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Abstract. Named Entity Recognition (NER) is a challenging task in
Natural Language Processing. Recently, machine learning based methods
are widely used for the NER task and outperform traditional handcrafted
rule based methods. As an alternative way to handle the NER task,
stacking, which combines a set of classifiers into one classifier, has not
been well explored for the NER task. In this paper, we propose a stacking
model for the NER task. We extend the original stacking model from
both model and feature aspects. We use Conditional Random Fields as
the level-1 classifier, and we also apply meta-features from global aspect
and local aspect of the level-0 classifiers and tokens in our model. In the
experiments, our model achieves the state-of-the-art performance on the
CoNLL 2003 Shared task.

Keywords: Named Entity Recognition · Stacking
Feature engineering

1 Introduction

Named Entity Recognition (NER) is a fundamental stage in Natural Language
Processing (NLP). In the sentence “Trump dined at the Trump National Hotel.”,
NER aims to identify “Trump” as a person and “Trump National Hotel” as an
organization. The identified entities can be then used in downstream applications
(e.g., information extraction systems) and other NLP tasks (e.g., named entity
disambiguation and relation extraction).

Early NER systems are based on handcrafted rules. The rules are defined
by human experts, which makes them labour consuming to develop and, more
importantly, impossible to cover all the cases. Recently, machine learning tech-
niques become more popular and effective in solving the NER problem. Super-
vised learning is one of the most widely used learning approaches for the NER
task, which takes a set of human labelled documents as the training data,
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and predicts the named entities in the given documents (i.e., test data). Lin-
ear classifiers, such as Hidden Markov Model [8] and Conditional Random
Fields (CRF) [7,10], are proved to be effective. However, the performance of
these models is highly associated with carefully designed features, whose effec-
tiveness is usually restricted within a specific domain. In recent years, an enor-
mous amount of research effort has been put into neural network based meth-
ods [4,11,12,16], and these methods have achieved the state-of-the-art perfor-
mance. Most neural network based methods simply use word embedding vectors
as input [14,15]. However, to train the word embedding vectors, it requires a
huge amount of unlabelled data in order to achieve high performance. These
neural network based models are hard to adjust due to the non-trivial hyperpa-
rameter tuning process. The training stage is also much more time-consuming
than linear classifiers, even with high performance GPUs.

Stacking [2,25] is an alternative way to improve the accuracy of a machine
learning task. As a two-phrase method, the first step of stacking is to train a set
of the level-0 classifiers (i.e., the base classifiers) using different models on the
training dataset. In the second step, the level-1 classifier (e.g., a linear regression
classifier) is trained on the training dataset with the predicted results from the
level-0 classifiers as features. As such, the level-1 classifier is expected to achieve
better performance than the level-0 classifiers.

Although traditional stacking method has shown its effectiveness on many
machine learning tasks, there are still some potential improvements that can
be explored, especially for the NER task. In this paper, we propose a CRF
based stacking model with carefully designed meta-features to solve the NER
problem. Comparing with the traditional stacking model, our model has two
major differences. Firstly, we use CRF instead of linear regression as the level-1
classifier. The idea is inspired by the fact that CRF has shown its advantage
as a sequential model in the NER task, while linear regression only works on
independent instances. Secondly, we use a mix of meta-features and local features
to improve the accuracy of the stacking model. Previous works either simply
use the predicted results from the level-0 classifiers, or only extract features
from the surface of tokens [7,10,18] (i.e., local features). We observe that the
stacking model can also benefit from the non-local information. For example,
the distribution of a token on different named entity types acts like the prior
knowledge when we make the prediction. Moreover, our proposed model shows
its robustness even when the performance of the level-0 classifiers is not good.
This would be very helpful when users want to involve commercial NER systems
(which usually cannot be tuned or re-trained).

The contributions of this paper are as follows:

– We proposed the CRF based stacking model named as SMEF, which took
meta-features into consideration.

