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PC Chairs’ Preface

With its 22nd edition in 2018, the Pacific-Asia Conference on Knowledge Discovery
and Data Mining is the second oldest conference and a leading venue in the area of
knowledge discovery and data mining (KDD). It provides a prestigious international
forum for researchers and industry practitioners to share their new ideas, original and
latest research results, and practical development experiences from all KDD-related
areas, including data mining, data warehousing, machine learning, artificial intelli-
gence, deep learning, databases, statistics, knowledge engineering, visualization, and
decision-making systems.

This year, we received 592 valid submissions, which is the highest number of
submissions in the past 10 years. The diversity and reputation of PAKDD were also
evident from the various regions from which submissions came, with over 25 different
countries, noticeably from North America and Europe. Our goal was to continue to
ensure a rigorous reviewing process with each paper assigned to one Senior Program
Committee (SPC) member and at least three Technical Program Committee
(TPC) members, resulting in an ideal minimum number of reviews of four for each
paper. Owing to the unusually large number of submissions this year, we had to
increase almost doubling the number of committee members, resulting in 72 SPC
members and 330 TPC members. Each valid submission was reviewed by three PC
members and meta-reviewed by one SPC member who also led the discussion. This
required a total of approximately 2,000 reviews. The program co-chairs then consid-
ered recommendations from the SPCs, the submission, and the reviews to make the
final decision. Borderline papers were discussed intensively before final decisions were
made. In some cases, additional reviews were also requested.

In the end, 164 out of 592 papers were accepted, resulting in an acceptance rate of
27.9%. Among them, 58 papers were selected for long presentation and 107 papers
were selected for regular presentation. This year, we introduced a new track in Deep
Learning for Knowledge Discovery and Data Mining. This track was particularly
popular (70 submissions); however, in the end, the number of papers accepted as the
primary category for this track was moderate (six accepted papers), standing at 8.8%.
The conference program contained 32 sessions in total. Long presentations were
allocated 25 minutes and regular presentations 15 mins. These two types of papers,
however, are not distinguished in the proceedings.

We would like to sincerely thank all SPC members, TPC members, and external
reviewers for their time, effort, dedication, and services to PAKDD 2018.

April 2018 Dinh Phung
Vincent S. Tseng



General Chairs’ Preface

Welcome to the proceedings of the 22nd Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD). This conference has a reputable tradition in
bringing researchers, academia, developers, practitioners, and industry together with a
focus on the Pacific-Asian regions. This year, PAKDD was held in the wonderful city
of Melbourne, Australia, during June 3–6, 2018.

The single most important element of PAKDD is the technical contributions and
submissions in the area of KDD. We were very pleased with the number of submis-
sions received this year, which was well close to 600, showing a significant boost in the
number of submissions and the popularity of this conference. We sincerely thank the
many authors from around the world who submitted their work to the PAKDD 2018
technical program as well as its data competition and satellite workshops. In addition,
PAKDD 2018 featured three high-profile keynote speakers: Professor Kate
Smith-Miles, Australian Laureate Fellow from Melbourne University; Dr. Rajeev
Rastogi, Director of Machine Learning at Amazon; and Professor Bing Liu from the
University of Illinois at Chicago. The conference featured three tutorials and five
satellite workshops in addition to a data competition sponsored by the Fourth Paradigm
Inc. and ChaLean.

We would like to express our gratitude to the contribution of the SPC, TPC, and
external reviewers, led by the program co-chairs, Dinh Phung and Vincent Tseng. We
would like to thank the workshop co-chairs, Benjamin Fung and Can Wang; the tutorial
co-chairs, Wray Buntine and Jeffrey Xu Yu; the competition co-chairs, Wei-Wei Tu
and Hugo Jair Escalante; the local arrangements co-chairs, Gang Li and Wei-Luo; the
publication co-chairs, Mohadeseh Ganji and Lida Rashidi; the Web and content
co-chairs, Trung Le, Uyen Pham, and Khanh Nguyen; the publicity co-chairs,
De-Chuan Zhan, Kozo Ohara, Kyuseok Shim, and Jeremiah Deng; and the award
co-chairs, James Bailey, Bart Goethals, and Jinyan Li.

We are grateful to our sponsors: Deakin University as the host institution and gold
sponsor; Monash University as the gold sponsor, University of Melbourne, Trusting
Social, and the Asian Office of Aerospace Research and Development/Air Force Office
of Scientific Research as silver sponsors, Springer as the publication sponsor, and the
Fourth Paradigm, CodaLab and ChaLearn as the data competition sponsors.

April 2017 Tu-Bao Ho
Geoffrey I. Webb
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Abstract. Information diffusion, which addresses the issue of how a
piece of information spreads and reaches individuals in or between
networks, has attracted considerable research attention due to its
widespread applications, such as viral marketing and rumor control.
However, the process of information diffusion is complex and its under-
lying mechanism remains unclear. An important reason is that social
influence takes many forms and each form may be determined by vari-
ous factors. One of the major challenges is how to capture all the crucial
factors of a social network such as users’ interests (which can be repre-
sented as topics), users’ attributes (which can be summarized as roles),
and users’ reposting behaviors in a unified manner to model the infor-
mation diffusion process. To address the problem, we propose the joint
information diffusion model (TRM) that integrates user topical interest
extraction, role recognition, and information diffusion modeling into a
unified framework. TRM seamlessly unifies the user topic role extrac-
tion, role recognition, and modeling of information diffusion, and then
translates the calculations of individual level influence to the role-topic
pairwise influence, which can provide a coarse-grained diffusion repre-
sentation. Extensive experiments on two real-world datasets validate the
effectiveness of our approach under various evaluation indices, which per-
forms superior than the state-of-the-art models by a large margin.

Keywords: User topic · User role · Information diffusion
Social network
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1 Introduction

Information diffusion focuses on how a piece of information (knowledge) spreads
and reaches individuals in or between networks [13,15]. The process of the infor-
mation diffusion is crucial for spreading technological innovations [11], word
of mouth effects in marketing [10], and opinion formulations [14]. In reality,
the information diffusion process is complex, as is the influence of one user on
another. Central to information diffusion is the estimation of influence strength.
The strength of social influence depends on many factors, such as the charac-
teristics and positions of individuals in the network, the impacts of the message
content and temporal effects. Furthermore, not only the social influence reflects
the changes of user behaviors, the user behaviors can also reflect the social influ-
ence in turn. Meanwhile, different types of social ties have essentially different
influence on social actions, since users may have different attributes. Hence, how
to make full use of these factors to effectively quantify the influence strength of
individuals is the key problem in modeling information diffusion, especially, for
the repost prediction. Namely, how should we model the information diffusion
process so that the model can capture the intrinsic relations between all these
elements, such as individual attributes, users’ topical interests, and actions?

Nowdays, the modeling information diffusion problem has attracted much
interest from researchers, and extensive efforts have been made in this field [14,
17]. From the perspective of structure of network availability, the information
diffusion model can be classified into network structure-based methods and non-
structure based methods. Non-structure based approaches are limited by the fact
that they ignore the topology of the network and only forecast the evolution of
the rate at which information globally diffuses [1]. In network structure-based
methods, two representative models are used, namely, independent cascade (IC)
model [6] and linear threshold model (LT) model [8]. These models assume that
the network structure determines the flow of information and focuses on the
structure of the process. As these two models require a diffusion probability
between every two users, thus they have high computational complexity. To
overcome this problem, [14,17] introduce the topic model such as LDA [3] to
make users with the same topic distribution share the same behavior pattern.
Xu [14] assumed that the user posting behavior is mainly influenced by three
factors: breaking news, posts from social friends and user’s intrinsic interests.
Furthermore, topic-aware diffusion models assumed that either the topics asso-
ciated with the diffusion process is specified in advance or independent with the
user structural attributes [5].

Although significant progress has been made, the results of existing work are
not satisfactory because of the following limitations:

1. Most information diffusion models used only portions of the available
social network information. For example, Zhang [16] only considered the network
structure information into consideration but ignored the differences between the
users themselves, such as user’s preferences or interests.

2. Highly volatile user behaviors usually cause difficulty in accurately uncov-
ering diffusion patterns for the approaches between individuals.
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3. The underlying mechanism of information diffusion remains unclear. One
important reason is that social influence takes many forms and each form may
be determined by different factors.

Consequently, several interesting questions emerge: Is there any dynamics
or mutual influence between the three factors, user interests, social roles, and
users repost behaviors? To what extent do they influence the information diffu-
sion process? If, for example, a famous artificial intelligent expert and a normal
political-science major student both retweet the same two messages, one about
AlphaGO and the other one about the president Trump, will the followers of
each user retweet the two different messages equally? Specifically, will the two
users have the same strength of influence on their common followers? Finally,
will the repost actions of followers affects their followees’ post behaviors? This
paper offers a new perspective.

Topics and social roles are both hidden. Pipeline approaches to extract these
two factors in sequence fail to capture their interdependence. Although in recent
years an array of techniques [4,15,17] have been developed for jointly leveraging
these two critical factors, these techniques fall short of properly modeling the
correlations between them. Besides the task of simultaneously extracting topics
and social roles, we are even required to accurately characterize the role-aware
topic-level information diffusion process with temporal factors.

To address the aforementioned issues, we introduce a novel TRM model that
integrates user structural attributes, text of information, user repost action to
uncover and explore temporal diffusion. The joint information diffusion model
seamlessly unifies the extractions of user topic, role recognitions, and modeling
of information diffusion. In TRM, we model topics and roles in a unified latent
framework, and extract role-aware topic level influence dynamics. Furthermore,
we group the users based on their structural properties and reposted informa-
tion, and translate the calculations of individual level influence to the role-topic
pairwise influence, which can provide a coarse-grained diffusion representation.
These effective technologies facilitate our TRM model to accurately characterize
the role-aware topic-level information diffusion process, and better predicts and
analyzes the diffusion.

To summarize, we make the following contributions:

• We propose to integrate user structural attributes, user interests, and user
repost behaviors into a unified probabilistic generative framework, which
extracts the role-aware topic level influence dynamics. Concretely, we sys-
tematically study on the building joint models to explore mutual influence
for user topics and roles in the process of information diffusion, and translate
the calculations of individual level influence to the role-topic pairwise influ-
ence, which can provide a coarse-grained diffusion representation. It brings
up a new perspective to the information diffusion process. To the best of our
knowledge, such a new angle has not been studied previously.

• We introduce a latent model to uncover the hidden topics and roles as well as
capture the information diffusion, which can model the process of information
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diffusion better than other models. We further devise a Gibbs sampler to
estimate the parameters.

• An effective diffusion prediction approach is developed which leverages the
information diffusion patterns with user topics and social roles. We conduct
extensive experiments to validate the proposed model over several baselines
by employing two large real-world network as experimental datasets. Exper-
imental result demonstrates that the proposed model performs much better
than the state-of-the-art methods.

2 Related Work

Information Diffusion. There are two representative information diffusion
models, i.e., IC model [6] and LT model [8]. Both types of models have the
computational problem of selecting the set of initial users that are more likely
to influence the largest number of users in the social network [12], and also have
the over-fitting problem resulting from their large number of unknown param-
eters to learn. TRM addresses these two problems by allowing users with the
same social role and user topical interests to share the same diffusion patterns,
thereby significantly reducing the number of parameters.

Topic-Aware Influence. Although most of the preceding studies have utilized
the network structural and timing information to model the information dif-
fusion process, a different line of work has considered analyzing the available
textural information and using the latent topics of the messages as the user’s
interests [10,13]. Topics are the collections of user’s interests to post a message
and provide the intentions for user engagement in social networks [14,16]. In [13],
the authors proposed a mixture latent topic model to predict the user’s repost-
ing behaviors. Most of the topic-aware information diffusion models consider the
topic of the user or the twitter, but neglect the user’s structural attributes. In
contrast to what these models do, the diffusion process emphasized in this study
not only considers how the topical interests may influence such a process but
also considers the different roles of users. In particular, the social role and user
topical interest distributions of each user are not only determined by her struc-
tural attributes and the contents of the reposted messages respectively, but also
by her diffusion behaviors.

Some state-of-the-art works have endeavored to combine topic model and
information diffusion process, e.g., [15], as presented in the submitted paper.
However, these studies usually analyze partial social network information in
local observation views, i.e., neglecting the actual effects of role-topic pairs on
the information diffusion process. In contrast, our TRM model pays attention
to the role-aware topic level diffusion analysis, which emphasizes the interplays
between user role-topic pairs and their influence on information diffusion. The
advantage of our model is experimentally demonstrated in the evaluation section,
i.e., Table 2, by comparing with the state-of-the-art ones.
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Table 1. Notations

Symbol Description

R, K, H, W Number of social roles, topics, attributes and unique words in
the dataset

T The largest timestamp in a given diffusion model

Nd The number of words in the dth messages

etiuv A variable denoting whether user v reposts the message i posted
by user u at time t

kd Topic associated with post d

φv Multinomial distribution over topics specific to user v

ψk Multinomial distribution over words specific to topic k

θv Multinomial distribution over roles specific to user v

λr geometric distribution over Δt associate with role r

ρrk Bernoulli distribution over decision to repost a message associate
with topic k and role r

urh Mean of h-th attribute specific to role r

δrh Standard deviation of h-th attribute specific to role r

3 TRM Model

3.1 Formulation

Let G = (V,E,X), where V is the set of all the users and E ⊆ V × V is a set
of relationships between users. Each factor eij =<vi, vj>∈ E represents user
vi follows vj , in other words, vi is the follower of vj and vj is the followee of
vi in turn. Each user vi has H-dimensional attribute vector xi, where H is the
number of all attributes. Each factor xvh ⊂ X denotes the h-th attribute of
user v. We can define the user’s attributes such as PageRank score [9], in degree
and network constraint score [4], based on the structure of the social network.
For each user v ∈ V , we use N(v) = {u|u ∈ V, euv ∈ E} to denote the set of
followees of v. For a message, whether a user activates her followers may also
depend on the role she plays and the intention she chooses. The notations used
in this paper are listed in Table 1.

To model the intuition that a user may have different interest topics and
take different roles in the information diffusion process, we associate each with
an interest topic and social role distribution respectively:

Definition 1 Topic Distribution. In social networks, a user is often interested
in multiple topics. Formally, each user is associated with a vector φv ∈ V K , where
K is the number of topics (

∑
k φvk = 1).

Definition 2 Role. Each user may play multiple different roles, denoted as
r = [1, 2, ..., R]. Each role has a set of parameters for the distribution that the
attributes conform to. Here we use Gaussian distribution. If a user plays role r,
its h − th attribute conforms to (urh, δrh

−1).
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Fig. 1. Illustration of TRM: the left part depicts the input of TRM (i.e., user’s struc-
tural attributes, network structure, and information on the network). The right part
is the graphical model representation of TRM. The components with different color
correspond to that of three processes in Sect. 3.2.

Definition 3 Role Distribution. Each user has a multinomial distribution
over roles, which is denoted as θ. θv denotes the probability for user v to play
role r, and is subject to

∑
r θvr = 1.

Definition 4 Topic-Role Pair. Whether a user v would repost a message
posted by her followee u depends on the role that user u plays and the topic she
chooses. We use ρ to denote the distribution of topic-role pairs over reposting
actions. In the information diffusion process, the actions of reposting messages
only contains two cases, so we can use a Bernoulli distribution to model the
distribution of topic-role pairs over actions. In other words, ρrk denotes the
influence strength that a user plays role r and chooses the topic k to successfully
activate one of her followers for a message.

3.2 Model Description

Based on the preceding definitions, the proposed TRM model is explained. Our
goal is to devise a probabilistic generative model for extracting the user topical
interests, learning user social roles, and modeling information diffusion simul-
taneously. Figure 1 illustrates the model. We use the content of user’s reposted
messages to determine her topic distribution and use the user’s attributes to
determine her role distribution, which are all used as priors to guide the sam-
pling for the user’s actions. Overall, the TRM model we proposed consists of
three parts: the user’s messages generation, the user’s attributes generation, and
modeling the information diffusion process.

User’s Messages Generation. Here, we associate a single hidden variable with
each message to indicate its topic due to the limitations in the number of char-
acters in a single message. The generative process is described in Algorithm 1.

Social Attributes Generation. Each user may play several roles in differ-
ent information diffusion processes and is subject to a certain distribution over
attributes, denoted by θv. Each user has a random mixture of roles and can be
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denoted by v = (x1...xh...xH). The generative process of the value of attribute
h for user v in a social network is described in Algorithm 2.

Model Information Diffusion Process. We introduce topic-role parameters
ρrk which denotes the probability that one user plays role r and successfully
activates another user specific to topic k, and a per-role parameters λr, which
denotes the probability that cause a one-timestamp delay in information diffu-
sion. At anytime, user v will become active and at least one of her followees
activate her successfully. We use Independent Cascade Model as diffusion func-
tion in TRM model. Specifically, we first generate the influence strength and
diffusion delay corresponding to ρrk and λr, respectively. Consider a message i
posted by user u at time t, u will have only one chance to activate her follower v.
The generative process of information diffusion is described in Algorithm3

Algorithm 1. Message generation process
1: begin
2: for each message i posted by user v do
3: sample the user distribution over topics, φv|π ∼ Dir(π);
4: sample topic indicator, k|φvk ∼ Mul(φv);
5: sample topic distribution over words, ψk|ε ∼ Dir(ε);
6: for each word wdn in post d posted by user v, n = 1, 2, 3, , , Nd do
7: sample word, wdn|ψk ∼ Mul(ψk);
8: end for;
9: end for;
10: end;

Algorithm 2. User attributes generation
1: begin
2: for each user v do
3: sample the user distribution over roles, θv|α ∼ Dir(α);
4: sample role indicator, r|θvr ∼ Mul(θv);
5: for each attribute xrh, h = 1, 2, 3, , , H do
6: sample attribute xrh of user v, xrh|(urh, δrh

−1) ∼ N(urh, δrh
−1);

7: end for;
8: end for;
9: end;

Algorithm 3. Modeling information diffusion process
1: begin
2: for each action of repost. For instance, user u posted a message i at time t, and user v who

followees user u, reposted the message i at time t′ = t + Δt + 1. do
3: sample topic indicator, k|φuk ∼ Mul(φu);
4: sample role indicator, r|θur ∼ Mul(θu);
5: sample the role-topic pair influence strength, ρrk|β ∼ Beta(β);
6: sample the temporal influence of role r, λr|η ∼ Beta(η);
7: sample the Δt, Δt|λrt ∼ Geo(λr);
8: take a coin, sample y, et

iuv|ρrk ∼ Bern(ρrk);
9: end for;
10: end;



10 H. Xu et al.

3.3 Model Learning

Learning the model aims to find a configuration for the parameters {θ, φ, ρ, λ}
to maximize the log-likelihood objective function. The posterior probability of
kd, which denotes that the latent topic k for the post d of user u to activate her
follower is calculated by:

p(kd = k|k−ud) =
n−uk + π

∑

k

(n−uk + π)
×

Nd∏

n=1

(
nk

wdn
+ β

∑

w
(nk

w
+ β)

), (1)

where the counter nuk denotes the number of times topic k is sampled with user
u, wdn is the n-th word in post d, and nk

w denotes the number of times word w
is assigned to topic k. The subscript−uk on the counters indicates exclusion of
the current observation (resp. the message d posted by user u) from the counts.
According to [2], we adopt:

urh =
τ0τ1 + nrhx

rh

τ1 + nrh
, δrh=

2τ2 + nrh

2τ3 + nrhsrh +
τ1nrh(xrh

−τ0)
2

τ1 +nrh

. (2)

Similarly, after Gibbs sampling, parameters {θ, φ, ρ, λ} can be estimated by:

θur =
nur + α

∑

r
(nur + α)

, φuk =
nuk + π

∑

k

(nuk + π)
,

ρrk =
nerk(e=1) + β1

n0rk + β0 + n1rk + β1
, λr =

nr + η1
sr + η0 + η1

,

(3)

where r, k, Δt, and e respectively represent a new observation of r, k, Δt, and
e. In terms of time consumption, the computation cost for the core iteration
unit, i.e., sampling the user role, user topic, time delay, and the binary variable,
is constant across different posts. Therefore, the time complexity for Gibbs sam-
pling in TRM is linear w.r.t the value of O(N ∗ K ∗ R), which is much smaller
than the IC model whose complexity is linear of O(N ∗ N), since the value of
K ∗ R is far less than the value of user number N .

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate the effectiveness of the proposed model on two real-world
datasets belonging to two different social networks:

• Weibo is a dataset from Sina Weibo, the largest microblogging service in
China. The Weibo data we used in our experiment is from [11] with 66,348
users and 13,487,120 repost actions. We select the original posts that were
reposted by more than 6 users, and use the remaining 129,560 original posts
for experiments. For a given tweet from a user, we would like to predict who
will repost the tweet.
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Table 2. Performance comparison on two datasets evaluated by P@N and MAP.

Weibo CND

Method P@10 P@50 P@100 MAP P@10 P@50 P@100 MAP

Count 0.007 0.006 0.006 0.013 0.089 0.029 0.017 0.127

LDA 0.112 0.039 0.020 0.085 0.153 0.049 0.030 0.198

MUPB 0.405 0.137 0.079 0.415 0.122 0.038 0.022 0.307

Rain 0.407 0.146 0.083 0.427 0.121 0.038 0.021 0.299

TRM 0.429 0.156 0.088 0.458 0.143 0.043 0.024 0.345

• Citation Network Database (CND) is extracted from DBLP, ACM,
MicroSoft Academic Graph, and other sources [17]. We select the original
paper that was cited by more than 6 users, and use the remaining 67,414 orig-
inal papers for experiments. For a given paper, we would like to predict which
author will cite this paper next.

Since the retweet or cite action prediction is much similar to a ranking problem,
we prefer the precision at top ranked results as the evaluations of our proposed
model. Specifically, given a message or a paper i produced by user v, we cal-
culate the reposting or citation probability of each of v′s followers, and we use
P@10(precision of top-10 predictions), P@50, P@100, and Mean Average Pre-
cision(MAP) to evaluate the ranking prediction results for each message and
aggregate the results for all messages together.

Baselines. We compare TRM with several representative methods for user’s
prediction Count, LDA [3], MUPB [14] and Rain [15].

• Count: Here, the probability of a user reposting a message is in direct pro-
portion to the number of followees who have reposted message i.

• LDA: In LDA [3], the probability of a user reposting a message based on the
topic distributions of message i and v’s all reposted posts in the past.

• MUPB: Although MUPB [14] can help extract the topics of users to a certain
extent, it fails to capture the real motivation of users to publish content,
because user behavior can easily be affected by the structure of the network,
other than user interest.

• Rain: Rain [15] predicts whether user v′s will repost message i based on the
user v′s role distribution and the information diffusion attributes correspond-
ing to each role.

• TRM: This is the proposed method.

Following some state-of-the-art works [3,15,17], we fix the hyper-parameters
in the experiments for both TRM and the baselines for a fair comparison. We
set the model parameters as R = 10, K = 10, α = 0.1, π = 0.1, ε = 0.1,
β = (1, 1), and η = (1, 1).
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4.2 Experimental Results

Better Performance. The performance comparison of the two datasets evalu-
ated by P@10, P@50, P@100 and MAP is illustrated in Table 2. We can discover
that the TRM model clearly outperforms Count, LDA, MUPB, and Rain on
nearly all metrics in Weibo (+0.076 ∼ 0.445 improvement in terms of average
MAP) and CND (+0.049 ∼ 0.218 improvement in terms of average MAP). Due
to the lack of supervised information, Count performs worst on both datasets,
whereas the Count and LDA model outperform themselves better in CND than
in Weibo. Since an author usually only focuses on one or two fields of study, the
users in CND database usually cite the papers with the similar topics. The Count
and LDA model all ignore the user’s social structural attributes. Prediction of the
user’s reposting action based on LDA only depends on the user’s history reposts,
and ignores the situation where a user needs or topic distributions may change
over time. TRM also outperforms MUPB and Rain on all metrics. Although
MUPB and Rain also considers user topics and social roles, respectively, they
still ignore the correlations and mutual influence between topics and roles.

Effect of Mutual Influence. We also examine the nature and the effectiveness
of the associated latent factors on the mutual influence between user topics and
social roles, and Fig. 2 demonstrates their feasibility in our modeling. Note that
if we do not incorporate the latent role or topic factor, our TRM model becomes
the traditional MUPB or Rain approach, respectively. This condition shows that
the latent factors consistently enhance the precision (evaluated by P@10,P@50
and MAP) for the repost prediction. For example, the latent topic and role factor
respectively improve the MAP by 4.8% (from 29.5% to 34.3%), and improve the
MAP by 3.5% (from 41.5% to 45.8%) for the repost prediction. These results
also illustrate that the user’s topics and social roles are very crucial to modelling
the information diffusion.

Social Role Analysis. The learned parameters ρ represent the influence
strength of a user for different topics and roles. The method also learns urh,
which denotes the mean value of social attribute k for role r, and ρrk denotes
the topic-role pair activation probability of topic k for role r. Thus, we can use
the P (r) =

∑
k ρrk to denotes the influence strength of role r. Figure 3 shows

the correlations between a role’s social attribute and its influence strength. We
discover that the correlation follows a logarithm function. We try different forms

Fig. 2. The contribution of topic and role on repost prediction.
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Fig. 3. Role analysis on two datasets: the correlation of influence strength with Pager-
ank, Network Constraint and Pagerank/Network Constraint Score.

of functions to fit the remaining data points and select the logarithm function of
R2. Similar to Fig. 3(a), (b) shows that people who have a higher PageRank score
or smaller network constraint score will have a stronger influence in information
diffusion than ordinary people. The reason is that people with a higher PageR-
ank score tend to have a larger number of followers, and their posted messages
are more likely to be reposted. People with a smaller network constrain score
tend to be a structural hole spanner that connects two or more communities, and
their posted messages are more easily be propagated to different social network
communities.

Correlation Between User Topic and Social Role. Inspired by the work
of [4,9,15,17], we classify users into three groups according to their structural
properties, i.e., network constrain score and Pagerank score. For example, we
assume that the user with small network constrain score tends to be a structural
hole spanner that connects two or more communities. Similarly, the user with
high PageRank score may be an opinion leader. Furthermore, the learned param-
eter φ represents the topic distribution for different users. Inspired by [7], we
compute the entropy of user’s topical distributions to measure how much topical
a user’s interests or topics are. For a user v, the entropy of her topical interests
distribution is computed as follows: Hp(v) =

∑
k φvk log(φvk). To further ana-

lyze the correlations between users’ topics and roles, we continue to calculate the
average entropy for each role as follows: Hp(r) = 1/|Nr|

∑
v∈Ar

Hp(v), where Ar

denotes the set of users to be assigned to role r, and Nr denotes the number of
users in Ar. The higher the entropy, the less topical the role is. Figure 4 demon-
strates the correlations between user topics and roles. The higher the entropy,
the less topical the role is. Thus, the most topical would be a user that is inter-
ested in only a single topic, whereas the least topical would be a user that is
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Fig. 4. The average entropy of topical distributions for each role on two datasets.

interested in all topics with equally preferences. The phenomenon in Fig. 4 may
be explained as follows: most of opinion leaders post the messages about their
areas of expertise and they tend to focus on regional and specialized topics, the
structural spanners have broad interests than opinion leaders because they usu-
ally focus on more general topics that tend to propagate from one community to
another more easily, and the ordinary users have more broader interests because
they behave more randomly. In Fig. 4(b), the structural spanners have a higher
entropy value than ordinary users. The phenomenon may be explained as fol-
lows: when a person has published many papers in different regions, she may
become more open-minded and tend to accept new ideas from others.

5 Conclusions

In this paper, We propose to integrate user structural attributes, user inter-
ests, and user repost behaviors into a unified probabilistic generative framework,
which extracts the role-aware topic level influence dynamics. Experimental result
demonstrates that the proposed model performs much better than the state-of-
the-art methods.
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ence Foundation of China under Grant No. 61772288, U1636116 and 11431006, and
the Research Fund for International Young Scientists under Grant No. 61650110510
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Abstract. Discovering important papers in different academic topics
is known as topic-sensitive influential paper discovery. Previous works
mainly find the influential papers based on the structure of citation net-
works but neglect the text information, while the text of documents gives
a more precise description of topics. In our paper, we creatively combine
both topics of text and the influence of topics over citation networks to
discover influential articles. The observation on three standard citation
networks shows that the existence of citations between papers is related
to the topic of citing papers and the importance of cited papers. Based
on this finding, we introduce two parameters to describe the topic dis-
tribution and the importance of a document. We then propose MTID, a
scalable generative model, which generates the network with these two
parameters. The experiment confirms superiority of MTID over other
topic-based methods, in terms of at least 50% better citation predic-
tion in recall, precision and mean reciprocal rank. In discovering influ-
ential articles in different topics, MTID not only identifies papers with
high citations, but also succeeds in discovering other important papers,
including papers about standard datasets and the rising stars.

Keywords: Citation network · Generative model
Academic recommendation

1 Introduction

In academic research, the prior arts are essential for the future works. One bot-
tleneck in research is that as the amount of available scientific literatures on
the Internet becomes larger, it would be increasingly difficult for researchers to
identify the masterpiece among numerous papers. This problem becomes even
more complicated given the fact that important papers are only influential in
one or several domains of knowledge. As a result, how to effectively identify the
milestone papers in different academic topics is a crucial task in data mining.

The goal of finding important papers in different academic topics is to
discover documents which are of great significance in a specific topic. In the

c© Springer International Publishing AG, part of Springer Nature 2018
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researches of citation network, most works try to use the network to discover
the interaction [3,8] and the evolution of topics [5,15] in the collection of docu-
ments, while little attention is paid to finding influencers in different academic
topics. Among limited number of works, which indeed focus on influential paper
discovery in citation network, Wang et al. [15] adopt Latent Dirichlet Allocation
(LDA) [1] to generate citation networks. They view the reference of a paper as
a “bag of citation” and learn the topic-document distribution from the citation
network. This distribution describes the importance of documents in a partic-
ular topic. Lu et al. [6] extend the method by taking into account additional
factors that influence the importance of papers, such as authorship and pub-
lished venues. The model proposed by Lu et al. [6] could discover the important
papers for different topics, authors and venues.

In spite of [6,15] mentioned above, finding influential nodes in citation net-
works remains an open problem. One direction is to add topics of textual infor-
mation into influencer detection. The existing works only take into consideration
the network structure and ignore the text. Although [6,15] use “topic” in the
description of their methods, the topic defined in [6,15] is actually a cluster of
documents. He et al. [4] describe this kind of topic as “DocTopic”, which could
be simultaneously related to distinct “WordTopics”, i.e. topics extracted from
the text. Thus, the topics described in [6,15] are too general but imprecise. The
other direction is to determine the important factors that affect papers to cite.
As for this direction, we conduct an observation on three standard citation net-
works. The result shows that whether one paper cites another depends on the
topic of the citing paper and the importance of the cited paper.

In this paper, we study the problem of influential paper discovery in citation
networks. One feature that distinguishes our method from other related works is
that we solve this problem by covering both directions mentioned in the previous
discussion. During this process, a challenge is to precisely describe the factors
that affect papers to cite. To accomplish this, we introduce two parameters to
represent the topic distribution and the importance of a document. Based on
these two parameters, we generate citation networks. While we defer a more
detailed description of our methods in Sect. 4, we would like to point out that
our method succeeds in adding the topic of papers into the generation of citation
networks. During this process, the importance of papers is learnt from the data.
The topic of node could be obtained by topic modeling, e.g. LDA, or any other
methods that transform a document into a topic vector. Another advantage is
that our learning schema could be separated into a set of independent convex
optimization problems. This propriety indicates that our model is scalable and
easy to initiate. The following three aspects are our core contributions.

– We conduct an empirical observation based on three standard datasets: AAN,
DBLP and ACM. There are two fundamental conclusions. One reveals that
papers with similar topic distribution are likely to cite similar papers as ref-
erences. The other states that papers with high citations are likely to be
selected as the papers to refer.
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– We propose a new, robust model: Model for Topic-sensitive Influential paper
Discovery (MTID), which is parallelizable and compatible to all methods
representing documents with topic vectors. MTID is inspired by our observa-
tion and models the citation network with two parameters of papers: (1) An
importance parameter, M, that captures the importance of cited papers (2)
A topic parameter, N, which describes the topic distribution of citing papers.

– We evaluate our model on citation prediction and influential paper discovery.
The first part proves that our model outperforms other topic-based citation
prediction methods with an improvement over 50% in recall, precision and
mean reciprocal rank. In the second part, we not only effectively identify the
papers with high citations, but also discovered other important papers such
as papers about standard datasets and the rising stars for an academic topic.

The rest of this paper is organized as follows: Sect. 2 summarizes the related
work. Section 3 presents our empirical observations about how topics of docu-
ments influence their citations. Section 4 introduces the MTID along with the
learning method. Then, we report the experimental results and the model appli-
cations in Sect. 5. Finally, the conclusion is presented in Sect. 6.

2 Related Work

In recent years, with increasing number of digital libraries such as ACM Digital
Library1 and DBLP2 come into use. There is a growing interest on the analysis
of citation networks in the research community.

As the citation network is a kind of network with rich textual information,
one important direction in the study of citation network is to use the network
structure in understanding the topic of text. In this direction, some researchers
extend the classical topic model to joint versions in order to model both text and
citation for documents. These works succeed in enhancing the quality of topics
[12] and reflecting the interaction among topics [3,8]. Others make use of the
characteristic that papers could only cite papers published earlier to study the
evolution of topics in academic fields [5,15].

Another important direction is to detect the influential papers in the cita-
tion network. To assess the importance of papers, ranking algorithms such as
PageRank and its variants are applied [11,14]. These methods, however, detect
the general influential papers in citation networks and ignore the topic context
of documents. In fact, as a document only contains information in one or several
knowledge domains, the influential papers vary in different topics. As a result,
discovering influencers in different topics is of great value in the citation network.

While most works for topic-sensitive influential node discovery in networks
aim at identifying important users in social networks [9,16], little attention is
paid to citation networks. Among limited amount of related works, Wang et al.
[15] use topic model to generate citation networks. They introduce the notion

1 https://dl.acm.org/.
2 http://dblp.uni-trier.de/.

https://dl.acm.org/
http://dblp.uni-trier.de/
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of “bag of citation” and consider a topic as a mixture of documents. Then, they
learn the topic-document distribution from the citation network. The distribu-
tion describes the importance of documents in a specific topic. Lu et al. [6] extend
the method by considering additional factors that influence the importance of
papers, such as authorship and published venues. The model proposed by Lu
et al. [6] discovers the important papers for different topics, authors and venues.

In our model, different from [6,15], we use the topics extracted from textual
information. In this way, we can make full use of the rich information in text.
Another difference lies in the generation of networks. In [6,15], the reference for
a document is determined by sampling cited documents according to the topic-
document distribution. In this case, the same document could appear more than
once in the reference. Our model, however, overcomes this problem by modeling
the probability of whether one paper cites another.

3 Empirical Observation

One important direction of discovering important papers in the citation network
is to figure out how papers cite other papers. In this section, we adopt empirical
observations on the academic network to discover the factors that affect papers
to connect with each other by citations. In general, we mainly cope with two
important questions. How topics of a document affect the way it cites? Which
kind of documents are frequently cited?

We observe three academic datasets: AAN, DBLP and ACM, the detailed
description is shown in Sect. 5.1. For each paper, we extract the topic from the
text with LDA [1]. According to the topic diversity of papers in datasets, we set
the number of topics to 10 for AAN and 100 for DBLP and ACM.

First, we analyze how topics affect the way documents cite. To do this, for
papers published last year in each dataset, we select two papers with more than
10 references and calculate the cosine similarity of their topic distributions. The
higher the value is, the more similar the articles are. We repeat this process
among all paper pairs of the last-year publication in each dataset. Then, we
divide the pairs into 8 different parts according to the topic similarity. Finally
we analyze the relation between the size of the overlapping references and their
topic similarity within the document pairs. Figure 1(a), (b) and (c) respectively
show the result of dataset AAN, DBLP, and ACM. For DBLP and ACM, due

(a) AAN (b) DBLP (c) ACM

Fig. 1. The relation between topic similarity and overlapping references
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to the large topic diversity, only a tiny portion of paper pairs have overlapping
references. Thus, we only plot the average number of overlapping references for
these two datasets. In these figures, the number of overlapping references grows
when the similarity of document pairs increases. The result shows that papers
with similar topic distribution are likely to cite similar papers.

Second, we analyze, in the citation network, what documents are likely to be
cited. For early publications, e.g. papers published in the first three years, we
construct two sets based on a timestamp, e.g. the penultimate year. The first set
contains the citations before this timestamp, the second set includes citations
after this timestamp. For example, for an early publication in ACM dataset, the
first set contains citations before 2007 and the second set includes citations in or
after 2007. We then compare the size of these two sets for each early publication.

(a) AAN (b) DBLP (c) ACM

Fig. 2. The relation between exiting citations and incremental citations

Figure 2 shows the relation of the size of two citation sets. It shows that the
number of citations in later years is positively correlated to that in early years.
In other words, papers with high citations are likely to be selected as the papers
to refer. As the number of citations is positively related to the importance of a
paper, papers with higher importance are more frequently to be cited.

4 Proposed Model

4.1 Generation of Citation Network

Based on previous observations, we can conclude that whether papers are linked
in citation networks is related to the topic of the citing paper and the importance
of the cited paper. The former is the intrinsic characteristic of the article and
the latter depends on the network structure.

In order to precisely represent these two factors that affect papers to cite,
we introduce two new parameters, N and M, to represent respectively the topic
distribution and the importance of a document.

N is the parameter which represents the topical distribution of citing papers.
It can be labelled manually or extracted from the text. Nu is a column vector
which describes the topic representation of document u and Nui represents how
likely the topic i could describe the document u. In topic modeling, Nu is the
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document-topic distribution in the document u and Nui is the proportion of
topic i in this document.

M is the parameter which represents the importance of papers in different
topics. It describes how likely a paper would be cited. Mv is a column vector
which represents the importance of document v in different topics. Mvj = 0 indi-
cates that the document v is not important in topic j. The larger this parameter
is, the more important the paper is in the topic.

We then present MTID (Model for Topic-sensitive Influential paper Discov-
ery), a probabilistic model which generates the citation network and models the
importance of papers in different topics simultaneously. In the generating pro-
cess, MTID follows the idea presented in [17] and models the citation network
with Poisson distribution.

Suppose that in a citation network, a non-negative random variable Xuv

represents the latent connection strength for the pair of papers (u, v). We define
that paper u cites paper v if and only if Xuv > 0. Now we consider the case of a
single topic. We define Xi

uv as the random variable of latent connection strength
in topic i for the pair of papers (u, v), this random variable follows the Poisson
distribution with the parameter Nui · Mvi. Then the total connection strength
Xuv is the sum of Xi

uv, with the additivity of the Poisson random variable:

Xuv =
K∑

i=1

Xi
uv Xi

uv ∼ Poission(Nui · Mvi)

The total connection strength Xuv follows the Poisson distribution with the
parameter

∑K
i=1 Nui · Mvi, where K denotes the number of topics. The proba-

bility P (u → v) is defined as follows:

P (Xuv > 0) = 1 − P (Xuv = 0) = 1 − exp (−
K∑

i=1

Nui · Mvi) = 1 − exp (−MT
v Nu)

Finally, MTID learns the importance matrix M and maximizes the log likelihood
of the observed network G. The problem could be formalized as follows:

M̂ = arg max(L(M)) (1)

where the nonnegative matrix M ∈ R
K×N and K,N denote the number of topics

and nodes, respectively. The log likelihood can be written as below:

L(M) =
∑

v

⎧
⎨

⎩
∑

u∈Rv

log(1 − exp(−MT
v Nu)) −

∑

u/∈Rv,u∈Cv

MT
v Nu

⎫
⎬

⎭ (2)

Rv is a set of papers that cite paper v and Cv is a set of papers that are published
later than paper v.
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4.2 Parameter Learning

We solve the optimization problem defined in Eq. 1 through block coordinate
gradient ascent. At each iteration, we update the importance vector Mv for each
paper v with Mu for all other papers u �= v fixed. To update the importance
parameter Mv for paper v, we solve the following subproblem:

M̂v = arg max(L(Mv)) (3)

where L(Mv) is the part of L(M) defined in Eq. 2 that involves Mv, i.e.,

L(Mv) =
∑

u∈Rv

log(1 − exp(−MT
v Nu)) −

∑

u/∈Rv,v∈Cv

MT
v Nu (4)

Noticing Mv is a non-negative vector, this subproblem can be further solved by
projected gradient ascent.

Mvnew
← max(0,Mvold

+ αMv
(∇L(Mv))

αMv
is the step size computed by backtracking line search [2], and the gradient

is:

dL(Mv)
dMv

=
∑

u∈Rv

Nu
exp(−MT

v Nu)
1 − exp(−MT

v Nu)
−

∑

u/∈Rv,u∈Cv

Nu (5)

During the iterations, only the calculation of the first term in Eq. 5 is required
and the second term is a constant given a paper v. This constant can be computed
in O(Indegree(v)) time according to Eq. 6 and cached during the training process.

∑

u/∈Rv,v∈Cv

Nu =
∑

u∈Cv

Nu −
∑

u∈Rv

Nu (6)

Thus, the computation of Eq. 5 requires O(Indegree(v)) time. As the real-world
citation networks are extremely sparse (Indegree(v) � N), we can update Mv

for each iteration in near-constant time.

4.3 Initialization and Parallelization

One advantage of our model is that the optimization problem shown in Eq. 4 is
concave. In this case, parameters will converge to the same result with different
initializations, thus we could randomly initiate the vector Mv for each paper v.
Another advantage is that our approach also allows for parallelization, which
further increases the scalability of MTID. When updating Mv for each paper v,
we observe that each subproblem is separable. That is, updating the value of
Mv for a specific node v does not affect the updates of Mu for all other nodes u.
Consequencely, parallelization does not affect the final result of the model. The
implementation is available in https://github.com/hxin18/mtid.

https://github.com/hxin18/mtid
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5 Experiment

5.1 Dataset

We evaluate our model with three citation networks, AAN, DBLP and ACM.
We use LDA [1] to extract topics from the text of documents. We note that,
at the same time, topics extracted by other topic modeling methods are also
compatible with our model and tend to have similar results.

ACL Anthology Network. ACL Anthology Network (AAN) [10] is a dataset
which includes papers about Natural Language Processing. AAN includes 19,435
papers published from 1980 to 2013 with full text and reference. For the text,
we remove invalid tokens and stop words. As AAN only contains papers in one
scientific field, topics detected in AAN are more specific and some of them are
quite similar. As a result, we set the number of topics to 10.

DataBase Systems and Logic Programming. DataBase systems and Logic
Programming (DBLP) [13] is a dataset on computer science journals and pro-
ceedings. From the dataset, we extract 298,840 papers published from 1996 to
2007 with abstract and reference to build the training set. For the textual infor-
mation, we remove the invalid tokens and stop words. DBLP contains papers
in all sub-fields of computer science. As a result, we set the number of topics
to 100.

Association for Computing Machinery. Association for Computing
Machinery (ACM) [13] is an online dataset on computer science journals and
proceedings. From the dataset, we extract 413,373 papers published from 2003
to 2007 with abstract and reference to build the training set. For the text, we
remove the invalid tokens and stop words. ACM contains papers in all sub-fields
of computer science, as a result, we set the number of topics to 100.

5.2 Citation Prediction

In this section, we evaluate MTID by predicting citations for new documents.
The whole dataset is divided into a training set and a test set. For the test set
of each dataset, we include the late publications with at least 10 references. We
fit our model with the training set and predict citations for the papers in the
test set.

Procedure. For a new query document with topic distribution Nnew, the MTID
recommends citations among existing papers based on the importance parame-
ter M. In details, we compute the citation strength of each existing paper to the
query document, then we rank the papers according to the strength and recom-
mend them based on the ranking. The strength is defined as Sd = MT

d Nnew.
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Baselines. We utilize random selection and three topic-based citation predic-
tion methods as baselines:

– Random: For each query in test set, we randomly recommend papers to cite.
The result of this method is the average of 10 measures.

– TopicSim: TopicSim is to compare the topic similarity between queries and
the cited papers. For each query, it returns the papers with the most similar
topic distribution. The topic distribution of documents is measured by LDA.

– Link-PLSA-LDA: Link-PLSA-LDA [8] is a mixed membership method that
models both text and citation. In the citation prediction, the cited papers are
ranked in terms of the conditional probability of citations associated with the
topic distribution of query.

– Topic PageRank: This method considers not only the topic similarity
between queries and the cited papers, but also the importance of cited papers
in the network. For a query, cited papers are ranked in terms of the multi-
plication of the weight of cited documents in PageRank and the similarity
between cited documents and queries.

Metric. We adopt Precision and Recall at number N (P@N and R@N) as the
evaluation metrics for citation prediction. R@M is defined as the percentage of
correct references that appear in the top-N prediction. P@N is used to quantify
whether correct references are ranked top for the query. A higher recall and
precision indicate a better result. Furthermore, it is important that ground-truth
references appear earlier in the prediction. Therefore, we adopt Mean Reciprocal
Rank (MRR) as a metric. The MRR is defined as 1

|Stest|
∑

d∈Stest

1
rank(d) , where

Stest denotes the test set and rank(d) denotes the rank of first correct citation
for query d.

Result. Table 1 shows the result of citation prediction for three datasets. Topic-
based methods significantly outperform random selection. Among all topic-based
models, TopicSim performs the worst because it only exploits information in text.
For other three methods that consider both text and citation, MTID significantly
outperforms other two methods. We can also notice that performance on AAN
is much better than other two datasets. It is because that DBLP and ACM
are large networks with wider range of topics. This makes the prediction more
difficult. The result proves the effectiveness of MTID in citation prediction.

5.3 Finding Influential Papers

In this section, we adopt MTID in discovering influential papers of different topics
in the citation network. To do this, for each topic, we rank the papers according
to the importance in this topic, which can be reflected by the parameter M in our
model. Tables 2, 3 and 4 display five most important papers of three topics selected
in each dataset, the keywords of topic are displayed in the left of the table. For each
topic i, we rank the papers according to the value of Mi. In general, the importance
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Table 1. Result of citation prediction

Dataset Model P@10 P@20 R@20 R@50 MRR

AAN Random 0.000967 0.000896 0.001381 0.003419 0.006369

TopicSim 0.001872 0.002433 0.003669 0.014069 0.014534

Link-PLSA-LDA 0.016341 0.012858 0.018686 0.034708 0.059297

Topic PageRank 0.037406 0.041362 0.062698 0.109224 0.095652

MTID 0.141056 0.101980 0.150841 0.22537 0.309743

DBLP Random 0.000030 0.000034 0.000067 0.000148 0.000371

TopicSim 0.002197 0.001551 0.002880 0.005391 0.008760

Link-PLSA-LDA 0.013687 0.010525 0.025611 0.034949 0.058961

Topic PageRank 0.013621 0.010598 0.019777 0.037148 0.056319

MTID 0.040889 0.032202 0.058351 0.101983 0.136039

ACM Random 0.000014 0.000025 0.000050 0.000091 0.000225

TopicSim 0.000978 0.000889 0.001958 0.004279 0.005619

Link-PLSA-LDA 0.014373 0.011093 0.022353 0.039949 0.053244

Topic PageRank 0.008274 0.006572 0.013942 0.025045 0.039397

MTID 0.022046 0.017035 0.035423 0.060776 0.085698

Table 2. Important papers for Topic 5 of AAN

Topic M Paper title Year #Citation

Model feature data
training set use
learning using word
result

0.123106 A Maximum Entropy Approach To
Natural Language Processing

1996 390

0.117956 Discriminative Training Methods
For Hidden Markov Models:
Theory And Experiments With
Perceptron Algorithms

2002 351

0.098413 Word Representations: A Simple
and General Method for
Semi-Supervised Learning

2010 133

0.081476 Building A Large Annotated
Corpus Of English: The Penn
Treebank

1993 1008

0.081431 A Maximum Entropy Model For
Part-Of-Speech Tagging

1996 281

of papers in the citation network is positively related to the number of citations.
However, there are some exceptions in our result.

In Table 2, most papers describe Machine Learning for Natural Language
Processing, while the fourth important paper Building A Large Annotated Corpus
Of English: The Penn Treebank is about parsing and contains little information
about the Machine Learning. However, it is considered as an influential paper in
Machine Learning and cited by papers in this topic. The reason is that serves as
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Table 3. Important papers for Topic 1 of DBLP

Topic M Paper title Year #Citation

Network networks
sensor wireless
routing detection
nodes mobile
protocol
performance

0.436223 Directed diffusion: a scalable and
robust communication paradigm
for sensor networks

2000 450

0.417814 Ad-hoc On-Demand Distance
Vector Routing

1999 456

0.407508 System Architecture Directions for
Networked Sensors

2000 351

0.365696 Chord: A scalable peer-to-peer
lookup service for internet
applications

2001 703

0.353928 GPSR: greedy perimeter stateless
routing for wireless networks

2000 361

a standard dataset for papers in Machine Learning. For example, [7] uses “gold
standard” to describe The Penn Treebank. In this case, The Penn Treebank plays
a role as an important dataset in the field of Machine Learning.

Table 3 presents the important papers in the topic of Wireless Sensor Net-
work, the first three papers focus exactly on this field. However, Chord: A scalable
peer-to-peer lookup service for internet applications, which ranks the fourth in
this topic, is about Content Distributed Network. The reason is that Content Dis-
tributed Network and Wireless Sensor Network are two highly correlated topics.
Methods utilized by papers in Content Distributed Network are frequently refer-
enced by papers in Wireless Sensor Network. In this case, important papers in
Content Distributed Network, such as Chord, are also considered as important
references in the topic of Wireless Sensor Network.

Table 4. Important papers for Topic 38 of ACM

Topic M Paper title Year #Citation

Data query database
queries mining
search databases
efficient processing
time

0.149107 Aurora: a new model and
architecture for data stream
management

2003 114

0.134329 Compressed full-text indexes 2007 20

0.114798 Issues in data stream management 2003 80

0.099354 Load shedding in a data stream
manager

2003 72

0.096368 What’s hot and what’s not:
tracking most frequent items
dynamically

2003 68
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In Table 4, paper Compressed full-text indexes ranks the second with only 20
citations. Recalling that the ACM dataset contains papers published from year
2003 to 2007, we can know that paper Compressed full-text indexes gains 20
citations in less than one year. In the academic network, papers like Compressed
full-text indexes are considered as rising stars. Thus, the paper Compressed full-
text indexes should be recognized as an important paper in Data Management.

The examples above prove that MTID not only recommends papers with
high citations but also discovers important references such as the papers about
standard datasets and raising stars. This propriety improves the performance of
our model in academic recommendation.

6 Conclusion

In this paper, we study the problem of topic-sensitive influential paper discovery
in citation networks. We study how papers cite other papers by observing three
standard citation networks and find that the citations are related to the topic of
citing papers and the importance of cited papers. Based on the observations, we
bring in two parameters to represent the topic and the importance of documents.
Combining these two parameters, we propose MTID, a generative model to gen-
erate citation networks and learn the importance of papers in different topics
from the data. Extensive experiments show that MTID significantly outperforms
other topic-based methods in citation prediction. Furthermore, we demonstrate
that MTID not only identifies papers with high citations, but also succeeds in
discovering other important papers in different topics, including papers about
standard datasets and the rising stars.
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Abstract. Over the past 15 years, the average six-year graduation rates
for colleges and universities across the Unites States have remained stable
at around 60%. This vehemently impacts society in terms of workforce
development, national productivity and economic activity. Educational
early-warning systems have been identified as an important approach to
tackle this problem. The key to these systems are accurate grade predic-
tion algorithms. In this paper we propose application of markovian mod-
els for the problem of predicting next-term student performance. Tradi-
tional approaches predict student’s grade in a course by using a subset
of prior courses and content features. However, these models ignore the
dynamic evolution of student’s knowledge states, which is a strong influ-
ence on student’s learning and performance. We developed course-specific
Hidden Markov Models and Hidden Semi-markov Models for the problem
of next-term grade prediction. Our experimental results on datasets from
a large public university show that the proposed approaches outperform
prior state-of-the-art methods. We show by a case study the application
of these methods for early identification of at-risk students.

1 Introduction

Over the past decade higher education institutions have been facing many chal-
lenges related to low graduation rates and high number of drop outs. According
to the National Center for Education Statistics, the six-year graduation rate for
first-time full-time undergraduate students in the United States is 59% [1]. The
longer graduation time leads to increased cost for students. One of the main
reasons students need longer time to graduate is the lack of sufficient and timely
advisement [2].

Educational technologies in the form of degree planners and early warning
systems help students stay on track and graduate on time. Degree planners are
decision guidance systems that identify a personalized course plan that ensures
students’ timely graduation. Early-warning systems inform university officials of
at-risk students so that these students can be reached out for advising, training
and mentorship. The foundations of these educational technologies are based on
accurate prediction of students’ future academic performance. Grade prediction
can help students plan for their success in courses by identifying course/topics
that they may be deficient in [3].
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 29–41, 2018.
https://doi.org/10.1007/978-3-319-93037-4_3
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Several approaches have been developed in the past few years to tackle
the problem of next-term grade prediction [4]. In particular course-specific
approaches predicting a student’s grade in a course by using the grades on a
subset of courses taken prior to the target course [5,6] have shown promis-
ing results. Given the sequential aspect of academic programs; where a chain
of courses build fundamental concepts and lead to training (education) of stu-
dents; these models assume that a subset of related prior courses can provide
the necessary knowledge for future courses. Course-specific models are based on
regression or matrix factorization. One of the limitations of these course-specific
models is that they ignore the temporal dynamics associated with the evolu-
tion of a student’s knowledge state. The concept of knowledge state is proposed
in mathematical psychology literature for assessment of a student’s mastery of
knowledge. Assessments uncover the particular state of a student and are used
for predicting student’s future performance and abilities. Latent factor models
are useful for modeling students’ knowledge state evolution [7].

Fig. 1. Change in student Term GPA for the first six semesters. The digit of the text
label denotes the term and the letter denotes the GPA. E.g., 3B implies term 3 and
GPA of B (3.0)

To model the student learning behavior and predict student’s performance
we propose the Hidden Markov Model (HMM) and Hidden Semi-Markov Model
(HSMM). In these models, students’ knowledge states are modeled as hidden
states. For HMM, the sojourn time is the number of steps spent in one state
before transitioning to another state and is geometrically distributed. However,
its performance degrades when the data exhibits long-term temporal dependency
[8] as in the case of student knowledge state. For example, a student with strong
capability is likely to be a high performing student in the next several semesters,
instead of suddenly transitioning to a hidden state indicative of a low performing
student. Figure 1 shows this property. This figure illustrates the dynamics in
students’ term GPA across all majors at George Mason University for the first
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Fig. 2. Graphical model of HMM vs. HSMM

six semesters (excluding Summer terms). We only present full letter grades (i.e.,
A, B, C, D, F) for this figure. The width of the flow from one semester to another
shows the number of grades and illustrates that given a student with a particular
GPA in one semester, the GPA in the next semester will probably remain at the
same level or off by one grade point with a high likelihood. If we consider more
refined grade points (i.e., the full letter grades plus A+, A−, B+, B−, ..., C−),
the statistics of the grade data shows that 24.3% of students have the same GPA
from one semester to another, 66.84% and 84.33% of students have their next-
term GPA within one and two ticks of their current-term GPA, respectively.
Ticks measure the deviations from the true letter grade and is explained in
Sect. 5. Thus it is very likely for a student to have similar GPA for the next
term, which shows that a student’s performance does not change frequently or
abruptly.

To capture this long-term dependency property of students’ knowledge evo-
lution, we propose HSMM for grade prediction. Compared to HMM, the sojourn
time of the knowledge state in HSMM is modeled explicitly. Each hidden state in
a HMM emits one observation while in HSMM each hidden state emits a sequence
of observations. The number of observations, i.e., the duration d, produced in
a hidden state is determined by the sojourn time distribution of that state.
Figure 2a and b shows the difference between HMM and HSMM, respectively. In
this work, the distribution of sojourn time is assumed to be nonparametric and
learned from data. Our experimental results show that the proposed methods
improve the prediction performance up to 42.96% and 30.34% in terms of MAE
and RMSE compared to baselines, respectively.

2 Related Work

2.1 Academic Performance Prediction

Students’ performance prediction is often treated as a classification or regression
problem. Classical classification algorithms such as decision tree, neural network,
support vector machine and Naive Bayes have been applied [9]. To predict a
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student’s performance, these approaches extract various features from different
databases available at a higher education institution. Exemplar features include
student’s final grades, cumulative grades, high school background and features
related to courses and instructors [4]. Inspired by recommender systems, popular
algorithms such as collaborative filtering [10] and matrix factorization [4,11]
have been proposed for grade prediction. These models use a “one size fits all”
strategy. However, due to different characteristics of students, these approaches
are limited in modeling students’ learning behaviors and academic performance.

To overcome this issue, Polyzou et al. proposed models specific to students
and courses [5]. Morsy et al. [12] represents course-knowledge spaces as latent
vectors and proposed cumulative knowledge-based regression models for next-
term grade prediction. Elbadrawy et al. proposed personalized multi-regression
models to predict students’ performance [13]. Elbadrawy et al. [14] proposed
domain-aware algorithms for grade prediction and course recommendation.

2.2 Markovian Models for Educational Data

Hidden Markov Models (HMM) were first introduced and extensively studied
by Baum et. al. [15,16]. The application of HMM to education domain was first
proposed by Corbett et al. [17] to model the acquisition of procedural knowledge
in intelligent tutoring system as Bayesian Knowledge Tracing (BKT). Extending
BKT, several models have been proposed such as the individualized BKT [18]
to improve the prediction performance.

HMM have also been applied for predicting dropouts in Massively Open
Online Courses (MOOCs). Balakrishnan et al. [19] used a novel Input-Output
HMM to predict student retention. Geigle et al. proposed a two-layer Hidden
Markov Model to model student’s behavior in MOOCs and found that the fea-
tures extracted from the two-layer Hidden Markov Model correlated with edu-
cational outcomes [20]. The observation layer of the two-layer HMM is used
to model the sequence of students’ interactions with the learning management
systems [20].

Hidden Semi-Markov Model (HSMM) was first proposed in the area of speech
recognition [21] and applied to areas including computer vision, genomics and
financial time series [22]. To the best of our knowledge, HSMM models have not
been applied to educational datasets and for the problem of next-term grade
prediction.

3 Problem Formulation and Notations

Assume that we have records of n students and m courses; comprising a n × m
sparse grade matrix G. Entry Gs,c in G represents the grade of student s in
course c. In addition we have the time stamp information for each grade Gs,c.
Besides the grade matrix G, we have information associated with the student
(e.g., academic level, previous GPA and major) and course offering (e.g., dis-
cipline, course level and difficulty) that can be combined to extract features.
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Table 1. Notations

Symbol Description

O Observation

KS Knowledge State

π Initial state distribution

D The maximum number of duration of the hidden states

gs,c The true grade of student s in course c

ĝs,c The predicted grade of student s in course c

aij The probability of transition from state i to state j

bj(Gt) The probability of observing Gt at state j

dj(u) The probability of staying at state j for u steps

We denote the feature vector as x of p dimensions. As a convention, bold upper-
case letters are used to represent matrices (e.g., X) and bold lowercase letters
represents vectors (e.g., x) (Table 1).

In this work, given the collection of students’ historical grades data our objec-
tive is to train a machine learning algorithm to model students’ knowledge evo-
lution and predict their grades in future courses.

4 Methods

4.1 Hidden Markov Model (HMM)

Model Description. HMM seeks to capture the dynamic evolution of student’s
knowledge state. Student’s knowledge state is modeled as the latent (hidden)
states in HMM. The grades of a student are modeled as the observations. Com-
pared to existing discriminative models, one of the key advantages of the HMM
approach is that it introduces stochasticity/uncertainty. For example, a student
with high capability has the chance to get a low grade by slipping [17], which is
hard to model using discriminative models.

In HMM, the evolution of student’s knowledge state is modeled as a Markov
chain and has the assumption that the next state only depends on current state.
The transition distribution of the model determines the evolution of students’
knowledge state, as shown in Eq. 1.

aij = P (KSt+1 = j|KSt = i) (1)

The emission distribution determines a student’s performance, given his
knowledge state, given by Eq. 2.

bj(Gt) = P (Gt|KSt = j) (2)

where Gt is the student’s grade at time t.
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A student’s knowledge state cannot be observed; only the grades are observ-
able. The space of the knowledge states and the observations are discrete.

To use HMM for modeling student’s knowledge state evolution and predict
performance in next course, two related questions need to be answered:

– Given an observation sequence and a model, what is the likelihood of the
observation sequence? This question can be solved by using forward algorithm
[16].

– Given a set of sequences, in our case they are the sequence of students’ grades,
how do we infer the parameter set of the model? This can be done by using
the classical EM algorithm [16].

Grade Prediction. To predict the grade ĝs,c for student s in a future course
c, we first extract the grades of student s in a series of courses c1, c2, ..., cT taken
prior to course c and form them as a sequence Gs = gs,c1 , gs,c2 , ..., gs,cT . Assume
that there are N possible grades student s could get in course c, in our case, the
possible grade x is in (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1, 0). Then we have
the following:

ĝs,c = max
x

P (x|gs,c1 , gs,c2 , ..., gs,cT )

= max
x

P (gs,c1 , gs,c2 , ..., gs,cT , x)
P (gs,c1 , gs,c2 , ..., gs,cT )

∝ max
x

P (gs,c1 , gs,c2 , ..., gs,cT , x)

(3)

The grade ĝs,c is predicted using maximum likelihood.

4.2 Hidden Semi-Markov Model (HSMM)

Model Description. The HMM model proposed above assumes that a single
knowledge state emits grade distributions for one course only. Further, the num-
ber of time steps spent in a given state (i.e., sojourn time) in a HMM model has
geometric distribution as show by Eq. 4 [23].

di(u) = P (St+u+1 �= i, St+u = i, St+u−1 = i, ...,

St+2 = i|St+1 = i, St �= i)

= au−1
ii (1 − aii)

(4)

where di(u) is the probability of staying at state i for u steps.
However, a student’s knowledge state has long-term temporal dependency.

It is demonstrated that a student with strong academic capability is unlikely to
become low performing in a short time.

To better model student’s knowledge state evolution, we propose Hidden
Semi-Markov Model (HSMM) shown in Fig. 2b. For HSMM, the underlying pro-
cess is assumed to be a semi-Markov chain. Each state can emit variable number
of observations. In other words, each knowledge state is responsible for perfor-
mance in multiple courses. The sojourn time of HSMM is explicitly modeled
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and different hidden states have different sojourn time distribution. For model-
ing student’s knowledge state evolution, the sojourn time distribution for a given
knowledge state j is defined as following.

dj(u) = P (KSt+u+1 �= j,KSt+u−v = j, v = 0, ..., u− 2|KSt+1 = j,KSt �= j) (5)

which is assumed to be nonparametric in this work (i.e. categorical distribu-
tion). The state transition distribution of the semi-Markov chain determines the
evolution of knowledge state; and is show in Eq. 6.

aij = P (KSt+1 = j|KSt+1 �= i,KSt = i) (6)

where j �= i,
∑

j �=i aij = 1 and aii = 0.
The emission distribution of HSMM determines a student’s performance,

given their knowledge state. Similar to HMM, for student’s knowledge state
modeling and grade prediction we need to compute the likelihood of a sequence
and infer the parameters of HSMM which can be done by using forward and EM
algorithms, respectively. The prediction of a student’s grade in a future course
by using HSMM is the same as HMM shown in Eq. 3.

4.3 Baseline Methods

Bias Only (BO). The Bias Only method only takes into consideration student’s,
course’s and global bias. The predicted grade is estimated using Eq. (7).

ĝs,c = b0 + bs + bc (7)

where b0, bs and bc are the global bias, student bias and course bias respectively.

Matrix Factorization (MF). The use of MF for grade prediction is based on
the assumption that the students’ and courses’ knowledge space can be jointly
represented in low-dimensional latent feature space [5]. The grade is estimated
as:

ĝs,c = b0 + bs + bc + pT
s qc (8)

where ps, qc are the latent vectors representing student s and course c, respec-
tively. We also applied course-specific matrix factorization (CSMF) for grade
prediction, which utilizes a course-specific subset of data to estimate a matrix
factorization model [6].

Course-Specific Regression with Prior Courses (CSRPC). CSRPC predicts the
grade of a student s in a future course c as a sparse linear combination of grades
in the courses taken prior to course c [6].

Course-Specific Regression with Content Features. CSRCF predicts the perfor-
mance of a student in a course using content features such as academic level,
difficulty level and instructor information [24].
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Course-Specific Hybrid Model (CSRHY ). This model is obtained by combining
the content feature vector and prior course vector [24].

5 Experiments

5.1 Dataset Description and Preprocessing

We evaluate the proposed methods on a dataset from George Mason Univer-
sity, the largest public university in Virginia and enrolled about 36000 students
in Fall 2017. We extracted student and course related data from the largest
five undergraduate majors in terms of student enrollment. These included: (I)
Computer Science (CS), (II) Electrical and Computer Engineering (ECE), (III)
Biology (BIOL), (IV) Psychology (PSYC) and (V) Civil Engineering (CEIE).

We used data from the period of Fall 2009 to Spring 2016. Using the Uni-
versity catalog [25] we selected student records for courses that are required by
the major program and electives offered by the department offering the major.
We also removed courses that did not result in a grade score (in between A–F)
but were only pass/fail courses. If a course was taken more than once by a stu-
dent, only the last grade was kept. For a course, if the number of students who
had taken the course was smaller than the number of the prior courses of this
course we removed this course from training and test sets. If the number of test
instances of a course was smaller than 5, we removed it.

To simulate the real-world scenario of predicting the next-term grades for
students we use the data extracted from the latest term as testing data and all
the data from terms prior to the latest term as the training set. The training data
was split into 80/20, of which 80% was training data and 20% was validation
data for choosing the hyperparameters associated with the model. After selection
of hyperparameters, the model was retrained on the entire training set before
final evaluation on the last term (test set).

5.2 Evaluation Metrics

The performance of the methods were assessed by three different evaluation
metrics: (i) mean absolute error (MAE), (ii) root mean squared error (RMSE)
and (iii) tick error. MAE and RMSE are computed by pooling together all the
grades across all the courses.

To gain deeper insights regarding the performance of the methods for course
selection and degree planning, we report an application-specific metric called
tick errors [5]. Tick error measures the deviation of the predicted grades from
the true grades. The performance of a model is assessed based on how many ticks
away the predicted grades are from the actual grades. The grading system has
11 letter grades (A+, A, A−, B+, B, B−, C+, C, C−, D, F) which correspond
to (4, 4, 3.67, 3.33, 3, 2.67, 2.33, 2, 1.67, 1, 0). To compute the tick error for
a predicted grade, the real value prediction outputs are first converted to the
closest letter grades.
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Table 2. Comparative performance of different models using MAE and RMSE.
(↓ is better)

Method MAE RMSE

CS ECE BIOL PSYC CEIE CS ECE BIOL PSYC CEIE

BO 0.7257 0.6902 0.5411 0.5951 0.5863 0.9824 0.9413 0.7784 0.7831 0.7734

MF 0.7184 0.6790 0.5420 0.6099 0.5796 0.9715 0.9557 0.7495 0.7977 0.7517

CSMF 0.7151 0.6666 0.5365 0.5673 0.5733 0.9576 0.9623 0.7762 0.7545 0.7756

CSRPC 0.6805 0.6739 0.5372 0.4933 0.601 0.9288 0.9699 0.7943 0.7348 0.8058

CSRCF 0.7183 0.6775 0.4769 0.4743 0.6091 0.9539 0.9680 0.7205 0.6732 0.7941

CSRHY 0.6693 0.6630 0.5057 0.4859 0.5839 0.9200 0.9542 0.7679 0.7283 0.7701

CSHMM 0.601 0.4532 0.4634 0.3362 0.3632 0.9202 0.7638 0.7806 0.6665 0.6463

CSHSMM 0.555 0.3782 0.4231 0.3023 0.3676 0.8307 0.6647 0.7038 0.5313 0.6613

6 Results and Discussion

6.1 Comparative Performance

Table 2 shows the average MAE and RMSE for the different methods across the
five majors on the test set. The results show that the CSHSMM model achieves
the best performance on all the majors. The CSHMM outperforms previously
developed Course-Specific regression and factorization models in terms of MAE
and RMSE. The proposed course-specific Markovian models are able to take
into account the temporal dynamics associated with the evolution of student’s
knowledge states in comparison to prior course-specific approaches. The CSHSMM

model outperforms CSHMM on almost all the majors and has similar perfor-
mance on CEIE. The students’ knowledge state which is modeled by CSHMM

and CSHSMM as hidden states tends to stay in the same state for some time
instead of changing constantly. Rather than a geometric distribution, the ideal
duration distribution should have lower probabilities on longer or shorter dura-
tions but higher probabilities on medium durations. By modeling the transition
of hidden states as semi-Markov model rather than Markov model, CSHSMM

achieves better performance than CSHMM . The exception on CEIE is because
of the flexibility in the particular degree program (i.e., there are many electives
for students to choose).

To have better insights into what kind of errors different methods make, we
evaluate the approaches using tick error metrics. Table 3 presents the results of
the best performed traditional course-specific methods (i.e., CSRPC and CSRHY)
and the proposed Markovian methods with respect to tick errors. For exact pre-
diction (i.e., 0 tick error) and one tick error, the CSHMM and CSHSMM have the
best performance. For two tick errors, the CSHMM and CSHSMM win for most
of the majors, while traditional course-specific model CSRHY show better per-
formance in CS majors. The traditional course-specific models are poorer than
CSHMM and CSHSMM, as they ignores students’ knowledge evolution dynamics.
The reason that CSRCF and CSRHY show better performance in some cases
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Table 3. Comparative performance of different models using tick error (↑ is better)

#Ticks Method CS ECE BIOL PSYC CEIE

Zero tick CSRPC 19.57 20.77 28.84 34.08 27.17

CSRCF 13.44 16.39 28.03 27.39 29.13

CSHMM 37.78 45.36 43.13 54.24 50.39

CSHSMM 37.18 46.99 46.49 52.2 49.78

One tick CSRPC 48.22 55.19 62.80 61.15 52.76

CSRHY 49.80 55.19 67.38 61.78 53.15

CSHMM 54.08 68.85 66.58 79.32 72.44

CSHSMM 57.85 78.14 68.65 79.66 72.29

Two ticks CSRPC 74.31 73.22 81.40 79.62 69.69

CSRHY 75.10 74.32 82.75 78.66 69.29

CSHMM 70.97 82.51 83.29 85.76 86.22

CSHSMM 72.37 87.98 84.32 88.81 87.01

is that they incorporate content features which are informative for student’s
performance prediction and are not included within the Markovian approaches
proposed here.

6.2 Case Study: At-Risk Students

An important application of grade prediction is to develop an early-warning
system that is able to identify students at-risk of failing the courses that they
plan to enroll in. We define at-risk students as those whose grade for a course is
below 2.0. To assess the capability of the methods on catching at-risk students
we treat the prediction as a classification problem. The experimental procedures
are similar to grade prediction as discussed in Sect. 5.1 except that the predicted
grade over 2.0 are treated as pass and below 2.0 as fail. We compare the best
performed traditional course-specific methods CSRPC and CSRHY with models
proposed here. The evaluation metrics are chosen as accuracy and F-1 score.
Given the imbalanced nature of the dataset, F-1 score is a suitable classification
metric. From Table 4, we see that the proposed CSHMM and CSHSMM outperform
all the baseline methods. In most cases, the CSHSMM outperforms the CSHMM

models. For the Psychology major (has the lowest proportion of at-risk students
as shown by numbers in the table notes), some of the existing methods are not
able to identify any of the at-risk students and their F-1 score is zero.
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Table 4. Predictive power at identifying at-risk students (↑ is better)

Method CS ECE BIOL PSYC CEIE

Acc F-1 Acc F-1 Acc F-1 Acc F-1 Acc F-1

CSRPC 0.8202 0.5561 0.7869 0.4507 0.8437 0.5397 0.9172 0 0.7143 0.5217

CSRHY 0.8063 0.5333 0.7923 0.4412 0.8491 0.5625 0.9204 0 0.7532 0.6122

CSHMM 0.8231 0.6276 0.8634 0.7126 0.9027 0.7831 0.9492 0.4828 0.9004 0.6462

CSHSMM 0.8549 0.7092 0.8962 0.7711 0.8784 0.7594 0.9458 0.5294 0.9004 0.6462

The percentage of at-risk students for each major is CS (24.40%), ECE (19.14%), BIOL
(18.79%), PSYC (9.80%), CEIE (12.97%).

