using two controllers to handle dual processes of encoding and decoding,
respectively; and (ii) applying a write-protected policy in the decoding phase.

In the encoding phase, after going through embedding layer WE , the input
sequence is fed to the first controller (encoder) LSTME . At each time step, the
controller reads from and writes to the memory information necessary for the
later decoding process. In the decoding phase, the states of the first controller
is passed to the second controller (decoder) LSTMD. The use of two controllers
instead of one is important in our setting because it is harder for a single con-
troller to learn many strategies at the same time. Using two controllers will
make the learning easier and more focused. Also different from the encoder, the
decoder can make use of its previous prediction (after embedding layer WD) as
the input together with the read values from the memory. Another important
feature of DCw-MANN is its write-protected mechanism in the decoding phase.
This has an advantage over the writing strategy used in the original DNC since
at decoding step, there is no new input that is fed into the system. Of course,
there remains dependencies among codes in the output sequence. However, as
long as the dependencies among output codes are not too long, they can be
well-captured by the cell memory ct inside the decoder’s LSTM. Therefore, the
decoder in our design is prohibited from writing to the memory. To be specific,
at time step t + 1 we have the hidden state and cell memory of the controllers
calculated as:

ht+1, ct+1 =

{
LSTME ([WEvdt

, rt] , ht, ct) ; t ≤ Lin

LSTMD ([WDvpt
, rt] , ht, ct) ; t > Lin

(7)

where vdt
is the one-hot vector representing the input sequence’s code at time

t ≤ Lin and vpt
is the predicted one-hot vector output of the decoder at time

t > Lin, defined as vpt
= onehot (ot), i.e.,:

vpt
[i] =

⎧
⎨

⎩

1 ; i = argmax
1�j�|Cp|

(ot [j])

0 ; otherwise
. (8)
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Fig. 2. Training loss of odd-even task Fig. 3. Training NLD of odd-even task

We propose a new memory update rule to enable the write-protected mechanism:

Mt =

{
Mt−1 ◦ (

E − ww
t e�

t

)
+ ww

t v�
t ; t ≤ Lin

Mt−1; t > Lin

(9)

where E is an N ×D matrix of ones, ww
t ∈ [0, 1]N is the write-weight, et ∈ [0, 1]D

is an erase vector, vt ∈ R
D is a write vector, ◦ is point-wise multiplication, and

Lin is the length of input sequence.

3 Results

In this section, we perform experiments both on real-world data and synthetic
tasks. The purpose of the synthetic task is to study the incremental impact of
modifications we propose.

3.1 Synthetic Task: Odd-Even Sequence Prediction

In this task, the input is sequence of random odd numbers chosen without
replacement from the set So = {1, 3, 5, ..., 49} and the output is sequence of
even numbers from the set Se = {2, 4, 6, ..98} . The n-th number yn in the out-

put sequence is computed as: yn =

{
2xn n ≤ ⌊

L
2

⌋

yn−1 + 2 n >
⌊
L
2

⌋ . xn is the n-th number

in the input sequence and L is the length of both input and output sequence
chosen randomly from the range [1, 20]. The formula is designed to reflect health-
care situations where treatment options depend both on diagnoses in the input
sequence and other treatments in the same output sequence. Here is an example
of an input-output sequence pair with L = 7: input := [11, 7, 25, 39, 31, 1, 13]
and output := [22, 14, 50, 52, 54, 56, 58]. We want to predict the even numbers in
the output sequence given odd numbers in the input sequence, hence we name
it odd-even prediction task. In this task, the model has to “remember” the first
half of the input sequence to compute the first half of the output sequence, then
it should switch from using input to using previous output at the middle of the
output sequence to predict the second half.
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Table 1. Test results on odd-even task
(lower is better)

Model NLD

Seq2Seq 0.679

Seq2Seq with attention 0.637

DNC 0.267

DNC (write-protected) 0.250

DC-MANN 0.161

DCw-MANN 0.082 Fig. 4. Read modes of MANNs on odd-
even task

Evaluations: Our baselines are Seq2Seq [20], its attention version [1] and the
original DNC [6]. Since we want to analyze the impact of new modifications, in
this task, we explore two other models: DNC with write-protected mechanism in
the decoding phase and dual controller MANN without write-protected mecha-
nism (DC-MANN). We use the Levenshtein distance (edit distance) to measure
the model’s performance. To account for variable sequence lengths, we normalize
this distance over the length of the longer sequence (between 2 sequences). The
predicted sequence is good if its Normalized Levenshtein Distance (NLD) to the
target sequence is small.

Implementation Details: For all experiments, deep learning models are imple-
mented in Tensorflow 1.3.0. Optimizer is Adam [10] with learning rate of 0.001
and other default parameters. The hidden dimensions for LSTM and the embed-
ding sizes for all models are set to 256 and 64, respectively. Memory’s parameters
including number of memory slots and the size of each slot are set to 128 and
128, respectively.

Results: After training with 4000 input-output pair of sequences, the models
will be tested for the next 1000 pairs. The learning curves of the models are
plotted in Figs. 2 and 3. The average NLD of the predictions is summarized
in Table 1. As is clearly shown, the proposed model outperforms other methods.
Seq2Seq-based methods fail to capture the data pattern and underperform other
methods. The introduction of two controllers helps boost the performance of
DNC significantly. Additional DNC-variant with write-protected also performs
better than the original one, which suggests the benefit of decoding without
writing.

Figure 4 plots read mode weights for three reading strategies employed in
encoding and decoding phases. We can observe the differences in the way the
models prefer reading strategies. The biggest failure of DNC is to keep using
backward read in the decoding process. This is redundant because in this prob-
lem, it is the forward of the previous read location (if the memory location that
corresponds to xn−1 is the previous read, then its forward is the memory location
that corresponds to xn) that defines the current output (yn). On the other hand,
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Table 2. Statistics of MIMIC-III sub-datasets

MIMIC-III dataset (# of visit >1) Procedure as output Drug as output

# of patients 6,314 5,620

# of admissions 16,317 14,656

# of unique diagnosis codes 4,669 4,563

# of unique treatment codes 1,439 2,446

Average # of diagnosis sequence length 13.3 13.8

Max # of diagnosis sequence length 39 39

Average # of treatment sequence length 4.7 11.4

Max # of treatment sequence length 40 186

Average # of visits per patient 2.5 2.6

Max # of visits per patient 29 29

dual controllers with write-protected mechanism seems help the model avoid bad
strategies and focus more on learning reasonable strategies. For example, using
dual controllers tends to lessen the usage of content-based read in the encod-
ing phase. This strategy is reasonable in this example since the input at each
time step is not repeated. Write-protected policy helps balance the forward and
content-based read in the decoding phase, which may reflect the output pattern
– half-dependent on the input and half-dependent on the previous output.

3.2 Treatment Recommendation Tasks

The dataset used for this task is MIMIC-III [9], which is a publicly available
dataset consisting of more than 58k EMR admissions from more than 46k
patients. An admission history in this dataset can contain hundreds of medi-
cal codes, which raises a great challenge in handling long-term dependencies. In
MIMIC-III, there are both procedure and drug codes for the treatment process
so we consider two separate treatment recommendation tasks: procedure pre-
diction and drug prescription. In practice, if we use all the drug codes in an
EMR record, the drug sequence can be very long since, each day in hospital,
the doctor can prescribe several types of drugs for the patient. Hence, we only
pick the first drug used in a day during the admission as the representative drug
for that day. We also follow the previous practice that only focuses on patients
who have more than one visit [13–15]. The statistics of the two sub-datasets is
detailed in Table 2.

Evaluations: For comprehensiveness, beside direct competitors, we also com-
pare our methods with classical for healthcare predictions, which are Logistic
Regression and Random Forests. Because traditional methods are not designed
for sequence predictions, we simply pick the top outputs (ignoring ordering infor-
mation). In treatment recommendation tasks, we use precision, which is defined
as the number of correct predicted treatment codes (ignoring the order) divided
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Table 3. Results on MIMIC-III dataset for procedure prediction and drug prescription
(higher is better).

Model Procedure output Drug output

Precision Jaccard Precision Jaccard

Logistic regression 0.256 0.185 0.412 0.311

Random forest 0.276 0.199 0.491 0.405

Seq2Seq 0.263 0.196 0.220 0.138

Seq2Seq with attention 0.272 0.204 0.224 0.142

DNC 0.285 0.214 0.577 0.529

DCw-MANN 0.292 0.221 0.598 0.556

by the number of predict treatment codes. More formally, let Sn
p be the set of

ground truth treatments for the n-th admission, Sn
q be the set of treatments that

the model outputs. Then the precision is: 1
N

N∑

n=1

|Sn
p ∩Sn

q |
|Sn

q | , where N is total num-

ber of test patients. To measure how closely the generated treatment compares
against the real treatment, we use Mean Jaccard Coefficient2, which is defined
as the size of the intersection divided by the size of the union of ground truth

treatment set and predicted treatment set: 1
N

N∑

n=1

|Sn
p ∩Sn

q |
|Sn

p ∪Sn
q | .

Implementation Details: We randomly divide the dataset into the training,
validation and testing set in a 0.7 : 0.1 : 0.2 ratio, where the validation set is used
to tune model’s hyper-parameters. For the classical Random Forests and Logistic
Classifier, the input is bag-of-words. Also, we apply One-vs-Rest strategy [17] to
enable these classifiers to handle multi-label output and the hyper-parameters
are found by grid-searching.

Results: Table 3 reports the prediction results on two tasks (procedure pre-
diction and drug prescription). The performance of the proposed DCw-MANN
is higher than that of baselines on the testing data for both tasks, validating
the use of dual controllers with write-protected mechanism. Without memory,
Seq2Seq methods seem unable to outperform classical methods, possibly because
the evaluations are set-based, not sequence-based. In the drug prescription task,
there is a huge drop in performance of the Seq2Seq-based approaches. It should
be noted that, in drug prescription, the drug codes are given day by day; hence,
the average length of output sequence are much longer than the procedure’s
one. This could be a very challenging task for Seq2Seq. Memory-augmented
models, on the other hand, have an external memory to store information, so
it can cope with long-term dependencies. Figures 5 and 6 show that compared
to DNC, DCw-MANN is the faster learner. This case study demonstrates that

2 The metrics actually are at disadvantage to the proposed sequence-to-sequence
model, but we use to make them easy to compare against non-sequential methods.
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Fig. 5. Training loss of drug prescrip-
tion task

Fig. 6. Testing loss of drug prescrip-
tion task

a MANN with dual controller and write-protected mechanism can significantly
improve the performance of the sequence prediction task in healthcare.

4 Related Works

The recent success of deep learning has drawn board interest in building AI sys-
tems to improve healthcare. Several studies have used deep learning methods to
better categorize diseases and patients: denoising autoencoders, an unsupervised
approach, can be used to cluster breast cancer patients [21], and convolutional
neural networks (CNNs) can help count mitotic divisions, a feature that is highly
correlated with disease outcome in histological images [4]. Another branch of
deep learning in healthcare is to solve biological problems such as using deep
RNN to predict gene targets of microRNAs [24]. Despite these advances, a num-
ber of challenges exist in this area of research, most notably how to make use
of other disparate types of data such as electronic medical records (EMRs).
Recently, more efforts have been made to utilize EMR data in disease prediction
[15], unplanned admission and risk prediction [14] problems. Other works apply
LSTMs, both with and without attention to clinical time series for heart failure
prediction [3] or diagnoses prediction [11]. Treatment recommendation is also
an active research field with recent deep learning works that model EMR codes
as sequence such as [2] using sequence of billing codes for medicine suggestions
or [23] using set of diagnoses for medicine sequence prediction. Differing from
these approaches, our work focuses on modeling both the admission data and
the treatment output as two sequences to capture order information from input
codes and ensure dependencies among output codes at the same time.

Memory augmented neural networks (MANN) have emerged as a new promis-
ing research topic in deep learning. Memory Networks (MemNNs) [22] and Neu-
ral Turing Machines (NTMs) [5] are the two classes of MANNs that have been
applied to many problems such as meta learning [18] and question answering [19].
In healthcare, there is limited work applying MemNN-based models to handle
medical-related problems such as clinical textual QA [7] or diagnosis inference
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[16]. However, these works have been using clinical documents as input, rather
than just using medical codes stored in EMRs. Our work, on the other hand,
learns end-to-end from raw medical codes in EMRs by leveraging Differentiable
Neural Computer (DNC) [6], the latest improvement over the NTM. In practice,
DNC and other NTM variants have been used for various domains such as visual
question answering [12], and one-shot learning [18], yet it is the first time DNC
is adapted for healthcare tasks.

5 Conclusion

We have introduced a dual controller write-protected MANN designed for health-
care treatment recommendations. Under our design, the order dependencies for
each admission and between admissions are preserved allowing memory-based
methods to make use of this sequential information for better performance. Dif-
fering from other approaches, our work is one of the first attempts to apply
MANN to healthcare domain and promising results on MIMIC-III dataset have
shown that modifications such as using two controllers and write-protected mech-
anism are necessary to make MANN work for real-world problems like treatment
prediction. In additions, our method can be generalized to other sequence pre-
diction tasks that require special handling of long-term dependencies. Future
work will focus on extending the model to handle multiple healthcare tasks, and
developing new capabilities for medical question answering.
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Data and Machine Learning.
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Abstract. Denoising data is a preprocessing step for several time series
mining algorithms. This step is especially important if the noise in data
originates from diverse sources. Consequently, it is commonly used in
biomedical applications that use Electroencephalography (EEG) data. In
EEG data noise can occur due to ocular, muscular and cardiac activities.
In this paper, we explicitly learn to remove noise from time series data
without assuming a prior distribution of noise. We propose an online,
fully automated, end-to-end system for denoising time series data. Our
model for denoising time series is trained using unpaired training cor-
pora and does not need information about the source of the noise or
how it is manifested in the time series. We propose a new architecture
called AsymmetricGAN that uses a generative adversarial network for
denoising time series data. To analyze our approach, we create a syn-
thetic dataset that is easy to visualize and interpret. We also evaluate
and show the effectiveness of our approach on an existing EEG dataset.

1 Introduction

Time series data mining is an important area of research and has applications in
a variety of domains including healthcare, econometrics, and speech recognition.
Consequently, a large number of methods for time series classification, cluster-
ing, anomaly detection and motif discovery have been proposed. Although these
methods can handle some noise, they are not effective when noise originates from
different sources and has diverse characteristics.

Consider, for example, a widely used method for time series featurization
called Symbolic Aggregate approXimation (SAX) [10] that assumes time series
are generated from a single normal distribution. As shown in [5] this assumption
does not hold in several real life time series datasets. Other techniques assume
noise comes from a Gaussian distribution and estimate the parameters of that
distribution [13]. This assumption does not hold for data sources like Electroen-
cephalography (EEG), where noise can have diverse characteristics and originate
from different sources [15]. Hence, in this work, we focus on learning the char-
acteristics of noise in EEG data and removing it as a preprocessing step.
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Electroencephalography (EEG) is a technique that records the electrical
activity of the brain by placing electrodes on the scalp. As it is noninvasive
and cost-effective, it is widely used in brain-computer interfaces (BCI), deter-
mining cognitive states, seizure detection, and monitoring neurological disorders
[11,14]. Unfortunately, EEG data is often contaminated by different forms of
noise called “artifacts”. Artifacts are undesired signals in EEG data originating
from sources other than brain activity. Artifacts can occur from diverse sources
like ocular, muscular, and cardiac activities, or external sources like electrodes
and line noise. The occurrence of external artifacts can be reduced by proper
placement of electrodes, but it is impossible to avoid artifacts of biological ori-
gin. Not only do artifacts increase the chance of false alarms in seizure detection
[12], they can also alter the shape of neurological events [16]. Therefore, artifact
detection and removal is an important preprocessing step for EEG data.

Given the importance of artifact removal from EEG data, a large number of
denoising techniques have been proposed in the neuroimaging literature. This
includes techniques like artifact rejection that focus on detecting artifacts and
removing segments where they are present. Although simple, artifact rejection
methods can lead to excessive loss of information. Regression of denoised sig-
nals using a reference channel is another commonly used technique. Regression
techniques need reference signals and cannot be trained using unpaired training
data. Thus the approach is specific to EEG data and not broadly applicable to
time series data. Another popular technique is to use independent component
analysis (ICA) to decompose the signal into independent source signals and iden-
tify sources corresponding to noise. The identification of source signals has to
be done manually or using supervised classifiers. This requires a human in the
loop or additional annotation. Also, ICA has high computational complexity and
large memory requirements, making it unsuitable for real-time applications.

We solve these problems by proposing an online, fully automated, end-to-
end system for denoising time series trained using unpaired training corpora.
An online and fully automated system makes it useful in real-time applications.
Unlike [8], our system is trained end-to-end and has fewer hyperparameters to be
optimized and is easy to deploy. Being able to train on unpaired training corpora
allows our method to be useful in a wide variety of applications. For training of
our network, we only need a set of clean signals and set of noisy signals. We do
not need paired training data, i.e., we do not need clean versions of the noisy
data. This is particularly useful for applications like artifact removal in EEG
data as we cannot record clean versions of noisy EEG.

We create this method by leveraging recent advances in unpaired image to
image translation [19] using generative adversarial networks. We modify an exist-
ing generative adversarial architecture [19] for denoising time series data. We
analyze our approach on a synthetic dataset and examine the effectiveness of
our approach in removing artifacts from EEG data. The remainder of this paper
is organized as follows. Section 2 discusses related work. Section 3 defines the
problem. Section 4 describes our system for learning a model for denoising time
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series from unpaired training data. In Sect. 5, we evaluate our model on synthetic
and EEG data. Section 6 concludes and discusses future work.

2 Related Work

Time series data mining algorithms can broadly be classified as model-based
and model-free. Model-based algorithms focus on creating features and models
that are robust to noise in the data by assuming priors on the distribution of
the noise. Model-free algorithms do not assume a prior on the distribution of
noise and explicitly learn to remove noise as a preprocessing step [6]. Model-
based algorithms often make assumptions about the distribution of noise in the
data. For example, [13] assumes that noise comes from a Gaussian distribution
and estimates the parameters of the distribution. This makes these techniques
ineffective when noise has different characteristics and originates from diverse
sources [6]. For such applications, model-free denoising is often used. In this
work, we focus on model-free denoising because of its applicability for a wide
range of applications.

Model-free denoising techniques are often used in biomedical applications
for processing EEG or functional Magnetic Resonance Imaging (fMRI) data.
A simple technique for denoising EEG data is artifact rejection that focuses
on detecting artifacts and removing the segments of data where artifacts are
present. Although simple, artifact rejection methods can lead to excessive loss
of information [15]. In this work, we propose a method for denoising the time
series instead of removing entire segments of noisy data.

Regression of a denoised signal using a reference channel like Electrocardiog-
raphy (ECG), Electrooculography (EOG) or Electromyography (EMG) is a com-
mon approach to removing artifacts from EEG data [15]. These techniques fail
if a reference signal is not available. The need for a reference signal makes these
approaches EEG-specific. Wavelet transforms are commonly used to decompose
a signal into a set of coefficients at various scales, which represent the similarity
of the signal to the wavelet at that scale. The artifacts found by this method
are often removed by thresholding the coefficients and reconstructing the signal
from the filtered representation. Artifact removal based on the wavelet transform
relies on the artifacts being decomposable in a wavelet basis. Thus, the mother
wavelet, the shrinkage rule, and the threshold are important to the design of the
noise removal method [2]. Also, these techniques process each channel separately
and could miss important clues for removing the artifact.

Blind source separation methods that use Independent Component Analy-
sis (ICA) are the most popular techniques for artifact removal from EEG data
[3,15]. ICA is used to recover independent source signals called components and
then the components corresponding to artifacts are identified. These components
are either manually identified or a classifier is trained to identify components
corresponding to noise. This requires a human in the loop or the annotation
of components corresponding to noise. Such annotation is expensive and may
not always be available. Recently, a technique was proposed that used unpaired
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training data to identify components corresponding to noise by formulating it
as multi-instance learning problem [8]. Although this method was trained using
unpaired training data, it performed ICA which has high computational com-
plexity and large memory requirements, making it unsuitable for real-time appli-
cations. Also, their architecture consists of several subsystems like ICA, SAX
and multi-instance learning. Each subsystem has its own hyperparameters and
tuning them jointly is a challenging task.

Recently, several architectures for time series classification using deep neural
networks have been proposed. Wang and Oates proposed a method for encoding
time series data as images and using them to classify the time series [17]. Other
methods that use raw data as input to a convolutional network for time series
classification have been proposed [18]. Convolutional neural networks have also
been used for classification of EEG data [1]. These methods demonstrate useful-
ness of a deep neural network for processing time series data. However, none of
these methods have used convnets to denoise time series data.

Generative Adversarial Networks (GANs) [7] have achieved impressive results
in computer vision tasks like image generation, image editing, and representation
learning. GANs have also been used for removing compression artifacts from
images [4]. Recently, CycleGAN, a method for performing unpaired image to
image translation using generative adversarial networks, was proposed [19]. The
key idea was introduction of an objective function that translates an image from
the source domain to the target domain and reconstructs the original image. We
modify this network for denoising time series data. To the best of our knowledge,
ours is the only work that uses GANs for denoising time series data.

3 Problem Definition

Given a noisy time series A, our goal is to generate time series B that is a denoised
version of A. If N is the noise in time series A, then we assume A = B + N .
We want to learn to characteristics of noise from training data and remove noise
from the original signal.

The main challenge in learning a mapping from noisy signal A to clean signal
B is a lack of availability of paired training examples. We generally do not have
a clean version of a noisy signal. This is because manually removing noise is
an expensive task and needs domain expertise. But, it is much easier to collect
signals with artifacts and signals without artifacts. Thus, we want to learn a
mapping from a noisy signal to a clean signal using only a set of unpaired noisy
signals and a set of clean signals.

Recently, a cycle generative adversarial network (cycleGAN) [19] was pro-
posed to perform unpaired image to image translation. They presented an app-
roach for translating an image from source domain A to target domain B, trained
using unpaired data. This translation was performed by two networks, network
F that translates the image from domain A to domain B and network G that
translates the image from domain B to domain A. For training the network,
cycleGAN introduced a cycle-consistency loss to enforce G(F (A)) ≈ A. In this
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architecture network G does not use any information from the original image
to reconstruct the signal. This makes the cycleGAN architecture unsuitable for
denoising of time series data. For reconstruction of the original signal from a
noisy signal, the network does not have access to the predicted noise compo-
nent. Thus it does not know the nature or location of the noise. We solve this
problem by creating an asymmetric variation of this architecture. In this archi-
tecture, we preserve the noise in the signal and use it for reconstruction of the
original signal. We explain the architecture of our generative adversarial network
in the next section.

4 Asymmetric Generative Adversarial Network

Our goal is to train an end-to-end system to remove artifacts from time series
data using generative adversarial networks. We want to learn a mapping function
from noisy signal A to denoised signal B given training signals {ai}Ni=1 and
{bj}Mj=1 where ai ∈ A and bj ∈ B. We denote the data distribution of these
signals as a ∼ pdata(a) and b ∼ pdata(b).

Fig. 1. Asymmetric GAN architecture

Figure 1(a) gives the architecture of our network. In this figure, boxes repre-
sent the signals and arrows represent neural networks or operations performed
on input signals. As illustrated in the figure, G B represents the function that
maps noisy time series to clean time series. G N is function that extracts noise
if the input is a noisy time series A. It generates noise if the input is a clean time
series B. The noise generated from G N and clean time series B are added to get
a noisy time series. The functions G B and G N are realized by convolutional
autoencoders that are described in Sect. 4.1.

Da and Db are two adversarial discriminators. Da aims to distinguish between
noisy time series A and time series generated by adding noise B + G N(B). Db

aims to distinguish between clean time series B and denoised time series G B(A).
We describe the architecture of the discriminators in Sect. 4.1.

To train this architecture, just like in cycleGAN, four losses are used, two
adversarial losses and two cycle consistency loss. The adversarial losses are used
for training the two mapping functions. For mapping function G B : A → B,
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discriminator Db matches the distribution of time series denoised by the gen-
erator and the distribution of clean time series. This loss function is given by
Eq. 1.

Lgan(GB ,Db, A,B) = Eb∼pdata(b) [logDb(b)] + Ea∼pdata(a) [log(1 − Db(G B(a)))]
(1)

Similarly, for mapping function B → A, discriminator Da matches the distri-
bution of time series with noise generated by G N and the distribution of noisy
time series. This loss function is given by Eq. 2.

Lgan(GA,Da, B,A) = Ea∼pdata(a) [logDa(a)]+Eb∼pdata(b) [log(1−Da(b+G N(b)))]
(2)

Adversarial losses ensure that the distribution of generated signals A and B
match the target distribution. But generator networks can map input signals
to any random permutation of signals in the target domain. Adversarial losses
cannot guarantee that G B(A) is a denoised version of noisy input time series A.
To enforce this relation between noisy input and clean output by the generator
we use a cycle consistency loss.

There are two cycle consistency losses, forward cycle loss and backward loss
as shown in Fig. 1(b) and (c), respectively. For the forward cycle, we separate
noise and the clean signal from the noisy signal using networks G B and G N ,
respectively. We calculate the l1-norm of the original signal and addition of the
clean signal and noise as the forward cycle loss. The forward cycle loss is given
by Eq. 3.

Lforward cyc = Ea∼pdata(a) ||(G B(a) + G N(a)) − a||1 (3)

For the backward cycle, we add noise generated by generator G N and use
network G B to clean the signal. The l1-norm of the original clean signal and the
signal denoised by G B is the backward cycle loss. This loss is given by Eq. 4.

Lbackward cyc = Eb∼pdata(b) ||G B(b + G N(b)) − b||1 (4)

Notice that the forward and backward cycles are not symmetric. Because of
this, we call our GAN architecture asymmetricGAN. Asymmetry is introduced
because in the forward cycle we use the noise extracted from the noisy signal to
reconstruct the original signal. The usage of noise is necessary to ensure that the
network is not penalized for adding noise at the wrong location. It also reduces
the burden of generating the exact noise signal for correctly reconstructing the
original signal. Forward and backward cycle losses are multiplied with hyperpa-
rameters λA and λB before adding to the final loss of the network.

4.1 Generator and Discriminator Network Architecture

Figure 2(a) shows the architecture of the generator. It is a convolutional autoen-
coder used for implementing functions G B and G N in asymmetricGAN. In
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Fig. 2. (a) Generator architecture (b) Discriminator architecture

the figure, layer conv1D(5)-64 represents a layer of 64 features of 1D convolu-
tion with filter size 5. Figure 2(b) shows the architecture of the discriminator
used for predicting if the input signal is real or generated. This architecture
was used to implement networks Da and Db. In our architecture, we use 1D
convolution with filter size K to capture temporal patterns in the time series
and 2D convolution with filter size N × k to capture patterns across different
channels, where N is the number of channels in time series. To create a network
that is independent of the relative ordering of time series channels, we do not
use 2D convolution with a spatial dimension of filter size less than N . This is
important for the EEG data as the channel indices do not correspond to the
spatial locations of the electrodes.

To train the asymmetricGAN and reduce model oscillation, we use the strat-
egy of saving the history of generated time series [19]. We update the discrim-
inators using a history of generated time series rather than the ones produced
by the latest generative networks. We keep a buffer that stores the 50 previously
generated time series for training. In the next section, we show the effectiveness
of our method on synthetic and EEG dataset.

5 Experimental Setup and Results

5.1 Synthetic Dataset

Artifact removal from EEG data is a problem where ground truth does not exist
because we do not have a clean version of the noisy signal. This makes the eval-
uation of artifact removal methods difficult. Also, visualizing and understanding
EEG data is a time consuming task. We solve this problem by creating a simpler
synthetic dataset.

In our synthetic dataset, we create a clean signal as a linear combination of a
sine and a square wave. We create a noisy signal as a linear combination of sine,
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square and sawtooth waves. Thus, the sawtooth wave is playing the role of the
noise we’d like to remove. The period of the sine and square waves is randomly
selected between 2 and 5. The sawtooth wave has a period of 6. These signals
are mixed to get 3 linear combinations. The mixing matrix is fixed and contains
random numbers between 0.1 and 2. Both clean and noisy time series have a
sample size of 1000 each. Our training set contains 4000 signals, the validation
set has 1000 signals and test set has 100 signals. Figure 3(a) shows a noisy signal
and Fig. 3(b) shows a clean signal.

To perform this task the network has to implicitly learn the nature of the
noise and mixing matrix without direct supervisory information on either of
these variables. Unlike the EEG dataset, this dataset is easy to create, visualize
and interpret. This simplifies the validation of denoising time series data.

Fig. 3. Artificial data result

We train our network on the synthetic dataset using the adam optimizer and
a learning rate of 0.0002. Both weights on cycle loss, λA and λB are 0.5. All
weights were initialized from a Gaussian distribution with mean 0 and standard
deviation 0.02. We test our network by measuring mean squared error (MSE)
between the generated signal and ground truth clean signal. Figure 3 visualizes
an example result on the test data. Figure 3(a) shows the noisy signal, Fig. 3(b)
shows the ground truth clean signal, Fig. 3(c) shows the signal denoised by our
network, and Fig. 3(d) is the noise detected by the network. We can observe
from Fig. 3 that the ground truth clean signal and denoised signal are similar,
and noise predicted by the network is similar to the sawtooth wave. The MSE
between the ground truth clean signal and denoised signal for the example in
Fig. 3 is 0.4065. The average MSE error for entire test set is 0.4180 and standard
deviation is 0.011. This demonstrates the effectiveness of our network on the
synthetic dataset.

5.2 EEG Dataset

We test our network for artifact removal on a dataset generated by the US
Army Research Laboratory that has been previously discussed in [9]. We briefly
describe the dataset here. Readers can refer to [9] for more details. The dataset
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was recorded using a 64-channel Biosemi ActiveTwo System. Participants in
the study performed a block of artifact-inducing facial and head movements.
The exact details of each movement were not controlled by the experimenter
but rather left up to the participant to perform in their most natural manner.
The seven movements performed included clenching the jaw, moving the jaw
vertically, blinking both eyes, moving the eyes leftward then back to center,
moving the eyes upwards then back to center, raising and lowering eyebrows,
and rotating the head side-to-side. Each type of movement was performed in a
separate run 20 times. At the beginning of each run, participants were told which
movement to perform. For each run, a male voice initially counted down from 3
at a rate of every 2 s, followed by a tone every 2 s, and participants performed
the movement in time with the tone. The participants were told to make the
movement for the first second of the 2 s period, and then to return to a relaxed
state for the remaining 1 s. A baseline dataset was recorded for each participant.
Participants were told to not move and look straight at the computer screen
for the baseline. We use this part of the dataset as “clean” data. Analyses here
focuses on eyebrow movements in a single channel frontal electrode, with the
intention of extrapolating results to other more complicated movements in the
future.

Despite the fact that during collection of clean data patients were instructed
to not move and look straight at the computer screen, we noticed that there
were artifacts even in “clean” data. Manually annotating all artifacts from all
channels is a time consuming task. So in this work, we focus on ocular artifacts
in the Fp1 electrode of the frontal region. We manually remove all patients that
have more than two ocular artifacts in the clean data and do not have artifacts
in the region of eyebrow raising. In the resulting dataset, we have 4 patients with
clean data and 10 patients with noisy data. Each patient’s clean data has 4836
samples and noisy data has 420354 samples. We use this manually annotated
data in all experiments below.

We train an asymmetricGAN on EEG data where the noisy signal contains
artifacts corresponding to eyebrow raising and the clean signal does not contain
any ocular artifacts. We use a sliding window of size 1000 over clean and noisy
data as input to the network. Our network does not need to know the exact
location of the artifact. Any window that contains an entire or partial artifact
is considered noisy. The sliding window approach makes our model invariant to
artifact location. Also, as the network can remove artifacts from a window and
does not need to process the entire time series, it can be used in online real-time
applications.

The DC component in EEG data is different for each recording. We normalize
every window of clean and noisy data to remove the DC offset from the data.
We remove the DC offset by subtracting the median of the data in the window.
Normalizing by subtracting the median is more robust to outliers compared to
subtraction of the mean. This preprocessing step ensures that the amplitude of
clean segments of data in clean and noisy signals is centered around zero.
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We use preprocessed windows of clean and noisy EEG data to train an asym-
metricGAN. The parameters used for the network, the optimizer, and the ini-
tialization are similar to the one used for the synthetic dataset. Except in this
case the number of input and output channels is one and λA and λB are 0.05.

Evaluation of EEG data is challenging as the ground truth noiseless signals
are not known. Multiple approaches to evaluation have been proposed in recent
years, however, authors do not agree on a single mechanism for evaluating artifact
removal [15]. In this work, we give qualitative results and use an artifact detector
to evaluate our method.

Qualitative Results. We have clean EEG for 4 patients and noisy EEG for 10
patients. To generate qualitative results, we train an asymmetricGAN using clean
EEG from all 4 patients and noisy EEG from 7 randomly selected patients. We
use noisy EEG from the remaining 3 patients to test our network. We generate
qualitative results by performing a forward pass through network G B over non-
overlapping windows of 1000 samples on noisy data. We concatenate the output
of the network over non-overlapping windows to get denoised EEG data. Figure 4
shows the result of denoising the noisy EEG of a patient from the test set. Visual-
ization of the other two patients is shown in the appendix due to space constraints.

Fig. 4. EEG data result

Figure 4(a) shows the original noisy EEG signal and the signal after artifact
removal. Figure 4(b) shows the artifact predicted by the network in EEG data.
For collection of the original noisy EEG, the patient was instructed to raise
their eyebrow every 2 s. For every eyebrow raise, there was spike in amplitude at
the Fp1 electrode. As shown in the figure, the network learns that the spike in
amplitude is because of the artifact and removes it. Artifacts extracted by our
network as shown in Fig. 4(b) are similar to the artifacts that occur when an
eyebrow is raised according to the existing literature [15].

Evaluation by Detection. In this section, we use artifact detection as a way of
measuring the performance of artifact removal. This is less subjective, automatic
and provides a quantitative measure of performance of artifact removal. We first
train artifact detection and artifact removal on different datasets. We use the
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artifact detector to classify every window in EEG data denoised by the artifact
removal algorithm. The error is given by the percent of windows where an artifact
was detected in denoised EEG data.

For this experiment, we split the datasets into two parts. The first split
contains clean EEG for 2 patients and noisy EEG for 6 patients. The first split
is further divided into clean EEG of 2 patients and noisy EEG of 4 patients as a
training set for the asymmetricGAN. The noisy EEG of the remaining 2 patients
from the first split is used as test data for the asymmetricGAN.

The second split contains clean EEG of 2 patients and noisy EEG of 4
patients. It is used to train artifact detection network. The second split is further
divided into training and test sets for artifact detection, each containing clean
EEG for one patient and noisy EEG for two patients.

We use the network similar to the discriminator network explained in Sect. 4.1
to train an artifact detection algorithm. The preprocessing method of sliding a
window over clean and noisy EEG and median normalization is also the same for
the artifact detection network. The network is trained using the Adam optimizer
and a learning rate of 0.0002. On training, we get an accuracy of 97.39% on test
data for artifact detection.

To get an error metric, we use trained artifact removal to denoise noisy EEG
in the test data. Then we classify every window in the denoised signal using
artifact detector. The total number of windows in the test data were 38002. All
these windows originally had either entire or partial artifact. The total number
of windows having artifacts based on classification of the artifact detector after
denoising are 10499. This shows that our artifact removal algorithm was able to
change the classification of artifact detector from noisy to clean 72.37% of the
time.

6 Conclusion

This paper presents an online, fully automated, end-to-end system for denoising
time series data. Our system for denoising is trained using unpaired training
corpus. It does not need any information about the source of the noise or how it
is manifested in the time series data. We created a synthetic dataset and used it
to evaluate our network. We also used model to remove artifacts from existing
EEG dataset. In future, we intend to use our architecture for removing artifacts
originating from other sources like muscular or cardiac activities from EEG data.
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Abstract. Deep Kernel Learning (DKL) has been proven to be an effec-
tive method to learn complex feature representation by combining the
structural properties of deep learning with the nonparametric flexibility
of kernel methods, which can be naturally used for supervised dimension-
ality reduction. However, if limited training data are available its perfor-
mance could be compromised because parameters of the deep structure
embedded into the model are large and difficult to be efficiently opti-
mized. In order to address this issue, we propose the Shared Deep Kernel
Learning model by combining DKL with shared Gaussian Process Latent
Variable Model. The novel method could not only bring the improved
performance without increasing model complexity but also learn the hier-
archical features by sharing the deep kernel. The comparison with some
supervised dimensionality reduction methods and deep learning approach
verify the advantages of the proposed model.

Keywords: Dimensionality reduction · Gaussian processes
Deep learning

1 Introduction

In the big data era, there are enormous data with high-dimensional fea-
tures/variables, and the major concern becomes how to efficiently discover
unknown patterns embedded in the observed data with high dimensionality
which poses serious problems for data storage and analysis. Therefore, Dimen-
sionality Reduction (DR) techniques have been widely used for data pre-
processing, data analysis and visualization by reducing the number of features
and simultaneously removing the noises and redundancies embedded in the high-
dimensional observations. Applications in computer vision, gene data and remote
sensing images analysis [7,9,15] demonstrate that DR techniques are essential
for high-dimensional data analysis which could facilitate the final data analysis
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 297–308, 2018.
https://doi.org/10.1007/978-3-319-93040-4_24
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tasks such as regression and classification models. Typically DR can be divided
into feature selection and extraction. Feature selection tries to find subsets of the
original features while feature extraction transforms high-dimensional features
to low-dimensional feature space. In this paper, we focus on the typical feature
extraction techniques.

In the past two decades many DR algorithms based on feature extraction have
been developed. Roughly these approaches can be classified into the unsupervised
and supervised techniques according to whether or not the extra labels (response
variables) are utilized. For the unsupervised DR models, the classic Principal
Component Analysis (PCA) could be the most representative method, which
tries to linearly project the high-dimensional observation to a lower-dimensional
space in such a way that the variance of the data in the dimensionality-reduced
space is maximized. However, the linear assumption in PCA could be violated
because there exists nonlinear structures in many tasks, resulting into unsatis-
factory performance. Thus, many nonlinear extensions of PCA have been intro-
duced, such as Kernel PCA (KPCA) [26] based on the kernel tricks and Auto-
Encoder (AE) [8] based on neural network, etc. Besides, the manifold learning
based methods such as ISOMAP and Locally Linear Embedding (LLE) [17]
are capable of finding meaningful and nonlinear relationships embedded in high-
dimensional observations, and latent variable models (LVMs) including Gaussian
Process Latent Variable Model (GPLVM) [13], Thin Plate Spline Latent Variable
Model (TPSLVM) [10], and Relevance Units Latent Variable Model (RULVM)
[5] try to explicitly represent the unknown mappings from low-dimensional latent
space to high-dimensional observation space with nonlinear models like Gaus-
sian Process Regression (GPR) [18], Thin Plate Spline (TPS) [10] and Relevance
Units Machine (RUM) [5], respectively. However, it becomes difficult to obtain
the low-dimensional latent representation for a new testing sample due to the
lack of mapping from high-dimensional input to latent space which is typically
called the out-of-sample problem. In order to address this issue the back con-
straint extensions of LVMs are developed by introducing the extra mapping,
leading to the back constraint GPLVM (BC-GPLVM) [13]. To further extend
GPLVM to multiview data, the shared GPLVM [3] is proposed by using multi-
ple GPLVMs to represent the relationship between the shared latent variables
and multiple observations.

However, it would be unwise to perform unsupervised DR when the addi-
tional labels are available. Various works based on supervised DR have been
proposed to extract discriminative features. For example, Linear discriminant
analysis (LDA) tries to carry on linear DR by maximizing the between-class
separation and minimizing the within-class separation, which shows better per-
formance than PCA. Also, many unsupervised manifold learning algorithms have
been extended to the supervised settings, such as supervised LLE [12]. More
interestingly, LVMs based methods can naturally handle the extra labels giving
rise to various supervised LVMs.

The first type of supervised LVMs could be roughly termed as the flat
extensions, where LVMs are extended to the multiview settings. For example,
Supervised Probabilistic PCA (SPPCA) [27] tries to use two Probabilistic PCA
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(PPCA) [13] models to linearly learn the shared latent variables with low dimen-
sionality from two views: the relationship between the latent variables and the
high-dimensional observations and the relationship between the latent variables
and the output labels. Supervised GPLVM (SGPLVM) [6] further employs non-
linear GPLVM rather than the linear PPCA in SPPCA to learn the shared latent
variables. Besides, there are some LVMs extensions with various discriminative
priors, which can also be viewed as the flat extensions. Discriminative GPLVM
(DGPLVM) [22] adds typical LDA prior to GPLVM, and Gaussian Markov Ran-
dom Field (GMRF) [19] further makes use of the discriminative graph Laplacian
prior which can be seen a more general extension of LDA prior. Recently, Dis-
criminative Shared GPLVM (DS-GPLVM) [4] and Shared Autoencoder Gaussian
Process (SAGP) [14] try to combine shared GPLVM with various discriminative
priors to directly handle the multiview data. The flat extensions may be efficient
when limited training data are available, but the performance of these models
could be compromised if the LVMs can not represent the complex relationship
between the observations and the latent variables.

Alternatively, there are some supervised LVMs trying to go deep, which
can be named as the deep extensions. Deep learning has attracted many
researchers’ attention and made breakthroughs in many tasks because good fea-
tures can be learnt automatically, which is highly related to feature extraction
or DR. For instance, Auto-Encoder (AE) based deep learning techniques try to
stack AE to learn hierarchical feature representation from massive unlabelled
data and then a few data with labels are utilized to fine-tune the hierarchical
models [23]. However, large amounts of training data are needed for training
deep learning algorithms because there are many parameters to be optimized.
Thus, many nonparametric methods have been adopted to reduce the number
of parameters of typical deep learning models. For example, Non-Parametrically
Guided Autoencoder (NPGA) [21] makes use of the nonparametric GP to relate
the latent variables in AE to the additional labels. GP is further extended to
Deep Gaussian Process (DGP) [2] by stacking the nonlinear GPR or GPLVM.
However, applying DGP in large-scale data could be challenge due to the high
complexity. Another line could be the semiparametric models, which have been
typically used for performing supervised DR and regression/classification simul-
taneously. Supervised Latent Linear GPLVM (SLLGPLVM) [11] uses the semi-
parametric model to perform supervised DR with linear model mapping the
high-dimensional features to the latent variables and Gaussian Process Classifi-
cation (GPC) [18] model transforming the latent variables to the discrete labels.
Furthermore, by combining the structural properties of deep learning with the
nonparametric flexibility of kernel methods Deep Kernel Learning (DKL) [24] is
proposed, which can be regarded as the deep extension of semiparametric model.
By using some approximation techniques, DKL can easily scale linearly with the
number of training data. DKL can outperform scalable GPs with expressive ker-
nels, stand-alone DNNs, and GPs applied to the outputs of trained DNNs if large
amount of training data could be provided, but the performance may be unsat-
isfactory if there are limited training data because the number of parameters to
be optimized in deep structures is large.
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In this paper, we introduce the Shared Deep Kernel Learning (SDKL) by
combining the flat and the deep extensions of LVMs for supervised DR. Specifi-
cally, a shared deep kernel is integrated into the shared GPLVM to represent the
two relationships: the mapping from the latent variables to the high-dimensional
observations, and the mapping from the latent variables to the output labels. It
is expected that the novel method could gain the complementary advantages of
the two approaches, and particularly be adaptive for the dataset with a small
number of training samples because the high-dimensional observations and the
output labels are fully utilized. Different from original DKL, we make use of
shared latent variables to connect the high-dimensional inputs and the output
labels based on shared GPLVM. Also, compared to recently proposed Shared
Autoencoder Gaussian Process (SAGP), parametric deep models instead of non-
parametric GPs are adopted to represent the back constraint mapping which
transforms the high-dimensional observation to latent variables, which could
learn complex feature representation. The novel algorithm can not only bring
the improved performance without increasing model complexity but also learn
the hierarchical features by sharing the deep kernel. The proposed SDKL is ver-
ified in terms of data visualization in 2D latent space and classification accuracy
based on the simple K-Nearest Neighbors (KNN) approach in the learnt latent
space.

The paper is organized as follows. In the next section, some related works
are briefly reviewed, and then we will introduce the proposed model in Sect. 3,
followed by the experiments section. Finally, we summarize the paper in Sect. 5
with conclusions.

2 Related Works

2.1 GP and GPLVM

Denote a dataset by D = {(x1,y1), · · · , (xN ,yN )}, where X = [x1, ...,xN ]T

are inputs data in a high-dimensional space RD, i.e., xn ∈ RD, and Y =
[y1, ...,yN ]T are the corresponding outputs data with each yn ∈ RM (real and
discrete values for regression and classification tasks, respectively). For the sake
of simplicity, the output is set to be scalar (M = 1) for regression tasks, where
the aim is to learn the distribution of prediction p(y|x∗) for any test sample
x∗. In GPR [18], each point yn is assumed to be generated from the unknown
functional variable f with independent Gaussian noise

y = f(x) + ε

where f is the (zero-mean) GP with the covariance/kernel function k(·, ·) defined
on input space and ε is the additive Gaussian noise with zero mean and covari-
ance σ2.

For a new test sample x∗, the predictive distribution conditioned on the given
observation can be derived by

g∗|x∗,X, Y ∼N (Kx∗X(KXX + σ2I)−1Y,

Kx∗x∗ − Kx∗X(KXX + σ2I)−1KXx∗) (1)



Shared Deep Kernel Learning for Dimensionality Reduction 301

where Ks are the matrices of the covariance/kernel function such as the radial
basis function (RBF).

If the output Y are not given, and we similarly assume that there is an
unknown mapping modelled by GPR which projects unknown latent variables
Z = {z1,z2, · · · ,zN} ⊂ Rp to high-dimensional observation X, resulting into
the unsupervised DR algorithm GPLVM. In detail, the observation can be for-
mulated by x = f(z) + ε with the unknown zero-mean GP f and independent
Gaussian noise ε similarly defined as GPR. Then, with Gaussian distribution
assumption the data likelihood can be written by

P (X|f) =
N∏

n=1

N (xn|f(zn), σ2) (2)

and the GP prior over f = (f(x1), · · · , f(xN ))T is P (f |θ) = N (f |0,KZ,Z) with
the covariance/kernel matrix over the latent variables KZ,Z and the parameters
of kernel θ. With Bayesian theory, marginalizing the mapping function f leads
to the marginal likelihood as follows

P (X|Z, θ) = N (X|0,KZ,Z + σ2I) (3)

Furthermore, the posterior distribution of the latent variables Z can be obtained
by

P (Z|X, θ) ∝ P (X|Z, θ)P (Z) (4)

where P (Z) is a prior like the spherical Gaussian prior. Finally, the latent vari-
ables Z and the hyperparameters θ can be learnt by maximizing the log-posterior
L = log P (Z|X, θ) with gradients based optimization methods. However, as there
is not mapping from the observation space to the latent space, it becomes dif-
ficult to project a new testing observation to latent space. Thus the back con-
strain mapping typically modelled by linear function or kernel regression are
introduced, resulting into BC-GPLVM [13].

To further extend the unsupervised GPLVM to supervised settings, discrim-
inative priors instead of the simple spherical Gaussian prior P (Z) can be added,
giving rise to the discriminative GPLVMs [4,22]. Another line is the supervised
extensions based on shared GPLVM such as Supervised GPLVM (SGPLVM) [6].
As can be seen from the graphical representation in Fig. 1(a) the mapping from
latent variables Z to high-dimensional inputs X and the transformation from
latent variables Z to output labels Y are modelled by GPLVM, resulting into
the posterior distribution of the latent variables Z by

P (Z|X,Y ) ∝ P (X|Z)P (Y |Z)P (Z) (5)

Based on the idea of shared GPLVM, Discriminative Shared GPLVM (DS-
GPLVM) extends shared GPLVM to multiview data with the discriminative
graph Laplacian prior. Shared Autoencoder Gaussian Process (SAGP) adds back
constraint mapping also modelled by nonparametric GPR to shared GPLVM,
leading to the general extension of multiview Auto-Encoder.
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2.2 DKL

DKL [24] combines the deep neural network and kernel learning by introducing
the deep kernel as

k(xi,xj |θ) → k(dnn(xi,W ), dnn(xj ,W )|θ,W ) (6)

where dnn(x,W ) is a nonlinear mapping represented by a deep model. To add
flexibility, the Spectral Mixture (SM) [25] kernel instead of typical RBF is pro-
posed. Based on the aforementioned GPR formulation, the DKL can be simi-
larly derived. Thus, DKL can be seen as a GP with the deep kernel which firstly
transforms high-dimensional inputs X to hierarchical feature representation. The
framework of DKL is also shown in Fig. 1(b) where the function g indicates GP.

With the recently proposed local kernel interpolation, inducing points and
structure exploiting algebra techniques, DKL can scale linearly with the number
of training data [25], and it has shown better performance than the stand-alone
deep learning architectures and GP on many datasets [25].

From the prospective of GPLVM, DKL can be also regarded as the BC-
GPLVM with back constraint mapping represented by a deep architecture with
the difference that only high-dimensional observations X are available in BC-
GPLVM while there are observations X and output labels Y in DKL. Through-
out this paper, we call this kind of unsupervised model as BC-GPLVM with
Deep Kernel (BC-GPLVM-DK) with the graphical representation in Fig. 1(c).

3 The Proposed Model

In this section, we introduce the proposed Shared Deep Kernel Learning (SDKL)
for supervised dimensionality reduction along with the model inference and opti-
mization.

Fig. 1. Graphical representations of (a) Supervised GPLVM (SGPLVM); (b) Deep
Kernel Learning (DKL); (c) BC-GPLVM with Deep Kernel (BC-GPLVM-DK); (d) the
proposed Shared Deep Kernel Learning (SDKL).

The graphical representation of SDKL is shown in Fig. 1(d) where the white
nodes mean unknown variables/functions, the grey nodes indicate the observed



Shared Deep Kernel Learning for Dimensionality Reduction 303

variables and the nodes f and g are GPs. Given a dataset similarly represented by
D = {X,Y } where X = [x1, ...,xN ]T and Y = [y1, ...,yN ]T are high-dimensional
observations in RD space, and the corresponding output labels with each
yn ∈ RM . We aim to discover the latent variables Z = {z1,z2, · · · ,zN} ⊂ Rp

corresponding to the observations. Throughout this paper, we focus on the clas-
sification tasks with discrete labels encoded by the “one-hot” scheme because it
is easy for data visualization.

Firstly, we assume that the mapping from the latent variables to the high-
dimensional observations and the projection from the latent variables to the
output labels are modelled by shared GPLVM, which can be formulated by

P (X|Z, θx) = N (X|0,KZ,Z) =
1

(2π)DN/2|K|1/2 exp

{
−1

2
tr(K−1XXT )

}
(7)

P (Y |Z, θy) = N (Y |0,KZ,Z) =
1

(2π)MN/2|K|1/2 exp

{
−1

2
tr(K−1Y Y T )

}

where the shared kernel matrices K are based on the same latent variables Z
with different hyperparameters θx, θy.

Furthermore, by utilizing the notation of deep kernel in DKL in Eq. (6), which
explicitly transforms the high-dimensional observation xn to hierarchical fea-
tures by deep neural networks with the last layer to be the corresponding latent
variable zn = dnn(xn,W ), followed by the aforementioned shared GPLVM.

Based on the conditional independence property, the joint distribution can
be written by

P (X,Y,Z|θ,W ) = P (X|Z, θx,W )P (Y |Z, θy,W )P (Z) (8)

with the hyperparameter θ = {θx, θy} and the parameters of deep structure in
deep kernel W .

By minimizing the negative log joint distribution P (X,Y,Z|θ,W ) with
respect to the hyperparameter θ and the parameters of deep kernel W , the
objective function can be written by

L = − log P (X,Y,Z|θ,W ) (9)

=
1
2

log|K| +
1
2
tr(K−1XXT ) +

1
2

log|K| +
1
2
tr(K−1Y Y T ) − log P (Z)

where the kernel matrices K in the first two items and the second two items are
based on the same latent variables with different hyperparameters θx, θy, thus
they could not be combined together.

In this paper, the scaled conjugate gradient (SCG) is employed to optimized

the model, and we notice that the derivative of
∂L

∂K
can be directly computed

by (for the sake of simplification, we ignore the prior P (Z))

∂L

∂K
= K−1XXTK−1 − K−1 + K−1Y Y TK−1 − K−1 (10)
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Then according to the chain rule, the derivative of
∂L

∂W
can be evaluated by

∂L

∂W
=

∂L

∂K

∂K

∂Z

∂Z

∂W
(11)

where the computation of the derivative of the kernel matrix K with respect to
the latent variable Z depends on the specific kernel function, and the derivative
of latent variables Z with respect to the parameters of deep kernel W can be
easily evaluated by the chain rule again.

Similarly the derivative of
∂L

∂θ
can be written by

∂L

∂θ
=

∂L

∂K

∂K

∂θ
(12)

Once the two derivatives are calculated, the SDKL can be trained by using the
SCG, and the testing step is simple. Given any testing sample x∗, the correspond-
ing latent variable z∗ can be evaluated by the deep neural network dnn(x∗,W )
embedded in the deep kernel, followed by a simple KNN classifier to make clas-
sification in the learnt latent space to objectively evaluate the supervised DR
method.

For the sake of convenience, we simply use RBF kernel in the paper, and
it would be easy to adopt the Spectral Mixture (SM) kernel and the Kernel
Interpolation for Scalable Structured Gaussian Processes (KISS-GP) introduced
in [24] to add model flexibility and reduce model complexity from O(N3) to
O(N). Compared to original DKL, we have to highlight that the proposed SDKL
does not increase the complexity, and could also scale linearly like DKL.

4 Experiments

In order to verify the novel model, we compare the proposed SDKL to original
DKL, SGPLVM based on shared GPLVM, the stand-alone deep learning method
Stacked AE (SAE), and unsupervised BC-GPLVM with the back constrain rep-
resented by deep neural network (BC-GPLVM-DK) in five datasets in terms of
data visualization and classification accuracy. It can be seen from the experi-
ments that the proposed SDKL outperforms other four models especially when
the number of training data is small.

For the fair comparison, we run 200 iterations with RBF kernel function for
all the models. The number of K in KNN is 5. All deep structure are pretrained
by SAE, and the network architecture of the deep structure in deep kernel is
chosen from the architecture D-(2 × D-N1-N2-N3)-2 with the maximum and
minimum numbers of layers being 6 and 3 respectively where the number of
hidden units w.r.t. N1, N2, N3 ranges from 10 to 100. Only the latent variables
corresponding to the testing data are visualized. The first dataset is the oil flow
data [20] consisting of 1000 samples with the dimensionality of 12. There are 3
classes associated with the data. For the five models, we use 150 samples (50
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Fig. 2. Oil flow data visualized by BC-GPLVM-DK, SGPLVM, SAE, DKL and the
proposed SDKL.
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Fig. 3. Swiss roll data visualized by BC-GPLVM-DK, SGPLVM, SAE, DKL and the
proposed SDKL.

points randomly selected from each class) to learn the corresponding 2D latent
representation for data visualization. The data visualization for the testing data
(850) is displayed in Fig. 2 with the best network architectures being 12-50-30-2,
12-50-30-2, 12-30-50-20-2, and 12-50-30-2 for BC-GPLVM-DK, SAE, DKL and
SDKL, respectively.

The second dataset is the swiss roll data typically used to validate the DR
algorithms. According to the introduction for this dataset1, we similarly generate
2000 samples in 3D space where there are 500 points in each of the four classes.
400 samples are randomly selected to be the training data, and the remaining
1600 testing data are reduced to 2D space by the five methods with illustration
in Fig. 3, where the best network architectures are 3-50-20-2, 3-50-10-2, 3-70-
30-2, and 3-50-30-2 for BC-GPLVM-DK, SAE, DKL and SDKL, respectively.
The single speaker vowel dataset [1] is also used to illustrate the performance of
SDKL which consists of 9 classes and the dimensionality of features is 24. 900
points (100 points randomly selected from each class) are picked from 2700 data.
Figure 4 shows the learnt latent variables in 2D space w.r.t. the remaining 1800
testing data with the best network architectures being 24-48-70-40-2, 24-48-30-
2, 24-48-50-20-10-2, and 24-48-50-30-10-2 for BC-GPLVM-DK, SAE, DKL and
SDKL, respectively.

As can been seen from Figs. 1, 2, 3 and 4 that the points in the latent space
learnt by the proposed SDKL which originally belong to the same class in high-
dimensional observation space could stay more closer than BC-GPLVM-DK,

1 http://people.cs.uchicago.edu/∼dinoj/manifold/swissroll.html.

http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
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Fig. 4. Vowel data visualized by BC-GPLVM-DK, SGPLVM, SAE, DKL and the pro-
posed SDKL.

SGPLVM, SAE and DKL. It also means that the novel model can handle the
additional labels more effectively.

The final datasets are the iris and wine data from UCI Machine Learning
Data Repository [16]. The iris data consist of three classes of 50 instances each,
and the wine data contains three classes with 178 instances in R13. We use the
two small data to objectively testify the performance of the proposed SDKL
when few training data are available. In this experiments, only 10 samples are
randomly picked from each class meaning that the total number of training data
for the two data is 30, and the remaining data become the testing samples.
We compare the five models in terms of the best classification accuracy based on
KNN in the learnt 2D latent space along with the corresponding optimal network
architecture. It can be seen from Table 1 that the proposed SDKL outperforms
other four algorithms, which could prove that the new model is efficient and
particularly adaptive for the tasks with small numbers of training data because
SDKL can fully make use of the high-dimensional observations and output labels.

Table 1. The classification accuracy comparison of the five methods in iris and wine
datasets with the best deep architectures and best accuracy reported in experiments.

Models Architecture (Iris) Acc (Iris) Architecture (Wine) Acc (Wine)

BC-GPLVM-DK 4-8-50-30-2 88.33% 13-26-50-20-2 87.16%

SGPLVM 4-2 90.00% 13-2 85.90%

SAE 4-8-30-50-10-2 97.50% 13-26-50-2 93.92%

DKL 4-8-50-2 97.50% 13-26-50-20-2 86.49%

SDKL 4-8-30-2 98.33% 13-26-50-30-2 95.27%

5 Conclusion

In this paper, we introduce the Shared Deep Kernel Learning (SDKL) for dimen-
sionality reduction by combining DKL with shared GPLVM. The new method
can learn hierarchical features by the shared deep kernel structure in nonpara-
metric manner which brings more flexibility, and also makes use of the labels
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information more effectively. The new model could easily be applied to the typ-
ical classification and regression tasks.

For the future works, firstly it can be extended to multiview tasks motivated
by the recently proposed SAGP and the semisupervised learning framework by
making use of the unlabeled data. Also, extra discriminative priors over the latent
variables and the parameters of the deep structure in SDKL can be added to
further regularize the model. We believe the combination of deep neural networks
and kernel methods could be promising.
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Abstract. Single shot multi-box object detectors [13] have been recently
shown to achieve state-of-the-art performance on object detection tasks.
We extend the single shot detection (SSD) framework in [13] and propose
a generic architecture using a deep convolution-deconvolution network.
Our architecture does not rely on any pretrained network, and can be
pretrained in an unsupervised manner for a given image dataset. Fur-
thermore, we propose a novel approach to combine feature maps from
both convolution and deconvolution layers to predict bounding boxes
and labels with improved accuracy. Our framework, Conv-Deconv SSD
(CDSSD), with its two key contributions – unsupervised pretraining
and multi-layer confluence of convolution-deconvolution feature maps –
results in state-of-the-art performance while utilizing significantly less
number of bounding boxes and improved identification of small objects.
On 300×300 image inputs, we achieve 80.7% mAP on VOC07 and 78.1%
mAP on VOC07+12 (1.7% to 2.8% improvement over StairNet [21],
DSSD [5], SSD [13]). CDSSD achieves 30.2% mAP on COCO performing
at-par with R-FCN [3] and faster-R-FCN [18], while working on smaller
size input images. Furthermore, CDSSD matches SSD performance while
utilizing 82% of data, and reduces the prediction time per image by 10%.

Keywords: Single shot detection · Unsupervised learning
Feature map confluence

1 Introduction

Image object detection involves identifying bounding boxes encapsulating
objects and classifying each bounding box to recognize the underlying object
category. Recently there has been mounting interest in the research commu-
nity to detect multiple objects in an image using Single Shot Detection tech-
niques [13,16]. These techniques effectively combine region proposal and classifi-
cation into a single step by foregoing the candidate box proposal (or region pro-
posal) module employed by several two-step detection techniques [1,6,7,11,18].
Not only this results in much faster object detection but it also improves

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 309–321, 2018.
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Fig. 1. Detection output comparison of (a) SSD [13], (b) Stairnet [21], and (c) CDSSD.
CDSSD results in superior performance in detecting small as well as large objects

accuracy [5,13,16,21]. One of the two prominent works, You Only Look Once
(YOLO) [16], considers the global feature map of an image and utilizes a fully-
connected layer to output object detections with a fixed set of regions. The other
prominent work, Single Shot MultiBox Detector (SSD, henceforth) [13], considers
a set of layers (or feature maps) and a set of boxes at various scales, and employs
convolutional filters to predict objects inside each box. Owing to its design choice
to consider multiple feature maps from different layers in a deep network (multi-
scale representation), SSD performs significantly better than YOLO (Fig. 1).

While SSD [13] has achieved state-of-the-art results, it has three fundamen-
tal drawbacks. (a) When applying default bounding boxes, SSD considers each
feature map in isolation (see Fig. 2). Thus it can not exploit the semantic infor-
mation of later layers for better object detection on initial layers. Consequently,
SSD does not perform well on smaller size object detection which is attempted
by initial layers. (b) SSD architecture relies on features maps pretrained on
the classical Imagenet dataset [9,20] without attempting to learn robust feature
maps from the vast collection of unlabeled datasets. (c) SSD needs to evaluate
several thousands of bounding boxes to detect only a few objects in an image.

Several follow-up works attempt to eliminate limitation (a) by combining
feature maps at different layers of convolution networks, or inserting addi-
tional context by extending the base convolution block with a deconvolution
block [1,2,5,10,11,13,16,17,21]. However, none of the prior approaches explore
unsupervised pretraining to learn robust features; but use either VGG-16 [20]
or ResNet-101 [9] to bootstrap the object detection training. [5,11,13,16,17,21]
partially exhibit some scope to improve the performance on objects of different
sizes and scales by combining information from different feature maps. However,
they rely on features computed only from convolution networks, or result in
considerably slower speed detection [5], or are not end-to-end trainable. In con-
trast to this prior work, we draw inspirations from convolution-deconvolution
techniques used in semantic segmentation tasks [15,22], and base our design on
convolution auto-encoders. Specifically, our contributions are as follows:

– We design an end-to-end trainable convolution-deconvolution based single
shot detection framework to detect multiple objects in an image. This frame-
work enables unsupervised pretraining of the underlying network.
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– We design a refined SSD technique that carefully combines feature maps from
both convolution and deconvolution blocks. Fusing of generic features from
initial layers close to the input with semantically rich features of later layers
close to the output detection from both convolution and deconvolution blocks
helps us significantly reduce the required number of default bounding boxes.

– On input image size of 300 × 300, we achieve state-of-the-art accuracy on
several object detection tasks with 80.7% mAP on VOC07, 78.1% mAP
on VOC07+12 (1.7% improvement over StairNet [5,21], 2.8% improvement
over [13]), and 30.2% mAP on COCO. We improve detection performance of
both small as well as large objects, as well as visually impoverished objects
while reducing the prediction time per image by 10%.

2 Limitations of Related Work

As compared to SSD, some recent approaches [6,7,18] first learn a separate
bounding box (or region) proposal network, followed by learning a separate clas-
sification network on top of the proposal network. However, such two-stage object
detectors suffer from high memory usage and poor inference time. In compar-
ison, SSD networks [13,16,19] have been shown to perform better and faster.
Furthermore, most of the object detection techniques, including Overfeat [19],
SPPnet [8], Fast R-CNN [6], Faster R-CNN [18], and YOLO [16], utilize only
a single layer (typically the top-most layer) of a convolution network to detect
objects. This approach does not exploit different feature sets learned by differ-
ent feature maps at different scales [5,13,21], and therefore is severely limited
in identifying objects of different sizes and scales. In comparision, the state-of-
the-art SSD networks [13,17] utilize feature maps from different layers in order
to focus on objects that appear in certain sizes. However, they operate on each
feature map independently without combining them in a meaningful manner.
Hence, these SSD networks [13,17] do not particularly perform well towards
identification of smaller size objects [1,5,11,21].

In order to consider feature maps from different layers in a combined fash-
ion, [1] concatenates features of different layers before applying box proposals
to detect objects. Taking a step further, [2] applies deconvolution on multiple
layers of the underlying convolution network to increase feature map resolution.
However, it results in significant memory and prediction time requirement. [11]
too leverages the pyramidal shape of the convolution network and attempt to
utilize semantics at different scales of feature maps by inserting nearest neigh-
bor upsampling. In another work, instead of focusing only on the convolution
block, [5] adds a deconvolution context layer to address the problem of shrink-
ing resolution of feature maps in the convolution block. [21] further exploit the
deconvolution context and design a top-down feature combining module that
progressively encodes semantic information with low level features.

Our approach is partially inspired by [5,21] in terms of adding deconvolution
context and utilizing feature maps at different layers in a network. However, as
shown in Fig. 2 neither [5,21] nor any of the prior approaches explore unsuper-
vised learning to improve SSD [13] performance. Moreover, none of the prior
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Fig. 2. Difference in SSD architectures in using deconvolution and feature map conflu-
ence (a) SSD [13], (b) DSSD [5], (c) Stairnet [21], (d) CDSSD (this work)

work exploits the difference in features learned by different layers in both convo-
lution and deconvolution blocks. By refreshing SSD with unsupervised learning
and confluence of feature maps from convolution and deconvolution blocks, we
show that our approach results in state-of-the-art performance on benchmark
datasets [4,12].

3 CDSSD Architecture

In this section, we first give a primer on SSD architecture. We then progres-
sively introduce unsupervised learning and feature map confluence in the SSD
architecture. Finally we showcase a method to reduce the requirement of default
bounding boxes, and then explain our methodology of training and testing.

3.1 SSD

The SSD network is a convolutional architecture that utilizes different layers
to predict presence of multiple objects in an image. To recognize objects at
different scales, SSD utilizes predictions on different feature maps, each from a
different layer, of a single network. These feature maps are processed by a fixed-
size collection of bounding boxes customized for each layer. For feature map f of
size m×n with p channels, K default-sized bounding boxes are applied on each
of m × n cells. Subsequently, C filters of size 3 × 3 × p are applied for each cell
and for a given bounding box to produce individual scores to predict each of C
classes, and 4 additional filters are applied to produce offsets (center co-ordinate,
height, width) to position the box on the underlying cell in order to encapsulate
the object (as shown in Fig. 3(c)). Note that, for a given feature map f , the
default boxes are scaled with a scaling factor fscale with respect m and n and
thus, they are customized to have different aspect ratios. Hence, bounding boxes
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Fig. 3. CDSSD combines information from convolution and deconvolution feature maps

on initial stage feature maps cover a smaller receptive field to identify objects at
a smaller scale, whereas bounding boxes on later stage feature maps cover larger
receptive fields to identify objects with larger scale. By utilizing predictions for
all the default boxes with different scales and aspect ratios from all locations of
many feature maps, SSD attempts a diverse set of predictions, covering various
input object sizes and shapes.

3.2 Unsupervised Pretraining

Our first fundamental improvement to SSD is to facilitate unsupervised training
of the underlying network architecture. As we show in Sect. 4, this results in
significant performance improvement. We use ResNet 101 architecture [9] and
construct a convolution-deconvolution based auto-encoder (shown in Fig. 3(a)).
Previously [5] have shown that ResNet 101 architecture results in more than
1.4% mAP gain in SSD as compared to VGG16 [20]. For the deconvolution
block, we use learned upsampling and learned deconvolution, instead of bi-linear
upsampling. The deconvolution block produces an image of the same dimen-
sion as input. We use an input image of 300 × 300 × 3, with 7 meta-layers of
convolution and pooling and 7 meta-layers of deconvolution with learned upsam-
pling. Given an image dataset, we first pretrain the architecture before applying
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supervised object detection.1 Since our architecture is based on fully convolution
networks, CDSSD can in fact process any arbitrary sized images.

3.3 Combining Feature Maps

[14,23] observe that the initial layers of a deep network lack strong semantic
information and respond to only high-level features of an image. Furthermore,
the improvement in acquiring semantic information across consecutive feature
maps is only marginal, especially in initial layers of a network. Based on these
observations, our second fundamental improvement to SSD is to fuse generic and
semantic features to enrich feature maps. Unlike prior work, we combine features
from different layers of both convolution and deconvolution network (Fig. 3(a)).

To augment feature maps from layers at different levels, firstly, we combine
layer l with layer l + level stride. Based on observations in [14,23], we do not
fuse consecutive layers, but set level stride as 2 to receive sufficient semantic
information gain. However, since different layers have different sizes as well as
different scales of bounding box, we apply a learnable upscaling operation on
layer l + level stride (Fig. 3(b)) to combine them effectively. The scaling oper-
ation ensures that the resulting feature map has the same dimension as layer l
while it also accounts for semantic information contained in layer l+level stride.
For example, as shown in Fig. 3(b), to scale 10 × 10 feature map, we first apply
4 × 4 × 512 deconvolution operation and then apply a 3 × 3 × 512 convolution
operation to reduce the feature map size to 38 × 38. This is followed by a batch
normalization layer to receive the final 38×38 feature map. Note that, we apply
similar operation on both convolution and deconvolution blocks to process dif-
ferent layers. Addition of context from deconvolution block only improves the
performance as we show in Sect. 4, without affecting the detection speed.

Secondly, for a given level of a meta-layer, we combine all the four feature
maps; two from the convolution block and two from deconvolution block, as
shown in Fig. 3(a), into a final feature map by taking element-wise learnable
ReLU operation. Based on observations in [5], we further apply 3 × 3 filter on
this feature map to extract another layer of features. Similar to SSD, we then
apply a set of K default-boxes and (C + 4) ×m× n×K filters on the resulting
feature map to predict detection of objects. We apply this set of operations on
meta-layer 3 to meta-layer 5 as shown in Fig. 3(a). Since there are no feature
maps to pair with the last level stride of convolution and initial level strides
of deconvolution feature maps (6th and 7th meta-layer), we combine them in
element-wise learnable ReLU and process the resulting feature map. Since 6th
and 7th meta-layers have higher reception field and contain richer semantic infor-
mation, they are quite capable of detecting bigger size and scale objects [5].

1 Our network is not symmetric. During deconvolution, we simply apply learned
upsampling and learned deconvolution without residual blocks.
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3.4 Box Pooling: Reducing the Number of Default Boxes

In the original SSD implementation, the authors apply default bounding boxes
to every cell of m × n feature map with p channels. We consider a box-pooling
approach where we pick the dominant cell in l × l window, with a stride of
l on m × n feature map, and apply a set of default boxes on the dominant
cell. This reduces the number default boxes by l2 per feature map. This design
choice is governed by two phenomena observed during our ablation study: (1)
Unsupervised pre-training helps in learning significantly better feature maps (2)
Given that we combine feature maps from different layers of both convolution
and deconvolution blocks, there is no need to exhaustively search for objects for
every cell of every feature map. We show in Sect. 4 that box-pooling does not
affect precision and recall of object detection.

Similar to SSD [13], we tile the default boxes of different scales on different
features maps so that specific feature maps learn to be responsive to particular
scales of the objects. To compute different aspect ratios for each cell, we take a
statistical approach and compute a cumulative distribution of aspect ratios of
the ground truth boxes in a given dataset. We then divide the distribution into B
bins and pick the average value of a bin as one of the aspect ratio, thus resulting
in B aspect ratios. For each bi ∈ B, for a feature map with size m× n and scale
of fscale, we then set height to be m× bi ×fscale and width to be n× bi ×fscale.
With optimized aspect ratios that fit the underlying dataset and different scales
for different layers, we apply appropriate default boxes at box-pooled locations
in each feature map, covering different object sizes and shapes.

4 Results

Our experiments are governed to answer the following key question: can we
achieve state-of-the-art results on object detection benchmarks by employing
unsupervised learning and confluence of feature maps from convolution and
deconvolution blocks? Towards answering this question, we compare our approach
with prior work on two benchmark datasets: PASCAL VOC and MS COCO. We
compare our approach with the original SSD [13] that employs only convolution
block, DSSD [5] that uses deconvolution blocks as additional context for con-
volution blocks, and Stairnet [21] that progressively merges feature maps close
to traditional classification layers with feature maps close to input layers. SSD,
DSSD and Stairnet do not employ unsupervised learning and do not consider
confluence contextual and semantic features from convolution and deconvolution
blocks. We also do an extensive ablation study to quantify improvement by each
of the modules that we have contributed to extend SSD framework. We develop
CDSSD as a Tensorflow module.

4.1 Training

The configuration of our network architecture is shown in Fig. 3. We keep the
dropout layers during unsupervised training and remove them while training
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for object detection. We train our models on Azure GPU instances that have
NVIDIA K80 GPUs with 12 GB of memory. We use batch size of 16, momentum
as 0.9 and weight decay 0.0005. Similar to SSD [13], we match a default box to
target ground truth boxes, if Jaccard overlap is larger than a threshold (e.g. 0.5).
We compute the target ground truth box for each layer of the network by scaling
it with respect to the feature map and original image sizes. We minimize the
joint localization loss (i.e., smooth L1) and confidence loss (i.e., softmax-cross-
entropy). To avoid the imbalance between the positive and negative training
examples, we sort the negative boxes using the joint loss for each default box
and then pick the top ones to maintain a 2:1 negative to positive ratio. We
found 2:1 ratio leads to faster optimization as compared to the ratio of 3:1 as
mentioned in the original SSD paper.

We further make the model robust to different input object sizes and shapes
by invoking extensive augmentation. Specifically, we sample a patch from a
ground truth box so that the minimum Jaccard overlap with the objects is
0.5, 0.7, or 0.9. Furthermore, we randomly sample a patch between [0.5, 1] of
the original image size, and the aspect ratio is between [1, 2]. Also, we randomly
flip each patch horizontally with probability of 0.5, apply different transforma-
tions such as gaussian blur, emboss, edge prominence, random black-out of 20%
of pixels, and color (hue, saturation, contrast) distortions. We apply 3 × 3 box
pooling for layer 3 and 4, 2 × 2 box pooling for layer 5, and no box pooling for
layer 6 and 7. We apply non-maximum suppression (NMS) to post-process the
predictions to get final detection results.

4.2 PASCAL VOC

When training on VOC07+12 trainval, we train the entire network with learning
rate at 10−3 for 45K batches, and then with learning rate of 10−4 for 60K batches
to execute unsupervised pretraining on the underlying train dataset2. During

Table 1. Comparison of single-shot detection techniques trained on VOC07+12 train-
val and evaluated on VOC2007 test dataset. CDSSD outperforms other state-of-the-art
methods while maintaining high speed of detection.

Method Network mAP Boxes fps lib

YOLOv2 352 [16] DarkNet-19 73.7 98 81 DarkNet

SSD300 [13] VGGNet 77.5 8732 62 Caffe

DSSD321 [5] ResNet-101 78.6 43688 9.5 Caffe

Stairnet [21] VGGNet 78.8 8732 30 PyTorch

CDSSD300 ResNet-101 80.7 1182 51 TF

CDSSD300 (82% data) ResNet-101 77.9 1182 51 TF

2 Due to reduced batch size, the number of batches or iterations are increased as
compared to the original SSD work.
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Table 2. mAP comparison of single-shot detection techniques trained on VOC07 train-
valtest, VOC12 trainval and evaluated on VOC12 test dataset. CDSSD results in state-
of-the-art performance for several object categories.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow

SSD300 [13] 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0

DSSD321 [5] 87.3 83.3 75.4 64.6 46.8 82.7 76.5 92.9 59.5 78.3

StairNet [21] 87.7 83.1 74.6 64.2 51.3 83.6 78.0 92.0 58.9 81.8

CDSSD224 85.2 79.5 71.4 60.1 44.5 79.1 74.8 84.3 57.9 79.2

CDSSD300 87.4 83.9 78.3 69.5 54.7 80.2 76.3 88.7 63.4 79.9

CDSSD300 (82%) 85.8 82.7 75.3 64.5 50.5 80.1 75.2 85.8 60.0 78.4

Method Table Dog Horse mbike Person Plant Sheep Sofa Train Tv

SSD300 [13] 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1

DSSD321 [5] 64.3 91.5 86.6 86.6 82.1 53.3 79.6 75.7 85.2 73.9

StairNet [21] 66.2 89.6 86.0 84.0 82.6 50.9 80.5 71.8 86.2 73.5

CDSSD224 63.8 85.1 84.3 84.3 82.9 52.4 77.2 72.8 83.6 72.8

CDSSD300 69.2 89.3 87.8 85.6 82.3 56.8 76.9 76.2 84.3 77.4

CDSSD300 (82%) 66.4 83.4 82.1 84.7 80.3 53.7 75.8 71.9 80.6 74.5

object detection training, we again fine-tune the entire network with learning
rate of 2×10−3 for 40K iterations, and 60K iterations with learning rate of 10−4.
Results over VOC07 test dataset are shown in Table 1. To evaluate on VOC12
test dataset, as shown in Table 2, we use VOC07 trainvaltest, VOC12 trainval
for training. We train CDSSD model for 65K iterations with 10−3 learning rate
and 2 × 10−4 learning rate for 80k iterations for unsupervised pretraining, and
10−3 and 10−4 learning rate for supervised training for 40K and 65K iterations
respectively.

We see that by adding unsupervised pretraining and confluence of feature
maps, CDSSD consistently outperforms SSD, DSSD, Stairnet by 1% to 5%
points for several object categories. CDSSD especially shows significant improve-
ment for small objects such as bird, tv and bottle. Furthermore, CDSSD also
shows significant improvement for objects such as boat and horse that have def-
inite backgrounds. CDSSD detects majority objects with high confidence with
less localization error and less confusion for similar object categories3. Recall of
CDSSD is 93.5% for “strong” criteria of jaccard of overlap of 0.5, about 10%
better than SSD. Finally, CDSSD achieves high-precision at high-recall range
and outperforms SSD and Stairnet (Table 3).

4.3 Ablation Study

To further quantify the benefits of CDSSD, we do an ablation study to progres-
sively add its features and measure mAP on VOC12 test dataset. To quantify the
performance over different sized objects, we consider objects of three different

3 Details omitted due to lack of space.
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Table 3. VOC 2012 test dataset to observe mAP at recall greater than 0.7

Method Data Recall

0.5 0.7 0.9 mAP@70%

SSD300 07+12 91.9 79.7 34.4 44.9

Stairnet 07+12 94.3 83.5 38.8 48.1

CDSSD 07+12 96.1 87.0 44.2 52.6

Table 4. Effects of progressively adding confluence of feature maps on convolution
block, deconvolution block, unsupervised learning, and box pooling. Box pooling does
not hamper the performance while drastically reducing the box requirement.

Conv-feat

confluence

Deconv-feat

confluence

Box

pooling

Unsup

pretraining

Total

boxes

Overall

mAP

Small-O

mAP

Medium-O

mAP

Large-O

mAP

No No No No 17464 74.5 42.6 76.9 80.6

No No Yes No 1182 70.4 35.1 71.5 75.3

Yes No No No 17464 74.9 46.5 77.1 80.9

No Yes No No 17464 75.4 47.9 77.8 81.8

No Yes Yes No 1182 74.5 45.2 76.6 78.9

Yes Yes No No 8752 76.2 56.5 80.2 83.7

Yes Yes No Yes 8752 78.3 59.0 81.6 85.0

Yes Yes Yes Yes 1182 78.1 57.4 81.2 84.7

sizes. Following the methodology in [21], we order the ground truth bounding
boxes on test set for each class by area. We further divide the boxes into three
part: small: less than 25%, medium: between 25% to 75%, and large: above 75%
of image size. Furthermore, when evaluating objects of each size, we ignore the
ground truth labels for other sizes. As shown in Table 4, CDSSD shows signif-
icant improvement using confluence of feature maps, on individual convolution
and deconvolution blocks as well as combination of convolution and deconvolu-
tion feature maps. CDSSD especially shows considerable improvement on small
size objects; it performs about 9% to 14% mAP better than prior work.

To quantify the performance of unsupervised pretraining when not pre-
trained on the underlying dataset, we train our convolution and deconvolution
network on imagenet dataset to initialize the weights of the network (similar to
SSD [13], DSSD [5], Stairnet [21]). From the table, we also observe that unsuper-
vised learning gives a 2.1% jump in overall mAP. Furthermore, after applying box
pooling, i.e, after reducing the number of boxes from 8732 to 1182, we observe
that CDSSD sees only marginal reduction in mAP. Note that, box pooling is not
effective without unsupervised learning and confluence of feature maps as shown
in Table 4. Thus, combining unsupervised learning with feature map confluence
and box pooling, CDSSD results in state-of-the-art results on object detection
datasets while reducing the number of default bounding boxes.

The original version of SSD [13] uses 8732 boxes, DSSD uses substantially
more (17080 to 43688 boxes), whereas CDSSD uses only 1183 boxes. As a result,
SSD takes 46 FPS and DSSD takes 9.5 FPS where CDSSD clocks 51 FPS on
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Table 5. Evaluation of CDSSD on MSCOCO dataset

Method Avg. precision, IoU
0.5:0.95/0.5/0.75

Avg. precision, area
S/M/L

Avg. recall, #Dets
1/10/100

Avg. recall, area
S/M/L

SSD300 25.1/43.1/25.8 6.6/25.9/41.4 23.7/35.1/37.2 11.2/40.4/58.4

DSSD321 28.0/46.1/29.2 7.4/28.1/47.6 25.5/37.1/39.4 12.7/42.0/62.6

CDSSD300 29.2/48.2/29.9 8.8/31.2/49.3 26.1/39.2/42.3 13.6/44.3/63.7

Titan X GPU with a batch size of 1. While Residual-101 network is slower than
VGGNet used in SSD, the reduction in default boxes not only decreases the pre-
diction time but also time spent in non maximal suppression. Furthermore, the
extra deconvolution layers do not incur an overhead since the confluence opera-
tion is light weight, and CDSSD operates on the same number of feature maps as
the original SSD. Thus, CDSSD achieves improved accuracy while maintaining
one of the fastest detection performance.

4.4 MSCOCO

To evaluate CDSSD on MSCOCO dataset, we first optimize the sizes of default
bounding boxes as per the dataset (as explained in Sect. 3.4) to train and test
prediction of classes and offsets. We train the network in an unsupervised manner
for 260K iterations with learning rate of 10−3. We use the trainval35k dataset
and train the network in a supervised fashion for 210K iterations with learning
rate of 10−3 and 120K iterations with learning rate of 2 × 10−4. We show the
results on test-dev2015. As shown in Table 5, CDSSD performs consistently bet-
ter than SSD and DSSD even at higher Jaccard overlap threshold (0.75), and
for different sized objects. Improvement in detection of large objects shows that
CDSSD is able to learn better and robust features. These results corroborate the

Fig. 4. CDSSD out-performs in capturing objects of different size and scale in com-
parison to SSD [13]
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benefits of CDSSD on generic object detection datasets towards a better single-
shot detection framework. Figure 4 shows object detections on COCO test set
images. Our model shows improvements on several fronts such as small objects
like donuts; dense objects e.g. airplanes; objects with distinct context such as
clocks; and objects that have specific relationships with the background.

5 Conclusion

We design an end-to-end framework using convolution-deconvolution deep net-
works to improve the state-of-the-art of single shot object detection techniques.
Using a combination of unsupervised learning and confluence of feature maps
with different receptive fields, we demonstrate substantial improvement in mAP
for different objects in PASCAL VOC and MS COCO datasets while reducing
the bounding box requirement by 8 times, thus improving inference time by
10%. As a future work, our approach can be used to improve region proposal
based detection techniques as well. We also believe that our work can inspire
several extensions to find more effective and efficient ways to combine feature
maps of convolution and deconvolution blocks to improve image classification,
object detection and semantic segmentation approaches.
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Abstract. Most real-world sequence data for binary classification tasks
appear to possess unilateral common factor. That is, samples from one
of the classes occur because of common underlying causes while those
from the other class may not. We are interested in resolving these tasks
using convolutional neural networks (CNN). However, due to both the
technical specification and the nature of the data, learning a classifier is
generally associated with two problems: (1) defining a segmentation win-
dow size to sub-sequence for sufficient data augmentation and avoiding
serious multiple-instance learning issue is non-trivial; (2) samples from
one of the classes have common underlying causes and thus present sim-
ilar features, while those from the other class can have various latent
characteristics which can distract CNN in the learning process. We mit-
igate the first problem by introducing a random variable on sample scal-
ing parameters, whose distribution’s parameters are jointly learnt with
CNN and leads to what we call adaptive multi-scale sampling (AMS).
To address the second problem, we propose activation pattern regular-
ization (APR) on only samples with the common causes such that CNN
focuses on learning representations pertaining to the common factor. We
demonstrate the effectiveness of both proposals in extensive experiments
on real-world datasets.

Keywords: Supervised learning · Deep learning · Sequence mining
Adaptive multi-scale sampling · Activation pattern regularization

1 Introduction

Binary sequence classification has attracted a remarkable amount of interest in
both academic and industry communities, particularly in the fields of failure
prediction [1–3] and anomaly detection [4–6]. We observe that for a majority
of these applications, the datasets appear to possess unilateral common factor.
That is, samples from one of the classes occur because of common underlying
causes while those from the other class may not. Take the task of predicting
seizure from electroencephalograph (EEG) data for example, EEG waves can be
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 322–334, 2018.
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different when the subject is undergoing different activities [7], but when the
subject is about to suffer from epilepsy they are empirically shown to reflect the
underlying pathological features. (For brievity, we call the class having common
factor positive and the other class negative in the rest of the paper.) On the other
hand, encouraged by the recent advance of deep learning [8], researchers have
successfully demonstrated its superiority in sequence classifications as well [9–
13]. In this paper, we are interested in tasks of binary classification of sequences
possessing unilateral common factor using CNN.

Due to both the technical specification and the nature of the data, learn-
ing CNN for these tasks is generally associated with two problems. First,
implementation design often requires chopping an original sequence into sub-
sequences which is also an important step for data augmentation when training
a deep learning model. An appropriate window size for segmentation can provide
the learning process with sufficient amount of training data and avoid serious
multiple-instance learning issues wherein a great portion of sub-sequences from
the original sequence does not actually carry representative features of the cor-
responding class. Defining such a window size with sufficient high-quality data
augmentation is non-trivial without domain knowledge. Secondly, while samples
from the positive class present similar features due to the common underlying
causes, those from the negative class can have various latent characteristics and
may prevent CNN from learning discriminative representations. To address the
first problem, we define a random variable on a set of sample scaling parameters.
Following the random variable’s distribution, we sample sub-sequences of differ-
ent lengths from the original series and scale them according to the sampled
scaling parameter to a common length. We fit the CNN to these scaled sub-
sequences, at the end of every k iterations we update the scaling parameters’
distribution’s parameters and thus it’s trained jointly with the CNN. We show
that as the training progresses, the distribution we sample from converges and
is going to peak on a few scales that are optimal for the task. We call this pro-
cess adaptive multi-scale sampling (AMS) and we give an explanation of why it
works from the perspective of reinforcement learning (RL). With the knowledge
of unilateral common factor, we mitigate the second problem using activation
pattern regularization (APR) which acts as an extra term to the objective func-
tion that regularizes the activation patterns of only samples from the positive
class. (For example, in the previous example of predicting seizure from EEG
data, we apply APR on samples collected in the onset of epilepsy.) Concretely
speaking, when training the CNN we construct in each mini-batch a Gramian
matrix for each positive sample that represents its activation pattern and we
minimize the variances of the matrices’ entries. To demonstrate the advantage
of our proposals, we conducted extensive experiments on real-world datasets.

Our main contribution in this paper is the proposal of the deep learning
scheme with a combination of AMS and APR. To the best of our knowledge, we
are the first to give tentative solutions to the aforementioned two problems in
the context of training a CNN model for binary sequence classification and have
demonstrated their effectiveness on real-world datasets. The rest of this paper is
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organized as follows. We briefly introduce related literatures in Sect. 2, then give
description of AMS and APR in Sect. 3. Experiments to prove the effectiveness
of our proposals are introduced in Sect. 4 and we conclude our work in Sect. 5.

2 Related Work

A plenty of literatures ranging from heuristic methods to solutions utilizing
probabilistic models on the topic of sequence classification have been published
[14]. Encouraged by the huge success of deep learning applications recently, some
researchers have demonstrated the effectiveness of applying deep learning models
to sequence classifications as well. For instance, some approaches encode raw time
series inputs into images first, and then fit CNN with 2D convolutional filters
to the images, thus reducing the problem entirely to image classification and
all relevant tools and parameter tuning techniques can be exploited [9,10]. In
another flavour, [11,12] chopped the target time series input into equal length
segments and convolutions are then performed on these transformed data. In
these cases, 1D convolutional filters shared across data channels are applied
along the time dimension and a fusion mechanism such as probability voting
is adopted to determine the label of the original time series. To get rid of the
uniform input length constraint, [13] adopted a sequence-to-sequence model that
is common in natural language tasks, wherein the authors squash the original
input sequences of various lengths into common length feature sequences, these
feature sequences are then fed into the trailing fully-connected layers. To help
learning the feature sequences, they also introduced the attention mechanism
that helps the model to extract discriminative features by focusing on the most
relevant part of the original sequences during feature generation.

3 Our Proposals

3.1 Network Architecture and Notations

The network we use in our experiments is of the form input → 3Conv → 2FC →
output, where the preceding numbers indicate number of layers. All layers except
the output have ReLU activations. It is noteworthy that we purposefully designed
the network to be simple and we did not tune its architecture in our experiments
because we want to make sure all the performance advantages are from our pro-
posals, though advanced setups such as batch normalization and skip connections
are theoretically compatible.

Table 1 summarizes the notations we use frequently in this paper. The objec-
tive function that we minimize is defined as follow:

l(X,y; θ, φ) = E[fθ(X,y) + λgθ(X) | φ] (1)

where fθ(X,y) is the binary cross-entropy loss and gθ(X) is the term from
APR, both of which are parameterized by the CNN’s parameters θ. λ is a hyper-
parameter that determines how much weight we should put on APR. The expec-
tation is taken over the training dataset that depends on the parameter φ from
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Table 1. Notations

Notation Description

N Mini-batch size

l CNN input sequence length

m Number of data channels (E.g. #senor)

X X ∈ RN×l×m is a mini-batch of input sequences

Xi Xi ∈ Rl×m is the i-th sample in the batch

y y = [y1, · · ·, yN ] is the vector of binary valued ground truths

ŷ ŷ = [ŷ1, · · ·, ŷN ] are CNN predictions

n Number of filters in the last convolutional layer

l′ Filter size in the last convolutional layer

zi zi ∈ Rl′×n is sample i’s activation of the last conv layer

Z Z ∈ RN×n2
are flattened Gramian matrices

Zi Zi ∈ R1×n2
is a flattened Gramian matrix from sample i

p Number of positive samples in the mini-batch

A A ∈ RN×p is the matrix that selects positive samples

S Random variable over candidate scaling parameters

hS(·) Sequence scaling operator

πθ(·) CNN parameterized by θ

φ φ ∈ R|S| are parameters of S’s distribution

η Temperature for softmax function

λ Weight for APR

AMS. If we remove both AMS and APR, the objective function becomes sim-
ply fθ(X,y) and is the typical loss for training CNN for a binary classification
problem. Also notice that neither AMS nor APR adds new network parameters
to CNN, the network’s capacity remains the same.

3.2 Adaptive Multi-scale Sampling (AMS)

Multi-scale Sampling. In AMS, we define several sample scaling param-
eters {s1, s2, · · · } and assign a random variable S over them. S is categor-
ical, and we define its distribution to be P (S = si) � exp(φi/η)∑

j exp(φj/η) where
φ = [φ1, φ2, · · · , φ|S|] are its parameters and η is a constant that acts as the
temperature for this softmax function. We initialize φ to be a vector of all ones
and during CNN training we randomly crop a mini-batch of sub-sequences of
lengths l·S by drawing samples from P (S). We scale all sub-sequences to be
of a common length l that is pre-defined as our network’s input dimension
and feed the mini-batch to the CNN. Mathematically, let us denote x1,··· ,lS

as a randomly cropped sub-sequence, x′
1,··· ,l as the sub-sequence after scaling,

and hS(·) as the scaling operator, we can have several scaling strategies. For
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example, we can take the mean of every S samples from x1,··· ,lS and hence
hS(x1,··· ,lS) = {x′

1,··· ,l | x′
i = mean(x(i−1)S+1,··· ,iS)}. Or in a simpler form, we

can just define x′
i to be the j-th element of every S consecutive samples which

leads to hS(x1,··· ,lS) = {x′
1,··· ,l | x′

i = x(i−1)S+j}.
To keep notations uncluttered, we merge some operators into hS(·) and πθ(·).

Firstly, we merge sub-sequencing operator into hS(·) such that if its input
is longer than l·S then sub-sequencing (random crop in training; segmenta-
tion with minimum overlapping in evaluation) is performed prior to scaling.
Furthermore, because we segment the original time series, we need a fusion
mechanism for predictions. E.g., if we want the prediction score of the i-th
sample in a test batch, πθ

(
hS(Xi)

)
gives several scores each of which for the

sub-sequences originated from hS(Xi), we need to merge these scores to get
the prediction score for Xi. In this paper, we define the score for the original
series score(Xi) � EP (S)[mean(πθ

(
hS(Xi)

)
)], we assume this fusion operation

is merged into πθ(·) and is applied whenever necessary.

Adaptive Update. At the beginning of training, a mini-batch consists of sub-
sequences of multiple scales, each of which has equal sampling weight. We train
the CNN with sub-sequences of mixed scales, and at the end of every k-th train-
ing iteration, we randomly sample some time series from the entire training
set, apply scaling operator hS(·) to this set and feed the scaled dataset to the
CNN trained so far. We then calculate the first term in (1) by evaluating (2),
the definition of fθ(hS(X),y) is given in (3). Minimization of (2) thus becomes
jointly learning the CNN’s parameters θ and the parameters φ for P (S). In our
experiments, at the end of every k CNN training iterations, we perform a one-
step gradient descent on φ using (4). The gradient of φ is easy to derive and
is given in (5), where matrix J has entry Jij = 1

η P (Si)
(
1 − P (Si)

)
if i = j or

Jij = − 1
η P (Si)P (Sj) if i�=j. Adaptive update is just a single step of gradient,

whose computational cost is negligible considering its parameters’ size.

E[fθ(X,y) | φ] = E
P (S)

[fθ(hS(X),y)] (2)

fθ(hS(X),y) = − 1
N

N∑

i=1

[
yi log

(
πθ(hS(Xi))

)

+(1 − yi) log
(
1 − πθ(hS(Xi))

)]
(3)

φ := φ − ∇φ (4)

∇φ = JᵀL =

⎡

⎢
⎢
⎣

∂P (S1)
∂φ1

. . . ∂P (S1)
∂φ|S|

...
. . .

...
∂P (S|S|)

∂φ1
. . .

∂P (S|S|)
∂φ|S|

⎤

⎥
⎥
⎦

ᵀ ⎡

⎢
⎣

fθ(hS1(X),y)
...

fθ(hS|S|(X),y)

⎤

⎥
⎦ (5)
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Interpretation from RL. RL is a hot topic in the machine learning soci-
ety recently, [15] serves as an excellent introduction material. In RL, an agent
interacts with an environment by taking some actions according to a policy
that usually takes into account observed state of the environment. The agent
receives reward/penalty from the environment that depends on both the envi-
ronment and its actions, and its goal is to maximize/minimize the accumu-
lated reward/penalty by adjusting its policy. Policy iteration is one of the RL
algorithms that searches for the best policy by iterating between two opera-
tions: policy evaluation (given a policy, estimate the expected reward/penalty
in each state) and policy improvement (given the estimated reward/penalty in
each state, improve the policy by taking greedy actions). If we consider the
snapshot of CNN’s parameters θ as a state of the environment and P (S) as the
agent’s policy from which we sample actions (that is, to pick a sample scaling
parameter), then AMS resembles policy iteration. Specifically, if we regard (2)
as the expected penalty, in policy evaluation we estimate the value of (2) upon
our current settings of φ, and in the policy improvement phase, we update our
policy by taking a gradient step of φ.

3.3 Activation Pattern Regularization (APR)

APR takes the form as an augmented term gθ(X) given by:

gθ(X) =
1
n2

n2
∑

i=1

var(AᵀZ, i) (6)

where Z ∈ RN×n2
are flattened Gramian matrices calculated from the activa-

tions of the last convolutional layer, A ∈ RN×p is a matrix that selects only
the positive samples in X. The variance operator is taken along each column
i of the matrix product AᵀZ ∈ Rp×n2

. To be concrete, let zi ∈ Rl′×n be the
activation of the last convolutional layer from the i-th sample in the batch, then
each row of Z is given by Zi = flat(zᵀ

i zi) ∈ R1×n2
. It is easy to see that Zi

encodes the relationships between each filter’s activation from the i-th sample,
therefore the flattened Gramian matrices Z describe the activation pattern of
each sample across a batch. Because we are imposing regularizations on only
the positive samples, we construct a mask matrix A whose entry is defined as
Ai,j = 1 if Xi is the j-th positive sample in the batch and 0 otherwise for
i = 1, · · · , N and j = 1, · · · , p. Since the variance operator in (6) is applied
along columns, gθ(X) is a measure of activation patterns’ variance among posi-
tive samples. When this term from APR is augmented to the original objective
function, the training process becomes a multiple-task learning problem, and we
impose a hyper-parameter λ on it to control its strength. Following (1), when
APR is applied together with AMS, the gradient in (5) should be updated by
re-defining L’s entry to be Li = fθ(hSi

(X),y) + λgθ(hSi
(X)).
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Table 2. NAB statistics (the scores are averaged accuracies)

Description Size #Anomaly Baseline AMS APR AMS+APR t-test

1 NYC taxi passengers 10320 5 0.951 0.963 0.954 0.966 ✓

2 Twitter mentions of AMZN 15832 4 0.890 0.927 0.894 0.945 ✓

3 Twitter mentions of FB 15834 2 0.890 0.940 0.890 0.941 ✓

4 Twitter mentions of GOOG 15843 4 0.915 0.945 0.922 0.954 ✓

5 Twitter mentions of KO 15852 3 0.902 0.920 0.902 0.930 ✓

6 Twitter mentions of CVS 15854 4 0.927 0.962 0.934 0.968 ✓

7 Twitter mentions of PFE 15859 4 0.904 0.911 0.899 0.909 ✗

8 Twitter mentions of UPS 15867 5 0.898 0.895 0.903 0.908 ✗

9 Twitter mentions of IBM 15894 2 0.916 0.929 0.930 0.932 ✗

10 Twitter mentions of AAPL 15903 4 0.925 0.968 0.920 0.973 ✓

11 Twitter mentions of CRM 15903 3 0.955 1.000 0.955 1.000 ✓

12 Machine temperatures 22696 4 0.943 0.924 0.947 0.945 ✗

4 Experiments

4.1 Experimental Setup

We conducted extensive experiments on two datasets, each of which consists
of data from multiple tasks. For each task, we compare the cross validation
results of 4 methods: baseline (vanilla CNN training scheme), AMS, APR and
AMS+APR. We used the same network architecture as described in Sect. 3.1
through all tasks. Although parameters such as kernel sizes and strides differ
for each task, we used the same set of parameters for all methods for each
task to ensure fair comparisons. At training time we randomly sample sub-
sequences from the training split (rebalance samples to make the positive to
negative ratio 1 : 1), and at test time we chop each validation segment with
minimum overlap. To merge sub-sequences’ scores for the original series, we
take their averaged value. In the case when AMS is involved, we use the simple
strategy hS(x1,··· ,lS) = {x′

1,··· ,l | x′
i = x(i−1)S+j} where j = 1, and we take the

expected value of scores from all scaling parameters as the final score for the
original series.

4.2 Experiments on Dataset 1

Dataset Description. Numenta Anomaly Benchmark (NAB) [16] is a dataset
consisting over 50 labeled real-world and artificial time series data files. The type
of data included are for example, Amazon Web Services (AWS) server metrics,
Freeway traffic, and Tweets volume. From the real-world datasets, we choose the
subset whose size is larger than 10K and has at least 2 anomalies. The result-
ing selections are summarized in Table 2, due to the space restriction we refer
the readers to [16] for detailed description of NAB1. The default segmentation
window sizes are a quarter of the sequence lengths and S = {1, 2, 3, 4}.
1 https://github.com/numenta/NAB/tree/master/data.

https://github.com/numenta/NAB/tree/master/data
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Table 3. Dataset statistics

Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Patient 1 Patient 2

# Preictal segments 24 42 72 97 30 18 18

# Interictal segments 480 500 1440 804 450 50 42

# Test segments 502 1000 907 990 191 195 150

# Electrodes 16 16 16 16 15 15 24

Sampling frequency (Hz) 400 400 400 400 400 5000 5000

Segment length (min) 10 10 10 10 10 10 10

Results and Discussions. For each dataset, we conducted 11 trials each of
which is a 2-fold cross validation, and we report the averaged accuracies in
Table 2, the winning scores are in boldface, and the last column indicates whether
the winning method passes the t-test. From a macro view, our proposals beat the
baseline on every dataset and demonstrated the generalisability of our methods.
Zoom in for a micro analysis, we notice AMS alone presents a strong improve-
ment (10 improvements out of 12 datasets). Contrary to that, APR alone does
not deliver satisfying results (though winning 7 out of 12, few passed the t-test),
one possibility is that the default definition of segmentation window size is inap-
propriate and prevents APR from finding common factors from such a setting.
This explanation is supported by the results from the combination of AMS and
APR that show significant improvement on almost all datasets.

4.3 Experiments on Dataset 2

Dataset Description. This is a dataset from a past Kaggle data analysis
contest2. The dataset contains EEG recordings from 5 dogs and 2 humans and
the task is to distinguish between ten minute long data clips covering an hour
prior to a seizure (preictal segments), and ten minute clips of interictal activity.
Preictal segments (positive class) are provided covering one hour prior to seizure
with a five minute seizure horizon, and interictal segments (negative class) were
chosen randomly from the full data record, with the restriction that interictal
segments be as far from any seizure as can be practically achieved. Test segments
without ground-truth labels are provided for final evaluation. Table 3 summarizes
the statistics of the datasets. We down-sample the sample rate of patients to
500 Hz and define the segmentation window size to be 4000. We conducted 3-
fold cross validation on each subject.

Results and Discussions. In this Kaggle contest, AUROC was set to be the
evaluation metric and 504 teams in total made submissions. We report the scores
from 2 result merging schemes: mean ensemble (predictions are the averaged
scores from the models of cross validation) and max ensemble (predictions are
the scores from the cross validation model with best validation scores). The
2 https://www.kaggle.com/c/seizure-prediction.

https://www.kaggle.com/c/seizure-prediction
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Table 4. Kaggle submission (scores are AUROCs)

(a) Mean Ensemble

Private Public Rank
Baseline 0.6525 0.7097 131st
APR 0.6649 0.7272 102nd
AMS 0.6918 0.7542 71st
AMS+APR 0.7054 0.7792 58th

(b) Max Ensemble

Private Public Rank
Baseline 0.6864 0.7513 77th
APR 0.6866 0.7789 77th
AMS 0.7049 0.7764 58th
AMS+APR 0.7762 0.8098 14th

scores and ranks are summarized in Table 4, because this contest is over, we are
able to receive a (Public, Private) scores pair from each submission. For APR
and AMS + APR, the best scores from the grid search on λ is reported. We
notice first that even the baseline method could achieve high ranks (top 26%
for mean ensemble and top 15% for max ensemble), this is consistent with the
recent reports on successful applications of deep learning to general datasets
besides images and audios. Secondly we notice the max ensemble gives higher
scores than mean ensemble, but the trend in either group is consistent. When
AMS is activated, we observe obvious improvements on both public and private
scores. Compared to the baseline, the combination of AMS and APR gives an
average relative improvement of near 10%, and sent us to as high as the 14-th
place on the leaderboard. The observations here are consistent with the results
from Experiment 1 and emphasizes the stability of our proposals.

4.4 Analyzing AMS and APR

We give some analysis of AMS and APR in this section. Because the effect and
trend of our analysis are similar for both experiments we show the statistics from
Experiment 2 only for the sake of brevity.

Figure 1 gives the distribution of scaling parameters for each subject
after AMS application. Our initial guess of input length (4000, equivalent to
10sec/8sec of time frame for Dogs/Humans) is not optimal and AMS learnt
to find the combinations of sub-sequence lengths better suited for the task.
Although AMS puts most weight on the largest scaling parameter for dogs 1, 2,
3 and 5, it considers combinations of sub-sequence lengths for dog 4 and both
human patients. This suggests AMS does not always prefer longer sequences but
is indeed looking for patterns residing in sub-sequences of different lengths that
is optimal for the task. Figure 2 gives the evolution of training loss, validation
accuracy and validation f-score for both the baseline and AMS. For almost all
subjects and on any of the three criteria, we find AMS learns faster than the
baseline. One may consider the faster training loss convergence is due to that in
these trials AMS kept selecting longer sequences and thus led to smaller sample
spaces, and a large network can easily fit to a smaller sample space, leading to
faster convergence. This might be partially responsible, but it is also well known
that with the same network capacity and smaller sample spaces, a flexible model
like CNN can easily overfit the training dataset. However, we see strong faster
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Fig. 1. Scaling parameters distribution (S1 = 1, S2 = 2, S3 = 3, S4 = 4).

rising accuracy and f-score lines, and do not observe any sign of overfitting in
Fig. 2. We hence argue the faster learning speed (in terms of both training loss
and validation scores) is indeed due to the involvement of AMS.

To analyze the difference between the baseline and APR, we select a random
batch of validation data for both models and we check the differences of their
activation patterns. Concretely speaking, from the models we learnt in cross
validation, we pick a baseline model and a series of APR models with different λ
settings from the same fold. We input the validation batch of preictal segments
into the baseline model and the series of APR models, and we record the Gramian
matrices Z that encodes their activation patterns. For each model, we calculated
the variances of each entry of the Gramian matrices and analyze the difference

Fig. 2. Learning curves of baseline and AMS (depending on the line the Y-axes can
stand for binary cross-entropy loss, accuracy or f-score, the X-axes are training itera-
tions in hundred; shorter lines are due to early stopping).
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Fig. 3. Difference of positive samples’ activations variances (settings with higher or
equal (valid accuracy, valid f score) scores are in green). (Color figure online)

var(Z(baseline)) − var(Z(APR)) where the variance is taken on each entry of the
matrices. Figure 3 gives an image of what we described. We have scaled the values
to have unit standard deviation and have labelled the 0-level in each diagram
for visual convenience. In order to find patterns, we have put the settings that
have higher or equal (valid accuracy, valid f score) scores than the baseline in
green and leave the rest in black. Although with a few exceptions, we find from
this figure that winning settings tend to have more positive var(Z(baseline)) −
var(Z(APR)) entries (upward pointing spikes), meaning lower activation pattern
variances compared to the baseline.

5 Conclusion

We address the two previously unexplored problems in the context of binary
classification of sequences using CNN where the data possess unilateral common
factor: (1) determining the optimal segmentation window size for CNN that
provides sufficient data augmentation while avoiding serious multiple-instance
learning problems; (2) helping CNN to concentrate on learning the common
representations that capture the unilateral common factor. We proposed AMS
to solve the first problem which automatically searches for a combination of
sub-sequence lengths by learning a set of parameters that controls segmentation
window size jointly with the learning of CNN parameters. And we use APR to
shift the CNN’s attention to positive samples by minimizing the variances of the
Gramian matrices’ entries formed from the last convolutional layer’s activations.
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From our experiments, AMS alone is able to give performance boosts and when
APR is augmented, the improvements are significant. Our extensive experiments
on multiple real-world tasks demonstrate the effectiveness, the generalisability
and stability of AMS and APR.
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Abstract. Neural network-based methods represent the state-of-the-art
in question generation from text. Existing work focuses on generating
only questions from text without concerning itself with answer genera-
tion. Moreover, our analysis shows that handling rare words and gener-
ating the most appropriate question given a candidate answer are still
challenges facing existing approaches. We present a novel two-stage pro-
cess to generate question-answer pairs from the text. For the first stage,
we present alternatives for encoding the span of the pivotal answer in
the sentence using Pointer Networks. In our second stage, we employ
sequence to sequence models for question generation, enhanced with rich
linguistic features. Finally, global attention and answer encoding are used
for generating the question most relevant to the answer. We motivate
and linguistically analyze the role of each component in our framework
and consider compositions of these. This analysis is supported by exten-
sive experimental evaluations. Using standard evaluation metrics as well
as human evaluations, our experimental results validate the significant
improvement in the quality of questions generated by our framework over
the state-of-the-art. The technique presented here represents another
step towards more automated reading comprehension assessment. We
also present a live system (Demo of the system is available at https://
www.cse.iitb.ac.in/∼vishwajeet/autoqg.html.) to demonstrate the effec-
tiveness of our approach.

Keywords: Pointer network · Sequence to sequence modeling
Question generation

1 Introduction

Asking relevant and intelligent questions has always been an integral part of
human learning, as it can help assess the user’s understanding of a piece of text
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(an article, an essay etc.). However, forming questions manually can be some-
times arduous. Automated question generation (QG) systems can help alleviate
this problem by learning to generate questions on a large scale and in lesser time.
Such a system has applications in a myriad of areas such as FAQ generation,
intelligent tutoring systems, and virtual assistants.

The task for a QG system is to generate meaningful, syntactically correct,
semantically sound and natural questions from text. Additionally, to further
automate the assessment of human users, it is highly desirable that the questions
are relevant to the text and have supporting answers present in the text.

Figure 1 below shows a sample of questions generated by our approach using
a variety of configurations (vanilla sentence, feature tagged sentence and answer
encoded sentence) that will be described later in this paper.

Fig. 1. Example: sample questions generation from text by our models.

Initial attempts at automated question generation were heavily dependent
on a limited, ad-hoc, hand-crafted set of rules [7,18]. These rules focus mainly
on the syntactic structure of the text and are limited in their application, only
to sentences of simple structures. Recently, the success of sequence to sequence
learning models [16] opened up possibilities of looking beyond a fixed set of rules
for the task of question generation [5,15]. When we encode ground truth answers
into the sentence along with other linguistic features, we get improvement of upto
4 BLEU points along with improvement in the quality of questions generated. A
recent deep learning approach to question generation [15] investigates a simpler
task of generating questions only from a triplet of subject, relation and object.
In contrast, we build upon recent works that train sequence to sequence models
for generating questions from natural language text.

Our work significantly improves the latest work of sequence to sequence learn-
ing based question generation using deep networks [5] by making use of (i) an
additional module to predict span of best answer candidate on which to generate
the question (ii) several additional rich set of linguistic features to help model
generalize better (iii) suitably modified decoder to generate questions more rel-
evant to the sentence.

The rest of the paper is organized as follows. In Section 2 we formally describe
our question generation problem, followed by a discussion on related work in
Sect. 3. In Sect. 4 we describe our approach and methodology and summarize
our main contributions. In Sects. 5 and 6 we describe the two main components
of our framework. Implementation details of the models are described in Sect. 7,
followed by experimental results in Sect. 8 and conclusion in Sect. 9.
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2 Problem Formulation

Given a sentence S, viewed as a sequence of words, our goal is to generate
a question Q, which is syntactically and semantically correct, meaningful and
natural. More formally, given a sentence S, our model’s main objective is to learn
the underlying conditional probability distribution P (Q|S; θ) parameterized by θ
to generate the most appropriate question that is closest to the human generated
question(s). Our model learns θ during training using sentence/question pairs
such that the probability P (Q|S; θ) is maximized over the given training dataset.

Let the sentence S be a sequence of M words (w1, w2, w3, ...wM ), and question
Q a sequence of N words (y1, y2, y3, ...yN ). Mathematically, the model is meant
to generate Q* such that:

Q∗ = argmax
Q

P (Q|S; θ) (1)

= argmax
y1,..yn

N∏

i=1

P (yi|y1, ..yi−1, w1..wM ; θ) (2)

Equation (2) is to be realized using a RNN-based architecture, which is
described in detail in Sect. 6.1.

3 Related Work

Heilman and Smith [7] use a set of hand-crafted syntax-based rules to generate
questions from simple declarative sentences. The system identifies multiple pos-
sible answer phrases from all declarative sentences using the constituency parse
tree structure of each sentence. The system then over-generates questions and
ranks them statistically by assigning scores using logistic regression.

[18] use semantics of the text by converting it into the Minimal Recursion
Semantics notation [3]. Rules specific to the summarized semantics are applied to
generate questions. Most of the approaches proposed for the QGSTEC challenge
[10] are also rule-based systems, some of which put to use sentence features such
as part of speech (POS) tags and named entity relations (NER) tags.

All approaches mentioned so far are heavily dependent on rules whose design
requires deep linguistic knowledge and yet are not exhaustive enough. Recent
successes in neural machine translation [2,16] have helped address this problem
by letting deep neural nets learn the implicit rules through data. This approach
has inspired application of sequence to sequence learning to automated question
generation. [15] propose an attention-based [1,9] approach to question generation
from a pre-defined template of knowledge base triples (subject, relation, object).
Additionally, recent studies suggest that the sharp learning capability of neural
networks does not make linguistic features redundant in machine translation. [14]
suggest augmenting each word with its linguistic features such as POS, NER.
[6] suggest a tree-based encoder to incorporate features, although for a different
application.
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We build on the recent sequence to sequence learning-based method of ques-
tion generation by [5], but with significant differences and improvements from all
previous works in the following ways. (i) Unlike [5] our question generation tech-
nique is pivoted on identification of the best candidate answer (span) around
which the question should be generated. (ii) Our approach is enhanced with
the use of several syntactic and linguistic features that help in learning models
that generalize well. (iii) We propose a modified decoder to generate questions
relevant to the text.

4 Approach and Contributions

Our approach to generating question-answer pairs from text is a two-stage pro-
cess: in the first stage we select the most relevant and appropriate candidate
answer, i.e., the pivotal answer, using an answer selection module, and in the
second stage we encode the answer span in the sentence and use a sequence to
sequence model with a rich set of linguistic features to generate questions for
the pivotal answer.

Our sentence encoder transforms the input sentence into a list of fixed-length
continuous vector word representation, each input symbol being represented as
a vector. The question decoder takes in the output from the sentence encoder
and produces one symbol at a time and stops at the EOS (end of sentence)
marker. To focus on certain important words while generating questions (decod-
ing) we use a global attention mechanism. The attention module is connected
to both the sentence encoder as well as the question decoder, thus allowing the
question decoder to focus on appropriate segments of the sentence while gener-
ating the next word of the question. We include linguistic features for words so
that the model can learn more generalized syntactic transformations. We pro-
vide a detailed description of these modules in the following sections. Here is a
summary of our three main contributions: (1) a versatile neural network-based
answer selection and Question Generation (QG) approach (2) incorporation of
rich set of linguistic features that help generalize the learning to syntactic and
semantic transformations of the input, and (3) a modified decoder to generate
the question most relevant to the text.

5 Answer Selection and Encoding

In applications such as reading comprehension, it is natural for a question to
be generated keeping the answer in mind (hereafter referred to as the ‘pivotal’
answer). Identifying the most appropriate pivotal answer will allow comprehen-
sion be tested more easily and with even higher automation. We propose a novel
named entity selection model and answer selection model based on Pointer Net-
works [17]. These models give us the span of pivotal answer in the sentence,
which we encode using the BIO notation while generating the questions.
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5.1 Named Entity Selection

In our first approach, we restrict our pivotal answer to be one of the named enti-
ties in the sentence, extracted using the Stanford CoreNLP toolkit. To choose the
most appropriate pivotal answer for QG from a set of candidate entities present
in the sentence we propose a named entity selection model. We train a multi-
layer perceptron on the sentence, named entities present in the sentence and the
ground truth answer. The model learns to predict the pivotal answer given the
sentence and a set of candidate entities. The sentence S = (w1, w2, ..., wn) is first
encoded using a 2 layered unidirectional LSTM encoder into hidden activations
H = (hs

1, h
s
2, ..., h

s
n). For a named entity NE = (wi, ..., wj), a vector representa-

tion (R) is created as < hs
n;hs

mean;hne
mean >, where hs

n is the final state of the
hidden activations, hs

mean is the mean of all the activations and hne
mean is the

mean of hidden activations (hs
i , ..., h

s
j) between the span of the named entity.

This representation vector R is fed into a multi-layer perceptron, which predicts
the probability of a named entity being a pivotal answer. Then we select the
entity with the highest probability as the answer entity. More formally,

P (NEi|S) = softmax(Ri.W + B) (3)

where W is weight, B is bias, and P (NEi|S) is the probability of named entity
being the pivotal answer.

5.2 Answer Selection Using Pointer Networks

We propose a novel Pointer Network [17] based approach to find the span of
pivotal answer given a sentence. Using the attention mechanism, a boundary
Pointer Network output start and end positions from the input sequence. More
formally, the problem can be formulated as follows: given a sentence S, we want
to predict the start index astart

k and the end index aend
k of the pivotal answer. The

main motivation in using a boundary pointer network is to predict the span from
the input sequence as output. While we adapt the boundary pointer network to
predict the start and end index positions of the pivotal answer in the sentence, we
also present results using a sequence pointer network instead. Answer sequence
pointer network produces a sequence of pointers as output. Each pointer in
the sequence is word index of some token in the input. It only ensures that
output is contained in the sentence but isn’t necessarily a substring. Let the
encoder’s hidden states be H = (h1, h2, . . . , hn) for a sentence the probability of
generating output sequence O = (o1, o2, . . . , om) is defined as,

P (O|S) =
∏

P (oi|o1, o2, o3, . . . , oi−1,H) (4)

We model the probability distribution as:

ui = vT tanh(W eĤ + W dDi) (5)

P (oi|o1, o2, . . . ., oi−1,H) = softmax(ui) (6)
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Here, W e ∈ Rd×2d, WD ∈ Rd×d, v ∈ Rd are the model parameters to
be learned. Ĥ is <H; 0>, where a 0 vector is concatenated with LSTM encoder
hidden states to produce an end pointer token. Di is produced by taking the last
state of the LSTM decoder with inputs <softmax(ui)Ĥ;Di−1>. D0 is a zero
vector denoting the start state of the decoder. Answer boundary pointer
network produces two tokens corresponding to the start and end index of the
answer span. The probability distribution model remains exactly the same as
answer sequence pointer network. The boundary pointer network is depicted in
Fig. 2.

We take sentence S = (w1, w2, . . . , wM ) and generate the hidden activations
H by using embedding lookup and an LSTM encoder. As the pointers are not
conditioned over a second sentence, the decoder is fed with just a start state.

Example: For the Sentence: “other past residents include composer
journalist and newspaper editor william henry wills , ron goodwin,
and journalist angela rippon and comedian dawn french”, the answer
pointers produced are:
Pointer(s) by answer sequence: [6,11,20] → journalist henry rippon
Pointer(s) by answer boundary: [10,12] → william henry wills

Fig. 2. Answer selection using boundary pointer network.

6 Question Generation

After encoding the pivotal answer (prediction of the answer selection module)
in a sentence, we train a sequence to sequence model augmented with a rich set
of linguistic features to generate the question. In sections below we describe our
linguistic features as well as our sequence to sequence model.

6.1 Sequence to Sequence Model

Sequence to sequence models [16] learn to map input sequence (sentence) to an
intermediate fixed length vector representation using an encoder RNN along with
the mapping for translating this vector representation to the output sequence
(question) using another decoder RNN. Encoder of the sequence to sequence
model first conceptualizes the sentence as a single fixed length vector before
passing this along to the decoder which uses this vector and attention weights
to generate the output.

Sentence Encoder: The sentence encoder is realized using a bi-directional
LSTM. In the forward pass, the given sentence along with the linguistic features
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is fed through a recurrent activation function recursively till the whole sentence
is processed. Using one LSTM as encoder will capture only the left side sentence
dependencies of the current word being fed. To alleviate this and thus to also
capture the right side dependencies of the sentence for the current word while
predicting in the decoder stage, another LSTM is fed with the sentence in the
reverse order. The combination of both is used as the encoding of the given
sentence. −→̂

ht = f(
−→
Wwt +

−→
V

−−→
ĥt−1 +

−→
b ) (7)

←−̂
ht = f(

←−
Wwt +

←−
V

←−−
ĥt+1 +

←−
b ) (8)

ĥt = g(Uht + c) = g(U [
−→̂
ht ,

←−̂
ht ] + c) (9)

The hidden state ĥt of the sentence encoder is used as the intermediate
representation of the source sentence at time step t whereas W,V,U ∈ Rn×m

are weights, where m is the word embedding dimensionality, n is the number
of hidden units, and wt ∈ Rp×q×r is the weight vector corresponding to feature
encoded input at time step t.

Attention Mechanism: In the commonly used sequence to sequence model
[16], the decoder is directly initialized with intermediate source representation
(ĥt). Whereas the attention mechanism proposed in [9] suggests using a subset
of source hidden states, giving more emphasis to a, possibly, more relevant part
of the context in the source sentence while predicting a new word in the target
sequence. In our method we specifically use the global attention mechanism. In
this mechanism a context vector ct is generated by capturing relevant source
side information for predicting the current target word yt in the decoding phase
at time t. Relevance between the current decoder hidden state ht and each of
the source hidden states (ĥ1, ĥ2...ĥN ) is realized through a dot similarity metric:
score(ht, ĥi) = hT

t · ĥi.
A softmax layer (10) is applied over these scores to get the variable length

alignment vector αt which in turn is used to compute the weighted sum over all
the source hidden states (ĥ1, ĥ2, . . . , ĥN ) to generate the context vector ct (11)
at time t.

αt(i) = align(ht, ĥi) =
exp(score(ht, ĥi)∑

i′
exp(score(ht, ĥi′))

(10)

ct =
∑

i

αtiĥi (11)

Question Decoder: Question decoder is a two layer LSTM network. It takes
output of sentence encoder and decodes it to generate question. The question
decoder is designed to maximize our objective in Eq. 2. More formally decoder
computes probability P (Q|S; θ) as:

P (Q|S; θ) = softmax(Ws(tanh(Wr[ht, ct] + b))) (12)
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where Ws and Wr are weight vectors and tanh is the activation function. The
hidden state of the decoder along with the context vector ct is used to predict
the target word yt. It is a known fact that decoder may output words which are
not even present in the source sentence as it learns a probability distribution
over the words in the vocabulary. To generate questions relevant to the text we
suitably modified decoder and integrated an attention mechanism (described in
Sect. 6.1) with the decoder to attend to words in source sentence while generating
questions. This modification to the decoder increases the relevance of question
generated for a particular sentence.

6.2 Linguistic Features

We propose using a set of linguistic features so that the model can learn better
generalized transformation rules, rather than learning a transformation rule per
sentence. We describe our features below:

POS Tag: Parts of speech tag of the word. Words having same POS tag have
similar grammatical properties and demonstrate similar syntactic behavior. We
use the Stanford ConeNLP -pos annotator to get POS Tag of words in the
sentence.

Named Entity Tag: Name entity tag represent coarse grained category of a
word for example PERSON, PLACE, ORGANIZATION, DATE, etc. In order
to help the model identify named entities present in the sentence, named entity
tag of each word is provided as a feature. This ensures that the model learns to
pose a question about the entities present in the sentence. We use the Stanford
CoreNLP -ner annotator to assign named entity tag to each word.

Dependency Label: Dependency label of a word is the edge label connect-
ing each word with the parent in the dependency parse tree. Root node of the
tree is assigned label ‘ROOT’. Dependency label help models to learn inter-
word relations. It helps in understanding the semantic structure of the sentence
while generating question. Dependency structure also helps in learning syntactic
transformations between sentence and question pair. Verbs and adverbs present
in the sentence signify the type of the question (which, who .. etc.) that would
be posed for the subject it refers to. We use dependency parse trees generated
using the Stanford CoreNLP parser to obtain the dependency labels.

Linguistic features are added by the conventional feature concatenation of
tokens using the delimiter ‘|’. We create separate vocabularies for words (encoded
using glove’s pre-trained word embedding) and features (using one-hot encoding)
respectively.

7 Implementation Details

We implement our answer selection and question generation models in Torch1.
The sentence encoder of QG is a 3 layer bi-directional LSTM stack and the
1 http://torch.ch/.

http://torch.ch/
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question decoder is a 3 layer LSTM stack. Each LSTM has a hidden unit of size
600 units. we use pre-trained glove embeddings2 [12] of 300 dimensions for both
the encoder and the decoder. All model parameters are optimized using Adam
optimizer with a learning rate of 1.0 and we decay the learning rate by 0.5 after
10th epoch of training. The dropout probability is set to 0.3. We train our model
in each experiment for 30 epochs, we select the model with the lowest perplexity
on validation set.

The linguistic features for each word such as POS, named entity tag etc., are
incorporated along with word embeddings through concatenation.

8 Experiments and Results

We evaluate performance of our models on the SQUAD [13] dataset (denoted S).
We use the same split as that of [5], where a random subset of 70,484 instances
from S are used for training (Str), 10,570 instances for validation (Sval), and
11,877 instances for testing (Ste).

We performed both human-based evaluation as well as automatic evalua-
tion to assess the quality of the questions generated. For automatic evaluation,
we report results using a metric widely used to evaluate machine translation
systems, called BLEU [11].

We first list the different systems (models) that we evaluate and compare
in our experiments. A note about abbreviations: Whereas components in blue
are different alternatives for encoding the pivotal answer, the brown color coded
component represents the set of linguistic features that can be optionally added
to any model.

Baseline System (QG): Our baseline system is a sequence-to-sequence LSTM
model (see Sect. 6) trained only on raw sentence-question pairs without using
features or answer encoding. This model is the same as [5].

System with Feature Tagged Input (QG+F): We encoded linguistic fea-
tures (see Sect. 6.2) for each sentence-question pair to augment the basic QG
model. This was achieved by appending features to each word using the “|”
delimiter. This model helps us analyze the isolated effect of incorporating syn-
tactic and semantic properties of the sentence (and words in the sentence) on
the outcome of question generation.

Features + NE Encoding (QG+F+NE) : We also augmented the feature-
enriched sequence-to-sequence QG+F model by encoding each named entity pre-
dicted by the named entity selection module (see Sect. 5.1) as a pivotal answer.
This model helps us analyze the effect of (indiscriminate) use of named entity
as potential (pivotal) answer, when used in conjunction with features.

Ground Truth Answer Encoding (QG+GAE) : In this setting we use the
encoding of ground truth answers from sentences to augment the training of the
basic QG model (see Sect. 5). For encoding answers into the sentence we employ
2 http://nlp.stanford.edu/data/glove.840B.300d.zip.

http://nlp.stanford.edu/data/glove.840B.300d.zip
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the BIO notation. We append “B” as a feature using the delimiter “|” to the
first word of the answer and “I” as a feature for the rest of the answer words. We
used this model to analyze the effect of answer encoding on question generation,
independent of features and named entity alignment.

We would like to point out that any direct comparison of a generated question
with the question in the ground truth using any machine translation-like metric
(such as the BLEU metric discussed in Sect. 8.1) makes sense only when both the
questions are associated with the same pivotal answer. This specific experimental
setup and the ones that follow are therefore more amenable for evaluation using
standard metrics used in machine translation.

Features + Sequence Pointer Network Predicted Answer Encoding
(QG+F+AES) : In this setting, we encoded the pivotal answer in the sentence
as predicted by the sequence pointer network (see Sect. 5.2) to augment the
linguistic feature based QG+F model. In this and in the following setting, we
expect the prediction of the pivotal answer in the sentence to closely approximate
the ground truth answer.

Features + Boundary Pointer Network Predicted Answer Encoding
(QG+F+AEB) : In this setting, we encoded the pivotal answer in the sentence
as predicted by the boundary pointer network (see Sect. 5.2) to augment the
linguistic feature based QG+F model.

Features + Ground Truth Answer Encoding (QG+F+GAE): In this
experimental setup, building upon the previous model (QG+F), we encoded
ground truth answers to augment the QG model.

8.1 Results and Analysis

We compare the performance of the 7 systems QG, QG+F, QG+F+NE,
QG+GAE, QG+F+AES, QG+F+AEB and QG+F+GAE described in the pre-
vious sections on (the train-val-test splits of) S and report results using both
human and automated evaluation metrics. We first describe experimental results
using human evaluation followed by evaluation on other metrics.

Human Evaluation: We randomly selected 100 sentences from the test set
(Ste) and generated one question using each of the 7 systems for each of these
100 sentences and asked three human experts for feedback on the quality of ques-
tions generated. Our human evaluators are professional English language experts.
They were asked to provide feedback about a randomly sampled sentence along
with the corresponding questions from each competing system, presented in an
anonymised random order. This was to avoid creating any bias in the evaluator
towards any particular system. They were not at all primed about the different
models and the hypothesis.

We asked the following binary (yes/no) questions to each of the experts: (a)
is this question syntactically correct?, (b) is this question semantically correct?, and
(c) is this question relevant to this sentence?. Responses from all three experts were
collected and averaged. For example, suppose the cumulative scores of the 100
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Table 1. Human evaluation results on Ste. Parameters are, p1: percentage of syntacti-
cally correct questions, p2: percentage of semantically correct questions, p3: percentage
of relevant questions.

System Syntactically correct (%) Semantically correct (%) Relevant (%)

QG [5] 51.6 48 52.3

QG+F 59.6 57 64.6

QG+F+NE 57 52.6 67

QG+GAE 44 35.3 50.6

QG+F+AES 51 47.3 55.3

QG+F+AEB 61 60.6 71.3

QG+F+GAE 63 61 67

Table 2. Automatic evaluation results on Ste. BLEU, METEOR and ROUGE-L scores
vary between 0 and 100, with the upper bound of 100 attainable on the ground truth.
QG [5]:Result obtained using latest version of Torch.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

QG [5] 39.97 22.39 14.39 9.64 14.34 37.04

QG+F 41.89 24.37 15.92 10.74 15.854 37.762

QG+F+NE 41.54 23.77 15.32 10.24 15.906 36.465

QG+GAE 43.35 24.06 14.85 9.40 15.65 37.84

QG+F+AES 43.54 25.69 17.07 11.83 16.71 38.22

QG+F+AEB 42.98 25.65 17.19 12.07 16.72 38.50

QG+F+GAE 46.32 28.81 19.67 13.85 18.51 41.75

binary judgements for syntactic correctness by the 3 evaluators were (80, 79, 73).
Then the average response would be 77.33. In Table 1 we present these results
on the test set Ste.

Evaluation on Other Metrics: We also evaluated our system on other
standard metrics to enable comparison with other systems. However, as
explained earlier, the standard metrics used in machine translation such
as BLEU [11], METEOR [4], and ROUGE-L [8], might not be appropri-
ate measures to evaluate the task of question generation. To appreciate
this, consider the candidate question “who was the widow of mcdonald’s
owner ?” against the ground truth “to whom was john b. kroc married ?”
for the sentence “it was founded in 1986 through the donations of joan
b. kroc, the widow of mcdonald ’s owner ray kroc.”. It is easy to see
that the candidate is a valid question and makes perfect sense. However its
BLEU-4 score is almost zero. Thus, it may be the case that the human gener-
ated question against which we evaluate the system generated questions may
be completely different in structure and semantics, but still be perfectly valid,
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Fig. 3. Sample output: the pivotal answer predicted and the question generated about
the answer using model QG+F+AEB - that is comparable to the best performing
system that also used ground truth answers.

as seen previously. While we find human evaluation to be more appropriate, for
the sake of completeness, we also report the BLEU, METEOR and ROUGE-L
scores in each setting. In Table 2, we observe that our models, QG+F+AEB,
QG+F+AES and QG+F+GAE outperform the state-of-the art question gener-
ation system QG [5] significantly on all standard metrics.

Our model QG+F+GAE, which encodes ground truth answers and uses a
rich set of linguistic features, performs the best as per every metric. And in
Table 1, we observe that adding the rich set of linguistic features to the base-
line model (QG) further improves performance. Specifically, addition of features
increases syntactic correctness of questions by 2%, semantic correctness by 9%
and relevance of questions with respect to sentence by 12.3% in comparison with
the baseline model QG [5].

In Fig. 3 we present some sample answers predicted and corresponding ques-
tions generated by our model QG+F+AEB. Though not better, the performance
of models QG+F+AES and QG+F+AEB is comparable to the best model (that
is QG+F+GAE, which additionally uses ground truth answers). This is because
the ground truth answer might not be the best and most relevant pivotal answer
for question generation, particularly since each question in the SQUAD dataset
was generated by looking at an entire paragraph and not any single sentence.
Consider the sentence “manhattan was on track to have an estimated 90,000
hotel rooms at the end of 2014, a 10 % increase from 2013.”. On encoding the
ground truth answer, “90,000”, the question generated using model QG+GAE
is “what was manhattan estimated hotel rooms in 2014 ?” and additionally, with
linguistic features (QG+F+GAE), we get “how many hotel rooms did manhat-
tan have at the end of 2014 ?”. This is indicative of how a rich set of linguistic
features help in shaping the correct question type as well generating syntacti-
cally and semantically correct question. Further when we do not encode any
answer (either pivotal answer predicted by sequence/boundary pointer network
or ground truth answer) and just augment the linguistic features (QG+F) the
question generated is “what was manhattan ’s hotel increase in 2013 ?”, which
is clearly a poor quality question. Thus, both answer encoding and augmenting
rich set of linguistic features are important for generating high quality (syn-
tactically correct, semantically correct and relevant) questions. When we select
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pivotal answer from amongst the set of named entities present in the sentence
(i.e., model QG+F+NE), the question generated on encoding the named entity
“manhattan” is “what was the 10 of hotel ’s city rooms ?”, which is clearly a
poor quality question. The poor performance of QG+F+NE can be attributed
to the fact that only 50% of the answers in SQUAD dataset are named entities.