– We proposed a set of meta-features and local features and integrated these
features in the stacking model to achieve better performance. We presented
the details of the model and features in Sect. 3.
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– We conducted extensive performance evaluation against the state-of-the-art
NER systems. The proposed model outperforms all of them and achieves
the overall F1 score of 92.38% in the CoNLL 2003 Shared task. Moreover,
the experiment results also show the effectiveness of each type of features
and the robustness of the proposed model. Section 4 reports the experiment
results and analyses.

2 Related Work

Named Entity Recognition is a research topic with a long history. Most recent
approaches to NER have focused on CRF model and neural network models.
CRF is a sequence model which could be used to predict sequences of labels based
on the handcrafted features [7,9,10,18]. Neural network takes word embedding
vectors as input features and learns a dense score vector for each possible named
entity types [4,11,12,16]. Moreover, CRF model can be used as the output layer
in neural network based models. Some of the most recent works [11,12,16] have
shown the effectiveness of this combination.

Stacking has been proposed for many years [2,25] as a way to combine mul-
tiple classifiers (the level-0 classifiers) into one model (the level-1 classifier) in
order to achieve better accuracy. While the level-0 classifier can be any machine
learning model, the level-1 classifier is usually linear regression [25], stacking
trees and ridge regression [2]. FWLS [21] uses a linear combination of meta-
features to formulate the weight of the level-0 classifiers in the level-1 classifier,
and achieves good performance in the Netflix Prize competition. [17,27] add
meta-features extracted from the level-0 classifiers to the level-1 classifier to
improve the stacking performance.

Stacking has been applied to NLP tasks such as Part-of-Speech Tagging
[3,22] and NER [6,23,24,26]. Tsukamoto et al. [23] and Wu et al. [26] apply an
extension of AdaBoost to learn the level-1 classifier. They take the sequence label
information into consideration, and use handcrafted features from tokens. [6,24]
use CRF model as the level-1 classifier to solve biomedical NER tasks. They also
make use of the handcrafted local features.

3 Model

Named Entity Recognition takes a token sequence xi = (xi1, . . . , xis) as input,
and predicts a corresponding label sequence yi = (yi1, . . . , yis), where xi is taken
from the i-th sentence in the dataset X and s is the length of the token sequence.
As a named entity could span several tokens, we do not directly use the named
entity types as labels. Instead, we apply chunking encoding for these labels.
There are two popular encoding methods: BIO (i.e., Begin, Inside, and Outside
token of a named entity) and BIOES (i.e., Begin, Inside, Outside, End, and
Single token of a named entity). Table 1 shows an example.

As there are various named entity types, we form the NER task as a multi-
class classification problem. As such, for each xij , a classifier (either a level-0
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Table 1. Example of chunking encoding

xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8

Token Trump dined at the Trump National Hotel .

yi1 yi2 yi3 yi4 yi5 yi6 yi7 yi8

BIO B-PER O O O B-ORG I-ORG I-ORG O

BIOES S-PER O O O B-ORG I-ORG E-ORG O

classifier or the level-1 classifier) returns a vector c(xij) with m dimensions,
where m is the number of classes. More specifically, in the NER task, m is the
number of predefined named entity types. Generally, each dimension in c(xij) is a
binary value, i.e., 1 for the predicted class and 0 for the rest classes. Real numbers
can be used in some classifiers to represent the probability or the confidence score
of each class.

In this section, we will firstly give more detail about the stacking method
[2,25]. Then we will introduce our model along with different meta-feature.

3.1 Stacking

Stacking is a two-phrase method. All the level-0 classifiers are trained on
dataset X . We denote the prediction of token sequence xi by the k-th level-
0 classifier as ck(xi) = (ck(xi1), . . . , ck(xij), . . . , ck(xis)), where ck(xij) is a m
dimensional one-hot encoding vector. In this paper, all vectors are assumed to be
column vectors unless noted. With predicted results from the level-0 classifiers,
we generate a new dataset Z, which consists of {(zi,yi), i = 1, . . . , N}, where N
is the size of dataset X , yi is the ground truth label sequence corresponding to
the token sequence xi, and zi is a vector sequence corresponding to xi. Each zij
in zi consists of (xij , c1(xij), . . . , cL(xij)), where L is the number of the level-0
classifiers.

