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Abstract. Current quality control methods for crowdsourcing largely
account for variations in worker responses to items by interactions
between item difficulty and worker expertise. Few have taken into account
the semantic relationships that can exist between the response label cat-
egories. When the number of the label categories is large, these relation-
ships are naturally indicative of how crowd-workers respond to items,
with expert workers tending to respond with more semantically related
categories to the categories of true labels, and with difficult items tending
to see greater spread in the responded labels. Based on these obser-
vations, we propose a new statistical model which contains a latent
real-valued matrix for capturing the relatedness of response categories
alongside variables for worker expertise, item difficulty and item true
labels. The model can be easily extended to incorporate prior knowledge
about the semantic relationships between response labels in the form of
a hierarchy over them. Experiments show that compared with numerous
state-of-the-art baselines, our model (both with and without the prior
knowledge) yields superior true label prediction performance on four new
crowdsourcing datasets featuring large sets of label categories.

1 Introduction

Crowdsourcing is a process in which a human intelligence task is solved col-
lectively by a large number of online workers who get paid to independently
solve parts of the task that commonly overlap. In recent years, the process has
been used by machine learning communities to cheaply collect large quantities
of labelled training data, thanks to the development of online service providers,
such as Amazon Mechanical Turk1 and CrowdFlower2. While crowdsourcing
has shown cost-effectiveness and scalability, it also produces noisy and biased
labelled data as its online workforce is much less accurate than in-house experts.

1 https://www.mturk.com/.
2 https://www.crowdflower.com/.
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Furthermore, many crowdsourcing tasks in practice involve large numbers of
unlabelled items under limited budgets, which often results in small numbers of
responses collected for each item. Aggregating such small numbers of (oftentimes
conflicting) labels using majority vote to infer the true label of each item can be
unreliable.

To overcome the above issue, labels must be aggregated in such a way that
the influence of “high-quality” responses should outweigh that of those “low-
quality” responses for better estimating the true labels. This process is generally
known as the Quality Control for Crowdsourcing (QCC). The QCC methods,
largely based on statistical modeling, consider expertise of workers to govern the
quality of labels they provide to items with greater expertise indicating higher
quality of the labels [1–4]. Furthermore, some of the QCC methods also consider
difficulty of items which counteracts worker expertise to undermine the quality
of the labels [5–9]. All these methods have achieved overall superior performance
over the majority vote. However, assuming individual crowdsourcing tasks con-
tain small numbers of uncorrelated label categories, these methods inevitably
ignores the impact of the relationships between response label categories on the
quality of workers’ responses to items. In practice, it is not unusual that crowd-
sourcing tasks can involve labeling data across label categories correlated to one
another in terms of large structural semantic relationships. A typical example
is the classification of objects in images for building the database of ImageNet3

whose large number of label categories are related through the semantic rela-
tionships specified by WordNet4. Other examples include the classification of
Webpages for the Open Directory Project, called “DMOZ”5, and for DBpedia6,
whose large numbers of categories are connected through semantic relationships
maintained by respective online volunteer communities. This paper focuses on
leveraging semantic relationships between label categories for improving QCC
performance in crowdsourcing problems especially involving highly multi-class
labels. The semantic relationships are inherent in such problems and the con-
ventional inference about them is based on human knowledge and reasoning
which features prominently in crowdsourcing. Conversely, knowing the semantic
relationships should contribute to accurate inference about how responses are
formed in highly mult-class crowdsourcing.

When semantic relationships between categories exist in crowdsourcing,
crowd-workers with greater expertise tend to respond to the same item with
categories more related to the true label for the item. Moreover, the difficult
items tend to see more variety in the responses (more distinct categories present)
than simpler items. To be more specific, consider a simple measure of relatedness
between two label categories k and k′ shown below:

Relatedness(k, k′) =
1

|shortest path(k, k′)| + 1
(1)

3 http://www.image-net.org/.
4 https://wordnet.princeton.edu/.
5 http://www.dmoz.org/.
6 http://wiki.dbpedia.org/.