9 Conclusion

We introduce a novel two-stage process to generate question-answer pairs from
text. We combine and enhance a number of techniques including sequence to
sequence models, Pointer Networks, named entity alignment, as well as rich
linguistic features to identify potential answers from text, handle rare words, and
generate questions most relevant to the answer. To the best of our knowledge
this is the first attempt in generating question-answer pairs. Our comprehensive
evaluation shows that our approach significantly outperforms current state-of-
the-art question generation techniques on both human evaluation and evaluation
on common metrics such as BLEU, METEOR, and ROUGE-L.
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Abstract. It is a difficult task to classify images with multiple class
labels using only a small number of labeled examples, especially when
the label (class) distribution is imbalanced. Emotion classification is such
an example of imbalanced label distribution, because some classes of
emotions like disgusted are relatively rare comparing to other labels like
happy or sad. In this paper, we propose a data augmentation method
using generative adversarial networks (GAN). It can complement and
complete the data manifold and find better margins between neighbor-
ing classes. Specifically, we design a framework using a CNN model as the
classifier and a cycle-consistent adversarial networks (CycleGAN) as the
generator. In order to avoid gradient vanishing problem, we employ the
least-squared loss as adversarial loss. We also propose several evaluation
methods on three benchmark datasets to validate GAN’s performance.
Empirical results show that we can obtain 5%–10% increase in the clas-
sification accuracy after employing the GAN-based data augmentation
techniques.

Keywords: Data augmentation · Emotion classification
Imbalanced data processing · GAN · CycleGAN

1 Introduction

In recent development of deep learning, neural networks with more and more lay-
ers are proposed [10,22]. Such neural network models have much larger capacity
that needs a larger training set. However, it is always expensive to obtain ade-
quate and balanced dataset with manual labels. This has been a general problem
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in machine learning as well as in computer vision. An effective way of synthesizing
images to supplement training set may help boost accuracy in image classifica-
tion. Using data augmentation for enlarging training set in image classification
has reported in various literatures [2,12,21]. Model performance can be improved
because data augmentation can overcome the problem of inadequate data and
imbalanced label distribution. However, it is an unsolved problem of how to gen-
erate (sample) data from the ‘true distribution’ of given limited training data. In
this research, based on Generative Adversarial Networks (GANs), we propose a
new method for data augmentation in order to generate new samples via adver-
sarial training, thus to supplement the data manifold to approximate the ‘true
distribution’ and that may lead to better margins between different categories
of data.

Since the invention of GAN [7], it has been well used in different machine
learning applications [3,25], especially in computer vision and image processing
[11,14]. In this paper, we explore how to use GAN to generate images helping
enlarge original dataset effectively and balance label distribution from data aug-
mentation. We focus on the emotion (facial expression images) classification task
because it is a typical classification task with inadequate data and imbalanced
label distribution. On one hand, the training dataset obtained from the labora-
tory are limited to diversity and quantity. On the other hand, some classes of
emotion images (such as disgust) have few samples in the training set from the
real world than other classes, also some images can be very nuanced, making
it difficult even for humans to agree on their correct labeling [18]. In our work,
we build a classical convolutional neural network (CNN) classifier for emotion
image classification and train the CycleGAN model [29] with least-squared loss
[17] to achieve image-to-image transformation, which can synthesis images for
the unusual classes of emotion from a related image source. Given a classical
CNN classifier, our effort is on constructing GAN model for improving perfor-
mance in generating images given a specific class. The CycleGAN model is used
for image translation between two unpaired domains.

The main contributions of this paper can be summarized as follows. (1) We
propose a framework for data augmentation by using GAN to generate sup-
plementary data in emotion classification task. (2) Through empirical studies
on three benchmark datasets, we found that performance of the new model is
significantly improved compared to the baselines. (3) We combine least-squared
loss from LSGAN and adversarial loss in CycleGAN to avoid the problem of
vanishing gradients, this is verified to be effective in training process.

2 Related Work

Facial expression recognition (or emotion classification) has attracted much
attention in computer vision in past few decades. Current techniques related to
facial expression mainly focus on recognizing seven prototypical emotions (neu-
tral, happy, surprised, fear, angry, sad, and disgusted), which are considered basic
and universal emotions for human. Such recognition is sometimes very difficult
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since there is only a slight difference between different emotions, which requires
an efficient and subtle feature extractor to be trained. Moreover, Ng et al. [18]
pointed out that the imbalanced distribution among emotion classes may lead
to low accuracy in classes with fewer samples. To deal with imbalanced datasets,
many methods were proposed, such as undersampling [13], creating ‘box’ around
minorities [6] and etc. Different from these works, we aim to resolve this prob-
lem by generating data of minority classes from low-dimensional manifold, which
improves the data distribution from feature level.

2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) can be used to generate images from
an adversarial training. The generator attempts to produce a realistic image to
fool the discriminator, which tries to distinguish whether its input image is from
the training set or the generated set. Since the invention of GAN [7] in 2014,
variant models based on GAN were proposed [17,19,29]. Generative adversarial
nets are now widely used in many image tasks such as cartoon image coloring
[14], image manipulation [28], synthesis [3] and image-to-image translation [11].

Zhu et al. [29] proposed the CycleGAN. It can do image-to-image transition
between two unpaired image domain, which is helpful to build our framework.
The main idea of the cycleGAN is “If we translate from one domain to another
and back again we must arrive where we start” [29]. The LSGAN [17] used a
least square distance to evaluate the difference between the distribution, which is
more stable than the Jensen-Shannon (JS) divergence used in [7] and convergence
more quickly than the Wasserstein loss [1]. In our research, we choose CycleGAN
[29] and the techniques in LSGAN [17] to generate labeled emotion images and
show that these images are helpful in final image classification task.

2.2 Data Augmentation

In the field of deep learning, where the scale of dataset has a great influence on
the final outcome, data augmentation is often used to expand the training cor-
pus. As for the existing techniques of data augmentation, they can be grouped
into two main types: (a) geometric transformation which is relatively generic
and computationally cheap and (b) task-specific or guided-augmentation meth-
ods which are able to generate synthetic samples given specific labels [5]. In
the case of image classification, the first group of data augmentation methods
always focus on generating image data through label-preserving linear transfor-
mations (translation, rotation, scaling, horizontal shearing) such as Affine [2],
elastic deformations [21], patches extraction and RGB channels intensities alter-
ation [12]. However, if we look deeper into these methods, they only lead to
an image-level transformation through depth and scale and actually not helpful
for dividing a clear boundary between data manifolds. Such data augmentation
does not improve data distribution which is determined by higher-level features.
For the second group, more complex manually-specified augmentation schemes
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are proposed. For instance, authors in [9] proposed an approach to learn mul-
tivariate normal distribution of each class in the whole mean manifold. In [5],
an attribute-guided augmentation in feature space is designed. In the field of
3D motion capture, 2D images are used for generating 3D ones [20]. Our app-
roach aims to solve similar task in [9] but is very different from all these meth-
ods above. In this paper, new training corpus is generated from CycleGAN,
which remain high-level features extracted from original images. Although in
the research related to GANs, data augmentation is sometimes mentioned as an
important application of GAN, such as generating realistic license plate in [24],
synthesizing photorealistic facial expressions in [27], few of them lay emphasis
on exploring GAN’s role of doing data augmentation in addressing imbalanced
datasets. Moreover, few comparisons are made to support a seemingly obvious
idea that GAN-synthesized images are qualified enough to supplement original
training corpus as augmented data.

3 Data Augmentation Using CycleGAN

Figure 1 shows our framework of GAN-based data augmentation. Both refer-
ence images and target images are collected from the original data and flow into
the CycleGAN as domains R and T , respectively. G and F are two generators,
transferring R → T and T → R, respectively. Supplementary data is generated
through generator G. A CNN classifier is trained using original data and supple-
mentary data as input. In CycleGAN model, LR is the LSGAN loss relative to
reference domains and LT is the LSGAN loss relative to target domains. Besides,
a cycle loss, namely Lcyc, is calculated to keep cycle consistency of the whole
model.

3.1 Cycle-Consistent Adversarial Networks

In this work, CycleGAN [29] is used to realize unpaired image-to-image trans-
lation, learning mapping functions between images of reference class (R) and
target class (T ). We use generators G and F to achieve domain transfer G:
R → T and F : T → R. Discriminators are denoted by DR and DT , where DR

aims to distinguish between real images in R and translated fake images F (T )
in reference domain. DT is the discriminator in the target domain. We not only
want to make the generated images G(R) look like the target images in T , but
also the reconstructed images F (G(R)) ≈ R to guarantee the cycle-consistency
in addition to the adversarial loss. As for adversarial loss, G tries to generate
G(r) which is so similar to t that can fool the discriminator DT . Therefore, the
loss related to G and DT is:

L(G,DT , R, T ) = Et∼pdata(t)[log DT (t)] + Er∼pdata(r)[log(1 − DT (G(r))] (1)

However, this logarithm form makes training and convergence difficult since it
is likely to cause gradient vanishing problem [1]. Here we apply a least-squared
loss proposed in LSGAN [17] to avoid this phenomenon and maintain the same
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Fig. 1. An illustration of the proposed framework of using CycleGAN for data aug-
mentation and classification using a CNN classifier.

function as adversarial loss in original CycleGAN. For the reference domain R,
the loss is defined by:

LLSGAN (G,DR, T,R) = Er∼pdata(r)[(DR(r)−1)2]+Et∼pdata(t)[DR(G(t))2] (2)

For the target domain T , the loss is:

LLSGAN (G,DT , R, T ) = Et∼pdata(t)[(DT (t)−1)2]+Er∼pdata(r)[DT (G(r))2] (3)

We can then define the final loss by:

L(G,F,DS ,DR) = LR + LT + Lcyc

= LLSGAN (G,DR, S,R) + LLSGAN (F,DS , R, S) + λLcyc(G,F )
(4)

where cycle consistency loss (Lcyc) is defined by:

Lcyc(G,F ) = Er∼pdata(r)[‖F (G(r)) − r‖1]
+ Et∼pdata(t)[‖G(F (t)) − t‖1]

(5)

where || · ||1 is the L1 norm. With these loss functions, the final functions we aim
to solve is:

G∗, F ∗ = arg min
F,G

max
DT ,DR

L(G,F,DT ,DR) (6)

other details of CycleGAN can be referred to [29].
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3.2 Class Imbalance and Data Manifold

When the classes have imbalanced distributions, the classifier prone to learn
biased boundary between classes. Take an example of binary classification in
one-dimensional sample. In Fig. 2-(a), Class 1 and 2 are both generated from
Gaussian distributions with the same standard deviation 1, and has the means of
μ1 and μ2, respectively. Ideally, the boundary function x = (μ1 + μ2)/2, denoted
by Si can distinguish between these two classes. However, an imbalanced distri-
bution in two classes will result in a biased linear boundary Sr moving towards
the minor class, since given samples are insufficient to form a correct margin
with minimized loss. Some detailed discussions can be referred to [23].

Fig. 2. (a) A binary classification problem with one-dimensional data. (b) Data man-
ifolds with learned boundaries with imbalanced distributions. (c) The manifolds of
balanced distribution. Data are generated with 2-dimensional Gaussians and using
SVMs with linear kernel as classifier.

Now back to our emotion classification task. Under the assumption that
image samples lie on several sub-manifolds in a high-dimensional space, where
images of the same emotion lie in the same sub-manifold, image classification
task is actually a task to explore the underlying geometric structure of data
distribution, thus to find best-split hyper-planes between different categories in
this space. These hyper-planes divide the space into several parts according to
margins, each represents a clustering of a specific class (Fig. 2-(c)). When the
dataset is imbalanced, it is very likely to form an incomplete manifold. Since in
the same space, minorities are distributed more sparsely in their regions. In this
case, biased margins or hyper-planes are learned, making it a difficult task for
classifier to predict correct labels for given instances (Fig. 2-(b)). Although some
data augmentation techniques can alleviate this problem from several aspects,
the most essential solution is to further complement and complete the data
manifold.

The reason we choose cycleGAN in stead of the classical GAN is because
the original GAN [7] learns a mapping from low-dimensional manifold (directly
determined by noise z) to high-dimensional data spaces, while the CycleGAN, as
a tool for translation between two domains of both high-dimensional data, need
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to learn a low-dimensional manifold and also the parameters to map it back to
high-dimensional space. Here we use Pr and Pt to represent real distributions
of domain R and T , respectively, and M is the low-dimensional manifold. As
domain R has only a small number of training samples, when it is projected
into a low dimension space, sparse distribution cannot form a complete M with
efficient feature information. By using CycleGAN, sufficient samples in Pr may
lead to a more complete M. Gθ can be learned through minimizing distance
between G(r) and T (e.g, ||G(r)−T||2) to ’pull’ M to Pt. If we again project Pt

into manifold M, they will form a meaningful feature-level manifold thanks to
the generated samples.

4 Experimental Studies

Before doing experiments on emotion datasets, we first validate GAN’s role in
completing data manifold on a toy dataset. We use three two-dimensional Gaus-
sian distributions (x1, x2) ∼ Nm(μm, σm), m ∈ {1, 2, 3} to simulate the distri-
bution of three classes of data, where μ1 = [0, 6], μ2 = [6.5, 7], μ3 = [2, 2] and
the covariance matrix is ([2, 1]; [1, 2]) for all three distributions. Imbalanced
dataset is artificially created by randomly sampling 1000, 1000 and 100 points
from each class for training, and for each class, we have 100 data points for
test. Support vector machines (SVM) with linear kernel function is employed for
classification task. After that, we train a CycleGAN to generate 900 target class
(minority class) from reference class (one of majority classes) and these supple-
mentary samples are added to the original dataset and trained on the same SVM
classifier.

We draw two figures (Fig. 2-(b) and (c)) to show the data distribution and
learned margins before and after adding the CycleGAN-based augmentation.
The original biased margins in imbalanced dataset Fig. 2-(b) show a clear change
to more correct ones in Fig. 2-(b). Moreover, the classification accuracy has
increased from 93.3% to 98.0%. Although the distribution and dimension of
data in this toy experiment is much simpler than real image data, the results
can validate the effectiveness of the new approach by improving data manifold
in imbalanced datasets by doing data augmentation.

4.1 Benchmark Datasets

In our experiments, three benchmark datasets are tested: Facial Expression
Recognition Database (FER2013) [8], Static Facial Expressions in the Wild
(SFEW) [4] and Japanese Female Facial Expression (JAFFE) Database [15].
All these datasets contain 7 types of face emotion including angry, disgust, fear,
happy, sad, surprise, and neutral (labeled by 0–6 during training and test pro-
cess). Samples from FER2013 database are shown in Fig. 3 (left) as an example.
The distribution of this dataset is imbalanced. In order to verify the effective-
ness of the data augmentation, we sample the images by 20% for each class in
FER2013. We also test our data augmentation model on other two small datasets
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SFEW and JAFFE. During the training process of CycleGAN, we choose ‘neu-
tral’ class as our reference class and the other six are regarded as target ones,
since it is natural to generate faces with emotion from non-emotional ones.

fear

angry

disgust

sad

neutral

happy

surprise

Generated images

Fig. 3. The original samples and generated samples for each classes. The left two
columns are original data and the rest ones are generated by CycleGAN. The neutral
class, as reference class, has no generated samples in our experiment.

4.2 Experimental Results

We first train a classical CNN model based on original FER2013 datasets (20%
sampled) as our baseline and the result is shown in Table 1. We use 7% and 14%
samples in FER2013 for test. Our baseline, though is fairly simple, is sufficient
to extract features from emotion samples and works as a qualified classifier. In
order to get the most intuitive results, we choose class disgust and sad from
FER2013 as our target classes, which are much smaller than the other classes,
as a result, it cannot obtain sufficient learning and optimizing, thus reach a
relatively low accuracy when trained on the baseline (see Table 1). In this case,
two CycleGANs are trained to generate disgust and sad images respectively
with class neutral as reference class (see Fig. 3), and then are filled into the
original datasets (denoted by +disgust and +sad) to balance the distribution
and complete the data manifold (Table 1).

From Table 1, we can have the following observations: (a) the overall test
accuracy is improved and (b) accuracy of target class raise significantly and it is
worth mentioning that (c) the accuracy of reference class neutral also increases.
Therefore, we can intuitively verify the capability of CycleGAN in generating
reliable images, which is helpful in enlarging minorities. Furthermore, this data
augmentation of one class also improves accuracy of other classes, since by gen-
erating new samples, the data manifold is further supplemented and becomes
more completed, thus make more clearly the margins between classes.
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Table 1. Accuracy of the baseline model (CNN) and our proposed model
(CNN+CycleGAN) on FER2013. The best results are highlighted.

Class Accuracy-(7%) Accuracy-(14%)

baseline +disgust +sad Baseline +disgust +sad

angry 93.70 93.71 93.05 93.47 93.36 92.89

disgust 73.91 91.30 95.65 79.62 88.89 94.44

fear 90.88 92.18 94.46 90.38 91.43 94.58

happy 91.87 96.34 93.70 91.75 96.37 94.21

sad 87.86 93.61 97.44 89.22 93.26 94.61

surprise 94.27 99.12 96.48 93.46 97.09 96.85

neutral 89.55 91.94 94.63 88.24 93.06 94.48

All 91.04 94.25 94.65 90.77 93.82 94.32

In order to provide more powerful verification that this data augmentation
indeed contributes to the shape of data manifold, we apply a t-distributed
stochastic neighbor embedding (t-SNE) algorithm [16] to visualize the distri-
bution of training samples by reducing high-dimensional data (48 × 48) to 2D
plane (Fig. 4). Compared to the baseline (Fig. 4-(a)), where sample size of disgust
and sad is too small to form a clear margin with other classes, (b) and (c) in
Fig. 4 shows great improvement in enlarging the sample size, supplementing the
data manifold and completing data distribution. Figure 4-(d) is a much stronger
validation where both two classes stand out to improve data manifold.

After generating specific classes to validate GAN’s positive role in data aug-
mentation, we make further experiments on our framework based on all three
datasets mentioned in Sect. 4.2. During this process, a baseline model and a
model using our data augmentation framework (pre-train+fine-tune) is trained
respectively. In our framework, all classes except neutral are generated from
CycleGAN and then added as supplementary training corpus for training classi-
fication task. (See Fig. 3 for generated images in FER2013 database) and then the
model is fine-tuned based on original datasets. Because there is a small number
of examples in datasets SFEW and JAFFE, we set the FER2013 database as our
pre-trained model and fine-tune it using these two datasets. Similar experiments
were reported in [26]. In order to reduce the inference of complex background in
SFEW, we apply a simple cropping method to extract faces from original images.
For testing, we use 7% and 14% samples from FER2013, the given testing cor-
pus of SFEW and 20% samples from JAFFE, respectively. Results are shown
in Table 2. In the column DAG: Pre-train + Fine-tune, Pre-train represents the
first 10K steps training on generated images from all six classes and Fine-tune
represents another 10k fine-tuning steps training on original datasets. SFEW and
JAFFE datasets are trained based on the FER2013 model. After applying our
framework of data augmentation using GAN, accuracy of all the three datasets
has visibly improved. As for FER2013 database which has obvious imbalanced
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Fig. 4. Data manifold of four types of training samples using t-SNE algorithm: (a)
baseline model, (b) adding generated disgust samples or (c) sad samples, and (d)
samples of both two classes.

distribution among classes, our data augmentation technique is able to complete
data manifold, especially for those which have much smaller samples. And for
small datasets like SFEW and JAFFE, our technique can generate feature-level
synthetic images from existing samples to enlarge the original datasets and form
clear margins or hyper-planes between neighboring classes.

Table 2. Test accuracy of baseline and our framework (DAG).

Datasets Accuracy

baseline DAG: pre-train+fine-tune

FER2013 91.04(7%) 90.77(14%) 94.71(7%) 94.35(14%)

FER+SFEW 31.92 39.07

FER+JAFFE 93.87 95.80

5 Conclusions and Discussions

In this paper, we explored using GAN for data augmentation in task of emotion
classification task. We propose a framework for data augmentation by using
CycleGAN to generate auxiliary data to minority classes in training. During
the process of training CycleGAN model, a least-squared loss is combined with
original adversarial loss to avoid gradient vanishing problem. Besides, we show



Emotion Classification with Data Augmentation Using GAN 359

the GAN’s ability of supplementing low-dimensional data manifold. Because of
possessing a more complete data manifold, the classifier can be better learned
to find margins or hyper-planes of neighboring classes. Experiments on three
benchmark datasets show that our GAN-based data augmentation techniques
can lead to improvement in distribution integrity and margin clarity between
classes, and can obtain 5%–10% increase in the accuracy of emotion classification
task.

The work still has some limitations. For instance, the datasets we select are
limited to emotions and only CycleGAN is used in our model. Therefore, we
consider our future work to apply our model for the general image classification
problems, and try other GAN models to evaluate data augmentation method
with stronger evidence.
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Abstract. Learning meaningful and effective representations for trans-
action data is a crucial prerequisite for transaction classification and
clustering tasks. Traditional methods which use frequent itemsets (FIs)
as features often suffer from the data sparsity and high-dimensionality
problems. Several supervised methods based on discriminative FIs have
been proposed to address these disadvantages, but they require transac-
tion labels, thus rendering them inapplicable to real-world applications
where labels are not given. In this paper, we propose an unsupervised
method which learns low-dimensional continuous vectors for transactions
based on information of both singleton items and FIs. We demonstrate
the superior performance of our proposed method in classifying transac-
tions on four datasets compared with several state-of-the-art baselines.

1 Introduction

A transaction dataset consists of multiple transactions, each of which is a set of
discrete and distinct items. It can be found in many different domains such as
the products purchased in a supermarket basket and the symptoms diagnosed in
a patient’s admission. Turning such data into useful information and knowledge
requires the applications of machine learning methods such as Support Vector
Machine (SVM) or K-means. This task, however, is challenging because machine
learning methods typically require inputs as fixed-length vectors, which are not
applicable to transactions.

A common solution in data mining is to use frequent itemsets (FIs) as features
[5]. This method first mines FIs (i.e., itemsets whose supports (or frequencies)
are not less than a minimum support threshold δ [6]) from the dataset. It then
represents a transaction as a vector with binary components indicating whether
this transaction contains a particular frequent itemset. Given a dataset D and
the set of FIs discovered from D, F(D) = {X1,X2, ...,XF }, the feature vector
of a transaction T is defined as f(T ) = [x1, x2, ..., xF ], where xi = 1 if Xi ⊆ T
otherwise xi = 0. We can see that the dimension of the feature space is huge
since the number of FIs is often very large. For example, on some datasets, the
number of FIs is more than 105 with δ < 5%. Consequently, this leads to the
high-dimensionality and data sparsity problems.
c© Springer International Publishing AG, part of Springer Nature 2018
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To tackle these two disadvantages, many researchers have attempted to
extract only significant FIs using discriminative measures such as support differ-
ence [8], support ratio [9], or information gain [5]. However, all these measures
require labels of transactions, making the mining process supervised. Due to the
supervised nature of these methods, they have two limitations. First, their trans-
action representations are constructed for a particular mining task (e.g., trans-
action classification), thus the representations cannot be directly transferred to
another task (e.g., transaction clustering). Second, the success of these methods
relies on an enormous availability of labels for all training examples, a condition
often not met in real applications.

Our Approach. To overcome the weaknesses of FI-based methods and super-
vised FI-based methods, we propose a novel method for learning low-dimensional
representations (also called embedding method) for transactions in a fully unsu-
pervised fashion. In particular, our embedding method (named Trans2Vec) first
represents a transaction using two different sets: a set of singleton items and a
set of FIs. It then proposes two models to learn transaction embeddings: one
learns embeddings from these two sets separately (individual-training model)
and another learns embeddings from these two sets simultaneously (joint-training
model). Trans2Vec owns two advantages. First, it is fully unsupervised. Com-
pared to supervised FI-based methods, it can be directly used for learning trans-
action embeddings in domains where labeled examples are difficult to obtain.
Moreover, the low-dimensional representations learned are well-generalized to
many different tasks such as transaction classification and transaction cluster-
ing. Second, it leverages not only the information of singleton items but also that
of FIs which have many benefits. Regarding [5], FIs are useful for constructing
transaction features since (1) They can capture the associations among individ-
ual items; and (2) They can capture the relationships among transactions.

In short, we make the following contributions:

1. We propose Trans2Vec, an unsupervised method, to learn low-dimensional
continuous representations for transaction data.

2. We propose two models in Trans2Vec, which learn transaction embeddings
from information of both singleton items and FIs. The embeddings learned
are meaningful and discriminative.

3. We demonstrate Trans2Vec in transaction classification where it achieves
significant improvements on several benchmark datasets.

2 Related Work

Our method is related to FI-based approaches. FIs have been used to construct
feature vectors for transactions [5], which are essential inputs for many machine
learning tasks such as transaction classification and clustering. However, this tra-
ditional approach suffers from the data sparsity and high-dimensionality prob-
lems due to the huge number of FIs discovered. To solve these two disadvantages,
recently proposed methods have tried to extract significant and discriminative
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FIs only. For example, Cheng et al. [5] developed an approach which first mined
FIs and then selected the most discriminative ones based on their information
gain. Following the same procedure, discriminative FIs were discovered based
on their support difference [8] and support ratio [9]. Although discriminative
FIs can help to reduce the feature space and are useful for classification, they
require transaction labels, making the mining process supervised. Related to
transaction classification, FIs have been also used to build rule-based classifiers,
often called associative classification. These classifiers are constructed from high-
confidence and high-support association rules which represent the strong asso-
ciations between FIs and labels. A testing example is then predicted using one
single rule [1] or multiple rules [11].

Our method is also related to embedding methods. Embedding learning has
become a hot trend since 2013 when Mikolov introduced Word2Vec [12] to learn
embedding vectors for words in text. In recent years, embedding methods have
been developed to learn low-dimensional vectors for nodes in network [7], symp-
toms in healthcare [13], and documents in text [4,10]. As far as we know, learning
embedding vectors for transactions has not been studied yet. In this paper, we
propose the first method to learn transaction embeddings. Different from super-
vised FI-based methods and associative classification, our approach is fully unsu-
pervised and leverages information of both items and FIs to learn transaction
embeddings.

3 Framework

3.1 Problem Definition

We follow the notations in [6]. Given a set of items I = {i1, i2, ..., iM}, a transac-
tion dataset D = {T1, T2, ..., TN} is a set of transactions where each transaction
Ti is a set of distinct items (i.e., Ti ⊆ I).

Our goal is to learn a mapping function f : D → R
d such that every trans-

action Ti ∈ D is mapped to a d -dimensional continuous vector. The mapping
needs to capture the similarity among the transactions in D, in the sense that Ti

and Tj are similar if f(Ti) and f(Tj) are close to each other on the vector space,
and vice versa. The matrix X = [f(T1), f(T2), ..., f(TN )] then contains feature
vectors of transactions, which can be direct inputs for many traditional machine
learning and data mining tasks, particularly classification.

3.2 Learning Transaction Embeddings Based on Items

We adapt the Paragraph Vector-Distributed Bag-of-Words (PV-DBOW) model
introduced in [10] to learn embedding vectors for transactions, where each trans-
action is treated as a document and items are treated as words. Given a tar-
get transaction Tt whose representation needs to be learned, and a set of items
I(Tt) = {i1, i2, ..., ik} contained in Tt, our goal is to maximize the log probability
of predicting the items i1, i2, ..., ik which appear in Tt:
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max
k∑

j=1

log Pr(ij | Tt) (1)

Furthermore, Pr(ij | Tt) is defined by a softmax function:

Pr(ij | Tt) =
exp(g(ij) · f(Tt))∑

i′ ∈I exp(g(i′) · f(Tt))
, (2)

where g(ij) ∈ R
d and f(Tt) ∈ R

d are embedding vectors of the item ij and the
transaction Tt respectively, and I is the set of all singleton items.

Computing the summation
∑

i′ ∈I exp(g(i
′
) ·f(Tt)) in Eq. 2 is very expensive

since the number of items in I is often very large. To solve this problem, we
approximate it using the negative sampling technique proposed in Word2Vec
[12]. The idea is that instead of iterating over all items in I, we randomly select a
relatively small number of items which are not contained in the target transaction
Tt (these items are called negative items). We then try to distinguish the items
contained in Tt from the negative items by minimizing the following binary
objective function of logistic regression:

O1 = −
[
log σ(g(ij) · f(Tt)) +

K∑

n=1

Ein∼P(i) log σ(−g(in) · f(Tt))

]
, (3)

where σ(x) = 1
1+e−x is a sigmoid function, P(i) is the negative item collection, in

is a negative item draw from P(i) for K times, and g(in) ∈ R
d is the embedding

vector of in.
We minimize O1 in Eq. 3 using stochastic gradient descent (SGD) where the

gradients are derived as follows:

∂O1

∂g(in)
= −σ(g(in) · f(Tt) − Iij [i

n]) · f(Tt)

∂O1

∂f(Tt)
= −

K∑

n=0

σ(g(in) · f(Tt) − Iij [i
n]) · g(in), (4)

where Iij [i
n] is an indicator function to indicate whether in is an item ij (i.e.,

the negative item is contained in the target transaction Tt) and when n = 0,
then in = ij .

3.3 Learning Transaction Embeddings Based on Frequent Itemsets

As discussed in Sect. 1, FIs are more advantageous than singleton items since
they can capture more information in transactions. We believe that if we learn
transaction embeddings based on FIs instead of items, then the transaction rep-
resentations learned are more meaningful and discriminative.

Following the notations in [6], we define a frequent itemset as follows. Given
a set of items I = {i1, i2, ..., iM} and a transaction dataset D = {T1, T2, ..., TN},
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an itemset X is a set of distinct items (i.e., X ⊆ I). The support of X is defined
as sup(X) = |{Ti∈D|X⊆Ti}|

|D| , i.e., the fraction of transactions in D, which contain
X. Given a minimum support threshold δ ∈ [0, 1], X is called a frequent itemset
if sup(X) ≥ δ.

Example 1. Consider an example transaction dataset with five transactions, as
shown in Fig. 1(a). Let δ = 0.6. The itemset {b, c} (or bc for short) is contained
in three transactions T1, T2, and T4; thus, its support is sup(bc) = 3/5 = 0.6.
We say that bc is a frequent itemset since sup(bc) ≥ δ. With δ = 0.6, there
are in total six FIs discovered from the dataset, as shown in Fig. 1(b), and each
transaction now can be represented by a set of FIs, as shown in Fig. 1(c).

Trans Items
{a, b, c}
{b, c, d}
{a, d}
{b, c, d, e}
{a, c, d}

(a)

FI Items sup
{a} 0.6
{b} 0.6
{c} 0.8
{d} 0.8
{b, c} 0.6
{c, d} 0.6

(b)

Trans FIs
{ , , , }
{ , , , , }
{ , }
{ , , , , }
{ , , , }

(c)

Fig. 1. Two forms of a transaction: a set of single items and a set of FIs. Table (a)
shows a transaction dataset with five transactions where each of them is a set of items.
Table (b) shows six FIs discovered from the dataset (here, δ = 0.6). Table (c) shows
each transaction represented by a set of FIs.

Following the same procedure in Sect. 3.2, given the set of FIs F(Tt) =
{X1,X2, ...,Xl} contained in the target transaction Tt, the objective function
to learn the embedding vector for Tt based on its FIs is defined as follows:

O2 = −
[
log σ(h(Xj) · f(Tt)) +

K∑

n=1

EXn∼P(X) log σ(−h(Xn) · f(Tt))

]
, (5)

where h(Xj) ∈ R
d is the embedding vector of the frequent itemset Xj ∈ F(Tt),

P(X) is the negative frequent itemset collection (i.e., a small set of random FIs
which are not contained in Tt), Xn is a negative frequent itemset drawn from
P(X) for K times, and h(Xn) ∈ R

d is the embedding vector of Xn. We minimize
O2 in Eq. 5 using SGD.

3.4 Trans2Vec Method for Learning Transaction Embeddings

When learning an embedding vector for a transaction Tt based on its FIs, there
is a possible situation that Tt does not contain any FIs. In this case, we cannot
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learn a useful embedding vector; instead, we simply use a zero vector with the
size of d (i.e., f(Tt) = [0, 0, ..., 0]). To avoid this problem, we propose two models
which combine information of both items and FIs to learn embedding vectors
for transactions. These two models named individual-training and joint-training
are presented next.

Individual-Training Model to Learn Transaction Embeddings. The
basic idea, as illustrated in Fig. 2, is that given a transaction Tt, we learn
an embedding vector f1(Tt) for Tt based on its items (see Sect. 3.2) and an
embedding vector f2(Tt) for Tt based on its FIs (see Sect. 3.3). We then take
the average of two embedding vectors to obtain the final embedding vector
f(Tt) = f1(Tt)+f2(Tt)

2 for that transaction.

Transac on 

Item 

Item 

Item 

…

Transac on 

Frequent 
itemset 

Frequent 
itemset 

Frequent 
itemset 

…
Embedding 
vector 

Embedding 
vector 

avg Embedding 
vector 

Fig. 2. Individual-training model. Given a transaction Tt, we learn the embedding
vectors f1(Tt) and f2(Tt) based on its items and FIs, respectively. We then take the
average of f1(Tt) and f2(Tt) to obtain the final embedding vector f(Tt).

Joint-Training Model to Learn Transaction Embeddings. In the
individual-training model, the relationships between items and FIs are not con-
sidered since they are used independently. Consequently, the transaction embed-
dings only capture the latent relationships between transactions and items and
those between transactions and FIs separately. To tackle this weakness, we fur-
ther propose the joint-training model which uses information of both items and
FIs of a transaction simultaneously. The overview of this model is shown in
Fig. 3. Specifically, given a transaction Tt, our goal is to minimize the following
objective function:

O = −
⎡

⎣
∑

ij∈I(Tt)

log Pr(ij | Tt) +
∑

Xj∈F(Tt)

log Pr(Xj | Tt)

⎤

⎦ , (6)
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where I(Tt) is the set of singleton items contained in Tt and F(Tt) is the set of
FIs contained in Tt.

Equation 6 can be simplified to:

O = −
∑

pj∈I(Tt)∪F(Tt)

log Pr(pj | Tt), (7)

where pj ⊆ Tt is an item or a frequent itemset (in general, we call pj a pattern).

Transac on 

Item 

Item 

Item 

…

Frequent 
itemset 

Frequent 
itemset 

Frequent 
itemset 

…

Embedding 
vector 

Fig. 3. Joint-training model. Given a transaction Tt, we learn the embedding vector
f(Tt) for Tt based on both its items and FIs.

Following the same procedure in Sect. 3.2, we minimize the following objective
function:

O = −
[
log σ(q(pj) · f(Tt)) +

K∑

n=1

Epn∼P(p) log σ(−q(pn) · f(Tt))

]
, (8)

where q(pj) ∈ R
d is the embedding vector of the pattern pj ∈ I(Tt) ∪ F(Tt),

P(p) is the negative pattern collection (i.e., some random patterns which are not
contained in Tt), pn is a negative pattern drawn from P(p) for K times, and
q(pn) ∈ R

d is the embedding vector of pn.
We minimize Eq. 8 using SGD. After the learning process is completed, the

embedding vector f(Tt) is learned for the transaction Tt, and the embedding
vectors of two transactions Ti and Tj are close to each other if they have similar
items and FIs.

4 Experiments

We conduct extensive experiments on real-world transaction datasets to quanti-
tatively evaluate the performance of Trans2Vec in transaction classification.
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4.1 Datasets

We use four benchmark datasets whose characteristics are summarized in
Table 1. Snippets [14] consists of web search transactions where each of them
is a set of keywords (e.g., “supplier”, “export”) and is classified into one of eight
categories (e.g., “business”). Cancer [13] is a dataset of patient admissions where
each admission is a list of diagnosed symptoms (e.g., “cough”, “headache”) and
is labeled regarding the re-admission status of a patient. Retail [3] is a transac-
tion dataset which contains the transactions occurring between 01/12/2010 and
09/12/2011 of a United Kingdom-based online retailer. Each transaction is a set
of products purchased by customers from England or another country. Food1 is a
collection of food baskets, each of which is a list of foods (e.g., “milk”) purchased
by a customer and is labeled regarding whether the customer uses coupon.

Table 1. Statistics of four transaction datasets.

Dataset # trans # train # test # items avg. length # classes

Snippets 12,340 10,060 2,280 23,686 13.00 8

Cancer 15,000 12,000 3,000 3,234 6.00 3

Retail 3,000 2,400 600 3,376 26.93 2

Food 4,000 3,200 800 1,559 25.87 2

4.2 Baselines

For a comprehensive comparison, we employ six state-of-the-art up-to-date base-
lines2 which can be categorized into three main groups:

– Natural Language Processing (NLP)-based methods: By treating a
transaction as a document and items as words, we can apply methods in NLP
to represent transactions. We select two well-known methods, namely Bag-of-
Words (BOW) and Term Frequency-Inverse Document Frequency (TF-IDF).

– FI-based methods: Given a dataset D and the set of FIs discovered from
D, F(D) = {X1,X2, ...,XF }, we employ two methods to represent transac-
tions based on FIs. Given a transaction T , the first method (named FI-BIN)
constructs the feature vector for T as f(T ) = [x1, x2, ..., xF ] where xi = 1
if Xi ⊆ T otherwise xi = 0 while the second method (named FI-SUP) con-
structs the feature vector for T as f(T ) = [x1, x2, ..., xF ] where xi = sup(Xi)
if Xi ⊆ T otherwise xi = 0.

– Embedding methods: We learn embedding vectors for transactions using
two simple ways. The first method is based on items (see Sect. 3.2), which we
name TRANS-IT. The second method is based on FIs (see Sect. 3.3), which
we name TRANS-FI.

1 Available at https://github.com/neo4j-examples/neo4j-foodmart-dataset.
2 Since our method is unsupervised, we only compare it with unsupervised baselines.

https://github.com/neo4j-examples/neo4j-foodmart-dataset
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Our proposed method Trans2Vec has two different models which use different
combinations of items and FIs. We denote Trans2Vec-IND for the model which
learns transaction embeddings from items and FIs separately and then takes the
average (see Sect. 3.4) and denote Trans2Vec-JOI for the model which learns
transaction embeddings from items and FIs simultaneously (see Sect. 3.4).

4.3 Evaluation Metrics

Once the vector representations of transactions are constructed or learned, we
feed them to an SVM with linear kernel [2] to classify the transaction labels. We
use the linear-kernel SVM (a simple classifier) and do not tune the parameter
C of SVM (here, we fix C = 1) since our focus is on the transaction embedding
learning, not on a classifier. Each dataset is randomly shuffled and split into the
training and test sets as shown in Table 1. All methods are applied to the same
training and test sets. We repeat the classification process on each dataset 10
times and report the average classification accuracy and the average F1-macro
score. We do not report the standard deviation since all methods are very stable
(their standard deviations are less than 10−2).

4.4 Parameter Settings

Our method Trans2Vec has two important parameters: the minimum support
threshold δ for extracting FIs and the embedding dimension d for learning trans-
action embeddings. Since we develop Trans2Vec in a fully unsupervised learning
fashion, the values for δ and d are assigned without using transaction labels. We
set d = 128 (a common value used in embedding methods [7]) and set δ following
the elbow method in [15]. Figure 4 illustrates the elbow method. From the figure,
we can see when the δ value decreases, the number of FIs slightly increases until
a δ value where it significantly increases. This δ value, highlighted in red in
the figure and chosen by the elbow method without considering the transaction

Fig. 4. The number of FIs discovered from the training set of Snippets dataset per δ.
The δ value selected via the elbow method is indicated by the red dot. (Color figure
online)
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labels, is used in our experiments. In Sect. 4.6, we analyze the potential impact
of selecting two parameters δ and d on the classification performance.

For a fair comparison, we use the same δ for Trans2Vec and three baselines
FI-BIN, FI-SUP, and TRANS-FI. We also set d = 128 for two baselines TRANS-
IT and TRANS-FI.

4.5 Results and Discussion

From Table 2, we can see two models in our method Trans2Vec clearly results
in better classification on all datasets compared with other baselines. Compared
with NLP-based methods, Trans2Vec-JOI achieves 4–19% and 2–13% improve-
ments in accuracy over BOW and TF-IDF, respectively. Similar improvements
can be also observed when comparing with FI-based methods. On three datasets
Snippets, Retail, and Food, Trans2Vec-JOI outperforms FI-BIN and FI-SUP
by large margins (achieving 7–23% and 2–108% gains over FI-BIN and FI-SUP).

For most cases, embedding baselines (TRANS-IT and TRANS-FI) are bet-
ter than NLP- and FI-based methods. Moreover, TRANS-FI always outperforms
TRANS-IT. This demonstrates that learning transaction embeddings from FIs is
more effective than learning transaction embeddings from items, as discussed in
Sect. 3.3. Two our models (Trans2Vec-IND and Trans2Vec-JOI) are always
superior than two embedding baselines. This proves that our proposal to incorpo-
rate information of both singleton items and FIs into the transaction embedding
learning is a better strategy than learning transaction embeddings from items
or FIs only.

We also observe Trans2Vec-JOI produces better results than Trans2Vec-
IND on all datasets. This verifies our intuition in Sect. 3.4 that the transaction
embeddings learned from items and FIs simultaneously are more meaningful and
discriminative since they can capture different latent relationships of transactions
simultaneously.

Table 2. Accuracy (AC) and F1-macro (F1) of our Trans2Vec and six baselines on
four transaction datasets. Bold font marks the best performance in a column. The last
row denotes the δ values used by our method for each dataset.

Snippets Cancer Retail Food

Method AC F1 AC F1 AC F1 AC F1

BOW 66.32 65.83 48.57 48.57 77.33 77.31 63.12 63.12

TF-IDF 70.26 69.52 49.43 49.43 81.67 81.56 64.50 64.49

FI-BIN 64.52 63.96 48.52 48.44 77.67 77.62 61.75 61.74

FI-SUP 37.94 32.19 47.30 46.54 80.33 79.20 71.00 70.03

TRANS-IT 75.23 74.79 49.35 49.32 81.17 81.07 65.95 65.81

TRANS-FI 77.88 77.41 50.03 49.92 82.07 81.90 69.14 68.95

Trans2Vec-IND 78.80 77.92 50.10 50.02 82.23 82.12 69.22 69.12

Trans2Vec-JOI 79.05 78.31 50.34 50.28 83.43 83.36 72.51 72.47

δ (%) 0.2% 0.2% 0.7% 0.2%
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4.6 Parameter Sensitivity

We examine how the different choices of two parameters δ and d affect the clas-
sification performance of Trans2Vec-JOI on three datasets Snippets, Cancer,
and Food. Figure 5 shows the classification results as a function of one chosen
parameter when another is set to its default value. From Fig. 5(a), we can see
the values for δ selected by the elbow method always lead to the best accuracy.
This demonstrates that the elbow method is an effective way to choose δ for
methods which use frequent patterns, the same finding was also mentioned in
[15]. Another observation is that on Cancer, δ is gain of relatively little relevant
to the predictive task where our classification performance just slightly changes
with different values for δ.

From Fig. 5(b), we observe a first-increasing and then-decreasing accuracy
line on two datasets Snippets and Food when d is increased whereas the classifica-
tion performance shows an increasing trend with an increasing d on Cancer. This
finding differs from those in document embedding methods, where the embed-
ding dimension mostly shows a positive effect on document classification [4].

(a) (b)

Fig. 5. Parameter sensitivity in transaction classification on the Snippets, Cancer, and
Food datasets. The minimum support δ values selected via the elbow method and used
in our experiments are indicated by red markers. (Color figure online)

5 Conclusion

We have presented Trans2Vec, an unsupervised method for learning transaction
embeddings from information of both singleton items and FIs. Our comprehen-
sive experiments on four transaction datasets demonstrated the meaningful and
discriminative representations learned by our method in the transaction classifi-
cation task. In particularly, Trans2Vec significantly outperforms several state-
of-the-art baselines in both accuracy and F1-macro scores. One of our future
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work is to investigate the quality of our embeddings in the transaction cluster-
ing task. Another possible extension is to utilize other information of items, e.g.,
quantity or weight, when learning transaction embeddings.
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Abstract. State-of-the-art sensitive information detection in unstruc-
tured data relies on the frequency of co-occurrence of keywords with
sensitive seed words. In practice, however, this may fail to detect more
complex patterns of sensitive information. In this work, we propose learn-
ing phrase structures that separate sensitive from non-sensitive docu-
ments in recursive neural networks. Our evaluation on real data with
human labeled sensitive content shows that our new approach outper-
forms existing keyword based strategies.

Keywords: Sensitive information · Recursive neural networks
Data leak prevention · Natural text understanding

1 Introduction

Detecting sensitive information in unstructured data is crucial for data leak pre-
vention. State-of-the-art approaches are based on defining keywords [1,2,5,6,10],
i.e., assume that the sensitive topic is described in full by a small set of keywords.
While effective for simple sensitive topics as in named entity recognition [2] and
personal identifiable information [10], they ignore context, i.e., the way in which
people describe sensitive topics in natural language phrases. As a result, they
may fail to report complex sensitive information or report false positives.

Concretely, complex sensitive information is characterized by the fact that
words are sensitive or not sensitive depending on their context. For example,
describing sensitive financial transactions might use the same vocabulary as in
the non-sensitive case, but using different expressions in natural language.

In this work, we therefore propose to extract the phrase structure from sensi-
tive information to learn these expressions, and create a recursive neural network
model (RNN) [7,11] that uses phrases to predict the sensitivity of documents.
We suggest a training approach for the RNN that requires only document level
sensitivity information and thereby does not require labeling individual sen-
tences, phrases, or even words. Such fine-grained labels are required for existing
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 373–385, 2018.
https://doi.org/10.1007/978-3-319-93040-4_30
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backpropagation-through-structure training, but are generally not available in
practice. Our evaluation on real sensitive content with humanly curated labels
demonstrates superior detection accuracy compared to state-of-the-art keyword-
based approaches. We furthermore show that by boosting relative importance of
incorrectly predicted samples we can increase sensitive detection accuracy - in
the extreme at the expense of an increase in false prediction rate. This adds flex-
ibility to our model and allows for domain-based adjustment between prediction
accuracy and end-user confidence in detected samples.
Our contributions include:

– Introducing and analyzing complex sensitive information detection
– A new RNN model based on representations of multiword structured phrases
– Training of our RNN model on document labels alone.

2 Complex Sensitive Information Detection

We assume a corpus of documents D = {d1, d2, . . . , dm}, where each document
is a sequence of words d = (w1, w2, . . . , wnd

) such that wi ∈ V and d ∈ D, and
training labels L : D → {0, 1}, where 0 means non-sensitive, and 1 means there
is (some) sensitive information.

Note that the problem is asymmetric in that non-sensitive documents are
known to be completely non-sensitive, whereas sensitive documents may only
contain very little sensitive information. Thus, the problem is recall-oriented,
focusing on finding the pieces of sensitive information [1].

In existing work, each word w is assigned a sensitivity score sen(w), without
considering its context of use. In this paper, however, we differentiate based on
how the word is used, i.e., the sensitivity of a word is conditional on its context
d, the sequence of words in which it occurs: sen(w|d).

Definition 1. If for all words w and pairs of documents, we have d, d′

sen(w|d) = sen(w|d′), then sensitivity is context-less.
Conversely, if there exists a word w′ and a pair of documents d, d′ such that

sen(w′|d) �= sen(w′|d′), then sensitivity is context-based.

Please note that the definition reflects the asymmetry in sensitive information
detection as discussed above.

3 SPR - Sensitive Phrase Based RNN Model

Existing sensitive information detection approaches count co-occurrence of a
keyword, or small set of keywords, with other words in the text. Co-occurrence
is then taken as an indication of sensitivity. This works well e.g. for topics like
HIV where co-occurrence with terms such as AIDS is easily detected.

However, as we argue here, more complex topics, as in intricate financial
transactions, require models that can capture context. Sentences can have arbi-
trary length and structure, which our model should be able to process. We there-
fore encode the context of phrase structures, which are semantic substructures
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in the text extracted through constituency parse-trees. Constituency parse-trees
structure a text into constituents, i.e., compositionality through sub-phrases [14].
Creating phrase structure embeddings in a recursive manner, we generate an
encoding of the entire context. Varying sizes of context are encoded by iterating
in a large structure. Our SPR (Sensitive Phrase RNN) model thereby captures
the complexity in sensitive information detection in natural language.

3.1 Phrase Structure

While sentences obviously can be interpreted as sequences, this does not reflect
the way in which humans understand them. Consider the sentence

We may have to move to cash margining if necessary.

It begins with a sequence of common words, “We may have to move to”, that
could appear in many different contexts. The particular context for this sentence
becomes clearer from the words “cash margining”. In sequence order, the state
after processing “We may have to move to” would be a general state, whereas
given “cash margining” first, we expect a more specific hidden state. The latter
order also reflects the grammatical structure in natural language.

We therefore propose to learn from sentences following their grammatical
structure instead. In Natural Language Processing, this structure is captured in
constituency parse-trees. Their leaves correspond to words, and nodes to sub-
phrases, as illustrated in Fig. 1. A depth-first descent from the root node visits the
words of the sentence in order. Constituency parse-trees can be automatically
generated in high quality for most languages [13]. Using phrase structures as
features we can successfully capture the context of words in the way they are
used in natural language. On the other hand, however, phrase trees provide
features which can be of arbitrary size and structure. We therefore propose to
build a model that can handle this variable input by recursively taking in parts
of the input. Concretely, we build a recursive neural network structure.

Fig. 1. Constituency parse-tree (left). Node labels are syntactic tags, e.g., NP Noun
Phrase, VP Verb Phrase; cf. Penn Treebank [15]; note SPR relies on phrase structure
alone, not the particular label; corresponding RNN (right).
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Fig. 2. RNN; on the right unfolded in structure. A node has 4 possible inputs of which
2 are active at a time. For readability, not all output edges are labeled V

3.2 Recursive Neural Networks with Phrase Structure

Our approach is to create embeddings of the complex structure in phrase trees
using neural networks. To handle input of arbitrary size we propose building a
recursive neural network (RNN) [12]. In a nutshell, a RNN recursively takes in
a new part of the input from the input structure. It includes output from the
previous step in the current step by applying the same architecture repeatedly.
In this manner, recursive neural networks are capable of transferring knowledge
between the steps, and of taking in complex input structures.

Given a constituency parse-tree we process sentences in grammatical order
using the RNN recursively in a bottom-up fashion, where in each step we process
a new node in the parse-tree, ending at the root node. Processing phrase trees
through RNNs, we automatically learn what the relevant structures in language
are for the complex sensitive information detection problem. We do not need to
define the size or structure of the context a-priori, which makes this a flexible
and easily applicable model.

As illustrated in Fig. 2 (left), the recursive neural network is a function that
for each node in the constituency parse-tree is evaluated with the representations
of its children as input to generate its output representation (as shown in the
unfolded in structure illustration in Fig. 2 (right)). For a node n with child nodes
n� (left) and nr (right)

repn = RNN(rep�; repr) = σ[W�rep� + Wrrepr + b] (1)

where σ is some non-linear activation function and repx is the generated rep-
resentation of node nx (for x ∈ {n, �, r}). Matrices W�,Wr weigh the different
inputs, b is an additive bias vector.

Representations for words are usually word embeddings [7], however, (1)
assumes that word representations (leaves) have same number of dimensions as
structure representations (nodes). Thus, it might be beneficial to consider words
and structure as two different learning problems. Fortunately, this can be done
with a minor adjustment to the equation above. We define a transformation
function t for child nodes nx as
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t(repx) =

{
Uxrepx + bU nx is node
Wxrepx + bW nx is leaf

(2)

with nx ∈ {n�, nr}. We can then rewrite (1) as

repn = RNN(rep�; repr) = σ[(t(rep�) + t(repr)]

The decoupling in (2) gives us freedom to select optimal word embedding size
and hidden representation size [7].

The output of a node in the tree is

on = σ(V repn + bp),

a prediction (sensitive/non-sensitive) based on the current node representation.
Thus for internal nodes in the constituency parse-tree, we obtain our prediction
having only seen part of the structure so far.

3.3 Training SPR

For training, we use the unfolded network, i.e., copies of the RNN for each node
in the constituency parse-tree as illustrated to the right in Fig. 2. We may back-
propagate errors through the tree in a top-down order and aggregate the errors
across all copies of the neural network. This can be viewed as a backpropagation-
through-structure (BPTS) [4] approach.

Our SPR makes use of the well established softmax activation function
σ(x)[i] = ex[i]/(

∑
j ex[j]) which provides a differentiable soft max of the out-

put. We expect only one answer to be true and therefore maximize (softly) the
best probability as the output. Using the softmax function allows us to interpret
the outcome as probabilities.

The prediction yn of SPR is given as yn = argmaxx∈{0,1} on[x] where on[x]
can be seen as probability that the input is x, with x ∈ {0, 1}.

Different sensitive domains require different focus on the model’s ability to
correctly predict sensitive vs. non-sensitive information. We model this using
relative weighing of the two types of information in the loss function (Different
weights are studied in the experiments). Adding everything together and using
cross-entropy for error function, we obtain our loss function

L = −
N∑

n=1

[
wtn log(pn) + (1 − tn) log(1 − pn)

]
(3)

where w is the weighting hyper-parameter. If w > 1 then we weigh sensitive loss
higher than non-sensitive loss.

Using the ground truth labels and BPTS we can learn our parameters θ for
maximal likelihood given our data. However, supervised BPTS as defined in [4],
requires a label for each node in the tree, which is not available and would be
difficult to obtain, as this would require assigning sensitivity scores to phrases
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of increasing complexity. Still we can solve this challenge by propagating labels
from the root to the internal nodes of the tree. We can then view SPR as
learning to assign probabilities to each node wrt. being sensitive or not. That
is, if we have the same sentence s occurring in, say, 3 different documents with
label assignment l1 = 0, l2 = 1, l3 = 0, SPR will minimize the loss function
by assigning probability SPR(s) = 1/3. A similar argument can be made for
internal nodes in the constituency parse-trees. Thus sentences n that contain
actual sensitive information have MLE of SPR(n) = 1 because they never occur
in a non-sensitive document. On the other hand, if there are sentences that
never occur in a sensitive document, their nodes have MLE of 0. We find that this
approach tends to provide a self-regularizing effect and we found no improvement
of the accuracy of the models when adding further L1 or L2 regularizing terms
to the loss function, i.e. (3).

4 Evaluation

4.1 Evaluation Methodology and Data

Complex sensitive information detection is not only a challenging task, but also
challenging to evaluate. Existing work has created evaluation ground truth for
sensitivity using three main strategies. The first strategy uses word co-occurrence
with seed words to semi-automatically label sensitive information as ground
truth [2,5]. This ground truth uses the same assumption as keyword-based detec-
tion that sensitive information co-occurs with other sensitive terms, but does not
reveal performance on more complex sensitive information. Another strategy
use sources of actual sensitive information, such as WikiLeaks, and insensitive
information from other sources. The major disadvantage of this strategy is that
insensitive and sensitive information exhibit major differences in structure and
content [6]. Thus, evaluation may actually measure how well the differences in
structure and content are learned and not necessarily how well sensitive content
is detected. The final strategy uses human labeled data. However, the sensi-
tive information in these approaches is typically simple like named entities (e.g.
names of cities) [1], or in general Personal Identifiable Information detection,
such as person names, sicknesses [10].

In this work we propose evaluation on the Enron dataset [8], an actual pri-
vate dataset which contains both sensitive and non-sensitive data, and which is
labeled by human experts. Our dataset contains examples of complex sensitive
information that cannot be characterized by a few keywords. It shows the varied
structure as seen in internal corporate communications and there are different
sensitive issues.

While this dataset has been used before for sensitive information detection,
e.g. [2], there were no complex sensitive information labels in the ground truth.
We here propose to exploit the human expert labels given to the Enron cor-
pus as part of a competition of the 2010 TREC conference, legal track [3,16].
Specifically, we study the case of prepay transactions.
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The Enron dataset has 1.2M+ documents [8], and there are 2720 documents
labeled by human experts.

For each sentence in any document, we obtain constituency parse-trees, 11390
in total, which we split into training, validation and test sets, see Table 1. All
word vectors come from the Stanford Glove word vector set [9]. To evaluate
performance, we study accuracy of detection of complex sensitive information,
with a particular focus on finding sensitive data. Formally, if ground truth
label ls = 1 on sentence s and prediction of our model SPR(s) = 1 then s
is true positive, if ls = 0 and SPR(s) = 1 it is false positive. Similarly for
negatives. Ctp, Cfp, Ctn, Cfn denote the counts of true positives, false positives,
true negatives and false negatives respectively. Accuracy of a data set D is then
accD = Ctp+Ctn

|D| .

Table 1. Overview over our labeled extract of the ENRON/TREC data: number of
sentences and constituency parse-trees for each split of the dataset.

Set Sensitive Non-sen Total Non-sen/total

Train 2985 6015 9000 0.6683

Validation 462 968 1430 0.6769

Test 322 638 960 0.6646

Total 3769 7621 11390 0.6691

4.2 Performance Evaluation for Complex Sensitive Information

We begin by studying the impact of input dimension of the word embeddings,
varying from 10 to 300. The hidden state internally is fixed at size 200. The
results are shown in Table 2, and as we can see, there is a clear increase in
accuracy as the dimension of the word embeddings is increased, but this trend
diminishes. Going from 100 to 200 the increase in accuracy score is 0.028, whereas
going from 200 to 300 the increase is negligible at only tiny 0.007.

Next, we investigate the impact of the size of the hidden state, here we fixed
word embedding size to 300. Similarly, to input word embedding size which pos-
itively affects performance up to a certain point, we observe similar performance
increase when increasing internal hidden representation size, as shown Table 3.
There is a drop between using 200 neurons with another increase for 300 neurons,
after which the performance decreases again at 500 neurons. This suggests that
we reach a level which provides a good size for the internal hidden representation
after which we most likely see effects of worse performance due to overfitting as
the model complexity exceeds what is useful for a well generalizing model. We
also evaluate the use of several layers at each node (Table 4). In all experiments
the sum of all neurons in the models is fixed to allow for the same potential
expressive power, and the number of layers varies between 1 and 3. Here we find
that the best hidden representation is a single, wide layer rather than stacked
thinner layers. In [7], the best performance for sentiment analysis is observed for
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Table 2. SPR-input; performance for
varying size of input word embeddings

Vector size Accval
10 0.7224

50 0.7531

100 0.7580

200 0.7608

300 0.7615

Table 3. SPR-hidden; varying the size
of the hidden state

Hidden state Accval
10 0.7406

50 0.7497

100 0.7650

200 0.7615

300 0.7678

500 0.7643

a stacked architecture with 3 layers. While a throughout examination of these
differences falls outside the scope of this work, we make the following observa-
tion; Sentiment analysis has a more Boolean behavior than sensitive information
detection. In sentiment a single “not” in the sentence can flip the expected label
as in “good” vs. “not good”. This Boolean property means that the model can
make localized decisions which suggest thin and high models, whereas complex
sensitive information can be viewed as a measure on the complete context. I.e.,
sensitive information is a property of what is communicated and is not as easily
flipped by a single word, which then suggests that a wide layered model will
perform better.

Table 4. Comparison of SPR-layer models as the number of layers is varied, keeping
the total number of neurons fixed

Hidden state Layers Accval

300 1 0.7678

150 2 0.7554

100 3 0.7594

We compare our final model with state-of-the-art in the field of sensitive
information detection both in terms of overall accuracy, and in terms of the
performance when focusing mostly on the sensitive information, as opposed to
correctly predicting non-sensitive documents. As discussed in more detail in
Related Work in Sect. 5, state-of-the-art is based on word counting, i.e., word
co-occurrences (n-gram), inference rules and mutual information models are all
keyword-based. In Table 5, Assoc Rules denotes [2] with default parameters for
“Email” corpus, C-sanitized [10] with α values as reported in their experiments.
Keyword-Based denotes a generic keyword based approach, given optimal key-
word set and is an upper bound for Assoc Rules and C-sanitized. SPR-input:
best model of experiments in Table 2, SPR-hidden: best model of experiments
in Table 3, SPR-layer: best model of experiments in Table 4.

As we can see in Table 5, all approaches improve upon the base line accuracy
value of 0.6646. Our models, as studied in the experiments above, outperform
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Table 5. Overall accuracy comparison; Assoc Rules [2], C-sanitized [10], Keyword-
Based generic keyword based, given optimal keyword set, SPR-input best of Table 2,
SPR-hidden best of Table 3, SPR-layer best of Table 4

Approach Parameter Acc

Baseline 0.6646

Assoc Rules supp = 2, conf = 0.6 0.7104

C-sanitized psen = 0.3354, α = 2.0 0.6479

C-sanitized psen = 0.3354, α = 1.5 0.6479

C-sanitized psen = 0.3354, α = 1.0 0.7240

Keyword-based 0.7476

SPR-input 300 0.7615

SPR-hidden 300 0.7678

SPR-layer 1 0.7678

this baseline, and also existing keyword based approaches with respect to over-
all accuracy. However, as discussed before, in sensitive information detection, we
are typically much more interested in successfully identifying sensitive informa-
tion than we are in correctly predicting non-sensitive information. We therefore
conduct an experiment that investigates this case in depth. Overall, SPR suc-
cessfully identifies complex sensitive information and outperforms state-of-the-
art particularly when focusing on documents containing sensitive information as
opposed to identifying non-sensitive information. SPR shows value in capturing
the phrase structure used to describe complex sensitive information that might
go unnoticed when relying on keywords alone.

Table 6. Weighing sensitive examples in loss function; accuracy for sensitive informa-
tion; F1 measure

Approach AccSen F1

Baseline 0 N/A

Keyword-based 0.2795 0.2004

SPRw=1 0.3540 0.2360

SPRw=2 0.3540 0.2400

SPRw=3 0.7236 0.2572

SPRw=4 0.9224 0.2536

In Table 6 we weigh errors on false negatives (unidentified sensitive examples)
higher in the loss function. We report class-based accuracy AccSen and also
the F1 score which weights false negatives and false positives in a single score
according to F1 = Ctp

Ctp+Cfn+Cfp
. We obtain close to 100% accuracy on sensitive
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example detection by increasing this weight, but for weights greater than 3 the
F1 score starts decreasing, reflecting that the number of false positives now is so
high that overall performance across both sensitive and non-sensitive information
degrades unreasonably. We observe that all of the SPR models in Table 6 have
higher performance than the best result we can obtain using previous state-of-
the-art algorithms. The weight parameter allows our SPR model to be adjusted
to the domain in a natural manner; for some domains false negatives may be
associated with high cost in which case a corresponding high weight can be used
to ensure a relatively low number of false negatives. In other domains, on the
other hand, too many false positives may be undesirable and thus here it would
intuitively make sense to have a lower weight for false negatives.

4.3 Qualitative Analysis

For our qualitative analysis (see Table 7) we investigate the semantics that SPR
learns, i.e., how close selected groups of phrases are in terms of Euclidean distance
in SPR embedding space. Table 7 lists single words such as “May-02” as being
close to similar other dates. Please note that we did not do any preprocessing
for dates and “May-02” is not in our input vocabulary. We can see that all our
phrases in Fig. 3 seem far away from unknown input words, which suggests that
our model learns semantic meaning for all phrases. The SPR model extracts
these semantics automatically, as exemplified also for Names and Goodbyes. We
observe that the space in Fig. 3 also contains structure where dates seem almost
localized to a distinct point, where-as Prepay sentences form a curly line-like
structure. The final listing in Table 7, which we termed Oil & Gas due to its
apparent semantics, is from a region of the space completely devoid of sensitive

Table 7. SPR semantics in related single words (top) and sentences (bottom)

Label Close SPR embeddings

Dates May-02, Feb-02, Oct-03, Apr-01, Jun-99

Names Stacy Dickson, Martha Braddy, James Westgate, GEA Rainey, Citibank
ISDA

Good-byes “Yours sincerely, EnronEntityName”

“Signature of Company Officer”

Prepay “However, he did not attempt to calculate a VaR statistic for the daily
cash requirements for the exchange traded positions”

“Li identified several of these and they are given on the flowchart (gas
settlements, merchant assets, etc.)”

Oil & Gas “The oil flows through the orifice and into the bearings and forms a film
that cools and lubricates the journal”

“In accordance with NFPA, the fire and gas detection controls will be
powered by a dedicated 24V DC battery system”
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phrases. Prepay on the other hand, has 99.2% sensitive sentences, and is thereby
a strong indicator of how sensitive information is captured by SPR.

Our qualitative analysis shows that the SPR model indeed learns semantic
meaning from the documents. This suggests that the successful identification of
sensitive information in SPR is based on its ability to identify distinct compo-
sitional semantic information.
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Fig. 3. 2-dimensional view of SPR phrase model with colors highlighting 200 closest
phrases of label groups listed in Table 7

5 Related Work

Sensitive information detection in [2] uses a seed set of sensitive words, and
creates inference rules based on word co-occurrences. Given a word, confidence
is defined as the probability of the document containing sensitive information if it
contains the word. Text containing highly sensitive words is considered sensitive.
[5] applies the inference rule approach to sensitive information in software code.
An ontology such as WordNet provides synonyms for actually redacting the
sensitive information. In [6], word-to-word (bi-grams) co-occurrence is used to
infer sensitive words. The focus is on a small number of false positives, using
in particular the false-discovery-rate (FDR), i.e., the inverse of precision. [1]
presents a semi-automatic approach based on total utility, which measures the
model’s probability that the word is sensitive together with the gain associated
with learning the word’s true label. [10] uses pointwise mutual information, based
on co-occurrence of bi-grams, where one is a sensitive seed word, and a threshold
on information content which puts the occurrence of sensitive words in relation
to the size of the corpus.

All approaches above use keyword definitions for sensitive content and word
pair co-occurrence counting. Our proposed SPR model additionally learns rele-
vant structure extracted from natural language to characterize sensitivity.
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6 Conclusion

We introduce the complex sensitive information detection problem where context
and structure in language has to be taken into account. Our SPR model extracts
phrase structure to learn a recursive neural network model. Our experimental
evaluation, which is the first to use a real document corpus containing both
sensitive and non-sensitive documents with human expert labels, shows that we
outperform state-of-the-art keyword based models.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 645198
(Organicity Project) and No. 732240 (Synchronicity Project).
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Abstract. Density-based clustering is able to find clusters of arbitrary
sizes and shapes while effectively separating noise. Despite its advan-
tage over other types of clustering, it is well-known that most density-
based algorithms face the same challenge of finding clusters with var-
ied densities. Recently, ReScale, a principled density-ratio preprocessing
technique, enables a density-based clustering algorithm to identify clus-
ters with varied densities. However, because the technique is based on
one-dimensional scaling, it does not do well in datasets which require
multi-dimensional scaling. In this paper, we propose a multi-dimensional
scaling method, named DScale, which rescales based on the computed
distance. It overcomes the key weakness of ReScale and requires one
less parameter while maintaining the simplicity of the implementation.
Our empirical evaluation shows that DScale has better clustering per-
formance than ReScale for three existing density-based algorithms, i.e.,
DBSCAN, OPTICS and DP, on synthetic and real-world datasets.

Keywords: Density-ratio · Density-based clustering
Varied densities · Scaling

1 Introduction

Clustering, as the most common unsupervised knowledge discovery technique,
has become one of the most popular automatic data-labelling techniques. It has
been widely studied for data mining and knowledge discovery [8]. The goal of
clustering is to partition a set of data points into a set of homogeneous groups
based on their similarity [6].

There are different kinds of clustering algorithms depending on the specific
assumption and model used. Density-based clustering algorithms find clusters in
regions of high density which are separated by regions of low density. The clus-
ters are typically identified by grouping points which are above a global density
threshold [5]. In contrast to traditional partitioning methods, which can only dis-
cover globular clusters, density-based clustering finds clusters of arbitrary sizes
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 389–400, 2018.
https://doi.org/10.1007/978-3-319-93040-4_31
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and shapes while effectively separating noise and outliers. Therefore, density-
based clustering has received substantial attention in theory and practice.

Despite its popularity, it is well-known that most density-based algorithms
face the same challenge of finding clusters with differing densities [4]. Zhu et al.
[12] have analysed the cause of this weakness and determined the kind of data
distribution in which most density-based clustering will fail. Armed with the
analytical result, they introduce a less restrictive assumption that finds clusters
in regions of locally high density separated by regions of locally low density; and
propose a density-ratio based approach to overcome this weakness.

ReScale [12], a density-ratio based approach, has been shown to success-
fully overcome the weakness of density-based clustering in finding clusters of
varied densities. It is an adaptive scaling approach which operates as a pre-
processing step to rescale a given dataset, and then apply the rescaled dataset
to an existing density-based clustering algorithm. This enables the clustering
algorithm to detect all clusters with varied densities. However, ReScale is an one-
dimensional scaling method which is applied to each individual attribute inde-
pendently. Therefore, it becomes less effective when a data distribution demands
multi-dimensional scaling. Such a dataset produces a significant overlap between
clusters if the one-dimension projection is conducted [12].

This paper makes the following contributions:

1. Introducing a new distance scaling method and proving that it is equivalent
to a density-ratio estimation. It is a multi-dimensional scaling method which
considers all dimensions simultaneously.

2. Demonstrating DScale’s effectiveness by applying it to existing density-based
algorithms: DBSCAN [5], OPTICS [2] and DP [11].

The advantages of DScale over ReScale are: it overcomes the aforementioned
weakness of ReScale and requires only one parameter rather than two; while
maintaining the simplicity of the implementation. As a result, DScale enables
an existing density-based algorithm to find clusters of varied densities in a more
general context and has less parameter tuning than ReScale.

The rest of the paper is organised as follows: we provide an overview
of density-based clustering algorithms and related work in Sect. 2. Section 3
describes the varied density problem faced by existing density-based clustering
algorithms. Section 4 presents the principle and the proposed DScale method.
We provide the empirical evaluation results in Sect. 5, followed by conclusion in
the last section.

2 Related Work

The classic density based clustering algorithms, such as DBSCAN [5] and DEN-
CLUE [7], model the data distribution of a given dataset using a density esti-
mator and then apply a threshold to identify “core” points which have densities
higher than the threshold. A linking method is employed to link all neighbour-
ing core points to form a cluster. If a point is neither a core point nor in the
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neighbourhood of a core point, it is considered to be noise. Since both DBSCAN
and DENCLUE use a global density threshold to identify clusters, they face the
same challenge of finding clusters with differing densities [1].

Many variants of DBSCAN have attempted to overcome the issue of detecting
clusters with varied densities. OPTICS [2] produces a “reachability” plot such
that all points are ordered in a special linear order where spatially adjacent
points follow close to each other in the x-axis, and the reachability distances are
shown in the y-axis. Cluster centres normally have the higher density or lower
“reachability distance” than the cluster boundaries. Thus, a hierarchical method
can be employed to extract “valleys” from this plot as clusters. The clustering
performance of OPTICS depends on the hierarchical method employed.

Density peaks-based clustering (DP) algorithm [11] identifies clusters with
density maxima. For each point, DP calculates its density value (ρ) using an
ε-neighbourhood density estimator, and the minimum distance (δ) between it
and another point with a higher density value. Then, it selects k cluster centres
which have locally maximum density and have a relatively large distance from
any points with higher local densities, i.e., the k points with the highest ρ × δ.
Each remaining point is assigned to its nearest neighbour of higher density; and
the points, which are connected or transitively connected to the same cluster
centre, are grouped into the same cluster. Finally, points with low densities at
border regions are classified as noise.

Recently, density-ratio based clustering [12] is proposed to detect clusters as
regions of local high densities that are separated by regions of local low densities.
Instead of identifying a “core” point based on its density, it advises to use density-
ratio which is a ratio of the density of an instance and the density of its η-
neighbourhood (η is a large radius). Points located at locally maximum density
regions have higher density-ratio values than that located at locally minimum
density regions. Thus it allows for a single threshold to be used to separate all
clusters with varied densities. Figure 1a illustrates a density distribution of an
one-dimensional data, where the x-axis is the point attribute value and the y-
axis is the density value. A single density threshold cannot separate all clusters.
However, the density-ratio distribution allows a single threshold to be used to
separate these clusters, as shown in Fig. 1b.

ReScale [12] is a preprocessing technique based on density-ratio and designed
for a density-based clustering algorithm which uses a global density threshold to
identify with varied densities. ReScale first rescales each attribute of a dataset
and then applies an existing density-based clustering algorithm directly to the
rescaled dataset. This converts the density-based clustering algorithm to perform
density-ratio clustering because the estimated density of each rescaled point
approximates the estimated density-ratio of that point in the original space. For
example, Fig. 1c is the density distribution of rescaled points in Fig. 1a, where
the density value of each point approximates the density-ratio value in Fig. 1b.
ReScale requires two parameters η and ψ, used to define the local neighbourhood
and control the precision of η-neighbourhood density estimation, respectively. A
key weakness of ReScale is that the rescale is conducted on each individual
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(a) Density distribution
of three clusters

(b) Density-ratio distri-
bution of (a)

(c) Density distribution
on ReScaled data of (a)

Fig. 1. (a) A mixture of three Gaussian distributions that cannot be separated using a
single density threshold; (b) Density-ratio distribution of (a) which allows for a single
threshold to be used to separate all three clusters; (c) Density distribution on ReScaled
data of (a), where the density value of each point approximates the density-ratio value
in (b).

attributes independently. If there is a significant overlap between clusters on
some attributes, ReScale may become less effective [12].

In this paper, we focus on the density-ratio approach because it is a principled
method and can be used to resolve the varied density issue in existing density-
based clustering algorithms.

3 The Problem of Varied Densities

We first provide notations used throughout this paper.
Let D = {x1, x2, . . . , xn}, xi ∈ Rd, xi ∼ F denote a dataset of n points, each

sampled independently from a distribution F . Let ̂pdf(x) denote the density
estimate of point x which approximates the true density pdf(x).

Let Nε(x) be the ε-neighbourhood of x, Nε(x) = {y ∈ D|s(x, y) � ε}, where
s(·, ·) is the distance function (s : Rd × Rd → R).

In general, pdf(x) can be estimated via a small ε-neighbourhood (as used by
density-based clustering algorithm DBSCAN [5]) as follows:

̂pdf ε(x) =
1

nVε
|Nε(x)| =

|{y ∈ D|s(x, y) � ε}|
nVε

(1)

where Vε ∝ εd is the volume of a d-dimensional ball of radius ε.
A set of clusters {C1, . . . , Cς} is defined as non-empty and non-intersecting

subsets: Ci ⊂ D,Ci �= ∅,∀i�=j Ci ∩ Cj = ∅. Let ci = arg maxx∈Ci
̂pdf(x) denote

the mode (point of the highest estimated density) for cluster Ci; and pi = ̂pdf(ci)
denote the corresponding peak density value.

A commonly used density-based clustering method uses a global density
threshold to identify core points (which have densities higher than the thresh-
old); and then it links neighbouring core points together to form clusters.
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For this kind of algorithm to find all clusters in a dataset, the data distribu-
tion must have the following necessary condition: the peak density of any cluster
is greater than the maximum of the minimum density along any path linking
any two modes. It is formally described by Zhu et al. [12] as follows:

min
k∈{1,...,ς}

pk > max
i�=j∈{1,...,ς}

gij (2)

where pk is the peak density of cluster Ck from a total of ς clusters; and gij is
the largest of the minimum density along any path linking clusters Ci and Cj .

This condition implies that there must exist a threshold τ that can be used to
break all paths between the modes by assigning regions with density less than τ
to noise. Otherwise, if the mode of some cluster has a density lower than that of a
low-density region between some clusters, then this kind of clustering algorithm
will fail to find all clusters, i.e., either some high-density clusters are merged
together when a lower density threshold is used, or some low-density clusters
are designated as noise when a higher density threshold is used. To illustrate,
Fig. 1a shows that using a high threshold τ1 will treat all points in Cluster C3

as noise but use a low threshold τ2 will assign points in C1 and C2 to the same
cluster.

Density-ratio based clustering is a principled approach to overcome this weak-
ness of density-based clustering. It identifies clusters as regions of locally high
density.

The density-ratio of a point is the ratio of its density and the density of its
η-neighbourhood, which can be estimated as

̂rpdf ε,η(x) =
̂pdf ε(x)
̂pdfη(x)

(3)

where ̂pdfη(x) = 1
nVη

|Nη(x)| denotes the average density value over the η-
neighbourhood of x, providing η > ε.

There is a lemma about the density-ratio value [12], restated as follows:

Lemma 1. If x is at a local maximum density of Nη(x), then ̂rpdf ε,η(x) � 1; if
x is at a local minimum density of Nη(x), then ̂rpdf ε,η(x) � 1.

A global density-ratio threshold around unity can be used to identify all
cluster peaks and break all paths between different clusters when the following
conditions are met: (i) the peak density of each cluster is higher than average
density over the η-neighbourhood around the peak; and (ii) points along every
path linking between any two clusters have lower density than the average density
over the η-neighbourhood of these points.

ReScale [12] is a density-ratio based scaling approach which operates as a
pre-processing step to rescale a given dataset D to D′. For an one-dimensional
dataset, ReScale uses a η-neighbourhood density estimation to rescale the data
according to the cumulative distribution function of the radius (η) estimation
using the following mapping function:

∀x∈D,y∈D′ y = ̂cdfη(x) (4)
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where ̂cdfη(x) =
∫ x

−∞
̂pdfη(x′)dx′ is the cumulative distribution function. Note

that this is a probability integral transform [10] such that ∀x∈D,y∈D′ ̂pdfη(y) =
̂pdfη( ̂cdfη(x)) = 1/n, which is a uniform distribution.

The aim of this scaling procedure is to make the data approximately uni-
form (on each dimension). After rescaling, the density-based clustering with a
bandwidth (ε < η) will approximate the density-ratio based clustering, i.e., the
estimated density of each rescaled point is approximately the estimated density-
ratio of that point in the original space [12]. In a nutshell, ReScale enables
clusters with varied densities to be identified using a single global threshold that
would otherwise be impossible on the original dataset.

For a multi-dimensional dataset, ReScale uses the one-dimensional map-
ping method mentioned above to scale each attribute independently. However,
if a data distribution has a significant overlap between cluster peaks on one-
dimension projection, i.e., not all cluster peaks are located at locally maximum
density areas on the projection, the effectiveness of ReScale would be weakened
[12]. In order to overcome this weakness, it is important to propose a multi-
dimensional scaling. A new distance scaling method called DScale is provided
to meet this demand.

4 A Distance Scaling Method for Density-Ratio
Estimation

Rather than rescaling on each individual original attribute, we propose a new
density-ratio method which rescales the pairwise distance as a multi-dimensional
scaling, such that points located at locally high-density areas have higher densi-
ties than points located at locally low-density areas.

Given a point x ∈ D, we can rescale the distance between x and its η-
neighbourhood point y ∈ Nη(x, s) using a mapping function:

∀x,y∈D,y∈Nη(x,s) s′(x, y) = s(x, y) × r(x) (5)

where r(x) is the scaling function and s′(·, ·) is the scaled distance.
Similar to ReScale, the scaling function should make the data approximately

uniformly distributed in the scaled η-neighbourhood. Then we have:

̂pdfη′(x, s′) =
|Nη′(x, s′)|

nVη′
=

|Nη(x, s)|
nVη′

=
1

Vm
(6)

where η′ = η×r(x); and Vm is the total volume of a d-dimensional ball of radius
m in the original space; and m = maxx,y∈D s(x, y). Note that Eq. 5 is a linear
scaling, thus the number of points in Nη(x, s) remains the same as in Nη′(x, s′),
i.e., |Nη′(x, s′)| = |Nη(x, s)|.

Since Vη′ = Vη×r(x) = r(x)d × Vη ∝ r(x)d × ηd and Vm ∝ md, substituting
them in Eq. 6 gives:

r(x) = (
|Nη(x, s)| × Vm

n × Vη
)

1
d = (

|Nη(x, s)| × md

n × ηd
)

1
d (7)
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Finally, the distance between x and any point y ∈ D \Nη(x, s) is normalised
as if the maximum distance is m. Here we use a simple min-max normalisation:

∀y∈D\Nη(x,s) s′(x, y) = (s(x, y) − η) × m − η′

m − η
+ η′ (8)

The reason we use the min-max normalisation is to keep the same instance
rank. Other similar normalisation methods can also be used in Eq. 8.

When using a small radius ε′ to estimate the new density such that (ε′ <
η′ < m)∧ (ε′ = ε× r(x))∧ (η′ = η × r(x)), then we can provide a theorem about
the ε′-neighbourhood density estimator on the first part of rescaled distance:

Theorem 1. The estimated density ̂pdf ε′(x, s′) in terms of the rescaled distance
s′ is proportional to the density-ratio ̂rpdf ε,η(x, s), where the density-ratio is
estimated based on two radii ε and η in terms of the original distance s.

Proof. After scaling the distance between x and other points with Eqs. 5 and 8,
the newly estimated density of x using an ε′-neighbourhood density estimator
is:

̂pdf ε′(x, s′) =
1

nVε′
|Nε′(x, s′)| =

1
nVε′

|Nε(x, s)|

=
|Nε(x, s)|

nVε × r(x)d
=

|Nε(x, s)|
nVε × |Nη(x,s)|×Vm

n×Vη

=
Vη

Vm × Vε

|Nε(x, s)|
|Nη(x, s)|

=
̂pdf ε(x, s)

Vm × ̂pdfη(x, s)
=

1
Vm

̂rpdf ε,η(x, s) ∝ ̂rpdf ε,η(x, s) (9)

�
Based on Lemma 1, using the rescaled distance, a single density threshold

τ around 1
Vm

can be used to identify all points which are located at locally
high-density areas in a dataset with varied densities.

Usually, ε is set less than η, i.e., ε′ < η′. However, it is possible to set ε > η in
practice. Even in this case, Eq. 8 still can transform the original density distribu-
tion to one which is more uniform in two conditions: (i) When both ̂pdf ε(x, s) and
̂pdfη(x, s) are higher than the uniformly distributed density 1

Vm
, we have r(x) >

1, and then get ε′−ε = (ε−η)× m−η′

m−η +η′−ε = εη−εη′+mη′−mη
m−η = (η−η′)(ε−m)

m−η > 0
and Vε′ > Vε, since η′ = η ×r(x) > η and m > ε > η. As |Nε(x, s)| = |Nε′(x, s′)|,
we have ̂pdf ε′(x, s′) < ̂pdf ε(x, s). (ii) If both ̂pdf ε(x, s) and ̂pdfη(x, s) are lower
than the uniformly distributed density, we have ̂pdf ε′(x, s′) > ̂pdf ε(x, s) by a
similar derivation. Thus, it can reduce the density gaps between clusters with
varied densities and enable a density-based clustering algorithm to use a density
threshold to detect clusters with varied densities.

We name the above new distance scaling method as DScale. Note that DScale
has one parameter η only. ε is a parameter in the density-based clustering algo-
rithm. The parameters ε′ and η′ are not real parameters that a user needs to
set; they are used above for the proof and explanation only.
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After applying DScale for each and every x ∈ D in the distance matrix, it
allows an existing density-based clustering algorithm to use a single threshold
to find all clusters with varied densities, that would otherwise be impossible.
This is because the density distribution in the rescaled space meets the necessary
condition for a density-based clustering algorithm to detect all clusters, as shown
in Eq. 2.

It is worth mentioning that the rescaled distance is asymmetric. Based on
Eqs. 5 and 7, ∀x,y∈D, if |Nη(x, s)| �= |Nη(y, s)|, then r(x) �= r(y); therefore
s′(x, y) �= s′(y, x). This has no effect on most of the existing density-based algo-
rithms because density estimation is point based.

The implementation of DScale based on distance s is shown in Algorithm 1.
It requires one parameter η only. Both the time complexity and space complexity
of DScale are O(n2). Because many existing density-based clustering algorithms
have time and space complexities O(n2), DScale as a preprocessing step does
not increase their overall complexities.

Note that DScale is not a typical distance normalisation as used in some
distance measures such as cosine distance because DScale aims to achieve the
required density-ratio estimation but the typical normalisation does not. It is
also different from multidimensional scaling [3] that preserves as well as possible
the original pairwise distances between instances.

5 Empirical Evaluation

This section presents experiments designed to evaluate the effectiveness of
DScale. We compare DScale with ReScale using three existing density-based
clustering algorithms (DBSCAN, OPTICS and DP) in terms of best F-measure:
given a clustering result, we calculate the precision score Pi and the recall score
Ri for each cluster Ci based on the confusion matrix, and then the F-measure
score of Ci is the harmonic mean of Pi and Ri. The overall F-measure score is
the unweighted average over all clusters: F-measure = 1

ς

∑ς
i=1

2PiRi

Pi+Ri
.

We used 2 artificial datasets and 9 real-world datasets with different data
sizes and dimensions from UCI Machine Learning Repository [9] to ascertain
the ability of density-ratio in handling datasets with varied densities. Table 1
presents the data properties of the datasets.

3L is a 2-dimensional data containing three elongated clusters with differ-
ent densities, as shown in Fig. 2a. 4C is a 2-dimensional data containing four
clusters with different densities (three Gaussian clusters and one elongated clus-
ter), as shown in Fig. 2b. Note that DBSCAN is unable to correctly identify
all clusters in both datasets because they do not satisfy the condition specified
in Eq. 2. Furthermore, clusters in 3L are significantly overlapped on individual
attribute projection, which violates the requirement of ReScale such that the
one-dimensional projections cannot identify the density peaks of any clusters.

All algorithms used in our experiments were implemented in Matlab (the
source code can be obtained at https://sourceforge.net/p/distance-scaling/).
All datasets were normalised using the min-max normalisation to yield each
attribute to be in [0, 1] before the experiments began.

https://sourceforge.net/p/distance-scaling/
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Algorithm 1. DScale(S, η, d)
Input: S - input distance matrix (n × n matrix); η - radius of the neighbourhood; d

- dimensionality of the dataset.
Output: S′ - distance matrix after scaling.
1: m ← the maximum distance in S
2: Initialising n × n matrix S′

3: for i = 1 to n do
4: Nη(xi) ← {xj ∈ D | S[xi, xj ] � η} /* Identify the η-neighbourhood of xi */

5: r(xi) = (
|Nη(xi)|×md

n×ηd )
1
d /* Calculate the scaling factor based on Equation 7 */

6: ∀xj∈Nη(xi) S′[xi, xj ] = S[xi, xj ] × r(xi) /* Scale the distances between xi and
instances in the η-neighbourhood of xi based on Equation 5 */

7: ∀xj∈D\Nη(xi) S′[xi, xj ] = (S[xi, xj ] − η) × m−η×r(xi)
m−η

+ η × r(xi) /* Scale the
distances to instances outside the η-neighbourhood of xi based on Equation 8 */

8: end for
9: return S′

Table 1. Data properties

Dataset Data size #Dimensions #Clusters

Iris 150 4 3

GPS 163 6 2

Thyroid 215 5 3

Ecoli 336 7 8

Libras 360 90 15

Wilt 500 5 2

Breast 699 9 2

Pima 768 8 2

Segment 2310 19 7

3L 560 2 3

4C 1250 2 4

For DP, we normalised both ρ and δ to be in [0, 1] before selecting k cluster
centres so that these two variables have the same weight in their product ρ × δ.
We report the best clustering performance within a reasonable range of param-
eter search for each algorithm. Table 2 lists the parameters and their search
ranges for each algorithm. Note that the parameter ξ in OPTICS is used to
identify downward and upward areas of the reachability plot in order to extract
all clusters using a hierarchical method [2]. ψ in ReScale controls the precision
of ̂cdfη(x), i.e., the number of intervals used for estimating ̂cdfη(x).
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(a) 3L data distribution (b) 4C data distribution

Fig. 2. (a) A two-dimensional data containing three line-shaped clusters. (b) A two-
dimensional data containing four clusters.

Table 2. Parameters and their search ranges for each algorithm. The search ranges of
ψ and η are as used by Zhu et al. [12].

5.1 Clustering Performance

Table 3 shows the best F-measures of DBSCAN, OPTICS, DP, and their ReScale
and DScale versions. The average F-measures, showed in the second last row,
reveal that DScale improves the clustering performance of every existing cluster-
ing algorithm in more datasets than those of ReScale. The extent of improvement
is most pronounced for DBSCAN, i.e., from 0.59 to 0.74. The gap decreases for
OPTICS and DP because they are more powerful algorithms which do not rely
on a single density threshold to identify cluster modes.

Regarding the number of top 1 performers (showed in the last row), DScale-
DBSCAN is the top 1 performer on 10 out of 11 datasets. DScale-OPTICS and
DScale-DP are the top 1 performers on 7 and 8 out of 11 datasets, respectively.

For the 4C dataset, both ReScale and DScale significantly improved the
clustering performances of DBSCAN, OPTICS and DP. However, ReScale
cannot improve clustering performances on the 3L dataset because of using
one-dimensional projections. In contrast, DScale significantly improved the F-
measure of DBSCAN and OPTICS from 0.59 and 0.83 to 0.90 and 0.95, respec-
tively.

DScale has only one parameter η to define the η-neighbourhood. The density-
ratio based on a small η will approximate 1 and provides no information, while
on a large η will approximate the true density and show no advantage.
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Table 3. Best F-measure of DBSCAN, OPTICS, DP, and their ReScale and DScale

versions on 11 datasets. For each clustering algorithm, the best performer in each
dataset is boldfaced. Orig, ReS and DS represent Original, ReScale and DScale, respec-
tively.

Data DBSCAN OPTICS DP

Orig ReS DS Orig ReS DS Orig ReS DS

Iris 0.85 0.90 0.93 0.85 0.84 0.88 0.97 0.97 0.97

GPS 0.75 0.75 0.80 0.76 0.76 0.763 0.81 0.821 0.82

Thyroid 0.58 0.79 0.83 0.59 0.85 0.90 0.87 0.93 0.87

Ecoli 0.37 0.40 0.54 0.44 0.57 0.50 0.48 0.55 0.63

Libras 0.40 0.44 0.46 0.50 0.52 0.49 0.52 0.38 0.523

Wilt 0.38 0.39 0.54 0.677 0.58 0.68 0.54 0.68 0.54

Breast 0.82 0.95 0.96 0.84 0.96 0.95 0.97 0.97 0.972

Pima 0.43 0.48 0.64 0.65 0.65 0.66 0.62 0.66 0.67

Segment 0.59 0.62 0.61 0.69 0.67 0.70 0.78 0.77 0.80

3L 0.59 0.63 0.90 0.83 0.83 0.95 0.82 0.81 0.86

4C 0.71 0.90 0.92 0.87 0.95 0.94 0.87 0.92 0.95

Average 0.59 0.66 0.74 0.70 0.74 0.76 0.75 0.77 0.78

#Top 1 0 1 10 0 4 7 1 4 8

(a) Thyroid (b) Breast (c) 4C

Fig. 3. F-measure on 3 datasets with different η values.

Figure 3 shows the average F-measure on 3 datasets when DScale uses η from
0.1 to 0.5. It shows that this scaling effect is different for different datasets in
terms of getting the best clustering results. Generally, η ∈ [0.1, 0.2] and ε is set
slightly smaller than η.

6 Conclusion

We introduce a new density-ratio method DScale to enable existing density-
based clustering algorithms to find clusters of varied densities. It is a
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multi-dimensional scaling method which operates as a pre-processing step to
rescale the distance for a given dataset. Applying the rescaled distance to an
existing density-based clustering algorithm enables the algorithm to detect clus-
ters with varied densities that would otherwise be impossible.

DScale has two advantages over the existing method ReScale. First, DScale
overcomes the key weakness of ReScale which relies on one-dimension projec-
tions. Second, DScale requires one less parameter than ReScale, and retains
the same simplicity of ReScale. As a result, DScale enables an existing density-
based algorithm to find clusters of varied densities in a more general context
and has less parameter tuning than ReScale. Our empirical evaluation shows
that DScale has better improvement on clustering performance than ReScale
for three existing density-based algorithms: DBSCAN, OPTICS and DP.
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Abstract. Most density-based clustering algorithms suffer from large
density variations among clusters. This paper proposes a new measure
called Neighbourhood Contrast (NC) as a better alternative to density
in detecting clusters. The proposed NC admits all local density max-
ima, regardless of their densities, to have similar NC values. Due to this
unique property, NC is a better means to detect clusters in a dataset
with large density variations among clusters. We provide two applications
of NC. First, replacing density with NC in the current state-of-the-art
clustering procedure DP leads to significantly improved clustering per-
formance. Second, we devise a new clustering algorithm called Neigh-
bourhood Contrast Clustering (NCC) which does not require density
or distance calculations, and therefore has a linear time complexity in
terms of dataset size. Our empirical evaluation shows that both NC-
based methods outperform density-based methods including the current
state-of-the-art.

Keywords: Neighbourhood Contrast · Clustering

1 Introduction

Density-based clustering methods rely on the estimated density distribution to
detect clusters in a dataset. High density regions are recognized as a cluster
and low density areas are regarded as separations between clusters [6]. However,
most density-based methods are known to have difficulties clustering datasets
with hugely varying densities [2,3,10]. For example, the density-based spatial
clustering of applications with noise (DBSCAN) [4], which employs a single
cut-off threshold to identify high density points, often can not detect all the
clusters with hugely varying densities. Another example is the recently proposed
clustering by fast search and find of density peaks (DP) [11]. It uses a novel
way of detecting clusters by finding local density peaks in the first step. The
local density peaks are points that have high densities and relatively distant
from other peaks. Because it combines density and distance rather than using
density alone in detecting density peaks, DP has a much improved capability
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 401–412, 2018.
https://doi.org/10.1007/978-3-319-93040-4_32
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than DBSCAN in detecting clusters. However, it still suffers from large density
variations among clusters in some data distributions.

The unaddressed issue of using density to identify clusters is that low density
clusters are often overlooked in a dataset having large density variations. For a
measure which addresses this issue, the necessary property is to admit all cluster
centers, regardless of their densities, to have approximately the same highest
value of the measure. Density, by definition, does not posses this property.

To address this issue from its root cause, we propose a new measure which
has the above-mentioned property. The key contributions of this paper are:

1. Introducing a new measure called Neighbourhood Contrast (NC) with a
unique property, i.e., all local density maxima have similar NC values, regard-
less of their densities. This property makes NC a better means to detect
clusters than density.

2. Using NC in clustering. This is done in two ways: First, NC is incorporated
in a state-of-the-art density-based clustering algorithm DP [11]. By replacing
density with NC in the procedure of DP, we show that NC-DP, i.e., the NC
version of DP, significantly improves DP’s clustering performance. Second,
we devise a new clustering algorithm called Neighbourhood Contrast Clus-
tering (NCC) which does not require pairwise distance calculations or nearest
neighbour search and hence has a linear time complexity.

3. Conducting experiments to examine the effectiveness of NC. In our exper-
iments, both NC-DP and NCC outperform two major density-based algo-
rithms including the state-of-the-art method DP.

The rest of this paper is organised as follows. Section 2 introduces Neigh-
bourhood Contrast. Section 3 describes NC-DP. Section 4 proposes NCC. The
experiments are reported in Sect. 5, followed by the conclusion of the paper.

2 Neighbourhood Contrast

For x ∈ Rd, let T be a pair of neighbouring non-overlapping and symmetric
regions which is generated from a random process, and one of two regions must
cover x. Let T (x) denote the region covering x and T ′(x) denote the other region.

Definition 1. Given a dataset D, Neighbourhood Contrast of x is the probability
that T (x) has larger probability mass than T ′(x), i.e.,

NC(x) = P (|T (x)| > |T ′(x)|),
where |T (x)| = |{y ∈ D : y ∈ T (x)}| is the number of instances in T (x).

2.1 Property of Neighbourhood Contrast

Theorem 1. If a local density distribution is isotropic in an adjacent region of
a density maximum x∗, i.e., the density decreases at the same rates while moving
away from x∗ along any direction, then NC(x∗) = 1.
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Proof. Let x∗ be an isotropic density maximum, as shown in Fig. 1. For any point
x near x∗, the larger the distance d(x,x∗), the smaller the density of x. Suppose
a random pair of regions T (x∗) and T ′(x∗) is generated as shown in Fig. 1(b) and
(c). For an arbitrary point x in T (x∗), let x′ be its mirror counterpart in T ′(x∗).
Because d(x,x∗) < d(x′,x∗), hence f(x) > f(x′), for all x ∈ T (x∗). Therefore,∫

T (x∗) f(x)dx >
∫

T ′(x∗) f(x′)dx′. In other words, the probability mass in T (x∗)
is always larger than that in T ′(x∗), which leads to NC(x∗) = 1. ��

Fig. 1. (a) A local density maximum x∗ where the density of its nearing points
decreases isotropically, with concentric contours centered at x∗. (b) A random region
T (x∗) and its sister region T ′(x∗). (c) An arbitrary point x in T (x∗) and its mirror
counterpart x′ in T ′(x∗): x′ is always further away from x∗ than x.

Although the estimated density contours near a density peak may not be
strictly isotropic, the region T (x∗) which covers the density peak is likely to
have larger mass than T ′(x∗). Hence based on Theorem 1, we provide the key
property of Neighbourhood Contrast NC(x) as follows:

Property 1. For any local density maximum x∗, its Neighbourhood Contrast
NC(x∗) approximates 1, regardless of its density.

A comparison of density and NC distributions of a synthetic dataset is
shown in Fig. 2. In Fig. 2(a) the sparse cluster in the middle exhibits signifi-
cantly lower density than the other three clusters. In contrast, Fig. 2(b) shows
that core regions of all 4 clusters have similar NC, by virtue of Property 1.

2.2 Estimating Neighbourhood Contrast

To estimate NC given a dataset D, random pairs of regions need to be generated.
Binary trees are used to partition the data space and produce such regions. Each
tree partitions a randomly oriented initial hyper-rectangular space S, that covers
the whole dataset, into small cells. A cell is a region corresponding to a leaf node
of the tree. We use Algorithm 1 to build an ensemble of trees. The two functions
it calls are given in Algorithms 2 and 3. A demonstration of an ensemble of two
trees is given in Fig. 3.
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Fig. 2. Density vs NC distribution. Fig. 3. A demonstration of two trees
partitioning a dataset with h = 4 and
L = 3.

Algorithm 1. Build NC Regions(D, t, h,L)
input : D - dataset; t - ensemble size; h - maximum tree level; L - leaf node mass

threshold
output: {Tj}t

j=1 - an ensemble of t trees
1 for j = 1, ..., t do

2 u ← a randomly orientated orthonormal basis of �d

3 D′ ← Du
4 q ← a randomly selected value in {1, ..., d}
5 S ← Initial Space(D′)
6 Tj ← Build Tree(D′, h, 1, S, q, L)

7 end

Given a dataset D ∈ �d, a random rotation of D is applied before each tree is
built. That is, we randomly rotate the coordinate system by multiplying D with
a randomly orientated orthonormal basis u. Let D′ = Du denote the projection
of D in the new coordinate system. The initial space S is then generated via
Algorithm 2 and it is axis-aligned with the basis u.

Let T denote a binary tree. The root node of the tree represents the initial
region S. At each level, a feature q ∈ {1, ..., d} is selected in a round-robin
manner; and each branch node is split into two child nodes at the middle point
of feature q of the node space. A node becomes leaf when either it reaches level
h or its mass is no larger larger than threshold L. The region corresponding to
a leaf node is called a cell. The tree building procedure is given in Algorithm 3.

An ensemble of trees {Tj}t
j=1 is built independently to estimate NC(x). Let

T (x) denote the leaf node of tree T in which x falls. Let T ′(x) denote the sister
node of T (x). Note that T ′(x) can be either a branch node or a leaf node. The
Neighbourhood Contrast of an instance x ∈ D is then estimated by

NC(x) =
1
t

t∑

j=1

I{|Tj(x)|>|T ′
j(x)|},
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Algorithm 2. Initial Space(D)
input : D - dataset;
output: S - an axis-aligned hyper-rectangular region such that D ⊂ S
1 for q = 1, ..., d do
2 minq ← min{xq : x ∈ D}
3 maxq ← max{xq : x ∈ D}
4 zq ← uniformly random value in [minq, maxq]
5 rq ← maxq − minq

6 Sl
q ← zq − rq, the lower bound of S on q

7 Su
q ← zq + rq, the upper bound of S on q

8 end

Algorithm 3. Build Tree(D,h, l, S, q,L)
input : D - dataset; h - maximum tree level; l - current tree level; S - current

space; q - current attribute; L - leaf node mass threshold
output: T - a binary tree that partitions S
1 if l > h then
2 Terminate and return S as a leaf node region
3 else
4 if |D| ≤ L then
5 Terminate and return S as a leaf node region
6 else
7 q ← q + 1
8 if q > d then
9 q ← q − d

10 end

11 sq ← (Sl
q + Su

q )/2
12 D(l) ← {x ∈ D : xq < sq}
13 D(r) ← {x ∈ D : xq ≥ sq}
14 Split S at sq into S(l) and S(r)

15 left ← Build Tree(D(l), h, l + 1, S(l), q, L)
16 right ← Build Tree(D(r), h, l + 1, S(r), q, L)

17 end

18 end

where I{·} is an indicator. For notation brevity, we use NCi = NC(xi) to denote
the Neighbourhood Contrast of instance xi.

3 Improving DP with Neighbourhood Contrast

It is easy to utilize Neighbourhood Contrast in existing clustering procedures to
improve their performance. By simply replacing density with NC in the proce-
dure of DP [11], we create NC-DP, a version that better handles density variation.
The procedure of NC-DP consists of following three steps which is exactly the
same as DP, except density is replaced with NC.



406 B. Chen and K. M. Ting

The first step is to estimate NC. Given a dataset D, NC(x) for all x ∈ D
are estimated as described in Sect. 2.

The second step is to find K points that have the largest NC(x)×δ(x) values
as cluster centers, where K is a parameter deciding the number of clusters and
δ is defined as follows,

δ(x) =

⎧
⎨

⎩

min
NC(y)>NC(x)

d(x,y),∀x ∈ D \ {xω}
max
y∈D

d(x,y), if x = xω ,

where d(·, ·) is a distance measure and xω is the point having the maximal NC.
The last step is to assign every unassigned point to one of the K cluster

centers. All points are sorted in descending order of NC, then one by one from
top down, each unassigned point is assigned to the same cluster as its nearest
neighbour with a higher NC.

4 Neighbourhood Contrast Clustering

The NC-DP described above improves the capability of DP in detecting clusters
of varying densities, which will be shown in Sect. 5. However, it requires pairwise
distance calculations and nearest neighbour search which hinder its scalability.

In this section, we present a new clustering algorithm named Neighbour-
hood Contrast Clustering (NCC). Reusing the trees built for estimating NC,
NCC performs clustering without any distance calculation or nearest neighbour
search—it is hence highly scalable. It consists of following key steps:

1. Estimate NC for each point in the given dataset.
2. Cluster nexuses are identified and the number of clusters is detected.
3. For each point, a membership score w.r.t. each cluster is calculated; and each

point is assigned to the cluster in which it has the highest membership score.

The key algorithmic differences from DP are: (i) NCC employs cluster nexuses
instead of cluster centres; and (ii) DP assigns points based on nearest neighbour
having a higher density, and NCC assigns points based on membership scores
which are computed without distance calculations.

The top layer procedure of NCC is provided in Algorithm 4. The implemen-
tation of step 1 has been provided in Sect. 2. In the following subsections we
provide the details of steps 2 and 3.

4.1 Core Points and Cluster Nexuses

After obtaining {NCi}N
i=1 in step 1, points that have higher NCs than threshold

γ are selected as core points. If two core points are covered by the same cell which
reaches the maximum level h, then these two core points are linked. A group
of transitively linked core points is called a cluster nexus, denoted by Mk. This
process is given in Algorithm 5.

A demonstration of forming cluster nexuses is given in Fig. 4(a), (b) and (c).
Note that the four groups of points at the top in Fig. 4(c) belong to a single
cluster nexus because they are transitively linked.
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Algorithm 4. NCC(D, t, h,L, γ)
input : D - dataset; t - ensemble size; h - maximum tree level; L - leaf node mass

threshold; γ - core point threshold
output: {Gk}K

k=1 - K groups of points
1 {Tj}t

j=1 ← Build NC Regions(D, t, h, L)

NCi ← 1
t

∑t
j=1 I{|Tj(xi)|>|T ′

j(xi)|}, for i = 1, ..., N

Let D, {Tj}, {NCi} be global variables accessible by all functions
2 {Mk}K

k=1 ← Form Cluster Nexuses(γ, L, h)

3 {η̄k(xi)}K,N
k=1,i=1 ← Membership Score({Mk})

Yi ← arg maxk(η̄k(xi)), ∀i
Gk ← {xi ∈ D : Yi = k}, ∀k

Algorithm 5. Form Cluster Nexuses(γ,L, h)
input : γ - core point threshold; L - leaf node mass threshold; h - maximum tree

level
output: {Mk}K

k=1 - K cluster nexuses
1 Set of core points Z ← {xi : NCi > γ}
2 for each tree Tj in {Tj}t

j=1 do
3 for each level-h cell in tree Tj do
4 if at least 2 core points in Z are in this cell then
5 link these core points together
6 end

7 end

8 end
9 K ← number of groups of transitively linked core points

10 {Mk}K
k=1 ← the K groups of transitively linked core points

4.2 Assigning Non-core Points

The intuition for assigning non-core points is based on a membership function
which is a function of the masses of the cells. Starting from a nexus, where it has
the highest membership score, non-core points have non-increasing membership
scores as they are farther away from the nexus.

For each cluster nexus Mk, membership scores ηk(x) are computed for all
points. To be efficient, ηk(·) is computed via a nexus expansion process which
is done for all nexuses in one go. The procedure is given in Algorithm 6, where
Cj

m denote the m-th cell in tree Tj .
A brief description is provided as follows. All points are initialized to have

ηk(x) = 1. Then, ηk(x) is updated for all nexuses. An illustration of this nexuses
expansion process is in Fig. 5. At the end of this process, for every point y which
is not reached by Mk, ηk(y) is set to 0. Example distributions of the membership
scores are given in Fig. 4(d), (e), (f) and (g).

Note that the order in which the trees are examined may affect the expansion
path of Mk and hence, the values of ηk(·). To address this issue, an averaged
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Fig. 4. A demonstration of NCC procedure on the synthetic dataset. The four cluster
nexuses identified are shown in (c). The membership score distribution for each of the
four clusters is shown in (d), (e), (f) and (g), respectively.

Algorithm 6. Membership Score({Mk})
input : {Mk}K

k=1 - cluster nexuses
output: η̄k(xi), ∀i, k
1 Initialize ηk(xi) ← 1, ∀i, k
2 for j = 1, ..., t do
3 if Mk = D, ∀k then
4 Exit for-loop
5 end
6 for m = 1, ...,# of cells in Tj do
7 for k = 1, ..., K do
8 if Cj

m ∩ Mk 
= ∅ and Cj
m \ Mk 
= ∅ then

9 ηk(xi) ← min(
|Cj

m|
N

, min{ηk(xo) : xo ∈ Cj
m}), ∀i ∈ {o : xo ∈

Cj
m \ Mk}

10 Mk ← Mk ∪ Cj
m

11 end

12 end

13 end

14 end
15 ηk(xi) ← 0, ∀i ∈ {o : xo ∈ D \ Mk}, ∀k
16 Repeat W times steps 1-15, with {Tj} shuffled, producing ηw

k (xi), w = 1, ..., W

17 η̄k(xi) = 1
W

∑W
w=1 ηw

k (xi), ∀i, k

η̄k(·) is produced by calculating ηk(·) multiple times, each time with a randomly
shuffled order of trees.

After the membership score calculation, for each non-core point xi, its cluster
label is assigned as Yi = arg maxk(η̄k(xi)) (stated in step 3 in Algorithm 4).
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Fig. 5. An illustration of the expansion process of a cluster nexus Mk, described in
Algorithm 6. Red points are members of Mk while black ones denote non-members
of Mk. (a) The initial Mk. (b) For tree T1, cells that cover both member and non-
member points of Mk are identified (shaded cells). (c) Non-members in these cells
become members of Mk, and their ηk() get updated to be the smaller quantity of the
following two: the normalized mass of the cell and the minimum of current ηk(·) of all
points in the cell. (d) (e) When tree T1 is done, another tree T2 is used and the process
continues until all trees are exhausted, or all points are already members of Mk. (Color
figure online)

5 Experiments

We compare NC-DP and NCC to the state-of-the-art method DP and the com-
monly used method DBSCAN on 15 datasets used in the literature [5,7–9,12]1.
The clustering performance is measured in terms of F-measure2.

For all algorithms, their parameters are searched as shown in Table 1 and the
best F-measure is reported. Because NC-DP and NCC are randomized methods,
for each dataset, we report the average result of 10 runs and its standard error.
For DP and DBSCAN, they are executed only once. The ensemble size t of
all NC estimations is set to 1000, except for the three smallest datasets “iris”,
“shape” and “seeds”, where t is set to 5000 for better stability.

The clustering performances of NC-DP, NCC, DP and DBSCAN are given
in Table 2. NC-DP outperforms DP with 11 wins 4 losses; and NCC outperforms
1 Dataset “jain” is from [7]. “d31” is from [12]. “aggregation” is from [5]. “shape” is

from [9]. The other datasets are from the UCI repository [8].
2 The F-measure is calculated as follows, F =

∑K
k=1

|Gk|
N

× 2pkrk
pk+rk

, where pk and rk
are the precision and recall, respectively, based on the confusion matrix. Note that
noise points will lower the recall and hence dampen the F-measure. This is one of the
reasons we choose F-measure over other external evaluation measures such as Purity
or Normalized Mutual Information [1] which ignore noise points in their evaluations.
These measures favour clustering results that label more points as noise.
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Table 1. Algorithms: Parameters and their search ranges

NC-DP NCC DP DBSCAN

h: 5, 6, ..,min(80, 6d) h: 5, 6, ..,min(80, 6d) dc: 0.1%, 0.2%, . . . , 10% ε: 0.01,0.02, .., 2

L: 3, .., �√N� L: 3, . . . , �√N� K: 2, 3, . . . , 31 minPts: 2, 3, . . . , 50

K: 2, 3, .., 31 γ: 50%, 51%, . . . , 99%
quantiles of NC

Table 2. Best clustering performances on 15 datasets in terms of F measure.

Dataset N d K F measure

NC-DP (SE) NCC (SE) DP DBSCAN

abalone 4177 8 3 0.483 (0.0089) 0.419 (0.0113) 0.509 0.255

aggregation 788 2 7 0.997 (0.0004) 0.995 (0.0004) 0.996 0.991

breast 699 9 2 0.965 (0.0021) 0.962 (0.0016) 0.917 0.867

d31 3100 2 31 0.970 (0.0003) 0.974 (0.0003) 0.970 0.914

diabetes 768 8 2 0.622 (0.0096) 0.618 (0.0142) 0.602 0.538

haberman 306 3 2 0.643 (0.0026) 0.634 (0.0040) 0.616 0.630

htru2 17898 8 2 0.972 (0.0004) 0.957 (0.0023) 0.944 0.889

iris 150 4 3 0.952 (0.0084) 0.954 (0.0049) 0.967 0.880

jain 373 2 2 0.989 (0.0078) 0.957 (0.0023) 0.972 0.964

seeds 210 7 3 0.896 (0.0022) 0.910 (0.0018) 0.909 0.750

shape 160 17 9 0.743 (0.0033) 0.548 (0.0082) 0.699 0.642

thyroid 215 5 3 0.854 (0.0015) 0.863 (0.0087) 0.707 0.584

wdbc 569 30 2 0.875 (0.0158) 0.890 (0.0144) 0.830 0.547

wilt 4339 5 2 0.974 (0.0000) 0.975 (0.0000) 0.974 0.975

yeast 1484 8 10 0.399 (0.0045) 0.377 (0.0053) 0.359 0.220

win/draw/loss wrt NC-DP 6/0/9 4/0/11 1/0/14

win/draw/loss wrt NCC 9/0/6 5/0/10 2/1/12

average rank 1.67 2.13 2.53 3.60

DP with 10 wins 5 losses. NC-DP is the best performer in terms of average rank,
followed by NCC. P-values of pairwise Friedman tests are reported in Table 3.
NC-DP is significantly better than DP at 10% significance level; both NC-DP
and NCC is significantly better than DBSCAN at 1% significance level.

NCC performed poorly on some datasets, e.g., shape and jain. This is due to
a weakness in the assignation process in step 3: when clusters are not separated
by a low enough density region, some low density points might receive similar
membership scores for different clusters. Note that this is not the same issue
as in the varying densities problem which has prevented existing density-based
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Table 3. Pairwise Friedman tests:
p-values.

NCC DP DBSCAN

NC-DP 0.4386 0.0707 0.0008

NCC 0.1967 0.0075

DP 0.0045

Fig. 6. Runtimes of the four methods as the
dataset size N increases.

clustering from identifying all clusters. This weakness in NCC causes low density
points to be incorrectly assigned, rather than high density points.

A scalability test3 with respect to dataset size is provided in Fig. 6. It shows
that NCC, having a linear time complexity O(N), is much more scalable than
the other three methods which all have complexity O(N2). Note that when N is
small, both NC-based methods take longer time due to the overhead computa-
tion of building the ensemble of trees. However, when N grows large, NC-based
methods are more efficient than density-based ones. This is even the case for
NC-DP which has complexity O(N2), where the gap between NC-DP and DP
increases as the data size increases. This is because when N is large, NC esti-
mation is more efficient than density estimation.

6 Conclusions

It is common knowledge that density-based clustering methods fail to detect all
clusters in datasets that have hugely varying densities. However, many existing
improvements still rely on density to detect clusters. Our proposal of Neigh-
bourhood Contrast (NC) addresses this issue from its root cause by providing
an alternative means for detecting clusters. We show that NC is a better means
than density for clustering procedures, especially in the presence of hugely vary-
ing densities. This is because of the unique property of NC, i.e., it admits all
local density maxima, regardless of their densities, to have similar NC values.

We provide two ways of applying NC. We show that NC can be easily
incorporated in an existing procedure to replace density by proposing NC-DP.
We also devise a new procedure Neighbourhood Contrast Clustering (NCC),
which is based on space partitioning and hence has a linear time complexity.

We evaluate the clustering performance of four methods: NC-DP, NCC, DP
and DBSCAN. The results show that both NC-based methods outperform DP
3 The datasets are draw randomly from a mixture of bivariate Gaussian distributions

with increasing sample size. The four methods achieve similar F-measures.
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and DBSCAN and are more efficient when dataset size is large. Comparing the
two NC-based methods, NC-DP has better performance than NCC; while NCC
is more desirable when dataset size is large because of its linear time complexity.
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Abstract. Density-based clustering, such as Density Peak Clustering
(DPC) and DBSCAN, can find clusters with arbitrary shapes and have
wide applications such as image processing, spatial data mining and text
mining. In DBSCAN, a core point has density greater than a thresh-
old, and can spread its cluster ID to its neighbours. However, the core
points selected by one cut/threshold are too coarse to segment fine clus-
ters that are sensitive to densities. DPC resolves this problem by finding
a data point with the peak density as centre to develop a fine cluster.
Unfortunately, a DPC cluster that comprises only one centre may be too
fine to form a natural cluster. In this paper, we provide a novel clus-
tering of multiple density peaks (MDPC) to find clusters with arbitrary
number of regional centres with local peak densities through extending
DPC. In MDPC, we generate fine seed clusters containing single den-
sity peaks, and form clusters with multiple density peaks by merging
those clusters that are close to each other and have similar density dis-
tributions. Comprehensive experiments have been conducted on both
synthetic and real-world datasets to demonstrate the accuracy and effec-
tiveness of MDPC compared with DPC, DBSCAN and other base-line
clustering algorithms.

Keywords: Clustering · Density peaks · Cluster merge

1 Introduction

Clustering can discover the relationship of points by grouping similar points into
the same cluster; this capability makes it attractive in many data mining tasks.
K-means finds the best k centres to minimize the overall distance between the
points and their centres [13]. Affinity Propagation (AP) [7] finds the best point
to represent the whole cluster. However, both of them are not effective in finding
non-spherical clusters.

Mean-shift [9] is able to find non-spherical clusters, but it highly relies on
the significance of density gradients among data points. Density-based clustering,
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 413–425, 2018.
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such as Density Peak Clustering (DPC) [14] and DBSCAN [6], use critical data
points to form clusters. DBSCAN finds natural shape clusters by finding core
data points which spread cluster IDs to their neighbours; and a core point is a
data point that has density greater than a threshold. However, core data points
that are selected based on one cut/threshold in DBSCAN are too coarse to
segment fine clusters that are sensitive to density, as shown in the third dataset
in Fig. 4(c), where we can only accurately find the top left clusters (two sparse
clusters) or the bottom left clusters (two dense clusters), but not both. Also, in
practice it is hard to find the optimal values of DBSCAN’s two parameters.

DPC [14] resolves the problem of DBSCAN by finding a data point with the
peak density as a centre to develop a fine cluster, and it only needs one parameter
dc, the cut-off distance. DPC converts n-dimensional features into two features:
density and delta (the distance to the point which spreads cluster ID to it),
chooses one point with the peak density as the centre for each cluster, and assigns
the rest points to the relative cluster centres. DPC can find clusters with more
fine densities than DBSCAN. This advantage makes DPC a potential solution
to many data mining tasks [15,17]. Unfortunately, a DPC cluster that comprises
only one centre (density peak) may be too fine to form a natural cluster, since
this is too strict for a natural cluster that comprises multiple regional centres
with local peak densities. DPC is unable to achieve a satisfying result due to two
problems. First, it is difficult to choose correct cluster centres from candidate
density peaks (with “anomalously” large density and delta); for example, in
Fig. 1(c), although we know there are five cluster centres, it is challenging to
pick them from those candidate density peaks (large red dots) in Fig. 1(c’) and
requires exhaustively searching. Second, the assumption in DPC that each cluster
only comprises one centre is not always true thus DPC cannot find natural shape
clusters accurately; three examples are shown in Fig. 4(b).

Hierarchical clustering inspires us to merge DPC clusters and form the correct
clusters that comprise multiple density peaks. We initially generate seed clusters
by DPC and merge seed clusters according to their distances. Thus, a good
cluster distance is the key for the accuracy. We have tested four existing cluster
distances (“single”, “average”, “complete” and Hausdorff linkage [1]), but their
accuracy is not good in merging DPC seed clusters, as shown in Fig. 3.

In this paper, we propose a novel Multiple Density Peaks Clustering (MDPC)
method to flexibly find clusters with arbitrary number of regional centres that
have local peak densities (as they exist in the real world) through extending
DPC. In MDPC, we generate fine seed clusters, which are simpler clusters since
each seed cluster has only one density peak, and discover a natural shape cluster
with multiple density peaks by merging those seed clusters that are close to each
other and have similar density distributions. We conduct comprehensive exper-
iments on both synthetic and real-world datasets to demonstrate the accuracy
and effectiveness of MDPC. Therefore, this paper has three contributions:

– We provide a novel MDPC method, which improves DPC in two aspects: to
find natural shape clusters with arbitrary number of local density peaks and
to form seed clusters by automatic selection of cluster centres.
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– We define a new distance between two seed clusters, based on which seed
clusters are merged more accurately in MDPC than four counterpart cluster
distances (“single”, “average”, “complete” and Hausdorf [1]).

– We conduct experiments on both synthetic and real-world datasets to prove
that MDPC achieves more accurate results than DPC, DBSCAN and other
baseline clustering algorithms.

The rest of this paper is organized as follows. Section 2 presents the prelimi-
nary knowledge and problem definition. Section 3 details the proposed MDPC
method. Section 4 conducts experimental studies to evaluate MDPC. Finally,
Sect. 5 concludes the paper.

Fig. 1. (a)–(c) are three datasets with color indicates density, and (a’)–(c’) are corre-
sponding decision graphs with large red dots as candidate cluster centers. (Color figure
online)

2 Preliminary Knowledge and Problem Definition

In this section, we present the DPC algorithm, point out its two problems and
discuss the state of the art methods that approach these problems.

2.1 The Algorithm of DPC

As we mentioned in Sect. 1, DPC improves DBSCAN to find more fine clusters
with only one density peak as a centre. To help understand this, we introduce
the main idea of DPC as follows. In DPC, the first step is to determine cluster
centres using a 2-dimensional “decision graph” as follows. The n-dimensional
feature space of a point is mapped into the 2-dimensional feature space: ρ and
δ. The density ρi of data point i is given by:
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ρi = Σjχ (dij − dc) , (1)

where χ (x) = 1 if x < 0, and χ (x) = 0 otherwise. dc is a threshold distance
and dij is the Euclidean distance between data points i and j. Then, these local
density peaks are those points that have the greatest ρ in its dc region. Delta δi

is the minimum distance between point i (with density ρi) and any other point,
j, with higher density ρj :

δi = min
j:ρj>ρi

(dij) . (2)

In DPC, the two-dimensional features (ρ and δ) form a “decision graph”; an
example is shown in Fig. 1(a’), which is transferred from raw data in Fig. 1(a).
User chooses one point that has “anomalously” large ρ and δ in decision graph
[14] as the cluster centre for each cluster. Then, the non-centre points are sorted
in a descending order by ρ and sequentially assigned the cluster ID of their
nearest point with a higher density. All data points obtain cluster IDs before
DPC finds the border points whose neighbourhood cross more than one clusters.

2.2 The Problems and Related Approaches

In this paper, we will discover natural clusters that have arbitrary number of
regional centres with local peak densities by extending DPC to achieve a better
accuracy. Therefore, we will tackle the two problems of DPC to satisfy this
paper’s goal: (1) to search for proper centres if the dataset has clusters that
comprise multiple local density peaks and (2) to discover natural clusters that
have multiple regional centres with local peak densities.

If clusters contain multiple local density peaks, how to properly choose a
centre for each cluster from decision graph can be difficult in DPC. As demon-
strated in the dataset containing two single centre clusters as shown in Fig. 1(a)
it is intuitive to pick up two large red dots as centres in its decision graph
(Fig. 1(a’)). However, the cluster with two regional centres with local peak den-
sities in Fig. 1(b) generates nearly identical decision graph (Fig. 1(b’)), thus the
cluster may incorrectly be divided into two in DPC. Meanwhile in some cases,
even though the number of clusters is given, it is still difficult to distinguish
centres since those candidates are close to each other in the decision graph. One
example is shown in Fig. 1(c), where the large cluster in the middle contains
several local density peaks. Although we know there are five clusters, it is chal-
lenging to select five centres for five clusters from the candidate large red dots in
Fig. 1(c’) and requires exhaustively searching. A recursive dividing DPC (3DC)
is proposed in [12], but it still uses the heuristic in [14] to pick two greatest ρi ·δi

cluster centres, which is not true in the clusters with multiple density peaks.
By applying graph kernel to data vectors before inferring DPC, the candidate
centres are differentiated from the common points in [18], however, it still needs
to choose cluster centres manually.

Even if we luckily select the right cluster centres, the non-centre local density
peaks still can severely decrease the clustering accuracy. The cluster ID prop-
agation rule of DPC is that one non-centre point obtains a cluster ID from its
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nearest point that has a higher density. If the nearest point with a higher density
of one non-centre local density peak belongs to another cluster, this local density
peak will wrongly be assigned to that cluster, and this mistake is propagated
to other data points to form incorrect clusters, as shown in the three datasets
in Fig. 4(b). In the first dataset of Fig. 4(b), the ring shape cluster is incorrectly
divided into three parts and the left and right parts are assigned to the other
two spherical clusters, respectively; in the second dataset, the bottom arch-shape
cluster is also divided into two with the top part group with the top arch; in
the third dataset, the dot shape cluster is wrongly grouped with the ring shape
cluster surrounding it. To resolve the second problem of DPC, a two-step DPC
is developed in [19] using the notion of core-reachable of DBSCAN. However,
the strategy is neither well explained nor proved with convincing experiments.

3 The MDPC Approach

In this section, we present our MDPC approach that effectively finds clusters
with multiple local density peaks as regional centres by two steps:

– Find seed clusters. We discover the seed clusters that have single density
peaks by allowing automatic selection of cluster centres.

– Merge seed clusters. We define a new distance between seed clusters and
hierarchically merge these seed clusters using this distance.

3.1 Find Seed Clusters

Different from DPC, natural shape clusters are regarded as the combination of
several seed clusters which contain single density peaks in the scope of MDPC.
That is, all of the density peak points are centres of seed clusters. Accordingly,
we define a cluster centre/density peak as follows:

c : ρc ≥ ρj , distij ≤ dc,∀j ∈ D. (3)

According to Eq. (2), the cluster centres who have peak densities in their dc

radius have δ larger than dc. Accordingly, we write the cluster centres, C, as:

C = {c|δc > dc, c ∈ D}. (4)

With the cluster centres C, we find relevant seed clusters, which comprises only
one density peak and satisfies the characteristic of a DPC cluster (data points in
a cluster coarsely following a density descending order from centre to border).

In our implementation, the DPC’s original definition of density in Eq. (1)
performs not good: it either finds the unnecessary centres in a small region
or incorrectly labels the non-centralized points as the cluster centres, because
it regards each neighbour in dc region of one point the same weight without
considering the distance to the centre. As a result, we modify the fuzzy density
defined in [5] as:
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ρi = Σj

(
1 − dist2ij

d2c

)
, distij ≤ dc,∀j ∈ D. (5)

In Fig. 2, the cluster centres found by fuzzy density metric (Eq. (5)) are more
significant than those found by DPC density (Eq. (1)). When dc is fixed, cluster
centres (cross) found by the fuzzy density (Fig. 2(c)-(d)) are sparser than those
found by the DPC density (Fig. 2(a)-(b)). Meanwhile, the fuzzy density is also
more robust to dc; the number of the cluster centres in Fig. 2(a) significantly
decreases when dc increases to 0.04, while the cluster centres found using fuzzy
density keep stable when increasing dc from 0.03 (Fig. 2(c)) to 0.04 (Fig. 2(d)).
The pseudocode of finding seed clusters is shown in Algorithm 1. We calculate ρ
and δ of each data point at lines 1–7 and discover those cluster centres at line 6.
Then we find seed cluster centres and assign cluster IDs to the non-centre data
points at lines 8–13.

Fig. 2. Centres (colored cross) discovered by original density ((a)-(b)), and fuzzy den-
sity ((c)-(d)), with dc as the cut-off distance. (Color figure online)

Algorithm 1. Find Seed Clusters (ni: nearest point with a higher density)

Input: Dataset D, Cutoff distance dc

1: for each i ∈ D do
2: Calculate ρi Eq. (5)
3: end for
4: for each i ∈ D do
5: Calculate δi by Eq. (2), get ni

6: Add i into C if δi > dc

7: end for

8: Sort D in descending order of ρ
9: for each i ∈ D do

10: if i in C then clusterIDi = new
id

11: else clusterIDi = clusterIDni

12: end if
13: end for
Output: points clusterID

3.2 Merge Seed Clusters

Borrowing the idea from hierarchical clustering, we iteratively merge those seed
clusters. In our MDPC, merging is conducted only on two clusters which have
border regions (mutually have border points whose neighbourhood cross the two
clusters). We need to define a new distance metric to achieve an effective merging
since the wide-used linkage distances are too coarse for these fine seed clusters.
First, two rules are defined to determine whether the seed clusters should be
merged based on the characteristic of these seed clusters:
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– Rule 1: Two clusters should be merged together if they have comparable scales
and spatially close border points, as exhibited in Fig. 1(b).

– Rule 2: One small seed cluster should be absorbed by a larger cluster, if its
scale is similar to the border region of the larger cluster and have spatially
close border regions.

A seed cluster in MDPC has a coarsely monotonic density distribution in a
descending order from its centre to border. Based on this characteristic, we
define a new cluster distance by both their density distributions and their spa-
tial distance. As a density-based metric, our cluster distance should define the
comparable scale in Rule 1 by measuring their difference of density distributions.
If the density is monotonic, this difference can be defined by two aspects: the
average density and the density-descending rate. Given two seed clusters A and
B with average density ρA

avg and ρB
avg, the distance between the average densities

of A and B is:

dmerge =
‖ρA

avg − ρB
avg‖

max
(
ρA

avg, ρ
B
avg

) . (6)

Similarly, in Rule 2, we define the cluster distance to be the difference of the
density distributions of the smaller cluster and the border region of the larger
one. Assuming A absorbs B (ρA

avg > ρB
avg), and the border region of A, borderA

is defined as {i|dist(i, j) < dc, i ∈ A, j ∈ B}. Thus ρbA
avg, the average density of

borderA, is calculated as the average density of points in borderA together with
their neighbours. In this way, the distance between ρbA

avg and ρB
avg is defined as:

dabsorb =
‖ρbA

avg − ρB
avg‖

max
(
ρbA

avg, ρ
B
avg

) . (7)

We normalize the above distances and enable them to be combined together and
get the overall measurement as ddensity:

ddensity = min (dmerge, dabsorb) . (8)

The distance of the density descending rate and the spatial closeness of the
clusters are measured by dborder, with the density of cluster centre as ρc and the
density descending rate from the cluster centre to point i as ri = ρc

ρi
.

dborder = inf
i∈borderA,j∈borderB

dij

2dc
× (

rA
i + rB

j

) ‖rA
i − rB

j ‖. (9)

We calculate dborder to satisfy (1) A and B is spatial close if one point in B falls
in the dc region of A’s centre; (2) when one point of B falls in the dc region
of A’s border point, note that the border has smaller density and thus their
distance must be proportionally smaller to compensate the density difference.
Also, the larger the density of a pair of border points (one from A and the
other from B), the more likely these two border points are changed into inner
points by merging the two clusters. We explain how the new metric can measure
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the difference of the density descending rates and clusters’ spatial closeness as
follows. If two clusters are not close to each other, that means the distance of
the border points pair dij is great then makes dborder great. A greater value of
‖rA

i − rB
j ‖ means their density descending rates are more different. In addition,

we prefer to merge those clusters whose border points have greater densities (i.e.,
the value of

(
rA
i + rB

j

)
is small). Combining the above density distance Sdensity

with border distance Sborder the total distance of two seed clusters is:

dAB = dborder × exp (ddensity) , (10)

where dAB is non-negative and symmetric, and exponential (exp) is used to
ensure that dAB is sensitive to small density variation and prevent merging of
two clusters if their densities are globally distinctive.

Using the dAB we develop a hierarchical merging algorithm (Algorithm 2)
to form the final clusters with arbitrary numbers of density peaks. We calculate
the pair-wise distances of seed clusters at lines 1–6. Then, we merge those with
distances under a threshold and re-assign new cluster IDs to all the data points
at lines 7–12. Results of each iteration are stored at line 13.

Algorithm 2. Hierarchical Merging of Seed Clusters (dists: cluster distance
list)

Input: Seed clusters Cseed

1: for seed clusters pair a, b ∈ Cseed do
2: if a, b has border points then
3: calculate dAB with (10)
4: add dAB into dists
5: end if
6: end for
7: for each d ∈ dists do

8: for seed cluster a, b ∈ Cseed do
9: if dij ≤ d then merge a b

10: end if
11: end for
12: clusterIDmerge = merged IDs;
13: add clusterIDmerge into L;
14: end for
Output: Points cluster IDs list L

3.3 Algorithm Complexity

We denote the number of neighbours of each point as Ndc regarding to dc, the size
of border point as Nb, and Ns as the number of seed cluster pairs that mutually
have border points, in practice, Ndc, Nb and Ns are far less than the dataset
size, N . The time complexity of finding seed clusters (Algorithm 1) and border
points is O (2N log N + N × Ndc + N). The time complexity of calculating the
average densities of all seed clusters is O (N), and the complexity of calculating
all average border densities is O (Nb). O (Ns + Ns log Ns) is spent to compute
and sort distances of seed cluster pairs, and O (Ns) is spent on hierarchical
merging. Thus, the overall time complexity of merging seed clusters (Algorithm
2) is O (N + Nb + 2Ns + Ns log Ns).
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4 Experiments

In this section, we use various datasets including both synthetic datasets (four
shape datasets and two density datasets) and one real-world dataset to evaluate
the accuracy of our MDPC. Accuracy is measured using Normalized Mutual
Information (NMI) [16]. All algorithms, including both the proposed MDPC
and the counterpart methods (DPC, DBSCAN, K-means, AP and mean-shift),
are compared using the best performance under their optimal parameters. We
use the heuristic ρ × δ in [14] to select the optimal cluster centres for DPC and
we automatically search the best NMI of our MDPC from its output list. All the
algorithms are implemented in Python 3.2 (with packages scikit-learn, numpy)
and experiments are run on Windows 10 with 3.4 GHz CPU and 16 GB RAM.

4.1 Synthetic Datasets

We use six different synthetic datasets with true labels. Four shape datasets
with natural shape clusters (shape datasets) are Pathbased [3], Jain [11], Flame
[8] and Spiral [3]. Two datasets with uneven density-pattern clusters (density
datasets) are Compound [20] and Aggregation [10]. We evaluate the proposed
cluster distance by comparing with four counterpart cluster distances (“single”,
“average”, “complete” and Hausdorff [1]). We set the same experimental envi-
ronment by replacing our proposed cluster distance with each of the four in
MDPC. In Fig. 3, we can see that our proposed cluster distance achieves the
best accuracy compared to the other four distances in all of the six datasets.
The best performance improvement of the proposed distance for MDPC is in
Flame, where the accuracy of the proposed method wins the best of the other
four distances (Single) by 1.000 to 0.521.

Fig. 3. Evaluation of the cluster distance of MDPC with four cluster distances.

We compare our MDPC with two other density-based methods (DPC and
DBSCAN) using three challenging datasets containing natural shape clusters
with multiple local density peaks (Pathbased, Jain and Compound) (Fig. 4).
We can see from the first row that MDPC achieves the best accuracy in the
Pathbased dataset, where both DPC and DBSCAN incorrectly split the ring
shape cluster into three and two parts, respectively. In Jain dataset as shown in
the second row, MDPC correctly separates the two arch-shaped clusters, while
DPC incorrectly divides the bottom arch-shaped cluster into two clusters and
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wrongly assigns the upper cluster to the other arch-shaped cluster and DBSCAN
wrongly splits the top arch-shaped cluster into two parts. In Compound dataset
at the last row, only MDPC successfully finds both the two clusters (a ring and a
dot the middle of the ring) at the bottom left and two spatial close round-shaped
clusters at the top left, while DBSCAN only can correctly identify the two dense
clusters at the bottom left or the two close sparse round-shaped clusters but not
both since its one cut/threshold strategy cannot adapt itself to the clusters with
different density patterns.

(a) MDPC (b) DPC (c) DBSCAN

Fig. 4. (a)–(c) are the clustering results of MDPC, DPC and DBSCAN.

We also evaluate the scalability of MDPC by comparing with both density-
based clustering methods (DPC and DBSCAN) and other popular ones (K-
means, Affinity Propagation (AP) and mean-shift) using all of the six datasets
(Table 1). The overall trend is that the three density-based clustering methods,
MDPC, DPC and DBSCAN, perform better than the three non-density-based
clustering methods. In Table 1 MDPC excels both DPC and DBSCAN in all
of the six datasets, while DPC performs better than DBSCAN in Flame and
Aggregation and DBSCAN performs better than DPC in Pathbased, Jain and
Compound. This validates that our MDPC is more adaptive to density sensitive
datasets than too coarse clustering in DBSCAN and too fine clustering in DPC.

4.2 Real Datasets

We use the iris dataset (with four features and three labels) from the real-world
dataset UCI [2] to evaluate the accuracy of the three density-based clustering
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Table 1. NMI on synthetic datasets, with the best in bold and negative as ‘−’.

