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Abstract. User identification is widely used in anomaly detection, rec-
ommendation system and so on. Previous approaches focus on extraction
of features describing users, and the learners try to emphasize the differ-
ences between different user identities. However, one applicable user iden-
tification scenario occurs in the circumstance of social network, where
features of users are not acquirable while only relationships between users
are provided. In this paper, we aim at the later situation, i.e., the Net-
work User Identification, where features of users cannot be extracted in
social network applications. We consider the information limitation of the
single network and focus on utilizing the multiple relationships between
identities from multi-networks. Different from the existing common sub-
space methods in Cross-Network User Identification, we propose a more
discriminative Graph-Aware Embedding (GAEM) method for modeling
the relationships as well as the transformation between different social
networks explicitly in one unified framework. As a consequence, we can
get more accurate predictions of the user identities directly based on the
learned transferring model with GAEM. The experimental evaluations
on real-world data demonstrate the superiorities of our proposed method
comparing to the state-of-the-art.
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1 Introduction

With the increasing popularity of social media platforms, more and more people
are encouraged to participate in online social networks. Meanwhile, the prob-
lem of user identification becomes attractive and has been widely researched
recently [9]. However, traditional user identification aims to predict links between
user identities and in this case, the essential task turns into recovering the similar
closures among identities. These paradigms are almost performed in single social
network while neglecting the fact that people take participate in many networks,
such as Facebook, Instagram and Twitter, simultaneously. How to identify the
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accounts of the same user across different social platforms is a desirable, newly
proposed problem. In this paper, we named the later task as “multi-network
user identification” (MUI). MUI has obviously practical significance in many
web applications [8,26].

Features used in user identification become a crucial fact affecting the per-
formance, especially in single network user identification. Many researchers have
been devoted to solving the problem of feature learning/engineering in UI [19].
However, these approaches adopted by existing solutions are always based on
the collected profile features or content features, leaving the following essential
challenges without considering [22]: Difficulties on obtaining profile features for
privacy policies; Incompletion of profile features, owing to many reasons, i.e., law
terms, users willings, distributed data storage; Sparsities of content features, due
to the divergence of user activity patterns.

The structural information of the social networks, alternatively, can be uti-
lized directly and efficiently for user identification across multiple online social
networks and this information can be relatively easy to be obtained (usually
permitted by carriers API). There are some structural information based meth-
ods proposed, which discover unmatched pair-wise user identities in an iterative
way from seed matched pair-wise user identities [30,33]. This type of structural
information utilization generally use iterative strategy for spreading over link-
ages, and named by “propagation” methods. The propagation methods, however,
are time-consuming and require more parameters on controlling the informa-
tion spreading over linkages and is sensitive to linkage noises. To better address
the mentioned issues, researchers proposed the embedding methods which first
learn the latent features with the information of structure preserved, includ-
ing TSVM [13], LINE [24], and then identify users based on different distance
metric. Nevertheless, most existing graph embedding algorithms are step-by-
step. Therefore, [23] built a hypergraph to model high-order relations, and pro-
posed a novel subspace learning algorithm to project seed matching pairs to a
node to ensure the aforementioned constraint. However, it needs auxiliary profile
information.

In this paper, we focus on the second paradigm of structural information
utilization approaches and propose a more discriminative Graph-Aware Embed-
ding (GAEM) method aim at the MUI problem. The proposed GAEM models
the relationships as well as the transformation between different social networks
in one unified framework. As a consequence, we can identify the user identities
across different social platforms using the network structural information only.
Especially, rather than utilizing the raw data, we construct more discrimina-
tive weighted graphs by exploring the shared neighborhood structures of the
vertices globally. Meanwhile, we can predict the transformation among different
weighted graphs and ensure the consistency between the transferred weighted
graphs, simultaneously. Besides, inspired by the rank constraint, we utilize the
rank of the transformation as a rank regularization to improve the construction
of the transformation and weighted graph. We empirically validate the effective-
ness of our framework, and our model achieves significantly better performance
on various tasks.
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The rest of this paper starts from the introduction of related work. Then we
propose our approach, followed by experiments and conclusion.