http://www.image-net.org/
https://wordnet.princeton.edu/
http://www.dmoz.org/
http://wiki.dbpedia.org/
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Fig. 1. (a) Worker response accuracy versus category relatedness. (b) Item difficulty
(in terms of response error) versus category relatedness. (Color figure online)

where |shortest path(·, ·)| is the length of the shortest path between any pair
of categories in some known semantic structure (e.g. a graph). Using this relat-
edness measure, Fig. 1 shows the relationship between the relatedness of the
response category to the true label, and three summary statistics (namely the
maximum, mean and minimum values) for the response accuracy of workers and
the item difficulty (in terms of response error). The crowdsourcing task involved
in this case is identifying breeds of dogs in images from ImageNet [10]. Every
coloured “violin” area in each sub-figure of Fig. 1 represents the distribution of a
particular summary statistics about either the response accuracy of workers or
the response errors on items given the true labels. The medians of the areas with
the same colours (i.e. the same summary statistics across different relatedness
scores) are connected by straight lines in each sub-figure. We observe from Fig. 1
that:

– According to Fig. 1a, more related categories (with higher relatedness scores)
to item true labels tend to be chosen more often as responses by workers with
higher response accuracy;

– According to Fig. 1b, less related categories (with lower relatedness scores)
to item true labels tend to be given more often as responses to more difficult
items (i.e. ones with larger response errors in Fig. 1b).

In this paper, we leverage the above observed relationship between category
relatedness and worker accuracy/item difficulty for improving the quality con-
trol of crowdsourced labels. This is done by encoding the correlations between
categories into the conditional probability of a worker giving a label to an item
given its true label. Such an encoding can help refine the estimation about the
correctness of crowdsourced labels (which is modeled using those conditional
probabilities in most QCC methods). The encoding is based on a latent sym-
metric relatedness matrix where each off-diagonal entry is a real-valued score
representing how related categories are to one another. In this case, each cat-
egory (as a true label/correct response) is associated with a continuous scale
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accommodating the latent relatedness scores of all the other categories as possi-
ble worker responses. We also model expertise of workers and difficulty of items
on the same scale.

According to Fig. 1a, a worker with greater expertise and a category more
related to the true label should have the estimated values for their respective
variables reside further down the positive infinite end of the scale once learned
from response data. Likewise from Fig. 1b, an item with greater difficulty and
a less related category should have the estimated values situated towards the
opposite end of the scale. The interactions between these variables on the scale
are captured and transformed into the aforementioned conditional probabilities
through an ordered logit model where the difference between item difficulty and
worker expertise serves as the response-specific slope, and the off-diagonal terms
in the same row of the latent relatedness matrix (corresponding to a latent true
label) serve as the intercepts specific to different categories other than the true
label. The off-diagonal terms in the matrix share a Normal prior, which can
make use of prior knowledge (trees extracted from Wordnet and DMOZ) to
better calibrate the estimates for the terms. The contributions of this paper are:

– A novel statistical model that leverages correlations/relationships between
label categories for improving quality control of crowdsourced labels.

– The proposed model directly infers the latent relationships between label
categories from crowdsourced labels.

– A priori knowledge of relationships between labels (in terms of a semantic
hierarchy over concepts) is elegantly incorporated into the proposed model
by modifying the prior over the latent relatedness variables.

2 Related Work

Two papers have considered leveraging relationships between label categories
[11,12] for improving quality control of crowdsourced labels. In [12], a model
called SEEK was proposed in which the conditional probability of any possible
response category a worker can give to an item given its true label category is
output from a soft-max function. The function takes in the observed relatedness
scores of all the response categories to the true label of the item along with the
difficulty of the item and the expertise of the worker. Inside the function, the dif-
ference between the difficulty and the expertise is multiplied by the relatedness
score of every response category before the results are normalized to form the
corresponding conditional probabilities. Since the difference value is the same
for all response categories, the conditional probabilities are thus only propor-
tional to the relatedness scores. The larger a score is, the higher the conditional
probability of the corresponding response given the true label. In comparison,
our model allows the conditional probabilities to be proportional to the joint
interaction between the difference and the relatedness scores. In [12], each relat-
edness score between a pair of categories can vary from 0 to 1. It is 1 when
the two categories are the same. It is between 0 and 1 only when one of the
categories is a hypernym of the other. Otherwise, the score is always 0. Clearly,
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Fig. 2. The DELRA model with and without encoding observed knowledge matrix X
specifying relationships between categories are shown in Fig. 2a and b.

this way of pre-computing the relatedness scores between categories constrains
the quality control performance of SEEK in crowdsourcing tasks where most of
the categories are not hypernyms. In [11], a model called DASM is proposed
which share the same idea as SEEK except that the relatedness scores are pre-
computed as the inverse of the Euclidean distances between categories in terms
of their observed features. Both of these models rely on the availability of the
external knowledge about the category relatedness, while our model is able to
infer such relatedness directly from responses.