Type Dataset MDPC DPC DBSCAN K-means AP Mean-shift

Shape Pathbased 0.9579 0.5165 0.6893 0.5102 0.3530 0.5431

Jain 1.0000 0.5038 0.7549 0.3362 0.2073 0.3282

Flame 1.0000 1.0000 0.8654 0.4478 0.3011 0.4442

Spiral 1.0000 1.0000 1.0000 - 0.3142 0.2767

Density Compound 0.8277 0.7482 0.7869 0.7421 0.5289 0.8110

Aggregation 1.0000 1.0000 0.9787 0.8376 0.5035 0.8983

methods (MDPC, DPC and DBSAN). We use PCA to map the original four
features into three features for visualization. From the result in Fig. 5, we can see
that the number of mislabelled items (marked in red color) by MDPC in Fig. 5(a)
is significantly less than both DPC in Fig. 5(b) and DBSCAN in Fig. 5(c) where
DBSCAN wrongly groups the three categories into only two clusters.

(a) MDPC (b) DPC (c) DBSCAN

Fig. 5. Clustering results for the iris dataset, (a)–(c) correspond to MDPC, DPC and
DBSCAN. Incorrectly clustered points are in red color. (Color figure online)

5 Conclusion

In this paper, we provide the MDPC clustering method for shape and density
sensitive datasets. MDPC overcomes the two problems of DPC by automati-
cally selecting cluster centres and finding natural shape clusters with multiple
local density peaks. Extensive experiments based on both synthetic and real-
world datasets have demonstrated that our MDPC is a more adaptive clustering
method for density sensitive datasets, compared with too coarse clustering in
DBSCAN and too fine clustering in DPC, and thus achieves the best accuracy
and effectiveness.

Acknowledgement. This work was partially supported by Australia Research Coun-
cil (ARC) DECRA Project (DE140100387).
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Abstract. Density peak clustering is able to recognize clusters of arbi-
trary shapes, so it has attracted attention in academic community. How-
ever, existing density peak clustering algorithms prefer to select cluster
centers from dense regions and thus easily ignore clusters from sparse
regions. To solve this problem, we redefine the local density of a point
as the number of points whose neighbors contain this point. This idea
is based on our following finding: whether in dense clusters or in sparse
clusters, a cluster center would have a relatively high local density cal-
culated by our new measure. Even in a sparse region, there may be some
points with high local densities in our definition, thus one of these points
can be selected to be the center of this region in subsequent steps and this
region is then detected as a cluster. We apply our new definition to both
density peak clustering and the combination of density peak clustering
with agglomerative clustering. Experiments on benchmark datasets show
the effectiveness of our methods.

Keywords: Local density · K-nearest neighbors
Density peak clustering · Agglomerative clustering

1 Introduction

Clustering has been widely used in knowledge discovery, computer vision, pattern
recognition and so on [2,3,9,10,14,24]. It tries to partition data into clusters,
where similar points are clustered together and dissimilar points are separated
to different clusters [13,18,28].

Many clustering algorithms, such as K-means [11], often fail when dealing
with clusters with nonspherical shapes [8]. As an important way to solve this
problem, density peak clustering (DPC) [22] is able to recognize clusters regard-
less of their shape and of the dimensionality. It is based on the assumptions that
a cluster center is characterized by a higher local density than its neighbors and
by a relatively large distance from any point with a higher local density. After
cluster centers are selected, each remaining point is assigned to the same cluster
as its nearest neighbor of higher local density.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 426–438, 2018.
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Based on DPC, many researches have been conducted [4,5,7,16,17,26,27,30].
Xu et al. developed an efficient hierarchical clustering algorithm based on DPC
and granular computing [27,31,32]. Some researchers constructed DPC-AC to
combine DPC with agglomerative clustering [16,17,30]. DPC-AC uses DPC to
generate initial clusters and then merges them according to some affinity measure
between clusters. DPC-AC behaves better than DPC on datasets where a cluster
has more than one density peak.

However, existing clustering algorithms based on DPC tend to select cluster
centers from points in dense regions and easily ignore points in other regions.
Therefore, clusters from sparse regions cannot be detected and points in these
clusters are often assigned to wrong clusters or are mistakenly treated as noises.
Although a sparse region with a few points is likely to be a noisy region, a sparse
region with a significantly large number of points should be treated as a cluster.
Even though several different definitions of local density have been proposed
[5,7,16,26], DPC and DPC-AC still do not perform well when different clusters
have big density differences.

To address this issue, we redefine the local density of a point as the number
of points whose K-nearest neighbors contain this point. Even in a sparse region,
there may be some points with high local densities in our new definition, thus
one of these points can be selected to be the center of this region in subsequent
steps and this region is then detected as a cluster. Therefore, in density peak
clustering with our new local density (NDPC), sparse clusters can be correctly
detected instead of being merged into other clusters or be treated as noises as
in DPC. Moreover, outliers in sparse regions with a few points would have small
local densities in our definition, so they are unlikely to be selected to be cluster
centers in our algorithms.

Fig. 1. A directed 2-nearest-neighbor graph. There are two directed edges from every
point, directing to its 2-nearest neighbors.

Figure 1 is an illustration of our new local density. There are two clusters
in Fig. 1. The points in the left cluster are distributed densely, thus every point
has many neighbors within a small distance. The points in the right cluster are
distributed sparsely, thus every point has fewer neighbors within a small distance
or even no neighbor. Intuitively, C1 and C2 should be selected as cluster centers.
However, DPC easily ignores C2 because C2 would have a very low local density
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in DPC. In our new definition, both C1 and C2 have high local densities because
they are contained in the 2-nearest neighbors of many points. Thus, in NDPC,
both C1 and C2 can be selected to be cluster centers and then both clusters can
be easily detected.

Further, we apply our new local density to DPC-AC to construct NDPC-AC.
Similar to DPC, DPC-AC does not perform well when different clusters have very
different densities because DPC-AC also tends to ignore sparse clusters. With
our new local density, NDPC-AC would detect sparse clusters better.

In experiments on benchmark datasets, NDPC behaves much better than
DPC. NDPC-AC behaves better than not only DPC-AC but also some state-of-
the-art clustering algorithms.

2 Related Work

Density peak clustering (DPC) is able to recognize clusters regardless of their
shape and of the dimensionality of the space in which they are embedded [22].
It is based on the assumptions that a cluster center is characterized by a higher
local density than its neighbors and by a relatively large distance from any point
with a higher local density.

Given a set of data points X = {x1, x2, . . . , xn}, DPC defines the local density
of a point xi as

ρi =
∑

j

χ(dist(i, j) − dc), (1)

where χ(d) =
{

1, if d < 0
0, otherwise

, dc is a cutoff distance and dist(i, j) is the

Euclidean distance between xi and xj . Basically, ρi is equal to the number of
points within distance dc from xi. The minimum distance between xi and any
other point with a higher local density is denoted as δi.

To select cluster centers, DPC plots a decision graph, which has ρ and δ as
its axes. In this graph, points with reasonably high ρi and large δi are manually
selected to be cluster centers. Another way to select cluster centers is to select
points whose γi are reasonably large, where

γi = ρiδi. (2)

After cluster centers are selected, each remaining point is assigned to the same
cluster as its nearest neighbor of higher local density.

Even though DPC provides a new view for clustering, existing clustering
algorithms based on DPC do not perform well on datasets where different clusters
have very different densities, while such datasets are common in the real world
[7].

To solve this problem, several diffierent definitions of local density were pro-
posed. In DPC-KNN-PCA [7], the local density of a point xi is defined as

ρi = exp(− 1
K

∑

xj∈NK
i

dist(i, j)2), (3)
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where N K
i is the set of K-nearest neighbors of xi.

In FKNN-DPC [26], the local density of xi is defined as

ρi =
∑

xj∈NK
i

exp(−dist(i, j)). (4)

In APDC-KNN [16], the local density of xi is defined as

ρi =
∑

xj∈NK
i

exp(−dist(i, j)2/d2c). (5)

However, the above three local densities still have not solved the problem
well. The distances from a point in a sparse region to its K-nearest neighbors
are relatively large, therefore, its local density is relatively low in any above
method.

Another problem of DPC is that it does not perform well when a cluster
has more than one density peak [30]. To solve this problem, some researchers
constructed DPC-AC to combine DPC with agglomerative clustering [17,30].
Agglomerative clustering, e.g., Chameleon [15] and GDL [29], begins with a
large number of initial clusters and then merges them according to the affinity
between clusters [10]. Initial clusters in agglomerative clustering cannot capture
the local structure of data well, thus harming the subsequent steps. On the other
hand, too many initial clusters will imped the efficiency. DPC-AC generates
initial clusters by DPC and then merges them according to the affinity between
clusters. Compared with agglomerative clustering, DPC-AC has fewer initial
clusters but captures the local structure of data better because it takes the local
density into consideration. However, the local density in DPC-AC is the same as
that in DPC. Thus, DPC-AC still does not perform well when different clusters
have very different densities in DPC.

3 Methodology

In this section, we propose a new local density to improve DPC on datasets
where different clusters have very different densities in DPC. Furthermore, we
apply our new local density to DPC-AC.

3.1 A New Local Density

We find that, whether in dense clusters or in sparse clusters, a cluster center
would be contained in K-nearest neighbors of more points than others. Therefore,
we define the local density of a point as the number of points whose K-nearest
neighbors contain this point.

Our new local density, denoted as ρ′, is calculated as follows. We construct
a K-nearest-neighbor graph G. For any point xi in G, if xj is one of K-nearest
neighbors of xi, then there are a directed edge from point xi to point xj and a
weight Wij for this edge. Basically, Wij is calculated by
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Wij =
{

1, if xj ∈ N K
i ,

0, otherwise.
(6)

In our measure, the local density of xi is

ρ′
i =

∑

j

Wji. (7)

3.2 NDPC Algorithm

We substitute the local density in DPC with our new local density to construct
NDPC. Accordingly, γi in Formula (2) is as follows,

γi = ρ′
iδi. (8)

Points whose γi are reasonably large are selected to be cluster centers.
The NDPC algorithm is summarized in Algorithm 1.

Algorithm 1. NDPC
Input: A set of data points X = {x1, x2, ..., xn}; nT , the number of final clusters.
Output: A set of nT clusters V c = {C1, C2, ..., CnT }, where Cp is a cluster.

1: Calculate ρ′
i of each point xi according to Formula (7).

2: Calculate δi of each point xi.
3: Calculate γi of each point xi according to Formula (8).
4: Sort all the points by γ = {γ1, γ2, ..., γn} in descending order and then select the

first nT points in the sorted list to be cluster centers.
5: Assign each point xi, except those selected as cluster centers, to the same cluster

as its nearest neighbor xj of higher local density ρ′
j , thus forming the set of nT

clusters V c = {C1, C2, ..., CnT }.
6: Return V c.

In NDPC, dense clusters will lose superiority over sparse clusters. A point in
a dense region has more neighbors nearby, but this does not necessarily mean
that there are more points that contain it in their K-nearest neighbors. On the
other hand, even in a sparse region, there may be some points that have high
local densities in our definition, thus one of these points can be selected to be a
center and then this region is detected as a cluster. Therefore, in NDPC, sparse
clusters can be correctly detected instead of being merged into other clusters or
be treated as noises as in DPC.

In the following part, we analyze DPC, DPC-KNN-PCA and NDPC on a
synthetic dataset Unbalance [21] and a real-world dataset Lung [25].

The synthetic dataset Unbalance in Fig. 2(a), Fig. 2(b) and Fig. 2(c) is com-
posed of eigth Gaussian clusters. Points in the left three clusters are distributed
densely, while points in the right five clusters are distributed sparsely. We use
each of the above three algorithms to select eight cluster centers and then to



A New Local Density for Density Peak Clustering 431

(a) DPC (b) DPC-KNN-PCA (c) NDPC

Fig. 2. Analysis of DPC, DPC-KNN-PCA and NDPC on synthetic dataset Unbalance.
Pentagrams indicate the points that are selected as cluster centers.

generate eight clusters. As we can see from Fig. 2(a) and Fig. 2(b), DPC selects
five cluster centers from the three dense clusters and DPC-KNN-PCA selects six
cluster centers from the three dense clusters. This suggests that both DPC and
DPC-KNN-PCA are suffering from the density difference between clusters. In
contrast, as shown in Fig. 2(c), NDPC selects one center from every cluster and
gets the correct clustering result.

Lung dataset is a real-world dataset about lung cancer. Intuitively, there
are two sparse clusters in the two rings in Fig. 3(a). This is coincident with the
ground truth. As shown in Fig. 3(b), DPC selects all the cluster centers from the
dense region, so it does not detect the two clusters in the rings. From Fig. 3(c),
we can see that DPC-KNN-PCA succssfully detects one of those two sparse
clusters, but fails to detect the other one. In contrast, as shown in Fig. 3(d), our
NDPC selects one center in each of those two sparse clusters and thus successfully
detects both of those two sparse clusters.

(a) Ground Truth (b) DPC (c) DPC-KNN-PCA (d) NDPC

Fig. 3. Analysis of DPC, DPC-KNN-PCA and NDPC on Lung dataset.

3.3 NDPC-AC Algorithm

Since DPC does not perform well on datasets where a cluster has more than
one density peak, some researchers combined DPC with AC to develop a new
algorithm, DPC-AC. Though DPC-AC can deal with datasets where a cluster
has more than one density peak better than DPC, it still does not perform well
on datasets where different clusters have very different densities.
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We apply our new local density to DPC-AC to construct NDPC-AC. Firstly,
we use NDPC to generate initial clusters. Then we merge these initial clus-
ters iteratively into required number of clusters according to the same affinity
measure as in graph degree linkage (GDL), a typical agglomerative clustering
algorithm [29]. In each iteration, the two clusters with the highest affinity are
merged together.

The cluster affinity in GDL is computed as follows. Firstly, we construct a
K-nearest-neighbor graph G′. For any point xi in G′, if xj is one of K-nearest
neighbors of xi, then there are a directed edge from point xi to point xj and a
weight W ′

ij for this edge. W ′
ij is calculated by

W ′
ij =

{
exp(−dist(i,j)2

σ2 ), if xj ∈ N K
i ,

0, otherwise,
(9)

where σ2 = 1
n×K [

∑n
i=1

∑
xj∈NK

i
dist(i, j)2].

Given a point xi, the average indegree from and the average outdegree to
a cluster C are defined as deg−

i (C) = 1
|C|

∑
j∈C

W ′
ji and deg+i (C) = 1

|C|
∑

j∈C

W ′
ij ,

respectively, where |C| is the cardinality of set C. The affinity between a point
and a cluster is defined as the product of the average indegree and average
outdegree,

Ai→C = deg−
i (C)deg+i (C). (10)

The affinity from cluster Cb to Ca is

ACb→Ca
=

∑

xi∈Cb

Ai→Ca
=

∑

xi∈Cb

deg−
i (Ca)deg+i (Ca). (11)

Then the symmetric affinity between Ca and Cb is

ACa,Cb
= ACb→Ca

+ ACa→Cb
. (12)

The NDPC-AC algorithm is summarized in Algorithm 2.

(a) DPC-AC (b) NDPC-AC

Fig. 4. Analysis of DPC-AC and NDPC-AC on Lung dataset.

Figure 4 is an illustration of clustering results of DPC-AC and NDPC-AC
on Lung dataset. For both algorithms, we generate ten initial clusters and then
merge them into five clusters. Compared with the ground truth shown in Fig. 3
(a), DPC-AC fails, while our NDPC-AC successfully detects all the five clusters.
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Algorithm 2. NDPC-AC
Input: A set of data points X = {x1, x2, ..., xn}; nc, the number of initial clusters; nT ,
the number of final clusters.
Output: A set of nT clusters V c = {C1, C2, ..., CnT }.

1: Generate a set of nc initial clusters V c = {C1, C2, ..., Cnc} by NDPC algorithm.
2: while nc > nT do
3: Search two clusters Cp and Cq, such that {Cp, Cq} = argmax{Ca,Cb|a�=b}ACa,Cb ,

where ACa,Cb is the affinity measure between Ca and Cb, calculated by Formula
(12).

4: V c ←− V c ∪ {Cp ∪ Cq} \ {Cp, Cq} and nc = nc − 1.
5: end while
6: Return V c.

4 Experiments

In this section, we demonstrate the effectiveness of our NDPC and NDPC-AC
on benchmark datasets.

4.1 Comparison Scheme

In this subsection, we describe datasets that we use, comparison algorithms and
some details in the experiments.

Seven benchmark datasets are used in our experiments: Coil20 [19], Mnist
[6], USPS [12], Isolet [1], Lung [25], Vote [1] and ORL [23]. The basic information
of benchmark datasets are shown in Table 1.

Table 1. Description of the datasets

Datasets # Instances # Attributes # Clusters Category

Coil20 1440 1024 20 Object images

Mnist 10000 784 10 Handwritten digit images

USPS 11000 256 10 Handwritten text images

Isolet 1560 617 26 Spoken letters

Lung 203 3312 5 Lung cancer

Vote 435 16 2 Voting records

ORL 400 10304 40 Human faces

We compare our NDPC and NDPC-AC with K-means [11], N-Cut [24], CLR
[20], Chameleon [15], GDL [29], DPC [22], DPC-KNN-PCA [7], and DPC-AC
[17,30]. K-means iteratively updates the cluster centers with points in corre-
sponding clusters and assigns all the points to the nearest center until some
condition is reached. N-Cut works by dividing the data graph according to
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inter-group dissimilarity and intra-group similarity. CLR is also a graph-based
clustering algorithm. Its data similarity graph is adaptive in iterations of clus-
tering procedure and it learns a graph with exactly nT connected components,
where nT is the number of clusters in ground truth. Chameleon is a classical
agglomerative clustering algorithm. It generates initial clusters by dividing the
K-nearest-neighbor graph of the data set into several sub-graphs such that the
edge cut is minimized. Then it merges these initial clusters according to cluster
affinity which is based on relative interconnectivity and relative closeness. GDL
is an effective agglomerative clustering algorithm. It constructs initial clusters
as weakly connected components of a 1-nearest-neighbor graph. Then it merges
these initial clusters according to cluster affinity which is based on indegree and
outdegree. DPC-KNN-PCA is an algorithm based on DPC. It uses K-nearest
neighbors to calculate local density and uses PCA to preprocess high-dimensional
data. DPC-AC uses DPC to generate initial clusters and merges them accord-
ing to the affinity between clusters. For the sake of fairness in comparison, the
affinity measure used in DPC-AC is the same as that in NDPC-AC.

In all the algorithms based on DPC, dc is calculated by

dc = D�N×p/100�, (13)

where N = n2, �·� is a ceiling function and D�N×p/100� ∈ D = [D1,D2, . . . , DN ].
D is the set of the Euclidean distances between every two points and is sorted
in ascending order.

For NDPC and NDPC-AC, we use a Gaussian kernel to calculate Wij in graph
G and the virance is set to be dc. The K in graph G is set to be �n×p/1000�, then
p is the only parameter for both DPC and NDPC. For NDPC and NDPC-AC, p
is selected from 1, 3 and 10. For NDPC, nc, the number of initial clusters, is set
to be e × nT and e is selected from 5, 10, 100 and 200. For GDL, DPC-AC and
NDPC-AC, the K in graph G′ is selected from 5 and 20. For all the algorithms,
the number of clusters remained after clustering is set to be nT .

We evaluate the experiment results based on two widely used clustering cri-
terions: normalized mutual information (NMI) and clustering accuracy (ACC),
both of which measure clustering results referring to ground truth information.

4.2 Experimental Results on Benchmark Datasets

Figure 5 shows NMI and ACC of DPC and NDPC on three datasets, Coil20,
Mnist, and USPS, with p varying. As we can see, NDPC behaves better than
DPC stably when p varies. This demonstrates the rationality of our new local
density, since the measure of local density is the only difference between DPC
and NDPC.

Table 2 shows the NMI and ACC of all the algorithms on benchmark datasets.
We can see that NDPC behaves much better than not only DPC, but also DPC-
KNN-PCA. NDPC-AC behaves better than not only DPC-AC, but also excellent
state-of-the-art clustering algorithms such as GDL and CLR. These results have
proved the advantages of our new local density and the combination of our NDPC
with AC.
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(a) Coil20 NMI (b) Mnist NMI (c) USPS NMI

(d) Coil20 ACC (e) Mnist ACC (f) USPS ACC

Fig. 5. Performances of DPC and NDPC when parameter p varies.

Table 2. Experimental results on benchmark datasets

Coil20 Mnist USPS Isolet Lung Vote ORL

NMI K-means 0.749 0.502 0.461 0.764 0.577 0.348 0.801

N-Cuts 0.836 0.519 0.384 0.770 0.320 0.357 0.802

CLR 0.964 0.702 0.721 0.815 0.685 0.072 0.913

Chameleon 0.715 0.442 0.377 0.729 0.627 0.291 0.811

GDL 0.969 0.843 0.814 0.817 0.678 0.076 0.899

DPC 0.841 0.308 0.260 0.566 0.330 0.414 0.816

DPC-KNN-PCA 0.796 0.384 0.389 0.700 0.230 0.427 0.836

DPC-AC 0.934 0.648 0.593 0.783 0.730 0.427 0.901

NDPC 0.806 0.688 0.487 0.816 0.526 0.514 0.878

NDPC-AC 0.958 0.822 0.837 0.816 0.779 0.514 0.925

Coil20 Mnist USPS Isolet Lung Vote ORL

ACC K-means 0.643 0.515 0.454 0.547 0.670 0.821 0.585

N-Cuts 0.674 0.578 0.352 0.546 0.424 0.828 0.595

CLR 0.874 0.539 0.607 0.601 0.872 0.570 0.783

Chameleon 0.594 0.495 0.436 0.577 0.645 0.798 0.625

GDL 0.897 0.850 0.760 0.603 0.852 0.568 0.708

DPC 0.647 0.301 0.279 0.310 0.714 0.844 0.550

DPC-KNN-PCA 0.674 0.309 0.300 0.557 0.704 0.853 0.585

DPC-AC 0.861 0.626 0.614 0.597 0.905 0.853 0.778

NDPC 0.708 0.695 0.507 0.611 0.734 0.894 0.740

NDPC-AC 0.935 0.906 0.907 0.687 0.941 0.894 0.830
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4.3 Visualization of Experimental Results on ORL Dataset

In this subsection, we show some visualization of experimental results on ORL
dataset [23]. ORL dataset has face images of 40 subjects and 10 different images
for each subject. The size of images is 92 × 112. In this paper, we select the 200
images of the first 20 subjects as ORL-20.

We show the visualization of some results on ORL-20 in Fig. 6. The experi-
mental results strongly support our conclusions: our new local density substan-
tially improves DPC and DPC-AC; our NDPC-AC has the best performance
among all the algorithms.

(a) DPC (NMI=0.834, ACC=0.650) (b) DPC-AC (NMI=0.923, ACC=0.745)

(c) NDPC (NMI=0.911, ACC=0.845) (d) NDPC-AC (NMI=0.952, ACC=0.875)

Fig. 6. Analysis on ORL-20.

5 Conclusion

In this paper, we redefine the local density and apply our new local density
to DPC and DPC-AC. The analysis and experimental results show that our
new local density has improved both DPC and DPC-AC substantially. NDPC
is better than DPC, and NDPC-AC is better than not only DPC-AC but also
some excellent state-of-the-art clustering algorithms.
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Abstract. Document clustering is a popular method for discovering useful
information from text data. This paper proposes an innovative hybrid document
clustering method based on the novel concepts of ranking, density and shared
neighborhood. We utilize ranked documents generated from a search engine to
effectively build a graph of shared relevant documents. The high density regions
in the graph are processed to form initial clusters. The clustering decisions are
further refined using the shared neighborhood information. Empirical analysis
shows that the proposed method is able to produce accurate and efficient
solution as compared to relevant benchmarking methods.

Keywords: Density estimation � Ranking function � Graph-based clustering

1 Introduction

Document clustering is a popular method to discover useful information from the text
corpuses [1]. It has been used to organize the data based on similarity in many
applications such as social media analytics, opinion mining and recommendation
systems. A myriad of clustering methods exist that can be classified into the popular
categories of partitional, hierarchical, matrix factorization, and density based clustering
[1, 2]. The centroid based partitional methods such as k-means are known to suffer
from the data concentration problem when dimensionality is high and the data distri-
bution is sparse. Specifically, the difference between data points becomes negligible
[3]. Hierarchical clustering suffers from the same problem due to the requirement of
multiple pairwise computation at each step of decision making [1]. Matrix factoriza-
tion, a dimension reduction method for high dimensional text, is also commonly used
in finding clusters in low dimension data. In these methods, information loss is
inevitable [1] as well as the required time for low rank approximation of a large text
data through optimization increases with the size of the datasets.

Density-based methods such as DBSCAN and OPTICS have been found highly
efficient in traditional data [4]. They generate diverse shapes of clusters without taking
the number of clusters as an input – the desired requirements for document datasets [2].
Moreover, text data has shown to experience the Hub phenomena, i.e., “the number of
times some points appear among k nearest neighbors of other points is highly skewed”
[3]. A density based clustering method should be ideal to identify these naturally spread
dense sub regions made of frequent nearest neighbors that assist in estimating density.
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However, this approach is hardly explored in document clustering due to manifold
reasons [5].

Firstly, density based methods become stagnated in high dimensional data clus-
tering as the document datasets exhibit varying densities due to sparse text represen-
tation and the density definition cannot identify core points to form clusters [1].
Secondly, techniques employed for efficient neighborhood inquiry to expand clusters
do not scale well to high dimensional feature space [1]. A handful of solutions have
been proposed by using different shapes, sizes, density functions and applying con-
straints in the high dimensional data [2, 5]. Semi supervised and active learning
approaches have been used in density document clustering with DBSCAN to obtain
improved clustering performance [2].

Majority of density based methods utilize the concept of Shared Nearest Neighbor
(SNN) [6] whereby the similarity between points is defined based on the number of
neighbors they share [5, 7]. The SNN concept facilitates the relatively uniform regions
to form a graph and to identify clusters by differentiating varying densities. In docu-
ment clustering setting where data representation is naturally sparse this is an ideal
solution to identify dense regions. However, the computation of a SNN graph is
expensive due to the high number of pairwise comparisons required.

In this paper, we propose a novel and effective method called as Ranking centered
Density based Document Clustering (RDDC). It first builds the SNN graph based on
the concepts of Inverted index and Ranking and, then, iteratively form clusters by
finding density regions within the shared boundary of documents in the SNN graph.

Information Retrieval (IR) is an established field that uses the document similarity
concept to provide the ranked results in response to the user query [10]. An IR system
is able to process queries per second on collections of millions of documents using
efficient inverted index data structure on a traditional desktop computer [11]. Given a
query and the documents organized in the form of inverted index on a standard desktop
machine, a search engine will efficiently retrieve the related documents ranked by the
relevancy order to the query. We conjecture that a document neighborhood can be
generated using this relevant documents set found by an IR system without the
expensive pairwise documents comparisons. In RDDC, we propose to explore this
neighborhood of relevant documents to build the SNN graph effectively that, in turn,
reveals the core dense points and form clusters.

The conventional density clustering methods are known for not covering all data
points in clusters and leaving the higher number of documents un-clustered [7]. To deal
with this problem, we identify multiple hubs in the shared neighborhoods sets and
reassign these un-clustered documents to the closest hub based on prior calculated
relevancy scores. Empirical analysis using several document corpuses reveals that
RDDC is able to cluster high percentage of documents accurately and efficiently
compared to other state-of-the-art methods.

More specifically, in this paper we propose a novel density based clustering method
RDDC for sparse text data. RDDC explores the dense patches in high dimensional
setting using a shared nearest neighbor graph built with ranked results of an IR system.
RDDC further enhances the clustering decision using these shared nearest neighbors as
hubs in higher dimensionality. It efficiently calculates the similarity for hubs using
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relevancy scores provided by the IR system. These approaches of cluster allocation
enable RDDC obtaining improved accuracy and efficiency for document clustering.

To our best of knowledge, RDDC is the first such method that extends the IR
concepts of Inverted index and Ranking to density document clustering. Recently, a
couple of researchers have used the ranking concept to partitional document clustering,
to produce relevant clusters instead of all clusters in semi-supervised clustering [8] and
to select centroids using ranked retrieval in k-means [9]. However, the approach
employed in RDDC is entirely different from these two works. RDDC does not need a
user-defined cluster number k and the expensive steps of centroid updates in these
methods. RDDC finds the density regions in the SNN graph which is built efficiently
using the document ranking scores obtained from the text data through an IR system.

2 Ranking-Centered Density Document Clustering (RDDC)

Let D ¼ fd1; d2; d3; . . .; dNg be a document corpus and di be a document represents
with set of M distinct terms ft1; t2; t3; . . .; tMg. RDDC uses an IR system to index all
documents in D based on their terms and frequencies. The indexed documents become
input to the clustering process that includes three main steps. (1) Firstly, the nearest
neighbor sets which possess common documents, DSNN �D are identified using the
document ranking scores obtained from the IR system in order to build the SNN graph.
(2) Secondly, the graph GSNN is built using documents in DSNN as vertices and the
corresponding number of shared relevant documents as edge weight. Dense regions are
found in the graph and a distinct cluster label in C ¼ fc1; c2; c3; . . .; clg is assigned to
documents in high dense regions. Another set of documents DO2 that appear in low
density regions is separated out. (3) Lastly, RDDC assigns cluster labels to di 2 DO2

according to their maximum affinity to a hub residing within a cluster that is identified
in previous step.

2.1 Obtaining Nearest Neighbors as Relevant Documents

Document Querying. Given a document di 2D as a query and D organized as
inverted index, an IR system generates the most relevant documents ranked in the order
of relevancy to di. A query representing the document, q ¼ t1; t2; t3; . . .; tsf g2di should
be generated such that the most accurate nearest neighbors are obtained. RDDC rep-
resents the document as a query using the top-s terms ranked in the order of term
frequency according to the length of the document. A set of s distinct terms with
0� s�M is obtained as:

s ¼ jdijð Þ=k : i ¼ 1; 2; . . .;N ð1Þ

If the length of the document is less than s, all the terms in the document is used as the
query. A factor k controls the query length in various sized documents. A smaller k
value (e.g., k = 15) is used in large text data yielding larger queries while a larger value
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(e.g., k = 35) is used in short text data yielding smaller queries. The value of k is
empirically learned ranging from 3–50 for each corpus.

Document Ranking. Given the document query q, a set of m most relevant documents
with their ranking score r vector is obtained using the ranking function Rf as in Eq. (2).
A number of ranking functions such as Term Frequency-Inverse Document Frequency
(tf � idf ), Okapi Best Matching 25 (BM25) can be used to calculate the relevancy
score [10]. RDDC uses the tf � idf ranking function given in Eq. (3) where tf rep-
resents how often a term appears in the document, idf represents how often the term
appears in the document collection and field length normalization depicts how the
length of the field which contains the term is important.

Rf : q ! Dq ¼ dqj ; rj
� �n o

: j ¼ 1; 2; . . .;m ð2Þ

rdj ¼ score q; dj
� � ¼

X
tinq

p
tft;dj � idf 2t � normðt; djÞ

� � ð3Þ

Claim 1 shows that the ranking results obtained by an IR system using a ranking
function provides the relevant neighbors to di with a reduced computational time and
high accuracy, in comparison to the pairwise document comparison.

Claim 1. Let NðdiÞ be the neighborhood documents calculated from the pairwise
document comparisons of document di with rest of the documents in the collection D of
size N obtained with d1 time and @1 level of accuracy. Let RðdiÞ be the IR ranked result
of document di obtained with d2 time and @2 level of accuracy. R dið Þ�N dið Þ will be
built with d2ð\d1Þ time and @2ð[ @1Þ level of accuracy.
Proof:

– In order to obtain N dið Þ; (cosine) similarity has to be obtained by comparing di with
every document in D. This process consists of N � 1 steps which takes d1 time and
allows to obtain the top-k neighbours where k	 1 according to similarity values
with @1 level of accuracy.

– R dið Þ is obtained using inverted indexed documents in D and a ranking function
such as tf � idf [10]. The tf � idf ranking function only computes similarity scores
for documents containing high tf � idf weights for query terms. This is a one step
process which takes d2 time and gives most relevant neighbour documents with @2

level of accuracy.
– The cluster hypothesis [12] states that “associated documents appear in a returned

result set of a query”. The reversed cluster hypothesis in the optimum clustering
framework [10] further states that “the returned documents in response to a query
will be in the same cluster” and can be considered as nearest neighbours.

– Since, R dið Þ�N dið Þ�D; R dið Þ will contain neighbours with @2ð[ @1Þ level of
accuracy obtained with d2ð\d1Þ time.
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2.2 Graph Based Clustering

The IR ranked results should contain the relevant neighborhood documents to the query
document. RDDC uses the top-10 ranked documents as the nearest neighborhood set as
they possess sufficient information richness [13]. A DSNN �D is identified by calcu-
lating common documents for each di 2D with its top-10 retrieved documents. Let
retrieved results set of di, dj be R dið Þ and R dj

� �
respectively where dj 2RðdiÞ. If

R dið Þ \ R dj
� �

[ 2; documents di and dj (di; dj 2DSNN) become vertices in the graph
GSNN and the corresponding number of shared relevant documents (ðjR dið Þ \R dj

� �jÞ
be the edge weight. GSNN construction leaves out a set of orphan documents DO1

(D ¼ DSNN [ DO1) that do not appear in DSNN .

DO1 ¼ di 2Dð Þ \ di 62DSNN
� �� �

: i ¼ 1; 2; . . .;N ð4Þ

The next task is to identify dense nodes in GSNN . A dense node contains the number of
documents (higher than a threshold) connected in the region with the edge weight
higher than a threshold. These nodes are defined as core points in GSNN that become
initial cluster representatives. Each cluster boundary is then expanded to include
documents with the same edge weight. This process gives us a set of documents with
cluster labels C, as well as it identifies documents DO2 that do not fit into any cluster
boundaries.

DO2 ¼ di 2Dð Þ \ di 2DSNN
� � \ di 62Cð Þ� �

: i ¼ 1; 2; . . .;N ð5Þ

Algorithm 1 details the process of obtaining density based clusters. Claim 2 shows that
the SNN graph can be built accurately using ranking results.

Claim 2. Let the SNN graph created with k nearest neighbourhoods NkðDÞ in the
document collection D be GNkðDÞ and the SNN graph created with IR ranked results
RðDÞ be GRðDÞ. If R dið Þ�N dið Þ for di 2D, then graph GRðDÞ �GNkðDÞ and GRðDÞ

contains @2ð[ @1Þ level of accuracy where @1 is accuracy level of the GNkðDÞ.

Proof:

– Let VðRðDÞÞ, VðNkðDÞÞ be the vertices of two graphs GRðDÞ and GNkðDÞ represented
by the documents in RðDÞ and NkðDÞ respectively and E R Dð Þð Þ;EðNkðDÞÞ be the
edges represented by the number of shared documents within document pairs in
RðDÞ and NkðDÞ respectively.

– For document di to obtain k relevant neighbourhoods NkðdiÞ we have to prune
meaningless neighbourhood levels. Hence, Nk dið Þ�N dið Þ.

– If Nk dið Þ�N dið Þ and R dið Þ � N dið Þ then R dið Þ�Nk dið Þ as R dið Þ contains only the
most relevant neighbours according to the optimum clustering framework [10].
Thus R Dð Þ�Nk Dð Þ.

– Therefore V R Dð Þð Þ�VðNk Dð ÞÞ and E R Dð Þð Þ�EðNkðDÞÞ. It proves
GRðDÞ �GNkðDÞ.
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– The IR ranked results R dið Þ of di contains the relevant documents to di with
@2ð[ @1Þ level of accuracy as shown in Claim1. Hence, GRðDÞ contains all required
document information to represent SNN graph with @2ð[ @1Þ level of accuracy.
In this phase, a repository H ¼ fH1;H2;H3; . . .;H;g is also built to store the shared

relevant documents where each node Hj 2H contains a set of shared documents {
di; dj; . . .dkg and ; is the total number of sets of shared documents. Usually, Hj j[ jCj
and a node Hj contains documents from the same cluster. The set of relevant nodes
within a cluster is comparable to the concept of Hubs in high dimensionality [3]. These
hubs actually represent the sub dense regions within clusters. RDDC accurately cluster
higher percentage of documents using affinity calculation for these hub nodes (Fig. 1)
and avoid the problem of higher number of un-clustered documents in many other
density based methods.

2.3 Relevancy Based Clustering

Algorithm 2 details the process of clustering documents DO2 that remain un-clustered
in the first phase, based on the maximum relevancy to the set of documents in the
repository H. In the high-dimensional data such as text, a cluster is shown to contain
multiple hubs of documents instead of a uniform spread across the cluster [3].
In RDDC, the sets of shared relevant documents present in H are considered as hubs
within a cluster. We envisage that the hubs of documents stored in the repository H will
share higher affinity to di 2 DO2 instead of a cluster represented as mean (centroid)
vectors. For each di 2 DO2, we calculate its affinity with each node in H as follows.

Fig. 1. Algorithm for RDDC
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AS dið Þ ¼
Psizeof Hjð Þ

u¼1 scoreðdi; duÞ
sizeof Hj

� �
0
@

1
A; j : 1; 2; :; ;;

8<
:

score di; duð Þ calculated as per Eq:ð3Þg
ð6Þ

The affinity score of hub node Hj is calculated using the ranking score of each
document that it contains, when the orphan document di was posed as a query. Usually,
the hub calculation in existing clustering methods is found very expensive due to the
need of pairwise computation between all documents within a cluster [8, 14]. However,
RDDC uses (already calculated) relevancy scores in IR ranked results to measure hub
affinity and makes the process computationally efficient. Document di is then assigned
with the cluster label of the maximum relevant node Hj2H that yields the largest
affinity score to di.

3 Empirical Analysis

We used multiple datasets with varying dimensionality such as 20 Newsgroups,
Reuters 21578, Media Eval Social Event Detection (SED) 2013 and SED 2014, and the
TDT5 English corpus, as reported in Table 1. We created smaller subsets of 20
newsgroups datasets as given in Table 1 to compare the RDDC performance with the
density-based document clustering method by Zhao et al. [2]. Additionally, several
other density-based clustering methods including SNN based DBSCAN [7], SNN
based clustering for coherent topic clustering [5] and DBSCAN [4] as well as the well-
known matrix factorization method, NMF [15] were used for benchmarking.

Table 1. Summary of the datasets in the experiment.

Datasets # Docs #Terms Avg. #Terms
per doc

Std. Dev. terms
per corpus

#Clusters
(ground truth)

20 Newsgroups-
20ng_DS1

300 6595 104 88 3

20 Newsgroups-
20ng_DS2

2000 22841 100 119 20

20 Newsgroups-
20ng_DS3

7528 43946 97 104 20

Reuters 21578 -
R52_DS

9100 19479 46 41 52

SED 13 -
SED13_DS

99989 61806 17 23 3711

SED 14 -
SED14_DS

120000 64056 16 16 3875

TDT 5 -
TDT5_DS

3905 38631 172 124 40
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Each dataset was pre-processed to remove stop words and words are stemmed.
Document term frequency was selected as the weighting schema for the query repre-
sentation after extensive experiments. In all the experiments, query length was set to
optimum query length according to Eq. (1). The minimum number of documents and
minimum weight for graph a was set to 3 based on experiments and prior research [16]
for all the datasets. Experiments were done using python 3.5 on 1.2 GHz – 64 bit
processor with 264 GB Memory. The Elasticsearch with fast bulk indexing was used as
the search engine to obtain relevant documents. Standard pairwise F1-score and Nor-
malized Mutual Information (NMI) were used as cluster evaluation measures [2].

3.1 Accuracy Analysis

Results in Table 2 and Fig. 2(a) show the comparative performance of RDDC with
benchmarking methods. As shown by the average performance of all datasets in
Table 2, RDDC has produced much higher accuracy as compared to benchmarking
methods. Results in Fig. 2(a) ascertain that RDDC forms tight natural clusters. It is able
to identify sub clusters within the specified clusters as shown by finding the higher
number of clusters (Fig. 2(a)), but still produce higher NMI (Table 2). Sometimes, this
leads to producing low F1- score. Density based clustering is known not to cover every
data point in clusters, due to the requirement of fitting the clustered objects into a
density region [4]. Figure 2(a) shows that RDDC is able to assign a large share of
documents to clusters with high accuracy due to the inclusion of relevancy based
clustering in the third step. RDDC shows two-fold increase in the percentage of
documents clustered using the graph-based clustering to the relevance clustering with
52% and 17% increase in NMI and F1-score respectively. In some datasets, DBSCAN
has shown to cover more documents than RDDC, however, a closer investigation
reveals that it produces a few larger clusters only that will hold a large number of
documents, yielding poor clustering solution.

Table 2. Performance comparison of different datasets, methods, and metrics

Datasets NMI F1-score
RD SD ST DB MF RD SD ST DB MF

20ng_DS3 0.28 - - 0.00 0.18 0.28 - - 0.09 0.14
R52_DS 0.36 0.04 - 0.07 0.38 0.41 0.38 - 0.43 0.26
SED13_DS 0.87 - - 0.00 - 0.66 - - 0.00 -
SED14_DS 0.87 - - 0.00 - 0.65 - - 0.00 -
TDT5_DS 0.61 0.36 0.21 0.22 0.70 0.35 0.32 0.25 0.22 0.54
Average 0.60 0.20 0.21 0.06 0.42 0.47 0.35 0.25 0.15 0.31
Methods: RDDC (RD), SNN based DBSCAN (SD), SNN based topic
clustering (ST), DBSCAN (DB) and NMF (MF)
Note: “-” denotes out of run-time or memory
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Zhao et al. [2] used DBSCAN in semi-supervised setting for document clustering.
We have created 20ng_DS1, 20ng_DS2, and TDT5_DS according to the explanation
given in their paper as we are unable to find the method implementation. RDDC is an
unsupervised method and can be considered equivalent to zero constraint level of the
method in [2]. As shown in Table 3, results produced by unsupervised RDDC are
mostly superior to semi-supervised DBSCAN [2]. These results show the effectiveness
of using relevancy scores obtained with the concepts of ranking and inverted index, in
building SNN graph, finding dense regions and forming clusters.

3.2 Scalability and Complexity Analysis

Figure 2(b) shows that the traditional SNN based methods failed to scale with large
datasets due to the computational complexity introduced by the number of comparisons
made for k NN search. It is Oðnkþ ndÞ where n is the number of instances in dataset, d
is feature dimensionality and k is the number of nearest neighbors. Whereas, the
relevant document calculation of RDDC has computational complexity of Oðmþ nÞ
where m is the query length to obtain relevant neighbors. RDDC consumes more time
than DBSCAN as in Fig. 2(b) due to additional graph construction and maximum
relevancy calculation. However, as shown in Table 2 the tradeoff by achieving 0.54
and 0.32 increase on average accuracy in terms of NMI and F1-score respectively in
RDDC is well justified. Incremental sampling on the SED13 collection is used to
demonstrate the scalability of RDDC. Figure 3(a) shows that RDDC exhibits near

Fig. 2. Performance comparison with percentage of clustered documents and time taken

Table 3. Performance comparison with semi supervised clustering [2]

Datasets RDDC Semi-supervised DBSCAN
NMI F1-score # constraints NMI F1-score # constraints

20ng_DS1 0.66 0.75 0 0.62 0.62 25
20ng_DS2 0.40 0.32 0 0.22 0.42 50
TDT5_DS 0.61 0.35 0 0.22 0.31 75
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linear increase in time with the size of the corpus, whereas traditional SNN based
methods are not scalable as shown by the runtime in Table 2. Further, performance of
RDDC with the increased feature dimensionality in Fig. 3(b) shows that the RDDC
performance comes to stabilize after a linear increase in runtime with dimensionality.

3.3 Sensitivity Analysis

The parameter sensitivity is analyzed by obtaining two independent samples of dif-
ferent sizes from each dataset in Table 2. The document model for query formation was
evaluated using tf , idf and tf � idf weighting schema. Figure 4(a) shows that the tf
presentation outperformed others in many datasets. It is justified as important terms
which determine the theme of the document have higher weights in this scheme.

Success of the RDDC relies on obtaining accurate nearest neighbors of a given
document to build the SNN graph. It depends on how a query is presented and the
ranking function used. There exist two most popular ranking functions, tf � idf and
BM25 [10]. Figure 4(b) shows that a higher performance in terms of NMI and F1 score
is obtained by using tf � idf , so it is used in all experiments and can be set as default.

Fig. 3. Scalability performance of RDDC using the SED 13 and 20ng_DS3 dataset

Fig. 4. Term weighting schema and ranking functions
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Next we explored the relationship between query length and the text size in doc-
ument corpuses. Figure 5(a) shows that there is a linear relationship between query
length and document size. Smaller document corpuses need smaller queries while
larger documents sized corpuses need lager queries. In RDDC factor k is included to
control the size of query length for documents in a corpus. We analyze the parameter
k against size of the datasets as in Fig. 5(b). The factor k shows inverse linear rela-
tionship, that is, a large k value should be set for short text data and a smaller k value
should be set for large text data. The parameter k adjusts the query size as per length of
the document.

The threshold a in RDDC denotes the minimum number of documents to be shared
between two documents to define as similar, and the number of documents to be
considered as dense. Prior research has shown this value to be set as 3 [16]. As shown
in Fig. 6, the best performance (i.e. maximum number of documents clustered) is
obtained when a is set to 3. For future use, the default value can bet set to 3.

4 Conclusion

This paper was inspired by the conjecture that text documents have sparse data rep-
resentation so we should leverage the techniques that suit to those representation. We
proposed a novel ranking-centered density-based document clustering method RDDC

Fig. 5. Query length and Parameter k

Fig. 6. Parameter Alpha vs. Clustered documents
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based on the concepts of density estimation, inverted indexing, ranking and hubs.
RDDC introduces the innovative concept of finding nearest neighbors using the doc-
ument relevancy ranking scores to construct a SNN graph and finds the dense regions
to form the clusters. We showed that the use of document ranking score is more
effective compared to calculating the pairwise similarity between data points in text
data by reducing the computational complexity and improving accuracy. We also
introduce a refinement phase to increase the percentage of clustered documents by
assigning orphan documents to hubs within clusters, rather than to cluster itself. The
hubness affinity calculation utilizes the prior calculated relevancy ranking scores, thus,
not incurring any overheads. We proved that closeness to shared relevant neighbors can
improve the performance of text clustering due to the existence of multiple hubs in a
text cluster. Empirical results conducted on several datasets, benchmarked with several
clustering methods, show that RDDC overcomes the issues attach with sparse vectors
and cluster text data with considerably higher performance, including accuracy and
scalability.
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Abstract. Manifold landmarks can approximately represent the low-
dimensional nonlinear manifold structure embedded in high-dimensional
ambient feature space. Due to the quadratic complexity of many learning
algorithms in the number of training samples, selecting a sample subset
as manifold landmarks has become an important issue for scalable learn-
ing. Unfortunately, state-of-the-art Gaussian process methods for select-
ing manifold landmarks themselves are not scalable to large datasets. In
an attempt to speed up learning manifold landmarks, uniformly selected
minibatch stochastic gradient descent is used by the state-of-the-art
approach. Unfortunately, this approach only goes part way to making
manifold learning tractable. We propose two adaptive sample selection
approaches for gradient-descent optimization, which can lead to better
performance in accuracy and computational time. Our methods exploit
the compatibility of locality-sensitive hashing (via LSH and DBH) and
the manifold assumption, thereby limiting expensive optimization to rel-
evant regions of the data. Landmarks selected by our methods achieve
superior accuracy than training the state-of-the-art learner with ran-
domly selected minibatch. We also demonstrate that our methods can
be used to find manifold landmarks without learning Gaussian processes
at all, which leads to orders-of-magnitude speed up with only minimal
decrease in accuracy.

1 Introduction

A common approach to high-dimensional data analysis is an assumption that
observations lie on a low-dimensional manifold embedded in the ambient space.
Leveraging the underlying manifold can improve computational tractability of
learning and generalization of the learned model. In order to estimate the under-
lying manifold structure, many manifold learning methods have been proposed
in the literature, such as Isometric Mapping [13], Locally Linear Embedding
[12], and t-distributed Stochastic Neighbor Embedding [11]. These early mani-
fold learning techniques primarily focus on dimensionality reduction. Recently,
manifold structures have been successfully exploited in many machine learning
c© Springer International Publishing AG, part of Springer Nature 2018
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methods such as semi-supervised learning [7], clustering [5], matrix factorization
[3], topic modeling [8] and hashing cross-modal similarities [14].

Manifold landmarking algorithms provide a small set of locations along
the manifold that capture the low-dimensional nonlinear structure of the data
embedding in high-dimensional space. Potential applications of manifold land-
marks include: (1) fast manifold learning and dimensionality reduction; (2)
sampling procedures for supervised learning; (3) semi-supervised learning (e.g.,
anchor graph regularization and finding important unlabeled data in active learn-
ing) and (4) unsupervised learning (e.g., spectral clustering). A state-of-the-art
manifold landmarking algorithm based on active learning with Gaussian pro-
cesses has been recently proposed [10]. This method forms a packing of land-
marks by finding new landmarks that are repelled by current landmarks in a
greedy manner. It requires computing pairwise distances between samples in
landmark optimization and as a result, it is prohibitively expensive when the
number of observations is large. This drawback limits the usefulness of this
method on many applications where dataset size is non-trivial. We show in this
paper how Locality-Sensitive Hashing can be used to overcome this computa-
tional complexity.

Locality-Sensitive Hashing (LSH) is a randomized algorithm for approximate
nearest neighbor search [9]. It partitions high-dimensional data in one efficient
linear pass. The samples in each partition have a higher chance of similarity than
samples across other partitions. Assuming (1) nearby data points are likely to
have the same labels, and (2) points on the same structure are likely to have the
same label, often called the cluster or manifold assumption [15], we can utilize the
local sensitivity of LSH to approximately select landmarks. This locality property
ensures that data in each partition are similar, while an additional heuristic to
incorporate label information or manifold substructure separates the data from
different structures that are projected into the same bucket. Thus, we mitigate
the complexity associated with the expensive optimization step usually required
in manifold landmarking. Experimental results demonstrate that our method
achieves similar accuracy as expensive state-of-the-art landmark optimization
methods at a significantly reduced computational cost.

Our contributions include: (1) proposing two supervised LSH and DBH-based
sample compression methods for efficient manifold landmark learning using
Gaussian processes; (2) illustrating how our supervised methods are superior
to unsupervised hashing-based sample selection or compression; (3) demonstrat-
ing that our approaches can also be used to find manifold landmarks without
Gaussian process optimization; (4) extensive evaluation on a synthetic manifold
dataset and real-life image and text datasets.

2 Background

In this section, we describe the main baseline method used for comparing man-
ifold landmark quality and hashing methods utilized for data-dependent sam-
pling.
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2.1 Landmarking Manifolds with Gaussian Processes

Liang and Paisley [10] proposed a Gaussian process-based model to learn the
location of the landmarks on a latent manifold sequentially. Let X be a train-
ing set with examples {x1, x2, . . . , xN} from R

d and S be a set of samples
{s1, s2, . . . , sm} selected randomly from X. The procedure for selecting land-
mark ln+1 given n previously selected landmarks corresponds to maximising
objective function f given as:

δxi
(ln+1) = exp(−‖ln+1 − xi‖2/η),

φS(ln+1) = [δs1(ln+1), . . . , δsm(ln+1)]�,

ΦS,n = [φS(l1), . . . , φS(ln)],

W = I − ΦS,n(Φ�
S,nΦS,n)−1Φ�

S,n,

f(ln+1,X) =
N∑

i=1

N∑

j=1

W [i, j]δxi
(ln+1)δxj

(ln+1), (1)

where η is the kernel width (total variance of all features is used in this
paper), S is a minibatch randomly sampled from the training set X without
replacement and W [i, j] is the row i and column j of the matrix W . A local
minimum of f can be found using gradient descent.

Computing full gradients using the whole training data set, i.e. S = X, is
prohibitively expensive on large datasets. Therefore, minibatch stochastic gra-
dient descent is used in order to speed up the learning time [10]. Training with
smaller minibatch is faster; however, it can significantly reduce the accuracy.
With randomly sampled small minibatch S, it can take many iterations of the
learning algorithm to explore sufficient regions of the landscape, leading to slower
convergence. In this paper, we propose a data-dependent sampling approach to
select minibatches that can lead to faster convergence utilizing LSH and DBH.

2.2 Locality-Sensitive Hashing

Locality-Sensitive Hashing (LSH) is a randomized algorithm for quickly finding
similar items to a query point, with high probability. It ensures that closer
points have a higher chance to be mapped into the same partitions on a random
projection. A hash function that approximately preserves Euclidean distance [4]
is defined as:

hr,b(x) =
⌊

x�r + b

w

⌋
(2)

where x is a data point vector, r is a random vector with components drawn
i.i.d. from the Gaussian distribution N (0, 1), w > 0 is the bucket width and b is a
uniformly distributed random variable between 0 and w. In each hash function,
the random projection x′r is quantized into a hash value. Hash buckets are
represented by concatenating respective hash values from multiple hash functions
so that neighboring points in the original space will fall into the same bin with
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Algorithm 1. LSH-SC(X,Y, p, w)
Input: Training set X = {x}N

i=1 and Y = {y}N
i=1, hash length p, bucket width w

Output: Landmarks Set Zp,w

1: create hash table T
2: generate iid random vectors rj with components from N (0, 1) where j = 1, 2, .., p
3: generate bias bj uniformly from [0, w] where j = 1, 2, .., p
4: Zp,w = φ
5: for i:=1 to |X| do
6: for k:=1 to p do

7: Hj ←
⌊

x�
i rj+bj

w

⌋

8: H ← H1 ‖ H2 ‖ ... ‖ Hp, for ‖ the concatenation operator
9: T [H].append(xi)

10: for H in T do
11: for c in C do
12: xc ← center({xi}), where {xi} ⊆ T [H], yi = c
13: Zp,w.append(xc)
14: return Zp,w

high probability. Each LSH is designed for a particular distance function, and it
is not trivial to design LSH for desired distance (e.g. manifold distance). DBH
can be used to overcome this limitation as it can incorporate desired distance
(radial basis function), however, it is slightly more expensive.

2.3 Distance-Based Hashing

The FastMap [6] line projection function, which is the foundation of DBH [2] is
defined as:

Hx1,x2(x) =
D(x, x1)2 + D(x1, x2)2 − d(x, x2)2

2 D(x1, x2)
(3)

where x is a query point, x1 and x2 are random data sampled from uniform distri-
bution and D can be an arbitrary distance (we use RBF as it is the distance used
by the Gaussian processes for manifold landmarking). This function can approx-
imately preserve arbitrary distance measures by projecting the query point to
the randomly selected line defined by x1 and x2. The output of this function is
binarized by DBH for indexing the buckets as explained in Algorithm 2.

3 LSH for Finding Manifold Landmarks

Gaussian processes for manifold landmarks compute gradients using the whole
training data. This procedure is prohibitively slow. Accordingly, stochastic mini-
batch gradients are computed from randomly selected small samples sets (mini-
batches). While this yields speedups, randomly selected samples may not cover
all relevant regions of the data. Therefore, we proposed data-dependent adap-
tive sampling. Based on the nature of manifold landmarking using Gaussian
processes, our data-dependent approach leverages the following improvements.
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Algorithm 2. DBH-SC(X,Y, p)
Input: Training set X = {x}N

i=1 and Y = {y}N
i=1, hash length p

Output: Landmarks Set Zp

1: create hash table T , matrix G ∈ R
pxN

2: for k:=1 to p do
3: Uniformly sample two samples x1 and x2 without replacement
4: for i:=1 to |X| do
5: Gk,i ← D(xi,x1)

2+D(x1,x2)
2−D(xi,x2)

2

2 D(x1,x2)

6: tk ←median(Gk)
7: for k:=1 to p do
8: for i:=1 to |X| do
9: Hk ← 1 if Gk,i ≥ Tk, 0 otherwise

10: H ← H1 ‖ H2 ‖ ... ‖ Hp

11: T [F ].append(xi)
12: Line 10-14 of Algorithm 1

Improvement 1: samples should cover diverse regions. Gaussian processes should
observe all regions of the data space, in order to learn accurate manifold land-
marks. Observing all regions takes many iterations if the randomly selected mini-
batch size is small. We assume that the locality-sensitive property (via LSH or
DBH) ensures that each of these partitions approximately represents the diverse
regions of the data. We can then randomly select a sample per partition to form
a diverse sample set for computing gradients within a Gaussian process.

Improvement 2: centroids represent the regions well. This can be further sped
up by selecting the centroids of the data in partitions instead of picking indi-
vidual samples. The assumption here is that average distance between all pairs
of samples between two partitions can be approximated by their centroids. By
exploiting this, we can reduce the variations caused by sample positions inside
partitions, achieving near-same accuracy in fewer gradient updates.

Improvement 3: incorporating label information leads to more accurate land-
marks. Centroids computed by improvement 2 can misrepresent the manifold
if multiple manifold substructures are mapped into a partition. We can miti-
gate this by computing a centroid per manifold substructure by leveraging label
information.

3.1 Manifold Assumption and Locality-Sensitive Hashing

We focus on designing adaptive sample selection to avoid high computational com-
plexity in learning manifold landmarks. Hashing methods with complexity linear
in the number of samples present an ideal method for our purposes. Owing to
the locality-sensitive property, these methods approximately partition the sam-
ples by projecting similar samples in Euclidean space into the same partition with
high probability. However, similar samples in Euclidean space may not be similar
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(a) (b)

(c) (d)

Fig. 1. Representation quality of fifferent methods on swiss-roll manifold

according to the underlying manifold distance. Randomized hashing methods can
project false positive samples into partitions. For our method we need to handle
two types of false positives: (1) false positives in Euclidean space which are the
actual false positives of the hashing method and (2) false positives in manifold
space which are true positives in Euclidean space. We can handle the first type of
false positives by tuning the parameters of LSH as it works directly in Euclidean
space. However, for the second type, we need to rely on a manifold assumption.

The manifold assumption states that (1) nearby data points are likely to have
the same labels; and (2) points on the same structure are likely to have the same
label. LSH projects nearby points to the same buckets with high probability,
and therefore, these data points should have the same label and so clustering
them is a good approach to represent them, achieving improvements 1 and 2
described previously. LSH can also project false positives (far away points), which
either have the same or different labels. If false positive points have different
labels, we do not cluster them together with the other points as they are from
different manifold substructures, achieving improvement 3. Further splitting the
partitions based on label information is useful for handling the second type of
false positives.

If false positives have the same label, our supervised approaches in Algorithms
1 and 2 will cluster them together and generate an incorrect cluster centroid. How-
ever, this will only happen if the data manifold is complex with different substruc-
tures having the same label and substructures being similar in Euclidean space.
Therefore, we assume that these incorrect centroids rarely occur and do not have
a significant impact on the performance of the learning algorithms.
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Table 1. Details of the main proposed and baseline methods

Method Preprocessing Landmarking Classification Computational complexity

None Sampling LSHDBHGP Identity Logistic regression

Full-GP ✓ ✓ ✓ O(E(M2N + M3 + NMd))

GP ✓ ✓ ✓ O(E(M2m + M3 + mMd))

LSH-SC-GP ✓ ✓ ✓ ✓ O(RdNp + E(M2m + M3 + mMd))

DBH-SC-GP ✓ ✓ ✓ ✓ O(RdNp + E(M2m + M3 + mMd))

LSH-SC ✓ ✓ ✓ O(RdNp)

DBH-SC ✓ ✓ ✓ O(RdNp)

3.2 Supervised LSH (LSH-SC)

First we map samples to their respective buckets by random projection followed
by partitioning using bucket width w in Algorithm 1 Line 7. This maps an
item into its respective hash value. Hash values from p hash functions are then
concatenated to form the hash code which represent a partition that the item is
mapped into. The items that are projected into the same buckets are more likely
to be similar. Then we divide the samples in the buckets into subsets based on
their class label in Algorithm 1 Lines 10–12 to handle the false positives caused
by random projection and false positives caused by the underlying manifold
structure. The means of each subset are selected as landmarks.

3.3 Supervised DBH (DBH-SC)

DBH is designed to work with arbitrary distance functions, therefore we can plug
in radial basis function (RBF). As the Gaussian process computes gradients for
landmarks using RBF distance, it is suitable for approximating using DBH.
The details of this algorithm are given in Algorithm 2. While tuning LSH-SC
is more flexible with two parameters (hash length p and bucket size w), DBH-
SC produces more consistent outputs across different runs as the number of
buckets in DBH-SC can be estimated ahead of time, based on the number of
hash functions.

As LSH-SC and DBH-SC are randomized algorithms we compress the dataset
into approximately several times the desired number of landmarks. And pick a
small minibatch (100 samples in this paper) from the compressed set for gradient
computation of Gaussian processes in LSH-SC-GP and DHB-SC-GP.

3.4 Landmark Selection Methods

Landmark selection approaches that we evaluated in our experiments are briefly
described below. Our first two baselines are preexisting approaches:

– (Full-GP) Landmarking Manifold with Gaussian Processes: State-
of-the-art method [10] computing full gradients based on the whole training
dataset X.
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– (GP) Landmarking Manifold with Gaussian Processes: Minibatches
are uniformly randomly selected from X during optimization.

The next two are only used in Fig. 2 for evaluating the effect of supervision
(improvement 3).

– (DBH-U-GP) Unsupervised DBH Sample Selection for Manifold
Landmarking: One sample per unsupervised DBH bucket is randomly col-
lected to form a minibatch use in optimization steps.

– (DBH-UC-GP) Unsupervised DBH Compressed Sample selection
for Manifold Landmarking: Centroids of unsupervised DBH buckets are
collected as minibatch on which GP is applied.

The final four methods are our main approaches, the first two are adap-
tive sampling for Gaussian processes landmarking while the last two omit the
Gaussian processes learning.

– (LSH-SC-GP) Supervised LSH Manifold Landmarking with GP:
Algorithm 1 followed by Gaussian process learning.

– (DBH-SC-GP) Supervised DBH Manifold Landmarking with GP:
Algorithm 2 followed by Gaussian process learning.

– (LSH-SC) Supervised LSH Manifold Landmarking: Stand-alone LSH-
based landmarking as described in Algorithm 1 without additional Gaussian
process learning.

– (DBH-SC) Supervised DBH Manifold Landmarking: Stand-alone
DBH-based landmarking (Algorithm 2) without additional Gaussian process
learning.

3.5 Complexity Analysis

In this section, we derive complexity analyses for Gaussian process manifold
landmarking and analyze the effect of our approach, summarized in Table 1. The
notations used are: d for data dimensionality, N for the number of instances in
training set, m is the number of samples in each mini-batch, M is the number of
landmarks, E is the number of epochs, R for number of repeated trials to obtain
the desired buckets in LSH and p is the number of hash functions.

The computational complexity of Gaussian process manifold landmarking
with computing full gradients is O(E(M2N + M3 + NMd)) and minibatch gra-
dients is O(E(M2m + M3 + mMd)). We can reduce the complexity by selecting
smaller minibatch of size m � N , however, it may take a large number of gra-
dient epochs E when M is small. Our goal is to choose a better minibatch of
small M that better represents the whole data space and as a result, keeping E
relatively small.

The complexity of LSH-SC (Algorithm 1) and DBH-SC (Algorithm 2) are
both O(RdNp). However, in practice, LSH-SC is faster as DBH-SC requires
additional processing with constant time complexity (e.g. each function needs
to compute the distance twice, with distances to x1 and x2). LSH-SC-GP and
DBH-SC-GP complexities are O(RdNp+E(M2m+M3 +mMd)) the first term
becomes smaller as the number of landmarks M or minibatch size m increases.
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4 Experimental Results

In this section, we describe our datasets, experimental setup, and our compre-
hensive comparative study. The datasets used in our experiments are described
in Table 2. We run 10-fold cross validation on the datasets summarized. All
experiments are performed on a PC with Intel i7-3770 with 3.40 GHz and 8 GB
RAM.

Table 2. Experimental datasets and their statistics. |C| is number of classes in the
dataset. d is data dimensionality.

Name N |C| d

Yale-B 2, 414 38 1, 024

CIFAR-10 60, 000 10 3072

MNIST 60, 000 10 784

Reuters 7, 285 10 18, 933

RCV1 9, 625 4 29, 992

4.1 Classification Using Landmark-Based Transformed Features

Our focus is on landmark selection as applied to logistic regression: linear learners
are known to scale well [1]. Following the evaluation method used by [10], we first
generate manifold landmarks. The landmarks are used as anchors to transform
the training set into low-dimensional space. Given a set of M landmarks, L =
{l1, . . . , lM}, we map each sample xi ∈ X to M -dimensional landmark-based
features as vi = [δl1(xi), . . . , δlM (xi)] ∈ V , where δlj (xi) = exp(−‖lj − xi‖2/η)
and η is the total variance of all features. We set M = 100 for image datasets and
M = 500 for text datasets as we would like to evaluate them in low-dimensional
latent space in comparison to their ambient high-dimensional feature space (with
dimensions given by d in Table 2).

A logistic regression classifier is applied to these new feature vectors V to
obtain an accuracy measurement which is reported in the experimental results
section.

4.2 Impact of Approach Improvements

Figure 2 depicts how our approach achieves progressively better accuracy as we
incorporate improvements 1 to 3. Unsupervised centroids (Improvement 2) are
learned faster than unsupervised sampling (Improvement 1) as DBH-UC-GP
outperforms DBH-U-GP. DBH-SC-GP (Improvement 3) achieves superior accu-
racy over previous improvements.
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Fig. 2. Comparison of supervised vs. unsupervised DBH methods on Yale-B.

Fig. 3. Evaluation of Test Error vs. Epochs.

Fig. 4. Evaluation on image datasets. Note LSH-SC and DBH-SC do not have any
learning component, and hense only one data point in the graph.

4.3 Qualitative Evaluation

In Fig. 1, we illustrate the representative quality of different landmarking meth-
ods on the classical swiss roll dataset with 10 different classes. In this figure, the
Voronoi diagrams are created based on the landmarks and they represent the
Euclidean region covered by each landmark (e.g., the landmark is the nearest to
all samples in its Voronoi cell). If a cell contains samples from multiple manifolds
(i.e. samples from different classes) the landmark of that cell does not represent
the data space well.
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Fig. 5. Evaluation on text datasets.

Our LSH-SC and DBH-SC methods in Figs. 1a and b compute good land-
marks on the manifold which represent their regions due to locality-sensitive
partitioning further supported by discriminative label information. As LSH-
based methods are randomized algorithms, with stochastic numbers of land-
marks resulting, we first generate approximately 40 landmarks. We then reduce
the number of landmarks by filtering 30 landmarks that represent most sam-
ples for visualization. Alternatively, we can apply k-means clustering over the
compressed dataset (40 landmarks in this case). This would be slightly more
expensive than filtering but provide better landmarks.

With default parameter settings, Gaussian process learners for manifold land-
marking cannot find good representations of the data, as the resulting landmark
points are very far from the actual manifolds as we see in Figs. 1c and d.

4.4 Quantitative Evaluation of Landmark Quality

For low-dimensional manifold data, we can qualitatively evaluate the landmarks
by visualization. However, for high-dimensional data, we evaluate classification
accuracy using landmarks as feature anchors. First, we compressed the data to
approximately three times the number of landmarks using Algorithms 1 and 2.
For LSH-SC and DBH-SC, we select the M landmarks (M = 100 for image data
and 500 for text data) that cover most points in their neighborhood region. For
LSH-SC-GP or DBH-SC-GP, we train a Gaussian process on the compressed
training set. We set the minibatch size of the Gaussian process to 100 samples.
We then report the test error achieves using the landmarks produced at partic-
ular epoch (2i−1 where i is the position of the point from the left margin in the
figures). Figure 3 confirms our hypothesis that adaptive sampling makes better
use of each epoch.

On smaller image datasets in Fig. 4, overhead costs for hashing is significant
especially on the early epochs. However accuracy achieved by our methods out-
weighs the overhead cost as the number epochs increases. On the larger text
dataset in Figs. 5a–b, our approaches are significantly more accurate and much
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more efficient. Full-GP is impractically slow when training with larger datasets.
It also has the problem of overshooting gradient updates near local minimum
and requires carefully tuning the learning rate. In Fig. 5b DBH-SC is signifi-
cantly slower than on other datasets because partitioning the data is harder on
this dataset and as the result, many hash functions are required to generate the
desired number of landmarks.

5 Conclusion

We have presented two locality-sensitive hashing-based supervised adaptive sam-
pling methods for finding manifold landmarks with Gaussian processes. Our new
supervised approaches are efficient and achieve better accuracy than training full
gradient or minibatch gradient-based Gaussian processes. Our approaches can
also be used to find landmarks without having to learn Gaussian processes. This
variation of our approaches makes learning extremely fast and also achieves com-
parable accuracy in practice as confirmed in our experiments. In both quantita-
tive and qualitative comparisons, we find that our DBH-SC approach achieves
the overall best result. For future work, we will extend our method to efficient and
accurate unsupervised and semi-supervised manifold landmarking approaches.
We would also like to explore how our work can be extended to spatio-temporal
data where observations are independent.
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Abstract. We propose an equitable conceptual clustering approach
based on multi-agent optimization, where each cluster is represented by
an agent having its own satisfaction. The problem consists in finding
the best cumulative satisfaction while emphasizing a fair compromise
between all individual agents. The fairness goal is achieved using an
equitable formulation of the Ordered Weighted Averages (OWA) oper-
ator. Experiments performed on UCI and ERP datasets show that our
approach efficiently finds clusterings of consistently high quality.

1 Introduction

Structuring data in knowledge discovery is a fundamental task which helps to
better understand the data and to define groups with regards to an a priori sim-
ilarity measure. This is usually referred to clustering in unsupervised learning.
In practice, users often would like to perform further actions such as interpret-
ing the cluster semantically. Methods such as conceptual clustering address this
by attempting to find descriptions of the clusters by means of formal concepts.
Numerous approaches have been devised for conceptual clustering. Traditional
approaches are of heuristic nature [17,18]. More recently, Constraint Program-
ming (CP) [4] and Integer Linear Programming (ILP) [15] approaches have been
proposed to address the problem of finding optimal conceptual clusterings in
a declarative framework. They combine two exact techniques: in a first step, a
dedicated mining tool (i.e., LCM [20]) is used to compute the set of all formal
concepts and, in a second step, ILP or CP is used to select the best k clusters
(i.e. concepts) that optimizes some given criterion. Most of the optimization
measures used in these approaches lead to an unbalanced clustering where one
cluster is more dominant than others. Ensuring that the clusters obtained be
(roughly) balanced, i.e. of approximately the same number of data points helps
in making the resulting clusterings more useful and actionable [2,22].

This paper deals with the concept of equitably efficient solutions to conceptual
clustering problem in multi-agent decision making, where each agent represents
a concept and has its own utility corresponding to a specific measure (e.g. the
frequency). Here, equity refers to the idea of favoring solutions that fairly share
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 465–477, 2018.
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happiness or dissatisfaction among agents [8]. The equity requirement has been
fully studied by the multicriteria optimization community [9], and formalized
through the three properties: (i) Symmetry meaning that all agents have the
same importance. For instance, both utility vectors (5, 3, 0) and (0, 3, 5) are
considered equivalent. (ii) Pareto-monotony which expresses that solution
(x1, x2, . . . , xn) is better than solution (y1, y2, . . . , yn) if and only if xi ≥ yi for
all i, with at least one strict inequality. (iii) Transfer Principle formalizes an
important notion of equitable utility distribution [19]. The intuition is that any
transfer between some two inequitable utilities xi and xj , which preserves the
average of utilities, would improve the overall utility.

The common way to deal with the concept of equitably efficient solutions is
to define aggregation functions that fulfills the above properties. This defines a
family of the equitable aggregations which are Schur-convex [10]. In the literature
there are several functions to aggregate individual agents’ utilities by mean of
collective utility function (CUF). The most used aggregations are maxMin, minDev
and maxSum. The transfer principle is not ensured in the maxMin and minDev,
on all of the utilities, thereby leading to the drowning effect [7]. The maxSum
function is fully compensatory and thus does not capture the idea of equity.

Section 2 introduces the concepts used in this paper. Section 3 describes our
ILP model for equitable conceptual clustering task. We discuss related work in
Sect. 4 before demonstrating our technique’s performance in Sect. 5. Section 6
concludes and points towards future research directions.

2 Background

2.1 Formal Concepts and Conceptual Clustering

Formal Concepts. Let D be a set of m transactions (numbered from 1 to m),
I a set of n items (numbered from 1 to n), and R ⊆ T × I a binary relation
that lies transactions to items: (t, i) ∈ R if the transaction t contains the item
i : i ∈ t. An itemset (or pattern) is a non-null subset of I. For instance, Table 1a
gives a transactional dataset D with m=11 transactions t1, . . . , t11 described
by n=8 items. The extent of a set I ⊆ I of items is the set of transactions
containing all items in I, i.e., ext(I) = {t ∈ D| ∀i ∈ I, (t, i) ∈ R}. The intent
of a subset T ⊆ D is the set of items contained by all transactions in T , i.e.,
int(T ) = {i ∈ I| ∀t ∈ T, (t, i) ∈ R}. These two operators induce a Galois
connection between 2D and 2I , i.e. T ⊆ ext(I) ⇔ I ⊆ int(T ). A pair such that
(I = int(T ), T = ext(I)) is called formal concept. This definition defines a
closure property on dataset D, closed(I) ⇔ I = int(ext(I)). An itemset I
for which closed(I) = true is called closed pattern. Using ext(I), we can define
the frequency of a concept: freq(I) = |ext(I)|, and its diversity : divers(I) =∑

t∈ext(I) |{i ∈ I | (i /∈ I) ∧ (i ∈ t)}|. Additionally, we can refer to its size:
size(I) = |{i | i ∈ I}|. We note C the set of all formal concepts.
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Table 1. Running example.

Conceptual Clustering. Clustering is the task of assigning the transactions in
the data to relatively homogeneous groups. Conceptual clustering aims to also
provide a distinct description for each cluster - the concept characterizing the
transactions contained in it. This problem can be formalized as: “find a set
of k clusters, each described by a closed pattern P1, P2, . . . , Pk, covering all
transactions without any overlap between clusters”. An evaluation function f
can be used to express the goodness of the clustering. Different optimization
criteria may be considered: maximizing the sum of frequencies of the selected
concepts; minimizing the sum of diversities of the selected concepts. For instance,
for dataset D and k = 3, minimizing f(P1, . . . , Pk) =

∑
1≤i≤k divers(Pi) provides

one clustering s1, with optimal value 18 (see Table 1b). Solution s1 = (1, 1, 9) has
one large cluster (of size 9) covering most of the transactions, and two clusters
that cover only one transaction. Such a clustering may be less interesting than
those in which the clusters are all of comparable size. A common way to get
more balanced clusterings is to consider dedicated optimization settings:

– maximizing the minimal frequency (maxMin). We search for solutions in which
the minimal frequency of the selected concepts is as large as possible.

– minimizing the deviation in cluster frequency (minDev). We enforce a
small difference between cluster frequencies: Min max(freq(P1), . . .) -
min(freq(P1), . . .).

However, these two settings suffer from the so called drowning effect [7]. In
fact, concerning maxMin (resp. minDev), the transfer principle is ensured only
on the min (resp. min and max) utility, and thus intermediate utilities are not
necessarily equitable. To address equity requirement, we consider, in the next
section, a sophisticated operator that focuses on the whole utilities.

2.2 Equitable Multiagent Optimization

Let N = {1, . . . , n} be a set of n agents. A solution of a multiagent optimization
problem is characterized by a utility vector x = (x1, . . . , xn) ∈ IRn

+, where xi

represent the utility (or a degree of satisfaction) of the ith agent. Utility vectors
are commonly compared using the Pareto dominance relation (P -dominance).
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The weak-P -dominance �P between two utility vectors x, x′ is defined as: x �P

x′ ⇔ [∀i ∈ N,xi ≥ x′
i], whereas the strict P -dominance �P between x and x′ is

given by: x �P x′ ⇔ [x �P x′ ∧ not(x′ �P x)]. A solution x∗ is Pareto-optimal
(a.k.a efficient) if and only if there is no solution x that dominates x∗. The P -
dominance can be formulated as: max {(x1, . . . , xn) : x ∈ Q}, where Q is the set
of feasible solutions. The P -dominance may lead to a large set of incomparable
solutions. To refine the P -dominance, we should specialize a dominance relation
so as to favor equitable utility vectors. The main intuition behind the equity
criterion refers to the idea of selecting solutions that fairly share satisfaction
between agents [19]. Formally, an equitable dominance relation �‖ should fulfill
three main properties [8,10]: (i) Symmetry: Consider a utility vector x ∈ IRn

+.
For any permutation σ on N , we have (xσ(1), . . . , xσ(n)) ∼ (x1, . . . , xn). (ii) P-
Monotony: For all x, y ∈ IRn

+, x �P y ⇒ x �‖ y and x �P y ⇒ x �‖ y. (iii)
Transfer principle (a.k.a Pigou-Dalton transfers in Social Choice Theory): Let
x ∈ IRn

+ and xi > xj for some i, j ∈ N . Let ez be a vector such that ∀i �= z, ez
i = 0

and ez
z = 1. For all ε where 0 < ε ≤ xi−xj

2 , we get x − εei + εej �‖ x. Any slight
improvement of xj at the expense (reduction) of xi, which preserves the average
of utilities, would produce a better distribution of the utilities among agents
and consequently improve the overall utility of the solution. For example, if we
consider two utility vectors x = (11, 10,7, 10) and y = (9, 10,9, 10), then the
transfer principle implies that y �‖ x, because there is a transfer of size ε = 2
(i.e. x1−x3

2 ), which allows to have y from x. Combining P-monotony and the
Transfer principle leads to the so called Generalized Lorenz dominance defined
in [5] (for more details see [8,10]).

2.3 Equitable Aggregation Functions

A usual way to assess the quality of a utility vector is to aggregate the individ-
ual utilities with a collective utility function (CUF) [12] G : IRn

+ → IR+, which
improves the overall welfare by max{G(x) : x ∈ Q}. The G function can be
a linear combination of individual utilities (i.e. G(x) def= sum(x)), which is not
suitable to fairness context. Another way to build G is based on the min func-
tion (i.e. G(x) def= min(x)), but it is sensitive to the drowning effect [7]. Other
refinements of the min function exist (e.g. augmented min, lexmin [3]), but do
not really solve the problem, since all are sensitive to drowning effect. In order
to guarantee equitable aggregations, G should conform to the three equity prop-
erties. The most known way is to use Schur-convex function ψ, which are order
preserving the three equity properties : x �‖ y ⇔ ψ(x) ≥ ψ(y). Precisely, when
some aggregation function G is Schur-convex [10], then it is an equitable aggre-
gation [9]. Thus Schur-convex functions play a key role in equitable aggregations
(for more details, see [9,10]). In this line of reasoning, we introduce, in the next
section, an aggregation function that ensures equity.
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2.4 Ordered Weighted Averages (OWA)

The Ordered Weighted Averages (OWA) [21] is defined as follows: Gw(x) =∑n
i=1 wixσ(i), where w = (w1, . . . , wn) ∈ [0, 1]n and xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n).

OWA provides a family of compromises between the sum and min. Golden and
Perny [8] propose coefficients for the OWA aggregation method, such that it is
Schur-convex:

Theorem 1. [8] Let be the following coefficients of the OWA aggregation:
W (x) =

∑n
k=1 sin( (n+1−k)π

2n+1 )x(k). W is a Schur-convex function.

Theorem 1 is fundamental, since Schur-convex functions ensure equity [8,9].

3 ILP Models

This section describes different ILP models for finding an equitable conceptual
clustering. Our approach follows the two steps approach of [15]: (1) a dedicated
closed itemset mining tool (i.e., LCM [20]) is used to compute the set C of all
closed patterns; (2) ILP is used to select a subset of C that is a partition of
the set D of transactions and that optimizes some given criterion. To enforce
equitable clusterings, we enhance the second step with additional constraints
enabling to ensure equitable OWA aggregation.

3.1 OWA ILP Models

We present our first ILP model, called basic OWA ILP, for computing equitable
conceptual clusterings using OWA operator. Then, we show how this basic model
can be improved by post-processing the OWA constraints.

Let D be a dataset with m transactions defined on a set of n items I. Let C
be the set of p closed patterns representing the candidate clusters. Let at,c be an
m × p binary matrix where (at,c = 1) iff c ⊆ t, i.e., the transaction t belongs to
extension of the closed pattern c. The (at,c) matrix associated with dataset D of
Table 1a is outlined in Table 1c. Let v be the list of closed pattern utilities (e.g.,
frequency, diversity, etc.). For each closed pattern (c ∈ C), a binary variable xc

is associated s.t. (xc = 1) iff the cluster c is selected.

(a) Basic OWA ILP model. Figure 1a gives the ILP model for equitable concep-
tual clustering. It uses two types of constraints: conceptual clustering constraints
and OWA constraints modeling the sorting operation required in the OWA operator:

– Conceptual clustering constraints. Constraints (C1) enforce the subset
of selected closed patterns to define a partition of D. Constraints (C2) specify
a lower bound kmin and/or an upper bound kmax on the number of selected
closed patterns.

– OWA constraints. The objective function and constraints (O1) and (O2)
implement a known linear programming formulation [14] of the OWA operator
on the conceptual clustering, where the coefficients ω are fixed by theorem 1.
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Fig. 1. OWA ILP models for equitable conceptual clustering.

As explained in Sect. 2.4, OWA is a weighed sum on the sorted utilities. That is
why we introduced r, which is equal to the sorted version of the utility vector
v. M is a sufficiently large constant. Let z be |C|2 boolean matrix dedicated
only to formulate the sorting constraints (O1) and (O2), which enforce that
the utility vector v . x of the closed patterns are sorted in ascending order
matching the OWA coefficients ω. These sorting constraints are fully explained
in [14]. It follows that the kth smallest utility value rk will have the kth

biggest weight ωk. The objective function maximizes the weighted sum using
OWA weights ω given in Theorem 1.

(b) Improved OWA ILP model. In order to find efficiently an equitable con-
ceptual clustering, we propose the optimize model (see Fig. 1b) as follows:

- Precisely, sorting constraints (O1) and (O2) are specifically used when the
utility values are given in comprehension. Fortunately, the utility values of formal
concepts are known beforehand. Thus, sorting is performed immediately after
finding closed patterns. We use v↑, which is the sorted version of v in ascending
order.
- We assign the weights ω of equitable OWA to the sorted utility values, so that
all equal utilities will have the same weight.

For our experiments, we used the improved OWA model. Our preliminary
results showed that basic OWA model performs very poorly compared to the
improved OWA model in terms of CPU-times. This meanly due to the fact that
(n2) additional constraints and (n2) additional variables are used to encode the
OWA sorting constraints. This constitutes a strong limitation of the size of the
databases that could be managed.

Proposition 1. Basic and improved OWA ILP models are equivalent.

Proof. Both OWA models use weights ω given in Theorem 1, which ensure an
equitable aggregation. Improved OWA is an optimization of the basic model: (1) It
uses an a priori sorting of utilities (no need to sorting constraints); (2) The same
weight is assigned to equal utilities (the same satisfaction level), which preserves
straightforwardly the conformity with Theorem 1. Thus, both OWA models are
equivalent. ��
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Fig. 2. ILP models for the conceptual clustering.

(c) ILP numerical stability. The set of extracted closed patterns is mostly
huge, which leads to a huge OWA vector ω in the basic model, and affect the
numerical stability of the ILP solver. The optimized OWA model tackles this
issue, thanks to assigning the same weight to all equal utilities. This makes it
possible to solve real-world instances in our experiments reported in Sect. 5.

3.2 Other ILP Models

As described in Sect. 2.1 a linear aggregation of individual utilities max{sum(x) :
x ∈ Q}, does not fit the equity requirement. This suggests resorting to non-
linear aggregation operators, especially the maxMin and minDev. The maxMin
aggregation max{min(x) : x ∈ Q} tackles equity by improving the worst utility.
This function can be linearized by maximizing a decision variable z ≥ 0, that
is a lower bound for the utility vector v . x (see Fig. 2a, inequality C3), where
v is the clustering criterion to be optimized (e.g. frequency). Thus, the linear
formulation for the conceptual clustering is given by the ILP model of Fig. 2a.

An alternative way of ensuring equity is by achieving maximum deviation
minimization minDev between both the best and the worst utilities: Min {max(x)
−min(x) : x ∈ Q}. It can be linearized by introducing 2 × n constraints and
two decision variables zmax ≥ 0 and zmin ≥ 0 to maintain the max and the min
values of the utility vector v . x (see Fig. 2b, inequalities C4–C5). The resulting
ILP model is given in Fig. 2b.

4 Related Work

Declarative approaches. Recently, [15,16] have developed declarative frame-
works using ILP, which can find optimal conceptual clusterings, where clus-
ters correspond to concepts. Later, Chabert et al. have introduced two new CP
models for computing optimal conceptual clusterings. The first model (denoted
FullCP2) may be seen as an improvement of [6]. The second model (denoted
HybridCP) follows the two step approach of [15]: the first step is exactly the
same; the second step uses CP to select formal concepts. Our work is different in
that we study the setting where each clustering must fulfills equity requirements.
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Distance-based clustering aims at finding homogeneous clusters only
based on a dissimilarity measure between objects. Different declarative frame-
works have been developed, which rely on CP [6] or ILP [1,13]. There are a few
existing approaches for obtaining balanced clusters. The most prominent one is
the approach proposed by [2]. Our adoption of closed patterns cuts down on
redundancy compared to other ways of selecting candidate clusters. Moreover,
our use of OWA gives stronger guarantees about the obtained clusterings in terms
of balancing.

5 Experiments and Results

The experimental evaluation is designed to address the following questions:

1. How do the ILP models compare and scale on the considered datasets?
2. How do the resulting clusters and their description compare qualitatively?
3. How (in terms of CPU-times) does our ILP model compares to the CP models

of Chabert et al. [4]?

Experimental protocol. All experiments were conducted on Linux cluster1,
where each node has a dual-CPU Xeon E5-2650 with 16 cores, 64 GB RAM,
running at 2.00 GHz. We used LCM to extract all closed patterns and CPLEX
v.12.6.1 to solve the different ILP models. For all methods, a time limit of 24 h
has been used.

Test instances. We used classical ML datasets, coming from the UCI database.
We have also considered the same datasets (called ERP-i, with i ∈ [1, 7]) used
in [4] and coming from a real application case2, which aims at extracting setting
concepts from an Enterprise Resource Planning (ERP) software corresponding
to groups of parameter settings groups of parameter settings. Table 2 shows the
characteristics of all datasets.

Table 2. Dataset characteristics. Each row gives the number of transactions (#D), the
number of items (#I), the density and the number of closed patterns extracted (#C).

1 http://www.rx-racim.cerist.dz/?page id=26.
2 Datasets available at https://perso.liris.cnrs.fr/christine.solnon/erp.html.

http://www.rx-racim.cerist.dz/?page_id=26
https://perso.liris.cnrs.fr/christine.solnon/erp.html
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Table 3. Comparing the quality of the resulting clusterings in terms of ICS and ICD.

Fig. 3. Quality of balancing of the resulting clusterings of the ILP models.

To evaluate the quality of a clustering, we test the coherence of a cluster-
ing, measured by the intra-cluster similarity (ICS) and the inter-clusters dis-
similarity (ICD), both of which should be as large as possible. Given a simi-
larity measure s between two transactions t and t′, where s : D × D �→ [0, 1],

s(t, t′) = |t∩t′|
|t∪t′| , ICS(P1, ..., Pk) = 1

2

∑
1≤i≤k(

∑
t,t′∈Pi

s(t, t′)) and ICD(P1, ..., Pk) =
∑

1≤i<j≤k(
∑

t∈Pi,t′∈Pj
(1 − s(t, t′))).

To evaluate how well equitable the clusters are w.r.t frequency, we used three
measures: (1) the ratio between the frequency of the smallest cluster to the aver-
age cluster frequency (i.e. Min/Avg). For m transactions put into k clusters, Avg
is just (m/k); (2) the Standard Deviation in cluster frequencies (i.e. StdDev);
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(3) the deviation between the smallest and the largest description of selected
concepts (i.e. devSize).

(a) Qualitative analysis of clusterings. Figure 3a compares qualitatively
the resulting clusterings of the different ILP models for various values of k
on UCI datasets according to the Min/Avg measure. maxMin and maxSum per-
form very poorly in terms of balancing compared to OWA and minDev (maxMin
and maxSum always achieve lower Min/Avg values). Interestingly, both OWA and
minDev almost achieve similar performance on datasets with number of closed
patterns comprise between 103 and 105. However, for the three most difficult
datasets − Mushroom, Hepatitis and Anneal − the disparity between both
models become more pronounced: OWA always obtains more equitable cluster-
ings (Min/Avg values close to 1). On these datasets, minDev fails to find a
solution even for small values of k. The same behavior is observed on ERP
datasets (see Fig. 3b). On ERP-7, minDev was not able to find a solution. This
is in part explained by the number of closed patterns (106) in comparison to the
other ERP instances (from 103 to 105). When considering stdDev measure (see
Figs. 3c and 3d), OWA and minDev achieve the lowest StdDev on all datasets, but
OWA performs marginally better than minDev. When examining the description
sizes (see Supp. material [11]), we can see that maxMin and maxSum lead to higher
devSize values. This is indicative of one (or few) clusters of large frequencies and
small description sizes, or clusters of large description sizes and small frequen-
cies. These results are consistent with our previous conclusions. However, for
minDev and OWA, the optimal solutions found by both models tend to offer a
better compromises between the two criteria. Finally, Tab. 3 compares the four
models according to ICS and ICD (see Supp. material [11]). We can see that
minDev and OWA sacrify ICS to achieve higher ICD values. This is indicative of
more balanced clusters: the ICS is necessarily limited by the number of instances
per cluster but the ICD increases if there are more instances in other clusters
to compare against. maxMin and maxSum show the opposite behavior, which is
indicative of one (or a few) large clusters, and numerous smaller ones.

(b) Scale-up property analysis. Figures 4a and b compare the CPU-times for
computing optimal clusterings for various values of k on UCI and ERP datasets
when maximizing the sum of frequencies of the selected concepts. The CPU-times
include the time spent by LCM to extract all closed patterns. On UCI datasets,
minDev performs very poorly compared to the other ILP models. Although the
qualitative results of minDev are satisfactory, this model remains hampered by
long solving times: it goes beyond the timeout on 32 instances (out of 72), partic-
ularly on the three most difficult datasets Mushroom, Hepatitis and Anneal (see
Fig. 4a). This probably stems from the fact that (2 × n) additional constraints
are used to capture the minimal deviation. However, OWA yields quite compet-
itive results, while achieving optimal equitable clusterings (see the qualitative
analysis). It is able to solve all instances and comes in second position. Overall,
maxMin gets the best performances. However, as noticed above, the optimal solu-
tions found are far to be equitable ones; they correspond to extreme solutions
(worst cases). This probably explains in part the good behaviour of maxMin
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Fig. 4. CPU-times analysis.

model. The same behavior is observed for minDev on ERP datasets. Finally,
the three ILP models − OWA, maxMin and maxSum − perform very similarly on
all instances. We conclude that OWA model offers a good compromise between
solution quality and computing time.

(c) ILP models vs. CP based models. Figures 5a and b compare the perfor-
mance of maxMin ILP model with the two CP models (FullCP2 and HybridCP)
maximizing the minimal frequency of a cluster on UCI and ERP datasets. The
CPU-times of HybridCP include those for the preprocessing step. maxMin ILP
model outperforms FullCP2 and HybridCP by several orders of magnitude on all
datasets. None of the two CP models scales well for this objective: they fail to
find a solution within the time limit for (k ≥ 4), except for 4 datasets. Moreover,
OWA ILP model clearly beats the two CP models. Finally, notice that FullCP2
performs marginally better than HybridCP.

(d) OWA model with k not fixed. Our third set of experiments aims at evaluat-
ing OWA model capability for finding the optimal solution when k is not fixed. For
this aims, we selected two settings: k ∈ [3, 10] (OWA-1) and k ∈ [3, |D|−1] (OWA-2).
Figures 4c and d compare the CPU-times when k is not fixed (Columns 3 and
7), and when k is fixed (Col. 5) on UCI datasets. Col. 4 reports the best values
found for k (3 ≤ k ≤ 10) that optimize both objectives. For all datasets but
two, OWA-1 and OWA-2 are the best performing approaches. OWA-1 is able to solve
5 (resp. 7) instances quicker when maximising the frequency (resp. diversity).
Interestingly, OWA-1 and OWA (with k fixed) always agree on the best value for



476 N. Aribi et al.

Fig. 5. Comparing CPU-times of maxMin ILP model with the two CP models.

k. Compared to OWA-1, OWA-2 scales well, particularly on the two most difficult
datasets Anneal and Hepatitis (speed-up of up to 60.09). Indeed, larger values
of k enable to find balanced clustering more quickly than for smaller values of
k: there |D| − 1 clusters for 3 datasets, whereas for the remaining datasets the
value of k is rather high.

6 Conclusion

We have proposed an efficient approach for equitable conceptual clustering that
uses closed itemset mining to discover candidates for descriptions, and ILP imple-
menting an equitable aggregate function based on OWA to select the best clusters
of balanced frequencies. Contrary to maxMin and minDev operators, our approach
offers a good compromise between solution quality and computing time. We plan
to investigate multi-criteria conceptual clustering, where the utilities are not
comparable. Exploiting equity constraints within approximate approaches could
become interesting to tackle very large datasets.
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Abstract. In this paper we present a method to compute dissimilar-
ities on unlabeled data, based on extremely randomized trees. This
method, Unsupervised Extremely Randomized Trees, is used jointly with
a novel randomized labeling scheme we describe here, and that we call
AddCl3. Unlike existing methods such as AddCl1 and AddCl2, no syn-
thetic instances are generated, thus avoiding an increase in the size of
the dataset. The empirical study of this method shows that Unsupervised
Extremely Randomized Trees with AddCl3 provides competitive results
regarding the quality of resulting clusterings, while clearly outperforming
previous similar methods in terms of running time.

Keywords: Clustering · Unsupervised classification · Decision tree
Extremely randomized trees · Similarity measure · Distance

1 Introduction and Preliminaries

Many unsupervised learning algorithms rely on a metric to evaluate the pairwise
distance between samples. Despite the large number of metrics already described
in the literature [3], in many applications, the set of available metrics is reduced
by intrinsic characteristics of the data and of the chosen algorithm. The choice
of a metric may strongly impact the quality of the resulting clustering, thus
making this choice rather critical.

Shi and Horvath [19] proposed a method to compute distances between
instances in unsupervised settings using Random Forest (RF). RF [2] is a popu-
lar algorithm for supervised learning tasks, and has been used in various settings
([13,16]). It is an ensemble method, combining decision trees in order to obtain
better results in supervised learning tasks. Let L = {(x1, y1), . . . , (xn, yn)} be a
training set, where X = {x1, . . . , xn} is a list of samples (i.e., feature vectors)
and Y = {y1, . . . , yn} is the list of corresponding class labels. The algorithm
begins by creating several new training sets, each one being a bootstrap sample
of elements from X. A decision tree is built on each training set, using a sample
of mtry features at each split. The prediction task is performed by performing a
majority vote or by averaging the results of each tree, according to the problem
at hand (classification or regression). This approach leads to better accuracy
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and generalization capacity of the model, and it reduces the variance of single
decision trees [7].

The method proposed by Shi and Horvath, called Unsupervised RF (URF),
derives from the common RF algorithm. Once the forest has been constructed,
the training data can be run down each tree. Since each leaf only contains a small
number of objects, and all objects of the same leaf can be considered similar,
it is possible to define a similarity measure from these trees: if two objects i
and j are in the same leaf of a tree, the overall similarity between the two
objects is increased by one. This similarity is then normalized by dividing by
the number of trees in the forests. In doing so, the similarities lie in the interval
[0, 1]. The use of this RF is made possible in the unsupervised case thanks to
the generation of synthetic instances, enabling binary classification between the
latter and the observed instances. Two methods for data generation are presented
in [19], namely, addCl1 and addCl2.

In addCl1, the synthetic instances are obtained by a random sampling from
the observed distributions of variables, whereas in addCl2 they are obtained by a
random sampling in the hyper-rectangle containing the observed instances. The
authors found that addCl1 usually leads to better results in practice. URF as
a method for measuring dissimilarity presents several advantages. For instance,
objects described by mixed types of variables as well as missing values can be
handled. The method has already been successfully used in fields such as biology
([1,10,18]) and image processing [15].

However, the method, albeit its appealing character, suffers from some draw-
backs. Firstly, the generation step is not computationally efficient. Since the
obtained trees highly depend on the generated instances, it is necessary to con-
struct many forests with different synthetic instances and average their results,
leading to a computational burden. Secondly, the synthetic instances may bias
the model being constructed to discriminate objects on specific features. For
example, addCl1 leads to forests that focus on correlated features.

Geurts et al. [8] presented a novel type of ensemble of trees method that they
called Extremely Randomized Trees (or ExtraTrees, for short). This algorithm is
very similar to RF in many ways. In RF, both the instance and feature samplings
are performed during the construction of each tree. In ExtraTrees (ET) another
layer of randomization is added. Indeed, whereas in RF the threshold of a fea-
ture split is selected according to some purity measure (the most popular ones
being the entropy and the Gini impurity), in ET these thresholds are obtained
totally or partially at random. In addition, instead of growing the trees from
bootstrapped samples of the data, ET uses the whole training set. At each node,
K attributes are randomly selected and a random split is performed on each one
of them. The best split is kept and used to grow the tree. The ET algorithm is
described in Fig. 1.

Two parameters are of importance in this algorithm: K, that we already
defined, and nmin, that is the minimum sample size for a node to be split.
Interestingly, the parameter K, that takes values in {1, . . . , nfeatures}, influences
the randomness of the trees. Indeed, for small values of K, the dependence of
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Fig. 1. The figure presets the ExtraTrees algorithm as extracted from [8]

the constructed trees on the output variables gets weak. In the extreme case
where K is set to 1 (i.e., only one feature is selected and randomly split), the
dependence of the trees on the observed label is removed.

Following the tracks of [19] on URF, we propose to use ET with a novel app-
roach where synthetic case generation is no longer necessary. This approach, that
we call addCl3, consists of a random labelling of each instance. Using properties
of ET that we will discuss below, it is possible to compute a good similarity
measure from a dataset where addCl3 is applied. The method outperforms URF
in running time, while giving similar or better clusters.
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This paper is organized as follows. After a description of the method in
Sect. 2, we focus on the empirical evaluation on real-world datasets in Sect. 3,
before reviewing of the method and giving some perspectives in Sect. 4.

2 Unsupervised Extremely Randomized Trees

Two methods are used for the generation of synthetic data: addCl1 and addCl2.
In these methods, the generation consists in sampling in the observed data. The
synthetic data is assigned a label, while the observed data is assigned another
one, enabling binary classification between observed and synthetic examples. The
novel method we propose and evaluate in this work that we refer to as addCl3,
does not focus on the generation of synthetic instances, but on the generation
of labels instead. In addCl3, the label generation runs as follows:

1. Let nobs be the number of instances in the dataset. A list containing �nobs

2 �
times the label 0 and nobs − �nobs

2 � times the label 1 is generated.
2. For each instance in the dataset, a label is randomly sampled without replace-

ment from the aforementioned list.

This procedure ensures that the label distribution is balanced in the dataset.
However, this leads to the same problem arising with addCl1 and addCl2 : the
results are highly dependent on the generation step, as different realizations of
the instance-label association or of the synthetic data may lead to completely
different forests. To circumvent this issue, one solution is to run multiple forests
on multiple generated datasets, and to average the results. Shi and Horvath
found out that averaging the results from 5 forests, with a total of 5000 trees
leads to robust results. Moreover, instead of running multiple forests on many
generated datasets, it may be possible - and computationally more efficient - to
run a single forest with a large amount of generated data, if some care is taken
regarding the reweighting of each class. This workaround, proposed by a reviewer
in [19], is easier to implement when our generation scheme is used. Indeed, since
we do not add new instances, it is not necessary to reweight each class. Instead,
we propose to duplicate the original dataset multiple times and apply addCl3 to
obtain a balanced dataset. This approach is evaluated in Sect. 3.

With addCl3, the construction of the trees no longer depends on the structure
of the data. Indeed, when addCl1 or addCl2 are used, the forests are trained to
distinguish between observed and synthetic instances. In addCl3, the labels being
assigned randomly, two similar instances may be labeled differently and may fall
in different leaves. However, using ET with the number of features randomly
selected at each node K = 1, the construction of the trees no longer depends on
the class label, as described in the previous section. Hence, ET seems to be a
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suitable algorithm to use with addCl3. Algorithm 1 describes the Unsupervised
Extremely Randomized Trees (UET) method.

Algorithm 1. Unsupervised Extremely Randomized Trees
Data: Observations O
Result: Similarity matrix S
D ←− addCl3(O);
T ←− Build an extra tree ensemble(D,K) // Here K = 1;
S = 0nobs,nobs

// Initialization of a zero matrix of size nobs ;
for di ∈ D do

for dj ∈ D do
Si,j = number of times the samples di and dj fall in the same leaf
node in each tree of T = {t1, t2, ..., tM};

end
end
Si,j = Si,j

M ;

The algorithm Build an extra tree ensemble(D) is given in Fig. 1. A few
parameters can influence the results of UET:

1. The number of copies of the original dataset ncopies before applying addCl3.
2. The number of trees ntrees.
3. The minimum number of samples for a node to be split nmin.

3 Empirical Evaluation

In this section, we investigate the influence of the parameters introduced at the
end of Sect. 2, as well as the performance of the method.

3.1 Optimization of Parameters

For each evaluation presented in this subsection, the following process is repeated
10 times:

1. A similarity matrix is constructed using UET.
2. This similarity matrix is transformed into a distance matrix using the relation

DISij =
√

1 − SIMij , used in [19].
3. An agglomerative clustering (with average linkage) is performed using this

distance matrix, with the relevant number of clusters for the dataset.

For each clustering, Adjusted Rand Indices (ARI) are computed. This measure
quantifies the agreement between two partitions of a dataset, adjusted for chance
[9,17]. ARI takes values in [−1, 1], where a value of 1 indicates perfect agreement
up to a permutation, while a value of 0 indicates a result no better than a random
label assignment.

Three datasets are used for this evaluation process: Iris [5], Wine [6] and
Wisconsin breast cancer [12]. These datasets are described Table 1.
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Table 1. Properties of used datasets

Dataset # samples # features # labels

Iris 150 4 3

Wine 178 13 3

Wisconsin 699 9 2

Influence of the number of copies of the dataset
The use of addCl3 on a dataset leads to a balanced distribution of the labels.
Instead of running k forests on as many datasets where addCl3 is applied k times,
it is possible to run one forest on a dataset duplicated k times. We evaluate here
the influence of this duplication process. The results are presented Fig. 2.

(a) (b) (c)

Fig. 2. ARI performing UET+addCl3 and agglomerative clustering on Wine (a), Iris
(b) and Wisconsin (c) datasets when the number of copies of the dataset increases.

The ARI are compared using the Kruskal-Wallis test [11]. The results show
that the ARI does not differ significantly in Wine, Iris and Wisconsin datasets
(p = 0.26, p = 0.09 and p = 0.23, respectively).

Intuitively, as UET grows the tree without any consideration of the labels and
without bootstrapping the samples, the results should stay relatively constant
when number of duplications grows. This replication was needed in URF as the
generation scheme could lead to significant differences in the output similarity.
This intuition is confirmed with this experiment. Here, the randomness induced
by the labelling step does not induce a difference in the construction of the
trees. Indeed, since we set K = 1, trees are constructed totally at random. Any
difference in the similarity matrix is rather related to the randomness induced
by the choice of features to split at each node.

Influence of the number of trees
The influence of the number of trees ntrees as also been studied in [8], where this
parameter is referred to as the averaging strength M . For randomized method
such as RF and ET used in a supervised learning setting, the average error is
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a monotonically decreasing function of M [2]. In our experiments, we observed
no substantial gain for ntrees > 50. The difference in ARI are not significant
(p > 0.1) for all three datasets. This observation confirms the one from Geurts
et al. where values of ntrees > 40 outperforms Tree Bagging. However, as the
time to construct the ensemble grows linearly with the number of trees, it is a
good option to choose small a value of ntrees. We chose the value ntrees = 50
by default. We noticed that this value is way below the overall number of trees
recommended for URF, 5000. The results are presented Fig. 3.

(a) (b) (c)

Fig. 3. ARI performing UET+addCl3 and agglomerative clustering on Wine (a), Iris
(b) and Wisconsin (c) datasets when the total number of trees varies. The ARI remains
relatively constant.

Influence of the minimum number of samples to split
ET tend to produce trees having 3 to 4 times the number of leaves than those
of RF. As UET computes similarities by counting the number of times objects
fall into the same leaf, the results are impacted by this increase in the number
of leaves. It might be useful to stop the growth of the trees, in order to group
similar instances in the same leaves more often. The minimum number of objects
to split a node nmin can control this growth. This parameter nmin, also called
the smoothing strength, has an impact on the bias and the variance. As stated
by Geurts et al. [8], the optimal value for this parameter depends on the level
of noise in the dataset. They showed in [8] that larger values of nmin are needed
when ET is applied to noisy data. In UET, the noise is maximal, as the labels
are assigned randomly. The results of the evaluations performed varying nmin

are presented below. For nmin = 2, we observe that the method fails to compute
a similarity matrix leading to a good clustering. Values of nmin between 20%
and 30% of the data seem to give better results. The ARI variations for the three
datasets according to nmin are presented Fig. 4.

3.2 Comparative Evaluation of UET

In this section we first evaluate the relevance of clusterings obtained using UET
by comparing the Normalized Mutual Information [20] (NMI) scores with the
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(a) (b) (c)

Fig. 4. ARI performing UET+addCl3 and agglomerative clustering on Wine (a), Iris
(b) and Wisconsin (c) datasets when the min. number of samples to split increases.
Last value corresponds to 110% of the samples in a dataset.

values presented in [4]. This reference was chosen because results were provided
for many well-known datasets. Then, we compare UET and URF, using another
quality score presented previously, ARI. The ten datasets used in this section are
available on the UCI website1 and presented Table 2. UET are computed with
ntrees = 50 and nmin = �nsamples

3 �.

Table 2. Datasets used for benchmarking

Dataset # samples # features # labels

Iris 150 4 3

Wine 178 13 3

Wisconsin 699 9 2

Lung 32 56 3

Breast tissue 106 9 6

Isolet 1559 617 26

Pima 768 8 2

Parkinson 195 22 2

Ionosphere 351 34 2

Segmentation 2310 19 7

Comparative evaluation with results from the literature
For each dataset, UET was run 10 times, and the similarity matrices were aver-
aged. The obtained matrix was then transformed into a distance matrix using
the equation DISij =

√
1 − SIMij , and an agglomerative clustering with the

relevant number of clusters was performed. The quality of the clustering was

1 https://archive.ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
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then evaluated with respect to NMI. This process is run 20 times, and we pro-
vide the mean and standard deviation of the quality metric. This evaluation was
performed using scikit-learn [14] and our implementation of UET. This imple-
mentation will be available upon request.

In [4], NMI obtained by running k-means 20 times and averaging the results
are provided for each dataset. We compare our results to the ones obtained with-
out feature selection, as none has been performed in our setting. The results are
presented Table 3. They show that NMI scores obtained using UET are com-
petitive in most cases. It is noteworthy that in some cases, UET alone without
feature selection gives better results than the ones obtained by [4] after feature
selection. For instance, this is the case for Breast tissue dataset.

Table 3. Comparative evaluation with the results from [4]. Best obtained values are
indicated in boldface. In case of a tie, both values are in boldface. Time comparison
was not performed in this case.

Dataset UET - NMI Literature - NMI

Wisconsin 72.95 ± 4.94 73.61 ± 0.00

Lung 28.89 ± 5.76 22.51 ± 5.58

Breast tissue 59.59 ± 1.03 51.18 ± 1.38

Isolet 69.95 ± 1.20 69.83 ± 1.74

Parkinson 21.06 ± 5.33 23.35 ± 0.19

Ionosphere 13.48 ± 3.25 12.62 ± 2.37

Segmentation 69.31 ± 1.51 60.73 ± 1.71

Comparison with URF
To compare UET and URF, we used the R implementation provided by Shi
and Horvath2, and compared the ARI obtained after running the partitioning
around medoids (PAM) algorithm on the distance matrices obtained by both
methods. 2000 trees and 100 forests are used for URF, with a value of mtry =
�√nfeatures�3. We set UET parameters to ntrees = 50 and nmin = �nsamples

3 �,
and averaged the similarity matrices of 20 runs. These experiments were run on
a computer with an Intel i7-6600U (2.6 Ghz) and 16 Go of 2133 MHz DDR4
RAM.

We compared both ARI and time (in seconds) for each method. The results
are presented Table 4. UET outperforms URF time-wise, while giving similar or
better clusterings. Regarding the Isolet dataset, we manually terminated URF’s
computation as we weren’t able to obtain results in an acceptable amount of time
on our machine. However, we performed the computation on a more powerful
machine, and were able to obtain an ARI of 28.39.

2 https://labs.genetics.ucla.edu/horvath/RFclustering/RFclustering.htm.
3 mtry is the number of variables used at each node when a tree is grown in RF.

https://labs.genetics.ucla.edu/horvath/RFclustering/RFclustering.htm
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Table 4. Comparative evaluation between URF and UET

Dataset UET (ARI - Time (s)) URF (ARI - Time (s))

Wisconsin 79.30 - 823.36 s 81.36 - 1267.82 s

Lung 10.81 - 7.45 s 8.16 - 89.32 s

Breast tissue 40.35 - 25.25 s 39.05 - 94.55 s

Isolet 33.44 - 4589.36 s * - * s

Parkinson 17.37 - 66.91 s 13.44 - 252.12 s

Ionosphere 8.54 - 184.97 s 7.59 - 722.92 s

4 Conclusion and Perspectives

In this preliminary work, we presented a novel method to perform unsupervised
clustering using decision trees. This approach extends the unsupervised random
forest method, by using extremely randomized trees as a base estimator. In the
former method, the generation of synthetic instances was needed. This generation
can be performed by two different approaches, AddCl1 or AddCl2. With the
approach we proposed here, the generation of instances is no longer necessary.
Indeed, for some parameter choices, extremely randomized trees can be made
independent of the labels. We therefore present a way to bypass the need for
instance generation, AddCl3, where a label is randomly associated with each
observation, which results in a significant reduction in running time.

A performance evaluation of our method showed that essentially one param-
eter influenced the results, the smoothing parameter nmin. This is explained by
the fact that higher values of nmin give better results in the presence of noise.
In our case, the data is highly noisy, as the labeling is a random process. We
found that a value of nsamples

4 ≤ nmin ≤ nsamples

3 gives good clusterings. Other
parameters, such as the number of trees per forest ntrees did not influence much
the results of the procedure for values of ntrees > 50, while increasing the time
to perform the procedure. An interesting finding is that it is no longer necessary
to duplicate the dataset multiple times to improve the results. However, due to
the randomness of the procedure, it is still necessary to average the results of
multiple UET to decrease the variance.

We compared the quality of the clustering between our method and (i) results
found in the literature and (ii) results obtained by URF on multiple datasets. The
quality is measured by normalized mutual information or adjusted rand index,
according to the metric available in the literature. This empirical evaluation gave
promising results, with overall similar or better NMI and ARI. The advantages
of our method over URF are twofold. First, the generation of synthetic data is
no longer necessary. Second, the method is 1.5 to more than 10 times faster than
URF.

However, there is still room for improvement. We are aware that we only
have tested our method on a few small datasets so far. A comparison with
other metrics on large synthetic and real-world datasets would be interesting.
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Moreover, one of the major advantages of using a decision tree-based method
to compute a distance is that (i) it enables the use of mixed-type variables and
(ii) missing data can be handled. In fact, the latter were our original motivation
and they constitute topics for future work.

Acknowledgements. Kevin Dalleau’s PhD is funded by the RHU FIGHT-HF (ANR-
15-RHUS-0004) and the Region Grand Est (France).
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Abstract. Searching local graph clusters is an important problem in big
network analysis. Given a query node in a graph, local clustering aims
at finding a subgraph around the query node, which consists of nodes
highly relevant to the query node. Existing local clustering methods are
based on single networks that contain limited information. In contrast,
the real data are always comprehensive and can be represented better
by multiple connected networks (multi-network). To take the advantage
of heterogeneity of multi-network and improve the clustering accuracy,
we advance a strategy for local graph clustering based on Multi-network
Random Walk with Restart (MRWR), which discovers local clusters on a
target network in association with additional networks. For the proposed
local clustering method, we develop a localized approximate algorithm
(AMRWR) on solid theoretical basis to speed up the searching process.
To the best of our knowledge, this is the first elaboration of local clus-
tering on a target network by integrating multiple networks. Empirical
evaluations show that the proposed method improves clustering accuracy
by more than 10% on average with competently short running time, com-
pared with the alternative state-of-the-art graph clustering approaches.

1 Introduction

Networks (or graphs) are natural representations of real-world relationships. Net-
work clustering is a fundamental problem and is the basis of many applications
such as online recommendation, medical diagnosis, social networks and biological
networks analysis [1–4]. The clustering of a network aims to find groups of nodes
that are closely related to each other. Unlike global clustering which retrieves all
clusters from a network, local clustering focuses on the subgraph within neigh-
borhood of the query node and is less demanding in computation [5]. With the
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Disease network

Symptom network

Lung

Tuberculosis

Osteomyelitis

Query

Fig. 1. An example of the Disease-Symptom network. Black nodes are symptoms.
Green nodes are lung diseases. Yellow nodes and orange nodes are of tuberculosis and
osteomyelitis, respectively. (Color figure online)

increasing size of networks, recently local clustering has attracted lots of research
interest [6–9].

Local clustering takes a cohesive group of nodes as the target cluster. The
cohesiveness is either evaluated by goodness metrics such as conductance and
density [6], or the proximity between nodes according to the network topol-
ogy [10]. While existing local clustering approaches are based on single networks,
cohesiveness of single network does not always reveal the real clustering struc-
ture, since the single network is often noisy and incomplete. On the contrary,
complete information is usually available through multiple connected networks.

For example, Fig. 1 is a corner of a disease network and an associated symp-
tom network. Because of the incompleteness of the disease network, the lung
disease cluster is divided into subgroups with relatively sparse connections in-
between. When querying a lung disease from one subgroup, the lung diseases
in other groups are hard to be enclosed into the desired local cluster due to
the sparse inter-group connections. However, if the symptom network is taken
into account, the symptom nodes serve as bridges between lung diseases groups,
which integrate the lung diseases into a whole cluster. Moreover, the symptom
nodes help to distinguish the lung diseases from tuberculosis and osteomyelitis,
since the lung diseases share lots of common symptoms while the tuberculosis
and osteomyelitis nodes are left aside.

Figure 2 provides another example of 16 scholars from research areas of data
mining, database and information retrieval. In the coauthor network, the data
mining researchers are isolated into two groups. Associating the authors to their
top-3 most published conferences, it is clear that the data mining researchers are
linked with each other by various conferences while the authors considered as
database or information retrieval researchers are linked to conferences of their
specialized domains. For example, among all the authors only Xiaofei He fre-
quently publishes papers in SIGIR. A similar case concerns Flip Korn and H.
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Conference network
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Fig. 2. An example of the Author-Conference network. Blue nodes are data mining
researchers. Green nodes are researchers more relevant to information retrieval and red
nodes are researchers closer to the database area. (Color figure online)

Jagadish et al., who are intensively relevant to database conferences such as
SIGMOD, VLDB and ICDE.

In this paper, we propose a local clustering method which integrates multiple
networks. The method targets on a specific network and uses other networks to
improve the clustering accuracy. To use the links from various networks, we
introduce a Multi-network Random Walk with Restart (MRWR) model, which
allows the random surfer goes into different networks with differentiated cross-
network transition probabilities. Our theoretical analysis shows that MRWR
can measure nodes proximity across multiple networks by capturing the multi-
network heterogeneity.

As in the local clustering task, only proximity of nodes close to the query node
is necessary, we propose a localized approximate MRWR (AMRWR) algorithm
for the multi-network node-proximity calculation based on solid theoretical basis.
By the AMRWR algorithm, running time of the proposed method is limited and
the method is scalable to large networks. To the best of our knowledge, the
proposed method is the first local clustering approach that considers multiple
networks. The effectiveness and efficiency are validated by both theoretical and
empirical studies in the following sections.

2 Related Work

As all current multi-network clustering approaches are global clustering [1,2,11–
15], our method is more relevant to single network local clustering [6–9,16].

Single network local clustering methods can be classified into three categories:
local search [5,17], dense subgraph [6,8,16] and node proximity based meth-
ods [7,9,10]. Conventional local search algorithms examine nodes around query
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node to improve a goodness function [6] by greedy or combinatorial optimiza-
tion methods [5,17]. The searching efficiency of such approaches is limited [7].
The dense subgraph methods try to find a dense subgraph around the query
node, which can be a k-core [8], k-truss [18], k-plex [19], etc. The limitation of
these methods is that many relevant nodes are not in a dense subgraph and may
not be enclosed into the local clusters. Recently random walk and node prox-
imity based methods are successful in local community detection [7,9]. These
approaches rank nodes with respect to the query node and cut a part of nodes
with high ranking scores as the local community. All these methods are created
for single networks and ignore the heterogeneity of multi-networks.

3 Problem Definitions

In this paper, the multi-network or N -network G consists of N interconnected
single networks. The ith single network is represented by the weighted graph
G(i) = (V (i), E(i)) with adjacency matrix A(i) ∈ R

ni×ni
+ , where ni = |V (i)|,

and each entry A(i)
xy of matrix A(i) is the weight of edge between node V

(i)
x

and node V
(i)
y in network G(i). In this multi-network model, the connection

between single networks G(i) and G(j) is represented by bipartite graph G(ij) =
(V (i), V (j), E(ij)) with adjacency matrix C(ij) ∈ R

ni×nj

+ , where ni = |V (i)| and
nj = |V (j)|. The entry C(ij)

xy is the weight of link between node V
(i)
x and V

(j)
y .

In this work, we focus on the clustering of a specific network, while other
networks provide extra information to improve the clustering accuracy. Without
loss of generality, we assume the clustering targets on the network G(1) with
node set V (1). Given a query node q ∈ V (1), the goal of local clustering on
multi-network G is to find a local cluster S ⊆ V (1) such that q ∈ S. The nodes
in S should be cohesive not only through G(1), but also through other networks
connected with G(1).

In the following section, we will discuss the cross-graph cohesiveness measure
and the consequent local clustering method. We adopt the widely used random-
walk-based proximity score as the cohesiveness criterion since it has been shown
to be most effective in capturing local clustering structures [9,10].

4 Methods

Random-walk-based approaches such as Random Walk with Restart (a.k.a. Per-
sonalized PageRank) are commonly used to evaluate the node proximity in
the single network [20,21]. Compared with other methods, random walk takes
advantage of local neighborhood structure of the network and thus has higher
performance [7]. In this work, we generalize the single-network random walk to
multi-network and propose local clustering methods based on the multi-network
random walk.
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4.1 Random Walk on Single Network

In Random Walk with Restart (RWR), a random surfer starts from the query
node q, and randomly walks to a neighbor node according to the edge weights.
At each time point (t + 1), the surfer goes on with probability α or returns to
the query node q with probability (1 − α). The proximity score of node p with
respect to node q is defined as the converged probability that the surfer visits
node p [21]:

r(t+1) = α · r(t) · P + (1 − α) · s, (1)

where s is the row vector of the initial distribution with qth entry as 1 and all
other entries 0, and r is the row vector whose pth entry is the visiting probability
of node p. P is the row-stochastic transition matrix with entries Pxy = Axy∑

y Axy
.

An alternative perspective of Random Walk with Restart is the walk-
view [10]. Repeatedly insert the right-hand side of Eq. (1) into r, then

r = (1 − α)
∞∑

k=0

αksPk (2)

Since Pk contains probabilities of all possible length-k walks on the graph, Eq. (2)
can be interpreted as that the converged vector r contains accumulated proba-
bilities of all possible walks for q to each node. As the probabilities of length-k
walks are discounted by factor αk, the proximity is large when there are many
short walks between a certain node and the query node.

4.2 Random Walk on Multi-network

The single-network RWR has no knowledge of the heterogeneity of networks,
where we can not control the surfer’s behavior towards different networks. In this
paper, we propose a Multi-network Random Walk with Restart (MRWR) model,
in which the surfer knows the environments and chooses different transition
probabilities to distinct networks.

Gstart 1

(a) Random walk on single network

G(1)start G(2)

β(12)

β(11)

β(21)

β(22)

(b) Random walk on 2-network

Fig. 3. Cross-network transition probabilities of random walk on single network and
multi-network that contains two networks G(1) and G(2). β(ij) is the transition proba-
bility between network G(i) and G(j).
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In single-network random walk, the random surfer stays in the network with
probability β = 1 (Fig. 3a). However, for a multi-network with N networks,
there are N × N different transition probability β. Figure 3b gives an example
of 2-network, where β(11) is the chance of the random surfer staying in G(1),
β(12) is the chance that the random surfer goes from G(1) to G(2), etc. All these

transition probabilities form a matrix B =

⎡

⎢⎣
β(11) . . . β(1N)

...
. . .

...
β(N1) . . . β(NN)

⎤

⎥⎦ .

The matrix B is also row-stochastic since the sum of probabilities to all
networks must be 1. The cross-network decision of random surfer is made by
these probabilities. There exist two kinds of MRWR with special matrix B:
every row is identical (rank-1), or the matrix is symmetric. We name these
two special MRWR as Biased MRWR and Symmetric MRWR, respectively. In
Biased MRWR, the random surfer is likely to walk into the networks with large
entry value in B at any time. In Symmetric MRWR, however, the surfer walks
between an arbitrary pair of network G(i) and G(j) back and forth with equal
probabilities, as β(ij) = β(ji). In this work we focus on the Biased MRWR since
we bias the target network.

Comparing with single-network random walk, we may formulate the walk-
view of multi-network by the following equation.

r =
∑

σ

(1 − α)αkβσsPσ =
∑

σ

(1 − α)αk
k∏

i=1

β(σiσi+1)s
k∏

i=1

P(σiσi+1)

=
∑

σ

(1 − α)αks
k∏

i=1

β(σiσi+1)P(σiσi+1),

(3)

where σ = 〈σ1, σ2, . . . σk+1〉 is an arbitrary walk with length k ≥ 0, whose ith

node is in network G(σi), 1 ≤ σi ≤ N . Similar with single-network RWR, α acts
as the discount factor for length of walks. Pσ =

∏k
i=1 P(σiσi+1) is the transition

matrix of walk σ, and βσ =
∏k

i=1 β(σiσi+1) is the heterogeneous discount factor

of walk σ. For the transition matrix on multi-network, P(ij)
xy = A(i)

xy
∑

y A
(i)
xy

if i = j,

otherwise P(ij)
xy = C(ij)

xy
∑

y C
(ij)
xy

.

4.3 Localized Algorithm for MRWR

Due to the nature of local clustering, only proximity of nodes close to the
query node is important. The exact RWR vector is not necessary and a local-
ized approximation vector is enough in practice. In this section, we propose an
Approximate MRWR calculation method (AMRWR), motivated by the approxi-
mate Personalized PageRank (APPR) algorithm [10]. The APPR algorithm sim-
ulates ε-approximation of the RWR score vector by a slightly different starting
vector s′, where sx − s′

x ≤ εd(x) for every node x, ε is the pair-wise error bound
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and d(x) is the degree of node x. Instead of calculating RWR score directly,
APPR uses a local network diffusion strategy where values of the initial vector
s diffuse towards both the target score vector p and itself through the network.
Once each entry x of s is less than εd(x), the target vector p is the approximation
of RWR score r.

Our method is different with APPR for the following aspects. First, instead
of getting approximated RWR/PPR score on unweighted graph, we extend the
calculation to weighted graph. Second, the original APPR is not aware of dif-
ferent networks during the diffuse operations. We solve this problem by pushing
different values from vector s to nodes of different networks, according to the
cross-network transition matrix B. Moreover, at each diffuse step, we push as
much value as possible from the initial vector to reduce the running time.

Algorithm 1. Approximate Multi-network RWR (AMRWR)
Input : Multi-network G, query node q, forward probability α, cross-network

transition matrix B, error bound ε
Output: Approximate RWR vector r̂(1) for network G(1)

1 /* Initialization */
2 px ← 0 for all nodes x of G;
3 sx ← 0 for all nodes x �= q; sq ← 1;
4 /* Multi-network diffuse operation */

5 while sx ≥ εd(x) for node x ∈ V (i) do
6 /* d(x) is degree of x on multi-network G */
7 δ ← sx − εd(x)/2; px ← px + (1 − α)δ; sx = sx − δ;

8 for each neighbor y ∈ V (j) of x do
9 /* Differentiated push */

10 sy ← sy + P
(ij)
xy β(ij)αδ/d(x);

11 end

12 end

13 r̂
(1)
x ← px for all nodes x ∈ V (1);

14 return r̂(1);

The overall MRWR algorithm is demonstrated in Algorithm1. In the algo-
rithm, Line 2 to 3 are the initialization steps. The while loop from Line 5 to 12
process multi-network diffusion. Finally Line 13 and 14 output the RWR score
of nodes in G(1). Here we prove the correctness of Algorithm 1 by Lemma 1 and
Theorem 1. All the proofs in this paper can be found in the full version [22].

Lemma 1. The multi-network diffuse operations in Algorithm1 construct an
ε-approximate RWR vector from initial vector s through graph

P̃ =

⎡

⎢⎣
β(11)P(11) . . . β(1N)P(1N)

...
. . .

...
β(N1)P(N1) . . . β(NN)P(NN)

⎤

⎥⎦ .
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Proof. See Sect. A.1 in the full version [22].

Theorem 1 (Effectiveness of the AMRWR Algorithm). The Algorithm1
generates an ε-approximate vector for MRWR scores r in Eq. (3).

Proof. See Sect. A.2 in the full version [22].

Theorem 2 (Time Complexity of AMRWR). The local diffusion process
in Algorithm1 runs in O( 1

ε(1−α) ) time.

Proof. See Sect. A.3 in the full version [22].

After calculating the proximity score of each node with respect to the query
node, the clusters can be generated in two ways, the cut process (MRWR-cut)
or the sweep process (MRWR-cond). Specifically, MRWR-cut chooses the top-k
nodes with largest proximity scores as the target local cluster, while MRWR-
cond sorts the node by the proximity score in descending order, and then scans
from the top node to get a cluster with minimal conductance.

5 Experiment

We perform extensive experiments to evaluate the effectiveness and efficiency of
the proposed method on a variety of real networks and synthetic graphs. The
experiments are performed on a PC with 16GB memory, Intel Core i7-6700 CPU
at 3.40 GHz frequency, and the Windows 10 operating system. The core functions
are implemented by C++.

5.1 Datasets and Baseline Methods

We have 6 multi-networks from 3 real data sources for our experiments.

Disease-Symptom Networks [1]. This dataset contains a disease similarity
network with 9,721 diseases and a symptom similarity network with 5,093 symp-
toms. In this dataset, there are two sets of clustering ground truth for the disease
network: level-1 and level-2, where the clusters in level-1 are larger than those of
level-2. We use both sets of ground truth, and denote the experiments by DS1
and DS2, accordingly.

Gene-Disease Networks [23]. The gene network represents the functional rela-
tionship between 8,503 genes. The disease network is a phenotype similarity
network with 5,080 diseases. By flipping these two networks, we have two multi-
networks: the Disease-Gene network (DG) and the Gene-Disease network (GD).

Author-Conference Networks [24]. The dataset comprises 20,111 authors
and 20 conferences from 4 research areas. Since we have labels of both authors
and conferences, we use this dataset as two multi-networks: the Author-
Conference network (AC) and the Conference-Author network (CA).
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We compare our approaches with six state-of-the-art methods, including
densest subgraph methods Query-biased Densest Connected Subgraph (QDC) [6]
and k-core clustering [8]; attributed graph clustering methods Attributed Com-
munity Query (ACQ) [25] and Focused clustering (FOC) [26]; node proximity
measures Random Walk with Restart (RWR) [7] and Heat Kernel Diffusion
(HKD) [9]. To be fair, all the baseline methods run on multi-networks and are
tuned to their best performances. For attributed network clustering method,
nodes of additional network are taken as the attributes of node in the target
network. All results are averaged on 10,000 queries if not specifically stated.

5.2 Effectiveness Evaluation

To evaluate effectiveness of the selected methods, we use precision and F1-score
as metrics of clustering accuracy. Given the cluster node set U and the ground
truth node set V , the F1-score integrates both precision and recall, and is defined
as F (U, V ) = 2 · p×r

p+r , where p = |U∩V |
|U | is the precision and r = |U∩V |

|V | is the
recall. The experiments are deployed on real networks. For each multi-network,
we randomly pick up query nodes from the labeled ground truth. The β of biased

cross-network transition matrix B =
[
β 1 − β
β 1 − β

]
is 0.6 by default, and the forward

probability α is 0.99. We set β > 0.5 as we emphasize the target network more
than the additional network. Expected cluster sizes of both MRWR-cut and
RWR are set to be the average cluster size of ground truth. For sensitivity of
parameter β please see section B.1 in the full version [22].
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(b) MRWR-cnd

Fig. 4. Improvement of MRWR precision, from clustering on single target network, to
the multi-network clustering.

Firstly we evaluate the precision improvement of MRWR on the multi-
network, comparing with MRWR on the target network only. In Fig. 4 we can see
that the precision increases on every dataset, for both MRWR-cut and MRWR-
cnd. The biggest performance gain is achieved by the Conference-Author (CA)
network, meaning that the conference network is very noisy and much infor-
mation is from the additional network. Actually the conference network is a
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full graph simply created by cosine similarity of keyword vectors, as shown par-
tially in Fig. 2. The precision increment of MRWR-cnd is more obvious for most
datasets (Fig. 4b). It is worth reporting that, on multi-networks, the cluster
size of MRWR-cnd is 33% less than on the single networks and is closer to the
ground truth cluster size. In other words, the clusters generated by MRWR-
cnd on multi-network are more dense and reasonable than their single-network
counterparts.

Table 1. Accuracy comparison of all selected methods on real multi-networks.

F1-scores CUT CND k-core QDC ACQ FOC RWR HKD

DS1 0.40 0.36 0.15 0.15 0.09 0.08 0.31 0.22

DS2 0.47 0.50 0.07 0.33 0.03 0.22 0.40 0.41

DG 0.35 0.33 0.14 0.18 0.05 0.12 0.29 0.28

GD 0.16 0.17 0.04 0.06 0.11 0.12 0.12 0.06

AC 0.40 0.22 0.32 0.02 0.05 0.04 0.35 0.30

CA 0.93 0.75 0.40 0.40 – 0.58 0.47 0.58

For the accuracy of selected approaches, we use F1-score as it is fair in com-
paring performance of different methods. Table 1 shows that our methods are
overall the best on all networks. For networks DS2 and GD, MRWR-cnd is
better than MRWR-cut. For all other networks, MRWR-cut has the best per-
formance. ACQ hits the timeout on network CA and has no result in the table.
The MRWR methods are balanced between precision and recall than the base-
lines. For example, ACQ and FOC have high precision but very low recall, as
the methods can hardly enclose more nodes other than the query node due to
the sparse links to the additional networks. QDC tends to detect small dense
clusters, which decreases its performance on large cluster structures. On the
contrary, k-core clustering inclines to a large number of nodes unrelated to the
query node. Consequently, its recall is high but the precision is quite low, which
also results in low F1-score.

5.3 Efficiency Evaluation

Figure 5 illustrates the average running time of all selected algorithms. For all
datasets, the speed of our method outperforms all other approaches except k-
core. On the DG and GD networks, MRWR is faster by 1 to 3 orders of mag-
nitude in comparison with other algorithms except for the k-core clustering.
Though k-core method is fast in clustering, its accuracy is not competent with
other approaches (Table 1). The FOC takes long running time because its global
searching strategy. ACQ reaches timeout on the AC network, so we omit its
running time in the figure. We also measure the efficiency of MRWR on large
synthetic datasets and report the result in section B.2 in the full version [22]. It
shows that MRWR runs within seconds on networks with millions of nodes.
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Fig. 5. Average running time of a single query in milli-seconds, comparing all methods
on all networks.

6 Conclusion

In this paper, we have introduced a local graph clustering method on multi-
networks. The clustering is based on the node proximity measurement by multi-
network random walk. Compared with the single network local clustering algo-
rithms, our method takes advantage of both additional network connection and
the local network structure. Empirical studies show that our method is both
accurate and fast in comparison with alternative approaches. The future work is
to make the random walk on multi-network more smart by learning the network
heterogeneity online.
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13. Kumar, A., Daumé, H.: A co-training approach for multi-view spectral clustering.
In: ICML (2011)

14. Cheng, W., Zhang, X., Guo, Z., Yubao, W., Sullivan, P.F., Wang, W.: Flexible and
robust co-regularized multi-domain graph clustering. In: KDD (2013)

15. Ni, J., Tong, H., Fan, W., Zhang, X.: Flexible and robust multi-network clustering.
In: KDD (2015)

16. Yubao, W., Bian, Y., Zhang, X.: Remember where you came from: on the second-
order random walk based proximity measures. Proc. VLDB Endow. 10(1), 13–24
(2016)

17. Schaeffer, S.E.: Stochastic local clustering for massive graphs. In: Ho, T.B., Cheung,
D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 354–360. Springer,
Heidelberg (2005). https://doi.org/10.1007/11430919 42

18. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community
in large and dynamic graphs. In: SIGMOD (2014)

19. Martins, P.: Modeling the maximum edge-weight k-plex partitioning problem
(2016). arXiv preprint arXiv:1612.06243

20. Tong, H., Faloutsos, C., Gallagher, B., Eliassi-Rad, T.: Fast best-effort pattern
matching in large attributed graphs. In: KDD (2007)

21. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applica-
tions (2006)

22. Yan, Y., et al.: Local Graph Clustering by Multi-network Random Walk with
Restart, Technical report. https://sites.google.com/site/yanyaw00/pakdd

23. Van Driel, M.A., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.M.: A
text-mining analysis of the human phenome. Eur. J. Hum. Genet. 14(5), 535–542
(2006)

24. Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive
classification on heterogeneous information networks. In: Balcázar, J.L., Bonchi,
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Abstract. Massive sizes of real-world graphs, such as social networks
and web graph, impose serious challenges to process and perform analyt-
ics on them. These issues can be resolved by working on a small summary
of the graph instead. A summary is a compressed version of the graph
that removes several details, yet preserves it’s essential structure. Gen-
erally, some predefined quality measure of the summary is optimized to
bound the approximation error incurred by working on the summary
instead of the whole graph. All known summarization algorithms are
computationally prohibitive and do not scale to large graphs. In this
paper we present an efficient randomized algorithm to compute graph
summaries with the goal to minimize reconstruction error. We propose a
novel weighted sampling scheme to sample vertices for merging that will
result in the least reconstruction error. We provide analytical bounds on
the running time of the algorithm and prove approximation guarantee for
our score computation. Efficiency of our algorithm makes it scalable to
very large graphs on which known algorithms cannot be applied. We test
our algorithm on several real world graphs to empirically demonstrate
the quality of summaries produced and compare to state of the art algo-
rithms. We use the summaries to answer several structural queries about
original graph and report their accuracies.