7 Conclusions

In this paper, we propose Course-Specific Hidden Markov Model and Hidden
Semi-Markov Model for student’s next-term grade prediction. The proposed
Markovian models are able to capture the temporal dynamic characteristics of
students’ knowledge state evolution. The limitation of HMM is that its hidden
state duration is inherently geometrically distributed. To better model student’s
knowledge state evolution, we use Hidden Semi-Markov Model for grade predic-
tion to model the distribution of state duration explicitly.

We conducted extensive experiments and compared the proposed Markovian
models with other state-of-the-art grade prediction algorithms. The experimen-
tal results showed that the proposed models achieved better grade prediction
performance than the baselines. One important application of grade prediction
is early-warning systems. We evaluated the performance of the proposed meth-
ods for identifying at-risk students. For this task, our proposed methods achieved
the best performance in comparison to other state-of-the-art methods.
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dation grant #1447489. The experiments were run on ARGO, a research computing
cluster provided by the Office of Research Computing at George Mason University, VA.
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Abstract. Social media and online news content are increasing rapidly.
The goal of this work is to identify the topics associated with this content
and understand the changing dynamics of these topics over time. We pro-
pose Topic Flow Model (TFM), a graph theoretic temporal topic model
that identifies topics as they emerge, and tracks them through time as
they persist, diminish, and re-emerge. TFM identifies topic words by cap-
turing the changing relationship strength of words over time, and offers
solutions for dealing with flood words, i.e., domain specific words that
pollute topics. An extensive empirical analysis of TFM on Twitter data,
newspaper articles, and synthetic data shows that the topic accuracy and
SNR of meaningful topic words are better than the existing state.

1 Introduction

Enormous amounts of content are being generated on social media, e.g., over
500 million tweets [9] and over 420 million status updates on Facebook [12] are
posted daily. One can use topic models to generate meaningful topics from these
text streams. Unfortunately, current topic model algorithms have a number of
weaknesses. First, the topics generated are often bogged down by noise words or
impacted by noise-generating bots, e.g., approximately 15% of Twitter accounts
are bots [16]. Second, domain specific corpora often have domain specific words
that are not discriminative of topics, but appear across all different topics. For
example, current topic models that generate topics about the extremist group
ISIS will generate topics that all rank the term ISIS (or a variant) amongst
the top terms for the topic. While obviously an important term, including it
in specific topics about ISIS does not improve the quality of the topics and
may make those topics look too similar. Finally, in some domains, the topics
themselves change so quickly that current methods have difficulty keeping an
up-to-date sketch of the active topics through time.

To begin addressing some of these limitations, we propose the Topic Flow
Model (TFM) for monitoring the ebb and flow of topics in noisy text streams,
e.g., Twitter, blogs, and online news. TFM identifies groups of content-rich topic
words from a semantic graph by finding meaningful subgraphs of words that rep-
resent topics, and using relationship strength and frequency of words to deter-
mine their importance to different topics through time. This approach also effec-
tively identifies and “drains” flood words, making the top ranked words for the
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 42–53, 2018.
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topic more discriminative. The contributions of this paper are as follows:
(1) we introduce TFM, a temporal topic modeling algorithm that identifies topics
as they emerge; (2) we introduce the concept of flood words and offer solutions to
gracefully deal with them, and (3) we conduct an empirical analysis of TFM on
Twitter data, newspaper data, and synthetic data, showing its effectiveness for
identifying and monitoring changing topic dynamics under different conditions.

2 Related Work

Many topic modeling algorithms have been proposed in the last two decades. The
most popular algorithms use probabilistic generative models. Latent Dirichelet
Allocation (LDA) [5] and its many variants [2,3,11,14,15,17] belong to this
group of models, which rely on the assumption that documents are gener-
ated following a known distribution of terms. LDA finds the parameters of the
topic/term distribution that maximizes the likelihood of the documents in the
data set. These models have been successful for longer text documents written
by a smaller number of authors that have a fixed vocabulary, i.e., new words
(hashtags) are not being created continually. Another direction for research con-
siders methods that have been used in the dimensionality reduction and clus-
tering literature [10,13,18]. For example, Yan et al. perform topic modeling by
applying non-negative matrix factorization to a term correlation matrix [18], an
approach that works better on short documents than generative models [18]. A
third direction of research uses a semantic graph to identify topics [1,7]. Topic
Segmentation [1], for instance, uses an undirected term co-occurence graph and
the Louvain modularity algorithm [6] to find topics in a data set. Cataldi et al.’s
Emerging Topic Detection (ETD) [7] employs a directed term correlation graph,
and uses a double depth-first search to find emerging topics in a temporal topic
modeling setting. Finally, some research focuses on post-processing the output
of topic models to make them more meaningful [4,8].

Our work is closest in spirit to Cataldi et al. [7] since we also employ a
directed semantic graph and use that graph to identify topics. Our work differs
from their work in the following ways; (1) we track all topics through time, as
they emerge, persist, and diminish (Cataldi et al. focus on emerging topics), (2)
because we are interested in topics through time, we do not regenerate topics at
every time step, but instead use the topic knowledge from the previous time step
to help determine the changes to existing topics and identify new ones, (3) we
employ a new metric, the Energy-Nutrition ratio, to identify the most important
terms in the semantic graph and avoid using flood words to build our topics, and
(4) we employ a more efficient graph traversal procedure (a constant depth BFS)
that identifies more accurate topic terms.

3 Background and Definitions

A document is an ordered list of terms (w1, ...wk), where k is the length of the
document. A topic T is a set of words believed to describe a theme or subject.
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In our models, we will output M topics from a data set of D documents. The
set of documents are partitioned into τ time periods. We therefore take as input
Dt documents for each t ∈ τ , and output Mt topics at time t.

Not all words in a document are useful for topic generation. Stop words
are obvious words that are frequent, but content-poor. Noise words and spam
both detract from topic quality, polluting the topics. Another type of word that
pollutes topics is a flood word. A flood word is an important domain-specific
word occurring so frequently that it is relevant to nearly every topic. For example,
suppose we are interested in a data set about the recent presidential election.
It would not be surprising if every topic contained Trump and/or Clinton in
the top words related to the topic. While clearly relevant, we define these words
to be flood words since they are domain-relevant and frequent, but do not add
value to potential topics. Therefore, it is imperative to deal with flood words so
that they are not the dominant words in every topic generated by our model. To
help us keep track of the changing dynamics of words in topics, we now define
nutrition, energy, and Energy-Nutrition Ratio.

The nutrition of a term is an indicator of how popular a term is in the docu-
ment collection. More formally, nutrition(w) = (1− c)+ c ∗ tf(w)/tf(w∗

i ) where
w∗

i is the most frequent term in document di, tf(w) is the term-frequency of the
input word w in di, and c is some constant between zero and one. nutrition(w)t is
the sum of these nutritions over Dt in time period t. We then normalize nutrition
by |Dt| to account for change in data set size over time.

The energy of a term considers the change in nutrition of that term over
time. More formally, energy(w) = Σs

i=1(nutrition(w)2t − nutrition(w)2t−i) × 1
i

where s is the number of previous time periods before t.
Because energy is a sum of squared differences, it is biased toward higher

nutrition terms. A high nutrition term that sees a small change over time inter-
vals might still have a high energy compared to a low nutrition term that has
a bigger change relative to its original nutrition. We account for this relative
change with the Energy-Nutrition Ratio: ENR(w) = energy(w)

nutrition(w) A term with
high nutrition that sees a small change will see a relatively low change in its
ENR, whereas a term with low nutrition that sees a large change will see a
big change in ENR. We can compare a term’s current ENR and previous ENR
to decide whether the rate of growth is accelerating, constant, or decelerating.
Because energy is a polynomial function of nutrition, it grows and shrinks faster
than nutrition. This growth, or lack thereof, is captured in ENR.

Problem Statement: Formally, given τ time intervals, and Dt documents for each
t ∈ τ , find the set of topics Mt and flood words floodt for each t.

4 Topic Flow Model

4.1 TFM Overview

We now provide an overview of our proposed approach, Topic Flow Model
(TFM). The high level algorithm can be found in Algorithm1. The input to
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Algorithm 1. Topic Flow Model (TFM)
1: Input: Dt for each t ∈ (1, ...τ)
2: α, β, γ, δ, θ
3: Output: Mt, floodt, and Lt for each t ∈ (1, ...τ)
4: repeat
5: nutritiont = compute nutrition(Dt)
6: energyt = compute energy(α, nutritiont, nutritiont−1, Dt)
7: ENRt = compute ENR(nutritiont, energyt)
8: emerging = select emerging terms(α, β, γ, nutritiont, energyt, ENRt, Dt)
9: floodt = identify flood words(α, nutritiont)

10: C = compute term correlations(Dt)
11: G = create term correlation graph(δ, energyt, C)
12: Mt = {}
13: for term ∈ emerging do
14: new topic = discover topic(G, term, θ)
15: Mt = Mt + new topic
16: end for
17: for Ti ∈ Mt−1 do
18: persistent topics = identify persistent topic(G, leaders(Ti), θ)
19: Mt = Mt + persistent topics
20: end for
21: Mt = merge topics(Mt)
22: Lt = identify leaders(Mt)
23: until t = τ
24: return M , flood, L

the algorithm is the set of documents for each time period and a set of tuning
parameters that will be described later in this section. For each time interval,
our algorithm begins by using nutrition, energy, and the ratio between the two
(ENR) to identify emerging terms, terms that have become important in the
current time period (line 8). It then creates a directed term-correlation graph
(line 11) and identifies the topics from the previous time window that persist
in the current time window (line 18). It does this using a double Breadth-First
Search (BFS) on the graph. Once all topics have been identified, topics are com-
pared and merged if sufficiently similar (line 21). Leader nodes are chosen for
each topic based on their centrality scores within their topic (line 22). TFM
outputs a set of topics, topic leaders, and flood words for each time window.
The remainder of this section describes the main parts of the algorithm in more
detail - identifying emerging terms, building and using the semantic graph, and
determining and merging topics. Throughout this section, we will make use of
the example presented in Fig. 1. In the example, there are three time periods,
each containing three documents. The semantic graph, document frequency of
each word, and each word’s energy are shown for each time period.

4.2 Identifying Important Terms

One of the keys to generating good topics is identifying important terms. We use
nutrition, energy, and ENR to aid in this process. After computing these values
for each term, we can select the terms that fit within the thresholds of each
criterion. We define three separate tuning parameters, one for each value. Flood
words, by definition, have the highest nutrition. To avoid adding them to our
topics, we set an upper bound for nutrition (α). For energy, we do not want to
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Fig. 1. Example of TFM graphs over time. Orange diamond nodes represent flood
words. Topics are color-coded. Red, blue, and green topics emerge in t1, and persist
until t2 or t3. The Purple topic emerges in t3. (Color figure online)

consider any words with exceedingly low energy values, so we set a lower bound
on energy (β). In Fig. 2, we show how these initial two thresholds cut swathes
of terms from the list of potential emerging terms. Within the set of remaining
terms with high energy and high nutrition, we set an ENR threshold (γ) to weed
out terms whose growth is low compared to the previous time window.

Fig. 2. The effect of α and β thresholds on
term selection

For our running example, assume
s = 2, α = 1, β = 0, and γ = 1.
In Fig. 1, we see that terms a, and d
have the highest frequency in t1 and
t2, and terms a and h have the highest
frequency in t3. Looking at nutrition,
energy, and ENR, we see that a, d,
and h have too high nutrition values
and are identified as flood words in
different time periods instead of qual-
ifying as emerging terms. At time t2,
the nodes returning from time t1 have
lower energy levels than i, leading to
i being the only emerging term identified in t2. As we will show, emerging terms
are important because we start traversing the graph for topics from nodes rep-
resenting emerging terms.

4.3 Semantic Graph Construction

In order to determine topics, we construct a directed term-correlation graph.
Any word that is not a stop word can be a node in the graph. For edges, we
compute asymmetric term correlations [7], and then selectively add edges to our
semantic graph based on these correlations. The term correlation ct

k,z of two
terms k, z at time t is:

ct
k,z = log(

nk,z/(nk − nk,z)
(nz − nk,z)/(|Dt| − nz − nk + nk,z)

) · |nk,z

nk
− nz − nk,z

|Dt| − nk
| (1)
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where: nk,z is the number of documents in Dt that contain both k and z; nz is
the number of documents in Dt that contain z; nk is the number of documents
in Dt that contain k. The term-correlation of two terms is the correlation of
the first term to the second term at time t, considering both co-occurrence and
individual occurrence of each term. An edge (u, v) in the graph will have a weight
equal to the correlation of u to v. In order for an edge to be added to the graph,
its weight must be greater than the median term correlation plus δ times the
standard deviation of correlations, where δ is a tuning parameter used to control
the number of edges in the graph. A higher value of δ will result in a smaller,
less connected graph, whereas a zero value will result in a maximally connected
graph. Many flood words have high-correlation incoming edges, but because they
are connected to so many other terms, their outgoing correlations are well below
the median value, preventing these edges from being added to the graph.

In our example, we see the connections between nodes that occur together
in a document. As we can see in time period t1, node a has incoming edges with
nodes b and c, because they co-occur in document d1, and it also has incoming
edges from nodes g, and h, which co-occur with node a in document d3. Note
that there are no outgoing edges from a or d because their correlations to other
terms are below the threshold for adding an edge in our example.

4.4 Finding Topics

Using the graph G, we build a set of topics for our current time interval. We define
two types of terms to focus on topic discovery: leader terms, and origin terms. A
leader term is a term that represents a specific topic, chosen by centrality score.
An origin term corresponds to a node from which we can start a topic search
in G. As we will describe below, an origin term can be an emerging term or an
existing topic leader. There are three main steps for finding topics: identifying
persistent topics, discovering emerging topics, and merging similar topics.

Emerging Topics. Starting at an origin, we perform a breadth-first search
(BFS) up to the depth limit θ to find other potential terms in the topic. We run a
second breadth-first search from any node found during the forward pass, looking
specifically for the origin. Since the graph is directed, we are not guaranteed to
find a path back to the origin term from every node. If we do find a path during
the backward pass, we assume the term is strongly connected to the origin, and
include it in the associated topic. Flood words have exceptionally low correlations
to other terms, and so even when included in the graph, it is unlikely that they
will be included in a cycle from an origin node.

Persistent Topics. To identify topics that have persisted from the previous
time period to the current window, we run our double BFS algorithm using the
topic’s existing leader as the origin, and compare the returned topic terms to the
existing set. We compute a topic distance: tdt1,t2 = min(|t1\t2|,|t2\t1|)

|t1∩t2| . A smaller
distance implies that the topics are more similar. A distance of zero means that
one topic is a subset of the other. If the ‘new’ topic is sufficiently similar to its
old self, we keep only the new version. Returning to our example, suppose θ = 1.
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From each emerging term, we do a search to a maximum depth of one, where
the depth at the root is 0. The resulting topics are {b, c}, {b, c}, {e, f}, {e, f},
{g, h}, and {g, h}, with leader sets {b}, {f}, and {g}, respectively. These are the
topics we want to see since they do not include flood words. Duplicates occur
because the emerging terms had directed edges in both directions.

Merging Similar Topics. Once we have found a set of topics for our time
period, we must decide whether any are similar enough to merge into one. We
compare the shared terms of each pair of topics in the set using the distance
defined above. If the two topics share enough terms, we merge them by taking
the union of their terms, and choosing new leaders. Returning to our example, we
find duplicates of each topic because there are multiple emerging terms identified
for each emerging topic. Using our method of merging similar topics, we will
compare the topic membership of different topics and merge the duplicate topics.
Our final result in t1 is: {b, c}, {e, f}, {g, h}. In t2 and t3, topics {b, c} and {g, h}
persist. In t3, topic {j, k,m} emerges.

5 Empirical Evaluation

This section presents an empirical analysis of TFM and other state of the art
methods on a Twitter data set, a newspaper data set, and synthetic data sets.

5.1 Data Sets

For our synthetic data sets, we generate topics from a set of words, assigning each
a normally distributed random probability of appearing in a document with that
topic. By assigning different probabilities to different words, we are simulating
the nature of tweets containing few content-rich, important words mixed in with
many less useful words.1 The synthetic data sets we generated each contain 200
vocabulary items, 500 documents, and seven topics over seven time periods. Our
synthetic data sets contain varying levels of flood words, 0%, 1%, 5%, 10%, and
15% of the total number of words in the vocabulary.

The Twitter data set is a daily random sample of 5,000 tweets about Donald
Trump from August and September 2016. We have a total of 280,000 tweets
split into weekly time periods. The newspaper data set consists of news articles
about Trump and Clinton from the Washington Post. The newspaper data set
contains 14,269 articles and spans the same time frame as the Twitter data set.

For our data sets, we evaluate the accuracy and quality of topics using recall
and Signal to Noise Ratio (SNR). The SNR is the ratio of terms in the approxi-
mated topic that belong to the true topic to the terms in the approximated topic
that do not belong in the true topic. Let Tnoise be the set of noise words in topic
T , and Tsignal be the set of signal words in topic T , then SNR = Tsignal

Tnoise
.

1 Another way to simulate this is to sample from a Zipfian distribution. Our data
generator allows for distribution changes. For these experiments, we create a mixture
that is noisier and harder to generate topics from than a Zipfian sample.
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5.2 Synthetic Data Evaluation

Table 1. Evaluation of synthetic data sets
varying the % of flood words

Flood word % Metric LDA Cataldi TFM TS

0% Precision 0.11 0.00 0.67 0.04

Recall 0.37 0.00 0.52 0.20

SNR 0.95 0.05 4.10 0.39

1% Precision 0.09 0.33 0.80 0.00

Recall 0.30 0.33 0.37 0.00

SNR 1.19 0.51 5.47 0.21

5% Precision 0.23 0.78 1.00 0.48

Recall 0.25 0.63 0.83 0.62

SNR 1.66 0.05 5.52 1.38

10% Precision 0.11 0.00 0.60 0.00

Recall 0.27 0.00 0.40 0.00

SNR 0.50 0.05 2.48 0.20

15% Precision 0.03 0.10 0.54 0.00

Recall 0.10 0.05 0.42 0.00

SNR 0.48 0.22 2.26 0.12

Using our synthetic data sets, we eval-
uate four methods: TFM, Cataldi et al.
[7], LDA [5], and Topic Segmentation
(TS) [1]. For the static topic model
algorithms, we rerun them in each time
period to generate topics. Our settings
for TFM are: α = 4, β = 6, γ = 1, δ =
1.5, θ = 2. For both LDA and TS, we
need to specify the number of topics.
We show the results from the best per-
forming number of topics – LDA= 7
and TS = 10. The results are shown
in Table 1. The first column shows the
fraction of flood words in the data set.
In general, TFM performs significantly better across all three metrics at all the
different fractions of flood words. It is also interesting to point out that its pre-
cision remains high even when the fraction of flood words in the data set is high.
This is because it has been designed to avoid generating topics around flood
words. In contrast, LDA performs best in terms of recall when the fraction of
flood words is low or nonexistent, and best in terms of precision at 5%. The
other three methods perform best when the fraction of flood words is set to 5%.

5.3 Twitter and Newspaper Evaluation

Researchers at Gallup worked with our research team to semi-manually create
a set of popular topics for the presidential election campaign in 2016. For each
week we have topics that persist, diminish and emerge. Because that initial topic
set was generated without considering tweets from Twitter, we augmented the
Gallup topics with appropriate hashtags and other topic words used on Twitter.
The average number of topics being discussed each week is 5.5.

Accuracy & SNR. For this empirical evaluation, we compare TFM, Cataldi
et al. (Cataldi) [7], LDA [5], HDP [15], Topic Segmentation (TS) [1], Topics
over Time (ToT) [17], and Näıve Graph Properties on the Trump Twitter data
set. The Näıve Graph Properties method attempted to discover topics using
graph invariants, including degree, betweenness centrality, and eigencentrality.
We show only the best graph invariant results in this analysis. We set the number
of topics for LDA to 12 and 24 and for TS to 10 and 20. Using these parameter
settings for LDA and TS led to fewer noise words than other settings.

We present our findings in two forms: the number of ground truth topics iden-
tified in each time interval in Fig. 3(a) (x-axis = time period, y-axis = number of
ground truth topics identified), and the average signal to noise ratio of identified
topics in Fig. 3(b) (x-axis = time period, y-axis = SNR). In order for a ground
truth topic to be considered accurately identified by a model, the model must
output a topic with an SNR of at least 0.5 in reference to that ground truth topic.
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We see that the best performing algorithms are TFM and Cataldi, followed by
different variants of LDA. LDA does identify a significant number of topics. TS
identified one ground truth topic at time zero, but failed to identify any others,
while HDP and Näıve Graph Properties identified no ground truth topics. TS’s
failure to identify more topics stemmed from the large number of noise words
that it picked up in comparison to the number of ground truth words when gen-
erating topics. HDP’s failure to identify ground truth topics seems to be a result
of overfitting of the topics. In each of its topic sets, every topic contained almost
the exact same terms. Notice that for both TFM and Cataldi, a warm-up period
is needed - neither perform well in the first time period. In terms of SNR, TFM
has the highest SNR of all the methods. Cataldi and LDA are comparable to
TFM in time periods in which they find the same number of topics.

We tested the best performers, TFM, Cataldi, and LDA on the Washington
Post data set, using the same ground truth topics used for the Trump Twitter
data set since we were interested in topics related to Trump. For TFM, we
used the following parameter values: α = 10, β = 2, γ = 2, δ = 1.5, θ = 2.
We present our accuracy results in Fig. 3(c). TFM outperformed Cataldi and
LDA, identifying nearly every topic in every time interval except for the first. In
Fig. 3(d), we see that it has a high SNR across time windows. Cataldi identified
one or more topics in every time window except for the first, while both LDA
options find one topic in the third time window. The SNR of TFM was consistent
across all time windows. In the last time window, Cataldi had a higher average
SNR.

Finally, due to space limitations, we cannot present a sensitively analysis for
all the different parameters. However, we pause to mention that small variations
of α, β, and γ do not impact the identified important terms significantly. Large
differences, on the other hand, do (as we will show in the next subsection).
In terms of the semantic graph, keeping θ low (around 2) reduces noise in the
discovered topics and improves efficiency. δ impacts the number of edges in G.
We have found that while the number of edges decreases significantly when δ
increases, the accuracy of selected topics does not decrease for our data sets.

5.4 TFM Flood Words Evaluation

We now present two cases that demonstrate the graceful handling of flood words.

Flood Word Retainment. The α parameter controls the removal of flood
words prior to generating G. In this experiment, we consider the case of set-
ting α = ∞, removing no flood words. When doing this on the Trump tweets
data set, we find that TFM only identifies two topics as emerging, hillary and
#debatenight. In both cases, no other words are identified as significant terms in
those topics. This suggests that the two terms were so much more frequent than
any other term that no other term could be reasonably assumed to be emerging
relative to these terms. When α is smaller, these two terms are correctly labeled
as flood words and over two dozen unique topics are identified. The debate topic
is still identified even though the associated hashtag is a flood word. We pause
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Fig. 3. (a) Trump Twitter: ground truth topics identified by each method (b) Trump
Twitter: SNR of each method (c) Newspaper: ground truth topics identified by each
method (d) Newspaper: SNR of each method

to point out that it is typical for some flood words to be in the graph, but the
most extreme to not be. For the Trump tweet data set, the degree of the average
flood word in G is 935 and its average correlation is 0.29, while the degree for
the average topic word is 24 and the average correlation is 1.18. This highlights
the importance of not focusing topic discovery on flood words.

TFM vs. Cataldi Emerging Terms. For this case study, we compare the
emerging terms of TFM and Cataldi on the Trump tweet data set for two differ-
ent weeks, September 4th and September 11th. Figure 4 shows the TFM emerg-
ing terms, the TFM flood words, and the Cataldi emerging terms as a Venn
diagram. This figure highlights a few interesting findings. First, the emerging
terms of Cataldi are all flood words returned by TFM, except for one word, tax.
Second, most of the flood words identified by TFM are very general domain
words, e.g. president, campaign, policy, people. These words are content-
poor within the domain because they cross a large number of more meaningful,
content-rich topics. There are a few terms that are more content-rich, Putin
being the most notable. In these cases, either the flood word was an emerging
term in the previous time window, so the topic has already been discovered, or
the term rose so rapidly that its presence in G would cause it to be the center
of a topic that is really a cluster of smaller topics merged into one.
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Fig. 4. Distribution of terms in Trump data set, 09/04/2016 and 09/11/2016

5.5 Execution Time Comparison: TFM and Cataldi et al.

Table 2. Execution time
comparison

# Edges TFM Cataldi
350,000 43 s 5 days
190,000 39 s 2 h
110,000 37 s 28 s

In this experiment, we compare execution times of
TFM & Cataldi on graphs of similar size. These
experiments were run on an Ubuntu 16.04 machine
with a 4.00 GHz processor and 16 GB of memory.
Table 2 shows the results. We set the edge inclu-
sion parameters to levels such that the number of
edges in the respective graphs are similar. We tested
algorithms on a graph size of 350,000 edges, 190,000
edges, and 110,000 edges. The specific numbers were chosen because the former
was the approximate number of edges seen using TFM’s optimal parameter
settings, the latter was the optimal for Cataldi, and the middle gave reason-
able, albeit worse, results for both models, with respect to topic quality. Table 2
shows that TFM’s execution time is significantly smaller as the number of edges
increases. This occurs because the DFS used in Cataldi requires traversal of a
larger number of paths than the constant depth search used by TFM.

6 Conclusion

In this paper, we introduce the Topic Flow Model, and demonstrate its abilities
to not only identify emerging topics, but to track those topics through time.
We introduce the notion of flood words, and demonstrate how their graceful
handling is integral to identifying concise topics in noisy data such as tweets,
and even in less noisy data. We compare Topic Flow Model to state of the art
topic modeling algorithms and show that it identifies topics more accurately
with less noise than other methods. In future work, we plan to design extensions
of this model for other types of text, understand the impact of pre-processing
on topic model algorithms, and develop methods for reducing noise in topics.
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Abstract. Named Entity Recognition (NER) is a challenging task in
Natural Language Processing. Recently, machine learning based methods
are widely used for the NER task and outperform traditional handcrafted
rule based methods. As an alternative way to handle the NER task,
stacking, which combines a set of classifiers into one classifier, has not
been well explored for the NER task. In this paper, we propose a stacking
model for the NER task. We extend the original stacking model from
both model and feature aspects. We use Conditional Random Fields as
the level-1 classifier, and we also apply meta-features from global aspect
and local aspect of the level-0 classifiers and tokens in our model. In the
experiments, our model achieves the state-of-the-art performance on the
CoNLL 2003 Shared task.

Keywords: Named Entity Recognition · Stacking
Feature engineering

1 Introduction

Named Entity Recognition (NER) is a fundamental stage in Natural Language
Processing (NLP). In the sentence “Trump dined at the Trump National Hotel.”,
NER aims to identify “Trump” as a person and “Trump National Hotel” as an
organization. The identified entities can be then used in downstream applications
(e.g., information extraction systems) and other NLP tasks (e.g., named entity
disambiguation and relation extraction).

Early NER systems are based on handcrafted rules. The rules are defined
by human experts, which makes them labour consuming to develop and, more
importantly, impossible to cover all the cases. Recently, machine learning tech-
niques become more popular and effective in solving the NER problem. Super-
vised learning is one of the most widely used learning approaches for the NER
task, which takes a set of human labelled documents as the training data,
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and predicts the named entities in the given documents (i.e., test data). Lin-
ear classifiers, such as Hidden Markov Model [8] and Conditional Random
Fields (CRF) [7,10], are proved to be effective. However, the performance of
these models is highly associated with carefully designed features, whose effec-
tiveness is usually restricted within a specific domain. In recent years, an enor-
mous amount of research effort has been put into neural network based meth-
ods [4,11,12,16], and these methods have achieved the state-of-the-art perfor-
mance. Most neural network based methods simply use word embedding vectors
as input [14,15]. However, to train the word embedding vectors, it requires a
huge amount of unlabelled data in order to achieve high performance. These
neural network based models are hard to adjust due to the non-trivial hyperpa-
rameter tuning process. The training stage is also much more time-consuming
than linear classifiers, even with high performance GPUs.

Stacking [2,25] is an alternative way to improve the accuracy of a machine
learning task. As a two-phrase method, the first step of stacking is to train a set
of the level-0 classifiers (i.e., the base classifiers) using different models on the
training dataset. In the second step, the level-1 classifier (e.g., a linear regression
classifier) is trained on the training dataset with the predicted results from the
level-0 classifiers as features. As such, the level-1 classifier is expected to achieve
better performance than the level-0 classifiers.

Although traditional stacking method has shown its effectiveness on many
machine learning tasks, there are still some potential improvements that can
be explored, especially for the NER task. In this paper, we propose a CRF
based stacking model with carefully designed meta-features to solve the NER
problem. Comparing with the traditional stacking model, our model has two
major differences. Firstly, we use CRF instead of linear regression as the level-1
classifier. The idea is inspired by the fact that CRF has shown its advantage
as a sequential model in the NER task, while linear regression only works on
independent instances. Secondly, we use a mix of meta-features and local features
to improve the accuracy of the stacking model. Previous works either simply
use the predicted results from the level-0 classifiers, or only extract features
from the surface of tokens [7,10,18] (i.e., local features). We observe that the
stacking model can also benefit from the non-local information. For example,
the distribution of a token on different named entity types acts like the prior
knowledge when we make the prediction. Moreover, our proposed model shows
its robustness even when the performance of the level-0 classifiers is not good.
This would be very helpful when users want to involve commercial NER systems
(which usually cannot be tuned or re-trained).

The contributions of this paper are as follows:

– We proposed the CRF based stacking model named as SMEF, which took
meta-features into consideration.

– We proposed a set of meta-features and local features and integrated these
features in the stacking model to achieve better performance. We presented
the details of the model and features in Sect. 3.
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– We conducted extensive performance evaluation against the state-of-the-art
NER systems. The proposed model outperforms all of them and achieves
the overall F1 score of 92.38% in the CoNLL 2003 Shared task. Moreover,
the experiment results also show the effectiveness of each type of features
and the robustness of the proposed model. Section 4 reports the experiment
results and analyses.

2 Related Work

Named Entity Recognition is a research topic with a long history. Most recent
approaches to NER have focused on CRF model and neural network models.
CRF is a sequence model which could be used to predict sequences of labels based
on the handcrafted features [7,9,10,18]. Neural network takes word embedding
vectors as input features and learns a dense score vector for each possible named
entity types [4,11,12,16]. Moreover, CRF model can be used as the output layer
in neural network based models. Some of the most recent works [11,12,16] have
shown the effectiveness of this combination.

Stacking has been proposed for many years [2,25] as a way to combine mul-
tiple classifiers (the level-0 classifiers) into one model (the level-1 classifier) in
order to achieve better accuracy. While the level-0 classifier can be any machine
learning model, the level-1 classifier is usually linear regression [25], stacking
trees and ridge regression [2]. FWLS [21] uses a linear combination of meta-
features to formulate the weight of the level-0 classifiers in the level-1 classifier,
and achieves good performance in the Netflix Prize competition. [17,27] add
meta-features extracted from the level-0 classifiers to the level-1 classifier to
improve the stacking performance.

Stacking has been applied to NLP tasks such as Part-of-Speech Tagging
[3,22] and NER [6,23,24,26]. Tsukamoto et al. [23] and Wu et al. [26] apply an
extension of AdaBoost to learn the level-1 classifier. They take the sequence label
information into consideration, and use handcrafted features from tokens. [6,24]
use CRF model as the level-1 classifier to solve biomedical NER tasks. They also
make use of the handcrafted local features.

3 Model

Named Entity Recognition takes a token sequence xi = (xi1, . . . , xis) as input,
and predicts a corresponding label sequence yi = (yi1, . . . , yis), where xi is taken
from the i-th sentence in the dataset X and s is the length of the token sequence.
As a named entity could span several tokens, we do not directly use the named
entity types as labels. Instead, we apply chunking encoding for these labels.
There are two popular encoding methods: BIO (i.e., Begin, Inside, and Outside
token of a named entity) and BIOES (i.e., Begin, Inside, Outside, End, and
Single token of a named entity). Table 1 shows an example.

As there are various named entity types, we form the NER task as a multi-
class classification problem. As such, for each xij , a classifier (either a level-0
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Table 1. Example of chunking encoding

xi1 xi2 xi3 xi4 xi5 xi6 xi7 xi8

Token Trump dined at the Trump National Hotel .

yi1 yi2 yi3 yi4 yi5 yi6 yi7 yi8

BIO B-PER O O O B-ORG I-ORG I-ORG O

BIOES S-PER O O O B-ORG I-ORG E-ORG O

classifier or the level-1 classifier) returns a vector c(xij) with m dimensions,
where m is the number of classes. More specifically, in the NER task, m is the
number of predefined named entity types. Generally, each dimension in c(xij) is a
binary value, i.e., 1 for the predicted class and 0 for the rest classes. Real numbers
can be used in some classifiers to represent the probability or the confidence score
of each class.

In this section, we will firstly give more detail about the stacking method
[2,25]. Then we will introduce our model along with different meta-feature.

3.1 Stacking

Stacking is a two-phrase method. All the level-0 classifiers are trained on
dataset X . We denote the prediction of token sequence xi by the k-th level-
0 classifier as ck(xi) = (ck(xi1), . . . , ck(xij), . . . , ck(xis)), where ck(xij) is a m
dimensional one-hot encoding vector. In this paper, all vectors are assumed to be
column vectors unless noted. With predicted results from the level-0 classifiers,
we generate a new dataset Z, which consists of {(zi,yi), i = 1, . . . , N}, where N
is the size of dataset X , yi is the ground truth label sequence corresponding to
the token sequence xi, and zi is a vector sequence corresponding to xi. Each zij
in zi consists of (xij , c1(xij), . . . , cL(xij)), where L is the number of the level-0
classifiers.

In [2], the loss function of stacking method is L =
∑

i,j(yij −∑
k wkck(xij))2,

where wk is the weight of ck(xij), and both yij and ck(xij) belong to R.
However, this loss function is designed for regression problem thus can not

be directly applied for a multi-class classification problem. Moreover, it does not
consider the label dependency between sequential tokens.

In order to resolve the above issues, in this paper, we propose to use the Con-
ditional Random Fields (CRF) model as the level-1 classifier instead of a linear
regression model. The loss function of CRF is L = −∑

i log(p(yi | zi)). Given
each vector sequence zi, the probability of the corresponding label sequence yi

can be formulated as

p(yi | zi) =
exp(

s∑

j=0

U(zij, yij) +
s−1∑

j=0

Tyij ,yi(j+1))

∑

y′∈Yzi

exp(
s∑

j=0

U(zij, y′ij) +
s−1∑

j=0

Ty′ij ,y′i(j+1))
, (1)
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where Tyij ,yi(j+1) is the transition score between yij and yi(j+1), Yzi
is the set

of all the possible label sequences, and U(zij , yij) is the unary potential score of
zij with the corresponding label yij . More specifically, U(zij , yij) is defined as

U(zij , yij) =
∑

win

∑

k

w�
k,win,yij

ck(xi(j+win)) + biasyij
, (2)

where wk,win,yij
is the weight vector of the predicted result from the level-0

classifier ck for token xi(j+win), and biasyij
is the learned bias corresponding to

label yij . win denotes the token offset in the context window. In this paper, we
set two as the size of the context window, i.e., win ∈ [0,±1,±2].

3.2 Stacking with Meta-features

We have observed that the characteristic of the level-0 classifiers is useful for the
level-1 classifier. For example, if a classifier consistently recognizes “Jordan” as
a location, we should not give such classifier too much trust when dealing with
“Jordan” as “Jordan” could also be a person’s name.

In this subsection, we propose several meta-features based on the statistic
information of dataset Z. More specifically, for each level-0 classifier, we will
extract meta-features from its prediction results on dataset X . Note that the
values of meta-features vary from different datasets such as training set, devel-
opment set, and testing set.

The unary potential part of the model is therefore modified as

U(zij, yij) =
∑

win

∑

k

u�w�
meta,k,win,yij

Fmeta(xi(j+win), ck)c�
k (xi(j+win))u

+ biasyij
,

(3)

where Fmeta(xij , ck) returns a vector of meta-features extracted from the level-0
classifier ck for token xij , wmeta,k,win,yij

∈ R|Fmeta|×m is the weight matrix,
and u is an all-ones vector with m dimension. Note that since there is only one
nonzero element in ck(xij), only one column of weights in wmeta,k,win,yij

are
activated.

In our proposed model, Fmeta(xij , ck) consists of four meta-features: con-
stant, token label prior, token majority label, and token label entropy.

Constant. A constant 1 is used to maintain the predicted label of token xij

from ck. This feature helps us improve the model without losing the original
information. Note that if we only apply this feature, then Eq. 3 falls back to
Eq. 2, which is the standard CRF model.

Token Label Prior. Each token has a prior probability of being a named
entity type typet. For example, if token xij appears 11 times in the dataset
and 9 of them are predicted as a person by classifier c1, then we can approx-
imate its token label prior of being a person as 9

11 . For each typet, we use
Fmeta,prior,typet(xij , ck, typet) to denote the token label prior.
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Token Majority Label. We define Fmeta,major(xij , ck) to denote whether
ck(xij) is consistent with the majority label of token xij for classifier ck. For
example, assume the surface of token xij is “Jordan” and the majority label of
“Jordan” under the prediction of c1 is person. Then we set Fmeta,major(xij , c1) =
1 for ck(xij = “Jordan”) indicates person and Fmeta,major(xij , c1) = 0 otherwise.
We use Fmeta,major(xij , ck) to enhance the impact of ck(xij).

Token Label Entropy. The token majority label feature may not be effective
when the majority prediction is not distinguishable. Therefore, we apply the
entropy of named entity types for token xij , denoted as Fmeta,entropy(xij , ck), to
further improve the performance of our model.

3.3 Stacking with Joint Meta-Features

We also observe that for a given token, the predicted labels over all the level-
0 classifiers are helpful for the final decision. For example, if four out of five
level-0 classifiers recognize token xij as a person, then most likely it is a person.
However, this can not be captured by meta-features as they consider information
from the level-0 classifiers independently.

We propose a set of meta-features which consider the joint information from
the predicted labels of the given token from each level-0 classifier, and name
them joint meta-features.

Similarly, we add the joint meta-features into the unary potential part and
change it to

U(zij, yij) =
∑

win

∑

k

u�w�
meta,k,win,yij

Fmeta(xi(j+win), ck)c�
k (xi(j+win))u

+
∑

win

w�
joint,win,yij

Fjoint(c1(xi(j+win)), . . . , cL(xi(j+win))) + biasyij
,

(4)

where Fjoint(c1(xij), . . . , cL(xij)) is a vector of the joint meta-features extracted
from the predicted labels of the level-0 classifiers, and wjoint,win,yij

is the weight
vector.

We propose the following two joint meta-features: context prior, and joint
label.

Context Prior. Under different local contexts, the probability of a token being
typet should be different. For example, in sentence “Jordan is in Asia.”, “Jor-
dan” is more likely to be a location. We use the portion of the number of labels
predicted as typet labels over the number of the level-0 classifiers to approxi-
mate the local context prior, denoted as Fjoint,prior,typet(c1(xij), . . . , cL(xij)).
For example, the context prior of “Jordan” being predicted as a location is 2

3
when two of three level-0 classifiers predict “Jordan” as a location.

Joint Label. Following the sequence of the level-0 classifiers i.e., c1, . . . , ck,
we connect their predicted labels as the joint label (i.e., PER-LOC-PER). We
denote this joint label feature as Fjoint,joint(c1(xij), . . . , cL(xij)). It reserves all
the information in the predicted labels rather than only keeps the majority label.
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3.4 Stacking with Local Embedding Features

In addition, we also apply the local embedding features to enhance our model.
Note that even if the level-0 classifiers have applied these local embedding fea-
tures, there is no duplicated usage of local embedding features as we use a
different model.

In order to apply the local embedding features, the unary potential part is
modified to

U(zij, yij) =
∑

win

∑

k

u�w�
meta,k,win,yij

Fmeta(xi(j+win), ck)c�
k (xi(j+win))u

+
∑

win

w�
joint,win,yij

Fjoint(c1(xi(j+win)), . . . , cL(xi(j+win)))

+
∑

win

w�
local,winFlocal(xi(j+win)) + biasyij

,

(5)

where Flocal(xij) extracts the local embedding features from token xij and
wlocal,win is the weight vector.

Following [9], we cluster word embeddings [15] by using the batch k-means
clustering algorithm [20] with different numbers of clusters. For token xij and
the number of clusters, we use the clustering id as one local embedding feature
in our model. The number of clusters is set as 500, 1000, 1500, 2500 and 3000.

4 Experiment

We evaluate our model on two public NER benchmarks: the CoNLL 2003 Shared
task [19] and the ACE 2005 dataset. Our model achieves the state-of-the-art
performance on both benchmarks. In this section, we will firstly give the details
about the datasets and the evaluation metrics. Then we will describe our training
process. After that, we will show the overall performance of our model, and
feature effectiveness results. In the end, we will show the robustness of our model
when using existing low-performance classifiers as the level-0 classifiers.

4.1 Dataset and Evaluation

The CoNLL 2003 Shared Task. (CoNLL03) consists of news articles from the
Reuters RCV corpus. There are four predefined named entity types: PER (Per-
son), LOC (Location), ORG (Organization), and MISC (Miscellaneous). It includes
standard tokenized training, development and test sets. We use the English data
of the shared task. The details of the dataset can be found in Table 2.

The ACE 2005 Dataset. (ACE05) consists of articles from diverse sources
including Broadcast News, Broadcast Conversations, Newswire, Weblog, Usenet,
and Conversational Telephone Speech. Seven named entity types are predefined
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Table 2. Statistics of The CoNLL 2003 Shared task [19]

Articles Sentences Tokens LOC MISC ORG PER

Train 946 14,987 203,621 7,140 3,438 6,321 6,600

Dev. 216 3,466 51,362 1,837 922 1,341 1,842

Test 231 3,684 46,435 1,668 702 1,661 1,617

in the dataset, including FAC (Facility), GPE (Geo-Political Entity), LOC (Loca-
tion), ORG (Organization), PER (Person), VEH (Vehicle), and WEA (Weapon). As
we only have the full training set, we split the dataset into training (56%),
development (24%), and test (20%) sets following [1]. Texts in the dataset are
tokenized using the spaCy tokenizer. We work on the English data of the ACE
2005 dataset. The details of the ACE05 dataset can be found in Table 3.

Table 3. Statistics of The ACE 2005 dataset

Articles Sentences Tokens FAC GPE LOC ORG PER VEH WEA

Train 337 12,965 164,539 130 3,175 161 1,546 4,506 66 16

Dev. 145 5,142 73,411 81 1,565 83 713 1,804 20 11

Test 117 4,348 60,186 52 1,393 70 674 1,518 23 7

We evaluate the performance of different models by comparing the pre-
dicted results on the test set using Precision, Recall, and F1 score. The pre-
dicted results can be classified into true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN), according to the ground truth.
Precision (P ) is defined as TP

TP+FP , Recall is defined as TP
TP+FN , and F1 score

is the harmonic average of P and R. Following the previous work [4,11,16,18],
named entities are evaluated in phrase level.

4.2 Training

We use the BIOES chunking encoding as we find it bringing slightly better
performance than the BIO encoding. This is also consistent with the observation
in the previous work [18]. We pre-process the text by lowercasing all the tokens
and replacing all the digits with 0 following [4].

We use the following NER classifiers as our level-0 classifiers:

– spaCy1 is based on CNN with Glove word embedding vectors [15] as input;
– CoreNLP [13] is based on CRF with handcrafted features;
– UIUC [18] is based on handcrafted features and a set of gazetteers by using

a regularized averaged perceptron;
1 https://spacy.io/.

https://spacy.io/
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– MITIE2 makes use of structural SVM and word embedding vectors;
– NeuroNER [16] has a BLSTM-CRF architecture with Glove word embedding

vectors [15] as input.

Following the standard procedure of stacking [25], we generate the training
set (i.e. Ztrain) for the level-1 classifier as follows. Firstly, we separate the original
training set (i.e. Xtrain) evenly into five parts (i.e. X 1

train, . . . ,X 5
train). Then we

train each level-0 classifier with four of them (e.g. X 1
train, . . . ,X 4

train) and get
the predicted results on the left part (e.g. Z5

train). These predicted results (i.e.
Z1

train, . . . ,Z5
train) are combined together to form Ztrain. For the development

set and test set, we get the predicted results of the level-0 classifiers trained on
the original training set (i.e. Xtrain).

We use binary values in c(xi) as described in Sect. 3. For those level-0 clas-
sifiers which provide scores for their predicted named entities, we use the score
to replace the binary values.

In all the experiments, our model is optimized using stochastic gradient
descent with l2 regularization. We train the proposed model with different C (the
coefficient for l2 regularization) and select the one with the best performance on
the development set as the final C of the model. Following [4,16], we train our
model ten times and report the average value for each metric. In addition, we
also report the standard deviation to show the robustness of model.

4.3 Overall Results

In Table 4, we compare the performance of our model with the following state-
of-the-art models:

– NeuroNER (2017) [5] has a neural network architecture of BLSTM-CRF with
Glove word embedding vectors [15] as input;

– UIUC (2009) [18] is based on handcrafted features and a set of gazetteers by
using a regularized averaged perceptron;

– Lample et al. (2016) [11] combines BLSTM and CRF with input word embed-
ding vectors trained on different corpora from Glove [15];

– Ma and Hovy (2016) [12] is a neural network architecture with combination
of BLSTM, CNN and CRF;

– Chiu and Nichols (2016) [4] is a hybrid of BLSTM and CNNs along with a
set of gazetteers;

– TagLM (2017) [16] combines GRUs and CRF as well as an external bidirec-
tional neural language model trained on a one billion token corpus.

For the first four models, we show the best results of the reported results
in the original papers and the results from our experiments. For the last two
models, we list the reported results as we do not have the corresponding models
and source codes. In the CoNLL03, our model achieves the best average F1 score
of 92.38%. It shows a significant improvement compared with the previous best
result of 91.93% ± 0.19% from TagLM [16]. Moreover, our model is more stable
than previous methods.
2 https://github.com/mit-nlp/MITIE.

https://github.com/mit-nlp/MITIE
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Table 4. Test set performance comparison in The CoNLL 2003 Shared task

Model P ± std R± std F1 ± std

NeuroNER (2017) [5] 90.54% 90.78% 90.66%

UIUC (2009) [18] 91.20% 90.50% 90.80%

Lample et al. (2016) [11] - - 90.94%

Ma and Hovy (2016) [12] 91.35% 91.06% 91.21%

Chiu and Nichols (2016) [4] 91.39% 91.85% 91.62% ± 0.33%

TagLM (2017) [16] - - 91.93% ± 0.19%

SMEF 92.95% ± 0.08% 91.83% ± 0.04% 92.38% ± 0.03%

4.4 Effectiveness of Our Model and Meta-features

Table 5 reports the performance of the level-0 classifiers and SMEF in the
CoNLL03 and the ACE05 datasets. The best level-0 classifier in the CoNLL03
scores 90.66% F1. Our model has an increase of 1.72% in F1 score compared with
it. In the ACE05, our model increases the F1 score by 2.43% compared with the
best level-0 classifier.

In SMEF, we use three types of features including meta-features, joint meta-
features, and local embedding features. Table 6 shows the results with different
types of features on both datasets.

In order to justify our choice of using CRF as the level-1 classifier, we also
implement a stacking model with logistic regression classifier as the level-1 clas-
sifier (i.e., LR in Table 6). Our model achieves better performance thanks to the
sequence inference ability of CRF.

We show that all types of features are effective. Generally speaking, one can
always achieve better F1 score by applying more features. When using all the
features, our model achieves the best performance in both datasets.

Meta-features are the most effective. All the models with meta-features con-
sistently outperform those without meta-features. The model with only meta-
features (i.e., meta in Table 6) shows a decent result which surpasses the previous
best result of 91.93% from TagLM [16] in the CoNLL03. According to our anal-
ysis, the most effective meta-feature is the token label prior. The other two

Table 5. Test set performance of the level-0 classifiers and SMEF

Dataset CoNLL03 ACE05

Model P ± std R ± std F1 ± std P ± std R ± std F1 ± std

spaCy 82.62% 80.44% 81.51% 84.30% 74.55% 79.13%

CoreNLP
[13]

87.41% 79.32% 83.17% 75.52% 33.34% 46.26%

UIUC [18] 90.10% 80.42% 84.98% 85.06% 84.56% 84.81%

MITIE 88.72% 86.88% 87.79% 80.55% 77.58% 79.03%

NeuroNER
[5]

90.54% 90.78% 90.66% 85.80% 87.82% 86.80%

SMEF 92.95% ± 0.08%91.83% ± 0.04%92.38% ± 0.03%91.01% ± 0.18%87.52% ± 0.19%89.23% ± 0.07%
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Table 6. Effectiveness of meta-features

Dataset CoNLL03 ACE05

Model P ± std R ± std F1 ± std P ± std R ± std F1 ± std

LR 91.71% ± 0.00% 90.63% ± 0.00% 91.17% ± 0.00% 89.29% ± 0.00% 86.54% ± 0.00% 87.89% ± 0.00%

base CRF 92.39% ± 0.08% 90.77% ± 0.04% 91.57% ± 0.04% 90.52% ± 0.37% 86.83% ± 0.41% 88.63% ± 0.13%

joint 92.53% ± 0.08% 90.79% ± 0.05% 91.65% ± 0.02% 90.14% ± 0.64% 87.10% ± 0.44% 88.59% ± 0.20%

local 92.47% ± 0.10% 90.95% ± 0.07% 91.75% ± 0.04% 90.80% ± 0.23% 86.92% ± 0.20% 88.82% ± 0.05%

joint +
local

92.58% ± 0.08% 91.03% ± 0.04% 91.80% ± 0.05% 90.84% ± 0.32% 86.80% ± 0.21% 88.77% ± 0.13%

meta 92.73% ± 0.08% 91.49% ± 0.07% 92.11% ± 0.05% 90.77% ± 0.21% 87.36% ± 0.38% 89.03% ± 0.10%

meta +
joint

92.69% ± 0.04% 91.54% ± 0.06% 92.11% ± 0.03% 90.65% ± 0.48% 87.49% ± 0.38% 89.04% ± 0.06%

meta +
local

92.82% ± 0.10% 91.77% ± 0.05% 92.29% ± 0.05% 91.11% ± 0.31%87.40% ± 0.23% 89.22% ± 0.08%

all 92.95% ± 0.08%91.83% ± 0.04%92.38% ± 0.03%91.01% ± 0.18% 87.52% ± 0.19%89.23% ± 0.07%

meta-features also show their effectiveness especially for ORG and MISC in the
CoNLL03, and PER and ORG in the ACE05.

4.5 Our Model with the Existing Level-0 Classifiers

Some NER systems, especially commercial NER systems, cannot be tuned or re-
trained on a specified dataset. Thus they may not be able to present satisfactory
results. Our model offers a solution to deal with new data by only using these
existing low-performance classifiers as the level-0 classifiers.

Since these existing classifiers are not trained on the specified dataset, our
model is essentially an ensemble model without changing the loss function of
CRF. These existing classifiers are usually trained on different datasets, even
with different predefined named entity types, which could also be different from
the specified dataset. For example, CoreNLP, MITIE, and NeuroNER are trained
on the CoNLL03 and have four named entity types; spaCy and UIUC are trained
on OntoNotes 5.0 with eighteen named entity types.

Table 7 shows the performance in the ACE05 with the existing level-0 clas-
sifiers. Our model achieves F1 score of 88.87%, which is much better than any
of the existing level-0 classifiers. It also outperforms the best trained classi-
fier NeuroNER (whose F1 score is 86.80%). Comparing with the SMEF model

Table 7. Performance in The ACE 2005 dataset using the existing level-0 classifiers

Model P ± std R± std F1 ± std

Existing CoreNLP [13] 37.16% 18.62% 24.81%

NeuroNER [5] 43.40% 41.80% 42.58%

MITIE 47.07% 40.86% 43.75%

spaCy 44.40% 53.12% 48.37%

UIUC [18] 44.61% 52.42% 48.20%

Our model SMEF 90.73% ± 0.54% 87.10% ± 0.41% 88.87% ± 0.08%
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with the trained level-0 classifiers, the one with the existing level-0 classifiers
is just slightly worse (e.g., 0.46% lower F1 score). Moreover, SMEF takes less
than 5 min to train the model on the ACE05, which is much faster than a neural
network (e.g., NeuroNER needs more than 2 h on the same dataset).

There are mainly three reasons for this. The first reason is that SMEF makes
use of consistent and correlated named entity types between the level-0 classifiers
and the ACE05. The second reason is that the level-0 classifiers provide prior
distributions on corresponding named entity types for each token even though
they have different predefined named entity types. Thus, meta-features would
be effective in this scenario. The last reason is that local embedding features
provide additional information beyond the named entity labels predicted by the
level-0 classifiers.

5 Conclusion

In this paper, we propose a new stacking method with CRF model and meta-
features for the NER task. These meta-features extract non-local information
over the dataset for each level-0 classifier, and local information of the level-0
classifiers and tokens. Our approach, SMEF, achieves the state-of-the-art perfor-
mance on the benchmark CoNLL 2003 Shared task. Besides, even with existing
low-performance classifiers as the level-0 classifiers, our model can still achieve
robust performance on the evaluated dataset.
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Abstract. Regular expressions (regexes) are patterns that are used
in many applications to extract words or tokens from text. However,
even hand-crafted regexes may fail to match all the intended words. In
this paper, we propose a novel way to generalize a given regex so that
it matches also a set of missing (previously non-matched) words. Our
method finds an approximate match between the missing words and the
regex, and adds disjunctions for the unmatched parts appropriately. We
show that this method can not just improve the precision and recall of
the regex, but also generate much shorter regexes than baselines and
competitors on various datasets.

1 Introduction

Regular expressions (regexes) find applications in many fields: in informa-
tion extraction, DNA structure descriptions, document classification, spell-
checking, spam email identification, deep packet inspection, or in general for
obtaining compact representations of string languages. To create regexes, sev-
eral approaches learn them automatically from example words [2–5]. These
approaches take as input a set of positive and negative example words, and out-
put a regular expression. However, in many cases, the regexes are hand-crafted.
For example, projects like DBpedia [10], and YAGO [19] all rely (also) on manu-
ally crafted regexes. These regexes have been developed by human experts over
the years. They form a central part of a delicate ecosystem, and most likely
contain domain knowledge that goes beyond the information contained in the
training sets.

In some cases, a regex does not match a word that it is supposed to match.
Take for example the following (simple) regex for phone numbers: \d{10}. After
running the regex over a text, the user may find that she missed the phone
number 01 43 54 65 21. An easy way to repair the regex would be to add this
number in a disjunction, as in \d{10} | 01 43 54 65 21. Obviously, this would
be a too specific solution, and any new missing words would have to be added
in the same way. A more flexible repair would split the repetition in the original
regex and inject the alternatives, as in (\d{2}\s?){4}\d{2}.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 67–79, 2018.
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In this paper, we propose an algorithm that achieves such generalizations
automatically. More precisely, given a regex and a small set of missing words, we
show how the regex can be modified so that it matches the missing words, while
maintaining its assumed intention. This is a challenging endeavor, for several
reasons. First, the new word has to be mapped onto the regex, and there are
generally several ways to do this. Take, e.g., the regex <h1>.*</h1> and the
word <h1 id=a>ABC</h1>. It is obvious to a human that the id has to go into
the first tag. However, a standard mapping algorithm could just as well map the
entire string id=a>ABC onto the part .*. This would yield <h1>?.*</h1> as a
repair – which is clearly not intended. Second, there is a huge search space of
possible ways to repair the regex. In the example, <h1(>.*| id=a>ABC)</h1>
is certainly a possible repair – but again clearly not the intended one. Finally,
the repair itself is non-trivial. Take, e.g., the regex (abc|def)* and the word
abcabXefabc. To repair this regex, one has to find out that the word is indeed a
sequence of abc and def, except for two iterations. In the first iteration, the last
character of abc is missing. In the second iteration, the first character of def has
to be replaced by an X. Thus, the repair requires descending into the disjunction,
removing part of the left disjunct and part of the right one, before inserting the
X into one of them, yielding (abc?|[dX]ef)* as one possible repair.

Existing approaches typically require a large number of positive examples as
input in order to repair or learn a regex from scratch. This means that the user
has to come up with a large number of cases where the regex does not work
as intended – a task that requires time, effort, and in some cases continuous
user interaction (see Sect. 2 for examples). We want to relieve the user from this
effort. Our approach requires not more that 10 non-matching words to produce
meaningful generalizations. The contributions of this paper are as follows:

– we provide an algorithm to generalize a given regex, using string-to-regex
matching techniques and adding unmatched substrings to the regex;

– we show how such repairs can be performed even with a small set of examples;
– we run extensive and comparative experiments on standard datasets, which

show that our approach can improve the performance of the original regex in
terms of recall and precision.

This paper is structured as follows. Section 2 starts with a survey of related work.
Section 3 introduces preliminaries, and Sect. 4 presents our algorithm. Section 5
shows our experiments, before Sect. 6 concludes.

2 Related Work

In this paper we consider repairing regexes that fail to match a set of words
provided by the user. We discuss work relevant to our problem along three
axes: (1) matching regexes to strings, (2) automatic generation of regexes from
examples, and (3) transformation of an existing regex based on examples.

Regex Matching. Many algorithms (e.g., [6]) aim to match a regex efficiently
on a text. Another class of algorithms deals with matching the input regex
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to a given input word – even though the regex does not match the string
entirely [8,14]. Other algorithms for approximate regex matching [15,20] opti-
mize for efficiency. We build on the seminal algorithm of [14]. Different from all
these approaches, our work aims not just to match, but also to repair the regex.

Regex Learning. Several approaches allow learning a regex automatically from
examples. One approach [5] uses rules to infer regexes from positive examples
for entity identifiers. Other work [2–4] uses genetic programming techniques to
derive the best regex for identifying given substrings in a given set of strings.
The work presented in [16] follows a learning approach to derive regexes for
spam email campaign identification. In the slightly different context of combining
various input strings to construct a new one, the work of [7] proposes a language
to synthesize programs, given input-output examples. In the same spirit, the
authors of [9] proposed an interactive framework in which users can highlight
example subparts of text documents for data extraction purposes.

All of these works take as input a set of positive and negative examples, for
which they construct a regex from scratch. In our setting, in contrast, we want
to repair a given regex. Furthermore, we have only very few positive examples.

Regex Transformation. There are several approaches that aim to improve a
given regex. One line of work [11] takes as input a set of positive and negative
examples as well as an initial regex to be improved. As in our setting, the goal
is to maximize the F-measure of the regex. The proposed approach makes the
regex stricter, so that it matches less words. Our goal is different: We aim to
relax the initial regex, so that it covers words that it did not match before.

Similar to us, the work of [13] attempts to relax an initial regex. The approach
requires the user in the loop, though, while our method is autonomous. Only two
works [1,17] can relax a given regex automatically. However, as we will see in our
experiments, both works produce very long regexes (usually over 100 characters).
Our approach, in contrast, produces much shorter expressions – at comparable
or even better precision.

3 Preliminaries

We assume that the reader is familiar with the basics of regexes. We write L(r)
for the language of a regex, and T (r) for the syntax tree of a regex. Figure 1
shows an example of a regex with its syntax tree, along with a matching of a
string to the regex. We further define a matching as follows:

Definition (Matching). Given a string s and a regex r, a matching is a partial
function m from {1, ..., |s|} to leaf nodes of r’s syntax tree T (r), denoted m|1,...,|s|,
such that one of the following applies:

– r is a character or character class and ∃i : si ∈ L(r)
– r = pq and ∃i s.t. m|1,...,i is a matching for p and m|i+1,...,|s| is a matching

for q
– r = p|q and m is a matching for p or for q
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Fig. 1. The syntax tree and a matching for the regex ab*c

– r = p∗ and ∃i1, . . . , ij : i1=1∧ i1 < · · · < ij ∧ ij=|s|+1∧∀k ∈ {1, . . . , j − 1} :
m|ik,...,(ik+1)−1 is a matching for p

A matching is maximal, if there is no other matching that is defined on more
positions of the string. Figure 1 shows a maximal matching for the regex ab*c
and the (non-matching) string abbdc. Maximal matchings can be computed with
the algorithm proposed in [14]. The problem that we address is the following:

Problem Statement. Given a regular expression r, a set S of positive exam-
ples, and a set E− of negative examples, s.t. |S| � |E−|, find a “good” regular
expression r′ s.t. L(r) ⊆ L(r′), S ⊆ L(r′), and |L(r′) ∩ E−| small.

In other words, we want to generalize the regex so that it matches all
strings it matched before, plus the new positive ones. For example, given a regex
r =[0-9]+ and a string s = “12 34 56”, a possible regex to find is r′ =([0-9]?)+.
This regex matches all strings that r matched, and it also matches s.

Now there are obviously trivial solutions to this problem. One of them is
to propose r =.*. This solution matches s. However, it will most likely not
capture the intention of the original regex, because it will match arbitrary strings.
Therefore, one input to the problem is a set of negative examples E−. The regex
shall be generalized, but only so much that it does not match many words from
E−. The rationale for having a small set S and a large set E− is that it is not
easy to provide a large set of positive examples: these are the words that the
hand-crafted regex does not (but should) match, and they are usually few. In
contrast, it is somewhat easier to provide a set of negative examples. It suffices
to provide a document that does not contain the target words. All strings in
that document can make up E−, as we show in our experiments.

Another trivial solution to our problem is r′ = r|s. However, this solution
will not capture the intention of the regex either. In the example, the regex
r′ =[0-9]+|12 34 56 will match s, but it will not match any other sequence of
numbers and spaces. Hence, the goal is to generalize the input regex appro-
priately, i.e., to find a “good” regex that neither over-specializes nor over-
generalizes.
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4 Repairing Regular Expressions

Given a regex r, a set of strings S, and a set of negative examples E−, our goal
is to extend r so that it matches the strings in S. Table 1 shows an example with
only a single string s ∈ S and no negative examples. Our algorithm is shown
in Algorithm 1. It takes as input a regex r, a set of strings S, a set of negative
examples E−, and a threshold α. The threshold α indicates how many negative
examples the repaired regex is allowed to match. Higher values for α allow a
more aggressive repair, which matches more negative examples. α = 1 makes
the algorithm more conservative. In that case, the method will try to match
at most as many negative examples as the original regex did. The algorithm
proceeds in 4 steps, which we will now discuss in detail.

Table 1. Example regex reparation

Original regex r: (\d{3}-){2}\d{4}
String s ∈ S: (234) 235-5678

Repaired regex: \(?\d{3}(-|\) )\d{3}-\d{4}

Algorithm 1. Repair regex
INPUT: regex r, set of strings S, negative examples E−, threshold α ≥ 1
OUTPUT: modified regex r
1: M ← ⋃

s∈S findMatchings(r, s)
2: gaps ← ⋃

m∈M findGaps(m)
3: findGapOverlaps(r, gaps)
4: addMissingParts(r, S, gaps, E−, α)

Step 1: Finding the Matchings. For each word s ∈ S, our algorithm finds
the maximal matchings (see again Sect. 3). We use Myers’ algorithm [14] for this
purpose. The maximal matchings are collected in a set M .

Step 2: Finding the Gaps. The matching tells us which parts of the regex
match the string. To fix the regex, we are interested in the parts that do not
match the string. For this purpose, we introduce a data structure for the gaps
in the string (i.e., for the parts of the string that are not mapped to the regex).
Formally, a gap g for string s in a matching m is a tuple of the following:

– g.start: The index in the string where the gap starts (possibly 0).
– g.end: The index in the string where the gap ends (possibly |s| + 1).
– g.span: The substring between g.start and g.end (excluding both).
– g.m: The matching m, which we store in the gap tuple for later access.
– g.parts: An (initially empty) set that stores sequences of concatenation child

nodes. The sequences are disjoint, and partition the regex. Each p ∈ g.parts
is a possibility to inject g.span into the regex as (p|g.span).
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Example (Finding the gaps): When matching the word (234) 235-5678
onto the regex \d\d\d-\d\d\d-\d\d\d\d, we encounter two gaps: gap1
embraces the substring “(” with gap1.start = 0, gap1.end = 2. gap2
embraces the substring “)” with gap2.start = 4, gap2.end = 7.

For each matching m, we find all gaps g that have no matching character in
between (i.e., �k : g.start < k < g.end ∧ m(k) is defined), and where at least
one of the following holds

– there is a character in the string between g.start and g.end,
i.e., g.start < g.end − 1

– there is a gap in the regex between m(g.start) and m(g.end),
i.e., m(g.start) 
∈ previous(m(g.end)).

This set of gaps is returned by the method findGaps in Algorithm 1, Line 2.

Step 3: Finding Gap Overlaps. Gaps can overlap. Take for example the regex
r = 01234567 and the missing words 0x567 and 012y7. One possible repair is
0(12)?(34|x|y)?(56)?7. We can find this repair only if we consider the overlap
between the gaps. In this example, we have two gaps: one with span 1234 and
one with span 3456. We have to partition the concatenation for the first gap
into 12 and 34, and for the second gap into 34 and 56.

This is what Algorithm 2 does. It takes as input the regex r and the set
of gaps gaps. It walks through the regex recursively, and treats each node of
the regex. We split quantifiers r{min,max} with max < 100 into r{. . .}r{. . .},
if the gap occurs between iterations. For other quantifiers, Kleene stars, and
disjunctions, we descend recursively into the regex tree (Line 5).

For concatenation nodes, we determine all gaps that have their start point
or their end point inside the concatenation (Line 7). Then, we determine the
partitioning boundaries (Line 8; l ∈ r means that regex r has a leaf node l).
We consider each gap g (Line 9). We find whether the start point or the end
point of any other gap falls inside g. This concerns only the boundaries between
s and e (Lines 10–11). We partition the concatenation subsequence cs . . . ce−1 by
cutting at the boundaries (Line 12). Finally, the method is called recursively on
the children of the concatenation that contain the start point or the end point
of any gap (Lines 13–14).

Step 4: Adding Missing Parts. The previous step has given us, for each gap,
a set of possible partitionings. In our example of the regex 01234567, the word
012y7, and the gap 3456, we have obtained the partitioning 34|56. This means
that both 34 and 56 have to become optional in the regex, and that we can
insert the substring y as an alternative to either of them: 012(34|y)(56)?7 or
012(34)?(56|y)7. Algorithm 3 will take this decision based on which solution
performs better on the set E− of negative examples. It may also happen that
none of these solutions is permissible, because they all match too many negative
examples. In that case, the algorithm will just add the word as a disjunct to the
original regex, as in 01234567|012y7. To make these decisions, the algorithm
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Algorithm 2. Find Gap Overlaps
INPUT: regex r, gaps gaps
OUTPUT: modified regex r, modified gaps gaps
1: if r is quantifier q{min, max} with max < 100 then
2: r ← q{. . .}q{. . .} with appropriate ranges
3: findGapOverlaps(r, gaps)
4: else if r is disjunction or Kleene star or quantifier then
5: for child c of r do findGapOverlaps(c, gaps)

6: else if r is concatenation c1 . . . cn then
7: gaps′ ← {g : g ∈ gaps ∧ g.m(g.start) ∈ r ∨ g.m(g.end) ∈ r}
8: idx ← {i + 1 : g ∈ gaps′ ∧ g.m(g.start) ∈ ci} ∪ {i : g ∈ gaps′ ∧ g.m(g.end) ∈ ci}
9: for g ∈ gaps′ do

10: s ← i+1 if g.m(g.start) ∈ ci, else 1
11: e ← i if g.m(g.end) ∈ ci, else n + 1
12: g.parts ← g.parts ∪ {ci . . . cj−1 : i, j ∈ idx ∧ s ≤ i < j ≤ e ∧

(�k : k ∈ idx ∧ i < k < j)}
13: for ci ∈ {ci : ∃g ∈ gaps′. g.m(g.start) ∈ ci ∨ g.m(g.end) ∈ ci} do
14: findGapOverlaps(ci, gaps)

will compare the number of negative examples matched by the repaired regex
with the number of negative examples matched by the original regex. The ratio
of these two should be bounded by the threshold α.

Algorithm 3 takes as input a regex r, a set of gaps gaps with partitionings,
negative examples E−, and a threshold α. The algorithm first makes a copy
of the original regex (Line 1) and treats each gap (Line 2). For each gap, it
considers all parts (Line 3). In the example, we will consider the part 34 and the
part 56 of the gap 3456. The algorithm transforms the part into a disjunction
of the part and the span of the gap. In the example, the part 34 is transformed
into (34|y) (Lines 4). If the number of matched negative examples does not
exceed the number of negative examples matched by the original regex times α
(Line 5), the algorithm chooses this repair, and stops exploring the other parts
of the gap (Lines 6–7). In Line 8, the algorithm collects all positive examples
that are still not matched. The changes that were made for these words are
undone (Line 9). Line 10 generalizes these words into one or several regexes.
The generalization is adapted from [1]. First, we assign a group key to every
word. The key is obtained by substituting substrings consisting only of digits
with a (single) \d, lower or upper case characters with a [a-z] or [A-Z], and
remaining characters with character class \W or \w. Finally we obtain the group
regex r by adding {min,max} after every character class, such that r matches
all strings in that group. The algorithm then checks if the regex obtained this
way is good enough (Lines 12–13). If this is the case, the regex is added as a
disjunction (Line 13). Otherwise the words that contributed to that group are
added disjunctively (Line 16). Table 1 shows how our method repairs the example
regex.
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Algorithm 3. Add Missing Parts
INPUT: regex r, set of strings S, gaps gaps, negative examples E−, threshold α ≥ 1
OUTPUT: modified regex r
1: org ← r
2: for g ∈ gaps do
3: for part p = (ci · · · cj) ∈ g.parts do
4: r′ ← r with ci · · · cj replaced by (ci · · · cj|g.span),

and all other parts cx . . . cy in g.parts made optional with (cx . . . cy|)
5: if |E− ∩ L(r′)| ≤ α · |E− ∩ L(org)| then
6: r ← r′

7: break
8: S′ ← S \ L(r)
9: undo all changes for s ∈ S′ not required by other repairs

10: G ← generalize words in S′

11: for g ∈ G do
12: if |E− ∩ L(r|g)| ≤ α · |E− ∩ L(org)| then
13: r ← r|g
14: else
15: for s ∈ L(g) ∩ S′ do
16: r ← r|s

Time Complexity. Let N ′ be the length of the input regex in expanded form
(i.e., where quantifiers r{...} have been replaced by copies of r). Let M be the
sum of the lengths of the missing words. Let t be the runtime of applying a regex
of length O(N ′) to the negative examples. We show in our technical report [18]
that our algorithm runs in O(N ′Mt).

5 Experiments

5.1 Setup

Measures. To evaluate our algorithm, we follow related work in the area [1,13,
17] and use a gold standard of positive example strings, E+ ⊃ S. With this, the
precision of a regex r is the fraction of positive examples matched among all
examples matched:

prec(r) =
|E+ ∩ L(r)|

|L(r) ∩ (E+ ∪ E−)|
The recall of r is the fraction of positive examples matched:

rec(r) =
|E+ ∩ L(r)|

|E+|
As usual, the F1 measure is the harmonic mean of these two measures.

Competitors. We compare our approach to both other methods [1,17] that can
generalize given regexes (see Sect. 2). For [1], the code was not available upon
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request. We therefore had to re-implemented the approach. We think that our
implementation is fair, because it achieves a higher F1-value (87% and 84%, as
opposed to 84% and 82%) when run on the same datasets as in [1] (s.b.) with a
full E+ as input.