3 Problem Formulation and Proposed Model

Given a large but finite set of categories K and a set of items J , a set of workers
I have provided a set of responses R to J . An item j ∈ J has one unknown
true label lj = k, where lj ∈ L, the set of corresponding true labels of individual
items in J , and k is a particular category in K. For the set of categories K, there
exists a tree structure organizing them in terms of their semantic relationships.
The relationships are quantified into an observed real-valued relatedness matrix
X ∈ R|K|×|K|. Each off-diagonal entry xkk′ expresses how related a category
k′ (as a response to an item) is to another category k as the true label of that
item. It is calculated by Eq. (1). Based on these inputs, our model should out-
put a corresponding set of prediction L̂ for the latent item true labels L such
that the overall difference between the former and the latter sets across their
corresponding elements is as small as possible.

In this paper, we propose the Difficulty-Expertise-Label-Relationship-Aware
(DELRA) model, characterized by a latent relatedness matrix S ∈ R|K|×|K|.
The matrix specifies how related a category k′ (as a response to an item) is to
another category k (as the true label of that item) in crowdsourcing. We assume
S is symmetric so that skk′ = sk′k where skk′ , sk′k ∈ S. This assumption is
reasonable as if crowd-workers perceive category k′ to be related to category k
overall to a certain degree, they should also perceive the relatedness of category
k to category k′ to the same degree. Based on the assumption, the DELRA
model is shown in Fig. 2a, and has the following generative process:
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1. Draw true label category proportions θ ∼ Dir(γ);
2. For each pair of categories (k,k′) where k �= k′:

(a) if k′ > k then draw relatedness skk′ ∼ N (μs, σ
2
s);

else skk′ ← sk′k
7;

3. For each item i ∈ J :
(a) Draw its true label lj ∼ Cat(θ);
(b) Draw its difficulty dj ∼ N (μd, σd);

4. For each worker i ∈ I:
(a) Draw her expertise ei ∼ N (μe, σ

2
e);

5. For each worker-item pair (i, j):
(a) Draw response rij ∼ Cat(πijlj ) where πijlj is a |K|-dimensional vec-

tor with each element πijljk = P (rij = k|lj) specified as the difference
between consecutive sigmoid functions as follows:

πijljk = δijljk − max
k′:δ<δijljk

δijljk′ where δijlj lj = 1, δijlj0 = 0 (2)

Here δijljk is a sigmoid function relating the odds of observing response
rij = k given true label lj to a linear combination of the relatedness score
sljk, the worker expertise ei and the question difficulty dj :

δijljk =
1

1 + exp(−(sljk − ei + dj))
(3)

Apart from inferring the relatedness matrix S from responses, our model also
allows for the encoding of useful prior knowledge about the entries in each row
of the matrix corresponding to a particular category as true labels for items to
help calibrate the inference. As shown in Fig. 2b, the Normal prior N (μs, σ

2
s) in

Fig. 2a shared by all the entries in the matrix is now replaced by individual priors
centered on the product results between a global coefficient β and the observed
relatedness matrix X after it is log-transformed followed by standardization,
added with Normally distributed noise following N (0, σ2

s). Correspondingly, step
2(a) of the above generative process of the DELRA model is now changed to:

2. For each pair of categories (k,k′) where k �= k′:
(a) if k′ > k then draw skk′ ∼ N (βxkk′ , σ2

s);
else skk′ ← sk′k;

The global term β ∼ N (μβ , σ2
β). The term xkk′ goes through the transformation:

xkk′ ← log(xkk′) − μ̂log(X )

σ̂log(X )
(4)

where μ̂log(X ) and σ̂log(X ) are respectively the sample mean and the sample
standard deviation of the logarithm of all the original terms in X. The reason
behind the logarithm operation is that the outputs from the relatedness function
specified by Eq. (1) are very skewed and we do not want such skewness to impact
7 The expression “a ← b” stands for assigning b to a or equivalently replacing a with b.
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the estimation of the relatedness matrix. The reason behind the standardization
operation is that every log-transformed xkk′ is negative, thus having a negative
mean. We want to adjust them to be centered on zero with scale one to allow
for easier setups of priors for other model parameters. After the transformation
by Eq. (4), the prior mean βxkk′ for the relatedness score skk′ suggests how the
relatedness between categories according to the semantic knowledge tree tends
to correlate with their latent relatedness in crowdsourcing a priori.