In [2], the loss function of stacking method is L =
∑

i,j(yij −∑
k wkck(xij))2,

where wk is the weight of ck(xij), and both yij and ck(xij) belong to R.
However, this loss function is designed for regression problem thus can not

be directly applied for a multi-class classification problem. Moreover, it does not
consider the label dependency between sequential tokens.

In order to resolve the above issues, in this paper, we propose to use the Con-
ditional Random Fields (CRF) model as the level-1 classifier instead of a linear
regression model. The loss function of CRF is L = −∑

i log(p(yi | zi)). Given
each vector sequence zi, the probability of the corresponding label sequence yi

can be formulated as

p(yi | zi) =
exp(

s∑

j=0

U(zij, yij) +
s−1∑

j=0

Tyij ,yi(j+1))

∑

y′∈Yzi

exp(
s∑

j=0

U(zij, y′ij) +
s−1∑

j=0

Ty′ij ,y′i(j+1))
, (1)
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where Tyij ,yi(j+1) is the transition score between yij and yi(j+1), Yzi
is the set

of all the possible label sequences, and U(zij , yij) is the unary potential score of
zij with the corresponding label yij . More specifically, U(zij , yij) is defined as

U(zij , yij) =
∑

win

∑

k

w�
k,win,yij

ck(xi(j+win)) + biasyij
, (2)

where wk,win,yij
is the weight vector of the predicted result from the level-0

classifier ck for token xi(j+win), and biasyij
is the learned bias corresponding to

label yij . win denotes the token offset in the context window. In this paper, we
set two as the size of the context window, i.e., win ∈ [0,±1,±2].

3.2 Stacking with Meta-features

We have observed that the characteristic of the level-0 classifiers is useful for the
level-1 classifier. For example, if a classifier consistently recognizes “Jordan” as
a location, we should not give such classifier too much trust when dealing with
“Jordan” as “Jordan” could also be a person’s name.

In this subsection, we propose several meta-features based on the statistic
information of dataset Z. More specifically, for each level-0 classifier, we will
extract meta-features from its prediction results on dataset X . Note that the
values of meta-features vary from different datasets such as training set, devel-
opment set, and testing set.

The unary potential part of the model is therefore modified as

U(zij, yij) =
∑

win

∑

k

u�w�
meta,k,win,yij

Fmeta(xi(j+win), ck)c�
k (xi(j+win))u

+ biasyij
,

(3)

where Fmeta(xij , ck) returns a vector of meta-features extracted from the level-0
classifier ck for token xij , wmeta,k,win,yij

∈ R|Fmeta|×m is the weight matrix,
and u is an all-ones vector with m dimension. Note that since there is only one
nonzero element in ck(xij), only one column of weights in wmeta,k,win,yij

are
activated.

In our proposed model, Fmeta(xij , ck) consists of four meta-features: con-
stant, token label prior, token majority label, and token label entropy.

Constant. A constant 1 is used to maintain the predicted label of token xij

from ck. This feature helps us improve the model without losing the original
information. Note that if we only apply this feature, then Eq. 3 falls back to
Eq. 2, which is the standard CRF model.

Token Label Prior. Each token has a prior probability of being a named
entity type typet. For example, if token xij appears 11 times in the dataset
and 9 of them are predicted as a person by classifier c1, then we can approx-
imate its token label prior of being a person as 9

11 . For each typet, we use
Fmeta,prior,typet(xij , ck, typet) to denote the token label prior.
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Token Majority Label. We define Fmeta,major(xij , ck) to denote whether
ck(xij) is consistent with the majority label of token xij for classifier ck. For
example, assume the surface of token xij is “Jordan” and the majority label of
“Jordan” under the prediction of c1 is person. Then we set Fmeta,major(xij , c1) =
1 for ck(xij = “Jordan”) indicates person and Fmeta,major(xij , c1) = 0 otherwise.
We use Fmeta,major(xij , ck) to enhance the impact of ck(xij).

Token Label Entropy. The token majority label feature may not be effective
when the majority prediction is not distinguishable. Therefore, we apply the
entropy of named entity types for token xij , denoted as Fmeta,entropy(xij , ck), to
further improve the performance of our model.