Datasets. We use 3 datasets from related work. The Relie dataset1 [11] includes
four tasks (phone numbers, course numbers, software names, and URLs). Each
task comes with a set of documents. Each document consists of a span of words,
and 100 characters of context to the left and to the right. Each span is annotated
as a positive or a negative example, thus making up our sets E+ and E−, respec-
tively. We manually cleaned the dataset by fixing obvious annotation errors, e.g.,
where a word is marked as a positive and a negative example in the same task.
In total, the dataset contains 90807 documents.

The Enron-Random dataset2 [12] contains a set of emails of Enron staff. The
work of [1] uses it to extract phone numbers and dates. Unfortunately, there
is no gold standard available for these tasks, and the authors of [1] could not
provide one. Therefore, we manually annotated phone numbers and dates on 200
randomly selected files, which gives us E+. As in [1], any string that is matched
on these 200 documents and that is not a positive example will be considered a
negative example. In this way, we obtain a large number of negative examples.

The YAGO-Dataset consists of Wikipedia infobox attributes, where the dates
and numbers that were used to build YAGO [19] have been annotated as positive
examples. This dataset is used in [17]. As in Enron-Random, all strings that are
not annotated as positive examples count as negative examples.

We thus have 8 tasks: 4 for the Relie dataset, 2 for the Enron dataset, and
2 for the YAGO dataset. Each task comes with positive examples E+ and neg-
ative examples E−. Our algorithm needs as input an initial regex that shall be
repaired. For the Enron and YAGO tasks, we used the initial regexes given in
[1,17]. For Relie, we asked our colleagues to produce regexes by hand. For this
purpose, we provided them with 10 randomly chosen examples from E+ for each
task, and asked them to write a regex. This gives us 5 initial regexes for each
Relie task. Table 2 summarizes our datasets.

Runs. Our algorithm does not take as input the entire set of positive examples
E+, but a small subset S of positive examples. To simulate a real setting for
our algorithm, we randomly select S from E+. We average our results over 10
different random draws of S. For each draw, we use each initial regex that we have
at our disposal, and average our results over these. Thus, we run our algorithm
50 times for each Relie task, 10 times for each Enron-Random task, and 150
times for each YAGO task, and we average the obtained numbers over these.
Our competitors are not designed to work on a small set of positive examples.
Therefore, we provide them with additional positive examples obtained from
running the original regex on the input dataset. Our method does not need this

1
http://dbgroup.eecs.umich.edu/regexLearning/.

2
http://www.cs.cmu.edu/∼einat/datasets.html.

http://dbgroup.eecs.umich.edu/regexLearning/
http://www.cs.cmu.edu/~einat/datasets.html
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Table 2. Statistics of the datasets

Task Documents Avg. size |E+| Regexes

ReLie/phone [11] 41896 211 2657 5

ReLie/course [11] 569 210 314 5

ReLie/software [11] 44413 185 2307 5

ReLie/urls [11] 3929 176 735 5

Enron/phone [1] 225 1452 145 1

Enron/date [1] 225 1452 392 1

YAGO/dates [17] 100000 25 109824 15

YAGO/numbers [17] 100000 57 131149 15

step. All algorithms are implemented in Java 8. The experiments were run on
an Intel Xeon with 2.70 GHz and 250 GB memory.

5.2 Experimental Evaluation and Results

F1-measure. Table 3 shows the F1-measure on all datasets for different algo-
rithms: the original regex, the disjunction-baseline (which consists just of a dis-
junction of the original regex with the 10 positive words), the star-baseline (which
is just .*), the method from [1], the method from [17], and our method with
different values for α. The table shows the improvement of the F1 measure w.r.t.
the dis-baseline, in percentage points. For example, for Relie/phone and α = 1.2,
our algorithm achieves an F1 value of 81.6% + 2.3% = 83.9%. We can see that,
across almost all tasks and settings, our algorithm outperforms the original regex

Table 3. F1 measure for different values of the parameter α, improvement over the dis-
baseline in percentage points. Bold numbers indicate the maximum F1 measure within
each row. � (and �) indicates significant improvement relative to the dis-baseline for
a significance level of 0.01 (and 0.05).

Task Original Baseline Competitors Our approach

dis star [1] [17] α = 1.0 α = 1.1 α = 1.20

ReLie/phone 81.6 82.1 12.3 −.5 � +.3 +.8 +1.6 � +2.3 �

ReLie/course 45.8 46.0 48.4 +6.4 � +.2 � +.5 � +1.3 � +1.4 �

ReLie/software 9.2 12.4 9.9 +.1 � −.0 +.7 � +3.9 +4.6

ReLie/urls 55.2 56.0 31.5 −30.3 � +.3 +2.9 +4.2 � +4.2 �

Enron/phone 61.7 61.7 .1 −7.7 +5.3 � +21.0 � +21.0 � +21.0 �

Enron/date 72.3 72.4 .0 −49.6 � −.0 +.6 +.6 +.4

YAGO/number 40.1 40.1 31.0 −11.5 � +1.8 � +3.4 +2.2 +2.4

YAGO/date 70.1 70.1 34.3 −26.3 � +.3 � +6.9 � +6.7 � +6.6 �
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Table 4. Length of the repaired regexes (# of characters). Bold numbers indicate the
shortest ones (without the original).

Task Original Baseline Competitors Our approach

dis star [1] [17] α = 1.0 α = 1.1 α = 1.20

ReLie/phonenum 41.6 230.3 2.0 94.6 221.2 46.8 50.0 53.1

ReLie/coursenum 22.2 203.2 2.0 280.4 181.1 33.7 48.2 52.5

ReLie/softwarename 43.2 168.2 2.0 594.7 168.2 54.4 67.3 67.8

ReLie/urls 52.4 630.3 2.0 5826.1 570.2 70.6 74.7 74.7

Enron/phone 17.0 199.1 2.0 243.8 164.8 41.4 41.4 41.4

Enron/date 17.0 170.6 2.0 581.0 170.6 34.2 34.2 35.6

YAGO/number 65.4 223.2 2.0 19471.0 207.9 119.4 120.5 120.7

YAGO/date 191.4 336.2 2.0 4337.0 313.6 203.6 203.6 203.5

as well as the dis-baseline. We verified the significance of the F1 measures with
a micro sign test [21]. Detailed results on recall and precision can be found in
our technical report [18].

If α is small, the algorithm is conservative, and tends towards the dis-baseline.
If α is larger, the algorithm performs repairs even if this generates more nega-
tive examples. As we can see, the impact of α is marginal. We take this as an
indication that our method is robust to the choice of the parameter.

Regex Length. Table 4 shows the average length of the generated regexes (in
number of characters). For our approach, the length depends on α: If the value
is large, the algorithm will tend to integrate the words into the original regex.
Then, the words are no longer subject to the generalization mechanism. Still, the
impact of α is marginal: No matter the value, our algorithm produces regexes
that are up to 8 times shorter than the dis-baseline, and nearly always at least
twice as short as either competitor – at comparable or better precision and recall.

Runtime. For the ReLie and Enron dataset, all approaches take a time in the
order of seconds for repairing one regex. Due to the much larger E+, runtimes
differ for the YAGO dataset: fastest system is [17] with 12 s on average, followed
by our approach with 84 s. The runtime of our reimplementation of [1] lies in the
order of minutes, as we did not optimize for runtime efficiency.

Example. Table 5 shows an example of a repaired regex in the Relie/phonenum
task. Our algorithm successfully identifies the non-matched characters : and
> at the beginning of a phone number. It introduces them as options at the
beginning of the original regex, leaving the rest of the regex intact. The dis-
baseline, in contrast, would add all words in a large disjunction. Our solution is
more general and more syntactically similar to the original regex.
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Table 5. Example of a scenario for the Relie/phonenum task

Original regex: ({0,1} \d{3}){0,1}(-|\.| ) \d{3}(-|\.| ) d{4}
Missing words: :734-763-2200 >317.569.8903 >443.436.0787 >512.289.1407

>734-615-9673 >734-647-8027 >734-763-5664 >734.647.3256 >773.339.3223

Repaired regex: ((|:|>)?\d{3})?(-|\.| )\d{3}(-|\.| )\d{4}

6 Conclusion

In this paper, we have proposed an algorithm that can add missing words to a
given regular expression. With only a small set of positive examples, our method
generalizes the input regex, while maintaining its structure. In this way, our
approach improves the precision and recall of the original regex.

We have evaluated our method on various datasets, and we have shown that
with few positive examples, we can improve the F1 measure on the ground truth.
This is a remarkable result, because it shows that regexes can be generalized
based on very small training data. What is more, our approach produces regexes
that are significantly shorter than the baseline and competitors. This shows that
our method generalizes the regexes in a meaningful and non-trivial way.

Both the source code of our approach and the experimental results are avail-
able online at https://thomasrebele.org/projects/regex-repair. For future work,
we aim to shorten the produced regexes further, by generalizing the components
into character classes.

Acknowledgments. This research was partially supported by Labex DigiCosme
(project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the pro-
gram “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02).
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Abstract. We explore the adoption of topic modeling to inform the
seamless integration of community discovery and role analysis. For this
purpose, we develop a new Bayesian probabilistic generative model of
social media, according to which the observation of social links and
textual contents is governed by novel and intuitive relationships among
latent content topics, communities and roles. Variational inference under
the devised model allows for exploratory, descriptive and predictive tasks,
including the detection and interpretation of overlapping communities,
roles and topics as well as the prediction of missing links. Extensive tests
on real-world social media reveal a superior accuracy of the proposed
model in comparison to state-of-the-art competitors, which substanti-
ates the rationality of the motivating intuition. The experimental results
are also insightfully inspected from a qualitative viewpoint.

1 Introduction

The integration of community discovery and role analysis has been investigated
to accurately explain network topology [3,4,6]. However, such efforts disregard
the textual content of node interactions. A study of how roles influence content
generation within networks of correspondents exchanging emails is developed
in [9], without jointly considering the underlying community structure.

In principle, looking at the textual content of node interactions in the simul-
taneous analysis of communities and roles improves the accuracy of each task in
isolation as well as their mutuality and interpenetration. This is in turn expected
to be beneficial for a higher accuracy of the two tasks in tandem. Intuitively,
awareness of text topics is helpful to refine (or, also, capture) affiliations of nodes
to communities and roles, even with few or no interactions with other nodes. This
is especially interesting with regard to communities, that can be participated by
nodes because of either their social connections or, more simply, their interest
in shared topics (even in the absence of social connections).

Jointly modeling community discovery, role analysis and topic modeling [2] is,
to the best of our knowledge, an unexplored research line, that involves dealing
with several issues. Firstly, links between nodes have to be explained in terms of
their affiliations to the foresaid communities and roles. Secondly, the traditional
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 80–91, 2018.
https://doi.org/10.1007/978-3-319-93037-4_7
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notion of role has to be generalized, so that to influence node behavior not only
in social networking but also in message wording. Thirdly, communities, roles
and topics are unobserved network properties with no ascertained connections.

In this paper, we present a new model-based machine-learning approach to
the unsupervised, joint analysis of communities and roles in social media, where
nodes can interact with one another either in a purely social manner, i.e., by
simply establishing connections (such as, e.g., in the case of friending, following,
(dis)trusting) or, also, by using their ties in order to coauthor documents (e.g.,
project proposals, deliverables, technical reports, articles) as well as share text
messages (e.g., news, comments, reviews, opinions, questions/answers, status
updates, tweets). The devised approach consists in performing posterior inference
in a latent-factor Bayesian generative model of the targeted social-media, referred
to as NOODLES (overlappiNg cOmmunities and rOles from noDe Links and
messagES ), in which topic modeling is used to inform the seamless integration
of community discovery and role analysis.

Extensive experiments on real-world social media reveal that NOODLES over-
comes state-of-the-art competitors in community detection and link prediction,
which confirms that the topic-aware integration of community discovery and role
analysis is beneficial to improved accuracy. A qualitative evaluation of NOODLES
is also provided, in order to demonstrate its behavior in practical applications.

2 Background

Notation and preliminaries are introduced below.

2.1 Observed Social-Media Properties: Topology and Messages

As with any complex system, social media can be viewed from the network-
centric perspective as a graph G = {N ,A}, where N = {1, . . . N} is a set of
nodes (numbered 1 through N) and A ⊆ N × N is a set of links.

Nodes correspond to entities (e.g., individuals, organizations), that interact
in the network along with authoring (and exchanging) text messages.

Links represent directed interactions between nodes and are summarized into
a binary adjacency matrix L, whose generic entry Ln,n′ is 1 iff a link is observed
from node n to node n′ (i.e., iff 〈n, n′〉 ∈ A) and 0 otherwise.

The set of text messages1 authored by node n is dn. Let V be a vocabulary of
V word tokens. Any message d ∈ dn is some suitable collection of words from the
vocabulary V , i.e., d ⊆ V . Messages are summarized into the binary array F ,
whose arbitrary entry F

(n)
w,d is 1 iff word w ∈ V is chosen by node n in authoring

message d ∈ dn and 0 otherwise.
In practical applications, matrices L and F are, usually, sparse.

1 Notice that, in the case of collaboration networks, the term message refers to the cor-
responding type of coauthored content, such as, e.g., project proposals, deliverables
and publications. In particular, one data set in Sect. 6 is chosen from the scientific
collaboration domain and, in such a context, message is a synonym of publication.
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2.2 Unobserved Social-Media Properties: Topics, Affiliations, Roles
and Communities

Let T = {1, . . . , T} be a set of T topics. The text messages authored by nodes
deal with one or more topics from T . Basically, the generic topic t ∈ T is
some assignment of relevance to the individual words of the vocabulary V , that
ultimately identifies a semantically coherent theme. The relevance of each word
w ∈ V to every topic t ∈ T is captured through the corresponding affiliation
πw,t. Notation Π � {πw,t|w ∈ V , t ∈ T } concisely indicates the relevance of all
words to the individual topics.

Communities are structures of G, that can be formalized as a set C �
{C1, . . . , CK} of K overlapping groups of nodes (i.e., such that Ck ⊆ N with
k = 1, . . . , K). Any node n can participate in all communities, although with a
different involvement. In particular, affiliation ϑn,k denotes the degree to which
n takes part in the arbitrary community Ck ∈ C. Overall, node affiliations to
communities are compactly denoted as Θ � {ϑn,k|n ∈ N , Ck ∈ C}. Within
every community Ck (with k = 1, . . . , K), nodes have social connections and/or
a shared focus on some corresponding subset of topics. A same topic is differently
relevant to the individual communities. Affiliation ηt,k represents the relevance
of topic t in the context of community Ck. Topic relevance to communities is
succinctly indicated as H � {ηt,k|t ∈ T , Ck ∈ C}.

Roles form a set R � {R1, . . . , RH} of H behavioral classes. As discussed in
Sect. 3, the arbitrary role Rh (with h = 1, . . . , H) influences node behavior both
in networking and authoring through, respectively, its inherently-characteristic
interactions with the roles of the neighboring nodes and the intrinsic bias for
specific topics. Formally, Eh � {εh,h′ |Rh′ ∈ R} is the behavioral pattern of
role Rh, with affiliation εh,h′ being the strength of interaction from Rh to any
other role Rh′ (with h′ = 1, . . . , H). Notably, all nodes playing the same role
behave identically with the roles of their neighbors, in compliance with mixed-
membership block-modeling. As a whole, the behavioral patterns of roles are
represented as E � ∪H

h=1Eh. Moreover, Γ h � {γt,h|t ∈ T , Rh ∈ R} is the bias of
role Rh for the individual topics, with affiliation γt,h being the appropriateness
of topic t to role Rh. Together, the topic biases of all roles are formalized as
Γ � ∪H

h=1Γ h. The generic node n can play all roles, though with a different
attitude. Affiliation σn,h is the extent to which n is suitable to play role Rh ∈ R.
Collectively, node affiliations to roles are denoted as Σ � {σn,h|n ∈ N , Rh ∈ R}.

2.3 Problem Statement

Let G be an input network. We are interested in inferring the unobserved prop-
erties Θ, Σ, Π, H, Γ and E from the observation of its topology L and the
node messages F . We aim to perform the following tasks:

– the unsupervised exploratory analysis of G, i.e., the discovery of the latent
organization of G in underlying communities, roles and topics (along with
their respective relationships);
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– the prediction of missing links;
– the interpretation of topics, communities and roles.

We deal with the unobserved network properties through posterior inference
under a Bayesian probabilistic generative model of G. Basically, such a model
postulates the reliance of the observed properties on the unobserved ones. Vari-
ational inference stretches back to the latter by reversion.

Hereinafter, all elements of Θ, Σ, Π, H, Γ and E are viewed as random
variables, being unknown and not directly measurable. Our network model is
introduced in Sect. 3. Variational inference is developed in Sect. 4.

3 NOODLES

NOODLES (overlappiNg cOmmunities and rOles from noDe Links and mes-
sagES ) is a network model, whose innovative peculiarity relies in the exploita-
tion of topic modeling to inform the integration of community discovery and
role analysis. This is achieved as an effort to explain the observation of node
interactions L and text messages F in a targeted network G, from a Bayesian
probabilistic perspective. Essentially, NOODLES assumes that both are the result
of a generative process, that is influenced by the latent network properties intro-
duced in Sect. 2.2. Such a generative process operates on the basis of conditional
(in)dependencies between the observations (i.e., L and F ) and the latent network
properties (i.e., Θ, Σ, Π, H, Γ and E). These conditional (in)dependencies
are formally shown in the directed graphical representation of Fig. 1, where the
observations are distinguished from the latent network properties, being reported
in the form of shaded and unshaded random variables, respectively. The gener-
ative process under NOODLES accomplishes the realization of the random vari-
ables of Fig. 1 according to the algorithmic description reported in Fig. 2 (in
which, at steps I., II., III. and IV., αψ and βψ with ψ ∈ {ϑ, σ, π, γ, η, ε} are,
respectively, shape and rate hyperparameters).

Basically, at steps I. through VI., the latent affiliations Θ, Σ, Π, H, Γ
and E are individually sampled from respective Gamma priors. These enforce
nonnegativity, which improves the interpretability of NOODLES, by favoring
sparseness in its representation. Also, it ensures that the overall strength of
affiliation for each node, role, topic or word does not equal 1, which avoids the
typical inconvenient of mixed-membership modeling. Consequently, a very strong
affiliation of any node, role, topic or word does not imply a corresponding drop
in the overall strength of all other affiliations of that node, role, topic or word.

At step V., the presence/absence of directed links is sampled from a Poisson
distribution, that is placed over L as the link data likelihood. In particular, the
establishment of a directed link from a node n to a node n′ is governed by the
Poisson-specific rate δn,n′ , that captures the interaction from n to n′ in terms
of their affiliations to common communities, respective roles and corresponding
behavioral patterns. More precisely,
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Fig. 1. Graphical representation of NOODLES in plate notation

δn,n′ �
K∑

k=1

H∑

h,h′=1

ϑn,kσn,hεh,h′σn′,h′ϑn′,k (1)

Equation 1 is a generalization of pluralistic homophily [10], in which the latter
is combined with link direction as well as role analysis.

Notice that, though being a model of directed networks, NOODLES can
straightforwardly handle undirected networks.

At step VI., the presence/absence of word w in document d authored by node
n is sampled from a Poisson distribution, that is placed over F as the text data
likelihood. Specifically, the inclusion of w among the words of d on the part of
n is governed through the below rate

δ
(n)
w,d �

K∑

k=1

H∑

h=1

T∑

t=1

ϑn,kσn,hηt,kγt,hπw,t (2)

δ
(n)
w,d captures the appropriateness of word w to document d across all latent

topics as well as their relevance to the communities and roles, which node n is
affiliated to.

Remarkably, Poisson distributions at steps V. and VI. are well suited to deal
with binary data and, also, beneficial for faster inference on sparse networks [7].

4 Posterior Inference

NOODLES assumes that the observation of links and messages, within a tar-
geted network G, is influenced by its unobserved properties according to the
generative process of Fig. 2. In this section, we design a variational algorithm,
with which to perform posterior probabilistic inference under NOODLES, for the
purpose of quantifying the unobserved properties Θ, Σ, Π, H, Γ and E given
the observations L and F . In principle, this is accomplished by computing the
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Fig. 2. The generative process under NOODLES

posterior distribution Pr(Θ,Σ,Π,H ,Γ ,E|L,F , ζ), where ζ = {αϑ, βϑ, ασ, βσ,
απ, βπ, αη, βη, αγ , βγ , αε, βε} is the set of all hyperparameters. However, exact
posterior inference is generally intractable under Bayesian models of practical
relevance, because of the complexity of the true posterior distribution. We obvi-
ate by employing mean-field variational inference under NOODLES to compute
an analytical approximation of Pr(Θ,Σ,Π,H ,Γ ,E|L,F , ζ). Variational infer-
ence tends to be faster and more easily scalable on large networks than MCMC
sampling [1].

We proceed by enriching NOODLES through the addition of auxiliary latent
variables, which ultimately simplifies the algorithmic developments. Specifically,
due to the additivity of Poisson random variables, each Ln,n′ can be rede-
fined as Ln,n′ �

∑K
k=1

∑H
h,h′=1 z

(k,h,h′)
n,n′ , where z

(k,h,h′)
n,n′ ∼ Poisson(ϑn,kσn,hεh,h′

σn′,h′ϑn′,k). Here, the auxiliary random variable z
(k,h,h′)
n,n′ captures the contribu-

tion of the interaction from node n to node n′ inside community Ck, when Rh

and Rh′ are their respective roles. Likewise, each F
(n)
w,d can be redefined as F

(n)
w,d �

∑K
k=1

∑H
h=1

∑T
t=1 s

(n,k,h,t)
w,d , with s

(n,k,h,t)
w,d ∼ Poisson(ϑn,kσn,hηt,kγt,hπw,t) being

a contribution, that captures whether word w is used in document d by node
n, when n plays role Rh within community Ck and t is the topic for w. Let
Z = {zn,n′ |n, n′ ∈ V } and S = {s

(n)
w,d|n ∈ V , d ∈ dn, w ∈ V } be the sets

of auxiliary variables added to NOODLES. Formally, the mean-field family of
approximate distributions over Θ, Σ, Π, H, Γ , E, Z, and S is
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Fig. 3. Variational updates for Gamma-shape parameters

q(Θ , Σ , Π , H , Γ , E , Z , S |ν ) =
∏

n∈N ,Ck∈C

q(ϑn,k|ρn,k)
∏

n∈N ,Rh∈R

q(σn,h|λ n ,h ) ·
∏

w∈V ,t∈T

q(πw,t|ξw , t )·

∏

t∈T ,Ck∈C

q(ηt,k|ω t,k) ·
∏

t∈T ,Rh∈R

q(γt,h|ot,h)
∏

Rh,R
h′ ∈R

q(εh,h′ |κh,h′ )·

∏

n,n′∈N

q(zn,n′ |τ n,n′ ) ·
∏

n∈N ,d∈d n,w∈V

q(s
(n)
w,d

|μ (n)
w,d

) (3)

with ν � {ρn,k,λn,h, ξw,t,ωt,k,ot,h,κh,h′τn,n′ ,μ
(n)
w,d|n, n′ ∈ N , Ck ∈ C,

Rh, R′
h ∈ R, w ∈ V } being the set of all variational parameters, that indi-

vidually condition the respective factors on the right hand side of Eq. 3.
The approximate posterior distribution is obtained from Eq. 3 by fitting the

variational parameters ν. Therein, we emphasize that due to the addition of the
auxiliary random variables, NOODLES is a conditionally conjugate model. For
such a class of models, the variational parameters can be fitted through a simple
coordinate-ascent variational Algorithm [1].

Essentially, each variational parameter is iteratively optimized, while all oth-
ers are held fixed. The updates used for optimization comply with the nature of
the individual variational parameters, that can be understood by accounting for
the functional forms of the factors on the right hand side of Eq. 3. More precisely,
factors q(zn,n′ |τn,n′) and q(s(n)

w,d|μ(n)
w,d) are multinomial distributions, while all

other factors are Gamma distributions.2 Therefore, the generic τn,n′ and μ
(n)
w,d

are variational multinomial parameters. These are respectively fitted through
the updates in Fig. 5, where Ψ [·] is the digamma function (i.e., the first deriva-
tive of log Γ function). Instead, ρn,k, λn,h, ξw,t, ωt,k, ot,h and κh,h′ are pairs
of variational Gamma parameters, individually consisting of a shape (denoted
by a superscript (shp)) and a rate (denoted by a superscript (rate)). The shape
parameters are fitted through the updates in Fig. 3, whereas the rate parameters
are fitted by means of the updates in Fig. 4.

2 The derivation of both the functional forms of the factors on the right hand side of
Eq. 3 and the updates of the respective variational parameters is omitted for brevity.
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Fig. 4. Variational updates for Gamma-rate parameters

Fig. 5. Variational updates for multinomial parameters

5 Tasks

Posterior inference allows for a variety of exploratory, predictive, and descriptive
tasks, that involve posterior expectations of respective random variables.

5.1 Exploratory Network Analysis

The organization of G into overlapping communities and roles is revealed by node
affiliations. The degree to which node n is involved in community Ck is ϑ∗

n,k �
E[ϑn,k]. The extent to which node n is suitable to role Rh is σ∗

n,h � E[σn,h].
The social functions fulfilled by roles are unveiled in terms of their mutual

interactions. The strength of interaction from Rh to Rh′ is ε∗
h,h′ � E[εh,h′ ].

5.2 Predictive Analysis

The formation of missing links 〈n, n′〉 /∈ A is forecast by associating them with a
respective score sn,n′ , that is used for ranking their future establishment. Specif-
ically, sn,n′ � E[δn,n′ ], where δn,n′ is defined by Eq. 1.
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5.3 Descriptive Analysis

NOODLES allows for the interpretation of topics, communities and roles.
Essentially, topics involve words, that are relevant to corresponding themes.

The relevance of word w to topic t is π∗
a,t � E[πa,t]. A characterization of topic

t is any suitable subset of topmost relevant words.
Communities and roles can be characterized in terms of especially pertinent

topics. Therein, the pertinence of topic t to community Ck and role Rh is, respec-
tively, η∗

t,k � E[ηt,k] and γ∗
t,h � E[γt,h].

6 Experimental Evaluation

In this section, we conduct an empirical assessment of NOODLES on real-world
social media, that is both quantitative and qualitative.

6.1 Data Sets and Competitors

We carry out experiments on two benchmark data sets, i.e., DBLP and Enron.
DBLP (http://dblp.uni-trier.de/xml/) is a bibliographic archive of scientific

publications in the domain of computer science. In particular, we focused on
33 conferences, i.e., AAAI, AAMAS, CVPR, ECCV, ECML, PKDD, EDBT, EURO-PAR, I3D,
ICCP, ICCV, ICDE, ICDM, ICDT, ICML, IJCAI, INFOCOM, IPDPS, MOBICOM, NIPS,
PACT, PAKDD, PODS, PPoPP, SIGCOMM, SIGGRAPH EMERGING TECHNOLOGIES, KDD,
SIGMETRICS, SIGMOD CONFERENCE, UAI, UMAP, VLDB, WSDM. The papers in the
2010 proceedings of such conferences were gathered to form a collaboration net-
work, in which nodes correspond to authors, links to co-authorships and publi-
cation titles to the textual content authored by the corresponding nodes. The
resulting networks consists of 8, 875 nodes and 17, 122 edges.

Enron (http://www.cs.cmu.edu/∼enron/) is a set of emails generated by the
employees of the Enron Corporation. We considered the communication network
shaped by 18, 233 emails exchanged among the 148 different employees.

Both vocabularies were pruned through stemming and stop word removal.
Word stems were further distilled on Enron by their respective TFIDF values.

On DBLP, the input parameters of NOODLES, i.e., K, H and T are set to
30, 3 and 6. On Enron, K is set to 8, H is fixed to 4 and T is set to 20.

NOODLES is compared both on DBLP and Enron against BHLFM [4], BH-
CRM [3] and LDA-G [8].

6.2 Quantitative Evaluation

We comparatively test NOODLES in community discovery and link prediction.
The performance of all competitors in community discovery is assessed in

terms of compactness [11], which is suitable to networks without any ground
truth about their actual community structure and roles. Essentially,compactness
is defined as the average of the shortest distances between community members.

http://dblp.uni-trier.de/xml/
http://www.cs.cmu.edu/~enron/
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We compute compactness in compliance with [11], i.e., by considering the top
10 members with highest probabilistic involvement in each community.

Figure 6(a) reports the compactness of the communities uncovered by the
individual competitors in DBLP and Enron. The empirical evidence reveals that
NOODLES uncovers the most compact communities in both data sets.

Link prediction allows for comparing the predictive accuracy of the differ-
ent competitors, i.e., the degree to which such competitors reliably predict the
presence or absence of links between nodes. The predictive performance of all
competitors is evaluated through Monte-Carlo cross validation. In particular,
5 experiments of the predictive performance of each competitor are conducted
both on DBLP and Enron. Each experiment consists of two steps. Preliminarily,
the input network is split into a training set and a held-out test set. The latter is
formed by randomly sampling the whole input network to pick an equal number
of present and absent links, whose sum amounts to 15% of the overall number of
links in the whole input network. Subsequently, all links in the held-out test set
are predicted by the distinct competing models inferred from the training set.
The details on link prediction in NOODLES are provided in Sect. 5.2, whereas
those on LDA-G, BH-CRM and BHLFM appear in the respective references.

Figure 6(b) shows the average AUC values achieved by all competitors. NOO-
DLES delivers a superior link-prediction performance on DBLP and Enron.
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Fig. 6. Performance comparison

The empirical evidence in Fig. 6 reveals a consistently higher accuracy of
NOODLES both in community discovery and link prediction on the chosen data
sets. This substantiates the rationality of using topic modeling for a tighter and
more accurate integration of community discovery and role analysis.

6.3 Qualitative Evaluation

Here, we demonstrate the behavior of NOODLES on real-word social media,
through a case study developed from the inspection of its results on DBLP.
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Table 1. Summarization and interpretation of the topics found by NOODLES in DBLP

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6

(Networks) (Data mining) (AI) (Distributed
and parallel

computing)

(Databases) (Graphics)

network data learn multi queri model

wireless mine reinforc agent optim imag

sensor pattern kernel system process segment

mobil cluster activ plan databas detect

schedul topic metric task search face

Table 1 reports the 6 uncovered topics. Each topic is summarized by its top-5
most relevant (stemmed) words, whose clarity, specificity and coherence enable
the intuitive interpretations in brackets as fields of research in computer science.
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Fig. 7. Explanation of selected communities (a) and roles (b) in DBLP

Figure 7 provides an explanation of a selection of the detected communities
and roles via topic pertinence. Communities are mainly focused on respective
subsets of topics. Roles can be interpreted as expertise in corresponding research
fields.

Finally, Table 2 illustrates a summary of the communities of Fig. 7(a), that
includes their top-5 members with strongest involvement according to our DBLP
data set. It is evident that each community includes members, who are actively
involved in the underlying topics reported in Fig. 7(a).
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Table 2. Summarization of author involvement into the DBLP communities of
Fig. 7(a)

Community 1 Community 2 Community 3 Community 4

Jiawei Han Luc J. Van Gool Jeffrey D. Ullman David A. Maltz

Charu C. Aggarwal Josef Kittler Jennifer Widom Sudipta Sengupta

Philip S. Yu Krystian Mikolajczyk Philip S. Yu Aditya Akella

Christos Faloutsos Bastian Leibe Yannis E. Ioannidis Jitendra Padhye

Ravi Kumar Jurgen Gall Hector Garcia-Molina Balaji Prabhakar

7 Conclusions

We presented NOODLES, an innovative generative model of the relationships
among content topics, overlapping communities and roles in social media.

It is interesting to consider the attributes of nodes along with their textual
contents in the joint analysis of communities and roles in social media. Another
research line aims to advance social recommendation [5], by also accounting for
user communities, roles and reviews through suitable adaptations of NOODLES.
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Abstract. In this paper, we propose a model using generative adversar-
ial net (GAN) to generate realistic text. Instead of using standard GAN,
we combine variational autoencoder (VAE) with generative adversarial
net. The use of high-level latent random variables is helpful to learn
the data distribution and solve the problem that generative adversar-
ial net always emits the similar data. We propose the VGAN model
where the generative model is composed of recurrent neural network and
VAE. The discriminative model is a convolutional neural network. We
train the model via policy gradient. We apply the proposed model to the
task of text generation and compare it to other recent neural network
based models, such as recurrent neural network language model and Seq-
GAN. We evaluate the performance of the model by calculating negative
log-likelihood and the BLEU score. We conduct experiments on three
benchmark datasets, and results show that our model outperforms other
previous models.

Keywords: Generative adversarial net · Variational autoencoder
VGAN · Text generation

1 Introduction

Automatic text generation is important in natural language processing and arti-
ficial intelligence. For example, text generation can help us write comments,
weather reports and even poems. It is also essential to machine translation,
text summarization, question answering and dialogue system [18]. One popular
approach for text generation is by modeling sequence via recurrent neural net-
work (RNN) [18]. However, recurrent neural network language model (RNNLM)
suffers from two major drawbacks when used to generate text. First, RNN
based model is always trained through maximum likelihood approach, which
suffers from exposure bias [1]. Second, the loss function used to train the model
is at word level but the performance is typically evaluated at sentence level.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 92–103, 2018.
https://doi.org/10.1007/978-3-319-93037-4_8
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There are some research on using generative adversarial net (GAN) to solve the
problems. For example, Yu et al. [24] applies GAN to discrete sequence gener-
ation by directly optimizing the discrete discriminator’s rewards. Li et al. [14]
applies GAN to open-domain dialogue generation and generates higher-quality
responses. Instead of directly optimizing the GAN objective, Che et al. [2] derives
a novel and low-variance objective using the discriminator’s output that follows
corresponds to the log-likelihood. Lamb et al. [13] propose to provide D with
the intermediate hidden vectors of G rather than its sequence outputs, which
makes the model differentiable and achieves promising results in tasks like lan-
guage modeling and handwriting generation. The gumbel-softmax technique is
another approach to train GANs with discrete variables [11]. GAN based on
recurrent neural networks with gumbel-softmax output distributions is differen-
tiable. In GAN, a discriminative net D is learned to distinguish whether a given
data instance is real or not, and a generative net G is learned to confuse D by
generating highly realistic data. GAN has achieved a great success in computer
vision tasks [4], such as image style transfer [5], super resolution and imagine
generation [19]. Unlike image data, text generation is inherently discrete, which
makes the gradient from the discriminator difficult to back-propagate to the
generator [7]. Reinforcement learning is always used to optimize the model when
GAN is applied to the task of text generation [24].

Although GAN can generate realistic texts, even poems, there is an obvious
disadvantage that GAN always emits similar data [21]. For text generation, GAN
usually uses recurrent neural network as the generator. Recurrent neural network
mainly contains two parts: the state transition and a mapping from the state to
the output, and two parts are entirely deterministic. This could be insufficient
to learn the distribution of highly-structured data, such as text [3]. In order to
learn generative models of sequences, we propose to use high-level latent random
variables to model the observed variation. We combine recurrent neural network
with variational autoencoder (VAE) [10] as generator G.

In this paper, we propose a generative model, called VGAN, by combining
VAE and generative adversarial net to better learn the data distribution and
generate various realistic text.

2 Preliminary

2.1 LSTM Architecture

A recurrent neural network is a class of artificial neural network where connec-
tions between units form a directed cycle [18]. This allows it to exhibit dynamic
temporal behavior. Long short-term memory (LSTM) is an improved version
of recurrent neural network considering long-term dependency in order to over-
come the vanishing gradient problem. It has been successfully applied in many
tasks, including text generation and speech recognition [6]. LSTM has a archi-
tecture consisting of a set of recurrently connected subnets, known as memory
blocks. Each block contains memory cells and three gate units, including the
input, output and forget gates. The gate units allow the network to learn when
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to forget previous information and when to update the memory cells given new
information.

Given a vocabulary V and an embedding matrix W ∈ Rq×|V | whose columns
correspond to vectors; |V | and q denote the size of vocabulary and the dimension
of the token vector, respectively. The embedding matrix W can be initialized
randomly or pretrained. Let x denote a token with index k, e(x) ∈ R|V |×1

is a vector with zero in all positions except R
|V |×1
k = 1. Given an input

sequence Xs = (x1, x2, · · · , xT ), we compute the output sequence of LSTM
Ys = (y1, y2, · · · , yT ). When the input sequence passes through the embedding
layer, each token is represented by a vector: vi = W · e(xi) ∈ Rq×1. The relation
between inputs, memory cells and outputs are defined by the following equations:

i(t) = σ(Wixv(t) + Wihh(t−1) + Wicc
(t−1)) (1)

f (t) = σ(Wfxv(t) + Wfhh(t−1) + Wfcc
(t−1)) (2)

c(t) = f (t) � c(t−1) + i(t) � tanh(Wcxv(t) + Wchh(t−1)) (3)

o(t) = σ(Woxv(t) + Wohh(t−1) + Wocc
(t−1)) (4)

h(t) = o(t) � tanh(ct) (5)

where i(t) ∈ Rl×1, f (t) ∈ Rl×1, o(t) ∈ Rl×1 and h(t) ∈ Rl×1 represent the input
gate, forget gate, output gate, memory cell activation vector and the recurrent
hidden state at time step t; l is the dimension of LSTM hidden units, σ and tanh
are the logistic sigmoid function and hyperbolic tangent function, respectively.
� represents element-wise multiplication [6].

2.2 Variational Autoencoder

An autoencoder (AE) is an unsupervised learning neural network with the tar-
get values to be equal to the inputs. Typically, AE is mainly used to learn a
representation for the input data, and extracts features and reduces dimension-
ality [10]. Recently, autoencoder has been widely used to be a generative model
of image and text. The variational autoencoder is an improved version based
on the standard autoencoder. For variational autoencoder, there is a hypothesis
that data is generated by a directed model and some latent variables are intro-
duced to capture the variations in the observed variables. The directed model
p(x) =

∫
p(x|z)p(z) dz is optimized by using a variational upper bound:

− log p(x) = − log
∫

p(x|z)p(z) dz

≤ −KL(q(z|x)||p(z)) + Ez∼q(z|x)[log p(x|z)]
(6)

where p(z) is a prior distribution over the latent random variable z; The prior
distribution is unknown, and we generally assume it to be a normal distribution.
p(x|z) denotes a map from the latent variables z to the observed variables x,
and given z it produces a distribution over the possible corresponding values
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of x. q(z|x) is a variational approximation of the true posterior distribution.
let KL(q(z|x)||p(z)) denote the Kullback-Leibler divergence between q(z|x) and
p(z); The introduction of latent variables makes it intractable to optimize the
model directly. We minimize the upper bound of the negative log-likelihood to
optimize VAE. The training algorithm we use is Stochastic Gradient Variational
Bayes (SGVB) proposed in [10].

2.3 Generative Adversarial Nets

For generative adversarial nets, there is a two-sided zero-sum game between a
generator and a discriminator. The training objective of the discriminative model
is to determine whether the data is from the fake data generated by the gen-
erative model or the real training data. For the generative model, its objective
is to generate realistic data, which is similar to the true training data and the
discriminative model can’t distinguish. For the standard generative adversarial
networks, we train the discriminative model D to maximize the probability of
giving the correct labels to both the samples from the generative model and
training examples. We simultaneously train the generative model G to mini-
mize the estimated probability of being true by the discriminator. The objective
function is:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (7)

where z denotes the noises and G(z) denotes the data generated by the generator.
D(x) denotes the probability that x is from the training data with emprial
distribution pdata(x).

3 Model Description

3.1 The Generative Model of VGAN

The proposed generative model contains a VAE at every time step. For the stan-
dard VAE, its prior distribution is usually a given standard normal distribution.
Unlike the standard VAE, the current prior distribution depends on the hidden
state ht−1 at the previous moment, and adding the hidden state as an input is
helpful to alleviate the long term dependency of sequential data. It also takes
consideration of the temporal structure of the sequential data [3,22]. The model
is described in Fig. 1. The prior distribution zt = p1(zt|ht−1) is:

zt ∼ N(μ0,t, σ
2
0,t), where [μ0,t, σ

2
0,t] = ϕprior(ht−1) (8)

where μ0,t, σ2
0,t are the mean and variance of the prior Gaussian distribution,

respectively. The posterior distribution depends on the current hidden state. For
the approximate posterior distribution, it depends on the current state ht and
the current input xt: z′

t = q1(zt|xt, ht).

z′
t ∼ N(μ1,t, σ

2
1,t), where [μ1,t, σ

2
1,t] = ϕposterior(xt, ht) (9)
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Fig. 1. The structure of the generator Gθ. The generator is composed of LSTM
and VAE. xt denotes the input at time step t; ht denotes the LSTM hidden state;
N(μ0,t, σ

2
0,t) denotes the prior distribution; N(μ1,t, σ

2
1,t) denotes the approximate pos-

terior distribution; yt denotes the target output at time step t, which is the same as
xt+1. ot denote the estimated result. The dotted line denotes the optimization process
in the pre-training stage.

where μ1,t, σ2
1,t are the mean and variance of the approximate posterior Gaus-

sian distribution, respectively. ϕprior and ϕposterior can be any highly flexible
functions, for example, a neural network.

The derivation of the training criterion is done via stochastic gradient vari-
ational Bayes. We achieve the goal of minimizing the negative log-likelihood in
the pre-training stage by minimizing L(x1:T ):

L(x1:T )= − log p(x1:T ) =− log
∫

z1:T

q1(z1:T |x1:T , h1:T )
q1(z1:T |x1:T , h1:T )

T−1∏

t=0

p(xt+1|x1:t, z1:t) dz1:T

≤ − KL(q1(z1:T |x1:T , h1:T )||p1(z1:T |x1:T−1, h1:T−1))

+Ez1:T ∼q1(z1:T |x1:T ,h1:T )

[
T−1∑

t=0

log p(xt+1|x1:t, z1:t)

]

(10)
where p1 and q1 represent the prior distribution and the approximate posterior
distribution.

If we directly use the stochastic gradient descent algorithm to optimize
the model, there will be a problem that some parameters of the VAE are not
derivable. In order to solve the problem, we introduce the “reparameterization
trick” [10]. For example, if we want to get the samples from the distribution
N(μ1,t, σ

2
1,t), we will sample from a standard normal distribution ε ∼ N(0, I2)

and get the samples z′
t via z′

t = μ1,t + σ1,tε. Before the adversarial training, we
need to pre-train the generative model via SGVB. For example, given the input
Xs = (S, i, like, it), and the target output is Ys = (i, like, it,E), where S and E
are the start token and the end token of a sentence, respectively.
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Fig. 2. The illustration of the discriminator. The discriminator Dφ is trained by using
the true training data and the fake data generated by generator. The discriminator
contains the convolution layer, the max-pooling layer and the fully connected layer.

3.2 Adversarial Training of VGAN

The parameters of CNN are less than that of RNN and are easier to optimize.
CNN also has recently shown great success in text classification [8,9] and so we
choose the CNN as our discriminator instead of RNN in this paper.

Let vi ∈ Rk denote a k-dimension vector corresponding to the i-th word in
the sentence. v1:n = v1 ⊕ v2 ⊕ · · · ⊕ vn denote a sentence of length n, where
⊕ is the concatenation operator and v1:n ∈ Rn×k is a matrix. Then a filter
w1 ∈ Rh×k is applied to a window of h words to produce a new feature. For
example, ci = f(w1 · vi:i+h−1 + b) where ci is a feature generated by convolution
operation. f denotes a nonlinear function such as the hyperbolic tangent or
sigmoid; b is a bias term. When the filter is applied to a sentence v1:n, a feature
map c = [c1, c2, · · · , cn−h+1] is generated. We can use a variety of convolution
kernels to obtain a variety of feature maps. We apply a max-over-time pooling
operation to the features to get the maximum value c′ = max{c}. Finally, all
features are used as input to a fully connected layer for classification. After the
generator is pre-trained, we use the generator to generate the negative examples.
The negative samples and the true training data are combined as the input of
the discriminator. The training process of discriminator is showed in Fig. 2. In
the adversarial training, the generator Gθ is optimized via policy gradient, which
is a reinforcement learning algorithm [20,23]. The training process is showed in
Fig. 3. Gθ can be viewed as an agent, which interacts with the environment.
The parameters θ of this agent defines a policy, which determines the process of
generating the sequences.

Given a start token S as the input, Gθ samples a token from the generating
distribution. And the sampled word is as the input at the next time. A whole
sentence is generated word by word until an end token E has been generated or
the maximum length is reached. For example, given a start token S as the input,
the sequence Y1:T = (y1, y2, · · · , yT ) is generated by Gθ. In time step t, the state
st is the current produced tokens (y1, y2, · · · , yt−1) and the action at is to select
the next token in the vocabulary. After taking an action at, the agent updates
the state (y1, y2, · · · , yt). If the agent reaches the end, the whole sequence has
been generated and the reward will be assigned. During the training, we choose
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Fig. 3. The training process of the generator via policy gradient. The dotted line
denotes sampling a token from the output distribution. The sampled token is as the
input at the next time. START denotes a start token.

the next token according to the current policy and the current state. But there
is a problem that we can observe the reward after a whole sequence. When
Gθ generates the sequence, we actually care about the expected accumulative
reward from start to end and not only the end reward. At every time step, we
consider not only the reward brought by the generated sequence, but also the
future reward.

In order to evaluate the reward for the intermediate state, Monte Carlo search
has been employed to sample the remaining unknown tokens. In result, for the
finished sequences, we can directly get the rewards by inputting them to the
discriminator Dφ. For the unfinished sequences, we first use the Monte Carlo
search to get estimated rewards. To reduce the variance and get more accurate
assessment of the action value, we employ the Monte Carlo search for many
times and get the average rewards. The objective of the generator model Gθ is
to generate a sequence from the start token to maximize its expected end reward:

max
θ

J(θ) = E[RT |s0] =
∑

y1∈V

Gθ(y1|s0) · Q
Dφ

Gθ
(s0, y1) (11)

where RT denotes the end reward after a whole sequence is generated; Q
Dφ

Gθ
(si, yi)

is the action-value function of a sequence, the expected accumulative reward
starting from state si, taking action a = yi; Gθ(yi|si) denotes the generator
chooses the action a = yi when the state si = (y1, y2, · · · , yi−1) according to the
policy. The gradient of the objective function J(θ) can be derived [24] as:

∇θJ(θ) = EY1:t−1∼Gθ

⎡

⎣
∑

yt∈V

∇θGθ(yt|Y1:t−1) · Q
Dφ

Gθ
(Y1:t−1, yt)

⎤

⎦ (12)
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we then update the parameters of Gθ as:

θ ← θ + α · ∇θJ(θ) (13)

where α is the learning rate. After training the generator by using policy gradient,
we will use the negative samples generated by the updated generator to re-train
the discriminator Dφ as follows:

min
φ

−EY ∼pdata
[log Dφ(Y )] − EY ∼Gθ

[log(1 − Dφ(Y ))] (14)

The pseudo-code of the complete training process is shown in Algorithm 1. In this
paper, we propose the VGAN model by combining VAE and GAN for modeling
highly-structured sequences. The VAE can model complex multimodal distribu-
tions, which will help GAN to learn structured data distribution.

Algorithm 1. Generative Adversarial Network with Latent Variable

Require: generator: Gθ;
discriminator: Dφ;
True training dataset: X;

1 : Pre-train Gθ on X by Eq. (10);
2 : Generate negative samples Y by using Gθ;
3 : Pre-train Dφ on X and Y by minimizing the cross entropy;
4 : Repeat:
5 : for 1 ∼ m do
6 : generate the data Y1 by using Gθ;
7 : use Dφ to get the reward of Y1;
8 : update the parameters θ of Gθ by Eq. (13);
9 : end for
10: for 1 ∼ n do
11: use Gθ to generate negative samples Y2;
12: update the parameters φ of Dφ on X and Y2 by Eq. (14);
13: end for
14: Until: VGAN converges.

4 Experimental Studies

In our experiments, given a start token as input, we hope to generate many
complete sentences. We train the proposed model on three datasets: Taobao
Reviews, Amazon Food Reviews and PTB dataset [17]. Taobao dataset is crawled
on taobao.com. The sentence numbers of Taobao dataset, Amazon dataset are
400 K and 300 K, respectively. We split the datasets into 90/10 for training and
test. For PTB dataset is relatively small, the sentence numbers of training data
and test data are 42,068 and 3,370.

http://taobao.com
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4.1 Training Details

In our paper, we compare our model to two other neural models RNNLM [18] and
SeqGANs [24]. For these two models, we use the random initialized word embed-
dings, and they are trained at the level of word. We use 300 for the dimension of
LSTM hidden units. The size of latent variables is 60. For Taobao Reviews and
PTB dataset, the sizes of vocabulary are both 5 K. For Amazon Food Reviews,
the size is 20 K. The maximum lengths of Taobao Reviews, PTB dataset and
Amazon Food Reviews are 20, 30 and 30, respectively. We drop the LSTM hidden
state with the dropout rate 0.5. All models were trained with the Adam optimiza-
tion algorithm with the learning rate 0.001. First, we pre-train the generator and
the discriminator. We pre-train the generator by minimizing the upper bound
of the negative log-likelihood. We use the pre-trained generator to generate the
negative data. The negative data and the true training data are combined to be
the input of the discriminator. Then, we train the generator and discriminator
iteratively. Given that the generator has more parameters and is more difficult
to train than the discriminator, we perform three optimization steps for the dis-
criminator for every five steps for the generator. The process is repeated until a
given number of epochs is reached.

Table 1. BLEU-2 score on three benchmark datasets. The best results are highlighted.

Numbers of generated sentence 200 400 600 800 1000

RNNLM (Taobao) 0.965 0.967 0.967 0.967 0.967

SeqGAN (Taobao) 0.968 0.970 0.970 0.968 0.968

VGAN-pre (Taobao) 0.968 0.968 0.967 0.968 0.968

VGAN (Taobao) 0.969 0.972 0.970 0.969 0.969

RNNLM (Amazon) 0.831 0.842 0.845 0.846 0.848

SeqGAN (Amazon) 0.846 0.851 0.852 0.853 0.856

VGAN-pre (Amazon) 0.842 0.849 0.854 0.849 0.848

VGAN (Amazon) 0.876 0.874 0.866 0.868 0.868

RNNLM (PTB) 0.658 0.650 0.654 0.655 0.662

SeqGAN (PTB) 0.712 0.705 0.701 0.702 0.681

VGAN-pre (PTB) 0.680 0.690 0.694 0.695 0.671

VGAN (PTB) 0.715 0.709 0.714 0.715 0.695

4.2 Results and Evaluation

In this paper, we use the BLEU score and negative log-likelihood as the eval-
uation metrics. BLEU score is used to measure the similarity degree between
the generated texts and the human-created texts. We use the whole test data
as the references when calculating the BLEU score via nature language toolkit
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(NLTK). For negative log-likelihood, we calculate the value by inputting the test
data. Table 2 shows the NLL values of the test data. VGAN-pre is the pretrained
model of VGAN.

NLL = −E

[
T∑

t=1

log Gθ(yt|Y1:t−1)

]

(15)

where NLL denotes the negative log-likelihood;

Table 2. The comparison results (NLL) of VGAN to other models.

Dataset Taobao dataset Amazon dataset PTB dataset

RNNLM [18] 219 483 502

SeqGAN [24] 212 467 490

VGAN-pre 205 435 465

VGAN 191 408 423

Table 1 shows the experimental results of BLEU-2 score, and numbers in
Table 1 denote the numbers of the sentence generated. We calculate the average
BLEU-2 score between the generated sentences and the test data. The descent
processes of NLL values during the adversarial training are showed in the Fig. 4.
From the experiment results, we can know that the training convergence is not
very good. Because the training objective of GAN is inherently unstable and
we optimize the model via reinforcement learning, which has high variance, and
they lead to conditions that the training convergence is difficult. Here, we give
some examples generated by the proposed model. Due to the page limit, only
some of generated comments from Amazon Food Reviews are shown in Table 3
and more results will be available online in the final version of the paper. From
Tables 1 and 2, we can see the significant advantage of VGAN over RNNLM
and SeqGAN in both metrics. The results in the Fig. 4 indicate that applying
adversarial training strategies to generator can breakthrough the limitation of
generator and improve the effect.

(a) Taobao Reviews (b) Amazon Food Reviews (c) PTB Data

Fig. 4. (a) NLL values of Taobao Reviews. (b) NLL values of Amazon Food Reviews.
(c) NLL values of PTB Data.
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Table 3. Generated examples from Amazon Food Reviews using different models.

RNNLM 1. This is a great product, if you liked canned jerky but this is probably
okay because your taste is great too
2. We’ll left never eating a bit of more bars. Will definitely buy again
3. But my friends and i love it mixes and they are hard in colored tap up;
4. We love this product, and our purchase was fast too
5. The soup is quite very good, its flax flavoring for the taste ... it is
pronounced and yummy

SeqGAN 1. How good it is that i’ll really cost again, this was my favorite
2. Service was super fast and good timely manner on each order
3. The risk is very important, but truly the best so, you’ll probably love it!
4. Each bag isn’t lower and use
5. I found that the seller was good to my own from amazon bags
practically very frozen

VGAN 1. You just ate in first, but that is the best thing
2. But that did give me a much healthier and healthy
3. The tea powder in need is based on the label and is very well as well
4. Chips ahoy cookies are very hard. This is just not very tasty. Not what
they say?
5. This is very nice and a little sweet. The red’s very fresh

5 Conclusions

In this paper, we proposed the VGAN model to generate realistic text based
on classical GAN model. The generative model of VGAN combines generative
adversarial nets with variational autoencoder and can be applied to the sequences
of discrete tokens. In the process of training, we employ policy gradient to effec-
tively train the generative model. Our results show that VGAN outperforms two
strong baseline models for text generation and behaves well on three benchmark
datasets. In the future, we plan to use deep deterministic policy gradient [15] to
train the generator better. In the addition, we will choose other models as the
discriminator such as recurrent convolutional neural network [12] and recurrent
neural network [16].
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Abstract. Effective reuse of existing crowdsourced intelligence present in
Community Question Answering (CQA) forums requires efficient approaches
for the problem of Duplicate Question Detection (DQD). Approaches which use
standalone encoded representations for each of the questions in the question pair
fail to use the cross question interactions between the two questions which
impacts their performance adversely. In this paper, we propose two new
schemes for DQD task. Our first approach leverages semantic relations and our
second approach utilizes fine grained word level interactions across the two
question sentences. We achieve test accuracy of 75.7% and 77.8% with our first
and second approaches respectively on a publicly available DQD data set,
demonstrating that cross question analysis information can help aid DQD task
performance.

Keywords: Natural language processing � Neural Networks
Duplicate detection

1 Introduction

Community Question Answering (CQA) services are rich repositories of crowd
sourced wisdom, sharing expert knowledge available 24 � 7, without boundaries.
Since many users have similar informational needs, many of the new questions arising
in these forums typically have already been asked and answered. Hence identifying
duplicate questions is an essential requirement for ideal user experience in CQA for-
ums. Providing similar/related questions still requires the user to browse through all the
similar Q&A. Instead, identifying a pre-existing already answered duplicate question
will result in the actual answer being displayed immediately to the user.

Identifying duplicate questions is a challenging task. Two questions with identical
information needs can have widely different surface forms. For instance, one user may
pose a question as ‘does drinking coffee increase blood pressure?’ whereas another may
pose the question as ‘has there been any known link between caffeine intake and
hypertension?’ These two questions while meeting the same information need, have
poor lexico-syntactic similarity. On the other hand, consider the question pair:
Q1: ‘Can you suggest some good multi-cuisine restaurants in Paris?’
Q2: ‘Can you recommend some good multi-cuisine restaurants in London?’
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This pair while having high coarse grained semantic similarity are not duplicate
questions since they satisfy totally different information needs. We focus on the
problem of Duplicate Question Detection (DQD) in this paper.

There has been considerable work in the areas of paraphrase identification [1],
textual entailment recognition [2], natural language inference [3–12] and semantic text
similarity detection [9] which are closely related to the DQD problem. There has also
been considerable work in similar question retrieval in CQA forums [13–23]. Most of
the earlier work has based its foundation on some form of coarse grained semantic
similarity measurement by creating a standalone representation of each sentence and
then comparing these representations for semantic similarity [3]. While being con-
ceptually simple, it does not leverage cross sentence interactions. Building upon these
earlier approaches, we base our approaches intuitively on how humans would approach
the task of duplicate question detection. We hypothesize that instead of comparing the
two question sentence representations in isolation, humans typically tend to do cross
sentence level checking for matches/mismatches. Hence we propose two new neural
network based approaches for DQD task in CQA forums.

Our first scheme is based on using relation level matching at cross-question level to
aid duplicate question detection. We call this scheme as REL-DQD (Relation aided
Duplicate Question Detection). Our second scheme BraidNet-DQD is based on the
notion that humans tend to focus on cross word level interaction for corresponding
semantic similarity. We show that our two schemes achieve test accuracy of 75.7% and
77.8% respectively on a partition of the QUORA dataset [24].

The rest of the paper is organized as follows: In Sect. 2, we describe our two
approaches. In Sect. 3, we discuss our experimental results. In Sect. 4, we provide a
brief overview of related work and conclude in Sect. 5.

2 Description

In this section, we describe our two proposed approaches for this problem namely,

• Relation aided Duplicate Question Detection (REL-DQD)
• Braid Network for Duplicate Question Detection (BraidNet-DQD)

While these are independent approaches, exploring two totally different design
choice points among the wide spectrum of techniques and implementation choices
available for duplicate question detection, they follow the general architecture shown in
Fig. 1. As in many earlier works, each question is processed and a fixed length indi-
vidual sentence representation is built. However in addition to the individual sentence
analysis in isolation, the model also makes use of cross sentence analysis.

2.1 Relation Aided Duplicate Question Detection (REL-DQD)

The overall block diagram of REL-DQD is shown in Fig. 2. It consists of the standard
components of word embedding module, individual question representation module
and the standard Multi-Layer Perceptron (MLP) Classifier module, which can be found
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in any typical Natural Language Sentence Matching pipeline. The additional compo-
nents shown in bold in Fig. 2 are unique to our approach. These include the relation
extractor module, relation aggregator module and relation conditioning module.

The key idea is to extract the semantic relations from each of the question sen-
tences, and use the encoded relations as an additional aid in final sentence represen-
tations. Relation extractor module extracts the semantic relations from each question.
The relations are encoded in relation encoder and the output of the relation encoders are
aggregated in the relation aggregator module. The relation encoder outputs are also fed
to the relation conditioning module. This builds the cross sentence relation conditioned
representation of the each of the question sentences. The outputs of the relation con-
ditioning modules along with the relation aggregator module output are fed to the MLP
classifier module. We next briefly describe the individual blocks of our approach.

The relation extractor module takes each question in the question pair and extracts
the semantic relations from it. Relation extractor is built using a combination of
off-the-shelf of semantic relation extractor as well as hand coded relation extractor from

Aggregation module

Cross sentence analysis module

Classifier

Sentence representation

Question 1

Input

Output

Question 2

Fig. 1. General block diagram for our DQD approaches
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MLP
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Output

Relations 
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Fig. 2. REL-DQD block diagram
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the dependency information extracted from the sentence. The semantic relations are
expressed as a relation triple <subject, relation, object>. We used the Stanford Open
Information Extractor which is part of the Stanford CoreNLP toolkit [25] for extracting
semantic relations. Since Stanford OpenIE extractor [26] is able to extract valid rela-
tions only in 77% of our dataset, we also created a hand coded relation extractor using
rules on the dependency parse trees. The hand crafted relation extractor uses the
extracted subject, object nodes in the dependency parse tree and the dependency path
between the nodes as the relation. The task of the embedding layer is to generate the
sentence matrix given a textual sentence. In the embedding layer, the word embedding
sentence matrix is built for the two questions in the question pair using word
embedding [29]. For each of the relations extracted also, the sentence embedding
matrix is built and output from the embedding layer.

As is common practice in several NLP tasks, we use Recurrent Neural Networks
(RNNs) with Long Short-Term Memory (LSTM) [27] units as our encoders for the
basic sentence representation. Each question sentence is then encoded using a LSTM
(referred to as Q1 LSTM and Q2 LSTM in Fig. 2). Each relation is also encoded using
LSTM (denoted as REL1 LSTM and REL2 LSTM in Fig. 2). The key advantage of
LSTM is that it contains memory cells which can store information for a long period of
time and hence does not suffer from the vanishing gradient problem. We denote the
encoded Question representations as HQ1 and HQ2. Similarly the encoded relation
representations are denoted as HR1 and HR2.

Relation Aggregator module takes the encoded relation representations as input and
outputs the aggregated relation as concatenated weighted output of [HR1, HR2. Diff
(HR1, HR2), Prod (HR1, HR2)] where Diff is the element wise difference and Prod is the
element-wise multiplication. Thus the output of Relation Aggregator is denoted by

HRA ¼ WRA½HR1;HR2;Diff HR1;HR2ð Þ; Prod HR1;HR2ð Þ� ð1Þ

The relation encodings are also fed to the relation conditioning module to build
cross sentence conditioned representation of the question. Let YQ1 be the output matrix
produced from Q1-LSTM and YQ2 be the output matrix produced from Q2-LSTM
encoders. The output of the relation conditioning module is generated as follows:

M1 ¼ tanh WqYQ1 þWrHR2
� � ð2Þ

a ¼ softmax WTM1
� � ð3Þ

O1 ¼ aYQ1 ð4Þ

The above equations are for generating cross sentence relation conditioned repre-
sentation for Question Q1 using cross sentence relation R2. The equations for Question
Q2 in the question pair would be similar with subscript 1 replaced by subscript 2 and
vice versa. The relation conditioning module output and the relation aggregator module
output are then concatenated and fed to the MLP classifier. Hence the input the MLP
classifier would be [O1, O2, HRA]. The MLP classifier is a standard multi-layer fully
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connected feed forward network, with the last layer being a softmax layer with 2 units.
Next we describe our BraidNet-DQD scheme.

2.2 BraidNet Duplication Question Detection Scheme (BraidNet-DQD)

Our second scheme BraidNet attempts to capture cross sentence word level interactions
by braiding the representation of the words from each of the two questions in pair and
hence the name BraidNet. The overall block diagram of the BraidNet is shown in
Fig. 3. As in the case of REL-DQD, we use Recurrent Neural Networks with Long
Short Term Memory Units (LSTM) [27] to obtain the sequential representations.

As mentioned before, the key idea is to enhance the standalone question sentence
representations by representing the cross sentence word interactions. In our current
approach, cross sentence word level interactions are obtained by taking the difference
and Hadamard product of each the word pairs from the two questions in the question
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pair. Given a question pair <Q1, Q2> with question sequence of length Ls words, the
first stage of BraidNet creates word interaction matrix of size (Ls � Ls), one for
Hadamard product (element wise multiplication), and one for vector element wise
difference of each word embedding pair from the two questions. The first column of the
(Ls x Ls) word interaction matrix captures the interaction of word 1 of Q1 w.r.to all the
words of Q2, second column captures the interaction of word2 of Q1 with respect to all
the words of Q2 and so on. In Fig. 3, we use the notation (Q1*Q2) to indicate Q1 and
Q2 cross sentence word pair interactions.

Next stage of BraidNet consists of a set of LSTM units for encoding the word
interaction matrices in addition to the standalone Q1 sentence embedding. We call
these LSTM encoders as Stem LSTMs as it is the starting point of braiding the inter
sequence interaction representation. There is a mirror image of the stem LSTM stage
which takes the word interaction matrices (with Q1 and Q2 roles swapped) and the
standalone Q2 sentence embedding, shown in the bottom left half of the Fig. 3.

Next stage houses the coupling LSTMs. Coupling LSTMs combine the outputs
from the stem LSTM stage. Each of the stem LSTM unit encodes the word interaction
level product matrix, word interaction difference matrix and the standalone question
embedding for question Q1 and outputs the corresponding encoded representation.
These three outputs are combined and encoded by the coupling LSTM stage. As in the
case of stem LSTM stage, there is a mirror image coupling LSTM which performs the
same task for the question Q2 taking inputs from the mirrored stem LSTM stage. The
outputs of the coupling LSTMs are then aggregated in the aggregator LSTM, and the
output of the aggregator LSTM is fed to the Multi-Layer Perceptron Classifier.

We also studied a second variant of the BraidNet scheme (named as BraidNet
Variant-2), which is shown in Fig. 4. Instead of constructing and feeding the word
interaction level matrices (namely element wise product and element wise difference) to
first stage Stem LSTMs, we encode each word pair sequence through stem LSTM
directly to encode word pair sequences. This results in (Ls x Ls) stem LSTMs. The
outputs of the stem LSTMs are combined into Ls length sequences and fed to Coupling
stage LSTMs (there are Ls coupling LSTMs) as shown in Fig. 4. The outputs of
coupling LSTMs are combined along with standalone Q1, Q2 representations in the
aggregator LSTM. The output of the aggregator LSTM is fed to the MLP classifier.

3 Experiments

3.1 Dataset

We used a partition of the publicly available Quora Duplicate Question Pairs data set
[24]. Our dataset partition consists of 130000 question pairs selected randomly from
the original Quora data set (this was done due to the resource constraints on our
hardware infrastructure). The distribution of positive and negative examples in our
partition was 54% and 46% respectively. We do not use any hand crafted features or
magical features. We used a training data size of 100000 question pairs, with test set of
20,000 and 10000 question dev set for selecting hyper-parameters.
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3.2 Experimental Setup

We have implemented our models using the TensorFlow library [28]. For both
REL-DQD and BraidNet-DQD, the model training objective is cross-entropy loss. We
use an Adam Optimizer with a learning rate of 0.001 and batch size of 32 for both our
schemes. Dropouts are applied in-between the feed forward layers in the MLP classifier
with drop-out rates randomly chosen in the range between (0.1, 0, 6). We used standard
pre-trained word embeddings [29] which were not modified during training of the
duplicate question detection task. Out of vocabulary words were handled by randomly
initialized embeddings generated by sampling values uniformly from −0.05 and 0.05.
The question sequences were pruned to a sequence of length 20, selected as part of
Hyper-parameter tuning. We used the standard L2 regularization with L2 regularization
strength of 0.001. In REL-DQD scheme, the hidden size for all LSTMs was 64 and the
MLP classifier consists of 3 fully connected layers (256, 256, 256) dimensions
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followed by softmax. For BraidNet Variant-1, we used LSTM hidden size as 64, with
MLP classifier dimensions of (256, 256, 2). For Variant-2, stem LSTM hidden size was
2, coupling LSTM hidden size was 20 and MLP classifier dimensions were (256, 128,
64, and 2).

3.3 Experimental Results

We report the results for our two approaches in Table 1. In order to put our numbers in
perspective, we also report four other models from earlier work for comparison. These
models are respectively referred to as Bowman LSTM fixed length representation [3],
Attention LSTM [5], Attention word by word [5], and Bilateral Multi-Perspective
Matching (BMPM) [9]. We implemented these models for comparison and their per-
formance numbers are obtained by running these models on our selected dataset par-
tition. We find that among our approaches, BraidNet Variant-1 achieves the best
performance of 77.8%, followed by REL-DQD scheme which achieves a test accuracy
of 75.7%. BraidNet Variant-2 achieves a test accuracy of 70.2%. In comparison to
earlier models, we find that BraidNet Variant-1 performs better than Bowman LSTM,
Attention LSTM and Attention word by word models and achieves results close to
BMPM model [9], which is the current state of the art in sentence pair modelling task.
Though our performance numbers are lower than that of state of the art BMPM model,
our approach of using cross sentence information is complementary to BMPM model
and can be combined with it. We plan to explore this in future work.

As we mentioned before, approaches using standalone representations of the
questions perform poorly because cross sentence interactions are not taken into
account. Attention LSTM [5] which implements a coarse grained form of cross sen-
tence attention and word by word attention LSTM model [5] improve further over
Bowman LSTM model [3]. We find that conditioning input questions on cross sentence
semantic relations definitely improves performance as seen by REL-DQD achieving
75.7%.

We hypothesize that BraidNet Variant-1 achieves better performance by effectively
capturing cross sentence word level interactions. We note that though semantic rela-
tions help to condition fixed length representations, they are still coarse grained,
compared to fine grained word level cross sentence interaction modeling. This can

Table 1. Experimental results

Model Test accuracy

Bowman LSTM [3] 65.7%
Attention LSTM [5] 67.1%
Word by word attention LSTM [5] 69.4%
BraidNet Variant-2 70.2%
REL-DQD 75.7%
BraidNet Variant-1 77.8%
BMPM [9] 79.1%
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explain why BraidNet_Variant-1 performs better than REL-DQD. When we compare
BraidNet Variant-1 and Variant-2 representations, we find that we encode the cross
sentence word level interactions into fixed length representations at a much earlier stage
in Variant-2 and this is probably why Variant-2 performs poorly compared to
Variant-1.

For REL-DQD, we also studied the effect of using only the off-the-shelf relation
extractor vs a combination of off-the-shelf extractor and hand-coded relation extractor.
We find that using only the Stanford OpenIE extractor [26] reduced the test accuracy
by 1.1%. The results reported in Table 1 for REL-DQD is with using the off the shelf
extractor along with the dependency path based hand coded relation extractor. This
indicates that improving the relation extraction with better relation extractor tools
should help further in improving the performance of REL-DQD, and we plan to explore
other open information extractor tools for improving the relation extraction.

4 Related Work

We discuss the related work along the two dimensions of (i) Similar Question Retrieval
and (ii) Natural Language Sentence Matching.

4.1 Similar Question Retrieval

Similar question retrieval is closely related to duplicate detection, but has more degrees
of freedom since it needs to output a ranked list of related/similar questions instead of
labelling a given question pair. Classical information retrieval model based techniques
such as BM25 [13] and Language Modeling for information Retrieval (LMIR) [14]
have been proposed in the past. Prior approaches have attempted to use word or phrase
level translation models from Question-Answer pairs in parallel corpora of same lan-
guage [15]. Topic model based approaches are based on learning latent topics from
question-answer pairs and compute the similarity in the latent topic space [16, 17].
Recently, many neural network architectures have also been proposed [18–20].

4.2 Natural Language Sentence Matching

Semantic textual similarity, Natural Language Inference, Textual Entailment Recog-
nition, Paraphrase Identification fall under the broad umbrella of Natural Language
Sentence Matching (NLSM). Some of the earlier work on NLSM focused on building
classifiers using hand crafted features such as N-gram overlap, word reordering and
syntactic structural alignment [2]. The release of Stanford Natural Language Inference
Corpus [3], a sufficiently large annotated data set for Natural Language Inference, saw
many neural network models being employed for the task of Natural Language
Inference [3–12]. Initial work was based on Siamese architecture wherein the each of
the two sentences were encoded into fixed length sentence vectors and the
entailment/paraphrase relation between sentences were solely decided by comparing
the fixed length sentence vectors [3]. Building separate independent representations for
each sentence does not capture the cross sentence interaction features between the two
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sentences. Later attention models were introduced which are used to capture the word
level alignment across the sentences [5, 9]. Our two approaches build upon these earlier
works adding in cross sentence relational features as well as word level interactions
across the sentences.

5 Conclusion and Future Work

In this paper, we highlight the importance of duplicate question detection task and
propose two new schemes for improving performance for DQD problem. We
demonstrate by our experiments that using cross sentence analysis information such as
semantic relations, word level interactions across sentences to fine-tune the standalone
individual question representations helps to improve performance in duplicate question
detection. As part of future work, we propose to investigate cross sentence relations
using distant supervision in terms of external information sources.
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Abstract. This paper designs a strategic model used to optimize click-
though rates (CTR) for profitable recommendation systems. Approxi-
mating a function from samples as a vital step of data prediction is
desirable when ground truth is not directly accessible. While interpola-
tion algorithms such as regression and non-kernel SVMs are prevalent in
modern machine learning, they are, however, in many cases not proper
options for fitting arbitrary functions with no closed-form expression.
The major contribution of this paper consists of a semi-parametric graph-
ical model complying with properties of the Gaussian Markov random
field (GMRF) to approximate general functions that can be multivari-
ate. Based upon model inference, this paper further investigates sev-
eral policies commonly used in Bayesian optimization to solve the multi-
armed bandit model (MAB) problem. The primary objective is to locate
global optimum of an unknown function. In case of recommendation,
the proposed algorithm leads to maximum user clicks from rescheduled
recommendation policy while maintaining the lowest possible cost. Com-
parative experiments are conducted among a set of policies. Empirical
evaluation suggests that Thompson sampling is the most suitable policy
for the proposed algorithm.