1 Introduction

Analysis of large graphs is a fundamental task in data mining, with applications
in diverse fields such as social networks, e-commerce, sensor networks and bioin-
formatics. Generally graphs in these domains have very large sizes - millions of
nodes and billions of edges are not uncommon. Massive sizes of graphs make
processing, storing and performing analytics on them very challenging. These
issues can be tackled by working instead on a compact version (summary) of the
graph, which removes certain details yet preserves it’s essential structure.

Summary of a graph is represented by a ‘supergraph’ with weights both
on edges and vertices. Each supernode of the summary, represents a subset of
original vertices while it’s weight represents the density of subgraph induced by
that subset. Weights on edges, represent density of the bipartite graph induced
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 502–514, 2018.
https://doi.org/10.1007/978-3-319-93040-4_40
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by the two subsets. Quality of a summary is measured by the ‘reconstruction
error’, a norm of the difference of actual and reconstructed adjacency matrices.
Another parameter adopted to assess summaries is the accuracy in answer to
queries about original graph computed from summaries only.

Note that, since there are exponentially many possible summaries (number
of partitions of vertex set), finding the best summary is a computationally chal-
lenging task. GraSS [1] uses an agglomerative approach, where in each iteration
a pair of nodes is merged until the desired number of nodes is reached. Since the
size of search space at iteration t is O(

(
n(t)
2

)
), where n(t) is number of supern-

odes at iteration t. GraSS randomly samples O(n(t)) pairs and merges the best
pair (pair with the least score) among them. With the data structures of GraSS,
merging and evaluating score of a pair can be done in O(Δ(t)) (maximum degree
of the summary in iteration t). This results in the overall worst case complexity
of O(n2Δ) to compute a summary with O(n) nodes. S2L [2] on the other hand
uses a clustering technique for Euclidean space by considering each vertex as an
N-dimensional vector. The complexity of this algorithm is O(n2t) to produce a
summary of a fixed size k = O(n), where t is the number of iterations before
convergence.

In this paper we take the agglomerative approach to compute summary of
any desired size. In every iteration a pair is chosen for merging from a ran-
domly chosen sample. We derive a closed form formula for reconstruction error
of the graph resulting after merging a pair. Exact computation of this score takes
O(Δ) time but with constant extra space per node, this can be approximated in
constant time with bounded error. Furthermore, we define weight of each node
that can be updated in constant time and closely estimate the contribution of
a node to score of pairs containing it. We select a random sample of pairs by
selecting nodes with probability proportional to their weights, resulting in sam-
ples of much better quality. We establish that with these weights, logarithmic
sized sample yields comparable results. The overall complexity of our algorithm
comes down to O(n(log n + Δ)). Our approach of sampling vertices according
to their weights form a dynamic graph (where weights are changing) may be
of independent interest. We evaluate our algorithm on several benchmark real
world networks and demonstrate that we significantly outperform GraSS [1] and
S2L[2] both in terms of running time and quality of summaries.

The remaining paper is organized as follows. Section 2 discusses previous work
on graph summarization and related problems. In Sect. 3 we formally define the
problem with it’s background. We present our algorithm along with it’s analysis
in Sect. 4. In Sect. 5 we report results of experimental evaluation of our algorithm
on several graphs. We also provide comparisons with existing solutions both in
terms of runtime and quality.

2 Related Work

Graph summarization and compression is a widely studied problem and has
applications in diverse domains. There are broadly two types of graph summaries
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(represented as supergraphs described above): lossless and lossy. The original
graph can be exactly reconstructed from a lossless summary, hence the goal is
to optimize the space complexity of a summary [3]. The guiding principle here
is that of minimum description length MDL [4]. It states that minimum extra
information should be kept to describe the summarized data. In lossless summary
[5,6], edge-corrections are stored along with each supernode and super edges to
identify missing edges. [7] stores information about structures like cliques, stars,
and chains formed by subgraphs as lossless summary of a graph.

Lossy compression, on the other hand, compromises some detailed informa-
tion to reduce the space complexity. There is a trade off between quality and
size of the summary. Quality of a summary is measured by a norm of difference
between original adjacency matrix and the adjacency matrix reconstructed from
the summary, known as reconstruction error. [1] adopted an agglomerative app-
roach to greedily merge pairs of nodes to minimize the l1-reconstruction error.
Runtime of their algorithm amounts O(n3) in the worst case.

In [2], each node is considered a vector in R
n (it’s row in the adjacency matrix)

and point-assignment clustering methods (such as k-means) are employed.
Each cluster is considered a supernode and the goal is to minimize the l2-
reconstruction error. The authors suggest to use dimensionality reduction tech-
niques for points in R

n. This technique does not use any structural information
of the graph. In [8] social contexts and characteristics are used to summarize
social networks. Summarization of edge-weighted graphs is studied in [9]. Graph
compression techniques relative to a certain class of queries on labeled graphs is
studied in [10]. [11] uses entropy based unified model to make a homogeneous
summary for labeled graphs. Compression of web graphs and social networks is
studied in [12,13] and [14], respectively. See [15] for detailed overview of graph
summarization techniques.

A closely related area is that of finding clusters and communities in a graph
using iterative algorithms [16], agglomerative algorithms [17] and spectral tech-
niques [18]. Identification of web communities in web graphs using maximum
flow/minimum cut problem is discussed in [19].

3 Problem Definition

Given a graph G = (V,E) on n vertices, let A be it’s adjacency matrix. For
k ∈ Z, a summary of G, S = (VS , ES) is a weighted graph on k vertices. Let
VS = {V1, . . . , Vk}, each Vi ∈ VS is referred to a supernode and represents a
subset of V . More precisely, VS is a partition of V , i.e. Vi ⊂ V for 1 ≤ i ≤ k,
Vi ∩Vj = ∅ for i �= j and

⋃k
i=1 Vi = V . Each supernode Vi is associated with two

integers ni = |Vi| and ei = |{(u, v)|u, v ∈ Vi, (u, v) ∈ E}|. For an edge (Vi, Vj) ∈
ES (known as superedge), let eij be the number of edges in the bipartite subgraph
induced between Vi and Vj , i.e. eij = |{(u, v)|u ∈ Vi, v ∈ Vj , (u, v) ∈ E}|. Given
a summary S, the graph G is approximately reconstructed by the expected
adjacency matrix, Ā, where Ā is a n × n matrix with
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Ā(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if u = v
ei

(ni
2 ) if u, v ∈ Vi

eij

ninj
if u ∈ Vi, v ∈ Vj

The quality of a summary S is assessed by lp-norm of element-wise difference
between Ā and A.

{4, 5}

{1, 2, 3}

{6}
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V3
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6

Ā

Definition 1 (lp-Reconstruction Error (REp)): The (unnormalized) lp recon-
struction error of a summary S of a graph G is

REp(G|S) = REp(A|Ā) =

⎛

⎝
|V |∑

i=1

|V |∑

j=1

|Ā(i, j) − A(i, j)|p
⎞

⎠

1/p

(1)

Note that the case p = 1 considered in [1] and p = 2 considered in [2] are closely
related to each other. In this paper we use p = 1 and refer to RE1(G|S) as
RE(G|S). A simple calculation shows that RE(G|S) can be computed in the
following closed form.

RE(G|S) = RE(A|Ā) =
k∑

i=1

4ei − 4e2i(
ni

2

) +
k∑

i=1

k∑

j=1,j �=i

2eij − 2e2ij
ninj

(2)

Formally, we address the following problem.

Problem 2. Given a graph G(V,E) and a positive integer k ≤ |V |, find a sum-
mary S for G with k super nodes such that RE(G|S) is minimized.

Another measure to assess quality of a summary S of G is by the accuracy of
answers of queries about structure of G based on S only. In the following we list
how certain queries used in the literature are answered from S.

Adjacency Queries: Given two vertices u, v ∈ V , the query whether (u, v) ∈ E
is answered with Ā(u, v). This can either be interpreted as the expected value
of an edge being present between u and v or as returning a ‘yes’ answer based
on the outcome of a biased coin.

Degree Queries: Given a vertex v ∈ V , the query about degree of v is answered
as d̄(v) =

∑n
j=1 Ā(v, j).
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Eigenvector-Centrality Queries: Eigenvector-centrality of a vertex v, p(v)
measures the relative importance of v [20]. For a vertex v ∈ V , this query is
answered as p̄(v) = d̄(v)

2|E| .

Triangle Density Queries: Let t(G) be the number of triangles in G. t(G) is
estimated from S by counting the expected number of triangles within each super
node, the expected number of triangles made with one vertex in one supernode
and two in another, and that made with one vertex each from three different
super nodes. More precisely, this query is answered as follows. Let πi = ei

(ni
2 ) and

πij = eij

ninj
, then t̄(G), the estimate for t(G), is

k∑

i=1

⎡

⎣
(

ni

3

)
π3

i +
k∑

j=i+1

⎛

⎝π2
ij

[(
ni

2

)
njπi +

(
nj

2

)
niπj

]
+

k∑

l=j+1

ninjnlπijπjlπil

⎞

⎠

⎤

⎦.

4 Algorithm

Given a graph G and an integer k our algorithm produces a summary S on k
super nodes as follows. Let St−1 be the summary before iteration t with n(t−1)
super nodes, i.e. S0 = G, and let Āt be the expected adjacency matrix of St. For
1 ≤ t ≤ n − k, we select a pair of supernodes (u, v) and merge it to get St. To
select an approximately optimal pair we define weight of each node v that closely
estimate the contribution of this node to score of pairs (v, ∗). We randomly
sample nodes for each pair with probability proportional to their weights and
evaluate score of the pairs. We derive a closed form formula to evaluate score of
a pair. Furthermore, in this form these scores can be approximately computed
very efficiently. Based on approximate score we select the best pair in the sample
and merge it to get St. In what follows, we discuss implementation of each of
these subroutines and their analyses.

Lemma 3. A pair (u, v) of nodes in St, can be merged to get St+1 in time
O(deg(u) + deg(v)).

Proof. In the adjacency list format, one needs to iterate over neighbors of each
u and v and record their information in a new list of the merged node. However,
updating the adjacency information at each neighbor of u and v could potentially
lead to traversal of all the edges. To this end, as a preprocessing step, for each
(x, y), in the adjacency list of x at node y, we store a pointer to the corresponding
entry in the adjacency list of y. With this constant (per edge) extra book keeping
we can update the merging information at each neighbor in constant time by
traversing just the list of u and v. It is easy to see that this preprocessing can
be done in time O(|E|) once at the initialization. 	

The next important step is to determine the goodness of a pair (a, b). This can be
done by temporarily merging a and b and then evaluating (1) or (2) respectively
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taking O(n2) and O(n(t)). For a pair of nodes (a, b) in St−1, let Sa,b
t be the

graph obtained after merging a and b. We define score of a pair (a, b) to be

scoret(a, b) = RE(G|St−1) − RE(G|Sa,b
t )

= − 4e2a(
na

2

) −
n(t)∑

i=1
i�=a

4e2ai

nani
+

4e2ab

nanb
− 4e2b(

nb

2

) −
n(t)∑

i=1
i�=b

4e2bi

nbni

+
4
(
ea + eb + eab

)2
(
na+nb

2

) +
4

(
na + nb

)
n(t)∑

i=1
i�=a,b

(e2ai

ni
+

e2bi

ni
+

2eaiebi

ni

)
(3)

Fact 4. Since St−1 is fixed, minimizing RE(G|Sa,b
t ) is equivalent to maximizing

scoret(a, b).

Remark 5. Except for the last summation in (3) all other terms of scoret(a, b)
can be computed in constant time. Since na, nb, ea, and eb are already stored at
a and b, this can be achieved by storing an extra real number Da at each super
node a such that, Da =

∑n(t)
i=1
i�=a

e2
ai

ni
. Note that Da can be updated in constant

time after merging of any two vertices x, y �= a, i.e. after merging x, y, while
traversing their neighbors for a we subtract exa/nx and eya/ny from Da and
add back (ex + ey)/(nx + ny) to it. This value can be similarly updated at the
merged node too.

The last summation in (3),
∑n(t)

i=1
i�=a,b

2eaiebi

ni
, in essence is the inner product of

two n(t) dimensional vectors A and B, where the ith coordinate of A is eai√
ni

(B
is similarly defined). Storing these vectors will take O(n(t)), moreover comput-
ing score will take time O(n(t)). However, 〈A,B〉 = A · B can be very closely
approximated with a standard application of count-min sketch [21].

Theorem 6 (c.f [21] Theorem 2). For 0 < ε, δ < 1, let
〈
Â,B

〉
be the estimate

for 〈A,B〉 using the count-min sketch. Then

–
〈
Â,B

〉
≥ 〈A,B〉

– Pr[
〈
Â,B

〉
< 〈A,B〉 + ε||A||1||B||1] ≥ 1 − δ. A,B

Furthermore, the space and time complexity of computing
〈
Â,B

〉
is O(1ε log 1

δ ).

While after a merge, the sketch can be updated in time O(log 1
δ ).

Hence, for a pair of nodes (a, b) in St−1, scoret(a, b) can be closely approximated
in constant time. Note that the bounds on time and space complexity, though
constants are quite loose in practice.
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The next important issue the quadratic size of search space. This is a major
hurdle to scalability to large graphs. We define weight of a node a as

f(a) = − 4e2a(
na

2

) −
n(t)∑

i=1
i�=a

4e2ai

nani
w(a) =

⎧
⎨

⎩

−1
f(a)

if f(a) �= 0

0 otherwise
(4)

We select pairs by sampling nodes according to their weights so as the pairs
selected will likely have higher scores. With this weighted sampling a sample of
size O(log n) outperforms a random sample of size O(n). Let W =

∑n(t)
i=1 w(i)

be the sum of weights, we select a vertex w with probability w(a)/W . Weighted
sampling though can be done in linear time at a given iteration. In our case
it is very challenging since the population varies in each iteration; two vertices
are merged into one and weights of some nodes also change. To overcome this
challenge, we design special data structure D that has the following properties.

Claim. D can be implemented as a binary tree such that

i. it can be initially populated in O(n),
ii. a node can be sampled with probability proportional to it’s weight in

O(log n)¡
iii. inserting, deleting or updating a weight in D takes time O(log n).

Remark 7. We designed this data structure independently, but found out that
it has been known to the statistics community since 1980 [22]. We note that this
technique could have many applications in sampling from dynamic graphs.

Algorithm 1 is our main summarization algorithm that takes as input G, integers
k (target summary size), s (sample size), w and d (where w = 1

ε and d = log 1
δ

are parameters for count-min sketch).

Algorithm 1. ScalableSumarization(G = (V,E), k, w, d)
1: D ← buildSamplingTree(V, W, 1, n) � W [1 . . . n] is initialize as W [i] = w(vi)
2: while G has more than k vertices do
3: samplePairs ← GetSample(D, s) � s calls to Algorithm 3
4: scores ← ComputeApproxScore(samplePairs) � Uses (3) and Theorem 6
5: bestPair ← Max(scores)
6: Merge(bestPair) � Lemma 3
7: for each neighbor x of u, v ∈ bestPair do
8: UpdateWeight(x, D)

For each vertex a we maintain a variable Da (Remark 5). Hence the weight
array can be initialized in O(n) time using (4). By Claim 4, D can be populated in
O(n) time. By Claim 4, Line 3 takes O(s log n) time, by Theorem 6 and (3) Line
4 takes constant time per pair, and by Lemma 3 merging can be performed in
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O(Δ) time. Since delete and update in D takes time O(log n) and the while loop
is executed n−k+1 times, total runtime of Algorithm1 is O((n−k+1)(s log n+
Δ log n). Generally k is O(n) (typically a fraction of n) and in our experiments
we take s to be O(log n) and O(log2 n). Furthermore, since many real world
graphs are very sparse, (Δ which is worst case upper bound is constant), we get
that overall complexity of our algorithm is O(n log2 n) or O(n log3 n).

Data Structure for Sampling: We implement D as a balanced binary tree,
where leaf corresponds to (super) node in the graph and stores weight and id of
the node. Each internal node stores the sum of values of the two children. The
value of the root is equal to

∑n(t)
i=1 w(i). Furthermore, at each node in the graph

we store a pointer to the corresponding leaf. We give pseudocode to construct
this tree in Algorithm 2 along with the structure of a tree node. By construction,
it is clear that hight of the tree is �log n� and running time of building the tree
and space requirement of D is O(n).

Algorithm 2. BuildSamplingTree(A,W ,st,end)
1: if A[st] = A[end] then
2: leaf ← CreateNode()
3: leaf.weight ← W [st]
4: leaf.vertexID ← A[st]
5: return leaf
6: else
7: mid = end+st

2

8: left ← CreateNode()
9: left ← BuildSamplingTree(A, W, st, mid)

10: right ← CreateNode()
11: right ← BuildSamplingTree(A, W, mid +

1, end)
12: parent ← CreateNode()
13: parent.weight ← left.weight + right.weight
14: left.parent ← parent
15: right.parent ← parent
16: return parent

Structure TreeNode
int vertexID
double weight
TreeNode ∗left
TreeNode ∗right
TreeNode ∗parent

The procedure to sample a vertex with probability proportional to its weight
using D is given in Algorithm 3. This takes as input a uniform random number
r ∈ [0,

∑n(t)
i=1 w(i)]. Since it traverses a single path from root to leaf, the runtime

of this algorithm is O(log n). The update procedure is very similar, whenever
weight of a node changes, we start from the corresponding leaf (using the stored
pointer to leaf) and change weight of that leaf. Following the parent pointers, we
update weights of internal nodes to the new sum of weights of children. Deleting
a node is very similar, it amounts to updating weight of the corresponding leaf to
0. Inserting a node (the super node representing the merged nodes) is achieved
by changing the weight of the first empty leaf in D. A reference to first empty
node is maintained as a global variable.
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Algorithm 3. GetLeaf(r,node)
1: if node.left = NULL ∧node.right = NULL then
2: return node.vertexID
3: if r < node.left.weight then
4: return GetLeaf(r, node.left)
5: else
6: return GetLeaf(r − node.weight, node.right)
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Fig. 1. Comparison between k-Gs-SamplePairs on ego-Facebook. Runtimes reported
are at k = 500.

5 Evaluation

We evaluate performance of our algorithm in terms of runtime, reconstruction
error and accuracies of answers to queries on standard benchmark graphs1. We
demonstrate that our algorithm substantially outperforms existing solutions,
GraSS [1] and S2L [2] in terms of quality while achieving order of magnitude
speed-up over them. Our Java Implementation is available at2. We also report
the accuracies in query answered based on summaries only and show that error
is very small and we save a lot of time. Errors reported are normalized by |V |.
All runtimes are in seconds.

From Fig. 1, it is clear that the quality of our summaries compares well with
that of k-Gs-SamplePairs but with much smaller sample size. We report results
for s ∈ {log n(t), 5 log n(t), log2 n(t)}, with exact score computation. Indeed with
sublinear sample size O(log n(t)) and O(log2 n(t)), our reconstruction error is less
than k-Gs-SamplePairs with sample size 0.01n(t). Although for n(t) significantly
smaller than |V |, there is a small difference in size of logarithmic and linear
sample, but we benefit from our logarithmic sample size for large n(t).

In Table 1, we present reconstruction errors on moderately large sized graphs.
Even though S2L is suitable for Euclidean errors, our algorithm still outper-
forms S2L because by minimizing RE we preserve the original structure of the
graph. We use s = log n(t), w ∈ {50, 100} and d = 2. We also report results
without approximation in score computation. Note that we are able to generate

1 http://snap.stanford.edu/.
2 https://bitbucket.org/M AnwarBeg/scalablesumm/.

http://snap.stanford.edu/
https://bitbucket.org/M_AnwarBeg/scalablesumm/
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Table 1. Comparison of S2L with our algorithm using different count min sketch
widths. The numbers reported here for S2L are as given by authors in [2].

Graph k w Error RunTime S2L

RE (l2)2 Avg Std (l2)2

ego-Facebook
|V |=4,039
|E|=88,234

1000 50 69.98 35.00 0.83 0.01 581

100 57.27 28.66 0.94 0.05

-a 38.98 19.51 1.01 0.08

1500 50 58.17 29.09 0.82 0.05 501

100 40.05 20.04 0.83 0.03

- 27.14 13.58 0.87 0.04

email-Enron
|V |=36,692
|E|=183,831

10000 50 6.03 3.01 1.95 0.05 72

100 5.84 2.92 2.14 0.02

- 5.82 2.91 2.21 0.07

14000 50 4.25 2.13 1.69 0.05 54

100 4.16 2.08 1.77 0.02

- 4.15 2.08 1.81 0.01

web-Stanford
|V |=281,903
|E|=1,992,636

2000 50 24.11 12.06 65.97 0.02 48

100 24.01 12.01 64.41 0.82

- 24.01 12.05 73.48 0.28

10000 50 23.65 11.83 59.87 0.15 38

100 23.61 11.81 66.21 0.67

- 21.13 10.57 59.34 0.28

amazon0601
|V |=403,394
|E|=2,443,408

2000 50 24.11 12.06 147.3 3.72 53

100 24.10 12.05 158.03 1.59

- 24.10 12.05 175.29 5.81

8000 50 23.77 11.89 143.83 3.58 51

100 23.74 11.87 154.34 1.92

- 23.73 11.87 171.00 5.63
aRepresents score computation without approximation using Eq. 3.

summaries with much smaller runtime on a less powerful machine, (Intel(R) Core
i5 with 8.00 GB RAM and 64-bit OS) compared to one reported in [2].

Table 2 contains quality and runtime for very large graphs, on which none
of the previously proposed solutions were applicable. We use s = log n(t),
w ∈ {50, 100, 200} and d = 2. We get some reduction in running times by
approximating the score while the quality of summaries remains comparable.
Note that large values of w result in increased runtime without any improve-
ment in quality. This is so because the complexity of exact score evaluation
depends on maximum degree, which in real world graphs is small.

In Table 3, we tabulate answers to queries that are computed from summaries
only. We report mean absolute errors in estimated degrees and eigenvector-
centrality scores. For triangle density we report relative error, calculated as
¯t(G)−t(G)

t(G) . In all cases query answers are very close to the true values, signifying
the fact that our summaries do preserve the essential structure of the graph.
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Table 2. Quality in terms of RE of summary produced by our algorithm on large sized
graph.

Parameters as-Skitte
|E| = 1,696,415
|V | = 11,095,298

wiki-Talk
|E| = 2,394,385
|V | = 4,659,565

com-Youtube
|E| = 1,157,828
|V | = 2,987,624

Time Time Time

k×(103) w RE Avg Std RE Avg Std RE Avg Std

10 50 25.42 521.43 12.93 7.28 311.10 5.68 9.98 207.38 4.66

100 24.81 516.03 22.97 7.07 328.19 2.06 9.64 222.22 7.17

200 24.35 559.91 13.07 6.82 363.37 8.63 9.30 251.94 8.28

- 23.81 649.82 20.44 6.72 319.95 28.91 9.26 242.58 13.85

50 50 23.49 481.40 14.11 5.77 285.89 5.56 7.49 184.67 3.86

100 21.78 480.85 23.54 5.65 299.98 1.97 7.13 195.85 6.41

200 20.90 524.94 12.88 5.63 329.39 8.95 7.09 215.87 7.23

- 20.77 591.35 19.36 5.62 273.24 24.05 7.08 199.48 10.85

100 50 21.28 436.84 11.52 5.12 266.15 4.83 5.90 160.11 3.51

100 18.90 445.27 23.18 5.09 276.32 2.77 5.82 167.67 5.22

200 18.48 486.88 13.14 5.08 303.44 8.60 5.81 183.64 5.81

- 18.42 535.02 18.90 5.08 248.73 20.44 5.81 164.80 9.87

250 50 15.34 332.27 9.58 4.23 223.65 3.85 3.91 103.25 3.97

100 13.79 350.47 21.77 4.22 232.39 1.81 3.90 107.79 1.03

200 13.68 376.89 11.86 4.21 256.05 6.74 3.89 118.73 4.60

- 13.65 392.58 13.48 4.21 203.93 18.21 3.89 98.70 4.89

Table 3. Error in queries computed by summaries generated by our algorithm. Abso-
lute average error is reported for degree and centrality query. For triangle density,
relative error is reported.

ego-Facebook
Eigenvector-
Centrality

Degree (×10−5)

Triangle
k w avg stdev avg stdev Density

500
50 22.50 29.70 6.37 8.42 -0.89
100 14.95 26.58 4.24 7.53 -0.76
- 12.01 12.70 3.40 3.60 -0.28

1000
50 17.66 25.68 5.00 7.28 -0.84
100 10.67 24.19 3.02 6.85 -0.58
- 7.62 9.41 2.16 2.67 -0.15

1500
50 13.22 22.19 3.75 6.29 -0.72
100 7.04 18.32 2.00 5.19 -0.41
- 4.50 5.67 1.28 1.61 -0.08

email-Enron
Eigenvector-
Centrality

Degree (×10−5)

Triangle
k w avg stdev avg stdev Density

4000

50 2.49 8.60 0.34 1.17 -0.37
100 1.94 4.26 0.26 0.58 -0.19
- 1.91 3.09 0.26 0.42 -0.16

6000

50 1.56 4.70 0.21 0.64 -0.18
100 1.37 2.33 0.19 0.32 -0.12
- 1.38 2.24 0.19 0.31 -0.11

8000

50 1.15 3.10 0.16 0.42 -0.11
100 1.06 1.77 0.14 0.24 -0.08
- 1.04 1.52 0.14 0.21 -0.08
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6 Conclusion

In this work we devise a sampling based efficient approximation algorithm for
graph summarization. We derive a closed form for measuring suitability of a
pair of vertex for merging. We approximate this score with theoretical guaran-
tees on error. Another major contribution of this work is the efficient weighted
sampling scheme to improve the quality of samples. This enables us to work
with substantially smaller sample sizes without compromising summary quality.
Our algorithm is scalable to large graphs on which previous algorithms are not
applicable. Extensive evaluation on a variety of real world graphs show that our
algorithm significantly outperforms existing solutions both in quality and time
complexity.
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Abstract. Is it possible to extract malicious IP addresses reported in
security forums in an automatic way? This is the question at the heart
of our work. We focus on security forums, where security professionals
and hackers share knowledge and information, and often report misbe-
having IP addresses. So far, there have only been a few efforts to extract
information from such security forums. We propose RIPEx, a system-
atic approach to identify and label IP addresses in security forums by
utilizing a cross-forum learning method. In more detail, the challenge is
twofold: (a) identifying IP addresses from other numerical entities, such
as software version numbers, and (b) classifying the IP address as benign
or malicious. We propose an integrated solution that tackles both these
problems. A novelty of our approach is that it does not require train-
ing data for each new forum. Our approach does knowledge transfer
across forums: we use a classifier from our source forums to identify seed
information for training a classifier on the target forum. We evaluate
our method using data collected from five security forums with a total of
31 K users and 542K posts. First, RIPEx can distinguish IP address from
other numeric expressions with 95% precision and above 93% recall on
average. Second, RIPEx identifies malicious IP addresses with an average
precision of 88% and over 78% recall, using our cross-forum learning. Our
work is a first step towards harnessing the wealth of useful information
that can be found in security forums.

Keywords: Security · Online communities mining

1 Introduction

The overarching goal of this work is to harness the user generated content in
forums, especially security forums. More specifically, we focus here on collecting
malicious IP addresses, which are often reported at such forums. We use the
term security forums to refer to discussion forums with a focus on security, sys-
tem administration, and in general systems-related discussions. In these forums,
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Fig. 1. The overview of key modules of our approach (RIPEx): (a) collecting data,
(b) IP Identification, and (c) IP Characterization. In both classification stages, we use
our Cross-Seeding approach that in order to generate seed information for training a
classifier for a new forum.

security professionals, hobbyists, and hackers identify issues, discuss solutions,
and in general exchange information.

We provide a few examples of the types of discussions that take place in
these forums that could involve IP addresses, which is our focus. Posts could
talk about a benign IP address, say in configuration files, as in the post: “[T]his
thing in my hosts file: 64.91.255.87 . . . [is] it correct?”. At the same time, posts
could also report compromised or malicious IP addresses, as in the post: “My
browser homepage has been hijacked to http://69.50.191.51/2484/ ”. Our goal
is to automatically distinguish between the two and provide a new source of
information for malicious IP addresses directly from the affected individuals.

The problem that we address here is to find all the IP addresses that are
being reported as malicious in a forum. In other words, the input is all the
posts in a forum and the expected output is a list of malicious IP addresses.
As with any classification problem, one would like to achieve both high preci-
sion and recall. Precision represents the percentage of the correctly labeled over
all addresses labeled malicious. Recall is the percentage of malicious addresses
that we find among all malicious addresses reported in forums. It turns out
that this is a two-step problem. First, we need to solve the IP Identification
problem: distinguishing IP addresses from other numerical entities, such as a
software version. Second, we need to solve the IP Characterization problem:
characterizing IP address as malicious or benign. The extent of the Identifica-
tion problem caught us by surprise: we find 1820 non-address dot-decimals, as
we show in Table 1.

There is limited work on extracting information from security forums, and
even less work on extracting malicious IP addresses. We can group prior work
in the following categories. First, recent works study the number of malicious IP
addresses in forums, but without providing the comprehensive and systematic
solution that we propose here [7]. Second, there are recent efforts that extract
other types of information from security forums, related to the black market
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of hacking services and tools [13], or the behavior and roles of their users [1,9].
Third, other works focus on analyzing structured sources, such as security reports
and vulnerability databases [2,10]. We discuss related work in Sect. 5.

There is a wealth of information that can be extracted from security forums,
which motivates this research direction. Earlier work suggests that there is close
to four times more malicious IP addresses in forums compared to established
databases of such IP addresses [8]. At the same time, there are tens of thousands
of IP addresses in the forums, as we will see later. Interestingly, not all of the
reported IP addresses are malicious, which makes the classification necessary.

We propose RIPEx1, a comprehensive, automated solution that can detect
malicious IP addresses reported in security forums. As its key novelty, our app-
roach minimizes the need for human intervention. First, once initialized with a
small number of security forums, it does not require additional training data to
mine new forums. Second, it addresses both the Identification and Characteriza-
tion problems. Third, our approach is systematic and readily deployable. We are
not aware of prior work claiming these three properties, as we discuss in Sect. 5.
The overview of our approach is shown in Fig. 1.

The key technical novelty is that we propose Cross-Seeding, a method to
conduct a multi-step knowledge transfer across forums. We use this approach for
both classification problems, when we have no training data for a new forum.
With Cross-Seeding, we create training data for the new forum in the process
depicted in Fig. 1. We use a classifier based on the current forums to identify
seed information in the new forum. We then use this seed information to train a
classifier for the new forum. This forum-specific classifier performs much better
than if we have used the classifier of the current forums on the new forum. We
refer to this latter knowledge transfer approach as Basic.

We evaluate our approach using five security forums with a total of 31 K
users and 542 K posts spanning a period of roughly six years. Our results can be
summarized into the following points.

a. Identification: 98% Precision with Training Data Per Forum. We
develop a supervised learning algorithm for solving the Identification problem
in the case where we have training data for the target forum. Our approach
exhibits 98% precision and 96% recall on average across all our sites.

b. Identification: 95% Precision with Cross-Seeding. We show that our
Cross-Seeding approach is effective in transferring the knowledge between
forums. Using the WildersSecurity forum as source, we observe an average of
95% precision and 93% recall in the other forums.

c. Characterization: 93% Precision with Training Data Per Forum.
We develop a supervised learning algorithm for solving the Characterization
problem assuming we have training data for the target forum. Our classifier
achieves 93% precision and 92% recall on average across our forums.

d. Characterization: 88% Precision on Average with Cross-Seeding
Data. We show that our Cross-Seeding approach by using OffensiveCommu-
nity forum as source can provide 88% precision and 82% recall on average.

1 RIPEx stands for Riverside’s IP Extractor.
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e. Cross-Seeding Outperforms Basic. We show that Cross-Seeding is impor-
tant, as it increases the precision by 28% and recall by 16% on average in
the Characterization problem, and the precision by 8% and recall by 7% on
average in the Identification problem.

f. Using More Source Forums Improves the Cross-Seeding Perfor-
mance. We show that, by adding a second source forum, we can improve the
precision by 13% on average over the remaining three forums.

Our work suggests that there is a wealth of information that we find in
security forums and offers a systematic approach to do so.

2 Our Forums and Datasets

We have collected data from five different forums, which cover a wide spectrum
of interests and intended audiences. We present basic statistics of our forums in
Table 1 and we highlight the differences of their respective communities.

Our Semi-automated Crawling Tool. We have developed an efficient and
customizable python-based crawler, which can be used to crawl online forums,
and it could be of independent interest. To crawl a new forum, our tool requires
a configuration file that describes the structure of the forum. Leveraging our
current configuration files, the task of crawling a new forum is simplified signif-
icantly. Due to space limitations, we do not provide further details. Following
are the descriptions of collected forums.

• WildersSecurity (WS) seems to attract system administrator types and
focuses on defensive security: how one can manage and protect one’s system.

• OffensiveCommunity (OC) seems to be on the fringes of legality. As the
name suggests, the forum focuses on breaking into systems: it provides step
by step instructions, and advertises hacking tools and services.

• HackThisSite (HT) seems to be in between these extremes represented by
the first two forums. There are discussions on hacking challenges, but it does
not act as openly as black market services compared to OffensiveCommunity.

• EthicalHackers (EH) seems to consist mostly of “white hat”hackers, as its
name suggests. The users discuss hacking techniques, but they seem to have
a strict moral code.

• Darkode (DK) is a forum on the dark web that has been taken down by
the FBI in July 2015. The site was a black market for malicious tools and
services similar to OffensiveCommunity.

Our goal is to identify and report IP addresses that the forum readers report
as malicious. We currently do not assess whether the author of the post is right,
though the partial overlap with blacklisted IPs indicates so. We leave for future
work to detect misguided reports of IP addresses.

Determining the Ground-Truth. For both of the problems we address here,
there are no well-established benchmarks and labeled datasets. To train and
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Table 1. The basic statistics of our forums

WildersSec. OffensiveComm. HackThisSite EthicalHackers Darkode

Posts 302710 25538 84125 54176 75491

Threads 28661 3542 8504 8745 7563

Users 14836 5549 5904 2970 2400

Dot-decimal 4325 7850 1486 1591 1097

IP found 3891 6734 1231 1330 1082

validate our approach, we had to rely on external databases and some manual
labelling. For the Identification problem, we could not find any external sources
of information and benchmarks. To establish our ground-truth, we selected dot-
decimal expressions uniformly randomly, and we used four different individuals
for the labelling. To ensure testing fairness, we opted for balanced datasets,
which led us to a corpus of 3200 labeled entries across all our forums.

For the Characterization problem, we make use of the VirusTotal site which
maintains a database of malicious IP addresses by aggregating information from
many other such databases. We also provide a second level of validation via
manual inspection.

We create the ground truth by uniformly randomly selecting and assessing
IP addresses from our forums. If VirusTotal and the manual inspection give it
the same label, we add the addresses into our ground-truth. Finally, we again
ensure that we create balanced sets for training and testing to ensure proper
training and testing.

3 Overview of RIPEx

We represent the key components of our approach in addressing the Identification
and Characterization problems. To avoid repetitions, we present at the end the
Cross-Seeding approach, which we use in our solution to both problems.

3.1 The IP Identification Module

We describe our proposed method to identify IP addresses in the forum.

The IP Address Format. The vast majority of IP addresses in the forums
follow the IPv4 dot-decimal format, which consists of 4 decimal numbers in
the range [0-255] separated by dots. We can formally represent the dot-decimal
notation as follows: IPv4 [x1.x2.x3.x4] with xi ∈ [0− 225], for i = 1, 2, 3, 4. Note
that the newer IPv6 addresses consists of eight groups of four hexadecimal digits,
and our algorithms could easily extend to this format as well. Interestingly, we
found a negligible number of IPv6 addresses, and we opted to not focus on
IPv6 addresses here. For example, in WildersSecurity forum, we find 3891 IPv4
addresses and only 56 IPv6 addresses. At such small numbers, it is difficult to
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train and test a classifier. Thus, for the rest of this paper, IP address refers to
IPv4 addresses.

The Challenge: The Dot-Decimal Format is Not Enough. If IP addresses
were the only numerical expressions in the forums with this format, the Iden-
tification problem could have been easily solved with straightforward text pro-
cessing and Named-Entity Recognition (NER) tools, such as the Stanford NER
models [6]. However, there is a non-trivial number of other numerical expressions,
which can be misclassified as addresses. For example, we quote a real post: “fac-
tory reset brings me to the Clockworkmod 2.25.100.15 recovery menu”. where
the structure 2.25.100.15 refers to the version of Android app “Clockworkmod”.

To this end, we propose a method to solve the IP Identification problem, a
supervised learning algorithm. We first identify the features of interest as we
discuss below. We then train a classifier using the Logistic Regression method
gives the best results among the several methods using 10-fold cross validation
on our ground-truth as we decribed in the previous section.

Feature Selection. We use three sets of features in our classification.

a. Contextual Information: TextInfo. Inspired by how a human would
determine the answer, we focus on the words surrounding the dot-decimal
structure. For example, the words “server” or “address” suggests that the
dot-decimal is an address, while the words “version” or a software name,
like “Firefox” suggests the opposite. At the same time, we wanted to focus
on words close to the dot-decimal structure. Therefore, we introduce Word-
Range, W, to determine the number of surrounding words before and after
the dot-decimal structure that we want to consider in our classification. We
use TF-IDF [14] to normalize the frequency of a word to better estimate its
discriminatory value.

b. The Numerical Values of the Dot-Decimal: DecimalVal. We use the
numerical value of the four numbers in the dot-decimal structure as features.
The rationale is that non-addresses, such as software versions, tend to have
lower numerical values. This insight was based on our close interaction with
the data.

c. The Combined Set: Mixed. We combine the two feature sets to create in
order to leverage their discriminating power.

Determining the Right Number of Context Words, Word-Range. We
wanted to identify the best value of parameter Word-Range for our classification.
In Fig. 2, we plot the classification accuracy, precision and recall, as we vary
Word-Range, W = 1, 2, 5 and 10, for the WildersSecurity forum and using only
the TextInfo. We see that using one to two words gives better results compared
to using five and ten words. The explanation to this counter-intuitive result is
that considering more words includes text that is not relevant for inferring the
nature of a dot-decimal, which we verified manually.

Using Numerical Values DecimalVal Improves the Performance Sig-
nificantly. In Fig. 3, we plot the classification accuracy of different features sets.
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Fig. 2. Classification performance ver-
sus the number of words Word-
Range, W , in WildersSecurity.
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Fig. 3. Classification accuracy for dif-
ferent features sets in 10-fold cross val-
idation in four forums.

Recall that we are not able to include Darkode forum due to its limited number
of non-IP dot-decimal expressions, as we saw in 3.1. We see that using Decimal-
Val features alone, we can get 94% overall accuracy and using both DecimalVal
and TextInfo, we get 98% overall accuracy across our forums. Focusing on the
IP address class, we see a an average precision of 95% using only DecimalVal
and, 98% using both DecimalVal and TextInfo.

3.2 The IP Characterization Module

We develop a supervised learning algorithm to characterize IP addresses. Here,
we assume that we have labeled data, and we discuss how we handle the absence
of ground truth in Sect. 3.3. We first identify the appropriate set of features which
we discuss below. We then train a classifier and find that the Logistic Regression
method gives the best results among several methods that we evaluated. Due to
space limitations, we show a subset of our results.

Features Sets for the Characterization Problem. We consider and evaluate
three sets of features in our classification.

a. Text Information of the Post: PostText. We use the words and their
frequency of appearance in the post. Here, we use the TF-IDF technique [14]
again to better estimate the discriminatory value of a word by considering its
overall frequency. In the future, we intend to experiment with sophisticated
Natural Language Processing models for analyzing the intent of a post.

b. The Contextual Information Set: ContextInfo. We consider an
extended feature set that includes both the PostText features, but also fea-
tures of the author of the post. These features capture the behaviour of the
author, including frequency of posting, average post length etc. These fea-
tures were introduced by earlier work [8], with the rationale that profiling the
author of a post can help us infer their intention and role and thus, improve
the classification.
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Fig. 4. Characterization: The effect of the features set on the classification accuracy
with balanced testing data.

Characterization: 93% Precision with Training Data. We assess the per-
formance of the Characterization classifier using the set of features above and by
using the labeled data of each forum. We evaluate the performance using 10-fold
cross validation. In Fig. 4, we show the accuracy of classification.

We can achieve 93% precision and 92% recall on average across all the forums.
The results are shown in Fig. 4, where we report the results using the accuracy
across both classes, given that we have balanced training datasets.

Selecting the PostText Feature Set. We see that, by using PostText features
on their own, we obtain slightly better results. PostText feature achieves 94%
accuracy on average, while using the ContextInfo results in 92% accuracy on
average across all forums. Furthermore, text-based only features have one more
key advantage: they can transfer between domains in a straightforward way.
Therefore, we use the PostText features in the rest of the paper.

3.3 Transfer Learning with Cross-Seeding

In both classification problems, we face the following conundrum:

a. the classification efficiency is better when the classifier is trained with forum-
specific ground-truth, but,

b. requiring ground-truth for a new forum will introduce manual intervention,
which will limit the practical value of the approach.

We propose to do cross-forum learning by leveraging transfer learning
approaches [5,12]. We use the terms source and target domain to indicate the
two forums with the target forum not having ground-truth available. For both
classification problems, we consider two solutions for classifying the target forum:

a. Basic: We use the classifier from the source forum on the target forum.
b. Cross-Seeding: We propose an algorithm that will help us develop a new

classifier for the target forum by using the old classifier to create training
data as we explain below.
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Algorithm 1: Cross-Seeding. transfer learning between forums
1 CrossForum (X ,Y) :
2 Take the union of the features in forum X and Y
3 Apply classifier from X on Y
4 Select the high-confidence instances to create seed for Y
5 Train a new classifier on Y based on the new seeds.
6 Apply the new classifier on Y

Our Cross-Seeding Approach. We propose to create training data for the
target forum following the four steps below, which are illustrated in Fig. 1 and
outlined in Algorithm1.

a. Domain Adaptation. The main role of this step is to ensure that the source
classifier can be applied to the target forum. The main issue in our case is
that the feature sets can vary among forums. Recall that, for both classifi-
cation problems, we use the frequency of words and these words can vary
among forums. We adopt an established approach that works well for text
classification [5]: we take the union of the feature sets of the source and target
forums. The approach seems to work sufficiently well in our case, as we see
later.

b. Creating Seed Information for the Target Forum. Having resolved
any potential feature disparities, we can now apply the classifier from the
source forum to the target forum. We create the seeding data by selecting
instances of the target domain, for which the classification confidence is high.
Most classification methods provide a measure of confidence for each classified
instance and we revisit this issue in Sect. 4.

c. Training a New Classifier for the Target Forum. Having the seed infor-
mation, this is now a straightforward step of training a classifier.

d. Applying the New Classifier on the Target Forum. In this final step,
we apply our newly-trained forum-specific classifier on the target forum.

4 Evaluation of Our Approach

We evaluate our approach focusing on the performance of Cross-Seeding for both
the Identification and the Characterization problems.

Our Classifier. We use Logistic Regression as our classification engine, which
performed better than several others, including SVM, Bayesian networks, and
K-nearest-neighbors. In Cross-Seeding, we use the Logistic Regression’s predic-
tion probability with a threshold of 0.85 to strike a balance between sufficient
confidence level and adequate number of instances above that threshold. We
found this value to provide better performance than 0.8 and 0.9, which we also
considered.
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Fig. 5. Identification: Cross-Seeding improves both precision and recall. Using Wilder-
sSecurity to classify OffensiveCommunity, HackThisSite, and EthicalHackers.

A. The IP Identification Problem. As we saw in Sect. 3.1, our classification
approach exhibits 98% precision and 96% recall on average across all our sites,
when we train with ground-truth for each forum.
a. Identification: 95% Precision with Cross-Seeding. We show that

our cross-training approach is effective in transferring the knowledge
between domains. We use the classifier from WildersSecurity and we use
it to classify three of the other forums. Note that we do not include Dark-
ode in this part of the evaluation as it did not have sufficient data for
testing (less than 15 non-address expressions in all its posts).
In Fig. 5, we show the results for precision and recall of cross-training
using Basic and Cross-Seeding. We see that Cross-Seeding improves both
precision and recall significantly. For example, for HackThisSite, Cross-
Seeding increases the precision from 57% to 79% and the recall from 60%
to 78%.

b. Identification: Cross-Seeding Outperforms Basic. Cross-Seeding
improves the precision by 8% and recall by 7% on average for the exper-
iment shown in Fig. 5. The average precision increased from 88% to 95%
and the average recall increased from 85% to 97%.

B. The IP Characterization Problem. We evaluate our approach for solving
the Characterization problem without per-forum training data. As we saw in
Sect. 3.2, we can achieve 93% precision and 92% recall on average across all
the forums, when we train with ground-truth for each forum.
a. Characterization: 88% Precision on Average with Cross-

Seeding. Using OffensiveCommunity as source, and we classify Wilder-
sSecurity, HackThisSite, EthicalHackers and Darkode as shown in Fig. 6.
Our Cross-Seeding approach can provide 88% precision and 82% recall
on average.

b. Characterization: Cross-Seeding Outperforms Basic. We show
that Cross-Seeding improves the classification compared to just reusing
the classifier from another forum. In Fig. 6, we show the precision and
recall of the two approaches. Using OffensiveCommunity as our source,
we see that Cross-Seeding improves the precision by 28% and recall by
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16% on average across the forums compare to the Basic approach. We
also observe that the improvement is substantial: Cross-Seeding improves
both precision and recall in all cases.

c. Using More Source Forums Improves the Cross-Seeding Perfor-
mance Significantly. We quantify the effect of having more than one
source forums in the classification accuracy of a new forum. We use Ethi-
calHackers and WildersSecurity as our training forums, and we use Cross-
Seeding for OffensiveCommunity, HackThisSite, and Darkode. First, we
use the source forums one at a time and then both of them together. In
Table 2, we show the average improvement of having two source forums
over having one for each target website. Using two source forums increases
the classification precision by 13% and the recall by 17% on average.

Fig. 6. Characterization: Cross-Seeding improves both precision and recall. Using
OffensiveCommunity as source, we classify WildersSecurity, HackThisSite, Ethical-
Hackers and Darkode.

Table 2. Average improvement of using EthicalHackers and WildersSecurity as sources
together compared to each of them individually.

OffensiveComm. HackThisSite Darkode Average

Precision 3.3 20.5 17.8 13.2

Recall 8.3 6.4 38.8 17.8

Discussion: Source Forums and Training. How would we handle a new
forum? Given the above observations, we would currently use all our five forums
as sources for a new forum. Overall, we can argue that the more forums we have,
the more we can improve our accuracy. However, we would like to point out
that some forums are more “similar” and thus more suitable for cross-training.
We will investigate how to best leverage a large group of source forums once we
collect 20–25 more forums.
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5 Related Work

We summarize related work clustered into areas of relevance.

a. Extracting IP Addresses from Security Forums. There two main efforts
that focus on IP addresses and security forums [7,8] and neither provides the
comprehensive solution that we propose here. The most relevant work [8] does
not address the Identification problem, and sidesteps the problem of cross-
forum training by assuming training data for each forum. The earlier work [7]
focuses on the spatiotemporal properties of Canadian IP addresses in forums,
but assumes that all identified addresses are suspicious.

b. Extracting Other Information from Security Forums. Various efforts
have attempted to extract other types of information from security forums. A
few recent studies identify malicious services and products in security forums
by focusing on their availability and price [11,13].

c. Studying the Users and Posts in Security Forums. Other efforts study
the users of security forums, group them into different classes, and identify
their roles and social interactions [1,9,15,16,18].

d. Analyzing Structured Security-Related Sources. There are several
studies that automate the extraction of information from structured secu-
rity documents, extracting ontology and comparing the reported information,
such as databases of vulnerabilities, and security reports from the indus-
try [2,10].

Transfer Learning Methods and Applications. There is extensive literature
on transfer learning [3–5] and several good surveys [12,17], which inspired our
approach. However, to the best of our knowledge, we have not found any work
that address the same domain-specific challenges or uses all the steps of our
approach, which we described in 3.3.

6 Conclusion

We propose a comprehensive solution for mining malicious IP addresses from
security forums. A novelty of our approach is it minimizes the need for human
intervention. First, once it is initialized with a small number of security forums,
it does not require additional training data for each new forum by using Cross-
Seeding. Second, it addresses both the Identification and Characterization prob-
lems, unlike all prior work that we are aware of. We evaluate our method real
data and we show that: (a) our Cross-Seeding approach works fairly well reach-
ing precision above 85% on average for both classification problems, and (b)
using more source forums increases the performance as one would expect.

Our future plans include: (a) collecting a large number of security forums,
and (b) exploring additional transfer learning methods.
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Abstract. Data mining projects increasingly require records about indi-
viduals to be linked across databases to facilitate advanced analytics. The
process of linking records without revealing any sensitive or confidential
information about the entities represented by these records is known
as privacy-preserving record linkage (PPRL). Bloom filters are a popu-
lar PPRL technique to encode sensitive information while still enabling
approximate linking of records. However, Bloom filter encoding can be
vulnerable to attacks that can re-identify some encoded values from sets
of Bloom filters. Existing attacks exploit that certain Bloom filters can
occur frequently in an encoded database, and thus likely correspond to
frequent plain-text values such as common names. We present a novel
attack method based on a maximal frequent itemset mining technique
which identifies frequently co-occurring bit positions in a set of Bloom
filters. Our attack can re-identify encoded sensitive values even when all
Bloom filters in an encoded database are unique. As our experiments on
a real-world data set show, our attack can successfully re-identify values
from encoded Bloom filters even in scenarios where previous attacks fail.

Keywords: Privacy · Re-identification · Apriori algorithm · FPmax
Data linkage

1 Introduction

Applications in domains ranging from healthcare, business analytics and social
science research all the way to fraud detection and national security increasingly
require records about individual entities to be linked across several databases,
and commonly across different organizations. Linked individual-level databases
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allow to improve data quality and enrich data, and open novel ways of data
analysis and mining not possible on a single database [4].

Due to the lack of common unique entity identifiers (such as social security
numbers or patient identifiers) across databases, linking records of individuals
most often requires identifying personal details such as names, addresses and
dates of birth [4]. However, in many application areas growing concerns about
privacy and confidentiality increasingly limit the use of sensitive personal details
for linking databases across organizations [20].

Since the 1990s, the research area of privacy-preserving record linkage
(PPRL) has aimed to develop techniques for linking records that correspond
to the same entities across databases while protecting the privacy and confiden-
tiality of these entities [20]. The general idea behind PPRL is to encode sensitive
identifying attribute values (such as names, addresses, and dates of birth) and to
conduct the linkage using these encoded values. At the end of the PPRL process
the organizations involved only learn which of their records are matched with
records from the other databases according to some decision model, but they
cannot learn any sensitive information about the other databases, while any
external attacker is not able to learn anything about these databases at all [20].

As surveyed by Vatsalan et al. [20], various encoding techniques have been
proposed for PPRL. They can be categorized into secure multi-party compu-
tation (SMC) and perturbation based techniques, as well as hybrid techniques
that combine aspects of both. While SMC techniques are accurate and provably
secure, they often incur high computation and communication costs. Perturba-
tion based techniques, on the other hand, are generally efficient and provide a
trade-off between linkage quality, scalability, and privacy.

One perturbation technique that has attracted much interest is Bloom filter
(BF) encoding [2,17]. As we describe in detail in the following section, a BF
is a bit array (initialized to 0) into which elements of a set are mapped into
by setting those positions to 1 that are selected by a set of hash functions. For
PPRL, the elements of these sets are commonly character q-grams as extracted
from the string values used for linking. The number of common 1-bits between
two BFs approximates the number of common encoded q-grams and allows the
calculation of the similarity between two BFs, as is illustrated in Fig. 1.

BF encoding has shown to allow accurate and efficient PPRL of large data-
bases, and first practical PPRL systems based on BF encoding are now being
deployed [3,16]. However, recent work has shown that BFs can be successfully
attacked with the aim to re-identify the sensitive values encoded in them [5,10–
13,15]. These cryptanalysis attacks assume that some bit patterns occur many
times in an encoded BF database, allowing a mapping of frequent bit patterns to
frequent plain-text values (such as common names) to identify the BF bit posi-
tions that possibly can correspond to certain q-grams in a plain-text value. Most
existing attacks also require knowledge of certain parameters used in the BF
encoding process, or they have high computational costs making them imprac-
tical for attacking large databases.
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Fig. 1. An example Dice coefficient similarity calculation of the first names ‘johnny’
and ‘john’ encoded in BFs, as described in Sect. 2. Hash collisions are shown in italics.

Contributions: We present a novel attack method that employs a maximal
frequent itemset based pattern-mining approach (combining Apriori [1] and
FPMax [7]) to identify frequently co-occurring bit positions in a BF database
that encode frequent q-grams in a plain-text database. Our attack can re-identify
q-grams and plain-text values even when each BF in an encoded database is
unique, and when an attacker has no knowledge of any parameters used in the
BF encoding process. Our evaluation on real-world data sets shows that our
attack can re-identify plain-text values even when several attributes have been
encoded into a BF, a situation where previous attacks would not be successful.

2 Background and Related Work

We now describe Bloom filter (BF) encoding for PPRL in more detail, and then
provide an overview of existing cryptanalysis attacks on encoded BF.

Bloom Filter Encoding for PPRL: BF encoding is a popular privacy tech-
nique for PPRL due to its ability to calculate similarities between BF encoded
string [6,17,20] and numerical [9,19] values, as well as its efficiency and simplic-
ity of implementation. As the recent study by Randall et al. [16] has shown, in
real-world applications PPRL based on encoded BFs can achieve linkage quality
similar to traditional linkage methods on unencoded values.

BFs were proposed by Bloom [2] to efficiently represent sets and test for set
membership. A BF b is a bit array of length lb initialized to 0. k independent
hash functions, h1, . . . , hk, are used to map the elements s in a set s into b by
setting the bit positions b[hj(s)] = 1, with 1 ≤ j ≤ k, 1 ≤ hj(s) ≤ lb, and ∀s ∈ s.

In PPRL, where most attributes used for linking contain strings, the set s
can be generated from character q-grams (sub-strings of length q [4]) extracted
from a string value using a sliding window approach [17]. As illustrated in Fig. 1,
the Dice coefficient (which is insensitive to many matching zeros) [4] can then be
used to calculate the similarity between two BFs b1 and b2, as: simD(b1,b2) =
2c/(x1 +x2), where c is the number of common bit positions that are set to 1 in
both BFs, and x1 and x2 are the number of bit positions set to 1 in b1 and b2,
respectively. Note that the hashing process can lead to collisions (where several
q-grams are hashed to the same position), leading to false positives [14,17].

Different methods of how to encode records into BFs have been proposed.
Generating one BF per attribute, known as attribute level BF (ABF), is one
approach which has the advantage of allowing one similarity to be calculated
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per attribute. However, ABFs are susceptible to attacks due to the frequency
distribution of common attribute values [5]. Alternatively, two methods that
hash several attribute values of a record into one combined BF are the crypto-
graphic long term key (CLK) [18] and record level BFs (RBF) [6]. With CLK,
q-grams from several attributes are hashed into one BF, while in RBF the val-
ues from different attributes are first hashed into individual ABFs, and then
bits are selected from each ABF into one RBF according to weights assigned to
attributes.

A double hashing scheme was initially proposed for BF encoding for PPRL
[17], where the k hash functions are based on the sum of the integer represen-
tation of two independent hash functions. This approach is however vulnerable
to attacks [10,15], as discussed below. An alternative to prevent against these
attacks is random hashing, where an integer representation of an element s to
be hashed is used as the seed of a random generator used for hashing [18].

Once the databases to be linked are encoded into BFs by their owners, they
are either sent to a linkage unit to calculate the similarity between pairs of BFs
and classify them as matches or non-matches, or BFs are exchanged among the
database owners to distributively calculate the similarities between BFs [17,20].

Cryptanalysis Attacks on Bloom Filter Based PPRL: Because BF encod-
ing is now being used in practical PPRL applications [3,16], it is highly important
to identify the limits of this technique with regard to the privacy protection it
provides. As we now describe, BFs are prone to different attacks.

The first attack method proposed by Kuzu et al. [6,11] was based on a con-
straint satisfaction problem (CSP) solver which assigns values to variables such
that a set of constraints is satisfied. The attack is achieved by a frequency align-
ment of a set of BF encodings of records and sensitive plain-text values, where it
requires access to a global database where the encoded records and their frequen-
cies are drawn from. The attack was applied on a real patient database where it
was successful in re-identifying four out of 20 frequent names correctly [12].

More recently, Niedermeyer et al. [15] proposed an attack on BFs based on the
counts of q-grams extracted from frequent German surnames. From 7, 580 unique
surnames encoded into 10, 000 BFs, the authors manually re-identified the 934
most frequent ones. This work was extended by Kroll and Steinmetzer [10] into
a cryptanalysis of several attributes, which was able to re-identify 44% of plain-
text values correctly. Both these attack methods are however only applicable
with the double hashing approach used by Schnell et al. [17].

Christen et al. [5] recently proposed a novel efficient attack method that does
not require any knowledge of the BF encoding function and its parameters used.
The method aligns frequent BFs with frequent plain-text values and identifies
sets of q-grams that could have been hashed to certain bit positions or not. The
attack was successfully applied on large real databases and was able to correctly
re-identify the most frequent plain-text values within a few minutes.

The most recent attack by Mitchell et al. [13] depends on the strong assump-
tion that the adversary knows all parameters used in the BF encoding process.
First, a brute-force attack is used to identify all possible q-grams encoded in a
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Fig. 2. Example of our proposed attack method, as described in Sect. 3. Using a fre-
quent pattern-mining approach, we first identify that bit positions p5 and p13 have
co-occurring 1-bits in the same three BFs (b1, b3 and b4) and therefore must encode
‘ma’ which is the only q-gram that occurs in three plain-text values. Next, we find that
positions p1 and p10 must encode ‘jo’ as they have co-occurring 1-bits in the same two
BFs (b2 and b5) and ‘jo’ is the only q-gram that occurs in two plain-text values. Based
on the identified q-grams and their bit positions, we learn that BFs b2 and b4 can only
encode ‘john’ and ‘joan’, while b1, b3 and b4 can encode ‘maude’, ‘mary’ or ‘max’.

BF, then a graph is built which represents possible plain-text values that can
be generated from the identified q-grams in a BF. The evaluation on real-world
databases showed a 76.8% accuracy of correct one-to-one re-identifications.

The drawbacks of existing attacks on encoded BFs for PPRL are that they
require knowledge about certain parameters used during BF encoding, are com-
putationally expensive, and/or are only applicable if there are BFs and plain-
text values that occur frequently such that their frequency alignments can be
exploited. Our novel attack, presented next, overcomes these limitations.

3 Pattern-Mining Based Cryptanalysis Attack

We now discuss the ideas behind our attack method, as we illustrate in Fig. 2.
In Sects. 3.1 and 3.2 we then describe the two main phases of our method in
detail, and analyze their complexities. For notation we use bold letters for BFs,
sets and lists (with upper-case bold letters for sets/lists of BFs/sets/lists) and
normal type letters for integers and strings. Lists are shown with square and sets
with curly brackets, where lists have an order while sets do not.

Previous attack methods exploit the bit patterns in and between BFs that
occur frequently in an encoded BF database. Our new method is the first to
exploit the co-occurrence between BF bit positions without requiring frequent
BFs. As with existing attacks on BFs for PPRL, we assume an attacker has access
to an encoded BF database, B, where it is unknown which plain-text value(s) are
encoded in a BF; and a plain-text database, V, that contains values from one or
several attributes. An attacker can guess which attributes are encoded in B based
on the distribution of the number of 1-bits in BFs in B [18]. However, unlike with
other attacks [10–13,15], the attacker does not require any information used in
the BF encoding, such as the number and type of hash functions.
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In the first phase of our attack (Sect. 3.1), we identify sets of frequently co-
occurring bit positions (columns) in B that can encode q-grams that are frequent
in V. In the second phase (Sect. 3.2) we then re-identify possible plain-text values
v ∈ V that can be encoded in a BF b ∈ B based on these identified frequent
q-grams. Our attack exploits the way BFs are constructed as follows:

Proposition 1. Assuming a q-gram q occurs in nq < n records in a plain-
text database V that contains n = |V| records, and k ≥ 1 independent hash
functions are used to encode q-grams from V into the encoded database B of
n BFs, i.e. |V| = |B|. Then, (i) each BF bit position that can encode q must
contain a 1-bit in at least nq BFs in B, and (ii) if k > 1 then up to k bit positions
must contain a 1-bit in the same subset of BFs Bq ⊆ B, with nq = |Bq|, that
encode q.

Proof. For (i), based on the BF construction principle [2,17], if a BF contains
a 0-bit in a bit position p where any of the k hash functions have mapped a q-
gram q into, then this BF cannot encode q. Formally, ∃ hj , 1 ≤ j ≤ k : (hj(q) =
p)∧(b[p] = 0) ⇒ b cannot encode q. For (ii), given two distinct BF bit positions,
px and py (with 1 ≤ px, py ≤ lb and px 
= py), for a given BF b, if b[px] 
= b[py]
then b cannot encode a q-gram q because ∀hi, hj , 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 
= j :
(hi(q) = px ∧ hj(q) = py) ⇒ (b[px] = 1) ∧ (b[py] = 1).

Because of possible collisions of the k hash functions used to map q-grams into
BFs [14], potentially less than k bit positions will encode a certain q-gram, and
thus less than k bit positions might be co-occurring frequently. We can calculate
the probability of this to happen using the birthday paradox [14], which, for
example for the commonly used BF settings lb = 1, 000 and k = 30 [18], leads to
a probability of 0.64 of no collision for a single q-gram, and a probability of less
than 0.07 of more than one collision. For k = 20 the probability of no collision
is 0.83 while for k = 10 it is 0.96. Our attack should therefore be able to clearly
identify frequently co-occurring bit positions that encode the same q-gram with
high accuracy, as we validate experimentally on a real data set in Sect. 4.

3.1 Identifying Co-occurring Bit Positions in Bloom Filters

The first phase of our attack, as detailed in Algorithm 1, identifies the sets of
co-occurring bit positions (columns) in the BF database B that correspond to
the frequent q-grams in the plain-text database V.

The algorithm first converts B from its row storage (one BF per record) into
a column-wise format Bc of lb bit arrays each of length |B| to allow efficient
access to individual bit positions. Then, in line 3, the plain-text values v ∈ V
are converted into one set of q-grams per record, where Q is the list of q-gram
sets of all records in V. Various lists and sets are then initialized, as is the queue
Q in line 8 with the first partition that contains all BFs and all bit positions. A
partition is a subset of BFs (rows) and bit positions (columns) in B.

The main loop of the algorithm starts in line 9, where the largest partition
in the queue Q will be processed. In each iteration, we use a tuple containing ci
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(the column filter of which bit positions in Bc to consider), ri (the row filter of
which BFs in Bc to consider), and mi and ni (the set of must and cannot con-
tain q-grams, respectively, that a q-gram set in Q must/cannot contain in order
to be considered in this iteration). The function GetTwoMostFreqQGrams()
called in line 11 returns the two q-grams, q1 and q2, and their respective frequen-
cies, f1 and f2 (with f1 ≥ f2), that occur in most q-gram sets in Q, conditional
on only considering q-gram sets in Q that contain all q-grams in mi and no
q-gram from ni.

The percentage difference between f1 and f2 is then calculated as di in line
12, and only if di is at least the user provided minimum threshold d (i.e. q-gram
q1 occurs a certain times more often than q2) will the current partition i be
processed. This ensures q1 is clearly more frequent than q2 in the partition for
it to be assigned to the set of co-occurring bit positions fi as described next.

Algorithm 1: Identify frequent q-grams co-occurring with frequent bit positions – Phase 1
Input:
- B: List of Bloom filters (BFs) from the sensitive encoded database, one BF per record
- V: List of plain-text values from a public database, one string value per record
- lq : Length of sub-strings to extract from plain-text values
- d: Minimum percentage difference between two most frequent q-grams in a partition
- m: Minimum partition size (a subset of BFs and bit positions in B) as a number of BFs
Output:
- F: List of frequent q-grams and their identified sets of co-occurring BF bit positions

- A+, A−: Lists of must have and cannot have q-gram sets assigned to each BF in B

1: Bc = ConvColWise(B) // One bit array per BF bit position (column) for efficient access
2: lb = |Bc| // Number of BF bit positions (BF length)
3: Q = GenQGramSets(V, lq) // Convert plain-text values into q-gram sets, one set per record
4: F = [ ], A+ = [ ], A− = [ ] // Initialize lists to be generated
5: r = {b : 1 ≤ b ≤ |B|} // Initialize row partition filter (so all BFs are considered)
6: c = {p : 1 ≤ p ≤ lb} // Initialize column filter (so all BF bit positions are considered)
7: m = {}, n = {} // Initialize empty sets of must and cannot include q-grams
8: Q = [(|B|, c, r,m,n)] // Initialize queue with first partition (the full BF data set)
9: while |Q| > 0 do: // Main loop: As long as the queue is not empty
10: (psi, ci, ri,mi,ni) = Q.pop() // Start iteration i: Get first tuple from queue
11: q1, f1, q2, f2 = GetTwoMostFreqQGrams(Q,mi,ni) // Most frequent in partition
12: di = 2(f1 − f2)/(f1 + f2) · 100 // Percentage difference between two most frequent q-grams
13: if di ≥ d then: // Only continue if large enough percentage difference
14: si = |B| · (f1 + f2)/(2|V|) // Minimum support for frequent pattern-mining
15: fi = GetLongFreqCoOccurBitPos(Bc, si, ci, ri) // Run pattern-mining
16: if fi �= ∅ then: // A set of frequent co-occurring bit positions was identified
17: F[q1] = fi // Assign bit positions to most frequent q-gram q1 (from line 11)
18: ci = ci \ fi // Remove identified bit positions so they are not considered anymore

19: r+i , r−i = UpdateRowFilter(fi, ri) // Update row filter based on bit positions in fi
20: ∀b ∈ r+ : A+[b] = A+[b] ∪ {q1} // Assign q1 to must have q-gram sets of BFs

21: ∀b ∈ r− : A−[b] = A−[b] ∪ {q1} // Assign q1 to cannot have q-gram sets of BFs

22: if |r+i | ≥ m then: // Partition containing q1 is large enough

23: Q.add((|r+i |, ci, r
+
i ,mi ∪ {q1},ni)) // New partition of BFs containing q1

24: if |r−i | ≥ m then: // Partition not containing q1 is large enough

25: Q.add((|r−i |, ci, r
−
i ,mi,ni ∪ {q1})) // New partition of BFs not containing q1

26: Q.sort() // Sort queue by partition size with largest first

27: return F, A+, A−

In line 14 the average frequency of q1 and q2 is converted into a support
count si of required 1-bits in Bc to be used for frequent pattern-mining. This is
based on Proposition 1, because any set of co-occurring bit positions in Bc that
potentially can encode q1 must have 1-bits in at least si common BFs (rows)
in Bc. The function GetLongFreqCoOccurBitPos() (line 15) employs the
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Apriori [1] and FPmax [7] algorithms on the bit positions in Bc, where bit
positions correspond to items and sets of co-occurring bit positions to itemsets.
The aim of frequent pattern-mining is to find the longest set (likely of size k) of
co-occurring bit positions, fi, that have a 1-bit in at least si common BFs.

Because the length of the longest pattern is likely large (values of 15 ≤ k ≤ 30
have been used [6,17,18]), employing only the Apriori algorithm would generate
too many candidate bit position sets. On the other hand, running the FPmax
algorithm would generate a very large FPtree with a number of branches in
the order of O(|B|). To reduce the size of the tree generated by FPmax, we
therefore first run Apriori to find those bit positions that occur in frequent
triplets (i.e. frequent 3-itemsets) of co-occurring bit positions that have a 1-
bit in at least si common BFs. The FPmax algorithm is then run on only
those bit positions, and only the longest set of found frequent bit positions is
returned in fi.

The parameters ci and ri are the column and row filters that select a subset
of BF bit positions (columns) and rows (BFs) from Bc to be considered in this
partition i (as described below). If a non-empty set of co-occurring bit positions
fi is returned, it is assigned in line 17 to the identified most frequent q-gram q1
of this partition, as we assume that the bit positions in fi must encode q1.

In line 18, we remove the identified bit positions fi from the set ci of positions
to be considered in the following iterations. In the function UpdateRowFil-
ter(), based on the current set ri of BFs that have been considered in this itera-
tion, we generate the two new subsets r+

i of BFs that do contain q1 (have 1-bits
in all positions in fi) and r−

i of BFs that cannot contain q1, where r−
i = ri \ r+

i .
We then add the frequent q-gram q1 to the sets of must have (line 20) and cannot
have (line 21) q-gram sets, A+ and A−, for all BFs in r+

i and r−
i .

Finally, we generate two new partitions (if their size is at least the minimum
partition size, m), where in line 23 the new partition contains those BFs that
contain the frequent q-grams q1 (so q1 is added to the must contain q-gram set
mi) and in line 25 the new partition contains those BFs that do not contain q1
(and therefore q1 is added to the set ni of not contained q-grams). In line 26 we
sort the queue q such that the largest partition is first.

To estimate the complexity of Algorithm 1, we assume n = |B| = |V| is the
number of BFs and plain-text values, respectively. The initialization steps and
function calls in lines 1, 3, 11 and 19 are of complexity O(n) as they require
linear scans over B or V. Assuming in each iteration of the main loop k bit
positions are assigned to a frequent q-gram in line 17, then the expected number
of iterations is O(lb/k). The complexities of the Apriori and FPMax algorithms
in line 15 are known to be linear in the number of transactions (in our case BFs)
and quadratic in the number of items (bit positions) [8] and therefore of O(l2bn).
In the worst case the FPmax tree has a height of lb and contains n branches.
The overall complexity of Algorithm 1 is therefore O(l3bn/k).
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3.2 Plain-Text Value Re-identification

As detailed in Algorithm 2, the second phase of our attack aims to re-identify
plain-text values from V that could have been encoded into BFs in B according
to the lists of must have and cannot have q-gram sets for BFs, A+ and A−

(from Algorithm 1). The algorithm only considers plain-text values and BFs that
contain at least nm must have q-grams assigned to them, because considering a
single or only a few frequent q-grams would result in too many possible plain-
text values that could match a BF (for example, nearly 4, 000 surnames from
our experimental data set of 224, 061 records contain the q-gram ‘sm’).

The algorithm consists of three main steps, where in the first (lines 3 to 6)
we find all BFs from A+ that (according to phase 1 of our attack) contain at
least nm identified q-grams. We build an inverted index, IB where q-gram sets
qb are index keys, each with a list of BFs that contain qb (line 6). In the second
step (lines 7 to 10), the function GetLongQGramSetInVal() finds for each
value v ∈ V the longest q-gram set qv from IB. If a value v contains at least nm

identified q-grams then we add it to the inverted index list of qv in IV .

Algorithm 2: Re-identify plain-text values in Bloom filters – Phase 2
Input:
- V: List of plain-text values from a public database, one string value per record

- A+, A−: Lists of must have and cannot have q-gram sets assigned to each BF in B
- nm: Minimum number of identified q-grams in a BF from B
Output:
- R: List of re-identified plain-text values from V for BFs from B

1: IB = [ ], IV = [ ] // Initialize inverted indexes of BFs and plain-text values
2: R = [ ] // Initialize list of re-identified plain-text values to be generated
3: for b ∈ A+ do: // Step 1: Find all BFs in A+ with enough identified q-gram sets

4: qb = A+[b] // Get the set of must have q-grams for this BF
5: if |qb| ≥ nm then: // There are enough must have q-grams for this BF
6: IB [qb].add(b) // Add the BF identifier to the inverted index list of this q-gram set
7: for v ∈ V then: // Step 2: Find longest identified q-gram set for plain-text values
8: qv = GetLongQGramSetInVal(IB , v) // Get longest known q-gram set in value v
9: if |qv| ≥ nm then: // There are enough must have q-grams for this value
10: IV [qv ].add(v) // Add the value to the list of this q-gram set in the inverted index
11: for qb ∈ IB do: // Step 3: Assign identified values to BFs
12: if qb ∈ IV then: // Q-gram set occurs both in BFs and plain-text values
13: for b ∈ IB [qb] do: // All BFs that contain this q-gram tuple
14: for v ∈ IV [qb] do: // All plain-text values that contain this q-gram tuple

15: if ∀q ∈ A−[b] : q /∈ v then: // If the value does not contain any cannot have q-grams
16: R[b] = R[b] ∪ {v} // Add to set of re-identified values for BF identifier b
17: return R

In the final step (lines 11 to 16), we loop over all q-gram sets qb that have
both BFs from A+ and plain-text values from V. For each qb and each of its BF
identifiers b from IB , we find all possible corresponding values v from IV that
do not contain any cannot have q-grams for this BF according to A− (line 15).
All possible values v are added to the set R[b] of re-identified values for b.

The computational complexity of the first two steps of Algorithm 2 is O(n)
because they loop over A+ and V, respectively. In the third step, we loop over
the identified q-gram tuples, and for each over its associated BFs and plain-text
values. The maximum number of unique q-gram tuples in the inverted indexes
IB and IV will be n, which would be the case where every value and every BF
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would contain a different q-gram tuple. In this case, each list in IB and IV would
contain one BF identifier. The minimum number of q-gram tuples would be 1,
the case where all values and BFs contain the same q-gram tuple. In this case
the length of the corresponding list in IB and IV is n BF identifiers. Based on
this, the overall complexity of step 3 of Algorithm 2 is O(n2).

4 Experiments and Results

We evaluated our attack method using real data from the North Carolina Voter
Registration (NCVR) database (http://dl.ncsbe.gov/data/). We used one snap-
shot of NCVR from April 2014 as B and another snapshot from June 2014 as
V. We extracted pairs of records that correspond to the same voter but had
name and/or address changes over time, resulting in two files of 222, 251 and
224, 061 records, respectively. Using the CLK approach [18] discussed in Sect. 2,
we encoded combinations of between two and four of the attributes first name,
last name, street address and city into BFs. For combinations of three and four
attributes, all plain-text values in V and bit patterns in B were unique.

We used the following BF encoding settings: q= 2, lb =1,000, double and
random hashing [18] as described in Sect. 2, and different values for k (top row
in Fig. 3). We calculate the optimal number, opt, of hash functions such that the
average number of 1-bits in a BF is 50% to minimize the false positive rate [19]. In
Algorithm 1 we set the values for the minimum percentage difference as d= [1.0,
5.0] and the minimum partition size as m= [2,000, 10,000] (bottom row in
Fig. 3); and in Algorithm 2 we set the minimum q-gram tuple size nm =3, as
these values provided good results in setup experiments.

We present the quality of the identified frequent q-grams from Algorithm 1
as the precision and recall of how many bit positions were correctly identified
for a q-gram in F averaged over all q-grams in F. For Algorithm 2, we evaluated
the quality of re-identified values in R as the percentages of (1) exact matches
of a plain-text value with the true value encoded in a BF, (2) partial matches
where not all words matched (for example, first and last name matched but
city was different), and (3) wrong matches. We only considered BFs with 10 or
less plain-text values assigned to them in R, and we separately present averaged
results for 1-to-1 (|R[b]| = 1) and 1-to-many (1 < |R[b]| ≤ 10) re-identifications.

We compared our attack method with the recently proposed attack by Chris-
ten et al. [5] (the only other attack that does not require knowledge of the
BF encoding parameters) which aligns frequent BFs and plain-text values to
allow re-identification of the most frequent plain-text values. We implemented
both attack methods using Python 2.7 and ran experiments on a server with
64-bit Intel Xeon 2.4 GHz CPUs, 128 GBytes of memory and running Ubuntu
14.04. The programs and data sets are available from: https://dmm.anu.edu.au/
pprlattack.

Discussion: In Fig. 3 we show the results for the first phase of our attack (Algo-
rithm 1). As can be seen, both precision and recall of the identified frequent q-
grams are very high, above 0.88, for all settings of parameters. This validates that

http://dl.ncsbe.gov/data/
https://dmm.anu.edu.au/pprlattack
https://dmm.anu.edu.au/pprlattack
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Fig. 3. Precision and recall results for the re-identified frequent q-grams from Algo-
rithm 1 (see Sect. 3.1), with different numbers of hash functions k (top), and different
minimum partition sizes m and different q-gram frequency percentage differences d
(bottom).

our attack can successfully identify bit positions of q-grams with high accuracy
even when no frequent BFs are available in an encoded database. Both precision
and recall decrease slightly as more attributes are encoded into BFs, which is
due to the increased number of unique encoded q-gram sets that make accurate
frequent pattern-mining more difficult. A smaller difference d between the two
most frequent q-grams lowers re-identification accuracy, because the chance of a
wrong frequent q-gram being identified is increased. The minimum partition size,
m, seems to have no strong effect upon the q-gram re-identification accuracy.

Table 1. Re-identification percentages of exact (E), partial (P) and wrong (W) matches
of plain-text values from Algorithm 2 (Sect. 3.2), averaged over the settings used in
Fig. 3.

Two attributes Three attributes Four attributes

E P W E P W E P W

Christen et al. [5] 1-to-1 5.0 0 95.0 0 0 100 0 0 100

1-to-many 6.0 0 94.0 0 0 100 0 0 100

Our approach 1-to-1 20.7 30.9 48.4 0.2 61.0 38.8 0.5 73.2 26.3

1-to-many 27.5 46.5 26.0 0.4 83.5 16.1 0.5 87.9 11.6

As Table 1 shows, the re-identification results for the second phase (Algo-
rithm 2) of our attack has led to around 51% to 74% of 1-to-1 matches to be
exact or partially correct, which means in the majority of cases where only one
plain-text value v ∈ V was identified to match one BF b ∈ B, an attacker has
information that likely allows re-identification of the individual represented by v.
If between 2 and 10 values v match a BF, then the over 74% of re-identifications
are exact or partially correct. The small values of exact matches for three and
four attributes is because less than 1, 800 of over 222, 200 (<1%) combined val-
ues between the two NCVR snapshots are exact matches. In future work, we
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will concentrate on improving the accuracy and efficiency of this second phase
of our approach.

As can also be seen from Table 1, the frequency based attack by Christen et
al. [5] is only able to correctly re-identify a very small percentage of values when
two attributes are encoded into BFs, because with three and four attributes no
frequency information is available that could be exploited by this attack.

Our experiments show that basic BFs, even when each BF in an encoded
database is unique, can successfully be attacked by identifying frequently co-
occurring BF bit positions. These results highlight the need for improved BF
encoding, as well as new PPRL encoding methods that do not exhibit the weak-
nesses of basic BFs that allow the re-identification of encoded values.

5 Conclusions and Future Work

We have presented a pattern-mining based attack method on BF encoding as
used for PPRL. Our attack can successfully re-identify encoded q-grams and
plain-text values even when all BFs in an encoded database are unique. Given
that BF based PPRL is now employed in real-world applications [3,16], it is vital
to study the limits of BF encoding. We believe our attack is important for PPRL
because it allows data custodians to understand security flaws in BF encodings
and ensure their encoded databases are not vulnerable to such attacks.

As future work we plan to improve the second phase of our attack by ana-
lyzing the differences in bit patterns between BFs to identify additional encoded
q-grams which will allow an improved re-identification of plain-text values. We
furthermore aim to formalize different attack scenarios for PPRL, and to conduct
extensive experiments across a variety of parameter settings (such as different
values of q, k, and lb) and different encoding methods, and using data sets from
a variety of domains to identify the limitations of our attack method. Finally,
we will also explore how BF hardening techniques, such as balancing and XOR-
folding [18], will influence the feasibility of our pattern-mining based attack.
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Abstract. Bayesian optimization is a powerful machine learning tech-
nique for solving experimental design problems. With its use in industrial
design optimization, time and cost of industrial processes can be reduced
significantly. However, often the experimenters in industries may not
have the expertise of optimization techniques and may require help from
third-party optimization services. This can cause privacy concerns as the
optimized design of an industrial process typically needs to be kept secret
to retain its competitive advantages. To this end, we propose a novel
Bayesian optimization algorithm that can allow the experimenters from
an industry to utilize the expertise of a third-party optimization service
in privacy preserving manner. Privacy of our proposed algorithm is guar-
anteed under a modern privacy preserving framework called Error Pre-
serving Privacy, especially designed to maintain high utility even under
the privacy restrictions. Using several benchmark optimization problems
as well as optimization problems from real-world industrial processes, we
demonstrate that the optimization efficiency of our algorithm is compara-
ble to the non-private Bayesian optimization algorithm and significantly
better than its differential privacy counterpart.

1 Introduction

Bayesian optimization is a popular machine learning technique to find the opti-
mum of expensive black-box functions in an efficient manner. It is widely appli-
cable for optimizing experimental design in industrial processes [7], hyperpa-
rameter tuning of machine learning algorithms [1], robotics [8], etc. In these
optimization problems, the objective functions are costly to evaluate (e.g. run-
ning a physical process) and time consuming (e.g. training a highly complex
model).

Bayesian optimization works in a sequential manner. It uses the available set
of observations from the function to develop a surrogate model of the black-box
function and uses this model to suggest a new sample where the function should
be evaluated next. When making this suggestion, the algorithm addresses two
goals. The first is to exploit the existing knowledge to maximize the chance of
observing the function optimum (exploitation). The second goal is to acquire
information about the black-box function in the best possible way (exploration).
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 543–555, 2018.
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These two goals may not always be aligned and the algorithm needs to balance
them. This is achieved by constructing an acquisition function, which is then
optimized to suggest the next function evaluation point. Balancing exploitation
with exploration is key to the efficiency of Bayesian optimization.

Since Bayesian optimization is an efficient method for industrial design opti-
mization, its use to optimize the industrial process can significantly reduce the
time and cost of industrial processes. However, the experimenters in industries
typically may not have the expertise of optimization techniques and therefore
require optimization services from a third-party. This can cause privacy con-
cerns as the optimized design of an industrial process needs to be protected to
retain its competitive advantages. Consider two parties involved in the design
optimization process: an experimenter A and an optimizer B. At each iteration
of the Bayesian optimization, the optimizer B asks the experimenter A to per-
form experiments at the suggested point. A conducts the experiment, assesses
the outcomes to score the function output and then returns the function value
to B. This interaction repeats until the optimum is found or the number of
experiments exceeds a pre-defined budget. Since both experimenter and opti-
mizer have access to the exact knowledge of the optimum point, this algorithm
does not offer any privacy. Such industrial data is sensitive and the optimum of
the objective function cannot be revealed to keep competitive advantage. As an
example, consider an alloy making company that needs to design an alloy with
certain target properties. The task involves optimizing the mixture proportions
of constituent ingredient elements. The final composition is kept secret. In such
cases, the experimenter A from the industry wants to avail the service of the
optimizer B without disclosing the exact function values.

Privacy preserving machine learning has recently attracted the attention from
research community. One of the most popular frameworks for private data release
is Differential Privacy [5]. It protects the data privacy from various type of pri-
vacy attacks, even when the adversary has auxiliary information. For example,
the privacy of a data point is guaranteed even if an adversary has access to all
other data points in the database. Several differentially-private machine learning
and data mining algorithms have been proposed e.g. differentially-private logistic
regression [3], differentially-private random forest [9], etc. Although differential
privacy offers a strong privacy guarantee, a crucial drawback is that to achieve
this guarantee, algorithms need to be perturbed so significantly that their utility
becomes low and often unacceptable. To address this problem, Nguyen et al. [4]
developed a new privacy framework, known as Error Preserving Privacy (EPP).
This privacy framework is similar to differential privacy in that it protects data
even under the scenario when an adversary has access to auxiliary information.
The high utility is maintained by making certain assumptions about the adver-
sary model that may be used to extract the data point of interest.

The work on privacy preserving Bayesian optimization is quite limited.
Kusner et al. [6] proposed a Differentially Private Bayesian Optimization algo-
rithm. However, the privacy setting of this algorithm is quite different from the
setting considered in this paper. In Kusner’s work, data are shared freely between
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the experimenter and the optimizer and their interactions are non-private. The
optimum point is kept private from public. Once the optimization process is
finished, the optimum point is perturbed appropriately before releasing it to the
public. We consider a different setting wherein the experimenter from an indus-
try may not trust the optimizer and does not want to share exact data with the
optimizer. In this setting, Kusner’s method is not applicable. To the best of our
knowledge, we are the first to identify the privacy problem for Bayesian opti-
mization in this setting. Therefore, the problem of developing a privacy preserving
Bayesian optimization algorithm with third-party optimizer remains open.

We propose a privacy preserving Bayesian optimization that helps to find the
optimum of an expensive black-box function without revealing the best point
up to any optimization iteration, ensuring the privacy of the optimum under
the EPP framework [4]. EPP is chosen to maintain high optimization efficiency
even under the stringent privacy requirements. The proposed algorithm follows
an three-step iterative procedure (see Fig. 1). The first step requires the exper-
imenter to evaluate the function value at the input suggested by the optimizer.
The second step perturbs the result evaluated by the experimenter by a noise
that helps to protect the privacy of the true optimum. The third step is at the
untrusted end where the perturbed point is included in the function model by the
optimizer to suggest the next evaluation point. We perform theoretical analysis
and derive the amount of perturbation required to guarantee the privacy. We
apply our algorithm to benchmark optimization problems as well as optimization
problems from real-world industrial processes and demonstrate that the opti-
mization efficiency of our algorithm is comparable to the non-private Bayesian
optimization algorithm. We also suggest a differentially-private Bayesian opti-
mization baseline and show that the performance of EPP based Bayesian opti-
mization algorithm is significantly better than the differentially-private baseline.

Fig. 1. Privacy preserving Bayesian optimization framework.

2 Background

2.1 Bayesian Optimization

Bayesian optimization [11] is an efficient technique to optimize expensive black-
box function f . Formally, the optimization problem can be defined as:

x∗ = argmaxx∈X f(x) (1)

where X is domain of x. Bayesian optimization has two parts: the first part
builds a surrogate model of f using available observations and the second part
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uses this surrogate model to construct an acquisition function that is then used
to suggest the next sample for function evaluation. The process repeats until the
optimum is found or a pre-specified budget exceeds. The surrogate model uses
a prior distribution about the function f and known observations to maintain
the posterior of the function. The surrogate model of Bayesian optimization
can be any probabilistic model that is capable of representing the uncertainty
about the function, e.g. Gaussian processes [10], Bayesian neural networks [12],
bootstrapped random forest [2], etc. Gaussian processes are the most popular
choice and are briefly described here.

Gaussian Process: Gaussian process [10] is a probabilistic model that spec-
ifies distribution over function spaces. A Gaussian process is defined by a
mean function m(x) and a covariance function k(x,x′). Let f(x) be a func-
tion that is drawn from a Gaussian process f(x) ∼ GP(m(x), k(x,x′)) and
Dn = {(xi, yi)}, i = 1, 2, . . . , n be the set of observations where yi is the noisy
output value, yi = f(xi) + εi and εi ∼ N (0, σ2

ε ). Without loss of generality,
we assume the mean function m(x) to be zero. This makes the Gaussian pro-
cess depending on the covariance function k(x,x′) only. A popular choice for
covariance function is squared exponential kernel which is defined as k(x,x′) =
σ2

SE exp(− 1
2θ2 ‖x − x′‖2) where θ is a length scale parameter representing the

smoothness of the function and σSE is a scale factor. Because any finite collec-
tion of random variables in a Gaussian process are jointly distributed as Gaus-
sian, the joint distribution of known observations Dn and a new observation
(xn+1, yn+1) is Gaussian. The predictive distribution of the function value yn+1 is
also Gaussian i.e. p(yn+1|y1:n,x1:n+1) = N (μn(xn+1), σ2

n(xn+1)) with mean and
variance given as μn(xn+1) = kT (K + σ2

ε I)
−1y, σ2

n(xn+1) = k(xn+1,xn+1) −
kT (K + σ2

ε I)
−1k where k = [k(x1,xn+1), k(x2,xn+1), ..., k(xn,xn+1)]T and

K(i, j) = k(xi,xj).

Acquisition Functions for Bayesian Optimization: Typically, we defined
an acquisition function such that its values are aligned with our goal of sampling
the next point. The acquisition function should maintain a trade-off between
exploiting the region where the objective function has high values and exploring
the region with high uncertainties. We maximize the acquisition function to
suggest the next point that achieves the trade-off in the best way. Let α (x; In)
denote the acquisition function where In is the Gaussian process posterior after n
observations. The original optimization problem of Eq. (1) becomes maximizing
α (x; In) as follows:

x∗
n+1 = argmaxx∈X α (x; In) . (2)

A popular choice for acquisition function is Upper Confidence Bound. For the
Gaussian process surrogate model, it is defined as [13] αGPUCB (x; In) = μn(x)+
κnσn(x) where κn is an iteration dependent positive parameter representing
the exploration-exploitation trade-off. Srinivas et al. [13] provided a theoretical
guarantee of GP-UCB through an upper bound on the cumulative regret Rn =∑n

i=1 (f (x∗) − f (xi)), which grows sub-linearly. The acquisition function in (2)
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can be maximized using any global optimizer because it is cheap to evaluate
unlike function f .

2.2 Differential Privacy

Differential privacy is a privacy preserving framework that offers a strong guar-
antee of privacy. The formal definition is given as:

Definition 1. A randomized function A gives ε−differential privacy if for all data
sets D1 and D2 differing in at most one element, and all S ⊆ Range(A),

exp(−ε) ≤ Pr [A(D1) ∈ S]
Pr [A(D2) ∈ S]

≤ exp(ε) (3)

A popular way to make an algorithm differentially private is to add noise
to the algorithm output. Sensitivity is defined as the maximum change of the
algorithm output due to the change of one single datapoint. Using the sensitivity
S, Laplacian mechanism adds a Laplacian noise with standard deviation S/ε to
the algorithm output and makes the algorithm ε−differentially private [5].

3 The Proposed Framework

We present our proposed privacy preserving Bayesian optimization framework.
We start with a brief description about the EPP framework proposed in [4].
Under this framework, we propose a novel privacy preserving Bayesian opti-
mization algorithm to protect privacy of the objective function’s maximum.

3.1 Error Preserving Privacy Framework

Let DN = {x1, . . . ,xN} be the set of N data points and g be a quantity of
interest that needs to be protected. In [4], Nguyen et al. proposed the Error Pre-
serving Privacy (EPP) framework that provides privacy guarantees for g even in
presence of auxiliary information. As in the differential privacy framework, EPP
framework controls the level of privacy using a pre-specified leakage parameter
ε. In particular, given an adversary model for estimating g, the errors in the
adversary’s estimates of g are guaranteed to be similar for any two datasets DN

and DN+1 differing by just one data point (say xN+1). Thus, the extra infor-
mation gained by an adversary by knowing xN+1 brings negligible risks on the
privacy of the quantity g for small ε. Let us assume that an adversary estimates
the statistic ĝ(DN ) and ĝ(DN+1) using data DN and DN+1 respectively. If we
denote by E(ĝ(DN )) the error of the adversary in estimating g using data DN ,
i.e. E(ĝ(DN )) = E

[
(ĝ(DN ) − g)2

]
and by E(ĝ(DN+1)) the error of the adversary

in estimating g using data DN+1, i.e. E(ĝ(DN+1)) = E

[
(ĝ(DN+1) − g)2

]
, then

the EPP framework ensures the following inequality:

E(ĝ(DN+1))
E(ĝ(DN ))

≥ exp(−ε) (4)

where ε ≥ 0 is a pre-specified privacy leakage parameter.
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3.2 The Proposed Algorithm

Let us imagine an industrial design optimization task involving two parties: “an
experimenter” and “an optimizer”. The optimizer is assumed to be untrusted.
The “experimenter” wants to find the maximum of an objective function (the
function underlying the industrial process) f and wants to utilize the services
offered by the “optimizer”. Let Dn = {(x1, y1), . . . , (xn, yn)} be the set of obser-
vations such that yi = f(xi) + εi where εi ∼ N (0, σ2

ε ) is measurement noise.
Further, let Dn+1 = Dn ∪ (xn+1, yn+1). Let (x+

n+1, y
+
n+1) be the “best point so

far” in Dn+1 such that x+
n+1 = xi and y+

n+1 = yi and i = argmax
j=1,...,n+1

yj . Since the

optimizer may be not trustworthy, the experimenter does not want to disclose
the true optimum (x+

n+1, y
+
n+1) to the untrusted optimizer. Instead, the experi-

menter decides to share the experimental data in a privacy preserving manner,
which in this case is achieved by perturbing the function value. The quantity of
interest that needs to be protected at all times is the best point at any itera-
tion. Our aim is therefore to share the data between the experimenter and the
optimizer in such a way so that (x+

n+1, y
+
n+1) is ambiguous for the optimizer

(assumed to be an adversary here) even if the optimizer has exact knowledge of
data in Dn. In the following, we refer to the optimizer as adversary.

We next develop a Bayesian optimization algorithm maintaining this privacy
under the EPP framework. Let ω̂n = ŷ+

n+1 | Dn and ω̂n+1 = ŷ+
n+1 | Dn+1

be the estimates of the adversary about the “best point so far” using Dn and
Dn+1 respectively. The EPP framework ensures the errors of the adversary’s
estimates ω̂n and ω̂n+1 are similar, which means that by acquiring (xn+1, yn+1),
the adversary’s estimate of y+

n+1 does not change significantly. This helps in
hiding the true optimum y+

n+1 and also provides the protection for the location of
the maximum x+

n+1. Formally, we denote by E (ω̂n) and E (ω̂n+1) as the errors in
the adversary’s estimate of y+

n+1 using Dn and Dn+1 respectively. For simplicity
in notation, we refer to these quantities as En and En+1.

In the absence of the privacy preserving scheme, the error of the adversary’s
estimates using Dn+1 may be significantly lower than the one using Dn as the
adversary can simply find the maximum over all the observations. To ensure the
privacy, we add a Gaussian distributed perturbation noise to the function output
yn+1 ← yn+1 + νn+1 where νn+1 ∼ N (0, q2n+1), qn+1 is the standard deviation
of the noise. The following theorem characterizes the amount of noise required
to guarantee the EPP framework.

Theorem 1. The noise standard deviation qn+1 obtained as solution of Eq. (17)
ensures Error Preserving Privacy for the Bayesian optimization algorithm.

Proof. To prove the theorem, we need to derive the error in the adversary’s
estimates: En and En+1. After deriving these errors, we plug them in Eq. (4)
to obtain an equation in qn+1 (see Eq. (17)). The minimum value of qn+1 that
satisfies Eq. (17) ensures the EPP privacy guarantee. �

For the adversary estimation model, we assume that given Dn+1, the adver-
sary estimates the ŷ+

n+1 as ŷ+
n+1 = max(y1, . . . , yn, ŷn+1|Dn+1). Similarly, given
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Dn, the adversary estimates the ŷ+
n+1 as ŷ+

n+1 = max(y1, . . . , yn, ŷn+1|Dn) where
ŷn+1|Dn is also estimated using a Gaussian process model.

Computation of En: As per the stated adversary model, ω̂n is given as

ω̂n = max(θ̂n, y+
n ) (5)

where y+
n = max(y1, . . . , yn), θ̂n = ŷn+1|Dn is the adversary’s estimate of yn+1

using Dn and is Gaussian distributed. The mean and variance of this estimate
can be computed as follows:

E

[
θ̂n

]
= E[kT

nK−1
n y1:n] = kT

nK−1
n f1:n, V ar

[
θ̂n

]
= σ2

ε

∥
∥kT

nK−1
n

∥
∥2

2
(6)

where kn, Kn and σε are the quantities introduced in Sect. 2. Using the mean and
variance of θ̂n, we can compute the distribution of ω̂n. Defining μn = kT

nK−1
n f1:n

and σn = σ2
ε

∥
∥kT

nK−1
n

∥
∥2

2
, the probability density function of ω̂n can be written

as:

pω̂n
(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
2πσ2

n

exp
[
− (y−μn)

2

2σ2
n

]
if y > y+

n

Pr(yn+1 ≤ y|Dn) if y = y+
n

0 if y < y+
n

(7)

The mean square error En can be written as follows:

En = E

[
(ω̂n − yn+1)

2
]

= (E [ω̂n] − yn+1)
2 + V ar [ω̂n] (8)

Given the distribution function pω̂n
(y), we can compute the expectation and

variance of ω̂n as follows:

E [ω̂n] = σnp + (y+
n − μn)P + μn (9)

V ar [ω̂n] =
(
y+

n + μn

)
σnp +

(
(y+

n )2 − σ2
n − μ2

n

)
P + μ2

n + σ2
n − (E [ω̂n])2(10)

where p = φ
(

y+
n −μn

σn

)
and P = Φ

(
y+
n −μn

σn

)
. Using Eqs. (9) and (10), we can

finally compute En.

Computation of En+1: After the adversary (or optimizer) suggests xn+1, the
experimenter conducts the experiment and returns a noisy value yn+1 ← yn+1 +
νn+1 to ensure privacy, where νn+1 ∼ N (0, q2n+1). We assume that after receiving
yn+1, the adversary uses maximum statistic to estimate y+

n+1 using Dn+1 as:

ω̂n+1 = max(θ̂n+1, y
+
n ) (11)

where θ̂n = ŷn+1|Dn+1 is the adversary’s estimate of yn+1 using Dn+1. Similar
to the previous derivation, the mean and variance of θ̂n+1 can be computed as:

E

[
θ̂n+1

]
= kT

n+1K
−1
n+1f1:n+1 (12)



550 T. D. Nguyen et al.

Algorithm 1. Error Preserving Private Bayesian Optimization (EPP-BO)
1:Input:
2: Initial observation set Dn0 = {x1:n0 , y1:n0} , search space X and privacy budget
ε.
3:Output: {xn, yn}T

n=1

4: for n = n0+1, . . . , T
5: Evaluate target function yn = f(xn)
6: Find qn that satisfy 17 using binary search.
7: Add a noise νn ∼ N (0, q2n) to yn.
8: Return the output to the optimizer.
9: end for

V ar
[
θ̂n+1

]
= σ2

ε

∥
∥kT

n+1K
−1
n+1

∥
∥2

2
+ γ2

n+1

(
σ2

ε + q2n+1

)
(13)

where γ = kT
n+1K

−1
n+1 is a vector and γn+1 is the n + 1-th element of γ. Let us

define μn+1 = E

[
θ̂n+1

]
and σn+1 = V ar

[
θ̂n+1

]
. The error En+1 can be derived

as:
En+1 = E

[
(ω̂n+1 − yn+1)

2
]

= (E [ω̂n+1] − yn+1)
2 + V ar [ω̂n+1] (14)

where p′ = φ
(

y+
n −μn+1
σn+1

)
, P ′ = Φ

(
y+
n −μn+1
σn+1

)
and

E [ω̂n+1] = σn+1p
′ + (y+

n − μn+1)P ′ + μn+1 (15)

V ar
[
θ̂n+1

]
=

(
y+

n + μn+1

)
σn+1p

′ +
(
(y+

n )2 − σ2
n+1 − μ2

n+1

)
P ′

+ μ2
n+1 + σ2

n+1 − (E [ω̂n+1])
2 (16)

Computation of qn+1: Now we have computed En and En+1. To ensure privacy
condition while maintaining high utility, we want to add a smallest noise possible
that makes the following inequality satisfied:

En+1

En
=

(E [ω̂n+1] − yn+1)
2 + V ar [ω̂n+1]

(E [ω̂n] − yn+1)
2 + V ar [ω̂n]

≥ exp(−ε) (17)

Equation (17) can be solved by plugging Eqs. (9), (10), (15) and (16). Our
objective is to find a smallest value of qn+1 that satisfies Eq. (17). We note that
by adding more noise, the variance of ω̂n+1 will increase and hence En+1

En
is an

increasing function of qn+1. We can find the smallest value α of qn+1 that satisfies
(17) using binary search. Assigning qn+1 ← α, we can then add a noise sample
νn+1 to yn+1 and keep the “best point so far” private from the adversary. Our
algorithm is summarized in Algorithm 1.



A Privacy Preserving Bayesian Optimization with High Efficiency 551

3.3 Discussion of Differentially Private Bayesian Optimization

In [6], Kusner et al. proposed a Differentially Private Bayesian Optimization
algorithm. This algorithm was designed to tackle the challenge in a setting that
the optimizer is considered trusted and the experimenter can share all the data
with the optimizer. Since our privacy setting is different, we cannot use the algo-
rithm proposed in [6]. Instead, we suggest another differentially-private Bayesian
optimization algorithm, which we’ll use for comparison in this paper.

DP-BO Baseline: We suggest a privacy preserving Bayesian optimization algo-
rithm under the differential privacy framework using Laplacian mechanism [5].
Laplacian mechanism adds a perturbation noise to the output of the algorithm
to achieve the required privacy. The amount of noise depends on the sensitiv-
ity of the quantity that needs to be protected. Since by releasing yn+1, the
maximum possible change in y+

n+1 is S = ‖ymax − ymin‖ where ymax and ymin

are the maximum and the minimum possible value of y respectively. Using the
sensitivity, we iteratively add a Laplacian noise to the function output before
passing it to the optimizer: yn+1 ← yn+1 + νDP

n+1 where νDP
n+1 ∼ Lap(S/εDP ) and

εDP is the privacy budget for differential privacy. We refer to this algorithm as
DP-BO. When the quantities ymax and ymin are not known exactly, it may be
possible to estimate them using Lipschitz smoothness where possible, otherwise
this algorithm may not be usable.

4 Experiments

We experiment our algorithm on several benchmark optimization problems
as well as optimization problems from real-world industrial processes and
demonstrate the optimization efficiency of our algorithm comparing it with
various baselines. We use the following three baselines: (i) Non-private
Bayesian Optimization (Non-private BO): the standard non-private ver-
sion of Bayesian optimization, used to show the ultimate utility of private
Bayesian optimization algorithm. (ii) Random Search: used as a lower bound
baseline. A private algorithm must achieve higher optimization efficiency than
random search to justify the extra complexity. (iii) DP-BO: constructed under
differential privacy framework as discussed in Sect. 3.3. For all our experiments,
we use GP-UCB as the acquisition function and set the privacy leakage param-
eter ε = 0.1.

4.1 Experiment with Benchmark Functions

To demonstrate our algorithm for a variety of functions in different number of
input dimensions, we experiment with four popular benchmark functions: Branin
2D, Rosenbrock 4D, Hartmann 4D and Hartmann 6D. The optimization results
are averaged over 20 different initializations. Figure 2 shows the performance of
our proposed algorithm (referred to as EPP-BO) against the baselines on the
benchmark functions. For all four benchmark functions, EPP-BO’s performance
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Fig. 2. Best value so far with respect to Bayesian optimization iteration.

is close to the Non-private Bayesian Optimization and clearly outperforms both
Random Search and DP-BO by a significant margin.

Figure 3a illustrates the illusion our proposed EPP-BO creates for an adver-
sary for Hartmann 4D function. We show two scenarios: high privacy scenario
(using ε = 0.1) and low privacy scenario (using ε = 0.5). From any run of
EPP-BO, two different graphs are extracted showing different views of the opti-
mization from experimenter or optimizer (adversary) perspectives. The graph in
‘magenta’ color shows the best function value achieved so far from the optimizer’s
perspective. The graph in ‘blue’ color shows the best function value achieved so
far from the experimenter’s perspective. Between these graphs, the locations of
the best points do not necessarily coincide. We also note that when the privacy
decreases, the optimizer gets closer to the true optimum since less noise is added.

4.2 Experiment with Real Datasets

Alloy Heat Treatment: This dataset is a simulation model of an Al-Sc alloy
heat treatment process. The strengthening process of an alloy involves nucleation
and growth. During nucleation, new “phase” is formed through a self-organizing
process of clusters of atoms. This process happens at low temperature. Following
nucleation step, the growth step archives the requisite alloy property through
diffusion. The industrial standard precipitation KWN model [14] is used for
nucleation and growth. This model consists of multiple stages, each of them
having two parameters: temperature and time. The output quality of the alloy
heat treatment process is measured by the hardness of the alloy. Our objective
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Fig. 3. Comparison between the best values achieved by the experimenter and the opti-
mizer with respect to iterations on Hartman 4D function with different level of privacy:
(a) ε = 0.1 (high privacy) and (b) ε = 0.5 (low privacy). The blue and the magenta
show the best function value achieved so far from the experimenter’s perspective and
optimizer’s perspective, respectively. (Color figure online)

is to find the best combination of time and temperature parameters that achieve
the highest level of hardness in few iterations.

Figure 4a demonstrates the results of our experiments on Alloy heat treat-
ment dataset averaged over 20 different initializations. After 30 iterations, the
best hardness achieved by EPP-BO is comparable to Non-private BO and higher
than the best results of both Random Search and DP-BO.

Fig. 4. Optimization results for two real datasets.

Short Polymer Fiber Production: This dataset was collected in a collabo-
ration with material scientists from Deakin University. For short polymer fiber
production, a particular geometric manifold is used to mix polymer rich fluid
with the flow of another solvent. This manifold has 5 different parameters: device
position, constriction angle, channel width, polymer flow, and coagulant speed.
The objective is to find the best manifold parameter set to maximize a combine
utility measured by the length and diameter of the output polymer.

Figure 4b shows the experimental results on Short polymer fiber production
dataset averaged over 40 different random initializations. After 20 iterations, the



554 T. D. Nguyen et al.

best utility achieved by our method is just under the best utility of Non-private
BO and clearly higher than both DP-BO and Random Search.

5 Conclusion

We proposed a novel privacy preserving Bayesian optimization algorithm. The
proposed algorithm is based on a modern privacy framework known as Error
Preserving Privacy. Using an adversary model, we derived the amount of per-
turbation required to provably guarantee the privacy. The experimental results
clearly showed that our private algorithm has higher optimization efficiency than
other privacy reserving counterparts.
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Abstract. Robust machine learning algorithms have been widely stud-
ied in adversarial environments where the adversary maliciously manip-
ulates data samples to evade security systems. In this paper, we pro-
pose randomized SVMs against generalized adversarial attacks under
uncertainty, through learning a classifier distribution rather than a sin-
gle classifier in traditional robust SVMs. The randomized SVMs have
advantages on better resistance against attacks while preserving high
accuracy of classification, especially for non-separable cases. The exper-
imental results demonstrate the effectiveness of our proposed models
on defending against various attacks, including aggressive attacks with
uncertainty.

Keywords: Adversarial learning · Robust SVM · Randomization

1 Introduction

Adversary machine learning is an important research track that harnesses
machine learning to resolve security issues. The adversary can deliberately
manipulate their data to mislead the defender of security. Machine learning
is challenged by learning from poisoned training data [2,7]. Consequently, it is
imperative to identify potential vulnerabilities and propose countermeasures in
order to improve the robustness of machine learning algorithms against attacks
[6,8,9].

Support Vector Machines (SVMs) as supervised models are among the most
popular classification techniques adopted in security applications like malware
detection, intrusion detection, and spam filtering [4,13]. In order to secure
decision-making system against poisoning attacks (contaminating training data),
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Robust SVMs as the modification to standard SVMs had been proposed by
exploring robustness, kernels and dual formulations in SVMs and Bayes learn-
ing [10–13]. In general, the intuition is to make the decision boundary learned in
robust SVMs not be extremely sensitive to any single training example. Recently,
Randomized SVMs are studied for defending a classifier against exploratory
attacks, which probe the classifier with queries in order to reveal confidential
information about the training dataset [1]. Randomized SVMs aim at learning
a distribution of classifiers, rather than a single classifier in previous study of
robust SVMs, and thus make the system less vulnerable.

In this paper, we study how to design the randomized SVMs against poi-
soning attacks with uncertainty, which are more sophisticated than previously
studied attacks, e.g., free range and restrained range attack in [13]. The idea of
randomized SVM is demonstrated in Fig. 1. Standard SVM linear classifier learns
a w that separates positive and negative class with maximal margin (Fig. 1(a)).
Randomized SVM learns a distribution about w, for example, a Gaussian dis-
tribution Dw = N (u,Σ), demonstrated in Fig. 1(c). Such a distribution can
guarantee the classification accuracy of w sampled from Dw with a separabil-
ity higher than ν (the probability that training data can be separated), i.e.,
Pw∼N (u,Σ)(yi(wT xi) ≥ 1) ≥ ν. In well-separated cases, classifier distribution
is as good as a single classifier, but provides a set of classifiers with the same
performance to confuse attackers when they attempt to understand the classifi-
cation system and prepare attacks. In the case where the adversary adds noise
to mislead the system, the region close to decision boundary usually becomes
complicated. A deterministic classifier has to separate all data with probability
1, and thus accuracy is scarified. Randomized classifier lowers the separation
standard (with probability ν less than 1) and guarantees the accuracy, as shown
in Fig. 1(d). Therefore, we investigate randomized SVM as a promising solution
to learn robust classifiers against poisoning attacks.

The main contributions of our work are:

(1) We design randomized SVM models against different types of attacks and
formulate each model into convex optimization, second order cone program-
ming (SOCP) or semi-definite programming (SDP);

(2) The attacks we define to challenge randomized SVMs are generalized from
previously studied restrained range (RR) attacks. The generalized attacks

Fig. 1. Standard classifier (a, b) and randomized classifiers (c, d) when input without
(a, c) and with noise (b, d) shown in black and orange. (Color figure online)
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(RR with uncertainty, and distributional range attack with uncertainty) are
more aggressive and complicated, and cover a wide range of attacks;

(3) We evaluate our randomized SVMs on several data sets. The experimental
results show that randomized SVMs outperform existing robust SVMs on
defending against attacks at different level of intensity.

2 Related Work

[4] comprehensively evaluated SVMs in adversarial environment, i.e., how SVMs
cope with different types of attacks, such as poisoning (contaminating the train-
ing data), envision (circumventing the learned classifier) and privacy-breaching
attacks. Our work focuses on learning optimal SVMs against poisoning attacks.
Therefore, we first discuss the related work that also studies the learning of SVMs
from poisoned training data, where each sample is manipulated by adding a noise
Δx, i.e., x′ = x + Δx.

There are many Robust SVM models modified from the standard SVM for
handling noise in training data. [3] formulate SVM learning with contaminated
training data by modeling the unobserved true input (uncorrupted data) as
a hidden mixture component. The added noise is assumed to be bounded as
||Δxi|| ≤ δi, such that a noisy sample lies within a ball of given radius w.r.t.
the true non-noisy sample. [11] prove that such SVMs with norm-based regu-
larization build in a robustness to sample noise whose probability level sets are
symmetric unit balls with respect to the dual of the regularizing norm. Different
but relevant work in [5,12] studies how SVMs are affected by adversarial label
noise (e.g., flipping labels of certain training samples), rather than by feature
noise (e.g., adding noise to training samples).

The most relevant work in [13] develops robust SVMs against two attack
models: free range and restrained range, which are more realistic manipulations
attackers can make, while the noise bound δi in [3] is fixed and known to both
attackers and defenders. In this paper, we study generalized attack models of
restrained range (RR), which is more advantageous than free range attacks. The
generalized attacks have more flexibility on designing attacks in different forms
and with more uncertainty.

The other stream of related work is Randomized SVMs. [1] investigate
randomization as a suitable strategy for protecting SVMs against exploratory
attacks. Unlike poisoning attacks, exploratory attacks occur after the training
stage and aim at revealing classification boundary by probing with queries.
To protect the classification system, instead of learning a fixed classifier, the
defender uses training data to infer a distribution of classifiers. The decision
system is thus not deterministic but probabilistic. In this paper, we develop
randomized SVMs for RR attacks, and also two generalized attack models with
more uncertainty.
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3 Problem Definition

Denote a training sample xi where xi ∈ R
d and yi ∈ {−1, 1} as the label of xi,

i = 1, . . . , n. We consider the adversary learning problem where the adversary
aims to modify training data in the feature space to their desired targets to
mislead the classifier learning. For example in spam detection, the xi includes
some demonstrative information from individual email while yi is the indicator
that judges if the email is malicious. For a malicious sample xi with yi = 1, the
adversary can modify it to be xi + δi for avoiding detection and misleading the
classifier training process according to his planned goals. For the same example
in spam detection, good words can be added to a spam email to defeat spam
detectors. Following the assumption in [13], the adversary does not modify the
innocuous data (with yi = −1), e.g., the adversary has no intention to modify
legitimate e-mails.

Our target is to learn a Gaussian distribution Dw = N (u,Σ), where each
sample w is a classifier for discriminating xi with different labels. Given a
required separable probability ν (Pw∼N (u,Σ)(yi(wT xi) ≥ 1) ≥ ν), such a dis-
tribution can guarantee the classification accuracy of w sampled from Dw. In
simple words, it correctly differentiates positive and negative samples as many
as possible, while allowing some samples be separable with a low probability.
When training data are poisoned, our randomized SVMs are able to classify
innocuous data correctly while allowing samples close to the decision bound-
ary (that are probably manipulated samples with noise) be separable with a
low probability. Therefore, randomized SVMs are expected to be more robust
against poisoning attacks than deterministic SVMs.

4 Attack Model Design

[13] introduces a Restrained Range (RR) Attack model, which allows modifica-
tion of xi in a limited range, as a large modification of original xi entails loss of
malicious utility. The modification of xi is proportional to the difference between
xi and xt

i (the target of modifying xi), and is usually set according to the adver-
sary’s estimate of the innocuous data. We generalize RR attack with uncertainty
in different norm settings. The adversary will not only have the freedom to move
data in the feature space, but also can develop attacks with different range shape.
Then a most general attack model is defined by considering that the adversary
probably manipulates deliberately data with uncertain distribution, unknown
expectation and variance to develop an infinite dimensional attack space.

4.1 Restrained Range Attack with Uncertainty

The restrained attack in [13] is defined as

0 ≤ (xt
ij − xij)δij ≤ cf (1 − |xt

ij − xij |
|xij | + |xt

ij |
)(xt

ij − xij)2. (1)
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Dividing by (xt
ij − xij), we obtain the bound of δij

0 ≤ |δij | ≤ cf (1 − |xt
ij − xij |

|xij | + |xt
ij |

)(|xt
ij − xij |). (2)

We generalize the above bound for δi as

δi = {δi : Pir, ||r|| ≤ cf ||vi||, vij = xt
ij − xij} (3)

which provides more freedom to set the shrink matrix P . When setting P as
(1 − |xt

ij−xij |
|xij |+|xt

ij | ) and implementing L1 norm, the generalized restrained attack is
approximately reduced to prior form. The main difficult in restrained attacks is
to estimate the target xt

ij . The defender usually utilizes their prior knowledge to
guess the most possible xt

ij . In fact, the adversary is reluctant to make target data
move far away from the origin, which leading to loss of maliciousness. A simple
method to estimate xt

ij is to calculate the mean and variance of malicious data
to obtain xt

ij = xij + cδεij , where cδ is the standard variation of these samples
and εij is a random noise.

4.2 Distributional Range Attack with Uncertainty

To introduce an infinite-dimensional uncertain set to attack models, we define
a most general attack model where the modification δi follows a distribution
belonging to the set:

Δ = {p : supp(p) = Rn, Ep[δi] = mi, Ep[||δi||] ≤ σi}. (4)

This attack model processes remarkably probability uncertainty. The parameter
m is the central point that attacks may happen. According to strong law of
large number, we know when the aggressive samples are sufficient large, the
average results are close to the expectation of attacks. Thus, m and σ control
the intensity of attacks, similar to cf in (3). The above attack model is the most
generalized result by considering all variables in the probability measure space.
When the mean is properly set and the variance is sufficient large, it can be
implemented to cover RR models. It is expected that by solving such a problem
we would obtain an optimal classifier against all distributional attacks.

5 Randomized SVMs Learning

For the different attack strategies defined above, we develop randomized clas-
sifiers for learning against noise. Randomized SVMs introduced in [1] learn a
distribution Dw = N (u,Σ), from which a randomly drawn w can make a sys-
tem of linear inequalities yi(wT xi) ≥ 1 satisfied with a probability that exceeds
ν, where 0 ≤ ν ≤ 1. That is to say, the probability of data samples that are
separable by Dw is at least ν,

Pw∼N (u,Σ)(yi(wT xi) ≥ 1) ≥ ν. (5)



Randomizing SVM against Adversarial Attacks Under Uncertainty 561

The optimization problem of identifying the parameters of Dw (u and Σ = s∗sT )
is defined as:

min
u,ξ,s

1
2

uT u

1T s
+ C

n∑

i=1

ξi

s.t. yT
i (uT xi) ≥ 1 + Φ−1(ν)

d∑

j=1

x2
ijsj − ξi,

si ≥ 0, i = 1, 2, . . . , d. ξi ≥ 0, i = 1, 2, . . . , n.

(6)

We now formulate randomized SVM for the above-mentioned different types
of attacks, including the Restrained Range Attack (RRA), Restrained Range
Attack with Uncertainty (RRAU), and Distributional Range Attack with Uncer-
tainty (DRAU). They all modify xi with yi = 1 to be xi + δi, without changing
xi with yi = −1. The hinge loss of classification can be defined as

h(w, b, xi) =

{
maxδi max(1 − (wT (xi + δi) + b), 0) for yi = 1;
max(1 + wT xi + b, 0) for yi = −1.

Combing these two loss functions, the objective function in (6) becomes

min
w,b

∑

i

max
δi

(1 − yi(wT xi + b) − 1
2
(1 + yi)wT δi)+ +

1
2

uT u

1T s
. (7)

and can be simplified as

min
w,b

∑

i

max
δi

(1 − yi(wT xi) − 1
2
(1 + yi)uT δi)+ +

1
2

uT u

1T s
. (8)

The unique term in (8) relevant with δi is maxδi(− 1
2 (1 + yi)uT δi) for fixed u.

Then for the following model derivation, we will focus on the sub-problem

max
δi

(−1
2
(1 + yi)uT δi) (9)

with different constraints in different attack models.

5.1 Randomized SVM Against RRA

RRA sets δi by (1). Let eij = cf (1 − |xt
ij−xij |

|xij+|xt
ij | )(x

t
ij − xij)2. The sub-problem

relevant with δi in (9) becomes

max
δi

−1
2
(1 + yi)uT δi

s.t. 0 ≤ (xt
ij − xij)δij ≤ eij .

(10)
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Introducing (−zij + vij)(xt
ij − xij) = 1

2 (1 + yi)uj , zi � 0, vi � 0 into the above
problem, it is transformed into max −∑

j(−zijeij + vij0), by solving which, we
can rewrite the optimization problem in (6) for Randomized SVM against RRA
as follows,

min max
u,s

uT u

1T s
+ C

∑

i

ξi

s.t. ξi ≥ 0, zi � 0, vi � 0, ti ≥
∑

j

(zijeij), i = 1, . . . , n, si ≥ 0, i = 1, 2, . . . , d,

yT
i (uT xi) ≥ 1 + Φ−1(ν)

d∑

j=1

x2
ijsj − ξi + ti, (−zij + vij)(x

t
ij − xij) =

1

2
(1 + yi)uj .

(11)
All constraints in the formulation are linear, we would obtain similar SDP by
considering the worst situation.

5.2 Randomized SVM Against RRAU

RRAU sets δi by (3). Similarly, we have the sub-problem

max
δi

−1
2
(1 + yi)uT δi

s.t. δi = {δi : Pir, ||r|| ≤ cf ||vi||, vij = xt
ij − xij}.

(12)

Let fi = max − 1
2 (1 + yi)uT Pir, s.t. ||r|| ≤ cf ||vi||. Since we have fi ≤

1
2 (1 + yi)||vi||||Piu||∗. If the norm of v is L1 norm, the optimization problem
for Randomized SVM against RRAU as follows,

min max
u,s

uT u

1T s
+ C

∑

i

ξi

s.t. ξi ≥ 0, i = 1, 2, . . . , n, si ≥ 0, i = 1, 2, . . . , d,

yT
i (uT xi) ≥ 1 + Φ−1(ν)

d∑

j=1

x2
ijsj − ξi + ti,

ti ≥ 1
2
(1 + yi)cf

d∑

j=1

|xt
ij − xij |||Piu||∗, i = 1, 2, . . . , n.

(13)

5.3 Randomized SVM Against DRAU

DRAU sets δi by (4). The original optimization problem described in (8) with
DRAU becomes

min
w,b

∑

i

max
δi∈Δ

Ep(1 − yi(wT xi + b) − 1
2
(1 + yi)wT δi)+ +

1
2

uT u

1T s
. (14)
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We first consider the maximizing inner optimization problem,

max
p

Ep(1 − yi(wT xi + b) − 1
2
(1 + yi)wT δi)+

s.t. Ep(δi) = mi, Ep(||δi||) ≤ σi, i = 1, 2, . . . , n.

(15)

The dual Lagrange function of it can be written as g(λ1, λ2) =
λ1mi + λ2σi + maxp{Ep(1 − yi(wT xi + b)− 1

2 (1 + yi)wT δi)+ − λ1δi − λ2||δi||},
which can be equivalently written as g(λ1, λ2) = λ1mi + λ2σi +
maxzi

{(1 − yi(wT xi + b)− 1
2 (1 + yi)wT zi)+ − λ1zi − λ2||zi||}. Since x+ =

max(x, 0), it is further written as

g(λ1, λ2) = λ1mi + λ2σi + max{max
zi

[(1 − yi(wT xi + b)

−1
2
(1 + yi)(w + λ1)T zi)+ − λ2||zi||],max

zi

[−λT
1 zi − λ2||zi||]}.

By Cauchy-Schwarz inequality, note (w + λ1)T zi ≤ ||w + λ1||∗||zi|| and limit
the domain as a compact set. We have max||z||=α(− 1

2 (1 + yi)(w + λ1)T z) =
α||w + λ1||∗. So it yields that

g =
{

1 − yi(wT xi + b) ||w + λ1||∗ ≤ λ2

+∞ otherwise .

Similarly,

max
zi

[−λT
1 zi − λ2||zi||] =

{
0 ||λ1||∗ ≤ λ2

+∞ otherwise .

Minimize the dual function can obtain the dual problem as follows,

min
λ1,λ2

g(λ1, λ2) = min
λ1,λ2

(1 − yi(wT xi + b))+ + λT
1 mi + λ2σi

s.t. ||w + λ1||∗ ≤ λ2, ||λ1||∗ ≤ λ2.
(16)

The equivalent expression can be obtained by introducing constraints into objec-
tive function,

min
λ1,λ2

g(λ1, λ2) = (1 − yi(wT xi + b))+ + min
λ1

{λT
1 mi + σi max[||λ1 + w||∗, ||λ1||∗}.

Since ||w + λ1||∗ ≥ ||w||∗ − ||λ1||∗, we have the lower bound

min
λ1,λ2

g(λ1, λ2) ≥ (1 − yi(wT xi + b))++min
λ1

{λT
1 mi+σi max[||w||∗−||λ1||∗, ||λ1||∗}.

There are two cases: (1) ||w||∗ − ||λ1||∗ ≥ ||λ1||∗, it follows that
min||λ1||∗≤ 1

2 ||w||∗{λT
1 mi + σi(||w||∗ − ||λ1||∗)} has the optimal lower bound

min
λ1,λ2

g(λ1, λ2) ≥ (1 − yi(wT xi + b))+ +
1
2
(σi − ||mi||)||w||∗.
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And, (2) ||w||∗ − ||λ1||∗ ≤ ||λ1||∗ means the optimal lower bound of
min||λ1||∗≥ 1

2 ||w||∗{λT
1 mi + σi||λ1||∗} is

min
λ1,λ2

g(λ1, λ2) ≥ (1 − yi(wT xi + b))+ +
1
2
(σi − ||mi||)||w||∗.

The lower bound is achieved when λ1 = − 1
2w. Thus the formulation with similar

SVM form is given by

min
1
2
(σi − ||mi||)||w||∗ + (1 − yi(wT xi + b))T +

uT u

1T s
. (17)

Here, we take the expectation in the dual norm term for simplicity and random-
ized the SVM classifier in (17) to consider the approximate problem,

min
1
2

∑

i

(σi − ||mi||)||u||∗ +
uT u

1T s

s.t. Pw∼N(u,Σ)(aT
i w ≤ −1 − ti) ≥ ν, i = 1, 2, . . . n.

(18)

The ai = −yixi makes the above constraint the same as (5). Rewrite it by Gauss
distribution and introduce slack variable, the final formulation yields,

min
1
2

∑

i

(σi − ||mi||)||u||∗ +
uT u

1T s
+ C

∑

i

ξi

s.t. ξi ≥ 0, i = 1, 2, . . . , n, si ≥ 0, i = 1, 2, . . . , d,

yT
i (uT xi) ≥ 1 + Φ−1(ν)

d∑

j=1

x2
ijsj − ξi.

(19)

6 Experimental Evaluation

In this section, we evaluate our proposed randomized SVM models against differ-
ent type of attacks and compare their performance with the robust SVM model
proposed in [13]. When simulating different types of attacks, we should estimate
xt

ij , the target to which the adversary may change xi (note that the actual mod-
ification is xi +δi, where δi depends on xt

ij). We use a simple method to estimate
xt

ij = xij + cδεij , where cδ ∈ (0, 1) controls the aggressiveness of attacks (cδ is
small if attackers are conservative on modifying positive samples within a small
area, while cδ is large if attackers are aggressive on poisoning a larger range of
sample space), and εij ∼ N (0, 1).

The attack strategies are depicted by setting δi in different attack models
defined in (1) for RRA, (3) for RRAU, and (4) for DRAU, where cf in (1)
and (3), and σ in (4) control the intensity of attacks (how much to modify xi).
We will evaluate the proposed randomized SVM models at different levels of
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aggressiveness and intensity. In addition, the matrix P in RRAU is set to be
a diagonal matrix, whose maximum eigenvalues eig(P ) ≤ 0.5. In attack model
DRAU, we set the parameter σ differently and let m = 0. Attacks with larger σ
are intenser with higher uncertainty.

We have three different randomized SVM models designed for various attacks,
RRA, RRAU and DRAU. Since they are all randomized SVM, we differentiate
them by the attack model names, such as SVM-RRA, SVM-RRAU and SVM-
DRAU. In SVM-RRAU, we set ||.||∗ as L2 norm and ||vi|| as L1 norm in its
optimization function (13). In SVM-DRAU, different norms L1, L2 and L∞ are
studied in (19).

Four binary classification data sets (SEEDS, CLIMATE, QSAR, and SPAM-
BASE) from UCI repository are used as evaluation data. Linear SVMs were
implemented using the LIBSVM library, while CVX package with SDPT3.0,
MOSEK, Gurobi solvers is implemented to solve randomized classifier SVM
models against different attacks. The probability of separation ν in (5) is set
to 0.59 if not especially specified.

The experiments go through the following steps for obtaining performance
measurement:
(1). Load the training data (xi, yi), i = 1, . . . , n,
(2). Modify each xi to obtain xt

i,
(3). Train classifier distribution Nw(u, s ∗ sT ),
(4). Obtain yt

i = sign(wT xi + b) to evaluate classification accuracy and failure
rate.

Accuracy measures the classification correctness: Accuracy =
∑

i{yt
i 
=yi}
n .

A high value of accuracy indicates the strong capability of the classifica-
tion model to differentiate one class from the other. Failure rate measures
how much the classification system fails to resist the attacks. Failure rate =
∑

i{yt
i=−1|yi=1}

n , i.e., among the manipulated malicious data samples with yi = 1,
how much of them are recognized as innocuous (the system fails and the attacker
wins).
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Fig. 2. Classification accuracy of randomized SVM-RRA and deterministic SVM-RRA
when training data are poisoned at different levels of attack aggressiveness and inten-
sity.
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Table 1. Accuracy of SVM-RRAU when varying cf , cδ

cf ↓ cδ = 0.1 cδ = 0.3 cδ = 0.5 cδ = 0.7 cδ = 0.9

SVM-RRAU 0.1 0.92 0.92 0.91 0.90 0.90

0.3 0.92 0.90 0.90 0.88 0.86

0.5 0.91 0.89 0.87 0.84 0.82

0.7 0.91 0.88 0.84 0.81 0.80

0.9 0.90 0.87 0.81 0.80 0.80

Standard SVM cδ = 0.1 cδ = 0.3 cδ = 0.5 cδ = 0.7 cδ = 0.9

0.86 0.71 0.65 0.62 0.62

Table 2. Accuracy of SVM-DRAU with L∞ when varying σ, ν

σ ↓ ν = 0.59 ν = 0.69 ν = 0.79 ν = 0.89 ν = 0.99

SVM-DRAU with L∞ 0.1 0.91 0.91 0.91 0.91 0.91

0.3 0.90 0.90 0.90 0.89 0.89

0.5 0.89 0.89 0.89 0.89 0.88

0.7 0.88 0.88 0.88 0.87 0.87

0.9 0.88 0.88 0.87 0.87 0.87

Standard SVM σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9

0.86 0.71 0.65 0.62 0.62

6.1 Comparison with Deterministic SVM-RRA

We compare our randomized SVM-RRA with the deterministic SVM-RRA
in [13]. and show how randomization improves the robustness of SVM against RR
attack. Figure 2 shows the comparison of classification accuracy when applying
randomized SVM-RRA and deterministic SVM-RRA on poisoned training
data at different levels of attack aggressiveness and intensity. The evaluation is
on SPAMBASE data set. In each subfigure of Fig. 2, the attack aggressiveness
(x-axis) varied from least (cδ = 0.1) to most aggressive (cδ = 0.9). The attack
intensity varies from gentle (cf = 0.3) to intensest (cf = 0.9).

The overall conclusion we can draw from Fig. 2 is that our randomized SVM-
RRA always has higher accuracy than the deterministic SVM-RRA in [13]. The
advantage of using randomization for enhancing the robustness of classification
system is significant. When attacks are gentle (cf = 0.3 and 0.5), our randomized
SVM-RRA performs well with a stable high accuracy even when attackers are
aggressive on attacking a large region. However, the performance of deterministic
SVM-RRA decreases significantly when cδ increases. When attacks are intense
(cf ≥ 0.7), the accuracy of both our randomized SVM-RRA and deterministic
SVM-RRA is affected by aggressive attacks. However, our randomized SVM-
RRA always performs better than the deterministic SVM-RRA.
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Fig. 3. Accuracy (upper part) and failure rate (lower part) of SVM-DRAU with dif-
ferent norms when varying σ.

6.2 Comparative Study with Standard SVMs

Attacks with uncertainty are less studied in literature. We evaluate the per-
formance of our randomized SVM-RRAU and SVM-DRAU with L∞ against
attacks at different level of intensity and aggressiveness, compared to the perfor-
mance of standard SVMs. In SVM-RRAU, the intensity and aggressiveness are
controlled by cf and cδ respectively. In SVM-DRAU with L∞, we vary ν in (5) to
see under different separation probability how SVM-DRAU with L∞ performs
in classification against attacks at different level of aggressiveness (controlled by
σ). The results given in Tables 1 and 2 are averaged on four UCI data sets.

There are several observations from these tables. First, all randomized SVM
models are more robust against generalized attacks, comparing to standard SVM.
Second, model robustness decreases when attacks are more aggressive and more
severe. Third, in Table 2, when ν increases, the classifier is expected to separate
more examples with a high probability. Then the accuracy decreases a little as
it probably makes wrong separations in order to meet the requirement of ν.

6.3 SVM-DRAU with Different Norms

To further analyze the performance of SVM-DRAU with different norms, we
evaluate the classification accuracy and resistance failure rate at different level
of attack intensity. Here we fix the separation probability ν in (5) to be 0.59
and set attack aggressiveness cδ = 0.3. When changing the attack intensity σ
from 0.1 to 0.9, the performance of SVM-DRAU with different norms is shown
in Fig. 3. We can see that obviously SVM-DRAU with L∞ is the most accurate
and most robust one. It always has higher accuracy than others, while keeps
resistance failure rate low. SVM-DRAU with L2 also has low failure rate, but
lower accuracy than SVM-DRAU with L∞.

7 Conclusion

In this paper, we investigate how randomization can improve the robustness of
SVMs against attack models with uncertainty. We define two general attack mod-
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els and design randomized SVM models for each attack model. The randomized
SVMs are formulated as standard convex optimization problems. Experimental
results illustrate the effectiveness of our proposed models on several datasets and
their better performance than baseline methods.
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Abstract. Growth of male fashion industry and escalating popularity of
affordable street fashion wear has created a demand for the intervention
of effective data analytics and recommender systems for male street wear.
This motivated us to undertake extensive image collection of male sub-
jects in casual wear and pose; assiduously annotate and carefully select
discriminating features. We build up a classifier which predicts accurately
the attractive quotient of an outfit. Further, we build a recommendation
system - MalOutRec - which provides pointed recommendation of chang-
ing a part of the outfit in case the outfit looks unattractive (e.g. change
the existing pair of trousers with a recommended one). We employ an
innovative methodology that uses personalized pagerank in designing
MalOutRec - experimental results show that it handsomely beats the
metapath based baseline algorithm.

1 Introduction

As it is widely believed, fashion primarily deals with women wear, hence most of
the works on fashion predominantly deal with understanding and recommending
female fashion [5,6,13]; there has been a dearth of research in men’s clothing [16].
Men’s casual and formal attires are much more constrained and moderate com-
pared to apparels designed for women [1,9]. It is all about technical details,
practical concepts and functional requirements that characterizes male attires.
However, the male youth of the twenty first century, have become highly fashion-
conscious. Consequently the neglected topic of male fashion is gaining momen-
tum, and becoming a major part of the billion dollar fashion industry. This forms
a motivation towards conducting research and analysis in male street attire. An
autonomous system that helps a male consumer to choose visually appealing
street wear outfits is expected to be very useful.