3.3 Stacking with Joint Meta-Features

We also observe that for a given token, the predicted labels over all the level-
0 classifiers are helpful for the final decision. For example, if four out of five
level-0 classifiers recognize token xij as a person, then most likely it is a person.
However, this can not be captured by meta-features as they consider information
from the level-0 classifiers independently.

We propose a set of meta-features which consider the joint information from
the predicted labels of the given token from each level-0 classifier, and name
them joint meta-features.

Similarly, we add the joint meta-features into the unary potential part and
change it to

U(zij, yij) =
∑

win

∑

k

u�w�
meta,k,win,yij

Fmeta(xi(j+win), ck)c�
k (xi(j+win))u

+
∑

win

w�
joint,win,yij

Fjoint(c1(xi(j+win)), . . . , cL(xi(j+win))) + biasyij
,

(4)

where Fjoint(c1(xij), . . . , cL(xij)) is a vector of the joint meta-features extracted
from the predicted labels of the level-0 classifiers, and wjoint,win,yij

is the weight
vector.

We propose the following two joint meta-features: context prior, and joint
label.

Context Prior. Under different local contexts, the probability of a token being
typet should be different. For example, in sentence “Jordan is in Asia.”, “Jor-
dan” is more likely to be a location. We use the portion of the number of labels
predicted as typet labels over the number of the level-0 classifiers to approxi-
mate the local context prior, denoted as Fjoint,prior,typet(c1(xij), . . . , cL(xij)).
For example, the context prior of “Jordan” being predicted as a location is 2

3
when two of three level-0 classifiers predict “Jordan” as a location.

Joint Label. Following the sequence of the level-0 classifiers i.e., c1, . . . , ck,
we connect their predicted labels as the joint label (i.e., PER-LOC-PER). We
denote this joint label feature as Fjoint,joint(c1(xij), . . . , cL(xij)). It reserves all
the information in the predicted labels rather than only keeps the majority label.
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3.4 Stacking with Local Embedding Features

In addition, we also apply the local embedding features to enhance our model.
Note that even if the level-0 classifiers have applied these local embedding fea-
tures, there is no duplicated usage of local embedding features as we use a
different model.

In order to apply the local embedding features, the unary potential part is
modified to

U(zij, yij) =
∑

win

∑

k

u�w�
meta,k,win,yij

Fmeta(xi(j+win), ck)c�
k (xi(j+win))u

+
∑

win

w�
joint,win,yij

Fjoint(c1(xi(j+win)), . . . , cL(xi(j+win)))

+
∑

win

w�
local,winFlocal(xi(j+win)) + biasyij

,

(5)

where Flocal(xij) extracts the local embedding features from token xij and
wlocal,win is the weight vector.

Following [9], we cluster word embeddings [15] by using the batch k-means
clustering algorithm [20] with different numbers of clusters. For token xij and
the number of clusters, we use the clustering id as one local embedding feature
in our model. The number of clusters is set as 500, 1000, 1500, 2500 and 3000.

4 Experiment

We evaluate our model on two public NER benchmarks: the CoNLL 2003 Shared
task [19] and the ACE 2005 dataset. Our model achieves the state-of-the-art
performance on both benchmarks. In this section, we will firstly give the details
about the datasets and the evaluation metrics. Then we will describe our training
process. After that, we will show the overall performance of our model, and
feature effectiveness results. In the end, we will show the robustness of our model
when using existing low-performance classifiers as the level-0 classifiers.

4.1 Dataset and Evaluation

The CoNLL 2003 Shared Task. (CoNLL03) consists of news articles from the
Reuters RCV corpus. There are four predefined named entity types: PER (Per-
son), LOC (Location), ORG (Organization), and MISC (Miscellaneous). It includes
standard tokenized training, development and test sets. We use the English data
of the shared task. The details of the dataset can be found in Table 2.