Keywords: Multi-armed bandit · Markov random field
Bayesian network · Recommendation system · Machine learning

1 Introduction

This paper addresses the problem of quickly locating global maxima of an
unknown stochastic function. A typical scenario where this problem draws atten-
tion is a newly built recommender system, which at cold start has no prior
knowledge about upcoming popularity of its candidate items. In such a case, it
is a demanding task that a recommendation engine quickly learns an accurate
c© Springer International Publishing AG, part of Springer Nature 2018
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model discriminating between user favored items and unpopular ones. Click-
through rate (CTR) as common metric on item popularity can be interpreted
as probability that an item gets valid user response. When CTRs are treated
as discrete function outputs, the global maxima is of our best interest for opti-
mal decisions. So a predictive model is beneficial if it learns only a few samples
and estimates function values since sampling CTR statistics online is expen-
sive due to unbounded advertising fee. This paper sets up scenario that a rec-
ommender system learns optimal strategy to maximize expected reward under
budget constraint assuming pay-per-click profit. Budge refers to the number
of items a recommender is allowed to push, each standing for one-time user
visit, or “impression”. Solution consists of two components. The first compo-
nent, as major contribution of this paper, is a semi-parametric graphical model
provably with fundamental property of a typical Gaussian Markov random field
(GMRF) [3]. It is a predictive model in which CTRs of candidate items can be
treated as indexable discrete random variables whose values are subject to a
function of their indices. This function is called environment. This paper also
assumes that practical environment is noisy and produces stochastic outputs.
A graphical model has a runtime complexity constrained by its node count,
compared to non-parametric models such as Gaussian process regression whose
model size grows with the amount of training data. Experiments show that it
maintains effective inference even in the case of data sparsity resulting from
high dimensionality. The second solution component is decision making policies.
To select the best random variable based on model inference, the multi-armed
bandit (MAB) concept is used to seriously weigh exploitation-exploration trade-
off [6,9,14,18] for optimal reward. We set up three meta-policies: acquisition
functions, epsilon greedy strategy and Thompson sampling. Empirical outcomes
show that Thompson sampling [15] is the best policy to work with the proposed
graphical model.

The rest of the paper is structured as follows. First the GMRF model is
defined in detail along with its inference process. Second MAB decision making
policies used in the experiments are introduced. Then the complete algorithm
is described along with experiment outcomes on theoretical environment. Next
comes the adapted algorithm for real CTR test benches. Experiments on test
bench data are also discussed before the paper comes to conclusion.

2 Model Definition

2.1 General Function Approximation

Function approximation in general cases can be defined as follows. Given a set
of data samples {(i, r) | r = f(i)} where f is ground truth representing the
environment, we attempt to learn from data samples a model f̂ so that for any
i ∈ R

d, f̂(i) ≈ f(i). In practice i is a discrete index i ∈ Dd where Dd is the
index space in d dimensions. The set of samples in this paper is defined as S.

S = {(i, ri) | ri = f(i), i ∈ Dd} (1)
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Fig. 1. Graphical model assumptions

The goal of optimization is to learn from S an estimated truth function f̂(i)
so that argmaxi f̂(i) = argmaxi f(i), i.e., argmaxi ŷi = argmaxi ri. It is also
necessary to be aware that sampling (i, ri) from environment incurs extra cost
and

∣
∣S

∣
∣ is thereby to be minimized.

2.2 Graphical Model Representation

This section defines the proposed graphical model, its probability interpretation
and inference methods.

Markov Property. The first assumption is Markov property among nodes yi

in the Markov random field with Fig. 1(a) as an example, where yi stands for
a hidden node or target node that infers probability distribution of f(i) in (1).
For problems in this paper, we appreciate local Markov property provided by a
Markov random field.

A hidden node probability conditioned on all its neighbors is independent
from any non-adjacent node, or yv � yu/∈Jv

∣
∣{yu′∈Jv

}. In other words, belief of a
hidden node does not propagate towards non-adjacent nodes given all its neigh-
bors. The joint distribution is computed in clique factorization where a clique
is defined as a fully connected subgraph. In Fig. 1(a) one clique only consists
of two adjacent nodes. The clique joint probability is defined using a Gaussian
function p(yi, yi+1|γy) = exp[−γy

2 (yi+1 − yi)2]. Here γy constrains the bonding
strength between neighbors. Joint density over the field can be a product from
all the cliques with y standing for the target node list.

p(y|γy) =
n−1∏

i=1

exp(−γy

2
(yi+1 − yi)2) =

∏

i,j∈E

exp(−γy

2
(yi − yj)2) (2)

In general cases, graph nodes yi are not necessarily linearly connected as in the
particular example of Fig. 1(a). A more comprehensive expression of Markov
joint density is expressed as (2) in factors of connected node pairs with E being
the edge set.
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Bayesian Property. Markov assumption above assumes that all the observed
nodes are known. In practice values of observed nodes ri are sampled as a reward
list during learning process and certainty of yi is under impact of multiple sam-
ples. So in addition to inter-node joint density, we introduce Bayesian property
as the second assumption to take belief propagation from observed nodes into
consideration. Figure 1(b) denotes the Bayesian network that models such prop-
erty. Under Bayesian assumption, every target node yi is conditioned on some
prior α with bonding strength γ0. The reward list of yi is represented by nodes
ri separately indexed from 1 to mi. Observed nodes ri are conditionally inde-
pendent given their hidden node yi. Similar to the Markov random field we
assign bonding coefficient γ between an observed node ri and its target node yi.
Figure 1(b) also provides plate notation of the Bayesian network when there are
n target nodes and m observations under a target node.

Factorization property of a Bayesian network says the joint distribution of a
target node yi and its children r

(i)
j are defined below.

p(r(i), yi|γ, γ0, α) = p(yi|γ0, α)
mi∏

j=1

p(r(i)j , yi|γ, yi) (3)

In (3), r(i) is the reward list of yi and r
(i)
j is the jth observation. Computing the

product of likelihood over observations using (3) gets expensive as sample size
increases. Since we are more interested in the distribution of observations r(i)

than individual reward samples r
(i)
j , we approximate every r

(i)
j into the mean of

r(i) so as to eliminate child indices of yi.

p(r(i), yi|γ, γ0, α) = p(yi|γ0, α)[p(μi, yi|γ, yi)]mi (4)

= exp[−1
2
γ0(yi − α)2] exp[−mi

2
γ(yi − μi)2] (5)

where μi = (
mi∑

j=1

r
(i)
j )/mi (6)

Similar to (2), joint density between connected nodes are modeled with Gaus-
sian functions subject to bonding strength with (5). We further work on (5) by
expanding all the terms in the exponential part.

p(r(i), yi|γ, γ0, α) = exp
{

−1
2
[miγ(yi − μi)2 + γ0(yi − α)2]

}

(7)

= exp
{

−1
2
[(miγ + γ0)y2

i − (2γmiμi + 2γ0α)yi + γ0y
2
i + miγμ2

i + γ0α
2]

}

(8)

= exp
{

−1
2
(miγ + γ0)[y2

i − 2γmiμi + 2γ0α

miγ + γ0
yi + C]

}

(9)

Expression (9) indicates that the constant C can easily be scaled so that the
exponential term can be rewritten into a perfect square with respect to yi.
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Fig. 2. Final graphical model - Gaussian Markov Random Field

p(r(i), yi|γ, γ0, α) = exp
{

−1
2
γ̃i(yi − μ̃i)2 + C ′

}

(10)

= exp {C ′} exp
{

−1
2
γ̃i(yi − μ̃i)2

}

(11)

where γ̃i = miγ + γ0 and μ̃i =
γmiμi + γ0α

miγ + γ0
(12)

Expression (12) proves that the complete Bayesian network can be remodeled
with only one edge parameter and interpolated sample mean μ̃i, whose values
are μi rescaled by γ, γ0 and α. The finally simplified Bayesian network is also
displayed in Fig. 1(b).

Final Representation. The final graphical model as Fig. 2 is a consolidated
graph containing both the simplified Bayesian component in Fig. 1(b) and the
Markov random field in Fig. 1(a). This graph is used to infer distinct distributions
of every target node yi based on interpolated means μ̃i calculated from samples
on yi, meanwhile modeling covariance among yi as Gaussian kernels. This is
equivalent to saying that random vector y = [y1, y2, . . . , yn] is in multivariable
Gaussian distribution. Therefore node set {yi} constitutes a Gaussian Markov
Random Field (GMRF). Total joint probability p(y, r|α, γy, γ0, γ) of the final
graph is computed as product of Bayesian probability in (10) for every target
node and Markov joint density counting every edge using (2).

p(y, r|α, γy, γ0, γ) = p(y|γy)
∏

i

[

p(r(i), yi|γ, γ0, α)
]

(13)

To make (13) explicit, we now replace both probability parts with (11) and (2)
ignoring the constant factor.

p(y, r|α, γy, γ0, γ) ∝
{∏

i

exp

[
−1

2
γ̃i(yi − μ̃i)

2

]} { ∏
i,j∈E

exp
[
−γy

2
(yi − yj)

2
]}

(14)

In (14) i, j refers to an edge connecting yi, yj given the edge set E and indices
i, j ∈ Dd can be d-dimensional as indicated in (1). A typical GMRF node yi
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has an increasing count of neighbors as dimension d goes up as is shown in
Fig. 2. For instance there are 4 neighbors non-edge nodes in a 2-dimensional
graph and 6 in 3-dimensional case. To continue working on (14), we take the
log likelihood of joint probability p(y, r|α, γy, γ0, γ) as final interpretation of the
graph likelihood.

ln p(y, r|α, γy, γ0, γ) ∝
∑

i

{

−1
2
γ̃i(yi − μ̃i)2

}

+
∑

i,j∈E

{

−γy

2
(yi − yj)2

}

(15)

2.3 Graphical Model Inference

This section discusses, on top of the proposed graphical model, how inference is
conducted. Now that (15) gives a compact representation of model likelihood,
inference is now equivalent to maximizing this likelihood with optimal yi values
ŷi, or a target vector ŷ, subject to currently available reward lists r. Hyperpa-
rameters α, γy, γ0, γ are initialized with dimension specific values to be stated
in later experiments. Next we show that a closed-form solution ŷ exists for max-
imizing the model likelihood. Let E(y) ∝ −2 ln p(y, r|α, γy, γ0, γ) dropping any
constant term.

E(y) =
∑

i

{

γ̃i(yi − μ̃i)2
}

+
∑

i,j∈E

{

γy(yi − yj)2
}

(16)

The optimal ŷ minimizes E(y), which can be efficiently computed using
matrix multiplication. Given a graph of n hidden nodes, let B be an n × n
identity matrix multiplied by γ̃ so that Bii = γ̃i. Let K be an n × n adjacency
matrix in which kij and kji is γy if node yi and yj are adjacent otherwise 0. In
case of high dimensions (d ≥ 2), graph node indices are flattened before matrix
construction so that target nodes are indexable with a 1-dimensional array of size
n. In this way, kij = kji so K is a symmetric matrix whose diagonal terms are
set to 0. Furthermore, we define k as a length-n vector consisting of row/column
sums of K. So kx =

∑

j Kxj =
∑

i Kix. Alternatively, kx can be treated as the
neighbor count of the xth node. Define matrix A = B − K + γydiag(k) where
diag(k) is the diagonal matrix with kx as its xth diagonal element.

A = B − K + γydiag(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γyk1 + γ̃1 −γy · · · −γy · · ·
−γy γyk2 + γ̃2 · · · · · · −γy

...
...

. . .

−γy

...
. . .

−γy

. . .

· · · γykn + γ̃n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

Having matrix A and B explicitly defined, we exploit a provable fact that E(y)
is equivalent to product of the following nested matrices.

E(y) =
(

y�μ̃�)
(

A −B
−B B

) (
y
μ̃

)

= y�Ay − μ̃�By − y�Bμ̃ + μ̃�Bμ̃ (18)
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Recall that y is the target node list and μ̃ is the interpolated sample means of
target nodes.

(

y�μ̃�)

stands for horizontal concatenation of vectors y� and μ̃�

and similarly y and μ̃ can be vertically concatenated as well. Hence Formula (18)
produces a product of three matrices of sizes 1 × 2n, 2n × 2n and 2n × 1.

The optimal ŷ is y that minimizes E(y) and equivalently maximizes the
model probability. There exists a provable closed-form solution of ŷ defined with
matrix notation below.

ŷ = argmax
y

(log p(r,y|γy, γ, γ0, α)) = A−1Bμ̃ and σ2
ŷ = diag(A−1) (19)

σ2
ŷ is the posterior variance of ŷ taken from diagonal terms of A−1. Given

y = A−1Bμ̃, E(y) = Emin = μ̃�(B − BA−1B)μ̃. Let Λ = B − BA−1B.
Given reward list r model probability distribution is expected to be

p(r,y|γ, γy, γ0, α) ∝ exp
(

−1
2
μ̃�Λμ̃

)

(20)

Formula (20) indicates that graphical models in Fig. 2 conforms to GMRF prop-
erty with multivariate Gaussian distribution such that p(y) ∼ N (

μ̃, Λ−1
)

. Λ
serves as the precision matrix.

Lastly, computing A defined in (17) requires sums of rows in K. This leads
to context overhead every time the model gets updated. We found that approx-
imating A with A′ greatly improves computational efficiency in practice.

A′ = B − K + 2dγyIn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2dγy + γ̃1 −γy · · · −γy · · ·
−γy 2dγy + γ̃2 · · · · · · −γy

...
...

. . .

−γy

...
. . .

−γy
. . .

· · · 2dγy + γ̃n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(21)

A′ replaces neighbor counts kx on the diagonal with constant 2d. This in effect
avoids counting neighbors by assuming that every d-dimensional GMRF node
has 2d neighbors, an assumption true for all except edge nodes. Therefore we
call approximation with A′ an edge normalization method because edge nodes
are treated as if they were non-edge nodes.

To summarize, the following closed-form solution is adopted as model pre-
diction for experiments in this paper.

ŷ = argmax
y

(log p(r,y|γy, γ, γ0, α)) = A′−1
Bμ̃ (22)

σ2
ŷ = diag(A′−1) (23)

ŷ is model prediction with uncertainty measured by the variance list σ2
ŷ .
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2.4 Review on the Multi-armed Bandit Problem

The multi-armed bandit (MAB) is a widely studied [1,2,8] decision making prob-
lem associated with environment reward. Given a list of discrete random vari-
ables called “arms” {Yi} whose values represent sample rewards. In general, {Yi}
are not of identical distribution, which leads to the problem nature how to select
the arm of maximum expected reward. Given T rounds of attempts, an ideal
policy collects maximized reward from the best arm. The loss due to failure
in collecting optimal reward is measured in regret. MAB is formally defined as
follows.

Given a random variable list {Yi} and μi as mean of Yi, a policy decides the
index π(t) of the chosen arm at the tth step and r

(t)
i is the observed reward sam-

pled from the ith arm at step t. Under policy π(t), the total regret after T rounds
of observation is defined as RT = Tμ∗−∑T

t=1 r
(t)
π(t) and μ∗ = maxk μk. So μ∗ can

only be approximated in practice. This paper models Yi as f(i) defined in (1).
We assume {Yi} ∼ N (μ̃, Λ−1) which the proposed graphical model conforms to.
Graph node yi corresponds to probability inference on Yi.

3 Graphical Model Learning

3.1 Decision Making Policy

Policy produces π, i.e., a decision index π(t) at time t representing the potential
location of optimum in the environment, given model prediction ŷ(t), σ

(t)
ŷ , whose

closed-form solution is given as (22) and (23). This paper covers three suites of
decision making policy as discussed below.

Acquisition Function. Constructing an acquisition function (ACQ) is a com-
mon approach in Bayesian optimization to determine the next optimal index
to sample from. Commonly used acquisition functions include probability of
improvement (PI), expected improvement (EI) and upper confidence bound (GP-
UCB) [4,12]. We let a(ŷ,σŷ ) be the generic stereotype of an acquisition function
that performs element-wise operation on input vectors and returns a vector of
the same size so that policy produces π ← argmaxi a(ŷ,σŷ ). Below is parameter
setting of acquisition functions used in this paper.

aPI(ŷ,σŷ ) = Φ(
ŷ − rbest − ξ

σŷ
)

where rbest is current best (largest) observation across all the nodes and ξ = 0.01
as constant bias. Φ is Gaussian cumulative density.

aEI(ŷ,σŷ ) = zΦ(z) + σŷφ(z)

where z = ŷ − rbest − ξ and φ is the Gaussian probability density.
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aGP−UCB(ŷ,σŷ ) = ŷ +
√

β(x)σŷ

where x is total number of current observations and β(x) = 2log(dx2π2/6δ) [4].
d is dimension of node indices and δ = 0.9. GP-UCB is considered a common
option for Gaussian process instead of GMRF. This paper tentatively takes it
for comparative experiments only.

Epsilon Greedy. Epsilon greedy (EPS) is a classical and naive exploration-
exploitation trade-off heuristic that allocates a probability 1 − ε for exploitation
behavior and ε for else. ε = 0.2 in this paper.

π ← argmax
i

ŷ with probability 1 − ε otherwise uniformly random i ∈ Dd

Thompson Sampling. Thompson Sampling (TS) strictly adheres to model
prediction and from every node yi takes a random sample based on its posterior
distribution N (ŷi, σi).

π ← argmax
i

{yi|yi ∼ N (ŷi, σi)}

3.2 Experiments - Learning Synthetic Data

Combining the GMRF model and decision making policy, we develop Algorithm1
as an online learning algorithm that in each iteration samples an environment
reward at the best index as determined by some given policy. Sampled rewards
serve as training data that helps update node inference using solution (22)
and (23). An optimal policy is one that minimizes cumulative regret over T
iterations. To find out which policy described in Sect. 3.1 eventually leads to
minimal regret, we apply Algorithm 1 to synthetic functions f(i) where i ∈ Dd.
Three sets of experiments are carried out corresponding to 1, 2 and 3-dimensional
indices. In each set of experiments a discrete interval X = [−5, 5] with uniform

Algorithm 1. GMRF Learning
1: Initialize GMRF hyperparameters γ, γy, γ0, α
2: Randomly initialize prior distribution ŷ, σŷ ← N (0, σ2)
3: Initialize average accumulated regret R̄T ← 0 � evaluation only
4: for t in iteration 1...T do
5: π(t) ← from policy � ACQ/EPS/TS
6: Sample observation at node of index π(t) as rπ(t)(t) ← f(π(t))
7: Update node probability ŷ, σŷ ← p(r,y|γ, γy, γ0, α)
8: Calculate current regret Rt ← maxif(i) − rπ(t)(t) � evaluation only
9: Update R̄T ← R̄T

t−1
t

+ Rt
1
t

� evaluation only
10: end for
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Algorithm 2. GMRF Learning for CTR Optimization
1: Initialize GMRF hyperparameters γ, γy, γ0, α
2: Randomly initialize prior distribution ŷ, σŷ ← N (0, σ2)

3: Initialize uniform impression weights w
(0)
i ← 1/n

4: Initialize average accumulated regret R̄T ← 0 � evaluation only
5: for t in iteration 1...T do
6: {w

(t)
i } ← from modified policy

7: Collect #clicks {C
(t)
i |C(t)

i = χ(f̃(i), Nw
(t)
i )} from the test bench χ � online

8: {r
(t)
i } ← calculate CTRs C

(t)
i /Nw

(t)
i

9: for i in index 1...n do � completely offline
10: Sample observation at node index i as r

(t)
i

11: Update node probability ŷ, σŷ ← p(r,y|γ, γy, γ0, α)
12: end for
13: Calculate current regret Rt ← Nmaxif̃(i) − ∑

i C
(t)
i � evaluation only

14: Update R̄T ← R̄T
t−1

t
+ Rt

1
t

� evaluation only
15: end for

increments is picked so that D1 = X, D2 = X × X and D3 = X × X × X and
increments are respectively set as 0.01, 0.3 and 1.0 to allow for roughly the same
size of Dd (‖Dd‖ ≈ 1000) for all cases of d. Synthetic functions f in each case are
all configured as sums of three Gaussian functions to accommodate three sepa-
rate maxima. Three Gaussian kernels of following variances/covariances are used,
with [0.0225, 2.25, 0.5] for d = 1; [0.025, 2.25, 0.25] for d = 2; and [0.05, 1, 0.25]
for d = 3. Off-diagonal covariances are all 0 for d = 2 and d = 3 cases.

For all designated experiments, Algorithm 1 starts with hyperparameters
initialization: α = 0.001, γy = 0.001, γ = 0.02d, α = 0.02γ with d depending on
index dimension. Experiments run T = 1175 iterations for d = 1, 2 and T = 575
iterations for d = 3. T in each case was manually tested and selected as the lowest
for regret to converge. Within each iteration, policy determines the sampling
index π(t) at which it explores a new reward sample. Environment throughout
this paper carries a Gaussian noise ∼ N (0, 0.025). Regret of current iteration
complies with typical MAB notion and is defined as loss from global maximum
maxi f(i). Evaluation is given in the form of average regret across t steps. Policy
that achieves the lowest average regret across T iterations, or R̄T is considered
optimal. Figure 3(a), (b) and (c) demonstrate average experiment regrets across
30 trials for distinct d. They reveal that Thompson sampling wins final R̄T for
all three cases. Some policies fail to locate the global maximum by getting stuck
at local minima (as caused by larger covariances), such as acquisition function
PI for all three cases and EI for d = 3.

4 Test Bench Experiments - Policy Variation

Minor policy modification is needed to apply Algorithm 1 to real CTR test
bench, which simulates N total impressions. N = 100, 000 is used in test bench
experiments (Algorithm 2) in analogy to budget of 100,000 ads. We intend the
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(a) d=1 (b) d=2 (c) d=3

Fig. 3. Experiments on synthetic functions

algorithm to deliver Ci ads on item yi given n item candidates, or n graph nodes.
So a weight list {wi} (Line 6) is desired from policy instead of a single decision
index π. In case of acquisition functions, {wi} is a one-hot vector set at π so that
all N impressions are devoted to item yπ at each step. For epsilon greedy policy,
wπ = 1−ε and wi�=π = ε/(n−1). For Thompson sampling, weights are computed
as probability that an index is optimal, wi = p(yi > yi�=i) =

∏

j �=i p(yi > yj),
where yi is sampled from posterior so yi ∼ N (ŷi, σi) and p(yi > yj) is directly
available through the Gaussian cumulative distribution function of node yj .

The CTR test bench χ simulates clicks on yi as Ci given probability f̃(i)
and assigned impression Nwi (Line 7). Probability f̃ is the 1-0 max-min scaled
f over its discrete domain, where f is an environment function discussed in
Sect. 3.2. Ci is simulated as binomial counts B(Nwi, f̃(i)). CTR experiments
are initialized with the same hyperparameter values in Algorithm 1. To increase
sample sparsity, we adjust interval increments in X so that ‖Dd‖ ≈ 100 instead
of 1,000 in former experiments. The major advantage of Algorithm 2 lies within
Line 9 − 12, where observation on every node is sampled instead of a single
index in Algorithm 1. It is practically feasible as an offline process without
extra cost because collecting user clicks is the only operation that acquires data
from environment (Line 7). Figure 4 lists average missing clicks as regrets under
different policies. Averaged evaluation across 30 trials showcases that T = 100
iterations suffice for regret to converge. Acquisition functions are prone to huge
regret from devoting all impressions to wrong indices in higher dimensions, where
early-stage prediction error is much more likely to occur. Thompson sampling
stands out as optimal policy in practice.

(a) d=1 (b) d=2 (c) d=3

Fig. 4. Regret evaluation on CTR simulator
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5 Conclusion

This paper proposes a GMRF based graphical model that learns from sparse
data samples and predicts distribution of function values at discrete indices.
Predictions are used to optimize the multi-armed bandit model at best achiev-
able cost under Thompson sampling as decision making policy. Experiments
illustrate that the designated algorithm helps reduce online cost in case of data
sparsity. Therefore our solution is applicable to profit improvement for recom-
mendation engines as well as similar scenarios where seeking for optimum in
unknown environment is desired.
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10. Wu, Y., György, A., Szepesvári, C.: Online learning with Gaussian payoffs and side
observations. In: Proceedings of NIPS (2015)

11. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. In: Proceedings of WWW (2010)

12. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret
bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf.
Theory 58(5), 3250–3265 (2012)

13. Vanchinathan, H.P., Nikolic, I., De Bona, F., Krause, A.: Explore-exploit in top-N
recommender systems via Gaussian processes. In: Proceedings of RecSys (2014)

14. Schreiter, J., Nguyen-Tuong, D., Eberts, M., Bischoff, B., Markert, H., Toussaint,
M.: Safe exploration for active learning with Gaussian processes. In: Bifet, A., May,
M., Zadrozny, B., Gavalda, R., Pedreschi, D., Bonchi, F., Cardoso, J., Spiliopoulou,
M. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 133–149. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23461-8 9

https://doi.org/10.1007/978-3-319-23461-8_9


Fast Converging Multi-armed Bandit Optimization 127

15. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Proceed-
ings of NIPS (2011)

16. Zeng, C., Wang, Q., Mokhtari, S., Li, T.: Online context-aware recommendation
with time varying multi-armed bandit. In: Proceedings of KDD (2016)

17. Nguyen, T.V., Karatzoglou, A., Baltrunas, L.: Gaussian process factorization
machines for context-aware recommendations. In: Proceedings of SIGIR (2014)

18. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in multi-armed bandits prob-
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Abstract. Current quality control methods for crowdsourcing largely
account for variations in worker responses to items by interactions
between item difficulty and worker expertise. Few have taken into account
the semantic relationships that can exist between the response label cat-
egories. When the number of the label categories is large, these relation-
ships are naturally indicative of how crowd-workers respond to items,
with expert workers tending to respond with more semantically related
categories to the categories of true labels, and with difficult items tending
to see greater spread in the responded labels. Based on these obser-
vations, we propose a new statistical model which contains a latent
real-valued matrix for capturing the relatedness of response categories
alongside variables for worker expertise, item difficulty and item true
labels. The model can be easily extended to incorporate prior knowledge
about the semantic relationships between response labels in the form of
a hierarchy over them. Experiments show that compared with numerous
state-of-the-art baselines, our model (both with and without the prior
knowledge) yields superior true label prediction performance on four new
crowdsourcing datasets featuring large sets of label categories.

1 Introduction

Crowdsourcing is a process in which a human intelligence task is solved col-
lectively by a large number of online workers who get paid to independently
solve parts of the task that commonly overlap. In recent years, the process has
been used by machine learning communities to cheaply collect large quantities
of labelled training data, thanks to the development of online service providers,
such as Amazon Mechanical Turk1 and CrowdFlower2. While crowdsourcing
has shown cost-effectiveness and scalability, it also produces noisy and biased
labelled data as its online workforce is much less accurate than in-house experts.

1 https://www.mturk.com/.
2 https://www.crowdflower.com/.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 128–140, 2018.
https://doi.org/10.1007/978-3-319-93037-4_11
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Furthermore, many crowdsourcing tasks in practice involve large numbers of
unlabelled items under limited budgets, which often results in small numbers of
responses collected for each item. Aggregating such small numbers of (oftentimes
conflicting) labels using majority vote to infer the true label of each item can be
unreliable.

To overcome the above issue, labels must be aggregated in such a way that
the influence of “high-quality” responses should outweigh that of those “low-
quality” responses for better estimating the true labels. This process is generally
known as the Quality Control for Crowdsourcing (QCC). The QCC methods,
largely based on statistical modeling, consider expertise of workers to govern the
quality of labels they provide to items with greater expertise indicating higher
quality of the labels [1–4]. Furthermore, some of the QCC methods also consider
difficulty of items which counteracts worker expertise to undermine the quality
of the labels [5–9]. All these methods have achieved overall superior performance
over the majority vote. However, assuming individual crowdsourcing tasks con-
tain small numbers of uncorrelated label categories, these methods inevitably
ignores the impact of the relationships between response label categories on the
quality of workers’ responses to items. In practice, it is not unusual that crowd-
sourcing tasks can involve labeling data across label categories correlated to one
another in terms of large structural semantic relationships. A typical example
is the classification of objects in images for building the database of ImageNet3

whose large number of label categories are related through the semantic rela-
tionships specified by WordNet4. Other examples include the classification of
Webpages for the Open Directory Project, called “DMOZ”5, and for DBpedia6,
whose large numbers of categories are connected through semantic relationships
maintained by respective online volunteer communities. This paper focuses on
leveraging semantic relationships between label categories for improving QCC
performance in crowdsourcing problems especially involving highly multi-class
labels. The semantic relationships are inherent in such problems and the con-
ventional inference about them is based on human knowledge and reasoning
which features prominently in crowdsourcing. Conversely, knowing the semantic
relationships should contribute to accurate inference about how responses are
formed in highly mult-class crowdsourcing.

When semantic relationships between categories exist in crowdsourcing,
crowd-workers with greater expertise tend to respond to the same item with
categories more related to the true label for the item. Moreover, the difficult
items tend to see more variety in the responses (more distinct categories present)
than simpler items. To be more specific, consider a simple measure of relatedness
between two label categories k and k′ shown below:

Relatedness(k, k′) =
1

|shortest path(k, k′)| + 1
(1)

3 http://www.image-net.org/.
4 https://wordnet.princeton.edu/.
5 http://www.dmoz.org/.
6 http://wiki.dbpedia.org/.

http://www.image-net.org/
https://wordnet.princeton.edu/
http://www.dmoz.org/
http://wiki.dbpedia.org/
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Fig. 1. (a) Worker response accuracy versus category relatedness. (b) Item difficulty
(in terms of response error) versus category relatedness. (Color figure online)

where |shortest path(·, ·)| is the length of the shortest path between any pair
of categories in some known semantic structure (e.g. a graph). Using this relat-
edness measure, Fig. 1 shows the relationship between the relatedness of the
response category to the true label, and three summary statistics (namely the
maximum, mean and minimum values) for the response accuracy of workers and
the item difficulty (in terms of response error). The crowdsourcing task involved
in this case is identifying breeds of dogs in images from ImageNet [10]. Every
coloured “violin” area in each sub-figure of Fig. 1 represents the distribution of a
particular summary statistics about either the response accuracy of workers or
the response errors on items given the true labels. The medians of the areas with
the same colours (i.e. the same summary statistics across different relatedness
scores) are connected by straight lines in each sub-figure. We observe from Fig. 1
that:

– According to Fig. 1a, more related categories (with higher relatedness scores)
to item true labels tend to be chosen more often as responses by workers with
higher response accuracy;

– According to Fig. 1b, less related categories (with lower relatedness scores)
to item true labels tend to be given more often as responses to more difficult
items (i.e. ones with larger response errors in Fig. 1b).

In this paper, we leverage the above observed relationship between category
relatedness and worker accuracy/item difficulty for improving the quality con-
trol of crowdsourced labels. This is done by encoding the correlations between
categories into the conditional probability of a worker giving a label to an item
given its true label. Such an encoding can help refine the estimation about the
correctness of crowdsourced labels (which is modeled using those conditional
probabilities in most QCC methods). The encoding is based on a latent sym-
metric relatedness matrix where each off-diagonal entry is a real-valued score
representing how related categories are to one another. In this case, each cat-
egory (as a true label/correct response) is associated with a continuous scale
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accommodating the latent relatedness scores of all the other categories as possi-
ble worker responses. We also model expertise of workers and difficulty of items
on the same scale.

According to Fig. 1a, a worker with greater expertise and a category more
related to the true label should have the estimated values for their respective
variables reside further down the positive infinite end of the scale once learned
from response data. Likewise from Fig. 1b, an item with greater difficulty and
a less related category should have the estimated values situated towards the
opposite end of the scale. The interactions between these variables on the scale
are captured and transformed into the aforementioned conditional probabilities
through an ordered logit model where the difference between item difficulty and
worker expertise serves as the response-specific slope, and the off-diagonal terms
in the same row of the latent relatedness matrix (corresponding to a latent true
label) serve as the intercepts specific to different categories other than the true
label. The off-diagonal terms in the matrix share a Normal prior, which can
make use of prior knowledge (trees extracted from Wordnet and DMOZ) to
better calibrate the estimates for the terms. The contributions of this paper are:

– A novel statistical model that leverages correlations/relationships between
label categories for improving quality control of crowdsourced labels.

– The proposed model directly infers the latent relationships between label
categories from crowdsourced labels.

– A priori knowledge of relationships between labels (in terms of a semantic
hierarchy over concepts) is elegantly incorporated into the proposed model
by modifying the prior over the latent relatedness variables.

2 Related Work

Two papers have considered leveraging relationships between label categories
[11,12] for improving quality control of crowdsourced labels. In [12], a model
called SEEK was proposed in which the conditional probability of any possible
response category a worker can give to an item given its true label category is
output from a soft-max function. The function takes in the observed relatedness
scores of all the response categories to the true label of the item along with the
difficulty of the item and the expertise of the worker. Inside the function, the dif-
ference between the difficulty and the expertise is multiplied by the relatedness
score of every response category before the results are normalized to form the
corresponding conditional probabilities. Since the difference value is the same
for all response categories, the conditional probabilities are thus only propor-
tional to the relatedness scores. The larger a score is, the higher the conditional
probability of the corresponding response given the true label. In comparison,
our model allows the conditional probabilities to be proportional to the joint
interaction between the difference and the relatedness scores. In [12], each relat-
edness score between a pair of categories can vary from 0 to 1. It is 1 when
the two categories are the same. It is between 0 and 1 only when one of the
categories is a hypernym of the other. Otherwise, the score is always 0. Clearly,



132 Y. Jin et al.

rij

lj dj

eiSk·

μs, σ
2
s

μd, σ2
d

μe, σ
2
e

θγ

K IJ

rij

lj dj

eiSk·

σ2
s

Xk·

β

μβ , σ2
β μd, σ2

d

μe, σ
2
e

θγ

K IJ

Fig. 2. The DELRA model with and without encoding observed knowledge matrix X
specifying relationships between categories are shown in Fig. 2a and b.

this way of pre-computing the relatedness scores between categories constrains
the quality control performance of SEEK in crowdsourcing tasks where most of
the categories are not hypernyms. In [11], a model called DASM is proposed
which share the same idea as SEEK except that the relatedness scores are pre-
computed as the inverse of the Euclidean distances between categories in terms
of their observed features. Both of these models rely on the availability of the
external knowledge about the category relatedness, while our model is able to
infer such relatedness directly from responses.

3 Problem Formulation and Proposed Model

Given a large but finite set of categories K and a set of items J , a set of workers
I have provided a set of responses R to J . An item j ∈ J has one unknown
true label lj = k, where lj ∈ L, the set of corresponding true labels of individual
items in J , and k is a particular category in K. For the set of categories K, there
exists a tree structure organizing them in terms of their semantic relationships.
The relationships are quantified into an observed real-valued relatedness matrix
X ∈ R|K|×|K|. Each off-diagonal entry xkk′ expresses how related a category
k′ (as a response to an item) is to another category k as the true label of that
item. It is calculated by Eq. (1). Based on these inputs, our model should out-
put a corresponding set of prediction L̂ for the latent item true labels L such
that the overall difference between the former and the latter sets across their
corresponding elements is as small as possible.

In this paper, we propose the Difficulty-Expertise-Label-Relationship-Aware
(DELRA) model, characterized by a latent relatedness matrix S ∈ R|K|×|K|.
The matrix specifies how related a category k′ (as a response to an item) is to
another category k (as the true label of that item) in crowdsourcing. We assume
S is symmetric so that skk′ = sk′k where skk′ , sk′k ∈ S. This assumption is
reasonable as if crowd-workers perceive category k′ to be related to category k
overall to a certain degree, they should also perceive the relatedness of category
k to category k′ to the same degree. Based on the assumption, the DELRA
model is shown in Fig. 2a, and has the following generative process:
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1. Draw true label category proportions θ ∼ Dir(γ);
2. For each pair of categories (k,k′) where k �= k′:

(a) if k′ > k then draw relatedness skk′ ∼ N (μs, σ
2
s);

else skk′ ← sk′k
7;

3. For each item i ∈ J :
(a) Draw its true label lj ∼ Cat(θ);
(b) Draw its difficulty dj ∼ N (μd, σd);

4. For each worker i ∈ I:
(a) Draw her expertise ei ∼ N (μe, σ

2
e);

5. For each worker-item pair (i, j):
(a) Draw response rij ∼ Cat(πijlj ) where πijlj is a |K|-dimensional vec-

tor with each element πijljk = P (rij = k|lj) specified as the difference
between consecutive sigmoid functions as follows:

πijljk = δijljk − max
k′:δ<δijljk

δijljk′ where δijlj lj = 1, δijlj0 = 0 (2)

Here δijljk is a sigmoid function relating the odds of observing response
rij = k given true label lj to a linear combination of the relatedness score
sljk, the worker expertise ei and the question difficulty dj :

δijljk =
1

1 + exp(−(sljk − ei + dj))
(3)

Apart from inferring the relatedness matrix S from responses, our model also
allows for the encoding of useful prior knowledge about the entries in each row
of the matrix corresponding to a particular category as true labels for items to
help calibrate the inference. As shown in Fig. 2b, the Normal prior N (μs, σ

2
s) in

Fig. 2a shared by all the entries in the matrix is now replaced by individual priors
centered on the product results between a global coefficient β and the observed
relatedness matrix X after it is log-transformed followed by standardization,
added with Normally distributed noise following N (0, σ2

s). Correspondingly, step
2(a) of the above generative process of the DELRA model is now changed to:

2. For each pair of categories (k,k′) where k �= k′:
(a) if k′ > k then draw skk′ ∼ N (βxkk′ , σ2

s);
else skk′ ← sk′k;

The global term β ∼ N (μβ , σ2
β). The term xkk′ goes through the transformation:

xkk′ ← log(xkk′) − μ̂log(X )

σ̂log(X )
(4)

where μ̂log(X ) and σ̂log(X ) are respectively the sample mean and the sample
standard deviation of the logarithm of all the original terms in X. The reason
behind the logarithm operation is that the outputs from the relatedness function
specified by Eq. (1) are very skewed and we do not want such skewness to impact
7 The expression “a ← b” stands for assigning b to a or equivalently replacing a with b.
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the estimation of the relatedness matrix. The reason behind the standardization
operation is that every log-transformed xkk′ is negative, thus having a negative
mean. We want to adjust them to be centered on zero with scale one to allow
for easier setups of priors for other model parameters. After the transformation
by Eq. (4), the prior mean βxkk′ for the relatedness score skk′ suggests how the
relatedness between categories according to the semantic knowledge tree tends
to correlate with their latent relatedness in crowdsourcing a priori.

4 Parameter Estimation

In this section, we describe how the model parameters are estimated. More specif-
ically, in each iteration of the estimation, we alternate between the Collapsed
Gibbs sampling for inferring the true labels of items L given the current esti-
mates of the other model parameters including the worker expertise ei, the item
difficulty dj and the relatedness matrix S, and the LBFGS-B till its convergence
for updating these parameters given the current assignment of L.

Collapsed Gibbs Sampling for L: At this stage, we obtain posterior samples
for item true labels L given the current estimates of all the other parameters. The
conditional probabilities of true label lj of item j is obtained by marginalizing
out the multinomial probability vector θ, which ends up being:

P (lj = k|L¬j ,Rj , {ei}i∈Ij
, dj , sk,γ) ∝ N¬jk + γk∑

z∈K
(N¬jz + γz)

∏

i∈Ij

πijkrij
(5)

where Ij is the set of workers who responded item j with a set of responses Rj ,
L¬j is the set of current true label assignments to all the items except j, and
N¬jk is the number of items except j whose true labels are now inferred as k.

Gradient Descent for Other Parameters: The conditional probability dis-
tributions of the other model parameters including ei, dj , and S are hard to
compute analytically due to the presence of the sigmoid function. Instead, we
run the LBFGS-B till its convergence on the following objective function Q:

Q = − log
(
p(e,d,S|R,L, μ{e,d,s}, σ2

{e,d,s})
)

= −
∑

j∈J

∑

i∈Ij

log(πijljrij
)

+
1
2

[ ∑

i∈I

(ei − μe)2

σ2
e

+
∑

j∈J

(dj − μd)2

σ2
d

+
∑

k∈K

∑

k′∈K&k′>k

(skk′ − μs)2

σ2
s

]

(6)

The gradient with respect to the label-relatedness term slk is computed as:

∂Q

∂slk
= −

∑

j∈J

∑

i∈Ij

∂ log(πijljrij
)

∂slk
+

slk

σ2
s

(7)
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where for the true label l = lj and observed response k = rij we have:

∂ log(πijljrij
)

∂slk
=

δijljk(1 − δijljk)
πijljrij

(8)

And for other responses k �= rij we have:

∂ log(πijljrij
)

∂slk
=

−δijljk(1 − δijljk)
πijljrij

if k = arg max
k′:δ<δijljrij

δijljk′ else 0 (9)

Note that we also impose symmetry on the label relatedness terms skk′ = sk′k.
The gradients with respect to ei and dj are similarly easy to derive and thus
omitted due to space limitations.

When observed matrix X is introduced into the model, the coefficient β is
updated by maximum a posteriori estimation for a linear regression over X.

5 Experiments and Results

Datasets: We have collected four new crowdsourcing datasets from Crowd-
Flower for our experiments. Table 1 summarizes these datasets.

– Dog breed identification (Dog). The images and the set of categories
used in this task originate from the Stanford Dog dataset [10]. There are
120 breeds of dogs involved in the task with 10 images for each dog breed
randomly sampled from the Stanford dataset. We collected 5 labels for each
image about the breed crowd-workers think appearing in that image. The 120
dog breeds are organized under the subtree “Dog” of the WordNet.

– Bird species identification (Bird). The categories involved are species of
birds from the Caltech-UCSD Birds 200 dataset [13]. Originally, there are 200
bird species in this dataset, only 72 of which are present in the WordNet. As a
result, we have only used these categories for the experiments and randomly
sampled 10 images for each of them from the Caltech-UCSD dataset. Since
this task is quite difficult, we collect on average 8 labels for each of the images.

– Classification of Webpages about string instruments (Instrument).
This task asks for judgements about the sub-directories under which Web-
pages about string instruments should be put. All the sub-directories
share one root directory “Arts/Music/Instruments/String Instruments” from
DMOZ. We have collected 5 judgements for each of the 1,323 Webpages
across the 193 sub-directories corresponding to different aspects of string
instruments.

– Classification of Webpages about movies (Movie). The judgements
collected are about the sub-directories from DMOZ under which Webpages
about movies should be put. All the sub-directories involved share the root
directory “Arts/Movies”. We have collected 5 judgements for each of the 737
Webpages across the 148 sub-directories about different aspects of movies.
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Table 1. Dataset summary. The
headers correspond to the nota-
tions introduced in Sect. 3.

Dataset |I| |J | |K| |R|
Dog 136 1,200 120 6,000

Bird 428 707 72 5,660

Instrument 334 1,323 193 7,233

Movie 169 737 148 3,539

Table 2. The accuracy of different mod-
els on inferring the true labels of the items
across the four datasets.

Methods Datasets

Dog Bird Instrument Movie

DELRA 0.4803 0.4278 0.4489 0.3367

DELRA+X 0.4833 0.4331 0.4561 0.3433

SEEK 0.4688 0.4046 0.4406 0.3217

SEEK+X 0.4752 0.4256 0.4453 0.3342

DASM 0.4720 0.4229 0.4448 0.3274

MV 0.4742 0.4170 0.4414 0.3256

GLAD 0.4675 0.4017 0.4450 0.3229

DS 0.4341 0.3219 0.3900 0.2931

MdWC 0.4742 0.4041 0.4409 0.3311

PM 0.4367 0.3621 0.4002 0.2999

Minimax 0.4770 0.4224 0.4456 0.3202

5.1 True Label Prediction

To verify the capability of our model on predicting item true labels, we compare
it with the following state-of-the-art crowdsourcing quality control methods.

– Generative model of Labels, Abilities, & Difficulties (GLAD) [5].
This model endows every crowd-worker and every item respectively with a
latent variable about the worker’s expertise and a variable about the item’s
difficulty. The expertise variable is divided by the difficulty variable to account
for the probability of the label given by the worker to the item being correct.

– Multi-dimensional Wisdom of Crowds (MdWC) [9]. This model
extends the concept of GLAD that worker expertise interacts with item diffi-
culty by making the interaction factorized over latent variable vectors respec-
tively about workers and items. It also adds another variable for each worker
to account for their individual biases in choosing label categories.

– Dawid-Skene (DS) [1]. Unlike GLAD and MdWc which estimate the
marginal correctness probability of a label, this model estimates the con-
ditional probability of every label with which a worker can respond given
each true label.

– Minimax entropy (Minimax) [8]. The same conditional probabilities are
estimated in this model. In this case, the total entropy of the conditional
probabilities over all the categories as the responses to the items given their
true labels is optimized according to the minimax principle with constraints.

– Participant-Mine voting (PM) [4]. The accuracy of each worker and the
true label of each item are inferred together using HITS [14] algorithm. An
item is treated as a Webpage as in HITS with the total accuracy of the workers
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responding it as its authority level and the total difference between the true
label estimate of the item and its received worker labels as its hub level.

Apart from these baselines, we also compare our model with the Majority Vote
(MV), and the original SEEK model discussed in Sect. 2. Moreover, we have
also changed the external knowledge matrix input to the SEEK model to be the
matrix X input to the DELRA model (called DELRA+X) with each entry
transformed by Eq. (4) in both cases. We call this model SEEK+X and use it
as another baseline. Likewise, we adapt the DASM model by calculating the dis-
tance between any pair of label categories using our distance definition specified
in Eq. (1) rather than theirs as we do not have any observed feature about label
categories. To measure the performance of our model and all the baselines, we
use the true label prediction accuracy, defined as 1

|J |
∑

j∈J 1{lj = l̂j}.
Table 2 shows the results of the true label prediction of both DELRA and

all the baselines. We can see that with and without the knowledge matrix X
incorporated, the DELRA model respectively outperforms all the baselines by
at least 0.6% and 0.3% over the Dog dataset, 0.8% and 0.22% over the Bird
dataset, 1.1% and 0.36% over the Instrument dataset and 0.9% and 0.25% over
the Movie dataset. Especially, SEEK+X has the exact same knowledge matrix
input as DELRA+X, but has yielded lower performance even compared to the
DELRA model without incorporating X. This suggests that not only our model
is able to better leverage the external knowledge about semantic relationships
between label categories, but also it is a better model in explaining how responses
are generated from the interactions among the expertise of workers, the difficulty
of items and the relationships between label categories in crowdsourcing.

5.2 True Label Prediction Under Response Sparsity

We now proceed to investigating how DELRA performs under various degrees
of sparsity in crowdsourced responses. To do this, we randomly sample differ-
ent proportions (i.e. between 10% and 50%) of the responses from each of the
datasets and average the performance over 10 runs for each model (on each
proportion). Figure 3a–d show the results of the true label prediction of all the
models under varying degrees of response sparsity across the four datasets. The
DELRA model incorporating the knowledge matrix X clearly beats all the base-
lines with convincing margins across 10% to 50% of the total responses from each
dataset. Moreover, even without access to the external knowledge X, DELRA
still performs closely to the performance of SEEK+X and outperform the other
baselines when the sampling proportion is greater than 10%. When the sampling
proportion is only 10%, DELRA without X seems to suffer from the response
sparsity as any other baseline that has not leveraged X.
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Fig. 3. The accuracy of different models on inferring the true labels of the items from
10% to 50% of the total responses across the four datasets. Note that x-axis and y-axis
in each figure are respectively the sampling proportions of responses and the average
true label prediction accuracy over 10 runs.

5.3 Consistency of Learned Relatedness Between Categories

In this experiment, we evaluate how consistent the estimates of the relatedness
between categories from DELRA without X are with the relatedness scores in
X pre-computed using Eq. (1) followed by the transformation in Eq. (4). More
specifically, for each label category, we calculate the Pearson correlation coef-
ficients between the Top-N most related category rank of the other label cat-
egories in terms of the estimates of their relatedness to the category, and the
Top-N rank of the same set of categories in terms of their pre-computed trans-
formed relatedness scores for that category. We set N to be 2, 3, 5, 10 and 15 to
obtain the respective average Pearson correlation coefficients across all the label
categories. We also implement two supervised baselines (in terms of knowing
true labels) for obtaining the Top−N rank of the most related categories:

– Top-N rank by frequency - asymmetric. For each label category, the
relatedness of the other label categories to it is their frequencies as the
responses to the items with the label category as their true labels.

– Top-N rank by frequency - symmetric. For each label category, the
relatedness of the other label categories to it is their frequencies as either the
responses to the items with that label category as their true labels, or the
true labels of the items which receive that label category as the responses.

Figure 4a–d show how the Top-N most related category ranks by both the
DELRA model without X and the two baselines are correlated with the Top-
N ranks by the ground-truth relatedness scores calculated by Eq. (1). Showing
overall higher average correlation with the ground-truth relatedness scores across
the four datasets, our model clearly yields more consistent category relatedness
estimates than the two baselines even though it is unsupervised. We conjecture
this is attributed to the ability of our model in distinguishing responses of differ-
ent quality by accounting for the interaction between worker expertise and item
difficulty, while the baselines treat all the responses as the same in their quality.
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Fig. 4. Average Pearson correlation coefficients between the Top-N most related cat-
egory rank yielded by different methods, and the ground-truth Top-N rank yielded by
the pre-computed related scores based on Eq. (1). Note that x-axis and y-axis in each
figure are N and average correlation, respectively.

6 Conclusion

We propose DELRA, a quality control framework for crowdsourcing that lever-
ages the semantic relationships between label categories. It features a latent
real-valued matrix that captures the relatedness between response categories
alongside variables for worker expertise, item difficulty and item true labels.
DELRA encodes the joint interaction among these variables to refine estimation
of conditional probabilities of responses given true labels. This leads DELRA to
outperform numerous state-of-the-art quality control methods in terms of true
label prediction. Moreover, DELRA allows for elegant encoding of a priori knowl-
edge regarding the relationships between categories for calibrating the estimation
of the latent relatedness matrix. This leads to its further improvements in the
prediction. Finally, the relatedness matrix learned solely from response data by
DELRA shows convincing consistency with the relatedness matrix pre-computed
from the external semantic relationships between the categories.
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Abstract. Representation learning of knowledge graphs encodes enti-
ties and relation types into a continuous low-dimensional vector space,
learns embeddings of entities and relation types. Most existing methods
only concentrate on knowledge triples, ignoring logic rules which con-
tain rich background knowledge. Although there has been some work
aiming at leveraging both knowledge triples and logic rules, they ignore
the transitivity and asymmetry of logic rules. In this paper, we pro-
pose a novel approach to learn knowledge representations with entities
and ordered relations in knowledges and logic rules. The key idea is to
integrate knowledge triples and logic rules, and approximately order the
relation types in logic rules to utilize the transitivity and asymmetry of
logic rules. All entries of the embeddings of relation types are constrained
to be non-negative. We translate the general constrained optimization
problem into an unconstrained optimization problem to solve the non-
negative matrix factorization. Experimental results show that our model
significantly outperforms other baselines on knowledge graph completion
task. It indicates that our model is capable of capturing the transitivity
and asymmetry information, which is significant when learning embed-
dings of knowledge graphs.

Keywords: Knowledge graph · Logic rules
Non-negative matrix factorization · Transitivity · Asymmetry

1 Introduction

Knowledge graphs (KGs) store rich information of the real world in the form
of graphs, which consist of nodes (entities) and labelled edges (relation types
between entities) (e.g., (Trump,PresidentOf,USA)). This sort of structured data
can be interpreted by computers and applied in various fields such as infor-
mation retrieval [4] and word sense disambiguation [2]. Although powerful in
representing structured data, the symbolic nature of relations makes KGs, espe-
cially large-scale KGs, difficult to manipulate. Predicting missing entries (known
as link prediction) is of great importance in knowledge graph. To do this
task, vector space embeddings of knowledge graphs have been widely adopted.
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The key idea is to embed entities and relation types of a KG into a continuous
vector space.

Many approaches have been proposed to learn embeddings of entities and
relations, such as TransE [5], NTN [22], HOLE [6], ComplEx [7], and so on.
They, however, only focus on knowledge triples, ignoring rich knowledge from
logic rules. Logic rules are taken as complex formulae constructed by combin-
ing atoms with logical connectives. To leverage logic rules in knowledge graph
embeddings, [18–20] propose to utilize both knowledge triples and logic rules for
KB completion. In their works, however, logic rules need to be grounded. Each
rule needs to be instantiated with concrete entities. A rule can be grounded into
plenty of ground rules, since there are many entities connected by the same rela-
tion type in logic rules. As a result, the works cannot scale well to larger KGs
since rules will be grounded with more entities. And also, they all neglect the
properties of transitivity and asymmetry of rules.

For example, suppose we have two rules: “CapitalOf ⇒ LocatedIn” and
“LocatedIn ⇒ ContainedBy”, which indicates the relation that x is a capital
of y implies another relation that x is located in y, and the relation that x is
located in y implies x is contained by y. Provided that we know Paris is a
capital of France from the knowledge base, we can infer that Paris is located
in France and contained by France as well, according to the transitivity of
rules. In addition, even though we know Paris is located in France, we cannot
infer that Paris is a capital of France according to the asymmetry of rules:
“CapitalOf ⇒ LocatedIn” �= “LocatedIn ⇒ CapitalOf”.

To leverage the properties of transitivity and asymmetry of rules, we pro-
pose a novel knowledge representation learning model to capture the ordering
of relations, and infer potential new relations based on the ordering of existing
relations and properties of transitivity and asymmetry of rules. We integrate
knowledge graphs, existing relations and logic rules together to learn the knowl-
edge graph embeddings. Logic rules are incorporated into relation type represen-
tations directly, rather than instantiated with concrete entities. The embeddings
learned are therefore compatible not only with triples but also with rules, and
the embeddings of relation types are approximately ordered. We call our learning
approach TARE, short for Embedding knowledge graphs based on Transitivity
and Asymmetry of Rules.

In the remainder of the paper, we first review previous work related to our
work. Then we formulate our problem and present our learning algorithm in detail.
After that we evaluate our approach by comparing our approach with exiting
state-of-the-art algorithms. Finally we conclude the paper with future work.

2 Related Work

Many works have made great efforts on modelling knowledge graphs. Some works
explain triples via latent representation of entities and relations such as tensor
factorization [8,9,29] and multiway neural networks [22]. The key of relational
latent feature models is that the relationship between entities can be derived from
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interactions of their latent features. Many ways are discovered to model these
interactions. RESCAL [29] is a relational latent feature model which explains
triples via pairwise interactions of latent features. However, it requires a large
number of parameters. TransE [5] translates the latent feature representations
via a relation-specific offset. Both entities and relations are projected into the
same continuous low-dimensional vector space and relations are interpreted as
translating operations between head and tail entities. TransE is efficient when
modelling simple relations. To improve the performance of TransE on compli-
cated relations, TransH [10], TransR [11] and TransD [17] are proposed. Unfor-
tunately, these models miss simplicity and efficiency of TransE. To combine the
power of tensor product with the efficiency and simplicity of TransE, HOLE [6]
uses the circular correlation of vectors to represent pairs of entities. Circular
correlation has the advantage, comparing to tensor product, that it does not
increase the dimensionality of the composite representation. However, due to
the asymmetry of circular correlation, HOLE is unable to deal with symmetric
relation. Complex [7] makes use of embeddings with complex value and is able to
handle a large number of binary relations, in particular symmetric and antisym-
metric relations. Some works such as [12,30,31] learn embeddings by sampling
long paths(e0 → e1 → e2... → en) in KG. They learn the transitivity of relation
triples but not the transitivity of rules.

These models perform the embedding task based solely on triples contained
in a KG. Recent work put growing interest in logic rules. [18] tries to utilize
rules via integer linear programming or Markov logical networks. However, rules
are modeled separately from embedding models and will not help obtaining
better embeddings. [19] proposes a joint model which injects first-order logic
into embeddings. This work focus on the relation extraction task and created
vector embeddings for entity pairs rather than individual entities. As a result,
relations between unpaired entities cannot be effectively discovered. KALE-Joint
[20] proposes a new approach which learns entity and relation embeddings by
jointly modelling knowledge triples and logic rules. However, all logic rules need
to be grounded in these works. Since each relation type is linked to plenty of
entities, each rule can be grounded into plenty of triples. The more original triples
KG have, the more triples grounded from rules need to be used for learning,
keeping grow exponentially. And thus they do not scale well to larger KGs. Also,
the embeddings of the relation types in rules are not ordered, and thus the
transitivity and asymmetry of logic rules are missed.

To address above issues, we propose a novel approach which learns embed-
dings by combining logic rules with knowledge triples. Logic rules are incorpo-
rated into relation type representations directly and the embeddings of relation
types in logic rules are approximately ordered to leverage the transitivity and
asymmetry of rules.

3 Problem Definition

In this section, we give a formal definition of the problem. A knowledge graph G
is defined as a set of triples of the form (s, r, o). s, o ∈ E denote the subject and
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object entity, respectively. r ∈ R denotes the relation type. E denotes the set of
all entities and R denotes the set of all relation types in G.

Create from G a set of logic rules: ra ⇒ rb (in form of (ra, rb)) denotes that
ra logically implies rb, which means that any two entities linked by relation ra
should also be linked by relation rb; ra ∧ rb ⇒ rc (in form of (ra, rb, rc)) denotes
that the conjunction of ra and rb logically implies rc: if e0 and e1 are linked by
ra, e1 and e2 are linked by rb, then e0 and e2 are linked by rc. ra, rb, rc ∈ LR,
where LR ⊆ R is the subset of relation types observed in logic rules.

Our objective is to learn embeddings of entities, relations more precisely by
approximately ordering the embeddings of relation types in logic rules, to predict
relation types between entities. The embeddings are set in R

d and denoted with
the same letters in boldface.

4 Our Model

4.1 Restricted Triple Model (RTM)

In RTM, we aim to embed entities and relation types to capture the corre-
lations between them. The embeddings of relation types are restricted to be
non-negative. Given two entities s, o ∈ E , the log-odd of the probability of the
truth of fact (s, r, o) is:

P (Ysro = 1|Θ) = σ(φ(s, r, o)) (1)

where σ(x) = 1/(1+exp(−x)) denotes the logistic function that maps x to (0,1),
which is just the range of probability; φ() is the energy function which is based
on a factorization of the observed knowledges and indicates the correlation of
relation r and the entity pair (s, o). Θ = {ei}ne

i=1 ∪{rk}nr

k=1 denotes the the set of
all embeddings ve,vr ∈ R

d of the corresponding model, ne and nr is the number
of entities and relation types in the given KG respectively. {Ysro}(s,r,o)∈Ω ∈
{−1, 1}|Ω| is a set of labels (true or false) of the triples, where Ω ∈ E ⊗ R ⊗ E .
Ysro = 1 if (s, r, o) is positive. Otherwise, Ysro = −1.

The energy function φ(s, r, o; Θ) in our model is based on existing model
Complex [7], in which complex vectors ve,vr ∈ R

d are learned for each entity
e ∈ E and each relation type r ∈ R. It models the score of a triple as:

φ(s, r, o) = Re(〈rso〉)

= Re(
d−1∑

i=0

risioi)

=
d−1∑

i=0

Re(ri)Re(si)Re(oi) +
d−1∑

i=0

Re(ri)Im(si)Im(oi) (2)

+
d−1∑

i=0

Im(ri)Re(si)Im(oi) −
d−1∑

i=0

Im(ri)Im(si)Re(oi)
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where r, s, o are complex vector embeddings for relation types, subject and
object respectively. Re(x) and Im(x) represent the real part and imaginary part
of the complex vector embedding x, respectively. It separates the embedding
vector into real part and imaginary part to obtain the symmetric and antisym-
metric relations. This function is antisymmetric when r is purely imaginary (i.e.
its real part is zero), and symmetric when r is real.

To approximately order the relation types in logic rules, we constrain the real
part and imaginary part of the vector embeddings of relation types to be non-
negative and reduce the problem to Non-negative Matrix Factorization (NMF).
And also, non-negative constraints make the embeddings interpretable. For most
embedding methods, a critical issue is that, we are unaware of what each dimen-
sion represent in embeddings. Hence, the dimensions are difficult to interpret.
This makes embeddings like a black-box, and prevents them from being human-
readable and further manipulation. NMF learn embeddings with good inter-
pretabilities. There are many ways to solve Non-negative Matrix Factorization
such as Multiplicative Update [25], Gradient based Update [23] and Alternating
Non-negative Least Squares [26,27].

In our model, we adopt the approach which updates the embeddings based on
gradient. Translate the general constrained optimization problem into an uncon-
strained optimization problem. The embeddings of relation types are translated
into unconstrained complex vectors as follows:

Re(r) = Re(qa)
(2), Im(r) = Im(qb)

(2) (3)

where qa and qb denote the vectors which are initialized randomly(not con-
strained to be non-negative) and updated during learning, x(2) denotes the
element-wise square of the vector x. In other words, Re(ri) = Re(qai)2 and
Im(ri) = Im(qbi)2. Plug Eq.(3) into Eq.(2), we get a new energy function:

φ(s, r, o) =
d−1∑

i=0

Re(qai)
2Re(si)Re(oi) +

d−1∑

i=0

Re(qai)
2Im(si)Im(oi)

+
d−1∑

i=0

Im(qbi)
2Re(si)Im(oi) −

d−1∑

i=0

Im(qbi)
2Im(si)Re(oi) (4)

We train the triples by minimizing the negative log-likelihood of the logistic
model with L2 regularization on the parameters Θ:

LK = min
Θ

∑
log(1 + exp(−Ysroφ(s, r, o))) + λ1‖Θ‖2 (5)

where λ1 is the regularization parameter.
The real part and imaginary part of complex vector q are both unconstrained.

Therefore, the novel objective function can be solved by applying Stochastic
Gradient Descent (SGD) directly. The negative set of knowledges is generated
by local closed world assumption (LCWA) proposed in [28].
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4.2 Approximate Order Logic Model (AOLM)

In AOLM, We aim to embed relation types to capture the ordering between rela-
tions. We work on two kinds of logic rules: ra ⇒ rb and ra ∧ rb ⇒ rc. Since there
is no natural linear ordering on the set of complex numbers, we approximately
order the complex vector embeddings by ordering the real part and imaginary
part of the embeddings respectively. For their vector representations we require
that the component-wise inequality holds:

ra ⇒ rb if and only if

d−1∧

i=0

Re(rai) � Re(rbi)

and

d−1∧

i=0

Im(rai) � Im(rbi) (6)

and

ra ∧ rb ⇒ rc if and only if

d−1∧

i=0

Re(rai)Re(rbi) � Re(rci)

and

d−1∧

i=0

Im(rai)Im(rbi) � Im(rci) (7)

for all vectors with non-negative coordinates, where
∧

denotes the conjunction.
Smaller coordinates imply higher position: ra ⇒ rb if and only if all entries of
the real part and imaginary part of the vector embedding of ra are less than or
equal to that of rb.

The penalty for an ordered pair (ra, rb) of a given logic rule ra ⇒ rb is defined
as follows:

F (ra, rb) = ‖max(0, Re(ra) − Re(rb)) + max(0, Im(ra) − Im(rb))‖2 (8)

where max(0,x) returns the greater one by element between 0 and x.
Crucially, if ra ⇒ rb, F (ra, rb) = 0. F (ra, rb) is positive if ra ⇒ rb is

not satisfied. F (ra, rb) = 0 if and only if max(0, Re(ra) − Re(rb)) = 0 and
max(0, Im(ra) − Im(rb)) = 0. That is, the real part and imaginary part of the
embeddings of ra is less than or equal to that of rb respectively. This satisfies the
condition in Eq. (6), and encourages the learned embeddings of relation types
to satisfy the order properties of transitivity and asymmetry. For transitivity, if
ra ⇒ rb and rb ⇒ rc,

∧d−1
i=0 Re(rai) � Re(rbi) � Re(rci) and

∧d−1
i=0 Im(rai) �

Im(rbi) � Im(rci), then F (ra, rc) = 0, and thus ra ⇒ rc is satisfied. For asym-
metry, if ra ⇒ rb,

∧d−1
i=0 Re(rai) � Re(rbi) and

∧d−1
i=0 Im(rai) � Im(rbi), then

F (ra, rb) >= 0, and thus rb ⇒ ra is not necessarily satisfied.
For logic rule ra ∧ rb ⇒ rc the penalty for (ra, rb, rc) is:

F (ra, rb, rc) = ‖max(0,Re(ra) ∗ Re(rb) − Re(rc))

+ max(0, Im(ra) ∗ Im(rb) − Im(rc))‖2 (9)
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where ∗ denotes the element-wise multiplication of two vectors: [a ∗ b]i = aibi.
Similarly, if ra ∧ rb ⇒ rc, F (ra, rb, rc) = 0. F (ra, rb, rc) is positive other-

wise. F (ra, rb, rc) = 0 if and only if max(0, Re(ra) ∗ Re(rb) − Re(rc)) = 0 and
max(0, Im(ra) ∗ Im(rb) − Im(rc)) = 0. That is, the multiplication of the real
part and imaginary part of the embeddings of ra and rb is less than or equal to
that of rc respectively. This satisfies the condition in Eq. (7).

The set of all relation types in logic rules is the subset of all relation types in
the given KG. Therefore, the relation types in logic rules are translated similarly
to Eq. (3):

Re(ra|b|c) = Re(qa|b|c)
(2), Im(ra|b|c) = Im(qa|b|c)

(2) (10)

To learn the approximate order-embedding of relation types in logic rules,
we could use a max-margin loss. For rule ra ⇒ rb:

LR = min
∑

(ra,rb)∈P

F (ra, rb) +
∑

(r′
a,r

′
b)∈N

max(0, α − F (r′
a, r

′
b)) (11)

If the rule is ra ∧ rb ⇒ rc:

LR = min
∑

(ra,rb,rc)∈P

F (ra, rb, rc) +
∑

(r′
a,r

′
b,r

′
c)∈N

max(0, α − F (r′
a, r

′
b, r

′
c)) (12)

where P and N denote the positive and negative sets of logic rules. If ra ⇒ rb,
we construct negatives by replacing rb in the consequent with a random relation
r ∈ R. If ra ∧ rb ⇒ rc, we construct negatives by replacing rc in the conse-
quent with a random relation r ∈ R. α ≥ 0 is a hyper-parameter of margin.
F (ra, rb), F (ra, rb, rc) is the penalty function score of positive logic rule, and
F (r′

a, r
′
b), F (r′

a, r
′
b, r

′
c) is that of negative logic rule calculated by Eqs. (8) or (9).

This loss encourages positive examples to have zero penalty, and negative exam-
ples to have penalty greater than a margin.

4.3 Global Objective

With both knowledge triples and logic rules modelled, embeddings are learned
by minimizing a global loss over this general representation:

L = LK + λ2LR (13)

where LK is calculated by Eq. (5) and LR is calculated by Eqs. (11) or (12). The
embeddings of relation types are constrained to be non-negative, and are trans-
lated into unconstrained complex vector embeddings in loss function. Therefore,
stochastic gradient descent (SGD) in mini-batch mode and AdaGrad [13] for
tuning the learning rate can be used to carry out the minimization directly.
Embeddings learned are able to be compatible with both triples and logic rules.
And the embeddings of relation types in logic rules are approximately ordered
to capture the transitivity and asymmetry of rules.
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Table 1. Complexity of our model and some other models

Model Space Time

TransE ned + nrd ntd

TransR ned + nr(d
2 + d) ntd

2

HOLE ned + nrd ntlogd

Complex ned + nrd ntd

KALE-Joint ned + nrd ntd + ngd

TARE ned + nrd ntd + nld

4.4 Discussions

Complexity. We compare our model with several state-of-the-art models in
space and time complexity. Table 1 lists the complexity, where d is the dimen-
sion of the embedding vectors, ne, nr, nt, ng, nl is the number of entities,
relations, triples, ground triples, logical rules respectively. It can be seen that
our model does not significantly increase the space or time complexity. Note
that KALE-Joint [20] needs to ground rules with entities, which further requires
O(ngd)=O(nlnt/nrd) in time complexity, where nt/nr is the averaged number
of observed triples per relation. Our model only requires O(nld) which is nr/nt

of O(ngd) KALE-Joint required.

5 Experiments

5.1 Datasets and Experiment Settings

Datasets. We evaluate our model on knowledge graph completion using two
commonly used large-scale knowledge graph datasets and a relational learning
dataset:

WN36. WordNet is a large lexical database of English. Nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive synonyms called synsets. It pro-
vides short definitions and usage examples, and records a number of relations
among these synonym sets or their members. WordNet can thus be seen as a
combination of dictionary and thesaurus. The WN18 dataset is a subset of Word-
Net which contains 40,943 entities, 18 relation types and 151,442 binary triples.
Since there are no logic rules among all relation types in WN18, we first add
the reversed relations into training set. For example, * hypernym is the reversed
relation type of hypernym. We add the triple (e1, ∗ hypernym, e0) into training
set according to the positive triple observed (e0, hypernym, e1). Then we can
find some rules in newly generated training set. We create 14 implication rules.

FB15k. Freebase is a large-scale and growing collaborative KG which provides
general facts of the real world. For example, the triple (Barack Obama, Spouse,
Michelle Obama) describes there is a relation Spouse between Barack Obama
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and Michelle Obama. The FB15k dataset is a subset of Freebase which contains
14,951 entities, 1,345 relation types, and 592,213 triples. We use original training,
validation and test set splits as provided by [5]. We create 200 implication rules.

Countries. The countries dataset provided by [14] consists of 244 countries,
22 subregions and 5 regions. Each country is located in exactly one region and
subregion, each subregion is located in exactly one region, and each country can
have a number of neighbour countries. We construct a set of triple relations
from the raw data of two relations LocatedIn and NeighborOf . We create 2
conjunction rules.

The statistics of WN36 and FB15k are listed in Table 2. Examples of rules
created are shown in Table 3.

Table 2. Statistics of WN36 and FB15k

Model Entities Relations Train Valid Test Rules

Wn36 40,943 36 282,884 5,000 5,000 14

FB15k 14,951 1,345 483,142 50,000 59,071 200

Table 3. Examples of rules created

WN18 hyponym ⇒ * hypernym

member meronym ⇒ * member holonym

part of ⇒ * has part

FB15k /award/award honor/award winner ⇒ /award/award nomination/award nominee

/location/country/administrative divisions ⇒ /location/location/contains

/ice hockey/hockey roster position/position ⇒
/sports/sports team roster/position

Countries NeighborOf ∧ LocatedIn ⇒ LocatedIn

LocatedIn ∧ LocatedIn ⇒ LocatedIn

Experiment Settings. We use a grid search among the following param-
eters: d ∈ {20, 50, 100, 150, 200}, n ∈ {1, 2, 5, 10}, a ∈ {1.0, 0.5, 0.2,
0.1, 0.05, 0.02, 0.01}, λ1 ∈ {0.1, 0.03, 0.01, 0.003, 0.001, 0.0, 0.0003}, λ2 ∈ {0.1,
0.03, 0.01, 0.003, 0.001, 0.0, 0.0003}, m ∈ {2.0, 1.0, 0.5, 0.2, 0.05, 0.01} to find the
optimal parameters, where d denotes the embedding size of the vectors of the
entity and relation type representations; n denotes the number of negatives sam-
pled for per positive triple observed in training set or logic rule; a denotes the
initial learning rate which will be tuned during AdaGrad; λ1 denotes the L2

regularization parameter, λ2 is the weight of logic rules, and m is the margin
between the positive logic rules and the negative logic rules.

5.2 Knowledge Base Completion

Knowledge base completion aims to complete a triple (s, r, o) when one of s, r, o
is missing. In the task of knowledge base completion, we compare our model
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with several state-of-art models including TransE [5], TransR [11], HOLE [6],
ComplEx [7] and KALE-Joint [20]. The former four models only focus on knowl-
edge triples, and KALE-Joint learns embeddings by jointly modelling knowledge
triples and logic rules. Rules need to be grounded and are not ordered in KALE-
Joint.