4 Parameter Estimation

In this section, we describe how the model parameters are estimated. More specif-
ically, in each iteration of the estimation, we alternate between the Collapsed
Gibbs sampling for inferring the true labels of items L given the current esti-
mates of the other model parameters including the worker expertise ei, the item
difficulty dj and the relatedness matrix S, and the LBFGS-B till its convergence
for updating these parameters given the current assignment of L.

Collapsed Gibbs Sampling for L: At this stage, we obtain posterior samples
for item true labels L given the current estimates of all the other parameters. The
conditional probabilities of true label lj of item j is obtained by marginalizing
out the multinomial probability vector θ, which ends up being:

P (lj = k|L¬j ,Rj , {ei}i∈Ij
, dj , sk,γ) ∝ N¬jk + γk∑

z∈K
(N¬jz + γz)

∏

i∈Ij

πijkrij
(5)

where Ij is the set of workers who responded item j with a set of responses Rj ,
L¬j is the set of current true label assignments to all the items except j, and
N¬jk is the number of items except j whose true labels are now inferred as k.

Gradient Descent for Other Parameters: The conditional probability dis-
tributions of the other model parameters including ei, dj , and S are hard to
compute analytically due to the presence of the sigmoid function. Instead, we
run the LBFGS-B till its convergence on the following objective function Q:

Q = − log
(
p(e,d,S|R,L, μ{e,d,s}, σ2

{e,d,s})
)

= −
∑

j∈J

∑

i∈Ij

log(πijljrij
)

+
1
2

[ ∑

i∈I

(ei − μe)2

σ2
e

+
∑

j∈J

(dj − μd)2

σ2
d

+
∑

k∈K

∑

k′∈K&k′>k

(skk′ − μs)2

σ2
s

]

(6)

The gradient with respect to the label-relatedness term slk is computed as:

∂Q

∂slk
= −

∑

j∈J

∑

i∈Ij

∂ log(πijljrij
)

∂slk
+

slk

σ2
s

(7)
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where for the true label l = lj and observed response k = rij we have:

∂ log(πijljrij
)

∂slk
=

δijljk(1 − δijljk)
πijljrij

(8)

And for other responses k �= rij we have:

∂ log(πijljrij
)

∂slk
=

−δijljk(1 − δijljk)
πijljrij

if k = arg max
k′:δ<δijljrij

δijljk′ else 0 (9)

Note that we also impose symmetry on the label relatedness terms skk′ = sk′k.
The gradients with respect to ei and dj are similarly easy to derive and thus
omitted due to space limitations.

When observed matrix X is introduced into the model, the coefficient β is
updated by maximum a posteriori estimation for a linear regression over X.

5 Experiments and Results

Datasets: We have collected four new crowdsourcing datasets from Crowd-
Flower for our experiments. Table 1 summarizes these datasets.

– Dog breed identification (Dog). The images and the set of categories
used in this task originate from the Stanford Dog dataset [10]. There are
120 breeds of dogs involved in the task with 10 images for each dog breed
randomly sampled from the Stanford dataset. We collected 5 labels for each
image about the breed crowd-workers think appearing in that image. The 120
dog breeds are organized under the subtree “Dog” of the WordNet.

– Bird species identification (Bird). The categories involved are species of
birds from the Caltech-UCSD Birds 200 dataset [13]. Originally, there are 200
bird species in this dataset, only 72 of which are present in the WordNet. As a
result, we have only used these categories for the experiments and randomly
sampled 10 images for each of them from the Caltech-UCSD dataset. Since
this task is quite difficult, we collect on average 8 labels for each of the images.