2 Related Work

The GAEM approach can identify the user identity across multiple networks
in semi-supervised scenarios via the weighted graph embedding. Therefore our
work is closely related to: user identity identification and graph embedding.

User identity identification problem was first formalized as connecting corre-
sponding identities across communities in [28]. Considering social network diver-
sity and information asymmetry, previous research can be categorized into three
types considering the different feature extraction: profile based, content based
and network structure based. User profile based methods aim to collect tagging
information provided by users or user profiles from several social networks (e.g.,
user-name, profile picture, description, location, occupation, etc.), and represent
the profiles in vectors [29], then construct models with the new feature represen-
tation [16,17]; Content based methods aim to utilize the personally identifiable
information from public pages of user-generated content [1,14]. However, previ-
ous profile or content based methods always collect specific information of the
users, and face serious challenges if required data are not available, i.e., miss-
ing features, data sparsity or false data, etc. Alternatively, recent methods have
been focused on utilizing the structural network information, [15] unifies learning
the latent features of user identities collectively in source and target networks.
Nevertheless, the solution is iterative one-to-one mapping method.

Naturally, the local structures are represented by the observed links in the
networks, which capture the first-order proximity between the vertices [24]. Most
existing graph embedding algorithms are designed to preserve this kind of prox-
imity [3,25]. However, the observed first-order proximity in real-world data is
always not sufficient for preserving the global network structures, while many
legitimate linkages in the real-world network are actually not observed, which can
be denoted as second-order proximity. As a complement, many works explore the
second-order proximity between the vertices, which is not determined through
the observed linkage but through the shared neighborhood structures of the
vertices [21,24]. Nevertheless, these graph embedding methods can not directly
handle the user identification.

In this paper, we utilize the network information across different social
platforms, which can be directed, undirected or weighted, to identify holistic
unmatched user identities simultaneously. Specially, we construct the discrimi-
native weighted graph by exploring the shared neighborhood structures of the
vertices globally, and learn the transformation to make the transferred weighted
graphs consistent. Meanwhile, a rank regularization is also proposed, and the
implementation can be optimized effectively.
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3 Proposed Method

3.1 Notations

Our method can predict the user identities across multiple networks from dif-
ferent social platform, and we consider the case of two networks for simplicity
here. Suppose the two relation networks are represented as X1 ∈ R

d1×d1 , i.e.,
the Facebook network, and X2 ∈ R

d2×d2 , i.e., the Twitter network, where Xv
ij

denotes the link value between the i−th instance and j−th instance of the v−th
network, and Xv

ij �= 0 if there is a linkage between i−th instance and j−th
instance, Xv

ij = 0 otherwise, it is notable that Xv can be directed, undirected or
weighted. Meanwhile, the problem in our setting can be seen as a transductive
problem, we have N1 matched pair-wise users denoted by {(x1

i ,x
2
j )} in advance,

i.e., the blue dotted lines, and N2 unmatched pair-wise users, i.e., the red dot-
ted lines, the number of all practical matched pair-wise users is N = N1 + N2,
N ≤ min(d1, d2), and GAEM aims to identify the unmatched user identities.

3.2 Graph-Aware Embedding (GAEM)

Naturally, the user linkage network Xv can be seen as a graph Gv = (V v, Ev),
V v = {xv

i }dv
i=1 corresponds to the set of vertices and Ev = {(xv

i ,xv
j )} denotes to

the set of edges from xv
i to xv

j iff Xv
ij �= 0. The observed links in the network

can be considered as the local structures, which denote the first-order proxim-
ity between the vertices. However, the first-order proximity is insufficient for
preserving the global network structures. As a complement, the second-order
proximity between the vertices are used, which determined by shared neighbor-
hood structures of the vertices, and the nodes with shared neighbors are likely
to be similar.