We evaluate the performance of our model with Mean Reciprocal Rank
(MRR) and top n (Hits@n) which have been widely used for evaluation in pre-
vious works. Replace the subject or object entity of each triple (s, r, o) in the
testing set with each entity in the whole dataset: (s′, r, o) and (s, r, o′), where
∀s′,∀o′ ∈ E . Afterwards, rank all candidate entities in the dataset according
to their scores calculated by Eq. (4) in ascending order. Mean Reciprocal Rank
(MRR) and the ratio of correct entities ranked in top n (Hits@n) are the stan-
dard evaluation measures, which measure the quality of the ranking. They fall
into two categories: raw and filtered. The filtered rankings are computed after
filtering all other positive triples observed in the whole dataset, whereas the raw
rankings do not filter these. We report both filtered and raw MRR, and filtered
Hits@10, 3, 1 in Tables 4 and 5 for the models.

It can be seen that TARE is able to outperform TransE, TransR, HOLE, Com-
plEx on MRR and Hits@ on WN36 and FB15k. This demonstrates the effective-
ness of joint logic rules into knowledges. TARE largely outperforms KALE-Joint,
with a filtered MRR of 0.955 and 91.4% of Hits@1, compared to 0.662 and 85.5%
for KALE-Joint. This demonstrates the effectiveness of considering the transi-
tivity and asymmetry of logic rules.

Table 4. KG completion on WN36

MRR Hits@

Model Filter Raw 1 3 10

TransE 0.495 0.351 11.3 88.8 94.3

TransR 0.605 0.427 33.5 87.6 94.0

HOLE 0.938 0.616 93.0 94.5 94.9

Complex 0.941 0.587 93.6 94.5 94.7

KALE-Joint 0.662 0.478 85.5 90.1 93.0

TARE 0.955 0.545 91.4 94.2 94.7

Table 5. KG completion on FB15k

MRR Hits@

Model Filter Raw 1 3 10

TransE 0.463 0.222 29.7 57.8 74.9

TransR 0.346 0.198 21.8 40.4 58.2

HOLE 0.524 0.232 40.2 61.3 73.9

Complex 0.692 0.242 59.9 75.9 84.0

TARE 0.781 0.292 61.7 72.8 84.2

5.3 Relational Learning

We test the relational learning capabilities of our model on the countries dataset.
Most of the test triples in the countries dataset can be inferred by directly
applying logic rules on the training set. However, to evaluate our model, we do
not use the pure logical inference. We split all countries randomly in train (80%),
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validation (10%), and test (10%) countries, then training, validation, and test
set is composed of the relations which start from all countries in the training
validation, and test countries respectively.

Remove all triples of the form (c, LocatedIn, r) for each country c in the
validation and test set. In the new set S1, (c, LocatedIn, r) can be predicted by
LocatedIn ∧ LocatedIn ⇒ LocatedIn.

Based on S1, remove (c, LocatedIn, s) for all countries in the validation and
test set. In the new set S2, (c, LocatedIn, r) can be predicted by NeighborOf ∧
LocatedIn ⇒ LocatedIn.

Based on S2, remove (cn, LocatedIn, r) for all neighbour countries cn of all
countries in the validation and test set. In the new set S3, (c, LocatedIn, r)
can be predicted by NeighborOf ∧ LocatedIn ⇒ LocatedIn and LocatedIn ∧
LocatedIn ⇒ LocatedIn.

The prediction quality is measured by the area under the precision-recall
curve (AUC-PR), we compute the mean AUC-PR after 10 fold cross-validation.
The results are shown in Table 6. It can be seen that our model performs well in
this task. It achieves 13.4% improvement on S2 and 19.3% improvement on S3.

Table 6. Link prediction on Countries dataset

Model S1 S2 S3

Random 0.323 0.323 0.323

Frequency 0.323 0.323 0.308

ER-MLP 0.960 0.745 0.650

Rescal 0.997 0.745 0.650

HOLE 0.997 0.772 0.697

TARE 0.994 0.906 0.890

6 Conclusion and Future Work

In this paper, we propose TARE model for representation learning of knowledge
graphs by integrating existing relations and logic rules together. Logic rules are
incorporated into relation type representations directly, rather than instantiated
with concrete entities. We model logic rules by approximately ordering the rela-
tion types in logic rules to leverage the transitivity and asymmetry of rules, and
thus obtain better embeddings for entities and relation types. To be ordered,
the vector embeddings of relation types are constrained to be non-negative, the
general constrained optimization problem is translated into an unconstrained
optimization problem in our model. In experiments, we evaluate our models on
knowledge base completion and relational learning tasks. Experimental results
show that TARE brings significant and consistent improvements over exiting
state-of-the-art methods.
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For future work, we would like to explore the following research directions:
(1) more complex types of logic rules such as ¬ and ∨ would be modelled to
obtain better performance. (2) logic rules can be extracted from text. There is
richer information in text than triples, more logic rules can be obtained if we
joint the information in text. (3) TARE only consider the order of relation types,
the order over entities would also be helpful to obtain better embeddings.
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Abstract. Recent successes in word embedding and document embed-
ding have motivated researchers to explore similar representations for
networks and to use such representations for tasks such as edge pre-
diction, node label prediction, and community detection. Such network
embedding methods are largely focused on finding distributed represen-
tations for unsigned networks and are unable to discover embeddings
that respect polarities inherent in edges. We propose SIGNet, a fast
scalable embedding method suitable for signed networks. Our proposed
objective function aims to carefully model the social structure implicit
in signed networks by reinforcing the principles of social balance theory.
Our method builds upon the traditional word2vec family of embedding
approaches and adds a new targeted node sampling strategy to maintain
structural balance in higher-order neighborhoods. We demonstrate the
superiority of SIGNet over state-of-the-art methods proposed for both
signed and unsigned networks on several real world datasets from dif-
ferent domains. In particular, SIGNet offers an approach to generate a
richer vocabulary of features of signed networks to support representa-
tion and reasoning.

1 Introduction

Social and information networks are ubiquitous today across a variety of
domains; as a result, a large body of research has developed to help construct
discriminative and informative features for network analysis tasks such as clas-
sification [2], prediction [11], and visualization [12].

Classical approaches to find features and embeddings are motivated by
dimensionality reduction research and extensions, e.g., approaches such as Lapla-
cian eigenmaps [1], non-linear dimension reduction [17], and spectral embed-
ding [7]. More recent research has focused on developing network analogs to
distributed vector representations such as word2vec [13,14]. In particular, by
viewing sequences of nodes encountered on random walks as documents, meth-
ods such as DeepWalk [15], node2vec [5], and LINE [16] learn similar repre-
sentations for nodes (viewing them as words). Although these approaches are
scalable to large networks, they are primarily applicable to only unsigned net-
works. Signed networks are becoming increasingly important in online media,

c© Springer International Publishing AG, part of Springer Nature 2018
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trust management, and in law/criminal applications. As we will show, apply-
ing the above methods to signed networks results in key information loss in
the resulting embedding. For instance, if the sign between two nodes is nega-
tive, the resulting embeddings could place the nodes in close proximity, which is
undesirable.

An attempt to fill this gap is the work of Wang et al. [19] wherein the authors
learn node representations by optimizing an objective function through a multi-
layer neural network based on structural balance theory. This work, however,
models only local connectivity information through 2-hop paths and fails to
capture global balance structures prevalent in a network. Our contributions are:

1. We propose SIGNet, a scalable node embedding method for feature learning
in signed networks that maintains structural balance in higher order neigh-
borhoods. SIGNet is generic by design and can handle both directed and
undirected networks, including weighted or unweighted (binary) edges.

2. We propose a novel node sampling method as an improvement over tradi-
tional negative sampling. The idea is to maintain a cache of nodes during
optimization integral for maintaining the principles of structural balance in
the network. This targeted node sampling technique can be treated as an
extension of the negative sampling strategy used in word2vec models.

3. Through extensive experimentation, we demonstrate that SIGNet generates
better features suitable for a range of prediction tasks such as edge and node
label prediction. SIGNet1 is able to generate embeddings for networks with
millions of nodes in a scalable manner.

2 Problem Formulation

Definition 1. Signed Network: A signed network can be defined as G = (V,E),
where V is the set of vertices and E is the set of edges between the vertices.
Each element vi of V represents an entity in the network and each edge eij ∈
E is a tuple (vi, vj) associated with a weight wij ∈ Z. The absolute value of
wij represents the strength of the relationship between vi and vj, and the sign
represents the nature of relationship (e.g., friendship or antagonism). A signed
network can be either directed or undirected. If G is undirected then the order
of vertices is not relevant (i.e. (vi, vj) ≡ (vj , vi)). On the other hand, if G is
directed then order becomes relevant (i.e. (vi, vj) �≡ (vj , vi) and wij �= wji).

Because the weights in a signed network carry a combined interpretation
(sign denotes polarity and magnitude denotes strength), conventional proximity
assumptions used in unsigned network representations (e.g., in [5]) cannot be
applied for signed networks. Consider a network wherein the nodes vi and vj

are positively connected and the nodes vk and vi are negatively connected (see
Fig. 1(a)). Suppose the weights of the edges eij and eik are +wij and −wik

respectively. Now if |+ wij | < |−wik|, conventional embedding methods will

1 The implementation is available at: https://github.com/raihan2108/signet.

https://github.com/raihan2108/signet
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Fig. 1. Given a signed network (a), a conventional network embedding (b) does not take
signs into account and can result in faulty representations. (c) SIGNet learns embed-
dings that respect sign information between edges. Of the possible signed triangles,
(d) and (e) are considered balanced but (f) and (g) are not. (h) shows a 2-dimensional
embedding of alliances among New Guinea tribes using SIGNet. Alliance (hostility)
between the tribes is shown in solid blue (dashed red) edges. We can see that edges
representing alliances are comparatively shorter than the edges representing hostility.
(Color figure online)

place vi and vk closer than vi and vj owing to the stronger influence of the
weight (Fig. 1(b)). This problem remains unresolved even if we consider the
weight of a negative edge as zero, because even though it may place node vi and
vj closer, node vk may be relatively closer to vi because we ignore the adverse
relation between node vi and vk. This may comprise the quality of embedding
space. Ideally, we would like a representation wherein nodes vi and vj are closer
than nodes vi and vk, as shown in Fig. 1(c). This example shows that modeling
the polarity is as important as modeling the strength of the relationship.

To accurately model the interplay between the vertices in signed networks
we use the theory of structural balance proposed in [6]. This theory posits that
triangles with an odd number of positive edges are more plausible than an even
number of positive edges (see Fig. 1(d–g)). Although different adaptations of and
alternatives to balance theory exist in the literature, here we focus on the original
notion of structural balance to create the embedding space since it applies nat-
urally to the experimental contexts considered here (e.g., networks constructed
from adjectives, described in Sect. 4).

Problem Statement: Scalable Embedding of Signed Networks (SIGNet): Given
a signed network G, compute a low-dimensional vector di ∈ R

K , ∀vi ∈ V , where
positively related vertices reside in close proximity to each other and negatively
related vertices are distant from each other.

To explain the interpretability of the signed network embedding we utilize
a small dataset denoting relations between 16 tribes in New Guinea. This is a
signed network depicting alliances and hostility between the tribes. We learned
the embeddings using SIGNet in 2 dimensional space as an undirected network
as shown in Fig. 1(h). We can see that in general solid blue edges (alliance) are
shorter than the dashed red edges (hostility) confirming that allied tribes are
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closer than the hostile tribes. Therefore the embedding space learned by SIGNet
clearly depicts alliances and relationships among the tribes as intended.

3 Scalable Embedding of Signed Networks (SIGNet)

3.1 SIGNet for Undirected Networks

Consider a weighted signed network defined as in Sect. 2. Now suppose each vi is
represented by a vector xi ∈ R

K . Then a natural way to compute the proximity
between vi and vj is by the following function (ignoring the sign for now):

pu(vi, vj) = σ(xT
j · xi) =

1

1 + exp(−xT
j · xi)

(1)

where σ(a) = 1
1+exp(−a) . Now let us breakdown the weight of edge wij into

two components: rij and sij . rij ∈ N represents the absolute value of wij (i.e.
rij = |wij |) and sij ∈ {−1, 1} represents the sign of wij . Given this breakdown
of wij , pu(vi, vj) = σ(sij(xT

j · xi)). Now incorporating the weight information,
the objective function for undirected signed network can be written as:

Oun =
∑

eij∈E

rijσ(sij(x
T
j · xi)) =

∑

eij∈E

rijpu(vi, vj) (2)

By maximizing Eq. 2 we obtain a vector xi of dimension K for each node vi ∈ V
(we also use di to refer to this embedding, for reasons that will become clear in
the next section).

3.2 SIGNet for Directed Networks

Computing embeddings for directed networks is trickier due to the asymmetric
nature of neighborhoods (and thus, contexts). For instance, if the edge eij is
positive, but eji is negative, it is not clear if the respective representations for
nodes vi and vj should be proximal or not. We solve this problem by treating
each vertex as itself plus a specific context; for instance, a positive edge eij

is interpreted to mean that given the context of node vj , node vi should be
closer. This enables us to treat all nodes consistently without worrying about
reciprocity relationships. To this end, we introduce another vector yi ∈ R

K

besides xi, ∀vi ∈ V . For a directed edge eij the probability of context vj given
vi is:

pd(vj |vi) =
exp(sij(y

T
j · xi))

∑|V |
k=1 exp(sik(yT

k · xi))
(3)

Treating the same entity as itself and as a specific context is very popular in
the text representation literature [13]. The above equation defines a probability
distribution over all context space w.r.t. node vi. Now our goal is to optimize
the above objective function for all the edges in the network. However we also
need to consider the weight of each edge in the optimization. Incorporating the
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absolute weight of each edge we obtain the objective function for a directed
network as:

Odir =
∑

eij∈E

rijpd(vj |vi) (4)

By maximizing Eq. 4 we will obtain two vectors xi and yi for each vi ∈ V . The
vector xi models the outward connection of a node whereas yi models the inward
connection of the node. Therefore the concatenation of xi and yi represents the
final embedding for each node. We denote the final embedding of node vi as di.
It should be noted that for undirected network di = xi whereas for a directed
network di is the concatenation of xi and yi. This means |xi| = |yi| = K

2 in the
case of directed graph (for the same representational length).

3.3 Efficient Optimization by Targeted Node Sampling

The denominator of Eq. 3 is very hard to compute as this requires marginalizing
the conditional probability over the entire vertex set V . We adopt the clas-
sical negative sampling approach [14] wherein negative examples are selected
from some distribution for each edge eij . However, for signed networks, con-
ventional negative sampling does not work. For example consider the network
from Fig. 2(a). Viewing this example as an unsigned network, while optimizing
for edge eij , we will consider vi and vy as negative examples and thus they will
be placed distantly from each other. However, in a signed network context, vi

and vy have a friendlier relationship (than with, say, vx) and thus should be
placed closer to each other. We propose a new sampling approach, referred to as
simply targeted node sampling wherein we first create a cache of nodes for each
node with their estimated relationship according to structural balance theory
and then sample nodes accordingly.

Constructing the Cache for Each Node: We aim to construct a cache of
positive and negative examples for each node vi where the positive (negative)
example cache η+

i (η−
i ) contains nodes which should have a positive (negative)

relationship with vi according to structural balance theory. To construct these
caches for each node vi, we apply random walks of length l starting with vi to
obtain a sequence of nodes. Suppose the sequence is Ω =< vi, vn0 , · · · , vnl−1 >.
Now we add each node vnp

to either η+
i or η−

i by observing the estimated sign
between vi and vnp

. The estimated sign is computed using the following recursive
formula s̃inp

= s̃inp−1 × snp−1np
. Here s̃inp−1 is the estimated sign between node

vi and node vnp−1 , which can be computed recursively. The base case for this
formula is s̃in1 = sin0 × sn0n1 . If node vnp

is not a neighbor of node vi and s̃inp

is positive then we add vnp
to η+

i . On the other hand if s̃inp
is negative and vnp

is not a neighbor of vi then we add it to η−
i . For example for the graph shown in

Fig. 2(a), suppose a random walk starting with node vi is < vi, vj , vk, vz >. Here
node vk will be added to η+

i as s̃ik = sij × sjk > 0 (base case) and vk is not a
neighbor of vi. However, vz will be added to node η−

i as s̃iz = s̃ik × skz < 0 and
vz is not a neighbor of vi.
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Fig. 2. (a) depicts a small network to illustrate why conventional negative sampling
does not work. vi and vy might be considered too distant for their representations to
be placed close to each other. Targeted node sampling solves this problem by con-
structing a cache of nodes which can be used as sampling. (b) shows how we resolve
conflict. Although there are two ways to proceed from node vi to vl the shortest path
is vi, vj , vk, vl, which estimates a net positive relation between vi and vl. As a result vl
will be added to η+

i . However for node vm there are two shortest paths from vi, with
the path vi, vp, vo, vn, vm having more positive edges but with a net negative relation,
so vm will be added to η−

i in case of a conflict. (c) and (d) shows a comparative scenario
depicting the optimization process inherent in both SiNE and SIGNet. The shaded ver-
tices represent the nodes both methods will consider while optimizing the edge eij . We
can see that SiNE only considers the immediate neighbors because it optimizes edges in
2-hop paths having opposite signs. On the other hand, SIGNet considers higher order
neighbors (va, vb, vc, vx, vy, vz) for targeted node sampling.

The one problem with this approach is that a node vj may be added to both
η+

i and η−
i . We denote this phenomena as conflict and define the reason for

this conflict in Theorem 1. We resolve this situation by computing the shortest
path between vi and vj and compute s̃ij between them using the shortest path,
then add to either η+

i or η−
i based on s̃ij . To compute the shortest path we

have to consider the network as unsigned since negative weight has a different
interpretation for shortest path algorithms. If there are multiple shortest paths
with equal length in case of a conflict, then we pick the path with the highest
number of positive edges to compute s̃ij . A scenario is shown in Fig. 2(b).

Theorem 1. (Reason for conflict): Node vj will be added to both η+
i and η−

i if
there are multiple paths from vi to vj and the union of these paths has at least
one unbalanced cycle.

Targeted Edge Sampling During Optimization: Now after constructing
the cache ηi = η+

i

⋃
η−

i for each node vi, we can apply the targeted sampling
approach for each node. Here our goal is to extend the objective of negative sam-
pling from classical word2vec approaches [14]. In traditional negative sampling, a
random word-context pair is negatively sampled for each observed word-context
pair. In a signed network both positive and negative edges are present, and thus
we aim to conduct both types of sampling while sampling an edge observing its
sign. Therefore when sampling a positive (negative) edge eij , we aim to sample
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multiple negative (positive) nodes from η−
i (η+

i ). Therefore the objective function
for each edge becomes (taking log):

Oij = log[σ(sij(y
T
j · xi))] +

N∑

c=1

Evn∼τ(sij) log[σ(s̃in(y
T
n · xi))] (5)

Here N is the number of targeted node examples per edge and τ is a function
which selects from η+

i or η−
i based on the sign sij . τ selects from η+

i (η−
i ) if

sij < 0 (sij > 0).
The benefit of targeted node sampling in terms of global balance considera-

tions across the entire network is shown in Fig. 2(c) and (d). Here we compare
how our proposed approach SIGNet and SiNE [19] maintain structural balance.
For simplicity suppose only edge eij has negative sign. Now SiNE optimizes
w.r.t. pairs of edges in 2-hop paths each having different signs. Therefore opti-
mizing the edge eij involves only the immediate neighbors of node vi and vj , i.e.
vl, vm, vn, vo (Fig. 2(c)). However SIGNet skips the immediate neighbors while it
uses higher order neighbors (i.e., va, vb, vc, vx, vy, vz). Note that SIGNet actually
uses immediate neighbors as separate examples (i.e. edge eil, eim etc.). In this
way SIGNet covers more nodes to optimize the embedding space than SiNE.

4 Experiments

Experimental Setup: We compare our algorithm against both the state-of-
the-art methods proposed for signed and unsigned network embedding. The
description of the methods are below:

– node2vec [5]: This method, not specific to signed networks, computes embed-
dings by optimizing the neighborhood structure using informed random walks.

– SNE [20]: This method computes the embedding using a log bilinear model;
however it does not exploit any specific theory of signed networks.

– SiNE [19]: This method uses a multi-layer neural network to learn the embed-
ding by optimizing an objective function satisfying structural balance theory.
SiNE only concentrates on the immediate neighborhood of vertices rather
than on the global balance structure.

– SIGNet-NS: This method is similar to our proposed method SIGNet except
it uses conventional negative sampling instead of targeted node sampling.

– SIGNet: This is our proposed SIGNet method which uses random walks
to construct a cache of positive and negative examples for targeted node
sampling.

We skip hand crafted feature generation method for link prediction like [9]
because they can not be applied in node label prediction and already shows
inferior performance compared to SiNE. For node2vec the weight of negative
edges are treated zero since node2vec can not handle negative edges.

In the discussion below, we focus on five real world signed network datasets.
Out of these five, two datasets are from social network platforms—Epinions
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and Slashdot—courtesy the Stanford Network Analysis Project (SNAP). The
details on how the signed edges are defined are available at the project website.
The third dataset is a voting records of Wikipedia adminship election (Wiki),
also from SNAP. The fourth dataset we study is an adjective network (ADJNet)
constructed from the synonyms and antonyms collected from Wordnet database.
Label information about whether the adjective is positive or negative comes
from SentiWordNet. The last dataset is a citation network we constructed from
written case opinions of the Supreme Court of the United States (SCOTUS).
We expand the notion of SCOTUS citation network into a signed network.

Unless otherwise stated, for directed networks we set |xi| = |yi| = K
2 = 20

for both SIGNet-NS and SIGNet; therefore |di| = 40. For a fair comparison,
the final embedding dimension for others methods is set to 40. For undirected
network (ADJNet) |di| = 40 for all the methods. We also set the total number
of samples (examples) to 100 million, N = 5, l = 50 and r = 1 for SIGNet-NS
and SIGNet. For all the other parameters for node2vec, SNE and SiNE we use
the settings recommended in their respective papers.

Does the Embedding Space Learned by SIGNet Support Structural
Balance Theory? Here we present our analysis on whether the embedding
space learned by SIGNet follows the principles of structural balance theory.
We calculate the mean Euclidean distance between representations of nodes
connected by positive versus negative edges, as well as their standard deviations
(see Table 1). The lower value of positive edges suggests positively connected
nodes stay closer together than the negatively connected nodes indicating that
SIGNet has successfully learned the embedding using the principles of structural
balance theory. Moreover, the ratio of average distance between the positive and
negative edges is at most 67% over all the datasets suggesting that SIGNet grasps
the principles very effectively.

Table 1. Average Euclidean distance between node representations connected by pos-
itive edges versus negative edges with std. deviation. We can see that the avg. distance
between positive edge is significantly lower than negative edges indicating that SIGNet
preserves the conditions of structural balance theory.

Type of edges Epinions Slashdot Wiki SCOTUS ADJNet

Positive 0.86 (0.37) 0.98 (0.31) 1.06 (0.27) 0.84 (0.25) 0.71 (0.16)

Negative 1.64 (0.23) 1.60 (0.19) 1.56 (0.19) 1.64 (0.21) 1.77 (0.08)

Ratio 0.524 0.613 0.679 0.512 0.401

Are Representations Learned by SIGNet Effective at Edge Label Pre-
diction? We now explore the utility of SIGNet for edge label prediction. For
all the datasets we sample 50% of the edges as a training set to learn the node
embedding. Then we train a logistic regression classifier using the embedding as
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features and the sign of the edges as label. This classifier is used to predict the
sign of the remaining 50% of the edges. Since edges involve two nodes we explore
several scores to compute the features for edges from the node embedding. They
are Concatenation: (concat): fij = di ⊕ dj , Average (avg): fij = di+dj

2 ,
Hadamard (had): fij = di ∗ dj , L1: fij = |di − dj | and L2: fij = |di − dj |2.

Here fij is the feature vector of edge eij and di is the embedding of node vi.
Except for the method of concatenation (which has a feature vector dimension
of 80) other methods use 40-dimensional vectors. We use the micro-F1 scores to
evaluate our method. We repeat this process five times and report the average
results (see Table 2). Some key observations from this table are as follows:

1. SIGNet, not surprisingly, outperforms node2vec across all datasets. For
datasets that contain relatively fewer negative edges (e.g., 14% for Epin-
ions and 22% for Slashdot), the improvements are modest (around 7%). For
Wiki the gains are moderate (around 12%) where 25% of edges are nega-
tive. For ADJNet and SCOTUS where the sign distribution is less skewed,
SIGNet outperforms node2vec by a huge margin (19% for ADJNet and 39%
for SCOTUS).

2. SIGNet demonstrates a consistent advantage over SiNE and SNE, with gains
ranging from 6–12% (for the social network datasets) to 17–36% (for ADJNet
and SCOTUS).

3. SIGNet also outperforms SIGNet-NS in almost all scenarios demonstrating
the effectiveness of targeted node sampling over negative sampling.

4. Performance measures (across all scores and across all algorithms) are com-
paratively better for Epinions over other datasets because almost 83% of the
nodes in Epinions satisfy the structural balance condition [3]. As a result in
Epinions edge label prediction is comparatively easier than in other datasets.

5. The feature scoring method has a noticeable impact w.r.t. different datasets.
The avg. and concat. methods subsidize differences whereas the hadamard,
L-1 and L-2 methods promote differences. To understand why this makes
a difference, consider networks like ADJNet and SCOTUS where connected
components denote strong polarities (e.g., denoting synonyms or justice lean-
ings, respectively). In such networks, the Hadamard, L-1 and L-2 methods
provide more discriminatory features. However, Epinions and Slashdot are
relatively large datasets with diversified communities and so all these meth-
ods perform nearly comparably.

Are Representations Learned by SIGNet Effective at Node Label Pre-
diction? For datasets like SCOTUS and ADJNet (where nodes are annotated
with labels), we learn a logistic regression classifier to map from node represen-
tations to corresponding labels (with a 50–50 training-test split). We also repeat
this five times and report the average. See Table 3 for results. As can be seen,
SIGNet consistently outperforms all the other approaches. In particular, in the
case of SCOTUS which is a citation network, some cases have a huge number
of citations (i.e. landmark cases) in both ideologies. Targeted node sampling,
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Table 2. Comparison of edge label prediction in all datasets. We show the micro F1
score for each feature scoring method. The best score across all the scoring method is
shown in boldface. SIGNet outperforms node2vec, SNE, and SiNE in every case. The
results are statistically significant with p < 0.01.

Eval. Dataset name Epinions Slashdot Wiki ADJNet SCOTUS

concat node2vec 0.831 0.776 0.749 0.594 0.543

SNE 0.854 0.778 0.751 0.602 0.528

SiNE 0.856 0.779 0.752 0.598 0.605

SIGNet-NS 0.911 0.793 0.816 0.599 0.56

SIGNet 0.920 0.832 0.845 0.573 0.557

avg node2vec 0.853 0.775 0.747 0.603 0.516

SNE 0.853 0.776 0.748 0.601 0.532

SiNE 0.853 0.774 0.749 0.599 0.608

SIGNet-NS 0.837 0.771 0.769 0.620 0.509

SIGNet 0.879 0.809 0.801 0.574 0.512

had node2vec 0.852 0.773 0.748 0.600 0.562

SNE 0.851 0.775 0.745 0.604 0.541

SiNE 0.854 0.772 0.748 0.589 0.609

SIGNet-NS 0.846 0.757 0.741 0.705 0.793

SIGNet 0.883 0.782 0.754 0.722 0.792

l1 node2vec 0.852 0.775 0.747 0.601 0.559

SNE 0.854 0.774 0.749 0.605 0.582

SiNE 0.853 0.773 0.746 0.609 0.608

SIGNet-NS 0.851 0.764 0.743 0.639 0.723

SIGNet 0.901 0.787 0.751 0.703 0.723

l2 node2vec 0.852 0.773 0.747 0.601 0.569

SNE 0.852 0.774 0.748 0.606 0.547

SiNE 0.787 0.776 0.745 0.612 0.611

SIGNet-NS 0.848 0.763 0.743 0.659 0.742

SIGNet 0.903 0.809 0.753 0.716 0.745

Gain over node2vec 7.85 7.22 12.82 19.73 39.19

Gain over SNE 7.73 6.94 12.52 19.14 36.08

Gain over SiNE 7.48 6.80 12.37 17.97 29.62

Gain over SIGNet-NS 0.99 4.92 3.55 2.41 −0.13

by adding such cases to either η+
i or η−

i , situates the embedding space close to
the landmark cases if they are in η+

i or away from them if they are in η−
i , thus

supporting accurate node prediction.
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Table 3. Comparison of methods for node label prediction on real world datasets.
SIGNet outperforms other methods in all datasets.

Metric micro f1 macro f1

Datasets ADjNet SCOTUS ADjNet SCOTUS

node2vec 0.5284 0.5392 0.4605 0.4922

SNE 0.5480 0.5432 0.4840 0.5335

SiNE 0.6257 0.6131 0.6247 0.5796

SIGNet-NS 0.7292 0.8004 0.7261 0.7997

SIGNet 0.8380 0.8419 0.8374 0.8415

Gain over node2vec 58.5920 56.1387 81.8458 70.9671

Gain over SNE 52.9197 54.9890 73.0165 57.7320

Gain over SiNE 33.9300 37.3185 34.0483 45.1863

Gain over SIGNet-NS 14.9205 5.1849 15.3285 5.2270

How Much More Effective Is Our Sampling Strategy in the Presence
of Partial Information? To evaluate the effectiveness of our targeted node
sampling versus negative sampling, we remove all outgoing edges of a certain
percent of randomly selected nodes (test nodes), learn an embedding, and then
aim to predict the labels of the test nodes. We show the micro f1 scores for
ADJNet (treating it as directed) and SCOTUS in Fig. 3(a) and (b). As seen here,
SIGNet consistently outperforms SIGNet-NS. Withholding the outgoing edges
of test nodes implies that both methods will miss the same edge information in
learning the embedding. However due to targeted node sampling many of these
test nodes will be added to η+

i or η−
i in SIGNet (recall only the outgoing edges

are removed, but not incoming edges). Because of this property, SIGNet is able
to make an informed choice while optimizing the embedding space.
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Fig. 3. Micro F1 of ADJNet (a) and SCOTUS (b) datasets varying the percent of
nodes used for training. SIGNet outperforms SIGNet-NS in all cases. (c) and (d) show
execution time of SIGNet varying the number of nodes and threads.
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How Scalable Is SIGNet for Large Networks? To assess the scalability of
SIGNet, we learn embeddings for an Erdos-Renyi random network for upto one
million nodes. The average degree for each node is set to 10 and the total number
of samples is set to 100 times the number of edges in the network. The size of the
dimension is also set to 100 for this experiment. We make the network signed by
randomly changing the sign of 20% edges to negative. The optimization time and
the total execution time (targeted node sampling + optimization) is compared
in Fig. 3(c) for different vertex sizes. On a regular desktop, an unparallelized
version of SIGNet requires less than 3 h to learn the embedding space for over
1 million nodes. Moreover, the sampling times is negligible compared to the
optimization time (less than 15 min for 1 million nodes). This actually shows
SIGNet is very scalable for real world networks. Additionally, SIGNet uses an
asynchronous stochastic gradient approach, so it is trivially parallelizable and as
Fig. 3(d) shows, we can obtain a 3.5 fold improvement with just 5 threads, with
diminishing returns beyond that point.

5 Other Related Work

The concept of unsupervised learning in networks follow the trend opened up
originally by Skip-gram models [13,14]. Skip-gram models can be extended to
learn feature representations for documents [8], diseases [4] etc. Recently deep
learning based models have been proposed for representation learning on graphs
to perform prediction in unsigned networks [10,18]. Although these models pro-
vide high accuracy by optimizing several layers of non-linear transformations,
they are computationally expensive, require a significant amount of training
time and are only applicable to unsigned networks as opposed to our proposed
method SIGNet.

6 Conclusion

We have presented a scalable feature learning framework suitable for signed
networks. Using a targeted node sampling for random walks, and leveraging
structural balance theory, we have shown how the embedding space learned by
SIGNet yields interpretable as well as effective representations. Future work is
aimed at experimenting with other theories of signed networks and extensions
to networks with a heterogeneity of node and edge tables.
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Abstract. Network embeddings have become very popular in learning
effective feature representations of networks. Motivated by the recent
successes of embeddings in natural language processing, researchers have
tried to find network embeddings in order to exploit machine learning
algorithms for mining tasks like node classification and edge prediction.
However, most of the work focuses on distributed representations of
nodes that are inherently ill-suited to tasks such as community detec-
tion which are intuitively dependent on subgraphs. Here, we formulate
subgraph embedding problem based on two intuitive properties of sub-
graphs and propose Sub2Vec, an unsupervised algorithm to learn feature
representations of arbitrary subgraphs. We also highlight the usability
of Sub2Vec by leveraging it for network mining tasks, like community
detection and graph classification. We show that Sub2Vec gets signifi-
cant gains over state-of-the-art methods. In particular, Sub2Vec offers
an approach to generate a richer vocabulary of meaningful features of
subgraphs for representation and reasoning.

1 Introduction

Graphs are a natural abstraction for representing relational data from multi-
ple domains such as social networks, protein-protein interaction networks, the
World Wide Web, and so on. Analysis of such networks include classification [3],
detecting communities [4,8], and so on. Many of these tasks can be solved using
machine learning algorithms. Unfortunately, since most machine learning algo-
rithms require data to be represented as features, applying them to graphs is
challenging due to their high dimensionality and structure. In this context, learn-
ing discriminative feature representation of subgraphs can help in leveraging
existing machine learning algorithms more widely on graph data.

Apart from classical dimensionality reduction techniques (see related work),
recent works [9,14,19,21] have explored various ways of learning feature repre-
sentation of nodes in networks exploiting relationships to vector representations
in NLP (like word2vec [11]). However, application of such methods are limited
to binary and multi-class node classification and edge-prediction. It is not clear
how one can exploit these methods for tasks like community detection which
are inherently based on subgraphs and node embeddings result in loss of infor-
mation of the subgraph structure. Embedding of subgraphs or neighborhoods
themselves seem to be better suited for these tasks. Surprisingly, learning feature
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 170–182, 2018.
https://doi.org/10.1007/978-3-319-93037-4_14
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representation of networks themselves (subgraphs and graphs) has not gained
much attention. Here, we address this gap by studying the problem of learning
distributed representations of subgraphs in a low dimensional continuous vec-
tor space. Figure 1(a–b) gives an illustration of our framework. Given a set of
subgraphs (Fig. 1 (a)), we learn a low-dimensional feature representation of each
subgraph (Fig. 1(b)).

Fig. 1. (a) and (b) An overview of our Sub2Vec. Our input is a set of subgraphs S.
Sub2Vec learns d dimensional feature embedding of each subgraph. (c)–(e) Leveraging
embeddings learned by Sub2Vec for community detection. (c) Communities in School

network (different colors represent different communities). (d) Communities discovered
via Node2Vec deviates from the ground truth, (e) while those discovered via Sub2Vec

closely matches the ground truth. (Color figure online)

As shown later, the embeddings of the subgraphs enable us to apply off-
the-shelf machine learning algorithms directly to solve subgraph mining tasks.
For example, for community detection, we can first embed the ego-nets of each
node using sub2vec, and then apply clustering algorithms like k-means on the
embeddings (see Sect. 4.1 later for more details). Figure 1(c–e) shows a visual-
ization of ground-truth communities in a network (c), communities found by
using just node embeddings (d), and those found by our method Sub2Vec (e).
Clearly our result matches the ground-truth well while the other is far from it.
Our contributions are:

– We identify two intuitive properties of subgraphs (Neighborhood and Struc-
tural). Then we formulate two novel Subgraph Embedding problems, and pro-
pose Sub2Vec, a scalable subgraph embedding framework to learn features
for arbitrary subgraphs that maintains the properties.

– We conduct multiple experiments over diverse datasets to show correctness,
scalability, and utility of Sub2Vec in several tasks. We get upto a gain of
123.5% in community detection and upto 33.3% in graph classification com-
pared to closest competitors.

2 Problem Formulation

We begin with the setting of our problem. Let G(V,E) be a graph where V
is the vertex set and E is the associated edge-set (we assume unweighted undi-
rected graphs here, but our framework can be easily extended to weighted and/or
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directed graphs as well). A graph gi(vi, ei) is said to be a subgraph of a larger
graph G(V,E) if vi ⊆ V and ei ⊆ E. For simplicity, we write gi(vi, ei) as gi.
As input, we require a set of subgraphs S = {g1, g2, . . . , gn}, typically extracted
from the same graph G(V,E). Our goal is to embed each subgraph gi ∈ S into
d-dimensional feature space R

d, where d << |V |.
Main Idea: Intuitively, our goal is to learn a feature representation of each
subgraph gi ∈ S such that the likelihood of preserving certain properties of
each subgraph, defined in the network setting, is maximized in the latent feature
space. In this work, we provide a framework to preserve two different properties—
namely Neighborhood and Structural— properties of subgraphs.

Neighborhood Property: Intuitively, the Neighborhood property of a sub-
graph captures the neighborhood information within a subgraph itself for each
node in it. For illustration, consider the following example. In the figure below,
let g1 be the subgraph induced by nodes {a, e, c, d}. The Neighborhood property
of g1 should be able to capture the information that the nodes a, c are in the
neighborhood of node e, that nodes d, e are in the neighborhood of node c. To
capture the neighborhood information of all the nodes in a given subgraph, we
consider paths annotated by ids of the nodes. We refer to such paths as the
Id-paths and define the Neighborhood property of a subgraph gi as the set of all
Id-paths in gi.

The Id-paths capture the neighborhood information in
subgraphs and each succession of nodes in Id-paths reveals
how the neighborhood in the subgraph is evolving. For
example in g1 described above, the id-path a → c → d
shows that nodes a and c are neighbors of each other.
Moreover, this path along with a → e → d indicate that nodes a and d are in
neighborhood of each other (despite not being direct neighbors). Hence, the set
of all Id-paths captures important connectivity information of the subgraph.

Structural Property: The Structural property of a subgraph captures the
overall structure of the subgraph as opposed to just the local connectivity infor-
mation as captured by the Neighborhood property. Several prior works have
leveraged degree of nodes and their neighbors to capture structural information
in network representation learning [16,18]. While degree of a node captures its
local structural information within a subgraph, it fails in characterizing the sim-
ilarity between the structures of two nodes in different subgraphs. Note that the
nodes of two subgraphs with the same structure but of different sizes will have
different degrees. For example, nodes in clique of size 10 have degree of 9, whereas
nodes in clique of size 6 have degree 5. Therefore this suggests that instead, the
ratio of degree to the size of the subgraph, of a node and its neighbors better
identifies subgraph structure. Hence we rely on paths in gi annotated by the
ratio of node degrees to the subgraph size. We refer to the set of all such paths
as Degree-paths. Degree-paths capture the structure by tracking how the density
of edges changes in a neighborhood. While our method is simple, it is effective
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as shown by the results. One can build upon our framework by leveraging other
techniques like rooted subgraphs [13] and predefined motifs [17].

As an example, consider the subgraph g2 induced by nodes {a, b, c, e} and
subgraph g3 induced by nodes {f, h, i, g} in the graph shown above. As it is a
clique, the ratio of degree to the size of the subgraph for each node in g2 is 0.75.
Hence any Degree-paths of length 3 in g2 is 0.75 → 0.75 → 0.75. Similarly, g3 is
a star and a Degree-path in g3 from i to g is 0.25 → 0.75 → 0.25. The consistent
high values in the paths in cliques show that each node in the path is densely
connected to the rest of the graph, while the fluctuation in values in stars show
that the two spokes in the path are sparsely connected to the rest of the network
while the center is densely connected. In practice, since we cannot treat each
real value distinctly, we generate labels for each node from a fixed alphabet (see
Sect. 3).

Our Problems: Having defined the Neighborhood and Structural properties of
subgraphs, we want to learn vector representations in R

d, such that the likelihood
of preserving these properties in the feature space is maximized. Formally the
two versions of our Subgraph Embedding problem are:

Problem 1. Given a graph G(V,E), d, and set of S subgraphs (of G) S =
{g1, g2, . . . , gn}, learn an embedding function f : gi → yi ∈ R

d such that the
Neighborhood property of each gi ∈ S is preserved.

Problem 2. Given a graph G(V,E), d, and set of S subgraphs (of G) S =
{g1, g2, . . . , gn}, learn an embedding function f : gi → yi ∈ R

d such that the
Structural property of each gi ∈ S is preserved.

3 Our Methods

A common framework leveraged by most prior works in network embedding
is to exploit Word2vec [11] to learn feature representation of nodes in the net-
work. Word2vec learns similar feature representations for words which co-appear
frequently in the same context. Network embedding methods, such as Deep-
Walk [14] and Node2vec [9], generate ‘context’ around each node based on ran-
dom walks and embed nodes using Word2vec. These embeddings are known to
preserve various node properties. However, such methods lack the global view of
subgraphs, hence they are inherently unable to preserve the properties of entire
subgraphs and fail in solving our problems.

3.1 Overview

A major challenge in solving our problems is to design an architecture which
has global view of subgraphs and is able to capture similarities and differ-
ences between the properties of entire subgraphs. Our idea to overcome this
challenge is to leverage the Paragraph2vec models for our subgraph embed-
ding problems. Paragraph2vec [10] models learn latent representation of entire
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paragraphs while maximizing similarity between paragraphs which have simi-
lar word co-occurrences. Note that these models have the global view of entire
paragraphs. Intuitively, such a model is suitable for solving Problems 1 and 2.
Thus, we extend Paragraph2vec to learn subgraph embedding while preserving
distance between subgraphs that have similar ‘node co-occurrences’. We extend
both Paragraph2vec models (PV-DBOW and PV-DM). We call our models Dis-
tributed Bag of Nodes version of Subgraph Vector (Sub2Vec-DBON) and Dis-
tributed Memory version of Subgraph Vector (Sub2Vec-DM) respectively. We
discuss Sub2Vec-DM and Sub2Vec-DBON in detail in Subsects. 3.3 and 3.4.

In addition, another challenge is to generate meaningful context of ‘node
co-occurrences’ which preserve Neighborhood and Structural properties of sub-
graphs. We tackle this challenge by using our Id-paths and Degree-paths. As
discussed earlier, Id-paths and Degree-paths capture the Neighborhood and
Structural property respectively. We discuss on efficiently generating samples
of Id-paths and Degree-paths next.

3.2 Subgraph Truncated Random Walks

Both Neighborhood and Structural properties of subgraphs require us to enlist
paths in the subgraph (Id-paths for Neighborhood and Degree-paths for Struc-
tural). Since there are an unbounded number of paths, it is not feasible to enu-
merate all of them. Hence, we resort to random walks to generate samples of the
paths efficiently. Next we describe the random walks for Id-paths and Degree-
paths respectively. Note that the random walks are performed inside each sub-
graph gi separately, and not on the entire graph G.

Id-paths: Our random walk for Id-paths in subgraph gi(vi, ei) starts from a
node n1 ∈ vi chosen uniformly at random. We choose a neighbor of n1 uniformly
at random as the next node to visit in the random walk. Specifically, if ith node
in the random walk is ni, then the jth node in the random walk is a node nj ,
such that (ni, nj) ∈ ei, chosen uniformly at random among such nodes.

We generate random walk of fixed length l for each subgraph gi in the input
set of subgraphs S = {g1, g2, . . . , gn}. At the end of process, for each subgraph
gi ∈ S, we obtain a random walk of length l, annotated by the ids of the nodes.

Degree-paths: As mentioned in Sect. 2, we generate labels for each node based
on the ratio of degree of a node to the number of nodes in the subgraph for
Degree-paths. We formally define the label generation for nodes next.

Let θa be the degree of the node na. Given a subgraph g(vi, ei), we get the
ratio γa = θa

|vi| for each node na ∈ vi. Note that γ ∈ [0, 1]. Roughly, we define
various bins of range of values and associate a character with it (e.g. [0,0.2) is ‘a’,
[0.2,0.5) is ‘b’ and so on). As real networks have very skewed degree distributions,
we use logarithmic binning [12] to determine bin-widths. Formally, let Σ be a
finite alphabet over distinct characters; and we define a many-to-one relabeling
function τ : [0, 1] → Σ.

After generating the labels for each node, we follow the same procedure as
in Id-paths, and do a random walk on each subgraph. The only difference is
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that we generate a sequence of characters α ∈ Σ for Degree-paths as opposed to
node-ids for Id-paths.

3.3 Sub2Vec-DM

In the Sub2Vec-DM model, assuming we want to preserve Neighborhood prop-
erty of subgraphs, we seek to predict a node-id u that appears in an Id-path,
given other node-ids that co-occur with u in the path, and the subgraph that u
belongs to. By co-occurrence, we mean that two ids co-appear in a sliding window
of a fixed length w, i.e., they appear within distance w of each other. Consider
a subgraph g1 (a subgraph induced by nodes {a, b, c, e}) in the toy graph shown
earlier. Suppose the random walk simulation of Id-paths in g1 returns a → b → c,
and we consider w = 3, then the model asks to predict node-id c given subgraph
g1, and the node’s 2 predecessors (ids a and b), i.e., Pr(c|g1, {a, b}). Note that if
our goal is to preserve the Structural property, we use Degree-paths instead.

Here we give a formal formulation of Sub2Vec-DM. Let V =
⋃

i vi be the
union of node-set of all the subgraphs. Let W1 be a |S| × d matrix, where each
row W1(i) represents the embedding of a subgraph gi ∈ S. Similarly, let W2 be
a |V |×d matrix, where each column W2(n) is the vector representation of node
n ∈ V ′. Let the set of node-ids that appear within distance w of a node a be θa.

In Sub2Vec-DM, we predict a node-id a given θa and the subgraph gi, from
which a and θa are drawn. Formally, the objective of Sub2Vec-DM is to maxi-
mize:

max
∑

gi∈S

∑

a∈gi

log(Pr(a|W2(θa),W1(i))),

where Pr(a|W2(θa),W1(i)) is the probability of predicting node a given the
vector representations of θa and gi. It is defined using the softmax function:

Pr(a|W2(θa),W1(i)) =
eW3(a)·h(W2(θa),W1(i))

∑
v∈V eW3(v)·h(W2(θa),W1(gi))

(1)

where matrix W3 is a softmax parameter and h(x,y) is average or concatenation
of vectors x and y [10]. In practice, to compute Eq. 1, we use negative sampling
or hierarchical softmax [11].

3.4 Sub2Vec-DBON

In the Sub2Vec-DBON model, we want to predict a set θ of co-occurring
node-ids in an Id-path sampled from subgraph gi, given only the sugraph gi.
Note that Sub2Vec-DBON does not explicitly rely on the embeddings of node-
ids as in Sub2Vec-DM. As shown in Sect. 3.3, the ‘co-occurrence’ means that two
ids co-appear in a sliding window of a fixed length w. For example, consider the
same example as in Sect. 3.3: the subgraph g1 and the node sequence a → b → c
generated by random walks. Now in the Sub2Vec-DBON model, for w = 3, the
goal is to predict the set {a, b, c} given the subgraph g1. This model is parallel
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to the popular skip-gram model. The matrices W1 and W2 are the same as in
Sect. 3.3.

Formally, given a subgraph gi, and the θ drawn from gi, the objective of
Sub2Vec-DBON is the following:

max
∑

gi∈S

∑

θ∈gi

log(Pr(θ|W1(i)), (2)

where Pr(θ|W1(i)) is a softmax function, i.e.,

Pr(θ|W1(i)) =
eW2(θ).W1(i)

∑
θ′∈G eW2(θ′).W1(i)

,

Since computing Eq. 2 involves summation over all possible sets of co-
occuring nodes, we use approximation techniques such as negative sampling [11].

3.5 Algorithm

Our algorithm Sub2Vec works as follows: we first generate the samples of Id-
paths/Degree-paths in each subgraph by running random walks. Then we opti-
mize the SV-DBON/SV-DM objectives using the stochastic gradient descent
(SGD) method [5] by leveraging the random walks. We used the Gensim package
for implementation [15]. The complete pseudocode is presented in Algorithm 1.

Algorithm 1. Sub2Vec
Require: Graph G, subgraph set S = {g1, g2, . . . , gn}, length of the context window

w, dimension d
1: walkSet = {}
2: for each gi in s do
3: walk = RandomWalk (gi)
4: walkSet[gi] = walk
5: end for
6: f = StochasticGradientDescent(walkSet, d, w)
7: return f

4 Experiments

We leverage Sub2Vec1 for two applications, namely Community Detection and
Graph Classification, and perform a case-study on a real subgraph data. All
experiments are conducted using a 4 Xeon E7-4850 CPU with 512 GB 1066 Mhz
RAM. We set the length of the random walk as 1000 and following literature [9],
we set dimension of the embedding as 128 unless mentioned otherwise for both
parameters.
1 Code in Python available at: https://goo.gl/Ef4q8g.

https://goo.gl/Ef4q8g
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4.1 Community Detection

Setup. Here we show how to leverage Sub2Vec for the well-known community
detection problem [4,8]. A community in a network is a coherent group of nodes
which are densely connected among themselves and sparsely connected with the
rest of the network. One expects many nodes within the same community to have
similar neighborhoods. Hence, we can use Sub2Vec to embed subgraphs while
preserving the Neighborhood property and cluster the embeddings to detect
communities.

Approach. We propose to use Sub2Vec for community detection by embedding
the surrounding neighborhood of each node. First, we extract the neighborhood
Cv of each node v ∈ V from the input graph G(V,E). For each node v, we
extract its neighborhood Cv only once. Hence, we get a set S = {Cv|v ∈ V }
of |V | neighborhoods are extracted from G. Since each Cv is a subgraph, we
can leverage Sub2Vec to embed each Cv ∈ S. The idea is that similar Cvs will
be embedded together, which can then be clustered to detect communities. We
use a clustering algorithm (K-Means) to cluster the feature vectors f(Cv) of
each Cv. For datasets with overlapping communities (like Youtube), we use the
Neo-Kmeans algorithm [23] to obtain overlapping clusters. Cluster membership
of f(Cv) determines the community membership of node v. The complete pseu-
docode is in Algorithm 2.

In Algorithm 2, we define the neighborhood of each node to be its ego-network
for dense networks (School and Work) and its 2-hop ego-network for others. The
ego-network of a node is the subgraph induced by the node and its neighbors.
The 2-hop ego-network is the subgraph induced by the node, its neighbors, and
neighbors’ neighbors.

Algorithm 2 . Community Detection using Sub2Vec

Require: A network G(V,E), Sub2Vec parameters, k number of communities
1: neighborhoodSet = {}
2: for each v in V do
3: neighborhoodSet = neighborhoodSet ∪ neighbordhood of v in G.
4: end for
5: vecs = Sub2Vec (neighborhoodSet, w, d)
6: clusters = Clustering(vecs, k)
7: return clusters

Datasets. We use multiple real world datasets from multiple domains like
social-interactions, co-authorship, social networks and so on of varying sizes.
See Table 1.

Baselines. We compare Sub2Vec with various traditional community detection
algorithms and network embedding based methods. Newman [8] is a well-known
community detection algorithm based on betweenness. Louvian [4] is a popu-
lar greedy optimization method. DeepWalk and Node2Vec are recent network
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Table 1. Information on Datasets for Community Detection (Left) and Graph Clas-
sification (Right). # com denotes the number of ground truth communities in each
dataset. # nodes denotes the average number of nodes in each graph classification
dataset.

Table 2. Sub2Vec easily out-performs all baselines in all datasets. Average F-1 score
is shown for each method. Winners have been bolded for each dataset. G stands for
gain obtained by Sub2Vec in percentage.

Method Work School PolBlogs Texas Cornell Wash. Wisc. Youtube

Newman 0.32 0.34 0.58 0.17 0.33 0.21 0.16 0.04

Louvian 0.25 0.31 0.50 0.20 0.20 0.13 0.19 0.01

DeepWalk 0.40 0.48 0.80 0.25 0.32 0.29 0.29 0.15

Node2Vec 0.64 0.79 0.86 0.27 0.33 0.28 0.30 0.17

Sub2Vec-DM 0.77 0.93 0.85 0.35 0.36 0.38 0.32 0.38

Sub2Vec-DBON 0.65 0.57 0.82 0.35 0.34 0.37 0.32 0.36

G 20.3 17.7 −1.2 29.6 9.1 31.0 6.6 123.5

embedding methods which learn feature representations of nodes in the network
which we then cluster (in the same way as us) to obtain communities.

Results. We measure the performance of all the algorithms by computing the
Average F1 score [25] against the ground-truth. See Table 2. Both versions of
Sub2Vec significantly and consistently outperform all the baselines. We achieve
a significant gain of 123.5% over the closest competitor (Node2Vec) for Youtube.
We do better than Node2Vec and DeepWalk because intuitively, we learn the fea-
ture vector of the neighborhood of each node for the community detection task;
while they just do random probes of the neighborhood. Performance of Newman
and Louvian is considerably poor in Youtube as these methods output non-
overlapping communities. Performance of Node2Vec is satisfactory in sparse net-
works like Wash. and Texas. Node2Vec does slightly better (∼1%) than Sub2Vec
in PolBlogs—the network consists of homogeneous neighborhoods, which favors
it. However, the performance of Node2Vec is significantly worse for dense net-
works like Work and School. On the other hand, performance of Sub2Vec is even
more impressive in these dense networks (where the task is more challenging).
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4.2 Graph Classification

Setup. Here, we show an application of our method in the Graph Classification
task [18,24]. In the graph classification problem, the data consists of multiple
(gi, Yi) tuples, where each gi is a graph and Yi is its class-label. Moreover, the
nodes in each graph gi are labeled. The goal is to predict the class Yi for a
given graph Gi. Since we can generate embeddings of each graph, we can train
any off-the-shelf classifier to classify the graphs. In this experiment, we set the
dimension of embedding as 300 and set the length of the random walk as 100000.

Approach. Our approach is to learn the embedding of each graph by treating
them as a subgraph of a union of all the graphs. First we learn the feature
representation of the graphs such that either the Neighborhood (Sub2Vec-N) or
Structural (Sub2Vec-S) property is preserved. We then leverage four off-the-shelf
classifiers: Decision Tree, Random Forest, SVM, and Multi-Layered Perceptron,
to solve the classification task.

Datasets. We test on classic graph classification benchmark datasets. All the
datasets are publicly available2. List of datasets is presented in Table 1.

Baselines. We used two state-of-the-art methods as our competitors. WL-Kernel
[18]: This is a graph kernel method based on the Weisfeiler-Lehman test of graph-
isomorphism. DG-Kernel is a deep-learning version of WL-kernel [24], which
relies on latent representation of sub-structures of the graphs. It uses the popular
skip-gram model.

Table 3. Testing accuracy of graph classification. G is the % gain obtained by Sub2Vec.

Method MUT PTC ENZ PRT NC1 NC109

WL-Kernel 0.80 0.56 0.27 0.72 0.80 0.80

DG-Kernel 0.82 0.60 0.53 0.71 0.80 0.80

Sub2Vec-N 0.74 0.59 0.89 0.92 0.95 0.90

Sub2Vec-S 0.85 0.62 0.85 0.96 0.95 0.91

G 3.7 3.3 67.9 33.3 18.8 13.8

Results. We report the testing accuracy of a 5-fold cross validation. For
both Sub2Vec-N and Sub2Vec-S, we run both of our models Sub2Vec-DM and
Sub2Vec-DBON. We then train all four classifiers and show the best of them.
See Table 3. The results show that both of our methods consistently outperform
competitors. The gain of Sub2Vec over the state-of-the-art DG-Kernel is upto
a significant 67.9%. The better performance of Sub2Vec-S over Sub2Vec-N indi-
cates that structural properties in these datasets are more discriminative. This
is intuitive as different bonds between the elements results in different structure

2 http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/Graphkernels/.

http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/Graphkernels/
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and also determine the chemical properties of a compound [6]. Interestingly,
the Neighborhood property outperforms the Structural property in ENZ dataset.
This suggests that, in ENZ dataset, which interestingly also has higher number of
classes, the neighborhood property is more important than structural property
in determining the graph class.

4.3 Case Studies

We perform case-studies on MemeTracker3 dataset to investigate if the embed-
dings returned by Sub2Vec are interpretable. Here, we run Sub2Vec to preserve
the Neighborhood property. The MemeTracker consists of a series of cascades
caused by memes spreading on the network of linked web pages. Each meme-
cascade induces a subgraph in the underlying network. We first embed these
subgraphs in a continuous vector space by leveraging Sub2Vec. We then cluster
these vectors to explore what kind of meme cascade-graphs are grouped together
and what characteristics of memes determine their similarity and distance to each
other. For this case-study, we pick the top 1000 memes by volume, and cluster
them into 10 clusters.

(a) Politics (b) Religion

(c) Entertainment (d) Spanish

We find coherent clusters which are
meaningful groupings of memes based
on topics. For example we find clus-
ter of memes related to different top-
ics such as entertainment, politics, reli-
gion, technology and so on. Visual-
ization of these clusters is presented
above. In the entertainment cluster, we
find memes which are names of popu-
lar songs and movies such as “sweet
home alabama”, “Madagascar 2” and so on. Similarly, we also find a cluster of
religious memes. These memes are quotes from the Bible. In the politics cluster,
we find popular quotes from the 2008 presidential election season e.g. Barack
Obama’s popular slogan “yes we can” along with his controversial quotes like
“you can put lipstick on a pig” in the cluster. Interestingly, we find that all the
memes in Spanish language were clustered together. This indicates that memes
in different language travel though separate websites, which matches with the
reality as most webpages use one primary language.

5 Related Work

The network embedding problem, which seeks to generate low dimensional fea-
ture representation of nodes, has been well studied. Early work includes [1,2,20].
However, these methods are slow and do not scale to large networks. Recently,
several deep learning based network embeddings algorithms were proposed.

3 snap.stanford.edu.

http://snap.stanford.edu/
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DeepWalk [14] and Node2Vec [9] learn feature representation based on contexts
generated by random walks. SDNE [21] and LINE [19] learn feature represen-
tation of nodes while preserving first and second order proximity. Other recent
works include [7,16,22]. However, all of them node embeddings, while our goal
is to embed subgraphs.

The most similar network embedding literature includes [13,17,24]. Risen
and Bunke [17] propose to learn vector representations of graphs based on edit
distance to a set of pre-defined prototype graphs. Yanardag et al. [24] and
Narayanan et al. [13] learn vector representation of the subgraphs using the
Word2Vec by generating “corpus” of subgraphs where each subgraph is treated
as a word. The above works focuses on some specific subgraphs like graphlets
and rooted subgraphs. None of them embed subgraphs with arbitrary structure.

6 Conclusions and Discussion

We focus on the embedding problem for a set of subgraphs by formulating two
intuitive properties (Neighborhood and Structural). We developed Sub2Vec, a
scalable embedding framework which gives interpretable embeddings such that
these properties are preserved. We also demonstrate via detailed experiments
that Sub2Vec outperforms traditional algorithms as well as node-level embedding
algorithms in various applications, more so in challenging settings. Extending our
framework to handle more properties of interest would be fruitful. For example,
one may think of a ‘Positional property’ which relates to the position or role of
nodes in the subgraph w.r.t. the overall graph.
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(CAREER-IIS-1750407, DGE-1545362, and IIS-1633363), the NEH (HG-229283-15),
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Abstract. Network embedding has been a hot topic as it can learn node
representations that encode the network structure resulting from node
interactions. In this paper, besides the network structure, the interaction
content within which each interaction arises is also embedded because
it reveals interaction preferences of the two nodes involved. Specifically,
we propose interaction content aware network embedding (ICANE) via
co-embedding of nodes and edges. The embedding of edges is to learn
edge representations that preserve the interaction content, which then
can be incorporated into node representations through edge representa-
tions. Experiments demonstrate ICANE outperforms five recent network
embedding models in visualization, link prediction and classification.

1 Introduction

Network embedding has been a hot topic recently. Existing methods [7,13,16,23,
24] basically embed the network structure in a Euclidean space of interest. In this
way, however, they fair to consider the content within which node interactions
arise. In practice, the content can be observed in various networks:

– In academic co-authorship networks as illustrated in Fig. 1, the particular
paper is the interaction content associated with co-authorships.

– In gene co-expression networks where genes co-express functional gene prod-
ucts, such as protein, the functional products are the interaction content.

– In social interaction networks where users interact under social media, e.g.,
discussing under images and documents, the media is the interaction content.

X. Wei—The work was done when the author was a Ph.D. student at University of
Illinois at Chicago.
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Fig. 1. A co-authorship network sampled from a DBLP dataset [17] where nodes denote
researchers and rectangles with lines inside them denote papers that researchers co-
authored. Some papers may be missing due to the sampling process.

Interaction content has been shown helpful in network analysis, such as
community detection [14]. In the scenario of network embedding, we can see
interaction content contains node interaction preferences. Specifically in the co-
authorship network, the interaction content indicates research interests. Simi-
larly, the content in the social interaction networks reveals the events or activ-
ities that users are interested in. These two cases together indicate interaction
preferences are specific for the social environment.

Moreover, some nodes may have multiple distinct interaction preferences, and
each interaction may only arise within a single content. For example, a researcher
may have interests in three research areas, such as Database, Machine Learning,
and Data Mining. Different papers of the researcher and co-authors may belong
to different areas. Not distinguishing different co-authorships in terms of the
areas while embedding the co-authorship network, hence, is not appropriate.

To achieve this goal, the major challenge is that interaction content cannot be
concatenated to node representations because it may not be affiliated to nodes.
For example, in social networks where users interact under images or documents,
the content may be belong to third parties not involved in the interactions.

In this paper, we propose interaction content aware network embedding
(ICANE) via co-embedding of nodes and edges. Specifically, ICANE embeds
the network structure in node representations, and embeds interaction content
in edge representations. Moreover, ICANE incorporates interaction content into
node representations via jointly learning representations for nodes and edges.

In some scenarios, interaction content can have relationships, e.g.,

– In co-authorship networks, the interaction content, i.e., papers, usually has
citation relationships as illustrated in Fig. 1.

– In gene co-expression networks, the interaction content can be proteins, which
can have protein-protein interactions in various biological processes.

– In social interaction networks, the interaction content is the media, such as
documents, which can have references to each other.
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Because the interaction content is affiliated to edges, we name the network result-
ing from content relationships as an edge network. Hence, ICANE encodes inter-
action content into edge representations by embedding the edge network.

In other scenarios, the interaction content has text information, e.g., paper
content in co-authorship networks. Collectively, there may exist both an edge
network and text information in some scenarios.

It is worthy of noting that node representations may also benefit the learn-
ing of edge representations which explicitly preserve node interaction prefer-
ences. Since node representations encode the network structure, i.e., interactions
between nodes, node representations implicitly preserve interaction preferences
of nodes. Hence, node representations and edge representations actually preserve
similar characteristics but from different views.

2 Related Work

The development of recent network embedding starts with DeepWalk [13], which
employs Skip-gram to present pairs of nodes reached in the same truncated
random walks to be close in the embedding space. There are other Skip-gram
based models, such as TADW [25] to embed both network structure and node
attributes, and node2vec [7] to explore diverse neighborhoods in random walks.

There are also many methods not based on Skip-gram. LINE [16] is pro-
posed to embed large-scale networks by directly presenting pairs of nodes with
first-order or second order connections to be close. GraRep [4] models first-order
up to a pre-defined k-order proximities into transition matrices. A recent study
[26] concludes that modelling high-order proximities can improve the quality
of node representations. Besides simply preserving the network structure, some
methods also preserve network properties, such as HOPE [12] preserving asym-
metric transitivities and M-NMF [21] preserving communities. Some methods
[5,6,15,22] even embed heterogeneous information networks. Deep learning has
also been applied for network embedding [20]. Most methods above are unsu-
pervised learning methods. Semi-supervised methods [8,19,27] have also been
studied.

3 Preliminaries

Definition 1. Gv(Vv, Ev, C) denotes a network with interaction content,
where Vv is a set of nodes, Ev is a set of weighted or unweighted, directed or
undirected edges, and C is a set of interaction content.

Definition 2. Ge(Ve, Ee) denotes an edge network. Ve is a set of nodes which
are the concept of edges in Gv(Vv, Ev, C), Ee is a set of weighted or unweighted,
directed or undirected edges among the interaction content C.

Note that |Ve| corresponds to the number of interaction content, and it may
not be equal to |Ev| due to two reasons. Firstly, multiple nodes may interact
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within the same content, e.g., multi-author papers, which results in multiple
edges. Secondly, a pair of nodes may interact under multiple content. Multiple
interactions are treated as a weighted edge like existing embedding models do.

As an embedding method, ICANE presents nodes connected by edges to be
close in an Euclidean space. The closeness of two nodes is quantified as follows:

Definition 3. The closeness of two nodes is quantified as the probability of an
edge between them, where the probability is defined as follows:

p(vi,vj) =
1

1 + exp{−v�
i vj}

, (1)

where vi ∈ R
D and vj ∈ R

D are column vectors of representations for nodes i
and j, respectively, and D is the dimension of the Euclidean space of interest.

The closeness is reasonable as larger probabilities indicate larger inner product
of two vectors, which is a measurement of closeness in Euclidean space.

4 Model Development

4.1 Node Representation Learning

To embed the network structure, ICANE not only presents pairs of nodes con-
nected by edges to be close but also presents pairs of nodes not connected to
be apart in the embedding space because non-linkage information is also an
important part of network structure. Since the closeness is quantified as proba-
bility, the network structure preserving can be formulated into an optimization
objective according to maximum likelihood estimation as follows:

max
V ∈R|Vv|×D

∏

(i,j)∈Ev,(h,k)/∈Ev

p(vi,vj)(1 − p(vh,vk)), (2)

which maximizes the probabilities of both linkage and non-linkage relationships.
The multiplication maximization is usually transformed to an equivalent min-

imization by taking negative natural logarithm, which is denoted as follows:

min
V

−
⎡

⎣
∑

(i,j)∈Ev

(wv)ij log p(vi,vj) +
∑

(h,k)/∈Ev

log(1 − p(vh,vk))

⎤

⎦ , (3)

where (wv)ij ∈ R is the weight of edge (i, j) added to reflect to relationship
strength. The loss function is referred to as Lv in the rest of the paper.

4.2 Edge Representation Learning

For interaction content that can produce an edge network, edge representations
can be learned by embedding the edge network structure, which can be per-
formed in the same way as embedding the node network structure. Hence, the
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loss function is referred to as Le, which is the same as Lv except that node
representations are replaced with edge representations.

For interaction content with text information, the content can be embedded
into edge representations via regularizing edge representations to accord with
the text information. The regularization is reasonable because the text informa-
tion is the ground truth about the interaction preferences, e.g., paper content
denotes research topics. The regularization can be performed by projecting the
representations to corresponding content, which is formulated as follows:

min
M ∈RD×Q

||EM − A||2F , (4)

where M is a projection matrix to be estimated, Q is the number of terms in
text, E ∈ R

|Ve|×D, A ∈ R
|Ve|×Q is a term-frequency matrix extracted from text,

and || · ||2F is Frobenius norm. The intuition behind Eq. (4) is that the content
is well represented by edge representations through the projection matrix.

4.3 Joint Learning

The key to joint learning is how to relate edge representations to node represen-
tations so that interaction content can be incorporated into node representations.
As mentioned in the introduction, node representations encoding the network
structure implicitly preserve node interaction preferences and edge represen-
tations explicitly preserve interaction preferences. Hence, node representations
should be similar to representations of their incident edges. To make the prob-
lem simple, nodes are presented to be close to their incident edges, which can
be achieved in a similar way to encode linkage relationships among nodes.

Hence, the overall loss function for joint learning can be obtained as follows:

L(V ,E,M) =Lv + Le −
[

∑

vi→em

log p(vi,em) +
∑

vi �→el

log(1 − p(vi,el))

]

+ ||EM − A||2F + λ(||V ||2F + ||E||2F + ||M ||2F ),

(5)

which directly adds loss functions for node representation learning, edge repre-
sentation learning and joint learning. More sophisticated ways for the combina-
tion is left as future work. vi → em denotes em is an incident edge of vi while
vi �→ el denotes the opposite. p(vi,em) is the closeness measurement between
a node and an edge, which is defined similarly to the closeness among nodes as
mentioned above. Specifically, p(vi,em) is quantified as follows:

p(vi,em) =
1

1 + exp{−v�
i em} , (6)

Equation (5) assumes that there exist both an edge network and text infor-
mation. In some cases where there may be only one type of content information,
we can safely remove the corresponding component from Eq. (5). Hence, for cases
where there is only an edge network, we name the model as INCAE(E) while for
cases where there is only text information, we name the model as ICANE(A).
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Algorithm 1. The optimization algorithm
Input : Gv(Vv, Ev, C), D, λ, and negative ratio
Output: V and E

Pre-training V and E with gradient descent;
while (not converge) do

Fix V and E, find the optimal M with the Eq. (10);
Fix other variable(s), find the optimal E with gradient descent;
Fix other variable(s), find the optimal V with gradient descent;

return V and E

5 The Optimization

L(V ,E,M) is not jointly convex over the three variables. We thus solve it
by an alternating algorithm [3] which replaces a complex optimization prob-
lem with a sequence of easier sub-problems, and then solves the sub-problems
alternatingly. In our case, the sub-problems w.r.t vi and ei can be solved by
gradient-based algorithms, e.g., steepest descent or L-BFGS. The derivative for
minimizing L(V ,E,M) with respect to vi is computed as follows:

∂L(V ,E)

∂vi
=−

∑

(i,j)∈Ev

[
(wv)ijexp{−v�

i vj}
1 + exp{−v�

i vj}
vj

]
+

∑

(i,k)/∈Ev

[
vk

1 + exp{−v�
i vk}

]

−
∑

vi→em

[
exp{−v�

i em}
1 + exp{−v�

i em}em
]
+

∑

vi �→el

[
el

1 + exp{−v�
i el}

]
+ 2λ(vi),

(7)

The derivative with respect to em is computed as follows: ∂L(V ,E ,M )
∂em

=

−
∑

(m,n)∈Ee

[
(we)mnexp{−e�

men}
1 + exp{−e�

men}
en

]
+

∑

(m,l)/∈Ee

[
el

1 + exp{−e�
mel}

]

−
∑

vi→em

exp{−e�
mvi}

1 + exp{−e�
mvi}

vi +
∑

vk �→em

vk

1 + exp{−e�
mvk}

+ 2(eTmM − aT
m)M T + 2λ(edm),

(8)

To minimize L(V ,E,M) with respect to M , the optimization objective
actually turns into solving the following problem:

min
M

||EM − A||22 + λ||M ||22. (9)

It is easy to see that the optimal M can be obtained by setting the derivative
of Eq. (9) w.r.t M to zero. Hence, the optimal M is obtained as follows:

M = (ETE + λI)−1ETA, (10)

where I ∈ R
D×D is an identity matrix.
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The pseudo-codes of the alternating optimization algorithm are presented in
Algorithm 1. Negative ratio is the ratio of the number positive edges to that of
negative edges as used in LINE [16]. With the negative ration, the scalability to
large-scale networks can be guaranteed. Pre-training is performed to initialize
the model to a point in parameter space that renders the learning process more
effective [2]. The pre-training on V or E is performed by solely preserving the
network structure of Gv(Vv, Ev, C) or Ge(Ve, Ee), i.e., minimizing Lv or Le by
gradient descent. The learning rates of gradient descent are obtained by back-
tracking line search [1]. If there is no Ge(Ve, Ee), the pre-training of E can be
performed by factorizing the term-frequency matrix A using SVD [4].

Algorithm 1 is essentially a block-wise coordinate descent algorithm [18]
whose convergence can be guaranteed.

Table 1. Network statistics

Network Co-authorship Paper citation User interaction Photo(group)

# Nodes 12407 8208 5342 2613

# Edges 27714 10532 230123 38841

# Attributes 6934 4070

6 Empirical Evaluation

6.1 Datasets

– DBLP [17]: A co-authorship network in Table 1 is sampled with papers as
the interaction content. Papers are selected from conferences of four fields,
which are SIGMOD, VLDB, ICDE, EDBT, and PODS for Database, KDD,
ICDM, SDM, and PAKDD for Data Mining, ICML, NIPS, AAAI, IJCAI and
ECML for Machine Learning, SIGIR, WSDM, WWW, CIKM, and ECIR for
Information Retrieval. Publication time span is set as 17 years from 1990 to
2006.

– CLEF [11]: From CLEF, we sample a user interaction network where inter-
actions are established between users commenting on the same photo. Hence,
the photos are the interaction content. Photos can be categorized into differ-
ent groups, such as scenery, explore, etc. The groups can be used to construct
a photo network where edges are established between two photos belonging
to the same group. We refer to this photo network as photo(group) network.