– Classification of Webpages about string instruments (Instrument).
This task asks for judgements about the sub-directories under which Web-
pages about string instruments should be put. All the sub-directories
share one root directory “Arts/Music/Instruments/String Instruments” from
DMOZ. We have collected 5 judgements for each of the 1,323 Webpages
across the 193 sub-directories corresponding to different aspects of string
instruments.

– Classification of Webpages about movies (Movie). The judgements
collected are about the sub-directories from DMOZ under which Webpages
about movies should be put. All the sub-directories involved share the root
directory “Arts/Movies”. We have collected 5 judgements for each of the 737
Webpages across the 148 sub-directories about different aspects of movies.
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Table 1. Dataset summary. The
headers correspond to the nota-
tions introduced in Sect. 3.

Dataset |I| |J | |K| |R|
Dog 136 1,200 120 6,000

Bird 428 707 72 5,660

Instrument 334 1,323 193 7,233

Movie 169 737 148 3,539

Table 2. The accuracy of different mod-
els on inferring the true labels of the items
across the four datasets.

Methods Datasets

Dog Bird Instrument Movie

DELRA 0.4803 0.4278 0.4489 0.3367

DELRA+X 0.4833 0.4331 0.4561 0.3433

SEEK 0.4688 0.4046 0.4406 0.3217

SEEK+X 0.4752 0.4256 0.4453 0.3342

DASM 0.4720 0.4229 0.4448 0.3274

MV 0.4742 0.4170 0.4414 0.3256

GLAD 0.4675 0.4017 0.4450 0.3229

DS 0.4341 0.3219 0.3900 0.2931

MdWC 0.4742 0.4041 0.4409 0.3311

PM 0.4367 0.3621 0.4002 0.2999

Minimax 0.4770 0.4224 0.4456 0.3202

5.1 True Label Prediction

To verify the capability of our model on predicting item true labels, we compare
it with the following state-of-the-art crowdsourcing quality control methods.

– Generative model of Labels, Abilities, & Difficulties (GLAD) [5].
This model endows every crowd-worker and every item respectively with a
latent variable about the worker’s expertise and a variable about the item’s
difficulty. The expertise variable is divided by the difficulty variable to account
for the probability of the label given by the worker to the item being correct.

– Multi-dimensional Wisdom of Crowds (MdWC) [9]. This model
extends the concept of GLAD that worker expertise interacts with item diffi-
culty by making the interaction factorized over latent variable vectors respec-
tively about workers and items. It also adds another variable for each worker
to account for their individual biases in choosing label categories.

– Dawid-Skene (DS) [1]. Unlike GLAD and MdWc which estimate the
marginal correctness probability of a label, this model estimates the con-
ditional probability of every label with which a worker can respond given
each true label.

– Minimax entropy (Minimax) [8]. The same conditional probabilities are
estimated in this model. In this case, the total entropy of the conditional
probabilities over all the categories as the responses to the items given their
true labels is optimized according to the minimax principle with constraints.

– Participant-Mine voting (PM) [4]. The accuracy of each worker and the
true label of each item are inferred together using HITS [14] algorithm. An
item is treated as a Webpage as in HITS with the total accuracy of the workers
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responding it as its authority level and the total difference between the true
label estimate of the item and its received worker labels as its hub level.

Apart from these baselines, we also compare our model with the Majority Vote
(MV), and the original SEEK model discussed in Sect. 2. Moreover, we have
also changed the external knowledge matrix input to the SEEK model to be the
matrix X input to the DELRA model (called DELRA+X) with each entry
transformed by Eq. (4) in both cases. We call this model SEEK+X and use it
as another baseline. Likewise, we adapt the DASM model by calculating the dis-
tance between any pair of label categories using our distance definition specified
in Eq. (1) rather than theirs as we do not have any observed feature about label
categories. To measure the performance of our model and all the baselines, we
use the true label prediction accuracy, defined as 1

|J |
∑

j∈J 1{lj = l̂j}.
Table 2 shows the results of the true label prediction of both DELRA and

all the baselines. We can see that with and without the knowledge matrix X
incorporated, the DELRA model respectively outperforms all the baselines by
at least 0.6% and 0.3% over the Dog dataset, 0.8% and 0.22% over the Bird
dataset, 1.1% and 0.36% over the Instrument dataset and 0.9% and 0.25% over
the Movie dataset. Especially, SEEK+X has the exact same knowledge matrix
input as DELRA+X, but has yielded lower performance even compared to the
DELRA model without incorporating X. This suggests that not only our model
is able to better leverage the external knowledge about semantic relationships
between label categories, but also it is a better model in explaining how responses
are generated from the interactions among the expertise of workers, the difficulty
of items and the relationships between label categories in crowdsourcing.