Therefore, given the raw network Xv, inspired from [31], a weighted graph
Ĝv = (V v, Êv,W v) can be reconstructed to characterize the global structure
of the raw relation network, V v = {xv

i }dv
i=1 corresponds to the set of vertices

as above, and the Êv = {(xv
i ,xv

j )}xv
i ∈KNN(xv

j )
denotes the set of edges from

xv
i to xv

j iff xv
i is among the K-nearest neighbors of xv

j . Furthermore, W v =
[W v

ij ] ∈ R
dv×dv represents the nonnegative weight matrix, where W v

ij = 0 iff
(xv

i ,xv
j ) �∈ Êv. Meanwhile, the j−th column W v

j· = {W v
1j ,W

v
2j , · · · ,W v

dvj} is
determined by following problem:

min
W v

·j
‖xv

j −
∑

(xv
i ,xv

j )∈Ev

W v
ijx

v
i ‖2

s.t.
∑

(xv
i ,xv

j )∈Êv

W v
ij = 1,W v

ij ≥ 0 (1)

Conceptually, the W v
ij characterizes the relative importance of neighbor example

xv
i in reconstructing xv

j . Here the loss term can take any convex forms and we
use linear least square loss here for simplicity.
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With the embedded weighted matrix W v in Eq. 1, and the known matched
links {x1

i ,x
2
j}, we aim to predict the unmatched user identities. Specially, consid-

ering that different networks share the similar global structure, the objective is
to learn a transfer matching matrix M ∈ R

min(dv)×max(dv), in which Mij = 1 iff
the link {x1

i ,x
2
j} is matched, Mij = 0 otherwise. Without any loss of generaliza-

tions, we assume d1 ≤ d2 in the remaining of this paper, thus M ∈ R
d1×d2 . The

transformation of the larger weighted matrix can be written as M(MW 2)T , note
that the M transfers the disordered weighted matrix W 2 in rows and columns.
After the transformation, the weighted matrices of different networks should be
similar, which can be represented as �(W v,M).

In practical case, the ideal transformation M, gives identical outputs for
consistent weighted matrix, and consequently make the rank of M equal to
N , which is the number of practical matched pair-wise users, and we define
RC(M) = rank(M) here, it is notable that RC(F) reflects the prediction com-
patibility among the weighted matrices. Thus, rank consistency can be used
as a regularization in the learning framework, which is helpful to achieve com-
patible and consistent transformation upon the achieved weighted matrix. The
keys of the proposed method are the reconstructed weighted matrices, the trans-
fer matching matrix and rank regularization, which boost the performance of
weighted matrices construction and the learning transfer matching matrix simul-
taneously. Benefited from these, we can bridge the loss of weighted matrices con-
struction and the gap of transferred weighted matrices in a unified framework:

min
W v,M

∑

v

�v(Xv,W v) + �(W v,M) + λRC(M)

s.t. Mi,j ∈ {0, 1},
∑

(xv
i ,xv

j )∈Êv

W v
ij = 1,W v

ij ≥ 0 (2)

The first term �v(Xv,W v) denotes the loss of the construction of each weighted
matrix. Furthermore, W 1 and W 2 are disordered while the construction on each
network is self-adaptive. The second term �(W v,M), is the loss of transferred
weighted matrices, which leverages the consistency constraint of the weighted
matrices on each linkage network. The last term RC(M), is the rank regulariza-
tion on transfer matrix M , which constrains the degree of freedom. λ > 0 is the
balance parameter.

Specifically, objective function �v(Xv,W v) in Eq. 2 can be generally repre-
sented as the form in Eq. 1, the �(W v,M) can be any convex loss function here,
and we use square loss here for simplicity. Thus, the Eq. 2 can be re-formed as:

min
W v,M

∑

v

dv∑

j=1

‖xv
j −

∑

xv
i ∈KNN(xv

j )