6.2 Experiment Settings

Five recent network embedding models, DeepWalk [13], LINE [16], TADW [25],
node2vec [7], and EOE [22] are used as baselines. Both TADW and EOE embed
networks with node content. They can be applied to the DBLP co-authorship
network because paper content can also be used as node content. However, the
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tags of images of the Flickr user interaction network cannot be used as node
content in that the tags belong to a third party. For the implementation of
Algorithm 1, we set the embedding dimension as 128, which is used in all the
baselines, negative ratio as 5, which is used in LINE.

(1) DeepWalk Author (2) LINE2 Author (3) node2vec Author (4) TADW Author

(5) EOE Author (6) ICANE Author (7) ICANE(A) Author (8) ICANE(E) Author

Fig. 2. Visualization of representations for the DBLP dataset, where green points are
for authors from DB, light blue for IR, dark blue for DM, and red for ML. The filed of
an author is chosen as the one where he/she published the most papers. (Color figure
online)

6.3 Representation Visualization

This section visually presents how effectively the representations encode the
network structure. The DBLP data is used as the illustration. t-SNE [10] is
employed to visualize the author representations in Fig. 2. From Fig. 2(1) through
Fig. 2(3) of baselines (LINE(1st) is omitted due to space limitation because it
performs worse than LINE(2nd)), we see that a considerably large number of
authors from different fields are mixed up. This may be because the selected
four fields, i.e., DB, DM, ML, and IR, are closely related, and there are many
cross-field co-authorships. Hence, the network structure along is not enough to
distinguish authors from one research field to another.

TADW, EOE and the proposed ICANE work better by utilizing the paper
content as illustrated in Fig. 2(4) though Fig. 2(6) where data points of the same
color are distributed together. This is because research focus of each field is
distinct, which is reflected on paper content. To make fair comparison with
TADW and EOE, we visualize representations learned by ICANE(A) in Fig. 2(7).
We see that ICANE(A) is also comparable with TADW and EOE. Moreover, we
visualize representations learned by ICANE(E) in Fig. 2(8). We can see Fig. 2(8)
performs better than the baselines only embedding the co-authorship network.

It might not be easy to visually tell which one of TADW, EOE, and ICANE
performs better, but ICANE can jointly learn author representations and paper
representations while all the baselines can only learn author representations.
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Learning paper representations can lend strengths to learn author representa-
tions, and vice versa because paper representations capture research interests of
authors. As a result, the data mining applications with respect to either nodes
or edges may benefit from each other. The advantage of the joint learning is
demonstrated in the following link prediction and classification.

6.4 Link Prediction

Link prediction is usually performed by measuring similarities between two nodes
[9]. Here, the inner product of two node representations normalized by sigmoid
function is employed as the similarity measurement. We first perform Flickr
user interaction prediction, and conduct 9 runs of experiments where training
interactions range from 10% to 90% of the total interactions and the rest are
used as test interactions. Moreover, for each experiment, the same number of
negative interactions are randomly sampled for the evaluation purpose. AUC is
employed as the evaluation metric, and the results are presented in Table 2.

Table 2. AUC scores(100%) for Flickr interaction prediction when different ratios of
interactions are used in the training phase.

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 79.30 86.74 89.52 90.59 91.30 91.49 91.73 91.75 91.88

LINE(1st) 74.26 85.45 89.62 91.87 93.17 93.96 94.61 95.00 95.36

LINE(2nd) 78.22 84.03 86.75 88.47 89.34 90.00 90.19 89.81 89.22

node2vec 77.07 80.57 81.67 81.79 81.17 81.64 82.01 81.46 81.73

ICANE(E) 90.25 93.21 94.39 95.95 96.38 96.50 97.02 97.25 97.42

ICANE(A) 93.82 94.93 95.73 95.22 96.22 96.29 96.96 97.10 97.29

ICANE 92.40 93.58 94.27 94.78 95.64 95.06 96.89 97.32 97.39

Table 2 shows ICANE consistently outperform all the baselines no matter
what kind of content information is utilized (TADW and EOE are not applica-
ble since photos belong to a third party instead of the nodes of the interaction
network). Moreover, ICANE still work well given very limited training interac-
tions, such as 10% and 20%. The superior performance of ICANE benefits from
the extra information provided by photo tags and the photo(group) network
where photos are the interaction content within which users have interactions.

For DBLP co-authorship prediction, the co-authorships arise from 2007 to
2013 are used as test links, and experiment results are presented in Table 3.
ICANE outperforms all the baselines except for LINE(2nd). As we examine the
node similarities of links computed on the representations learned by LINE(2nd),
all the positive and negative links have node similarities close to 1.0, which is not
that interpretable. The reason behind the phenomenon may be that LINE(2nd)
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Table 3. AUC scores(100%) for DBLP co-authorship prediction, where (E) and (A)
denote ICANE(E) and ICANE(A), respectively.

Model DeepWalk LINE(1st) LINE(2nd) node2vec TADW EOE (E) (A) ICANE

AUC 76.62 72.38 83.05 76.68 73.82 80.95 78.02 81.30 82.83

presents nodes with second-order link to be close, which is not consistent with the
fist-order link prediction. Hence, LINE(2nd) is omit in the following discussion.

ICANE(E) outperforms baselines that only embed the network structure but
underperforms EOE which also embeds node content. This may be because the
paper citation network brings less useful information than paper content which
has explicit information about node interaction preferences. The useful informa-
tion brought by the paper citation network can be seen in the better performance
of ICANE than that of ICANE(A). Moreover, ICANE(A) and ICANE outper-
form EOE. Recall that ICANE(A) and ICANE use the paper content as inter-
action content while EOE uses it to construct an author-word coupled network.
Hence, the interaction content is explicitly embedded into edge representations,
and then is incorporated into node representations in ICANE. In EOE, paper
content is fragmentarily embedded in word representations by embedding the
word network. We can see the mechanism for incorporating paper content into
node representations of ICANE is more effective than that of EOE.

TADW performs even worse than DeepWalk that only embeds the network
structure. It is worthy of noting that TADW concatenates node representations
learned from node content and node representations learned from the network
structure. As a result, the node similarities of links are largely determined by
their node content, which indicates research interests of researchers. It is intuitive
that it is not necessary for researchers with similar interests to collaborate.

6.5 Multi-label Classification

For DBLP, a research field as a label is assigned to authors if they published
papers in this field. For Flickr, there are 99 labels for the photos in the dataset. It
is worthy of noting that for Flickr, the photo representations are edge represen-
tations in the proposed models while they are node representations learned by
baselines from the photo(group) network. The photo tags are the node content
of the photo(group) network. We employ Micro-F1 and Macro-F1 as the perfor-
mance metrics, and results of ten-fold cross validation are presented in Table 4,
which is produced by binary-relevance SVM with polynomial kernel. For Flickr,
ICANE performs better than all the baselines because ICANE can utilize not
only the photo tags and the photo(group) network, but also the user interaction
network. The user interaction network results from the photos so that it can
provide auxiliary information to the photo representations.

For DBLP, all the models utilizing both the co-authorship network and paper
content perform significantly than those only utilizing the co-authorship network.
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Table 4. Micro-F1(100%) & Macro-F1(100%) for multi-label classification

Flickr DeepWalk LINE(1st) LINE(2nd) node2vec TADW EOE (E) (A) ICANE

Micro-F1 65.1 58.6 57.2 72.5 69.5 70.3 73.2 73.1 73.7

Macro-F1 65.3 58.5 57.2 72.3 69.1 70.0 73.0 72.8 73.2

DBLP DeepWalk LINE(1st) LINE(2nd) node2vec TADW EOE (E) (A) ICANE

Micro-F1 60.2 59.9 59.5 62.9 79.6 79.9 67.3 79.7 80.8

Macro-F1 37.6 35.8 36.2 43.7 74.5 74.6 56.4 74.8 75.3

ICANE(A) obtains similar performance as TADW and EOE, but ICANE per-
forms better than TADW and EOE because it can even utilize the paper citation
network. The benefits brought by the paper citation network can be seen in the
superior performance of ICANE(E) to that of DeepWalk, LINE and node2vec.

6.6 Multi-class Classification

The research field as a label is assigned to each paper. We employ SVM with
polynomial kernel as the classifier, and present the accuracy obtained by 10-
fold cross validation in Table 5. Similarly, ICANE outperforms all the baselines.
To this point, we have demonstrated not only the interaction content can help
improve node representations, but also the nodes can in turn help improve con-
tent representations. Particularly in this case, the authors largely determine the
fields of their papers because they have particular expertise.

Table 5. Accuracy on DBLP paper multi-class classification

Model DeepWalk LINE(1st) LINE(2nd) node2vec TADW EOE (E) (A) ICANE

Accuracy 68.62 61.40 55.36 70.84 71.06 69.03 72.83 73.56 73.66
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Abstract. Network embedding in heterogeneous information networks
(HINs) is a challenging task, due to complications of different node types
and rich relationships between nodes. As a result, conventional network
embedding techniques cannot work on such HINs. Recently, metapath-
based approaches have been proposed to characterize relationships in
HINs, but they are ineffective in capturing rich contexts and semantics
between nodes for embedding learning, mainly because (1) metapath is
a rather strict single path node-node relationship descriptor, which is
unable to accommodate variance in relationships, and (2) only a small
portion of paths can match the metapath, resulting in sparse context
information for embedding learning. In this paper, we advocate a new
metagraph concept to capture richer structural contexts and semantics
between distant nodes. A metagraph contains multiple paths between
nodes, each describing one type of relationships, so the augmentation of
multiple metapaths provides an effective way to capture rich contexts
and semantic relations between nodes. This greatly boosts the ability of
metapath-based embedding techniques in handling very sparse HINs. We
propose a new embedding learning algorithm, namely MetaGraph2Vec,
which uses metagraph to guide the generation of random walks and to
learn latent embeddings of multi-typed HIN nodes. Experimental results
show that MetaGraph2Vec is able to outperform the state-of-the-art
baselines in various heterogeneous network mining tasks such as node
classification, node clustering, and similarity search.

1 Introduction

Recent advances in storage and networking technologies have resulted in many
applications with interconnected relationships between objects. This has led to
the forming of gigantic inter-related and multi-typed heterogeneous information
networks (HINs) across a variety of domains, such as e-government, e-commerce,
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 196–208, 2018.
https://doi.org/10.1007/978-3-319-93037-4_16
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biology, social media, etc. HINs provide an effective graph model to characterize
the diverse relationships among different types of nodes. Understanding the vast
amount of semantic information modeled in HINs has received a lot of attention.
In particular, the concept of metapaths [10], which connect two nodes through a
sequence of relations between node types, is widely used to exploit rich semantics
in HINs. In the last few years, many metapath-based algorithms are proposed
to carry out data mining tasks over HINs, including similarity search [10], per-
sonalized recommendation [6,9], and object clustering [11].

Despite their great potential, data mining tasks in HINs often suffer from
high complexity, because real-world HINs are very large and have very complex
network structure. For example, when measuring metapath similarity between
two distant nodes, all metapath instances need to be enumerated. This makes
it very time-consuming to perform mining tasks, such as link prediction or sim-
ilarity search, across the entire network. This inspires a lot of research interests
in network embedding that aims to embed the network into a low-dimensional
vector space, such that the proximity (or similarity) between nodes in the orig-
inal network can be preserved. Analysis and search over large-scale HINs can
then be applied in the embedding space, with the help of efficient indexing or
parallelized algorithms designed for vector spaces.

Conventional network embedding techniques [1,4,8,12–16], however, focus
on homogeneous networks, where all nodes and relations are considered to have
a single type. Thus, they cannot handle the heterogeneity of node and relation
types in HINs. Only very recently, metapath-based approaches [2,3], such as
MetaPath2Vec [3], are proposed to exploit specific metapaths as guidance to
generate random walks and then to learn heterogeneous network embedding.
For example, consider a DBLP bibliographic network, Fig. 1(a) shows the HIN
schema, which consists of three node types: Author (A), Paper (P) and Venue
(V), and three edge types: an author writes a paper, a paper cites another paper,
and a paper is published in a venue. The metapath P1: A → P → V → P → A
describes the relationship where both authors have papers published in the same
venue, while P2: A → P → A → P → A describes that two authors share the
same co-author. If P1 is used by MetaPath2Vec to generate random walks, a
possible random walk could be: a1 → p1 → v1 → p2 → a2. Consider a window
size of 2, authors a1 and a2 would share the same context node v1, so they should
be close to each other in the embedding space. This way, semantic similarity
between nodes conveyed by metapaths is preserved.

Due to difficulties in information access, however, real-world HINs often have
sparse connections or many missing links. As a result, metapath-based algo-
rithms may fail to capture latent semantics between distant nodes. As an exam-
ple, consider the bibliographic network, where many papers may not have venue
information, as they may be preprints submitted to upcoming venues or their
venues are simply missing. The lack of paper-venue connection would result in
many short random walks, failing to capture hidden semantic similarity between
distant nodes. On the other hand, besides publishing papers on same venues,
distant authors can also be connected by other types of relations, like sharing
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common co-authors or publishing papers with similar topics. Such information
should be taken into account to augment metapath-based embedding techniques.

a1 p1 v1×

a2

p2 a3 p4 v2 p5 a4

Fig. 2. An example of random walk from a1 to a4 based on metagraph G, which cannot
be generated using metapaths P1 and P2. This justifies the ability of MetaGraph2Vec
to provide richer structural contexts to measure semantic similarity between distant
nodes.

Inspired by this observation, we propose a new method for heterogeneous net-
work embedding, called MetaGraph2Vec, that learns more informative embed-
dings by capturing richer semantic relations between distant nodes. The main
idea is to use metagraph [5] to guide random walk generation in an HIN, which
fully encodes latent semantic relations between distant nodes at the network
level. Metagraph has its strength to describe complex relationships between
nodes and to provide more flexible matching when generating random walks in an
HIN. Figure 1(b) illustrates a metagraph G, which describes that two authors are
relevant if they have papers published in the same venue or they share the same
co-authors. Metagraph G can be considered as a union of metapaths P1 and P2,
but when generating random walks, it can provide a superset of random walks
generated by both P1 and P2. Figure 2 gives an example to illustrate the intu-
ition behind. When one uses metapath P1 to guide random walks, if paper p1 has
no venue information, the random walk would stop at p1 because the link from
p1 to v1 is missing. This results in generating too many short random walks that
cannot reveal semantic relation between authors a1 and a3. In contrast, when
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metagraph G is used as guidance, the random walk a1 → p1 → a2 → p2 → a3,
and a3 → p4 → v2 → p5 → a4 is generated by taking the path en route A
and V in G, respectively. This testifies the ability of MetaGraph2Vec to provide
richer structural contexts to measure semantic similarity between distant nodes,
thereby enabling more informative network embedding.

Based on this idea, in MetaGraph2Vec, we first propose metagraph guided
random walks in HINs to generate heterogeneous neighborhoods that fully
encode rich semantic relations between distant nodes. Second, we generalize
the Skip-Gram model [7] to learn latent embeddings for multiple types of nodes.
Finally, we develop a heterogeneous negative sampling based method that facil-
itates the efficient and accurate prediction of a node’s heterogeneous neighbor-
hood. MetaGraph2Vec has the advantage of offering more flexible ways to gen-
erate random walks in HINs so that richer structural contexts and semantics
between nodes can be preserved in the embedding space.

The contributions of our paper are summarized as follows:

1. We advocate a new metagraph descriptor which augments metapaths for flex-
ible and reliable relationship description in HINs. Our study investigates the
ineffectiveness of existing metapath based node proximity in dealing with
sparse HINs, and explains the advantage of metagraph based solutions.

2. We propose a new network embedding method, called MetaGraph2Vec, that
uses metagraph to capture richer structural contexts and semantics between
distant nodes and to learn latent embeddings for multiple types of nodes in
HINs.

3. We demonstrate the effectiveness of our proposed method through various
heterogeneous network mining tasks such as node classification, node cluster-
ing, and similarity search, outperforming the state-of-the-art.

2 Preliminaries and Problem Definition

In this section, we formalize the problem of heterogeneous information network
embedding and give some preliminary definitions.

Definition 1. A heterogeneous information network (HIN) is defined as
a directed graph G = (V,E) with a node type mapping function φ : V → L and
an edge type mapping function ψ : E → R. TG = (L,R) is the network schema
that defines the node type set L with φ(v) ∈ L for each node v ∈ V , and the
allowable link types R with ψ(e) ∈ R for each edge e ∈ E.

Example 1. For a bibliographic HIN composed of authors, papers, and venues,
Fig. 1(a) defines its network schema. The network schema contains three node
types, author (A), paper (P) and venue (V), and defines three allowable relations,

A
write−−−→ P , P

cite−−→ P and V
publish−−−−−→ P . Implicitly, the network schema also

defines the reverse relations, i.e., P
write−1

−−−−−→ A, P
cite−1

−−−−→ P and P
publish−1

−−−−−−→ V .
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Definition 2. Given an HIN G, heterogeneous network embedding aims
to learn a mapping function Φ : V → R

d that embeds the network nodes v ∈ V
into a low-dimensional Euclidean space with d � |V | and guarantees that nodes
sharing similar semantics in G have close low-dimensional representations Φ(v).

Definition 3. A metagraph is a directed acyclic graph (DAG) G =
(N,M,ns, nt) defined on the given HIN schema TG = (L,R), which has only
a single source node ns (i.e., with 0 in-degree) and a single target node nt (i.e.,
with 0 out-degree). N is the set of the occurrences of node types with n ∈ L for
each n ∈ N . M is the set of the occurrences of edge types with m ∈ R for each
m ∈ M .

As metagraph G depicts complex composite relations between nodes of type
ns and nt, N and M may contain duplicate node and edge types. To clarify,
we define the layer of each node in N as its topological order in G and denote
the number of layers by dG . According to nodes’ layer, we can partition N into
disjoint subsets N [i] (1 ≤ i ≤ dG), which represents the set of nodes in layer i.
Each N [i] does not contain duplicate nodes. Now each element in N and M can
be uniquely described as follows. For each n in N , there exists a unique i with
1 ≤ i ≤ dG satisfying n ∈ N [i] and we define the layer of node n as l(n) = i.
For each m ∈ M , there exist unique i and j with 1 ≤ i < j ≤ dG satisfying
m ∈ N [i] × N [j].

Example 2. Given a bibliographic HIN G and a network schema TG shown in
Fig. 1(a), (b) shows an example of metagraph G = (N,M,ns, nt) with ns =
nt = A. There are 5 layers in G and node set N can be partitioned into 5
disjoint subsets, one for each layer, where N [1] = {A}, N [2] = {P}, N [3] =
{A, V }, N [4] = {P}, N [5] = {A}.

Definition 4. For a metagraph G = (N,M,ns, nt) with ns = nt, its recur-
sive metagraph G∞ = (N∞,M∞, n∞

s , n∞
t ) is a metagraph formed by tail-head

concatenation of an arbitrary number of G. G∞ satisfies the following conditions:

1. N∞[i] = N [i] for 1 ≤ i < dG, and N∞[i] = N [i mod dG + 1] for i ≥ dG.
2. For each m ∈ N∞[i] × N∞[j] with any i and j, m ∈ M∞ if and only if one

of the following two conditions is satisfied:
(a) 1 ≤ i < j ≤ dG and m ∈ M

⋂
(N [i] × N [j]);

(b) i ≥ dG, 1 ≤ j − i ≤ dG and m ∈ M
⋂

(N [i mod dG + 1] ×
N [j mod dG + 1]).

In the recursive metagraph G∞, for each node n ∈ N∞, we define its layer as
l∞(n).

Definition 5. Given an HIN G and a metagraph G = (N,M,ns, nt) with ns =
nt defined on its network schema TG, together with the corresponding recursive
metagraph G∞ = (N∞,M∞, n∞

s , n∞
t ), we define the random walk node sequence

constrained by metagraph G as SG = {v1, v2, · · · , vL} with length L satisfying the
following conditions:
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1. For each vi (1 ≤ i ≤ L) in SG, vi ∈ V and for each vi (1 < i ≤ L) in SG,
(vi−1, vi) ∈ E. Namely, the sequence SG respects the network structure in G.

2. φ(v1) = ns and l∞(φ(v1)) = 1. Namely, the random walk starts from a node
with type ns.

3. For each vi (1 < i ≤ L) in SG, there exists a unique j satisfying
(φ(vi−1), φ(vi)) ∈ M∞ ⋂

(N∞[l∞(φ(vi−1))] × N∞[j]) with j > l∞(φ(vi−1)),
φ(vi) ∈ N∞[j] and l∞(φ(vi)) = j. Namely, the random walk is constrained
by the recursive metagraph G∞.

Example 3. Given metagraph G in Fig. 1(b), a possible random walk is a1 →
p1 → v1 → p2 → a2 → p3 → a3 → p4 → a5. It describes that author a1 and a2

publish papers in the same venue v1 and author a2 and a5 share the common co-
author a3. Compared with metapath P1 given in Fig. 1(b), metagraph G captures
richer semantic relations between distant nodes.

3 Methodology

In this section, we first present metagraph-guided random walk to generate het-
erogeneous neighborhood in an HIN, and then present the MetaGraph2Vec learn-
ing strategy to learn latent embeddings of multiple types of nodes.

3.1 MetaGraph Guided Random Walk

In an HIN G = (V,E), assuming a metagraph G = (N,M,ns, nt) with ns = nt

is given according to domain knowledge, we can get the corresponding recursive
metagraph G∞ = (N∞,M∞, n∞

s , n∞
t ). After choosing a node of type ns, we can

start the metagraph guided random walk. We denote the transition probability
guided by metagraph G at ith step as Pr(vi|vi−1;G∞). According to Definition 5,
if (vi−1, vi) /∈ E, or (vi−1, vi) ∈ E but there is no link from node type φ(vi−1)
at layer l∞(φ(vi−1)) to node type φ(vi) in the recursive metagraph G∞, the
transition probability Pr(vi|vi−1;G∞) is 0. The probability Pr(vi|vi−1;G∞) for
vi that satisfies the conditions of Definition 5 is defined as

Pr(vi|vi−1; G∞) =
1

TG∞(vi−1)
× 1

|{u|(vi−1, u) ∈ E, φ(vi) = φ(u)}| . (1)

Above, TG∞(vi−1) is the number of edge types among the edges starting from
vi−1 that satisfy the constraints of the recursive metagraph G∞, which is for-
malized as

TG∞(vi−1) = |{j|(φ(vi−1), φ(u)) ∈ M∞ ⋂
(N∞[l∞(φ(vi−1))] × N∞[j]), (vi−1, u) ∈ E}|,

(2)

and |{u|(vi−1, u) ∈ E, φ(vi) = φ(u)}| is the number of vi−1’s 1-hop forward
neighbors sharing common node type with node vi.

At step i, the metagraph guided random walk works as follows. Among the
edges starting from vi−1, it firstly counts the number of edge types satisfying
the constraints and randomly selects one qualified edge type. Then it randomly
walks across one edge of the selected edge type to the next node. If there are no
qualified edge types, the random walk would terminate.
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3.2 MetaGraph2Vec Embedding Learning

Given a metagraph guided random walk SG = {v1, v2, · · · , vL} with length L,
the node embedding function Φ(·) is learned by maximizing the probability of
the occurrence of vi’s context nodes within w window size conditioned on Φ(vi):

min
Φ

− log Pr({vi−w, · · · , vi+w} \ vi|Φ(vi)), (3)

where,

Pr({vi−w, · · · , vi+w} \ vi|Φ(vi)) =

i+w∏

j=i−w,j �=i

Pr(vj |Φ(vi)). (4)

Following MetaPath2Vec [3], the probability Pr(vj |Φ(vi)) is modeled in two dif-
ferent ways:

1. Homogeneous Skip-Gram that assumes the probability Pr(vj |Φ(vi)) does
not depend on the type of vj , and thus models the probability Pr(vj |Φ(vi))
directly by softmax:

Pr(vj |Φ(vi)) =
exp(Ψ(vj) · Φ(vi))∑

u∈V exp(Ψ(u) · Φ(vi))
. (5)

2. Heterogeneous Skip-Gram that assumes the probability Pr(vj |Φ(vi)) is
related to the type of node vj :

Pr(vj |Φ(vi)) = Pr(vj |Φ(vi), φ(vj))Pr(φ(vj)|Φ(vi)), (6)

where the probability Pr(vj |Φ(vi), φ(vj)) is modeled via softmax:

Pr(vj |Φ(vi), φ(vj)) =
exp(Ψ(vj) · Φ(vi))∑

u∈V,φ(u)=φ(vj)
exp(Ψ(u) · Φ(vi))

. (7)

To learn node embeddings, the MetaGraph2Vec algorithm first generates a set
of metagraph guided random walks, and then counts the occurrence frequency
F(vi, vj) of each node context pair (vi, vj) within w window size. After that,
stochastic gradient descent is used to learn the parameters. At each iteration, a
node context pair (vi, vj) is sampled according to the distribution of F(vi, vj),
and the gradients are updated to minimize the following objective,

Oij = − log Pr(vj |Φ(vi)). (8)

To speed up training, negative sampling is used to approximate the objective
function:

Oij = log σ(Ψ(vj) · Φ(vi)) +

K∑

k=1

log σ(−Ψ(vNj,k ) · Φ(vi)), (9)

where σ(·) is the sigmoid function, vNj,k
is the kth negative node sampled for

node vj and K is the number of negative samples. For Homogeneous Skip-Gram,
vNj,k

is sampled from all nodes in V ; for Heterogeneous Skip-Gram, vNj,k
is

sampled from nodes with type φ(vj). Formally, parameters Φ and Ψ are updated
as follows:

Φ = Φ − α
∂Oij

∂Φ
; Ψ = Φ − α

∂Oij

∂Ψ
, (10)

where α is the learning rate.
The pseudo code of the MetaGraph2Vec algorithm is given in Algorithm 1.
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Algorithm 1. The MetaGraph2Vec Algorithm
Input:

(1) A heterogeneous information network (HIN): G = (V, E);
(2) A metagraph: G = (N, M, ns, nt) with ns = nt;
(3) Maximum number of iterations: MaxIterations;

Output:
Node embedding Φ(·) for each v ∈ V ;

1: S ← generate a set of random walks according to G;
2: F(vi, vj) ← count frequency of node context pairs (vi, vj) in S;
3: Iterations ← 0;
4: repeat
5: (vi, vj) ← sample a node context pair according to the distribution of F(vi, vj);
6: (Φ, Ψ) ← update parameters using (vi, vj) and Eq. (10);
7: Iterations ← Iterations + 1;
8: until convergence or Iterations ≥ MaxIterations
9: return Φ;

4 Experiments

In this section, we demonstrate the effectiveness of the proposed algorithms for
heterogeneous network embedding via various network mining tasks, including
node classification, node clustering, and similarity search.

4.1 Experimental Settings

For evaluation, we carry out experiments on the DBLP1 bibliographic HIN,
which is composed of papers, authors, venues, and their relationships. Based
on paper’s venues, we extract papers falling into four research areas: Database,
Data Mining, Artificial Intelligence, Computer Vision, and preserve the associ-
ated authors and venues, together with their relations. To simulate the paper-
venue sparsity, we randomly select 1/5 papers and remove their paper-venue
relations. This results in a dataset that contains 70,910 papers, 67,950 authors,
97 venues, as well as 189,875 paper-author relations, 91,048 paper-paper relations
and 56,728 venue-paper relations.

To evaluate the quality of the learned embeddings, we carry out multi-class
classification, clustering and similarity search on author embeddings. Metapaths
and metagraph shown in Fig. 1(b) are used to measure the proximity between
authors. The author’s ground true label is determined by research area of his/her
major publications.

We evaluate MetaGraph2Vec with Homogeneous Skip-Gram and its variant
MetaGraph2Vec++ with Heterogeneous Skip-Gram. We compare their perfor-
mance with the following state-of-the-art baseline methods:

– DeepWalk [8]: It uses the uniform random walk that treats nodes of different
types equally to generate random walks.

1 https://aminer.org/citation (Version 3 is used).

https://aminer.org/citation
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– LINE [12]: We use two versions of LINE, namely LINE 1 and LINE 2, which
models the first order and second order proximity, respectively. Both neglect
different node types and edge types.

– MetaPath2Vec and MetaPath2Vec++ [3]: They are the state-of-the-art net-
work embedding algorithms for HINs, with MetaPath2Vec++ being a variant
of MetaPath2Vec that uses heterogeneous negative sampling. To demonstrate
the strength of metagraph over metapath, we compare with different versions
of the two algorithms: P1 MetaPath2Vec, P2 MetaPath2Vec and Mixed Meta-
Path2Vec, which uses P1 only, P2 only, or both, to guide random walks, as
well as their counterparts, P1 MetaPath2Vec++, P2 MetaPath2Vec++, and
Mixed MetaPath2Vec++.

For all random walk based algorithms, we start random walks with length
L = 100 at each author for γ = 80 times, for efficiency reasons. For the mixed
MetaPath2Vec methods, γ/2 = 40 random walks are generated by following
metapaths P1 and P2, respectively. To improve the efficiency, we use our opti-
mization strategy for all random walk based methods: After random walks are
generated, we first count the co-occurrence frequencies of node context pairs
using a window size w = 5, and according to the frequency distribution, we then
sample one node context pair to do stochastic gradient descent sequentially. For
fair comparisons, the total number of samples (iterations) is set to 100 million,
for both random walk based methods and LINE. For all methods, the dimension
of learned node embeddings d is set to 128.

4.2 Node Classification Results

We first carry out multi-class classification on the learned author embeddings to
compare the performance of all algorithms. We vary the ratio of training data
from 1% to 9%. For each training ratio, we randomly split training set and test
set for 10 times and report the averaged accuracy.

Table 1. Multi-class author classification on DBLP

Method 1% 2% 3% 4% 5% 6% 7% 8% 9%

DeepWalk 82.39 86.04 87.16 88.15 89.10 89.49 90.02 90.25 90.56

LINE 1 71.25 79.25 83.11 85.60 87.17 88.29 89.05 89.45 89.63

LINE 2 75.70 80.80 82.49 83.88 84.83 85.71 86.58 86.90 86.93

P1 MetaPath2Vec 83.24 87.70 88.42 89.05 89.26 89.46 89.51 89.76 89.69

P1 MetaPath2Vec++ 82.14 86.02 87.04 87.96 88.47 88.66 88.90 88.91 89.02

P2 MetaPath2Vec 49.59 52.12 53.76 54.67 55.68 55.49 55.83 55.68 56.07

P2 MetaPath2Vec++ 50.31 52.50 53.72 54.47 55.53 55.78 56.30 56.36 57.02

Mixed MetaPath2Vec 83.86 87.34 88.37 89.22 89.70 90.01 90.37 90.42 90.71

Mixed MetaPath2Vec++ 83.08 86.91 88.13 89.07 89.69 90.09 90.58 90.68 90.87

MetaGraph2Vec 85.76 89.00 89.79 90.55 91.02 91.30 91.72 92.13 92.25

MetaGraph2Vec++ 85.20 88.97 89.99 90.78 91.42 91.65 92.13 92.42 92.46
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Table 1 shows the multi-class author classification results in terms of accuracy
(%) for all algorithms, with the highest score highlighted by bold. Our Meta-
Graph2Vec and MetaGraph2vec++ algorithms achieve the best performance
in all cases. The performance gain over metapath based algorithms proves the
capacity of MetaGraph2Vec in capturing complex semantic relations between
distant authors in sparse networks, and the effectiveness of the semantic similar-
ity in learning informative node embeddings. By considering methpaths between
different types of nodes, MetaPath2Vec can capture better proximity properties
and learn better author embeddings than DeepWalk and LINE, which neglect
different node types and edge types.

4.3 Node Clustering Results

We also carry out node clustering experiments to compare different embedding
algorithms. We take the learned author embeddings produced by different meth-
ods as input and adopt K-means to do clustering. With authors’ labels as ground
truth, we evaluate the quality of clustering using three metrics, including Accu-
racy, F score and NMI. From Table 2, we can see that MetaGraph2Vec and
MetaGraph2Vec++ yield the best clustering results on all three metrics.

Table 2. Author clustering on DBLP

Method Accuracy (%) F (%) NMI (%)

DeepWalk 73.87 67.39 42.02

LINE 1 50.26 46.33 17.94

LINE 2 52.14 45.89 19.55

P1 MetaPath2Vec 69.39 63.05 41.72

P1 MetaPath2Vec++ 66.11 58.68 36.45

P2 MetaPath2Vec 47.51 43.30 6.17

P2 MetaPath2Vec++ 47.65 41.48 6.56

Mixed MetaPath2Vec 77.20 69.50 49.43

Mixed MetaPath2Vec++ 72.36 65.09 42.40

MetaGraph2Vec 78.00 70.96 51.40

MetaGraph2Vec++ 77.48 70.69 50.60

4.4 Node Similarity Search

Experiments are also performed on similarity search to verify the ability of Meta-
Graph2Vec to capture author proximities in the embedding space. We randomly
select 1,000 authors and rank their similar authors according to cosine sim-
ilarity score. Table 3 gives the averaged precision@100 and precision@500 for
different embedding algorithms. As can be seen, our MetaGraph2Vec and Meta-
Graph2Vec++ achieve the best search precisions.
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Table 3. Author similarity search on DBLP

Methods Precision@100 (%) Precision@500 (%)

DeepWalk 91.65 91.44

LINE 1 91.18 89.88

LINE 2 91.92 91.38

P1 MetaPath2Vec 88.21 88.64

P1 MetaPath2Vec++ 88.68 88.58

P2 MetaPath2Vec 53.98 44.11

P2 MetaPath2Vec++ 53.39 44.11

Mixed MetaPath2Vec 90.94 90.27

Mixed MetaPath2Vec++ 91.49 90.69

MetaGraph2Vec 92.50 92.17

MetaGraph2Vec++ 92.59 91.92

4.5 Parameter Sensitivity

We further analyze the sensitivity of MetaGraph2vec and MetaGraph2Vec++ to
three parameters: (1) γ: the number of metagraph guided random walks starting
from each author; (2) w: the window size used for collecting node context pairs;
(3) d: the dimension of learned embeddings. Figure 3 shows node classification
performance with 5% training ratio by varying the values of these parameters.
We can see that, as the dimension of learned embeddings d increases, Meta-
Graph2Vec and MetaGraph2Vec++ gradually perform better and then stay at
a stable level. Yet, both algorithms are not very sensitive to the the number of
random walks and window size.
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Fig. 3. The effect of parameters γ, w, and d on node classification performance

5 Conclusions and Future Work

This paper studied network embedding learning for heterogeneous information
networks. We analyzed the ineffectiveness of existing metapath based approaches
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in handling sparse HINs, mainly because metapath is too strict for captur-
ing relationships in HINs. Accordingly, we proposed a new metagraph relation-
ship descriptor which augments metapaths for flexible and reliable relationship
description in HINs. By using metagraph to guide the generation of random
walks, our new proposed algorithm, MetaGraph2Vec, can capture rich context
and semantic information between different types of nodes in the network. The
main contribution of this work, compared to the existing research in the field, is
twofold: (1) a new metagraph guided random walk approach to capturing rich
contexts and semantics between nodes in HINs, and (2) a new network embed-
ding algorithm for very sparse HINs, outperforming the state-of-the-art.

In the future, we will study automatic methods for efficiently learning meta-
graph structures from HINs and assess the contributions of different metagraphs
to network embedding. We will also evaluate the performance of MetaGraph2Vec
on other types of HINs, such as heterogeneous biological networks and social net-
works, for producing informative node embeddings.
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Abstract. User identification is widely used in anomaly detection, rec-
ommendation system and so on. Previous approaches focus on extraction
of features describing users, and the learners try to emphasize the differ-
ences between different user identities. However, one applicable user iden-
tification scenario occurs in the circumstance of social network, where
features of users are not acquirable while only relationships between users
are provided. In this paper, we aim at the later situation, i.e., the Net-
work User Identification, where features of users cannot be extracted in
social network applications. We consider the information limitation of the
single network and focus on utilizing the multiple relationships between
identities from multi-networks. Different from the existing common sub-
space methods in Cross-Network User Identification, we propose a more
discriminative Graph-Aware Embedding (GAEM) method for modeling
the relationships as well as the transformation between different social
networks explicitly in one unified framework. As a consequence, we can
get more accurate predictions of the user identities directly based on the
learned transferring model with GAEM. The experimental evaluations
on real-world data demonstrate the superiorities of our proposed method
comparing to the state-of-the-art.

Keywords: Multiple networks · User identification
Graph-Aware Embedding

1 Introduction

With the increasing popularity of social media platforms, more and more people
are encouraged to participate in online social networks. Meanwhile, the prob-
lem of user identification becomes attractive and has been widely researched
recently [9]. However, traditional user identification aims to predict links between
user identities and in this case, the essential task turns into recovering the similar
closures among identities. These paradigms are almost performed in single social
network while neglecting the fact that people take participate in many networks,
such as Facebook, Instagram and Twitter, simultaneously. How to identify the
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accounts of the same user across different social platforms is a desirable, newly
proposed problem. In this paper, we named the later task as “multi-network
user identification” (MUI). MUI has obviously practical significance in many
web applications [8,26].

Features used in user identification become a crucial fact affecting the per-
formance, especially in single network user identification. Many researchers have
been devoted to solving the problem of feature learning/engineering in UI [19].
However, these approaches adopted by existing solutions are always based on
the collected profile features or content features, leaving the following essential
challenges without considering [22]: Difficulties on obtaining profile features for
privacy policies; Incompletion of profile features, owing to many reasons, i.e., law
terms, users willings, distributed data storage; Sparsities of content features, due
to the divergence of user activity patterns.

The structural information of the social networks, alternatively, can be uti-
lized directly and efficiently for user identification across multiple online social
networks and this information can be relatively easy to be obtained (usually
permitted by carriers API). There are some structural information based meth-
ods proposed, which discover unmatched pair-wise user identities in an iterative
way from seed matched pair-wise user identities [30,33]. This type of structural
information utilization generally use iterative strategy for spreading over link-
ages, and named by “propagation” methods. The propagation methods, however,
are time-consuming and require more parameters on controlling the informa-
tion spreading over linkages and is sensitive to linkage noises. To better address
the mentioned issues, researchers proposed the embedding methods which first
learn the latent features with the information of structure preserved, includ-
ing TSVM [13], LINE [24], and then identify users based on different distance
metric. Nevertheless, most existing graph embedding algorithms are step-by-
step. Therefore, [23] built a hypergraph to model high-order relations, and pro-
posed a novel subspace learning algorithm to project seed matching pairs to a
node to ensure the aforementioned constraint. However, it needs auxiliary profile
information.

In this paper, we focus on the second paradigm of structural information
utilization approaches and propose a more discriminative Graph-Aware Embed-
ding (GAEM) method aim at the MUI problem. The proposed GAEM models
the relationships as well as the transformation between different social networks
in one unified framework. As a consequence, we can identify the user identities
across different social platforms using the network structural information only.
Especially, rather than utilizing the raw data, we construct more discrimina-
tive weighted graphs by exploring the shared neighborhood structures of the
vertices globally. Meanwhile, we can predict the transformation among different
weighted graphs and ensure the consistency between the transferred weighted
graphs, simultaneously. Besides, inspired by the rank constraint, we utilize the
rank of the transformation as a rank regularization to improve the construction
of the transformation and weighted graph. We empirically validate the effective-
ness of our framework, and our model achieves significantly better performance
on various tasks.
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The rest of this paper starts from the introduction of related work. Then we
propose our approach, followed by experiments and conclusion.

2 Related Work

The GAEM approach can identify the user identity across multiple networks
in semi-supervised scenarios via the weighted graph embedding. Therefore our
work is closely related to: user identity identification and graph embedding.

User identity identification problem was first formalized as connecting corre-
sponding identities across communities in [28]. Considering social network diver-
sity and information asymmetry, previous research can be categorized into three
types considering the different feature extraction: profile based, content based
and network structure based. User profile based methods aim to collect tagging
information provided by users or user profiles from several social networks (e.g.,
user-name, profile picture, description, location, occupation, etc.), and represent
the profiles in vectors [29], then construct models with the new feature represen-
tation [16,17]; Content based methods aim to utilize the personally identifiable
information from public pages of user-generated content [1,14]. However, previ-
ous profile or content based methods always collect specific information of the
users, and face serious challenges if required data are not available, i.e., miss-
ing features, data sparsity or false data, etc. Alternatively, recent methods have
been focused on utilizing the structural network information, [15] unifies learning
the latent features of user identities collectively in source and target networks.
Nevertheless, the solution is iterative one-to-one mapping method.

Naturally, the local structures are represented by the observed links in the
networks, which capture the first-order proximity between the vertices [24]. Most
existing graph embedding algorithms are designed to preserve this kind of prox-
imity [3,25]. However, the observed first-order proximity in real-world data is
always not sufficient for preserving the global network structures, while many
legitimate linkages in the real-world network are actually not observed, which can
be denoted as second-order proximity. As a complement, many works explore the
second-order proximity between the vertices, which is not determined through
the observed linkage but through the shared neighborhood structures of the
vertices [21,24]. Nevertheless, these graph embedding methods can not directly
handle the user identification.

In this paper, we utilize the network information across different social
platforms, which can be directed, undirected or weighted, to identify holistic
unmatched user identities simultaneously. Specially, we construct the discrimi-
native weighted graph by exploring the shared neighborhood structures of the
vertices globally, and learn the transformation to make the transferred weighted
graphs consistent. Meanwhile, a rank regularization is also proposed, and the
implementation can be optimized effectively.
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3 Proposed Method

3.1 Notations

Our method can predict the user identities across multiple networks from dif-
ferent social platform, and we consider the case of two networks for simplicity
here. Suppose the two relation networks are represented as X1 ∈ R

d1×d1 , i.e.,
the Facebook network, and X2 ∈ R

d2×d2 , i.e., the Twitter network, where Xv
ij

denotes the link value between the i−th instance and j−th instance of the v−th
network, and Xv

ij �= 0 if there is a linkage between i−th instance and j−th
instance, Xv

ij = 0 otherwise, it is notable that Xv can be directed, undirected or
weighted. Meanwhile, the problem in our setting can be seen as a transductive
problem, we have N1 matched pair-wise users denoted by {(x1

i ,x
2
j )} in advance,

i.e., the blue dotted lines, and N2 unmatched pair-wise users, i.e., the red dot-
ted lines, the number of all practical matched pair-wise users is N = N1 + N2,
N ≤ min(d1, d2), and GAEM aims to identify the unmatched user identities.

3.2 Graph-Aware Embedding (GAEM)

Naturally, the user linkage network Xv can be seen as a graph Gv = (V v, Ev),
V v = {xv

i }dv
i=1 corresponds to the set of vertices and Ev = {(xv

i ,xv
j )} denotes to

the set of edges from xv
i to xv

j iff Xv
ij �= 0. The observed links in the network

can be considered as the local structures, which denote the first-order proxim-
ity between the vertices. However, the first-order proximity is insufficient for
preserving the global network structures. As a complement, the second-order
proximity between the vertices are used, which determined by shared neighbor-
hood structures of the vertices, and the nodes with shared neighbors are likely
to be similar.

Therefore, given the raw network Xv, inspired from [31], a weighted graph
Ĝv = (V v, Êv,W v) can be reconstructed to characterize the global structure
of the raw relation network, V v = {xv

i }dv
i=1 corresponds to the set of vertices

as above, and the Êv = {(xv
i ,xv

j )}xv
i ∈KNN(xv

j )
denotes the set of edges from

xv
i to xv

j iff xv
i is among the K-nearest neighbors of xv

j . Furthermore, W v =
[W v

ij ] ∈ R
dv×dv represents the nonnegative weight matrix, where W v

ij = 0 iff
(xv

i ,xv
j ) �∈ Êv. Meanwhile, the j−th column W v

j· = {W v
1j ,W

v
2j , · · · ,W v

dvj} is
determined by following problem:

min
W v

·j
‖xv

j −
∑

(xv
i ,xv

j )∈Ev

W v
ijx

v
i ‖2

s.t.
∑

(xv
i ,xv

j )∈Êv

W v
ij = 1,W v

ij ≥ 0 (1)

Conceptually, the W v
ij characterizes the relative importance of neighbor example

xv
i in reconstructing xv

j . Here the loss term can take any convex forms and we
use linear least square loss here for simplicity.
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With the embedded weighted matrix W v in Eq. 1, and the known matched
links {x1

i ,x
2
j}, we aim to predict the unmatched user identities. Specially, consid-

ering that different networks share the similar global structure, the objective is
to learn a transfer matching matrix M ∈ R

min(dv)×max(dv), in which Mij = 1 iff
the link {x1

i ,x
2
j} is matched, Mij = 0 otherwise. Without any loss of generaliza-

tions, we assume d1 ≤ d2 in the remaining of this paper, thus M ∈ R
d1×d2 . The

transformation of the larger weighted matrix can be written as M(MW 2)T , note
that the M transfers the disordered weighted matrix W 2 in rows and columns.
After the transformation, the weighted matrices of different networks should be
similar, which can be represented as �(W v,M).

In practical case, the ideal transformation M, gives identical outputs for
consistent weighted matrix, and consequently make the rank of M equal to
N , which is the number of practical matched pair-wise users, and we define
RC(M) = rank(M) here, it is notable that RC(F) reflects the prediction com-
patibility among the weighted matrices. Thus, rank consistency can be used
as a regularization in the learning framework, which is helpful to achieve com-
patible and consistent transformation upon the achieved weighted matrix. The
keys of the proposed method are the reconstructed weighted matrices, the trans-
fer matching matrix and rank regularization, which boost the performance of
weighted matrices construction and the learning transfer matching matrix simul-
taneously. Benefited from these, we can bridge the loss of weighted matrices con-
struction and the gap of transferred weighted matrices in a unified framework:

min
W v,M

∑

v

�v(Xv,W v) + �(W v,M) + λRC(M)

s.t. Mi,j ∈ {0, 1},
∑

(xv
i ,xv

j )∈Êv

W v
ij = 1,W v

ij ≥ 0 (2)

The first term �v(Xv,W v) denotes the loss of the construction of each weighted
matrix. Furthermore, W 1 and W 2 are disordered while the construction on each
network is self-adaptive. The second term �(W v,M), is the loss of transferred
weighted matrices, which leverages the consistency constraint of the weighted
matrices on each linkage network. The last term RC(M), is the rank regulariza-
tion on transfer matrix M , which constrains the degree of freedom. λ > 0 is the
balance parameter.

Specifically, objective function �v(Xv,W v) in Eq. 2 can be generally repre-
sented as the form in Eq. 1, the �(W v,M) can be any convex loss function here,
and we use square loss here for simplicity. Thus, the Eq. 2 can be re-formed as:

min
W v,M

∑

v

dv∑

j=1

‖xv
j −

∑

xv
i ∈KNN(xv

j )

W v
ijx

v
i ‖2

+ ‖W 1 − M(MW 2)T ‖2F + λRC(M) (3)

s.t. Mi,j ∈ {0, 1},
∑

(xv
i ,xv

j )∈Êv

W v
ij = 1,W v

ij ≥ 0
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3.3 Optimization

The 2nd term in Eq. 3 involves the product of the weighted matrix W 2 and the
transformation M, which makes the formulation not joint convex. Consequently,
the formulation cannot be optimized easily. We provide the optimization process
below:

Fix M, Optimize W v: According to the constraint
∑

(xv
i ,xv

j )∈Êv Wij = 1,
the Eq. 1 can be re-written as:

min
W v

·j
W v

·j
T Gv

j W v
·j

s.t. 1�W v
·j = 1,Wi,j ≥ 0

Here, Gv
j ∈ R

dv×dv is the local Gram matrix for xj with elements (Gv
j )mn =

(xj − xm)�(xj − xn). Apparently, when M and W 2 are fixed, the 3rd term of
Eq. 3 is not related to W 1, besides, it is NP-hard to directly learn the binary
Mi,j ∈ {0, 1}, thus, we relax to Mi,j ∈ [0, 1]. Eventually, Eq. 3 can be equivalently
written as:

min
W 1

·j
W 1

·j
T
(G1

j + I)W 1
·j − 2M(MW 2)T

·j
T
W 1

·j

s.t. Mi,j ∈ [0, 1],1�W 1
·j = 1,Wi,j ≥ 0 (4)

Here I is the identity matrix with the same size of G1
j . Equation 4 corresponds to

a standard quadratic programming (QP) problem whose optimal solution can be
obtained by any off-the-shelf QP solver. The weighted matrix W 1 is constructed
by solving column-wisely. Similarly, when M and W 1 are fixed, the Eq. 3 can be
equivalently written as:

min
W 2

·j
W 2

·j
T
(G2 + M̂)W 2

·j − 2(MT W 1M)T
·jW

2
·j

s.t. Mi,j ∈ [0, 1],1�W 2
·j = 1,Wi,j ≥ 0 (5)

Where M̂ = MT MMT M . Equation 5 also corresponds to a standard quadratic
programming (QP) problem as Eq. 4.

From the aspect of weighted matrix construction, we treat the extra trans-
ferred weighted matrix as supervision to help to construct the discriminative
weighted matrix W v, i.e., we consider the transferred weighted matrices should
have consistently global structure in this step.

Fix W v, Optimize M: Apparently, when W v are fixed, the 1st term of
Eq. 3 is not related to M , thus Eq. 3 can be equivalently written as:

min
M

||W 1 − M(MW 2)T ||2F + λRC(M)

s.t. Mi,j ∈ [0, 1] (6)

Note that the rank norm minimization is NP-hard, and inspired by [6], the
nuclear norm usually acts as a convex surrogate. Specifically, given a matrix
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X ∈ R
m×n, its singular value are assumed as σi, i = 1, · · · ,min(m,n), which are

ordered from large to small. Thus, the nuclear norm can be defined as ‖X‖∗ =∑min(m,n)
i=1 σi, and the nuclear norm has been widely used in various scenarios in

rank norm minimization problem [10].
Nevertheless, blindly minimize the rank will break the natural structure of

M. Therefore, a directional optimization approach, which conduct the RC(M)
until converging to N during the minimization procedure is desired. According
to [2,27], we use truncated nuclear norm as a surrogate function of the RC(M)
operator:

Definition 1. Given a matrix X ∈ R
m×n, the truncated nuclear norm ‖X‖r

is defined as the sum of min(m,n) − r minimum singular values, i.e., ‖X‖r =∑min(m,n)
i=r+1 σi(X).

Different from traditional nuclear norm minimization, which preserves all
the singular values, truncated nuclear norm minimizes the singular values with
first r largest ones unchanged, which is more close to the true rank definition.
Specially, if ‖X‖r = 0, there are only r non-zero singular values for X, and this
explicitly indicates the rank of X is less than or equals to r. Practically, in order
to impel the RC(F) directional to the practical matched users, it is clear to set
r = N .

The truncated nuclear norm can be re-formulated as the equivalent form by
the following theorem [11]:

Theorem 1. Given a matrix X ∈ R
m×n and any non-negative integer r

(r ≤ min(m,n)), for any matrix A ∈ R
r×m and B ∈ R

r×n such that AA� =
Ir, BB� = Ir, where Ir ∈ R

r×r is identity matrix. Truncated nuclear norm can
be reformulated as:

‖X‖r = ‖X‖∗ − max Tr(AXB�) (7)

If the singular value decomposition of matrix X is X = UΣV � where Σ is
the diagonal matrix of singular values sorted in descending order and U ∈
R

m×n, V ∈ R
n×n. The optimal solution for the trace term in the above equation

has a closed form solution: A = (u1,u2, · · · ,ur)� and B = (v1,v2, · · · ,vr)�,
corresponds to the first r columns of left and right singular vectors.

With Theorem 1, we can reformulate the Eq. 6 as:

arg min
M

‖W 1 − M(MW 2)T ||2F + λ(‖M‖∗ − maxTr(AMBT ))

s.t. AT A = I,BT B = I (8)

Because of the non-convexity of truncated nuclear norm, alternative approach
can be utilized for the optimization. A simple solution to Eq. 8 is alternating
descent method. We can fix M and optimize A, B via SVD on M first, and then
fix A and B to optimize M. When A and B are fixed, the subproblem is convex.
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A and B can be obtained by SVD on M, which are the left and right singular
vectors corresponding to the maximum N singular values. As the number of
actually required singular vectors is rather small, partial SVD can be used [4].
The most computational cost step, however, is the subproblem for solving M in
Eq. 8. We will give a detailed investigation on employing Accelerate Proximal
Gradient Descent Method (APG) [2] for solving this subproblem in the following.

Note that when A and B are fixed, the problem is composed of two convex
parts, i.e., a smooth loss term P1(M) and a non-smooth trace norm P2(M):

P1(M) = L(M) − Tr(AMB�), P2(M) = ‖M‖∗ (9)

APG is suitable for solving Eq. 9 [12], which optimizes on a linearized approxi-
mation version of the original problem. In the t−th iteration, if we denote the
current optimization variable as M t, then we can linearize the smooth part P1(·)
respect to M t as:

Q(M) = P1(M t) + Tr(<∇P1(M t),M − M t>) +
L

2
‖M − M t‖2F + P2(F )

= L(M) +
L

2
‖M − M t‖2F + λ‖M‖∗ − Tr(AMB�)

+ Tr(<∇P1(M t),M − M t>) (10)

where ∇P1(M t) = −(
(W 1 − M t(M tW 2)�)M t(W 2 + W 2�) + λA�B

)
. Here L

is the Lipschitz coefficient, which can be estimated by line search strategy [2].
Minimizing Q(M) w.r.t. M is equivalent to solving:

M̂ = arg min
M

λ‖M‖∗ +
L

2
‖M − (M t − 1

L
∇P1(M t))‖2F (11)

APG updates the optimal solution in Eq. 11 at each iteration. Given the following
theorem [6] about the proximal operator for nuclear norm:

Theorem 2. For each τ ≥ 0 and Y ∈ R
m×n, we have

Dτ (Y ) = arg min
X

1
2
‖X − Y ‖2F + τ‖X‖∗ (12)

Here, Dτ (Y ) is a matrix shrinkage operator for matrix Y, which can be calculated
by SVD of Y. If SVD of Y is Y = UΣV �, then

Dτ (Y ) = UDτ (Σ)V � Dτ (Σ) = diag(max(σi − τ, 0)). (13)

we can solve Eq. 11 in a closed form:

M̂ = DL(M t)
def= D λ

L
(M t − 1

L
∇P1(M t)) (14)
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4 Experiment

4.1 Datasets and Configurations

Data Sets: In this paper, we use the datasets from webpage networks and the
social networks in our empirical investigations.

The WebKB dataset [5] contains webpages collected from 4 universities: Wis-
consin, Washington, Cornell and Texas (denoted as Wins., Wash., Corn. and
Texas in tables) and described with two networks: the content and the citation.
The content represents the documents-words matrix, containing 0/1 values, and
can be indicated as the similarity relationships between the documents. On the
other hand, the citation denotes the number of citation links between documents,
which can be acted as another network structure. The ground-truth mapping of
WebKB across these two networks is in the documents-mapping. To demon-
strate the generalization ability, we also demonstrate our method on different
social networks. The social networks collection consists of four popular online
social networking sites: LiveJournal (LJ), Flickr (FL), Last.fm (LF), and MyS-
pace (MS) as [32]. We use the linked user accounts dataset from [7,20] as the
ground truth. The data was originally collected by [20] through Google Pro-
files service by allowing users to integrate different social network services. Five
subsets are constructed from social networks, i.e., flickr-lastfm; flickr-myspace;
livejournal-lastfm, livejournal-myspace and livejournal-flickr.

For all datasets in our experiments, we randomly select {20%, 40%,
60%, 80%} for matched pair-wise examples, and the remains are unmatched for
prediction. We repeat this for 30 times, the acc. and std. of predictions are
recorded as classification performance. The parameter λ in the training phase is
tuned in {10−2, · · · , 102}. The number of k-nearest neighbors is set 15. Empiri-
cally, when the variations between the objective value of Eq. 3 is less than 10−5

in iteration, we treat GAEM converged.

Compare Algorithms: Our method solves the problem of user identities iden-
tification across networks. Thus, we choose five state-of-the-art user linkage iden-
tify classifiers: HYDRA [16], COSNET [32], ULink [17], NS [18], IONE [15]. Note
that the HYDRA and COSNET utilize both the profile information and network
structure, and we consider the raw network structure information as the profile
features in our setting, on the other hand, ULink is difficult to handle the sparse
network information, and we use the embedded features by Isomap as the input.
Moreover, NS and IONE directly take the network structure as input. Besides,
our method is also related to graph embedding. Thus, we construct the weighted
matrix with four graph embedding methods: Baseline (BL), Isomap [25], Deep-
walk [21], Weight [31], the first two methods, i.e., BL, Isomap, only consider
the local structure, while remaining two methods, i.e., Deepwalk, Weight, con-
sider the global structure. It is notable that these methods can not unify the
weighted matrix construction and transformation together, thus, we calculates
the weighted matrices and then optimize the transformation M separately.
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Fig. 1. Webpage linkage comparison for batch data setting (with ratio between between
the ground-truth matching pairs to non-matching pairs being 4:1)
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Fig. 2. Social Networks comparison for batch data setting (with ratio between the
ground-truth matching pairs to non-matching pairs being 3:1)

4.2 Experiment Results

Multiple-Network Identity Identification: To demonstrate the effectiveness
of our proposed method. For both the webpage networks and social networks
datasets, We fix the ratio of the number of matched pair-wise users at 80% firstly,
and record the avg. ± std. of the GAEM and compared methods in Figs. 1 and 2.

Figure 1 clearly reveals that on all webpage datasets, the average accuracies
of GAEM are the best. Further more, while comparing to the graph embedding
methods, the methods considering the global structure proximity, i.e., Deep-
Walk, Weight, are superior to the local structure proximity based methods, i.e.,
BL, Isomap, on the majority of datasets, which indicates that global structure
proximity is more efficient and different social networks share the similar global
structure, and it confirms to the real significance. On the other hand, the per-
formance of previous user identity linkage methods are not well performed, note
that these methods require the specific collected or designed features, specifi-
cally, ULink is a supervised method, which can not utilize the network structure
information; HYDRA maximizes the structure consistency by modeling the core
social network behavior consistency, and the performance hinges heavily upon
the availability of the consistent structure, where the consistency is calculated
by extra profile features, it performs worse than GAEM in the cases where
raw features can not possess consistent structure, COSNET is found to be in a
similar situation as HYDRA, as for NS and IONE methods, these methods also
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require additional information and are sensitive to the parameters. Thus, GAEM
is well performed considering the global structure proximity with the network
information. To demonstrate the generalization ability, we conduct more exper-
iments, Fig. 2 records the prediction accuracies (avg. ± std.) of the GAEM and
compared methods on five social network datasets, and Fig. 2 reveals that on
the social network datasets, the average accuracies of GAEM are also compet-
itive with the compared methods, the average accuracies are the best on three
datasets, i.e., flickr-lastfm; flickr-myspace; livejournal-lastfm.
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Fig. 3. Influence of number of matched pair-wise users of Webpage linkage comparison

Influence of Number of Matched Pair-Wise Users: In order to explore
the influence of the number of initial matched pair-wise users on performance,
more experiments are conducted. In this section, the parameters in each inves-
tigation are fixed as the optimal values, the λ in GAEM is set 1, while the ratio
of initial matched pair-wise users varies in {20%, 40%, 60%, 80%}. Due to the
page limits, results on only 4 datasets, i.e., Wins., Wash., Corn., and Texas,
and the results are recorded in Fig. 3. From these figures, it clearly shows that
GAEM achieves the best performance when the ratio is larger than 40% on most
datasets. Besides, we can also find that GAEM achieves an optimal performance
fast, and the accuracy of GAEM increases faster than compared methods.

Empirical Investigation on Convergence: To investigate the convergence
empirically, the objective function value, i.e., the value of Eq. 3 and the classi-
fication performance of GAEM in each iteration are recorded. Due to the page
limits, results on only 4 datasets mentioned above, are plotted in Fig. 4. It clearly
reveals that the objective function value decreases as the iterations increase, and
the classification performance is stable after several iterations. Moreover, these
additional experimental results indicate that our GAEM can converge very fast,
i.e., GAEM converges after 3 rounds.
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Fig. 4. Objective function value convergence and corresponding classification accuracy
vs. number of iterations of GAEM with matched pair-wise users ratio at 80%
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5 Conclusion

The user identification problem in the multi-network environment is a challeng-
ing problem. Previous efforts mainly focus on the predefined profile or content
features in the learning approaches, while leaving the data incompleteness and
sparsities unconsidered. These approaches, meanwhile, are difficult to handle the
information of structures provided by multi-networks. In this paper, we propose
the Graph-Aware Embedding (GAEM) approach, which utilizes the more gen-
eral social networks information and identifies the accounts of the same user
by exploiting useful information from the networks. We construct the more dis-
criminative weighted graph instead of the raw linkage network, while predicting
the transformation among different weighted graphs simultaneously. As a con-
sequence, we can get more accurate predictions of the user identities directly
obtained from the learned transformation matrix, experimental evaluations on
real-world applications demonstrate the superiority of our proposed method over
the compared methods. How to extend multiple platforms and the scalability
with improved performance are interesting future works.
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Abstract. Data sparsity is a common issue in recommendation systems,
particularly collaborative filtering. In real recommendation scenarios,
user preferences are often quantitatively sparse because of the applica-
tion nature. To address the issue, we proposed a knowledge graph-based
semantic information enhancement mechanism to enrich the user prefer-
ences. Specifically, the proposed Hierarchical Collaborative Embedding
(HCE) model leverages both network structure and text info embed-
ded in knowledge bases to supplement traditional collaborative filter-
ing. The HCE model jointly learns the latent representations from user
preferences, linkages between items and knowledge base, as well as the
semantic representations from knowledge base. Experiment results on
GitHub dataset demonstrated that semantic information from knowledge
base has been properly captured, resulting improved recommendation
performance.

1 Introduction

Recommendation has been widely used in today’s business. By observing user
past behaviors, recommender systems can identify items with potential to be
interested by users. A popular technique in recommendations is collaborative fil-
tering (CF) which is based on the intuition that preference history can be trans-
ferred across like-minded users. However, CF suffers from the cold-start prob-
lem in which users usually provide limited amount of preferences, i.e., preference
data is quantitatively sparse, making recommendation inaccurate. Particularly,
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 222–234, 2018.
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in some real recommendation scenarios, user preferences are often quantitatively
sparse because of the application nature. For example, unlike watching many
movies, users typically can only study a few subjects in Coursera1 or contribute
to a few repositories (projects) on GitHub2, both of which contain very high
numbers of subjects or projects.

To address the sparsity problem, researchers have proposed to extend the
spare data by connecting to external knowledge graphs [1–4]. This approach
leverages both network structure and text info embedded in knowledge bases to
supplement traditional CF. To be specific, a knowledge base is a data repository
containing interlinked entities across different domains. Since knowledge base is
often represented in a graph way, it is also called as knowledge graph (KG). The
beauty of knowledge graph is not only the textual knowledge representations,
but also the linked structure of knowledge entities. Recently, knowledge graph
has emerged as a new method in recommender systems research. For example,
latent features are often extracted from heterogeneous information network to
represent users and items [2–4]. More recently, Zhang et al. [1] proposed the
first work to build a hybrid heterogeneous information network containing both
recommender system and knowledge graph.

On the other hand, although the above mentioned recommendation tasks
exhibit the significant sparsity, we argue that the user choices/behaviors carry
on rich semantics info which has not been fully utilized in recommendation.
For example, knowing a user’s interest in a subject or repository reveals lots
of information about this user, such as preferences over programming language,
operating system, field of study, research topic. From knowledge graph view,
such information pieces are not isolated and fragmented, instead, interrelated,
forming a comprehensive view of this author. This rich semantic information
can play an important role in alleviating such cold-start and sparsity problem,
therefore using KG-based approaches becomes an idea solution to this kind of
tasks. However, previous studies on KG-based CF suffer from one or more of
the following limitations: (1) rely on tedious feature engineering; (2) the high
data sparsity; and (3) recommended items need to be one exact entity within
knowledge base.

To address the above issues, we propose a novel collaborative recommen-
dation framework to integrate recommender system and knowledge graph with
extensible connection between items and knowledge entities. Overall, our method
constructs a multi-level network via knowledge graph to enhance sparse semantic
information between users and items. Let’s take example of GitHub recommen-
dation task shown in Fig. 1 to show how our model works. In order to reveal
the latent correlations between GitHub repositories, the names of which are
not existent in knowledge graph, we frame the integrated system into 3-level,
where users, repositories, knowledge graph entities are placed in different levels,
with edges between users and repositories indicating the user has interest in the
repository, edges between repositories and entities indicating that the entity is

1 Online course platform https://www.coursera.org/.
2 Project hosting platform https://github.com/.

https://www.coursera.org/
https://github.com/
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possibly related to the repository, and edges between entities meaning there is
at least one specific relation between this pair of entities. A hierarchical struc-
ture heterogeneous network, which contains multiple types of nodes and multi-
ple types of edges, is built for automatic collaborative learning. Particularly, to
link recommender system and knowledge graph properly, knowledge conceptual
level is proposed to indirectly map item-entities, different from previous works
of direct mapping. Serving as middle level of three-level hierarchical structure
model, the knowledge conceptual level can fully interconnect the whole system
in a proper way, tackling the restriction that recommendation items need to be
within knowledge base.

The main contributions of this paper are as follows:

– A novel KG-based recommender system with knowledge conceptual level is
proposed to properly encode the correlation amongst items which are non-
existent knowledge graph entities.

– A new collaborative learning algorithm is devised to deal with the proposed
three-level network for sparse user preference data.

– We conducted extensive experiments on GitHub recommendation task, which
is extremely sparse but rich semantics in user preference, to evaluate the effec-
tiveness of our model. To the best of our knowledge, this is the first trial work
of using knowledge graph embedding, to deal with semantic enhancement for
entities not existent in conventional knowledge graph.

The rest of the paper first introduces the basic concepts of collaborative
filtering and knowledge graph, followed by a detailed discussion of the proposed
hierarchical collaborative embedding model. The proposed model is compared
with several baselines on GitHub dataset.
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2 Preliminary

This section briefly summarizes necessary background of Implicit Feedback Rec-
ommendation and Knowledge Graph that form the basis of this paper.

2.1 Implicit Feedback Recommendation

This paper considers the implicit feedback recommendation problem [5], i.e.,
analyzing interactions among users and items instead of explicit ratings. The
implicit user feedback is encoded as a matrix R ∈ R

m∗n, where Rij = 1 if
user i has interacted with item j and Rij = 0 otherwise. The user-item interac-
tions are defined per application scenario, e.g., a GitHub user “stars” (follows)
a repository, or a Coursera user “enrolled” in a subject. Generally speaking,
an interaction Rij = 1 implies the user is interested in the item, however, the
meaning of Rij = 0 is not necessarily to be not interested. In fact, the matrix R
is often sparse and most entries will be 0, where the 0 value indicates that the
user either has no interest in the item or has interest but not interacted with
the item yet. The goal of implicit feedback recommendation is to identify which
0 entries in R have the potential to become 1.

2.2 Knowledge Graph

The implicit feedback matrix R can be extreme sparse as some users may have
only interacted with one or two items. Although modeling moderately sparse
data has been considered by traditional CF methods, it remains a challenging
problem of utilizing extreme sparse data. Fortunately, if the items contain rich
semantic information, then only a few items will be able to connect the user to
knowledge graph, such that more complete user profiles can be built. To be spe-
cific, knowledge graph is a semantic web consist of entities and relations, where
entities represent anything in the world including people, things, events, etc.,
and relations connect entities that have interactions with each other. For exam-
ple, in GitHub repository recommendation, entities can be software development
concepts such as programming language C++, operating system Linux, develop-
ment framework TensorFlow, etc. The entities are connected through relations
such as “is programming language of”, “have dependency on”, “is operating sys-
tem of”, etc. Denoting entities as nodes and relations as edges, knowledge graph
can be represented by a heterogeneous network with multiple types of nodes and
multiple types of edges.

Although using knowledge graph in recommendation is promising, it is
assumed that the recommended items are entities in knowledge graph. This
assumption may hold for recommending movies or tourism destinations where
the items are already entities in knowledge graph, but it becomes invalid for
items that are non-existent in knowledge graph, such as repositories in GitHub.
Therefore, the link between non-existent items and knowledge graph entities
must be identified together with reliability and importance measures.
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For ease of reference, notations used throughout this paper are summarized
as following. Ui represents vector of user i; Vj represents vector of item j; Ei

represents vector of entity i; Bj represents bias vector of item j; Wk repre-
sents weigh of entity k; Ij represents possibly related entities set of item j; R
represents factorized matrix of relation r; r represents vector of relation r; Mr

represents subspace mapping matrix of relation r; p(i, j, j′) represents prefer-
ence function of triple (user i, item j, item j′); Xi,j,j′ represents user preference
term of training function; Yh,r,t,t′ represents knowledge graph embedding term of
training function; Z represents regularization term of training function; fr rep-
resents knowledge graph triple score function used in training function; fTransR

r

represents TransR score function; fRESCAL
r represents RESCAL score function.

2.3 Problem Definition

The research problem of this paper can be defined as follows: given quantitatively
sparse but semantically dense user feedback data, how to leverage knowledge
graph to perform semantic enhancement for items that do not exist in knowledge
graph, such that the item recommendation quality can be improved.

3 Hierarchical Collaborative Embedding

In this section, we propose the Hierarchical Collaborative Embedding model
(HCE) to bridge knowledge graph to CF, which jointly learns the embedding
of elements, including users, items, entities, and relations.

3.1 Knowledge Graph Structured Embedding

With large amount of knowledge being extracted from open source, knowledge
graph was proposed to store the knowledge with graph structure. The knowledge
facts are represented by triples, each triple has two entities (head entity and tail
entity) and one relation in between. Given all triples, the entities and relations
can be considered as nodes and edges, respectively, resulting a large scale of
heterogeneous knowledge graph. To capture the latent semantic information of
entities and relations, several embedding based methods [6–9] were proposed.
These methods embed entities and relations into a continuous vector space, in
which the latent semantic information can be reasoned automatically according
to vector space position of entities and relations.

Two state-of-the-art knowledge graph structured embedding methods are
employed in this paper: RESCAL [8] and TransR [9]. One important advantage
of these two methods is the capability of modeling multi-relational data where
more than one relation may exist between two entities.

RESCAL uses three-way tensor to represent triples set, each element of a
triple (head entity, relation, or tail entity) is represented by one dimension, and
tensor factorization is used to obtain the entity and relation representations. To
be specific, each entity is represented by a vector and each relation is represented
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by a matrix. Y is the three-way tensor which represent all the triples, Yk is a
matrix picked up from Y , it only contains triples with relation k. Ei and Ej are
the representation vectors of entity h and t, Wk is the representation matrix of
relation r.

The representations of entities and relations are constructed by minimizing
the following objective function:

min
E,Wk

∑

k

‖Yk − EWkE
T ‖2F . (1)

In a triple (h, r, t), each entity is represented by a vector, Eh for head entity
h, Et for tail entity t, and relation r is represented by a matrix R. The RESCAL
score function of a triple (h, r, t) is defined as:

fRESCAL
r (h, t) = ‖EhREt‖22, (2)

TransR uses a different score function for triples. Given a triple (h, r, t), the
head and tail entities are represented by vectors Eh and Et, respectively. Each
relation is represented by a vector r together with a matrix Mr. TransR firstly
maps entity h and t into subspace of relation r by using matrix Mr:

Er
h = MrEh, Er

t = MrEt. (3)

The score function of TransR is defined as follows:

fTransR
r (h, t) = ‖Er

h + r − Er
t ‖22. (4)

In learning process, we pick up a true triple (h, r, t) and generate a false triple
by replacing one entity of the triple by another entity: (h, r, t′). Then we make
the score value of true triple larger than that of false triple: fr(h, t) > fr(h, t′).

3.2 Knowledge Conceptual Level Connection

This work focuses on recommender systems without direct connection to knowl-
edge graph, i.e., most recommendation items do not exist in knowledge graph.
For example, a GitHub project with a customized name is not an entity in
knowledge graph. Consequently, methods such as [1] that rely on direct map-
ping between items and knowledge graph entities are not applicable. However,
by extracting content information from items, such as item description and user
reviews, potential links between items and entities can be constructed. To bridge
recommender system and knowledge graph with item-entity links, we propose
a collaborative learning model with hierarchical structure of three levels: the
recommender system level, the knowledge graph level, and the knowledge con-
ceptual level (KCL). The KCL plays a key role in the model to connect the other
two levels and enables collaborative learning.