The ACE 2005 Dataset. (ACE05) consists of articles from diverse sources
including Broadcast News, Broadcast Conversations, Newswire, Weblog, Usenet,
and Conversational Telephone Speech. Seven named entity types are predefined
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Table 2. Statistics of The CoNLL 2003 Shared task [19]

Articles Sentences Tokens LOC MISC ORG PER

Train 946 14,987 203,621 7,140 3,438 6,321 6,600

Dev. 216 3,466 51,362 1,837 922 1,341 1,842

Test 231 3,684 46,435 1,668 702 1,661 1,617

in the dataset, including FAC (Facility), GPE (Geo-Political Entity), LOC (Loca-
tion), ORG (Organization), PER (Person), VEH (Vehicle), and WEA (Weapon). As
we only have the full training set, we split the dataset into training (56%),
development (24%), and test (20%) sets following [1]. Texts in the dataset are
tokenized using the spaCy tokenizer. We work on the English data of the ACE
2005 dataset. The details of the ACE05 dataset can be found in Table 3.

Table 3. Statistics of The ACE 2005 dataset

Articles Sentences Tokens FAC GPE LOC ORG PER VEH WEA

Train 337 12,965 164,539 130 3,175 161 1,546 4,506 66 16

Dev. 145 5,142 73,411 81 1,565 83 713 1,804 20 11

Test 117 4,348 60,186 52 1,393 70 674 1,518 23 7

We evaluate the performance of different models by comparing the pre-
dicted results on the test set using Precision, Recall, and F1 score. The pre-
dicted results can be classified into true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN), according to the ground truth.
Precision (P ) is defined as TP

TP+FP , Recall is defined as TP
TP+FN , and F1 score

is the harmonic average of P and R. Following the previous work [4,11,16,18],
named entities are evaluated in phrase level.

4.2 Training

We use the BIOES chunking encoding as we find it bringing slightly better
performance than the BIO encoding. This is also consistent with the observation
in the previous work [18]. We pre-process the text by lowercasing all the tokens
and replacing all the digits with 0 following [4].

We use the following NER classifiers as our level-0 classifiers:

– spaCy1 is based on CNN with Glove word embedding vectors [15] as input;
– CoreNLP [13] is based on CRF with handcrafted features;
– UIUC [18] is based on handcrafted features and a set of gazetteers by using

a regularized averaged perceptron;
1 https://spacy.io/.

https://spacy.io/
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– MITIE2 makes use of structural SVM and word embedding vectors;
– NeuroNER [16] has a BLSTM-CRF architecture with Glove word embedding

vectors [15] as input.

Following the standard procedure of stacking [25], we generate the training
set (i.e. Ztrain) for the level-1 classifier as follows. Firstly, we separate the original
training set (i.e. Xtrain) evenly into five parts (i.e. X 1

train, . . . ,X 5
train). Then we

train each level-0 classifier with four of them (e.g. X 1
train, . . . ,X 4

train) and get
the predicted results on the left part (e.g. Z5

train). These predicted results (i.e.
Z1

train, . . . ,Z5
train) are combined together to form Ztrain. For the development

set and test set, we get the predicted results of the level-0 classifiers trained on
the original training set (i.e. Xtrain).

We use binary values in c(xi) as described in Sect. 3. For those level-0 clas-
sifiers which provide scores for their predicted named entities, we use the score
to replace the binary values.

In all the experiments, our model is optimized using stochastic gradient
descent with l2 regularization. We train the proposed model with different C (the
coefficient for l2 regularization) and select the one with the best performance on
the development set as the final C of the model. Following [4,16], we train our
model ten times and report the average value for each metric. In addition, we
also report the standard deviation to show the robustness of model.

4.3 Overall Results

In Table 4, we compare the performance of our model with the following state-
of-the-art models:

– NeuroNER (2017) [5] has a neural network architecture of BLSTM-CRF with
Glove word embedding vectors [15] as input;

– UIUC (2009) [18] is based on handcrafted features and a set of gazetteers by
using a regularized averaged perceptron;

– Lample et al. (2016) [11] combines BLSTM and CRF with input word embed-
ding vectors trained on different corpora from Glove [15];

– Ma and Hovy (2016) [12] is a neural network architecture with combination
of BLSTM, CNN and CRF;

– Chiu and Nichols (2016) [4] is a hybrid of BLSTM and CNNs along with a
set of gazetteers;

– TagLM (2017) [16] combines GRUs and CRF as well as an external bidirec-
tional neural language model trained on a one billion token corpus.