W v
ijx

v
i ‖2

+ ‖W 1 − M(MW 2)T ‖2F + λRC(M) (3)

s.t. Mi,j ∈ {0, 1},
∑

(xv
i ,xv

j )∈Êv

W v
ij = 1,W v

ij ≥ 0
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3.3 Optimization

The 2nd term in Eq. 3 involves the product of the weighted matrix W 2 and the
transformation M, which makes the formulation not joint convex. Consequently,
the formulation cannot be optimized easily. We provide the optimization process
below:

Fix M, Optimize W v: According to the constraint
∑

(xv
i ,xv

j )∈Êv Wij = 1,
the Eq. 1 can be re-written as:

min
W v

·j
W v

·j
T Gv

j W v
·j

s.t. 1�W v
·j = 1,Wi,j ≥ 0

Here, Gv
j ∈ R

dv×dv is the local Gram matrix for xj with elements (Gv
j )mn =

(xj − xm)�(xj − xn). Apparently, when M and W 2 are fixed, the 3rd term of
Eq. 3 is not related to W 1, besides, it is NP-hard to directly learn the binary
Mi,j ∈ {0, 1}, thus, we relax to Mi,j ∈ [0, 1]. Eventually, Eq. 3 can be equivalently
written as:

min
W 1

·j
W 1

·j
T
(G1

j + I)W 1
·j − 2M(MW 2)T

·j
T
W 1

·j

s.t. Mi,j ∈ [0, 1],1�W 1
·j = 1,Wi,j ≥ 0 (4)

Here I is the identity matrix with the same size of G1
j . Equation 4 corresponds to

a standard quadratic programming (QP) problem whose optimal solution can be
obtained by any off-the-shelf QP solver. The weighted matrix W 1 is constructed
by solving column-wisely. Similarly, when M and W 1 are fixed, the Eq. 3 can be
equivalently written as:

min
W 2

·j
W 2

·j
T
(G2 + M̂)W 2

·j − 2(MT W 1M)T
·jW

2
·j

s.t. Mi,j ∈ [0, 1],1�W 2
·j = 1,Wi,j ≥ 0 (5)

Where M̂ = MT MMT M . Equation 5 also corresponds to a standard quadratic
programming (QP) problem as Eq. 4.

From the aspect of weighted matrix construction, we treat the extra trans-
ferred weighted matrix as supervision to help to construct the discriminative
weighted matrix W v, i.e., we consider the transferred weighted matrices should
have consistently global structure in this step.

Fix W v, Optimize M: Apparently, when W v are fixed, the 1st term of
Eq. 3 is not related to M , thus Eq. 3 can be equivalently written as:

min
M

||W 1 − M(MW 2)T ||2F + λRC(M)

s.t. Mi,j ∈ [0, 1] (6)

Note that the rank norm minimization is NP-hard, and inspired by [6], the
nuclear norm usually acts as a convex surrogate. Specifically, given a matrix
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X ∈ R
m×n, its singular value are assumed as σi, i = 1, · · · ,min(m,n), which are

ordered from large to small. Thus, the nuclear norm can be defined as ‖X‖∗ =∑min(m,n)
i=1 σi, and the nuclear norm has been widely used in various scenarios in

rank norm minimization problem [10].
Nevertheless, blindly minimize the rank will break the natural structure of

M. Therefore, a directional optimization approach, which conduct the RC(M)
until converging to N during the minimization procedure is desired. According
to [2,27], we use truncated nuclear norm as a surrogate function of the RC(M)
operator:

Definition 1. Given a matrix X ∈ R
m×n, the truncated nuclear norm ‖X‖r

is defined as the sum of min(m,n) − r minimum singular values, i.e., ‖X‖r =∑min(m,n)
i=r+1 σi(X).

Different from traditional nuclear norm minimization, which preserves all
the singular values, truncated nuclear norm minimizes the singular values with
first r largest ones unchanged, which is more close to the true rank definition.
Specially, if ‖X‖r = 0, there are only r non-zero singular values for X, and this
explicitly indicates the rank of X is less than or equals to r. Practically, in order
to impel the RC(F) directional to the practical matched users, it is clear to set
r = N .