Creating the knowledge conceptual level has two challenges. The first chal-
lenge is how to filter irrelevant linkages. The automated extraction of item
content introduces lots of irrelevant information for the recommendation task.
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For example, in GitHub project recommendation, the project description may
include vocabulary of specific areas such as biology and chemistry, which are
off-topic of general purpose coding recommendation. While this information is
irrelevant, it is actually linked to knowledge graph entities, thus introducing
noise data.

The second challenge is how to measure the influences of knowledge graph
entities on recommendation items. The entities have different influences on items,
thus the links between items and entities must be weighed in order to represent an
item precisely. To tackle these two challenges, the proposed Knowledge Concep-
tual Level implements the filtering and weighing functionalities. To be specific,
a weighed link function is used to represent each item with their possibly related
entities (automatically extracted from side information). The representation of
an item is the weighted sum of vectors of possibly related entities plus a bias
term Bj . Maximizing the weighed link function of each item is one of the targets
in collaborative learning process. The weighed link function of an item is defined
as follows:

Vj = Bj +
∑

k∈Ij

WkEk (5)

where Vj is the representation of item j, Ek is the representation of entity k,
Wk is the weigh parameter of entity k, and Ij is the set containing all the enti-
ties which are possibly related to item j. If the entity is unrelated to current
recommendation task, the weigh parameter should be lowered to near zero dur-
ing learning process, if the influential degree of the entity is minor, the weigh
parameter should be lowered accordingly. The filtering and weighing are both
achieved by knowledge conceptual level.

3.3 Collaborative Learning

To integrate recommender system with knowledge graph, the proposed collab-
orative learning framework learns the embedding representations of both rec-
ommender system elements (users and items) and knowledge graph elements
(entities and relations).

Because of user feedback is implicit, similar to some previous works [1,10], we
use pairwise ranking of items in our learning approach. Given user i, item j and
item j′, using Fi,j to represent the feedback of user i for item j, if Fi,j = 1 and
Fi,j′ = 0, then we consider user i prefer item j over item j′, we use preference
function p(i, j, j′) to represent this pairwise preference relation, and p(i, j, j′) >
0. More specifically, in our model, we use same-dimension vector representation
for user and item, the preference function is defined as following,

p(i, j, j′) = lnσ(UT
i Vj − UT

i Vj′) (6)

Ui is the vector representing user i, Vj is the vector representing item j, Vj′ is
the vector representing item j′, σ is sigmoid function.
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Algorithm 1. HCE Algorithm
Input: User preferences, Knowledge graph, Item&entity links.
Training:
Step 1: Draw pairwise user-entity triple set D.
Step 2: Repeat
for each (ui, vj , vj′) ∈ D do

Draw pairwise entity-relation quadruple set Sj,j′

Draw possibly related entities set Ij and Ij′

for each (h, r, t, t′) ∈ Sj,j′ do
Represent item by embedding of entities:
Vj = Bj +

∑
k∈Ij

Wk ∗ Ek

Vj′ = Bj′ +
∑

k∈Ij′ Wk ∗ Ek

Compute interaction of user and item:
Xi,j,j′ = lnσ(UT

i Vj − UT
i Vj′)

Compute score of entity-relation quadruple:
Yh,r,t,t′ = lnσ(fr(h, t) − fr(h, t′))
Compute regularization:
Z = ‖Ui‖, ‖E{h,t,t′}‖, ‖Rr‖, ‖B{j,j′}‖, ‖W{j,j′}‖
maximize Xi,j,j′ + Yh,r,t,t′ + Z

Predictions:
for each ui ∈ U do

Recommend items for user i in order
j1 > j2 > ... > jn (UT

i Vj1 > UT
i Vj2 > ... > UT

i Vjn).

Integrating knowledge graph embedding and knowledge conceptual level, the
collaborative learning leverage the information from both user feedback and
knowledge graph. by repeating following procedure. Jointly, we aim to maximize
the likelihood function in Eq. 7 and the overall learning algorithm is summarized
in Algorithm 1.

L =
∑

(i,j,j′)∈D

Xi,j,j′ +
∑

(h,r,t,t′)∈S

Yh,r,t,t′ + Z

Xi,j,j′ = lnσ(UT
i Vj − UT

i Vj′)
Yh,r,t,t′ = lnσ(fr(h, t) − fr(h, t′))

Z =
λU

2
‖U‖22 +

λE

2
‖E‖22 +

λR

2
‖R‖22 +

λB

2
‖B‖22 +

λW

2
‖W‖22

Vj =
∑

k∈Ij

WkEk

(7)
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4 Experiment

In this section, we introduce the dataset, the baselines and the results of com-
parison experiments.

4.1 Dataset

To demonstrate the effectiveness of proposed method, we collected GitHub
dataset and conduct experiments on it. The GitHub dataset is chosen for several
reasons. Firstly, the user feedback is implicit which is more realistic in real-
world recommendation. Besides, the GitHub dataset is quantitatively sparse
but semantically dense, the dataset consists of 3, 798 users, 2, 477 items and
22, 096 interactions. Defining the density ratio as iteration num/(user num ∗
item num), the ratio of GitHub dataset is 0.0026. In contrast, the popular
MovieLens-1M dataset has a density ratio of 0.0119 even if only 5-star rat-
ings are considered. Though the GitHub dataset is quantitatively sparse, it is
semantically dense, the repositories are highly related with each other based on
their semantic information including some simple entity-based interactions, such
as some repositories use programming language “C++” or some repositories use
toolkit “TensorFlow”. We also leverage some complex interactions from knowl-
edge graph, for example, a repository uses toolkit “TensorFlow” which is imple-
mented by “C++” which is the programming language of another repository. We
do recommendation on GitHub dataset not only based on historical cooccurrence
of items but also based on semantic information enhanced by knowledge graph.
The other reason we use GitHub dataset is that the items (repositories) can’t be
directly mapped to entities of knowledge graph because of its highly customized
item name. Although directly mapping is used in some previous works, it fails
in recommendation tasks where item names are customized.

4.2 Baselines

We choose following methods as baselines of our experiment, BPRMF (Bayesian
Personalized Ranking based Matrix Factorization), BPRMF+TransE and FM
(Factorization Machines).

BPRMF ignores the knowledge graph information, it only focuses on historical
user feedback, the results are learnt by using pairwise item ranking based
matrix factorization.

BPRMF+TransE uses almost the same setting as our proposed models
(RESCAL-based HCE and TransR-based HCE), while it only considers part
of knowledge graph information. By using TransE knowledge graph embed-
ding method, it ignores the multi-relational data.

FM [11,12] is another popular solution for integrating side information into
recommendation tasks. While it is limited by only considering the entities as
items’ features and ignoring the semantic structural relation between entities.
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(a) HCE TransR MAP@k (b) HCE TransR Recall@k

(c) HCE RESCAL MAP@k (d) HCE RESCAL Recall@k

Fig. 2. MAP@k and Recall@k result.

4.3 Comparison

To measure both the precision and recall of recommendation results, we use
MAP@k (mean average precision) [13] and Recall@k [14] in our experiments. Due
to utilizing two knowledge graph embedding methods, RESCAL and TransR,
in proposed Hierarchical Collaborative Embedding (HCE) model, we compare
RESCAL-based HCE and TransR-based HCE with baselines (BPRMF, FM,
BPRMF+TransE) respectively.

Each experiment is repeated five times with different random seeds and we
report the MAP and Recall values by varying the position k in Fig. 2. The results
can be summarized as follows: (1) Results of FM model are better than BPRMF,
because BPRMF totally ignores knowledge graph information, knowledge graph
information is useful to improve the recommendation results. (2) The improve-
ment of FM is limited, less than BPRMF+TransE model, because FM model
doesn’t consider relation structure of knowledge graph, integrating knowledge
graph structured embedding in our proposed model by using knowledge con-
ceptual level effectively elevates MAP@k and Recall@k scores. (3) Although
BPRMF+TransE model is effective, it is still outperformed by both RESCAL-
based HCE model and TransE-based HCE model, because the latter two models
consider the multi-relational data of knowledge graph.
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The effectiveness of proposed Hierarchical Collaborative Embedding (HCE)
framework is presented. Knowledge Conceptual Level serves as the core compo-
nent of HCE framework appropriately.

5 Related Work

In this section, we introduce two related works, Knowledge graph structured
embedding and Implicit Collaborative Filtering. Knowledge graph structured
embedding leverages relational learning methods [15] to extract the latent seman-
tic information of knowledge graph elements including entities and relations.
Collaborative filtering learns users’ interests from their feedback, either explicit
or implicit.

5.1 Knowledge Graph Structured Embedding

Based on different assumptions, each structured embedding method proposes a
model to represent knowledge graph triple which consists of head entity, relation
and tail entity. There are three categories of models, direct vector space translat-
ing, vector space translating with relation subspace or hyperplane mapping, and
tensor factorization. Considering of knowledge graph is a multi-relational het-
erogeneous network, Bordes et al. [7] then proposed another model using direct
vector space translating model, which ignore multi-relation problem but make
the model much more efficient in training speed. Nickel et al. [8] proposed a
new type of relational learning methods based on tensor factorization, which is
efficient in both speed and accuracy. Lin et al. [9] use relation subspace mapping
instead of hyperplane mapping. Except the models mentioned above, there are
some other structured embedding models [6,16]. In this work, we integrate [7]
into our framework as one baseline, and we use [8,9] as important components
of our proposed model.

5.2 Collaborative Filtering Using Implicit Feedback

Popularized by the Netflix prize3, traditional methods focus on explicit feedback
such as ratings. However, the last decade has seen a growing trend towards
exploiting implicit feedback such as clicks and purchases. Implicit feedback has a
major advantage of eliminating the needs of asking users explicitly. Instead, user
feedback is collected silently, resulting more user-friendly recommender systems.
Hu et al. [17] and Pan et al. [18] investigated item recommendation from implicit
feedback and propose to impute all missing values with zeros. More recently,
Shi et al. [19] and Bayer et al. [20] extended Bayesian Personalized Ranking
(BPR) [10] for optimizing parameters from implicit feedback. In this paper, we
employ an optimization strategy similar to BPR, but with semantic information
modeling. Standard BPR methods are also used as baselines for our experiments.

3 http://www.netflixprize.com/.

http://www.netflixprize.com/
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6 Conclusions

In this paper, we proposed Hierarchical Collaborative Embedding framework,
which integrates recommender system with knowledge graph into a three-level
model. The information of knowledge graph is leveraged to improve the results of
quantitatively sparse but semantically dense recommendation scenarios. Exper-
iment was conducted on real-world GitHub dataset showing that semantic infor-
mation from knowledge graph has been properly captured, resulting improved
recommendation performance. To the best of our knowledge, this is the first
attempt of using knowledge graph embedding to perform semantic enhancement
for items that do not exist in knowledge graph, by using the proposed Knowledge
Conceptual Level. LS as well. For future work, we would like to add additional
layers to the network to capture higher order interactions of items and entities.
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Abstract. Learning the low-dimensional representations of the vertices
in a network can help users understand the network structure and per-
form other data mining tasks efficiently. Various network embedding
approaches such as DeepWalk and LINE have been developed recently.
However, how to protect the individual privacy in network embedding has
not been exploited. It is challenging to achieve high utility as the sensitiv-
ity of stochastic gradients in random walks and that of edge sampling are
very high, thus incurring high utility loss when applying Laplace mech-
anism and exponential mechanism to achieve differential privacy. In this
paper, we develop a differentially private network embedding method
(DPNE). In this method, we leverage the recent theoretical findings that
network embedding methods such as DeepWalk and LINE are equivalent
to factorization of some matrices derived from the adjacency matrix of
the original network and apply objective perturbation on the objective
function of matrix factorization. We evaluate the learned representations
by our DPNE from three different real world datasets on two data mining
tasks: vertex classification and link prediction. Experiment results show
the effectiveness of DPNE. To our best knowledge, this is the first work
on how to preserve differential privacy in network embedding.

1 Introduction

Network embedding learns the lower dimensional representations of the vertices
in a high-dimensional social network [7]. The latent representations encode the
social relations in a continuous vector space, which can be used to conduct a
variety of applications such as vertex classification and link prediction. The first
network embedding model, DeepWalk [14], uses the sequences of vertices gener-
ated by random walks to learn the vertex representations. It adopts SkipGram
[12], which was previously used to learn word representations in natural language
processing. Several models based on the neural language model have been pro-
posed, such as node2vec [8], Discriminative Deep Random Walk (DDRW) [10],
Large-scale Information Network Embedding (LINE) [18] and Signed Network
Embedding (SNE) [23].
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However, releasing the representations of vertices in a social network gives
malicious attackers a potential way to infer the sensitive information of individ-
uals. For example, the widely-used network embedding methods like DeepWalk
[14] and LINE [18] train the vertex representations based on the linkage informa-
tion between vertices. Hence, the released vertex representations may potentially
breach link privacy of social network users. Currently, it is under-exploited how
to preserve differential privacy in network embedding.

Differential privacy is a formal standard for protecting individual privacy
in data analysis [5]. Differential privacy ensures that the inclusion or exclusion
of a single record from a dataset makes no statistical difference when we per-
form a data analysis task on the dataset. The mechanisms to achieve differential
privacy mainly include the classic approach of adding Laplacian noise [5], the
exponential mechanism [11], the objective perturbation approach [4], the func-
tional perturbation approach [25] and the sample and aggregate framework [13].
There have been many studies on the application of differential privacy in some
particular analysis tasks, e.g., data collection [6,19], stochastic gradient descents
[17], regression [3], spectral graph analysis [20], causal graph discovery [21] and
deep learning models [1,15]. In this work, we aim to ensure no “privacy loss” in
case of the inclusion or exclusion of an edge between two vertices from a network,
a.k.a. link privacy.

In DeepWalk, the inputs of the two embedding models are generated by
random walks and edge sampling. The objective function derived from ran-
dom walks has an uncertain and complex mapping from edges. Edge sampling
directly discloses the presence or absence of an edge between a vertex pair, which
leads to a high sensitivity for privacy protection. Thus, it is difficult to directly
incorporate well-studied differential privacy mechanisms [17,24] onto DeepWalk.
Meanwhile, the matrix factorization based method, which is proven to be equiv-
alent to DeepWalk, learns representations through factorizing a matrix with the
pointwise mutual information of the vertices pairs in a network. It is convenient
to achieve differential privacy in network embedding via small perturbation on
matrix factorization.

In this work, we focus on developing a differential privacy preserving method
of network embedding based on the equivalent matrix factorization method.
We propose a differentially private network embedding method (DPNE). In this
method, we leverage the findings that network embedding methods such as Deep-
Walk and LINE are equivalent to factorization of some matrices derived from
the adjacency matrix of the original network and apply objective perturbation
on the objective function of matrix factorization. We show that with only adding
a small amount of noise onto the objective function, the learned low-dimensional
representations satisfy differential privacy. Experimental results show that the
embedded representations learned by DPNE achieve good utility with a small
privacy budget on both vertex classification and link prediction tasks. To our
best knowledge, this is the first work on how to preserve differential privacy in
network embedding.
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2 Preliminaries

2.1 Network Embedding

A social network is defined as G = (V, E), where V is a set of vertices and E
is the set of edges. We use vi to denote a vertex, and we use eij to denote an
edge between a pair of vertices vi and vj . The goal of the network embedding
is to learn the low-dimensional representations X ∈ R

|V|×k for all vertices in V,
where k � |V|. The i-th row of X (denoted as xi) is the k-dimensional latent
representation of vertex vi.

DeepWalk. DeepWalk adopted SkipGram [12], which was previously used to
learn word representations, to learn vertex representations according to the net-
work structure. DeepWalk first generates short random walks for each vertex.
Then the model uses the sequences of vertices S generated by random walks as
the input of SkipGram function to learn the vertex representations. In particu-
lar, for each target vertex vi ∈ V and a context vertex vj within t window size
of vi in a walk sequence (vj ∈ Ci = {vi−t, . . . , vi+t} \ {vi}), DeepWalk optimizes
the co-occurrence probability between vi and its context vertices within S:

L(S) =
1

|S|
∑

vi∈S

∑

vj∈Ci

log Pr(vj |vi), (1)

where the probability function Pr(vj |vi) is defined by the softmax function:

Pr(vj |vi) =
exp(xiyT

j )
∑

vj′∈Vc
exp(xiyT

j′)
, (2)

where xi and yj are the k-dimensional representations of the target vertex vi and
the context vertex vj , respectively; and Vc denotes the set of context vertices.

DeepWalk as Matrix Factorization. DeepWalk using SkipGram with Nega-
tive Sampling (SGNS) has been proven that it is equivalent to factorize a matrix
M derived from G M

|V|×|Vc|
= W

|V|×k
HT

k×|Vc|
[22]. The factorized matrices W,H are

equivalent to the vertex/context representations, as wi = xi and hj = yj . Each
value mij in M represents logarithm of the average probability that vertex vi

randomly walks to vertex vj within fixed t steps. Formally, mij is defined as:

mij = log
[Ii(P + P2 + · · · + Pt)]j

t
, (3)

where P is the transition matrix of G with pij =
1
di

if eij ∈ E ; di is the degree

of vi in G; and Ii denotes an indicator vector, in which the i-th entry is 1 and
the others are all 0.
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Hence, we formalize the DeepWalk as matrix factorization M = WHT . Let
Ω be the set of vertex pairs referenced by each entry mij of M. The model aims
to find matrices W and H to minimize the objective function as follows:

L(wi,hj ,G) =
∑

(i,j)∈Ω

||mij − wihT
j ||22 + λ

∑

i∈V
||wi||22 + μ

∑

j∈Vc

||hj ||22, (4)

where λ and μ are the weights of regularization terms.
We adopt the stochastic gradient descent (SGD) approach to minimize Eq. 4.

SGD iteratively learns W and H. The partial derivatives of L(wi,hj ,G) with
respect to wi and hj are as follows:

�wi
L(wi,hj ,G) = −2

∑

j∈Vc

hj(mij − wihT
j ), (5)

�hj
L(wi,hj ,G) = −2

∑

i∈V
wi(mij − wihT

j ). (6)

2.2 Differential Privacy

Definition 1 Differential privacy [5]. A graph analysis mechanism M satis-
fies ε-differential privacy, if for all neighboring graphs G and G′ and all subsets
Z of M’s range:

Pr(M(G) ∈ Z) ≤ exp(ε) · Pr(M(G′) ∈ Z), (7)

where G = (V, E), G′ = (V, E ′), E ′ = E ⋃{ers}, ers is the differed edge between
G and G′.

The parameter ε denotes the privacy budget (smaller values indicates a stronger
privacy guarantee).

Definition 2 Global sensitivity [5]. Given a function f : G → R
k. The sen-

sitivity Sf (G) is defined as

Sf (G) = max
G,G′

||f(G) − f(G′)||. (8)

Definition 3 Laplace mechanism [5]. Given a graph G and a query f , a
mechanism M(G) = f(G)+(Y1, · · · , Yk) satisfies ε-differential privacy, where Yi

is drawn i.i.d. from Lap(Sf (G)/ε).

Laplace mechanism ensures differential privacy for any function f by adding
random noises generated from a Laplace distribution onto the true answer of
f(G). The global sensitivity of f controls the magnitude of the noise distribution.

For many data mining and machine learning algorithms, we usually optimize
some objective functions (e.g., cross entropy) to derive coefficients of released
models. Rather than adding noise to coefficients of the released model, Chaudhuri



DPNE: Differentially Private Network Embedding 239

et al. [4] proposed an objective perturbation approach by perturbing the
objective function L and then optimizing the perturbed objective function,

Lpriv(ω,G) = L(ω,G) + ωηT , (9)

where η is a random noise vector and its probability density is given by

Pr(η) ∝ e−β||η ||, (10)

and the parameter β is a function of privacy budget ε and the scale of
||�ω L(ω, eij)||. To implement this, we pick the norm of η from the Γ (k, β)
distribution and the direction of η uniformly at random. Then we compute the
private output ω̂, where ω̂ = arg minω Lpriv(ω,G) satisfies ε-differential privacy.

3 Differentially Private Network Embedding

3.1 Differentially Private Network Embedding (DPNE)

DPNE adopts the objective perturbation mechanism on matrix factorization to
protect the individual’s link privacy in the social network. Note that M repre-
sents logarithm of the average probability that one vertex randomly walks to
another vertex within fixed steps. When an edge eij in G is added or removed,
the entire entries in M are changed accordingly. Hence, although there are some
works [9] to protect the privacy in terms of a value in a matrix, it is not straight-
forward to adapt the existing models to our scenario. We need to derive the scale
of the objective function in terms of changing one edge in G.

In DPNE, we define the perturbed objective function of matrix factorization
in Eq. 4 as follows:

Lpriv(wi,G) =
∑

(i,j)∈Ω

||mij − wihT
j ||22 + λ

∑

i∈V
||wi||22 + μ

∑

j∈Vc

||hj ||22 +
∑

i∈V
wiη

T
i ,

(11)
where N = [ηi]|V|×k is a noise matrix with each row ηi of N as a k-dimensional
noise vector. In practice, the context representation matrix H is kept confidential.
We first minimize Eq. 4 to update H, then fix H and learn W by minimizing
Eq. 11. Hence, W is the only matrix variable in Eq. 11.

Theorem 1. Let M be a matrix where each of its entry mij is defined by Eq. 3.
Let ηi in Eq. 11 be a k-dimensional noise vector that is independently and ran-

domly picked for each vertex vi from the density function Pr(ηi) ∝ exp(−ε||ηi||
2Δ

),

where Δ = max ||M′ − M||. The derived Ŵ = arg minW Lpriv(wi,G) by
minimizing Eq. 11 satisfies ε-differential privacy.

Proof. Let G and G′ be two neighboring graphs differing by one edge, where
G = (V, E), G′ = (V, E ′), E ′ = E ⋃{ers}. Let M and M′ be two matrices derived
from G and G′ following Eq. 3. Let N and N′ be the noise matrices in Eq. 11 when
training with G and G′. Meanwhile, Lpriv(wi,G) is differentiable anywhere.
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Let W̄ = arg minW Lpriv(wi,G) = arg minW Lpriv(wi,G′), we have ∀vi ∈ V,
�wi

Lpriv(w̄i,G) = �wi
Lpriv(w̄i,G′) = 0. Thereby,

ηi − 2
∑

j∈Vc

hj(mij − w̄ihT
j ) = η′

i − 2
∑

j∈Vc

hj(m′
ij − w̄ihT

j ); (12)

We can derive from Eq. 12 that:

ηi −η′
i = 2

∑

j∈Vc

hj(m′
ij − w̄ihT

j )−2
∑

j∈Vc

hj(mij − w̄ihT
j ) = 2

∑

j∈Vc

hj(mij −m′
ij);

∑

i∈V
(ηi − η′

i) = 2
∑

i∈V

∑

j∈Vc

hj(mij − m′
ij);

We normalize ||hj || ≤ 1. Since ||M′ − M|| ≤ Δ, we have ||N − N′|| ≤ 2Δ
regardless of H. Then for G and G′,

Pr[W = W̄ |G]
Pr[W = W̄ |G′]

=

∏
i∈V

Pr(ηi)
∏
i∈V

Pr(η′
i)

= exp(−
ε(

∑
i∈V

||ηi|| − ∑
i∈V

||η′
i||)

2Δ
)

≤ exp(−ε(||N − N′||)
2Δ

) ≤ exp(ε).

(13)

The above proof also holds when we use
∣∣∑

vi∈V wiη
T
i

∣∣ as the noise term in
the perturbed objective function. In our implementation, we use the absolute
noise term to get a better performance on the optimization. Next, we show the
upper bound of max ||M′ − M||, which will be used for adding noise to the
objective function.

Lemma 1. The L2-sensitivity of M is max ||M′ − M|| ≤ √
2.

Proof. When window size t = 1, ||M′−M|| decreases as degrees of vr and vs (the
vertices linked by the edge ers in G′) increase. ||M′ − M|| takes the maximum
value

√
2 when degrees of vr and vs are both 0 in G and 1 in G′. When window

size t ≥ 2, ||P′t − Pt|| ≤ ||P′ − P||.

||M′ − M||
(t≥2)

=
∣∣∣∣

∣∣∣∣
P′ + . . . + P′t

t
− P + . . . + Pt

t

∣∣∣∣

∣∣∣∣ ≤
∣∣∣∣

∣∣∣∣
t(P′ − P)

t

∣∣∣∣

∣∣∣∣ = ||M′ − M||
(t=1)

.

3.2 DPNE vs. Other DP-Preserving Embedding Approaches

A naive way to achieve differential privacy in network embedding is to get a
differentially private matrix M (dpM) and then to apply matrix factorization,
where M is calculated with the transition matrix P and its powers Pt. To get a
differentially private matrix M, we can use the Laplace mechanism to add a noise
matrix N on M, where each entry nij of N is drawn i.i.d. from Lap(Sf (G)/ε),
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let Sf (G) be the sensitivity of M, Sf (G) = max ||M′ − M|| ≤ √
2. The worst

case for ||M′ −M|| is when adding an edge to two isolated vertices in G. We will
use dpM as a baseline in our empirical evaluation.

Another way to achieve differential privacy in network embedding is to
enforce differential privacy in the process of network embedding models. Let
D be a vertex-context set generated from the random walk sequences, where
each member of D is a vertex-context pair (vi, vj). For a “walk step” from
vi to vj in random walks, it is uncertain how many times in total the same
“walk step” appears in D. For example, the number of times that an edge eij

gets walked through by all the random walks sequences has the upper bound∑min{b,�loga |V|�}
i=0 ai × c × (b − i), where a is the maximal degree of G, b is the

walk length, c is the number of walks starting at each vertex. Stochastic Gradient
Descent (SGD) is used in SkipGram to learn the embedding vectors based on
the objective function. The input for SGD is the vertex-context set D. Although
there are existing works on how to apply objective perturbation [17] or expo-
nential mechanism [24] on SGD to make private updates, the privacy of D and
the privacy of G are not the same. For example, if we want to apply the func-
tional mechanism [25] on DeepWalk with hierarchical softmax [14], in terms of
the privacy of D, the hierarchical softmax function iterates one time over each
vertex-context pair in D; the sensitivity of the hierarchical softmax function on
D is about �log2 |V|� (

k/2 + k2/8
)
. But in terms of the privacy of G, for each

edge in G, the hierarchical softmax function iterates an unset number of times;
thus, the sensitivity of the hierarchical softmax function on G is very large after
multiplying the iteration times.

Also, negative sampling is used for SkipGram function in DeepWalk or LINE.
The processes of positive sampling and negative sampling already indicate link
privacy. It is viable to make the sampling process private by applying the expo-
nential mechanism [11] or the Laplace mechanism [5]. However, the sensitivity of
edge sampling domain is also large. Hence, it is challenging to intuitively apply
the existing differentially private approaches in DeepWalk to achieve privacy
protection on G.

The equivalent matrix factorization approach avoids random walks and neg-
ative sampling. The effect of window size in DeepWalk is expressed as the pow-
ers of the transition matrix. It considers the expected times that the vertex
pairs appear rather than the randomly generated times. It is more convenient to
apply differential privacy mechanisms on the matrix factorization based network
embedding method. The only remaining challenge is to bridge the “gap” between
the privacy of D and the privacy of G. Theorem 1 addresses this problem.

4 Evaluation

In this section, we evaluate the performance of DPNE on two tasks: vertex
classification and link prediction. For vertex classification, we predict the label
of each vertex in the network by using vertex embeddings as inputs to build
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Table 1. Comparing the accuracy for vertex classification with different privacy budget
ε [non-priv: (a) Wiki 0.555 (b) Cora 0.700 (c) Citeseer 0.505]

Dataset (a) Wiki (b) Cora (l) Citeseer

ε dpM DPNE dpM DPNE dpM DPNE

0.01 0.094 0.093 0.187 0.181 0.179 0.178

0.1 0.091 0.096 0.189 0.213 0.182 0.186

1 0.088 0.521 0.190 0.662 0.177 0.452

10 0.090 0.527 0.196 0.669 0.180 0.459

100 0.355 0.537 0.500 0.677 0.311 0.466

1000 0.545 0.552 0.679 0.700 0.497 0.490

a classifier. For link prediction, we aim to use vertex embeddings to predict
whether there is an edge between two vertices.

Baselines. We compare our differentially private network embedding method
(DPNE) with the naive method (dpM) and the non-private network embedding
as matrix factorization method (non-priv).

Datasets. We adopt the following three datasets to evaluate the proposed
model. (1) Wiki contains 2,405 documents from 19 classes and 17,981 links
between them. (2) Cora is a research paper set which contains 2,708 machine
learning papers from 7 classes and 5,429 links between them. (3) Citeseer is
another research paper set which contains 3,312 publications from 6 classes and
4,732 links between them.

Parameter Settings. In our experiments, we set the window size t = 2 and
M = (P + P2)/2. For all three datasets, we choose a series of values for the
embedding size k = {10, 20, 50, 100, 200, 500, 1000} for vertex representations,
and a series of values for the privacy budget ε = {0.01, 0.1, 1, 10, 100, 1000}. We
set the regularization coefficients λ = μ = 0.001 and the learning rate γ = 0.015.
The train ratios of SVM and logistic regression in the two tasks are both 10%.
For each parameter setting, we report the average result over 10 different runs.

4.1 Vertex Classification Task

For the vertex classification task, we first get the vertex representation W based
on the matrix factorization method. Then, we train a multi-class support vector
machine (SVM) on a training dataset L based on a subset of vertex represen-
tations WL and further predict the labels of a testing dataset U by the SVM
classifier based on W\WL.

Different Privacy Budgets. We evaluate the performance of two private algo-
rithms on all three datasets with embedding size k = 100 and different privacy
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Table 2. Comparing the accuracy for vertex classification with different embedding
size k and privacy budget ε (dataset=Wiki)

ε

non-priv DPNE

k 0.01 0.1 1 10 100 1000

10 0.324 0.080 0.108 0.255 0.265 0.272 0.350

20 0.466 0.072 0.095 0.420 0.428 0.429 0.457

50 0.537 0.080 0.087 0.526 0.520 0.515 0.539

100 0.555 0.093 0.096 0.521 0.527 0.537 0.552

200 0.530 0.096 0.101 0.470 0.511 0.515 0.539

500 0.474 0.105 0.110 0.285 0.437 0.424 0.482

1000 0.429 0.109 0.112 0.169 0.270 0.295 0.405

budgets ε. Table 1 shows the comparison results of each method for vertex clas-
sification on three datasets. We can observe that both DPNE and dpM have the
similar trend on three datasets in terms of accuracy while we increase the privacy
budget. The classification results of DPNE are close to the non-private method
when ε ≥ 1. However, the performance of dpM method has a big improvement
when ε ≥ 100. It indicates that, compared with dpM, DPNE can achieve the
same performance with a much smaller privacy budget. Meanwhile, when the
ε ≤ 0.1, both private methods have poor performance. It indicates that when
the privacy budget is low, the matrix factorization method cannot be converged
due to the large noisy injected to the objective function or matrix itself.

Different Embedding Sizes. Based on Eq. 10, ηi increases with embedding
size k. There is potentially a compromised performance of DPNE at a larger k.
We evaluate the performance of the DPNE algorithm on the Wiki dataset with
different embedding size k and privacy budget ε. For non-priv, as shown in the
second column of Table 2, the highest accuracy 55.5% is achieved when k = 100.
When increasing or decreasing embedding size k, the accuracy decreases. For
DPNE, with relatively large privacy budget, ε = 10, 100, 1000, high accuracy is
also achieved when k = 100. When ε = 1, high accuracy is achieved when k = 50.
However, with very small privacy budget, ε = 0.01, 0.1, DPNE has significantly
lower accuracy comparing to non-priv no matter how we choose k.

4.2 Link Prediction Task

For the link prediction task, we first use vertex representations to compose edge
representations. Given a pair of vertices vi, vj connected by an edge, we use an
Hadamard operator to combine the vertex vectors wi and wj to compose the
edge vector êij = wi ∗ wj [8]. Then, we use the constructed edge vectors as
inputs to train a logistic regression classifier and adopt the classifier to predict
the presence or absence of an edge.



244 D. Xu et al.

Different Privacy Budgets. We evaluate the performance of two private algo-
rithms on three datasets for link prediction with embedding size k = 100 and
different privacy budgets ε. Table 3 shows the link prediction accuracy of DPNE
and dpM. We can observe that when ε ≤ 0.1, both private algorithms have
only about 50% accuracy on three datasets. The accuracy of DPNE has a big
improvement while ε increases to 1. However, dpM can achieve the comparable
results when the ε ≥ 100. It indicates DPNE can achieve better performance
with a small privacy budget.

Different Embedding Sizes. We also evaluate the performance of the DPNE
algorithm on the Wiki dataset with different embedding size k and privacy bud-
get ε. Table 4 shows our result. For non-priv, it achieves the highest accuracy
74.7% when k = 200. For DPNE, it often achieves the highest accuracy with
k = 200 for large privacy budget values and with k = 1000 for small privacy
budget values. More interestingly, DPNE even outperforms non-priv at large k
for ε = 10 or 100.

Table 3. Comparing the accuracy for link prediction under different privacy budget ε
[non-priv: (a) Wiki 0.734 (b) Cora 0.697 (c) Citeseer 0.699]

Dataset (a) Wiki (b) Cora (c) Citeseer

ε dpM DPNE dpM DPNE dpM DPNE

0.01 0.502 0.520 0.501 0.532 0.498 0.535

0.1 0.502 0.524 0.501 0.541 0.501 0.523

1 0.503 0.743 0.500 0.698 0.503 0.690

10 0.527 0.713 0.552 0.673 0.566 0.666

100 0.708 0.720 0.729 0.666 0.751 0.662

1000 0.725 0.725 0.706 0.703 0.695 0.696

Table 4. Comparing the accuracy for link prediction with different embedding size k
and privacy budget ε (dataset = Wiki)

ε

non-priv DPNE

k 0.01 0.1 1 10 100 1000

10 0.607 0.499 0.552 0.614 0.612 0.609 0.605

20 0.648 0.500 0.538 0.661 0.650 0.654 0.649

50 0.717 0.510 0.525 0.718 0.694 0.695 0.718

100 0.734 0.520 0.524 0.743 0.713 0.720 0.725

200 0.747 0.532 0.541 0.763 0.734 0.741 0.746

500 0.670 0.550 0.566 0.733 0.778 0.721 0.695

1000 0.650 0.568 0.595 0.698 0.784 0.726 0.679
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5 Conclusions and Future Work

In this work, we proposed a differentially private network embedding method
(DPNE) based on DeepWalk as matrix factorization. We applied the objective
perturbation approach on the objective function of matrix factorization. Our
evaluation shows that on both vertex classification and link prediction tasks our
DPNE achieves satisfactory performance. DPNE can be easily employed in other
network embedding methods if there exists an equivalent matrix factorization of
a certain matrix. For example, LINE is proven to be factorizing a similar matrix
to M [16]. We would derive differential privacy preserving LINE similarly. One
potential limitation of the matrix factorization based methods is that they are
not scalable to large networks. Graph factorization [2] uses a streaming algorithm
for graph partitioning to improve factorization based embedding methods. In
future work, we will extend our DPNE to deal with large networks.
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Abstract. Due to the ubiquity of graphs, machine learning on graphs
facilitates many AI systems. In order to incorporate the rich information
of graphs into machine learning models, graph embedding has been devel-
oped, which seeks to preserve the graphs into low dimensional embed-
dings. Recently, researchers try to conduct graph embedding via gener-
alizing neural networks on graphs. However, most existing approaches
focus on node embedding, ignoring the heterogeneity of edges. Besides,
the similarity relationship among random walk sequences has been rarely
discussed. In this paper, we propose a generalization of Recurrent Neural
Networks on Graphs (G-RNN) for graph embedding. More specifically,
first we propose to utilize edge embedding and node embedding jointly to
preserve graphs, which is of great significance in multi-relational graphs
with heterogeneous edges. Then we propose the definition of subgraph
level high-order proximity to preserve the inter-sequence proximity into
the embeddings. To verify the generalization of G-RNN, we apply it
to the embedding of knowledge graph, a typical multi-relational graph.
Empirically we evaluate the resulting embeddings on the tasks of link
prediction and node classification. The results show that the embed-
dings learned by G-RNN are powerful on both tasks, producing better
performance than the baselines.

1 Introduction

Graph is a primary abstraction for various physical worlds such as social net-
works, protein-protein interaction networks, and knowledge graph [11], where
nodes model individual units and edges capture the relations between them. As
a result, machine learning on graphs is a ubiquitous task with applications rang-
ing from drug design to friendship recommendation in social networks. In order
to incorporate the information about graph structure into machine learning mod-
els, representation learning has been developed to encode graph structure into
low-dimensional embeddings. A “good” graph embedding representation should
preserve both topological and semantic structure of the graph.

Existing neural network based graph embedding approaches focus on node
embedding, which preserves graph topological structure and node seman-
tics [12,21,25,26]. All of these approaches take edges as topological connec-
tions between nodes, ignoring their semantic information. It might work well for
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 247–259, 2018.
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single-relational graph with homogeneous edges, where all the edges are treated
identically. In contrast in multi-relational graphs, the rich semantic information
of heterogeneous edges is also essential for graph representation. For example,
given two nodes Steve Jobs and USA of a graph, there are multiple directed edges
connecting them with different edge labels such as BornIn and LiveIn, provid-
ing different semantic dependency for the two nodes. Unfortunately, previous
node embedding approaches tend to ignore the two edge labels and regard them
identically. Therefore, only node embedding can not encode and distinguish the
different edges between two nodes. To address this issue, we propose to perform
edge embedding and node embedding jointly, considering that the semantic infor-
mation of edges are indispensable for the structure of multi-relational graphs.
As a result, we can predict the specific edge type between two nodes in the link
prediction task, while previous node embedding approaches can only predict
whether the two nodes are directly linked. To sum up, edge embedding is an
important complement to node embedding approaches.

Generally, graph embedding approaches model the structure of graph with
the proximity relationships. To begin with, the first-order proximity in [1,23]
describes the pairwise similarity only between the directly linked nodes, which
characterizes the local relationship of nodes. Since many legitimate links are
missing, the first-order proximity is not sufficient to model the graph structure.
Therefore, [25,26] propose the second-order proximity, describing the similarity
of nodes according to their shared neighborhood structures. Furthermore, [12,21]
preserve the high-order proximity within a random-walk multi-hop sequence.
However, even the high-order proximity used in existing approaches only reflects
the intra-sequence proximity, incapable of capturing the similarity among
different sequences. As in Fig. 1, given a subgraph derived from two nodes, the
sequences within the subgraph generally imply similar pattern. To preserve the
inter-sequence proximity into embedding space, we define a subgraph level
high-order proximity. A related work is PTransE [17], where the similarity
between the multi-hop edge sequences and the direct edge within a subgraph
is maximized. However, PTransE only considers the edges of the sequences and
omits all the intermediate nodes, which will result in ambiguity in some cases.
To avoid this problem, we compose both nodes and edges of the sequences so as
to represent the exact sequence semantic meanings.

To model the subgraph level high-order proximity, we propose a generaliza-
tion framework of Recurrent Neural Network on Graphs (G-RNN). As Fig. 1
shows, G-RNN is composed of two stages: subgraph extraction and G-RNN
training. First, we extract the subgraphs from a graph via finding the one-hop
and multi-hop sequences between arbitrary two nodes. Then, the sequences of
each subgraph are sent into G-RNN. After G-RNN alternately preforms the same
calculation on the nodes and edges along each sequence, we obtain the sequence
embeddings by averaging all of the hidden states. Finally, we optimize model
parameters and the embeddings of nodes and edges by maximizing the subgraph
level high-order proximity. Empirically, we use G-RNN to learn the embeddings
of knowledge graph, a typical multi-relational graph. We evaluate the learned
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embeddings on the tasks of link prediction and node classification. The results
show that our approach provides better performance than the baselines.

The main contributions of this paper are summarized as follows:
1. In addition to graph topology and node semantics, we preserve the seman-

tic information of edges into the embedding space, which is critical for multi-
relational graphs with heterogeneous edges.

2. We model the inter-sequence proximity within a subgraph by preserving
the subgraph level high order proximity in the embeddings.

3. We verify the generalization of G-RNN by applying it to knowledge graph
embedding and evaluating the resulting embeddings on the tasks of link predic-
tion and node classification.

Fig. 1. Framework of G-RNN. Gxy is the subgraph derived from vx Steve Jobs and
vy USA. The one-hop sequence μxy and the multi-hop sequences π1, π2, π3 ∈ Sxy are
sent into G-RNN. G-RNN recurrently processes the components of the sequences. After
obtaining the embeddings of each sequence by averaging the hidden states, we calculate
the similarity score between μxy and Sxy at the output.

2 Framework of Graph Recurrent Neural Network

In this section, we describe the generalization framework of G-RNN for the
embedding of multi-relational graphs, whose definition is as follows:

Definition 1. Multi-relational graph G is defined as G = (V, E ,R), where V
represents a set of |V| = n nodes, E is a set of |E| = m edges, and R is a finite
set of |R| = k edge types corresponding to the semantic meanings of edges with
k � m. Each edge e ∈ E belongs to a particular edge type r ∈ R: ψ(e) ∈ R,
where ψ(·) is a edge type mapping function ψ : E → R.

Single-relational graphs can be viewed as a special case of multi-relational graphs,
where the edge type set R has unique element r0, and all the edges in E are
mapped to r0, i.e. ψ(e) = r0 ∀e ∈ E .
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We propose G-RNN to learn a mapping: vi → vi ∈ R
d ∀i ∈ [n] and rj →

rj ∈ R
d ∀j ∈ [k], so as to preserve the graph in a low-dimensional embedding

space. The framework of G-RNN is composed of two stages: subgraph extraction
and G-RNN training. Next, we detail the two stages as follows.

2.1 Subgraph Extraction

Given two nodes vx, vy ∈ V, a subgraph Gxy ∈ G is defined as μxy ∪ Sxy, where
μxy = (vx, r, vy) is the one-hop sequence with direct edge type r and Sxy =
{π1, · · · , πq} is the multi-hop sequence set. The multi-hop sequence πi =
(vx, c1, · · · , cj , cj+1, · · · , vy), where cj and cj+1 are successive components the
sequence passes through. If there is no direct edge between vx and vy, Gxy = ∅.

Different instantiation of the component cj ∈ πi suggests different considera-
tion of the edge semantic significance to graph embedding. When cj corresponds
only to nodes in V as in [12,21], πi is merely a Node Sequence with no semantic
information of edges. If cj is selected only from the edge type set R as in [16,19],
this pure Edge Sequence πi = {r1, · · · , rl} may lead to ambiguity since all
the intermediate nodes joining the sequence are omitted. To address the seman-
tic loss of the above two sequence types, we resort a Node & Edge Sequence
πi = {vx, r1, v1, · · · , rp, vp, · · · , rl, vy} where cj and cj+1 alternatively correspond
to an edge type and its contiguous node respectively (if cj = rp, cj+1 = vp; if
cj = vp, cj+1 = rp+1). The hop number l is the number of edges joining the
sequence. The composition of nodes and edges enables the sequence to preserve
the semantic information as much as possible, and thus can be taken as the input
of G-RNN to facilitate both the node and edge embedding learning.

Since obtaining the one-hop sequence μxy is trivial, the key problem of the
subgraph extraction is finding the multi-hop sequences. We use bidirectional
random walk [10] to find the multi-hop sequences, considering the random walk
in Path Ranking Algorithm (PRA) [15] will become extremely time-consuming
when the graph has a large scale or the hop number increases. Although we can
get all the multi-hop sequences between vx and vy theoretically, it is inefficient
and unnecessary for the following two reasons: First, the number of sequences
will exponentially increase with the number of hops. Second, when the multi-
hop sequences become too long, their correlation with the corresponding one-hop
sequence will recede. Thus we set a maximum hop number lmax in practice.

2.2 G-RNN Training

In this work, the training objective of G-RNN is to preserve the subgraph level
high-order proximity in embedding space, which is defined as follows:

Definition 2. The subgraph level high-order proximity describes the proximity
between the one-hop sequence and multi-hop sequences within a subgraph. Given
the subgraph Gxy = μxy ∪ Sxy derived from vx, vy ∈ V, the subgraph level high-
order proximity is determined by the similarity between μxy and Sxy.
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In order to compare the similarity between μxy and Sxy in embedding space,
we send μxy and each πi ∈ Sxy into G-RNN. At step t, G-RNN calculates the
hidden state according to the function ht = sigmoid(Uxt + Wht−1), where xt

is the embedding vector of node vp ∈ πi or edge type rp ∈ πi, U and W are
weight matrixes. We obtain the embedding of πi by averaging the hidden states
of each step: πi = (h1 + · · · + hT )/T , where T is the number of components in
πi. Then, the similarity between μxy and πi ∈ Sxy is measured by:

s (μxy, πi) = μᵀ
xyπi. (1)

Let {s1, s2, ..., sq} be the similarity scores for q multi-hop sequences in Sxy.
We calculate the similarity between μxy and Sxy according the following Log-
SumExp (LSM) function:

g (μxy,Sxy) = log

(
q∑

i=1

exp(si)

)
. (2)

We formulate the subgraph level high-order proximity using the conditional
probability of one-hop sequence μxy given the multi-hop sequence set Sxy:

pθ(μxy|Sxy) =
exp (g (μxy,Sxy))∑

Gij∈G exp(g(μij ,Sxy))
(3)

where μij represents the one-hop sequence of each subgraph Gij ∈ G, θ represents
the parameters to be optimized, including the embeddings and G-RNN weight
matrixes. To estimate the parameters of pθ(μxy|Sxy), we use maximum likelihood
estimation (MLE) to maximize the empirical (log-)likelihood of one hop sequence
given the multi-hop sequences within the same subgraph:

θMLE = arg max
θ

∑
Gxy∈G

log pθ (μxy|Sxy). (4)

The problem defined by Eq. (4) is a standard classification problem, whose
training objective function is cross entropy ideally. However, due to the numerous
one-hop sequences (or edges) in the graph, Eq. (4) is computationally expensive.
Faced with this problem, hinge loss with negative samples [7] is a classic solution.
Specifically, the training objective is to minimize the following loss function:

L =
∑

Gxy∈G

∑
μ′
xy∈Δ′

µxy

max
[
0, γ − g (μxy,Sxy) + g

(
μ′

xy,Sxy

)]
(5)

where γ is the predefined margin, max(0, ·) is the hinge loss, and Δ′
μxy

is the set
of negative one-hop sequences by replacing one component of μxy.

3 Application of G-RNN in Knowledge Graph

To verify the generalization of G-RNN, we apply it to knowledge graph (KG)
embedding, encoding the rich symbolic information of KG into a low-dimensional
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space. KG is a typical multi-relational graph, where edges have different types
and nodes have different types and attributes. The customary notations in KG
are slightly different from those in general graphs. Given a KG G, the entities in
G denote the nodes in general graphs, and the relation types denote edge types.
KG is often stored as triples in the form of (s, r, o), where r is the relation type
between subject entity s and object entity o. The triple (s, r, o) is also a one-hop
sequence μso as defined in Sect. 2. In addition, the multi-hop sequences are called
multi-hop paths in KG so as to be consistent with the previous work [16].

The reasons why G-RNN can be used for KG embedding are as follows: First,
G-RNN learn both entity embeddings and relation type embeddings, thus can
preserve the topology as well as semantic structure of KG. Second, the subgraph
level high-order proximity defined in G-RNN is also valid for KG. Consequently,
we can directly use the loss function of Eq. (5) to optimize the embeddings of
KG. For triple μso = (s, r, o), the training objective is

L(μso,Sso) =
∑

μ′
so∈Δ′

µso

max [0, γ1 − g (μso,Sso) + g (μ′
so,Sso)] (6)

where Sso is the corresponding multi-hop sequence set of μso. The set of negative
triples Δ′

μso
are the original triple μso with one of three components replaced:

Δ′
μso

= {(s′, r, o)} ∪ {(s, r′, o)} ∪ {(s, r, o′)}. (7)

The framework of G-RNN is flexible and can be combined with the existing
approaches. For example, we can incorporate the widely used constraint based
on translation, which is first introduced in [5]:

f(μso) = − ‖s + r − o‖Ln
(8)

where ‖·‖Ln
measures the Ln-distance between a translated subject entity s +

r and the object entity o. To be consistent with the variation trend of score
function g(μso,Sso), we add a minus before ‖·‖Ln

. So, f(μso) gets a high score
when (s, r, o) holds, and low otherwise. Based on Eq. (8), we obtain the following
objective function:

L(μso) =
∑

μ′
so∈Δ′

µso

max [0, γ2 − f(μso) + f(μ′
so)] . (9)

Let Δ be the triple set of the KG G, the final loss function for KG embedding
is the combination of (6) and (9):

L =
∑

μso∈Δ

(L(μso,Sso) + L(μso)). (10)

The training procedure is summarized in Algorithm1. In line 1, all the entities
and relation types are initialized as suggested in [5]. Lines 2–11 are the major part
of training. We randomly sample a batch of triples and corresponding multi-hop
sequences. According to the loss function in line 10, the embeddings of involved
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Algorithm 1. Training G-RNN for KG embedding
Input: Training triple set Δ = {μ}, multi-hop path set {S}, entities and rel. sets V

and R, margins γ1 and γ1, embeddings dim. d.
Output: Embeddings of v ∈ V and r ∈ R, weight matrix parameters of G-RNN.
1: initialize: v, r ← uniform(−√

6/d,
√

6/d) for v ∈ V, r ∈ R
2: loop
3: v ← v

||v || , r ← r
||r || for each entity v ∈ V and relation type r ∈ R

4: Δbatch, Sbatch ← sample(Δ, {S}, b) // b is the size of mini batch
5: Tbatch ← ∅ // initialize the set of pairs of valid and negative triples
6: for μ ∈ Δbatch do
7: μ′ ← sample(Δ′

µ)
8: Tbatch ← Tbatch ∪ {(μ, μ′)}
9: end for

10: Update embeddings and parameters w.r.t.
∑

(µ,µ′)∈TbatchS∈Sbatch

� [L(μ, S) + L(μ)]

11: end loop until convergence

entities and relation types as well as G-RNN weight matrixes are optimized by
the Adam optimizer [14].

In this paper, we think of Eq. (8) as a modified first-order proximity. Accord-
ing to the original first-order proximity in [11], two nodes are similar if they are
linked by a direct edge. But in multi-relational graphs, the similarity of two nodes
should be measured under the condition of the edge semantics, especially for two
nodes of different types. For example, in triple (Steve Jobs, nationality, USA), it
is illogical to judge that the linked nodes Steve Jobs and USA are similar. Their
similarity should be characterized under the edge type nationality.

4 Experiments

In order to evaluate the embeddings learned by our proposed approach, we con-
duct the following two tasks: Link Prediction for predicting missing links and
Node Classification for predicting entity types. Both of the two tasks are con-
ducted on FB15k, a public benchmark dataset with 14,951 entities and 1,345
relation types extracted from a typical large-scale knowledge graph Freebase [3].

4.1 Link Prediction

Owing to edge embedding, the proposed approach can predict the specific type
of the missing edge in addition to predicting whether a direct edge exists between
two nodes as in the previous node embedding approaches. To be specific, our
task of link prediction aims to complete the triple (s, r, o) when one of the com-
ponents is missing, including two sub-tasks: entity prediction and relation
type prediction. Given an incomplete test triple, we fill up the missing posi-
tion with each candidate entity or relation type in the dataset and calculate the
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scores according to the following formula:

G(s, r, o) = log

( ∑
πi∈Sso

exp(μT
soπi)

)
− ‖s + r − o‖Ln

. (11)

Then, we rank the scores in descending order and record the ranking value
of the correct candidate. Following [5], we use two measures as our evaluation
metrics, including the mean rank of correct entities and the proportion of the
correct candidates ranked in top 10 (for entity) and top 1 (for relation type).
We also follow the two evaluation settings named as “Raw” and “Filter”.

Entity Prediction. Entity prediction completes each test triple with miss-
ing head or tail entity. According to Eq. (11), all multi-hop paths between the
known entity of the test triple and each candidate entity are necessary for the
score calculation, which makes the sub-task time consuming. For simplification,
we adopt the re-ranking method in [16]. First, we rank all candidate entities
according to the scores from Eq. (8). Then, the top-500 candidate entities are
re-ranked according to the scores from Eq. (11).

We decide the best hyper-parameters according to the mean rank of val-
idation dataset. The exact values of the hyper-parameters are: learning rate
λ = 0.001, margins γ1 = 0.3, γ2 = 0.3, dimension d = 50, and the dissimilarity
measure is L2.

The experiment results are shown in Table 1. For PTransE, we list the ADD
composition with at most 2-hop and 3-hop, which provide better performance
than other composition operations. From Table 1 we observe that: (1) G-RNN

Table 1. Entity prediction results.

Metric Mean Rank Hits@10(%)

Raw Filter Raw Filter

RESCAL [20] 828 683 28.4 44.1

SE [6] 273 162 28.8 39.8

SME (linear) [4] 274 154 30.7 40.8

SME (bilinear) [4] 284 158 31.3 41.3

LFM [13] 283 164 26.0 33.1

TransE [5] 243 125 34.9 47.1

TransH [27] 212 87 45.7 64.4

TransR [17] 198 77 48.2 68.7

PTransE (2-hop) [16] 200 54 51.8 83.4

PTransE (3-hop) [16] 207 58 51.4 84.6

G-RNN (3-hop) 161 55 51.7 84.7

G-RNN (4-hop) 156 50 52.1 85.2
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outperforms other baselines on all metrics, especially with a wide margin on
“Raw” Mean Rank. It indicates that the graph embeddings learnt by G-RNN
preserve the graph structure better. (2) For the paths with at most 3-hop, G-
RNN performs better than PTransE. The reason is that G-RNN encodes the
exact meanings of the paths by incorporating both entities and relation types of
the paths, while PTransE only considers the relation types. Besides, the embed-
ding dimension of G-RNN is 50 while it is 100 in PTransE, which indicates that
G-RNN can preserve the structure of KG in lower-dimensional embeddings. (3)
G-RNN with at most 4-hop performs better than 3-hop, which is a straight-
forward outcome as more paths can be used with the maximum hop number
increasing. But as we have analyzed in Sect. 2, the hop number should not be
increased continuously. Generally, we restrict the maximum hop number to 4.

According to the classification criteria in [5], relation types in KG can be
categorized into four classes depending on their mapping properties: 1-to-1, 1-
to-M, M-to-1, M-to-M. The detailed results with respect to different classes of
relation types are given in Table 2. We observe that on most classes of relation
types, G-RNN performs better than the baselines.

Table 2. Detailed results on FB15k by mapping properties of relation types. (%)

Tasks Predicting head entities (Hits@10) Predicting tail entities (Hits@10)

1-to-1 1-to-M M-to-1 M-to-M 1-to-1 1-to-M M-to-1 M-to-M

SE 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME (linear) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME (bilinear) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

TransR 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

PTransE (2-hop) 91.0 92.8 60.9 83.8 91.2 74.0 88.9 86.4

PTransE (3-hop) 90.1 92.0 58.7 86.1 90.7 70.7 87.5 88.7

G-RNN (3-hop) 92.3 91.5 61.1 86.5 92.2 73.9 88.1 89.0

G-RNN (4-hop) 91.7 92.7 62.5 87.7 91.8 74.2 89.3 89.7

Relation Type Prediction. Relation type prediction aims to predict the rela-
tion type between two entities. In this sub-task, we directly use the score function
in Eq. (11) to rank the candidate relation types. The KG embeddings used in
this sub-task is the same as in entity prediction.

We evaluate G-RNN on relation type prediction by comparing it with
PTransE [16] and TransE [5]. Following PTransE, we report Hits@1 rather than
Hits@10, considering that all approaches provide pretty good results for Hits@10.
We use the reported results in PTransE directly since the evaluation dataset is
identical. To evaluate the effect of multi-hop paths, we conduct the experiment
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Table 3. Relation type prediction results.

Metric Mean Rank Hits@1(%)

Raw Filter Raw Filter

TransE 2.8 2.5 65.1 84.3

PTransE (2-hop)

-TransE

-Path

1.7

135.8

2.0

1.2

135.3

1.6

69.5

51.4

69.7

93.6

78.0

89.0

PTransE (3-hop) 1.8 1.4 68.5 94.0

G-RNN (3-hop)

-TransE

-Path

1.7

67.6

2.1

1.3

60.3

1.8

69.8

56.3

69.7

93.8

80.7

91.8

G-RNN (4-hop) 1.5 1.2 70.2 94.1

Table 4. Node classification
results.

Metric FB15k

TransE 87.9

DKRL 90.1

PTransE (ADD,

2-hop)

87.5

PTransE (ADD,

3-hop)

86.7

node2vec 63.2

G-RNN (3-hop) 88.5

G-RNN (4-hop) 89.7

with only paths (-TransE), with only score function in Eq. (8) (-Path) and with
both.

From Table 3 we observe that: (1) G-RNN outperforms the baselines on both
Mean Rank and Hits@1, which indicates that G-RNN preserves more information
of relation types by incorporating both entities and relation types of the paths.
(2) G-RNN with only considering path outperforms PTransE with the same
setting by reducing the predict error more than half. It indicates that the entity
embeddings also contain helpful information for relation type prediction. (3)
When only use the score function of Eq. (8), the performance of G-RNN is
better than PTransE on Hits@1.

4.2 Node Classification

Node classification is a multi-label classification problem aiming to predict the
node types (entity types in KG), which has been used as an evaluation by many
graph embedding approaches [11].

The dataset is extracted from FB15k according to the settings of DKRL [29].
We select the top 50 entity types according to their frequency, covering 13,445
entities. These entities are randomly split into training set (12,113 entities) and
test set (1,332 entities).

We decompose the multi-label classification problem to a binary classification
problem based on the one-versus-rest setting [18]. For a fair comparison, we use
Logistic Regression as classifier as in DKRL [29]. We use MAP for evaluation,
which is defined as the mean of average precision over all entity types [18].

The results of node classification are shown in Table 4. The baselines include
TransE [5], DKRL [29], PTransE [16] and node2vec [12]. The observation and
analysis are as follows: (1) G-RNN performs largely better than the node
embedding approach node2vec. It indicates that the edge embeddings are also
informative for entity type predicting. (2) G-RNN outperforms TransE and
PTransE since G-RNN utilize the complete information of the paths. (3) The
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performance of DKRL is slightly better than G-RNN, considering that the entity
descriptions may contain more information about entity types.

5 Related Work

Recently, researchers have developed a number of graph embedding approaches
to preserve the graph structure into low dimensional embeddings. Many works
utilize node embedding to achieve this goal. Among them, factorization based
approaches [1,2] represent the first-order proximity between nodes in a matrix
and obtain the node embeddings by matrix factorization; random walk based
approaches [12,21,22] extend skip-gram architecture to graphs, preserving the
high-order proximity of nodes along single sequence; besides, first and second-
order proximities are jointly considered in [25,26]. Although the above node
embedding approaches can preserve the topological linking between nodes, they
are incapable of identifying the specific edge types. To address this issue, [24]
distinguishes edge types by weight matrixes while embeds nodes in vector space,
using graph convolutional neural networks for graph embedding. However, the
weight matrixes of edge types are predefined and can not be optimized during
training. Unlike the previous approaches, we leverage node and edge embedding
jointly to preserve the graph structure. Furthermore, we generalize RNNs to
graphs to model their subgraph level high-order proximity.

Another line of related works are the approaches for KG completion, which
compose most of the baselines. The basic translation based approach is intro-
duced in [5]. In order to deal with the polysemous entities and relations, [17,27]
project the entities or relation types or both into hyperplanes and then per-
form translation at the new space. Some approaches improve the basic transla-
tion based approach with the help of supplementary information, such as entity
descriptions [29], entity types [8] and related images [28]. Some other approaches
utilize topological structure as an improvement, such as [9,16]. Besides, collec-
tive matrix factorization approach [20] and neural network based approaches
[4,6,13] are also our baselines.

6 Conclusion

In this paper, we propose a generalization of RNNs on graphs to learn graph
embedding. Via representing edge types in the same embedding space as nodes,
we preserve the semantic information of heterogeneous edges. Furthermore, we
define a subgraph level high-order proximity to preserve the similarity among
different sequences within a subgraph. Besides, we incorporate both nodes and
edge types of the sequence to obtain its semantic information as much as possible.
We apply G-RNN to KG embedding and evaluate resulting embeddings on the
tasks of link prediction and node classification. Experimental results show that
G-RNN performs better than the baselines.
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Abstract. This paper studies the problem of Representation Learning
for network with textual information, which aims to learn low dimen-
sional vectors for nodes by leveraging network structure and textual
information. Most existing works only focus on one aspect of network
structure and cannot fuse network first-order proximity, second-order
proximity and textual information. In this paper, we propose a novel
network embedding method NE-FLGC: Network Embedding based on
Fusing Local (first-order) and Global (second-order) network structure
with node Content. Especially, we adopt context-enhance method that
obtains node embedding by concatenating the vector of itself and the
context vectors. In experiments, we compare our model with existing
network embedding models on four real-world datasets. The experimen-
tal results demonstrate that NE-FLGC is stable and significantly out-
performs state-of-the-art methods.

Keywords: Network embedding · Attributed network · Node content

1 Introduction

Nowadays, networks are more and more ubiquitous in the real world, e.g. social
networks, paper citation networks and so on. At the same time, network analysis
becomes even more difficult along with the size of the network larger and larger.
How to represent network effectively is the fundamental and critical problem
in network analysis, and thus has attracted much attention recently. Network
Representation Learning(NRL) or Network Embedding(NE) generally aims to
represent each node of networks into a continuous low-dimensional space. In
recent years, network embedding has shown highly effective in node classification,
link prediction, network visualization etc. [3,14,16,19].

Most previous NRL works mainly study the network structure. Some works
represent a network as a set of random walks. For example, Deep Walk [14]
adopts truncated random walks to preserve network structure information, and
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 260–271, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93037-4_21&domain=pdf


NE-FLGC 261

utilize Skip-Gram [12] model to learn node embedding. Instead of sampling paths
from a network, LINE [16] designs objective function that preserves both the
local and global network structures. In real world networks, nodes usually con-
tain rich information. To incorporate textual information associated with nodes,
TADW [20] incorporates the feature matrix into low-rank matrix factorization.
However, it can’t scale to large networks due to high computation cost.

Those methods above achieves significant improvement compared to tradi-
tional models [1,15], but they either only encode the network structure into
node embeddings, or preserve first-order proximity and second-order proximity
separately when they learn network representation. To address these issues, we
propose a novel NRL method NE-FLGC: Network Embedding based on Fus-
ing Local (first-order) and Global (second-order) network structure with node
Content. Especially, a context-enhanced method is proposed, which obtains the
embedding for each node by concatenating the vector of itself and the context
vectors.

Fig. 1. Example of a citation network with title or abstract as textual informa-
tion.(Green, blue and red font represent key words in Natural Language Processing,
Network, and both respectively.) (Color figure online)

In order to make full use of the information hidden in the network structure,
we introduce first-order proximity and second-order proximity. First-order prox-
imity in network is the similarity between nodes linked by observed links. For
example, in Fig. 1, there is a link between vertex 3 and vertex 5, meaning that
the first-order proximity between them are large. However, real-world networks
are usually sparse, only a small ratio links observed [9]. Only first-order proxim-
ity is not enough to preserve network structure. Thus, we introduce second-order
proximity which is the similarity between node’s neighbor structure. If two nodes
have common nodes, then they tend to be similar with each other. For example,
in Fig. 1, vertex 4 and vertex 5 have no link between them, meaning that the
first-order proximity between them are small. In contrast, the second-order prox-
imity is large due to that they both link with vertex 1, vertex 3. They are also
similar in terms of node content. As we all know, they should be close in embed-
ding space because these papers are from the same area. This shows that node
content, first-order and second order proximity are all essential parts to learn
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network embedding. Specifically, we adopt context-enhanced method to recover
global structure in network, which gets node embedding by concatenating the
vector of it self and the average of context vectors.

We evaluate our model against several baselines on four networks. The effec-
tiveness of the learned embeddings is evaluated within multiple data mining
tasks, including multi-class classification, link prediction and visualization. The
results suggest that NE-FLGC outperforms baselines in terms of both effective-
ness and efficient. There are two contributions of this paper: (1) we propose a
novel network embedding method NE-FLGC, which fuses textual information
associated with nodes, first-order proximity and second-order proximity of net-
work structure to learn network embedding; (2) We conduct experiments on four
real-world networks. Experimental results prove the effectiveness of our model.

2 Related Work

Recently, there has been a lot of Network representation learning models pro-
posed to learn effective embeddings [3,14,19] etc. Node2vec [3] performs a biased
random walk over network and gets node embedding by using skip-gram model,
proposed in word2vec [12]. GraRep [2] learns representations by integrating dif-
ferent k-step local relational information into a global graph representation.
SDNE [19] takes adjacency matrix as input to auto encoder and uses Lapla-
cian Eigenmap [1] to preserve first-order proximity. However, these methods only
consider the structure information, neglecting the textual information associated
with nodes.

To address this problem, researchers make great efforts to incorporate tex-
tual information into structure-based representation models. DeepWalk has been
proved to be equivalent to PMI matrix factorization [8]. TADW [20] incorporates
feature matrix into NRL under the framework of matrix factorization and gets
considerable improvement compared to baselines. Tri-DNR [13] is a tri-party
NRL model with three DeepWalk: network structure(node-to-node), content of
nodes(node-to-word), label of nodes(label-to-word). To the best of our knowl-
edge, we are the first to preserve node text and the first-order, second-order
proximity of network structure simultaneously in network embedding. We pro-
pose NE-FLGC, which learn network embedding by fusing textual information
associated with nodes, first-order and second-order proximity in network.

3 Problem Formulation

We first give basic notations and definitions in our work.

Definition 1 (Attributed network). Let G =(V, E, T) denote an attributed
network. V = {ui}i=0,1,2,...,N−1 is the set of nodes. E ∈ (V × V ) is the set of
edges and each eij ∈ E represents the relation between node ui and uj . And,
ti ∈ T denotes the textual information of node ui.
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Definition 2 (Network Embedding). Given an attribute network, network
embedding aims to learns a distributed low-dimension vector �ui ∈ R

d for each
node ui according to its network structure and associated textual information,
where d � |V |.
Definition 3 (Embedding proximity). We introduce first-order proximity
and second-proximity in network. (1)The first-order proximity is local pair-
wise proximity between two nodes, based on node embedding �ui and �uj . The
weight wij in edge eij indicates the first-order proximity. (2)The second-order
proximity of node pair (ui, uj) is the similarity between their neighbor struc-
ture, based on node embedding �ui and context embedding �u

′
j . If two nodes have

common nodes, then they are more likely to be similar to each other.

Fig. 2. Framework overview.

4 Our Model

To make full use of the network information, our model contains two part:
structure-based module and text-based module. Afterwards, in order to inte-
grate the neighbor information of nodes we propose a context-enhance method
in the inference stage. The framework of our model is illustrated in Fig. 2.

4.1 Structure-Based Module

In social networks, people who share similar interests are more likely to be friends
with each other. On the other hand, people who have common friends tend to
have similar interests and thus become friends. To exploit the observation above,
we introduce first-order proximity and second-order proximity. According to the
definition of embedding proximity, each node has two roles: as node itself �us and
as context node of other node �us′

. We assume edges in network is directed and
undirected edge can be considered as two directed edges. Given a pair of nodes
(i, j), we define the probability of node j generated by node i as follows:

p(us
j |us

i ) =
exp(�usT

i · �us
j + α�usT

i · �us′
j )

Z
, (1)
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where Z=
∑

{p,q}∈V ×V,p�=q exp(�usT
p ·�us

q+α�usT
p ·�us′

q ) is a normalization term and α
is the balance weight which indicates the importance of second-order proximity.
If node i and j have similar embedding vectors, meaning they have larger first-
order similarity, �usT

i · �us
j will be large, leading to a large conditional probability.

On the other hand, if the embedding vector of node i is similar to the context
vector of node j, meaning they have larger second-order similarity, �usT

i · �us′
j will

be large, leading to a large conditional probability.
To learn node embedding, we expect estimated distribution p(uj |ui) to be

close to the empirical distribution p̂(uj |ui), which is defined as p̂(uj |ui) = wij

di
,

where di =
∑|V |

k=1 wik is the out-degree of node ui and wij is the weight of
edge eij . We minimize the KL-divergence [5] of two probability distributions:
LJ = KL(p̂(.|.), p(.|.)). After removing some constants, the above equation can
be written as:

LJ = −
∑

(i,j)∈E

wij log(p(us
j |us

i )). (2)

Optimizing Eq. (2) is computationally expensive, which requires summation
over all nodes when calculating Eq. (1). Therefore, we adopt the approach of
negative sampling [12] to speed up the training process. It samples negative
edges according to some noise distribution. So Eq. (2) is transformed into the
following form (for edge (ui, uj)):

logσ(�usT
i · �us

j + α�usT
i · �us′

j ) +
K∑

k=1

Eun∼Pn(u)[logσ(−�usT
i · �us

n − α�usT
i · �us′

n )], (3)

where σ(x) = 1
(1+exp(−x)) is the sigmoid function and K is number of negative

edges. The first term models the positive edge that can be observed in network
and the second term models the negative and invisible edges, which are randomly
sampled from the noise distribution. According to Word2vec [12], we set Pn(u) ∝
d
3/4
u , du is the degree of node u.

4.2 Text-Based Module

To incorporate textual information into network embedding model, here we apply
a simple but effective approach to encode the textual information. Similar as [4],
we use the average of words embedding to represent sentences/document associ-
ated with nodes. For each node i, we define text embedding vector �ut

i, initialized
by the average of word embedding (if available) or zeros. �ut

i = 1
|ti|

∑|ti|−1
k=0 �eWk

where ti is the node content of node i and �eWk
is the vector of the k-th word

in it.
The embedding proximity defines not only about the network structure but

also the textual information. Therefore, following the structure proximity above,
we denote the text proximity with a conditional probability:

p(ut
j |ut

i) =
exp(�utT

i · �ut
j)∑

{p,q}∈V ×V,p�=q exp(�utT
p · �ut

q)
. (4)
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We formulate the text-based objective function LT according to Eq. (3) and
adopt the approach of negative sampling. After omitting some constrains, we
have:

LT =
∑

(i,j)∈E

logσ(�utT
i · �ut

j) +
K∑

i=1

Evn∼Pn(v)[logσ(−�utT
i · �ut

n))]. (5)

4.3 Training

Finally, we optimize the following joint objective function:

L = LJ + βLT . (6)

where LJ , LT is the structure-based and text-based objective function respec-
tively and hyper-parameter β is the balance weight that indicates the importance
of node content. The gradients are computed with back-propagation and opti-
mized with stochastic gradient descent (SGD). In each step, SGD algorithm
samples a mini-batch edges and then updates the model parameters. Given an
edge (ui, uj), the structure embedding vector �us

i of ui will be calculated as:

∂L

∂ �us
i

= wij

∂log(p(us
j |us

i ))

∂ �us
i

. (7)

Algorithm 1. NE-FLGC
Input: G=(V, E, T), Parameter α, β, DIM, number of epoch T

Output: node embedding �us; node context embedding �us′
; node text embedding �ut

1: Pre-train node content and get �ut
p;

2: Randomly Initialize �us and �us′
, initialize �ut with node content vector�ut

p

3: For epc gets 0 to T do
Lookup embedding of node structure/text from �us, �us′

and �ut respectively
Loss =−∑

(i,j)∈E wij(log(p(us
j |us

i ) + βlog(p(ut
j |ut

i))
Update embeddings with SGD

4: End for
5: return node embedding �us, node attribute embedding �ut

4.4 Context-Enhance

We optimize our model with independence assumption. It means that the con-
ditional probability p(uj |ui) is independent to p(uk|ui) for any nodes ui, uj , uk.
However, coherent structure in the world leads to strong correlations between
inputs (such as between neighboring pixels in images) [15], meaning that inde-
pendence assumption will weaken the representation power of network embed-
ding models. To address this problem, we propose context-enhanced method to



266 H. Xu et al.

recover global structure in network, which gets node embedding by concatenat-
ing the vector of it self and the average of context vectors.