To build such system, we collected street photos of men by crawling fash-
ionbeans.com, Facebook and Instagram1. Pictures of individuals were extracted
from each photo and their outfit consisting of a set of clothing items were man-
ually annotated with suitable attribute and values. Initially we aimed to build a
supervised model that is capable of predicting whether an outfit looks attractive
1 www.fashionbeans.com, www.facebook.com, www.instagram.com.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 571–582, 2018.
https://doi.org/10.1007/978-3-319-93040-4_45
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(Sect. 3). To create annotated data for that purpose, each outfit is tagged either
attractive or not through an extensive survey (Survey 1 - Sect. 2). Besides anno-
tating the attributes in a picture with objective values, we categorized each out-
fit into three groups - conformative, individualistic and average through another
survey (Survey 2 - Sect. 2). We have used this subjective attribute as an addi-
tional feature in our prediction model (Sect. 3) - the attribute turned out to be
one the most important predictors. It improved the prediction accuracy of the
Support Vector Machine model by a fraction of 10% and that of the Random For-
est model by 8%. In order to make an efficient prediction and recommendation
system, the data was analyzed thoroughly (Sect. 2.2).

Beyond the prediction model, we develop a novel recommendation model
MalOutRec which suggests partial replacement of dresses in outfits that has
been judged as unattractive, MalOutRec constructs a bipartite graph from the
data set and shortlists recommendation through innovative usage of personalized
pagerank. We further use the weights obtained in the prediction model to sanitize
the recommended list even further. MalOutRec beats the recent baselines by 25%.
We also make several interesting observations e.g. layering a shirt over a T-shirt
followed by changing a trouser is the best way to enhance attractivity.

2 Data Collection

Our data set consists of 824 street photos; it is enriched with outfits presented
on different body shapes of individuals belonging to various age groups. Every
photo captured one or more people, dressed in different outfits with a street back-
ground. So in order to assess each outfit, pre-processing of the images is required
followed by representation of the outfits with a set of well defined attributes. We
conducted two surveys - (a) to identify the attractive outfits, and (b) to annotate
each outfit as either conformative, individualistic or average.

Data Preprocessing - As mentioned earlier each captured photo may contain
one or more men. So we have manually segmented out each men from an image
with full frontal view and cropped it with a bounding rectangle, having dimension
400 × 255 pixels. Then we set the background as white (gray in some cases) and
pixelated the face of each segmented image to avoid biasness due to facial features.

Description of Outfits - A set of well defined attributes with appropriate
values were used to denote all the clothes and accessories visible in each image
after pre-processing. Since each body part gets adorned with specific clothes,
we have coded the clothes mainly according to three different body parts, viz.
torso, legs and feet. Three categories of torso items are considered - torso base1
(forming the inner most layer) e.g. T-shirt, torso base2 (second layer) e.g. shirt,
torso cover (first outer layer) e.g. jacket. A person may be wearing at least
one, or more torso items. Each of torso base1 and torso base2 categories are
associated with four attributes, and the torso cover category is associated with
five attributes. Legs, feet, head and suit are the remaining dress categories. Seven
attributes are associated with legs category, four attributes for feet category, and
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three attributes for head and suit respectively. The presence or absence of a list
of accessories such as sunglass, scarf, bag, back-pack, etc. were also recorded.
An item may have more than one color. We considered one or two major visible
colors for each item from a set of 15 basic colors.

A set of five dress categories have been used in our recommendation model,
denoted as dress category = {torso base1 (TB1), torso base2 (TB2), torso cover
(TC), legs (L), feet (F )}; the other categories like head, suit and accessories
are not attempted due to lack of data. In addition to that body structure and
age of each subject (person portrayed in image) were coded to form the set,
subject feature = {age, body structure}.

It is worth mentioning that there are items which do not have values for
all the associated attributes. So we have put na as a value for those attributes.
Table 1 shows the detailed view of the attributes, and corresponding values that
have been formulated to represent each outfit.

2.1 Surveys

Survey 1 - Attractiveness Measurement - Measurement of attractiveness
is relative in nature. Hence, in order to identify the set of attractive looking
outfits in our data set, we ask the respondent to mark at least one image as
attractive from a set of four different images - we have build up a mobile app
for conducting the survey.

Total 10 slides were shown to every respondent with each slide having four
images. The four images are carefully chosen to create each slide - at first, we
grouped the images produced after pre-processing into clusters, based on similar
age group and body structure and chose from each cluster. Randomly two slides
were chosen and repeated arbitrarily with a view to detect whether responses
are consciously given or not. It was ensured that images of each cluster got
displayed uniformly across different sessions. We have created both mobile and
web versions for people to take the survey.

For each outfit (image) Oi, we computed a score Si = vi

Ni
, where vi denotes

the number of times Oi got selected as attractive, and Ni is the total number
of times Oi was shown. We considered all those outfits with score greater than
0.6 as attractive and rest as unattractive. The outcome of this survey which was
taken by 213 distinct individuals produced 409 attractive and 415 unattractive
outfits.

Survey 2 - Categorization of Outfits - The motivation behind conduct-
ing the second survey is to add an attribute named outfit type with three val-
ues - conformative (CFM), individualistic (INV) and average (AVG)2. Such a

2 Collection of dress items, which aligns a person’s composite appearance with a
desired social group, can be defined as a conformative outfit. A collection of dress
items that are used to project a person’s unique identity, differentiating them from
their peer group members in the society, can be defined as an individualistic outfit.
The set of clothing items that projects a balance between social acceptance and
unique personal identity can be defined as an average outfit [15].
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Table 1. List of attributes and their values

Attribute Value

Torso Base (1, 2) Type Shirt, shirt-short, shirt-short-in, shirt-short-out, shirt-long,

shirt-long-in, shirt-long-out, T-shirt, polo, sweater,

sweatshirt, zip-sweatshirt, jacket, waterproof-jacket, blazer,

na

Patterns Mono, stripes, rhomb, motives, imprint, picture, checker,

others, na

Color-(1, 2) Black, blue, white, brown, gray, khaki, green, red, yellow,

beige, purple, pink, orange, teal, other, na

Cover Type Jacket, jacket-suit-type, jacket-sport/casual, jacket-elegant,

coat, coat-mini, coat-midi, coat-maxi, sweatshirt,

zip-sweatshirt, blazer, waterproof-jacket, vest, sweater,

others, na

Patterns Mono, stripes, rhomb, motives, imprint, picture, checker,

others, na

Material Jeans, wool/cotton, leather, micro fleece, synthetic/mixed, na

Color-(1, 2) Black, blue, white, brown, gray, khaki, green, red, yellow,

beige, purple, pink, orange, teal, other, na

Legs Patterns mono, stripes, motive, imprint, checker, others, na

Material Jeans, cord, wool/cotton, sport/synthetic, leather, na

Shape Skinny/close-fitting, normal, wide, baggy, na

Length Long, 7/8, half, short, na

Age-type Normal, washed-out, na

Color-(1, 2) Black, blue, white, brown, gray, khaki, green, red, yellow,

beige, purple, pink, orange, teal, other, na

Feet Type Sport-converse, sport-athletic, sport-casual, boots-sport,

boots-sport-in, boots-elegant, boots-elegant-in, boots-casual,

boots-casual-in, boots-military, boots-military-in, casual

shoes, elegant, sandals, moccasins, flip-flops, na

Socks With, without, not visible

Color-(1, 2) Black, blue, white, brown, gray, khaki, green, red, yellow,

beige, purple, pink, orange, teal, other, na

Head Type Baseball cap, flat cap, hat, scarf, winter hat, beret, peaked

cap, others, na

Color-(1, 2) Black, blue, white, brown, gray, khaki, green, red, yellow,

beige, purple, pink, orange, teal, other, na

Suit Type With vest, without vest, na

Color-(1, 2) Black, blue, white, brown, gray, khaki, green, red, yellow,

beige, purple, pink, orange, teal, other, na

Accessories present Sunglass(0/1), scarf(0/1), bag(0/1), back-pack(0/1),

hand-jewellery(0/1), neck-jewellery(0/1), tie(0/1),

bow-tie(0/1), belt(0/1), watch(0/1), gloves(0/1)

Body structure Thin, normal, obese

Age ≤25, 26–35, 36–55

Outfit type Conformative, individualistic, average
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Fig. 1. Statistics regarding (a) Body structure, (b) Outfit preference w.r.t age, and (c)
Attractive Outfits.

distinction can be used as one of the discriminative predictors while classifying
an outfit as either attractive or not.

An online user interface was created where each respondent was asked to
register with email-id and password. On logging into the system, a respondent
was shown a response form with an image having three options below it - con-
formative, individualistic, average - he had to choose any one of the options. A
respondent was provided with certain reference images tagged with those three
categories which can be referred any time during the survey. One was allowed
to log in several times and tag the set of all 824 images over a period of seven
days. Five male students were chosen who took the entire survey.

An outfit may be labeled either as CFM or INV or AVG; if an outfit got 3 or
more votes for a particular category, we tagged that outfit with that category.
However, there may be a case where an outfit may get 2 votes each for two
different category. In that case, we took another opinion (from another male
student) and tagged accordingly. Finally, we got 138 outfits as conformative,
273 as individualistic, and 413 as average.

2.2 Data Statistics and Analysis

Majority of men in our data set belongs to 26–35 age group, followed by those
below 25. The distribution of outfit type preference shows that average outfits
are mostly preferred (50%), as majority balances between social acceptance, and
individual identity. Individualistic outfits also form a sizeable group (33%), with
many opting to showcase personal identity without bothering about critics. Only
a very small fraction (17%) opted for conformative outfits. Most men aged below
25, and between 26–35 have normal body structure with very few being obese
(Fig. 1a). Average looking outfits are mostly preferred by those between 26–35
(Fig. 1b). Specifically, men with normal body structure and of 26–55 age group
prefer average outfits over conformative or individualistic (Fig. 2a). More than
50% of men with normal body structure and age between 26–35 chose average
looking dress. Figure 1c shows that mostly the average outfit types are considered
as attractive while conformative looking ones as unattractive.
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Fig. 2. (a) Preference of outfits types, and (b) Hit rate for selective recommendation of
top-10 pair of items (chosen from two dress category) across different body structures
and age groups.

3 Prediction Model

Our prediction task aims to assist a male consumer to check whether a chosen
outfit looks attractive or not. In the first survey, we got our data set annotated
as either attractive or unattractive followed by a second survey which helped
distinguish each outfit into three classes (conformative, individualistic and aver-
age). Our data set consists of 33 categorical and 11 binary predictor attributes;
the target variable is binary.

In order to identify the optimal subset of discriminative features, we applied
some of the standard feature selection techniques. More specifically we have
used Filter [4] and Wrapper [8] methods for selecting the best set of features.
Out of the 44 predictors, we got 25 discriminative predictor variables. The chosen
predictors are as follows: [body structure, age, F[color1, type], L[material, shape,
color2], TB1[color2, type, patterns], TB2[color2, type, patterns], TC[color1,
color2, type, patterns], head[color2, type], suit[type], accessories[scarf, bag,
back pack, tie], outfit type]. With the selected subset of features some of the
classical prediction models - Random Forest (RF), and Support Vector Machine
(SVM) were built.

From the trained SVM model we obtain the coefficients associated with each
predictor variable. Let the predictors be denoted as X1,X2, . . . , Xn, and the
corresponding learned coefficients be denoted as θ1, θ2, · · · , θn (n = 25 in our
case). Now consider an outfit oi from the test data set. Here we are interested in
finding the positive influence of a category j ∈ oi. It can be computed as follows:

I
(i)
j =

∑

k∈Sj

θk · X
(i)
k , (1)

where Sj is the set of attributes associated with the item of the category j, X
(i)
k

is the value of attribute k ∈ Sj for outfit oi, and θk is the coefficient of k as
computed before. So if oi consists of five categories, one can compute I

(i)
j ∀j =

1, 2, . . . , 5 and sort them in ascending order providing a rank of unattractiveness
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of the categories. As mentioned before we are considering only the five categories
for recommendation.

4 Recommendation Model - MalOutRec

In this Section, we develop a method to recommend replacement of certain dress
categories whenever an outfit is predicted as unattractive for a particular age
group and body structure by the prediction model of Sect. 3. As per the objec-
tive of recommendation, replacement of either one or two categories of dress are
initiated. Our recommendation model - MalOutRec - is inspired by the multidi-
mensional recommendation model of [12]. [12] constructed a bipartite graph [3]
by considering information across multiple dimensions. The bipartite graph con-
sists of target and non-target nodes and through use of personalized pagerank
algorithm [7] suitable target nodes are selected based on an initial input. How-
ever, beyond selecting target nodes we take advantage of the replacement concept
to sieve in higher quality recommendation.

4.1 Construction of Bipartite Graph

We first elaborate the target and non-target nodes in our case.

Target Nodes: The target nodes comprise of a subset of the five dress categories
- the cardinality of the subset depends on the number of categories we want to
recommend. For example, if we want to recommend DT = {torso base1, feet},
then each target node would comprise of two categories (TB1 and F ) and its
corresponding attributes.

Non Target Nodes: A non-target node Z = {X, Y }, where X = {age or
body structure} while Y is either one of the attribute in {F [type], L[material],
TB1[type], TB2[type], TC[type]} or all of them taken together.

From Picture to Node Formation: Given a picture, based on the recom-
mendation objective we construct the bipartite graph. Suppose if we want to
recommend the categories {torso base1 (TB1), feet (F )}, the target node con-
tains the value of their attributes (here all the attributes of TB1 and F are used
to form the target nodes) while the corresponding non target nodes are Z = {X,
Y }; the attributes associated with the target dress category set are not used
in formation of the non target nodes i.e. in this example, {TB1[type], F [type]}
are left out. That is, given a picture and a recommendation objective, we derive
a subgraph of either 10 or 8 nodes in the non-target set and one node in the
target set. We form a bipartite graph by converting all the candidate pictures
into corresponding subgraphs and merging them. We merge two nodes (arising
from two different pictures) if the nodes have same attribute values.

Edge Formation with Weights: The edges are directed in the graph, initially
when a subgraph is derived from a picture, each non-target node has a directed
edge towards target node with weight 1. When two non-target nodes as well as
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their corresponding target nodes get merged, the weight of the edge is accord-
ingly added. Corresponding to each incoming edge in a target node a matching
outgoing edge is drawn. The sum of weight of the outgoing edges from a target
node is set to 1; the corresponding weights are learned using [2]. Once the graph
is formed, corresponding adjacency M , and transition probability matrix P are
derived.

4.2 Traversal of the Graph

In the recommendation phase, given information of an unattractive outfit we
decide to recommend either one or a subset of dress category. With the infor-
mation of all the attributes except that of the dress category which we want to
recommend, the set Y of non target nodes are formed. The set Y is then used
to define a vector �q′ as follows:

q′
i =

{
1, if vi ∈ Y,

0, otherwise
(2)

The vector �q′ is then normalized to �q, which we use as a query vector. We have
used the algorithm of personalized pagerank [7] for ranking nodes in our graph.
The personalized pagerank score can be expressed as

�r = cPT�r + (1 − c)�t (3)

where �r is the rank score vector of all the nodes, c is a constant damping factor
(usually set as 0.85), P is the transition probability matrix, and �t is the teleport
vector or a normalized biased vector representing the interest of users. Here we
have replaced the teleport vector �t with our normalized query vector �q to rank the
nodes. So in our case, the ranking score vector can be expressed as �r = cPT�r +
(1 − c)�q. The top-k ranked target nodes are shortlisted for recommendation.

4.3 Refining Recommendation Using Positive Influence Factor

The recommendation list can be further refined by having a quick check whether
the chosen target node is performing better than the one it is replacing. This
is done by considering the weights obtained from the SVM in Sect. 3 and calcu-
lating the positive influence of the items recommended for replacement (Eq. 1).
We check whether this influence is higher (by a value δ) than the influence of
the original items and discard any recommendation which does not satisfy this
constraint.

5 Experiments

We have a total of 824 example outfits; according to Survey 1, 409 outfits are
attractive, and 415 are unattractive. From Survey 2, we got 138 outfits as con-
formative, 273 as individualistic, and 413 as average. Let AT , and UAT be the
set of attractive and unattractive outfits respectively.
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5.1 Prediction Accuracy

We randomly selected 270 outfits respectively from AT , and UAT to construct
the training set. The test set consisted of 139 outfits from AT and 145 out-
fits from UAT . The 2 classification models SVM and RF were subjected to 10
fold cross validation using the training set. Optimal cutoff probability for clas-
sification has been used to compute the maximum accuracy. The SVM model
have 10-fold cross validation accuracy = 0.74, f1-score = 0.74, and Area Under
the Receiver Operating Characteristic Curve (ROC AUC) = 0.8. However, the
RFC model produced a 10-fold cross accuracy of 0.73, with f1-score = 0.73, and
ROC AUC = 0.8. So, we chose the slightly better SVM model over the RFC
model in our prediction task. The inclusion of the attribute outfit type (derived
from Survey 2), improved classification accuracy of the SVM model by a fraction
of 0.10, and the RFC model by 0.08.

5.2 MalOutRec - Performance Assessment

Evaluation: The recommendation algorithm - MalOutRec is evaluated with the
set of outfits that have been predicted as not attractive. Suppose PRuat be the
set used for testing the recommender. For every outfit oi ∈ PRuat, our recom-
mendation algorithm suggests top-k set of items from one or two dress category.
The corresponding items are then replaced in oi and the modified outfit ôi is
obtained. The prediction model is then used to predict whether the newly created
ôi is attractive or not. This is done for k = 3, 5, and 10.

We use the metric HR@k [10] for assessing the performance of our recom-
mender. It is defined as #hits

N , where #hits is the number of cases when at
least one of the top-k recommended items transform the unattractive into an
attractive outfit, and N is the cardinality of the set PRuat.

Baseline Method: RecMeta In order to compare our recommendation algo-
rithm with an existing state of the art, we adopted the metapath based recom-
mendation algorithm in [11]. The two metapaths used are item → X → item,
and item → X → item → ensemble → item → Y → item. In our set up, an
item corresponds to a particular dress category with values of all the associated
attributes taken together; X,Y represents common attribute value between two
items, ensemble represents an outfit from the set of all outfits. The relevance met-
ric to measure similarity between source and target items used is AvgSim [14].

Experimentation Results Comparison: Table 2 compares MalOutRec with
the baseline algorithm-RecMeta. We present results for both MalOutRec with-
out shortlisting via positive influence factor (Sect. 4.3) (henceforth called Mal-
OutRecPagerank) and MalOutRec. The results (averaged over all cases) are pre-
sented with top-k (k = 3, 5 or 10) recommendations having one or two items.
It is seen all the three algorithms in around 12–25% of cases, can effectively
recommend a single item that changes an unattractive outfit to attractive. The
figures seem to be low but it is natural as outfit comprises of seven-eight items,
changing one may work only in some cases. The performance improves to 38%
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Table 2. Comparison of average hit rate for recommendation of items taken from
all possible one (case 1) or two (case 2) dress category, using RecMeta (M1), Mal-
OutRecPagerank (M2), and MalOutRec(M3).

k = 3 k = 5 k = 10

M1 M2 M3 M1 M2 M3 M1 M2 M3

Case1 0.1205 0.1698 0.2721 0.1507 0.2384 0.3367 0.2493 0.3466 0.4551

Case2 0.4017 0.3856 0.6209 0.4601 0.5117 0.7240 0.5567 0.6432 0.8237

Table 3. First row - HR@k recommendation of one(two) dress category [(SR1(2))],
second row - HR@k recommendation of two dress category for different outfit types
(Algorithm - MalOutRec)

k =3 k =5 k =10 SR1 k =3 k =5 k =10 SR2 k =3 k =5 k =10

0.60 0.63 0.67 0.5 0.61 0.71

Conformative 0.47 0.58 0.75 Individualistic 0.44 0.56 0.65 Average 1.00 1.00 1.00

when two items are recommended. MalOutRecPagerank performs better (albeit
modest) than RecMeta for five of the six cases - the performance improves as
we increase the value of k, However, we find that the performance of MalOutRec
is way superior to RecMeta. The measure driven by positive influence helped
to provide targeted recommendations according to the needs of individual users
and consequently resulted in improved performance.

Performance of MalOutRec - Detailed Analysis. Figure 3 shows result of
impact of recommendation of one and two items respectively. Note that through
measuring the positive influence factor, we can not only refine the recommen-
dation list for a particular item but also determine which one (two) of the five
dress category item replacement would have the best effect. This is reflected in
value of SR1(2) in Figs. 3(a), and (b) respectively. The result is also presented in
the first row of Table 3. One can now compare the result with the performance of
RecMeta (from Table 2) and notice the improvement is massive (60% in certain
cases). In case of recommendations having items from a single dress category,
TB2 was found to have the maximum HR@10 measure of 69.5%, followed by TC
with 54.9% and TB1 with 42.3% (Fig. 3(a)). This indicates that in maximum
cases by modifying only TB2 - that is the second layer of clothing of torso, an
unattractive outfit can be transformed into attractive one. In cases where we rec-
ommend two dress items, TB2 and L has the highest HR@k measure (Fig. 3(b)).
Thus, by putting a second layer of top-wear (e.g. shirt/sweatshirt) over the first
layer (e.g. T-shirt) followed by replacing a trouser, transforms an unattractive
outfit into attractive.

MalOutRecPerformance Across Different Parameters. Figure 2b shows
the performance of MalOutRec across various age group and body structure. It
is seen that the algorithm performs best for young and thin, normal weighted
people. The performance is generally poor across obese people. Table 3 (2nd row)
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Fig. 3. Top-k performance comparison of recommendation for one (a), or two (b) items
from different dress categories; SR1(2) denotes selective single (double) item recommen-
dation; TB1, TB2, TC, L, and F correspond to the dress categories as defined before.

shows that the fraction of times recommendation given for a conformative dress,
is better than individualistic. This is perhaps as the recommendation system is
converting it to a more average type of dress. The performance for average dress
is highest as MalOutRec just retrieves similar attractive outfits for an already
average dress.

6 Conclusion

We believe this is one of the first endeavors to understand the dynamics of male
street fashion; we have given a substantial effort in carefully collecting the data,
annotating them and conducting a survey among more than 200 people to guage
the attractiveness of an outfit. Since attractiveness is a subjective concept, pre-
dicting it is considered a hard job; our accuracy of 74% is decent in that scenario.
The prediction accuracy improved substantially as we mined social science lit-
erature and understood that the concept of social conformance is an important
discriminative feature. The novelty of the recommendation algorithm MalOutRec
is two-fold: (a) we make an innovative use of personalized pagerank algorithm
(b) we take advantage of the fact that this is a replacement recommendation
task and accordingly make a quick comparison between old and new items to
refine the recommendation set. The result shows remarkable improvement over
metaphath based baseline. Although the method can be extended to even female
fashion, concentrating on male attires provides us interesting insights, For exam-
ple, it has been previously found, that most of the female dress items are tightly
coupled, and as such there is very little scope to recommend separate items to
enhance the attractiveness of an outfit which we found largely does not hold for
male street attire. However, these are initial propositions and need to be studied
in detail in the future. As a final note, we intend to make the relevant portion
of the data, code and developed applications available to research community.
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Abstract. Due to the increasing popularity of location-based services,
a massive volume of human mobility records have been generated. At the
same time, the growing spatial context data provides us rich semantic
information. Associating the mobility records with relevant surrounding
contexts, known as the location annotation, enables us to understand the
semantics of the mobility records and helps further tasks like advertising.
However, the location annotation problem is challenging due to the ambi-
guity of contexts and the sparsity of personal data. To solve this prob-
lem, we propose a Context-Aware location annotation method through
User Grouping (CAUG) to annotate locations with venues. This method
leverages user grouping and venue categories to alleviate the data spar-
sity issue and annotates locations according to multi-view information
(spatial, temporal and contextual) of multiple granularities. Through
extensive experiments on a real-world dataset, we demonstrate that our
method significantly outperforms other baseline methods.

1 Introduction

In recent years, location-based services have been widely used in our daily lives
and generated a massive volume of human mobility records (e.g., transportation
records) and online spatial context data (e.g., venue database). The combina-
tion of mobility records with relevant contexts helps reveal the semantic of user
movement and is known as the semantic annotation of mobility records [1]. In
this paper, we use venue dataset as the context and consider the problem of
mapping a user’s location to a venue he might actually visit. The work can have
important applications, such as user profiling, recommendation, and advertise-
ment targeting. For example, as shown in Fig. 1, if we know a person often moves

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 583–596, 2018.
https://doi.org/10.1007/978-3-319-93040-4_46
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Fig. 1. An example of location annotation problem

from a university to entertainment venues at night, and go back very late, we
could infer this person is a sparky college student, and recommend some recre-
ational activities to him. Besides, smart city applications can benefit from such
semantic understandings of the raw transportation data.

However, it is hard to associate right venues with mobility records. The chal-
lenges are mainly two folds: (1) Both recorded locations and surrounding con-
texts are ambiguous. For a given mobility record of a user, the observed location
could have noises, and there may be many possible venues around. As Fig. 1
shows, the number of POIs in some areas of Beijing can reach 500 (according to
the data from AutoNavi1). (2) The user data maybe sparse. Though the total
number of mobility records is large, each user may only have a limited number
of personal data. According to the data from UCAR2, less than 10% users have
their trips recorded over 3 times within one month. In addition, most POIs only
have a few visit records except some popular ones.

For the annotation problem, some previous work mainly considers the dis-
tance between the context location and the location of a user [2–4], while others
further consider personal preference [5,6]. However, modeling personal prefer-
ence straightforwardly requires adequate records for each individual user, which
conflicts with the data sparsity. Furthermore, these methods do not consider the
influence of contextual mobility records (e.g., former and later records of a given
record). For example, a person who has just visit a restaurant is less likely to
visit a restaurant again in a short time.

To tackle these problems, we propose a Context-Aware location annotation
method through User Grouping, named CAUG. In this method, the correlation
between mobility contextual records is captured by contextual features. And the
data sparsity issue is mainly compensated by considering information of user
groups, which is based on our intuition that users who share similar mobility

1 A map service provider. https://en.wikipedia.org/wiki/AutoNavi.
2 A chauffeured car service provider in China. https://www.crunchbase.com/

organization/ucar.

https://en.wikipedia.org/wiki/AutoNavi
https://www.crunchbase.com/organization/ucar
https://www.crunchbase.com/organization/ucar
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Table 1. Summary of notations

Notation Terms Description

p Point-of-Interest (POI) p〈id, name, l, c〉, where p.l is a location
defined by longitude and latitude, and p.c is
categories of POI

c Categories of POI c〈c1, c2, c3〉, where c.c1, c.c2 and c.c3 are p’s
1st class, 2nd class and 3rd class categories,
respectively

g Grid g〈row, col〉, an indexed grid (780 m × 780 m)
in a city

tp Period of a Day (POD) A time period of a day, including morning,
noon, afternoon, evening and late night

s Spatio-temporal Area s〈g, tp〉, denoting a grid g at time period tp

z User Activity z〈v.c, tp〉, where v.c is a venue category and
tp is a time period

x Stop-Point x〈u, l, t, p〉, denoting a geographic location
x.l where a user x.u actually picked up or
droped off at time x.t around a POI x.p

r Travel Record r〈xs, xe〉, where r.xs and r.xe are the start
stop-point and the end stop-point of a user,
respectively

T ′ Tajectory A sequence of stop-points of a user

patterns are likely to visit similar venues under the same condition. To summa-
rize, we make the following contributions:

1. We propose an iterative grouping method to group users based on the sim-
ilarity of their mobility patterns, which are captured by a Hidden Markov
Model (HMM) [7]. The user-grouping method alleviates the data sparsity to
a great extent.

2. We apply a ranking model to annotate locations, with a strategy that inte-
grates multi-view (spatial, temporal and contextual) information extracted
from users and POIs’ historical information at different granularities. The
comprehensive consideration guarantees the effectiveness of annotation.

3. We evaluate our method with a 14-month real-world dataset from a car-
hailing company. Experimental results show our method can produce effective
user groups and contextual features. Meanwhile, this method outperforms
other baseline methods.

2 Preliminary

This section describes some basic terms used in this paper. The notations are
summarized in Table 1.
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We use transportation data from UCAR for our study, including a mass of
travel records. When using UCAR’s online car-hailing service to book a trip, a
user can search based on address or based on the name of the POI and then
selects a POI for pick-up and a POI for drop-off. After the trip finished, it will
be recorded as a travel record which consists of a start stop-point and an end
stop-point. It should be noted a POI selected by a user can be either a venue
or an indistinct place. A venue refers to a place like a restaurant or a cinema
where people conduct specific activities, while an indistinct place is a place like
a crossroad or a public parking lot which is hardly the final intention of a user.
In order to make users’ trips more semantic, those stop-points whose POIs are
indistinct places are to be annotated with venues users might actually visit.

A trajectory represents a sequence of stop-points with contextual relations.
Therefore, we actually concatenate a set of travel records back to a trajectory
if the end stop-point of the previous trip and the start stop-point of the next
trip has similar time or location. The notion of trajectory enables our model
to consider contextual correlation not only between a start stop-point and an
end stop-point, but also between travel records. Specifically, given a sequence of
stop-points T = xs

1x
e
1x

s
2x

e
2 . . . xs

nxe
n of a user u, a time gap threshold Δt > 0

and a distance threshold Δd > 0, a subsequence T ′ = xs
i x

e
i x

s
i+1x

e
i+1 . . . xs

i+kxe
i+k

is a trajectory of T if T ′ satisfies: (a) ∀1 < j ≤ k, xs
j .t − xe

j−1.t ≤ Δt or
d(xe

j−1.l, x
s
j .l) ≤ Δd, where d(la, lb) stands for the distance between location la

and lb; and (b) there are no longer sub-sequences in T that contains T ′ and
satisfies condition (a). Also, for a given stop-point x in T ′, its former and later
points are denoted as ←−x and −→x , respectively.

Problem 1 (Location Annotation). Given a trajectory T ′ of a user u, for
each stop-point x in T ′ whose POI x.p is an indistinct place or unknown, a
location annotation method provides a list of venues u might visits.

3 Method

3.1 Overview of CAUG

The overall framework of CAUG is shown in Fig. 2, mainly including user group-
ing, feature extracting and venue ranking. When extracting features from histor-
ical records, we organize records into multiple granularities.

First, from the perspective of users, we observe the personal records are usu-
ally too sparse to do the personalized annotation and the overall records are too
inconsistent as different users usually have totally different mobility patterns.
Thus, we are motivated to find a middle-level granularity called user group to
compensate, based on our intuition that users who share similar mobility pat-
terns may have similar visit tendencies under the same condition (e.g., a group
of colleagues may live in the same housing area and often go to a specific bar
near their homes after work). In this way, we organize user travel records into
three levels, i.e., personal level, group level and overall level.
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Fig. 2. An overview of CAUG

Second, from the perspective of venues, we observe though most venues are
seldom visited, similar venues have similar visited tendencies. Therefore, we
consider not only the visit history of venues themselves but also that of the
venue categories. We adopt a classification method of venue categories defined
by AutoNavi and organize a specific venue into four classes. For example, a
specific Starbucks coffee shop belongs to the shop itself (4th class), Starbucks
(3rd class), cafe (2nd class) and catering services (1st class). Note that the venue
category can vary with different classification methods based on different POI
datasets. Combining the above two kinds of granularities, i.e., three levels of user
records and four classes of venues, we finally get 3 × 4 = 12 granularities.

For a stop-point in a trajectory of a user, CAUG first selects all venues within
a distance as candidates. Then, for each candidate venue, CAUG extracts a
series of spatial, temporal, spatio-temporal and contextual features for each of
the twelve granularities. Finally, CAUG returns a ranked list of Top-k venues
through a ranking model.

3.2 User Grouping

When people move from one place to another place, their activities are in nature
sequential and have mobility patterns. The mobility patterns of users could be
captured by HMM, which is widely used to model the mobility of users [4,8]. We
use it for learning representations of users’ mobility patterns and further use it
in an iterative grouping.

HMM Formulating. We assume there are K activities Z = {z1, z2, . . . , zK}
(i.e., hidden states) and M spatio-temporal areas S = {s1, s2, . . . , sM} (i.e.,
observations). As a user movement process is shown in Fig. 3, each observation
sn in the observed sequence s1s2 . . . sN corresponds to a state zn ∈ Z, and the
state seqeunce z1z2 . . . zN follows a transition regulation. Thus, we consider three
factors when formulating the HMM: (1) the probabilities of activities users begin,
(2) the probabilities of transition between activities, and (3) the probabilities
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of users appearing at one area given their activity. More formally, the HMM
is parameterized by λ = (π,A,B), where π = (πi) is a K-dimensional vector
which defines the initial distribution over the K activities, A = [aij ]K×K is
a matrix that defines the transition probabilities among the K activities, and
B = [bij ]K×M is a matrix which defines the emission probabilities of M spatio-
temporal areas over the K activities.

Fig. 3. The illustration of the HMM

Given R trajectories, we first generate a observed sequence and a correspond-
ing state sequence for each trajectory by the following ways: (1) map stop-points
in the trajectory to spatio-temporal areas, and consider the sequence of spatio-
temporal areas as the observed sequence, (2) map stop-points in the trajectory
to activities, and consider the activity sequence as the state sequence. However,
because a proportion of stop-points’ POIs may be indistinct places, their cor-
responding activities are unclear. In this case, the parameters of the model are
estimated in the following way:

πi =
Ri + α

Rπ + Kα
, i = 1, . . . , K (1)

aij =
Aij + α

∑K
k=1 Aik + Kα

, i = 1, . . . , K; j = 1, . . . , K (2)

bij =

⎧
⎨

⎩

Bij + α
∑M

m=1 Bim + Msα
, zi.tp = sj .tp

0 , zi.tp �= sj .tp

, i = 1, . . . , K; j = 1, . . . , M (3)

where Ri is the number of state sequences begin with activity zi and Rπ is the
number of state sequences whose first state is explicit. Aij is the frequency of
transferring from state i at time t to state j at time t + 1, which is counted
according to state sequences, skipping indistinct activities. Bij is the frequency
of appearing in spatio-temporal area sj when doing activity zi. Ms is the number
of grids and α is the smoothing parameter of the additive smoothing3.

Iterative Grouping. Given a set of users U = {u1, u2, . . . , uD} and their tra-
jectories, we first initialize their groups. Then, we employ an iterative refinement
framework to further group users based on their mobility patterns. During each

3 https://en.wikipedia.org/wiki/Additive smoothing.

https://en.wikipedia.org/wiki/Additive_smoothing
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iteration, we generate a better representation of each group’s mobility pattern
and then assign every user to a more appropriate group. The major steps are
described as follows:

Step 1: Initialization. In this step, instead of assigning every user to a group
randomly, we vectorize every user and use clustering algorithms like k-means to
preliminarily cluster users according to their mobility patterns, so as to reduce
the time cost in the subsequent iteration. Specifically, we first train an HMM
Hu = (πu, Au, Bu) for each user u by the aforementioned learning method, whose
parameters reflect the mobility pattern. Then, we simply reshape (πu, Au, Bu)
to an E-dimensional vector, where E = K × (1 + K + M). After vectorizing all
users, we stack all vectors to be a matrix ID×E . Since E is a very large integer,
we leverage PCA to reduce the dimensionality and then apply k-means to get the
initial user groups ϕ = {g1, g2, . . . , gG} where G is a user-defined group number.
Next, for each g ∈ ϕ, we train an HMM Hg which represents the mobility pattern
of group g. Finally, we get an initial HMM ensemble Φ(0) = {H

(0)
g | g ∈ ϕ}.

Step 2: Grouping. For each user u, let us denote the set of u’s trajectories as
Ju, in which the j-th trajectory is T j

u . Based on the latest HMM ensemble Φ(t), we
assign u to a new group gt+1 by a way of voting, considering all trajectories in Ju.
Users belong to g make up a new set St+1

g = {u | ∀j, vu(g) ≥ vu(gj), 1 ≤ j ≤ G}.
The voting value that u gives to g is:

vu(g) =
|Ju|∑

j=1

1
Zj

u

p(T j
u | g;Φ(t)) (4)

where p(T j
u | g;Φ(t)) is the probability of observing T j

u given group g’s group-level
HMM H

(t)
g and can be computed by the Forward Scoring algorithm of HMM,

and Zj
u =

∑G
i=1 p(T j

u | gi;Φ(t)) is the normalization term.
Step 3: Updating. For each g in ϕ, we utilize the trajectories belong to group

g to train an HMM H
(t+1)
g by the aforementioned learning method. Thus, we

generate a new ensemble of HMMs Φ(t+1) = {H
(t+1)
g | g ∈ ϕ}.

Step 4: Iteration. After updating the ensemble of HMMs, we go back to step
2 for further iterations. The algorithm will stop when the number of reassigned
users is lower than a preset value (e.g., 1% of total user number D).

At last, users with the similar mobility are grouped, upon which we get
group-level features along with personal-level and overall-level features.

3.3 Feature Extraction

In this section, we introduce features from the point of views of multiple granu-
larities and multiple views. Given a stop-point x belongs to a trajectory T ′ of a
user u. We searched out venues V = {v1, v2, . . . , vn} that are within distance d
from location x.l as candidates. For each candidate venue vi, we extract a series
of features, mainly based on travel history of different granularities.
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Multi-granularity Features. As mentioned in Sect. 3.1, we leverage multi-
granularity features to alleviate the data sparsity issue. The kinds of feature
granularities can be divided into multi-user and multi-venue granularities. For
multi-user granularities, we generate features for a given user u from the travel
history of all users, u himself and the group g he belongs to. And for multi-venue
granularities, we generate features for a given venue v from visit history of v
itself (Xv) and v’s category (Xv.c) which can be further sub-divided into Xv.c.c1 ,
Xv.c.c2 and Xv.c.c3 . The symbol Xv stands for the set of stop-points where each
stop-point x’s POI x.p is the same as the given venue v, and similarly Xv.c.ci

stands for the set of stop-points where each stop-point x’s POI category x.p.c.ci

is the same as the given venue category v.c.ci.
By combining these two kinds of granularities, we can extract history-related

features from the user u’s visit history to v and v.c, his group’s visit history to
v and v.c and all users’ visit history to v and v.c, respectively.

Multi-view Features. Given a stop-point x and a candidate venue v, we
mainly consider four types of features: the spatial relationship - Fs(x, v), the
temporal relationship - Ft(x, v), the spatio-temporal relationship - Fst(x, v) and
the contextual relationship - Fc(x, T ′, v), where T ′ is the trajectory x belongs
to. In the following, we only introduce features generated from Xv due to the
limitation of space. Note that the feature generated from Xv.c is similar.

(1) Spatial features of Fs(x, v) reflect visit preference related to geographic
factors, including 2 parts:

– Revised distance distrv(x, v). We observe distance d(v.l, x.l) sometimes mis-
lead annotation. For example, if a user gets off a vehicle at the roadside (x.l)
and get into a large supermarket v represented geographically by only one
point v.l, d(v.l, x.l) may be bigger than distances from x.l to many other
venues. Thus, we extract typical stop-points of venues by applying Affinity
Propagation Clustering to historical stop-points of venues. Then we consider
the distance between x.l and the closest typical stop-point as the distance
feature.

– Spatial conditional frequency freqd(x,Xv) = |{xh ∈ Xv|d(x.l, xh.l) < Δ′
d}|:

the number of historical stop-points in Xv around x.l. Spatial adjacent points
may have similar visit preference.

(2) Temporal features of Ft(x, v) consist of 6 temporal conditional frequen-
cies, which reflect different visit preference under different temporal conditions.
We first define a temporal condition set Λ = {λ1, λ2, . . . , λ6}. Given time t′

of a historical stop-point and t of an unannotated stop-point, Λ contains: (1)
POD(t′) = POD(t), where POD(t) maps time t to a time period tp; (2) t′

is in the weekend if t is in the weekend, otherwise t′ is in the weekday; (3)
DOW (t′) = DOW (t), where DOW (t) maps time t to day of week; (4) t′ and
t are on the same day, which reflects the situation (e.g., a sales promotion) on
that day of venue v; (5) t′ is within 30 days before and after t, which reflects
recent situations of venue v; and (6) t′ is within 90 days before and after t, which



Context-Aware Location Annotation on Mobility Records 591

reflects long-term situations of venue v. Then, for each condition λ(t′, t) ∈ Λ,
we get a conditional frequency freq(Xv, x, λ) = |{xh ∈ Xv|λ(xh.t, x.t)}| as a
feature, which stands for the number of historical stop-points in Xv satisfying
temporal condition λ.

(3) Spatio-temporal features of Fst(x, v). Spatio-temporal conditional fre-
quency freqst(x,Xv)=|{xh ∈ Xv | d(x.l, xh.l) < Δ′

d ∧ I(x.t, xh.t) < Δ′
t}|: the

number of historical stop-points in Xv which satisfy both spatial and temporal
constraints, where I(t, t′) computes the time interval between t and t′ in the
span of 24 h.

(4) Contextual features of Fc(x, T ′, v). The relevance between x and v is
related to the trajectory T ′. For example, if x’s former point ←−x and another
stop-point ←−xh have similar characters (e.g., spatial adjacent or corresponding to
the same POI category), x and xh are likely to visit the same venue if they
are spatial adjacent (e.g., a transition from housing areas to a specific company
followed by a group of colleagues). Contextual features contains 2 parts:

– User activity inferred by group-level HMM. Instead of using Viterbi Algo-
rithm directly, we consider the activities already known in trajectory T ′.

– Contextual conditional frequencies. We first define a contextual condition
set Ω = {ω1, ω2, ω3}. Given two stop-points x and x′, Ω contains: (1)
d(x.l, x′.l) < Δ′

d; (2) x.p = x′.p, which is the POI limit; and (3) x.p.c =
x′.p.c, which is the POI category limit. Then, for each ω(x, x′) ∈ Ω,
we get a frequency feature about former points freq(Xv, x, ω) = |{xh ∈
Xv|ω(←−xh,←−x )}| and a frequency feature about later points freq(Xv, x, ω) =
|{xh ∈ Xv|ω(−→xh,−→x )}|, both of which stand for the number of historical stop-
points in Xv satisfying contextual condition ω.

3.4 Venue Ranking

Our method has three variants to rank venues by relevance: (1) CAUG-LR. For
a stop-point, it uses Logistic Regression [9] to do binary classification for every
candidate venue. Then venues are ranked by probabilities. (2) CAUG-GB. It
uses XGBoost [10] to replace Logistic Regression, measuring the performance in
tree based model. (3) CAUG-Rank. It uses a learning-to-rank algorithm named
LambdaMart to give ranked lists, which is a boosted tree version of LambdaRank
based on RankNet [11].

4 Experimental Study

4.1 Setup

Datasets. In the work, we use a real operational transportation dataset col-
lected by UCAR within 6th Ring Road of Beijing during Jun. 1, 2015 to Aug.
31, 2016. Also, we make use of the POI dataset of AutoNavi for annotation and
use the first-class category to make up the activity.
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Algorithms. We implement three variants of our method, i.e. CAUG-LR,
CAUG-GB and CAUG-Rank, which use the same features proposed in this
paper. We also implement 2 straightforward methods (i.e., Dist and DistR) and
3 distinct methods (i.e., MRF, DistHMM and LSRank) as baselines:

– Dist. It directly matches the closest venue to each stop-point.
– DistR. It uses the revised distance distrv to match the closest venue.
– MRF. A method based on Markov random field model [5], considering the

distance factor, spatial and temporal regularity of human mobility.
– DistHMM. A method based on HMM [4], considering the distance and the

historical consecutive transitions between POIs.
If there is no venue within 500 m for a stop-point in the user’s states, we
instead use the Dist model.

– LSRank. A learning-to-rank-based local search framework [6]. It uses features
including the popularity of venues, distance between stop point and venues,
temporal preference to venues and personal preference to venues.

Metrics. We use Normalized Discounted Cumulative Gain (NDCG)4 to mea-
sure whether the ground truth venue appears in the output ranked list weighted
by the position. For each annotation, NDCGk =

∑k
i=1

reli
log2(i+1) , where reli ∈

{0, 1}, is the binary relevance of the result at position i. The higher the ground
truth venue is ranked in our list, the higher the NDCG score will be, and a value
of 0 indicates the ground truth is not in the Top-k ranked list. In this paper,
NDCG@k is the mean of the NDCGk for each annotation and NDCG@1 is
the same as the Top-1 accuracy.

4.2 Results

In this section, we report our findings. Note that, based on the actual situation
of our dataset, the percentage of the labeled data is set to 55% for an experiment
of the cold-start user and 85% for feature and comparison experiments.

The Impact of Feature Views. To evaluate the impact of different feature
views on our methods, we test the effectiveness of our method on one view at
a time and gradually combine them all together. The result in Fig. 4(a) shows
temporal features are more effective than spatial features (0.88 versus 0.68 in
NDCG@1). By combining temporal, spatial and spatio-temporal features, the
NDCG@1 reaches over 0.92. Furthermore, the integration of contextual features
further enhances the performance apparently, demonstrating it improves anno-
tation in a different aspect with spatio-temporal factors.

4 https://en.wikipedia.org/wiki/Discounted cumulative gain.

https://en.wikipedia.org/wiki/Discounted_cumulative_gain
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Fig. 4. Experiment results

The Impact of Feature Granularities. To evaluate the effectiveness of group
and venue-category granularities, we start with features of both the overall and
personal granularities without considering venue categories, then we add group
and venue-category granularities. As Fig. 4(b) shows, when we only use overall
and personal granularities, the NDCG@1 only reaches 0.88. By introducing the
group and venue-category granularities, the NDCG@1 rises to about 0.97, which
verifies the sparsity issue is alleviated. And we can find the group granularity is
more effective than the venue-category granularities (0.96 versus 0.91). To further
observe the impacts of group and venue-category granularities, the following two
sub-experiments were conducted:

(1) Impact on travel regularity. We first define travel regularity by a 2-
dimensional vector (Lorder, LPOI), where Lorder represents the level of order
quantity and LPOI is the level of POI quantity. Intuitively, users who have vis-
ited various venues (LPOI is high) in his few number of travel records (Lorder

is low) are less regular in their mobilities. The result in Fig. 4(c) shows adding
group granularity (G) to the model which just use overall and personal records
(A+P) improves the performance, especially for those irregularly-traveling users.

(2) Impact on visited frequency. We test venues with different visited fre-
quency. As shown in Fig. 4(e), popular venues have higher annotation accura-
cies. By adding venue-category granularity (V) to the model using overall and
personal records (A+P), the performance improves, especially for novel and cold
venues.

The Impact of Labeled Data Percentage. As shown in Fig. 4(d), the per-
formance does not drop notably until the percentage of labeled data diminish to
under 10%. This result provides an interesting message: for those who annotate
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Table 2. Experiment results of different methods

Methods Dist DistR MRF DistHMM LSRank CAUG-LR CAUG-GB CAUG-Rank

NDCG@1 0.105 0.381 0.438 0.428 0.820 0.960 0.973 0.975

NDCG@5 0.222 0.562 / / 0.913 0.985 0.990 0.991

locations manually, they could only annotate a small proportion of the records
and leave the work to CAUG.

Comparison with Other Methods. To evaluate the performances of different
models, we compared 8 models. The result in Table 2 shows the performance of
our method outperforms all others. NDCG@1 of Dist, DistR, MRF, DistHMM
are under 0.50 because they oversimplify the factors influencing annotation.
Since LSRank doesn’t consider contextual information and multi-granularity,
its NDCG@1 only reaches 0.80. CAUG-LR, CAUG-GB, and CAUG-Rank all
annotate accurately (over 0.95), which reveals the effectiveness of our features.
Besides, we compare DistR and our model for cold users without enough histor-
ical data. The result in Fig. 4(f) shows as the number of personal records grows,
the overall NDCG gradually improves. Specifically, for a new user who only has
one travel record, the NDCG@1 of DistR only reaches 0.10, while our model is
above 0.50 owing to the contextual information and multi-granularity features
enrich the information for modeling user preference.

5 Related Work

Researchers proposed numerous methods [2,5,8,12,13] for semantic annotation
of mobility records according to their specific tasks or data. Studies on traditional
mobility data like GPS traces [2,4] mainly consider the distance between the
context location and the location of the user. Without considering the history of
individual’s movement, they cannot provide personalized annotation. Spinsanti
et al. [14] add some manually defined semantic rules to calculate the possibility
of a person visiting a POI. However, rules cannot be well-rounded. Yan et al.
[4,15] take transition relation of human movements into account and propose
a method using HMM to annotate trajectories. Nevertheless, they ignored the
temporal influences and only annotate locations with categories of POI other
than specific POIs.

Due to the development of mobile Internet, massive geo-tagged social media
(GeoSM) data combining texts with locations are generated. Wu et al. [3] and
Zhang et al. [8] utilize noisy and sparse GeoSM data to discover proper activities
or text tags of locations. Since sources of annotations are texts over the space,
methods proposed by them cannot be applied to our problem. Some researchers
utilize check-in data to study location annotation in [5,6,12,16], which is similar
to our work. However, because check-in records are usually not continual, both
of them neglect mobility transitions.



Context-Aware Location Annotation on Mobility Records 595

Moreover, location annotation is similar to the problem of recommending a
POI to a user at a location [17,18]. Nevertheless, POI recommendation aims to
rank those previously unvisited venues, while location annotation does not.

6 Conclusion

In this paper, we have proposed CAUG, an effective method to provide personal-
ized location annotation through spatial, temporal and contextual factors, which
can be generalized to many kinds of mobility data (e.g., locations collected by
mobile apps). By constructing the sequence of locations, we take advantage of
the transition relations among contextual mobility records to help annotate. We
use HMM to model the users’ mobility and group users based on their mobility
patterns. With the help of user groups and venue categories, we effectively alle-
viate the issue of data sparsity. Experiments on a real-world dataset show that
CAUG outperforms other 5 baseline models.
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Abstract. In recommendation systems, items of interest are often clas-
sified into categories such as genres of movies. Existing research has
shown that diversified recommendations can improve real user expe-
rience. However, most existing methods do not consider the fact that
users’ levels of interest (i.e., user preferences) in different categories usu-
ally vary, and such user preferences are not reflected in the diversified
recommendations. We propose an algorithm that considers user pref-
erences for different categories when recommending diversified results,
and refer to this problem as personalized recommendation diversifica-
tion. In the proposed algorithm, a model that captures user preferences
for different categories is optimized jointly toward both relevance and
diversity. To provide the proposed algorithm with informative training
labels and effectively evaluate recommendation diversity, we also propose
a new personalized diversity measure. The proposed measure overcomes
limitations of existing measures in evaluating recommendation diversity:
existing measures either cannot effectively handle user preferences for
different categories, or cannot evaluate both relevance and diversity at
the same time. Experiments using two real-world datasets confirm the
superiority of the proposed algorithm, and show the effectiveness of the
proposed measure in capturing user preferences.

1 Introduction

In most recommendation systems, items are classified by predefined categories,
e.g., genres of movies or styles of musics. Recent studies show that users’ inter-
ests often spread into several genres [22,23] (for ease of presentation, we will
simply use genres to represent categories in the following). However, many exist-
ing algorithms (e.g., [7,8]) only try to optimize toward recommendation accuracy
or item relevance, which is not optimal to cover users’ diverse interests. In fact,
the objectives of relevance and diversity are largely orthogonal, i.e., optimizing
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 597–609, 2018.
https://doi.org/10.1007/978-3-319-93040-4_47
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Table 1. Three lists of recommended movies in movie recommendations.

Rank Recommendations by three different ranking measures

Non-diverse recomm. Diverse without user pref. Diverse with user pref.

1 First Shot (�) First Shot (�) First Shot (�)

2 Rapid Fire (�) Snow Angels (∗) Snow Angels (∗)

3 Black Dawn (�) Rapid Fire (�) Rapid Fire (�)

4 Shadow Man (�) iss Potter (∗) Black Dawn (�)

Count #Action = 4 #Drama = 0 #Action = 2 #Drama = 2 #Action = 3 #Drama =1
1Star (�) stands for action movies and asterisk (∗) stands for drama movies.

toward relevance may recommend very similar items, while optimizing toward
diversity may present less relevant items. Recommendation diversification algo-
rithms aim to achieve these two objectives at the same time and recommend
diverse items with high relevance. Existing work in this area either separates
relevance and diversity optimization [18], or does not explicitly consider the
personalization in genre preferences [3,5,21] as discussed below.

Users usually have varied preferences over different genres [18]. High variances
in such genre preferences require highly personalized recommendation diversi-
fication algorithms, which aim to present diverse recommendations catering to
individual user’s genre preference [18]. For example, Table 1 shows three lists of
movies recommended to a user interested in both action and drama movies. The
movies under the “non-diverse recomm.” column are all action movies, which are
not diverse in terms of genres. The movies under the “diverse without user pref.”
and “diverse with user pref.” columns resolve this issue by also presenting drama
movies. Suppose that the user prefers action movies. The “diverse without user
pref.” column treats the two genres equally (recommending two action movies
and two drama movies) and does not consider the user’s genre preference. The
“diverse with user pref.” column in this case presents a better recommendation,
i.e., personalized diverse recommendations, which is the aim of this paper.

Toward this end, we propose a personalized diversification algorithm to jointly
optimize both relevance and diversity and explicitly consider personalized genre
preferences in diversification. The proposed algorithm iteratively selects the item
that maximizes a function (i.e. ranking function) of two components: one models
a user’s rating for an item and the other models the user’s genre preference for the
item. The two components are collaborated by a joint optimization method to
recommend items as accurately as possible (accurate rating prediction) and make
an item list as personalized diverse as possible (personalized diverse ranking).
The joint optimization method enables the personalized diversification algorithm
to use the true ratings and pre-determined item rankings as sources of training
information, where the item rankings indicate which item should be selected for
personalized diverse recommendations given a selected item list.

To provide effective item rankings (i.e., training labels) to our algorithm, we
need to measure the diversity of recommendations for each user, i.e., personalized
diversity. Existing measures have limitations in evaluating personalized diversity:
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Fig. 1. User preference analysis on a movie rating dataset (#genres = 18).

they either cannot handle the genre preferences of a user [4], or ignore the minor
interests of a user [1], or cannot evaluate both relevance and diversity at the
same time [18]. To overcome these limitations, we propose a new personalized
diversity measure, which evaluates an item list based on user preferences for
the covered genres of the list. This makes the item list having the highest score
under our measure (i.e., the ideal list) has a desired property [18]: each genre is
represented according to personalized genre preferences in the list.

The main contributions of this paper include: (1) We propose a novel rec-
ommendation diversification algorithm which can learn a ranking function by
jointly optimizing the relevance and diversity. (2) We also propose a personal-
ized diversity measure that can effectively evaluate personalized diversity of rec-
ommendations. (3) Experiments using real-world datasets of different domains
show that the proposed algorithm outperforms several baseline methods and the
proposed measure is more effective in capturing personalized genre preferences.

2 Problem Formulation

We assume that items to be recommended are categorized into genres. Let X =
{xn}N

n=1 be an item set, G = {gk}K
k=1 be a genre set, R ∈ R

U×N be a rating matrix
(Ru,n is the rating of user u for item xn), J ∈ R

N×K be the genre information for
items X (Jn,g = 1 if item xn is with genre g and Jn,g = 0 otherwise). We define
the problem of personalized recommendation diversification as:

Definition 1 (Personalized Recommendation Diversification). Given U
users, N items, K genres, the rating matrix R, the genre information J, and a
personalized diversity measure M, the task is to generate the item list Yu =
[xy1 , ..., xyN

] that maximizes the measure M for each user u.
Intuitively, the problem is to consider personalized genre preferences

(referred to as user preferences in the following for brevity) in diversification.
We consider two formulations of modeling user preferences. Let X u be the

item set rated by user u and X u
g ⊆ X u be the subset of items with genre g. The

frequency-based user preference is given by pu
g ∝ |X u

g |/|X u| (g ∈ G) [18]. Here, pu
g

is the user preference for genre g, which is proportional to the percentage of rated
items with genre g. To consider the scale of ratings, we define the rating-based user
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preference as qu
g ∝ ∑

n:xn∈Xu
g

Ru,n/
∑

n:xn∈Xu Ru,n (g ∈ G). Here, qu
g is propor-

tional to the sum of ratings for items with genre g,
∑

n:xn∈Xu
g

Ru,n, over the sum
of ratings for items with any genre,

∑
n:xn∈Xu Ru,n. Experiments show that our

framework is insensitive to the choice of user preference formulation.
We identify a few key characteristics of user preferences using a movie rating

dataset detailed in Sect. 5. We show the entropy of user preferences against the
number of interested genres (those genres covered by X u) in Fig. 1. Each user
is a blue dot which may be overlapped, so the population density is also drawn.
For both user preference formulations, we find that: (1) Users prefer different
degrees of diversity: the number of interested genres varies from 8 to 18 and
the entropy of user preferences varies from 1.5 to 3.0 across users; (2) Users
have varied preferences for different genres: no single user reaches the maximum
entropy line where all genres are of the same interest to a user. These findings
motivate us to consider user preferences in diversification.

3 Personalized Diversification Algorithms

In theory, optimizing a diversity measure is NP-hard [1], and a greedy strategy
is often adopted [3]: at iteration r, r − 1 items Yr−1 have been selected. A
marginal score function s(xn,Yr−1) is used to select the next best item, which
is then added to Yr−1. Two methods for modeling s(xn,Yr−1) are presented as
follows.

3.1 Personalized Diversification Algorithm by Greedy Re-ranking

A naive method is to use a re-ranking strategy which greedily selects next items
based on predicted ratings, which is called personalized diversification algorithm
based on greedy re-ranking (PDA-GR). It consists of: (1) A prediction phrase
uses matrix factorization to predict ratings {R̂u,n}xn∈X ; (2) A re-ranking phrase
uses a training set to estimate user preferences {p̂u

g}g∈G , and a heuristic-based
marginal score function to re-rank. Using the genre information J, the marginal
score function is defined as a combination of a rating component f(R̂u,n),
which models a user’s rating for item xn, and a genre preference component
Jn,g(p̂u

g )Cg(r−1), which models the user’s genre preference of item xn:

s(xn,Yr−1) =
∑

g∈G
f(R̂u,n) · Jn,g(p̂u

g )Cg(r−1) (1)

Here, f(r) = 2r, and Cg(r − 1) is the number of previous items with genre g.
PDA-GR is sub-optimal because it divides optimizing accurate rating prediction
and personalized diverse ranking into two separate phrases.

3.2 Personalized Diversification Algorithm by Joint Optimization

To tackle the sub-optimality, we propose a personalized diversification algorithm
based on joint optimization (PDA-JO), which can optimize both accurate rating
prediction and personalized diverse ranking simultaneously.
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Algorithm 1. Personalized Diversification Algorithm by Joint Optimization

Input: users U , items X , ratings R, a personalized diversity measure M
1 Pre-train {pu,bu}u∈U , {qn,bn}xn∈X based on R
2 while PDA-JO has not converge do
3 Z ← ∅, B ← ∅ � Z is sampled item lists and B is training instances
4 for each user u in U do
5 for length l from 0 to |X | − 1 do
6 Add the ideal list of length l under the measure M into Z
7 Sample S non-ideal lists of length l and add them into Z
8 for item list Y in Z do
9 for item pair (xm, xn) from X \ Y do

10 if M(Y + [xm]) > M(Y + [xn]) then L ← 1
11 else L ← 0
12 Add (Y, xm, xn, y = (Ru,m,Ru,n, L)) into B
13 for mini-batch b in B do
14 Update {pu,bu}u∈U , {qn,bn}xn∈X , μ based on Equation 3

For user u, let pu ∈ R
F be the embedding and bu ∈ R be the bias. For item

xn, let qn ∈ R
F be the embedding and bn ∈ R be the bias. The rating for item

xn is predicted by R̂u,n = pᵀ
uqn + bu + bn. We use a parameter μ to alleviate

the error of rating prediction. The marginal score function is defined as:

s(xn,Yr−1) =
∑

g∈G
f(R̂u,n + μ) · Jn,g(p̂u

g )Cg(r−1) (2)

Here, f(r) = 2r, Jn,g = 1 if item xn is with genre g and Jn,g = 0 otherwise, pu
g

is the preference of user u for genre g, and Cg(r − 1) is the number of previous
items with genre g. {pu,bu}u∈U , {qn,bn}xn∈X , and μ are learnable parameters.

We define a training instance for user u as (Y, xm, xn, y) where Y is selected
items, xm and xn are two candidate items, and y = (Ru,m,Ru,n, L). Here, Ru,m

and Ru,n are the true ratings for items xm and xn. Training label L indicates
which item ranking is better under the measure M: L = 1 if M(Y + [xm]) >
M(Y +[xn]) and L = 0 otherwise. The probability of L = 1 is P = σ(s(xm,Y)−
s(xn,Y)), where σ(·) is the sigmoid function. The loss function of our algorithm
consists of a relevance loss Lr a personalized diversity loss Ld:

L = 0.5[(R̂u,m − Ru,m)2 + (R̂u,n − Ru,n)2]
︸ ︷︷ ︸

The relevance loss:Lr

−D[L log P + (1 − L) log(1 − P )]
︸ ︷︷ ︸

The personalized diversity loss:Ld

Here, D balances between accurate rating prediction (loss Lr) and personalized
diverse ranking (loss Ld). We use L2 regularization to regularize the model.
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Algorithm 2. Building the ideal list for p-nDCG
Input: user u, items X = {xn}N

n=1, user ratings R, genre information J
Output: ideal list Y = {xyn}N

n=1

1 Estimate the user preferences {pu
g }g∈G based on the genre information J

2 Y0 ← ∅ � a selected item list
3 for r = 1, ..., N do
4 xm ← arg maxxn∈X\Yr−1(p-nDCG(Yr−1 + [xn]) − p-nDCG(Yr−1))

5 Yr ← Yr−1 + [xm]

6 Yu ← YN

The model is trained by stochastic gradient descent with gradient given by:

∂L
∂pu

= (eu,mqm − eu,nqn) + DE{
∑

g∈G
dgf

′(R̂u,m + μ)qm −
∑

g∈G
dgf

′(R̂u,n + μ)qn}

∂L
∂ql

= eu,lpu + DE{
∑

g∈G
dgf

′(R̂u,l + μ)pu} l ∈ {m,n}

∂L
∂bu

= (eu,m − eu,n) + DE{
∑

g∈G
dgf

′(R̂u,m + μ) −
∑

g∈G
dgf

′(R̂u,n + μ)}

∂L
∂bl

= eu,l + DE{
∑

g∈G
dgf

′(R̂u,l + μ)} l ∈ {m,n}

∂L
∂μ

= DE{
∑

g∈G
dgf

′(R̂u,m + μ) −
∑

g∈G
dgf

′(R̂u,n + μ)} (3)

Here, eu,l = R̂u,l − Ru,l l ∈ {m,n}, E = P − L, and dg = (p̂g)Cg(r−1). The
total number of training instances is Θ(MN !). To speed up training, we use
a sampling method similar to the negative sampling [9]: both ideal lists and a
number of sampled non-ideal lists under measure M are used to estimate the
gradient. The overall procedure of the joint optimization method is summarized
in Algorithm 1. The model is first pre-trained by training ratings. Then, we
sample S non-ideal lists with a certain length l ∈ [0, N − 1] for each user and
update the parameters with the gradient given by Eq. 3.

Time Complexity. The training time complexity is Θ(E · M · S · N2 · T ),
where E is the number of epoches, S is the number of sampled non-ideal item
lists. T = max{F,K} is the time complexity of computing the marginal score
function. The test time complexity is Θ(N2 · T ) for each user.

4 Personalized Diversity Measure

Existing measures have limitations in evaluating personalized recommendation
diversity. Therefore, we proposed a personalized diversity measure in this section.
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Table 2. The movielens 100k dataset (ML-100K) and the million song dataset (MSD)

Data Stat.

#users #items #ratings #genres Range Sparsity

ML-100K 943 1,682 100,000 18 1–5 6.30%

MSD 1,217 2,051 88,078 15 1–225 3.53%

4.1 Limitations of Existing Diversity Measures

Our goals are to recommend items that (I) cover a user’s interested genres,
and (II) have a genre distribution satisfying the user’s preference for different
genres. Existing diversity measures cannot serve our goals: (1) α-nDCG [4] does
not model user preferences (or intent probabilities). (2) IA measures [1] tend to
favor the major interests and ignore the minor interests of a user [12]. (3) One of
the goals of D�-measures [12] is to recommend items that cover as many genres
(or intents) as possible, but not to optimize toward individual user’s preference.

4.2 Formulation of Personalized Diversity Measure

To overcome these limitations, we propose a personalized diversity measure. Our
measure is motivated by α-nDCG [4], which discounts the gain of redundant
items by a constant α ∈ [0, 1]. Users often have varied preferences for different
genres. A constant cannot model such variances. Intuitively, redundancy under
more preferred genres is better than redundancy under less preferred genres.

Let Jg(r) = 1 if the item at rank r is labeled with genre g and Jg(r) = 0
otherwise, and Cg(r) =

∑r
k=1 Jg(k). Based on the preference of user u {pu

g}g∈G ,
we define the personalized novelty-biased gain (PNG) for the item at rank r as:

PNG(r) =
∑

g∈{g}
h(r) · Jg(r)(pu

g )Cg(r−1) (4)

Here, h(r) = (2r − 1)/2rmax . PNG models the marginal gain of an item after a
user has seen previous items. We define p-nDCG at cutoff C as:

p-nDCG@C =
∑C

r=1 PNG(r)/ log(r + 1)
∑C

r=1 PNG∗(r)/ log(r + 1)
(5)

Here, PNG∗ is PNG of the ideal list built by Algorithm2. The algorithm iter-
atively selects the item that maximizes the p-nDCG score of current item list
based on the true ratings and user preferences.

Theoretical Analysis. p-nDCG is effective in capturing user preferences: item
lists with a high p-nDCG score tend to contain more items with more preferred
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genres. To see this, we analyze the ideal list under p-nDCG. If genre g is under-
represented in the list, i.e. pg is high while Cg is low, the PNG for a relevant
item with genre g will be large. This makes p-nDCG select more relevant items
with genre g as next items. The selection process reaches an equilibrium when
each genre is represented according to user preferences:

(pg1)
Cg1 ≡ (pg2)

Cg2 (g1, g2 ∈ G) ⇒ Cg ∝ log(pg) (g ∈ G) (6)

The ideal list is effective in reflecting user preferences: the number of items with
genre g (Cg) is positively correlated with the preference for genre g (pg) in the list.
This is a desired property for personalized recommendation diversification [18]:
each genre needs to be represented according to user preferences in an item list.

5 Experiments

We experiment with the movielens 100k dataset (ML-100K) [6] and the million
song dataset (MSD) [2]. ML-100K is a movie rating dataset. It contains 100,000
ratings on 1,682 movies from 943 users. MSD contains music play counts. We use
a subset of MSD containing the playing counts of the songs associated properly
to one of the predefined genres. This subset contains 88,078 playing counts on
2,051 songs from 1,217 users. The two datasets are summarized in Table 2.

We try both formulations of user preferences and obtain similar results in the
experiments. We only show the results using the frequency-based user preference
due to the page limit. We use normalized discounted cumulative gain (nDCG),
α-nDCG (α = 0.5) [4], and the proposed p-nDCG to evaluate algorithm perfor-
mances. All these measures are computed at cutoff C = 10.

5.1 Experiments on Algorithms

The compared methods include MF [7], MMR [3], PM-2 [5], and LTR-N [21].
We use 5-fold cross validation to tune parameters for all algorithms.

Effects of Parameters. In Fig. 2, we present the effects of tuning (1) D varied
from 0.01 to 100, and (2) S varied from 0 to 25. We apply the z-normalization
method to amplify the effects. The proposed PDA-JO performs best when
(D,S) = (1, 10) on ML-100K and (D,S) = (10, 5) on MSD. Figure 2(a) and
(c) show the effects of D on ML-100K (S = 10) and MSD (S = 15). The perfor-
mance of PDA-JO increases with the growth of D (0.1 � D � 10), after which
the performance decreases under α-nDCG and p-nDCG. This is because: (1) If
D is small, PDA-JO is biased toward rating prediction and disregard diverse
ranking, which will degrade the performance under diverse measures. (2) If D
is large, rating prediction is less accurate, which will in turn degrade the per-
formance because diverse ranking relies on rating prediction (see Eq. 2). The
influence of D is stable when 1 � D � 10. Figure 2(b) and (d) show the effects
of S on ML-100K (D = 1) and MSD (D = 10). The proposed PDA-JO performs
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Fig. 2. Performances of PDA-JO with varied parameters after z-normalization.

Table 3. Performance comparison of algorithms on ML-100K and MSD. For MMR
and PM-2, the subscript is the parameter achieving the best score on validation set.

Method Performance on MK-100K Performance on MSD

nDCG α-nDCG p-nDCG nDCG α-nDCG p-nDCG

MF 0.7206 0.6035 0.5799 0.6061 0.4728 0.5001

MMR0.7 0.6944 0.6206 (2.82%) 0.6172 (6.44%) 0.6081 0.4803 (1.58%) 0.5068 (1.33%)

PM-20.5 0.6829 0.6759 (11.98%) 0.6525 (12.53%) 0.5895 0.4954 (4.77%) 0.5179 (3.54%)

LTR-N 0.7301 0.7134 (18.21%) 0.7017 (21.00%) 0.6230 0.4997 (5.70%) 0.5246 (4.89%)

PDA-GR 0.7283 0.7782 (28.93%) 0.7690 (32.61%) 0.6295 0.5430 (14.85%) 0.5665 (13.27%)

PDA-JO 0.7417 0.7846 (29.99%) 0.7778 (34.13%) 0.6309 0.5579 (18.00%) 0.5808 (16.14%)

better as S increases (0 � S � 10), but a performance decrease occurs when
S � 15. The overall difference when varying D and S is less than 0.8%, which
indicates that PDA-JO is a robust framework.

Comparison of Algorithms. Table 3 compares the performances of all algo-
rithms on ML-100K and MSD. The proposed PDA-JO performs best on both
datasets under all three measures. The improvement of PDA-JO over baseline
methods is significant based on two-tailed paired t-test. We compare all meth-
ods in the following aspects: (1) Personalized diversification methods (PDA-
GR and PDA-JO) outperform non-personalized diversification methods (MMR,
PM-2, and LTR-N) on all three measures. (2) Heuristic-based methods (MMR
and PM-2) sacrifice relevance to boost diversity, while learning-based methods
(LTR-N and PDA-JO) can improve both relevance and diversity. (3) PDA-JO
is consistently better than PDA-GR for all measures on both datasets.

5.2 Experiments on Measures

We compare the ideal lists of p-nDCG and α-nDCG (α = 0.5) on ML-100K as
follows: (1) For each user, we randomly split ratings into a training set (80%)
and a test set (20%). We also use time-based split (the most current 20% are
used for testing), and the results are similar; (2) We use the training set to build
the ideal list of p-nDCG (α-nDCG) by Algorithm 2. Here, the user preferences
used to compute the p-nDCG score are obtained using the training set.
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Fig. 3. The distance between the ground-
truth user preferences and the genre dis-
tribution of the top-C ranked items by
p-nDCG (α-nDCG), where the item cut-
off C ∈ [5, 100].

Fig. 4. Rank correlation (Kendall’s τ)
with α-nDCG, where p-nDCGf uses
the frequency-based user preference
while p-nDCGr uses the rating-based
user preference.

Satisfying User Preferences. We show that the ideal list of p-nDCG is more
effective than α-nDCG in reflecting user preferences. We compute genre distri-
bution Pp (Pα) of p-nDCG (α-nDCG) by applying user preference formulations
to the top-C ranked items in the ideal list. The ground-truth user preference
P ∗ is obtained using the test set. We compute the distance between P ∗ and Pp

(Pα) using KL-divergence or L2-norm, and average all distances across users. We
plot the average distance against item cutoff in Fig. 3. We find that compared
with α-nDCG, the genre distribution of the top-C ranked items by p-nDCG
consistently better satisfy user preferences, especially when cutoff C is small.

Rank Correlation. We use Kendall’s τ to measure rank correlation between
the ideal lists of p-nDCG and α-nDCG. The results of averaging Kendall’s τ over
the users who are interested in the same number of genres are shown in Fig. 4.
We find that as the number of interested genres increases, the rank correlation
decreases. This is because when a user’s interested genres are of the same interest
to the user, p-nDCG reduces to α-nDCG. As the number of interested genres
grows, the probability that a user has the same preference for different genres
decreases. This causes p-nDCG and α-nDCG to produce less similar item lists.

Case Study. We use a real user on ML-100K to illustrate the advantage of
p-nDCG in Table 4. The ground-truth column (user preferences) is computed by
applying the frequency-based user preference to the test set. We find that: (1) In
terms of genre ranking, p-nDCG is more consistent (Kendall’s τ = 0.89) with the
user preferences than α-nDCG (Kendall’s τ = 0.39); (2) The genre distribution
of recommended items by p-nDCG is closer (L2-norm = 0.20 using the frequency-
based user preference) to the user preferences than α-nDCG (L2-norm = 0.29
using the frequency-based user preference).
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6 Related Work

Before receiving attentions in recommendation systems (RS), the problem of
diversity is studied in information retrieval (IR) [1,3–5,12,21]. One difference
between IR work and our work is that there is ground-truth for test item genres
in our work (e.g., ML-100K provides the genre information of movies), but there
is no such ground-truth for test document intents (analogous to item genres)
in IR work. We explicitly incorporate such genre information into the diverse
ranking model, which makes even the naive method effective. Another difference
is that the embedding is trainable in our work, but the embedding is not trainable
in IR work (it is pre-computed and fixed as relevance features) [21].

Diversity Measures. Several diversity measures are proposed in IR to evaluate
the diversity [19]. They are not designed to evaluate the personalized diversity as
discussed in Sect. 4.1. In RS, Smyth and McClave [13] define the dissimilarity-
based diversity, i.e., the average dissimilarity between all pairs of the recom-
mended items. Vargas et al. argue that the dissimilarity-based diversity is less
likely to be perceived as diverse by users than the genre diversity [18]. They pro-
pose a Binomial framework to evaluate the genre diversity. The Binomial frame-
work cannot evaluate the relevance (random recommendations may achieve high
scores under this framework) and does not model the position of relevant item
in an item list. It differs from our measure which evaluates both relevance and
diversity and models the relevant item position.

Related Algorithms. Diversification algorithms can be categorized into
heuristic-based and learning-based. Heuristic-based methods use some heuristic
rules to re-rank the candidate items [3,5,23]. For example, Ziegler et al. propose
to select the next item by linearly combining the relevance and the dissimilarity
to the selected items based on an intra-list similarity measure [23]. Learning-
based methods aim to learn a diverse ranking model from a training set [21].
For example, Xia et al. propose to learn a diverse ranking model by using neural
networks to model the marginal novelty of candidate items.

The proposed algorithm is related to model-based collaborative filtering
methods, which explain user ratings by factoring the ratings into user embedding
and item embedding [7,11]. Our algorithm borrows ideas from learning-to-rank
methods [10], which overcome the problems with heuristic predefined ranking
function. For example, Tran et. al propose to integrate deep neural networks into
the learning-to-rank model [17]. Our algorithm is also related to intent tracking
algorithms [14–16,20] in designing highly personalized recommendation systems:
we aim to personalize at genre level while intent tracking algorithms personalize
at intent level. However, none of these algorithms explicitly consider personalized
genre preferences, which is the topic of our work.
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Table 4. The ideal list of p-nDCG (α-nDCG) for a real user on ML-100K.

7 Conclusion

We studied the problem of personalized recommendation diversification. A per-
sonalized diversification algorithm was proposed to incorporate user preferences
and jointly optimize both relevance and diversity. To overcome limitations of
existing measures, we proposed a personalized diversity measure to evaluate
the personalized diversity of recommendations. Experiments using real-world
datasets showed that the proposed algorithm outperforms baseline algorithms,
including a state-of-the-art leaning-to-rank algorithm. The experiments also val-
idated the effectiveness of the proposed measure in capturing user preferences.

Acknowledgment. This work is supported by Australian Research Council (ARC)
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Abstract. In recent years, word embedding models receive tremendous
research attentions due to their capability of capturing textual semantics.
This study investigates the issue of employing word embedding models
into resource-limited smartphones for personalized item recommenda-
tion. The challenge lies in that the existing embedding models are often
too large to fit into a resource-limited smartphones. One naive idea is
to incorporate a secondary storage by residing the model in the sec-
ondary storage and processing recommendation with the secondary stor-
age. However, this idea suffers from the burden of additional traffics.
To this end, we propose a framework called Word Embedding Quanti-
zation (WEQ) that constructs an index upon a given word embedding
model and stores the index on the primary storage to enable the use of
the word embedding model on smartphones. One challenge for using the
index is that the exact user profile is no longer ensured. However, we
find that there are opportunities for computing the correct recommen-
dation results by knowing only inexact user profile. In this paper, we
propose a series of techniques that leverage the opportunities for com-
puting candidates with the goal of minimizing the accessing cost to a
secondary storage. Experiments are made to verify the efficiency of the
proposed techniques, which demonstrates the feasibility of the proposed
framework.

1 Introduction

Nowadays smartphones have become a ubiquitous medium supporting various
forms of functionality and are widely accepted for commons. Users are nearly
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with their smartphones 24 h a day. With such an intimacy, a mobile phone has
been more than a mini computer for its owner but a personal behavior observer.
As a result, mining various data collected from smartphones for user profiling
[2,3] has received tremendous interests in the past few years. After the user
modeling, smartphones play as an important medium for making personalized
item-of-interest recommendation [1,5–8].

In this paper, we focus on employing textual data from smartphones for
making a personalized item-of-interest recommendation. Our idea is to treat
text data generated by a smartphone user as a user profile. With the user profile,
a naive idea for making a personalized recommendation is to define similarity
between textual user profiles and candidate items, and then retrieve the most
similar items as the predicted items a user may be interested.

For defining similarity, one intuitive idea is to model users’ profile and can-
didate items as Bags-of-Words (BOW) and then define the similarity between
two BOWs by Cosine similarity or Jaccard measure. However, these similarity
measures consider only the information at lexical levels; two words with the
same meaning will be perpendicular to each other in the metric space. Namely,
the words are considered as totally different. For example, “Obama spoke to the
media of Illinois” and “President talks to the media in Chicago.” have no words
in common but are actually with similar semantics.

For addressing this issue, we propose to employ the word embedding mod-
els [9,10] to capture the semantics between words. With keyword embedding
models, each word is modeled as a vector. An important feature for keyword
embedding model is that the keywords sharing common contexts are located in
close proximity in the vector space. For example, “CPU” and “RAM” the terms
related to personal computers will be close to each other. The same observation
holds for “Google”, “Facebook”, and “Microsoft”. For precisely capturing word
semantics, keyword embedding models are often trained from a large text cor-
pus. In Fig. 1, we show a visualized results by using multidimensional scaling
technique to map the word vector into a two-dimensional space.

While the employment of word embedding model looks promising, we find
that the size of word embedded model is often too large to fit into a resource-
limited smartphone. For example, for the Chinese Wikipedia dumped in August
2017, there are 740318 unique words. Assume that each word is represented by
a 400-dimensional vector and 4 bytes for an entry of a vector. Totally, 1.184
Gigabytes(=740,318*400*4) is required. The employment of models with such
sizes in smartphones brings system performance issues and storage concerns.

A naive idea for addressing this problem is to incorporate a client-server
model by sending all smartphone data to a server where all computation is
performed. However, such idea suffers from the communication cost concerns.
Extra network traffics costs for enabling client-server model is required. Exist-
ing cloud platforms, e.g. Amazon, charge the server fee according to the amount
of network traffics. Furthermore, from user’s point of views, data communi-
cation always come with costs at data communication fee and battery power
consumption.
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Fig. 1. A word embedding visualization

In this paper, we propose a framework called Word Embedding Quantization
(WEQ), which reduces the size of a given word embedding model by quantiz-
ing multiple word vectors into bounding areas. Furthermore, we propose tech-
niques for ensuring the correctness of the WEQ employment with respect to the
unquantized word embedding model (guaranteeing the recommended items are
the same). Our WEQ framework is composed of two components: the offline
process of quantizing word embedding model and the online process of comput-
ing candidate items based on quantized models. We propose to leverage storage
hierarchy on smartphones by storing word embedding models in a layered stor-
age structure; storing quantized model at a primary storage, and the raw word
embedding model with the secondary storage. One challenge for using the quan-
tized model is that the exact user profile is no longer ensured. However, we find
that there are opportunities for computing the correct recommendation results
by knowing only inexact user profile. Accordingly, we propose schemes for effi-
ciently processing candidate computation under the goal of ensuring the result
correctness and minimizing the accessing cost to a secondary storage

The contribution of this paper is summarized as follows.

– We propose a WEQ framework for a personalized item-of-interest recommen-
dation based on word embedding model on storage-constrained smartphones.

– Schemes for reducing costs for processing Top-k queries with the quantized
word embedding model are designed to ensure the correctness of the recom-
mendation based on the WEQ framework under the goal of minimizing the
accessing cost to a secondary storage.

– Extensive experiments with real data sets are conducted. The experiment
results show our framework provides nearly three times the performance gain
compared with the naive scheme for smartphone personalized item recom-
mendations.
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The rest of this paper is organized as follows. Section 2 reviews the exist-
ing literature and discuss the position of this paper. Section 3 provides problem
formulation for this study. In Sect. 4, we introduce the proposed framework and
the techniques for optimizing the secondary storage accessing costs. In Sect. 5 we
report experimental results and demonstrate the performance of the proposed
framework. Finally, Sect. 6 concludes this paper and provide future research
directions.

2 Related Work

Personalized Recommendation on Mobile Devices. Personalized recom-
mendation has been widely studied for various commercial usage. There are
also researches on conducting personalized recommendation on mobile devices
[1,4,5]. Due to the space limitation, we direct readers to [4] for a complete sur-
vey. However, to our best knowledge, the issue of employing word embedding
models into resource-limited smartphones remain untouched; most of the exist-
ing works are based on traditional BOW models, which fail to capture textual
semantics.

Model Compression. As mentioned, the word embedding model is often too
large to fit in storage-constrained smartphones. One possible solution is to
employ data compression techniques. For example, as proposed in [11], a com-
pression scheme based on neural network and ensemble learning is introduced.
Yet another idea is to apply dimension reduction techniques, e.g., low-rank fil-
ter banks, as proposed in [12]. These methods may significantly reduce the size
of the word embedding model, but they are lossy compression. The recommen-
dation based on the compressed model no longer ensure the correctness of the
recommendation results. Compared with the model compression methods, our
proposed framework leverages the idea of quantizing the model by grouping
word vectors into bounding areas to reduce the size of the model, and propose
techniques to guarantee the correctness of the candidate item computation.

Top K. There has been a lot of effort made in establishing safe regions to quickly
return the new top-k query with the answers and avoid repetitive calculation
[13–15]. For example, in [13], the authors propose region border using linear
equations to avoid the computation when there is an update to the position of
a top-k query. Also, in [14], the authors propose to determine borders based on
the minimum and maximum values from the previous top-k computation. We
also direct readers to [15] for a complete survey. However, the existing techniques
mainly focus on the issues of reducing computation costs by reusing the results
from previous queries, while our work focuses on using bounding areas to reduce
the size of word embedding models while guaranteeing the correctness of using
only the information from a bounding area to compute Top-k results.
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3 Problem Formulation

By employing word embedding model, the problem of personalized items recom-
mendation can be formulated as follow. Assume that we are given a set of words
{w1, w2, ..., w|p|} as a basis for constructing user profile. For each word wi, we
can transform it into a vector δ(wi), and then aggregate all δ(wi) to form a user
profile p. Formally, we get

p =
|p|∑

i=1

ς(wi) (1)

We also model the candidate items in the same manner. That is, for each
candidate item, we assume that there is a set of keyword for an item, such as
textual item description. We first transform the keywords of an item by the word
embedding model and then aggregate all word vectors as the representative for
that item. In such a manner, the candidate items can be also formulated as a set
of vectors, A={a1, a2, ..., an}. With the given user profile p and the candidate set
A, the similarity between p and a can be then computed by cos(p, a) = p·a

‖p‖·‖a‖ ,
and our goal is to compute Top-k similar items with respect to p.

For solving the storage-constrained issue, we propose to leverage storage
hierarchy by storing word embedding models in a layered storage structure;
storing quantized model at a primary storage, and the raw word embedding
model with the secondary storage. As mentioned, the challenge of using the
quantized model is that the exact user profile is no longer ensured. However,
as will be discussed later, there are opportunities for computing the correct
recommendation results by knowing only inexact user profile. Therefore, the
research goal of this paper is to minimize the cost of accessing the secondary
storage for computing top-k results.

4 The WEQ Framework

4.1 Word Embedding Quantization

Our idea for reducing the size of the model is to quantize a group of words into
a bounding area, where bounds the vectors of the words in the group. Thus, the
first step is to employ a clustering algorithm to cluster words into groups. After
the word clustering, for a given cluster of m words C={w1, w2, ..., wm}, we can
quantize the word vectors of the words by Algorithm 1. In Example 1, we show
a WEQ result example. For ease of discussion, we call the quantization result of
a cluster of words as QM (Quantized Mapping) in the following discussion.

Example 1: Assume that we are given three words and their word embed-
ding vectors, i.e., Japan=< 0.1, 0.17 >, Tokyo=< 0.16, 0.1 >, and Osaka=<
0.3, 0.2 >. We have a QM {c : (0.186, 0.156), r : 0.122}.

There are two things to mention. First, when the number of word vectors
(to be quantized together) is large, the space saving is significant. For a given
cluster of words, we require only two entries: a center vector c and a radius r to
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input : C = {w1, ..., wm};
output: QM : a Quantized Mapping;

1 c = 1
m

∑m
i=1 ς(wi);

2 r = 0;
3 for i=1:m do
4 r = MAX(r,dist(c,wi))
5 end
6 QM = {Center:c, Radius:r}
7 return QM

Algorithm 1: Word Embedding Quantizing Algorithm

record the quantized mapping. Second, while the storage cost is saved, the price
is that we no longer guarantee the exact vector for individual word; for a word,
what we ensure now is an area where its word vector is located.

An important point to indicate is that the employment of WEQ brings impre-
cise information for user profile modeling. The employment of WEQ makes user
profile p into a bounding area. Originally, for every wi ∈ p, we have its vector vi
through the word embedding model, and use

∑n
i=1 ς(wi) as a user profile. How-

ever, with the employment of WEQ, for every wi, we know only its bounding
area Rwi

. That is, we know only the fact

Rwi
= {(cwi

+ v),∀‖v‖ ≤ rwi
}, (2)

where cwi
is the center of QM containing wi and rwi

is the radius of QM con-
taining wi.

We note that the bounding area of two different words wi and wj shows an
additive property. That is, for a given two words (wi+wj), the bounding area
Rwi+wj

is given by

Rwi+wj
= {(Rwi

.c + Rwj .c + v),∀‖v‖ ≤ Rwi
.r + Rwj

.r} (3)

As such, a user profile p can be generalized to

Rp = {
∑

∀wi

(Rwi
.c + v),∀‖v‖ ≤

∑

∀i
Rwi

.r} (4)

4.2 Bounding Angle Checking Mechanism

With WEQ, we no longer guarantee the exact location of a user profile. Instead,
we know only the bounding area Rp. Under such setting, for retrieving top-k
items using Rp, there are two cases. First, using Rp produces the same result of
using p. That is, no matter where the exact p is located in the bounding area, the
same results will be retrieved, and therefore it is safe to processing top-k with
Rp. On the other hand, if we can not ensure the same result, we require lookups
into a secondary storage (where a complete embedding model is available).
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Accordingly, one key issue is that how the correctness of using Rp is checked.
In the following discussion, we propose Bounding Angle Checking Mechanism
(BACM) for this matter. Given a Rp, BACM computes top-k items for p as
follows.

– Step 1: Compute top-(k+1 ) items with respect to Rp.c.
– Step 2: Compute a threshold θp by θp = 1

2 (θk+1 − θk), where θk and θk+1 are
the distance for the k -th item and the k+1 -th item with respect to Rp.c. This
threshold represents the maximal distance between Rp.c and p to have the
same top-k results. In Lemma 1, we show the correctness of this observation.

– Step 3: Compute θmax by the following equation

θmax = arcsin(
r

‖Rp.c‖ ) (5)

Note that θmax is the maximal distance between Rp.c and v, ∀v ∈ Rp, as
shown in Fig. 2.

– Step 4: If θmax ≤ θp, it is safe to use the top-k results based on c. Otherwise,
a lookup operation into a complete model is performed to check the real
position of p.

Fig. 2. Maximal distance between a possible p and c

Lemma 1. For a given Rp, if θp ≤ 1
2 (θk+1 − θk), the top-k result of p is the

same to the top-k result of Rp.c, where θk denotes the distance between the k-th
item and Rp.c, θk+1 the distance between the (k + 1)-th item and Rp.c, and θp
denotes the distance between p and Rp.c.

Proof: Note that as we use Rp.c as a reference for p to compute the top-k
results, if we can guarantee the results w.r.t Rp.c is the same as w.r.t. p, we
can use the results of Rp.c as a resultant recommendation items for p. Let us
consider the worst case that we no longer guarantee the requirement. For a given
k-th item and k + 1-th item item, if the true position p is close to k + 1-th item
and away from k-th item, then the correctness may not no longer to be ensured.
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Specifically, the worst condition is that if θk+θp ≥ θk+1−θp, we cannot guarantee
the correctness of using the result of c. By rewriting the statement, we have

θp ≤ 1
2
(θk+1 − θk) (6)

The inequality states that if the condition is violated, it is unsafe to use the
results of Rp.c. �

In the following, we use a running example to show the process flow of our
WEQ framework.

Fig. 3. BACM example

Example 2: Assume that we are given a user profile W={“Japan”, “Travel”},
where QMJapan =< (0.40, 0.2), 0.11 > and QMTravel =< (0.62, 0.9), 0.05 >,
a candidate set A with four items {a1 = (1.13, 1.18), a2 = (1.13, 0.97), a3 =
(0.40, 1.40), a4 = (1.42, 0.17) }, and top-2 results are asked. Our algorithm works
as follows.

– Step 1: by adding the bounding areas of “Japan” and “Travel”, we obtain
Rp = {c : (1.02, 1.1), r : 0.16}. Furthermore, compute Top-3 results based on
Rp.c. Note that {a1, a2, a3} is retrieved at this step.

– Step 2: Compute the threshold by the distance between Rp.c and a2 and Rp.c
and a3. In this case, we have θp = 1

2 (θ3 − θ2) = 10.18◦.
– Step 3: Compute the maximal distance between c and all possible p in Rp. In

this case, we have θmax = arcsin( r
‖c‖ ) = arcsin( 0.16

‖(1.02,1.1)‖ ) = 6.12◦

– Step 4: Check if it is safe to use only Rp.c by testing θmax ≤ θp. In this case,
we ensure the same result will be reported, as θmax ≤ θp.

As shown in Fig. 3, one can observe that all vectors in Rp are bounded withing
the circular area, and the closest possible position denoted as p′ for p w.r.t. a3

is the dashed one in the figure. If this is the case, the distance between p and a3

is reduced to θ3 − θp, and the distance between p and a3 is increased to θ2 + θp.
Accordingly, if θ2 + θp ≤ θ3 − θp, we can safely use the results based on Rp.
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5 Experiment and Evaluation

5.1 Experimental Settings

In the experiments, we select the personalized advertising application as a
testbed for evaluating the performance.

Candidate Items. We simulate the recommendation candidates by employing
Google Adwords, which provides a set of words related to some topic, e.g. sports
or art topics. We use 100 ad categories from Google Adwords and their key-
words to form candidate items for personalized recommendations. We simulate
the scenario that retrieving top-k ad categories according to a user profile. In
this study, we implement the word2vec model proposed by [9] as a basic word
embedding model for defining the keyword similarity. We train the keyword
embedding model using the Wikipedia English and Traditional Chinese corpus
which contains all Wikipedia articles written in English and Traditional Chinese.
The models constructed in the experiments are based on the dump at August
2017. With the constructed model, we can formulate an ad category as a vector
by transforming keywords related to the ad category and aggregating them as a
representative vector for the ad category.

User Profiles. For simulating user profiles, we invite smartphone users in our
campus by giving them gift cards as incentives to participate the data collec-
tion experiments. There are 50 participants recruited. Each participant is asked
to install our App which implements the Android accessibility service API1 to
capture the texts viewed by the participants. During the data collection pro-
cess, each participant is asked to use their smartphone for one hour. We use the
keyword captured by Accessibility API as the user profiles for evaluating the
performance.

We select the most common 100000 words (excluding stop words) from word
embedding model learned from the Wikipedia articles as the complete word
embedding model. With the words and the mapping, we implement a hierar-
chical clustering algorithm to form B word clusters to perform word embedding
quantization, where B is a given parameter used to simulate the storage size con-
straint. In this experiment, we use the number of the required lookup operation
for computing top-k results using WEQ as our performance metric.

5.2 Performance Results

In this subsection, we present the experimental results for the compared methods
under the experimental setting introduced in the last subsection. We compare
the proposed method with the scheme that resides word embedding model on
a remote server and accesses the required word embedding vectors on demand.
We call such a scheme as On-Demand scheme. By the experiment results, we see

1 https://developer.android.com/reference/android/view/accessibility/
AccessibilityEvent.html.

https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
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our method requires only 3393 lookup operations, which provides nearly three
times the performance gain compared with the On-Demand scheme.

Effects on Varying Parameter. B In Fig. 4(a), we show the costs with respect
to various B values. We experimentally set parameter B to 10000, 20000, and
30000 to observe the difference in performance. One can observe that when B
is increased, the required look-up operations are reduced. This is an expected
result, as when B is large, one can store more information on smartphones and
therefore reduce the chances of lookup into the secondary storage.

(a) Effects on Varying Parameter B

(b) Effects on Varying Parameter k

Fig. 4. Performance overview

Effects on Varying Parameter. k In Fig. 4(b), we show the costs with respect
to various k values, where the x-axis is the value of k and the y-axis is the number
of lookup operations required for computing Top-k results. We have two obser-
vations for the experiment results. First, one can observe that the cost increases
as k increases. The phenomena come from that when k is large, determining true
top-k result turns out to be difficult using only the information from the com-
puted bounding area, and therefore a significant number of lookup operations
is required to guarantee the correctness of the recommendation results. Second,
one can observe that the cost is invariant when k ≥ 4. The reason for the results
is also that when k is large, nearly all information is required to ensure the
correctness.
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6 Conclusion

In this paper, we propose the WEQ framework for a personalized item-of-interest
recommendation based on word embedding model on storage-constrained smart-
phones. Schemes for reducing costs for processing Top-k queries with the quan-
tized word embedding model are designed to ensure the correctness of the rec-
ommendation based on the WEQ framework under the goal of minimizing the
accessing cost to a secondary storage. Extensive experiments with real data sets
are conducted. The experiment results show our framework provides nearly three
times the performance gain compared with the naive scheme for smartphone per-
sonalized item recommendations.
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Abstract. In this paper, we study topic-specific retweet count ranking
problem in Weibo. Two challenges make this task nontrivial. Firstly,
traditional methods cannot derive effective feature for tweets, because
in topic-specific setting, tweets usually have too many shared contents
to distinguish them. We propose a LSTM-embedded autoencoder to gen-
erate tweet features with the insight that any different prefixes of tweet
text is a possible distinctive feature. Secondly, it is critical to fully catch
the meaning of topic in topic-specific setting, but Weibo can provide
little information about topic. We leverage real-time news information
from Toutiao to enrich the meaning of topic, as more than 85% topics
are headline news. We evaluate the proposed components based on abla-
tion methods, and compare the overall solution with a recently-proposed
tensor factorization model. Extensive experiments on real Weibo data
show the effectiveness and flexibility of our methods.

Keywords: Weibo · Micro-blog · Retweet · Retweet count ranking
Social network

1 Introduction

With the development of micro-blogging services, Weibo, the biggest micro-
blogging service in China, has changed the organization of its three major entities
(i.e., topic, tweet and user) as shown in Fig. 1. (1) Topics are ranked according
to their popularity in the Hot Topic List as shown in the left column. Generally
speaking, topic is the group of all tweets sharing the same #topic name#, but it
has its own properties such as topic category and topic information. (2) Tweets
are divided into common tweets and recommended tweets as show in the right
column. Recommended tweets are usually informative and interesting, and they
are shown before common tweets in the topic page. (3) Users are encouraged to
read tweets in topic pages rather than scattered tweets in their timelines. In a
word, topic is becoming the core unit to organize tweets and users in Weibo.
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doi.org/10.1007/978-3-319-93040-4 49) contains supplementary material, which is
available to authorized users.
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Hot Topic List

reading quan ty topic informa on

recommended tweet

retweet comment  like

topic
category

topic
name
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Fig. 1. The organization of topic, user and tweet in Weibo.

In fact, hot topic is now the main source of page view (PV) and unique visitor
(UV) in Weibo. For example, the PV of the topic #Running Man# increases
from 13.23 to 42.81 billion after Weibo introduces the “Super Topic” service
last year, and the total PV of the top-20 hot topics increases from 127.65 to
361.68 billion. Besides, topic is also beneficial for improving user experience and
increasing advertising revenue. On one hand, users can know the detailed and
representative information of one topic more easily, because all relevant tweets
are grouped and ranked together by topic. On the other hand, advertisers can
easily find the target users who browse the specific topic proactively, which means
that the advertisements will be more effective.

However, as we know, most users only look through the recommended tweets
in the first few pages of a topic. Under this condition, to attract more PV/UV,
and further obtain the above mentioned benefits of topic, we need to find out pop-
ular tweets1 and make them as the recommended tweets for each topic. In reality,
finding out popular tweets from all tweets sharing the same #topic name# is
not easy. Currently, the procedure can only be done manually, and it is easy to
miss the best popular tweets.

Naturally, in this paper, we try to find out the popular tweets for topics in
Weibo automatically (and objectively relative to some metrics)?

We formulate this task as a topic-specific retweet count ranking problem.
Specifically, we predict the retweet count ranking order for all tweets sharing the
same #topic name#, i.e., belonging to the same topic, and further recommend
the highest ranked tweets as the recommended tweets to the corresponding topic
(rather than to users). This is why we call our problem topic-specific instead of
personalized. [12,13] have done a lot of work to show that retweet action should
be studied at topic level. We refer the readers to their papers for further details.

1 We measure the popularity of a tweet by its retweet count. As pointed out by [15,
25,27,28], retweet is the key mechanism for information diffusion on micro-blogging
services. A larger retweet count usually means that more users have seen, and will
see, the corresponding tweet and topic, and that we will further get more benefits.
In fact, researchers often use popular level as the synonym of retweet count [12,14].
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More concretely, we propose a Topic-Specific reTweet count Ranking (TSTR)
framework to dig this important yet challenging task more deeply. Three main
components make up of TSTR framework, making it more applicable in real
systems. Firstly, it is impractical to directly deal with the large number of newly-
generated tweets in a short time. We propose a Candidate Tweet Filter to fil-
ter out unpopular tweets. Secondly, traditional methods cannot derive effective
features for tweets, because tweets belonging to the same topic usually have
too many shared contents to distinguish them. We propose a LSTM-embedded
autoencoder (LSTM-AE) to generate tweet features. This LSTM-AE takes any
different prefixes of tweet text as a possible distinctive feature, which makes it
very suitable for tweet feature generation. Finally and most importantly, it is
critical to fully catch the meaning of topic in topic-specific setting, but we can
get little information about topic from Weibo. For example, as shown in Fig. 1,
there is only one word (i.e., pay attention) about the most important “Two Ses-
sions” (i.e., NPC and CPPCC) in China. We leverage external real-time news
information from Toutiao, the most popular news recommendation platform in
China, to enrich the meaning of topic, as we find that more than 85% topics are
headline news. We also propose a denoising autoencoder (DAE) to extract topic
features from those headline news.

In summary, our contributions are two-fold. (1) This work advances the study
of topic-specific retweet prediction problem, which has not been well studied like
traditional retweet prediction tasks as pointed out by [12,13]. (2) We evaluate
the proposed components based on ablation methods, and compare the overall
solution with a recently-proposed tensor factorization model. Extensive experi-
ments on real Weibo data show the effectiveness and flexibility of our methods.

2 Related Work

Retweet studies can be roughly divided into retweet analysis and retweet pre-
diction. Retweet analysis aims at understanding why people retweet and which
factors impact retweet [1,18,19,26]. Retweet prediction tries to figure out who
will retweet a specific tweet or how many times a specific tweet will be retweeted.
Our work is an instance of retweet prediction.

Most retweet prediction models formulate retweet count prediction as classi-
fication or regression problems [6,14,25,27,28], and only a few researchers study
retweet count prediction from a ranking perspective. [17] want to figure out who
will retweet messages using a Learning-to-Rank framework. They explore a lot
of factors, such as retweet history, followers status, followers active time and
followers interests, and find that followers who have common interests are more
likely to be retweeters. [9] try to answer who should share what, and extend this
problem into two information retrieval scenarios: user ranking and tweet rank-
ing. They propose a Hybrid Factor Non-Negative Matrix Factorization model
to estimate each entry of user-tweet matrix. [22] also study both user ranking
and tweet ranking. They train a coordinate ascent Learning-to-Rank algorithm
to rank the incoming tweets as well as users, and find that tweet-based features
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have a better predictive ability. [11] study personalized tweet ranking according
to their probability of being retweeted so that users can find interesting tweets
in a short time. They build a user-publisher-tweet graph to re-rank the tweets.

All the above studies focus on user level retweet prediction. Perhaps, [12,
13] are the most relevant studies to ours. The authors also investigate retweet
prediction at topic level. They propose a tensor factorization model named V2S
to model a set of observed retweet data as a result of three topic-specific factors,
i.e., topic virality, user virality and user susceptibility. In their work, they use
LDA [4] to generate the latten topics for each tweet. In contrast, topic in our
work is directly tagged by users using #topic name#, and all tweets going to be
ranked share a same topic.

3 TSTR Framework

3.1 Consideration and Design

There are three major considerations and designs in our system.
The first consideration is that how to deal with the large number of tweets.

As we know, a lot of new tweets will be generated in one minute. It is impractical
to directly extract features for all those tweets in a short time. Considering that
we only care about the popular tweets when we do recommendation, it is natural
to propose a Candidate Tweet Filter to filter out unpopular tweets.

The second consideration is that how to derive effective features for tweet.
On one hand, tweet is short text with a random length. On the other hand,
tweets belonging to the same topic usually have many shared words. Traditional
bag-of-word methods and topic model methods such as LDA [4] are not suitable
for this task, because those methods suffer from either sparsity or inefficiency for
short texts [23]. The recurrent neural network (RNN) may be a better choice,
because it can summarize and generate word sequence of arbitrary length and
distinguish sequences that have same words but in different orders [8]. So we
extend traditional RNN-based encoder-decoder structures and propose a LSTM-
AE model with attention mechanism for tweet feature generation.

The third consideration is that how to fully catch the meaning of topic
in topic-specific setting. As mentioned in the Introduction, Weibo can provide
little information for topics. Fortunately, [16,20] point out that micro-blogging
service is more than social network but news media, and over 85% topics are
headline news in real world. We also find a similar conclusion in our dataset. So
we leverage real-time news information from Toutiao to enrich the meaning of
topic. We also propose a DAE model to translate those news information into
topic feature.

LSTM-AE and DAE can generate features for tweet and topic, respectively.
As for user features, we can crawl them from user database directly. After all
features about tweet, topic and user have been generated, we use Tweet Ranker
to learn the desired ranking function.

The TSTR framework shown in Fig. 2 summarizes our designs.
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Fig. 2. An illustration of TSTR framework.

3.2 Candidate Tweet Filter

We train a random forest with a dynamic filtering threshold as the Candidate
Tweet Filter2. Tweet having low popular level with high probability will be
filtered out, and others are kept as candidates.

3.3 LSTM-AE

A simplified LSTM-AE structure is shown in Fig. 3(a). LSTM-AE can deal with
the random-length property of one tweet and the similar content property of
tweets belonging to the same topic, because it is a special RNN. At the same
time, it can avoid overfitting because of the added Dropout Layer. Specially, the
attention mechanism makes the model focus on more useful parts of the tweet.

The inputs are word embeddings of each tweet. LSTM-AE tries to reconstruct
those inputs by minimize the defined loss function in Eq. (1). After training is
finished, we extract the outputs of Dropout Layer as tweet features.

Similar RNN-based encoder-decoder structures have been used in other NLP
tasks [8,21]. LSTM-AE extends those models in two ways. During training, we
extend the loss function. The classical models try to maximize a conditional
log-likelihood. Differently, LSTM-AE tries to minimize the mean squared error
between (xt

n, yt
n) as follows

min
θ

1
N ∗ T

N∑

n=1

T∑

t=1

(yt
n − xt

n)2 (1)

where xt
n is the n-th input embedding at time step t, and yt

n is a function of
xt

n conditioned on model parameter θ. This difference reflects our insight about
how to drive distinctive tweet features in this special topic-specific setting: any
different prefixes of tweet text is a possible distinctive feature. After training is
finished, we extend the usage method. The classical models are usually used for
generating a target sequence given an input sequence. They care more about
the outputs of LSTM-Decoder. Differently, LSTM-AE is used for generating

2 Due to space limitation, we move the features used for building Candidate Tweet
Filter into the supplemental material.
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tweet features. We care more about the outputs of Dropout Layer. Specifically,
at each timestep t, LSTM-Encoder generates a new state st for current input
xt, considering the latest state st−1 and the latest memory cell Ct−1. The final
tweet feature X is a concatenation of the last hidden state and the attention-
weighted state of all intermediate hidden states after dropout. In this way, we
can potentially get both the global and the local information of tweet [21].

To be more understandable, we give a simple example based on tweet text “A
like B”. The input embeddings are x1 = IE(A), x2 = IE(like) and x3 = IE(B).
Because of the memory mechanism of LSTM cell, the hidden state of LSTM-AE
can represent the feature embeddings s1 = FE(A), s2 = FE(A,like) and s3 =
FE(A,like,B) in some extent. During training, LSTM-AE try to generate output
embedding yt as similar as xt based on st. After training, the concatenation
X = [FE(A,like,B), α1FE(A) + α2FE(A,like) + α3FE(A,like,B)] is used as the
final tweet feature. As we can see, any prefixes (A), (A,like) and (A,like,B) of
tweet text “A like B” is used to generate different features FE(A), FE(A,like) and
FE(A,like,B). This is why we say “any different prefixes of tweet text is a possible
distinctive feature”. This method is useful for our topic-specific application. In
contrast, if we only use FE(A,b,C,D,E) as the final tweet feature, it will be too
similar with FE(A,B,C,D,E) to distinguish each other, especially when the tweet
text is long. Please note that this is very common in topic-specific setting.

LSTM LSTM LSTM

LSTM LSTM LSTM

LSTM-Encoder

LSTM-Decoder

Dropout
Layer

(a) Simplified LSTM-AE.

…
…

…
…

…
…

…
…

…
…

Noise LayerInput Hidden Layer Dropout Layer Output

(b) Simplified DAE.

Fig. 3. Simplified LSTM-AE and DAE structures.

3.4 DAE

As mentioned before, we leverage information from Toutiao to enrich the mean-
ing of topic. Specifically, we use topic as keyword to search Toutiao, and only
the returned news headlines are processed. News titles frame the interpretation
of the article content and provide the most important information for readers,
which have been confirmed by many researchers [2,10]. Note that this method
requires a strict time-consistence between topic and the external news.
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After we get those news titles, we need to translate them into effective topic
features. Our preliminary experiments show that bag-of-word features and topic
model features cannot cooperate well with the embedded tweet features. A DAE
is proposed to learn embedding features for topic so that both topic features and
tweet features have a similar semantic space.

A simplified DAE structure is illustrated in Fig. 3(b). We extract a fixed
number of verb and noun phrases with largest tf -idf values from news title so
that the main entity and emotional inclination can be captured on the whole.
After that, the corresponding embedding concatenation is used as the input of
DAE. As with LSTM-AE, we extract the outputs of Dropout Layer as topic
features after training is finished.

Although this structure is common, we have some insights for this design.
Firstly, the number of topic is much less than the number of tweet, so a Noise
Layer with different noise variances can create more training data. Besides, we
also observe that the combination of Noise Layer and Dropout Layer has a lower
loss than Noise Layer alone during training. As this simple structure is enough
for good results, we leave other novel models for future work.

3.5 Tweet Ranker

In this paper, we use a pair-wise method to train an ensemble of Multiple
Additive Regression Tree (MART) as Tweet Ranker, which is similar to Lamb-
daMART [5,7]. The final feature vector is the concatenation of topic features,
tweet features and user features3. With the supervision of actual retweet count,
Tweet Ranker will learn the desired ranking function.

3.6 Chinese Word Embedding

LSTM-AE and DAE assume that we have got the embedding representations of
all the Chinese words in topics and tweets. Specifically, we use Neural Probabilis-
tic Language Model [3] to generate those embeddings. Our method is supported
by the open source PaddlePaddle4 deep learning platform, which has more than
three million Chinese words as the original corpus.

4 Experiments

Due to space limitation, we move the detailed analyses of experimental data and
Candidate Tweet Filter into the supplemental material. However, we would like
to highlight some conclusions: (1) the experimental data and the data of the
whole Weibo system have a consistent topic distribution; (2) more than 93%
unpopular tweets can be filtered out by Candidate Tweet Filter.

To evaluate the ranking results, we adopt 5 widely used metrics following
[11,24], i.e., Reciprocal Rank (RR), Precision at k (P@k), Average Precision
3 Due to space limitation, we move the user features into the supplemental material.
4 http://www.paddlepaddle.org/.

http://www.paddlepaddle.org/
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(AP), Normalized Discounted Cumulative Gain at k (NDCG@k), Spearman’s
Rank Correlation Coefficient (Spearman’s ρ). The reported results below contain
a “M ” to represent the mean performance on all topics. Some results may also
contain a “ #n” to represent that the first n tweets with largest retweet count are
relevant. Besides, there are usually 3 to 10 recommended tweets for each topic
in Weibo, so we set k and n to 1, 3, 5 and 10 for each group of experiments.

Besides comparing with the recently proposed V2S model [12,13], we also
use the following feature sets and their combinations to train ablation models so
that we can know the effect of each component in TSTR framework: FC, follower
count as feature; UI (User Info), user features as feature; II (Tweet Info), original
tweet embeddings as feature; TI (Topic Info), original topic embeddings as fea-
ture; II LSTM, tweet embeddings generated by LSTM-AE as feature; TI DAE,
topic embeddings generated by DAE as feature.

The main experimental results are shown in Fig. 4 and Table 1. We analyze
those results from the following five aspects.

(a) Reciprocal Rank. (b) Average Precision. (c) NDCG.

Fig. 4. Results of reciprocal rank, average precision and NDCG.

Table 1. Results of precision and Spearman’s ρ.

FC UI UI+II UI+II LSTM UI+II+TI TSTR

M P@1 #1 0.25568 0.35795 0.40341 0.40120 0.39205 0.43713

M P@1 #3 0.42614 0.52272 0.55114 0.55689 0.53977 0.61677

M P@1 #5 0.50568 0.59091 0.65909 0.66467 0.65909 0.71856

M P@1 #10 0.61364 0.68750 0.73864 0.76647 0.75000 0.79042

M P@3 #3 0.32765 0.39962 0.39773 0.41517 0.41098 0.44711

M P@3 #5 0.43750 0.53409 0.52083 0.52894 0.55682 0.58084

M P@3 #10 0.55114 0.66856 0.64205 0.65269 0.68561 0.70259

M P@5 #5 0.37273 0.42386 0.41364 0.40838 0.42273 0.45269

M P@5 #10 0.50568 0.59318 0.58068 0.56048 0.59773 0.62874

M P@10 #10 0.38295 0.43750 0.42727 0.41617 0.45114 0.49042

Spearman’s ρ 0.32757 0.33011 0.37825 0.38225 0.37660 0.38359

Ablation Models. (1) FC: all results of FC are much better than random
guess. We also use other single feature to do experiments, and we find that the
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number of follower has a big impact on the prediction. This has been proved
by [6,14,15]. (2) UI: we find that ranking according to user features is mostly
consistent with ground truth when we only consider information of one entity.
In contrast, perhaps due to topic-specific setting, the learned ranking model II is
even worse than FC. Detailed results can be found in the supplemental material.
[6,9,17,22] use similar baselines, and confirm the importance of user features in
their work too. (3) UI+II: we use both user features and tweet features to create
a more powerful model. As we can see, most results of UI+II are better than
results of UI. In our opinion, feature interaction is the key reason: user features
often offer valuable information for tweets. For example, without knowing the
user is a gourmet, the II model usually ranks tweets about tourism before tweets
about delicacy because tourism is more popular than delicacy in Weibo; and
now, the UI+II model can correctly rank tweets about tourism behind tweets
about delicacy if those tweets come from a gourmet.

The Proposed LSTM-AE. To test the feature extraction ability of LSTM-
AE, we use features from UI+II LSTM to do an experiment. We find that
UI+II LSTM is better than UI+II and even better than UI+II+TI for metrics
such as NDCG. To figure out whether the improvements are statistical gener-
alization, we also apply Student’s t-test5 to the results and find that the corre-
sponding improvements are significant at the level of 0.05. Those results prove
that LSTM-AE can generate effective feature for short tweet text with random
length, even though tweets belonging to the same topic have similar contents in
topic-specific setting.

Hypothesis Testing. To test our hypothesis that real-time news information
from Toutiao is potential to boost this retweet count ranking task, we conduct
an experiment using features from UI+II+TI and compare it with UI+II. We
see that the improvements are marginal, but please note that the corresponding
model is only used to test our hypothesis. Considering that the metrics cover
a wide range of ranking evaluations and almost all of the results are improved
indeed, we conclude that our assumption is reasonable.

The Overall TSTR Model. The TSTR model is build on features from all
UI+II LSTM+TI DAE. The improvements of TSTR compared to other models
for different metrics are shown in Table 2. Firstly, all the entries in this table are
positive, which indicates that TSTR is a flexible framework to fit different rank-
ing evaluation metrics simultaneously. Those good results may be related to the
unbiased feature generation ability of LSTM-AE and DAE. To prove this infer-
ence, we train a TSTR model based on NDCG@5 and find that it can achieve
similar good results on other metrics. Quantitatively, the average improvements
(excluding V2S column) are bigger than 6% for all metrics, and the signifi-
cant level for metrics such as NDCG and AP can achieve 0.01. Compared to
UI+II LSTM, we can say that TI DAE is necessary for good results. Compared

5 It can be used to determine if two sets of data are significantly different from each
other: https://en.wikipedia.org/wiki/Student%27s t-test.

https://en.wikipedia.org/wiki/Student%27s_t-test
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to UI+II+TI, we can say that the combination of LSTM-AE and DAE is nec-
essary for good results. Interestingly, the overall ranking improvements (i.e.,
Spearman’s ρ) are much smaller than the top tweets ranking improvements (i.e.,
other metrics). One possible reason may be that there are many tweets with
small retweet count, and it is not easy to fully distinguish them using features
generated by LSTM-AE and DAE. This phenomenon means that the proposed
TSTR framework is more suitable for applications such as recommendation and
hot events detection. In those applications, we care more about the higher ranked
tweets rather than the ranking of all tweets.

Table 2. Improvements of TSTR for different metrics compared to UI+II LSTM,
UI+II+TI and V2S models.

UI+II LSTM UI+II+TI V2S

M P@1 #1 8.96% 11.50% 18.23%

M P@1 #3 10.75% 14.27% 8.87%

M P@1 #5 8.11% 9.02% 5.02%

M P@1 #10 3.12% 5.39% 3.49%

M P@3 #3 7.69% 8.79% 9.73%

M P@3 #5 9.81% 4.31% 6.86%

M P@3 #10 7.65% 2.48% 3.95%

M P@5 #5 10.85% 7.09% 6.24%

M P@5 #10 12.18% 5.19% 3.69%

M P@10 #10 17.84% 14.24% 3.59%

Ave. Improv. 9.70% 8.23% 6.97%

M AP #1 6.72% 7.00% 7.70%

M AP #3 11.17% 8.86% 6.11%

M AP #5 10.47% 5.76% 4.87%

M AP #10 7.53% 3.95% 3.40%

Ave. Improv. 8.97% 6.39% 5.52%

M RR@1 7.02% 6.47% 7.70%

M RR@3 8.13% 9.00% 4.26%

M RR@5 5.95% 5.96% 2.90%

M RR@10 3.55% 2.66% 1.92%

Ave. Improv. 6.16% 6.02% 4.20%

M NDCG@1 8.51% 10.95% 5.98%

M NDCG@3 6.09% 7.18% 5.88%

M NDCG@5 6.14% 7.43% 5.56%

M NDCG@10 7.55% 8.33% 4.56%

Ave. Improv. 7.07% 8.47% 5.50%

Spearman’s ρ 0.35% 1.86% 0.66%
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The Baseline V2S Model. From the average improvement rows in Table 2,
we can see that V2S performs better than UI+II LSTM and UI+II+TI but
worse than our TSTR model on the whole. As reported in the original papers,
V2S outperforms other state-of-the-art content-based and LDA-based models,
so we expect that TSTR could have the same ability too. Fine-grained analyses
show that V2S cannot perform well on metrics such as M P@1 #1, M P@3 #3,
M AP#1 and M RR@1, which means that V2S is not suitable for applications
such as recommendation and hot events detection where our TSTR model is a
better choice as analysed before.

5 Conclusion

In this paper, we leverage real-time news information from Toutiao to improve
the topic-specific retweet count ranking task in Weibo. A TSTR framework is
proposed to address this important yet challenging problem. A LSTM-AE and
a DAE make up of the core part of TSTR framework. LSTM-AE extends tra-
ditional RNN-based encoder-decoder models in two ways for generating tweet
features. DAE is designed for translating news information into topic features.
Extensive experiments on real Weibo data show the effectiveness and flexibility
of TSTR framework.

We also provide some useful conclusions. (1) User features are more suit-
able for this topic-specific ranking task than tweet features. (2) Real-time news
information from Toutiao is potential to boost applications in Weibo. (3) The
proposed TSTR framework is suitable for applications (e.g., recommendation)
caring more about the higher ranked tweets rather than the ranking of all tweets.

We will study the following problems in the future: (1) How to leverage other
suitable data for the remaining 15% topics that are not reported in Toutiao. (2)
How to use network structure information properly in topic-specific setting.
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Abstract. Characterizing and understanding information diffusion over
social networks play an important role in various real-world applications.
In many scenarios, however, only the states of nodes can be observed
while the underlying diffusion networks are unknown. Many methods
have therefore been proposed to infer the underlying networks based
on node observations. To enhance the inference performance, structural
priors of the networks, such as sparsity, scale-free, and community struc-
tures, are often incorporated into the learning procedure. As the building
blocks of networks, network motifs occur frequently in many social net-
works, and play an essential role in describing the network structures and
functionalities. However, to the best of our knowledge, no existing work
exploits this kind of structural primitives in diffusion network inference.
In order to address this unexplored yet important issue, in this paper,
we propose a novel framework called Motif-Aware Diffusion Network
Inference (MADNI), which aims to mine the motif profile from the node
observations and infer the underlying network based on the mined motif
profile. The mined motif profile and the inferred network are alternately
refined until the learning procedure converges. Extensive experiments on
both synthetic and real-world datasets validate the effectiveness of the
proposed framework.

1 Introduction

Characterizing and understanding information diffusion processes over social
networks play an important role in many real-world applications, such as viral
marketing [10] and rumor detection [3]. However, in many scenarios, the under-
lying diffusion networks are hidden [19,20]; what we do have is the states of
nodes observed over time. Therefore, inferring the underlying networks based on
the observations of node states is of great importance and has received much
attention recently [5,19,20].

Utilizing the network structure properties (e.g., community structure [8]
and scale-free property [21]) as the prior in the inference procedure has been
proved effective in improving the performance of network inference [7,18]. Net-
work motifs, which are regarded as the building blocks of networks [1,17], occur
frequently in many real-world networks and play a key role in analyzing the net-
work structure and interpreting the network functionality. For example, as an
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 638–650, 2018.
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important mesoscale structure, motif patterns characterize the local structure
of the network connectivity and contribute to network classification [16] and
community detection [2]. Moreover, the incoherent feed-forward loop, which is
a representative triangle network motif, is commonly found in gene regulation
networks and can provide fold-change detection [4].

Although motifs are of great importance in describing the network structures
and functionalities, to the best of our knowledge, no existing work exploits this
kind of structural primitives in diffusion network inference. In order to address
this unexplored yet important issue, we propose a novel framework called Motif-
Aware Diffusion Network Inference (MADNI), which takes the network motifs
into account when inferring the underlying diffusion networks. Figure 1 schemat-
ically illustrates the idea and procedure of the proposed framework.

The contributions of this paper are summarized as follows.

1. We investigate an unexplored yet important issue, i.e., how to integrate motif
prior into diffusion network inference.

2. We propose a novel learning framework MADNI to mine the motif profile and
incorporate the uncovered motif profile into the network inference procedure.

3. We perform extensive experiments on both synthetic and real-world datasets,
showing the effectiveness of the proposed framework.

2 Related Work

The proposed MADNI aims to jointly mine the network motif prior and infer the
underlying diffusion network. This section therefore reviews some related works
in underlying diffusion network inference and the inference with network priors.

The diffusion network inference problem refers to tracing the diffusion edges
based on the observed infection time sequence. Gomez et al. proposed an algo-
rithm NETINF [5] to infer the diffusion edges through maximizing the likeli-
hood of observed infection time by utilizing submodular optimization. To infer
the heterogeneous transmission rates and time-varying network, NETRATE [19]
and INFOPATH [6] have been proposed respectively. Rong et al. proposed a
model-free approach NPDC [20] to utilizes the statistical difference of the infec-
tion time intervals between nodes connected with diffusion edges versus those
without diffusion edges in network inference. Moreover, Hu et al. proposed a
clustering embedded approach CENI [9] to improve the efficiency of network
inference by clustering the nodes on the embedded space.

Incorporating the network prior into the learning procedure generally
improves the performance of network inference [8,13,21]. Many literatures have
focused on inferring the scale-free networks and modular networks with block
structure. Liu and Ihler added a log l1 norm regularization on the estimated
graph structure in the Gaussian graphical model learning to encourage the esti-
mated graph becoming scale-free [15]. Liu et al. introduced the weight inverse
graph prior to encourage specific node distribution [13]. Hosseini Lee. introduced
a block prior to encourage sparse connections between blocks [8].
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Fig. 1. Schematic illustration of the proposed motif-aware diffusion network inference
(MADNI). (a) An example of the diffusion network. (b) An enlarged part of the diffu-
sion network in (a) for algorithm illustration. (c) The observed cascades on the under-
lying diffusion network shown in (b). For each cascade, only the infection time of the
influenced nodes (the red nodes) are observed, such as t1 = {t1a, t1b , · · · }. (d) The motif
profile is mined from the cascade data by estimating the frequency of various motif
patterns in the underlying diffusion network. (e) The underlying diffusion network is
learned via motif prior regularized learning. The mined motif profile and the learned
network are alternately refined until the inferred network converges. (f) The diffusion
network inferred by the MADNI framework. (Color figure online)



Motif-Aware Diffusion Network Inference 641

However, motif, the structural primitives of many real-world networks, has
not been taken into account in underlying diffusion network inference yet. There-
fore, in this paper, we attempt to fill this gap by proposing a novel framework
to discover the underlying motif patterns and incorporate the uncovered motif
patterns into the network inference procedure.

3 Motif-Aware Diffusion Network Inference

In this section, we present our framework, Motif-Aware Diffusion Network Infer-
ence (MADNI). First, we provide the necessary notations and formally define
the problem. Then we introduce how to estimate the initial structure motif pro-
file from the cascade data and present a novel scheme for inferring the diffusion
network with the mined structural motif profile.

3.1 Notations and Problem Formulation

Let G =< V,E > denote the directed diffusion network, where V denotes the set
of N nodes (representing the individuals, Blog sites or locations) and E denotes
the set of edges (representing the directed influence from one node to another).
Generally, the edges in E is represented by the N × N adjacency matrix A,
where an entry (i, j) of A, Aij , is the transmission rate from node i to node
j. A subgraph Gs = (Vs, Es) of G satisfies Vs ⊆ V , Es ⊆ E. Two subgraphs
G1

s = (V1, E1) and G2
s = (V2, E2) are isomorphic if there exists a projection

ϕ : V1 → V2 with (u, v) ∈ E1 ↔ (ϕ(u), ϕ(v)) ∈ E2 for all (u, v).

Motif. A motif pattern with k nodes is a non-isomorphic, connected subgraph
frequently appearing in a large network. Figure 1(d) shows all seven close con-
nected triangle motif patterns.

Consider that the diffusion observation O is collected over the underlying
diffusion network G and consists of a set of C cascades. Each cascade tc (c =
1, ..., C) is a collection of observed infection time stamps within the population
during a time interval of length T and can be represented as an N -dimensional
vector tc := (tc1, · · · , tcN ), where tcn ∈ [0, T ] ∪ {∞} indicates the infection time
of node n in cascade c. The symbol ∞ labels users that are not infected during
observation window [0, T ]. Given the above diffusion observation O, we aim to
infer the underlying relation between nodes on G, i.e., the adjacency matrix A.

3.2 Estimating Motif Pattern from Cascade Data

In this subsection, we introduce a straightforward yet effective approach to esti-
mate the motif frequency from the cascade data, which is expected to be help-
ful in inferring the underlying diffusion network. When scanning the cascade
sequences, we record the occurrence matrix CO ∈ RN×N as follows. In each
cascade, if tci + tW > tcj > tci , where tW is the time window, COi,j increases by
one. Therefore, COi,j reflects how many times that node i may influence node
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j. We could further take into account the interval between the infection time of
node i and that of node j, i.e., COi,j increases by σ(−(tcj − tci )), where σ(·) could
be the Exponential function or Rayleigh function [19]. Based on this occurrence
matrix, we extract the significant pairwise influences by calculating the score of
the edge count: SE

i,j = COi,j−mean(CO)
std(CO) , where mean(CO) and std(CO) denote

the mean and standard deviation of all elements in CO, respectively. The edges
with low scores are filtered out. Then we could count the subgraph frequency
fm based on the SE by assuming that there exists an edge ei,j if SE

i,j is nonzero,
and further determine the significant motifs by calculating the Z-score of the
subgraph as Qm = fm−mean(Fm)

std(Fm) , where Fm is the m-th motif frequency of a
set of samples drawn by randomly shuffling SE [17]. The m-th motif is signifi-
cant if Zm is far above 1 [16]. We denote the procedure of extracting significant
motifs as M ← Q(SE).

3.3 Motif Prior Regularization

Different types of networks exhibit distinct motif frequency profiles [16]. In
order to incorporate the motif prior into network inference, we propose an edge-
centered regularization to adjust the motif frequency profile of the estimated net-
work. The main idea is that if an edge is forming a high frequent motif, less penal-
ization will be given to it. Let Zm ∈ 	N×N denote the motif count matrix of G for
a certain motif pattern m, where Zm

i,j indicates the number of instances of motif
m that containing the edge (i → j) [2]. We detect the motif m from the adja-
cency matrix A and count Zm

i,j for each edge, which is denoted as Zm = P(A,m).
Furthermore, we have Z =

∑
m∈M Zm =

∑
m∈M P(A,m) = P(A). The motif

pattern in M could be selected as significant motifs detected from the networks
or based on prior knowledge. In this paper, the seven close connected triangle
motif patterns shown in Fig. 1 are considered since the empirical studies have
revealed that these motif patterns appear frequently and play special roles in
social networks [14]. Based on the motif count matrix, the reweighted regular-
ization can be constructed for learning the network with significant frequent
motif patterns:

R(P(A)) = |M ◦ A| =
N∑

i,j=1

| Ai,j

Zi,j + 1
| (1)

3.4 Learning

We aim to find the diffusion network such that likelihood of diffusion observation
is maximized. The likelihood of diffusion observation is calculated as follow.

Pairwise transmission likelihood. With the cascades data, the pairwise
transmission likelihood is calculated as follows. Define f(tci |tcj , Aj,i) as the trans-
mission likelihood from node j to node i, which is related to the infection time
interval �t = (tcj − tci ) and the transmission rate Aj,i. Moreover, a node can only
be infected by an infected node. The exponential parametric likelihood model
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is adopted: f(tci |tcj , Aj,i) = Aj,i exp−Aj,i(t
c
i−tcj) if tcj < tci and 0 otherwise. The

survival likelihood of edge (j → i), denoted as S(tci |tcj , Aj,i), is the probabil-
ity that node i is not infected by node j by time tci , which is calculated as:
S(tci |tcj , Aj,i) = 1 − F (tci |tcj , Aj,i) , where F (tci |tcj , Aj,i) is the cumulative function
of the transmission likelihood.

Likelihood of a cascade. The likelihood of the observe infections t̂c =
(tc1, · · · , tcN ) is calculated as:

f(t̂c;A) =
∏

tci≤T

∏

tcm>T

S(T |tci , Ai,m)
∏

k:tck<tci

S(tci |tck, Ak,i) ×
∑

j:tcj<tci

H(tci |tcj , Aj,i),

(2)
where H(tci |tcj , Aj,i) is the hazard function: H(tci |tcj , Aj,i) = f(tci |tcj ,Aj,i)

S(tci |tcj ,Aj,i)
.

Network inference. We aim to search A that maximizes the likelihood of
cascade observation O. In our framework, the networks are estimated through
maximizing the regularized likelihood function as follow.

max
A

(
L(O|A) − R(P(A))

)
= max

A

( ∑

c∈C

log f(tc, A) − R(P(A))
)

s.t. Aj,i ≥ 0, i, j = 1, · · · , N

(3)

where L(O|A) is the likelihood function of observation given the network topol-
ogy and R(P(A)) is the regularization term. We can use ADMM or projected
gradient descent [6] to enforce A to be nonnegative. Thus the matrix gradient
in terms of A is written as ∂L

∂A − M . The additional computational bounden
of adding the regularization term is just the addition of a N × N matrix. The
gradient for edges linking to node k in the cascade where node k is uninfected is

∂Lc

∂Aj,k
= T − tcj (4)

and the gradient for edges linking to node k in the cascades where node k is
infected is:

∂Lc

∂Aj,k
= (tck − tcj) − 1

∑
l:tcl <tck

Al,k
(5)

Summating the above term over all cascades gives the gradient for edges linking
to node k. Starting from Z = P(CO) or a plain prior, i.e., Z = P(0N×N ), we
update the network structure and the motif count matrix alternately until the
estimated network structure remains unchanged. The detailed procedure of the
proposed MADNI framework is provided in Algorithm 1.

3.5 Computational Complexity Analysis

In this subsection, we analyze the computational complexity of the proposed
framework. The time cost of occurrence matrix counting is O(CL), where C is the
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Algorithm 1: Motif-Aware Diffusion Network Inference (MADNI)
Input : The observation O: C cascades {tc = (tc1, ..., t

c
N )|Cc=1}

Output: The estimated network Â
for c = 1, · · · , C do

if tci + tW > tcj > tci then
COi,j ← COi,j + σ(−(tcj − tci )); � Construct occurrence matrix

end

end
for i, j = 1, · · · , N do

SE
i,j ← COi,j−mean(CO)

std(CO)
; � Calculate edge significance

end

M ← Q(SE) ; � Initialize candidature motifs set M
Z ← P(SE , M) ; � Initialize motif profile

while not converged do

Â ← arg maxA L(O|A) − R(Z) ; � Learn diffusion network

Z ← P(Â, M) ; � Update motif profile

end

number of cascades and L is the length of a cascade. Assume on average there are
K elements in each row of SE +(SE)T , then the cost of motif counting in SE and
its random shuffling variants is O(NK2). For each iteration of diffusion network
learning and motif profile updating, the computational demand comes from two
parts: motif count matrix calculation and network inference. Assume there are
M edges in the graph and the maximum degree is Dmax. For each edge e, the
cost of calculating the motif count Ce is O(Dmax) and thus the cost of calculating
the matrix count for all edges is O(MDmax). The network structure is inferred
via an iterative way, in which the complexity in each iteration is O(CN2). If
the maximum number of iterations in network inference problem is Ni, then the
complexity of network inference is O(NiCN2). As O(CNiN

2) > O(MDmax)
holds in general, the total computational cost of the proposed framework is
O(CNiN

2).

4 Validations

In this section, we evaluate the performance of our framework in diffusion net-
work inference on both the synthetic and real-world networks, in terms of Pre-
cision, Recall and F1 score [7].

4.1 Experiments on Synthetic Networks

In this subsection, we evaluate the performance of our framework on synthetic
networks and cascades. We first construct the synthetic network with N nodes
and then generate C cascades using exponential diffusion model on the network
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Fig. 2. (a) Performance comparison (in terms of Precision and Recall) between MADNI
and the baseline. MADNI significantly outperforms the baseline method with only one
iteration. The performance of MADNI is further improved after each iteration, and
the learning procedure quickly converges in only three iterations. (b) F1 improvement
ratio of MADNI over the baseline method with varying ρ. MADNI outperforms the
baseline even if the target network is close to a random network (ρ = 0.9). When
the target network becomes more structured, i.e., ρ becomes smaller, the improvement
ratio becomes more significant.

as the observation [19]. We choose NETRATE [19] as the baseline method for
comparison in our experiments as it explores the global convexity of network
inference problem.

Comparison with baseline. We first evaluate the performance of the proposed
framework on inferring the motif-dense network, i.e., the network with certain
motif patterns occurring frequently. The motif-dense network is generated from
a random motif network model, which enumerates the combinations over all
nodes and assigns a specific motif to each node combination with probability p.
Here we choose the feed-forward loop motif, i.e., Motif 5 illustrated in Fig. 1(d),
for our experiment, as it is a commonly observed motif in social networks [16].
Figure 2(a) shows the Precision and Recall of the baseline method and those of
MADNI after different number of iterations. It can be seen that the proposed
framework achieves significant improvement over the baseline method with only
one iteration, which validates the effectiveness of taking the motif into consider-
ation when inferring the structured networks. Furthermore, the performance of
the proposed framework can be further improved after each iteration, and the
learning procedure quickly converges in only three iterations.

Performance improvement with random edges. After having evaluated the
performance of the proposed framework on the motif-dense network, we further
test our framework on the networks consist of both significant motifs and random
edges. Specifically, we generate the target network from a motif-dense network
and a random network. The proportion of random network is indicated by a
parameter ρ, where ρ = 0 indicates the complete motif-dense network, which
is used in our previous experiment; while ρ = 1 indicates the complete random
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Fig. 3. Performance comparison (in terms of F1 score) between MADNI and the base-
line in (a) Exponential and (b) Rayleigh cascades on the networks with different types
of close connected triangle motifs.

network. The F1 score improvement ratio of MADNI over the baseline method
with varying ρ is shown in Fig. 2(b). Here the improvement ratio is defined as
(F1m−F1b)/F1b, where F1m is the F1 score of MADNI and F1b is the F1 score
of the baseline method. It can be observed from the figure that the proposed
framework outperforms the baseline even if the target network is close to a
random network (ρ = 0.9). When the target network becomes more structured,
i.e., the ratio of motif-dense network increases, the improvement ratio becomes
more significant.