5.2 True Label Prediction Under Response Sparsity

We now proceed to investigating how DELRA performs under various degrees
of sparsity in crowdsourced responses. To do this, we randomly sample differ-
ent proportions (i.e. between 10% and 50%) of the responses from each of the
datasets and average the performance over 10 runs for each model (on each
proportion). Figure 3a–d show the results of the true label prediction of all the
models under varying degrees of response sparsity across the four datasets. The
DELRA model incorporating the knowledge matrix X clearly beats all the base-
lines with convincing margins across 10% to 50% of the total responses from each
dataset. Moreover, even without access to the external knowledge X, DELRA
still performs closely to the performance of SEEK+X and outperform the other
baselines when the sampling proportion is greater than 10%. When the sampling
proportion is only 10%, DELRA without X seems to suffer from the response
sparsity as any other baseline that has not leveraged X.
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Fig. 3. The accuracy of different models on inferring the true labels of the items from
10% to 50% of the total responses across the four datasets. Note that x-axis and y-axis
in each figure are respectively the sampling proportions of responses and the average
true label prediction accuracy over 10 runs.

5.3 Consistency of Learned Relatedness Between Categories

In this experiment, we evaluate how consistent the estimates of the relatedness
between categories from DELRA without X are with the relatedness scores in
X pre-computed using Eq. (1) followed by the transformation in Eq. (4). More
specifically, for each label category, we calculate the Pearson correlation coef-
ficients between the Top-N most related category rank of the other label cat-
egories in terms of the estimates of their relatedness to the category, and the
Top-N rank of the same set of categories in terms of their pre-computed trans-
formed relatedness scores for that category. We set N to be 2, 3, 5, 10 and 15 to
obtain the respective average Pearson correlation coefficients across all the label
categories. We also implement two supervised baselines (in terms of knowing
true labels) for obtaining the Top−N rank of the most related categories:

– Top-N rank by frequency - asymmetric. For each label category, the
relatedness of the other label categories to it is their frequencies as the
responses to the items with the label category as their true labels.

– Top-N rank by frequency - symmetric. For each label category, the
relatedness of the other label categories to it is their frequencies as either the
responses to the items with that label category as their true labels, or the
true labels of the items which receive that label category as the responses.

Figure 4a–d show how the Top-N most related category ranks by both the
DELRA model without X and the two baselines are correlated with the Top-
N ranks by the ground-truth relatedness scores calculated by Eq. (1). Showing
overall higher average correlation with the ground-truth relatedness scores across
the four datasets, our model clearly yields more consistent category relatedness
estimates than the two baselines even though it is unsupervised. We conjecture
this is attributed to the ability of our model in distinguishing responses of differ-
ent quality by accounting for the interaction between worker expertise and item
difficulty, while the baselines treat all the responses as the same in their quality.
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Fig. 4. Average Pearson correlation coefficients between the Top-N most related cat-
egory rank yielded by different methods, and the ground-truth Top-N rank yielded by
the pre-computed related scores based on Eq. (1). Note that x-axis and y-axis in each
figure are N and average correlation, respectively.

6 Conclusion

We propose DELRA, a quality control framework for crowdsourcing that lever-
ages the semantic relationships between label categories. It features a latent
real-valued matrix that captures the relatedness between response categories
alongside variables for worker expertise, item difficulty and item true labels.
DELRA encodes the joint interaction among these variables to refine estimation
of conditional probabilities of responses given true labels. This leads DELRA to
outperform numerous state-of-the-art quality control methods in terms of true
label prediction. Moreover, DELRA allows for elegant encoding of a priori knowl-
edge regarding the relationships between categories for calibrating the estimation
of the latent relatedness matrix. This leads to its further improvements in the
prediction. Finally, the relatedness matrix learned solely from response data by
DELRA shows convincing consistency with the relatedness matrix pre-computed
from the external semantic relationships between the categories.
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