For the first four models, we show the best results of the reported results
in the original papers and the results from our experiments. For the last two
models, we list the reported results as we do not have the corresponding models
and source codes. In the CoNLL03, our model achieves the best average F1 score
of 92.38%. It shows a significant improvement compared with the previous best
result of 91.93% ± 0.19% from TagLM [16]. Moreover, our model is more stable
than previous methods.
2 https://github.com/mit-nlp/MITIE.

https://github.com/mit-nlp/MITIE
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Table 4. Test set performance comparison in The CoNLL 2003 Shared task

Model P ± std R± std F1 ± std

NeuroNER (2017) [5] 90.54% 90.78% 90.66%

UIUC (2009) [18] 91.20% 90.50% 90.80%

Lample et al. (2016) [11] - - 90.94%

Ma and Hovy (2016) [12] 91.35% 91.06% 91.21%

Chiu and Nichols (2016) [4] 91.39% 91.85% 91.62% ± 0.33%

TagLM (2017) [16] - - 91.93% ± 0.19%

SMEF 92.95% ± 0.08% 91.83% ± 0.04% 92.38% ± 0.03%

4.4 Effectiveness of Our Model and Meta-features

Table 5 reports the performance of the level-0 classifiers and SMEF in the
CoNLL03 and the ACE05 datasets. The best level-0 classifier in the CoNLL03
scores 90.66% F1. Our model has an increase of 1.72% in F1 score compared with
it. In the ACE05, our model increases the F1 score by 2.43% compared with the
best level-0 classifier.

In SMEF, we use three types of features including meta-features, joint meta-
features, and local embedding features. Table 6 shows the results with different
types of features on both datasets.

In order to justify our choice of using CRF as the level-1 classifier, we also
implement a stacking model with logistic regression classifier as the level-1 clas-
sifier (i.e., LR in Table 6). Our model achieves better performance thanks to the
sequence inference ability of CRF.

We show that all types of features are effective. Generally speaking, one can
always achieve better F1 score by applying more features. When using all the
features, our model achieves the best performance in both datasets.

Meta-features are the most effective. All the models with meta-features con-
sistently outperform those without meta-features. The model with only meta-
features (i.e., meta in Table 6) shows a decent result which surpasses the previous
best result of 91.93% from TagLM [16] in the CoNLL03. According to our anal-
ysis, the most effective meta-feature is the token label prior. The other two

Table 5. Test set performance of the level-0 classifiers and SMEF

Dataset CoNLL03 ACE05

Model P ± std R ± std F1 ± std P ± std R ± std F1 ± std

spaCy 82.62% 80.44% 81.51% 84.30% 74.55% 79.13%

CoreNLP
[13]

87.41% 79.32% 83.17% 75.52% 33.34% 46.26%

UIUC [18] 90.10% 80.42% 84.98% 85.06% 84.56% 84.81%

MITIE 88.72% 86.88% 87.79% 80.55% 77.58% 79.03%

NeuroNER
[5]

90.54% 90.78% 90.66% 85.80% 87.82% 86.80%

SMEF 92.95% ± 0.08%91.83% ± 0.04%92.38% ± 0.03%91.01% ± 0.18%87.52% ± 0.19%89.23% ± 0.07%
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Table 6. Effectiveness of meta-features