Adaptivity over various motif patterns. In order to show that the perfor-
mance improvement is independent of the specific motif, we examine the per-
formance of our framework on inferring the networks with different types of fre-
quently occurred motifs. Specifically, we consider all the seven close connected
triangle motifs in this experiment. We generate the cascades using the Exponen-
tial and Rayleigh cascade models [19] and set ρ = 0.5. The comparison results
are shown in Fig. 3. MADNI consistently performs better than the baseline over
networks with different types of frequently occurred motifs, which demonstrates
the adaptivity of the proposed framework over various motif patterns.

4.2 Experiment on a Real-World Network

In this subsection, we evaluate the proposed framework on a real-world network,
i.e., an email communication network of an European Research Institute con-
sisting of 320 nodes and 3031 edges [12]. Similar to the synthetic experiments in
Sect. 4.1, we generate C (= 1000, 4000, 10000) cascades on the network as the
observations.

In this experiment, we compare the proposed framework with seven methods:
NETINF [5], NETINF with community structure prior, NETINF with scale-free
prior, NETRATE [19], NETRATE with community structure prior, NETRATE
with scale-free prior, and CENI [9]. Here NETINF and NETRATE are classical
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Table 1. Performance comparison (in terms of F1 score) between the proposed
MADNI-I/MADNI-R methods and seven competing diffusion network inference algo-
rithms in a real-world network experiment. The proposed methods perform the best.

Methods Number of cascades

C = 1000 C = 4000 C = 10000

NETINF 0.5675 0.8040 0.8333

NETINF + Community structure 0.5944 0.8041 0.8363

NETINF + Scale-free 0.6121 0.8044 0.8397

NETRATE 0.6636 0.7900 0.8350

NETRATE + Community structure 0.6385 0.7900 0.8351

NETRATE + Scale-free 0.6426 0.7901 0.8431

CENI 0.3390 0.8058 0.8517

MADNI-I 0.6287 0.8188 0.8464

MADNI-R 0.6685 0.7998 0.8600

network inference methods, community and scale-free structure are representa-
tive structural priors, and CENI is a state-of-the-art network inference algorithm.
For the proposed framework, NETINF and NETRATE are employed to learn
the diffusion network, i.e., maximize

(
L(O|A) − R(Z)

)
, respectively. Therefore,

in this experiment, we name the methods generated from the proposed frame-
work as MADNI-I (corresponding to NETINF) and MADNI-R (corresponding
to NETRATE), respectively.

Table 1 lists the performance (in terms of F1 score) of the proposed MADNI-
I/MADNI-R methods and the aforementioned seven competing algorithms under
different numbers of cascades. The proposed methods achieve the best perfor-
mance under all settings of C, indicating that the motif prior is powerful in
characterizing the complex structure of real-world networks.

4.3 Experiment on Real-World Cascades

In this subsection, we evaluate the performance of the proposed framework on a
real-world information cascade dataset, i.e., MemeTracker dataset [11]. Meme-
Tracker collects the quotes and phrases posted by the mass medium and Blog
sites. This dataset contains 1.5 million news articles and Blog from August 2008
to May 2009. The articles may include hyperlinks of their sources and thus
the information propagation can be tracked by the flow of hyperlinks. A site
publishes a piece of information with corresponding hyperlink. Sites receives
this piece of information would publish similar information and link to their
sources. Thus a collection of hyperlinks with time stamps could be regarded as
a hyperlink cascade. We construct the hyperlink cascades from top 500 mass
media and Blog sites. The total number of cascades is 11262. We test the per-
formance of the proposed methods as well as NETINF, NETINF+Community
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Table 2. Performance comparison (in terms of F1 score) between the proposed
MADNI-I/MADNI-R methods and five competing diffusion network inference algo-
rithms in a real-world cascade experiment. The proposed MADNI-I performs the best.

Methods Number of cascades

Sub (C = 4000 ) All (C = 11262)

NETINF 0.2414 0.3879

NETINF + Community structure 0.2425 0.3460

NETINF + Scale-free 0.2730 0.3800

NETRATE 0.2455 0.2608

CENI 0.2538 0.2873

MADNI-I 0.2746 0.3885

MADNI-R 0.2472 0.2959

structure, NETINF+Scale-free, NETRATE, and CENI with 4000 cascades and
all the 11262 cascades, respectively.

Table 2 shows the F1 scores of the proposed methods and five competing
algorithms under different numbers of cascades. By modeling the motif-prior in
the network inference procedure, the proposed MADNI-I performs better than
the other competing algorithms under both settings of C.

5 Conclusion

In this paper, we presented a novel MADNI framework, which mines the motif
patterns of the underlying diffusion network and incorporates the uncovered
motifs into the network inference procedure via a reweighted motif regulariza-
tion. By taking the network motifs into consideration, the proposed framework
achieves the best performance on both synthetic and real-world datasets.

Future work will be explored from two aspects. First, in the current work,
we have only considered the closed triangle motifs in the network inference as
they are elementary. In order to better characterize the network structure, more
complex motifs such as the higher-order ones should also be taken into account.
Second, we will further validate the generalization ability and the flexibility of
the proposed framework by incorporating motifs into different baseline methods
and comparing the proposed framework to more network inference approaches
with various kinds of structural priors.
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Abstract. Given a graph stream, how can we estimate the number of
triangles in it using multiple machines with limited storage?

Counting triangles (i.e., cycles of length three) is a classical graph
problem whose importance has been recognized in diverse fields, includ-
ing data mining, social network analysis, and databases. Recently, for tri-
angle counting in massive graphs, two approaches have been intensively
studied. One approach is streaming algorithms, which estimate the count
of triangles incrementally in time-evolving graphs or in large graphs only
part of which can be stored. The other approach is distributed algorithms
for utilizing computational power and storage of multiple machines.

Can we have the best of both worlds? We propose Tri-Fly, the first
distributed streaming algorithm for approximate triangle counting. Mak-
ing one pass over a graph stream, Tri-Fly rapidly and accurately esti-
mates the counts of global triangles and local triangles incident to each
node. Compared to state-of-the-art single-machine streaming algorithms,
Tri-Fly is (a) Accurate: yields up to 4.5× smaller estimation error,
(b) Fast: runs up to 8.8× faster with linear scalability, and (c) Theo-
retically sound: gives unbiased estimates with smaller variances.

Keywords: Graph stream · Triangle counting · Edge sampling

1 Introduction

Counting triangles (i.e., cycles of length three) is a classical graph problem whose
importance has been recognized in diverse areas. In data mining, the count of
triangles was used for dense subgraph mining [19], spam detection [5], degeneracy
estimation [16], and web structure analysis [8]. In social network analysis, many
important concepts (e.g., the clustering coefficients and social balance) are based
on the count of triangles [20]. In databases, the count of triangles, which measures
the degree of transitivity of a relation, can be used for query optimization [4].
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 651–663, 2018.
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Due to this importance, many algorithms have been developed for counting
global triangles (i.e., all triangles in a graph) and/or local triangles (i.e., triangles
incident to each node in a graph). Especially, for triangle counting in massive
graphs, recent work has focused largely on streaming algorithms [2,7,10,11,14,
15] and distributed algorithms [3,12,17].

In a graph stream, where edges are streamed from sources, streaming algo-
rithms [2,7,10,11,14,15] estimate the count of triangles by making one pass
over the stream, even when the stream does not fit in the underlying storage.
Moreover, since streaming algorithms incrementally update their estimates as
each edge arrives, they can naturally be used for maintaining and updating
approximate triangle counts in dynamic graphs growing with new edges. How-
ever, existing streaming algorithms are designed to run on a single machine and
do not utilize multiple machines for faster or more accurate estimation.

On the other hand, distributed algorithms have been employed for utilizing
computational and storage resources in distributed-memory [3] and MapRe-
duce [12,17] settings. However, they do not provide the advantages of streaming
algorithms. That is, they assume that all edges can be stored in the underlying
storage and accessed multiple times. Moreover, since they are batch algorithms
rather than incremental algorithms, they do not support efficient updates of
triangle counts in dynamic graphs growing with new edges.

In this work, we propose Tri-Fly, the first distributed streaming algorithm
for approximate counting of global and local triangles. Tri-Fly gives the advan-
tages of both streaming and distributed algorithms, outperforming state-of-the-
art single-machine streaming algorithms. Our theoretical and empirical analyses
show that Tri-Fly has the following advantages:

– Accurate: Tri-Fly produces up to 4.5× smaller estimation error than base-
lines with similar speeds (Fig. 3).

– Fast: Tri-Fly runs in linear time (Fig. 2(c)) up to 8.8× faster than baselines
with similar accuracies (Fig. 3).

– Theoretically sound: Tri-Fly gives unbiased estimates with variances
inversely proportional to the number of machines (Theorems 1 and 2).

Reproducibility: The code and datasets used in the paper are available at
http://www.cs.cmu.edu/∼kijungs/codes/trifly/.

2 Related Work

Triangle Counting in Graph Streams. Streaming algorithms estimate the
count of triangles by making one pass over a graph stream. Streaming algorithms
use sampling because they assume limited storage that may not store all edges.
A simple but effective sampling technique is edge sampling. Doulion [18] uni-
formly samples edges of a large graph, and estimates its global triangle count
from that in the sampled graph. Mascot [11] improves upon Doulion in terms
of accuracy by utilizing unsampled edges. Specifically, whenever an edge arrives,
Mascot counts the global and local triangles formed by the incoming edge and

http://www.cs.cmu.edu/~kijungs/codes/trifly/
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Table 1. Comparison of triangle counting algorithms. Notice that only our proposed
algorithm Tri-Fly satisfies all the criteria.

(Distributed) (Streaming) (Proposed) Tri-Fly

[12,17] [3] [2,9,14] [7,10,11,15]

Single-pass stream processing ✓ ✓ ✓
Approximation for large graphs ✓ ✓ ✓ ✓
Global & local triangle counting ✓ ✓ ✓
Larger data w/more machines ✓ ✓ ✓
More accurate w/more machines ✓ ✓

edges sampled so far, even if the incoming edge is not sampled but discarded.
While Mascot may discard edges even when storage is not full, Triestimpr [7]
always maintains as many samples as storage allows, leading to higher accuracy.
When edges are streamed in the chronological order, WRS [15] improves upon
Triestimpr in terms of accuracy by exploiting temporal dependencies in the
edges. In addition to edge sampling, wedge sampling [9], neighborhood sampling
[14], and sample-and-hold [2] were used for global triangle counting, and node
coloring [10] was used for local triangle counting. Neighborhood sampling was
parallelized in a shared-memory setting where edges arrive in batches, and it
was also extended to cases where edges are streamed from multiple sources [13].

Distributed Triangle Counting. Many MapReduce algorithms for exact
counts of triangles have been proposed based on the assumption that all edges of
the input graph are stored in a distributed file system. The first such algorithm [6]
parallelizes node iterator, a serial algorithm for triangle counting. GP [17] divides
the input graph into overlapping subgraphs and assigns them to machines, which
count the triangles in the assigned subgraphs in parallel. Since the subgraphs
are not disjoint, GP produces a large amount of intermediate data, which were
reduced in [12]. The idea of dividing the input graph into overlapping subgraphs
was used also in a distributed memory setting [3]. These existing distributed
algorithms are batch algorithms for static graphs, while we propose incremental
algorithms for dynamic graph streams.

The aforementioned streaming algorithms and distributed algorithms are
summarized and compared in Table 1.

3 Notations and Problem Definition

3.1 Notations (Table 2)

Consider an undirected graph G = (V, E) with the set of nodes V and the set of
edges E . Each unordered pair (u, v) ∈ E indicates the edge between two distinct
nodes u, v ∈ V. We denote the set of triangles (i.e., three nodes, every pair of
which is connected by an edge) in G by T and those with node u by T [u] ⊂ T .
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Table 2. Table of frequently-used symbols.

Symbol Definition

Notations for
graph streams
(Sect. 3)

G(t) = (V(t), E(t)) Graph at time t

e(t) Edge that arrives at time t

(u, v) Edge between nodes u and v

tuv Arrival time of edge (u, v)

(u, v, w) Triangle with nodes u, v, and w

T (t) Set of global triangles in G(t)

T (t)[u] Set of local triangles with node u in G(t)

Notations for
algorithm (Sect. 4)

M, W, A Sets of masters, workers, and aggregators

k Maximum number of edges stored in each worker

li Number of edges that worker i has received

h : V ∪ {∗} → A Hash function that maps nodes to aggregators

c̄ Estimate of the count of global triangles

c[u] Estimate of the count of local triangles of node u

We call T global triangles and T [u] local triangles of node u. Each unordered
triple (u, v, w) ∈ T denotes the triangle with three distinct nodes u, v, w ∈ V.

Consider a graph stream (e(1), e(2), ...) where e(t) denotes the edge that arrives
at time t ∈ {1, 2, ...}. We use tuv to denote the arrival time of edge (u, v). Let
G(t) = (V(t), E(t)) be the graph at time t consisting of the nodes and edges
arriving at time t or earlier. Then, T (t) denotes the set of global triangles in G(t)

and T (t)[u] ⊂ T (t) denotes the set of local triangles of each node u ∈ V(t) in G(t).

3.2 Problem Definition

In this work, we consider the problem of estimating the counts of global and
local triangles in a graph stream using multiple machines with limited storage.
Specifically, we assume the following realistic conditions:

C1 No prior knowledge: no information about the input graph stream (e.g.,
the number of edges, degree distribution, etc.) is available in advance.

C2 Shared nothing architecture: each machine cannot access data stored
in the other machines.

C3 Limited storage: at most k (≥2) edges can be stored in each of n machines,
while the number of edges in the input graph stream can be greater than k
or even nk.

C4 Single pass: edges are processed one by one in their arrival order. Past
edges cannot be accessed unless they are stored (in the storage in C3).

Based on these conditions, we define the problem of distributed estimation
of global and local triangle counts in a graph stream.
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Fig. 1. Flow of data in Tri-Fly.

Problem 1 (Distributed Estimation of Triangle Counts in a Graph Stream).

(1) Given: a graph stream (e(1), e(2), ...), and n distributed storages each of
which can store up to k (≥ 2) edges

(2) Minimize: the estimation errors of global triangle count |T (t)| and local
triangle counts {|T (t)[u]|}u∈V(t) for each time t ∈ {1, 2, ...}.

Instead of minimizing a specific measure of estimation error, we use a gen-
eral approach of simultaneously reducing bias and variance to reduce various
measures of estimation error robustly.

4 Proposed Method: Tri-Fly

We propose Tri-Fly, a distributed streaming algorithm for approximate triangle
counting. We first present the overview of Tri-Fly. Then, we discuss its details.
Lastly, we provide theoretical analyses on its accuracy and complexity.

4.1 Overview (Fig. 1)

Figure 1 shows the flow of data in Tri-Fly. Edges are streamed from sources to
masters so that each edge is sent to exactly one master. Each master broadcasts
the received edges to the workers. Each worker estimates the global and local
triangle counts independently using its local storage. To this end, we adapt
Triestimpr, which estimates both global and local triangle counts with no prior
knowledge, although any streaming algorithm can be used instead.1 The counts
are shuffled so that the counts of local triangles of each node (or the counts of
global triangles) are sent to the same aggregator. The aggregators aggregate the
counts and give the final estimates of the counts of global and local triangles.

4.2 Detailed Algorithm (Algorithm1)

Algorithm 1 describes Tri-Fly. We first define the notations used in it. Then, we
explain masters, workers, and aggregators. Lastly, we discuss lazy aggregation.

Notations. We use M, W and A to indicate the set of masters, workers and
aggregators, respectively. Each worker can store up to k (≥ 2) edges, and Ei

denotes the set of edges currently stored in worker i ∈ W. We let Gi = (Vi, Ei)
1 e.g., WRS [15] can be used instead if edges are streamed in the chronological order.
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Algorithm 1. Tri-Fly

Input : input graph stream: (e(1), e(2), ...), storage budget in each worker: k
Output: estimated global triangle count: c̄

estimated local triangle counts: c[u] for each node u
- Master (each master):

22 for each edge (u, v) from the sources do
3 broadcast (u, v) to the workers

- Worker (each worker i ∈ W):
55 li ← 0, Ei ← ∅
6 for each edge (u, v) from the masters do
7 sum ← 0
8 for each node w ∈ Ni[u] ∩ Ni[v] do
9 send (w, 1/(pi[uvw])) to aggregator h(w)

10 sum ← sum + 1/(pi[uvw]) � see Eq. (1) for pi[uvw]

11 send (∗, sum) to aggregator h(∗) � ‘∗’: key for the global triangle count
12 send (u, sum) to aggregator h(u) and (v, sum) to aggregator h(v)
13 li ← li + 1
14 if |Ei| < k then Ei ← Ei ∪ {(u, v)}
15 else if a random number in Bernoulli(k/li) is 1 then
16 replace a random edge in Ei with (u, v)

- Aggregator (each aggregator j ∈ A):
17 if h(∗) = j then c̄ ← 0
18 initialize an empty map c with default value 0
19 for each pair (u, δ) from the workers do
20 if u = ∗ then c̄ ← c̄ + δ/|W|
21 else c[u] ← c[u] + δ/|W|

be the graph consisting of the edges in Ei. For each node u ∈ Vi, Ni[u] indicates
the neighbors of u in Gi. We use li to denote the number of edges that worker
i ∈ W has received so far. If li > k, then li > |Ei| since not all received edges can
be stored. We use h : Vi ∪ {∗} → A to denote a hash function that maps nodes
(the keys for local triangle counts) and ‘∗’ (the key for global triangle counts) to
aggregators. Lastly, c̄ denotes the estimate of the count of global triangles, and
for each node u, c[u] denotes the estimate of the count of local triangles of u.

Masters (lines 2–3). Whenever each master receives an edge from the sources,
the master broadcasts the edge to the workers.

Workers (lines 5–16). Each worker independently estimates the global and local
triangle counts, and shuffles the counts across the aggregators. Note that the
workers use different random seeds and thus shuffle different counts. Each worker
i ∈ W starts with an empty storage (i.e., Ei = ∅) (line 5). Whenever it receives
an edge (u, v) from a master (line 6), the worker counts the triangles composed
of (u, v) and two edges in its local storage; and sends the counts to the cor-
responding aggregators using hash function h (lines 7–12). Then, the worker
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samples (u, v) in its local storage with non-zero probability (lines 13–16). Below,
we explain in detail how each worker samples edges and counts triangles.

For sampling (lines 13–16), each worker i ∈ W first increases li, the number
of edges that it has received, by one (line 13). If its local storage is not full (i.e.,
|Ei| < k), the worker always stores (u, v) by adding (u, v) to Ei (line 14). If the
local storage is full (i.e., |Ei| = k), the worker stores (u, v) with probability k/li
by replacing a random edge in Ei with (u, v) (lines 15–16). This is the standard
reservoir sampling, which guarantees that each pair of the li edges is sampled
(i.e., included in Ei) with the equal probability min

(
1, k(k−1)

li(li−1)

)
.

For counting (lines 7–12), each worker i ∈ W finds the common neighbors
of nodes u and v in graph Gi (i.e., the graph consisting of the edges Ei in its
local storage) (line 8). Each common neighbor w indicates the existence of the
triangle (u, v, w). Thus, for each common neighbor w, the worker increases the
global triangle count and the local triangle counts of nodes u, v, and w by sending
the increases to the corresponding aggregators (lines 9, 11, and 12). The amount
of increase in the counts is 1/(pi[uvw]) for each triangle (u, v, w), where

pi[uvw] := min
(

1,
k(k − 1)
li(li − 1)

)
(1)

is the probability that triangle (u, v, w) is discovered by worker i (i.e., both (v, w)
and (w, u) are in Ei when worker i receives (u, v)), as explained above. Increasing
counts by 1/(pi[uvw]) guarantees that the expected amount of the increase sent
from each worker is exactly 1(= pi[uvw] × 1/(pi[uvw]) + (1 − pi[uvw]) × 0) for
each triangle, enabling Tri-Fly to give unbiased estimates (see Theorem 1).

Aggregators (lines 17–21). Each aggregator maintains and updates the triangle
counts assigned by the hash function h. That is, aggregator j ∈ A maintains the
estimate c[u] of the count of local triangles of node u if h(u) = j. Likewise,
aggregator j ∈ A maintains the estimate c̄ of the count of global triangles if
h(∗) = j. Specifically, each aggregator increases the estimates by 1/|W| of what
it receives, averaging the increases sent from the workers (lines 20–21).

Lazy Aggregation (Optional). In Algorithm 1, each worker sends the increase
of the local triangle count of node w to the corresponding aggregator whenever it
discovers each triangle (u, v, w) (line 9). Likewise, each worker sends the updates
of the global triangle count and the local triangle counts of nodes u and v to the
corresponding aggregators whenever it processes each edge (u, v) (lines 11–12).
In cases where this eager aggregation is not needed, we can reduce the amount of
shuffled data by employing lazy aggregation. That is, counts can be aggregated
locally in each worker until they are queried. If queried, the counts are sent to
and aggregated in the aggregators and removed from the workers.

4.3 Bias and Variance Analyses

We analyze the biases and variances of the estimates given by Tri-Fly. The
biases and variances determine the errors of the estimates. For the analyses,
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Table 3. Time and space complexities of Tri-Fly for processing the first t edges in
the input graph stream.

Masters (total) Workers (each) Workers (total) Aggregators (total)

Time O(t · |W|) O(t · min(t, k)) O(|W| · t · min(t, k)) O(|W| · t · min(t, k))*

Space O(|M|) O(min(t, k)) O(|W| · min(t, k)) O(|V(t)|)
*Can be reduced by lazy aggregation

let G(t) = (V(t), E(t)) be the graph with the edges arriving at time t or earlier.
We define c̄(t) as c̄ in the aggregator h(∗) after edge e(t) is processed. Likewise,
for each node u ∈ V(t), let c(t)[u] be c[u] in the aggregator h(u) after e(t) is
processed. Then, c̄(t) is an estimate of |T (t)|, the global triangle count in G(t),
and each c(t)[u] is an estimate of |T (t)[u]|, the local triangle count of u in G(t).

We first prove the unbiasedness of Tri-Fly, formalized in Theorem 1.

Theorem 1 (Unbiasedness of Tri-Fly). At any time, the expected values of
the estimates given by Tri-Fly are equal to the true global and local triangle
counts. That is, in Algorithm1,

E[c̄(t)] = |T (t)|, ∀t ≥ 1, and E[c(t)[u]] = |T (t)[u]|, ∀u ∈ V(t), ∀t ≥ 1.

Proof Sketch. Consider a triangle (u, v, w) ∈ T (t). Let di[uvw] be the contribution
of (u, v, w) to c̄(t) by each worker i ∈ W. Then, by the definition of pi[uvw], and
lines 11 and 20 of Algorithm1, di[uvw] = 1/(|W| · pi[uvw]) with probability
pi[uvw], and di[uvw] = 0 with probability (1−pi[uvw]). Therefore, E[di[uvw]] =
1/|W|. Then, E[di[uvw]] = 1/|W| and linearity of expectation imply

E[c̄(t)] = E

[ ∑
i∈W

∑
(u,v,w)∈T (t)

di[uvw]

]
=

∑
i∈W

∑
(u,v,w)∈T (t)

E[di[uvw]] = |T (t)|, ∀t ≥ 1.

See [1] for a full proof with the unbiasedness of the other estimates. �
Theorem 2 presents the result of our variance analysis given in the supple-

mentary document [1]. The variance of each c(t)[u] can be analyzed in the same
manner considering only the triangles with node u.

Theorem 2 (Variance of Tri-Fly). The variance of the estimate c̄(t) in Tri-
Fly is inversely proportional to the number of workers. Let r(t) be the number of
triangle pairs in T (t) where (a) an edge is shared and (b) the shared edge is not
last to arrive in any of the two triangles. Let z(t) be max

(
0, |T (t)|

( (t−1)(t−2)
k(k−1) −1

)

+r(t)
(
t−1−k

k

) )
. Then, Eq. (2) holds in Algorithm1.

V ar[c̄(t)] ≤ z(t)

|W| , ∀t ≥ 1. (2)

Proof Sketch. For each worker i ∈ W, let c̄
(t)
i be the global triangle count sent

from the worker by time t. Then, c̄(t) =
∑

i∈W c̄
(t)
i /|W| (line 20 of Algorithm 1).

Equation (2) follows from V ar[c̄(t)i ] ≤ z(t) for each i ∈ W (Lemma 1 in [1]) and
independence between c̄

(t)
i and c̄

(t)
j for i �= j. See [1] for a full proof. �
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Table 4. Summary of real-world and synthetic graph streams.

Name # Nodes # Edges Summary

BerkStan 685, 230 6, 649, 470 Web

Patent 3, 774, 768 16, 518, 947 Citation

Flickr 2, 302, 925 22, 838, 276 Friendship

FriendSter 65, 608, 366 1, 806, 067, 135 Friendship

Random (800GB) 1, 000, 000 1, 000, 000, 000 − 100, 000, 000, 000 Synthetic

4.4 Time and Space Complexity Analyses

We summarize the time and space complexities of Tri-Fly in Table 3. Detailed
analyses with proofs are given in the supplementary document [1]. Notice that,
with a fixed storage budget k, the time complexity of Tri-Fly is linear in the
number of edges, as confirmed empirically in Sect. 5.2. The results also suggest
that reducing storage budget k and using more masters and aggregators need to
be considered if the input stream is too fast to be processed.

5 Experiments

In this section, we conduct experiments to answer the following questions:

– Q1. Illustration of Theorems: Does Tri-Fly give unbiased estimates?
How rapidly do their variances drop as the number of workers is scaled up?
How does Tri-Fly scale with the size of the input stream?

– Q2. Performance: How fast and accurate is Tri-Fly compared to the best
single-machine streaming algorithms?

5.1 Experimental Settings

Machines: All experiments were conducted on a cluster of 40 machines with
3.47 GHz Intel Xeon X5690 CPUs and 32 GB RAM.

Datasets: The graph datasets used in the paper are summarized in Table 4. The
self loops, duplicated edges, and the directions of edges were ignored.

Implementations: We implemented Tri-Fly, Triestimpr [7] (single-machine)
and Mascot [11] (single-machine) in C++ and MPICH 3.1. In them, sampled
edges were stored in main memory in the adjacency list format. For Tri-Fly, we
used 1 master and 1 aggregator. We used lazy aggregation (see the last paragraph
of Sect. 4.2) and aggregated all counts once at the end of each input stream. We
simulated graph streams by streaming edges in a random order from the disk of
machines that host the master of Tri-Fly or single-machine algorithms.

Evaluation Metrics: We evaluated the accuracy of each algorithm at the end of
each input stream. Let x be the true global triangle count, and x̂ be its estimate
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(a) Unbiasedness (b) Variances drop (c) Scalable

Fig. 2. Theoretical properties of Tri-Fly. (a) Tri-Fly gives unbiased estimates. (b)
The variances of the estimates drop inversely proportional to the number of workers.
(c) Tri-Fly scales linearly with the size of the input stream.

obtained by an evaluated algorithm. Likewise, for each node u ∈ V, let x[u] be
the true local triangle count of u and x̂[u] be its estimate. We used global error,
defined as |x−x̂|

1+x , and RMSE, defined as
√

1
|V|

∑
u∈V(x[u] − x̂[u])2, to evaluate

the accuracy of global triangle counting and local triangle counting, respectively.

5.2 Q1. Illustration of Our Theorems (Fig. 2)

Illustration of Unbiasedness (Theorem 1). Figure 2(a) shows the distribu-
tions of 1, 000 estimates of the global triangle count in the BerkStan dataset
obtained by Tri-Fly and Triestimpr. We set storage budget k so that each
worker stored up to 5% of the edges. The averages of the estimates given by
Tri-Fly were close to the true triangle count, as expected from Theorem 1.

Illustration of Variance Decrease (Theorem 2). Under the same experi-
mental settings, Fig. 2(b) shows the variances of the estimates of the global tri-
angle count obtained by different algorithms. We measured the sample variance
of 1, 000 estimates in each setting. The variance in Tri-Fly dropped inversely
proportional to the number of workers, as expected in Theorem2.

Illustration of Linear Scalability (Sect. 4.4). We measured the running
time of Tri-Fly while varying the size of the input stream. We used 30 workers
and fixed the storage budget k to 107. To measure the scalability independently
of the speed of input streams, we measured the time taken to process edges,
ignoring the time taken by the master to wait for the arrival of edges in input
streams. Figure 2(c) shows the results with random graph streams with 1 mil-
lion nodes and different numbers of edges. The largest one was 800GB with
100 billion edges. Tri-Fly scaled linearly with the size of the input stream,
as expected in Sect. 4.4. We obtained similar results when graph streams with
realistic structure were used (see the supplementary document [1]).

5.3 Q2. Performance (Fig. 3)

Since Tri-Fly is the first distributed streaming algorithm for triangle counting,
there is no direct competitor of Tri-Fly. As baselines, we used Triestimpr
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(a) Flickr (b) Friendster

(c) BerkStan (d) Patent

Fig. 3. Tri-Fly achieves both speed and accuracy. In each plot, points represent the
speeds and errors of different algorithms (the numbers in parentheses indicate the
percentage of edges that can be stored in each worker). Tri-Fly was up to 4.5× more
accurate than single-machine baselines with similar speeds, and it was up to 8.8×
faster than those with similar accuracies.

[7] and Mascot [11], which are the state-of-the-art single-machine streaming
algorithms estimating both global and local triangle counts (see Table 1).

We measured the speeds and accuracies of the considered algorithms with
different storage budgets. To compare their speeds independently of the speed
of input streams, we measured the time taken by each algorithm to process
edges, ignoring the time taken to wait for the arrival of edges in input streams.
All evaluation metrics and running times were averaged over 10 trials in the
Friendster dataset and over 100 trials in the other datasets.

As seen in Fig. 3, Tri-Fly showed the best performance in every dataset.
Specifically, Tri-Fly was up to 8.8× faster than baselines with simi-
lar accuracies. In terms of global error and RMSE, Tri-Fly was up to
4.5× and 4.3× more accurate than baselines with similar speeds, respectively.

6 Conclusion

In this work, we propose Tri-Fly, the first distributed streaming algorithm
estimating the counts of global and local triangles with the following strengths:

– Accurate: Tri-Fly yields up to 4.5× and 4.3× smaller estimation errors
for global and local triangle counts than similarly fast baselines (Fig. 3).

– Fast: Tri-Fly is up to 8.8× faster than similarly accurate baselines (Fig. 3).
Tri-Fly scales linearly with the size of the stream (Fig. 2(c)).
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– Theoretically sound: Tri-Fly yields unbiased estimates whose variances
drop as the the number of machines is scaled up (Theorems 1 and 2).

Reproducibility: The code and datasets used in the paper are available at
http://www.cs.cmu.edu/∼kijungs/codes/trifly/.
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Abstract. Weighted frequent subgraph mining comes with an inherent
challenge—namely, weighted support does not support the downward
closure property, which is often used in mining algorithms for reducing
the search space. Although this challenge attracted attention from sev-
eral researchers, most existing works in this field use either affinity based
pruning or alternative anti-monotonic weighting technique for subgraphs
other than average edge-weight. In this paper, we propose an efficient
weighted frequent subgraph mining algorithm called WFSM-MaxPWS.
Our algorithm uses the MaxPWS pruning technique, which significantly
reduces search space without changing subgraph weighting scheme while
ensuring completeness. Our evaluation results on three different graph
datasets with two different weight distributions (normal and negative
exponential) showed that our WFSM-MaxPWS algorithm led to signif-
icant runtime improvement over the existing MaxW pruning technique
(which is a concept for weighted pattern mining in computing subgraph
weight by taking average of edge weights).

1 Introduction

As frequent pattern mining has been an appealing area of data mining, many
algorithms have been developed for general pattern mining [5,12,13] to specific
pattern mining (e.g., mining sequential patterns, weighted patterns, web access
sequences, data streams). To deal with complex data, graph mining [3,7] has
emerged as an inevitable area. When compared to unweighted graphs, weighted
graphs have strong representational power. Weighted frequent subgraphs describe
underlying graph database more accurately, and thus contribute greatly in areas
like feature extraction for graph classification, association rule mining, graph
clustering. For example, it is impossible to identify sophisticated metamorphic
malwares using signature based approaches. Runtime behavior, though very
accurate, is hardly used due to its slower detection rate. As an alternative, mal-
ware call-graph analysis has been shown to be very effective. However, insertion
c© Springer International Publishing AG, part of Springer Nature 2018
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of huge benign codes in malwares reduces the chance of identifying comparatively
less frequent suspicious subgraphs when using traditional subgraph mining algo-
rithms. So, the malware detection task can take advantage of weighted frequent
subgraph mining by giving higher weights to those call sequences.

Frequent subgraph mining is a tedious task partially because of subgraph
isomorphism checking and exponential growth of candidate patterns. Luckily,
canonical ordering of graphs and anti-monotonicity of downward closure prop-
erty have made frequent subgraph mining a feasible task. However, for weighted
frequent subgraph mining, the downward closure property no longer holds. Exist-
ing algorithms handle general weighted frequent itemset mining in FP-tree based
mining algorithms by considering GMaxW (weight of maximum weighted item
from the initial global FP-tree) and then recursively considering LMaxW (weight
of maximum weighted item in local conditional FP-trees) as the maximum pos-
sible itemset weight for pruning [1]. The completeness is ensured by sorting
itemsets in weight ascending order. This approach generates a moderate number
of candidate patterns because recursively lighter weights are considered for prun-
ing. However, as MaxW is usually much heavier than the actual average weight
of subgraph, a huge number of unnecessary candidate subgraphs are generated,
and thus leading to long runtime. Although attempts to reduce the number of
generated candidate sets have been made, most of the existing approaches either
use affinity based pruning (which usually imposes extra conditions to measure
interestingness of a subgraph) or other alternative weighting techniques (which
redefines subgraph weights such that the downward closure property is satisfied).

In this paper, we aim to reduce the number of generated candidate sets via our
non-trivial adoption of affinity-based conditions and subgraph-weighting tech-
niques. The work is inspired by our observation that, when considering MaxW
as the maximum possible weight of extended subgraph, those already-seen aver-
age weights of the subgraph are often ignored. So, we decided to make good use of
(i) these already-seen weights of a subgraph and (ii) some statistical information
about the dataset to calculate the maximum possible weight and frequency for
extensions of subgraph up to many edges. Consequently, the Maximum Possible
Weighted Support (MaxPWS) can be computed for a subgraph. Moreover, by
making an intelligent change in canonical ordering for weighted subgraphs, the
magnitude of MaxPWS can further be brought closer to the actual weighted
support, which then leads to safe and effective pruning of unnecessary candidate
subgraphs. Hence, our key contributions of this paper are as follows:

– a tighter pruning technique MaxPWS for weighted subgraph mining, and
– a canonical ordering for weighted subgraphs that makes MaxPWS tighter,
– a weighted frequent subgraph mining algorithm called WFSM-MaxPWS,

which uses the MaxPWS pruning technique.

The remainder of this paper is organized as follows. The next section presents
background and related works. Section 3 describes our MaxPWS pruning tech-
nique, canonical order modification, and WFSM-MaxPWS algorithm. Experi-
mental results and conclusions are given in Sects. 4 and 5, respectively.
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2 Background and Related Works

Let us give some background information about weighted graph mining,
which aims to find weighted frequent subgraph. An edge-weighted graph G is
a collection of nodes V , edges E, together with a mapping between edge-set E
and weights. For a function W (e) that returns the weight of edge e , the weight
of a subgraph g can be defined as: W (g) = 1

n

∑n
i=1 W (ei), where each ei is an

edge of g. Given a graph database GDB of weighted graphs and a minimum
weighted support threshold τ , a subgraph g is said to be weighted frequent if
wsup(g) ≥ τ where wsup(g) = W (g) × sup(g). In this paper, we focus on the
condition that “all edges with same edge label and end-point node label have
the same weight”.

As the base for our proposed MaxPWS pruning technique, the gSpan algo-
rithm [16] represents each subgraph by using DFScode, and it uses an extended
tuple comparison rule to rank the DFScode of a subgraph by following the right-
most path extension. Among several isomorphism of a subgraph, the one with
the lowest rank is said to be canonical. In this paper, we have modified such an
extended tuple comparison rule for weighted graphs. A challenge is that such a
modification affects the rank and changes the canonical DFScode of a subgraph.

In terms of related works, both GWF-mining and CWF-mining algorithms
[15]—as extensions of utility based itemset mining (which considers non-weighted
support)—mine internally and externally weighted graphs respectively by con-
sidering external weighted frequency for complex data. Along this direction,
further extensions include closed and maximal subgraph mining [14]. In con-
trast, we consider individual subgraph weight calculated from edge weights and
non-weighted frequency.

Eichinger et al. [4] showed that frequent subgraph mining task yields more
precise results when considering weight-based constraints. As these weight-based
constraints are not anti-monotonic, their algorithm returns approximate and
thus incomplete results. In contrast, our proposed algorithm is complete.

Yang et al. [17] performed weighted subgraph mining on single individual
weighted graphs. In contrast, our proposed algorithm focuses on mining weighted
frequent patterns from a set of weighted graphs.

Three subgraph weighting techniques—namely, Average Total Weighting
(ATW), Affinity Weighting (AW), and Utility Based Weighting (UBW) were
proposed [9] and adapted for longitudinal social network data [8]. Among them,
ATW requires redefining the subgraph weight as a ratio between total graph
database weight and subgraph support set weight. Although ATW is anti-
monotonic, it fails to discriminate between two subgraphs having the same sup-
port set. AW prunes a subgraph if its edges fail to satisfy some weight correla-
tion condition, whereas UBW discards a subgraph if its weight-share falls below
a weight-share threshold λ. On the contrary, our MaxPWS does not require
redefining subgraph weight as it takes an average of edge weights. Hence, it can
discriminate between two subgraphs even if they have exactly same support set.
Moreover, MaxPWS can be applied to any affinity or utility conditions.
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Lee and Yun [10] applied weighted-support affinity to reduce search space.
Length-decreasing support constraints [11] were used as a weighted smallest-
valid extension for frequent graph mining because graph patterns extracted from
a given graph database can have various features (e.g., different pattern lengths).
Moreover, a distributed approach of weighted frequent subgraph mining using
ATW weighting technique [2] was proposed. Another approach [6] finds regular
patterns from weighted-directed dynamic graphs with jitter. These four algo-
rithms focus on special or specific weighted frequent subgraph mining tasks. In
contrast, our algorithm focuses on the general weighted pattern mining task.

3 Our Proposed Algorithm

To reduce candidate subgraph generation, we propose (i) a tight pruning con-
dition MaxPWS for weighted frequent subgraph mining and (ii) an algorithm
called WFSM-MaxPWS for Weighted Frequent Subgraph Mining by using
the MaxPWS condition. In this section, we first show our proposed canonical
ordering for edge-weighted graphs, and then discuss details about MaxPWS.

3.1 WFSM-MaxPWS Canonical Ordering of Subgraph

For edge-weighted graphs, we add weight-property in the extended edge-tuple
representation used in gSpan. Consequently, the new extended tuple for an edge
(u, v) is of the following form as a 6-tuplet:

〈disu, disv, L(u), L(v), L(u, v),W (u, v)〉,
where W (u, v) is the weight of edge (u, v). To give a rank of a DFScode of
subgraph, the WFSM-MaxPWS canonical order gives the highest priority to
(disu, disv) as in gSpan. The second highest priority is given to edge weight
W (u, v). The higher the weight, the smaller is the tuple for the same discovery
times. The third priority is given to a lexicographic comparison on node and
edge label trio. To elaborate, let

t1 = 〈vi, vj , L(vi), L(vj), L(vi, vj),W (vi, vj)〉; and
t2 = 〈vx, vy, L(vx), L(vy), L(vx, vy),W (vx, vy)〉.

Then, t1 < t2 if and only if

1. (vi, vj) <e (vx, vy); or
2. (vi, vj) = (vx, vy) and W (vi, vj) > W (vx, vy); or
3. (vi, vj) = (vx, vy) and W (vi, vj) = (vx, vy) and

〈L(vi), L(vj), L(vi, vj)〉 <l 〈L(vx), L(vy), L(vx, vy)〉.
Here, <e is an ordering on edge, and <l is an ordering on vertex and edge labels.
Note that <l follows lexicographic order. The edge order (<e) rule is derived
from the rightmost path extension sequence. The edge that extended earlier is
smaller.
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Fig. 1. Canonical code comparison with gSpan (without edge label)

Figure 1 shows a comparison between the canonical representations in gSpan
[16] and our WFSM-MaxPWS algorithm. For simplicity and readability, tuples
are shown as 5-tuplets by omitting the edge labels L(u, v). As gSpan puts an
edge ordering during the mining time of endpoint nodes and compares the (node
labels-edge label)-trio in lexicographic order, tuple t11 becomes the smallest for
graph in the figure. On the other hand, after performing edge ordering during
the node mining time, the second importance of our WFSM-MaxPWS is put on
edge weight. The higher the weight, the smaller is the tuple. As the first tuple
of any DFScode has node discovery pair (0, 1), the highest weighted edge would
be the smallest. So, WFSM-MaxPWS would consider tuple 〈0, 1, b, d, 0.9〉 as the
smallest. DFScode with other edges as first tuple would not be canonical.

Lemma 1. No tuple can have a weight higher than the weight of the first tuple
in a canonical WFSM-MaxPWS DFScode.

Proof. (By induction on edge count m) For the base case (when m = 1), first
tuple is the only tuple. Hence, there is no other tuple with a heavier weight.

For the inductive step, let us assume that the first tuple in DFScode Cx for
1 < m ≤ x is tx0 = 〈0, 1, L(v1), L(v2), L(v1, v2),W (v1, v2)〉. If we extend the
subgraph with a tuple having a weight lower or equal to the first tuple, then the
condition continues to hold. However, if we extend with a higher weighted tuple
txk = 〈∗, ∗, L(u1), L(u2), L(u1, u2),W(u1, u2)〉, then there exists a new possible
DFScode Cy having ty0 = 〈0, 1, L(u1), L(u2), L(u1, u2),W (u1, u2)〉 as first tuple.
Here, tx0 > ty0 implies that Rank(Cy) < Rank({Cx, txk}). So, {Cx, txk} cannot
be canonical. Thus, we cannot extend a subgraph with a higher weighted tuple
while preserving canonicity. ��

3.2 MaxPWS Pruning Technique

We divide the entire graph database into partitions p1, p2, p3, . . . , px, . . . , pM .
Partition p1 is the set of graphs in the database having the minimum number of
edges; partition pM is the collection of graphs having the maximum number of
edges. Graphs in the same partition have the same number of edges. Each graph
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Fig. 2. Sample graph database GDB

Fig. 3. Sample subgraph gx

in partition px contain at least one more edge than any graphs in partition px−1

and contain at least one fewer edge than graphs in partition px+1. We called these
partition-collection Edge-Class (EC). For the sample graph database in Fig. 2,
there are three partitions. Hence, EC = {p1 = {G1}4; p2 = {G3, G4}6; p3 =
{G2}7}, where the subscript after each curly brackets indicates the edge count
of the partition. For any subgraph of consideration, we calculate its occurrence
list, which is a collection of subsets from each Edge-Class partition entry where
each member graph of the collection is a superset for that subgraph.

Definition 1. Let g be a subgraph. Its occurrence list (OL) is defined as
OL(g) = {q1, q2, q3, . . .} where ∀qi ∈ OL(g)[qi ⊆ pi and g is a subgraph of each
member of qi]. We call qi an occurrence list member (OLM).

For example, for the database in Fig. 2, the occurrence list for subgraph gx
shown in Fig. 3 is OL(gx) = {q1 = {G1}4; q2 = {G3}6; q3 = {G2}7}.

We can also calculate the possible occurrence list (pol) and maximum
possible frequency (mpf) for a subgraph based on its OL for extension
of that subgraph up to a different edge count. For example, from the OL of
gx, if we extend the subgraph gx up to 4 edges, then the corresponding pol
of the extended subgraph gx→4 is still pol(gx→4) = {{G1}4; {G3}6; {G2}7}.
Similarly, the mpf of gx→4 becomes mpf(gx→4) = 3. However, if we extend
gx beyond 4 edges, graph G1 can no longer be a part of its OL because
it contains only 4 edges in total. For extension up to 6 edges, pol(gx→6) =
{{G3}6; {G2}7} and mpf(gx→6) = 2. Similarly, for extension up to 7 edge,
pol(gx→7) = {{G2}7} and mpf(gx→7) = 1. Now, the heaviest possible exten-
sion of gx up to 4, 6 and 7 edges can contain 2, 4 and 5 more MaxW-weight
edges, respectively. For the database in Fig. 2, it is 2.0 (edge b–c). According to
Lemma 1, this extension can be canonical if and only if the first tuple in the
canonical DFScode of gx has a weight at least 2.0. However, canonical DFScode
of gx is {〈0, 1, a, b, 1.6〉, 〈0, 2, a, c, 0.75〉}. (For simplicity, we omitted edge labels
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here.) Thus, to be canonical, any extended subgraph of gx cannot have an edge
with a weight heavier than 1.6.

In general, to preserve canonicity, the heaviest possible extension of any sub-
graph is its first tuple weight (FTW). With this concept, for any subgraph g,
we can calculate its possible weighted support (PWS) after extending up to
m-edges by the following equation:

PWS(g→m) =
|g| × W (g) + (m − |g|) × FTW

m
× mpf(g→m), (1)

where |g| is the number of edges in g. In this calculation, g is assumed to be
extended up to m edges with each new edge having the FTW weight to ensure
that this imaginary extended supergraph has the maximum possible weight w.r.t.
the graph database (because extension with a heavier weighted edge would not
be canonical). We calculate MaxPWS by taking the maximum among all PWS
values for g. If MaxPWS fails to satisfy the minimum weighted support thresh-
old τ , then we can safely prune g. Otherwise, we need to extend g because its
extended subgraph have potential to be weighted-frequent.

For example, consider subgraph gx in Fig. 3 with W (gx) = 1.6+0.75
2 = 1.175.

For graph database in Fig. 2, PWS values are as follows:

• PWS(gx→4) = 2×1.175+(4−2)×1.6
4 × 3 = 1.3875 × 3 = 4.1625

• PWS(gx→6) = 2×1.175+(6−2)×1.6
6 × 2 ≈ 1.4583 × 2 = 2.9166

• PWS(gx→7) = 2×1.175+(7−2)×1.6
7 × 1 ≈ 1.4786 × 1 = 1.4786

Hence, MaxPWS(gx) = 4.1625. In contrast, the MaxW measure for gx is 2×3 =
6 (because MaxW = 2 and frequency = 3), which is greater than MaxPWS.

Note that, if we do not use the modified canonical ordering for weighted
graphs as proposed in Sect. 3.1, then the PWS calculation would have to use
MaxW (instead of FTW as shown in Eq. (2)):

PWS(g→m) =
|g| × W (g) + (m − |g|) × MaxW

m
× mpf(g→m) (2)

The resulting algorithm (which uses MaxW) is called MaxPWS-gSpan algo-
rithm, which can be considered as a variant of our WFSM-MaxPWS algorithm
(which uses FTW).

Lemma 2. MaxPWS-measure is anti-monotonic.

Proof. (By contradiction) Suppose that MaxPWS is not anti-monotonic. Then,
there exists an extended subgraph gx of g for which MaxPWS(gx) ≥ τ even
though MaxPWS(g) < τ . If |gx| − |g| = k, then

W (gx) × |gx| ≤ W (g) × |g| + k × FTW. (3)

If MaxPWS of gx occurs in m-edge extension, then PWS(gx→m) > PWS(g→m).
This means |gx|×W (gx)+(m−|gx|)×FTW

m ×mpf(gx→m) > |g|×W (g)+(m−|g|)×FTW
m ×
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mpf(g→m). Due to the downward closure property of frequency, mpf(gx→m)
must be less than or equal to mpf(g→m). So, by removing the mpf terms from
both side, |gx|×W (gx)+(m−|gx|)×FTW > |g|×W (g)+(m−|g|)×FTW . By
using Eq. (3) and |gx| = |g| + k, we get W (g) × |g| + k × FTW + (m − |g| − k) ×
FTW > |g| × W (g) + (m − |g|) × FTW . Consequently, k × FTW + (m − |g| −
k)×FTW > (m−|g|)×FTW , and thus (m−|g|)×FTW > (m−|g|)×FTW ,
which is impossible. Thus, MaxPWS(gx) cannot be greater than MaxPWS(g).
So, MaxPWS-measure is anti-monotonic. ��
Corollary 1. If MaxPWS(g) < τ , then g has no potential weighted frequent
extension. ��
Corollary 2. Due to MaxPWS-measure ≤ MaxW-measure, MaxPWS pruning
technique prunes more unnecessary patterns. ��

3.3 The WFSM-MaxPWS Algorithm

A pseudocode for WFSM-MaxPWS is shown in Algorithm1. Here, our WFSM-
MaxPWS algorithm takes the following four input parameters: (i) the canonical
DFScode of a graph C, (ii) graph database D, (iii) weighted support threshold τ ,
and (iv) occurrence list OLC of C. With the initial call, C = ∅ and OLC = EC
(edge class). WFSM-MaxPWS puts all frequent weighted subgraphs in a result
set.

Algorithm 1. Algorithm WFSM-MaxPWS
1: procedure WFSM-MaxPWS(C, D, τ,OLC)
2: OL vec = rightmost-path-extension(C,OLC , D)
3: for each (t,OLt) ∈ OL vec do
4: C′ = C ∪ t
5: if IS CANONICAL(C′) = false then continue.

6: Set supC′ = 0 and MaxPWS = 0
7: for each qi ∈ OLt in reverse order (last to first) do
8: mi = edge count of qi
9: supC′ = supC′ + |qi| //cardinality of qi

10: PWS i = |C′|×W (C′)+(mi−|C′|)×FTW
mi

× supC′

11: if MaxPWS < PWS i then MaxPWS = PWS i

12: wsupC′ = W (C′) × supC′

13: if wsupC′ ≥ τ then
14: result = result ∪ C′ //Enlist C′ as frequent weighted subgraph
15: WFSM-MaxPWS(C′, D, τ, OLt)
16: else if MaxPWS ≥ τ then WFSM-MaxPWS(C′, D, τ,OLt)

The function “rightmost-path-extension” in line 2 enumerates all possible
extensions on rightmost path of the given DFScode and returns a vector of those
extensions as new edge tuples and their corresponding occurrence list OL vec.
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Each entry in OL vec is then checked for canonicity (lines 4 & 5). The support
of code C ′ is updated while iterating through each entry in OL (line 9). Simul-
taneously, possible weighted support from the highest to the lowest OLM(qi)
is calculated to find MaxPWS (lines 8–11). The actual weighted support wsup
of the code/subgraph is calculated in line 11. If it satisfies weighted support
threshold condition (line 13), then it is enlisted as a frequent weighted subgraph
(line 14) and sent for further extension (line 15). Otherwise, if MaxPWS satisfies
weighted support threshold condition, though it will not be enlisted as frequent
weighted subgraph, then it will be sent to the WFSM-MaxPWS algorithm for
further extension (line 16) as its extended graph still has a chance to be frequent
weighted subgraph.

4 Experimental Results

To evaluate the performance of our proposed algorithm WFSM-MaxPWS, we
conducted several experiments on a PC with an Intel Core i3-2100 CPU at
3.10 GHz and 4 GB RAM running MS Windows 10 operating system. We ana-
lyze performance of WFSM-MaxPWS w.r.t. runtime, search-space reduction effi-
ciency, and memory requirement. For comparison, we used MaxW-gSpan (which
uses MaxW pruning technique with gSpan) as the baseline algorithm. Both
WFSM-MaxPWS and MaxW-gSpan were implemented in Python.

Regarding the test datasets, several graphs datasets1 were selected from Pub-
Chem2, which provides information on biological activities of small molecules and
contains the bioassay records for anti-cancer screen tests with different cancer
cell lines. Each dataset captures a certain type of cancer screen with the outcome
active or inactive. In particular, we used MCF-7, P388 and Yeast datasets.
Since these datasets come with no weights, we added weights according to two
different weight distributions—namely, normal and negative exponential. Dataset
statistics after adding weight is given in Table 1.

Table 1. Datasets

Dataset #graphs Distinct
#edges

Avg
#edges

Distribution MinW MaxW

MCF-7 2,293 54 36 normal (μ = 0.5, σ = 0.07) 0.13 0.86

negExpo (f = 1) 0.07 0.98

P388 2,297 64 30 normal (μ = 10, σ = 1.5) 3.16 16.84

negExpo (f = 18) 1.55 16.86

Yeast 9,567 125 26 normal (μ = 2, σ = 0.3) 0.46 3.55

negExpo (f = 3.6) 0.23 3.53

1 http://www.cs.ucsb.edu/∼xyan/dataset.htm.
2 https://pubchem.ncbi.nlm.nih.gov/.

http://www.cs.ucsb.edu/~xyan/dataset.htm
https://pubchem.ncbi.nlm.nih.gov/
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Fig. 4. Runtime

To analyze the performance of our proposed algorithm WFSM-MaxPWS
(which uses Eq. (1) for the PWS calculation), we compared it with MaxPWS-
gSpan (which uses Eq. (2) for the PWS calculation) and the baseline MaxW-
gSpan algorithm (which simply uses the MaxW pruning technique) by using
the three datasets in Table 1. We examined the following aspects: (i) runtime
(ii) search-space reduction, and (iii) memory usage.

Figure 4 shows the runtimes on three datasets (each with two distributions).
Here, both our WFSM-MaxPWS and MaxPWS-gSpan algorithms ran signif-
icantly faster than MaxW-gSpan. Between the former two, WFSM-MaxPWS
ran faster than MaxPWS-gSpan, and the margin was wider for datasets hav-
ing negative exponential weight distributions because WFSM-MaxPWS takes
full advantage of distribution by considering FTW (instead of MaxW) in the
MaxPWS calculation. When the weights follows positive exponential, WFSM-
MaxPWS still ran faster than MaxPWS-gSpan or MaxW-gSpan, though the gap
between the latter two was smaller.

A reason behind the runtime improvement of WFSM-MaxPWS over the other
two algorithms is its efficiency in search-space reduction. Specifically, WFSM-
MaxPWS generates a very small number of candidates when compared with the
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Table 2. P388 candidate count

(a) Normal distribution
τ WFS WFSM- MaxPWS- MaxW-

cnt MaxPWS gSpan gSpan
5,000 616 711 1,259 2,053
6,000 362 415 750 1,104
7,000 257 278 478 739
8,000 173 199 330 487

(b) Negative exponential
τ WFS WFSM- MaxPWS- MaxW-

cnt MaxPWS gSpan gSpan
2,300 248 399 30,869 91,053
2,500 192 319 12,148 38,312
2,700 142 266 7,145 27,944
2,900 111 212 4,953 22,455
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Fig. 5. Memory usage

other two algorithms. Table 2 shows the numbers of generated candidates for
the P388 dataset. In the table, the second column shows the actual weighted
frequent subgraph count (WFS cnt). The third to fifth columns show candidate
counts for WFSM-MaxPWS, MaxPWS-gSpan and MaxW-gSpan. Our WFSM-
MaxPWS generated the smallest number of candidates when compared with the
other two algorithms, especially with negative exponential distribution. Such a
reduction in search space effectively reduced runtime.

As for memory usage, both WFSM-MaxPWS and MaxPWS-gSpan
required just slightly more memory than MaxW-gSpan due to the occurrence
list storage. As shown in Fig. 5 on both MCF-7 and Yeast datasets, the slight
increase in memory requirement was insignificant, especially when compared
with fruitful benefits of reduction in both runtime and the number of generated
candidates.

5 Conclusions

In this paper, we proposed a weighted frequent subgraph mining algorithm called
WFSM-MaxPWS, which uses MaxPWS-measure to reduce search-space. Max-
PWS is calculated using a modified canonical ordering for weighted graphs to
achieve smallest possible upper bound of maximum possible weighted support for
any extensions of a particular subgraph along with ensuring no loss of weighted
frequent subgraph patterns. Experimental results and comparative analysis on
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three real datasets with normal and negative exponential distribution show that
our WFSM-MaxPWS algorithm outperforms the existing MaxW-gSpan algo-
rithm w.r.t. runtime and reduction in the number of generated candidates.
Moreover, our modified canonical ordering for weighted graphs facilitates Max-
PWS calculation to achieve even better performance. This concept of modified
canonical ordering and MaxPWS pruning have potential to be further utilized
in uncertain or utility-based graph databases.
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Abstract. Predicting the evolution of a dynamic network—the addi-
tion of new edges and the removal of existing edges—is challenging. In
part, this is because: (1) networks are often noisy; (2) various perfor-
mance measures emphasize different aspects of prediction; and (3) it is
not clear which network features are useful for prediction. To address
these challenges, we develop a novel framework for robust dynamic net-
work prediction using an adversarial formulation that leverages both
edge-based and global network features to make predictions. We con-
duct experiments on five distinct dynamic network datasets to show the
superiority of our approach compared to state-of-the-art methods.

1 Introduction

Dynamic networks are a powerful tool for understanding complex systems over
time, with applications in social science, business, neuroscience, and many other
fields. Predicting future network structure enables hypothesis testing of the net-
work evolution and interventions before an event occurs (e.g., preventing disease
spread). Despite the importance, learning to predict network changes over time
is a challenging task. While existing network prediction methods [6,9,17] often
succeed in specific settings, they may be ill-suited to address the variety of net-
works encountered in the general prediction task. The difficulty of designing
a general method for dynamic network prediction is evident in the paucity of
methods and the modest improvements in performance over the last decade.

One challenge is that dynamic networks are noisy objects and network data
typically suffers both from temporal and topological errors [13]. This is further
complicated by various evaluation measures used to emphasize different qualities
of network prediction for different applications. For example, when supporting
resource allocation decisions (e.g., cellphone tower placement), the recall matters
more since it relates to the quality of service. In product recommendation, new
product purchases have different values than repeat purchases when creating
advertising strategies. It is difficult to design a general method that can optimize
these different measures. Moreover, there is often a mismatch between the desired
metrics and the one that is de facto being optimized. There are a wide range
of potentially useful features for network prediction, including general patterns,
such as triangle closure (two people are more likely to become friends if they have
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 677–688, 2018.
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many common friends) [2], edge-specific patterns (edge e shows up every three
time steps; or A frequently calls B after calling C or D), or intricate dependency
structures. Most methods focus on a subset of these feature types, while in reality
a mix of those explains the topology of most networks.

To address these challenges, we formulate the prediction task as an adversar-
ial game between a predictor player, optimizing for predictive performance, and
an adversarial player, providing worst case approximation of training data, while
constrained to match important properties. This creates network predictions that
are robust to worst-case uncertainty that arises due to noise and limited observa-
tional data. While existing approaches often sacrifice predictive performance in
favor of scalability, we focus on improving performance and defer improving the
scalability of our approach to future work. Our formulation produces temporal
exponential random graph models (TERGM) [12] when logloss is used. However,
our model generalizes beyond this special case, with the advantages of: flexi-
ble cost metrics that can be tuned towards end-use application performance
measures; edge-based features that represent either general or edge-specific
patterns; and global summary features that model the dependency struc-
tures while allowing model learning to be a convex optimization problem. We
demonstrate the benefits of our approach on five dynamic network prediction
tasks with comparison to state-of-the-art methods.

2 Related Work

Holme and Saramäki [13] provide an excellent survey of dynamic network defi-
nitions, modeling, and analysis methods. There are two main types of networks
with topologies that change over time. In evolving networks, nodes and edges are
added but not deleted (e.g., citation networks). Thus, predictions are needed for
new nodes and added edges (known as link prediction [21,32,33]). Dynamic net-
works are more general, with node and edge additions and deletions. In this
paper, we focus on predicting additions and removals of edges in the dynamic
network, essentially predicting the change in the network its truly dynamic part.

Dynamic network prediction seeks to predict the future structure of the net-
work, given past network structure (and possibly attribute information). The
attribute information, which typically improves prediction accuracy, is quite
often not available. For the purely topological approaches, some use genera-
tive models, such as preferential attachment [3]. Matrix and tensor factorization
techniques [9] are used for making predictions. The structured prediction [17]
makes prediction using frequent subgraphs. A hybrid of preferential attachment
and ARIMA model is proposed in [14]. Early warning subgraphs and network’s
vector space embedding are used as features to predict recurrent subgraphs in
[23]. There are also supervised learning methods that use topological features
to rank list of nodes and the edges around them [21,26]. Separate models for
edge formation and dissolution are used by [31]. There are common problems
with these approaches. Fundamentally, they do not explicitly define a loss to
optimize. Although different measures (e.g. AUC, precision, recall) are used for
evaluation, it is not clear whether the methods optimize these measures. We
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focus on F1-score, which balances between the precision and recall and follow
[24] by optimizing cost-sensitive error to approximate the F1-score to avoid the
complexity of optimizing a multivariate loss [30].

3 Adversarial Dynamic Network Prediction

We seek a robust method for the general changing network prediction problem:

Definition 1. The dynamic network change prediction task is: given pre-
vious networks G = (G̃1, . . . , G̃t−1), provide a prediction Ĝt for the actual net-
work G̃t at timestep t that minimizes loss(Ĝt, G̃t), using available training net-
work time series from empirical distribution P̃ (G̃1, . . . , G̃t).

Each network is defined by a static set of nodes V and undirected edges
Et that vary over time: Gt = (V,Et). For compactness, we let G represent the
history of networks, G̃1, . . . , G̃t−1, when predicting Gt. We denote the existence
of an edge from node i to j at time t as ei,j,t = 1 and absence as ei,j,t = 0. We use
Ĝ for predicted network, G̃ for empirical network, and an adversarially-chosen
approximation of the network, Ǧt. We denote the corresponding edges with these
networks using variables ěi,j,t and predicted edges are denoted as êi,j,t. When
testing, the predicted timestep t′ is different from any training timestep t.

Loss functions of interest are defined in terms of the differences between
edge predictions Ĝt and the actual network G̃t: loss(Ĝt, G̃t). Graph edit distance
lossedit(Ĝt, G̃t) =

∑
1≤i<j≤|V | I(êi,j,t �= ẽi,j,t), is a loss function that additively

measures the edge disagreement. However, since networks are often sparse, trivial
predictors (e.g., predicting no edges) perform well despite being uninformative.
Another loss is to weigh each type of error separately so that errors that are
rare can be penalized more heavily. There are two types of changes that may
arise in a dynamic network: addition of an edge (start: the beginning of an edge
existence) and removal of an existing edge (end: the end of an edge existence).
There are four types of errors: a missed start (MS) or a missed end (ME) or
falsely predicted as a wrong start (WS) or a wrong end (WE). A loss function
that weighs each of these errors differently is: loss(G̃t, Ĝt,G) =

λ1 MS(G̃t, Ĝt,G) + λ2 ME(G̃t, Ĝt,G) + λ3 WS(G̃t, Ĝt,G) + WE(G̃t, Ĝt,G).

3.1 Adversarial Prediction Formulation

Recently, adversarial methods have been successful in problems such as classifi-
cation [4], sequence tagging [20] and information retrieval [30]. These methods
significantly improve predictive performance by optimizing desired loss func-
tions. However, previous adversarial approaches only focus on data with little
or no structure. Our model leverages structure in networks while maintaining
the robustness guarantee. We formulate our prediction model as a two-player
zero-sum game with the adversarial player maximizing the loss while predictor
player minimizing the loss. For an unweighted network with three nodes, the
payoffs of this game using the graph edit distance as the loss function are shown
in Table 1.
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Table 1. Lagrangian-augmented payoffs
(losses) using edit distance for the condi-
tional network prediction game with three
edges. Each predicted edge is either absent
(0) or present (1), corresponding to 23 pure
strategies for each player.

000 001 010 011 100 101 110 111

000 0 1 1 2 1 2 2 3

001 1 0 2 1 2 1 3 2

010 1 2 0 1 2 3 1 2

011 2 1 1 0 3 2 2 1

100 1 2 2 3 0 1 1 2

101 2 1 3 2 1 0 2 1

110 2 3 1 2 1 2 0 1

111 3 2 2 1 2 1 1 0

The predictor player chooses a dis-
tribution P̂ (Ĝt|G) over the rows while
the adversary controls another dis-
tribution P̌ (Ǧt|G) over the columns.
Such distributions represent the prob-
abilities of each possible network (pure
strategy). The goal of the adversary is
to provide the worst case approxima-
tion of the training data. However, it
cannot be arbitrarily random as this
would not reflect meaninful structure
of the observed graph dynamics, so
the adversary is constrained to match
empirical statistics of the training data, as shown formally in Eq. (2). We con-
sider generic features Φ that constrain the adversary in this section, and discuss
specific features in next section The general form of our adversarial formulation
defining games of this sort is:

min
P̂ (Ĝt|G)

max
P̌ (Ǧt|G)

EP̃ (G)P̌ (Ǧt|G)P̂ (Ĝt|G)[loss(Ĝt, Ǧt)] (1)

subject to: EP̃ (G)P̌ (Ǧt|G)[Φ(G, Ǧt)] = EP̃ (G,G̃t)
[Φ(G, G̃t)]. (2)

We replace the constraints with Lagrangian potential terms parameterized by θ
using the standard method of Lagrangian multipliers , yielding:

min
θ

EP̃ (G,G̃t)

[
−θ · Φ(G, G̃t) + min

P̂ (Ĝt|G)
max

P̌ (Ǧt|G)
EP̌ (Ǧt|G)P̂ (Ĝt|G)[loss(Ĝt, Ǧt) + θ·Φ(G, Ǧt)]

︸ ︷︷ ︸
Lagrangian-augmented zero-sum game

]
.

Table 2. The Lagrangian-augmented payoffs (losses)
for the game in Table 1.

000 001 010 011 100 101 110 111
000 0+ψ000 1+ψ001 1+ ψ010 2+ψ011 1+ψ100 2+ψ101 2+ψ110 3+ψ111
001 1+ψ000 0+ψ001 2+ψ010 1+ψ011 2+ψ100 1+ψ101 3+ψ110 2+ψ111
010 1+ψ000 2+ψ001 0+ψ010 1+ψ011 2+ψ100 3+ψ101 1+ψ110 2+ψ111
011 2+ψ000 1+ψ001 1+ψ010 0+ψ011 3+ψ100 2+ψ101 2+ψ110 1+ψ111
100 1+ψ000 2+ψ001 2+ψ010 3+ψ011 0+ψ100 1+ψ101 1+ψ110 2+ψ111
101 2+ψ000 1+ψ001 3+ψ010 2+ψ011 1+ψ100 0+ψ101 2+ψ110 1+ψ111
110 2+ψ000 3+ψ001 1+ψ010 2+ψ011 1+ψ100 2+ψ101 0+ψ110 1+ψ111
111 3+ψ000 2+ψ001 2+ψ010 1+ψ011 2+ψ100 1+ψ101 1+ψ110 0+ψ111

Each network prediction
game is augmented with the
Lagrangian potential terms
and can then be solved
within the expectation of
this unconstrained optimiza-
tion problem. The augmented
game is shown in Table 2
with the Lagrangian poten-
tial term relating to the adversary’s choice compactly defined as: ψǦt

�
θ · Φ(G, Ǧt). Each cell has a Lagrangian potential term (added to the edit dis-
tance) that can be viewed as a motivation for the adversarial player to be similar
to the training data. In general, the Nash equilibrium of this game consists of
the predictor player’s distribution over rows and the adversary’s distribution
over columns. The Nash equilibrium is defined by neither players unilaterally
improving their expected payoffs by switching to another strategy.
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There are three main steps for solving the optimization: (1) Obtaining the
adversary’s equilibrium distribution for the Lagrangian-augmented game;
(2) Computing expected features under the adversary’s equilibrium distribution;
and (3) Updating the Lagrangian parameters of the game until convergence
is reached. If not, repeat from the first step.
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Fig. 1. Features with a line denot-
ing an edge exists, and a line with
an X to denote the absence of an
edge.

Finding the optimal parameters θ is a
convex optimization problem. Producing pre-
dictions under the adversarial network pre-
diction framework requires solving the zero-
sum games between the predictor and the
adversary. However, this is computationally
difficult to achieve näıvely when the network
size is moderately large since the size of the
game grows exponentially with the number of
edges. We employ the double oracle method
[22] to tame this complexity. As detailed in
Algorithm 1, we start with a subset of pure
strategies for both players (Line 1). The game
continues when either has a better strategy
to improve its payoff value. We compute the
probability distributions of the networks by
solving the game (Line 3). Given the prob-
ability distribution of the predictor player,
we try to find if there is a better pure strat-
egy (network) for the adversarial player that
will increase the game value (Line 4). If there
is, it will be added to the pure strategies for
the adversarial player. Similarly for predictor
player (Line 5–6). We repeat the process until
there is no more strategy added for both play-
ers. The equilibrium produced by this algo-
rithm is guaranteed to be an equilibrium for
the full game [22]. We show methods for effi-
ciently finding best responses for different sets of features in the following section.

3.2 Performance Guarantees and Features
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Fig. 2. Edge duration and
delay features with edges
denoted as in Fig. 1.

Employing a worst-case assumption provides
robustness guarantees. Since the approximation is
worse (by definition) for the predictor, we can
be assured that the performance of the predic-
tor on training data will be better than the per-
formance against the adversary: E[loss(Ĝt, Gt)] ≤
E[loss(Ĝt, Ǧt)]. The constraints in Eq. (2) enforce a
degree of similarity between the adversary and the
training data distribution, tightening this bound.
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Algorithm 1. Double oracle for network edge prediction.
Require: Lagrangian potentials, ψ; loss function loss(G, Ĝt, Ǧt)
Ensure: Nash equilibrium, P̂ , P̌
1: Initialize pure strategies for predictor player Ŝ and adversarial player Š
2: while game values changing do
3: Compute P̂ for game over graphs in Ŝ and Š
4: Find Ǧ∗

t , the best response to P̂ ; Š ← Š ∪ Ǧ∗
t

5: Compute P̌ for game over graphs in Ŝ and Š
6: Find Ĝ∗

t , the best response to P̌ ; Ŝ ← Ŝ ∪ Ĝ∗
t

7: end while

EP (G)(Gt|G)P̂ (Ĝt|G)[loss(Ĝt, Gt)]. Our goal is to define a constraint set (features)
that, with high probability, will include the true conditional distribution P (Gt|G)
in a computationally efficient manner. In the extreme case, features pertaining to
single edges could be considered. This allows each edge to be predicted indepen-
dently from the others. Though computationally efficient, the resulting predictor
does not capture many of the dependencies that exist between edges. We choose
features that enable the zero-sum network prediction game to be efficiently solved
while considering relationships between edges. We constrain our features Φ for
the adversarial player to three generic types defined by the network topology
that can be applied to any network: edge-specific features (Eq. (3)), generic edge
features (Eq. (4)), and global summary features (Eq. (5)):

EP̃ (G)P̌ (Ǧt|G)[Φ(G, ěi,j)] = EP̃ (G,G̃t)
[Φ(G, ẽi,j)] (3)

EP̃ (G)P̌ (Ǧt|G)

⎡

⎣
∑

x,y∈V
Φ(G, ěx,y)

⎤

⎦ = EP̃ (G,G̃t)

⎡

⎣
∑

x,y∈V
Φ(G, ẽx,y)

⎤

⎦ (4)

EP̃ (G)P̌ (Ǧt|G)[Φ(G, S(Ǧt))] = EP̃ (G,G̃t)
[Φ(G, S(G̃t))]. (5)

Edge-specific features (As shown in Eq. 3), relate to one particular edge, ei,j .
Some of the possible features (shown in Fig. 1) are:

– YesYesFeature edge ei,j exists at time t if edge ek,l exists at time t − 1,
f(ek,l,t−1 = 1, ei,j,t = 1). Similarly, we define YesNoFeature, NoYesFeature,
NoNoFeature as shown in Fig. 1.

– YesPreviousExistNoFeature: When edge ei,j exists at time t−1, we select
the edges which make it disappear at time t. If edge ei,j and el,k exist at time
t − 1, edge ei,j will disappear at time t, f(ek,l,t−1 = 1, ei,j,t−1 = 1, ei,j,t = 0).
Likewise, NoPreviousExistNoFeature is defined as shown in Fig. 1.

– DelayFeature: As the bottom of Fig. 2, edge ei,j exists after Δt timesteps
after edge ek,l last exist, f(ek,l,t−Δt = 1, ek,l,t−Δt+1,...,t−1 = 0, ei,j,t = 1).

For all of these features, i, j can be the same as k, l. The t−1 can be generalized to
t−Δt. For pairwise edge features such as YesYesFeature, there are m2 potential
features, where m is the total edges. In practice, we constrain such features to
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the most informative ones which can be selected based on a support frequency
threshold. Taking YesYesFeature as an example, the support is defined as the
number of times that edge ei,j occurred one time step after edge ek,l exists
divided by the number of time steps edge ek,l exist. We select top 10 features
for each edge and each edge-specific feature.

Generic edge features (Eq. 4) describe general patterns for all edges in
the network. For instance, if an edge exists in the previous timestep, it tends to
remain in existence at the current timestep. These patterns are applicable to all
edges rather than to specific edges. Our features are:

– GenericYesYesFeature if an edge exists in the previous timestep, the same
edge continues to exist in the current timestep, f(ex,y,t−1 = 1, ex,y,t = 1). The
GenericNoNoFeature is similarly defined.

– PreviousDegreeFeature is the previous degrees of node x and node y.
– EdgeDurationFeature: As shown at the top in Fig. 2, for an edge that

exists at timestep t, this feature is based on the number of previous timesteps,
up to but not including t, of the edge’s continuous existence, f(ei,j,t−Δt =
0, ei,j,t−Δt+1,...,t−1 = 1, ei,j,t = 1).

Additionally, we include Adamic/Adar [2], recency [25], linkratio, and triad col-
location elements [31] as features. Most of the generic edge and edge-specific
features are interchangeable. When a feature is a general pattern for all edges,
we should use it as a generic feature with the advantage of increased number
of observation. When the variance of a pattern is high for different edges, we
should use specific features. If one classifier is constructed for all the edges in
the network, only generic edge features can be employed. On the other hand, if a
classifier is built for each edge, the shared patterns of different edges are ignored.
In most applications, both generic patterns as well as edge specific patterns gov-
ern the evolution of the graph structure. Our framework is flexible incorporating
both types of features.

Global summary features are summaries of the network. The previous two
types of features consider each edge independently at the predicted timestep. On
the contrary, global summary features jointly consider all of the edges so that
dependencies of edges are incorporated into the prediction.

– TotalAddedEdgesFeature is the total number of edges in existence at the
timestep t but do not exist at time t − 1.

– TotalRemovedEdgesFeature is the number of edges that exist at timestep
t − 1 but do not exist at time t.

Similarly, we can define other global summary features such as the total number
of edges and total number of changed edges. Global features can be defined on a
subset of edges such as ones that share the same node attributes. Using multiple
global summary features simultaneously requires a way to search for optimal sets
of edges for all possible combinations of global summary feature values. When the
edge sets affected by the global summary features are non-overlapping, multiple
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global features, such as TotalAddedEdgesFeature and TotalRemovedEdgesFea-
ture, can be used simultaneously easily. We consider these two global features in
our experiment and use them as global summary features.

Algorithm 2. Best response for weighted edge losses
Require: P̂ (Ĝt|G), θ, Φ(G, Gt)
Ensure: Best Response Network
1: for edge ei,j,t do
2: Compute marginal probabilities P̂ (êi,j,t|G)
3: Compute the cost C of having edge C(ěi,j,t=1) and not having edge C(ěi,j,t=0)
4: end for
5: Sort edges by C(ěi,j,t = 1) − C(ěi,j,t = 0)
6: Cexist = 0; Cnot exist =

∑
i,j C(ěi,j,t = 0)

7: total edge = 0; maxR = −∞
8: for edge ěi,j,t in ordered edges do
9: Cexist = Cexist + C(ěi,j,t = 1)

10: Cnot exist = Cnot exist − C(ěi,j,t = 0)
11: total edge = total edge + 1
12: if Cexist+Cnot exist+ Ctotal edge > maxC then
13: maxC = Cexist + Cnot exist + Ctotal edge

14: m = total edge
15: end if
16: end for
17: Add the first m sorted edges to the network.

Algorithm 2 finds best responses for the adversarial player (corresponds to
Line 4 of Algorithm 1). We use the total number of edges as an example. Given
the distribution of the predictor player, the algorithm computes the marginal
probability of each edge (Line 2). Line 3 computes the “cost” (loss) for an edge
existing and not existing for the edge generic and specific features. These two
types of features can be computed independently for each edge. We sort all the
edges according to the cost of including them (Line 5). Since there are also
costs for having a different number of total edges, the algorithm considers each
possible number of total edges (Line 8–16). When we consider m total edges, we
select edges which will increase the cost the most. The total cost includes the
costs for all the existing edges (Line 9), for non-existing edges (Line 10), and for
having m number of edges. After we go through all the possible number of edges
to include, we find the best overall cost and the corresponding number of edge
m. After we select the number of edges to add, we add the top edges that will
maximize the cost. For other global features, it is similar except different subset
of edges are sorted by different criteria.

3.3 Relationship with TERGMs

TERGMs are mostly used for hypothesis testing. They can also be viewed as
a network prediction approach with logloss as the loss function. TERGMs can
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model dependent structures, such as triangles, of the predicted network. TERGM
uses pseudo-likelihood approximation or Markov Chain Monte Carlo maximum
likelihood estimation. When optimizing logloss, our framework is equivalent to
TERGM. However, our model can optimize other loss functions, such as cost-
sensitive loss Additionally, our model is able to incorporate global summary
features, such as number of total edges, while still obtaining the optimal solution,
whereas TERGM does not have the capability to do so without approximation.

4 Experiments

Table 3. Summary statistics of the datasets.
Name Nodes # of

training

networks

# of

testing

networks

Time

window

Proximity 16 277 70 20min

Follow 16 277 70 20min

Conference 41 114 28 30min

Reality 96 614 157 8 h

Infectious 410 1124 298 20 s

Table 4. Weighted F1 score.

SP CWT CP LR TERGM Adv

Follow 46.98% 44.07% 44.07% 44.07% 44.07% 50.85%

Proximity 16.99% 38.80% 38.80% 38.36% 41.48% 45.16%

Conference 29.16% 40.28% 40.24% 40.31% 38.11% 46.54%

Reality 43.55% 43.20% 43.08% 42.84% 42.82% 51.86%

Infectious 37.52% 39.82% 40.00% 37.06% - 41.63%

We compare our approach with
state-of-the-art baselines on five
datasets (whose summary statis-
tics shown in Table 3). Baboon
Proximity [8,29] and Follow
are collected using GPS collars
on a group of baboons in Kenya.
For the proximity network, there
is an edge if two individuals are
closer than 10 m. Follow edges
are defined as trajectories of two
baboons follow each other (using
dynamic time warping). Haggle
Conference [27] are networks
of attendees at IEEE INFOCOM
2005 conference. Reality Mining [10] is a dataset of 96 students and faculty
members (nodes) at MIT to study human interactions using smart phones.
Infectious [15] is an interaction network when people visit the Science Gallery.
These datasets are from diverse domains, ranging from human Bluetooth interac-
tions over hours to animal GPS proximity on the order of seconds, which results
in vastly different network structures and mechanisms. To choose a proper time
window for defining the dynamic network, we employ the TWIN algorithm [7].
For the publicly available datasets, we split the whole sequence of networks based
on time since there is one sequence of networks for each dataset. For baboon
datasets, we randomly pick eight days as training and the rest as testing.

The state-of-the-art methods we compare with: Structured Prediction
(SP) [17] uses frequent subgraphs to predict the most likely topology. Col-
lapsed Weighted Tensor (CWT) [9] is a matrix factorization approach.
CANDECOMP/PARAFAC (CP) [9] is based on tensor factorization. We
use a Matlab Tensor Toolbox implementation [1,5]. Logistic Regression (LR)
is a general classifier for all the edges with general edge features. Temporal
Exponential Random Graph Model (TERGM) which we followed [18]
and used bootstrap pseudolikelihood approach in btergm package in R [19]
for the one-step-ahead prediction. Note that the Infectious network is too large
for the tool to handle, so we do not report a result. Adversarial Prediction
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Fig. 3. F1 score for predicting new edges (left) and edge disappearances (right).

(Adv), proposed method, obtains each game equilibrium using Gurobi [11] and
employs delay features with support of 0.9. We use grid search of a validation set
for selecting the cost weights λ. We constrain the pure strategies in the double
oracle method to 100 during training.

We use the average of the F1 score (Table 4) for starting edge prediction
and for ending edge prediction weighted by the number of start nstart and end
occurrences nend: Fweighted = Fstart ∗ nstart

nstart+nend
+ Fend ∗ nend

nstart+nend
.

Table 5. Degree distribution correlation.
SP CWT CP LR TERGM Adv

Follow 0.0631 0 0 0 0.0664 0.0406

Proximity −0.0092 0 0 0.0509 0.0286 0.0962

Conference 0 −0.2533 0 0.0741 0.3867 0.0303

Reality 0.5174 0 0.0033 0.4058 0.3109 0.5864

Infectious 0.1215 0.0034 0 0.0034 - 0.1297

Table 6. Average prediction time per network
(in seconds).

SP CWT CP LR TERGM Adv

Follow 2.4e−3 1.2e−3 100.44 1.1e−3 0.03 0.35

Proximity 0.19 6.1e−4 100.31 7.3e−4 0.05 0.47

Conference 0.03 1.6e−3 358.06 7.4e−2 0.04 0.57

Reality 0.07 0.07 412.81 1.57 0.05 1.86

Infectious 0.09 0.04 1098.10 19.77 - 4.85

Our Adv approach per-
forms better than all the base-
line approaches on all datasets.
Figure 3(left) shows the F1

score of predicting new edges.
For the CWT and CP meth-
ods, their F1-scores for edge
addition are very low, since
these two approaches predict
that nearly no edge exists.
Although the two approaches
have high F1-scores when pre-
dicting edge removal, as shown
in Fig. 3(right), the predictions
are not very meaningful because
predicting all the edges as non-
existing is useless for real-world applications. Our Adv approach outperforms
the baseline methods on predicting new edges, except for the proximity dataset,
in which we are worse than the SP approach. However, the good performance of
the SP approach is at the expense of edge removal performance. For predicting
edge removals, our method performs better on two out of five datasets and shows
competitive performance for the other datasets. Another common approach for
evaluation is to use the summary statistics of the network. Table 5 shows the eval-
uation results of degree distribution correlation computed using GraphCrunch 2
[16]. Although our proposed approach is not designed to optimize global perfor-
mance measure, our model performs better than the baseline approaches on three
datasets. TERGM also performs well on global summary statistic as TERGMs
are designed to model networks with similar statistics rather than focusing on
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specific edges. Table 6 shows the average prediction time per network. Our app-
roach takes a longer time compared to SP, CWT and TERGM, comparable with
LR, and much shorter than CP. Since the network is defined in time windows
with at least 20 s, Adv can be used for real-time prediction. Though we recognize
the scalability limitations of our approach, a number of methods, ranging from
basic engineering techniques to stochastic optimization methods, have promising
potentials for future work.

5 Conclusions

The variety of network characteristics and applications make dynamic network
prediction a challenging task. In this paper, we developed a robust approach to
predict edge changes in dynamic networks. By having worst-case approximations
of the available training data, it provides robustness guarantee to the inherent
uncertainty of reasoning from limited amounts of noisy data, as encountered in
many dynamic network settings. As future work, we plan to investigate marginal
decompositions of our game [28] to improve scalability.
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Abstract. An online social network can be used for the diffusion of mali-
cious information like derogatory rumors, disinformation, hate speech,
revenge pornography, etc. This motivates the study of influence mini-
mization that aim to prevent the spread of malicious information. Unlike
previous influence minimization work, this study considers the influence
minimization in relation to a particular group of social network users,
called targeted influence minimization. Thus, the objective is to pro-
tect a set of users, called target nodes, from malicious information orig-
inating from another set of users, called active nodes. This study also
addresses two fundamental, but largely ignored, issues in different influ-
ence minimization problems: (i) the impact of a budget on the solu-
tion; (ii) robust sampling. To this end, two scenarios are investigated,
namely unconstrained and constrained budget. Given an unconstrained
budget, we provide an optimal solution; Given a constrained budget, we
show the problem is NP-hard and develop a greedy algorithm with an
(1−1/e)-approximation. More importantly, in order to solve the influence
minimization problem in large, real-world social networks, we propose a
robust sampling-based solution with a desirable theoretic bound. Exten-
sive experiments using real social network datasets offer insight into the
effectiveness and efficiency of the proposed solutions.

1 Introduction

Online social networks can be used for the diffusion of not only positive informa-
tion such as innovations, news, and novel ideas, but also malicious information
such as disinformation and hate speech. Research on maximizing the influence
of positive information, called Influence Maximization, offers insight to social
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network users on how to best propagate the awareness of products and ser-
vices and has attracted substantial attention [2,4,8,11]. Likewise, the problem
of reducing the influence of negative information, called Influence Minimization,
is also attracting attention [5–7,9,14]. One line of studies on influence mini-
mization aims to find a certain number of edges in social networks such that by
deleting these edges, the influence of any information is minimized at the end
of the propagation process, no matter which nodes initially have the informa-
tion [5–7]. An other line of studies assume that a specific set of nodes initially
have some information to be spread, The aim is then to delete a certain num-
ber of edges or nodes such that the influence of the information is minimized
while considering the topics of the information [14] or considering the spread of
counter-information from competitors in the same period of time [9,12].

Unlike the above works, we propose, define, and solve a new problem of so-
called targeted influence minimization. This problem and its solutions are rele-
vant to many applications. For example, a government agent may want to shield
young social network users from pornography or recruitment to terrorism; or a
company may initiate a campaign to protect their customers from defamatory
information spread by their competitors. The targeted influence minimization
problem can be briefly described as follows: given a set of source nodes I with
information to be spread and a set of target nodes T in a social network, the aim
is to find the minimum set of edges under a budget constraint such that deleting
these edges minimizes the influence from I to T . The deletion of an edge (u1, u2)
can be considered as persuading u1 does not spread any information to u2, or
u2 does not accept any information from u1. Note that T may include all nodes
other than I in a social network in the extreme case. Suppose a set of nodes I
regularly spread information for business B1. A competitor B2 may initiate a
campaign to prevent such information from a set of target nodes T , such as the
customers of B2. To do that, it needs find a set of edges under the campaign
budget such that these edges will not pass any information related to B1. As a
consequence, the influence from I to T can be reduced to the minimum level.

All existing studies on influence minimization simply assume the budget is
insufficient and provide a greedy algorithm. However, this assumption is not
always true. We develop an optimal solution to completely block propagated
information for the target users if the budget is sufficient. Otherwise, the problem
is proved to be NP-hard, and a greedy algorithm is developed. To meet the
time requirement in handling large social network data, a novel sampling based
solution is provided.

The rest of the paper is organized as follows. We define the problem of tar-
geted influence minimization in Sect. 2, solve the problem when the budget is
unconstrained in Sect. 3 and when it is constrained in Sect. 4. Section 5 develops
an efficient sampling based solution to enable scalability to large social networks.
Finally, we evaluate the effectiveness and efficiency of our proposed solutions
using real social network data in Sect. 6 and conclude in Sect. 7.
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2 Problem Definition

A social network is modeled as a directed graph G = (V,E), where V is a set of
nodes and E ⊆ V × V is a set of edges. A set of nodes I ⊆ V are called active
nodes and have information to be diffused in the social network. Another set
of nodes T ⊆ V , I ∩ T = ∅, are called target nodes and are the recipients of
interest.

2.1 Diffusion Model

We assume the Linear Threshold (LT) diffusion model [4]. Thus, each edge (u, v)
comes with a weight bu,v ∈ [0, 1] to represent the influence u has on v. If a
message is from u, the influence of this message on v is added by bu,v. If the
message is from all neighbors of v, denoted as Adj(v), then influence, v.inf of
the message on v is

∑
u∈Adj(v) bu,v. An activation threshold, v.τ , is associated

with v. If v.inf ≥ v.τ , v is activated; otherwise, v is not activated.
It has been shown that diffusion in the LT model is equivalent to the process

of reachability under random choice of live edges in graph instances [4]. Given
a graph G = (V,E), each node v ∈ V selects at most one of its incoming edges
at random, choosing the edge connecting u to v with probability bu,v and not
choosing any other edge with probability 1 − ∑

u∈Adj(v) bu,v; the chosen edge
is called live. After processing each node in V this way, a graph instance Gx

containing only the live edges and all the nodes in G is generated. In Gx, suppose
a set of nodes I are active initially; an inactive node u ∈ V ends up as active if
and only if Gx contains a path from any node in I to u.

The set of all graph instances that can be generated from G is denoted as
χG. The influence of I to a set of nodes T ⊆ (V \ I) in graph G under the LT
diffusion model is defined as follows:

ΛG(I, T ) =
∑

Gx∈χG

Prob[Gx]rGx
(I, T ), (1)

where rGx
(I, T ) is the number of nodes in T reachable from any node in I in

graph instance Gx, and Prob[Gx] is the probability of graph instance Gx.

Fig. 1. A social network and an instance graph.



692 X. Wang et al.

Figure 1(a) illustrates a social network, and an instance graph using the LT
diffusion model is shown in Fig. 1(b). The probability of the instance graph
is 0.000504. Suppose I = {A,B,C} and T = {K,J,H}. Then K and H are
reachable from A, while J is not reachable from any node in I.

2.2 Targeted Influence Minimization

A social network G = (V,E) from which a subset of edges S ⊆ E has been
deleted is denoted as G(S).

Definition 1 (Targeted Influence Minimization (TIMin)). Given a social
network G = (V,E), a set of active nodes I ⊆ V , a set of target nodes T ⊆ {V \I}
and a positive real number k as a budget, suppose S = {S1, S2, · · · , Sn} contains
all possible sets of edges where |Si| ≤ k, 1 ≤ i ≤ n;

– if there does not exist Si ∈ S such that ΛG(Si)(I, T ) = 0, TIMin aims to find
the set S∗ ∈ S such that ΛG(S∗)(I, T ) is minimal;

– if a set Si ∈ S exist such that ΛG(Si)(I, T ) = 0, TIMin aims to find a set
S∗ ∈ S such that ΛG(S∗)(I, T ) = 0 and |S∗| is minimal.

In the former case, the budget is insufficient to completely block the infor-
mation propagation from I to T . In the latter case, the budget is sufficient to
do so. As an example, consider Fig. 1, where I = {A,B,C} and T = {K,J,H}.
A budget k = 2 is insufficient to completely block the information propagation
from I to T . Thus, TIMin aims to find the set of edges S∗ such that ΛG(S∗)(I, T )
is minimized. Given a budget of k = 10, there are many sets of edges that,
if deleted, will completely block the information propagation from I to T . In
this situation, among all such sets of edges, TIMin aims to find one with the
minimum number of edges.

Given active nodes I and target nodes T , we initially need to determine
whether the budget k is sufficient or not since this is not known in advance. This
leads to the following processing framework.

1. The first stage solves the influence minimization with am unconstrained bud-
get, defined as follows.

min |Si|
s.t. ΛG(Si)(I, T ) = 0 ∧ Si ⊂ S

(2)

If |Si| ≤ k, the problem is solved by returning Si because the budget is suffi-
cient to completely block the information propagation from I to T ; otherwise,
we go to the second stage.

2. The second stage solves the influence minimization with a budget k, defined
as follows.

minSi
ΛG(Si)(I, T )

s.t. |Si| ≤ k ∧ Si ⊂ S
(3)
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3 Budget Unconstrained Solution

We first examine whether the budget is sufficient to completely block the infor-
mation propagation from I to T . For this purpose, TIMin with unconstrained
budget (i.e., k = ∞) is solved as a minimum cut or maximum flow problem.
Let s and t be a source node and sink node in a flow network, respectively. In
optimization theory, the max-flow min-cut theorem states that the maximum
amount of flow passing from the source to the sink is equal to the total weight
of the edges in the minimum cut, i.e., equal to the smallest total weight of the
edges that, if removed, would disconnect the source from the sink [10]. If multiple
sources and multiple sinks exist, the problem is transformed into a single-source
and single-sink maximum flow problem by adding two new nodes: one connect-
ing all source nodes and the other connecting all sink nodes; the weights of the
new edges connected to the two new nodes are ∞.

Lemma 1. Given a social network G = (V,E), a set of source nodes I ⊆ V ,
and a set of target nodes T ⊆ {V \ I}, the influence minimization is equivalent
to the minimum cut problem if budget k = ∞.

The minimum cut or maximum flow problem is well studied [10]. We adopt
Dinic’s algorithm to solve this problem [3].

4 Budget Constrained Solution

Theorem 1. TIMin with an insufficient budget k is NP-hard.

Due the result in Theorem 1, we provide a greedy algorithm to solve tar-
geted influence minimization with an insufficient budget. The greedy algorithm
searches for a set of edges S ⊆ E such that |S| ≤ k and the following objective
function is maximized.

f(S) = ΛG(I, T ) − ΛG(S)(I, T ), (4)

where ΛG(., .) is computed using Eq. 1.
The greedy algorithm proceeds iteratively. Initially, S is empty. In each iter-

ation, it computes the value of each edge e in G(S) as follows.

value(e) = ΛG(S)(I, T ) − ΛG(S′)(I, T ), (5)

where S′ = S ∪{e}. The value of e, value(e), is the reduction of influence from I
to T with and without e in G(S). Among all edges, the one with the maximum
value, say e∗, is deleted. Then e∗ is inserted into S, and the remaining budget is
decremented by 1. The process terminates when the remaining budget reaches
0. The greedy algorithm is an (1 − 1/e)-approximation (≈0.632-approximation)
since the objective function is non-negative, monotonous, and submodular [5].
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5 Sampling-Based Solution

It is prohibitively expensive to directly generate all graph instances and compute
the value of each edge in each iteration. Therefore, we devise a sampling-based
solution. The solution is inspired by a recent influence maximization study [13],
but significant adaptions are required.

Reverse Influence Set (RIS). [13] aim to select at most k nodes with maxi-
mum influence in a social network. The method is based on RIS that computes
the influence of nodes using graph instances. Specifically, the reverse reachable
(RR) node set for each node in each graph instance is generated. Given a node
v in graph instance Gx, the RR set contains all nodes in Gx that can reach v.
Using the sampling method, a number of nodes are randomly selected from V ;
the RR set for each node is generated using a randomly selected graph instance.
So, a number of random RR sets are obtained. If a node u has a great impact
on other nodes, u will have high probability of appearing in the random RR
sets. As a result, the problem is transformed to the maximum coverage problem
of identifying at most k nodes that cover the maximum number of the random
RR sets. It has been shown that if the number of random RR sets θ is no less

than (8+2ε)|V |
ln |V |+ln(

|V |
k

)+ln 2

OPTkε2 , then RIS returns an (1−1/e−ε)-approximate
solution with at least 1 − |V |−1 probability (ε ∈ (0,1)) [1].

5.1 Minimum Influence Path

RIS cannot be applied to our problem without significant modification due to
two reasons.

– The random RR set is about node-to-node reachability. In our problem, how-
ever, we delete the edges to make reachable-nodes unreachable. While it is
straightforward to determine node-to-node reachability, it is more difficult
to identify edges the deletion of which makes reachable-nodes unreachable.
The reason is that there may be many different paths between two reachable
nodes, so deleting an edge does not necessarily block the reachability.

– The random RR set is for the reachability of any node. In our problem,
however, only the source nodes I and the target nodes T are relevant.

We propose a novel sampling-based method called Minimum Influence Path
(MIP) to solve TIMin. The idea is to exploit the fact that each node in a graph
instance under the LT diffusion model has at most one incoming edge. Specifi-
cally, each node v ∈ V in the graph instance generation process picks at most one
of its incoming edges at random, selecting the edge from w ∈ Adj(v) with prob-
ability bw,v, and selecting no edge with probability 1 − ∑

w∈Adj(v) bw,v. Figure 1
(b) shows an example.

As a result, for two nodes v and u, if v is reachable from u in the graph
instance, it is easy to observe that the following properties hold: (i) there is one
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and only one path from u to v in the graph instance, and (ii) the path is acyclic.
Therefore, the information propagation from u to v in this graph instance can
be blocked by removing any edge in the path. On the other hand, if v is not
reachable from u in the graph instance by deleting an edge e, this does not
indicate that v is not reachable from u in other graph instances. However, if v
is not reachable from u in many graph instances by deleting e, this implies that
the information propagation from v to u is less likely to happen even though it
is not impossible. So, the problem is to delete those edges that block the paths
from source nodes to target nodes are blocked in many graph instances.

On the other hand, if v is not reachable from u in the graph instance, the
information propagation is blocked without deleting any edge. This may occur
for two reasons. First, v is not reachable from u in graph G. Second, v is not
reachable from u in this graph instance. If v is not reachable from u in many
graph instances, this implies that the information propagation from v to u is less
likely to happen even though it is not impossible.

Given a node in v ∈ T , the minimum influence path in a graph instance is
the path to v from any node u ∈ I with the fewest edges. Figure 2(a) shows a
graph instance where I = {u1, u2, u3} and T = {v1, v2, v3, v4}. The minimum
influence path from I to each target node is shown in Fig. 2(b). The minimum
influence path to v1 is (e1, e2, e3). Cutting any edge in the minimum influence
path will prevent I from reaching v1 in this graph instance. Intuitively, the edge
appearing in more minimum influence paths is more likely to, if deleted, lead
to the more influence reduction. In this graph instance, edge e5 appears in the
minimum influence paths of v2 and v3 such that deleting e5 prevents I from
reaching two nodes. If deleting e5 prevents I from reaching many nodes in T in
other graph instances, e5 is likely to be the edge in the solution of MIP.

Fig. 2. Reverse influence paths.

5.2 Sampling-Based Greedy Algorithm

The pseudo-code of the sampling-based greedy algorithm is presented in Algo-
rithm1. First, we randomly generate a graph instance in lines 5–7. One node in
T is selected randomly in line 8, and the minimum influence path of this node
is generated in line 9. This way, θ nodes have been sampled, and the minimum
influence path is generated for each of them. Note that a graph instance is more
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Algorithm 1. Sampling-based Solution
Input: G = (V, E), I, T, k, θ
Output: S∗

1 i ← 0
2 M ← ∅
3 while i ≤ θ do
4 j ← 0

// generate a graph instance i
5 foreach v ∈ V do
6 if generateEdge() then
7 randomly select w ∈ Adj(v) with probability bw,v

8 u ← randomly select a node in V
9 u.M ← minInfPath(u)

10 M ← M ∪ u.M
11 i ← i + 1

12 S∗ ← incrementalMC(M)

13 return S∗

likely to be selected if the probability of the graph instance is high. If deleting an
edge can prevent I from reaching many nodes in T in many graph instances, this
edge is more likely to appear in the minimum influence paths. So, the problem
is transformed to the maximum coverage problem of selecting at most k edges to
cover the sampled nodes as many as possible. In our solution, we assume that
the specified budget is sufficient, otherwise, the budget unconstrained solution
is applied. To this end, the incremental solution of maximum coverage problem,
known as incrementalMC(M), is applied in line 12.

The maximum coverage problem is solved using an adapted greedy algorithm
that is aware of the budget sufficiency. The pseudo-code is presented in Algo-
rithm2. The generated minimum influence paths and the corresponding reverse
minimum influence paths are used. For each minimum influence path, the algo-
rithm maintains a node v ∈ I and the list of the edges in the path. For each
reverse minimum influence path, it maintains an edge e and a list of the nodes
each of which has e in its minimum influence path. The reverse influence min-
imum paths are constructed while the influence minimum paths are generated
(line 2). First, the edge with the longest reverse minimum influence paths is
moved to solution S∗ (lines 7–8). Then, the nodes in the reverse minimum influ-
ence path are processed by finding their minimum influence paths and removing
them (line 9); for any edge in the minimum influence paths, its reverse minimum
influence paths is found and updated (lines 10–13). The process is repeated until
k edges are selected (line 4) or no complete path exists in the remaining influ-
ence minimum paths (line 5). The budget sufficiency awareness is implemented
by checking whether no complete path exists.
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Algorithm 2. Incremental Maximum Coverage
Input: Mip

Output: S∗

1 i = 0
2 RMip ← construct reverse minimum influence path

3 S∗ ← ∅
4 while i ≤ k do
5 if no complete path in Mip then
6 break;

7 rpe ← the longest path in RMip

8 delete rpe from RMip

9 S∗ ← S∗ ∪ e
10 foreach v ∈ pe do
11 delete path pv from Mip

12 foreach e ∈ pv do
13 rpe ← delete v from rpe

14 return S∗

Theorem 2. If |S∗| ≤ k, the probability that the information propagation from
I to T is completely blocked is at most 1

n ; the |S∗| is an 1
n -approximation of the

optimal solution.

6 Experimental Study

We evaluate the effectiveness and efficiency of our proposed algorithms by com-
paring with two heuristic algorithms called Random and Weight. Random selects
edges randomly until budget k is used. Weight selects edges with largest edge
weights. Their performance are evaluated in different parameter settings using
three real-world networks: Wiki with 7,115 nodes and 103,689 edges, Ego-twitter
with 23,370 nodes and 33,101 edges, and Epinions with 75,879 nodes and 508,837
edges. All the three datasets are downloaded from the Stanford Dataset Collec-
tion1.

6.1 Evaluation of Effectiveness

Varying k: Figure 3 shows the experimental results when varying k while the
source node set I and the target node set T are fixed in size at 500 unless stated
otherwise. The source and target nodes are selected randomly.

The study shows that Greedy and Sampling are able to greatly reduce the
influence of I on T for all three datasets given a sufficiently large value of k.
When k is above 100, both solutions are able to reduce the influence by up to

1 http://snap.stanford.edu/data/.

http://snap.stanford.edu/data/
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Fig. 3. Remaining influence from I on T when varying k.

80%. Next, Random and Weight can slightly reduce the influence in Wiki. They
do not work for Ego-twitter and Epinions. Random and Weight cannot block
the influence well because the selection of their deleted edges are not relevant to
target users. However, this matter is taken into account in Greedy and Sampling.
So the influences minimized by Greedy or Sampling are always larger than that
of Random or Weight.
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Fig. 4. #edges deleted for unconstrained budget.
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Fig. 5. Time cost when varying k.

Budget Unconstrained Evaluation: As shown in Fig. 4, we can see that the
influence from I to T can be blocked completely by deleting a certain number
of edges. When |I| = 500, |T | = 100, it requires 243 edges for Ego-Twitter.
But more edges must be deleted for Epinions and Wiki because Ego-Twitter
dataset is much sparse than Epinions or Wiki datasets. In order to minimize
the influence of I on T in the same parameter settings, it has to delete more
edges so that all the paths connecting from I to T can be disconnected. However,
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Fig. 7. Time cost when varying I.

when |T | becomes large, it is quite challenging to completely block the initial
users’ influence on the target users because a large number of edges need to
be deleted. Our sampling solution can be applied to block the majority of the
influence.

6.2 Evaluation of Efficiency

We evaluate the efficiency of the four solutions when varying k, T , and I. Fig-
ures 5, 6 and 7 present the results. Our sampling solution is capable of out-
performing the greedy solution by 2 orders of magnitude in all datasets. Both
solutions are stable in performance when we increase k. But the time cost of
Greedy grows with the increase of T or I. Compared with Greedy and Sampling,
Random and Weight have the best efficiency because their deleted edges can be
found without too much computation. But, as we have seen, their lack of effec-
tiveness render them of little use. Therefore, the sampling solution is the best
choice for targeted influence minimization in terms of effectiveness and efficiency.

7 Conclusion

In this work, we propose and formalize the problem of targeted influence min-
imization in social networks that has not previously been studied. We present
different solutions that address the computational challenges associated with this
problem. We report on empirical studies showing that the proposed solution is
capable of quickly blocking 80% or more the influence of source users on target
users. The proposed sampling-based solution is efficient when applied to large
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scale social networks. This is very important because system need to be able to
quickly identify the set of edges to be deleted in order to block the source users’
influence. A less efficient solution may enable the source users to activate addi-
tional users as new source users, who can then spread the malicious information
and this way influence the target users.

Acknowledgement. This work is supported by the ARC Discovery Project under
grant No. DP160102114.
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Abstract. Influence maximization has attracted a considerable amount
of research work due to the explosive growth in online social networks.
Existing studies of influence maximization on social networks aim at
deriving a set of users (referred to as seed users) in a social network to
maximize the expected number of users influenced by those seed users.
However, in some scenarios, such as election campaigns and target audi-
ence marketing, the requirement of the influence maximization is to influ-
ence a set of specific users. This set of users is defined as the target set
of users. In this paper, given a target set of users, we study the Target
Influence Maximization (TIM) problem with the purpose of maximizing
the number of users within the target set. We particularly focus on two
important issues: (1) how to capture the social influence among users,
and (2) how to develop an efficient scheme that offers wide influence
spread on specified subsets. Experiment results on real-world datasets
validate the performance of the solution for TIM using our proposed
approaches.

1 Introduction

Through the powerful word-of-mouth effect in social networks, both industrial
and academic communities have been prompted to pay close research attention to
information dissemination and market recommendation. In influence maximiza-
tion, the goal is to select a subset of nodes in a social network that maximizes
the spread of influence [7]. However, most of the relevant studies have focused
on the entire social network, and have neglected the fact that real-world applica-
tions such as virtual marketing often want to promote their products to a certain
group of customers. For example, a social network system (e.g., Facebook) wants
to provide companies (e.g., travel agency) with marketing services by targeting
their potential customers, i.e., the target user set, who had clicked the ad or had
logged into their web-service, to promote their businesses. When a company has
a limited budget for the initial “seed users”, it is critical to effectively select
those users (who may not be in the target user set); the selected users can then
influence their friends, their friends’ friends and so on, resulting in the maximal
influence spread in the target user set.

In this paper, we formulate the Target Influence Maximization (TIM) prob-
lem that aims to maximize the influences over a target set of users in a social
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 701–712, 2018.
https://doi.org/10.1007/978-3-319-93040-4_55
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network, which refers to a subset of the entire social network. Consider an exam-
ple of social network in Fig. 1, where the target user set T is {0, 3, 7, 9, 10} and
the number of seed users k is 2, the goal is to identify the two seeds to influence
the users in the target set T . As a result, the optimal seed set is {4, 10} which
differs from the global influential nodes {4, 8}. We will explain this example in
detail in Sect. 2.

Fig. 1. An example of a target influence social network

There are two main issues to address target influence maximization. The first
is to obtain the social influence among users. In real life, although the graph rep-
resenting the structure of a social network is often explicitly available, the edge
weight representing the degree of influence is difficult to determine. Since we
focus on the influence spread on a specified subset of the network, we aim to learn
more accurate results that consider the propagation trace from real data rather
than constant values or intuitively assigned node in-degree numbers. By borrow-
ing some concepts in recent works on modeling the influence flows [5,12,13], we
further derive propagation probabilities based on users’ historical actions, such
as “repost/like/follow” on posts, place visits among location-based social net-
work or membership of groups. The second issue is to efficiently derive the set of
k seeds while maximizing the number of influenced users in the specified target
user set. Existing efficient influence maximization algorithms [1,2,7] cannot meet
the efficiency requirement because prior works still need to enumerate a large
number of users as the seed set and measure the corresponding influence spread.
Thus, although there is relevant literature on viral marketing focused on certain
types of users such as the location-aware [8] and keyword-aware influence maxi-
mization problems [9], these algorithms can not be directly applied to the target
influence maximization problem. Therefore, TIM calls for effective methods to
achieve high performance while not sacrificing much influence spread.



Maximizing Social Influence on Target Users 703

In summary, the contributions of this paper are three-fold:

– We formulate the problem of Target Influence Maximization. We first analyze
multiple real-world datasets, with the results showing the similar influence
propagation process to neighbor nodes, motivating our algorithm design.

– We quantitatively capture the social influence on a user by leveraging informa-
tion embedded in the social network. Since both user behavior and contents
shared by users should be taken into consideration, the decision making of
user behavior is modeled by a probabilistic methodology.

– To speed up the selection of k seeds, we build cluster-based indexes using
precomputed information on user behavior clusters to improve the search
performance.

2 Problem Formulation

We model a social network as a directed graph G = (V,E), where the vertices in
V are users and the edges in E are followee-follower relationships. For example,
edge (u,v) with weight 1.0 represents that user v has a 100% chance to be
influenced (activated) if user u is influenced (activated), where u is the influencer
and v is the follower. If a user u is selected as a seed, u becomes active and it
will also have the chance to activate its out-neighbors. If u’s out-neighbor v
becomes active, v will in turn activate the out-neighbors of v to propagate the
influence. There are many methods to model this process such as the Independent
Cascade (IC) model, the Linear Threshold (LT) model, Diffusion, etc. We adopt
the widely-studied IC model [7] with learned edges weights (also known as the
Weighted Cascade model) in this paper. Consider a vertex u first becomes active
in step t, the influence is independently propagated from vertex u to its currently
inactive neighbors Nu = {v1, v2, ...}. The node u has a single chance to activate
each of its inactive neighbors. Node vi ∈ Nu becomes active with the activation
probability pu,vi

along the edge (u, vi) at step t+1. No matter whether u succeeds
in activating vi or not, u cannot make any further attempts on vi. As time
unfolds, more and more of the nodes become active, and the process terminates
when there is no newly activated vertex.

Formally, given a query Q = (T , k) with the target user set T and an integer
k. The goal is to find a set of k seeds S from the graph, i.e., a subset of V
with k nodes, to activate the maximum number of vertices in T . The number
of activated vertices in T is called influence spread, denoted as σ(S, T ). As
each vertex has a probability of being activated through multiple vertices, it
is necessary to compute the expected number of σ(S, T ). The target influence
maximization problem is formulated as follows:

Definition 1. Target Influence Maximization. Given a social network G
and a query Q = (T , k), find a k-vertex set S∗ ∈ G, such that for any other
k-vertex set S ∈ G, σ(S∗, T ) ≤ σ(S, T ). S∗ is called a seed set, and each vertex
in S∗ is called a seed.
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Differing from existing influence maximization algorithms [7] which compute
the top-k vertices to maximize the influence spread on all vertices, we focus on
maximizing the influence spread on a given specific target user set.

3 Probabilistic Social Influence Model

The goal of this section is to predict the expected influence spread of nodes
precisely. Rather than assuming edge probabilities to be randomly or to be
determined by node degrees, we use real-world propagation trace to simulate
the possible world. In other words, we can think of a propagation trace as a
possible outcome of a set of probabilistic choices.

Definition 2. Probabilistic Social Influence Model. Given the social graph
G = (V,E) with additional action logs A as propagation trace, let X denote the
set of all possible worlds. The probabilistic social influence model (PSI) rebuilds
G by computing edge weights p of directed links, which represent the probability
of activation.

Then, with the directed and edge-weighted social network G = (V,E, p)
independently of the model m chosen, the expected spread σm(S) can be written
as:

σm(S) =
∑

X∈G

Pr[X ] · σX
m(S) (1)

where σX
m(S) is the number of nodes reachable from S in the possible world X .

The number of possible worlds is clearly exponential. Indeed, computing σm(S)
under the IC models is #P-hard [1,2], and the standard approach [7] tackles
influence spread computation from the perspective of Eq. 1: sample a possible
world X ∈ G, compute σX

m(S), and repeat until the number of sampled worlds is
large enough. We now develop an alternative approach for computing influence
spread, by rewriting Eq. 1, giving a different perspective. Let path(S, u) be an
indicator random variable that is 1 if there exists a directed path from the set
S to u and 0 otherwise. Moreover let pathX(S, u) denote the outcome of the
random variable in a possible world X ∈ G. Then we have:

σm(S) =
∑

u∈V

E[path(S, u)] =
∑

u∈V

Pr[path(S, u) = 1] (2)

That is, the expected spread of a set S is the sum over each node u ∈ V of
the probability of the node u getting activated given that S is the initial seed
set.

The standard approach samples possible worlds from the perspective of Eq. 1.
To leverage the available data on real propagation traces, we observe that these
traces are similar to possible worlds, except that they are “real available worlds”.
Thus, in this paper, we approach the computation of influence spread from the
perspective of Eq. 2, i.e., we estimate directly Pr[path(S, u) = 1] using the prop-
agation traces that we have in the action log.
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3.1 Assigning Direct Weight

In order to estimate Pr[path(S, u) = 1] using available propagation traces, it
is natural to interpret such quantity as the fraction of the actions initiated by
S that propagated to u, given that S is the seed set. More precisely, we could
estimate this probability as

|a ∈ A|initiate(a, S)&∃t : (u, a, t)|
|a ∈ A|initiate(a, S)|

where initiate(a, S) is true iff S is precisely the set of initiators of action a.
Unfortunately, this approach suffers from a sparsity issue which is intrinsic to
the influence maximization problem [10]. If we need to be able to estimate
Pr[path(S, u) = 1] for any set S and node u, we will need an enormous number
of propagation traces corresponding to various combinations, where each trace
has as its initiator set precisely the required node set S. It is clearly impractical
to find a real action log where this can be realized. To overcome this obstacle,
we propose a different approach to estimating Pr[path(S, u) = 1] by taking a
“u-centric” perspective: we assign weights to the possible influencers of a node
u whenever u performs an action.

We now revisit the problem of defining the direct weight γv,u(a) given by a
node u to a neighbor v for action a. The observation of [5] shows that influence
decays over time in an exponential fashion and that some users are more easily
influenced than others. Motivated by these ideas, we propose to assign direct
weight as:

γv,u(a) =
infl(u)

Nin(u, a)
· exp(− t(u, a) − t(v, a)

τv,u
)

Here, τv,u is the average time taken for actions to propagate from user v
to user u. The exponential term in the equation achieves the desired effect that
influence decays over time. infl(u) denotes the user influenceability, that is, how
prone the user u is to be influenced by the social context. Precisely, infl(u) is
defined as the fraction of actions that u performs under the influence of at least
one of its neighbors v, i.e., u performs the action a, such that t(u, a) − t(v, a) ≤
τv,u; note that the direct weight is normalized by Nin(u, a), i.e., all neighbors of
u that have performed the same action a before u. This is to ensure the sum of
direct weights assigned to neighbors of u for action a is at most 1.

3.2 Social Influence Distribution

When a user u performs an action a, we want to give direct influence weight,
denoted by γv,u(a), to all v ∈ Nin(u, a). The sum of the direct weights given by
a user to its neighbors is under the constraint that no more than 1. We can have
various ways of assigning direct weight: for ease of exposition, we assume for the
moment to give equal weights to each neighbor v of u, i.e., γv,u(a) = 1

din(u,a)

for all v ∈ Nin(u, a). Later we will see a more sophisticated method of assigning
direct weight. Intuitively, we also want to distribute influence weight transitively
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backwards in the propagation graph G(a), such that not only u gives weight to
the users v ∈ Nin(u, a), but they in turn pass on the weight to their predecessors
in G(a) and so on. This suggests the following definition of total weight given
to a user v for influencing u on action a, corresponding to multiple propagation
paths:

Γv,u(a) =
∑

w∈Nin(u,a)

Γv,w(a) · γw,u(a)

where the base of the recursion is Γv,v(a) = 1. Sometimes, when the action is
clear from the context, we can omit it and simply write γv,u and Γv,u. From
here on, as a running example, we consider the influence graph in Fig. 1 as
the propagation graph G(a) with edges labeled with direct weights γv,u(a) =
1/din(u, a). For instance, Γ4,0 = Γ4,2 · γ2,0 = (Γ4,4 · γ4,2 + Γ4,3 · γ3,2) · γ2,0 =
(1 · 0.2 + 1 · 0.2) · 0.5 = 0.2. We next define the total weight given to a set of
nodes S ⊆ V (a) for influencing user u on action a as follows:

ΓS,u(a) =

{
1 if v ∈ S;∑

w∈Nin(u,a)
ΓS,w(a) · γw,u(a) otherwise

Consider again the propagation graph G(a) in Fig. 1. Let S = {4, 8}. Then,
ΓS,u is the fraction of flow reaching 0 that flows from either 4 or 8: ΓS,0 =
ΓS,2 · γ2,0 = (1 · 0.2 + 1 · 0.2 + 1 · 0.1) · 0.5 = 0.25.

3.3 Objective Function

The final question for the PSI model is how to aggregate the influence weight
over the whole action log set A. Consider two nodes v and u: the total influence
weight given to v by u for all actions in A is simply obtained by taking the total
weight over all actions and normalizing it by the number of actions performed
by u (denoted Au). This is justified by the fact that weights are assigned by u
backward to its potential influencers. We define:

κv,u =
1

Au

∑

a∈A

Γv,u(a) (3)

Intuitively, it denotes the average weight given to v for influencing u over all
actions that u performs. Similarly, for the case of a set of nodes S ∈ V , we can
define the total influence weight for all the actions in A as κS,u.

Note that κS,u corresponds to Pr[path(S, u) = 1] in Eq. 2. Finally, we define
the influence spread σPSI(S) as the total influence weight given to S from the
whole social network:

σPSI(S) =
∑

u∈V

κS,u (4)

In the spirit of the influence maximization problem, this is the objective
function that we want to maximize. The problem is NP-hard and the function
σPSI(·) is submodular and monotone, paving the way for an approximation
algorithm, which will be presented in next section.
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4 Cluster-Based Assembling Method

In the target influence maximization problem, we focus on the specific user
set rather than on the whole user graph. In other words, we want to avoid
unnecessary computations of Pr(S ∪{u}, T ), especially for insignificant vertices
to the target set. To achieve this goal, a cluster-based assembling approximate
framework is proposed.

Table 1. The influencer set Σr
v and follower set Σe

v of v ∈ V

v Σr
v Σe

v

0 {0,1,2,3,4,8} {0}
1 {1} {0,1,2,8,9,11,13,14,15}
2 {1,2,3,4,8} {0,2}
3 {3,4} {0,2,3,5}
4 {4} {0,2,3,4,5,6}
5 {3,4,5,6} {5}
6 {4,6} {5,7}
7 {4,6,7} {7}
8 {1,8} {0,2,8,9,11,13,14,15}
9 {1,8,9,10,12,14,15} {9}

10 {10,12} {9,10,15}
11 {1,8,11} {11,13}
12 {12} {9,10,12,15}
13 {1,8,11,13,14} {13}
14 {1,8,14} {9,13,14,15}
15 {1,8,10,12,14,15} {9,15}

4.1 Cluster Detection Using Influence Behavior

We want to identify a set of vertices (denoted as candidate set C) which includes
all possible seeds. Thus we only need to consider the candidate seeds in C to
identify the seed set S. Existing algorithms take all users V as the candidate set
C, and our goal is to reduce the set as much as possible.

Intuitively, vertices in T will be considered as candidate seeds. In addition,
many vertices have influences on the vertices in T , and some of them have large
influences and some have small influences. To differentiate them, we want to
eliminate those insignificant vertices with small influences. For example, if vertex
u’s influence on v ∈ T is smaller than a threshold θ, i.e., MIPG(u, v) < θ, u is
an insignificant vertex for v. If u is an insignificant vertex for every vertex in T ,
we will not take it as a candidate seed.
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Fig. 2. Hierarchical Tree using the example in Fig. 1 and Table 1

Definition 3. Candidate Seed. Given a query Q = (T , k), u is a candidate
seed if MIPG(u, v) ≥ θ.

Let Σr
v = {u|MIP (u, v) ≥ θ} denotes the influencer set of vertex v and

Σe
v = {u|MIP (v, u) ≥ θ} denote the follower set of vertex v. To support efficient

online queries, we precompute these lists for each vertex. Obviously, C = ∪v∈TΣr
v

is a candidate seed set.
To reduce the redundant computation for similar vertices, we build a Hier-

archical Tree for vertices in V based on their influence behaviors, and utilize the
Hierarchical Tree to compute the set of vertices in the target set T .

Initialization. For each vertex v ∈ T , we enumerate v’s in-neighbors, e.g., u.
If MIP (u, v) ≥ θ, we add u into C and continue traversing u’s in-neighbors.
Iteratively we get proper C. For example, Table 1 shows the influencer set and
follower set of vertices in Fig. 1. Suppose θ = 0.05. For target user set T =
{0, 3, 7, 9, 10}, vertices in the query are candidate seeds intuitively. Vertices 1, 2,
4, 5, 6, 8, 12 and 14 are in the candidate set as they have influence on the target
user set. Vertices 5, 11 and 13 are candidate seeds as they are not followers of
any member of the target user set.

Tree Structure. With the influencer set and the follower set, we can build a
Hierarchical Tree using a clustering algorithm to produce hierarchical clusters [4].
The similarity of users’ influence behavior allows us to identify communities in
the network. The tree shows the order in which the nodes join together to form
communities. Each hierarchical tree node Di represents the user set that has
a similar influence spread, which can be utilized to fasten the candidate seed
identification (Fig. 2).

4.2 Greedy Algorithm

However, if the query target set is large, it is still expensive to calculate the
candidates set C and initial influence Pr({u}, T ) for every vertex u ∈ C. Thus,
we maintain two indexes to efficiently identify candidate seeds.

Node-Influencer Index. For each Hierarchical Tree node Di, we precompute
the union of influencer sets of vertices in node Di, denoted by Σr

Di
= ∪v∈Di

Σr
v .
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In addition, for each vertex u ∈ Σr
Di

, we also precompute its influence on vertices
in Di, denoted by Pr({u}, VDi

) =
∑

v∈Di
MIP (u, v). We use a node-influencer

index to maintain all the vertices in Σr
Di

, with their influences on Di in decreas-
ing order.

Influencer-Node Index. On the other hand, for each vertex u, we keep a
influencer-node index of tree nodes whose influencer set contains u, with the
corresponding influences.

Therefore, we can devise an assembly-based greedy algorithm to achieve (1−
1/e) approximate ratio with the indexes. In the online search, we initialize a max-
heap H to identify seeds. We first load the node-vertex lists of the tree nodes
in T . Then we check the vertices in order and add the vertices with the largest
influences into H. We obtain a lower bound BL for the next seed’s influence
using the heap and an upper bound BU for the unvisited vertices’ influences
using these lists. If BL ≤ BU , the first seed is found; otherwise we add more
vertices into the heap. To find the seed from the heap, we need to update their
influences. By determining the upper bound of the lists with the influences of the
current vertices, we use the expansion-based algorithm [8] to identify the next
seed using the heap. Then it takes the influence of the top vertex u of the heap
as a lower bound BL of the next seed. If BL ≤ BH , the top vertex u is the next
seed, and the algorithm pops it from the heap and adds it into S. Iteratively we
can find top-k seeds.

5 Experiment Evaluation

The goals of our experiments are manifold. At a high level, we evaluate (1) the
different models for edge weights with respect to the accuracy of the spread
prediction; and (2) the quality and efficiency of seed selection under our approx-
imation algorithms.

5.1 Experiment Setup

Datasets. We use three real-world datasets, namely Amazon [10,11], and
Gowalla [3] and a Facebook dataset crawled by ourself for performance eval-
uation. The details of the three datasets are shown in Table 2. Note that the
“product” attribute for the location-based social networks Gowalla and Face-
book represents the “location”.

Queries. We randomly generated two types of queries with different target set
sizes. (1) Small set queries: the target set contained 100, 200, 500, 1000 and 5000
vertices; (2) Proportional set queries: the target set size is in proportion to the
graph node size |U |, e.g., the target set size of a 10-percent set query equals
0.1∗ |U |. In the experiments, we report the average performance of 1,000 queries
in each query type.

Performance Evaluation. To simulate the ground truth, for each action
(check-in in Gowalla and Facebook ; and purchase history in Amazon) in the
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Table 2. Statistics of datasets

Property Network

Amazon Gowalla Facebook

#records Actions 34,686,770 6,442,890 869,317

#nodes User product 6,643,669 196,591 1,280,969 29,519

#edge Friend 39,513 950,327 39,513

test set, we take the set of users that are the first to do the action (e.g., visit
a location) among their friends, i.e., the set of “initiators” of the action, to
be the seed set. The actual spread is the number of users who performed that
action, also considered as influence spread. This allows for a fair comparison of
all methods from a neutral standpoint, which is a first in itself.

5.2 Spread Achieved

In this experiment, we compare the influence spread achieved by the seed selec-
tion under different target set queries. We adopt IC and LT described in the
previous subsection to show the results of global influence maximization. Consid-
ering the compatibility with our problem, we also design two baseline heuristic
algorithms to make comparison: PageRank (PR) and High Degree (HD), which
select the top-k nodes with respect to degree and PageRank score respectively,
as seeds.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10
0

20
0

50
0

10
00

0.1
|U

|

0.5
|U

|

Pe
rf

or
m

an
ce

Target Set Size

LT
IC

TIM
PR
HD

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10
0

20
0

50
0

10
00

|U
| 1%

|U
| 5%

0.1
|U

|

0.5
|U

|

Pe
rf

or
m

an
ce

Target Set Size

LT
IC

TIM
PR
HD

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10
0

20
0

50
0

10
00

0.1
|U

|

0.5
|U

|

Pe
rf

or
m

an
ce

Target Set Size

LT
IC

TIM
PR
HD

(a) Amazon (b) Gowalla (c) Facebook

Fig. 3. Influence spread achieved on different datasets

The experiment results are illustrated in Fig. 3. Note that the size of k is fixed
to |T |/50 here. Figure 3 presents significant superiority of the TIM algorithm
over the others when the size of set T is increasing. The global algorithms IC
and LT result in bad performances when |T | is relatively small compared to
|V |. As |T | increases, the overlap of |T | and |V | also increases, which leads to a
larger influenced number among the target user set. The two baseline compared
algorithms have similar performance, of which the High Degree performs a little
better. The values of online probability and threshold have effect on the final
number of influenced target users, but they do not change the overall trend of
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the experiment data. The TIM algorithm outperforms the other algorithms in
all cases when the online probability and threshold are different.

In general, the TIM algorithm has an outstanding advantage over the other
ones. When the size of set T is large, this advantage is more significant, while in
the special case where T is large and online probability is high, the performance
of the TIM algorithm is similar with others.

5.3 Running Time

Next, we show the results of the running time taken by the various models. We
include two well-recognized greedy algorithms, CELF++ [6] and MIA [1,2],
for comparison. Figure 4 reports the results for small set queries. It can be seen
that TIM with the cluster-based index (TIM) outperforms the other methods.

For the sake of completeness, we also examine the scalability of the TIM
algorithm with respect to the size of the action log, in number of tuples. The
synthetic data set is generated by randomly choosing propagation traces from
the complete dataset action logs and selecting all the corresponding action logs.
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Fig. 4. Running time comparison

Figure 5 shows the time take by TIM to select 50 seeds against the number
of tuples used by the three datasets. Most of the time taken by the algorithm is
consumed in scanning the action logs.
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Fig. 5. Running time against the size of action logs
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6 Conclusion

This paper presents the target influence maximization problem to select the
set of seed users in a social network that maximizes the expected number of
target users influenced by the seed users. We first designed a probabilistic model
to capture the social influence between linked users using action logs. Then, to
meet the instant-speed requirement for supporting online queries, a cluster-based
index structure and a greedy algorithm were proposed to return the solution with
(1− 1/e) approximation ratio. According to the experiment results, our method
achieved high performance while a keeping large influence spread in the target
user set, and outperformed the state-of-the-art algorithms for the TIM problem
in terms of both effectiveness and efficiency.
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Abstract. In this paper, we study the team expansion problem in col-
laborative environments where people collaborate with each other in the
form of a team, which might need to be expanded frequently by having
additional team members during the course of the project. Intuitively,
there are three factors as well as the interactions between them that have
a profound impact on the performance of the expanded team, including
(1) the task the team is performing, (2) the existing team members, and
(3) the new candidate team member. However, the vast majority of the
existing work either considers these factors separately, or even ignores
some of these factors. In this paper, we propose a neural network based
approach TECE to simultaneously model the interactions between the
team task, the team members as well as the candidate team members.
Experimental evaluations on real-world datasets demonstrate the effec-
tiveness of the proposed approach.

Keywords: Team expansion · Candidate member prediction
Collaborative environments · Neural networks

1 Introduction

In many application domains, people tend to frequently collaborate with others
in the form of teams for specific tasks. For example, in open source software
community, developers distributed worldwide work with each other by forming
developer teams for specific projects; in research community, researchers form
research teams and they collaborate with each other for research projects/papers;
in the film industry, the crew works together as a team for a film shooting. In
this work, we refer to these application domains as collaborative environments.

One of the key features in these collaborative environments is team mobil-
ity, i.e., teams are formed upon specific tasks and individuals can participate
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in several teams depending on their own interest and capabilities. In such envi-
ronments, we usually need to expand the team by adding new members during
team formation or when the existing team encounters difficulties on the task.
In this paper, we put our focus on the team expansion problem in collaborative
environments.

Broadly speaking, team expansion is related to several existing lines of
research (please refer to the related work section for more details): (1) people and
task matching which searches for an optimal match between people capabilities
and task requirements [3,23], (2) recommendation which recommends items to
users [11,18], and (3) social proximity analysis which computes the proximities
between users [13,21]. However, they all suffer from some limitations for the team
expansion problem studied in this paper: (1) people and task matching meth-
ods need concrete descriptions about people capabilities and task requirements,
while such descriptions are usually unavailable; (2) recommendation methods
mainly focus on recommending items for users, while team expansion aims to
recommend users for items (i.e., tasks) where the ‘chemistry’ between existing
users and the new user matters; (3) social proximity analysis methods analyze
the social connections between users, while the matching between users and tasks
are widely ignored.

In this paper, we propose a neural network based approach (TECE) for team
expansion in collaborative environments. The basic considerations of TECE are
three-fold: (1) no concrete requirements and capabilities for the candidate team
member are needed, (2) the candidate should match the task, and (3) the candi-
date should match the existing team members. To this end, we propose to auto-
matically match the candidate members to both team tasks and existing team
members, based on the existing interactions between them. To match a candi-
date member with the given task, we exploit the collaborative filtering idea from
recommender systems by mining the existing interactions between individuals
and tasks; to match a candidate member with the existing team members, we
take the team leader as a proxy of the team members and incorporate the social
connections between the candidate and the team leader into the model. Addi-
tionally, we adopt deep models with multiple non-linear neural layers to capture
the complex relationships between candidate members, team leaders, and team
tasks.

The main contributions of this paper include:

– We formally define the team expansion problem in collaborative environ-
ments, which has a wide range of applications.

– We propose the TECE model to solve the team expansion problem. The pro-
posed TECE simultaneously considers three important factors (team task,
existing team members, and candidate team member) as well as their inter-
actions.

– Experimental results on two real-world datasets show that the proposed
method can outperform several competitors in terms of accurately identifying
candidate members. For example, TECE can achieve up to 22.1% improve-
ment compared with its best competitors.
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The rest of the paper is organized as follows. Section 2 defines the team
expansion problem. Section 3 describes the proposed approach. Section 4 presents
the experimental results. Section 5 covers related work, and Sect. 6 concludes.

2 Problem Statement

In this section, we present the problem definition. Without loss of generality,
we assume that each team corresponds to a unique task. Therefore, we use t
to denote both the team task and the team itself. We assume that there are m
teams/tasks and n unique individuals, and we use T = {t1, t2, . . . , tm} and I
= {i1, i2, . . . , in} to denote the set of teams and individuals, respectively. The
existing interactions between team tasks and individuals are contained in matrix
R. For example, R(t, i) = 1 means that individual i belongs or once belonged to
team t, and R(t, i) = 0 indicates otherwise. For a specific team t, we use It to
denote the existing members in the team. Specially, we assume that there is a
team leader ot ∈ It (e.g., the owner of the team) in each team. With the above
notations, we define the team expansion problem in collaborative environments
as follows.

Problem 1. Team Expansion Problem in Collaborative Environments (TECE).

Given: (1) a collection of teams/tasks T each of which has a team leader ot,
(2) a collection of individuals I, (3) the existing interactions R between
teams/tasks and individuals, and (4) a team ttest ∈ T that is about to expand;

Find: the candidate member to join team ttest.

The above team expansion problem can be formulated as estimating the
fitness scores of unobserved entries in R, which resembles the recommendation
problem. However, different from traditional recommendation problem, when
recommending a candidate member to a team, we need to pay special attention
to the ‘chemistry’ between the candidate member and existing team members.
The goal of team expansion is to generate a ranked list of candidates for the
team that is about to expand. The ranked list is determined by the estimated
scores of unobserved entries in R. For example, suppose team t is the team to
expand. We take team t itself, the team leader ot, and a candidate team member
i as input, and the goal is to learn a mapping function f to obtain the estimated
fitness score between candidate i and the team t with leader ot. Formally, we
have R̂(t, i) = f(t, ot, i|Θ), where R̂(t, i) denotes the estimated fitness score,
and Θ contains the model parameters. In the next section, we will show how we
construct the mapping function f and learn its parameters.

3 The Proposed Approach

In this section, we present the proposed TECE model, followed by some discus-
sions and generalizations.
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Fig. 1. The overview of TECE.

3.1 The TECE Model

Figure 1 shows the overview of the proposed approach. As we can see, TECE
takes (the one-hot encodings of) team task id, team leader id, and candidate
member id as input, and embeds each of them into a low-dimensional vector.
After that, the resulting embeddings are fed into several non-linear layers to
learn the complex interactions between them. To be specific, TECE exploits
the collaborative filtering idea from recommender systems to model the interac-
tions between candidate team members and team tasks; it treats the team leader
as a proxy of the team members and model the social interactions between can-
didate members and team leaders; it also models the interactions between team
tasks and team members as team state which could impact the ideal candidate
member. The last layer contains the final high-level features from the above
interactions for predicting the fitness score between the input candidate and
the input team (with its team leader). Finally, the output layer produces the
estimated fitness score.

Next, we present the details of the TECE model. As mentioned in intro-
duction, team expansion needs to consider the interactions between candidate
member, team task, and existing team members. In the following, we first sep-
arately consider these interactions, and then describe the neural network based
objective functions.

(A) Matching Candidate Team Member with Team Task. For the matching
between candidate team member and team task, we first denote the embedding
vectors/features of team task and candidate member as pt ∈ R

d and qi ∈ R
d,

respectively, where d is the vector dimensionality. Then, we model the interaction
vector rti between team task t and candidate i as follows,

rti = pt � qi (1)
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where � denotes element-wise multiplication. For simplicity, we assume all the
embedding vectors are row vectors in this paper.

(B) Matching Candidate Team Member with Existing Team Members (Team
Leader). For the matching between candidate member and existing members,
we pay special attention to the team leader as he/she plays important roles in
building the team spirit and improving team performance [4,19]. Therefore, we
use the team leader as a proxy of the team members in this work. Based on
this, we model the interactions between team leader ot and candidate i as the
likelihood of their cooperation in the current team. We use cti to stand for the
cooperation likelihood, and it can be computed as

cti = qi � qot
(2)

where we still use the element-wise multiplication, and qi and qot
are the embed-

ding vectors for candidate i and team leader ot, respectively. Note that team
leader is one of the individuals in I.