The truncated nuclear norm can be re-formulated as the equivalent form by
the following theorem [11]:

Theorem 1. Given a matrix X ∈ R
m×n and any non-negative integer r

(r ≤ min(m,n)), for any matrix A ∈ R
r×m and B ∈ R

r×n such that AA� =
Ir, BB� = Ir, where Ir ∈ R

r×r is identity matrix. Truncated nuclear norm can
be reformulated as:

‖X‖r = ‖X‖∗ − max Tr(AXB�) (7)

If the singular value decomposition of matrix X is X = UΣV � where Σ is
the diagonal matrix of singular values sorted in descending order and U ∈
R

m×n, V ∈ R
n×n. The optimal solution for the trace term in the above equation

has a closed form solution: A = (u1,u2, · · · ,ur)� and B = (v1,v2, · · · ,vr)�,
corresponds to the first r columns of left and right singular vectors.

With Theorem 1, we can reformulate the Eq. 6 as:

arg min
M

‖W 1 − M(MW 2)T ||2F + λ(‖M‖∗ − maxTr(AMBT ))

s.t. AT A = I,BT B = I (8)

Because of the non-convexity of truncated nuclear norm, alternative approach
can be utilized for the optimization. A simple solution to Eq. 8 is alternating
descent method. We can fix M and optimize A, B via SVD on M first, and then
fix A and B to optimize M. When A and B are fixed, the subproblem is convex.
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A and B can be obtained by SVD on M, which are the left and right singular
vectors corresponding to the maximum N singular values. As the number of
actually required singular vectors is rather small, partial SVD can be used [4].
The most computational cost step, however, is the subproblem for solving M in
Eq. 8. We will give a detailed investigation on employing Accelerate Proximal
Gradient Descent Method (APG) [2] for solving this subproblem in the following.

Note that when A and B are fixed, the problem is composed of two convex
parts, i.e., a smooth loss term P1(M) and a non-smooth trace norm P2(M):

P1(M) = L(M) − Tr(AMB�), P2(M) = ‖M‖∗ (9)

APG is suitable for solving Eq. 9 [12], which optimizes on a linearized approxi-
mation version of the original problem. In the t−th iteration, if we denote the
current optimization variable as M t, then we can linearize the smooth part P1(·)
respect to M t as:

Q(M) = P1(M t) + Tr(<∇P1(M t),M − M t>) +
L

2
‖M − M t‖2F + P2(F )

= L(M) +
L

2
‖M − M t‖2F + λ‖M‖∗ − Tr(AMB�)

+ Tr(<∇P1(M t),M − M t>) (10)

where ∇P1(M t) = −(
(W 1 − M t(M tW 2)�)M t(W 2 + W 2�) + λA�B

)
. Here L

is the Lipschitz coefficient, which can be estimated by line search strategy [2].
Minimizing Q(M) w.r.t. M is equivalent to solving:

M̂ = arg min
M

λ‖M‖∗ +
L

2
‖M − (M t − 1

L
∇P1(M t))‖2F (11)

APG updates the optimal solution in Eq. 11 at each iteration. Given the following
theorem [6] about the proximal operator for nuclear norm:

Theorem 2. For each τ ≥ 0 and Y ∈ R
m×n, we have

Dτ (Y ) = arg min
X

1
2
‖X − Y ‖2F + τ‖X‖∗ (12)

Here, Dτ (Y ) is a matrix shrinkage operator for matrix Y, which can be calculated
by SVD of Y. If SVD of Y is Y = UΣV �, then

Dτ (Y ) = UDτ (Σ)V � Dτ (Σ) = diag(max(σi − τ, 0)). (13)

we can solve Eq. 11 in a closed form:

M̂ = DL(M t)
def= D λ

L
(M t − 1

L
∇P1(M t)) (14)
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4 Experiment

4.1 Datasets and Configurations

Data Sets: In this paper, we use the datasets from webpage networks and the
social networks in our empirical investigations.