Dataset CoNLL03 ACE05

Model P ± std R ± std F1 ± std P ± std R ± std F1 ± std

LR 91.71% ± 0.00% 90.63% ± 0.00% 91.17% ± 0.00% 89.29% ± 0.00% 86.54% ± 0.00% 87.89% ± 0.00%

base CRF 92.39% ± 0.08% 90.77% ± 0.04% 91.57% ± 0.04% 90.52% ± 0.37% 86.83% ± 0.41% 88.63% ± 0.13%

joint 92.53% ± 0.08% 90.79% ± 0.05% 91.65% ± 0.02% 90.14% ± 0.64% 87.10% ± 0.44% 88.59% ± 0.20%

local 92.47% ± 0.10% 90.95% ± 0.07% 91.75% ± 0.04% 90.80% ± 0.23% 86.92% ± 0.20% 88.82% ± 0.05%

joint +
local

92.58% ± 0.08% 91.03% ± 0.04% 91.80% ± 0.05% 90.84% ± 0.32% 86.80% ± 0.21% 88.77% ± 0.13%

meta 92.73% ± 0.08% 91.49% ± 0.07% 92.11% ± 0.05% 90.77% ± 0.21% 87.36% ± 0.38% 89.03% ± 0.10%

meta +
joint

92.69% ± 0.04% 91.54% ± 0.06% 92.11% ± 0.03% 90.65% ± 0.48% 87.49% ± 0.38% 89.04% ± 0.06%

meta +
local

92.82% ± 0.10% 91.77% ± 0.05% 92.29% ± 0.05% 91.11% ± 0.31%87.40% ± 0.23% 89.22% ± 0.08%

all 92.95% ± 0.08%91.83% ± 0.04%92.38% ± 0.03%91.01% ± 0.18% 87.52% ± 0.19%89.23% ± 0.07%

meta-features also show their effectiveness especially for ORG and MISC in the
CoNLL03, and PER and ORG in the ACE05.

4.5 Our Model with the Existing Level-0 Classifiers

Some NER systems, especially commercial NER systems, cannot be tuned or re-
trained on a specified dataset. Thus they may not be able to present satisfactory
results. Our model offers a solution to deal with new data by only using these
existing low-performance classifiers as the level-0 classifiers.

Since these existing classifiers are not trained on the specified dataset, our
model is essentially an ensemble model without changing the loss function of
CRF. These existing classifiers are usually trained on different datasets, even
with different predefined named entity types, which could also be different from
the specified dataset. For example, CoreNLP, MITIE, and NeuroNER are trained
on the CoNLL03 and have four named entity types; spaCy and UIUC are trained
on OntoNotes 5.0 with eighteen named entity types.

Table 7 shows the performance in the ACE05 with the existing level-0 clas-
sifiers. Our model achieves F1 score of 88.87%, which is much better than any
of the existing level-0 classifiers. It also outperforms the best trained classi-
fier NeuroNER (whose F1 score is 86.80%). Comparing with the SMEF model

Table 7. Performance in The ACE 2005 dataset using the existing level-0 classifiers

Model P ± std R± std F1 ± std

Existing CoreNLP [13] 37.16% 18.62% 24.81%

NeuroNER [5] 43.40% 41.80% 42.58%

MITIE 47.07% 40.86% 43.75%

spaCy 44.40% 53.12% 48.37%

UIUC [18] 44.61% 52.42% 48.20%

Our model SMEF 90.73% ± 0.54% 87.10% ± 0.41% 88.87% ± 0.08%
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with the trained level-0 classifiers, the one with the existing level-0 classifiers
is just slightly worse (e.g., 0.46% lower F1 score). Moreover, SMEF takes less
than 5 min to train the model on the ACE05, which is much faster than a neural
network (e.g., NeuroNER needs more than 2 h on the same dataset).

There are mainly three reasons for this. The first reason is that SMEF makes
use of consistent and correlated named entity types between the level-0 classifiers
and the ACE05. The second reason is that the level-0 classifiers provide prior
distributions on corresponding named entity types for each token even though
they have different predefined named entity types. Thus, meta-features would
be effective in this scenario. The last reason is that local embedding features
provide additional information beyond the named entity labels predicted by the
level-0 classifiers.

5 Conclusion

In this paper, we propose a new stacking method with CRF model and meta-
features for the NER task. These meta-features extract non-local information
over the dataset for each level-0 classifier, and local information of the level-0
classifiers and tokens. Our approach, SMEF, achieves the state-of-the-art perfor-
mance on the benchmark CoNLL 2003 Shared task. Besides, even with existing
low-performance classifiers as the level-0 classifiers, our model can still achieve
robust performance on the evaluated dataset.
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