(C) Team State Building. In addition to matching the candidate with team task
and team leader, we consider to build the team state vector which describes the
interactions between team task and team leader. Such interactions could impact
what is the best way the ideal candidate member should interact with team state.
For example, if the current team state is harmonic, the ideal candidate should
maintain the existing ‘chemistry’; if there is a lack of timely communication
in the current team state, the ideal candidate should act as a communication
bridge. Specially, we define the team state vector st as

st = pt � qot
(3)

where pt is the embedding vector of team task t, and qot
is the embedding vector

of team leader ot.

(D) Single-layer Modeling. Next, based on the above three intermediate vectors,
we can build a neural network to compute the fitness score R̂(t, i). In the simplest
case, we can concatenate these vectors and feed the resulting vector into a dense
(fully-connected) layer, whose output score R̂(t, i) can be computed as

R̂(t, i) = fout([rti, cti, st]xT ) (4)

where x is the weight vector, and fout can be set as the sigmoid function
fout(x) = 1

1+e−x .
Note that for the network we describe in Eq. (4), it can be seen as a gener-

alization of the traditional collaborative filtering based recommendation. It can
be degenerated to traditional collaborative filtering if we take only the rti as
input, define x as a row vector of 1s, and define fout as the identify function. In
other words, compared to traditional recommendation, we further consider the
current team state (st) and the interactions between candidate members and
team leaders (cti).
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(E) Multi-layer Modeling. For single-layer network, simply using a vector con-
catenation as final features is insufficient to represent the complex interactions
between candidate team members, team leaders, and team tasks. To address
this issue, we add multiple non-linear layers to model these interactions. Take
the cooperation likelihood vector cti as an example, the multi-layer modeling for
fitness score R̂(t, i) can be defined as follows:

z(1) = f (1)(W(1)cti + b(1))

z(2) = f (2)(W(2)z(1) + b(2))
. . .

z(L) = f (L)(W(L)z(L−1) + b(L))

R̂(t, i) = fout(z(L)xT ) (5)

where L is the layer number, W(i), b(i), and f (i) denote the weight matrix, bias
vector, and activation function for the corresponding layer, respectively. fout

and x are defined in Eq. (4). For the activation function, we choose the ReLU
(Rectified Linear Units) function for f (i). Similarly, we can add multiple non-
linear layers for each of the three intermediate vectors as defined in Eqs. (1)–(3),
and we may also add multiple non-linear layers for the concatenated vector as
defined in Eq. (4).

(F) Objective Function. Finally, we define the objective function to learn the
embedding vectors pt, qi, and qot

, as well as the other model parameters Θ.
Specially, we adopt the following logistic-like objective function

argmax
P,Q,Θ

∑
(t,i)∈R R(t, i) log(R̂(t, i)) + (1 − R(t, i)) log(1 − R̂(t, i)) (6)

where P contains the embedding vectors pt, Q contains the embedding vectors
qi and qot

, R(t, i) is the real fitness score between team task t and candidate i,
and R̂(t, i) is estimated fitness score by our model.

Here, the ground truth is contained in the existing interaction matrix R with
R(t, i) = 1 as positive label and R(t, i) = 0 as negative label. The remaining
problem is to sample the negative (t, i) pairs. Directly choosing all the possible
(t, i) pairs is computational expensive (quadratic time complexity). Choosing
only the positive labels (i.e., R(t, i) = 1) would lead to trivial solutions (i.e.,
the feature values towards infinity). In this work, we keep all the positive labels,
and randomly sample r (sampling ratio) negative labels (e.g., R(t, j) = 0) in
terms of team task t for each positive label. Based on the sampling strategy, a
stochastic gradient ascent learning algorithm can be applied for optimization.

3.2 Generalizations and Discussions

The TECE model is open for some reasonable adjustments on the model archi-
tecture. Here, we discuss some possible generalizations of the proposed method.
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First, the proposed model is flexible with several special cases. For example,
we may consider the single-layer objective function as discussed above. Such
treatment may improve the training efficiency while lower the prediction accu-
racy. Besides, for the three inputs, we can delete either the team task or the team
leader which will degenerate the model to social proximity model and recom-
mendation model, respectively. We will experimentally evaluate some the above
special cases in the next section.

Second, as a common practice in neural networks, we use element-wise mul-
tiplication in Eqs. (1)–(3) to model the interactions between team task, team
leader, and candidate team member. In addition to this operation, other oper-
ations such as inner product, concatenation, average pooling, and max pooling
can also be used. In fact, we can simultaneously use element-wise multiplication
and concatenation to obtain more intermediate vectors. In this work, we omit
such extensions for brevity.

Third, in our model, when matching the candidate member with team mem-
bers, we take team leader as a proxy. We can also incorporate all the existing
team members into the model by average pooling or max pooling. Take average
pooling as an example. We can flatten the embedding vectors of existing team
members by computing the average vector. We will experimentally evaluate this
in the experimental section.

Fourth, in this work, we employ the team-individual interaction history only
as input for the team expansion problem. Actually, we can consider much richer
information such as the text descriptions of team tasks, member profiles, and
temporal effects when such information is available. We leave these extensions
as future work.

4 Experiments

4.1 Experimental Setup

Datasets. We conducted experiments on two real datasets: GitHub1 and
DBLP2. GitHub is an open-source software development platform. The data
contains the information about projects, developers, and the actions from devel-
opers to projects. Since there are many toy projects and inactive users, we fil-
ter the data by deleting the developers who have contributed to less than five
projects, and the projects whose ‘star’ is no more than five and whose team
member number is less than five. DBLP is an open database that collects sci-
entific articles in the field of computer science [20]. We treat each article as a
team task, authors as team members, and the first author as the team leader.
We use a subset of the whole dataset, and the subset contains the areas of Data
Mining, Machine Learning, Database, and Artificial Intelligence. Similar to the
processing steps above, we filter out the authors who have published less than
three articles, and the articles whose author number is less than three. Overall,

1 http://ghtorrent.org/downloads.html.
2 https://cn.aminer.org/billboard/citation.

http://ghtorrent.org/downloads.html
https://cn.aminer.org/billboard/citation
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Table 1. Statistics of the datasets.

Dataset # of team tasks # of individuals Avg. members
per team

Avg. teams per
individual

GitHub 10,505 30,258 31.56 10.96

DBLP 17,838 29,423 3.59 2.18

both software development and research article publication can be seen as col-
laborative environments where people frequently collaborate with others in the
form of teams for specific tasks. Both datasets are publicly available, and the
statistics are listed in Table 1.

Compared Methods. We compare TECE with the following methods includ-
ing two social proximity analysis methods and two recommendation methods.

– Co-rank. It is a heuristic method. The basic idea is to rank the candidate
team members based on their cooperation times with the team leader.

– RW [21]. This is a random walk method that computes the proximities
between users in a network. We adapt the method to the bipartite network
of individuals and tasks.

– BPR [17]. This is a classic recommendation model for the one-class feedback
case. It directly optimizes the rankings between an observed feedback and an
unobserved feedback.

– NCF [9]. NCF is a recent neural network based model designed for one-class
recommender systems. It treats the recommendation problem as a binary
classification problem, and adopts neural networks to model the interactions
between users and items.

Evaluation Metrics. To evaluate the effectiveness of the compared methods,
we adopt the following two widely used evaluation metrics. Specifically, we out-
put the top K candidate members in a ranked list, and compute the HR and
nDCG metrics as follows.

HR@K =
1

|T |

|T |∑

t=1

hitt, nDCG@K =
1

|T |

|T |∑

t=1

log 2
log(rt + 1)

where T is the test set of teams, hitt ∈ {0, 1} is a binary value indicating
whether the ground-truth candidate is in the top K list, and rt ∈ {1, 2, ...,K}
is the ranking of the ground-truth candidate in the ranked list. rt = 0 if the
candidate is not in the top K list. In this work, we set K to 1, 5, 10, 15, and 20.

Experimental Settings. To setup the experiments, we randomly select one
team member in each team as the test set. The training data is used to train the
model where a ranked list of possible candidates for each team will be generated.
Here, we basically assume that the existing member is a suitable match for the
corresponding team task. While this is not always true in reality, we mitigate the
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Fig. 2. Effectiveness comparisons. TECE generally outperforms the compared methods
in both HR and NDCG on both datasets.

issue by filtering the datasets and keeping the teams that can be considered as
good teams (e.g., software projects that have been starred several times, or sci-
entific papers that have been published in top venues). During the testing stage,
since predictions on all the candidates would be time-consuming, we randomly
select 100 negative samples for each ground-truth candidate.

For the parameters, we either follow the default setting or set them equally.
For example, we set the embedding dimensionality to 32 for all the methods
(Co-rank and RW are not applicable). For the two non-linear layers of TECE,
we set the embedding size as 16 and 8, respectively.

4.2 Experimental Results

(A) Effectiveness Comparisons. We first compare TECE with the existing meth-
ods, and report the results in Fig. 2. First of all, we can observe from the figures
that the proposed TECE generally outperforms the compared methods in terms
of the two evaluation metrics on both datasets. For example, TECE improves
the best competitor (NCF) by up to 11.3% on the GitHub data, and by up to
22.1% on the DBLP data. Basically, TECE is better than NCF and BPR as
it further considers the matching between candidate member and team leader;
TECE is better than RW and Co-rank as it further considers the matching
between candidate member and team task.

Second, we can also observe that the overall results on the GitHub data
are better than those on the DBLP datasets. This is due to the fact that the
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Table 2. Performance gain analysis. The team leader, team task, and multi-layer
modeling are all helpful to improve the prediction accuracy.

Method TECE TECE-tc TECE-lc TECE-sl TECE-em TECE-con

HR@10 0.7711 0.7359 0.7556 0.7550 0.7351 0.7299

nDCG@10 0.6579 0.5962 0.6404 0.6553 0.6040 0.5949
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Fig. 3. Parameter study. TECE is robust to the two parameters in a relatively wide
range.

DBLP data is much sparser, making the problem more challenging. Third, for
the Co-rank method, it can identify the candidate team member with a relatively
high accuracy at top 1 (K = 1), while the accuracy increases slowly as K
increases. The reason is that Co-rank can only find the candidates in a local
neighborhood (i.e., previously cooperated), while the global perspective of task-
candidate matching is ignored.

(B) Performance Gain Analysis. Next, we analyze the proposed TECE by
checking the performance of its components and variants. For its components,
we delete the team leader, team task, and multi-layer modeling of TECE, and
obtain the TECE-tc (task and candidate), TECE-lc (leader and candidate), and
TECE-sl (single-layer) method, respectively. For its variants, we consider to sub-
stitute team leader with the average-pooling on all the existing team members,
and substitute the element-wise product with concatenation. The resulting meth-
ods are referred to as TECE-em (existing member) and TECE-con (concatena-
tion), respectively. For brevity, we report the HR@10 and nDCG@10 results on
the GitHub data in Table 2.

First, we can observe from the table that all the three components (i.e., team
leader, team task, and multi-layer) of TECE are helpful to improve the predic-
tion accuracy. For example, when team leader, team task, and multi-layer model-
ing are incorporated, the HR@10 performance of TECE improves by 4.8%, 2.1%,
and 2.1%, respectively. Second, TECE is better than its two variants TECE-
em and TECE-con. The improvement over TECE-em indicates the important
role of the team leader, and the improvement over TECE-con indicates that the
element-wise multiplication is a better way to model the interactions between
team tasks, team leaders, and candidate team members.
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(C) Parameter Study. Finally, we conduct a parameter study of the proposed
method in terms of the embedding size d and the negative sampling ratio r.
The results are shown in Fig. 3 where we still report the HR@10 and nDCG@10
results. As we can see from Fig. 3(a), the prediction accuracy generally improves
when the embedding size d grows from 8 to 32. No significant improvement
can be observed when d becomes larger. For the negative sampling ratio r, slight
improvement can be observed when r = 3 for the DBLP data. In general, TECE
is robust to the two parameters in a relatively wide range. In this paper, we fix
embedding size d to 32 and sampling ratio r to 2 for simplicity.

5 Related Work

In this section, we briefly review the related work including people and task
matching, recommender systems, social proximity analysis, etc.

People and Task Matching. In the operations research community, the peo-
ple and task matching problem has been extensively studied [3,5,23]. Typically,
the matching problem is often formulated as an integer linear program, and
the goal is to search for an optimal match between people capabilities and task
requirements. This line of work needs explicit and concrete descriptions of people
capabilities and task requirements, while such descriptions are usually unavail-
able or inaccurate in many real applications.

Recommender Systems. Team expansion is related to recommender systems.
One of the branches in recommender systems takes collaborative filtering as
the model basis, and recommends items to users based on the existing inter-
actions/feedback between users and items [11,17]. Later, some researchers fur-
ther incorporate social connections between users into the model [15,25], and
some others adopt deep neural networks. For example, normal deep networks [9],
stacked auto-encoder [22], convolutional neural network [10], and recurrent neu-
ral network [24] have been used for modeling the user feedback, item content,
temporal effect, etc. Different from the existing recommendation methods whose
goal is to recommend items to users, team expansion aims to recommend users
to items/tasks, where the ‘chemistry’ between existing users and the candidate
user matters.

Social Proximity Analysis. Since the social connections between the candi-
date member and the existing members matter for the team expansion problem,
our work is also related to existing social proximity analysis work [2,14,21].
For example, Tong et al. [21] propose fast random walks based on which the
social proximity between two nodes in a network can be computed; Cummings
and Kiesler [6] find that prior working experience is the best predictor for the
collaborative tie strength; recently, Han and Tang [8] propose the social group
invitation problem, and solve the problem from a group evolution viewpoint.
This line of work mainly focuses on the proximity analysis between users in the
social network, while the matching between individuals and tasks are widely
ignored.
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Team Formation and Optimization. The team formation or team expansion
problem has been studied in the entrepreneurial context [5,7], where interper-
sonal attraction, knowledge and communication skills make the essential factors
for a successful team. In computer science, the team formation problem [1,16]
has also been studied. However, existing work still requires the explicit descrip-
tions of task requirements and user skills. The most related work is perhaps the
recent work by Li et al. [12]. They propose to reformulate the team expansion
problem as a team replacement problem by defining a virtual member with the
desired skill set and communication structure, and then replacing this member
with a most similar substitute. In contrast to their work, we do not require the
descriptions of skill set and communication structure, and our focus is to find a
candidate team member by exploiting the interactions between candidates, team
leaders, and team tasks.

6 Conclusions

In this paper, we have proposed the team expansion problem in collaborative
environments, and proposed a neural network based approach TECE for the
problem. The key idea of TECE is to match the candidate team member with
both team task and team leader. Additionally, TECE models the non-linear
interactions between them via a multi-layer architecture. Experimental evalua-
tions on real-world datasets demonstrate that the proposed approach can outper-
form several competitors in terms of accurately identifying candidate members.
Future directions include exploring richer information such as task descriptions
and member profiles for the team expansion problem, and handling the cold-start
cases of the team expansion problem.
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Abstract. Fusing or aligning two or more networks is a fundamental
building block of many graph mining tasks (e.g., recommendation sys-
tems, link prediction, collective analysis of networks). Most past work
has focused on formulating pairwise graph alignment as an optimization
problem with varying constraints and relaxations. In this paper, we study
the problem of multiple graph alignment (collectively aligning multiple
graphs at once) and propose HashAlign, an efficient and intuitive hash-
based framework for network alignment that leverages structural prop-
erties and other node and edge attributes (if available) simultaneously.
We introduce a new construction of LSH families, as well as robust node
and graph features that are tailored for this task. Our method quickly
aligns multiple graphs while avoiding the all-pairwise-comparison prob-
lem by expressing all alignments in terms of a chosen ‘center’ graph.
Our extensive experiments on synthetic and real networks show that, on
average, HashAlign is 2× faster and 10 to 20% more accurate than the
baselines in pairwise alignment, and 2× faster while 50% more accurate
in multiple graph alignment.

1 Introduction

Much of the data that is generated daily naturally form graphs, such as inter-
actions between users in social media, communication via email or phone calls,
question answering in forums, interactions between proteins, and more. Addi-
tionally, graphs may be inferred from non-network data [17]. For joint analysis,
it is often desirable to fuse multiple graph data sources by finding the corre-
sponding nodes across them. This task, known as graph alignment or matching,
is the focus of our work. It is a core graph theoretical problem that has attracted
significant interest, both in academia and industry, due to its numerous appli-
cations: identifying users in social networks [19], matching similar documents
in lingual matching [4], brain graph alignment in neuroscience, protein-protein
alignment [4,5], chemical compound comparison, and more.

In many applications, the goal is to align multiple (more than two) networks
at once. Most existing methods get as input two networks, so they handle mul-
tiple network alignment by expensively computing all pairwise alignments. In
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Fig. 1. Overview of proposed approach: HashAlign with input l undirected, weighted,
attributed graphs (node/edge attributes are denoted with different shades/lines). The
framework consists of four parts: (1) scalable, fast, robust, node-ID-invariant feature
extraction per graph; (2) ‘center’ graph discovery, which is GC = G2 in this example;
(3) efficient, hash-based similarity computation, SiC , between each graph Gi and GC

(buckets with red crosses do not contribute any pairwise similarity computations, and
thus help with efficiency); and (4) node matching computation to find at most one
matching per node in Mij .

this paper, we seek to devise an efficient method that collectively aligns multi-
ple networks and can readily adapt to the existence or not of other node/edge
information in addition to the graph topology, without increasing its complexity.

Problem 1 (Multiple Graph Alignment with Side Information). Given l graphs,
G1(V1, E1), . . . , Gl(Vl, El), where Vi and Ei are the node and edge sets of graph
Gi, respectively, with or without node/edge attributes, we seek to find the corre-
spondence between their nodes efficiently, so that the input graphs are as close
to each other as possible.

To solve this problem, we propose HashAlign, an unsupervised method that is
based on three key ideas: (i) inferring the similarity between nodes in different
graphs based on structural properties and node/edge attributes; (ii) leveraging
Locality Sensitive Hashing (LSH) [6] to minimize the number of pairwise node
comparisons; (iii) choosing a ‘center’ graph out of l input graphs to which to align
all the others, thereby avoiding solving

(
l
2

)
pairwise graph alignment problems

(instead solving l − 1 alignments and quickly inferring the others by applying
simple transformations in the form of sparse matrix multiplications). Figure 1
contains a pictoral overview. Our main contributions are:

• Flexible Framework. We propose an efficient and accurate hashing-based
family of algorithms, HashAlign, which solves the multiple network align-
ment problem. Our method is general and can readily incorporate any avail-
able node and edge attributes. HashAlign can be used as a standalone
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alignment method or provide its solution to initialize optimization problems
for pairwise alignment (e.g., [4]).

• Methods. As part of our framework, we propose problem-specific choices of
node and graph features, and introduce a new, robust construction of hash
families.

• Experiments. We conduct extensive experiments on synthetic and real data,
which show that HashAlign is 2–10× faster than the baselines that tackle
either the multiple or pairwise alignment problem, while being equally or
up to 50% more accurate.

For reproducibility, the code is available at https://github.com/GemsLab/
HashAlign.git. Additional supplementary material is provided at https://
markheimann.github.io/papers/HashAlign-PAKDD18-full.pdf.

2 Related Work

We review work that is relevant to our problem space and choices of techniques:

Graph Alignment. Scalable methods for pairwise graph alignment include
a distributed, belief-propagation-based method for protein alignment [5], a
message-passing algorithm for aligning sparse networks when some [4] or all [18]
possible matchings are considered, alignment of bipartite networks [13,14], and
attributed graph alignment [20]. Multiple network alignment, however, poses
a further scalability challenge. For instance, the recent optimization-based for-
mulation of [16] solves a bipartite matching problem in O(n3) time using the
Hungarian algorithm. Zhang and Yu [19] introduce the notion of transitivity
between graphs to align social networks more scalably with some partial node
matchings (anchor links) known a priori. Our method HashAlign preserves
this notion of transitivity for any type of network and requires no anchor links.

Locality-Sensitive Hashing. This technique for efficient similarity search has
been used to accelerate the well-known k-nearest neighbor algorithm, often offer-
ing theoretical and practical improvements even over sophisticated data struc-
tures such as k-d trees [3]. It has also found use in matching problems in other
domains, such as ontology matching in information retrieval [8]. In our proposed
method, we leverage LSH to efficiently find nodes that are similar. For networks,
[12] uses MinHash to find sets of similar nodes in a single attributed graph by
relying on the adjacency matrix as features, but this is not applicable to the
graph alignment setting. Thus, we introduce node-ID invariant representations
and adapt LSH to find similarities across networks. Our contribution is orthog-
onal to prior works: a framework for network alignment, HashAlign, in which
we propose design choices geared toward our specific domain.

3 Proposed Formulation: Two-Graph Alignment

In this section, we first introduce the alignment problem for two graphs. We
then describe our proposed approach, and in the next section we extend it to

https://github.com/GemsLab/HashAlign.git
https://github.com/GemsLab/HashAlign.git
https://markheimann.github.io/papers/HashAlign-PAKDD18-full.pdf
https://markheimann.github.io/papers/HashAlign-PAKDD18-full.pdf
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Table 1. Symbols and definitions. We use bold capital letters for matrices, bold low-
ercase letters for vectors and normal lowercase letters for scalars.

Symbols Definitions

Gp = (Vp, Ep) Graph p with vertex set Vp and edge set Ep

|Vp| = np, |Ep| = mp Number of nodes and edges in graph Gp, resp.

sGp (v) 1 × ds vector of the structural invariants (e.g., PageRank) for node v ∈ Gp

an Gp (v), ae Gp (v) 1 × dan vector of node/edge attributes for node v ∈ Gp

AnGp
,AeGp

The stacked node/edge attr. matrices of size np × dan and np × np × dae

d = ds + dan + dae Total number of (structural, node, and edge) features

fGp (v),FGp 1 × d all-feature vec. for node v ∈ Gp and the resp. stacked np × d mat.

SIGGp 1 × 5d graph ‘signature’ vector representing graph Gp

d(Gi, Gj) Distance between graphs Gi and Gj

Sij Sparse ni × nj similarity matrix between graph Gi and Gj

Mij ni × nj alignment between graph Gi and Gj

bi Bucket i (hashing)

Z Number of bands (hashing)

the multiple graph alignment problem. Table 1 summarizes the main notations
used in our analysis.

3.1 Definition: Relaxed Two-Graph Alignment Problem

The typical graph alignment problem aims to find a one-to-one matching between
the nodes of two input graphs. This problem is important, but in many applica-
tions it suffices to solve a relaxed version of it: finding a small set of nodes that
are likely to correspond to a given node. Thus, we relax the original alignment
problem as follows:

Problem 2 (Relaxed two-graph alignment). Given two graphs, G1(V1, E1)
and G2(V2, E2), which may be (un)directed, (un)weighted and attributed / plain,
we seek to efficiently find a sparse, weighted bipartite graph GS = (V1 ∪
V2, ES) with edges representing potential matching pairs and being weighted by
the likelihood of the match:

∀ potential match (u, v), u ∈ V1, v ∈ V2,∃e ∈ ES : we = sim(u, v)

and |ES | < α · max{n1, n2} where α ∈ Z (α > 1) controls the density of GS .

To make sure that nodes are matched only to a few of their closest counter-
parts, the main requirement in Problem2 is that GS is sparse, i.e., |ES | � n1×n2.
Most graph alignment methods find 1-1 matchings between the vertex sets [4,7],
and a few approaches relax the requirements of the typical optimization prob-
lem to find probabilistic matchings [14], but each method targets a different
type of graph (e.g., unipartite, undirected) and most of them rely only on the
network structure. In this work we propose a different, intuitive similarity-based
approach that encompasses all these settings, leveraging a suitably rich node
representation to achieve superior accuracy.
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A naive similarity-based method is to: (i) compute all the pairwise similarities
between the nodes in G1 and G2, and (ii) keep only the edges with similarities
greater than a user-specified threshold. Although this approach results in a sparse
graph GS , it has several drawbacks. First, it is computationally expensive, since
it computes all n1 × n2 pairs of similarities and later applies the threshold for
edge filtering. Second, the threshold is arbitrary and affects the potential node
matchings significantly. Third, it is not clear how to choose the ‘right’ node
representation for similarity computations. Our proposed approach uses hashing
to overcome all these issues.

3.2 Node Representation: Handling Node and Edge Attributes

Our framework, HashAlign, requires a vector representation of each node.
We want these to be comparable across graphs and also leverage node/edge
attributes seamlessly (Fig. 2).

Fig. 2. Proposed feature-based, node-
ID invariant representation of vertex v.

We propose to represent each node u
with a vector f(u) of structural features
and node/edge attributes (if available).
The benefit of this representation is that it
can be adjusted to the type of graphs and
available information without any changes
in the problem formulation. Furthermore,
it is node-ID invariant and can thus be meaningfully compared across graphs.
This is not true of representation learning methods like DeepWalk and node2vec,
which sample context nodes by their IDs with random walks [9] and thus are
not applicable to our multi-network setting [10]. Specifically, in Step 1 of our
framework (Fig. 1), we concatenate ds structural features, dan node attributes,
and dae edge attributes:

• Structural features s ∈ R
1×ds . Examples include the so-called local fea-

tures (e.g., degree variants) and egonet features. The egonet of node u is
defined as the induced subgraph of u and its neighbors, and structural fea-
tures specific to the egonet include its number of edges, its degree, and more.
In addition to these features, we also consider features that combine locality
with globality, such as PageRank and various types of centrality. We choose
specific structural features that are most robust to noise (Sect. 5).

• Node attributes an ∈ R
1×dan . If a graph contains node attributes, the

node feature vectors f can be extended to include those. Numerical features
can be simply concatenated with the structural features, while categorical
attributes can be incorporated by using 1-hot encoding and concatenated to
the previously formed feature vector.

• Edge attributes ae ∈ R
1×dae . We propose converting numerical edge fea-

tures to node attributes by applying an aggregate function ξ : Edegu → R

(where the domain is the set of edges incident to u ∈ V and degu is its
degree). Examples for ξ() include sum, average, standard deviation, etc. For
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categorical features, we propose to encode the distribution of values per fea-
ture. For example, if a feature has q possible values, then q entries with their
frequencies will be concatenated with the previous features.

3.3 Proposed Hashing-Based Computation of Potential Matchings

Now we have, for each node u in graph Gp, a real-valued vector fGp
(u) ∈ R

d con-
structed as described in Sect. 3.2. We propose to use Locality Sensitive Hashing
(LSH) [6] to find a small number of potential matchings between nodes across
graphs (i.e., nodes with high similarity) scalably, without computing all pairs of
n1 × n2 similarities. In a nutshell, given a similarity function, LSH reduces the
dimensionality of high-dimensional data while preserving their local similarities;
that is, it efficiently maps similar data points (in our case, nodes) to the same
buckets with high probability. Our proposed hashing approach for alignment
takes as input the FG1 ∈ R

n1×d feature matrix (with row-wise node representa-
tions) for G1 and FG2 ∈ R

n2×d for G2, and hashes them row-wise using an LSH
family H.

Definition 1 (LSH-2G). Given V1 and V2, the nodes in graph G1 and G2

respectively, along with a similarity function φ : R
d × R

d → [0, 1], H is an
LSH-2G family of hash functions such that the probability of two nodes u, v ∈
V1 hashing to the same bucket is equal to their similarity, and additionally the
probability of two nodes u ∈ V1 and v ∈ V2 hashing to the same bucket is equal
to their similarity: Pr[h(u) = h(v)] = φ(fG1(u), fG2(v)).

We propose an LSH-2G family based on the standard measure of cosine
similarity (with Euclidean distance in the supplementary material.) We intro-
duce SimHash-2G, a modified version of SimHash [3] that is based on LSH-
2G described above. SimHash-2G chooses K randomly generated column vec-
tors {r1, . . . , rK} ∈ R

d that follow the standard Gaussian distribution (i.e.,
K random hyperplanes). The LSH-2G family consists of K hash functions:
hk(u) = sign(fGp

(u) · rk). Each of these projects node u on either side of the
random hyperplane rk (positive or negative sign). For random hyperplane k,
the probability of two nodes u ∈ V1 and v ∈ V2 being mapped to the same
bucket is Pr[hk(u) = hk(v)] = 1− θuv

π , where θuv = cos−1 fG1 (u)fG2 (v)

‖fG1 (u)‖2‖fG2 (v)‖2
. The

angle 1− θuv

π captures the proximity of u and v. SimHash-2G computes only the
similarity for pairs of nodes according to our proposed SKD-construction (see
below).

If a hash function hi ∈ H maps two nodes to the same bucket, that indicates
that they could be similar, but there is some probability of error. The technique
of amplification creates a new LSH family G with hash function g defined over the
functions in H = {h1, h2, . . . , hK}, in order to reduce that probability of error.
A standard technique is AND-construction where g(u) = g(v) =⇒ ∀i hi(u) =
hi(v).

However, the AND-construction is too strict and may lead to many false
negatives when finding node matchings. To ameliorate that we use the banding
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technique: (i) we split each feature vector into Z equal bands, and (ii) per band
z, we apply a corresponding LSH-2G family Hz using AND-construction. In each
band, a node can fall into only one bucket, and thus collides with nodes in that
same bucket (potential matchings). To handle the observed skewed distribution
of nodes to buckets and guarantee that each node will have some potential
matchings, we introduce the notion of ‘importance’ of a node collision within a
band and propose the SKD-construction.

Definition 2 (Importance σtot of node collision). Given two nodes u ∈ V1

and v ∈ V2, and an LSH-2G family H = {h1, . . . , hK} s.t. ∀j hj(u) = hj(v) (i.e.,
both nodes are mapped to bucket bH), we define the importance of their collision
based on H as the inverse of the size of the corresponding bucket: σH(u, v) =
1

|bH| . The total importance score of a node pair collision over all bands and
their corresponding LSH families H′ = {H1, . . . HZ} is defined as: σtot(u, v) =∑

H∈H′ σH(u, v) · 1hj(u)=hj(v),∀hj∈H.

Intuitively, the importance of a collision is higher if a few nodes are mapped
to a bucket, as the bucket has higher discriminative power. The notion of impor-
tance tackles the skewness that we observe in the mapped nodes in the graph
alignment setting. Based on this definition, we propose the SKD-construction
(where SKD stands for SKeweD).

Definition 3 (SKD-construction). Given u ∈ V1 and v ∈ V2, and LSH-2G
families H′ = {H1, . . . ,HZ}, a new family G with hash function g is based on
SKD-construction:

g(u) = g(v) =⇒ σtot(u, v) ∈ TOPα(u),

where TOPα(u) is the set of top-α total importance scores σtot(u, v′) for v′ ∈ V2,
and α is the small factor that controls the density of GS in Problem 2.

Intuitively, SKD-construction computes the pairwise similarities of nodes
that collide often (but not always, like AND-construction) and have important
collisions that manage to distinguish the nodes (i.e., it penalizes functions that
lead to skewed results).

3.4 From Similarities to Matchings

As shown in Step 3 of Fig. 1, the hashing approach that we introduced returns a
small number of high similarities between the nodes of graphs G1 and G2, giving
us an n1×n2 sparse matrix S with node similarities. Here we provide ways to use
the similarity information in S to find the node matchings or correspondences
M ∈ Z

n1×n2 :

• Greedy matching: Assuming that the higher the similarity score, the more
likely two nodes are to match [14,20], we can greedily make independent
decisions for the best match of each node in G1 through a function χ : V1 → V2
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s.t. χ(u) = argmaxv{Suv}. Since nodes are matched independently, this is
very efficient and parallelizable, but may match more than one node in graph
G1 to the same node in G2. It is a preferred method for very large networks
or networks of different sizes, and also when multiple potential matchings
are desired. In the latter case, it can be trivially extended by updating the
function χ() to return more top potential matchings (instead of only the best
one).

• Collective matching: An alternative is to leverage existing approaches that
find 1-to-1 matchings collectively, given a similarity matrix S. In Sect. 5 we
consider scalable options for doing so and study their trade-offs.

4 HASHALIGN: Multiple Graph Alignment

In this section, we extend our HashAlign framework to multiple graph align-
ment, extending the formal definition of the relaxed 2-graph alignment problem.

Problem 3 (Relaxed multiple graph alignment). Given a set of graphs,
G = {G1(V1, E1), . . . , Gl(Vl, El)}, which may be (un)directed, (un)weighted and
attributed / plain, we seek to efficiently find a sparse, weighted bipartite graph
GSij = (Vi ∪ Vj , ESij) for each pair of graphs <Gi, Gj>, s.t. ESij has the poten-
tial matching pairs between their vertex sets and the weights describe how likely
the nodes are to match.

Fig. 3. Node matching consis-
tency: If u = v and v = w, then
u should match to w (by transi-
tivity).

Efficient Computation. The key insight to
reduce computation is to use one of the l graphs
as the ‘baseline’ graph GC and align the remain-
ing l−1 graphs with it in parallel. This approach
avoids computing O(l2) pairwise graph align-
ments, instead leading to l−1 matching matrices
M2C , . . . ,MlC (w.l.o.g. we choose graph GC =
G1 in our notation, but we will explain next the
choice of GC). Inspired by the idea of transitiv-
ity [19], which requires node matching consis-
tency between pairs of graphs (Fig. 3), we effi-
ciently infer the remaining matching matrices Mij (where i, j 	= C) via sparse
matrix multiplications (Step 4 in Fig. 1): Mij = MiC · MT

jC .

Choice of GC . To reduce the induced alignment errors and their propagation to
the inferred matchings, we propose the ‘center’ graph (i.e., the graph in G with
the minimum total distance from the remaining graphs) as the baseline graph
GC (Step 2 in Fig. 1):

argminC

∑
j d(GC , Gj) =

∑
j ||SIGGC

− SIGGj
||2,

where d(GC , Gj) is the distance between GC and Gj , and SIG is a graph ‘sig-
nature’, which we create by applying an aggregate feature function ξ() over a
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Algorithm 1. HASHALIGN
Input: (1) G={G1, G2, · · · , Gl}; (2) [OPT] Per graph i, node/edge attr.

A
n×dan
nGi

/A
n×n×dae
eGi

Output: A set of matching matrices {Mij} for i, j ∈ {1, . . . , l}
1: /* STEPS 1&2: Node representation and Center Discovery */
2: For G ∈ G do
3: FG = extractFeatures(G,A

n×dan
G ,A

n×n×dae
G ) � Sec. 3.2

4: GC = findCenter(ξ(FG1), ξ(FG2), · · · , ξ(FGl)) � Eq. (4) & aggregate function
ξ()=SIG

5: /* STEP 3: Hash-based similarity (assuming q buckets in total) */

6: {b1, . . . , bq} = SimHash-2G(FG1, . . . ,FGl) � Sec. 3.3 (or EDHash-2G in Appendix
B)

7: {S1C ,S2C , · · · ,SlC} = computeSparseSimilarities(b1, . . . , bq) � SKD-construction
8: /* STEP 4: Node matching */
9: {M1C ,M2C , · · · ,MlC} = Greedy or Collective(S1C ,S2C , · · · ,SlC) � Sec. 3.4

10: For i, j ∈ {1, . . . , l} do
11: Mij = MiC × MT

jC � Sec. 4

graph’s nodes. In our work, we use the mean, median, standard deviation, skew-
ness, and kurtosis of each of the d features, giving us a 5d-dimensional vector
(shown in Step 1 of Fig. 1). Intuitively and empirically, the center graph being
as close as possible the other graphs can make the center-based alignments more
precise.

Hash-Based Similarity. After hashing all the feature-based node vectors of
all the graphs in G as described in Sect. 3.3, we compute the similarity scores for
possibly matching pairs of nodes according to the SKD-construction. We only
compute the similarity between nodes in the center graph (right hand-side in the
buckets in step 2 of Fig. 1) and nodes in the peripheral, or non-center, graphs
(left hand-side).

Putting Everything Together. We propose HashAlign, a fast, hash-based,
multiple graph alignment approach, which is described at a high level in Algo-
rithm 1 (and pictorially in Fig. 1, where Z = 1 for simplicity.) It consists of four
main steps: (i) node representation, (ii) ‘center’ graph identification, (iii) hash-
based similarity, and (iv) node matching. In line 7 of Algorithm 1, SimHash-2G
is applied to l graphs in parallel.

Computational Complexity of HashAlign. Our framework makes two main
substitutions for computational savings. First, it replaces full pairwise similarity
computations that are quadratic in the number of nodes with hashing in only
O(K · np · d) time for graph Gp with np nodes, if we use K hash functions
on d-dimensional feature vectors. Second, it replaces all

(
l
2

)
pairwise network

alignments with only l−1 pairwise network alignments to a center graph (chosen
in O(l2 · d) time), inferring the remainder with sparse matrix multiplications.
More details are given in the supplementary material.
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5 Experimental Analysis

In this section, we seek to answer the following questions: (1) How robust is
our framework compared to baselines for different levels of noise in the graphs
(both in the structure and node/edge attributes)? (2) How could HashAlign
help existing alignment methods perform better and how could these help our
method? (3) How do our methods scale when aligning multiple graphs collec-
tively? We answer these questions on three datasets, described in Table 2. We
also include additional experiments, such as a sensitivity analysis of HashAlign
to different parameters, in the supplementary material.

Baselines. We consider 3 baseline methods commonly used in the literature:
NetAlign [4], Final [20], and IsoRank [18]. We compare their performance
against our method, HashAlign, where we infer alignments greedily from the
hashing-based node similarities. The baselines accept a matrix L representing
prior alignment information between the nodes of the original graphs. By default,
we provide a thresholded similarity matrix based on the node attributes to assure
good performance based on the attribute information, even for the baselines that
are not formulated for it (NetAlign and IsoRank). We also consider two variants
of HashAlign, namely HashAlign-NA and HashAlign-FN, which respec-
tively use NetAlign and Final to infer alignments from the node similarities as
the final step of HashAlign (Sect. 3.4).

Data. We evaluate our proposed algorithms on three datasets along with the
synthetic data that we generated from them (via permutations and added noise,
as in [14,20]). Formally, given a graph G1 with adjacency matrix A, we create
a noisy graph G2 with matrix B = PAP� (i.e., a permutation of itself), where
P is a randomly generated permutation matrix (i.e., with one nonzero entry
per row/column). Synthetic noise is applied to both graph structure and labels
throughout our experiments to simulate real-world scenarios where the graphs
are matchable but different. The noise level p indicates that with probability p,
Gaussian noise with std = 1 is added to an edge weight; a binary edge label is
flipped; or a categorical node/edge label value is changed.

Table 2. Description of real datasets.

Datasets # Nodes # Edges Graph type Labels Description

Connectome [1] 941 9,622 Undirected - fMRI-inferred graphs

E-mail [2] 1,133 5,451 Undirected 5 Email communications

DBLP [20] 42,252 210,320 Undirected 1 Coauthorship network

Evaluation Metric. Following the literature, we compute the alignment accu-
racy as # correct matchings

# total matchings , where the total number of matchings between Gi

and Gj is equal to the minimum number of nodes between the two graphs,
min{ni, nj}.
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(a) E-mail data with 1 node attribute (b) E-mail data with 5 node attributes

Fig. 4. E-mail dataset (experimental results on other datasets are similar): Effec-
tiveness w.r.t. noise on both attributes and the graph structure. Methods based on
the HashAlign framework achieve highest accuracy, particularly with limited node
attribute information.

(a) Runtime vs. accuracy for multiple graph alignment on four unattributed
(on the left) and five attributed (on the right) graphs.

(b) Scalability of HASHALIGN.

Fig. 5. (a) HashAlign has stable efficiency across different kinds of networks. Final
is fast, but its accuracy is subject to whether node/edge labels exist. (b) HashAlign
scales linearly in terms of alignment with the center graph.

Experimental Setup. We used the following structural attributes: degree,
betweenness centrality, PageRank, egonet degree, average neighbor degree, and
egonet connectivity. We chose attributes that are robust to noise (graphs to be
aligned are often seen as noisy permutations of each other). More details are
given in the supplementary material.

To test the ability of HashAlign to incorporate different kinds of features,
we also generate synthetic node/edge attributes, if none are available in the real
data. For each noise level p, we generate 3 pairs of graphs and report the average
accuracy (along with a 95% confidence interval). HashAlign is implemented in
Python2.7, and the structural feature extraction is based on SNAP [15]. We ran
the experiments on Intel(R) Xeon(R) CPU E5 @ 3.50 GHz and 256 GB RAM.

Two-Graph Alignment. We aligned pairs of graphs on all the datasets (with
G1 the real graph and G2 its noisy permutation at noise level p, generated as
described above) and got consistent results. Only the result from the E-mail
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network is shown for brevity. With only 1 binary attribute (Fig. 4a), NetAlign
and IsoRank perform poorly because the similarity matrix L built using just 1
attribute is not informative enough. However, these methods work significantly
better in our framework, and the gap between HashAlign variants and oth-
ers grows as noise levels increase. In Fig. 4b, HashAlign-NA achieves perfect
results in the presence of 5 node attributes, though all methods perform essen-
tially perfectly with abundant node attribute information.

Multiple Graph Alignment. We evaluate HashAlign against other meth-
ods for multiple graph matching on two datasets: five connectome networks [1]
without any labels, and four DBLP co-author networks extracted from the whole
DBLP dataset following the settings in [20] with one categorical label (the most
frequent conference that an author attends.) Both experiments are conducted
with p = 2% noise.

Figure 5a shows how different methods perform in terms of efficiency and
accuracy. When there is no label information to help guide the alignment pro-
cess (i.e., in the case of connectomes), HashAlign achieves best accuracy with
short running time for peripheral-center graph pairs alignment, followed by
HashAlign-FN and HashAlign-NA. As for the DBLP networks, since the
label with 29 distinct values is very discriminative, Final can achieve very good
efficiency, while HashAlign and its variants also have comparable performance.
However without node labels, Final matches less than 10% of all node pairs,
which can be boosted to over 60% if we feed it the hash-based similarity matrices
of HashAlign. Pairwise graph alignment is the most computationally expen-
sive for large numbers of graphs (see Fig. 5b), but for fewer graphs of the sizes
in Fig. 5a, computing all pairwise alignments yields the highest accuracy, and is
thus our recommendation if computational resources are not an issue. However,
center graph alignment (the ‘derived ’ versions of HashAlign variants) often
still outperforms the baselines, and in some cases matches the accuracy of the
full pairwise comparisons (e.g., HashAlign-NA on the connectome data.)

These results clearly show that HashAlign leads to significant improvement
over existing methods with regard to both accuracy and runtime. In summary, we
see that on average, HashAlign (including its variants) are 2× faster and 10 to
20% more accurate than the baselines in pairwise alignment, and 2× faster while
up to 50% more accurate in multiple graph alignment. However, these existing
methods may have their place within our framework (see Step 4 of Fig. 1), where
they may be used to accurately infer alignments from the hashing-based node
similarities.

We also verify that the proposed method scales as the number of graphs grows
by generating up to 64 synthetic graphs from the aforementioned connectome
network with p= 0.02 noise, Z = 2 and K= 40. As shown in Fig. 5b, HashAlign’s
runtime scales linearly in terms of alignment with the center graph. The runtime
for peripheral graph alignments (i.e., w/o the center graph) using sparse matrix
multiplication scales subquadratically, as the slope indicates. We omitted the
runtime for feature extraction as it is linear on the number of graphs, and does
not contribute much to the runtime.
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6 Conclusions

We study the problem of multiple graph alignment and propose HashAlign, an
intuitive, fast and effective similarity-based approach that readily handles any
type of input graph. Our method adapts LSH to graph alignment, with a new
construction technique and an appropriate node-ID-invariant node representa-
tion for this task. Leveraging the rule of matching transitivity, it scales up to
many graphs while avoiding solving the expensive alignment task for each pair
of graphs separately. Our experiments on real data (incl. sensitivity analysis in
the supplementary material) show that HashAlign can stand alone as a multi-
network alignment tool or be combined with existing methods that require a
small set of possible matchings as input. In most cases, it is more accurate, more
robust to noise, and/or faster than the baselines. Our work suggests that hash-
ing is a promising direction for scaling up network alignment. Future work could
include extending HashAlign to use learned node representations specifically
designed for multi-network problems, as in the very recent work of [11]. Here
one challenge would be devising suitable graph signatures for efficient multiple
graph alignment.
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Abstract. In an increasingly interconnected and distributed world, the
ability to ensure communications becomes pivotal in day-to-day opera-
tions. Given a network whose edges are prone to failures and disruptions,
reliability captures the probability that traffic will reach a target location
by traversing edges starting from a given source. This paper investigates
reliability in decentralized and complex networks. To evaluate reliabil-
ity, we introduce a multi-agent method that involves pathfinding agents
to reduce the graph. Performance of this method is tested on scale-free
and small-world networks as well as real-world spatial networks. We also
investigate reliability score which aims to rank the capability of nodes in
terms of traffic dissemination traffic across all nodes. Analysis over spa-
tial networks indicates that the reliability score correlates with central
and sub-central regions in a geographical region.

Keywords: Network reliability · Spatial network analysis
Transportation networks · Monte-Carlo method

1 Introduction

In an increasingly interconnected and distributed world, the ability to ensure
communications becomes pivotal in day-to-day operations. This raises the issue
of reliability, which captures the extent to which an individual is able to com-
municate consistently in the presence of uncertainty. Take, as an example, the
case of a wireless mesh network [4]. As the wireless links between devices are
subject to random failures, it is crucial to measure the capability of a device in
sending or receiving messages [12]. It is important to evaluate this capability in
a network context, as this may reveal hidden patterns, differentiate between reli-
able/unreliable regions, facilitate optimization and improve network robustness.

This paper investigates reliability from a structural perspective. Abstractly,
a complex system, e.g. communication, physical or social networks, consists of
many components or nodes, whose functions are characterized by their mutual
c© Springer International Publishing AG, part of Springer Nature 2018
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interactions. As links between nodes are prone to random error and disruption,
we use a stochastic binary system to model uncertainty, where a link is either up
or down [18]. Two-terminal reliability measures the probability that a message
(or any other item) starting from a particular node reaches a target along links
of the network [14]. The sum of two-terminal reliability over all possible targets
from a specific source indicates the “positional reliability” held by the source.

Positional reliability reveals important insights. Extending beyond applica-
tions in wireless mesh network discussed above, consider a transportation net-
work. Here, failures of edges imply blockage of traffic along stretches of roads
due to incidents or blockage. A node with low reliability implies a location that
is more vulnerable in terms of transporting goods across the network [15]. A
third potential application involves the social network of employees in a com-
pany. Edges represent communication channels between people. Unexpected dis-
ruptions may occur that affect communication between two individuals. In this
scenario, a node having low reliability implies its uncertainty to deliver messages
across the entire organization, and thus corresponds to a form of structural holes,
which is crucial in social network analysis [10]. A node with high reliability, on
the other hand, refers to influential individuals in the organization [17].

Contributions. This paper has three main contributions: (1) Monte Carlo
approaches have been a common approach to evaluate two-terminal reliability
[16]. As this method is confronted with high computational costs over large net-
works, we propose a new method to approximate reliability by deploying multi-
ple agents who traverse asynchronously within the network, pruning unnecessary
parts of the network away. This is also useful for decentralized networks where
no global information is stored. (2) Building on notions in reliability theory, we
investigate the reliability score of nodes in a network. This rank uncovers sig-
nificant individuals in the network structure and reveals new insights. (3) The
tools explored in the paper can be applied to the analysis of spatial networks,
and evaluate reliability over geographical locations. Our analysis reveals that
in general, regions of high reliability correspond to areas of high economic and
social activities.

2 Main Definitions and Related Works

By a network, we mean a graph G = (V,E) where V is the node set and E is
the (undirected) edge set; no multi-edge nor self-loop is present. A path in the
network is a sequence of edges v0v1, . . . , vk−1vk; the path is simple if v0, . . . , vk
are pairwise distinct. A subgraph is a graph G′ = (V,E′) where E′ ⊆ E. We use
S(G) to denote the set of all subgraphs of G.

Edges represent two-way links that are subject to random failures; at any time
instance, the network G presents itself in the form of a subgraph G′ = (V,E′)
where E′ ⊆ E contains all edges that are up and edges in E \E′ are down. More
abstractly, a stochastic binary system (SBS) defined on G assumes that each edge
e ∈ E is up with a probability pe ∈ [0, 1]; use p to denote the vector (pe)e∈E .
The SBS specifies a probability distribution over S(G): For any subset E′ ⊆ E,
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the probability of the subgraph G′ = (V,E′) is given by
∏

e∈E′ pe ·∏e/∈E′(1−pe).
For subgraph G′ = (V,E′) and nodes s, t ∈ V , set Φ(G′, s, t) = 1 if G′ contains
a path between s and t; and Φ(G′, s, t) = 0 otherwise.

Definition 1 [7]. Given nodes s and t in V , the two-terminal reliability between
s and t is the probability that a path exists from s to t along which every edge is
up, i.e., it is R(G, s, t,p) = Pr(Φ(G′, s, t) = 1).

For a fixed source s, assume that the target t is chosen uniformly randomly.
The expected rate of successful communication reflects the reliability of s, i.e.,
to what extent we expect a message from s may reach a randomly chosen
node.

Definition 2. Define Rs(t) = R(G, s, t,p) for all t ∈ V where t �= s. The
reliability score of a node s ∈ V is rel(s) = E[Rs], in other words,

rel(s) =
(∑

{R(G, s, t,p) | t �= s}
)

/(|V | − 1)

Related Works. Exact evaluations of network reliability include min-cut or
Boolean algebraic approaches, which are only suitable for small networks or
networks of specific types (e.g. parallel-series networks) due to high complexity
[25]. Computing two-terminal reliability over a network is NP-hard in general [6].
In light of its hardness, Monte Carlo methods were commonly used [16]. More
recently, methods for approximating network reliability emerged which utilized
optimization techniques such as neural networks [28], ant colony [23], and binary
decision diagrams [27]. We point out that this paper differs from the works above:
While these earlier works focus on the ability of a network to surpass random
failures and disruptions to maintain consistent performance, this paper aims to
evaluate and rank individual nodes in the network. A failure to communicate
between two nodes does not mean that the system “fails”, and thus, the goal
is not to predict how likely the network prevents failures, but rather, to give a
quantitative comparison on the “strength” of nodes with respect to dispersing
traffic.

Mathematical models of networks allow rigorous simulation and analysis of
a range of phenomena, such as information diffusion [17], community structures
[21], and error-resilience [5]. Tools such as centralities are used to study power
and influence in organizational networks [20], network integration [22,24], and
potential repercussions of tie breakages [13,19]. Reliability is also important to
spatial networks analysis. Chassin and Posse in [11] modeled cascading failures of
an electric grid using a scale-free model. Neumayer and Modiano in [26] studied
the reliability of optical fiber networks that are laid out along physical terrestrial
paths. The authors of [9] proposed a challenge to enrich network science with
reliability analytics. This paper echoes this call and investigates a range of real-
world spatial networks.
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Algorithm 1. ReliabEstimate(V,E,p , s, t)
INPUT: Graph (V, E), p, nodes s, t
1: stack := new stack with element (s, null)
2: while stack not empty do
3: (v, e) := stack.pop()
4: if e is down then continue
5: else if the state of e is not determined
6: Sample e’s state (up/down) with probability pe; continue if e is down.
7: if v is not seen then
8: set v as seen
9: if v = t then return Success

10: for all incident edges vu do
11: if vu is up then add (u, vu) to stack

12: return Failure

3 Agent-Based Reliability Estimation

3.1 Estimating Two-Terminal Reliability

The crude Monte Carlo method takes K samples (which are subgraphs of G)
and evaluates the frequency of samples that contain a path between s and t, and
outputs it as an estimation of R := R(G, s, t,p). The variance of this method is
R(1 − R)/K. The method takes time O(|E|) per sample.

In a decentralized network, one may deploy independent threads, i.e.,
“agents” who traverse the graph starting from s, each maintaining their own
state of the graph and terminating successfully if they reach t or unsuccess-
fully if they can not explore the graph further due to the edges being down or
all possible edges have been traversed. The type of traversal performed by the
agents may affect the running time on different graphs structures. Algorithm1
describes the operation of such an agent who traverses the graph depth-first; a
breadth-first agent could be defined with minor adaptations.

Efficiency is improved by the ReliabEstimate algorithm as an agent may not
sample the entire graph. We now aim to further reduce computational cost.

Definition 3. An edge e is called (s, t)-critical if it appears on a simple path
between s and t. The (s, t)-critical subgraph is G�s,t = (Vs,t, Es,t) where Vs,t

contains all end points of critical edges and Es,t is the set of critical edges.

Theorem 1. For a graph G = (V,E), probability vector p and s, t ∈ V , we have
R(G, s, t,p) = R(G�s,t, s, t,p′) where p′ = (pe)e∈E′ .

Proof. Recall that S(G�s,t) denotes the set of subgraphs of G�s,t. For a sam-
ple G′ ∈ S(G�s,t) taken from the probability distribution defined by p�Es,t

on S(G�s,t), let Φ′(G′, s, t) = 1 if G′ contains a path between s and t; and 0
otherwise. Pr(Φ′(G′, s, t) = 1) =

∑
E′⊆Es,t

Φ′((V,E′),s,t)=1

(∏
e∈E′ pe · ∏

e/∈E′(1 − pe)
)
.
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As
∑

F ′⊆E\Es,t

(
∏

e′∈F ′
pe′ · ∏

e′ /∈F ′
(1 − pe′)

)

= 1, Pr(Φ′(G′, s, t) = 1) equals to

∑

E′⊆Es,t
Φ′((V,E′),s,t)=1

(
∏

e∈E′
pe · ∏

e/∈E′
(1 − pe)

)

· ∑

F ′⊆E\Es,t

(
∏

e′∈F ′
pe · ∏

e′ /∈F ′
(1 − pe)

)

, which

is
∑

E′⊆Es,t
Φ′((V,E′),s,t)=1

∑

F ′⊆E\Es,t

(
∏

e∈E′
pe · ∏

e/∈E′
(1 − pe) · ∏

e′∈F ′
pe · ∏

e′ /∈F ′
(1 − pe)

)

and is

thus equal to
∑

G′=(V,E′)∈S(G)
Φ(G′,s,t)=1

(
∏

e∈E′
pe · ∏

e/∈E′
(1 − pe)

)

= R(G, s, t,p). ��

Therefore to estimate R(G, s, t,p), it is sufficient to apply the ReliabEstimate
algorithm on the critical subgraph of G. The next goal is to compute the critical
subgraph G�s,t from a given G. Our method relies on two procedures: The first
is a traverse algorithm where multiple agents traverse along edges and learn
about the graph topology collectively; see Algorithm2 for the operation of a
single agent. The second procedure uses the results of the first procedure and
backtracks from t to build up the critical subgraph; see Algorithm3.

Algorithm 2. GraphReduction-Traverse(G, s, t)
INPUT: (V, E), nodes s, t
1: procedure AgentTraverse(Agent A, Node u)
2: while stack is not empty do � stack is shared among all agents
3: (v, e) := stack.pop()
4: if both e and v are labeled unseen then
5: Label v and e as seen (which are made available to other agents)
6: U := ∅ � U stores unseen edges
7: for all edges vu ∈ E do
8: if vu is not seen and u �= s then
9: U := U ∪ {vu} and stack.push(u, vu)

10: if U = ∅ then call TERMINATE(A, v)
11: else if |U | > 1 then set OrnPath := (v), and call TERMINATE(A, v)
12: Pick edge vv′ from U � the next edge
13: Append v′ to OrnPath
14: Call TERMINATE(A, t) if v′ = t; otherwise, stack.push(v′, vv′).
15: else
16: Call TERMINATE(A, v)

17: procedure terminate(Agent A, Node v)
18: store OrnPath into OP(v) at the node v
19: initialize OrnPath as an empty list
20: if stack is not empty then start new traversal
21: else wait for stack to become non-empty to start new traversal
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Agents in the traversal procedure share a common stack which contains nodes
from which a traversal starts. An edge (or node) is labeled as either seen or
unseen, depending on whether it has been traversed/seen. This label is visible
by all agents, and thus an edge is used at most once. When traversing the net-
work, an agent starts from the popped node v, and follows an outward direction
away from s. The agent terminates when: it just traversed an edge that had
already been used, or it reaches a dead end, or all outgoing neighbors have been
exhausted, or it has reached t; The condition at Line 11 is a special termination
condition to speed up the backtrack algorithm by making the paths the agents
traverse and saves as disjoint as possible. We give a conceptual overview:

Definition 4. An oriented path is a sequence (v0, v1, . . . , vk) such that each
vivi+1 is an edge; it is simple if no node is repeated; it is in a valid orientation
if it is a subsequence of a simple oriented path from s to vk.

The algorithm partitions the graph into a set of disjoint oriented paths, each
in a valid orientation. Any oriented path is stored in its end point vk. Fig. 1
illustrates a simple example to make clear of the notions above. Here the source
s corresponds to A (in green) and the target t is H (in red). Traversed paths by
different agents are shown with arrows of various colors and the number on each
edge indicates the step the agent would make. The set of oriented paths OP(v)
stored on node v are indicated beside each node v.

The backtrack procedure iteratively adds nodes into the critical subgraph
G�s,t. The target t is the first added node as any agent that terminated at t
would have stored the path it took in the set OP(t). Any nodes (and edges) along
this path will be added to the critical subgraph. We then continue the backtrack
by checking paths that the agents traversed through which terminated at these
added nodes. In a distributed implementation the backtrack algorithm can start
once any agent reaches t where it is possible to have multiple agents working
on the backtracking as well. As each edge is traversed at most once, the total
running time among all agents in the graph reduction process is O(|V | + |E|)
which may be reduced further if agents run in parallel.

Fig. 1. The resulting oriented paths of the traverse algorithm. (Color figure online)
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Algorithm 3. GraphReduction-Backtrack(G, s, t)

INPUT A (possibly ∅) set of oriented path OP(u) stored in each u ∈ V
OUTPUT Critical subgraph G�s,t
1: Initialize backtrack as a new queue containing t
2: while backtrack not empty do
3: v := backtrack.dequeue()
4: if v �= BTseen and v �= s then
5: Set BTseen := v
6: if OP(v) �= ∅ then
7: add all nodes and edges along all oriented paths in OP(v) to G′

8: enqueue all nodes along this oriented path to backtrack

9: return G′ = (V ′, E′)

3.2 Evaluation of the Graph Reduction Algorithm

Our next goal is to evaluate the performance of graph reduction. The critical
subgraph is expected to be significantly smaller than the original graph. Our
experiments use a variety of generated and real-world graphs. The generated
networks rely on two well-known random graph models: Watts-Strogatz’s small
world model (WS) that are characterized by high clustering coefficients and
small average distances between nodes [29], as well as Barabási-Albert’s scale-
free model (BA) that are characterized by power-law degree distributions [8].

WS Model. The small-world networks set a rewiring probability β, which to
emulate real-world graphs lies between 0.01 and 0.1, and a degree k of each
node [29]. The higher β gets the less the graph will represent a regular lattice
and the higher k gets, the higher the average degree will be. The analysis of
reliability would not be as interesting on a regular lattice which should exhibit
high reliability and minimal reduction due to the non-existence of bridges. Hence
we set β = 0.1 while k at 2, 4 and 6.

BA Model. The scale-free networks were generated using a preferential attach-
ment scheme. An integer m specifies the maximum number of edges to be added
at each iteration. We use |V | iterations and thus the total number of edges is
given by the inequality |V | ≤ |E| ≤ m · |V | as every iteration we add 1 to m
edges. We use m = 2, 4, 8 to illustrate how increasing density affects results.

Real-World Networks. We also take various real world spatial networks, e.g.,
urban road networks. Road networks were sourced from [1–3] for the following
regions: Oldenburg (OD) Germany, Le Havre (HA) France, Auckland (AK) New
Zealand, San Joaquin (SJ) and San (SF) Francisco USA, California (CA) and
USA road network (US). We also generate emulated ad-hoc Auckland region net-
works networks using land zones as nodes and edges were created between nodes
if their distance were within 300 and 400 m (AK300, AK400). Table 1 shows
the various properties of these networks including their size, average clustering
coefficient (ACC), density and average degree.
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Table 1. Properties of generated and real-world spatial networks.

Network #Node #Edge ACC Density Average degree

WS-k2 1000 1000 0.00 0.00200 2.00

WS-k4 1000 2000 0.371 0.00400 4.00

WS-k6 1000 3000 0.451 0.00601 6.00

BA-m2 1000 1514 0.0282 0.00302 3.02

BA-m4 1000 2483 0.0269 0.00495 4.96

BA-m8 1000 4467 0.0524 0.00891 8.92

AK300 3986 25544 0.593 0.00322 12.8

AK400 3986 42936 0.625 0.00541 21.5

AK 46588 77498 0.363 7.14E-05 3.33

OD 6105 7029 0.0108 3.77E-04 2.30

LH 11734 15135 0.0444 2.20E-04 2.58

CA 21048 21693 7.13E-05 9.79E-05 2.06

SJ 18263 23797 0.0188 1.43E-04 2.61

US 175813 179102 0.000249 1.16E-05 2.04

SF 174956 221802 0.0203 1.45E-05 2.54

Experiment 1 [Expected Graph Reduction]. Our goal is to evaluate the
size of critical subgraphs for any nodes s and t. Given G = (V,E) and G�s,t =
(Vs,t, Es,t) where s, t ∈ V , node and edge (s, t)-reduction refer to

∑
s �=t∈V (|V | −

|Vs,t|)/n(n − 1) and
∑

s �=t∈V (|E| − |Es,t|)/n(n − 1), respectively. We ran the
graph reduction algorithm on all pairs (s, t) in the generated networks to find an
estimated reduction. As shown in the table on the right of Fig. 2, BA networks
tend to contain dense cores that form a Hamiltonian cycle. As a Hamiltonian
cycle is a closed simple walk through every node, any critical subgraph will
contain all nodes. For small-world networks, as k increases, the graph tends to
contain a Hamiltonian cycle. As m and k increase, less reduction is achieved.
The WS network with k = 2 has a large number of bridges which results in a
large reduction. For all pairs of nodes in the graph of size 1000 and k = 2, all
pairs lead to at least 80% reduction. Most real-world networks achieve significant
size reduction in the critical subgraph.

Experiment 2 [Accuracy and Performance]. This experiment evaluates
accuracy and time taken between the algorithms with/without graph reduction.
Both algorithms deploy agents running in parallel. Based on 10000 randomly
selected pairs of nodes (s, t), a baseline is established using the Monte Carlo
algorithm with 10000 samples followed by running both algorithms with the
sample sizes 10, 100, 500, 1000, 2500 and 5000. Another goal is to compare per-
formances between depth-first and breadth-first agents. Thus we evaluate the
crude Monte Carlo, GraphReduction using DFS, and the same algorithm using
BFS. The results are visualized in two plots, one shows average difference given
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Fig. 2. (Left) Reduction on the WS graphs with 1000 nodes and k = 2. Each bar
represents the number of node pairs (s, t) such that G�s,t results in a node reduction
that falls within a given interval. (Right) The table indicates estimated average graph
reduction for the networks.

by (baseline reliability – sample size reliability) for each algorithm and the other
plots the average relative speedup compared to the baseline times calculated
by (mean baseline time – mean sample time) ÷mean baseline time. Results are
shown in Fig. 3. Agent-based evaluation approximates reliability with good accu-
racy. Expectedly, as the number of samples grows, the difference in reliability
converges towards 0. In all networks, our agent-based algorithm performs faster
than the standard Monte Carlo method with more apparent differences as the
number of samples grows. Depth-first agents perform slightly better on WS and
real-world networks and breadth-first slightly better on BA graphs.

Fig. 3. Average reliability difference and speed up results. Red line is the crude Monte
Carlo method (baseline); blue is the BFS traversal, and green is the DFS traversal.
(Color figure online)
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Reliability Score Distributions. The reliability scores rel(s) of nodes reveal
a form of their relative positional advantage. We analyze the distribution of this
score in spatial networks. All road networks consistently follow a right-skewed
distribution with long-tail; See Fig. 4. The low overall reliability score can be
explained by the sparse roads surrounding the dense clusters of the important
urban centres. Figure 5 visualizes 6 spatial networks and illustrates reliability
using a gradient in which red, orange and green represent low, middle and high

Fig. 4. Distribution of reliability scores of nodes in the real-world spatial networks.

Fig. 5. Visualizations of real-world road networks of Oldenburg (top-left), San Joaquin
(top-mid), Le Havre (top-right), San Francisco (bottom-left), USA (bottom-mid), Cali-
fornia (bottom-right). Green color indicates nodes of high reliability score. (Color figure
online)
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scores, respectively. In general, clusters that comprise of nodes with high relia-
bility score also correlate to areas of high importance to the regions. The urban
centers in all of the graphs clearly stand out where the varying degrees of green-
ness among different clusters represent their levels of importance. A general
pattern is that smaller such clusters tend to have smaller reliability scores. For
example, for San Francisco Bay, one can identify prevalently green areas at San
Francisco city, Palo Alto, San Jose, Oakland and Berkeley, all major centers
in the Bay area. One can also observe that clusters with the highest reliability
having grid like structures which facilitates to reduce redundancy.

4 Conclusion and Future Works

This paper investigates reliability on complex networks by reducing the graph
size in order to improve the efficiency of the Monte Carlo method. The analy-
sis of reliability score demonstrates that, on spatial networks, reliability score
facilitates the discovery of urban centers and their relative importance.

As future works, it will be interesting to derive reliability-based approaches
to analyze network clusters and influence maximization, thus extending exist-
ing tools in network science. Another important topic is to investigate ways to
improve reliability score for (sub)graphs through add/strengthening ties which
may lead to applications in communication, social and spatial networks. We spec-
ulate that further works are to be carried out with an aim to integrate methods
of reliability analysis to understand the structures of complex networks.
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Abstract. In this paper, first given a directed network G and a vertex
r ∈ V (G), we propose a new exact algorithm to compute betweenness
score of r. Our algorithm pre-computes a set RF(r), which is used to
prune a huge amount of computations that do not contribute in the
betweenness score of r. Then, for the cases where RF(r) is large, we
present a randomized algorithm that samples from RF(r) and performs
computations for only the sampled elements. We show that this algo-
rithm provides an (ε, δ)-approximation of the betweenness score of r.
Finally, we empirically evaluate our algorithms and show that they sig-
nificantly outperform the most efficient existing algorithms, in terms of
both running time and accuracy. Our experiments also show that our
proposed algorithms can effectively compute betweenness scores of all
vertices in a set of vertices.

Keywords: Directed graphs · Betweenness centrality
Exact algorithm · Approximate algorithm

1 Introduction

Graphs are an important tool to model data in different domains, including social
networks, bioinformatics, road networks and the world wide web. A property
seen in most of these real-world networks is that the ties between vertices do
not always represent reciprocal relations [18]. As a result, the networks formed
in these domains are directed graphs where any edge has a direction and the
edges are not always symmetric. Centrality is a structural property of vertices
(or edges) in the network that quantifies their relative importance. A well-known
and widely-used centrality notion is betweenness centrality. Freeman [10] defined
and used it to measure the control of a human over the communications among
others in a social network.

Although there exist polynomial time and space algorithms for betweenness
centrality computation, they are expensive in practice. The most efficient exist-
ing exact method is Brandes’s algorithm [3] whose time complexity is O(nm)
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for unweighted graphs and O(nm + n2 log n) for weighted graphs with positive
weights (n and m are the number of vertices and the number of edges of the
network, respectively). This means this algorithm is not applicable, even for mid-
size networks. However, there are observations that may improve computation
of betweenness centrality in practice. In several applications it is sufficient to
compute betweenness score of only one or a few vertices. For instance, this index
might be computed for only core vertices of communities in social/information
networks or for only hubs in communication networks. Another example, dis-
cussed in [1], is handling cascading failures. It has been shown that the failure
of a vertex with a higher betweenness score may cause greater collapse of the
network [21]. Therefore, failed vertices should be recovered in the order of their
betweenness scores. This means it is required to compute betweenness scores of
only failed vertices, that are a very small subset of all vertices. Note that these
vertices are not necessarily those that have the highest betweenness scores in the
network. Hence, algorithms that identify vertices with the highest betweenness
scores [19] are not applicable.

In the current paper, we exploit this observation to design more effective
exact and approximate algorithms for computing betweenness centrality in large
directed graphs. Our algorithms are based on computing the set of reachable
vertices for a given vertex r. On the one hand, this set can be computed very
efficiently. On the other hand, it indicates the potential source vertices whose
dependency scores on r are non-zero, as a result, it helps us to avoid a huge
amount of computations that do not contribute in the betweenness score of r.
In this paper, our key contributions are as follows.

– Given a directed graph G (with n vertices and m edges) and a vertex
r ∈ V (G), we present an efficient exact algorithm to compute betweenness
score of r. The algorithm is based on pre-computing the set reachable ver-
tices of r, denoted by RF(r). RF(r) can be computed in O(m) time for
both unweighted graphs and weighted graphs with positive weights. Time
complexity of the whole exact algorithm depends on the size of RF(r) and
it is respectively O(m · |RF(r)|) and O(m · |RF(r)| + n log n · |RF(r)|) for
unweighted graphs and weighted graphs with positive weights. |RF(r)| is
bounded from above by n and in most cases, it can be considered as a small
constant (see Sect. 5). Hence, in many cases, time complexity of our proposed
exact algorithm for unweighted graphs is linear, in terms of m, and it is
O(m + n log n) for weighted graphs with positive weights.

– In the cases where RF(r) is large, our exact algorithm might be intractable
in practice. To address this issue, we present a randomized algorithm that
samples elements from RF(r) and performs computations for only the sam-
pled elements. We show that this algorithm provides an (ε, δ)-approximation
of the betweenness score of r.

– In order to evaluate the empirical efficiency of our proposed algorithms, we
perform extensive experiments over several real-world datasets. Our exper-
iments show that our algorithms significantly outperform the most efficient
existing algorithms, in terms of both running time and accuracy. While our
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algorithm is intuitively designed to estimate betweenness score of only one
vertex, our experiments reveal that it can efficiently compute betweenness
scores of all vertices in a given set.

2 Preliminaries

We assume that the reader is familiar with basic concepts in graph the-
ory. Throughout the paper, G refers to a graph (network). For simplicity, we
assume that G is a directed, connected and loop-free graph without multi-edges.
Throughout the paper, we assume that G is an unweighted graph, unless it is
explicitly mentioned that G is weighted. V (G) and E(G) refer to the set of
vertices and the set of edges of G, respectively. We use n and m to refer to
|V (G)| and |E(G)|, respectively. For a vertex v ∈ V (G), the number of head
ends adjacent to v is called its in degree, and the number of tail ends adjacent
to v is called its out degree. A shortest path from u ∈ V (G) to v ∈ V (G) is a
path whose length is minimum, among all paths from u to v. For two vertices
u, v ∈ V (G), if G is unweighted, by d(u, v) we denote the length (the number
of edges) of a shortest path connecting u to v. If G is weighted, d(u, v) denotes
the sum of the weights of the edges of a shortest path connecting u to v. By
definition, d(u, u) = 0. Note that in directed graphs, d(u, v) is not necessar-
ily equal to d(v, u). For s, t ∈ V (G), σst denotes the number of shortest paths
between s and t, and σst(v) denotes the number of shortest paths between s and
t that also pass through v. Betweenness centrality of a vertex v is defined as:
BC(v) =

∑
s,t∈V (G)\{v}

σst(v)
σst

. A notion which is widely used for counting the
number of shortest paths in a graph is the directed acyclic graph (DAG) con-
taining all shortest paths starting from a vertex s (see e.g., [3]). In this paper,
we refer to it as shortest-path-DAG, or SPD in short, rooted at s. Brandes [3]
introduced the notion of the dependency score of a vertex s ∈ V (G) on a ver-
tex v ∈ V (G) \ {s}, which is defined as δs•(v) =

∑
t∈V (G)\{v,s} δst(v), where

δst(v) = σst(v)
σst

. We have: BC(v) =
∑

s∈V (G)\{v} δs•(v).

3 Related Work

Brandes [3] introduced an efficient algorithm for computing betweenness cen-
trality of a vertex, which is performed in O(nm) and O(nm + n2 log n) times
for unweighted and weighted networks with positive weights, respectively.
Çatalyürek et al. [5] presented the compression and shattering techniques to
improve the efficiency of Brandes’s algorithm for large graphs. Kang et al. [13]
presented betweenness centrality indices suitable for very large networks. The
authors of [6,9] respectively studied group betweenness and co-betweenness, the
two natural extensions of betweenness to sets of vertices. Brandes and Pich
[4] proposed an approximate algorithm based on selecting k source vertices
and computing dependency scores of them on the other vertices in the graph.
Chehreghani [7] proposed a non-uniform sampler for unbiased estimation of the
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betweenness score of a single vertex. Similar to [4,7], our proposed algorithms are
(source) vertex sampler. However, the sampling strategy we use is novel and is
based on computing the set RF . Riondato and Kornaropoulos [19] and Riondato
and Upfal [20] presented shortest path samplers for estimating betweenness cen-
trality of all vertices or the k vertices that have the highest betweenness scores
in a graph. Finally, Borassi and Natale [2] presented the KADABRA algorithm,
which uses balanced bidirectional BFS (bb-BFS) to sample shortest paths. There
are in the literature several algorithms for computing betweenness centrality in
dynamic graphs (see e.g., [11]). An overview of other (distance-based) centrality
indices can be found in [8].

4 Computing Betweenness Centrality in Directed Graphs

In this section, we present our exact and approximate algorithms for computing
betweenness centrality of a given vertex r in a large directed graph. First in
Sect. 4.1, we introduce reachable vertices and show that they are sufficient to
compute betweenness score of r. Then in Sects. 4.2 and 4.3, we respectively
present our exact and approximate algorithms.

4.1 Reachable Vertices

Let G be a directed graph and r ∈ V (G). Suppose that we want to compute
betweenness score of r. To do so, as Brandes algorithm [3] suggests, for each
vertex s ∈ V (G), we may form the SPD rooted at s and compute the dependency
score of s on r. Betweenness score of r will be the sum of all the dependency
scores. However, it is possible that in a directed graph for many vertices s, there
is no path from s to r and as a result, dependency score of s on r is 0. An example
of this situation is depicted in Fig. 1(a). In the graph of this figure, suppose that
we want to compute betweenness score of vertex r1. If we form the SPD rooted
at v1, after visiting the parts of the graph indicated by hachures, we find out
that there is no shortest path from v1 to r1 and hence, δv1•(r1) is 0. The same
holds for all vertices in the hachured part of the graph, i.e., dependency scores
of these vertices on r1 are 0. The question arising here is that whether there
exists an efficient way to detect the vertices whose dependency scores on r are 0
(so that we can avoid forming SPDs rooted at them)? In the rest of this section,
we try to answer this question. We first introduce a (usually small) subset of
vertices, called reachable vertices and denoted with RF (r), that are sufficient to
compute betweenness score of r. Then, we discuss how this set can be computed
efficiently.

Definition 1. Let G be a directed graph and r, v ∈ V (G). We say r is reachable
from v if there is a (directed) path from v to r. The set of vertices that r is
reachable from them is denoted by RF (r).

Proposition 1. Let G be a directed graph and r ∈ V (G). If out degree of r is
0, BC(r) is 0, too. Otherwise, we have: BC(r) =

∑
v∈RF (r) δv•(r).
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(a) (b) (c)

Fig. 1. In Fig. 1(a), the dependency scores of the vertices in the hachured part of the
graph (and also v3) on r1 is 0. The graph of Fig. 1(b) presents the reverse graph of the
graph of Fig. 1(a). Figure 1(c) shows how RF(r1) is computed.

Proposition 1 suggests that for computing betweenness score of r, we first
check whether out degree of r is greater than 0 and if so, we compute RF (r).
Betweenness score of r is exactly computed using Proposition 1.

If RF (r) is already known, this procedure can significantly improve compu-
tation of betweenness centrality of r. The reason is that, as our experiments
show, in real-world directed networks RF (r) is usually significantly smaller than
V (G). However, computing RF (r) can be computationally expensive as in the
worst case, it requires the same amount of time as computing betweenness score
of r. This motivates us to try to define a set RF(r) that satisfies the following
properties: (i) RF (r) ⊆ RF(r) and (ii) RF(r) can be computed effectively in a
time much faster than computing BC(r). Condition (i) implies that each vertex
v ∈ V (G) whose dependency score on r is greater than 0, belongs to RF(r) and
as a result, BC(r) =

∑
v∈RF(r) δv•(r). In the following, we present a definition

of RF(r) and a simple and efficient algorithm to compute it.

Definition 2. Let G be a directed graph. Reverse graph of G, denoted by R(G),
is a directed graph such that: (i) V (R(G)) = V (G), and (ii) (u, v) ∈ E(R(G)) if
and only if (v, u) ∈ E(G).

For example, the graph of Fig. 1(b) presents the reverse graph of the graph
of Fig. 1(a).

Definition 3. Let G be a directed graph and r ∈ V (G). We define RF(G) as
the set that contains any vertex v such that there is a path from r to v in R(G).

Proposition 2. Let G be a directed graph and r ∈ V (G). We have: RF (r) =
RF(r).

An advantage of the above definition of RF(r) is that it can be efficiently
computed as follows: (i) first, by flipping the direction of the edges of G, R(G)
is constructed, (ii) then, if G is weighted, the weights of the edges are ignored,
(iii) finally, a breadth first search (BFS) or a depth-first search (DFS) on R(G)
starting from r is performed. All the vertices that are met during the BFS (or
DFS), except r, are added to RF(r). In fact, while in RF (r) we require to solve
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the multi-source shortest path problem (MSSP), in RF(r) this is reduced to
the single-source shortest path problem (SSSP), which can be addressed much
faster. Figure 1 shows an example of this procedure, where in order to compute
RF(r1), we first generate R(G) (Fig. 1(b)) and then, we run a BFS (or DFS)
starting from r1 (Fig. 1(c)). The set of vertices that are met during the traversal
except r1, i.e., vertices v2, v4 and v5, form RF(r1).

For a vertex r ∈ V (G), each of the steps of the procedure of computing
RF(r), for both unweighted graphs and weighted graphs, can be computed in
O(m) time. Hence, time complexity of the procedure of computing RF(r) for
both unweighted graphs and weighted graphs is O(m). Therefore, RF(r) can
be computed in a time much faster than computing betweenness score of r.
Furthermore, Proposition 2 says that RF(r) contains all the members of RF (r).
These mean both the afore-mentioned conditions are satisfied.

4.2 The Exact Algorithm

In this section, using the notions and definitions presented in Sect. 4.1, we pro-
pose an effective algorithm to compute exact betweenness score of a given vertex
r in a directed graph G.

Algorithm 1 presents the high level pseudo code of the E-BCD algorithm pro-
posed for computing exact betweenness score of r in G. After checking whether
or not out degree of r is 0, the algorithm follows two main steps: (i) computing
RF(G) (Lines 12–16 of Algorithm1), where we use the procedure described in
Sect. 4.1 to compute RF(r); and (ii) computing BC(r) (Lines 12–16 of Algo-
rithm1), where for each vertex v ∈ RF(r), we form the SPD rooted at v and
compute the dependency score of v on the other vertices and add the value of
δv•(r) to the betweenness score of r. Note that if G is weighted, while in the first
step the weights of its edges are ignored, in the second step and during form-
ing SPDs and computing dependency scores, we take the weights into account.
Note also that in Algorithm1, after computing RF(r), techniques proposed to
improve exact betweenness centrality computation, such compression and shat-
tering [5], can be used to improve the efficiency of the second step. This means
the algorithm proposed here is orthogonal to the techniques such as shattering
and compression and therefore, they can be merged.

Complexity Analysis. On the one hand, time complexity of the first step is O(m).
On the other hand, time complexity of each iteration in Lines 13–16 is O(m) for
unweighted graphs and O(m+n log n) for weighted graphs with positive weights.
As a result, time complexity of E-BCD is O(m|RF(G)|) for unweighted graphs
and O(m|RF(G)| + n log n|RF(G)|) for weighted graphs with positive weights.

4.3 The Approximate Algorithm

For a vertex r ∈ V (G), RF(r) is always smaller than n and as our experiments
(reported in Sect. 5) show, the difference is usually significant. Therefore, E-BCD
is usually significantly more efficient than the existing exact algorithms such as
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Algorithm 1. The algorithm of computing exact betweenness score in directed
graphs.
1: E-BCD
2: Input. A directed network G and a vertex r ∈ V (G).
3: Output. Betweenness score of r.
4: if out degree of r is 0 then
5: return 0.
6: end if
7: RF(r) ← ∅.
8: R(G) ← compute the reverse graph of G.
9: If G is weighted, ignore the weights of the edges of R(G).

10: Perform a BFS or DFS on R(G) starting from r.
11: Add to RF(r) all the visited vertices, except r.
12: bc ← 0.
13: for all vertices v ∈ RF(G) do
14: Form the SPD rooted at v and compute the dependency scores of v on the other

vertices.
15: bc ← bc + δv•(r).
16: end for
17: return bc.

Brandes’s algorithm [3]. However, in some cases, the size of RF(r) can be large
(see again Sect. 5). To make the algorithm tractable for the cases where RF(r)
is large, in this section we propose a randomized algorithm that picks some
elements of RF(r) uniformly at random and only processes these vertices.

Algorithm 2 shows the high level pseudo code of our randomized algorithm,
called A-BCD. Similar to E-BCD, A-BCD first computes RF(r). Then, at each
iteration t (1 ≤ t ≤ T ), it picks a vertex vt from RF(r) uniformly at random,
forms the SPD rooted at vt and computes δvt•(r). In the end, betweenness of
r is estimated as the sum of the computed dependency scores on r multiply
by |RF(r)|

T . Time complexity of Algorithm 2 can be analyzed in a way similar
to Algorithm 1. In the following, we use Hoeffding’s inequality [12], to derive
an error bound for bc. First in Proportion 3, we prove that in Algorithm2 the
expected value of bc is BC(r). Then in Proportion 4, we present the error bound.

Proposition 3. In Algorithm2, we have: E [bc] = BC(r).

Proposition 4. In Algorithm2, let K be the maximum dependency score that
a vertex may have on r. For a given ε ∈ R

+, we have:

P [|BC(r) − bc| > ε] ≤ 2 exp

(

−2T ·
(

ε

K · |RF(r)|
)2

)

. (1)

Inequality 1 says that for given values ε ∈ R
+ and δ ∈ (0, 1), if T is chosen

such that T ≥ ln( 2
δ )·K2·|RF(r)|2

2ε2 , Algorithm 2 estimates betweenness score of r
within an additive error ε with a probability at least 1−δ. The difference between



Efficiently Computing Betweenness Centrality in Directed Graphs 759

Algorithm 2. The algorithm of computing exact betweenness score in directed
graphs.
1: A-BCD
2: Input. A network G, a vertex r ∈ V (G) and the number of samples T .
3: Output. Estimated betweenness score of r.
4: if out degree of r is 0 then
5: return 0.
6: end if
7: RF(r) ← ∅.
8: R(G) ← compute the reverse graph of G.
9: If G is weighted, ignore the weights of the edges of R(G).

10: Perform a BFS or DFS on R(G) starting from r.
11: Add to RF(r) all visited vertices, except r.
12: bc ← 0.
13: for all t = 1 to T do
14: Select a vertex vt ∈ RF(r) uniformly at random.
15: Form the SPD rooted at vt and compute dependency scores of vt on the other

vertices.
16: bc ← bc +

δvt•(r)·|RF(r)|
T

.
17: end for
18: return bc.

the number of samples presented in Proposition 4 and the number of samples
required by the methods that uniformly sample from the set of all vertices (e.g.,
[4]) is that in the later case, the lower bound on the number of samples is a
function of n2, instead of |RF(r)|2. As we will see in Sect. 5, for most of the
vertices, |RF(r)| � n. In addition, |RF(r)| � n implies that the error bound
presented in Proposition 4 is considerably better than the error bound of shortest
path sampling algorithms such as [17].

5 Experimental Results

We perform extensive experiments on several real-world networks to assess the
quantitative and qualitative behavior of our proposed exact and approximate
algorithms. We test the algorithms over several real-world datasets from dif-
ferent domains, including the amazon product co-purchasing network [14], the
com-dblp co-authorship network [22], the com-amazon network [22] the p2p-
Gnutella31 peer-to-peer network [16], the slashdot technology-related news net-
work [15] and the soc-sign-epinions who-trust-whom online social network [15].
All the networks are treated as directed graphs. For a vertex r ∈ V (G), its
empirical approximation error is defined as: Error(v) = |App(v)−BC(v)|

BC(v) × 100,
where App(v) is the calculated approximate score.

As mentioned before, for a directed graph G and a vertex r ∈ V (G), both of
our proposed exact and approximate algorithms first compute RF(r), which can
be done very effectively. Then, based on the size of RF(r), someone may decide
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Table 1. Empirical evaluation of BCD against KADABRA for randomly chosen vertices.
Values of δ and ε are 0.1 and 0.01, respectively. All the reported times are in seconds.
The number of samples in A-BCD is 1000.

Dataset Random vertices KADABRA BCD

BC(r)
|RF(r)|

n
#samples Time Error (%) E/A Time TimeRF Error (%)

Amazon 19613.1 0.1800 16739 19.14 100 A 2.60 0.26 0.26

87523.6 0.0005 100 E 0.67 0.29 0

35752.6 0.0020 100 E 1.26 0.29 0

10449.4 0.00001 100 E 0.11 0.30 0

1837.58 0.0001 100 E 0.17 0.30 0

Com-amazon 1486.8 0.00003 15036 27.70 100 E 0.14 0.27 0

364 0.000008 100 E 0.12 0.27 0

11 0.00004 100 E 0.15 0.27 0

1701.51 0.0018 100 E 1.41 0.28 0

139 0.00004 100 E 0.15 0.27 0

Com-dblp 10153 0.0065 17873 26.14 100 A 5.74 0.26 1.10

34326.5 0.00003 100 E 0.13 0.27 0

232994 0.00006 100 E 0.21 0.27 0

1957.93 0.0002 100 E 0.48 0.27 0

303543 0.0001 100 E 0.53 0.29 0

Email-EuAll 1869.16 0.000008 17066 16.01 100 E 0.03 0.08 0

2269.29 0.0002 100 E 0.14 0.08 0

241434 0.0942 100 A 1.88 0.07 1.72

3 0.000008 100 E 0.03 0.07 0

503650 0.4966 100 A 1.78 0.08 3.59

P2p-Gnutella31 12655.2 0.00003 16401 6.88 100 E 0.03 0.04 0

3538.79 0.0027 100 E 0.95 0.04 0

27824.9 0.00004 100 E 0.03 0.04 0

6175.2 0.3857 100 A 2.44 0.06 11.31

4582130 0.00004 100 E 0.02 0.04 0

Slashdot0902 15940.9 0.0002 17421 7.95 100 E 0.17 0.16 0

15891.7 0.00003 100 E 0.06 0.15 0

21744 0.00003 100 E 0.05 0.15 0

43067 0.0044 100 E 2.30 0.17 0

6165.01 0.00002 100 E 0.05 0.15 0

Soc-sign-epinions 2352.43 0.2760 19099 11.28 100 A 4.57 0.17 55.34

9198.78 0.0198 100 A 4.60 0.15 18.48

75201.9 0.0002 100 E 0.24 0.14 0

8802 0.0002 100 E 0.19 0.14 0

8052 0.00002 100 E 0.04 0.14 0

Web-NotreDame 140 0.00002 19908 27.29 100 E 0.08 0.25 0

9003.53 0.0024 100 E 1.84 0.25 0

4212.33 0.0001 100 E 0.18 0.25 0

2157.42 0.00009 100 E 0.14 0.25 0

3079.5 0.0003 100 E 0.35 0.25 0
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(a) (b)

Fig. 2. Figure 2(a) shows |RF| divided by n and Fig. 2(b) presents time to compute
RF .

to use either the exact algorithm or the approximate algorithm. Hence in our
experiments, we follow the following procedure. First, we compute RF(r). Then,
if |RF(r)| ≤ τ , we run E-BCD; otherwise, we run A-BCD with τ as the number
of samples. We refer to this procedure as BCD. The value of τ depends on the
amount of time someone wants to spend for computing betweenness centrality. In
our experiments reported here, we set τ to 1000. We compare our method against
the most efficient existing algorithm for approximating betweenness centrality,
which is KADABRA [2].

The efficiency of BCD depends on the size and computation time of RF ; if
for many vertices these values are very small, BCD can estimate betweenness
scores of these vertices very efficiently. To evaluate this, over all the networks,
we measure maximum, average and minimum RF sizes (divided by n) and their
computation times. The results are reported in Fig. 2. Figure 2(a) shows that
while maximum size of RF of a vertex in a network is very close to n, its average
size is much smaller! Note that in Fig. 2(a) the vertical axis is in the logarithmic
scale and since the minimum size is always 0, it is omitted. Figure 2(b) shows
that in most cases, RF can be computed within less than 1 s and it is always
computed within less than 2 s!

Table 1 reports the results of our first experiments. For KADABRA, we have
set ε and δ to 0.01 and 0.1, respectively1. Over each dataset, we choose 5 vertices
at random and run our algorithm for any of these vertices. In the column “A/E”
of this table, “A” means that RF is larger than 1000, therefore, the approximate
algorithm has been employed, and “E” means that the computed score by our
proposed algorithm is exact (hence, the approximation error is 0). For the BCD
algorithm, we measure both “Time” and “TimeRF”, where “TimeRF” is the
time of computing RF and “Time” is the running time of the other parts of the

1 For given values of ε and δ, KADABRA computes the normalized betweenness of
the vertices of the graph within an error ε with a probability at least 1 − δ. The
normalized betweenness of a vertex is its betweenness score divided by n · (n − 1).
Therefore, we multiply the scores computed by KADABRA by n · (n − 1).
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Table 2. Empirical evaluation of estimating betweenness scores of a set of vertices. All
the reported times are in seconds. The number of samples in A-BCD is 1000.

Dataset Set size Error (%) Time TimeRF RF size

Avg. Max. Min. Avg. Max. Min.

Amazon 5 1.47 7.10 0 4.81 1.44 9581.6 47187 4

10 0.73 7.10 0 7.42 3.21 4818.4 47187 1

15 0.88 7.10 0 9.74 4.98 3497.798 47187 1

Com-amazon 5 0 0 0 1.98 1.36 132.2 616 3

10 0 0 0 4.92 3.43 91.2 616 2

15 0 0 0 7.07 5.48 65.93 616 1

Com-dblp 5 0.22 1.10 0 7.09 1.36 447.8 2092 11

10 3.47 19.45 0 20.71 3.08 24483.6 227218 1

15 2.32 19.45 0 28.81 4.92 21351.33 227218 1

Email-EuAll 5 1.06 3.59 0 3.86 0.38 26584.6 111674 2

10 1.39 7.95 0 9.76 0.78 19020.9 111674 2

15 0.93 7.95 0 13.52 1.27 12742.8 111674 2

P2p-Gnutella31 5 2.26 11.31 0 3.47 0.22 4864.2 24141 2

10 7.26 39.17 0 23.09 0.46 5493.6 24141 2

15 6.79 39.17 0 33.27 0.72 8637.73 28122 2

Slashdot0902 5 0 0 0 2.62 0.78 79.6 369 2

10 5.04 50.48 0 11.37 1.38 3784.3 26802 1

15 4.92 50.48 0 14.93 1.99 6662.86 62089 1

Soc-sign-epinions 5 13.37 48.37 0 9.64 0.74 7817.2 36393 3

10 9.68 48.37 0 17.71 1.52 20302.7 109520 1

15 9.38 48.37 0 28.46 2.28 15538.86 109520 1

Web-NotreDame 5 0 0 0 2.58 1.25 200.6 797 9

10 0 0 0 6.89 2.44 231.5 1092 9

15 0.03 0.30 0 13.16 3.62 414.46 2610 1

algorithm. The total running time of BCD is the sum of “Time” and “TimeRF”.
As can be seen in Table 1, for most of the randomly picked up vertices, RF is
very small and it can be computed very efficiently. This gives exact results in a
very short time, less than 3 s in total. In all these cases, KADABRA, while spends
considerably more time, simply estimates the scores as 0 (therefore, we consider
its approximation error as 100%). The randomly picked up vertices belong to
the different ranges of betweenness scores, including high, medium and low.

In the experiments reported in Table 1, BCD is used to estimate betweenness
score of only one vertex. However, in practice it might be required to estimate
betweenness scores of a given set of vertices. How efficient is BCD in this set-
ting? To answer this question, we select a random set of vertices and run BCD
for each vertex in the set. The results are reported in Table 2, where the set
contains 5, 10 or 15 vertices. Over all the datasets and for each set of vertices,
we report the average, maximum and minimum errors of the vertices. For all the
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datasets, minimum error is always 0. In Table 2, “TimeRF” is the total time of
computing RF of all the vertices in the set and “Time” is the total time of the
other steps of computing betweenness scores of all the vertices in the set. There-
fore, the total running time of BCD for a given dataset and a given set is the
sum of “Time” and “TimeRF”. The results presented in Table 2 reveal that for
estimating betweenness scores of a set of vertices, BCD significantly outperforms
KADABRA. While in most cases the total running time of BCD is less than the
running time of KADABRA (even when the size of the set is 15), BCD gives much
more accurate results. In particular, over datasets such as amazon, com-amazon,
email-EuAll and web-NotreDame, even for the sets of size 15, BCD is faster than
KADABRA and it always produces much more accurate results.

6 Conclusion

In this paper, first given a directed network G and a vertex r ∈ V (G), we pro-
posed a new exact algorithm to compute betweenness score of r. Our algorithm
computes a set RF(r), which is used to prune a huge amount of computations
that do not contribute in the betweenness score of r. Then, for the cases where
RF(r) is large, we presented a randomized algorithm that samples from RF(r)
and performs computations for only the sampled elements. Finally, we empiri-
cally evaluated our algorithms and showed that in most cases, they significantly
outperform the most efficient existing randomized algorithms, in terms of both
running time and accuracy.
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5. Çatalyürek, Ü.V., Kaya, K., Sariyüce, A.E., Saule, E.: Shattering and compressing
networks for betweenness centrality. In: SDM, pp. 686–694 (2013)

6. Chehreghani, M.H.: Effective co-betweenness centrality computation. In: Seventh
ACM International Conference on Web Search and Data Mining, pp. 423–432
(2014)

7. Chehreghani, M.H.: An efficient algorithm for approximate betweenness centrality
computation. Comput. J. 57(9), 1371–1382 (2014)

8. Chehreghani, M.H., Bifet, A., Abdessalem, T.: Discriminative distance-based net-
work indices with application to link prediction. Comput. J. (2018, to appear)



764 M. H. Chehreghani et al.

9. Everett, M., Borgatti, S.: The centrality of groups and classes. J. Math. Sociol.
23(3), 181–201 (1999)

10. Freeman, L.C.: A set of measures of centrality based upon betweenness, sociometry.
Soc. Netw. 40, 35–41 (1977)

11. Hayashi, T., Akiba, T., Yoshida, Y.: Fully dynamic betweenness centrality main-
tenance on massive networks. Proc. VLDB Endowment 9(2), 48–59 (2015)

12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

13. Kang, U., Papadimitriou, S., Sun, J., Tong, H.: Centralities in large networks:
algorithms and observations. In: SDM, pp. 119–130 (2011)

14. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
ACM Trans. Web (TWEB) 1(1) (2007)

15. Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Signed networks in social media.
In: CHI, pp. 1361–1370 (2010)

16. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1) (2007)

17. Mahmoody, A., Tsourakakis, C.E., Upfal, E.: Scalable betweenness centrality max-
imization via sampling. In: KDD, pp. 1765–1773 (2016)

18. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45,
167–256 (2003)

19. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality
through sampling. Data Mining Knowl. Discov. 30(2), 438–475 (2016)

20. Riondato, M., Upfal, E.: ABRA: approximating betweenness centrality in static
and dynamic graphs with Rademacher averages. In: KDD, pp. 1145–1154 (2016)

21. Stergiopoulos, G., Kotzanikolaou, P., Theocharidou, M., Gritzalis, D.: Risk miti-
gation strategies for critical infrastructures based on graph centrality analysis. Int.
J. Crit. Infrastruct. Protect. 10, 34–44 (2015)

22. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. In: IEEE ICDM, pp. 745–754 (2012)



Forecasting Bitcoin Price with Graph
Chainlets

Cuneyt G. Akcora(B), Asim Kumer Dey, Yulia R. Gel,
and Murat Kantarcioglu

University of Texas at Dallas, Richardson, USA
{cuneyt.akcora,adey,ygl,muratk}@utdallas.edu

Abstract. Over the last couple of years, Bitcoin cryptocurrency and
the Blockchain technology that forms the basis of Bitcoin have witnessed
a flood of attention. In contrast to fiat currencies used worldwide, the
Bitcoin distributed ledger is publicly available by design. This facilitates
observing all financial interactions on the network, and analyzing how
the network evolves in time. We introduce a novel concept of chainlets,
or Bitcoin subgraphs, which allows us to evaluate the local topological
structure of the Bitcoin graph over time. Furthermore, we assess the role
of chainlets on Bitcoin price formation and dynamics. We investigate the
predictive Granger causality of chainlets and identify certain types of
chainlets that exhibit the highest predictive influence on Bitcoin price
and investment risk.

1 Introduction

Bitcoin cryptocurrency [17] has seen tremendous interest and has achieved sky-
rocketing adoption over the last couple of years. The bitcoin phenomenon is due
not only to revolutionizing online payments but also to a big number of applica-
tions the underlying blockchain technology has witnessed in various domains [21].

One interesting aspect of Bitcoin is that a distributed ledger (i.e., blockchain)
is maintained by all the participants to verify the authenticity of each Bitcoin
transaction. The existence of such a distributed ledger creates unique opportu-
nities with respect to graph analysis. Already, different applications have used
the distributed ledger and the Bitcoin graph information to track sex trafficking
[19] and money laundering activity [16].

We believe that the Bitcoin graph can be used for interesting off-the-beaten
track applications. For instance, in most stock analysis platforms, the market
trend is usually predicted by using historical prices and other financial and eco-
nomic indicators only, without accounting for financial network structure effects.
Since we can observe the complete Bitcoin graph, a natural question to ask is
whether the local graph structure impacts the price of an asset (e.g., Bitcoin). In
other domains, local higher-order structures of complex networks, or multiple-
node subgraphs, are found to be an indispensable tool for analysis of network
organization beyond the trivial scale of individual vertices and edges. The core

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 765–776, 2018.
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idea is that if a particular subgraph occurs more or less frequently than the
expected baseline occurrence, then such a subgraph is likely to play an impor-
tant role in network functionality.

Furthermore, structural properties of multiple complex networks can be com-
pared in terms of their (dis)similarities in subgraph patterns. The role of small
subgraphs, or network motifs and graphlets, in organization of complex systems
has been first discussed in conjunction with the assessment of stability and
robustness of biological networks [15], and later have been studied in a variety
of contexts, from social networks to power grids (for overviews see [1] and refer-
ences therein). Most recently, network motifs are shown to provide an invaluable
insight into analysis of functionality and early warning stability indicators in
financial networks [9]. However, compared to biological networks, motif-induced
inference in financial systems is still an emerging field, and there yet exist no
studies on the role of motifs in the analysis of blockchain.

To our knowledge, we are the first to address the impact of local topologi-
cal structures/motifs on Bitcoin price. We can summarize our contributions as
follows:

– We introduce and formalize the notion of chainlet motifs to understand the
impact of local topological structures on Bitcoin price dynamics.

– We develop techniques to understand which local topological structures (i.e.,
chainlets) have a higher impact on the price dynamics and use those “impor-
tant” chainlets for price prediction.

– We compare our techniques to the state of art time series analysis approaches
and show that employing chainlets leads to more competitive price prediction
mechanisms.

The remainder of this paper is organized as follows: In Sect. 2, we discuss the
related work. In Sect. 3, we formally define chainlets using a generalized hetero-
geneous graph model. In Sect. 4 we compare the price prediction models that
use chainlets to other existing models to see the impact of chainlets on price.
Finally, in Sect. 5, we conclude with the summary of our results.

2 Related Work

Since the seminal Bitcoin paper [17] in 2008, digital coins [21] have been the
most prominent Blockchain applications. Among these, Bitcoin has been the
main focus of Blockchain analysis (see [2] for a review).

The earliest studies focused on the transaction graph to locate the coins used
in illegal activities, such as money laundering and blackmailing [3,18], which is
known as the taint analysis [5]. Moser et al. [16] analyzed the opportunities and
limitations of anti-money laundering on Bitcoin by looking at how successive
transactions are used to transfer money.

The Bitcoin network itself has also been studied from multiple aspects. For
instance, [4] analyzed centralities, and [13] found that since 2010 the Bitcoin
network can be considered a scale-free network. Furthermore, [12] tracked the
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evolution of the Bitcoin transaction network, and modeled degree distributions
with power-laws. Although these studies analyzed the Bitcoin graphs, the pri-
mary focus was on global graph characteristics. In turn, our chainlet analysis
sheds light onto local topological structures of Bitcoin and their role on price
formation.

A number of recent studies show the utility of global graph features to pre-
dict the price [7,11,14]. For instance, [20] analyzed the predictive effects of aver-
age balance, clustering coefficient, and number of new edges on the Bitcoin
price. Two network flow measures were recently proposed by [23] to quantify
the dynamics of the Bitcoin transaction network and to assess the relationship
between flow complexity and Bitcoin market variables. Furthermore, [14] identi-
fied 16 features for 30, 60 or 120 min intervals and used Random Forest models
to predict the price. The core idea behind all these approaches is to extract cer-
tain global network features and to employ them for predictions. On the other
hand, chainlets provide a finer grained insight at the network transactions. In
practice, chainlets can be used to refine the above-mentioned models, so that
features are computed on selected subgraphs only. Furthermore, network flows
can be detailed in terms of successive chainlets.

3 Methodology

The Bitcoin graph has three main components: addresses, transactions and
blocks. A transaction is a transfer of bitcoins from input addresses to output
addresses. Figure 1 shows such a network for 4 transactions and 13 addresses.

a6t1

t2 t4

t3
a2

a1

a7

a4

a3

a5

a8

a9

a10

a11

a12

a13

Time

Fig. 1. A transaction-address graph represen-
tation of the Bitcoin network. Addresses and
transactions are shown with circles and rectan-
gles, respectively. An edge indicates a transfer of
coins. The coins at address a6 are unspent.

Our Bitcoin data come from
the official Bitcoin software; we
installed the Bitcoin core wallet1

and had the wallet download the
entire Bitcoin history from 2009
to 2018. Afterwards, we parsed
the Bitcoin blockchain files, and
extracted blocks, transactions
and addresses. The source code
of our Spark project is available
on our Github repository.2

We model the Bitcoin graph
as the following heterogeneous
network with two node types:
addresses and transactions.

The Bitcoin Graph Model. The Bitcoin network is a directed graph G =
(V,E,B) where V is a set of vertices, and E ⊆ V × V is a set of edges. B =

1 https://bitcoin.org/en/download.
2 https://github.com/cakcora/coinworks.

https://bitcoin.org/en/download
https://github.com/cakcora/coinworks
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{Address,Transaction} represents the set of vertex types. For any vertex u ∈
V , it has a vertex type φ(u) ∈ B. For each edge eu,v ∈ E between adjacent nodes
u and v, we have φ(u) �= φ(v), and either φ(u) = {Transaction} or φ(v) =
{Transaction}. That is, an edge e ∈ E represents a coin transfer between an
address node and a transaction node. This heterogeneous graph model subsumes
the homogeneous case (i.e., |B| = 1), where only transaction or address nodes
are used, and edges link vertices of the same type. In this paper, we focus on
the case where each address node is linked (i.e., input or output address of a
transaction) via a transaction node to another address node.

We emphasize three graph rules that shape the actual Bitcoin graph. First,
input coins from multiple transactions can be merged and spent in a single
transaction (as in transaction t4 in Fig. 1). Second, in a Bitcoin transaction the
input-output address mappings are not explicitly recorded. For instance, consider
the transaction t1 in Fig. 1. The output to address a6 may come from either a1

or a2. Third, coins from multiple input transactions can be spent separately, but
those received from one transaction must all be spent in a single transaction.
Any amount that is not transferred is considered to be the transaction fee, and
gets collected by the miner who creates the block. For this reason, unless it
specifies itself as output address again, an address cannot transfer some bitcoins
from a previous transaction and keep the change. As a community practice, this
address reuse is discouraged, hence most nodes appear in the graph two times;
once when they receive coins and once when they spend it. See [2] for a detailed
graph representation of Blockchain.

Blocks order transactions in time, whereas each transaction with its input and
output nodes represents an immutable decision that is encoded as a subgraph
on the Bitcoin network. Rather than using individual edges or nodes, we chose
to use this subgraph as the building block in our Bitcoin analysis. We use the
term chainlet to refer to such subgraphs.

Our choice is due to two reasons. First, the subgraph can be taken as a
single data unit because inclusion of nodes and edges in it is based on a single
decision. As a transaction is immutable, joint inclusion of input/output nodes
in its subgraph cannot be changed afterwards. This is unlike the case on a social
network where nodes can become closer on the graph because of actions of their
neighbors. Second, we argue and prove that subgraphs have distinct shapes that
reflect their role in the network, and we can aggregate these roles to analyze
network dynamics.

3.1 Graph Chainlets

We introduce the concept of k-chainlets to assess local higher order topological
structure of the Bitcoin graph.

The k-Chainlet Model. A Bitcoin subgraph G′ = (V ′, E′, B) is a subgraph of
G, if V ′ ⊆ V and E′ ⊆ E. If G′ = (V ′, E′, B) is a subgraph of G and E′ contains
all edges eu,v ∈ E such that (u, v) ∈ V ′, then G′ is called an induced subgraph



Forecasting Bitcoin Price with Graph Chainlets 769

of G. Two graphs G′ = (V ′, E′, B) and G′′
= (V

′′
, E

′′
, B) are called isomorphic

if there exists a bijection h : V ′ → V
′′

such that all node pairs u, v of G′ are
adjacent in G′ if and only if u and v are adjacent in G

′′
.

Fig. 2. Merge (C3→1), Transition (C3→3)
and Split (C3→4) chainlets for 3 inputs.

Let k-chainlet Gk = (Vk, Ek, B) be
a subgraph of G with k nodes of type
{Transaction}. If there exists an iso-
morphism between Gk and G′, G′ ∈ G,
we say that there exists an occurrence,
or embedding of Gk in G. If a Gk occurs
more/less frequently than expected by
chance, it is called a blockchain k-
chainlet. A k-chainlet signature fG(Gk) is a number of occurrences of Gk in G.

We start by focusing on the 1-chainlet signatures and their properties. For
simplicity, we refer to 1-chainlets as chainlets. A natural classification of chainlets
can be made in terms of the number of inputs x and outputs y since there is
only one transaction involved.

Fig. 3. Percentage of aggregate chainlets in weeks.
Splits constitute around 60% of all transactions.

For a chainlet, we denote
Cx→y if it has x inputs
and y outputs. If the
branch is merging with
other branches, the cor-
responding chainlet will
have a higher number of
inputs, compared to out-
puts. We call these merge
chainlets, i.e., Cx→y such
that x > y, which show
an aggregation of coins
into fewer addresses. Two
other classes of chainlets
are transition and split
chainlets with x = y and x < y, respectively, as shown in Fig. 2. In what follows,
we refer to these three chainlet types as the aggregate chainlets.

Figure 3 visualizes the percentage of aggregate chainlets in time. For example,
the transition chainlets are those Cx→x for x ≥ 1. Figure 3 shows that starting
as an unknown project, the Bitcoin network stabilized only after summer 2011.
From 2014 and onwards, the split chainlets continued to steadily rise, compared
to merge and transition chainlets.

3.2 Clustering Chainlets

The Bitcoin protocol restricts numbers of input and output addresses in a trans-
action by putting a limit on the block size (1MB), but the number of inputs and
outputs can still reach thousands. As a result, we can have millions of distinct
chainlets (e.g., C1900→200, C1901→200 or C1900→201).
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We use a matrix representation to model the Bitcoin graph in time with
chainlets. For a given time granularity, such as one day, we take snapshots of the
Bitcoin network and construct a Bitcoin graph. Chainlet counts obtained from
this graph are stored as an n × n-matrix O such that for i ≤ n, j ≤ n

O[i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

#Ci→j if i < n and j < n,
∞∑

z=n
#Ci→z if i < n and j = n,

∞∑

y=n
#Cy→j if i = n and j < n,

∞∑

y=n

∞∑

z=n
#Cy→z if i = n and j = n.

In this matrix notation, choosing an n value, e.g., n = 5, means that a
chainlet with more than 5 inputs/outputs (i.e., Cx→y s.t., x ≥ 5 or y ≥ 5) is
recorded in the n-th row or column. That is, we aggregate chainlets with large
dimensions that would otherwise fall outside matrix dimensions. In what follows
we use the term extreme chainlets to refer to these aggregated chainlets on
the n-th row and column.
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(b) Weekly clusters.

Fig. 4. [Color online]. Chainlet clusters with day
and week granularities. A chainlet Cx→y is the
intersection cell of the x-th row and y-th column.

To select a suitable value for
the matrix dimension n, we ana-
lyzed the entire Bitcoin history.
We found that % 90.50 of the
chainlets have n of 5 (i.e., Cx→y

s.t., x < 5 and y < 5) in
average for daily snapshots. This
value reaches % 97.57 for n of
20. We chose to take n of 20,
because it can distinguish a suffi-
ciently large number (i.e., 400) of
chainlets, and still offers a dense
matrix.

With daily and weekly snap-
shots of the Bitcoin network, we

constructed 3.284 and 443 daily and weekly matrices, respectively (with data
from 2009 to 2018). Each of the 400 chainlets is represented as a vector of its
count in time.

We hierarchically clustered chainlets by using Cosine Similarity [8] over chain-
let vectors, and used a similarity cut threshold of 0.7 to create clusters from
the hierarchical dendogram. Figure 4 shows the resulting clusters. Cluster mem-
berships are shown with the same color. A white cell denotes a chainlet that
constitutes a cluster of its own. In both Fig. 4a and b, higher n values in the
right low corner are clustered together, and in the daily clusters extreme chain-
lets (C{x|x>8}→20) have their own cluster. An interesting result is that in both
matrices extreme chainlets belong to the same clusters with some considerably
smaller chainlets such as C2→3, C3→3 and C2→6. In Sect. 4.2 we show that their
similarity extends to their impact on price predictions.



Forecasting Bitcoin Price with Graph Chainlets 771

4 Experiments

Our experiments first prove the predictive power of chainlets with Granger
Causality. We then show how chainlets can be used to predict Bitcoin price.

4.1 Granger Causality

To assess a potential predictive role of chainlets in Bitcoin price formation, we
employ a widely adopted econometric concept of Granger causality [6]. The
causality test assesses whether one time series is useful in predicting another
(see an overview by White et al. [22]). In particular, assume Yt, t ∈ Z+ is a
p × 1-random vector (e.g., Bitcoin price) and let F t

(Y) = σ{Ys : s = 0, 1, . . . , t}
denote a σ-algebra generated from all observations of Y in the market up to time
t. Consider a sequence of (k + 2)-tuples of random vectors {Yt,Xt,Z1

t , . . . ,Z
k
t }.

For example, in the context of this paper X can be chainlets and Z1, . . . ,Zk
t can

be number of transactions. Suppose that for all h ∈ Z+

Ft+h

(

·|F t−1
(Y,X,Z1,...,Zk)

)

= Ft+h

(

·|F t−1
(Y,Z1,...,Zk)

)

, (1)

where Ft+h

(

·|F t−1
(Y,X,Z1,...,Zk)

)

and Ft+h

(

·|F t−1
(Y,Z1,...,Zk)

)

are conditional dis-

tributions of Yt+h, given Yt−1,Xt−1,Z1
t−1, . . . ,Z

k
t−1 and Yt−1,Z1

t−1, . . . ,Z
k
t−1,

respectively. Then, Xt−1 is said not to Granger cause (G-cause) Yt+h with
respect to F t−1

(Y,Z1,...,Zk)
. Otherwise, X is said to G-cause Y, which can be denoted

by GX�Y, where � represents the direction of causality. Hence, G-causality
means that given information on the past of Y and Z1, . . . ,Zk, the past of X
does not deliver any new information that can be used for predicting Yt+h.

In practice G-causality is typically performed by fitting two linear vector
autoregressive (VAR) models of finite order d to Y, with and without X, respec-
tively, and then testing for statistical significance of model coefficients associated
with X. Alternatively, we can compare predictive performance of two models
(i.e., with and without X), using an F -test, under the null hypothesis of no
explanatory power in X. For instance, consider a case of univariate time series
yt, xt and zt. To test G-causality of xt, we compare the fit of the full model
yt = α0 +

∑d
k=1 αkyt−k +

∑d
k=1 βkxt−k +

∑d
k=1 γkzt−k + et, versus the fit of the

reduced model yt = α0 +
∑d

k=1 αkyt−k +
∑d

k=1 βkxt−k + ẽt. That is, under the
null hypothesis of no predictive effect in x onto y (i.e., x does not G-cause y),
V ar(et) = V ar(ẽt). If V ar(et) is (statistically) significantly lower than V ar(ẽt),
then we conclude that x contains additional information that can improve fore-
casting of y, i.e., Gx�y.

Armed with the time series of chainlets, we are now interested in evaluating
the potential impact of local graph structures on future bitcoin price formation
and investment risk. We are primarily interested in two interlinked questions:
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1. Do changes in chainlet characteristics exhibit any causal effect on future Bit-
coin price and Bitcoin returns?

2. Do chainlets convey some unique information about future Bitcoin prices,
given more conventional economic variables and non-network blockchain char-
acteristics?

Table 1 provides summary results of the Granger causality tests for predic-
tive utility of individual/aggregate chainlets, and chainlet clusters3 in analy-
sis of the Bitcoin price and its log returns (see Fig. 4a for the clusters). Log
returns of Bitcoin prices measure the relative change in prices and are defined
as LRt = log yt − log yt−1. As a more conventional predictor, we also include the
total number of transactions (# of Trans.) into the baseline models. Direction
of causality is denoted by �. Table 1 indicates that individual chainlets, e.g.,
C6→1, C1→7, C20→12, as well as aggregate chainlets, e.g., split chainlets, have a
predictive impact on price formation, and in some cases also exhibit causal link-
age with future log returns. Some chainlet clusters have predictive relationship
only with Bitcoin price, whereas Cluster 35 G-causes both price and log returns.
As expected, total number of transactions also has causality effects on both Bit-
coin price and log returns. The G-causality relationships of different chainlets
and Bitcoin price indicate that they are likely to contain important predictive
information on Bitcoin price formation and volatility.

4.2 Price Prediction

In Sect. 4.1 we show that chainlets G-cause the Bitcoin price and hence, exhibit
predictive impact on prices. We are now interested in quantifying the forecast-
ing utility of chainlets. To evaluate the chainlets’ predictive power, we can use
any forecasting model and compare predictive performances with and without
chainlets. Typically such a comparative analysis is performed based on the Box-
Jenkins (BJ) class of parametric linear models. However, as indicated by [10],
more flexible Random Forest (RF) models often tend to outperform the BJ mod-
els in their predictive capabilities. In particular, we find that the optimal base-
line autoregressive integrated moving average (ARIMA(p, d, q)) models selected
by minimizing the Akaike Information criterion (AIC), yield from 0.2% to 40%
higher prediction root mean squared error (RMSE) than the RF baseline models.

Here RMSE =

√

(1/n)
n∑

t=1
(yt − ŷt)2, where yt is the test set of Bitcoin price and

ŷt is the corresponding predicted value. ARIMA and RF models deliver com-
parable results, therefore, due to space limitations, we present the comparison
study based only on the RF type of models.

3 Some representative chainlets from daily clusters 7, 8, 16 and 35 are C9→11, C3→17,
C8→14 and C1→1, respectively.
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Table 1. In G-causality, P and LR denote significance in price & log returns, respec-
tively; blank space implies no significance. Confidence level is 95%.

Covariate types Causality Outcome with lag effects

1 2 3 4 5

# of Trans. Total # Trans. � Outcome LR LR P/LR P/LR

Aggregate Chainlets Merge Chainlets � Outcome - - - - -

Split Chainlets � Outcome - LR P/LR P -

Trans. Chainlets � Outcome - - - - -

Individual Chainlets C1→7 � Outcome P P P P P

C6→1 � Outcome - P P P -

C3→3 � Outcome - P P P -

Extreme Chainlets C20→2 � Outcome LR P/LR P/LR P/LR P

C20→3 � Outcome P P P P P

C20→12 � Outcome P P P P P

C20→17 � Outcome - - P P P

Chainlet Clusters Cluster 35 � Outcome LR LR P/LR P/LR -

Cluster 16 � Outcome - LR - - -

Cluster 8 � Outcome - P P P P

Cluster 7 � Outcome - P P P P
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Fig. 5. % Change (decrease) in RMSE compared
to the baseline model.

We performed extensive exper-
iments with various chainlets and
selected to showcase six of these
RF models. Table 2 provides an
overview of the constructed mod-
els. The baseline model includes
only the lagged (past period) val-
ues of the Bitcoin price. Other
models comprise of lagged prices
with different covariates, mainly
chainlets or some functions of
chainlets such as the mean of
all aggregate/split type chainlets

and mean of all chainlets in a specific cluster.
In our study each RF model used 500 trees, and sampling all rows of the

data set is done with replacement. Number of variables used at each split are,
for example, 2, 3 and 4, for Models 1, 2 and 5, respectively.

We continuously change the training data using a sliding window technique,
where we choose the window size of 200. That is, at each time step we train our
model based on the past 200 values, and armed with this estimated model, we
then construct a h step ahead forecast.
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Table 2. Model description for Bitcoin price (response) and varying predictors.

Model Predictors

Baseline M0 Price lag 1, Price lag 2, Price lag 3

Model 1 Price lag 1, Price lag 2, Price lag 3, # Trans lag 1 ,
# Trans lag 2, # Trans lag 3

Model 2 Price lag 1, Price lag 2, Price lag 3, Split Pattern lag 1,
Split Pattern lag 2, Split Pattern lag 3, Cluster 8 lag 1,
Cluster 8 lag 2, Cluster 8 lag 3

Model 3 Price lag 1, Price lag 2, Price lag 3, C1→7 lag 1, C1→7 lag
2, C1→7 lag 3

Model 4 Price lag 1, Price lag 2, Price lag 3, C1→7 lag 1, C1→7 lag
2, C1→7 lag 2, C6→1 lag 1, C6→1 lag 2, C6→1 lag 3

Model 5 Price lag 1, Price lag 2, Price lag 3, C1→7 lag 1, C1→7 lag
2, C1→7 lag 2, C6→1 lag 1, C6→1 lag 2, C6→1 lag 3, C3→3

lag 1, C3→3 lag 2, C3→3 lag 3

Predictive utilities of models in Table 2 over the baseline model can be mea-
sured as Ψ(X�Y ) = ψ(M)/ψ(M0), where ψ is a measure of prediction error, e.g.,
root mean squared error (RMSE). Here ψ(M0) is the prediction error of baseline
model, where lagged prices are the only predictor; and ψ(M) is the prediction
error of a given model, where predictors are lagged prices and other exogenous
covariates (X). If Ψ(X→Y ) < 1, the covariate (X) is said to improve prediction
of Y . We also calculate the percentage change in ψ for a specific model w.r.t.
M0 as Δ =

(
1 − Ψ(X�y)

)
100%.

Figure 5 compares the percent decrease in RMSE for different models, cal-
culated for varying prediction horizons h = 1, . . . , 30. For 1-step ahead forecast,
chainlets and other covariates do not contribute useful predictive information
over history of Bitcoin price. However, for 3 or more steps ahead forecasts,
chainlets play an increasingly significant predictive role in Bitcoin price for-
mation, even when other more conventional factors, such as historical price and
number of transactions, are already in the model.

Furthermore, some chainlets has a higher utility for price prediction. For
example, in Model 5, we observe the highest decrease in RMSE, compared to
the baseline model. Models 3 and 4 yield the second highest decrease in RMSE
until the forecast horizon h of 20. After h of 20, Model 2 delivers the second
highest reduction in RMSE over the baseline model.

Figure 6 compares the observed data with fitted values from baseline model
and three other models, i.e., Model 1, 2, and 5. For h of 1, all models deliver
similar prediction accuracy and capture the variability of the data very well.
Although, as expected, the prediction performance of all models deteriorates as
forecasting horizon h → ∞, Models 1, 2, and 5 still yield a noticeably higher
predictive accuracy, compared to the baseline model without chainlets.
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Fig. 6. [Color Online]. Price prediction for 2016 with 1, 5, 10 for 20 day horizons.

5 Conclusion

We introduce a novel concept of k-chainlets on Bitcoin that expands the ideas of
motifs and graphlets to Blockchain graphs. Chainlet analysis provides a deeper
insight into local topological properties of the Blockchain and the role of those
local higher-order topologies in the Bitcoin price formation. We find that certain
types of chainlets have a high predictive utility for Bitcoin prices. Furthermore,
extreme chainlets exhibit an important role in the Bitcoin price prediction.
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Abstract. Protest event prediction using information propagation from
social media is an important but challenging problem. Despite the
plethora of research, the implicit relationship between social media infor-
mation propagation and real-world protest events is unknown. Given
some information propagating on social media, how can we tell if a
protest event will occur? What features of information propagation are
useful and how do these features contribute to a pending protest event?
In this paper, we address these questions by presenting a novel formalized
propagation tree model that captures relevant protest information prop-
agating as precursors to protest events. We present a viewpoint of infor-
mation propagation as trees which captures both temporal and structural
aspects of information propagation. We construct and extract structural
and temporal features daily from propagation trees. We develop a match-
ing scheme that maps daily feature values to protest events. Finally, we
build a robust prediction model that leverages propagation tree features
for protest event prediction. Extensive experiments conducted on Twit-
ter datasets across states in Australia show that our model outperforms
existing state-of-the-art prediction models with an accuracy of up to 89%
and F1-score of 0.84. We also provide insights on the interpretability of
our features to real-world protest events.

Keywords: Propagation trees · Protest · Prediction · Social media
Twitter

1 Introduction

Protest event prediction is an important task with numerous benefits to many
organizations and stakeholders. Early predictions help law enforcement agencies
prepare ahead of anticipated protests, inform tourists of protest-prone zones,
help traffic regulators divert traffic effectively and also help service providers
prioritize on the concerns of citizens.

Social media sites such as Twitter and Facebook have become a major tool
for the organization, mobilization, and coordination of protest events such as
the Arab Springs, Latin America Uprising, Baltimore Riots, 15M, and other
c© Springer International Publishing AG, part of Springer Nature 2018
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protest events of the like. Existing studies on protest events [4,5] have shown
that the ubiquitous nature and increasing use of social media during protest
events make it a viable platform for developing techniques to predict future
protest events. Recent studies [5,6,8,10,12] have proposed different methods for
predicting protest events using social media. These methods generally aim at
extracting (e.g., keywords, hashtags, event dates, location mentions), analysing
and integrating social media data with appropriate statistical, Natural Language
Processing (NLP), and machine learning algorithms to detect or forecast events.

Despite the successes of existing state-of-the-art social media protest predic-
tion approaches, some challenges still exist. For example, text-based approaches
such as [5,11] are not designed with information propagation within online
communities in mind. Text-based approaches are therefore restricted in their
ability to model structural and temporal features of hashtags, users, follower-
relationships, retweets etc. from information propagation for protest prediction.
Secondly, the size, speed, and complexity of social media posts coupled with
the dynamic evolution of online social media information propagation make it
computationally challenging to directly observe the implicit relationship between
social media posts and real-world protest events. Also, features from informa-
tion propagation that are highly interpretable for event prediction are unknown.
This calls for the need to develop new models that are not restricted by these
technical challenges as well as yielding a rich set of interpretable features for
protest event prediction without trading off the accuracy of prediction.

In this paper, we address this need by presenting a novel propagation tree
model for predicting protest events using information propagation on social
media. Our proposed approach can model the relationship between tweets, users,
hashtags and follower relationships, and effective in capturing both the temporal
and structural features of information propagation for protest event prediction.
Given some information propagating on social media about a protest event, how
can we tell if a protest event is going to happen? What features of information
propagation can give indications of when a protest event is going to occur? We
model information propagation as trees and propose a rich set of highly inter-
pretable features that are precursory to protest events to answer these questions.

We first present a formalized model for constructing propagation trees from
online conversations on protest events. We continuously extract structural and
temporal features from these trees. We develop a feature-to-event mapping
scheme that maps temporal and spatial information from ground truth protest
events to propagation tree features. We then build a classifier to learn the map-
ping function for protest event prediction using propagation tree features as
inputs. We conduct extensive experiments on real-world datasets to demonstrate
the potency of our method over existing state-of-the-art prediction approaches.

More concretely our contributions are summed up as follows:

1. We present a formalized data-driven model for building propagation trees
from information propagating on online social networks.
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2. We build a prediction model that uses structural and temporal features
extracted from propagation trees for protest event prediction. Our proposed
model outperforms existing state-of-the-art prediction models.

3. We present a novel set of highly interpretable features that shed light on the
implicit relationship between information propagation on social media and
real-world protest events.

2 Related Work

Protest event prediction and detection have been an active line of research,
presenting advanced techniques that incorporate different statistical and machine
learning techniques. Some notable works are underscored in [2,5,6,8,10,12]. A
well-known prediction system in this domain is EMBERS [12]. The EMBERS
system fuses several models [1,8,12] with data from different sources to forecast
protest events in 10 Latin American countries. Earlier work by Kallus [5] presents
a random forest protest model that leverages future date heuristics and NLP
techniques to extract event type, population, event date from open source data
in seven (7) different languages. A Non-Parametric Heterogeneous Graph Scan
for disease and protest prediction using Twitter data was proposed by [2].

The advent of social media has facilitated the study of information prop-
agation in social networks. This line of research on information propagation
studies [3,4,7,9,13,14] present diverse notions for studying information propa-
gation in online social networks. These studies have shown emerging applica-
tions of information propagation in viral systems [13], influence maximization
[7], and recommendation networks, etc. However, less effort has been devoted
to the application of information propagation to protest event prediction due to
the implicit relationship between information propagation on social media and
real-world protest events that have not been fully understood.

Our work seeks to combine these two parallel lines of research by modeling
information propagation for protest event prediction. Closely related to our work
is [1] where the authors used structural features of cascade graphs as input to
a regression model to predict protest events in Latin America. However, we
present a notion of propagation trees that differs in modeling the dynamics of
information propagation. Our approach further incorporates both structural and
temporal features of online information propagation for protest event prediction.

3 Preliminaries and Problem Setup

In this section, we present preliminary definitions and also describe the setup of
our problem. Throughout this paper, we consider Twitter as our social network
to model information propagation on protest events. However, it is worth men-
tioning that the formalizations can be modified and extended in the context of
other social networks and microblogs such as Facebook and Sina Weibo.
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3.1 Definitions

Twitter provides a functionality for users to follow other users. This enables
users to receive information from those they follow on their timeline. Generally,
information propagates on Twitter in the following manner, a Twitter user Alice
posts a tweet1 on a protest event on a given day. Bob, a follower of Alice also
posts a tweet on the same protest event after the original post by Alice. As this
process continues, information propagates through the network.

Definition 1 (Twitter Follower Network). Twitter follower network is a
directed graph G = 〈V,E〉, where V = {X1,X2, ...,XN} is a set of N Twitter
users, and E = {Xi → Xj |Xi,Xj ∈ V, i �= j} is a set of directed edges rep-
resenting that user Xj is a follower of user Xi on Twitter. Thus information
propagates from Xi to Xj if an edge Xi → Xj exist in G.

The graph in Fig. 1 represents a Twitter follower network. A directed edge A →
E shows that user E follows user A.

Definition 2 (Time Indexed Tweet Series). Let C be the tweet corpus posted
by users V = {X1,X2, ...,XN} in a given day, and p = (X, c, τ) represent the
tweet posted by user X ∈ V at time τ with content c ∈ C. Let τ(p) denotes the
time when p is posted and U(p) denotes the user of p. A Time Indexed Tweet
Series is P = 〈p1, p2, ..., pK〉 s.t. τ(pi) ≤ τ(pj) if i ≤ j, where i, j ∈ {1, 2, ...,K}
and K is the number of tweets posted on the current day.

The tweet corpus contains posting time, id’s of users who posted the tweets and
the content (text) of the post. We assume that the time indexed tweet series
are already filtered to obtain relevant tweets on a protest event. Table 1 shows
sample tweets that are indexed according to the time of posting.

Definition 3 (Propagation Tree (PT)). Given a Twitter follower network
G and time indexed tweet series P for the current day, let τi be the time of
the first post of Xi in P and τj be the time of the first post of Xj in P. A
Propagation Tree PT = 〈V′,E′〉 where V′ = {(Xi, τi) | Xi ∈ V} is a set of node
time pair, and E′ = {(Xi, τi) → (Xj , τj) | Xi → Xj ∈ E, τi ≤ τj} is a set of
directed edges.

Propagation trees are constructed using tweets and the Twitter follower rela-
tionship. Figure 2 shows sample propagation trees constructed using tweets in
Table 1 and the follower network in Fig. 1.

Definition 4 (Propagation Forest). A propagation forest FPT =
{
PT1,

PT2, ..., PTM

}
is a set of M propagation trees constructed in a day s.t. M > 1.

1 The tweet can be in the form of retweet, @mentions, normal tweet etc.
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Fig. 1. Twitter fol-
lower network

Table 1. Time indexed tweet series

Timestamp UserID Tweets

07:00:03 A We nd our ryts to protest!!! Hit d

streets naw,#protest #humanrights

07:14:43 C #myrights #riots join movement

Calln all!!! #killcorruption now

07:34:35 B RT @XXX show ryts to protest!!!Hit

rally now,#protest #humanrights

08:45:42 S #Unfair taxes we will #protest,

destroy and fyt 4 our ryts !!!

10:23:27 F Gov’t dsnt care abt us.. We will giv

them nthn bt more #protest

10:24:11 E #Revolution #protest 4 change, fyt

like hell and stop this grt injustice

Fig. 2. Propagation
trees

3.2 Problem Setup

We use propagation trees to capture how information propagates in a particu-
lar community, clique or how online groups discuss a protest event of interest.
Usually, large scale protest information propagation among users who are con-
nected by Twitter follower relationship is rare [1]. The basic assumption is that
relevant protest information propagating in these groups are precursors to a real
protest event that will happen on the ground. Retrospective studies [4] have
shown that large growth rates and increasing size of online conversations among
users of the same follower network are precursory to pending protest events. We
are interested in such temporal and structural precursory features that capture
the growth rate, size, duration and other dynamics of information propagation
within an online community of Twitter users. These features we posit can offer
insights as to if a protest event will occur.

Definition 5 (Problem Definition). Given a set of protest information prop-
agating on Twitter (Time Indexed Tweet Series) P and G on day i, the goal
is to predict the occurrence of a future protest event E�i on day �i, where
�i ∈ {i + 1, i + 2, i + 3}. Formally, this is formulated as learning a mapping
function from propagation tree features Z to the occurrence of a future protest
event on day �i, i.e., f : Z −→ {E�i} where E�i = 1 if there is a protest event
on day �i and E�i = 0 otherwise.

4 The Propagation Tree Framework

In this section, we present a detailed description of our proposed solution. The
diagram in Fig. 3 shows the step-by-step stages of our approach. We first extract
relevant online conversations from Twitter to discover information propagation
about protest events. This requires that tweets are filtered using a set of protest-
related keywords. Words such protests, riots, unrest, placard, violence, blockade
etc. in tweets, are likely to be associated with protest events.

For every user who posts a tweet, we obtain his/her followers and construct
propagation trees (Fig. 3 Phase 1). We then propose a matching scheme to map
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Fig. 3. The overview of our proposed framework.

temporal and structural features of propagation trees to ground truth2 protest
events in Phase 2. In the third phase, we build a classifier to learn the mapping
function and output the predictions of our model in Phase 4.

Propagation Tree Construction (Phase 1): The propagation tree frame-
work starts with a data-driven model for building propagation trees. We use
Fig. 1, Table 1 and Fig. 2 as reference examples to explain our method of con-
struction propagation trees. We assume the Time Indexed Tweet Series P used
for our formulation are protest-related since we use a protest keyword dictionary
to filter out tweets that do not match at least three protest keywords. It is worth
mentioning that our notion of propagation trees presented here is expandable to
also track hashtags and specific topics propagating in online social networks. We
use the following steps to show how propagation trees are constructed following
the criteria defined. Given Twitter follower network G, and Time Indexed Tweet
Series P , a propagation tree is constructed as follows: A tree starts with a source
node representing a user who posted the first tweet on a protest event on a given
day. From Table 1, user A is chosen as the source node of tree 1 (see Fig. 2).

Criterion 1 (Tree Growth). Given a propagation tree PTn and a follower net-
work G = {V,E}. Let (Xm, τm)be a new node at time τm (τm > τi ∀ (Xi, τi) ∈
PTn). If there exists a directed edge from Xj to Xm in the follower network
G, Xj → Xm, the propagation tree PTn is grown by adding an edge Xj → Xm

such that τj ≥ {τi} ∀ (Xi, τi) ∈ PTn. From Fig. 1, user C follows user A. We
add node C and a directed edge A → C to tree 1.

Criterion 2 (Emergence of new Propagation Tree). Given that PTn is
a propagation tree under construction in the current day with node set V′

n, let
F(X) be the list of followers of X. If Xm has posted a tweet in the current day
and; (1) Xm /∈ V′

n (2) ∀V ∈ V′
n, Xm /∈ F(V ), a new tree PTm is created with

the node (Xm, τm) as the root.
After B is added to tree 1, the next post is S. The follower network shows

that user S does not follow any of the users that have already published a tweet
(i.e. A,C,B), hence a new PT tree 2 emerges with S as the root (Fig. 2).

Criterion 3 (Tree and Forest Termination). Given that PT n is a propaga-
tion tree under construction with a set of nodes V′

n and (Xi, τi) is the last node
2 The ground truth refers to Gold Standard Record (GSR).
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added to PTn, a propagation tree is terminated if ∀(X ∈ V′
n) � F(Xi) who

posts a tweet at time τ ≥ τi. An FPT is terminated after the user of the last
tweet is added to the tree construction.

In tree 2 (Fig. 2), after F was added to the tree, no follower of F posted any
tweet in P , so the tree terminates at time 10:23:27. Also, the forest is terminated
after E is added to tree 1. Algorithm 1 shows the tree construction process.

Feature Extraction and Event Mapping (Phase 2):

Propagation Tree Features: Temporal and structural features of propagation
trees are effective in capturing information propagation in networks [9,13]. In
this work, we compute features such as the size, growth rate, duration, etc. of
propagation trees. Our features described in Table 2 are effective in capturing
how fast a piece of information is spreading within a community, the number
of users engaged in that conversation, the rate at which new users join the con-
versation, the duration etc. The intuition here is that information propagation
within online communities on a large scale does not usually occur, and thus an
occurrence such phenomenon signals a big event. Trees constructed one or two
days prior to a protest event have a short duration, large size and have a sud-
den surge in the number of users. These characteristics of propagation trees are
useful for event prediction task. These features are used as input in our protest
event prediction model.