The WebKB dataset [5] contains webpages collected from 4 universities: Wis-
consin, Washington, Cornell and Texas (denoted as Wins., Wash., Corn. and
Texas in tables) and described with two networks: the content and the citation.
The content represents the documents-words matrix, containing 0/1 values, and
can be indicated as the similarity relationships between the documents. On the
other hand, the citation denotes the number of citation links between documents,
which can be acted as another network structure. The ground-truth mapping of
WebKB across these two networks is in the documents-mapping. To demon-
strate the generalization ability, we also demonstrate our method on different
social networks. The social networks collection consists of four popular online
social networking sites: LiveJournal (LJ), Flickr (FL), Last.fm (LF), and MyS-
pace (MS) as [32]. We use the linked user accounts dataset from [7,20] as the
ground truth. The data was originally collected by [20] through Google Pro-
files service by allowing users to integrate different social network services. Five
subsets are constructed from social networks, i.e., flickr-lastfm; flickr-myspace;
livejournal-lastfm, livejournal-myspace and livejournal-flickr.

For all datasets in our experiments, we randomly select {20%, 40%,
60%, 80%} for matched pair-wise examples, and the remains are unmatched for
prediction. We repeat this for 30 times, the acc. and std. of predictions are
recorded as classification performance. The parameter λ in the training phase is
tuned in {10−2, · · · , 102}. The number of k-nearest neighbors is set 15. Empiri-
cally, when the variations between the objective value of Eq. 3 is less than 10−5

in iteration, we treat GAEM converged.

Compare Algorithms: Our method solves the problem of user identities iden-
tification across networks. Thus, we choose five state-of-the-art user linkage iden-
tify classifiers: HYDRA [16], COSNET [32], ULink [17], NS [18], IONE [15]. Note
that the HYDRA and COSNET utilize both the profile information and network
structure, and we consider the raw network structure information as the profile
features in our setting, on the other hand, ULink is difficult to handle the sparse
network information, and we use the embedded features by Isomap as the input.
Moreover, NS and IONE directly take the network structure as input. Besides,
our method is also related to graph embedding. Thus, we construct the weighted
matrix with four graph embedding methods: Baseline (BL), Isomap [25], Deep-
walk [21], Weight [31], the first two methods, i.e., BL, Isomap, only consider
the local structure, while remaining two methods, i.e., Deepwalk, Weight, con-
sider the global structure. It is notable that these methods can not unify the
weighted matrix construction and transformation together, thus, we calculates
the weighted matrices and then optimize the transformation M separately.
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Fig. 1. Webpage linkage comparison for batch data setting (with ratio between between
the ground-truth matching pairs to non-matching pairs being 4:1)
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Fig. 2. Social Networks comparison for batch data setting (with ratio between the
ground-truth matching pairs to non-matching pairs being 3:1)

4.2 Experiment Results

Multiple-Network Identity Identification: To demonstrate the effectiveness
of our proposed method. For both the webpage networks and social networks
datasets, We fix the ratio of the number of matched pair-wise users at 80% firstly,
and record the avg. ± std. of the GAEM and compared methods in Figs. 1 and 2.

Figure 1 clearly reveals that on all webpage datasets, the average accuracies
of GAEM are the best. Further more, while comparing to the graph embedding
methods, the methods considering the global structure proximity, i.e., Deep-
Walk, Weight, are superior to the local structure proximity based methods, i.e.,
BL, Isomap, on the majority of datasets, which indicates that global structure
proximity is more efficient and different social networks share the similar global
structure, and it confirms to the real significance. On the other hand, the per-
formance of previous user identity linkage methods are not well performed, note
that these methods require the specific collected or designed features, specifi-
cally, ULink is a supervised method, which can not utilize the network structure
information; HYDRA maximizes the structure consistency by modeling the core
social network behavior consistency, and the performance hinges heavily upon
the availability of the consistent structure, where the consistency is calculated
by extra profile features, it performs worse than GAEM in the cases where
raw features can not possess consistent structure, COSNET is found to be in a
similar situation as HYDRA, as for NS and IONE methods, these methods also
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require additional information and are sensitive to the parameters. Thus, GAEM
is well performed considering the global structure proximity with the network
information. To demonstrate the generalization ability, we conduct more exper-
iments, Fig. 2 records the prediction accuracies (avg. ± std.) of the GAEM and
compared methods on five social network datasets, and Fig. 2 reveals that on
the social network datasets, the average accuracies of GAEM are also compet-
itive with the compared methods, the average accuracies are the best on three
datasets, i.e., flickr-lastfm; flickr-myspace; livejournal-lastfm.
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Fig. 3. Influence of number of matched pair-wise users of Webpage linkage comparison