Table 2. Propagation tree features

Features Description

Size of Largest Tree (LT) The tree with the most number of nodes

Duration of LT Time difference between when the root node and last node of LT was created

Growth Rate of LT The ratio of size of LT to the duration of LT

Forest Tree Size Total number of trees in a forest in a given day

Forest Node Size Total number of nodes in a forest in a given day

Tree Growth Interval Average time difference between activation times of the tree root nodes

Forest Activity Time Time interval between the first root node and when the last node was added to forest

Forest Growth Rate The ratio of Forest Node Size to the Forest Duration

Tree Max. Duration The maximum duration of all trees in a given day

Tree Avg. Duration The average duration of all trees in a given day

Forest Node to Tree Ratio The ratio of Forest Node Size to Forest Tree Size

Feature-to-Event Mapping: Gold Standard Records (GSR) are ground truth data
from major online news sources, blogs and articles on real-world protest events
compiled by news analysts and domain experts. The GSR contains protest event
information such as protest event date, location (by state), and news source
(news site). Table 3 shows sample coded GSR events used for our experiments.
The event class label of the GSR on day i in a given location l is denoted as
Eil ∈ [0,1]. The class label has a value of Eil = 1 if at least one significant protest
event was mentioned in the GSR for that location and 0 otherwise. A significant
protest event is one that was reported by a major online news site and thus
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has been recorded in the GSR. We map a set of propagation tree features Zil

extracted on day i for location l, to its corresponding GSR response. Once we
obtain this match, we use lead time settings of �i ∈ {i + 1, i + 2, i + 3} days as
shown in Fig. 4. We are interested in predicting on each day from i + 1 to i + 3
if a significant protest event will occur in a given location.

Event Prediction Classifier (Phase 3): To predict protest events, we treat
our prediction task as a binary classification problem. For each day, we predict
if a significant protest event will occur in a given state or not. Our Propagation
Tree Model (PTM) is a Support Vector Machine (SVM) classifier that predicts
protest events using features of propagation trees. SVM is efficient in handling
model overfitting and also has appropriate kernel functions which yield better
performance on both linear and non-linear separable data points.

Algorithm 1 . Propagation Tree
Construction
1: procedure : Input P, follower rela-

tionship from G
2: Select U(p1) ∈ P as source node
3: for every other p ∈ P
4: Check Condition:
5: if : U(p) follows any node in an exist-

ing tree
6: → Apply Criterion 1 to grow tree
7: else:
8: → Apply Criterion 2
9: Exit Check Condition after all p ∈

P have been checked
10: → Apply Criterion 3
11: Output : PT,FPT

Fig. 4. Feature-to-event mapping

Table 3. Coded GSR events

Date Country State Event headlines Source

08-05-16 Australia NSW Protesters descend on
Newcastle as flotilla to stop
coal exports

XYZ News

05-07-16 Australia SA Coal Mine Workers protest
against big pay cut ahead for
Fair work hearing

XYZ News News-10

5 Experimental Settings and Results

We present a detailed description of how the experiments were conducted and
the results obtained in comparison with existing state-of-the-art models.
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5.1 Experiment Setup

Datasets and Preprocessing: To develop and test our methods, we collected
over 100 million publicly available tweets published from June 2016 to April 2017
in Australia. As a preprocessing step, the tweets were filtered (using Tweets
geolocation normalization and location mention identifiers [11] techniques) to
obtain relevant tweets for each state. We built a dictionary of 96 protest-related
keywords using words such as ‘protest’, ‘unrest’, ‘terror’, ‘action’, ‘placards’ etc.
selected by domain experts. For each state, we filtered to obtain a subset of
tweets that matched at least three keywords from our dictionary. This is to
ensure we obtain only protest-related tweets for our analysis. We then collect
the follower list of all users who posted tweets during the period of observation
using the Twitter API For each day, we build propagation trees for each state
as described in Sects. 3 and 4.

PTM Setup: We adopt the implementation of LIBSVM3, a library for support
vector machines in Weka 3.8 using Radial Basis Function (RBF) as the kernel
function. We also applied synthetic minority over-sampling technique SMOTE4

to handle the issue of unbalanced GSR class labels. We performed 10-fold cross-
validation on the training set to choose parameters that yield the highest accu-
racy. The penalty C and γ are determined using grid search.

It is worth mentioning that we built and tested five other different stan-
dard machine learning algorithms (KNN, Random Forest, Naive Bayes, Logistic
Regression and Decision Trees) suitable for binary classification problems on our
features. While the results of most classifiers were very similar, we present the
result5 of our PTM (using SVM) due to limited space.

Comparison Models: We compare our proposed propagation tree model PTM
to other existing state-of-the-art prediction models. We followed strictly the
implementations described by the authors in their published papers.

GSR Model [1,8] is an autoregressive logistic model that uses lagged values of
the GSR on a previous day as a predictor of an event in subsequent days.

Volume Based Model (VBM) [8] is a logistic regression model with LASSO
(Least Absolute Shrinkage and Selection Operator) that maps a large set of
volume-based features to predict the occurrence of a future protest.

Cascade Graph Model (CGM) [1,12] is a logistic regression model with
LASSO that uses structural features of mention-retweet and follower cascade
graphs computed daily to forecast the probability of occurrence of a GSR event.

Top Keyword Model (TKM) is our novel variant implementation of the
VBM. To build this model, We select the top 14 most occurring keywords in
our tweet datasets as our features, computed their volumes daily, and build a
k-nearest neighbour (KNN) classifier to predict protest events.
3 http://weka.sourceforge.net/doc.stable/weka/classifiers/functions/LibSVM.html.
4 http://weka.sourceforge.net/packageMetaData/SMOTE/index.html.
5 SVM outperforms all other classifiers with best precision, recall and F1-score.

http://weka.sourceforge.net/doc.stable/weka/classifiers/functions/LibSVM.html
http://weka.sourceforge.net/packageMetaData/SMOTE/index.html
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5.2 Performance Metrics

The performance of the various models is evaluated using standard classification
metrics. The related performance metrics include; precision, recall (Sensitivity),
F1-score, and accuracy. Table 4 shows the description of true positives, false
positives, true negatives and false negatives.

5.3 Results and Discussions

Table 5 shows the averaged results of the various models for the three test months
(Feb., Mar., and April 2017) using three different lead time settings. For each
lead time setting, we run the experiments five times and report the average
results. Clearly, our proposed PTM outperforms all the other methods in preci-
sion, recall, and F1-score as well as achieving an accuracy of up to 89%. Cascade
graph model is the first runner-up most of the time, followed by the GSR model
and in some cases the Volume based model. Due to limited space, we only show
the distribution of precision, recall and F1-score using a lead time setting of two
days for Western Australia (WA) on March 2017 in Fig. 6. Our propagation tree
model (PTM) also achieves ROC Area Under Curve (AUC) of 0.78 as shown in
Fig. 5 clearly showing superiority over the comparison models. The results show
that our propagation tree models yield better results than all the other models
with an average accuracy of 83%. These results corroborate with earlier work
in [1] suggesting that models that capture information propagation are more
effective in predicting protest events.

Insights into Propagation Tree Features: Our interest in this work also lies
in discovering the usefulness and interpretability of propagation tree features.

To interpret our features, we plot the daily normalized feature distribution
in Fig. 7 over one month period for NSW which recorded 11 GSR protest events.
From Fig. 7, the normalized distribution shows that the forest size and the size of
the largest tree produces strong signals one or two days prior to protest events.
We also observed a sudden increase in features such as the growth rate, size of

We define accuracy in our context as:

Accuracy =
ktp+ktn

ktp+ktn+kfp+kfn

Precision =
ktp

ktp+kfp
,

Recall =
ktp

ktp+kfn
,

F1 = 2· (Precision ·Recall)
Precision+Recall

Table 4. Description of our evaluation metrics

Metric Description

True positives (ktp) GSR protest days that were

correctly predicted as protest

event days by the model

True negatives (ktn) GSR no-protest days that were

correctly predicted as

no-protest event days by the

model

False positives (kfp) GSR no-protest event days

that were incorrectly predicted

as protest events

False negatives (kfn) GSR protest event days that

were incorrectly predicted as

no-protest event days
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Fig. 5. ROC curves for the various
models.

Fig. 6. Precision, recall and F1-score
in March 2017 for WA using lead time
of two days.

Table 5. Performance comparison of predictive models for South Australia (SA), New
South Wales (NSW) and Western Australia (WA). PR = Precision, RE = Recall,
Acc.(%) = Accuracy.

LeadTime1 LeadTime2 LeadTime3

State Model PR RE F1 Acc. PR RE F1 Acc. PR RE F1 Acc.

SA PTM 0.73 0.87 0.79 86.56 0.76 0.87 0.84 89.43 0.79 0.85 0.81 83.82

GSR Model 0.61 0.52 0.56 68.81 0.66 0.74 0.70 78.64 0.63 0.78 0.69 71.55

CascadeGraph 0.70 0.82 0.78 81.40 0.79 0.63 0.70 76.52 0.76 0.78 0.79 78.65

VolumeBased 0.66 0.71 0.68 72.10 0.70 0.72 0.69 73.15 0.76 0.78 0.76 76.32

TopKeywords 0.69 0.35 0.46 66.35 0.72 0.35 0.48 58.34 0.78 0.75 0.75 76.37

WA PTM 0.66 0.82 0.73 82.94 0.76 0.83 0.79 86.04 0.66 0.76 0.71 80.24

GSR Model 0.65 0.81 0.71 80.02 0.67 0.82 0.74 81.96 0.65 0.67 0.66 74.28

CascadeGraph 0.69 0.77 0.72 78.10 0.69 0.81 0.74 81.40 0.63 0.78 0.69 78.94

VolumeBased 0.63 0.67 0.65 67.74 0.76 0.78 0.77 78.64 0.51 0.93 0.66 73.14

TopKeywords 0.65 0.73 0.68 73.23 0.70 0.72 0.71 72.04 0.71 0.71 0.70 70.90

NSW PTM 0.60 0.76 0.66 75.28 0.76 0.85 0.80 82.99 0.69 0.74 0.69 75.81

GSR Model 0.55 0.74 0.63 70.17 0.65 0.80 0.71 70.13 0.61 0.76 0.68 73.64

CascadeGraph 0.69 0.74 0.71 75.62 0.59 0.67 0.62 67.91 0.56 0.69 0.61 69.23

VolumeBased 0.69 0.60 0.63 60.19 0.67 0.68 0.66 67.55 0.57 0.63 0.60 65.12

TopKeywords 0.67 0.61 0.63 60.78 0.63 0.57 0.59 56.97 0.64 0.60 0.62 60.43

the forest, one or two days before a protest event. The interpretation of this
observation is that conversations on protest event are more focused among users
of similar follower network groups prior to a protest event. This signifies that
features of propagation trees captured from online discussions on protest events
are useful antecedents to impending future protest events.
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Fig. 7. Normalized distribution of tree features correlated with real protest events for
NSW in June 2016. Red dots represent protest events captured by GSR. Peaks of
feature values show a strong correlation with protest events one or two days. (Color
figure online)

6 Conclusion

In this work, we presented a formalized propagation tree model that captures
online social media information as propagation trees. We developed a novel
supervised protest prediction approach using interpretable features of propaga-
tion trees as precursors to predict impending protest event. We discovered that
structural and temporal features extracted from propagation trees are effective
precursors to protest events with a lead time of two days. We have shown that
our features of propagation trees that capture the social network relationship and
timeliness of information propagation incorporated into our model outperforms
existing state-of-the-art protest prediction models.
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Abstract. Team formation is to find a group of experts covering
required skills and well collaborating together. Existing studies suffer
from two defects: cannot afford flexible designation of team members
and do not consider whether the formed team is truly adopted in prac-
tice. In this paper, we propose the Predictive Team Formation (PTF)
problem. PTF provides the flexibility of designated members and deliv-
ers the prediction-based formulation to compose the team. We propose
two methods by learning the feature representations of experts based on
node2vec [4]. One is Biased-n2v that models the topic bias of each expert
in the social network. The other is Guided-n2v that refines the transi-
tion probabilities between skills and experts to guide the random walk
in a heterogeneous graph of expert-expert, expert-skill, and skill-skill.
Experiments conducted on DBLP and IMDb datasets exhibit that our
methods can significantly outperform the state-of-the-art optimization-
based approaches in terms of prediction recall. We also reveal that the
designated members with tight social connections can lead to better per-
formance.

1 Introduction

Team formation is one of the essential tasks in social network analysis [7]. Given
a set of required skills, the goal of team formation is to select a group of experts
possessing the required skills and well collaborating with each other in the under-
lying social network. A good team to execute a given task needs to ensure that
the required skills can be covered by the found team members, and meanwhile
the team members can have less cost to communicate with one another. To name
a few applications, a project leader plans to organize a team for breast cancer
prediction with deep learning techniques. The conductor wants to form a group
of musicians being capable of violin, piano, and flute to deliver high-quality
performance.

c© Springer International Publishing AG, part of Springer Nature 2018
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Different optimization methods have been proposed to solve the variants of
team formation problems, including affording the team leader [5], allowing some
existing designated experts [15], and finding the alternate to replace the unavail-
able member [12]. These variants can be summarized as: given the set of required
skills for a task, before the team is formed, there are no existing members [6,7],
a designated member (e.g. the leader) [5], few designated members [17], and all
members except for the unavailable one [12]. However, we think that the prob-
lem and the solutions of team formation can be further improved due to two
observations. First, while the given task may contain various numbers of desig-
nated experts (as elaborated above), none of past methods can simultaneously
tackle these variants. Second, although different optimization-based methods
have been validated to lead to higher scores of some team goodness measures,
it is still unknown that whether the found team members will be accepted (i.e.,
truly adopted as a team). That says, in practice, it is expected that experts
in the formed team need to be adopted and truly work together. But none of
previously proposed methods experience such kind of validation.

How can we form the team and ensure the found team members can be truly
adopted while allowing the various numbers of designated experts in the query
task? This is the first central question this paper aims to answer. The second
question lies in how do the social connections between the designated experts
influence the performance of team formation? To deal with the first question, in
this work, we formulate the Predictive Team Formation (PTF) problem: given
a set of required skills, a set of designated members in a social network, and
the team size K, the goal is to find a team of K experts who can truly work
together. In other words, we aim at predicting the team members based on the
given information. To solve the PTF problem, we propose to learn the feature
representation (i.e., the embedding vector) of each expert in the social network.
The idea is that those who will become team members tend to be close to
each other in the feature space that captures how experts co-work and how
they adopt skills. The feature representation should be learned by considering
their past collaborations in the social network and the skills associated by each
expert. Two feature representation learning methods based on node2vec [4] are
proposed. One is Biased-n2v : learning the bias of topic adoption for every expert
for node2vec random walk sampling in the social network. The other is Guided-
n2v : extending the transition probabilities between skill and expert nodes in
a skill-expert heterogeneous expertise graph for node2vec. On the other hand,
to answer the second question, our experiments will be conducted by studying
various settings of the designated members. The settings include the number of
designated experts, the number of team members to be found, and the social
density between designated members.

We summarize the contributions of this paper in the following.

– We formulate the problem of Predictive Team Formation (PTF). The nov-
elty of PTF is two-fold. One is allowing various numbers of designated expert
members in the team. The other is to find the members who can be truly
adopted as a team via ground-truth validation. To the best of our knowledge,
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we are the pioneer to deliver prediction-based formulation of the team forma-
tion problem.

– Technically, we propose two feature representation-based methods to deal
with the PTF problem. One is Biased-n2v and the other is Guided-n2v. The
former models the topic bias of experts in the social network while the latter
guides the random walk in a heterogeneous expertise graph to improve the
basic node2vec framework.

– Experiments conducted on DBLP and IMDb datasets exhibit two findings.
The proposed Biased-n2v and Guided-n2v can outperform the state-of-the-
art optimization-based and recommendation-based methods. The set of des-
ignated experts with higher density values lead to better performance in pre-
dictive team formation.

The structure of this paper is presented as follows. We present the problem
statement in Sect. 2, followed by describing the proposed methods in Sect. 3.
The experimental results are exhibited in Sect. 4. Section 5 reviews the relevant
studies, and Sect. 6 concludes this work.

2 Problem Statement

We first describe some preliminary notations. First, a social network is repre-
sented by a graph G = (V,E), where V is the node set (i.e., experts) and E is the
edge set (i.e., the collaboration between experts). Each node u ∈ V is associated
with a set of labels Lu that represent skills. Each edge e = (vi, vj) ∈ E is also
associated with a weight score depicting the communication cost between expert
vi and vj . Higher edge weights mean higher communication cost, and thus can-
not well collaborate with one another. Second, let L(S) be the set of required
labels covered by a node set S, i.e., L(S) = L ∩ (∪u∈SLu), where L is the set
of required labels for the given task. Third, a query task of team formation,
denoted by T , consists of a set of required labels L, a set of designated expert
members Sd ⊆ V , and K is the team size (i.e., the number of team members),
i.e., T = 〈L, Sd,K〉, where Sd = ∅ indicates no designated members are specified.

Predictive Team Formation (PTF). Given a query task of team formation
T = 〈L, Sd,K〉, and a collection of experts V whose historical collaborations
E can be constructed as a social network G = (V,E), the PTF problem is to
find the set Sr of remaining team members (i.e., |Sd ∪ Sr| = K) for the task
T in a prediction-based approach, so that ground-truth team members can be
accurately identified, i.e., Sr = Ŝ \ Sd, where Ŝ is the set of ground-truth team
members.

Note that the formulation of existing team formation problems (e.g. [5–7,17]
targets at optimizing a variety of self-defined objective functions (e.g. minimizing
the communication cost among team members [7], minimizing the leader distance
[5], minimizing the coordination cost [1], and maximizing influence-cost ratio [8]).
However, we argue that such optimization-based problem formulation cannot
find the team members who are truly adopted as a team. That says, past studies
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do not concern about whether or not the found experts are selected as the team
members in the future. Therefore, in our work, we alternatively resort to the
prediction-based problem formulation, and expect this can better identify the
ground-truth team members. To validate such assumption, we will conduct the
experiments to examine the performance of team formation in terms of recall
scores.

3 Proposed Methods

In this section, we first describe how to learn the feature representations of
experts in a network in Sect. 3.1. Then we present the first method that further
considers the topic preference of experts in the learning in Sect. 3.2. Section 3.3
extends the learning in a skill-expert heterogeneous graph.

3.1 Learning Node Representation (n2v) for Team Formation

We extend the skip-gram architecture [4,13] from natural language processing
(NLP) and node embedding to learn the feature representations of experts in the
social network G. In NLP, the skip-gram architecture learns relations between
words and their context. Here each node in the network is treated as a word,
and some random walk paths are sampled as sentences. We define Nχ(v) ⊆ V as
the neighbor nodes for each node v ∈ V via a sampling method χ. Here we use a
sampling method based on a proposed biased random walk that models the topic
preference of experts, which is presented later in Sect. 3.2. The skip-gram model
is extended to optimize the log-likelihood of the observed Nχ(v), conditioned on
node v’s feature representation f(v) as follows:

max
f

∑

v∈V

log P (Nχ(v) | f(v)).

To make the optimization process more efficient, we adopt two standard
assumptions [4]. First, we assume that, given node v’s feature representation,
v’s neighbor nodes Nχ(v) can be observed conditionally independent of each
other. Then P (Nχ(v) | f(v)) can be factorized by the neighbor nodes as follows:

P (Nχ(v) | f(v)) =
∏

n∈Nχ(v)

P (n | f(v)).

Second, we assume that any pair of neighboring nodes symmetrically affect each
other in the k-dimensional space of feature representation. Therefore, given a
node v, the conditional likelihood of every neighbor node n ∈ Nχ(v) can be
modeled as a softmax unit [2] by reversing the previous formula:

P (n | f(v)) =
exp(f(n) · f(v))∑

u∈V exp(f(u) · f(v))
.
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With these assumptions, the objective function can be rewritten as:

max
f

∑

v

⎛

⎝− log Zv +
∑

n∈Nχ(v)

f(n) · f(v)

⎞

⎠ ,

where Zv =
∑

u∈V exp(f(v) · f(u)) can be approximated by negative sampling
[14]. In addition, this objective function can be optimized by stochastic gradient
descent. Note that to have reliable performance, each node in the graph will
be treated as the source of t random walks. These generated t × |V | random
walks will be exploited to learn the node features by stochastic gradient descent.
After learning node features, we will use the feature representations of experts
to predict the remaining team members.

Team Formation. Given each expert node v ∈ V has a learned feature rep-
resentation vector f(v) and the query task T = 〈L, Sd,K〉, we aim to find the
set of remaining team member Sr. The basic idea is that experts with similar
feature vectors tend to collaborate with each other. Therefore, by measuring the
distance between a candidate expert u and the set Sd of designated experts, and
can report the K experts with the lowest distance values as the recommended
team members. Specifically, we define the distance δ(u, Sd) between candidate
u ∈ V \ Sd and Sd as:

δ(u, Sd) =

∑
v∈Sd

‖f(u) − f(v)‖2
|Sd|

,

where ‖·‖2 is the L2 distance. Those K expert nodes with lowest values δ(u, Sd)
will be recommended as the remaining formed team members. It is worthwhile
noticing that if no designated experts are given (i.e., Sd = ∅), we cannot compute
the distance δ(u, Sd). In such a case, as we also have the feature vector for each
required skill label l ∈ L, we alternatively compute the distance δ(u,L) between
candidate expert u and the required label set L. The corresponding intuition is
that a proper team member needs to be accommodated with the required labels
in the feature space.

3.2 The Biased-n2v Method

The original skip-gram model (i.e., n2v) is to learn the feature vectors f based
each node’s neighborhood in the network. node2vec [4] has proposed a random
walk mechanism that fuses the Breadth-first Search and Depth-first Search in
the graph. The idea is that nodes possess similar random walk-sampled neigh-
borhood should lead to similar feature vectors. However, such a random walker
purely relies on the collaboration network structure. The labels (i.e., skills) asso-
ciated by each expert node are ignored in the random walk-based neighborhood
sampling. Eventually, the skill label knowledge cannot be modeled in the fea-
ture representation. For example, suppose that both experts vi and vj frequently
co-work with experts va and vb. Then vi and vj tends to work together if the
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original n2v is adopted. However, vi may collaborate with va and vb based on
skill lx while vj may work with va and vb for skill ly. We think that a better fea-
ture representation learning method should further take nodes’ labels and topics
into account so that the collaboration preferences of experts can be modeled.

Let T be the set of topics of expertise in a certain dataset. Each expert
can adopt multiple topics. Each skill can also belong to multiple topics. In our
experiments in Sect. 4, we consider “conferences” in DBLP data as topics, and
“genres” in IMDb data as topics. We first measure the expertise bias of an expert
v on a certain expertise topic τ . Let πτ be the adoption ratio of topic τ over
all topics, i.e., πτ = aτ∑

τ′∈T aτ′ , where aτ is the number of adoption for topic
τ by all experts. We also define an expert v’s adoption contribution on topic τ
(denoted by πτ (v)) as the number of adoption for topic τ by expert v (denoted
by aτ (v)) divided by the number of adoption for topic τ by all experts, i.e.,
πτ (v) = aτ (v)∑

u∈V aτ (u)
. By treating πτ and πτ (v) as two probability distributions,

we propose to exploit the Kullback-Leibler divergence to estimate the bias bv of
expert v’s topic adoption, given by:

bv =
∑

τ∈T
πτ (v) log

πτ (v)
πτ

.

A higher score of bias bv for expert v means that her preference of topic adoption
in different teams is far from the general experts’ preferences. Therefore, higher
bias may lead to less possibility to collaborate with other experts.

To apply the bias of each expert into the learning of feature representation,
we aim to refine the edge weights between experts by using the bias values so
that the neighborhood sampled by the random walk mechanism can reflect the
collaboration bias of experts. Since the bias is defined for each expert, we re-
define the edges in the social network as directed ones so that edge weight wi→j

from node vi to vj can differ from that wj→i from vj to vi. The biased edge
weight is defined as: wi→j = wij × 1

bj
(i.e., wj→i = wij × 1

bi
, where wij is the

original edge weight in the social network. We obtain edge weights by using
Jaccard coefficient: wij = |T (i)∩T (j)|

|T (i)∪T (j)| , where T (i) is the set of topics that expert
i had ever involved. As lower bias scores raise edge weights, and thus boost the
possibility of being sampled for learning the feature representation.

3.3 The Guided-n2v Method

While Biased-n2v attempts to model the bias preference of topic adoption of
experts, in which the experts’ topics are considered implicitly as bias values,
we alternatively propose the second method to explicitly use the interactions
between experts and skills. The basic idea is construct a heterogeneous graph
to jointly model the collaborations between experts, the correlations between
skills, and the adoption between skills and experts. Then we devise a guided
random walk mechanism for sampling the neighborhood in such a constructed
heterogeneous graph for node2vec.
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Heterogeneous Expertise Graph. A heterogeneous expertise graph H =
(V, E) is defined as: its node set is an union of expert set V and label set L, given
by V = V ∪ L. The edge set of H is constructed by three parts E = E ∪ R ∪ Q:
(a) E is the edge set E in the social network of experts G, (b) R is the set
of correlation links between labels, in which each rxy ∈ R indicates labels lx
and ly have ever been required by at least one task, and (c) Q is the edge set
of adoption links between experts and labels, in which each qix ∈ Q represents
that the label lx is ever adopted by expert vi. In addition, each type of edge
is associated by a weight value: (a) the weight wE

i→j for each edge eij ∈ E

is defined by wE
ij = |C(i)∩C(j)|

|C(i)∪C(j)| , where C(i) is the set of experts who had ever
collaborated with expert i, (b) the weight wR

xy for each edge rxy ∈ R is defined
by wR

xy = |T (x)∩T (y)|
|T (x)∪T (y)| , where T (x) is the set of tasks that require label x, and (c)

the weight wQ
ix for each edge qix ∈ Q is equally defined as wQ

ix = 1.
Given the heterogeneous graph H is different from the social network G in

terms of multiple types of nodes and edges, we need to re-define the mechanism of
random walk so that each expert’s feature vector can be better learned. The basic
idea is that each expert in H is characterized by not only her past collaborators,
but also those who adopt similar skills (even they have never co-worked together).
While the former part can be captured by the social links E ⊆ E , the latter needs
to be modeled by links in R ⊆ E and Q ⊆ E . That says, two experts with similar
learned feature vectors if they share more collaborators via E and have similar
preference of skill adoption via R and E in the heterogeneous graph H. To realize
such an idea, we propose to re-define the random walk mechanism so that the
neighbors of each expert in H can be sampled to preserve the her collaborators
and the other experts with similar adopted skills.

Since the traversal of the random walker is determined by the transition prob-
abilities between nodes, we re-define the transition probabilities by introducing
three parameters λ, μ, and φ by following the formulation of the second-order
random walk [4]. Consider that the random walk currently arrives at node v
from node t, and needs to further surfer to one of v’s neighbors x according to
the corresponding transition probability ωv→x. We define ωv→x based on the
types of nodes v, t and x, which can be divided into two cases. First, if either
t ∈ V and v ∈ V or t ∈ L and v ∈ V :

ωv→x =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ · wv→x if dtx = 0
wv→x if dtx = 1
μ · wv→x if dtx = 2, x ∈ V

φ · wv→x if dtx = 2, x ∈ L

,

where dtx represents the distance of shortest path between node t and x in H.
Second, if t ∈ V and v ∈ L:

ωv→x =

{
0 if dtx = 0
wv→x if dtx 
= 0

.
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Based on the refined transition probability ωv→x, node2vec is allowed to sample
the neighboring nodes and learn the feature representation of each expert vi

in the heterogeneous graph H. Note that the parameters λ, μ, and φ control
the search strategy towards “breadth-first search” or “depth-first search”. As
different datasets may have various settings of parameters λ, μ, and φ, we will use
a validation data subset to the parameter values that lead to better performance.

4 Experimental Results

We conduct experiments to answer three questions. First, we wonder whether the
proposed feature representation learning methods can better perform in forming
teams, compared with existing optimization-based methods. Second, by varying
the number of designated experts and the number of experts to be found, how
does the performance of our methods evolve? Third, how does the performance
of predictive team formation be affected by the social connections among the
designated experts?

Datasets. We employ two datasets for the experiments. The first is DBLP,
in which authors are experts, and authors of each paper are considered as
a team. By removing stop words, keywords in paper titles are considered as
skills. We collect papers published in conferences up to 2017 from a variety
of areas: Database = {SIGMOD, VLDB, ICDE, ICDT, EDBT, PODS},
Data Mining = {KDD, WWW, SDM, PKDD, ICDM}, Artificial Intel-
ligence = {ICML, ECML, COLT, UAI}, and Theory = {SODA, FOCS,
STOC, STACS}. We consider authors publishing at least three papers. For an
author, skills are those keywords that have been adopted by her at least two
times. End up we have 10,724 papers, 3,716 experts, and 827 skills. The second
is IMDb. Movies from 2000 to 2009 are collected, in which actors are experts,
and actors of each movie are considered as a team. We consider actors involv-
ing in at least four movies. By removing stop words, keywords in movie titles
are considered as skills. For an actor, skills are those keywords that have been
adopted by her at least two times. Totally we have 3,513 movies, 3,716 experts,
and 672 skills.

Competing Methods. The main objective of this work is to form the team via
prediction. Therefore, we aim at examining whether the performance of feature
representation learning is better than existing optimization-based methods. The
first two competing methods are EnhancedSteiner and CoverSteiner algorithms
proposed to solve the typical team formation problem [7]. When required skills
or experts are given, both algorithms find the team members by minimizing the
communication cost between members. EnhancedSteiner was validated to out-
perform existing baselines. The other method for the experiments is node2vec
[4], which is one of the state-of-the-art method of feature representation learn-
ing. If node2vec can outperform optimization-based methods, we can say that
feature representation learning can be more suitable to solve the team formation
problem. In addition to the original node2vec applied on the social network G
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of experts, we have node2vec-h applied on the heterogeneous expertise graph H.
The parameter settings (i.e., dimensions, walks per node, walk length, and so
on) used for node2vec algorithm is the same as [4]. Last, we would like to under-
stand how the proposed Biased-n2v and Guided-n2v perform in both datasets.
The parameters (λ, μ, φ) we use in Guided-n2v for DBLP and IMDb datasets
are (1, 0.5, 0.2) and (2, 1, 0.5), respectively (these values lead to the best per-
formance).

Evaluation Settings. The experiments consist of three parts. First, we examine
the performance by varying the number of team members to be found (i.e.,
|Sr| = K − |Sd|). Second, we report the performance by varying the number of
designated experts (i.e., |Sd|). Third, to understand how the social structure of
designated experts Sd in the query team affects the performance, we present the
results by varying the social density ψ. The social density of Sd is defined as:

ψ(Sd) =

∑
u,v∈Sd,u �=v c(u, v)

(|Sd|
2

) ,

where c(u, v) = 1 if node u is connected with node v; c(u, v) = 0, otherwise. We
consider Recall as the evaluation metric, which is defined as: Recall = |Sr∩Ŝr|

|Ŝr| ,

where Sr is the set of predicted team members and Ŝr is the set of true remaining
team members (i.e., ground truth), and |Sr| = |Ŝr|. Among all of the teams in
each dataset, we use 80% teams for training (i.e., construct the social network
and the heterogeneous graph, and learn the feature vectors of experts), and use
the other 20% for testing (i.e., serve as the query tasks and compile their sets of
required skills). In each of the testing query task, the set of designated experts
(if specified) is randomly selected from all team members.

(a) DBLP (b) IMDb

Fig. 1. Results by varying the number of team members to be predicted (i.e., |Sr|).

Evaluation Results. The results by varying the number of remaining team
members to be predicted are exhibited in Fig. 1, and the results by varying the
number of designated experts are shown in Fig. 2. We can have the following
findings. First, the approach of feature representation learning (e.g. node2vec)
significantly outperforms the optimization-based methods CoverSteiner and
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(a) DBLP (b) IMDb

Fig. 2. Results by varying the number of designated experts (i.e., |Sd|).

EnhancedSteiner. Such results imply the existing optimization-based methods
fall to identify the experts that will be truly adopted by teams. In addition, the
distance measure between candidate members and designated experts in the fea-
ture space can to some extent reflect the potential collaboration in team forma-
tion. Second, when either the number of remaining team members or the number
of designated experts increase, the feature representation learning approaches
are able to stably lead to significantly higher Recall values. These results reveal
that feature learning can be more effective for larger teams, and more desig-
nated experts can provide more clues related to expertise and collaboration for
the query task. Last but not least, our extended Biased-n2v can outperform
node2vec in the social network of experts. And our extended Guided-n2v is bet-
ter than node2vec h in the heterogeneous expertise graph. Furthermore, among
these feature learning methods, Guided-n2v generally leads to the highest Recall
values. Such outcomes prove the usefulness of implicitly modeling the preferences
of topic adoption for experts (Biased-n2v and explicitly learning the expert-
expert, skill-expert, and skill-skill interactions in an joint manner Guided-n2v).
Eventually we recommend using Guided-n2v to find the expert members for the
proposed predictive team formation problem. The results for different intervals
of social density ψ(Sd) by using Guided-n2v are exhibited in Fig. 3. We can find
that when the social density of the set of designated experts gets higher, the
Recall value tends to accordingly get boosted. Such results unveil some insights.
If the team formation can be built on some experts who have ever collaborated
with each other (e.g. find experienced employees to execute a new project in a
software company by providing team members who had ever co-worked, it can
benefit in finding the proper remaining team members who can be truly adopted.
To better form an effective team, we recommend the team organizers to select
the designated experts who have ever collaborated with each other.

5 Related Work

Team formation is proposed to find a set of experts such that not only a set
of required skills are covered, but also the communication cost among team
members is minimized [7]. There are a series of follow-up extensions considering
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(a) DBLP (b) IMDb

Fig. 3. Results of different social density ψ(Sd) for the set of designated experts by
Guided-n2v.

various real scenarios: jointly finding a team leaders and forming the team [5],
simultaneously tackling multiple sets of required skills [1], specifying the number
of experts for each skill [10], allowing geographical and team-size constraints [15],
imposing swarm-based optimization [3], and recommending other individuals to
replace some of existing team members [12]. Community Search [16] alternatively
finds a densely-connected subgraph based on a set of given nodes, instead of
required skills. We claim that existing studies found team members are not
well proven to be truly adopted by the team organizers. We think a good team
formation algorithm should not only recommend team members but also ensure
them to be adopted. This is the essential difference of past studies from the
present work. Recently, the team member replacement [12] is proposed to find a
suitable alternate to replace the existing team member who is no longer available.

Social event organization aims at composing a group of persons that satis-
fying various kinds of event requirements. Socio-spatial Group Query [19] is to
find a group of persons who are not only geographically close to each other but
also acquainted with each other. A follow-up work [9] recommends a group of
users satisfying required labels and being acquainted with each other for an event
host. SEO [11] further composes multiple event groups simultaneously. Market-
ing effect maximization [20] aims to find a set of nodes that are geographically
close to the event location and attract more those users satisfying event themes.
The bottleneck-aware social event arrangement (BSEA) [18] further considers
social influence to recommend events for users.

6 Conclusions

In this paper, we answer two questions. The first is how to find the team members
of a query task with required skills and various numbers of designated experts
and ensure the found team members will be truly adopted by the team. We
show that feature representation learning approaches can better predict the team
members, compared with existing optimization-based team formation methods.
The extended Biased-n2v and Guided-n2v methods can further lead to higher
Recall values, compared with the node2vec method. Second, we unfold how the
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social connections among designated experts influence the performance of predic-
tive team formation. We find that if the designated experts tightly connect with
each other, the performance of identifying the true team members get boosted.
We suggest team organizers to provide experts who have ever co-worked so that
the predicted team members can better fit the requirement of executing the task.
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Abstract. Predicting the geolocation of social media users is one of
the core tasks in many applications, such as rapid disaster response,
targeted advertisement, and recommending local events. In this paper,
we introduce a new approach for user geolocation that unifies users’ social
relationships, textual content, and metadata. Our two key contributions
are as follows: (1) We leverage semantic similarity between users’ posts to
predict their geographic proximity. To achieve this, we train and utilize a
powerful word embedding model over millions of tweets. (2) To deal with
isolated users in the social graph, we utilize a stacking-based learning
approach to predict users’ locations based on their tweets’ textual content
and metadata. Evaluation on three standard Twitter benchmark datasets
shows that our approach outperforms state-of-the-art user geolocation
methods.

Keywords: Geolocation · Twitter · Local intreractions

1 Introduction

Associating data with the particular geolocation from which it originated creates
a powerful tool for different applications such as rapid disaster response, opin-
ion analysis, and recommender systems [1,21]. However, only a small amount
of social media data has been geolocation-annotated; for example, less than 1%
of Twitter data has geo-coordinates provided [18], even though the platform
supports geolocation metadata. Hence, recent work has focused on automatic
geolocation inference (geoinference) of social media posts or users. User geolo-
cation is the task of predicting the primary (or “home”) location of a user from
available sources of information, such as text posted by that individual, or net-
work relationships with other individuals [12]. Geolocation methods usually train
a model on the small set of users whose locations are known, and predict loca-
tions of other users using the resulting model. These models broadly fall into
three categories: text-based [8,31], network-based [18], and hybrid methods that
combine both text and network models [6,7,28,30].
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10939, pp. 803–815, 2018.
https://doi.org/10.1007/978-3-319-93040-4_63
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Herein, we propose a hybrid method to tackle user geolocation prediction in
Twitter. Our main contributions can be summarized as follows: (1) We leverage
semantic textual similarity between users’ posts to predict which individuals
in the ego network may be most proximate. The main idea is that users who
live nearby are more likely to influence each other and discuss more local topics.
Detecting these local interactions improves the accuracy of the label propagation
algorithm used for geolocation inference. To achieve this, we train and utilize
a powerful word embedding model over 235 million tweets. (2) To deal with
isolated users in the social graph, we employ a stacking-based learning approach
to estimate users’ locations based on their tweets’ textual content and metadata.
(3) We show that including these methods in a hybrid geoinference approach
achieves superior results than state-of-the-art methods.

The rest of the paper is organized as follows. We review the previous works
in Sect. 2. Utilized data is described in Sect. 3. Section 4 explains the proposed
approach. The experimental results are given in Sect. 5, and finally, we conclude
the paper and outline possible future work in Sect. 6.

2 Related Work

2.1 Text-Based Methods

Text-based methods utilize the geographical bias of language use in social media
for geolocation. These methods have widely used probability distributions of
words over locations. Maximum likelihood estimation approaches [3] and lan-
guage modeling approaches minimizing KL-divergence [31] have succeeded in
predicting user locations using word distributions. Topic modeling approaches
to extract latent topics with geographical regions [8,15] have also been explored
considering word distributions. Supervised learning methods with word features
are also popular in text-based geoinference. Multinomial Naive Bayes [11,12],
logistic regression [12,34], hierarchical logistic regression [34], and multi-layer
neural network with stacked denoising autoencoder [22] have realized geoloca-
tion prediction from text. A semi-supervised machine learning approach by [2]
has also been produced using a sparse-coding and dictionary learning. In [16], a
kernel-based method has been used to smooth linguistic features over very small
grid sizes and consequently alleviate data sparseness. More recently, a neural
network-based geolocation approach has been proposed in [29]. The authors used
the parameters of the hidden layer of the neural network as word and phrase
embeddings, and performed a nearest neighbor search on a sample of city names
and dialect terms. While having good results, text-based approaches are often
limited to those users who generate text that contains geographic references [18].

2.2 Network-Based Methods

Network-based methods rely on the geospatial homophily of interactions between
users. An early work by [5] proposed an approach in which the location of a
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given user is inferred by simply taking the most-frequently seen location among
its social network. In [18], the idea of location inference has been extended as
label propagation over some form of friendship graph by interpreting location
labels spatially. Locations are then inferred using an iterative, multi-pass proce-
dure. This method has been further extended by [4] to take into account edge
weights in the social network, and to limit the propagation of noisy locations.
They weigh locations as a function of how many times users interacted there,
hence favoring locations of friends with evidence of a close relationship. How-
ever, the number of interactions between users does not necessarily correlate
with their location proximity. In [33], a collective geographical embedding has
been proposed for geoinference. The main limitation of network-based models is
that they completely fail to geolocate users who are not connected to geolocated
components of the graph (i.e., isolated users).

2.3 Hybrid Methods

Li et al. [20] proposed a geolocation method by integrating both friendship and
content information in a probabilistic model. Rahimi et al. [30] showed that
geolocation predictions from text can be used as a back-off for disconnected users
in a network-based approach. In [28], a hybrid approach has been proposed by
propagating information on a graph built from user mentions in Twitter mes-
sages, together with dongle nodes corresponding to the results of a text-based
geolocation method. Rahimi et al. [29] have also proposed a text geoloation
method based on neural network and incorporated it into their network-based
approach [28]. Metadata such as location fields have also been useful as effective
clues to predict geolocation [14]. Different geoinference approaches have been
proposed to consider text and metadata information simultaneously. Combina-
tory approaches such as dynamically weighted ensemble method [23], stacking
[12], ensemble learning method [17], and average pooling with a neural network
[25], have strengthened geolocation prediction.

3 Data

We have used three benchmark Twitter user geolocation datasets in our exper-
iments: (1) TwUs [31], (2) TwWorld [11], and (3) WNUT [13]. These
datasets have been used widely for training and evaluation of geolocation mod-
els. They are all pre-partitioned into training, development and test sets. Table 1
summarizes descriptive statistics for the three datasets.

4 The Proposed Approach

Figure 1 illustrates an overview of the proposed approach. We first construct
a social graph as a representation of users’ social relationships (Sect. 4.1). A
clustering-based approach is used to refine the social graph by filtering highly-
mentioned users (celebrities). We then propose a new method based on word
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Table 1. Datasets Details

Dataset Scope Tweets Users Train Test Dev

TwUs United States 38M 450K 430K 10K 10K

TwWorld World 12M 1.4M 1.38M 10K 10K

WNUT World 13M 1.02M 1M 10K 10K

embeddings to detect local interactions and leverage them to improve geoinfer-
ence performance (Sect. 4.2). To this end, for each pair of connected users in the
graph, we estimate their proximity by computing their tweets’ semantic similar-
ity, and weigh the corresponding edge with the estimated similarity score. To
deal with isolated users in the social graph, we employ a back-off strategy to take
advantages of other sources that might contain location information (Sect. 4.3).
For this purpose, we apply an ensemble learning approach over users’ tweets
and metadata to estimate the locations of test users. Finally, we run a label
propagation algorithm over the social graph to infer the locations of users with
unknown locations (Sect. 4.4).

Fig. 1. Overview of the proposed approach

4.1 Construction of Social Graph

We build an undirected graph from interactions among Twitter users based on
@-mentions in their tweets. In this graph, nodes are all users in a dataset (train
and test), as well as other external users mentioned in their tweets and undi-
rected edges are created between two users if either user mentioned the other1.
1 We consider uni-directional mentions, since bi-directional mentions are too rare to

be useful in the datasets used in our experiments [30].
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Ebrahimi et al. [6,7] showed that pruning the social graph by filtering celebrities
(i.e., users that are mentioned by more than T distinct users) effectively decreases
the propagation of noisy locations, and consequently improves the performance
of geoinference. Following [6,7], we utilize a density-based clustering algorithm,
DBSCAN [9], to cluster celebrity’s geolocated mentioners based on their geo-
graphical coordinates. If the algorithm outputs only one cluster containing more
than the predefined proportion (δ) of total geolocated mentioners, the celebrity is
considered as a Local one. Otherwise, it will be considered as a Global celebrity.
To construct a refined social graph, we remove Global celebrities and preserve
Local ones as useful location indicators.

DBSCAN requires two parameters: ε (eps) and MinPts. We set parameter
ε to 70 for TwUs, 130 for TwWorld, and 80 for WNUT. Following [6,7],
we set the MinPts dynamically to η = 30 percent of total number of points,
and parameter δ to 0.8. Celebrity Threshold (T ) was set to 5 for TwUs and
WNUT, and 15 for TwWorld. All parameters were chosen using grid search
with development sets of the three datasets.

4.2 Predicting Geographical Proximity from Linguistic Similarity

Previously, [18] employed two traditional similarity metrics to predict users’
geographical proximity, however, they reported weak correlations for the surface-
level metrics. This was our motivation for a deeper analysis and comparing
semantic content of tweets to predict local interactions.

Recent developments in distributed semantic representations (e.g., [24]), also
called word embeddings, have been shown to be highly effective in measur-
ing semantic similarity between vocabulary terms. Word embeddings techniques
assign each term a low-dimensional (comparing to the size of vocabulary) vector
in a semantic vector space. In this space, close vectors are supposed to demon-
strate high semantic or syntactic similarity between the corresponding words.
We utilize word2vec [24] as a successful implementation of word embeddings
that learns a vector representation for each word using a shallow neural network
language model. Specifically, it uses a neural network architecture (the skip-
gram model) that consists of an input layer, a projection layer, and an output
layer to predict nearby words. Each word vector is trained to maximize the log
probability of neighboring words in a corpus, i.e., given a sequence of words
w1, . . . , wT ,

1
T

T∑

t=1

∑

j∈nb(t)

log p(wj |wt) (1)

where nb(t) is the set of neighboring words of word wt and p(wj |wt) is the
hierarchical softmax of the associated word vectors �wj and �wt.

The training on very large datasets allows the model to learn complex
word relationships such as �king − �man + �woman ≈ �queen [24] and �Sydney −

�Australia+ �Germany ≈ �Berlin. We have used a large corpus of Twitter micro-
posts (235M tweets) to infer the word embeddings (Sect. 5.1).
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In order to measure semantic similarity between tweets based on word embed-
dings, we employ the Word Mover’s Distance (WMD) algorithm [19]. This algo-
rithm has been proposed to accurately estimate the similarity degree between
a pair of documents, and shown highly efficient in measuring the short-text
semantic similarity [26]. Adopting to our problem, the WMD formulates the dis-
similarity degree between a pair of tweets, T and T ′, by calculating the minimum
amount of summing up individual distances (travel costs) that embedded words
in T need to travel to reach the embedded words in T ′:

WMD(T, T ′) = min
F≥0

∑

wi∈T

∑

wj∈T ′
Fwiwj

× d(wi, wj)

subject to,
∑

wi∈T

Fwiwj
=

c(wj , T
′)

|T ′| ,∀wj ∈ T ′,
∑

wj∈T ′
Fwiwj

=
c(wi, T )

|T | ,∀wi ∈ T

(2)

where F is a flow matrix which indicates how much probability mass should flow
(or travel) from word wi in T to word wj in T ′, and vice versa; c(wi, T ) denotes
the occurrence frequency of the word wi in the tweet T . d(wi, wj) denotes the
individual distance (or travel cost) between a pair of words wi and wj correspond-
ing to their learned word embeddings �wi and �wj : d(wi, wj) = ‖ �wi − �wj‖2. Having
normalized Word Mover’s Distance between two tweets T and T ′, we compute
the semantic textual similarity (STS) as: STSwmd(T, T ′) = 1 − WMD(T, T ′).
Consequently, each edge in the social graph is weighted by the semantic textual
similarity of tweets posted by connecting users.

4.3 Predicting Locations of Isolated Users

As reported by [30], many test users are not transitively connected to any train-
ing node. It results in the label propagation failing to assign a location to isolated
users. This usually happens when users do not use @-mentions, or when a set of
nodes constitutes a disconnected component of the graph [30].

To alleviate this issue, we take advantages of both tweets’ textual content and
user-declared metadata to estimate the location of each test user. The predicted
location is then used as an initial estimation during label propagation. To this
end, we use the stacking approach proposed by [12] to combine together the tweet
text (Text) and metadata fields: description (Desc), user-declared location
(Loc) and user-declared time zone (TZ). The stacking approach consists of
the three following steps: First, a multinomial naive Bayes base classifier (L0) is
trained for each data type (i.e., Text, Desc, Loc, and TZ). Next, the outputs of
the four classifiers on the training set are obtained using 10-fold cross validation.
Lastly, a meta-classifier (L1 classifier) is trained over the base classifiers, using
l2-regularized logistic regression.

The stacking-based estimated location is attached as dongle node [30] to
each test user in the social graph. The dongle nodes are treated in the same
way as other labeled nodes (i.e., the training nodes). This iteratively adjusts the
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locations based on both the known training users and predicted test users. In
such a way, the inferred locations of test users will better match neighboring
users in their sub-graph, or in the case of disconnected nodes, will retain their
initial classification estimate.

4.4 Label Propagation with Modified Adsorption

We utilize Modified Adsorption [32] as our label propagation algorithm, since it
allows different levels of influence between prior/known labels and propagated
label distributions. Modified Adsorption is a graph-based semi-supervised learn-
ing algorithm which has been used for open domain class-instance acquisition.
It computes a soft assignment of labels to the nodes of a graph G = (V,E,W ),
where V is the set of nodes with |V | = n, E is the set of edges, and W is an edge
weight matrix. Out of the nl + nu = n nodes in G, we have prior knowledge of
labels for nl nodes (training users), while the remaining nu nodes are unlabeled
(test users). Assume C is the set of labels, with |C| = m representing the total
number of labels. Y is the n × m matrix storing training label information. The
lth element of the vector Yv encodes the prior knowledge for vertex v. Another
vector, Ŷ ∈ R+, is the output of the algorithm (estimated label distribution for
the nodes), using similar semantics as Y . The goal of Modified Adsorption is to
compute Ŷ such that the following objective function is minimized:

C(Ŷ ) =
∑

l

[
μ1(Yl − Ŷl)TS(Yl − Ŷ ) + μ2Ŷ

T
l LŶl + μ3‖Ŷl − Rl‖22

]
(3)

where μ1, μ2, and μ3 are hyperparameters; L is the Laplacian of an undirected
graph derived from G, but with revised edge weights; and R is an n × m matrix
of per-node label prior, if any, with Rl representing the lth column of R. S is a
diagonal binary matrix indicating if a node is labelled or not.

In our experiments, we set the label confidence for training and test users to
1.0 and 0, respectively. For each Local celebrity, we initialize its location to the
weighted median latitude and weighted median longitude of all its geolocated
mentioners [6,7]. We set the label confidence for Local celebrites to 0.6, so that
their label can be changed over the propagation process. Training users along
with Local celebrities with their corresponding labels confidences are added to
the seed set. We set μ1, μ2, and μ3 to 0.9, 0.15, and 0, respectively. It should
be noted that optimal values of μ1, μ2, and μ3 have been chosen using a grid
search with development sets of the three datasets. Finally, we run the Modified
Adsorption algorithm iteratively until convergence, which usually occurs at or
before 10 iterations.

5 Experimental Results

5.1 Experiment Setting

To infer the word embeddings, we have used tweets from training sets of TwUs
(38M tweets), WNUT (9M tweets) and TwWorld-Ex (an extended version of



810 M. Ebrahimi et al.

TwWorld comprising 188M tweets [11]). The resulting dataset contains 235M
raw tweets. In the preprocessing step, we used replacement tokens for URLs,
mentions and numbers. We did not replace hashtags as doing so experimentally
demonstrated to decrease the accuracy.

To construct look-up table containing per-word feature vectors, we used the
Python gensim2 library which wraps the original Google Word2Vec C code. The
model was trained using the Skip-gram architecture and negative sampling (k =
5) for five iterations, with a context window of 3 and subsampling factor of 0.001.
It is noteworthy that to be part of the vocabulary, words should occur at least
five times in the corpus. The final word2vec model has a vocabulary of 3M words
and word representations of dimensionality 400. We chose word embeddings of
size 400 because smaller embeddings experimentally showed to capture not as
much detail and resulted in a lower accuracy. Larger word embeddings, on the
other hand, made the model too complex to train.

5.2 Evaluation Metrics

We evaluate our approach in the following three commonly used metrics for user
geolocation: Acc@161 : The percentage of predicted locations which are within a
161 km (100 mile) radius of the actual location [3], as a proxy for accuracy within
a metro area; Mean : The mean error (distance from the predicted location to
the actual location) in km [8]; and Median : The median value (in km) of error
distances in predictions [8].

5.3 Results

Tables 2 and 3 present the geolocation inference results over the three datasets.
The results show that our proposed hybrid method (GeoCelWe-Stack)
achieves the best performance in terms of all evaluation metrics. Our network-
based method (GeoCelWe), on the other hand, outperforms existing network-
based and text-based methods.

To evaluate the contribution of different components, we compare the median
errors for variants of our approach. As can be seen in Fig. 2, the perfor-
mance deteriorates the most when we exclude the stacking-based component
(GeoCelWe). The performance further drops when we eliminate local inter-
action detection component, and use the number of mentions in tweets as edge
weight instead of utilizing tweets’ semantic similarities (GeoCel). The main rea-
son is that users’ location proximity is much better correlated with their tweets’
semantic similarity than the number of mentions. The performance also declines
when we exclude celebrity filtering component and remove all celebrities from
the social graph (Geo). It confirms the importance of keeping Local celebrities
and propagating their locations through the social graph. Even so, our analy-
sis show that in some cases, ordinary users who have mentioned by lots of their
friends have been wrongly identified as Local celebrities. One potential approach

2 https://radimrehurek.com/gensim/.

https://radimrehurek.com/gensim/
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Table 2. Performance of Text-based (TB), Network-based (NB), and Hybrid (Hyb)
geolocation methods over TwUs and TwWorld datasets (“-” signifies that no results
were published for the given dataset).

Category TwUs TwWorld

Acc@161 Mean Median Acc@161 Mean Median

WB-Uniform [34] TB 49 703 170 32 1714 490

WB-KDTree [34] TB 48 686 191 31 1669 509

MDN-Shared [27] TB 42 655 216 - - -

MLP+KDTree [29] TB 54 562 121 35 1456 406

MLP+K-Mean [29] TB 55 581 91 36 1417 373

LP-Rahimi [30] NB 37 747 431 - - -

MadCelB [28] NB 54 709 117 - - -

MadCelW [28] NB 54 705 116 45 2525 279

GeoCel [7] NB 59 546 83 48 2027 215

LP-LR [30] Hyb 50 620 157 - - -

MadCelW-LR [28] Hyb 60 529 78 53 1403 111

MadCelW-MLP [29] Hyb 61 515 77 53 1280 104

GeoCel-BK [7] Hyb 66 438 56 54 1216 95

GeoCelWe NB 60 472 67 49 1892 197

GeoCelWe-Stack Hyb 69 371 43 59 394 31

Table 3. Geolocation performance over WNUT dataset. We have also reported the
Accuracy to make our results comparable with the state-of-the-art methods.

Category WNUT

Accuracy Acc@161 Mean Median

FujiXerox [25] Hyb 47.6 - 1122 16.1

CSIRO [17] Hyb 52.6 - 1929 21.7

GeoCelWe NB 42.4 56 1853 98

GeoCelWe-Stack Hyb 55.7 70 1018 0

to distinguish such users from Local celebrities is to look at bi-directional men-
tions as an indication of “real friendship”. However, the utilized datasets do not
include enough bi-directional mentions to be useful for this purpose.

It can be concluded that: (1) Using semantic textual similarity of tweets
makes our approach able to detect and leverage local interactions in user’s ego
network. It results in improving the accuracy of label propagation algorithm and
ultimately the quality of geoinference. (2) Utilizing the stacking-based approach
to estimate the locations of isolated users can cover the limitations of network-
based approach and significantly improve the prediction performance.
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Fig. 2. Comparing the effect of different components on geoinference performance

5.4 Other Textual Similarity Measures

As a part of our experiments, we have used alternative textual similarity methods
to test whether they can improve users’ proximity prediction for geolocation.
To this end, we have developed the following metrics to measure the semantic
similarity of tweets.

1. Cosine Similarity (CoSim) between TF-IDF Vectors
2. Jensen-Shannon Divergence (JSD) between Probability Distribu-

tions
3. WMD with Word Embeddings Trained on Google News3 (WE-GN)

For the last metric, we replace our word embedding model trained on Twitter
data (WE-TW) with the pre-trained Google News word2vec model, and use
WMD algorithm to compute the semantic similarity of tweets. Since this
model has been learned over formal text, tweet content is normalized before
measuring textual similarity. To this end, we utilize the Twitter normalization
lexicon [10] to replace abbreviations and slangs with the correct versions.

Figure 3 shows the performance of our geoinference approach (in terms of
median error over the development sets of the three datasets), using different
similarity metrics. From the comparison results, we make two observations as
follows. Firstly, similarity measures based on word embeddings, specially when
trained on Twitter data, consistently outperform other metrics. Secondly, com-
paring word embedding models, our trained model (WE-TW) is capable of mea-
suring geographic closeness of tweets much better than Google News model (WE-
GN). One possible reason is the potential differences between genres in Twitter
data and news text. Moreover, as reported in several social media dialect studies
[12], slangs (particularly regional slangs) and abbreviations provide cues about
authors’ geographic locations. Given that, this is likely that normalizing tweets
eliminates useful information about geographic proximity.

3 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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Fig. 3. Comparing geoinference performance using different similarity metrics

6 Conclusion and Future Work

In this paper, we have proposed a hybrid method to infer the locations of social
media users. We have made the following contributions: (1) We have leveraged
semantic similarity between tweets to predict users’ local interactions. To achieve
this, we have trained a powerful word embedding model over 235 million tweets.
(2) To cover the limitation of network-based methods in geolocating isolated
users, we have used an ensemble learning approach to take advantages of tweets’
textual content and metadata. (3) We have conducted comprehensive experi-
ments on three standard Twitter datasets, and demonstrated that our method
outperforms state-of-the-art geolocation methods.

As future work, we plan to look at more efficient ways of utilizing metadata,
textual, and network information in a joint model, and leveraging temporal data
(e.g., the time that a user typically posts a tweet) to improve user geoinference.
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Abstract. Smartphones have become ubiquitous in our daily lives; they are
used for a wide range of tasks and store increasing amounts of personal data. To
minimize risk and prevent misuse of this data by unauthorized users, access
must be restricted to verified users. Current classification-based methods for
gesture-based user verification only consider single gestures, and not sequences.
In this paper, we present a method which utilizes information from sequences of
touchscreen gestures, and the context in which the gestures were made using
only basic touch features. To evaluate our approach, we built an application
which records all the necessary data from the device (touch and contextual
sensors which do not consume significant battery life). Using XGBoost on the
collected data, we were able to classify between a legitimate user and the
population of illegitimate users (imposters) with an average equal error rate
(EER) of 4.78% and an average area under the curve (AUC) of 98.15%. Our
method demonstrates that by considering only basic touch features and utilizing
sequences of gestures, as opposed to individual gestures, the accuracy of the
verification process improves significantly.

Keywords: Continuous user verification � Mobile � Security
Touchscreen gestures � Sequence recognition � Context � Behavioral models
XGBoost

1 Introduction

Smartphones have become increasingly popular on a global scale. Large parts of our
personal lives, such as personal SMS messages, emails, and credit card numbers, are
accessible from our mobile devices. During 2013, 3.1 million American consumers
(one of out of every ten smartphone users) were victims of phone theft, out of which
68% were unable to recover their data after the theft occurred [1]. Moreover, sometimes
theft occurs from the victim’s hand (i.e., a device ‘snatch’) [2]. Since many users do not
lock their devices due to inconvenience [3], smartphone theft may result in unautho-
rized access to a user’s private and sensitive information. The conventional solution is
point authentication. There is a wide range of point authentication methods, but each
has its weaknesses. For example, password authentication does not adequately protect
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smartphones from attackers, because users often choose simple, easy to guess pass-
words [4, 5]. Pattern swipe unlock leaves oily residues or smudges on the screen of the
mobile device allowing attackers to deduce the pattern via a ‘smudge-attack’ by
holding the screen up to a light or using high-resolution photography [6]. The fol-
lowing are the necessary steps for continuous user verification: (1) continuously
identify the user, (2) detect when the user is not an authorized user, and finally (3) lock
the device and notify the owner when unauthorized usage has been detected. Previous
studies considered single gestures when training their machine learning algorithm.
However, intuitively, a sequence of gestures may capture a user’s behavior and intent
better than a single gesture. With this understanding, we propose a novel technique for
capturing the user’s personal behavior. Specifically, we utilize a combination of strong
features to learn a model. The features relate to the following two categories (1) Ges-
ture Trace Features. The sequence of gestures a user performs implicitly captures the
user’s behavior and intentions. Whenever a gesture is performed, we extracted features
that capture the present gesture, and aggregated features that capture the last few
gestures which the user made. For the touch features we used only basic features,
without doing any heavy manipulations on the data. The aggregated features represent
the user’s implicit context and aim to capture the user’s behavior, (2) Contextual
Features. To help segregate concepts, for each gesture made we also provide explicit
contextual features. Specifically, an indication of the app presently on the foreground,
the user’s physical activity (e.g., walking, driving), and the device’s screen orientation.
The way a person touches his/her smartphone screen is not only unique to the user but
is also unique under different contexts [9]. The combination of gesture trace features
and explicit contextual features can greatly improve the accuracy of continuous veri-
fication. Therefore, the contributions of this paper is threefold: (1) We introduce the
idea of including information from gesture traces to model the user’s behavior. To
implement this concept, we propose features which can be extracted from a trace, and
determine the minimum required length needed for a trace, (2) We propose a novel
combination of features that do not drastically consume battery life: touch gesture
traces, and explicit contextual information, (3) We evaluate the proposed method on
real data collected from 20 volunteers who used the provided device for two weeks
each while most of the other works test their approaches on volunteers in a controlled
lab environment where the natural behavior of the user cannot be modeled. This paper
completes a work-in-progress published by the authors in [10]. The rest of this paper is
organized as follows. Section 2 reviews previous work in the field. Section 3 presents
the attack scenario considered in this paper. Section 4 describes the proposed method.
Section 5 describes the evaluation setup, and Sect. 6 provides the results. Finally, in
Sect. 7 we conclude with a discussion of results.

2 Related Work

There have been many previous studies on continuous user verification for mobile
devices. A good survey of techniques can be found in [11]. We briefly review here
techniques involving touch gestures. These works in general follow the same approach:
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(1) Capture sensor data from a single gesture, (2) extract features from the gesture and
other sensors during that interval, and (3) apply a machine learning model to determine
if the gesture belongs to the authorized user. These works advance continuous user
verification by either proposing a new improved way of representing the gestures as a
feature vector or new modeling of the feature vectors to identify the true user. Tao
Feng, et al. [7] collected specific touch gesture information, including the finger motion
speed, direction, the pressure at each sampled touch point, the gesture length and touch
curvature (the slope of the gesture). This was done for a single gesture at a time. In
[12], the authors collected the context of the application running in order to improve
user authentication. In contrast to our work, they did not utilize other explicit contexts
available from the device (e.g., user’s physical activity). To the best of our knowledge,
our work is the first to utilize the information gathered from sequences of touch
gestures (what we refer to as a gesture trace). In this paper we demonstrate that better
performance is achievable by considering the last few gestures performed, as opposed
to just the present gesture. We also consider button presses made during these traces
(such as back and home button). This temporal contextual information captures the
user’s activity, and behavior. Most of previous state-of-the-art papers classify the
gestures into types such as tap, scroll, zoom, etc. In this paper we used basic raw data
such as X and Y coordinates, without specifying the type of the gesture in order to
emphasize the improvement of the accuracy by utilizing sequences of gestures. In
addition, most state-of-the-art papers did not examine real life scenarios and focused
only on predefined tasks [9], in this paper we used real life scenarios without any
constraints on the user’s behavior. Although the authors in [12, 13] have already
considered using contextual features surrounding a touch gesture, the authors either
built separate classifiers for each suggested modality [15], or excluded strong con-
textual features [8, 13, 14]. We believe that there is a strong connection between the
modalities and therefore it is logical to include all the data in a single model, and we
consider contextual features such as current application, user’s physical activity, power
consumption of the device and button’s clicks.

3 Attack Scenario

The purpose of this research is to protect the phone from usage which can cause the
owner considerable damage. We assume the following attack scenario: (1) the victim
left his/her device unattended, (2) the device was stolen by the attacker, and then (3) the
attacker attempts to perform malicious activities (send an email or instant message
using the victim’s name, browse and possibly copy photos or videos, etc.). In general,
our proposed method of continuous verification can defend against other attack sce-
narios with our loss of generality. Moreover, it is important to note that we assume
these activities can only be achieved by physically interacting with the screen. Since
our approach relies on obtaining a trace of gestures it is important to note the number of
gestures an attacker would need to perform to reach the goals above. To estimate the
number of gestures needed, we had five volunteers perform each of the above attacks

818 L. B. Kimon et al.



on somebody else’s phone. The volunteers were not informed of the purpose the
experiment. The volunteers were experienced with the victim’s platform so there was
no bias on navigation, only layout. From this experiment we found that the uninformed
thief performs at least 12–30 touch gestures to attain his/her goal. We also observed
that users tend to perform quite a lot of brief gestures when scrolling, or searching for
an icon. In attacks that involve typing, the number of gestures were considerably more.

4 Suggested Approach

In this paper, we propose a novel verification method which continuously verifies users
on mobile devices by monitoring and analyzing touchscreen gestures. To describe the
approach, we first provide the following definitions: (1) Gesture - The interaction a
user makes on the device screen, starting from the moment the finger touches the
screen, until the finger has been lifted, (2) Gesture Trace - The gestures that have been
made prior to the current gesture (within some time), (3) Context of a Gesture - The
state of the device (soft sensing) and the state of the user (hard sensing), while the
gesture was made. A binary classification model M is trained where class ‘0’ is the
authorized user, and class ‘1’ is a collection of other unauthorized users. In other
words, a feature vector x* provided to M has a label ‘0’ if the instance that the vector
represents belongs to the target user, or ‘1’ if it belongs to a random stranger, obtained
from another similar model device.

Continuous verification is provided by performing the following for every gesture
of the user;

Data Acquisition:

1. Acquire the raw sensor values for the gesture, power consumption of the device,
screen orientation, current application on the foreground, and the user’s physical
activity.

2. Store this sensor data in a local event database.

Feature Extraction:

3. Extract ng features which describe the current gesture.
4. Extract nc features which describe the context of the current gesture.
5. Extract nh aggregated features from the trace of gestures made within a time

interval.
6. Form the feature vector x* with the n ¼ ng þ nc þ nh features collected above, and

store it in the local database.

7. Form x*
T
by concatenating the last T feature vectors (x*) made.

User Verification:

8. Use the classification model M to determine if x*
T
belongs to the authorized user. If

it does, then add x*
T
the training repository (and M), otherwise lock the device and

notify the owner by email.
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To provide this service, an agent runs in the background of the device. Both the
storage of the training repository, and the induction of the machine learning model
M are offloaded to a remote server in the cloud. When there are enough instances in the
remote repository, the server induces a new model M based on the instances from this
user, and instances from other random users. The model is then pushed to the agent
running on the device. In order to support concept drifts, the model keeps updating
when new data arrives. A detailed description of these steps is provided in the sections
that follow.

4.1 Data Acquisition

The data acquisition phase consists of acquiring information that is generated on the
device. Some of this data is stored temporarily on the device in a local event database
that is later used for extracting the features which are based on recent/passed activity.
Every gesture begins with the act of touching the screen and ends with lifting the finger
from the device. One gesture can produce one or more sensor records, depending on the
length of the gesture. Each sample consists of four values: timestamp, X coordinate
(XC), Y coordinate (YC), and the area of the screen covered by the finger (AR). The
sensor records from each gesture is stored in the local event database and discarded
after sometime. As mentioned above, we decided to use only those basic touch features
instead of classifying the gestures into types (which may improve the results) because
the main goal of this paper is to introduce the influence of using a sequence of gestures
on the accuracy. Along with the touch sensor data, contextual sensors are recorded as
well. These contextual sensors fall into one of two categories:

Hard sensing – Provides additional data about the state of the user:

• User activity – the locomotion of the user, using the Android ActivityMan-
ager API. There are four predefined options: tilting, still, in vehicle, and on foot.

• Soft sensing – Provides additional data about the state of the device:
• Current application – the application running on the foreground when the gesture

was made.
• Screen orientation – the orientation of the screen when the gesture was made.

There are three possible values: portrait, landscape, and reverse landscape.
• Power consumption of the device – the power consumption of the device while the

gesture was made. We used the built-in voltage and current sensors, available via
the operating system’s API, every 30 s.

• Button pressed– events where the user presses one of the following buttons: back,
menu, short click on home button, long click on home button, volume up, volume
down, screen on, and screen off.
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4.2 Feature Extraction

Whenever a gesture is made, and the raw sensor data has been collected, feature
extraction is performed to create three feature vectors. These vectors are x*g,x

*

c, and x*h,
which are the features describing the current gesture, the features describing the current
context, and the features describing the gesture history, respectively. Table 1 contains a
brief description of each of these feature vectors. Once the features are collected
x* ¼ x*g; x

*

c; x
*

h is they are added to a local database. Let T be a set parameter which is
the sequence length of the last gestures made, which are to be analyzed. The final
feature vector presented to the machine learning classifierM, is the concatenation of the
last T feature vectors that represent the recent sequence of gestures made. Concretely,

x*
T ¼ x*t; x

*

t�1; . . .; x
*

t�T totaling T � ng þ nc þ nh
� �

features. x*
T

is also sent to the
remote server (which maintains the model M).

Gesture Features. As mentioned in Sect. 4.1, each touch gesture consists of a variable
number of sensor records (across the gesture itself). The following section describes
how we extracted the ng features for x*g. First we calculate the direction vector of the
coordinates – the difference between the values of the X and Y coordinates of every
sensor record in the gesture, and the previous record in the same gesture. The first
instance in the gesture gets a value of 0 for both features. We refer to these two features
as VX and VY. Next, in order to summarize the gesture as a constant number of
features, we segmented the gesture over the time plane as follows: Let k be the number
of equal sized partitions to make out of each gesture. When a gesture is recorded, the
samples are partitioned into k sets, for which we aggregate relevant statistics. For every
set we calculate the average and the standard deviation of each of the following sensor
records: XC;YC;VX;VY, and AR. Finally, we extract the following 6 features: the X
and Y coordinates and the area of the screen covered by the finger at the beginning and
at the end of the gesture, the number of samples in the entire trace, and the duration of

Table 1. The features extracted for each touch gesture

The features extracted n

Current Gesture
Data
x*g

• X, Y coordinates at the beginning and at the end of the gesture
• Area of the finger at the beginning and at the end of the gesture
• Segment features – the l and r of XC,YC,VX, VY, and AR
• Number of samples in the entire gesture
• Duration of the gesture

38

Contextual Data
x*c

• Application running in the foreground
• User activity
• Screen orientation

21

Gesture Trace
Data
x*t

• Touch history – l and r of the touch features during I
• Buttons – total number of times each button was clicked during I
• Power consumption – l and r of the current and voltage slopes
during I

• Number of gestures over I

89
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the trace. Every feature vector x*g is stored in the local event database. Feature vectors
older than 30 s are deleted.

Contextual Features. To create x*c, the following features were extracted: the appli-
cation running on the foreground, the user’s activity (e.g., walking, standing still…),
and the screen orientation. Because of the vast number of possible applications, we
only considered the 14 most popular apps. To represent the above features from these
apps we used a binary representation. For example, the feature ‘FacebookONScreen’
will receive the value 1 if Facebook is running on the foreground and 0 otherwise.
Therefore, 14 features were extracted for the applications, 4 features for the user’s
activity, and 3 features for the screen orientation.

Gesture Trace Features. We define the trace interval I as the time span starting from
Is seconds ago until the present time (for example Is ¼ 30).

The feature vector x*h is created in the following manner: First the feature vectors x*h

that were created during I, not including the current x*h, are retrieved from the local
event database. We calculate the average and standard deviation of the features in these
vectors collectively to produce the first ng features. Next, we make a feature for each
button type which captures the number of time each respective button was pressed
during I. Finally, we calculate the slope of the current and the voltage for each two
consecutive values over I. Using these slopes, we add features which represented their
average and standard deviation. The slopes were calculated as follows:

slopecurrent ¼ c2� c1
t2� t1

; ð1Þ

slopevoltage ¼ v2� v1
t2� t1

ð2Þ

Finally, the last feature of the x*h is the total number of gestures that occurred over I.

4.3 Verification

Once x*
T
has been attained, it is passed to the machine learning model M (stored

locally). Using M it is possible to verify whether the user is authorized. x*
T
has many

features, yet the machine learning model needs to be robust and efficient to execute.
Therefore, we opted a decision tree ensemble as our classifier, using one of the fol-
lowing machine learning algorithms: XGBoost (extreme gradient boosting) and
(2) Random Forest. Although the classification model M is stored and executed locally
on the device, M is trained, and maintained off-site on a remote server. The remote
server receives and stores the feature vectors from the participating users. Let U be the
collection of users who are a part of the system. Let ui 2U be the user of the present
device, and Mui be that user’s model. The server trains and updates Mui as a one-vs-all

classifier in the following way: All feature vectors x*
T
, which were generated by ui, are

given the label ‘0’. Then a random set of users from U are selected such that each
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selected user uj 6¼ ui. Next, all feature vectors x*
T
produced by the selected users, are

given the label ‘1’. Finally, both sets of labeled instances are joined to form a single
training set, and the model Mui is induced.

5 Experiment Setup

5.1 Data Collection

In order to collect the data, we developed an application that extracts all of the nec-
essary raw features from the mobile device (touch and contextual data). The application
had no GUI and ran in the background without interrupting regular device usage. The
application was responsible for detecting the touch events that were produced by the
device, and their context (both hard and soft sensing). The application was installed on
rooted Galaxy S4 smartphones given to 20 volunteers (eight males and twelve females,
aged 18–40). The volunteers used the phone as their own personal phone for two
weeks. All of the participants had experience with some types of smartphone and were
familiar with smartphone use. In order to collect accurate unbiased data, the partici-
pants had complete freedom to whatever they wanted to do with the device: download
applications, change settings, etc. During our evaluation we compared pairs of users
where one participant served as the owner of the phone with another participant who
served as the thief. Therefore, it was critical to maintain uniformity in the users’
measurements, and all volunteers were given a device with the same configuration:
Samsung Galaxy S4 – Android KitKat version 4.4.2. Each volunteer used the device
for two weeks, during which the data was recorded by our application. The raw data
was downloaded from the devices when the participants returned their smartphones at
the end of the experiment.

5.2 Evaluation Metrics

The area under the curve (AUC) metric was used to evaluate verification performance,
since it is known as the most appropriate method to evaluate a binary classification
model [16], especially in order to avoid the prior probability effect on the accuracy

Table 2. The average
EER results for each
number of segments
tested

EER Segments

0.08417 2
0.08340 3
0.08395 4

0.06
0.08
0.1

0.12
0.14
0.16
0.18

1 5 10 15 20 25 30 35 40 45 50 55 60

%
 E

ER

T - Sequence Size

Fig. 1. Comparison of different
sequence sizes

Table 3. The average EER
results for each number of
applications tested

EER Applications

0.08592 6
0.08484 8
0.08340 10
0.08329 12
0.08291 14
0.08321 16
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[17]. The AUC demonstrates the trade-off between the true positive rate (TPR) and
false positive rate (FPR). We also computed the equal error rate (EER) metric, which is
the rate at which the false acceptance rate (FAR) and false rejection rate (FRR) are
equal. The lower the equal error rate value, the higher the accuracy of the verification
system. The FAR and FRR are calculating as FAR ¼ #verified imposters

#imposters and

FRR ¼ #rejected genuine
#genuine . To calculate the EER, we first computed the predicted proba-

bility of each data point belonging to each class. Then, in order to vary the threshold
value, at the particular threshold value the corresponding FAR and FRR are derived.
All FAR and FRR pairs are used to plot the receiver operating characteristic curve
(ROC). The corresponding value of the point at which FAR and FRR are equal is the
EER. The EER is well known metric, and previous state-of-the-art papers uses this
metric in order to present the results of their method.

5.3 Hyper Parameter Tuning

As described in Sect. 4.2 there are three parameters which our approach requires: the
sequence length T , the aggregation interval Is, and the number of segments for each
gesture k. We performed a series of preliminary experiments in order to tune the model
and set the best values for these hyper parameters. For T we examined values in the
range of 1–60, for Is we examined two values 30 and 60 s, and for k we examined the
values 2, 3, and 4. In addition to these hyper parameters, we also examined the number
of most popular applications which should be considered in the contextual features (6–
16 apps at a time). For the tuning, we used the XGB classifier, as it is empirically
known to run faster and more accurate than other classifiers. We ran the algorithm on
each possible pair of our 20 participants ( 20!

20�2ð Þ!ð2!Þ = 190 combinations). 90% of each

participant’s data was used for training, and the rest was used for testing the algorithm.
We split the data according to the time of the events to maintain the consistency of the
sequences and simulate real world scenarios. For each run we calculated the EER and
then calculated the average EER result over all runs. In each experiment we manipu-
lated one parameter and fixed the others. Figure 1 shows that the optimal T is between
5 and 35 instances (gestures). Table 2 shows that a k of 3 produced the best results.
Finally, Table 3 shows that good results are achieved by considering the top 14 apps.
We also found that Is ¼ 30 seconds provided the best results.

0

10

20

1 5 10 15 20

%
 E

ER

Group Size

35
5

Fig. 2. Different sized groups for
sequence sizes of 5 and 35 instances

17.0907
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Fig. 3. Verification improvement when consider-
ing different features and sequence size
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6 Experiments and Results

Using the hyperparameters tuned as described above, we performed experiments to

evaluate the accuracy of classifying the instance x*
T
into authorized or non-authorized

user (authorized users has the label ‘0’, and unauthorized users has the label ‘1’). As
described in Sect. 4, our model is trained on data taken from many different users.
Specifically, instances labeled as the positive class are taken from the smartphone’s
owner, and instances labeled as the negative class are taken from other users (possibly
from the same company/organization). Therefore, in our evaluations, we examine two
possible scenarios: (1) Outsider Attack Scenario – The scenario where the attacker
does not belong to the same organization as the target user, and thus the model was not
trained using the attacker’s data. For this scenario, we included the attacker’s data in
the test set and not in the training set. (2) Insider Attack Scenario – The scenario
where the attacker is an individual within the same organization as the target user, and
the model was trained on using the attacker’s data. This scenario represents the case
where the attacker performs an ‘insider attack’ on a colleague’s smartphone, from
within the same organization. For this scenario, we include some of the attacker’s data
in the training set. In order to simulate the insider and outsider attack scenarios, we
conducted the following experiment. For the insider attack scenario, for every partic-
ipant that we wanted to verify, we randomly choose 15 other participants on which the
model was trained (we set the number of participants to 15 empirically after trying
other numbers). We split the data from these participants, so that 90% of the data was
used to train the model, and the other 10% formed the test set. For the outsider attack
scenario, we randomly chose two other participants on which the model was not trained
(non-verified users) and used 10% of their data as the test set to simulate attackers.

6.1 Outsider and Insider Attack Scenario

The following is our analysis under the outsider attack scenario. In order to calculate
the EER, we predicted the user’s probability for each instance (aggregation of ges-
tures). We calculated the EER for each user, as well as the average EER. In spite of the
fact that the best results were obtained for a sequence size of 35, it could be argued that
35 gestures are too many for a theft scenario, since one may want to identify that a
device was stolen much earlier. Therefore, we report results for sequence sizes of 5 and
35 instances. In addition, instead of calculating the probability for each instance, we
calculated the average probability for a group of instances. This was done because
sometimes one misclassified instance can harm the EER results, and calculation of the
average probability can mitigate this error. We used five different sized groups of
instances: 1, 5, 10, 15 and 20. The results in Fig. 2 demonstrates that when the group of

Table 4. Average EER and AUC results for both insider and outsider attack scenarios

EER AUC

Outsider attack 6.82% 96.25%
Insider attack 4.78% 98.15%
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instances is larger, the results are more accurate. In addition, a sequence size of 35
instances results in more improved performance than a sequence size of five instances.
Thus, there is a trade-off between the sequence size, the size of the group, and the
response time. It is intuitive that in cases in which there is more information, the results
will be more accurate, but we aim to verify thieves as soon as possible. The results
show that a sequence size of 35 instances and a group size of five achieved an average
EER of 6.11%. Nearly the same result was achieved with a sequence size of five
instances and a group size of 20 instances (average EER of 6.12%). The best EER
result obtained was 2.19%, which was achieved when considering a sequence size of
35 instances and a group size of 20 instances. In addition, we wanted to compare the
XGB classifier’s performance to the performance of the random forest classifier for the
outsider attack scenario. We performed the same experiment, testing both the insider
and outsider attacks. In both algorithms we tested a sequence size of 35 instances and
the five group sizes previously mentioned. The results show that for every case, the
XGB classifier outperformed the random forest classifier. Finally, we calculated the
average EER and AUC results for both insider and outsider attack scenarios. The
results were calculated based on a sequence size of 5 instances and a group of 15
instances when calculating the prediction. We were able to achieve an EER of 4.78%
and AUC of 98.15% for the insider attack scenario, versus an EER of 6.82% and AUC
of 95.55% for the outsider attack scenario, as presented in Table 4. The following is
our analysis under the contaminated model scenario (insider attack scenario). Results in
Fig. 3 demonstrate that adding our proposed features and considering a sequence of
gestures, it is possible to improve the verification accuracy. Considering only the touch
features, without taking into account context or gesture trace features, the average EER
was 9.03%. After considering the context of the gestures, the results improved, and an
average EER of 8.04% was attained; similarly, after considering the gesture trace
features, the results improved, and an average EER of 6.16% was attained. The
influence of the sequence size is also shown in Fig. 3. The average EER obtained when
considering a sequence size of one instance, i.e., no sequence at all, was 17.09%, and
after concatenating 35 instances the result improved dramatically to 8.04%. As men-
tioned earlier, the optimum sequence size is between 5 and 35.

6.2 Response Time and Comparison with State-of-the-Art

We found that the optimum trace length T is 35. From our data collection experiment,
we observed that a user performs 35 gestures in 13.8 s on average, with standard
deviation of 25 s. From our trials described in Sect. 3, it can be assumed that an
uninformed attacker will perform at least 35 gestures to achieve his/her goal. This is
because the attacker does not know the layout and the location of every application and
file. Although T = 35 is the optimal value, a user can set T = 5 and still obtain good
results (as shown in Fig. 1). Moreover, the verification time (feature extraction and
model execution) is negligible. We found that it takes only a few micro seconds to
perform the classification task. Therefore, with respect to the attack scenario in Sect. 3,
the attacker should be detected before the attack is complete. In [13] the authors
achieved ERRs ranging from 6.33% to 15.4%. In [8] the authors achieved an EER
between 0% and 4%, depend on the predefined task. In [9] the authors achieved EERs
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ranging from 6.1% to 6.9%. Although our method only achieved EERs ranging from
4.78% to 6.82%, all of the studies above were performed in a controlled lab setting
where typically participants performed a set of pre-defined tasks, sometimes repeatedly.
In our study we gave the volunteers full control over their devices, and they used the
devices as their own personal device for two weeks. In addition, most state-of-the-are
papers utilize the type of gesture in order to build a model. We used only basic touch
features, and still we were able to achieve good results without doing any complicated
computing on the data, which may cost us an expensive time when building the model
and detecting a thief. Therefore, our method arguably performs better than
state-of-the-art touch-based user authentication, while using sensors that do not dras-
tically consume battery life.

7 Conclusion

We presented the design, implementation, and evaluation of a user verification method
for mobile devices using touchscreen gestures, the context under which the touch was
made, and the trace of the last few gestures made. For our evaluations, we developed an
Android application and experimented with real subjects for several weeks each. The
results show that by combining our proposed modalities and sequence history, the EER
can be reduced by over 3%.

References

1. Lookout Blog: Phone Theft in America: What really happens when your phone gets grabbed
(2014). https://blog.lookout.com/blog/2014/05/07/phone-theft-in-america/

2. Lee, A.: A Thief Snatched My iPhone (2014). http://readwrite.com/2014/06/23/iphone-
smartphone-theft-crime/

3. Consumer Report: Smart phone thefts rose to 3.1 million in 2013 (2014). http://www.
consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/
index.htm

4. Clarke, N.L., Furnell, S.M.: Authentication of users on mobile telephones - a survey of
attitudes and practices. Comput. Secur. 24(7), 519–527 (2005)

5. Vance, A.: If your password is 123456, just make it hackme. N.Y. Times 20, A1 (2010)
6. Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.: Smudge attacks on smartphone

touch screens. In: USENIX Conference on Offensive Technology, pp. 1–7 (2010)
7. Feng, T., Liu, Z., Kwon, K.A., Shi, W., Carbunar, B., Jiang, Y., Nguyen, N.: Continuous

mobile authentication using touchscreen gestures. In: 2012 IEEE International Conference
on Technologies for Homeland Security, HST 2012, pp. 451–456 (2012)

8. Frank, M., et al.: Touchalytics: on the applicability of touchscreen input as a behavioral
biometric for continuous authentication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148
(2013)

9. Murmuria, R., Stavrou, A., Barbará, D., Fleck, D.: Continuous authentication on mobile
devices using power consumption, touch gestures and physical movement of users. In: Bos,
H., Monrose, F. (eds.) RAID 2015. LNCS, vol. 9404, pp. 405–424. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26362-5_19

Utilizing Sequences of Touch Gestures for User Verification 827

https://blog.lookout.com/blog/2014/05/07/phone-theft-in-america/
http://readwrite.com/2014/06/23/iphone-smartphone-theft-crime/
http://readwrite.com/2014/06/23/iphone-smartphone-theft-crime/
http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-last-year/index.htm
http://dx.doi.org/10.1007/978-3-319-26362-5_19


10. Ben Kimon, L., et al.: User verification on mobile devices using sequences of touch gestures.
In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization.
ACM (2017)

11. Patel, V.M., Chellappa, R., Chandra, D., Barbello, B.: Continuous user authentication on
mobile devices: recent progress and remaining challenges. IEEE Sig. Process. Mag. 33(4),
49–61 (2016)

12. Feng, T., Yang, J., Yan, Z., Tapia, E.M., Shi, W.: TIPS: context-aware implicit user
identification using touch screen in uncontrolled environments. In: Proceedings of the 15th
Workshop on Mobile Computing Systems and Applications, pp. 9:1–9:6 (2014)

13. Zhao, X., Feng, T., Shi, W.: Continuous mobile authentication using a novel graphic touch
gesture feature. In: IEEE 6th International Conference on Biometrics: Theory, Applications
and Systems, BTAS 2013 (2013)

14. Zhao, X., Feng, T., Shi, W., Kakadiaris, I.A.: Mobile user authentication using statistical
touch dynamics images. IEEE Trans. Inf. Forensics Secur. 9(11), 1780–1789 (2014)

15. Shi, W., Yang, J., Jiang, Y., Yang, F., Xiong, Y.: SenGuard: passive user identification on
smartphones using multiple sensors. In: International Conference on Wireless and Mobile
Computing, Networking and Communications, pp. 141–148 (2011)

16. Huang, J., Ling, C.X.: Using AUC and accuracy in evaluating learning algorithms. IEEE
Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

17. Rokach, L., Maimom, O.: Data mining with decision trees: theory and applications (2007)

828 L. B. Kimon et al.



Author Index

Abbasi, Rabeeh Ayaz II-534
Abdessalem, Talel III-64, III-752
Abe, Masaya I-273
Adhikari, Bijaya II-170
Aditya Prakash, B. II-157
Agarwal, Ayush I-437
Agarwal, Prerna I-437
Ahmad, Muhammad III-502
Ahmed, Chowdhury Farhan III-664
Akcora, Cuneyt G. III-765
Akgün, Özgür III-89
Akoglu, Leman I-196
Alba, Alfredo II-363
Albarrak, Abdullah M. I-602
Albishre, Khaled II-325
Alharbi, Abdullah Semran III-126
AlHarthi, Adil II-495
Almusalam, N. II-483
Almusallam, Naif II-495
Alufaisan, Yasmeen I-130
Amelio, Alessia III-193
Angelova, Maia III-389
Ansah, Jeffery III-777
Aribi, Noureddine III-465
Aryal, Sunil I-589
Assem, Haytham I-577
Assent, Ira III-373
Athanasiou, Spiros II-558
Aye, Zay Maung Maung III-452

Bagnall, Anthony I-298
Bakhshi, Ajay I-386
Balamurugan, P. I-43
Banerjee, Debopriyo III-571
Basak, Jayanta I-386
Beg, Maham Anwar III-502
Benatallah, Boualem I-156
Berger-Wolf, Tanya III-677
Bertok, P. II-483
Bhardwaj, Kartikeya III-102
Bi, Jingping I-551
Bifet, Albert III-64, III-752
Boorla, Kireeti III-335
Bose, Shiladitya III-28

Boström, Henrik I-94
Buda, Teodora Sandra I-577

Caglayan, Bora I-577
Cai, Borui III-413
Cai, Xingyu III-151
Cai, Zhihua III-297
Cai, Zhiling III-426
Campos, Guilherme O. I-564
Cao, Jiannong II-183
Cao, Jiuxin III-206
Cao, Longbing I-285
Cao, Xiaohuan II-288
Cao, Yixin II-275
Carman, Mark II-128
Chakraborty, Tanmoy I-437
Challis, Chris III-28
Chan, Jeffrey I-631, I-656, II-300, II-444,

II-495, III-52
Chang, Buru I-183
Chang, Chih-Wei I-143
Chaturvedi, Rajat II-312
Chehreghani, Mostafa Haghir III-752
Chen, Bo III-401
Chen, Cen II-431
Chen, Chang-an II-16
Chen, Chaochao II-431
Chen, Fang I-223, II-584, III-803
Chen, Haiming II-389
Chen, Hung-Yuan III-610
Chen, Junyu I-462
Chen, Kaiheng III-583
Chen, Kaixuan I-156
Chen, Kuan-Yu III-726
Chen, Lun-Chi III-610
Chen, Shenglei I-106
Chen, Shiyun I-56
Chen, Weizheng I-513
Chen, Wu III-740
Chen, Xue III-218
Chen, Xuhui I-681
Chen, Yan III-556
Chen, Yung-Yu III-610
Chen, Yuzhou I-373



Chenaghlou, Milad II-508
Chidambaram, Saravanan II-104
Choi, Byung-Ju II-376
Christen, Peter III-15, III-89, III-530
Chronis, Pantelis II-558
Chu, Xu I-236
Chuang, Kun-Ta III-790
Churchill, Rob II-42
Coden, Anni II-363
Coghill, George Macleod I-209
Collins, Pieter I-169
Costa, Gianni II-80
Couceiro, Miguel III-478
Cui, Fanlin II-389

Dai, Yuanshun III-115
Dalleau, Kevin III-478
Dearle, Alan III-89
Deng, Ke III-413, III-689
Dey, Asim Kumer III-765
Dinara, Aliyeva II-376
Ding, Jiayu II-288
Dolog, Peter III-373
Dong, Chunmei II-389
Dong, Yi III-206
Du, Lan II-128

Ebrahimi, Mohammad III-803

Faber, Lukas II-458
Faloutsos, Christos III-651
Faloutsos, Michalis III-517
Fan, Liyue II-471
Fan, Wei III-490
Fan, Xin I-261, I-348
Fan, Xuhui I-223, II-584
Fan, Yao-Chung III-610
Fei, Hongliang III-490
Feng, Wenfeng I-668
Fu, Luoyi II-16
Fürnkranz, Johannes I-29

Gabale, Vijay III-309
Gandhi, Sunil III-285
Ganguly, Niloy I-386, III-571
Gao, Jingyue I-236
Gao, Junbin III-297
Gao, Sheng I-538
Geier, Fabian II-458

Gel, Yulia R. I-373, III-765
Gentile, Anna Lisa II-363
Gharibshah, Joobin III-517
Giannopoulos, Giorgos II-558
Gondara, Lovedeep III-260
Goodall, Ian I-298
Goyal, Tanya II-312
Gruhl, Daniel II-363
Guo, Chenchen II-247
Guo, Guibing III-713
Guo, Zhishuai III-426
Gupta, Deepali I-475
Gupta, Manish III-231
Gupta, Sunil I-335, III-543

Haidar, Rim I-361
Hairston, David III-285
Hammoud, Mohammad III-651
Han, Ke I-525
Han, Xiao II-247
Han, Yuping I-538
Harikumar, Haripriya I-335
He, Jing III-413
He, Liang I-56
He, Xuezhong I-644
He, Yuanduo I-236
Heimann, Mark III-726
Hirate, Yu II-115
Ho, Tu Bao I-411
Hoang, Khanh Hung I-411
Hoi, Calvin S. H. III-664
Hong, Yuxiang I-261, I-348
Hou, Lei II-275
Hsu, Fu-Chun I-399
Hu, Fei I-81
Hu, Qian II-29
Huan, Zhaoxin II-546
Huang, Chaomin III-3
Huang, Guang-Li III-413
Huang, Guangyan III-413
Huang, Jianhui I-551
Huang, Kuan-Hao I-143
Huang, Lan I-209
Huang, Si-Ying III-610
Huang, Tianyi III-426
Huang, Xin II-16
Huang, Yalou I-261
Huang, Yuwei I-118
Huang, Zhou I-462
Hung, Chih-Chieh I-399

830 Author Index



Ibrahim, Ibrahim A. I-602
Islam, Md. Ashraful III-664
Islam, Mohammad Raihanul II-157
Ismailoglu, Firat I-169
Ito, Tomoki III-247
Iwata, Tomoharu III-77
Izumi, Kiyoshi III-247

Jain, Deepali I-475
Jeffries, Bryn I-361
Jensen, Christian S. III-689
Ji, Jinlong I-681
Ji, Yang II-247
Jiang, Wanwan I-310
Jiang, Xiaoting II-418
Jiang, Xinwei III-297
Jiang, Yuan II-209
Jiao, Pengfei II-260, III-218
Jin, Di III-218
Jin, Yuan II-128
Johansson, Ulf I-94
Jurek, Anna III-177

Kaimal, Ramachandra I-335
Kang, Jaewoo I-183
Kang, Wei III-777
Kantarcioglu, Murat I-130, III-765
Karunasekera, Shanika III-52
Karypis, George II-337
Kashima, Hisashi III-77
Kasinikota, Anusha I-43
Kemsley, E. Kate I-298
Khan, Imdadullah III-502
Khatuya, Subhendu I-386
Khosla, Sopan I-475
Kim, Deahan I-183
Kim, Hyunjae I-183
Kim, Kang-Min II-376
Kim, Raehyun I-183
Kimon, Liron Ben III-816
Kirby, Graham III-89
Kirov, Christo II-42
Kobeissi, Said III-28
Koprinska, Irena I-361
Koutra, Danai III-726
Kulkarni, Raghav III-164
Kumar, Anurag I-3
Kumar, Dheeraj I-656

Kumar, Vishwajeet III-335
Kurokawa, Mori III-322

Large, James I-298
Le, Hung III-273
Lebbah, Yahia III-465
Leckie, Christopher II-508
Lee, Euiwoong III-651
Lee, SangKeun II-376
Lee, Wei III-726
Leung, Carson K. III-664
Li, Bin I-223
Li, Bo III-597
Li, Cheng-Te III-790
Li, Gang I-488
Li, Hanqiang I-551
Li, Jia III-677
Li, Jiahong III-349
Li, Jianxin III-689
Li, Jiuyong III-777
Li, Juanzi II-275
Li, Li I-81
Li, Pan I-681
Li, Xiao-Li II-275
Li, Xiaoli II-288
Li, Xiaolong II-431
Li, Xue I-602
Li, Yeting II-389
Li, Yidong II-222
Li, Yuan-Fang III-335
Li, Yuefeng II-325, III-126
Li, Zhenhui III-583
Li, Zhichao I-538
Li, Zhidong II-584
Lim, Ee-Peng I-16
Lin, Hsuan-Tien I-143
Lin, Xuelian I-462, III-583
Linusson, Henrik I-94
Liu, Bo III-206
Liu, Chuanren I-525
Liu, Haiyang I-68
Liu, Hongtao II-260
Liu, Jiahui I-261
Liu, Jiamou III-740
Liu, Jiming III-638
Liu, Jixue III-777
Liu, Lei II-571
Liu, Lin III-777

Author Index 831



Liu, Shaowu I-615, I-644, II-222
Liu, Shifeng II-54
Liu, Xi II-571
Liu, Xiao III-218
Liu, Xiaobo III-297
Liu, Xiaohu I-261, I-348
Liu, Yang III-638
Liu, Yifan III-349
Liu, Yuanxing III-297
Liu, Yue I-16
Löfström, Tuve I-94
Loudni, Samir III-465
Lourentzou, Ismini II-363
Loza Mencía, Eneldo I-29
Lu, Jian III-713
Lu, Jie II-522
Luo, Changqing I-681
Luo, Dongsheng III-490
Luo, Liang III-115
Luo, Wei III-361
Lyubchich, Vyacheslav I-373

Maheshwari, Paridhi II-312
Mahmood, A. II-483
Mammadov, Musa I-106
Manchanda, Saurav II-337
Mandaglio, Domenico III-193
Mannarswamy, Sandya II-104
Mao, Hangyu III-625
Mao, Ziqing I-236
Mar, Jaron III-740
Marculescu, Radu III-102
Maskari, Sanad Al I-602
McCloskey, Stephen I-361
Meena, Yogesh III-335
Meira Jr., Wagner I-564
Mirsky, Yisroel III-816
Mitra, Bivas I-386
Mohotti, Wathsala Anupama III-439
Mohsenin, Tinoosh III-285
Monsy, Anish V. II-312
Montiel, Jacob III-64
Moshtaghi, Masud II-508
Mu, Xin I-16
Müller, Emmanuel II-458

Naghizade, Elham II-444
Nakayama, Hideki I-273
Nayak, Richi III-439

Neerbek, Jan III-373
Nguyen, Dang III-361
Nguyen, Thanh Dai III-543
Nguyen, Thin I-335
Nguyen, Tu Dinh III-361
Ni, Jingchao III-490
Niu, Qiang I-248

Oates, Tim III-285
Oh, Jinoh III-651
Ortale, Riccardo II-80
Ou, Ge I-209
Ouali, Abdelkader III-465

P., Deepak III-177
Pan, Shengjie III-726
Pang, Wei I-209
Papalexakis, Evangelos E. III-517
Parikh, Pulkit III-231
Peeters, Ralf I-169
Peng, Changhuan II-16
Peng, Wen-Chih III-701
Perera, Kushani III-52
Phan, HaiNhat II-235
Prakash, B. Aditya II-170
Pratap, Rameshwar III-164
Priyogi, Bilih II-300
Pu, Jun I-525

Qi, Jianzhong I-500, III-597
Qin, Xiaolin III-40
Qin, Zengchang II-92, III-349
Qiu, Xingbao I-248

Raj, Bhiksha I-3
Rajasekaran, Sanguthevar III-151
Ramakrishnan, Ganesh III-335
Ramakrishnan, Naren II-157, II-170
Ramamohanarao, Kotagiri III-452, III-597
Rana, Santu I-335, III-543
Ranbaduge, Thilina III-15, III-530
Rangwala, Huzefa II-29
Rao, Krothapalli Sreenivasa III-571
Rapp, Michael I-29
Razzak, Muhammad Imran II-534
Read, Jesse III-64
Rebele, Thomas II-67
Ren, Xiaoxuan I-513
Ren, Yongli II-300, II-444

832 Author Index



Rokach, Lior III-816
Rong, Erhu II-141
Ruan, Jianhua II-3
Rubinstein, Benjamin I. P. III-452

Sadaf, Abida II-534
Saeed, Zafar II-534
Sakaji, Hiroki III-247
Salehi, Mahsa II-508
Salim, Flora D. I-450
Salim, Flora II-300
Sancheti, Abhilasha II-312
Sanderson, Mark II-300
Sarker, Iqbal H. I-450
Sawant, Uma III-309
Scharwächter, Erik II-458
Schnell, Rainer III-530
Shaalan, Yassien I-631, I-656
ShafieiBavani, Elaheh III-803
Shahabi, Cyrus II-471
Shang, Lin II-546
Shao, Jingyu II-350
Shapira, Bracha III-816
Shen, Yanyan II-418
Sheoran, Nikhil I-475
Shevade, Shirish I-43
Shi, Chuan II-288
Shi, Mohan I-68
Shin, Kijung III-651
Shuai, Hong-Han III-701
Singh, Lisa II-42
Sinha, Atanu R. I-475
Skiadopoulos, Spiros II-558
Smail-Tabbone, Malika III-478
Smirnov, Evgueni I-169
Sohony, Ishan III-164
Song, Wei III-3
Sowmya, Arcot II-584
Srinivasan, Balaji Vasan II-312
Suchanek, Fabian M. II-67
Sun, Limin I-488
Sun, Tianyi III-740
Sun, Yifang II-54
Sun, Yu I-500, III-597
Sun, Yueheng II-260
Sural, Shamik III-571

Tagarelli, Andrea III-193
Tan, Pang-Ning II-571

Tan, Qi III-638
Tan, Tenglun I-500
Tang, Xiaochuan III-115
Tang, Yanni III-740
Tang, Yujin III-322
Tari, Zahir II-483, II-495
Thompson, A. II-483
Ting, Kai Ming III-389, III-401
Ting, Lo Pang-Yun III-790
Tomko, Martin II-300, II-444
Tomko, Scott III-28
Tong, Hanghang III-713
Tran, Son N. I-322
Tran, Truyen III-273
Tsubouchi, Kota III-247
Tzompanaki, Katerina II-67

Varma, Vasudeva III-231
Vatsalan, Dinusha III-15
Venkatesh, Svetha I-335, III-273, III-361,

III-543
Verma, Richa I-437
Vidanage, Anushka III-530
Vo, Nhi N. Y. I-644

Wada, Shinya III-322
Wan, Tao II-92, III-349
Wan, Yuanyu II-405
Wang, Dengbao I-81
Wang, Heng II-92
Wang, Jiakang III-625
Wang, Jingyuan I-81
Wang, Jun II-3
Wang, Ke III-260
Wang, Limin I-106
Wang, Maoquan I-56
Wang, Mengya II-141
Wang, Qing II-350
Wang, Sen I-156
Wang, Shuai II-275
Wang, Wei II-54, III-556
Wang, Wenjun II-260, III-218
Wang, Xiaojie III-597
Wang, Xinbing II-16
Wang, Xinjue III-689
Wang, Yan I-209
Wang, Yang I-223, II-584
Wang, Yasha I-236
Wang, Yuan I-261, III-625
Wang, Yuandong III-583

Author Index 833



Wang, Zhihai I-68
Watanabe, Kohei II-115
Wei, Hua III-583
Wei, Jinmao II-3
Wei, Jipeng III-139
Wei, Qianjin III-139
Wei, Xiaokai II-183
Welch, Steve II-363
Wellner, Nikolaus I-298
Wen, Hui I-488
Wen, Yimin III-139
Wen, Yu-Ting III-701
Winship, Todd I-373
Wo, Tianyu I-462
Wong, Raymond III-803
Wu, Bin II-288
Wu, Fei III-583
Wu, Xintao II-235
Wu, Xudong II-16
Wu, Yi-Feng II-209
Wu, Zhiang I-615

Xiang, Yanping III-115
Xiang, Yong III-413
Xiao, Yang III-625
Xiao, Zhen III-625
Xie, Maoqiang I-348
Xie, Xiaojun III-40
Xie, Xing II-222
Xu, Depeng II-235
Xu, Feng III-713
Xu, Guandong I-615, I-644, II-222, II-534
Xu, Hengpeng II-3
Xu, Hongyan II-260
Xu, Jia I-285
Xu, Jie III-583
Xu, Linchuan II-183
Xu, Lingyu I-310
Xu, Shuai III-206
Xu, Yajing I-538
Xu, Yue II-325, III-126

Yamashita, Tatsuo III-247
Yan, Yaowei III-490
Yang, Bin II-115
Yang, Xi I-118
Yang, Xiaochun III-689
Yang, Xinxing II-431
Yang, Yang II-209
Yang, Yao-Yuan I-143

Yang, Zheng I-156
Yang, Zhenglu II-3
Yao, Di I-551
Yao, Lina I-156, I-425
Yao, Yuan III-713
Ye, Junting I-196
Yen, John III-490
Yi, Feng I-488
Yin, Chuandong I-500
Yin, Jie I-322, II-196
Yin, Jun I-615, II-222
Yin, Libo I-488
Yonekawa, Kei III-322
Yoshihara, Kiyohito III-322
Yu, Hang II-522
Yu, Jeffery Xu III-689
Yu, Jie I-310
Yu, Lixing I-681
Yu, Philip S. II-183
Yu, Shengquan I-118
Yu, Xiong III-490
Yuan, Jidong I-68
Yuan, Shuhan II-235
Yue, Mingxuan II-471

Zaman, Arif III-502
Zhai, Yikai I-462
Zhan, De-Chuan II-209
Zhang, Chengqi II-196
Zhang, Chunhong II-247
Zhang, Dalin I-156
Zhang, Daokun II-196
Zhang, Di I-248
Zhang, Dongmei III-297
Zhang, Fan III-151
Zhang, Gaowei I-310
Zhang, Guangquan II-522
Zhang, Guoxi III-77
Zhang, Jiangtao II-275
Zhang, Jianjia I-223
Zhang, Lijun II-405
Zhang, Lishan I-118
Zhang, Qing I-322
Zhang, Rui I-500, III-597
Zhang, Wei III-28
Zhang, Wu II-222
Zhang, Xiang III-490
Zhang, Xiangliang III-556
Zhang, Xiaolan II-389
Zhang, Xiuzhen I-81, I-631, I-656

834 Author Index



Zhang, Yan I-513, II-275
Zhang, Yanjun I-602
Zhang, Yao II-170
Zhang, Yaogong I-261, I-348
Zhang, Yihong I-425
Zhang, Yong III-583
Zhang, Yunquan I-248
Zhang, Zhao I-513
Zhao, Chen II-115
Zhao, Jianghua I-525
Zhao, Lun III-713
Zhao, Peilin II-431
Zhao, Xin I-602
Zheng, Vincent W. I-668
Zheng, Yuyan II-288
Zhou, Feng II-584
Zhou, Jun II-431
Zhou, Shuang I-169
Zhou, Xiangmin III-413
Zhou, Xiaoling II-54

Zhou, Yan I-130
Zhou, Yuanchun I-525
Zhou, Zhi-Hua I-16
Zhou, Zili I-615, II-222
Zhu, Feida I-16
Zhu, Hongsong I-488
Zhu, Huiling II-141
Zhu, William III-426
Zhu, Xingquan II-196
Zhu, Xinyue III-349
Zhu, Xuelin III-206
Zhu, Yanmin II-418
Zhu, Ye II-128, III-389
Zhu, Zhihua I-551
Zhuang, Fuzhen I-118
Zhuo, Hankui II-141
Zhuo, Hankz Hankui I-668
Ziebart, Brian III-677
Zimek, Arthur I-564
Zong, Chuantao I-668

Author Index 835


	PC Chairs’ Preface
	General Chairs’ Preface
	Organization
	Contents – Part III
	Feature Learning and Data Mining Process
	Discovering High Utility Itemsets Based on the Artificial Bee Colony Algorithm
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem of HUI Mining
	2.2 ABC Algorithm

	3 Mining HUIs Using the ABC
	3.1 Bitmap Item Information Representation
	3.2 Modeling HUI Discovery Using the ABC
	3.3 Direct Nectar Source Generation for Scout Bees
	3.4 Algorithm Description

	4 Performance Evaluation
	4.1 Experimental Environment and Datasets
	4.2 Running Time
	4.3 Number of Discovered HUIs
	4.4 Convergence

	5 Conclusions
	Acknowledgments
	References

	A Scalable and Efficient Subgroup Blocking Scheme for Multidatabase Record Linkage
	1 Introduction
	2 Related Work
	3 Subgroup Blocking Process
	3.1 Potential Candidate Grouping
	3.2 Candidate Graph Construction
	3.3 Subgroup Candidate Generation

	4 Analysis of Subgroup Blocking
	5 Experiments and Discussion
	6 Conclusions and Future Work
	References

	Efficient Feature Selection Framework for Digital Marketing Applications
	1 Introduction
	2 Related Work
	3 Overall Framework
	4 Feature Exploration Using Semantic Ranking and Generative Filtering
	4.1 The Semantic Ranking Guided Feature Selection Algorithm
	4.2 Combining with Generative Filtering for Better Performance

	5 Progressive Sampling and Feature Selection Framework
	5.1 Coarse to Fine Implementation
	5.2 Time and Space Reduction Through Progressive Sampling

	6 Experiments and Discussion
	7 Conclusion
	References

	Dynamic Feature Selection Algorithm Based on Minimum Vertex Cover of Hypergraph
	1 Introduction
	2 Preliminaries
	3 Dynamic Feature Selection Algorithm Based on Minimum Vertex Cover of Hypergraph
	3.1 The Induced Hypergraph
	3.2 Updating Minimum Vertex Cover of Hypergraph
	3.3 Dynamic Feature Selection Algorithm

	4 Experimental Analysis
	5 Conclusions
	References

	Feature Selection for Multiclass Binary Data
	1 Introduction
	2 Related Work
	3 Preliminary Concepts
	4 Problem Formulation
	5 Our Approach
	5.1 Measuring the Sparse Value Distribution
	5.2 New Feature Selection Objective
	5.3 A Greedy Feature Selection Approach

	6 Evaluation
	6.1 Experimental Results
	6.2 Evaluation Insights

	7 Conclusion
	References

	Scalable Model-Based Cascaded Imputation of Missing Data
	1 Introduction
	2 Related Work
	3 Proposed Method
	4 Methodology
	5 Discussion of Experimental Results
	6 Conclusions
	References

	On Reducing Dimensionality of Labeled Data Efficiently
	1 Introduction
	2 Related Work
	2.1 Metric Learning
	2.2 Nonlinear Algorithms for Collapsing Classes
	2.3 Parametric Embedding

	3 Nonlinear Parametric Embedding
	4 Evaluation
	4.1 Experiment Settings
	4.2 Results

	5 Conclusion
	References

	Using Metric Space Indexing for Complete and Efficient Record Linkage
	1 Introduction
	2 Related Work
	3 Approach
	4 Experiments and Results
	4.1 Cora Results
	4.2 Demographic Dataset Results

	5 Conclusions and Future Work
	References

	Dimensionality Reduction via Community Detection in Small Sample Datasets
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experimental Setup and Results
	4.1 Experimental Setup
	4.2 Results
	UCI Machine Learning Repository Benchmarks.
	Empirical Evaluation of FeatureNet in the
	Why We Achieve Performance Gains?
	Computational Sustainability – A Case Study and New AI Datasets.
	Note on Scalability.


	5 Conclusion and Future Work
	References

	An Interaction-Enhanced Feature Selection Algorithm
	1 Introduction
	2 Proposed Method for Feature Selection
	2.1 An Information Measure for Feature Interaction
	2.2 An Interaction Based Feature Selection Method
	2.3 Complexity Analysis

	3 Experiments
	3.1 Overall Performance
	3.2 Performance with Respect to the Number of Features

	4 Discussion and Conclusion
	References

	An Extended Random-Sets Model for Fusion-Based Text Feature Selection
	1 Introduction
	2 Related Work
	3 Problem Formulation and Background
	3.1 Latent Dirichlet Allocation and Limitations
	3.2 Extending Random-Sets

	4 The Proposed SIF2 Model
	4.1 Fusing Hierarchical Features

	5 Evaluation
	5.1 Dataset and Evaluation Measures
	5.2 Baseline Models and Settings
	5.3 Experimental Design
	5.4 Results
	5.5 Discussion

	6 Conclusions
	References

	Attribute Reduction Algorithm Based on Improved Information Gain Rate and Ant Colony Optimization
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Rough Set Theory
	2.2 Information Representation in Decision Table

	3 Ant Colony Optimization for Attribute Reduction
	3.1 Ant Colony Optimization Principle
	3.2 Local Solution
	3.3 Pheromone Updating
	3.4 The Proposed Algorithm

	4 Experimental Analysis
	4.1 Comparison with Other Methods
	4.2 Analysis of Convergence Rate

	5 Conclusion
	Acknowledgements
	References

	Efficient Approximate Algorithms for the Closest Pair Problem in High Dimensional Spaces
	1 Introduction
	2 Proposed Approximate Algorithms
	2.1 ACP-D
	2.2 ACP-P

	3 Experiments
	4 Conclusions
	4.1  Proof of Theorem1
	4.2  Proof of Corollary1
	4.3  Proof of Theorem2
	4.4  Proof of Corollary2

	References

	Efficient Compression Technique for Sparse Sets
	1 Introduction
	1.1 Revisiting Compression Scheme of KulkarniP16
	1.2 Our Result
	1.3 Comparison Between BCS and Minhash and Its Variants
	1.4 Applications of Our Result

	2 Analysis
	3 Experimental Evaluation
	3.1 Results on Synthetic Data
	3.2 Results on Real-World Data

	4 Concluding Remarks and Open Questions
	References

	It Pays to Be Certain: Unsupervised Record Linkage via Ambiguity Minimization
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Evaluating Record Linkage Scoring

	4 Our Method
	4.1 The Scoring Formulation
	4.2 Developing the Objective Function
	4.3 Optimization Formulation
	4.4 Overall Approach

	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Comparative Evaluation of Record Pairs Ordering
	5.3 Further Analysis of Our Method

	6 Conclusions
	References

	Community Detection and Network Science
	Consensus Community Detection in Multilayer Networks Using Parameter-Free Graph Pruning
	1 Introduction
	2 Background
	2.1 Generative Models for Graph Pruning
	2.2 Ensemble-Based Multilayer Community Detection

	3 EMCD and Parameter-Free Graph Pruning
	4 Evaluation Methodology
	5 Results
	5.1 Impact of Model-Filters on M-EMCD*
	5.2 Evaluation with Competing Methods

	6 Conclusion
	References

	Community Discovery Based on Social Relations and Temporal-Spatial Topics in LBSNs
	1 Introduction
	2 Related Works
	3 Community Discovery Model
	3.1 Preliminaries
	3.2 Basic Idea of SRTST Model
	3.3 Model Construction

	4 Parameter Estimation
	5 Experiments
	5.1 LBSN Datasets and Evaluation Metrics
	5.2 Parameter Configuration
	5.3 Comparison Algorithms
	5.4 Experimental Results

	6 Conclusion
	References

	A Unified Weakly Supervised Framework for Community Detection and Semantic Matching
	1 Introduction
	2 Proposed WSCDSM Framework
	2.1 Modeling TC Communities
	2.2 Modeling SC Communities
	2.3 The Unified Model: Matching TC with SC Communities

	3 Optimization
	4 Experimental Results
	4.1 The Performance of Community Detection
	4.2 The Matching Between Semantic and Communities

	5 Conclusion
	References

	Tapping Community Memberships and Devising a Novel Homophily Modeling Approach for Trust Prediction
	1 Introduction
	2 Related Work
	3 Inferring Trust Using Community Memberships and Novel Homophily Modeling
	3.1 Problem Setting
	3.2 Encoding Community Membership Information for Trust Prediction
	3.3 Proposed Homophily Modeling Using Users' Item Ratings

	4 The Overall Optimization Framework
	4.1 Trust Inference Using the Community-Based Factor
	4.2 Trust Inference Through Homophily Modeling Using Users' Item Ratings
	4.3 The chTrust Algorithm

	5 Experiments
	5.1 Datasets
	5.2 Evaluation Metric and Experiment Settings
	5.3 Baselines
	5.4 Results

	6 Conclusion
	References

	Deep Learning Theory and Applications in KDD
	Text-Visualizing Neural Network Model: Understanding Online Financial Textual Data
	1 Introduction
	1.1 Motivation and Purpose
	1.2 Main Approach and Problem Settings

	2 Importance of Infiltration (II) Algorithm
	2.1 Setup of NN Model
	2.2 Initialization and Learning of Parameters
	2.3 Proposed and Baseline Models

	3 Text Visualization Demonstration Using Real Data
	3.1 Dataset and Model Development
	3.2 Interpretability Evaluation
	3.3 Clustering Interpretability Evaluation
	3.4 Market Mood Predictability Evaluation
	3.5 Text Visualization

	4 Related Work
	5 Conclusion
	A Theoretical Analysis of the II Algorithm
	References

	MIDA: Multiple Imputation Using Denoising Autoencoders
	1 Introduction
	2 Background
	2.1 Missing Data
	2.2 Autoencoders and Denoising Autoencoders

	3 Models
	3.1 Our Model
	3.2 Competitors and Comparison

	4 Experiments
	4.1 Datasets
	4.2 Inducing Missingness
	4.3 Main Results
	4.4 Increased Missingness Proportion
	4.5 Impact on Final Analysis

	5 Conclusion
	References

	Dual Control Memory Augmented Neural Networks for Treatment Recommendations
	1 Introduction
	2 Methods
	2.1 Problem Formulation
	2.2 DNC Overview
	2.3 Proposed Model

	3 Results
	3.1 Synthetic Task: Odd-Even Sequence Prediction
	3.2 Treatment Recommendation Tasks

	4 Related Works
	5 Conclusion
	References

	Denoising Time Series Data Using Asymmetric Generative Adversarial Networks
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Asymmetric Generative Adversarial Network
	4.1 Generator and Discriminator Network Architecture

	5 Experimental Setup and Results
	5.1 Synthetic Dataset
	5.2 EEG Dataset

	6 Conclusion
	References

	Shared Deep Kernel Learning for Dimensionality Reduction
	1 Introduction
	2 Related Works
	2.1 GP and GPLVM
	2.2 DKL

	3 The Proposed Model
	4 Experiments
	5 Conclusion
	References

	CDSSD: Refreshing Single Shot Object Detection Using a Conv-Deconv Network
	1 Introduction
	2 Limitations of Related Work
	3 CDSSD Architecture
	3.1 SSD
	3.2 Unsupervised Pretraining
	3.3 Combining Feature Maps
	3.4 Box Pooling: Reducing the Number of Default Boxes

	4 Results
	4.1 Training
	4.2 PASCAL VOC
	4.3 Ablation Study
	4.4 MSCOCO

	5 Conclusion
	References

	Binary Classification of Sequences Possessing Unilateral Common Factor with AMS and APR
	1 Introduction
	2 Related Work
	3 Our Proposals
	3.1 Network Architecture and Notations
	3.2 Adaptive Multi-scale Sampling (AMS)
	3.3 Activation Pattern Regularization (APR)

	4 Experiments
	4.1 Experimental Setup
	4.2 Experiments on Dataset 1
	4.3 Experiments on Dataset 2
	4.4 Analyzing AMS and APR

	5 Conclusion
	References

	Automating Reading Comprehension by Generating Question and Answer Pairs
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 Approach and Contributions
	5 Answer Selection and Encoding
	5.1 Named Entity Selection
	5.2 Answer Selection Using Pointer Networks

	6 Question Generation
	6.1 Sequence to Sequence Model
	Question Decoder:

	6.2 Linguistic Features

	7 Implementation Details
	8 Experiments and Results
	8.1 Results and Analysis 

	9 Conclusion
	References

	Emotion Classification with Data Augmentation Using Generative Adversarial Networks
	1 Introduction
	2 Related Work
	2.1 Generative Adversarial Networks
	2.2 Data Augmentation

	3 Data Augmentation Using CycleGAN
	3.1 Cycle-Consistent Adversarial Networks
	3.2 Class Imbalance and Data Manifold

	4 Experimental Studies
	4.1 Benchmark Datasets
	4.2 Experimental Results

	5 Conclusions and Discussions
	References

	Trans2Vec: Learning Transaction Embedding via Items and Frequent Itemsets
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Problem Definition
	3.2 Learning Transaction Embeddings Based on Items
	3.3 Learning Transaction Embeddings Based on Frequent Itemsets
	3.4 Trans2Vec Method for Learning Transaction Embeddings

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Evaluation Metrics
	4.4 Parameter Settings
	4.5 Results and Discussion
	4.6 Parameter Sensitivity

	5 Conclusion
	References

	Detecting Complex Sensitive Information via Phrase Structure in Recursive Neural Networks
	1 Introduction
	2 Complex Sensitive Information Detection
	3 SPR - Sensitive Phrase Based RNN Model
	3.1 Phrase Structure
	3.2 Recursive Neural Networks with Phrase Structure
	3.3 Training SPR

	4 Evaluation
	4.1 Evaluation Methodology and Data
	4.2 Performance Evaluation for Complex Sensitive Information
	4.3 Qualitative Analysis

	5 Related Work
	6 Conclusion
	References

	Clustering and Unsupervised Learning
	A Distance Scaling Method to Improve Density-Based Clustering
	1 Introduction
	2 Related Work
	3 The Problem of Varied Densities
	4 A Distance Scaling Method for Density-Ratio Estimation
	5 Empirical Evaluation
	5.1 Clustering Performance

	6 Conclusion
	References

	Neighbourhood Contrast: A Better Means to Detect Clusters Than Density
	1 Introduction
	2 Neighbourhood Contrast
	2.1 Property of Neighbourhood Contrast
	2.2 Estimating Neighbourhood Contrast

	3 Improving DP with Neighbourhood Contrast
	4 Neighbourhood Contrast Clustering
	4.1 Core Points and Cluster Nexuses
	4.2 Assigning Non-core Points

	5 Experiments
	6 Conclusions
	References

	Clustering of Multiple Density Peaks
	1 Introduction
	2 Preliminary Knowledge and Problem Definition
	2.1 The Algorithm of DPC
	2.2 The Problems and Related Approaches

	3 The MDPC Approach
	3.1 Find Seed Clusters
	3.2 Merge Seed Clusters
	3.3 Algorithm Complexity

	4 Experiments
	4.1 Synthetic Datasets
	4.2 Real Datasets

	5 Conclusion
	References

	A New Local Density for Density Peak Clustering
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 A New Local Density
	3.2 NDPC Algorithm
	3.3 NDPC-AC Algorithm

	4 Experiments
	4.1 Comparison Scheme
	4.2 Experimental Results on Benchmark Datasets
	4.3 Visualization of Experimental Results on ORL Dataset

	5 Conclusion
	References

	An Efficient Ranking-Centered Density-Based Document Clustering Method
	Abstract
	1 Introduction
	2 Ranking-Centered Density Document Clustering (RDDC)
	2.1 Obtaining Nearest Neighbors as Relevant Documents
	2.2 Graph Based Clustering
	2.3 Relevancy Based Clustering

	3 Empirical Analysis
	3.1 Accuracy Analysis
	3.2 Scalability and Complexity Analysis
	3.3 Sensitivity Analysis

	4 Conclusion
	References

	Fast Manifold Landmarking Using Locality-Sensitive Hashing
	1 Introduction
	2 Background
	2.1 Landmarking Manifolds with Gaussian Processes
	2.2 Locality-Sensitive Hashing
	2.3 Distance-Based Hashing

	3 LSH for Finding Manifold Landmarks
	3.1 Manifold Assumption and Locality-Sensitive Hashing
	3.2 Supervised LSH (LSH-SC)
	3.3 Supervised DBH (DBH-SC)
	3.4 Landmark Selection Methods
	3.5 Complexity Analysis

	4 Experimental Results
	4.1 Classification Using Landmark-Based Transformed Features
	4.2 Impact of Approach Improvements
	4.3 Qualitative Evaluation
	4.4 Quantitative Evaluation of Landmark Quality

	5 Conclusion
	References

	Equitable Conceptual Clustering Using OWA Operator
	1 Introduction
	2 Background
	2.1 Formal Concepts and Conceptual Clustering
	2.2 Equitable Multiagent Optimization
	2.3 Equitable Aggregation Functions
	2.4 Ordered Weighted Averages (OWA)

	3 ILP Models
	3.1 OWA ILP Models
	3.2 Other ILP Models

	4 Related Work
	5 Experiments and Results
	6 Conclusion
	References

	Unsupervised Extremely Randomized Trees
	1 Introduction and Preliminaries
	2 Unsupervised Extremely Randomized Trees
	3 Empirical Evaluation
	3.1 Optimization of Parameters
	3.2 Comparative Evaluation of UET

	4 Conclusion and Perspectives
	References

	Local Graph Clustering by Multi-network Random Walk with Restart
	1 Introduction
	2 Related Work
	3 Problem Definitions
	4 Methods
	4.1 Random Walk on Single Network
	4.2 Random Walk on Multi-network
	4.3 Localized Algorithm for MRWR

	5 Experiment
	5.1 Datasets and Baseline Methods
	5.2 Effectiveness Evaluation
	5.3 Efficiency Evaluation

	6 Conclusion
	References

	Scalable Approximation Algorithm for Graph Summarization
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Algorithm
	5 Evaluation
	6 Conclusion
	References

	Privacy-Preserving and Security
	RIPEx: Extracting Malicious IP Addresses from Security Forums Using Cross-Forum Learning
	1 Introduction
	2 Our Forums and Datasets
	3 Overview of RIPEx
	3.1 The IP Identification Module
	3.2 The IP Characterization Module
	3.3 Transfer Learning with Cross-Seeding

	4 Evaluation of Our Approach
	5 Related Work
	6 Conclusion
	References

	Pattern-Mining Based Cryptanalysis of Bloom Filters for Privacy-Preserving Record Linkage
	1 Introduction
	2 Background and Related Work
	3 Pattern-Mining Based Cryptanalysis Attack
	3.1 Identifying Co-occurring Bit Positions in Bloom Filters
	3.2 Plain-Text Value Re-identification

	4 Experiments and Results
	5 Conclusions and Future Work
	References

	A Privacy Preserving Bayesian Optimization with High Efficiency
	1 Introduction
	2 Background
	2.1 Bayesian Optimization
	2.2 Differential Privacy

	3 The Proposed Framework
	3.1 Error Preserving Privacy Framework
	3.2 The Proposed Algorithm
	3.3 Discussion of Differentially Private Bayesian Optimization

	4 Experiments
	4.1 Experiment with Benchmark Functions
	4.2 Experiment with Real Datasets

	5 Conclusion
	References

	Randomizing SVM Against Adversarial Attacks Under Uncertainty
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Attack Model Design
	4.1 Restrained Range Attack with Uncertainty
	4.2 Distributional Range Attack with Uncertainty

	5 Randomized SVMs Learning
	5.1 Randomized SVM Against RRA
	5.2 Randomized SVM Against RRAU
	5.3 Randomized SVM Against DRAU

	6 Experimental Evaluation
	6.1 Comparison with Deterministic SVM-RRA
	6.2 Comparative Study with Standard SVMs
	6.3 SVM-DRAU with Different Norms

	7 Conclusion
	References

	Recommendation and Data Factorization
	One for the Road: Recommending Male Street Attire
	1 Introduction
	2 Data Collection
	2.1 Surveys
	2.2 Data Statistics and Analysis

	3 Prediction Model
	4 Recommendation Model - MalOutRec
	4.1 Construction of Bipartite Graph
	4.2 Traversal of the Graph
	4.3 Refining Recommendation Using Positive Influence Factor

	5 Experiments
	5.1 Prediction Accuracy
	5.2 MalOutRec - Performance Assessment

	6 Conclusion
	References

	Context-Aware Location Annotation on Mobility Records Through User Grouping
	1 Introduction
	2 Preliminary
	3 Method
	3.1 Overview of CAUG
	3.2 User Grouping
	3.3 Feature Extraction
	3.4 Venue Ranking

	4 Experimental Study
	4.1 Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	A Joint Optimization Approach for Personalized Recommendation Diversification
	1 Introduction
	2 Problem Formulation
	3 Personalized Diversification Algorithms
	3.1 Personalized Diversification Algorithm by Greedy Re-ranking
	3.2 Personalized Diversification Algorithm by Joint Optimization

	4 Personalized Diversity Measure
	4.1 Limitations of Existing Diversity Measures
	4.2 Formulation of Personalized Diversity Measure

	5 Experiments
	5.1 Experiments on Algorithms
	5.2 Experiments on Measures

	6 Related Work
	7 Conclusion
	References

	Personalized Item-of-Interest Recommendation on Storage Constrained Smartphone Based on Word Embedding Quantization
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The WEQ Framework
	4.1 Word Embedding Quantization
	4.2 Bounding Angle Checking Mechanism

	5 Experiment and Evaluation
	5.1 Experimental Settings
	5.2 Performance Results

	6 Conclusion
	References

	Social Network, Ubiquitous Data and Graph Mining
	Topic-Specific Retweet Count Ranking for Weibo
	1 Introduction
	2 Related Work
	3 TSTR Framework
	3.1 Consideration and Design
	3.2 Candidate Tweet Filter
	3.3 LSTM-AE
	3.4 DAE
	3.5 Tweet Ranker
	3.6 Chinese Word Embedding

	4 Experiments
	5 Conclusion
	References

	Motif-Aware Diffusion Network Inference
	1 Introduction
	2 Related Work
	3 Motif-Aware Diffusion Network Inference
	3.1 Notations and Problem Formulation
	3.2 Estimating Motif Pattern from Cascade Data
	3.3 Motif Prior Regularization
	3.4 Learning
	3.5 Computational Complexity Analysis

	4 Validations
	4.1 Experiments on Synthetic Networks
	4.2 Experiment on a Real-World Network
	4.3 Experiment on Real-World Cascades

	5 Conclusion
	References

	Tri-Fly: Distributed Estimation of Global and Local Triangle Counts in Graph Streams
	1 Introduction
	2 Related Work
	3 Notations and Problem Definition
	3.1 Notations (Table2)
	3.2 Problem Definition

	4 Proposed Method: Tri-Fly
	4.1 Overview (Fig.1)
	4.2 Detailed Algorithm (Algorithm1)
	4.3 Bias and Variance Analyses
	4.4 Time and Space Complexity Analyses

	5 Experiments
	5.1 Experimental Settings
	5.2 Q1. Illustration of Our Theorems (Fig.2)
	5.3 Q2. Performance (Fig.3)

	6 Conclusion
	References

	WFSM-MaxPWS: An Efficient Approach for Mining Weighted Frequent Subgraphs from Edge-Weighted Graph Databases
	1 Introduction
	2 Background and Related Works
	3 Our Proposed Algorithm
	3.1 WFSM-MaxPWS Canonical Ordering of Subgraph
	3.2 MaxPWS Pruning Technique
	3.3 The WFSM-MaxPWS Algorithm

	4 Experimental Results
	5 Conclusions
	References

	A Game-Theoretic Adversarial Approach to Dynamic Network Prediction
	1 Introduction
	2 Related Work
	3 Adversarial Dynamic Network Prediction
	3.1 Adversarial Prediction Formulation
	3.2 Performance Guarantees and Features
	3.3 Relationship with TERGMs

	4 Experiments
	5 Conclusions
	References

	Targeted Influence Minimization in Social Networks
	1 Introduction
	2 Problem Definition
	2.1 Diffusion Model
	2.2 Targeted Influence Minimization

	3 Budget Unconstrained Solution
	4 Budget Constrained Solution
	5 Sampling-Based Solution
	5.1 Minimum Influence Path
	5.2 Sampling-Based Greedy Algorithm

	6 Experimental Study
	6.1 Evaluation of Effectiveness
	6.2 Evaluation of Efficiency

	7 Conclusion
	References

	Maximizing Social Influence on Target Users
	1 Introduction
	2 Problem Formulation
	3 Probabilistic Social Influence Model
	3.1 Assigning Direct Weight
	3.2 Social Influence Distribution
	3.3 Objective Function

	4 Cluster-Based Assembling Method
	4.1 Cluster Detection Using Influence Behavior
	4.2 Greedy Algorithm

	5 Experiment Evaluation
	5.1 Experiment Setup
	5.2 Spread Achieved
	5.3 Running Time

	6 Conclusion
	References

	Team Expansion in Collaborative Environments
	1 Introduction
	2 Problem Statement
	3 The Proposed Approach
	3.1 The TECE Model
	3.2 Generalizations and Discussions

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

	HashAlign: Hash-Based Alignment of Multiple Graphs
	1 Introduction
	2 Related Work
	3 Proposed Formulation: Two-Graph Alignment
	3.1 Definition: Relaxed Two-Graph Alignment Problem
	3.2 Node Representation: Handling Node and Edge Attributes
	3.3 Proposed Hashing-Based Computation of Potential Matchings
	3.4 From Similarities to Matchings

	4 HASHALIGN: Multiple Graph Alignment
	5 Experimental Analysis
	6 Conclusions
	References

	Evaluating and Analyzing Reliability over Decentralized and Complex Networks
	1 Introduction
	2 Main Definitions and Related Works
	3 Agent-Based Reliability Estimation
	3.1 Estimating Two-Terminal Reliability
	3.2 Evaluation of the Graph Reduction Algorithm

	4 Conclusion and Future Works
	References

	Efficient Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Computing Betweenness Centrality in Directed Graphs
	4.1 Reachable Vertices
	4.2 The Exact Algorithm
	4.3 The Approximate Algorithm

	5 Experimental Results
	6 Conclusion
	References

	Forecasting Bitcoin Price with Graph Chainlets
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Graph Chainlets
	3.2 Clustering Chainlets

	4 Experiments
	4.1 Granger Causality
	4.2 Price Prediction

	5 Conclusion
	References

	Information Propagation Trees for Protest Event Prediction
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Setup
	3.1 Definitions
	3.2 Problem Setup

	4 The Propagation Tree Framework
	5 Experimental Settings and Results
	5.1 Experiment Setup
	5.2 Performance Metrics
	5.3 Results and Discussions

	6 Conclusion
	References

	Predictive Team Formation Analysis via Feature Representation Learning on Social Networks
	1 Introduction
	2 Problem Statement
	3 Proposed Methods
	3.1 Learning Node Representation (n2v) for Team Formation
	3.2 The Biased-n2v Method
	3.3 The Guided-n2v Method

	4 Experimental Results
	5 Related Work
	6 Conclusions
	References

	Leveraging Local Interactions for Geolocating Social Media Users
	1 Introduction
	2 Related Work
	2.1 Text-Based Methods
	2.2 Network-Based Methods
	2.3 Hybrid Methods

	3 Data
	4 The Proposed Approach
	4.1 Construction of Social Graph
	4.2 Predicting Geographical Proximity from Linguistic Similarity
	4.3 Predicting Locations of Isolated Users
	4.4 Label Propagation with Modified Adsorption

	5 Experimental Results
	5.1 Experiment Setting
	5.2 Evaluation Metrics
	5.3 Results
	5.4 Other Textual Similarity Measures

	6 Conclusion and Future Work
	References

	Utilizing Sequences of Touch Gestures for User Verification on Mobile Devices
	Abstract
	1 Introduction
	2 Related Work
	3 Attack Scenario
	4 Suggested Approach
	4.1 Data Acquisition
	4.2 Feature Extraction
	4.3 Verification

	5 Experiment Setup
	5.1 Data Collection
	5.2 Evaluation Metrics
	5.3 Hyper Parameter Tuning

	6 Experiments and Results
	6.1 Outsider and Insider Attack Scenario
	6.2 Response Time and Comparison with State-of-the-Art

	7 Conclusion
	References

	Author Index