Influence of Number of Matched Pair-Wise Users: In order to explore
the influence of the number of initial matched pair-wise users on performance,
more experiments are conducted. In this section, the parameters in each inves-
tigation are fixed as the optimal values, the λ in GAEM is set 1, while the ratio
of initial matched pair-wise users varies in {20%, 40%, 60%, 80%}. Due to the
page limits, results on only 4 datasets, i.e., Wins., Wash., Corn., and Texas,
and the results are recorded in Fig. 3. From these figures, it clearly shows that
GAEM achieves the best performance when the ratio is larger than 40% on most
datasets. Besides, we can also find that GAEM achieves an optimal performance
fast, and the accuracy of GAEM increases faster than compared methods.

Empirical Investigation on Convergence: To investigate the convergence
empirically, the objective function value, i.e., the value of Eq. 3 and the classi-
fication performance of GAEM in each iteration are recorded. Due to the page
limits, results on only 4 datasets mentioned above, are plotted in Fig. 4. It clearly
reveals that the objective function value decreases as the iterations increase, and
the classification performance is stable after several iterations. Moreover, these
additional experimental results indicate that our GAEM can converge very fast,
i.e., GAEM converges after 3 rounds.
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Fig. 4. Objective function value convergence and corresponding classification accuracy
vs. number of iterations of GAEM with matched pair-wise users ratio at 80%
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5 Conclusion

The user identification problem in the multi-network environment is a challeng-
ing problem. Previous efforts mainly focus on the predefined profile or content
features in the learning approaches, while leaving the data incompleteness and
sparsities unconsidered. These approaches, meanwhile, are difficult to handle the
information of structures provided by multi-networks. In this paper, we propose
the Graph-Aware Embedding (GAEM) approach, which utilizes the more gen-
eral social networks information and identifies the accounts of the same user
by exploiting useful information from the networks. We construct the more dis-
criminative weighted graph instead of the raw linkage network, while predicting
the transformation among different weighted graphs simultaneously. As a con-
sequence, we can get more accurate predictions of the user identities directly
obtained from the learned transformation matrix, experimental evaluations on
real-world applications demonstrate the superiority of our proposed method over
the compared methods. How to extend multiple platforms and the scalability
with improved performance are interesting future works.

References

1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommend-
ing links in social networks. In: WSDM, pp. 635–644 (2011)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIIMS 2(1), 183–202 (2009)

3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: NIPS, pp. 585–591 (2001)

4. Berkhin, P.: A survey on pagerank computing. Internet Math. 2(1), 73–120 (2005)
5. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.

In: COLT, pp. 92–100 (1999)
6. Cai, J.F., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix

completion. SIOPT 20(4), 1956–1982 (2008)
7. Chen, W., Liu, Z., Sun, X., Wang, Y.: A game-theoretic framework to identify

overlapping communities in social networks. Data Min. Knowledge Disc. 21(2),
224–240 (2010)

8. Deng, Z., Sang, J., Xu, C.: Personalized video recommendation based on cross-
platform user modeling. In: ICME, pp. 1–6 (2013)

9. Han, S., Xu, Y.: Link prediction in microblog network using supervised learning
with multiple features. J. Comput. Phys. 11(1), 72–82 (2016)

10. Harchaoui, Z., Douze, M., Paulin, M., Dudik, M., Malick, J.: Large-scale image
classification with trace-norm regularization. In: CVPR, pp. 3386–3393 (2012)

11. Hu, Y., Zhang, D., Ye, J., Li, X., He, X.: Fast and accurate matrix completion via
truncated nuclear norm regularization. TPAMI 35(9), 2117 (2013)

12. Ji, S., Ye, J.: An accelerated gradient method for trace norm minimization. In:
ICML, pp. 457–464 (2009)

13. Joachims, T.: Transductive inference for text classification using support vector
machines. In: ICML, pp. 200–209 (1999)

14. Liu, J., Zhang, F., Song, X., Song, Y.I., Lin, C.Y., Hon, H.W.: What’s in a name?:
an unsupervised approach to link users across communities. In: ICWSM, pp. 495–
504 (2013)



Multi-network User Identification via Graph-Aware Embedding 221

15. Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks using
network embedding. In: IJCAI, pp. 1774–1780 (2016)

16. Liu, S., Wang, S., Zhu, F., Zhang, J., Krishnan, R.: Hydra: large-scale social iden-
tity linkage via heterogeneous behavior modeling. In: SIGMOD, pp. 51–62 (2014)

17. Mu, X., Zhu, F., Wang, J., Zhou, Z.H.: User identity linkage by latent user space
modelling. In: SIGKDD, pp. 1775–1784 (2016)

18. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: SP, Oakland,
California, pp. 173–187 (2009)

19. Nie, Y., Jia, Y., Li, S., Zhu, X., Li, A., Zhou, B.: Identifying users across social
networks based on dynamic core interests. Neurocomputing 210, 107–115 (2016)

20. Perito, D., Castelluccia, C., AliKaafar, M., Manils, P.: How unique and traceable
are usernames? In: PET, pp. 1–17 (2011)

21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: SIGKDD, pp. 701–710 (2014)

22. Shu, K., Wang, S., Tang, J., Zafarani, R., Liu, H.: User identity linkage across
online social networks: a review. SIGKDD Explor. 18(2), 5–17 (2016)

23. Tan, S., Guan, Z., Cai, D., Qin, X., Bu, J., Chen, C.: Mapping users across networks
by manifold alignment on hypergraph. In: AAAI, pp. 159–165 (2014)

24. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding, pp. 1067–1077 (2015)

25. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

26. Wei, Y., Singh, L.: Using network flows to identify users sharing extremist content
on social media. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-
S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10234, pp. 330–342. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57454-7 26

27. Ye, H.J., Zhan, D.C., Miao, Y., Jiang, Y., Zhou, Z.H.: Rank consistency based
multi-view learning: a privacy-preserving approach. In: CIKM, pp. 991–1000 (2015)

28. Zafarani, R., Liu, H.: Connecting corresponding identities across communities. In:
ICWSM, pp. 354–357 (2009)

29. Zhang, J., Kong, X., Yu, P.S.: Transferring heterogeneous links across location-
based social networks. In: WSDM. pp. 495–504 (2014)

30. Zhang, J., Yu, P.S.: Integrated anchor and social link predictions across social
networks. In: IJCAI, pp. 1620–1626 (2015)

31. Zhang, M.L., Zhou, B.B., Liu, X.Y.: Partial label learning via feature-aware dis-
ambiguation. In: SIGKDD, pp. 1335–1344 (2016)

32. Zhang, Y., Tang, J., Yang, Z., Pei, J., Yu, P.S.: Cosnet: Connecting heterogeneous
social networks with local and global consistency. In: SIGKDD, pp. 1485–1494
(2015)

33. Zhou, X., Liang, X., Zhang, H., Ma, Y.: Cross-platform identification of anonymous
identical users in multiple social media networks. TKDE 28(2), 411–424 (2016)

https://doi.org/10.1007/978-3-319-57454-7_26

	Multi-network User Identification via Graph-Aware Embedding
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Notations
	3.2 Graph-Aware Embedding (GAEM)
	3.3 Optimization

	4 Experiment
	4.1 Datasets and Configurations
	4.2 Experiment Results

	5 Conclusion
	References