The k-hop neighborhood of node ui is defined as Ni = {j ∈ V |i �= j, sp(i, j) =
k}, where V is the set of all nodes, sp(i, j) returns the length of the shortest path
from node i to node j (sp(i, j) = ∞ if node j is not reachable). We define the
embedding of nodes as follows.

�ui = (�us
i ⊕ �ut

i) ⊕ 1
|Ni|

∑

uk∈Ni

�us
k ⊕ �ut

k, (8)

where us and ut is the node embedding and text embedding respectively.

5 Experiments

5.1 Dataset

We evaluate our model on four public benchmark datasets. To construct network
of textual information, we select four citation network dataset. Cora is a paper
citation network [11] with 2, 277 machine learning papers which are divided into
7 categories, and 5,214 links between nodes. HepTh is a citation network [7]
from arXiv, in which there are 1,038 papers with textual information, and 1,990
links between nodes. DBLP is a citation network [17] with 60,744 papers which
are divided into 4 categories and 52,890 links between papers. CiteSeer-M10
is a subxf [10] of CiteSeerX data. There are 38997 nodes in network and only
10310 nodes with textual information which are divided into 10 distinct research
areas, and 77,218 links between papers. We take the abstract of academic papers
as node content.

5.2 Experimental Settings

We perform node classification, link prediction and network visualization to eval-
uate the quality of different models and implement NE-FLGC based on Pytorch.
Baselines

Structure-Only: DeepWalk [14] adopts random walk on network structure
and uses the Skip-Gram [12] model to learn node embedding. LINE [16] pre-
serves both the local and global network structures and can scale to large net-
work. node2vec [3] is based on DeepWalk, preserving neighborhoods with BFS,
DFS random walk strategies.

With node content and/or node type: Doc2Vec [6] represents each docu-
ment by a dense vector and trains model by predicting words in the documents.
TADW [20] is based on matrix factorization and incorporates text features
of vertices into network embedding learning. CANE [18] learns context-aware
embeddings for vertices with mutual attention mechanism. Tri-DNR [13] uses
coupled DeepWalk model to jointly learn network embedding with multi-type
information: node structure, node content, node labels.
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Parameter Setting
In multi-label classification task, we use SVM classifier. We train our model and
baseline methods with structure/text embedding dimension d = 100 and set
other parameters in baselines like [13,18] do. Besides, we pre-train text with
Word2vec [12] model and set the number of negative samples k = 1 and the
learning rate ρ = 0.02. We also apply grid search to set the hyper-parameters α
and β, and we set α = 6, β = 10 in NE-FLGC. We use 2-hop neighborhood for
CiteSeer-M10 dataset and use 1-hop neighborhood for other datasets.

5.3 Multi-class Classification

Similar as [13], we conduct multi-class classification on DBLP and Citeseer M10
datasets. We vary the percentages of training samples t% from 10% to 70% and
report the result in Tables 1 and 2.

Table 1. Average Macro f1 score values on dblp

t% DeepWalk LINE node2vec Doc2Vec DW+D2V TADW Tri-DNR NE-FLGC

10% 0.398 0.427 0.424 0.605 0.653 0.676 0.687 0.730

30% 0.423 0.438 0.425 0.617 0.681 0.689 0.727 0.738

50% 0.426 0.438 0.430 0.620 0.686 0.692 0.738 0.742

70% 0.428 0.439 0.432 0.623 0.690 0.695 0.744 0.748

Table 2. Average Macro f1 score values on M10

t% DeepWalk LINE node2vec Doc2Vec DW+D2V TADW Tri-DNR NE-FLGC

10% 0.354 0.531 0.528 0.432 0.495 0.600 0.626 0.729

30% 0.411 0.569 0.548 0.477 0.586 0.652 0.715 0.775

50% 0.425 0.581 0.560 0.494 0.614 0.671 0.753 0.792

70% 0.434 0.589 0.561 0.503 0.628 0.681 0.777 0.802

From Tables 1 and 2, we have the following observations: (1) DeepWalk, LINE
and node2vec performs poorly on these two datasets. It is mainly because that
structure-based algorithms learn network representation without node content.
Doc2Vec performs poorly in these two datasets too, because it only learns docu-
ment or sentence embedding to represent nodes without network structure. The
naive combination of the DeepWalk embedding and Doc2Vec embedding per-
forms better than any one of them. However, NE-FLGC performs better than
all these baselines, mainly because we jointly train network structure and node
content. (2) NE-FLGC performs better than TADW and is applying to large
scale network. For a tradeoff between speed and accuracy, TADW factorizes
the approximate Matrix M = (A + A2)/2, which will weaken its representation
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power. (3) As Tables 1 and 2 show, our model performs better than Tri-DNR,
even though we do not incorporate label information. It is mainly because that
our model learn NRL by fusing first-order, second-order proximity and node con-
tent together. Even though Tri-DNR contains network structure, textual infor-
mation, and node labels, it only uses simply coupled neural network model with
three DeepWalk [14] models.

To summarize, all the above observations demonstrate that NE-FLGC
achieves better performance compared to baselines. Especially, NE-FLGC beats
LINE and Tri-DNR by 37.2% and 16.4% under 10% training ratios on M10
dataset. It demonstrates that our model perform well even with small training
ratio.

Table 3. AUC values on Cora

Training% DeepWalk LINE node2vec TADW CANE NE-FLGC

15% 56.0 55.0 55.9 86.6 86.8 85.9

25% 63.0 58.6 62.4 88.2 91.5 90.4

35% 70.2 66.4 66.1 90.2 92.2 92.3

45% 75.5 73.0 75.0 90.8 93.9 93.9

55% 80.1 77.6 78.7 90.0 94.6 94.6

65% 85.2 82.8 81.6 93.0 94.9 95.9

75% 85.3 85.6 85.9 91.0 95.6 96.9

85% 87.8 88.4 87.3 93.4 96.6 97.3

5.4 Link Prediction

Link prediction is an important application of network embedding. Similar as
[18], we evaluate the AUC values with ratios of training data ranking from 15%
to 85% on Cora and HepTh dataset.

As shown in Tables 3 and 4, our model achieves comparable performance than
baselines on link prediction. DeepWalk, LINE, node2vec always perform poorly
in small ratio training data. It is mainly because they don’t incorporate textual
information. By adopting context-enhanced method, our model obtains consid-
erable improvements than baselines. Our model performs better than TADW
and CANE, because we preserve first-order and second-order proximity simulta-
neously. CANE learns context-aware embeddings for vertices with mutual atten-
tion mechanism, whose objective function is based on the first-order proximity
in network.

5.5 Parameter Sensitivity

In this subsection, we investigate how the parameter dimension d and weights
β, indicating the importance of node content, affects NE-FLGC. We test the
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Table 4. AUC values on HepTh

Training% DeepWalk LINE node2vec TADW CANE NE-FLGC

15% 55.2 53.7 57.1 87.0 90.0 92.7

25% 66.0 60.4 63.6 89.5 91.2 93.6

35% 70.0 66.5 69.9 91.8 92.0 94.4

45% 75.7 73.9 76.2 90.8 93.0 95.3

55% 81.3 78.5 84.3 91.1 94.2 95.8

65% 83.3 83.8 87.3 92.6 94.6 96.2

75% 87.6 87.5 88.4 93.5 95.4 96.6

85% 88.9 87.7 89.2 91.9 95.7 97.0

classification average F1-score with dimension d ranging from 10 to 100 on DBLP
and Citeseer M10 datasets. When d is under test, other parameters are set to
their default values. Figure 3(a) and (b) shows the classification performance of
our model on DBLP and M10 respectively, compared with, Tri-DNR, DeepWalk
etc. We can see the performance of our model is very stable. Especially, our
model performs well even under small training ratios. Besides, we test the link
prediction AUC with β ranging from 0 to 1 on cora dataset. In Fig. 3(c), We can
see that the performance of our method is stable when β is bigger than 0.4.

(a) d (b) d (c) β

Fig. 3. Parameter sensitivity analysis on dimension d and β

5.6 Network Visualization

Network visualization is a basic application of network representation. Similar as
[16], we visualize a citation network extracted from M10 dataset by mapping the
embedding vectors of nodes into 2D space. We represent papers in different areas
with different colors. As shown in Fig. 4(a), in the visualization of Doc2vec, nodes
with the same color are not clustered together. It is mainly because that Doc2vec
model neglects network structure. In Fig. 4(b), Tri-DNR model performs better
than Doc2vec, but the border of different color is not clear. NE-FLGC performs
well and produces meaningful layout for each community(nodes with different
colors are distributed far in Fig. 4(c)).
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(a) Doc2vec (b) Tri-DNR (c) NE-FLGC

Fig. 4. Visualization on M10 dataset (Color figure online)

6 Conclusion and Future Work

In this paper, we propose a novel network embedding method NE-FLGC, which
learns network embedding by fusing textual information, first-order and second-
order proximity of network structure simultaneously. Especially, a context-
enhanced method is proposed to capture the correlations between node and it’s
context. Experiments on a variety of different networks illustrate the effective-
ness of our approach on multi-class classification, link prediction and network
visualization tasks. In the future, we plan to investigate the embedding of het-
erogeneous information networks with node content/types.
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Abstract. Clinical Named Entity Recognition (CNER), the task of
identifying the entity boundaries in clinical texts, is essential for many
applications. Previous methods usually follow the traditional NER meth-
ods that heavily rely on language specific features (i.e. linguistics and
lexicons) and high quality annotated data. However, due to the problem
of Limited Availability of Annotated Data and Informal Clinical Texts,
CNER becomes more challenging. In this paper, we propose a novel
method that learn multiple representations for each category, namely
category-multi-representation (CMR) that captures the semantic relat-
edness between words and clinical categories from different perspectives.
CMR is learned based on a large scale unannotated corpus and a small
set of annotated data, which greatly alleviates the burden of human
effort. Instead of the language specific features, our proposed method
uses more evidential features without any additional NLP tools, and
enjoys a lightweight adaption among languages. We conduct a series
of experiments to verify our new CMR features can further improve
the performance of NER significantly without leveraging any external
lexicons.

1 Introduction

Electronic Medical Records (EMR) contains valuable and detailed medical infor-
mation of patients accessed and modified in a digital format [15]. Identifying the
boundaries of clinically relevant entities in clinical texts from EMR and clas-
sifying them into predefined categories such as disease, treatment and symp-
tom, namely Clinical Named Entity Recognition (CNER) is a fundamental task
both in medical data mining and information extraction. CNER could benefit
many applications in medical domain such as comorbidity analyses, syndromic

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 275–287, 2018.
https://doi.org/10.1007/978-3-319-93037-4_22
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surveillance, adverse drug event detection and the analysis of drug-drug inter-
action [12], as well as the NLP related tasks like information retrieval, relation
extraction and question answering [18].

Most existing work of NER in medical domain [1,4,6,10,21] simply follows
the conventional NER methods in general domain which focus on identifying
general named entities such as person, location and organization. They usually
utilize linguistic features based on syntactics and lexicons1 to feed a supervised
model, e.g. SVM [24], CRF [21] or a hybrid of several classification models [6,10].
However, these methods may achieve poor performance in realistic applications
because (i) they heavily depend on linguistic features and lexicons, which varies
greatly among different datasets or across various languages, and (ii) the anno-
tated data for the supervised model is not always available.

Despite the success of traditional NER, CNER receives relatively few studies
which has the following challenges:

Limited Availability of Annotated Data. As mentioned above, previous
works following traditional NER rely on a supervised model over a high qual-
ity training data. However, in the clinical domain, annotated data are not only
expensive (usually requires domain expertise) but also often unavailable due to
patient privacy and confidentiality requirements. Even though there are a few
public available annotated datasets for CNER task, such as i2b2 2010 [25] and
ShARe/CLEF eHealth 2013 [23], they are usually insufficient for training an
applicable system. For example, ShARe dataset contains only 300 documents
including 9,768 entity mentions annotated. On the other hand, the gap among
different languages always requires new language-specific annotated data. There-
fore, we need to use the unlabeled data, usually available in clinical domain, such
as MIMC III [11], to alleviate the burden of human effort involved in creating
annotated resources and improve the performance of CNER.

Informal Clinical Texts. A clinical text is dictated by a doctor (and tran-
scribed later by a third-party) to capture the proceedings of a doctor-patient
interaction, or to document the results of a medical procedure or test [12]. It is
usually far different from general texts and even scholarly medical literatures.
Clinical texts have the following unique characteristics: (1) incomplete sentences,
(2) informal grammar, and (3) littered with misspellings and non-standard short-
hand, abbreviations and acronyms. All these characteristics result in the unre-
liability of the linguistic based features used in the traditional NER and the
effectiveness of NLP tools (e.g. POS tagging). Therefore, we need to explore
more evidential features with good generalization and independent of language
to cope with characteristics of clinical texts.

To address these challenges, our solution is to learn semantic features by
taking advantage of large scale unannotated corpora, instead of the language
specific features, such as syntactic and lexicon. The semantic features will be

1 These methods extract lexicons from UMLS [3] or MeSH: https://www.nlm.nih.gov/
mesh/meshhome.html.

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/mesh/meshhome.html
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trained in an unsupervised way, and measure the similarity between the words in
clinical texts and CNER categories. Our solution doesn’t rely on any additional
NLP tools which can avoid the unreliable linguistic features, and alleviate the
burden of language specific annotated data.

In this paper, we propose a unified solution for CNER without leveraging
any language specific features. It induces multiple representations for each cat-
egory, namely category-multi-representation (CMR) that is used to measure the
semantic similarity between words and categories. Specifically, we first construct
a semantic space of clinical texts by employing a model of distributed representa-
tion (word embedding) over a large unannotated clinical corpus (e.g. MIMC III).
As each entity mention has been classified into a certain predefined category in
the annotated dataset, each category could be regarded as a vector cluster in the
semantic space. Then we learn multiple representations for each category from
4 different aspects by leveraging the statistics and context information derived
from the large unlabeled data to holistically capture the meaning of each cat-
egory. That is, CMR shares a common semantic space with words in clinical
texts which could easily be used to measure the semantic similarity between
words and categories. Based on these representations, our proposed model only
requires a small annotated dataset for training a sequence labeling model due
to the good generalization ability of CMR. For inference, we adopt a heuristic
method to assign a threshold for each CMR, which aims to filter out irrelevant
noise (words) belonging to the corresponding category.

Contributions. Our main contributions are summarized as follows.

– To the best of our knowledge, this is the first work for CNER that represents
category from multiple perspectives, which is based on unlabeled clinical cor-
pus without any additional NLP tools.

– Our CNER model is a united method, which is independent of language-
specific features (i.e. lexicons and linguistic features), and lightweight for
adaption to identify clinical entities in another language and another dataset.

– Extensive experiments are conducted on two public datasets and the results
demonstrate that our new CMR features can further improve the performance
of CNER by 2.05% in terms of F1 score.

2 Problem Definition

Given a clinical text s = 〈w1, w2, ...w|s|〉 and a set of predefined categories
C = {c1, ...c|C|}, the output of our task is to generate a list of tags ti for each
word wi ∈ s. ti ∈ T = {cp|c ∈ C, p ∈ P − {O}} ∪ {O} is a category-position
combinatorial tag for wi, where P = {B, I,O} is a set of position tags indicat-
ing the position information of a word located in an entity mention. B and I
stand for beginning, intermediate positions of a multi-word entity respectively
and O denotes outside of any entity mention. In short, our task is to identify
every entity mention m = 〈wi, · · · , wj〉, i ≤ j (perhaps including multiple words)
occurring in the clinical text s and then classify it into a predefined category
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ci ∈ C. Figure 1 gives an example of sequence labeling for CNER, in which
C = {Pr, Tr, Te}, represents Problem, Treatment and Test respectively.

Fig. 1. An example of labeling process for CNER.

3 Our Proposed Approach

Our proposed method presupposes the existence of two resources: (1) an anno-
tated corpus L in which each word has been annotated as a predefined category
c ∈ C; (2) a much larger unannotated clinical corpus U . The main steps of our
method are as follows. Firstly, we construct a semantic clinical space by training
a word embedding model over U . Each predefined category can be seen as a
word cluster in this space. Secondly, we learn abstract representations for each
category from many different perspectives (CMR) derived from U . Thirdly, we
generate a bundle of novel features for the target word based on its distance
to each of CMR. Lastly, an appropriate learning algorithm is applied to L with
the generated new features to evaluate our method. The focus of this paper is
primarily on the first three steps.

3.1 Generating Semantic Space

We first construct a semantic space by learning word embeddings (e.g. GloVe [17]
and Word2vec [16]) on U to obtain low-dimensional, real-valued vector represen-
tation for each word in clinical texts. Each word w ∈ U ∪ L is represented as a
point (vector) vw in this semantic space. If an entity mention m = 〈wi, · · · , wj〉
contains more than one word (i < j), we simply represent it as the mean vector
of its component words, i.e. vm = ( 1

j−i+1 )
∑j

k=i vwk
.

3.2 Category Multi-representation

We first build a category-words set for each predefined category based on L and
U . That is, ∀ci ∈ C, we get ci = {wi1, · · · , wij , · · · , wi|ci|} where each wij has
been annotated as ci in training dataset of L and occurs at least 100 times in U .
Then each predefined category can be regarded as a word cluster in the semantic
space. The key point is how to represent the cluster of each category in order to
more holistically capture the meaning of it.

One-Center Representation. Since the distance between vectors indicates the
strength of the semantic relatedness of their corresponding words in the semantic
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space, we regard each category as a hypersphere constructed by the vectors in
its category-words set. Each word located in the hypersphere of a category is
more likely classified into it without considering any orthographic and syntactic
features. In another word, the closer a word w is to the centre of the hypersphere
of a category ci, the more likely the word w belongs to the category ci. Then
we represent the category ci as the centroid vector of the semantic vectors of its
category-words set ci as follows:

Ro(ci) = centroid(ci) = 〈mediani1, · · · ,medianin〉, i = 1, · · · , |C| (1)

where the centroid vector is defined as the median value of each dimension of
the semantic vectors of words in ci and n is the dimension size of the embedding
vectors.

Multi-sub-center Representation. Each predefined category usually can be
subdivided into several sub-categories in clinical texts. For example, category
Disease can be classified as Mental or Behavioral Dysfunction and Neoplastic
Process. Words in the same sub-category are more similar (closer in seman-
tic space) to each other than to those in other sub-categories. In other words,
the category may not be a normal hypersphere, it could be represented as sev-
eral smaller sub-hyperspheres. Therefore, we use a clustering algorithm (Affinity
propagation used in this paper which does not predefine the number of clusters)
to group all words in each category ci into Ki clusters {si1, · · · , sij , · · · , siKi

}
where sij is a subset of words in ci. Then, we represent each category ci as the set
of centroids of its sub-hyperspheres. The premise of this representation is that
some words which are a bit far from the centroid of the category are probably
close to the centroids of some sub-hyperspheres.

Rm(ci) = {centroid(si1), · · · , centroid(siKi
)}, i = 1, · · · , |C| (2)

Influence Representation. The first two representations do not consider the
importance of component words of categories. However, different words belong-
ing to a certain category may have different influence on the category. Those
mentions occurring more frequently in U generally are more prominent and rep-
resentative for their categories. For example, since mentions cancer and tumor
representing certain diseases occur in U frequently, we consider they are more
representative for category Disease and those mentions related to them closely
such as Carcinoma are more likely be recognized as Disease. We define the influ-
ence factor if(wij) of each word wij ∈ ci as the normalized frequency of the
mention that it belongs to2 occurring in U . Then we represent each category as
the weighted mean vector of word embeddings of its category-words set:

Ri(ci) =
1

|ci|

|ci|∑

j=1

if(wij) · vwij
, i = 1, · · · , |C| (3)

2 If one word belongs to multiple mentions, we simply choose the one with highest
frequency.
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Context Representation. Our last category representation bases on following
assumption: contexts of each mention occurring in U embrace rich information
and patterns which are helpful to recognize the entity mention. For example, “the
effect of · · · ” is always followed by a drug name. Therefore, adding context infor-
mation into category representation will be useful. We consider a fixed length of
window for each mention: two previous words and two following words in U . Then
we construct a set of context words for each category cwi = {cwi1, · · · , cwi|cwi|}
where cwij denotes a bigram or unigram context word occurring over a certain
number of times in U (e.g. 50). Then we represent each category ci as the mean
vector of the set of its context words:

Rc(ci) =
1

|cwi|

|cwi|∑

j=1

vcwij
, i = 1, · · · , |C| (4)

where vcwij
denotes the embedding vector of a context word cwij .

In summary, we learn 4 representations R∗(ci), ∗ ∈ {o,m, i, c} for each pre-
defined category ci which capture the four different semantic information of it.

3.3 Generating CMR Features

We first calculate 4 kinds of semantic relatedness between target word wj and a
category ci based on CMR by leveraging a distance function such as Euclidean
distance as follows.

do(wj ,Ro(ci)) = dist(vwj , centroid(sj))

dm(wj ,Rm(ci)) = min
k∈[1,··· ,Ki]

dist(vwj , centroid(sik))

di(wj ,Ri(ci)) =
1

|ci|
|ci|∑

k=1

if(wik) · dist(vwj ,vwik )

dc(wj ,Rc(ci)) =
1

|cwi|
|cwi|∑

k=1

dist(vwj ,vcwik )

(5)

Then we define a threshold of each category for each CMR based on the dis-
tances between the annotated word and each representation of its corresponding
category, which is selected with the optimization objective to maximize Fβ-score.

τ∗(ci) = arg max
t∗∈V

((1 + β2)
P (t∗) · R(t∗)

(β2 · P (t∗)) + R(t∗) ), ∗ ∈ {o,m, i, c} (6)

where P is precision and R is recall; V = (0, 0.01, 0.02, · · · , 1); β determines the
weight that should be given to recall relative to precision. The lowest threshold
τ∗(ci) is chosen that optimizes the Fβ-score.

Finally, we generate one feature per representation of each predefined cate-
gory. The value of the feature is either True or False depending on whether the
calculated distance is above the threshold τ∗(ci) or not.

fci∗ (wj) =
{

0 if f∗(wj ,R∗(ci)) > τ∗(ci)
1 if f∗(wj ,R∗(ci)) ≤ τ∗(ci)

, ∗ ∈ {o,m, i, c} (7)
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4 Experiments

4.1 Data Sets

To the best of our knowledge, the annotated corpora of the i2b2/VA 2010 shared
task (i2b2) and ShARe/CLEF eHealth 2013 Shared Task (ShARe) are the only
two public available datasets for CNER. Tables 1 and 2 show the statistics of
these two datasets respectively. In i2b2, 3 different categories have been anno-
tated: Problem (Pr), Treatment (Tr), Test (Te) from discharge summaries and
progress notes. ShARe involves annotation of disorder mentions in a set of nar-
rative clinical reports. Since ShARe does not provide the exact category of each
disorder mention, we map each disorder mention into a category by ourselves
according to its linking UMLS CUI (Concept Unique Identifier)3. Then we get
11 different semantic types for this dataset and merge them into 5 categories:
Anatomical Abnormality (AA), Pathologic Function (PF), Injury or Poison-
ing (IP), Signs and Symptoms (SS) and Others4(O) according to hierarchies of
semantic types in UMLS. Notice these two datasets have totally different cat-
egories and our proposed method could work well on both of them which will
be demonstrated in following subsections. Two public available corpora are used
as unannotated clinical data: the 378,000 Medline abstracts that are indexed as
pertaining to clinical trials and MIMIC III that comprises de-identified health
data associated with 40,000 critical care patients. Then we build a semantic
space by training a word embedding model — GloVe [17] used in this paper —
on these two corpora (merged).

Table 1. The statistics of i2b2

Dataset Pr Tr Te All

Training 11968 8500 7369 27837

Test 18550 13560 12899 45009

Table 2. The statistics of ShARe

Dataset AA PF IP SS O All

Training 250 2304 221 838 1525 5138

Test 157 2107 96 735 1535 4630

4.2 Our Models and Parameter Settings

In our experiments, We apply two state-of-the-art sequence labeling models:
CRF and BLSTM+CRF (BLSTM for short) with the generated new CMR fea-
tures to evaluate our method. We implement CRF employing CRFsuite5 and
BLSTM using theano library.6 The parameter settings of these two models are
showed in Tables 3 and 4 respectively.

3 In UMLS, each concept (entity) is represented by its CUI and is semantically clas-
sified into one of semantic types.

4 For those mentions mapping to unknown CUI, i.e. CUI-less.
5 http://www.chokkan.org/software/crfsuite/.
6 http://deeplearning.net/software/theano/.

http://www.chokkan.org/software/crfsuite/
http://deeplearning.net/software/theano/
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Table 3. CRF settings

C-value Context

window

Regularization

5 2+2 L1&L2

Table 4. BLSTM settings

Layers Layer

size

Batch

size

Activation

function

Learning

rate

Drop

out

Epochs Optimizer

2 100 64 RELU 1E-04 0.5 100 adam

The considered performance metrics are precision, recall and F1-score and
we adopt the strict metrics for evaluation used in both tasks. Performance scores
are macro-averaged over classes, giving equal weight to all classes.

4.3 Threshold Settings for Determining CMR Features

We first investigate the impact of providing threshold of CMR that determine
the feature values on NER performance. Figure 2 shows the threshold setting
procedure for different CMR in which threshold is set by finding the distance that
maximizes F1-score on i2b2. It can be seen that the thresholds are generally lower
and the F1-scores higher for Multi-sub-center Representation and One-center
Representation (also observed on ShARe). It indicates these two representations
are better to separate the categories and important to capture the meaning of a
category. This is confirmed in the subsequent experiments, the results of which
show that the highest performance is obtained with these two representations.

Fig. 2. Threshold setting procedure for CMR on i2b2.

To study the impact of changing the optimization objective to various Fβ-
scores on NER performance, experiments are conducted with the following β
values: 0.5, 1.0, 2.0 and 5.0. The highest F1-score are observed when β is set to
1.0 in i2b2 and 2.0 in ShARe. Then in our following experiments, we set β = 1
for i2b2 and β = 2 for ShARe.

4.4 Comparison with Different CMR Features

In order to study and verify the effectiveness of the proposed new CMR features
to the learning algorithms, our four groups of CMR features are evaluated and
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compared one by one. For CRF model, we combine our CMR features with a set
of traditional features — orthographic and syntactic features7 — as our baseline
which is the most traditional method in CNER. For BLSTM, we take the word
embedding concatenating character embedding as the baseline — which is state-
of-the-art in general domain of NER task. Tables 5 and 6 show the comparison
of different feature combinations on two datasets respectively.

Table 5. Comparison with different CMR features on i2b2

CMR CRF BLSTM

P R F1 ΔF1 P R F1 ΔF1

Baseline 82.05 78.86 80.42 82.20 81.57 81.88

+fo 84.69 78.35 81.40 +0.97 84.29 81.70 82.97 +1.09

+fm 83.45 80.01 81.69 +1.27 83.92 83.07 83.50 +1.61

+fi 82.77 79.11 80.90 +0.48 83.40 81.67 82.53 +0.65

+fc 82.35 79.54 80.92 +0.50 83.26 82.48 82.87 +0.98

+fall 83.92 80.12 81.98 +1.55 84.48 83.39 83.93 +2.05

Table 6. Comparison with different CMR features on ShARe

CMR CRF BLSTM

P R F1 ΔF1 P R F1 ΔF1

Baseline 74.22 61.16 67.06 73.93 66.11 69.80

+fo 75.95 61.06 67.70 +0.64 75.32 66.31 70.53 +0.73

+fm 75.34 62.12 68.09 +1.04 75.31 67.35 71.11 +1.31

+fi 74.99 61.34 67.48 +0.42 74.83 66.36 70.34 +0.54

+fc 74.79 61.58 67.55 +0.49 74.25 66.95 70.41 +0.61

+fall 75.71 62.32 68.37 +1.31 75.74 67.93 71.62 +1.82

Two traditional state-of-the-art models without leveraging lexicons (base-
lines) perform not well on both datasets. When we add our CMR features to
these models one by one, the experiment results show each group of CMR fea-
tures achieves improvement on both datasets. We can see the Multi-sub-center
Representation features achieve the best improvement among all CMR features
while the improvement obtained from Context Representation and Influence
Representation features are relatively small. This indicates that Multi-sub-center
Representation is more representative than other CMR and could more holisti-
cally capture the meaning of the category. When we combine all CMR features,
7 The same as the ones used in [10] except lexical features extracted from existing

annotated tools.
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we achieve further significant improvement on both datasets (1.55% improve-
ment of CRF and 2.05% improvement of BLSTM on i2b2 as well as 1.31% and
1.82% on ShARe) that indicates the four groups of CMR features could compen-
sate each other and combination of them could further improve the performance.
We also find our CMR features get more improvement for BLSTM (2.05% on
i2b2 and 1.82% on SHARe) than CRF and achieve the best performance on both
datasets. The possible reason is that our CMR features are derived from word
embedding and could work better when combining with it. Furthermore, in addi-
tion to powerful capability of BLSTM model, features used in BLSTM includ-
ing word embedding and character embedding and CMR features are semantic,
without considering orthographic and syntactic features, which could potentially
more effectively address the challenge of informal clinical texts.

4.5 Comparison with Previous Systems

Our evaluation show that the performance of NER significantly improves after
adding our new CMR features. However, how much it contributes toward improv-
ing the state-of-the-art determines the practical significance of the improvement.
Thus, we compare the performance of our method to the top systems in the
i2b2/VA 2010 concept extraction task and ShARe/CLEF eHealth 2013 Shared
Task.

Fig. 3. Comparison with top 6 systems in two shared tasks.

Figure 3 shows the results of the top 6 systems in these two tasks. Almost all
systems use hybrid models integrating several models such as CRF and SSVM
with a set of rich features. Furthermore, all systems leverage the output of exist-
ing annotation tools such as cTAKEs, MetaMap and rely lexicons derived from
UMLS to improve the NER performance. Our best method (BLSTM + 4 CMR)
is better than system 3 and equal to system 2 in i2b2 and ranks the third in
ShARe. The results suggest that by integrating CMR features derived from a
large scaled unlabeled corpus into one single model our work can achieve state-
of-the-art without leveraging any outside lexicons and any existing annotated
tools. In addition, our CMR features can easily integrate with other models
such as discriminative semi-Markov HMM Models used by the best system in
i2b2. It may further improve the performance of these systems.
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5 Related Works

Most early existing NER techniques in medical domain typically focus on tradi-
tional machine learning methods such as Support Vector Machine (SVM) [24],
Hidden Markov Model (HMM) [22] and Conditional Random Fields (CRF) [21]
integrating a set of complicated hand-crafted features. Some other methods lever-
age hybrid models [6,10] to improve the performance of NER. However, their
performance may be affected by some common drawbacks: (1) with the change
of corpora and languages, the process to reconstruct feature set is difficult; (2)
some complex features with syntactic information rely on the performance of
other NLP modules; (3) these features with expert knowledge are expensive to
acquire.

There also exist some well-known annotation tools in clinical texts such as
cTAKEs [20], MetaMap [2] and ConText [7]. Most of them can extract various
types of named entities from clinical texts and link them to concepts in UMLS.
However, these tools heavily rely on external dictionaries such as SNOMED-
CT [9] and are only suitable for English. A large amount of works [5,6,10]
usually leverage the annotating results of these tools as a part of features to feed
into their models and achieve further improvement of performance.

Another thread of NER in medical domain focuses on recognizing one single
named entity, such as [27] finding anatomies from discharge summaries, [14,
19,28] recognizing drug names and [26] extracting disease names from clinical
texts. Different with these clinical NER works addressing single entity type, we
are addressing a comprehensive set of challenges in identifying multiple named
entities to analysis the clinical texts.

Recently, some attempts [8,13,29] focus on applying deep neural network
to NER in clinical texts. Most of these concatenate word-level embedding,
character-level embedding and lexicon embedding as input. Then multiple convo-
lutional layers are stacked over the input to extract useful features automatically
and then fed into RNN models. Although these methods claim no feature engi-
neering, their performance are heavily rely on the training dataset (also rely
on lexicons) and usually not satisfied when the training set is small. Since our
proposed CMR features are derived from large scale unannotated corpus, our
method reduce the limitation of small training set and is easy to be adapted to
new domains while large scale unannotated corpora are often readily available.

6 Conclusion and Future Work

The existing CNER systems simply follow the traditional NER methods used in
general domain which usually leverage the linguistic features including syntactic
and lexicon features. Compared with successful performance of NER in general
domain, CNER achieves relatively pool performance due to the issues of Limited
Availability of Annotated Data and Informal clinical texts. In this paper, we
propose a novel unified method for CNER without considering any linguistic
features. It learned multiple representations for each category to capture the
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semantic similarity between words and categories from 4 different perspectives
In the future, we will evaluate our method in other domains, such as biomedical
domain. In addition, we will explore new unsupervised methods that is useful
when training dataset is not available.
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Abstract. Entity Set Expansion (ESE) is an important data mining
task, e.g. query suggestion. It aims to expand an entity seed set to
obtain more entities which have traits in common. Traditionally, text
and Web information are widely used for ESE. Recently, some ESE meth-
ods employ Knowledge Graph (KG) to extend entities. However, these
methods usually fail to sufficiently and efficiently utilize the rich seman-
tics contained in KG. In this paper, we use the Heterogeneous Informa-
tion Network (HIN) to represent KG, which would effectively capture
hidden semantic relations between seed entities. However, the complex
KG introduces new challenges for HIN analysis, such as generation of
meta paths between entities and addressing ambiguity caused by multi-
ple types of objects. To solve these problems, we propose a novel Con-
catenated Meta Path based Entity Set Expansion method (CoMeSE).
With the delicate design of the concatenated meta path generation and
multi-type-constrained meta path, CoMeSE can quickly and accurately
detect important path features in KG. In addition, heuristic learning and
PU learning are employed to learn the weights of extracted meta paths.
Extensive experiments on real dataset show that the CoMeSE accurately
and quickly expands the given small entity set.

Keywords: Heterogeneous Information Network · Knowledge Graph
Entity Set Expansion · Meta path

1 Introduction

Entity Set Expansion (ESE) is mainly about, given a small set of seed entities,
finding out other entities belonging to it and expanding the set to a more com-
plete one. For example, given a few seeds like “New York”, “Los Angeles” and
“Chicago”, ESE will discover the relation among them and obtain other city
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 288–299, 2018.
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instances in America, such as “Houston”. ESE has been widely used in many
applications, e.g., dictionary construction [2] and query suggestion [1].

Plenty of ESE works have been done, and most of them discover distribution
information or context pattern of seeds in text or Web resources to infer the
intrinsic relation for ESE [8]. Recently, Knowledge Graph (KG), a kind of struc-
tured data source, has been more and more important for knowledge mining. So
some ESE works use KG as a supplement for text to improve performance [7].

Fig. 1. A snapshot in knowledge graph.

However, few researches utilize KG as individual data source for ESE. Owing
to rich semantics and structural representation of KG, it is feasible to employ
KG to extend entities. KG, constructed by triples <Subject, Property,Object>,
can be considered as a Heterogeneous Information Network (HIN) that contains
different types of objects and relations [9]. In HIN, meta path [9], a sequence
of relations connecting two objects, is widely used for semantic capture. For
example, in Fig. 1, the fact triples can form a network and the path in it can
show semantics. Therefore, we can consider KG as an HIN and employ meta path
features to solve ESE problem. However, this idea faces challenges as follows.

– It is impossible to enumerate meta paths in KG. In traditional HIN with only
a few types of objects and relations, it is easy to enumerate useful meta paths.
However, it is not the case for KG because of its complexity. For example,
DBpedia has 3 billion facts. It is impossible to find meta paths by manual.

– In KG, objects connected by a relation may affiliate to multiple types, which
will cause ambiguity. In traditional HIN, objects have a unique type, which
makes meta path have definite semantics. But in KG, objects may affiliate
to multiple types which will lead to uncertain semantics. For example, in
Fig. 1, the objects connecting to the created−−−−−→ relation affiliate to the types of
executive, painter and etc. The created−−−−−→ between different pairs has different
meaning. The relation between (Bill Gates, Microsoft) means establishing,
while for (Vincent van Gogh, Starry Night), it means painting.

– It is not easy to combine path features for ESE, though we extract path
features among entities. ESE problem usually has few seeds, so it is difficult to
use traditional supervised method to build a ranking or classification model.

It is not a trivial task to solve these challenges. A very recent attempt by
Zheng et al. [14] illustrates limited performance improvement on the problems
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but cost huge time and space. In this paper, we propose a novel Concatenated
M eta Path based Entity Set Expansion method (CoMeSE) for ESE problem in
KG. The CoMeSE includes three steps. Firstly, in order to reduce time and reuse
visited paths, CoMeSE designs a novel random walk based Concatenated Meta
Path Generation (RWCP) method to quickly and accurately discover useful meta
paths by concatenating meta paths that have been visited in KG. Secondly, in
order to solve the ambiguity problem caused by multiple types of objects, we
propose a multi-type-constrained meta path concept to subtly capture seman-
tics in KG, and further design a novel similarity measure based on it. Thirdly,
for solving the problem of very limited positive samples, besides a heuristic
weight strategy, we employ a PU learning method (Learning from Positive and
Unlabeled Example) to effectively learn the weights of meta paths. Plenty of
experiments on real dataset have been done to validate the effectiveness and
efficiency of CoMeSE. The experiments show that, compared to the state of the
arts, CoMeSE can quickly and accurately extend entities because of its delicate
designs.

2 Preliminary

In this section, we describe some main concepts and preliminary knowledge.
Heterogeneous Information Network [4] is a kind of information net-

work defined as a directed graph G = (O,R), which consists of either different
types of objects O or different types of relations R. In an HIN, there can be
different paths connecting two objects and these paths are called meta path
[12]. A meta path P is defined as PR1◦···◦Rn = T (o1)

R1−−→ · · · Rn−−→ T (on+1),
where oi presents the object at position i in P, T (oi) is the type of oi, and Ri

is a type of relation. Note that T (oi) corresponds to a unique entity type.
Knowledge Graph [10] is a knowledge base system with semantic properties

and derived from text data of knowledge sources. KG is conducted by triples
<Subject, Property,Object>. In this paper, we model KG as an HIN, “Subject”
and “Object” as nodes, “Property” as links. This HIN is not like general HIN
with simple schema but with thousands of node and link types. Besides, in
KG, one entity is subordinate to multiple types and the meanings of links may
introduce ambiguity. So traditional meta path would capture exact semantics
badly. In order to solve the ambiguity problem, we propose a novel concept of
Multi-Type-Constrained Meta Path to more subtly capture semantic relations.

Definition 1. Multi-Type-Constrained Meta Path (MuTyPath) is a special
meta path where each object position is constrained by a set of entity types. A
MuTyPath P̃ is represented as P̃R1◦···◦Rn = T S(o1)

R1−−→ · · · Rn−−→ T S(on+1),
where T S(oi) represents the type set of object oi at position i in P̃. Different
from T (oi) in meta path, T S(oi) can correspond to multiple entity types. When
the cardinality of every T S(oi) is 1, the MuTyPath is equal to meta path.

Let’s give an example in Fig. 1 to show the difference between MuTyPath and
meta path. As the fact that Steve Jobs established Apple, meta path can not



A Heterogeneous Information Network Method for ESE in KG 291

normally show their relation because entities have multiple types, like Jobs belong-
ing to Executive, Person, and Inventor. Or meta path can only describe this fact
as “Obj

Created−−−−−→ Obj” through ignoring the node types, which may cause seman-
tic ambiguity. However, we can use MuTyPath “{Person, Inventor,Excusive}
Created−−−−−→ {Company,Manufacturer}” to describe the fact more exactly.

3 The Method Description

In order to expand entity set in KG efficiently and accurately, we propose an
algorithm named Concatenated M eta Path based Entity Set Expansion
(CoMeSE) to capture semantic relations between seeds. Firstly, for reducing
space and time, we design an efficient concatenated meta path generation
method. Secondly, to handle ambiguity of meta path, we extract multi-type-
constrained meta paths and design a novel similarity measure MuTySim. Thirdly,
due to the lack of negative cases, we design a heuristic weight strategy and PU
learning method to assign the importance of extracted paths for ESE model.

3.1 Random Walk Based Concatenated Meta Path Generation
Method

Meta path is a kind of effective feature to capture semantic relationship among
nodes. In traditional HIN with simple schema, meta path is usually predefined,
while it is hard in KG owing to its massive types of objects and relations. Thus,
we propose an algorithm named Random Walk based Concatenated Meta Path
generation method (RWCP) to quickly and automatically generate meta paths.

A naive method to generate meta path in KG is, using a walker to wan-
der with one-directional random walk to find meta paths between seed pairs.
MP ESE [14] adopts this idea. However, it has two disadvantages. Firstly, it
has a huge space and time cost. If m is the average number of neighbors of a
node, discovering n-length paths should visit mn nodes. Secondly, many paths
are duplicately visited and the visiting information is not reused, which makes it
inefficient. For saving time and space, we can use a bi-directional random walk
where two walkers wander from two sides respectively and meet at an inter-
section node while wandering. The searching space would reduce to mn/2. For
reusing visited path, we record the wandering information of walkers, and the
walkers can continue to wander or decide to concatenate existing paths.

Specifically, given the seed set, RWCP randomly walks with a half or less of
the maximum path length to obtain a set of paths for seeds, and then concate-
nates different paths with visiting information to get useful meta paths. In fact,
RWCP is a repeating process of meta path concatenation and extension. For
explaining RWCP clearly, we give some basic structural definitions as follows.

Definition 2. Recorder is a structure to record visiting information. It
includes: the meta path passed by, a series of entity pairs generated along the path
and corresponding similarity values, entity lists between the entity pairs along the
path, an arriving entity set and the score Sco of meta path defined later.
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Definition 3. The score of meta path, Sco, is designed to indicate the impor-
tance of the path to seed set. The value of Sco means the priority to handle.

Sco(P) =
∑

s

1
K

∑

t

σ(s, t|P), (1)

where s and t are source and arriving node respectively on meta path P, K as the
number of arriving nodes from s, and σ(s, t|P) is the similarity value based on P,
which is calculated by MuTySim for meta path introduced in Sect. 3.2. Moreover,
AvgS is an average value of Sco of two meta paths which are pending to be
concatenated. The AvgS shows priority of Recorder pair for path concatenation.

Besides, some assistant sets are needed. We use Recorder Set (RS) to
store Recorders, Extension Backlog (EB) to record serial numbers and Sco of
Recorders which would be extended, and Concatenation Backlog (CB) to record
serial number pairs and AvgS of the Recorder pairs which would be concate-
nated.

Definition 4. η is a threshold determining whether adding the new generated
Recorder into RS, for excluding unimportant paths.

η = ε · (|SS| + |PS|), (2)

where ε is a limited coefficient, and |SS| is the cardinality of seed set SS, |PS|
is the number of meta paths chosen. So η is dynamically increasing according to
the number of chosen meta paths to converge faster to terminate the algorithm.

Fig. 2. Subgraph example for RWCP.

Thus, as introduced above, we mainly use Sco and AvgS together to
determine action in RWCP. In detail, comparing AvgS and Sco values, if
there are AvgS greater than all Sco values in EB, we will do path con-
catenation for these Recorder pairs. When all AvgS in CB are smaller than
the largest Sco, we extend the Recorder with largest Sco to generate new
Recorder pairs. Path concatenation and Recorder extension take place alter-
nately. Figure 2 is a simple network and seed set is {1,2,3} which means the
seed pairs are {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)}. Figure 3 describes how RWCP
algorithm works in the sample shown in Fig. 2.
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Fig. 3. A sample of RWCP process.

First of all, RWCP builds the initial Recorder Rec1 and puts it into RS,
(serial number SN1, score Sco1) into EB in Step A. Then, RWCP is in a loop
process of path concatenation and extension. When CB is empty and EB contains
Recorder, like in Step B, or all AvgS in CB are smaller than the largest Sco in EB,
like in Step D, RWCP pops the Recorder with the max Sco from EB to extend
outwards. When extending, like in Step B, the arriving nodes in Rec1 move
one step forward and RWCP generates new Recorders with the serial numbers
SN.2−4 based on different paths passing by, and (SN.1) is removed from EB.
After that, RWCP judges if Sco of each new generated Recorder is larger than
the minimum threshold, η. If yes, put it into RS and EB. For each Recorder in
RS, pair it with the new Recorder and put this pair with its AvgS into CB. If the
largest AvgS of Recorder pairs is larger than all Sco in EB, like in the Step C and
E, RWCP will get the Recorder pair with largest AvgS out of CB and concate-
nate paths. For example, in Step E, handling the Recorder pair (SN.3, SN.3),
RWCP concatenates two meta paths of them as “ Created−−−−−→ Created←−−−−−”, and judges
whether two arriving entity sets have nodes in common or not. If yes, generate
new entity pairs based on the common node set {8}. If the new entity pairs
match to seed pairs, the concatenated path would be chosen as a path feature
P. Finally, if CB and EB are all empty, RWCP would be terminated.

3.2 Multi-Type-Constrained Meta Path Extraction and Similarity
Calculation

Traditional meta path may not well capture subtle semantics in KG, because the
type of entities at ends of a relation may be non-unique and entity may be sub-
ordinate to multiple types. To avoid ambiguity problem, we design MuTyPath
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in Definition 1 to make the explored relationships more accurate and a measure
named Multi-Type-Constrained Meta Path-based Similarity measure
(MuTySim) to compute similarity of entity pairs in MuTyPath. The similarity
value vectors based on MuTyPaths can be used as features for ESE model.

Extraction of Multi-Type-Constrained Meta Path. Applying RWCP
algorithm, we get the meta paths with relations only and a series of visited entity
lists for seed pairs along the paths. These entity lists are the path instances. With
the lists, we can change meta paths to MuTyPaths for more precise semantics.

We design an extraction strategy for MuTyPath. Given an n-length meta
path P and a list of instances {p1, · · · , pm}, every position oi of P has an object
set {a1i, · · · , ami}. We check the types of each entity aji one by one and judge
whether current entity type set T S(aji) has intersection with existing common
type sets T S

′
k(oi)(initial common type set T S

′
1(oi) = T S(a1i)). If yes, update

with T S
′
k(oi) = T S

′
k(oi)

⋂
T S(aji). Otherwise, create another common type set

to store its types. Then we will have one or more common type sets CT Si =
{T S

′
1, · · · } at every position oi. After that, we use Cartesian Product, CT S1 ×

· · · × CT Sn, to get multiple common type set combinations, and combine them
with the original meta path to finally form one or more MuTyPaths.

Multi-Type-Constrained Meta Path-Based Similarity Measure. Based
on the common type set of seeds obtained from selected MuTyPaths, we can get
candidates sharing the same common types. To find out the relationship between
seeds and candidates, we should re-calculate the similarity of each seed-candidate
pair and seed-seed pair along MuTyPaths. Here we propose a novel Multi-
Type-Constrained Meta Path-based Similarity measure (MuTySim).

MuTySim has the following advantages. Firstly, MuTySim supports meeting
at any node along the path for RWCP. Current similarity measures have fixed
random walk direction and measurement. Secondly, MuTySim considers both
conditions of two ends between a link, while existing measures do not. Moreover,
MuTySim considers multi-type constraint of MuTyPath.

Given a MuTyPath P̃o1 = T S(o1), where T S(o1) is the common type set at
position o1 constrained by MuTyPath, the similarity of object s and itself is:

σ(s, s|P̃o1) = 1 − α ·
|T S(o1) − T S(s)|)

|T S(o1)|
, (3)

where T S(s) represents the type set of s and α is the impact factor of type set
importance degree over similarity with range of [0,1]. The larger α is, the more
constraints of types will be, and the clearer the semantic will be.
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Given two objects s and t, and a MuTyPath P̃o1···on = T S(o1)
R1−−→ · · · Rn−1−−−→

T S(on), considering both conditions of two ends of a relation and type set con-
straint, the MuTySim similarity of two objects along the path P̃ is defined as:

σ(s, t|P̃o1···on) = σ(t, t|P̃on)
∑

x∈I(t|Rn−1)

2|O(x|Rn−1)
⋂

I(t|Rn−1)|
|O(x|Rn−1)| + |I(t|Rn−1)| · σ(s, x|P̃o1···on−1),

(4)
where O(x|Rn−1) is the out-neighbors of object x based on relation Rn−1, and
I(t|Rn−1) is the in-neighbors of t based on Rn−1.

When two objects s and t are connected by the concatenated MuTyPath
P̃o1···on and meet at any position along the MuTyPath, the MuTySim similarity
values of two objects are equal:

σ(s, t|P̃o1···on) =
∑

x∈Cj

σ(s, x|P̃o1···oj ) · σ(x, t|P̃oj ···on), (5)

where oj is the meeting position and Cj is the object set at position oj .
In particular, when α equals to 0, the entity type will not be considered

and MuTySim can measure similarity based on traditional meta path, so that
it can be seen as MuTySim for meta path which is useful for random walking
in opposite way and meeting at any position. Therefore, applying MuTySim for
meta path in RWCP can discover meta path feature more accurately.

3.3 Weight Learning of Meta Paths

MuTyPaths should be combined effectively based on their importances to con-
stitute ESE model. ESE is in fact to build a ranking model that calculates the
probability of a candidate in the expansion set, and take the top K entities as the
expansion result. The formula of the ranking model can be defined as follows:

CSSim(c,SS) =
∑

s∈SS
CSim(c, s), (6)

where c is the candidate node, and SS is the seed set, and CSim(c, s) represents
the matching probability of candidate node c and seed s.

Whether the candidate matches the seed can be seen as a classification prob-
lem. We can regard the MuTySim similarity value vector of entity pair on
selected MuTyPaths as a feature for classification. Besides, positive data are
the seed pairs, while the pairs of candidates and seeds are all unlabeled data.
However, there are no effective methods for the automatic selection of the neg-
ative data. Without the negative data, we can not use traditional supervised
learning method to do classification. To solve the problem, we come up with two
weight learning solutions: the heuristic method and PU learning method.

Weight Learning with Heuristic Method. It is easy to understand that
the meta path connecting more seed pairs will be more important, and the



296 X. Cao et al.

path with larger similarity value indicates closer relationship. Depending on the
importance degree of each MuTyPath connecting the seed set, we calculate the
corresponding weight for each path based on the similarity information of seed
pairs and linearly combine the weight with similarity value together to form the
matching probability equation for the candidates.

CSim(c, s) =
∑

P̃i∈P̃S
�i · σ(c, s|P̃i), (7)

�i =
f(P̃i) ·

∑
sm,sn∈SS,m �=n σ(sm, sn|P̃i)

∑
P̃t∈P̃S f(P̃t) ·

∑
sm,sn∈SS,m �=n σ(sm, sn|P̃t)

, (8)

where P̃S is the MuTyPath set generated in Sect. 3.2 and �i is the weight for
path P̃t. f(P̃i) = ξ|zeros(P̃i)| is a penalty function for having seed pairs not
connected by P̃i. So |zeros(P̃i)| is the number of similarity values of seed pairs
as 0 based on path P̃i and ξ is the penalty constant for it as 1/2. σ(sm, sn|P̃i)
is the MuTySim value in seed pair (sm, sn) based on P̃i.

Weight Learning with PU Learning. PU learning is used to train classifier
with positive and unlabeled training data, which is suitable for ESE. In our
method, the seed pairs can be seen as positive data while the candidate-seed
pairs as unlabeled data. We adopt a novel PU learning method proposed by Elkan
et al. [3], which could train a traditional classifier to distinguish the positive and
unlabeled examples and get a better result than existing PU learning methods.
The main idea is to detect the reliable negative samples and then use the positive
and negative cases to do classification training. This method is very flexible to
choose any traditional classifier for PU learning, so that we can use suitable
classifier to form the matching model for candidate nodes based on the exact
situation.

4 Experiment

In order to verify the superiority of CoMeSE for entity set expansion in KG, we
validate the effectiveness of CoMeSE with a series of experiments.

4.1 Experiment Settings

Dataset. We use KG Yago [11] to conduct relevant experiments. In experiments,
we adopt “COREFact” and “yagoSimpleTypes” parts of this dataset, which
contain 4.4 million facts, 35 relationships and 1.3 million entities of 3455 types.

Four ESE tasks are chosen to evaluate the performance of CoMeSE. These
tasks are as follows: (1) in the Actor task, the seeds are actors who won Emmy
Award, and their spouses are also actors; (2) in the Company task, the seeds are
companies which own a channel in America; (3) in the Writer task, the seeds are
writers which are graduated from the universities in New York; (4) in the Movie
task, the seeds are movies, and their director won National Film Award. The
real numbers of instances in these tasks are 193, 76, 60, and 653, respectively.



A Heterogeneous Information Network Method for ESE in KG 297

Criteria. We use precision-at-k (p@k) and Mean Average Precision (MAP) to
evaluate performance. Here, they are p@10, p@30, and p@60. And MAP is the
mean of the Average Precision (AP) of the p@10, p@30, and p@60.

Compared Methods. We denote the CoMeSE with heuristic and PU learning
method, as “CoMeSE He” and “CoMeSE PU”, respectively. And we use four
baselines as follows: (1) Link. According to the pattern-based methods [8], it
only considers 1-hop link of an entity, denoted as Link. (2) Neighbor. Inspired by
QBEES [6], it considers 1-hop link and 1-hop entity as features, called Neighbor.
(3) PCRW. With path constrained random walk based similarity measure PCRW
[5], it employs different max path lengths to connect objects. The PCRW within
length-2, 3, 4 paths are denoted as PCRW-2, PCRW-3, PCRW-4, respectively.
(4) MP ESE [14]. The KG-based ESE method finds meta paths by an one-
directed generated method and uses a heuristic weight learning method.

Fig. 4. The results of entity set expansion.

In CoMeSE, we set ε as 10−6 in Eq. 2, α as 1 in Eq. 3 for calculating similarity
based on MuTyPath, based on parameter study. The max length of path is set
to be 4 since meta paths with length more than 4 are almost irrelevant [13].

4.2 Effectiveness Experiments

In this section, we validate the effectiveness of CoMeSE in 4 tasks introduced
above. For each task, we randomly take three seeds from the instance set to
conduct an experiment. We run 20 times and report the average results.
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We illustrate the experiment results in Fig. 4. Firstly, the meta path based
methods, CoMeSE and MP ESE, almost have higher accuracy than other
methods in all tasks. That is because, in KG, path feature can effectively
embody intrinsic relations among seeds. Secondly, the results of CoMeSE He
and CoMeSE PU are better than MP ESE in almost all tasks. Traditional meta
path fails to capture exact meanings owing to the uncertain types connected
by relations, while MuTyPath used in CoMeSE can subtly distinguishes these
paths. Thirdly, CoMeSE PU performs better than CoMeSE He in all tasks. The
reason is that PU learning judges path features more precisely than heuristic
method. In all, CoMeSE performs the best.

4.3 Efficiency Study

Here we validate the efficiency of finding meta paths under different seed size.
We conduct experiments by varying the seed size from 2 to 6 on the Actor and
Movie tasks. For each seed size, we randomly select the same-scale seeds to run
10 times. We show the average running time in Fig. 5. It is obvious that CoMeSE
almost has the smallest running time in both tasks. PCRW-2 only explores 1-hop
and 2-hops paths, so it has small running time. But short path exploration also
gets bad performance, shown in Fig. 4. We think the bi-directional random walk
strategy and the reuse of visited paths make the CoMeSE significant efficiency
improvement. In addition, the running time of CoMeSE and PCRW methods
near linearly increase with the increment of the seed size. It is reasonable, since
these methods need to discover more paths to connect more seed pairs. Some
strategies in MP ESE make it less affected by seed size. In all, CoMeSE has
obviously high efficiency of meta path discovery.

Fig. 5. Running times of different methods.

5 Conclusion

In this paper, we study the problem of entity set expansion in KG. We model
KG as an HIN and propose a novel Concatenated M eta Path based Entity
Set Expansion Method called CoMeSE, which proposes a random walk based
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concatenated meta path generation method to detect meta paths, a multi-type-
constrained meta path algorithm to subtle capture path semantics, and uses two
path weight learning methods to determine the importance of paths. Extensive
experiments on Yago validate the performance of CoMeSE.
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Abstract. We address the problem of identifying in-app user actions
from Web access logs when the content of those logs is both encrypted
(through HTTPS) and also contains automated Web accesses. We find
that the distribution of time gaps between HTTPS accesses can dis-
tinguish user actions from automated Web accesses generated by the
apps, and we determine that it is reasonable to identify meaningful user
actions within mobile Web logs by modelling this temporal feature. A
real-world experiment is conducted with multiple mobile devices running
some popular apps, and the results show that the proposed clustering-
based method achieves good accuracy in identifying user actions, and
outperforms the state-of-the-art baseline by 17.84%.

Keywords: Transaction identification · Mobile Web logs

1 Introduction

Mobile devices have become an important component of people’s daily life, allow-
ing near ubiquitous access to services on the Internet. Such accesses can poten-
tially be logged. It is vital to understand users’ needs by mining their Web usage
logs, e.g. grouping Web accesses into meaningful units to find patterns [6,19].
Although Web log mining has been extensively studied for many years, the focus
of such work is on the logs of Web sites [6,20]. Providers of free Internet access,
such as shopping malls, airports and train stations, can collect a different sort
of log: a mobile Web log capturing accesses from users accessing different ser-
vices [1]. This log is quite different from those captured from a single Web site.
Most of the Web requests will be encrypted (through HTTPS protocol) and
there are a mix of user-driven accesses to Web sites/services, as well as auto-
mated accesses sent by the apps installed on user phones as observed by [17].
Accurately identifying and understanding in-app user actions from these mobile
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 300–311, 2018.
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Web logs is critical in many fields, ranging from promoting personalised Web ser-
vices to enforcing user activity monitoring and information security [8,10,11,16].
For example, mobile users will be provided the right information to satisfy their
needs at the moment; the providers of free Internet can automatically monitor
users’ Web behaviours at high level and immediately be alerted when a potential
risk user (or group of users) does something dangerous; and researchers in this
field can learn lessons and build various models for modelling mobile users, etc.

Users’ true actions in apps can be used to understand or infer users’
behaviour. Users’ behaviour can be extracted from mobile Web logs using vari-
ous data mining techniques, such as association rule mining [3,12]. However, the
mining result might be too coarse if we use a single log entry as a viewpoint,
while a single user session might be too broad to give a fine-grained knowledge.
Thus, it is necessary to group Web logs into meaningful units, in order to provide
proper meaningful granularity for mobile user behaviour research [6,19,21].

We attempt to identify users’ true actions from such logs. The challenges
include: (1) as the concern of privacy and security become more prominent, more
mobile apps are encrypting their Web accesses. This means that only hostname
would be visible and it is impossible to know the content requested, including
textual content and filename suffixes, which makes existing approaches infeasi-
ble [6], e.g. identifying access by using file suffixes. (2) the multitasking nature
of a mobile device allows numerous applications to access the Web almost simul-
taneously, which should be taken into account before identifying in-app user
actions within the corresponding sequential logs. (3) Automated URL requests
issued by mobile applications also introduce bias in determining user actions,
because it is not directly triggered by the user. Then, a new research question
appears:

How to identify in-app user actions of Web accesses from encrypted and noisy
mobile Web logs?

To tackle this problem, we introduce the concept of a transaction in the
context of mobile Web logs, and propose a method to identify them. Specifi-
cally, a transaction is a group of sequential Web access (URLs) to one or more
relevant Web domains, which correspond to a singular user action in a single
mobile app. Moreover, we found that the distribution of time gaps between Web
accesses, when there are user actions, is significantly different from that when
there are no user actions. This indicates that it is reasonable to identify trans-
actions within the Web logs with clustering techniques by modelling this time
gap feature. Another reason why we model transaction identification by using
clustering technique is because there are generally no labels in mobile Web logs
and unsupervised learning is more fitting. Finally, to evaluate the performance
of the proposed method, we conducted a controlled real-world experiment with
multiple devices and mobile applications. Note the labels gathered in controlled
experiment are only used for testing purposes. The experimental results show
the proposed method significantly outperforms the state-of-the-art in terms of
identifying transactions from mobile Web logs.
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2 Related Work

Here, we briefly review relevant works about transaction identification in tradi-
tional Web site logs and traffic analysis in mobile logs.

Shu-yue et al. [19] and Cooley et al. [6] discuss several preprocessing tech-
niques needed before executing mining algorithms on Web site logs. The tech-
niques include data cleaning, log consolidation, log formatting, user identifica-
tion, session identification, and transaction identification. These preprocessing
techniques aim to provide high-quality data to ensure logs become more credible,
accurate, and representative so that log mining and analysis can be conducted
effectively. From Web server perspective, [2] investigates automated network
request in the query stream of a large search engine provider’s logs. [2] also pro-
poses some features to distinguish between queries generated by people actually
searching for information and those generated by the autonomous process.

Both [6,19] discuss techniques to identify transactions within a log in order to
cluster log entries into meaningful units. Cooley et al. [5] discussed three transac-
tion identification methods: Reference Length (RL), Maximal Forward Reference
(MFR), and Time Window. Both RL and MFR categorized each page accessed
as either a navigational or content page. A navigational page was considered to
be only used by users to locate pages of interest, while a content page is a page
containing desired information. The RL technique is based on an assumption
that the amount of time a user spends on a page indicates whether the page
should be classified as a navigational or content page. Then, in RL, a transac-
tion can be defined as a sequence of navigational pages that lead to a content
page. In MFR a transaction is defined as a set of page accesses before a backward
reference is made. Such a reference is defined as a page not already in the set
of pages from a current transaction. Different from aforementioned approaches,
Time Window does not try to identify a page as navigational or content, but
assumes that meaningful transaction should have an average overall length asso-
ciated with them. User sessions were partitioned into time intervals no larger
than a specified threshold.

Chen et al. [4] and Li et al. [14] proposing their own approach to identify-
ing transactions. However, the technique is not feasible because of encryption
in modern mobile Web traffic. In work by [13,15] a device-level point of view
is taken to investigate network activity characteristics of mobile devices. Both
authors gather and analyse data from users who voluntarily installed an app on
their device, which captured their applications’ network activity over a period
of time. Similar to the work in this paper, [13,15] are also explanatory in nature
and serve as an initial step toward a global network utilization model of mobile
devices. However, little research was conducted to understand the meaningful
transaction unit in the context of mobile Web traffic. In this paper, in the con-
text of mobile traffic logs, a transaction is defined as a group of URL requests
without considering its content, and a data mining based transaction identifica-
tion method has been investigated.
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3 Transaction Identification

Here, we first define the concept of a transaction in mobile Web logs to describe
in-app user actions, then propose a method to identify them by modelling tem-
poral features.

3.1 Definition

Based on a transaction definition in traditional Web log mining [6], a transaction
t is defined as a meaningful group of sequential network activities (URL requests)
in one application (app) on a user’s mobile device. Transaction t is a tuple:

t = <devicet, appt, {(urlt1, timet1), ..., (urltn, timetn)}> (1)

where (urlti , timeti) denotes the i-th URL request from appt on devicet in trans-
action t. Namely, this indicates that transactions are defined per user (device)
and app. Note, url could be the full URL request, or only the hostname if it is
encrypted (e.g. through HTTPS protocol).

3.2 Identifying Transactions

We first conducted a comprehensive analysis of the time gap feature in mobile
Web logs, which is defined as the gap in seconds between consecutive URL
requests from the same device and app. We examine the logs of six representa-
tive apps (Facebook, Twitter, Instagram, Path, MSN, Sina) on three different
devices (Android Tablet, iOS Phone, iOS Tablet), which will be detailed in
Sec. 4.1. There are other apps and devices of interest, but we believe these apps
and devices provide a good representative sample to analyse on. The gaps are
separated into two groups: idle that means there are no user actions, and active
that means there are user actions with the device. A Kolmogorov-Smirnov (KS)
test is deployed to examine whether the idle vs active time gap distributions are
significantly different to each other. The KS test results are shown in Table 1,
indicating that there is a statistically significant difference between idle and
active time gaps across all tested apps and devices, e.g. for facebook on Android
Table, the KS statistic D = 0.340 and p-value ≤ 0.0001. This indicates that it
is possible to identify transactions by modelling this temporal gaps.

Furthermore, Fig. 1 illustrates the example of difference between idle
and active time gaps, in terms of Expected Cumulative Distribution Function
(ECDF). We can observe that time gaps on active device seems to be more
rapid than its counterpart. In other words, user actions on active device evi-
dently caused a burst of consecutive URL requests. In contrast, consecutive
URL requests occurred intermittently when there is no user actions.

Based on this analysis, we treat the problem of transaction identification as
a clustering problem on the temporal gap feature. Specifically, we deploy the
classic DBSCAN clustering method [7] to perform the transaction identification.
The main reason is that, when modelling the temporal gaps, DBSCAN takes
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into account the sequential nature of the data (network activities) via its unique
density connectivity concept. Namely, DBSCAN clusters periods of high activ-
ity, separated by gaps of idles, which is the characteristics of the transaction
identification problem.

Table 1. KS -test results of comparing time gap distribution between idle and active
mobile usage. Note D is the two-sample KS statistic, indicating it is greater than the
corresponding critical value.

Device app D p-value

Android tablet Facebook 0.340 <0.0001

Twitter 0.333 <0.0001

Instagram 0.364 <0.0001

Path 0.341 <0.0001

MSN 0.460 <0.0001

Sina 0.494 <0.0001

iOS phone Facebook 0.297 <0.0001

Twitter 0.311 <0.0001

Instagram 0.294 0.016

Path 0.306 <0.0001

MSN 0.453 <0.0001

Sina 0.490 <0.0001

iOS tablet Facebook 0.299 <0.0001

Twitter 0.299 <0.0001

Instagram 0.297 <0.0001

Path 0.299 <0.0001

MSN 0.404 <0.0001

Sina 0.389 <0.0001

Fig. 1. ECDF of time gap feature in two cases: Idle VS. Active
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4 Experiment

4.1 Experiment Environment

We configured a controlled Wi-Fi network to collect Web logs from connected
mobile devices, as shown in Fig. 2. Each of mobile devices connected to the
wireless access point via wi-fi, as the only available communication line to the
Internet. A computer acts as a proxy server that records all URL requests coming
through a wireless access point. Untangle1 used as network gateway management
software, which provides the capability of capturing network traffic. There are
four different devices in the experiment: an Android tablet (Nexus 7 3G), iOS
phone (iPhone 4S), iOS tablet (iPad 2), and iOS music player (iPod Touch 4th
Gen). A factory reset was performed on all devices prior to the experiment to
minimize noise introduced by previously installed apps. All devices were installed
with the latest version of each application that was available for the device’s
latest OS version.

Fig. 2. Experiment configuration

To better simulate the real-world usage, six representative popular applica-
tions were installed on each device: Facebook, Twitter, Instagram, Path, MSN,
and Sina. However, on iOS music player, MSN application could not be installed
due to incompatible older OS version. These applications were selected because
presumably, their rich and constantly updated content nature will give an ade-
quate volume of network traffic to observe for. This set-up expected to give con-
trolled environment in terms of unrelated adware’s network access that might be
embedded in some applications, while still represents real world mobile device
usage. All applications were logged into with the same user account across all
devices, except for MSN and Sina, to ensure they receive a similar volume of
content. Note that, in this experiment, we only consider URL requests issued by

1 www.untangle.com.

www.untangle.com
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applications, and not from the browser. Then, a user usage scenario was simu-
lated to capture network activities on the active (used) device. Specifically, five
user actions are defined, conducted, and considered within 1-min time boundary
to simulate real world application usage by users, as listed in Table 2. Note that
in this scenario, automated and user triggered URL requests might get mixed in
the Web logs captured. Thus, only URL requests to Web domains that related
with the tested application at the time are considered as URL requests triggered
by user, otherwise it will be labelled as automated URL requests. Furthermore,
URL requests that occurred outside the time boundary of scheduled usage sce-
nario will also be considered as automated URL requests.

Table 2. User actions examined

Minute User action Description

1 Open app Starting an application session

2 Browsing Reading content and scrolling through at normal
reading speed

3 Dwelling Reading one post and stop scrolling through

4 Skimming Reading content and scrolling through at skim
reading speed

5 Close app Closing an application by pressing device’s home
button

The collected mobile Web logs are divided per device and application. Trans-
actions within the logs are identified and labelled manually according to time
boundary of use. We only consider URL requests directly triggered by user action
to form a transaction, while the automated URL requests are discarded. The
resulting labels will form a ground truth to evaluate the experiment result. We
use the Time Window [6] approach as a baseline method. For the threshold
parameter in Time Window, it is calculated from the average duration of trans-
actions occurred on a device caused by an application, where duration means the
time interval between the first and last Web accesses of a particular transaction
in seconds.

4.2 Measurement Metrics

Accuracy and purity are selected to measure the performance of the proposed
method. Given the clustering result C, the majority of the log entries in a cluster
c ∈ C determines which transaction it represents. If two clusters represent the
same transaction, the large one is selected to calculate accuracy. Specifically,
for each selected cluster c, we define Nc as the number of the log entries cor-
rectly identified to the corresponding represented transaction. Then, accuracy is
defined as follows:

accuracy =
∑j

i=1 Nci

# of all log entries
, (2)
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where j denotes the number of selected clusters, representing each transaction.
Purity is also reported here because accuracy is based on an assumption that
one transaction will be clustered into exactly one cluster. However, a single
transaction might be divided into several clusters in the clustering process, and
it is acceptable as long as a cluster is not a mix of log entries from different
transactions. Thus, purity is defined as follows:

purity =
∑|C|

i=1 Nci
∑|C|

i=1 |ci|
, (3)

where |C| denotes the number of generated clusters, and |ci| denotes the number
of log entries in cluster ci.

4.3 Parameters

There are two parameters in the deployed DBSCAN algorithm: MinPts and
Epsilon. MinPts is the minimum number of data points (URL log entries) within
a transaction, and Epsilon is the maximum distance (time gap) from each data
point to any other data point within the same cluster. We set MinPts = 3 as a
fair number of URL requests in a single transaction. This is based on observation
that a user action on an application is often triggered by more than one or two
URL requests. But we are also aware that a higher number of MinPts might
have risk of mixing few transactions together because it needs to reach MinPts
to be considered as a cluster.

Meanwhile, Epsilon can be determined for each device-application by using
the heuristic suggested in [7]. Specifically, the distances to the k-th nearest neigh-
bour (k = MinPts) of all URL requests are sorted and plotted, as shown in
Fig. 3. The corresponding distance value on the first valley or knee point in the
graph indicates the threshold value for Epsilon. This heuristic gives an intuitive
way to find a suitable Epsilon value, as a smaller Epsilon might break a transac-
tion into several clusters. Vice versa, a bigger Epsilon value might group several
transactions into one cluster. In this work, we use four knee point detection for-
mulas similar to [9,18], in order to automatically find a suitable Epsilon value.
The formulas are modified to suit our case in which the distance distribution
is monotonic and non-increasing, as illustrated in Fig. 3. Then, we compare the
DBSCAN clustering performance with four knee point detection approaches,
including:

ji−1 − ji : difference between magnitudes (4)
ji−1 − ji

ji
: relative difference between magnitudes (5)

ji−1

ji
− ji

ji+1
: difference between ratios (6)

ji−1 − ji
ji − ji+1

: difference between magnitude ratios (7)
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Fig. 3. Example distribution of the sorted 3rd-nearest neighbour distance

Table 3 displays the clustering performance with the four knee point detection
approaches, in terms of average clustering accuracy and purity. The result indi-
cates that the difference between magnitudes approach works best with 80.19%
of average accuracy. The difference between magnitude’s ratios approach gives
second best performance, while the other two approaches seems to fail with
average accuracy below 50%. Moreover, the four approaches gives similar per-
formance in terms of average purity, which all of them exceed 99%. Based on this
result, we use the difference between magnitudes approach to estimate Epsilon
parameter in our experiment.

Table 3. Comparison of different knee point detection approaches to find k.

Method ji−1 − ji
ji−1−ji

ji

ji−1
ji

− ji
ji+1

ji−1−ji
ji−ji+1

Description Magnitude
difference

Relative magnitude
difference

Ratio
difference

Magnitude’s ratio
difference

Accuracy 80.19% 42.32% 39.36% 72.22%

Purity 99.27% 99.72% 99.93% 99.52%

4.4 Experiment Results

Table 4 shows the comparison of experiment results between clustering with
DBSCAN and Time Window (the baseline), in terms of accuracy. It is observed
that on average, the proposed clustering-based method achieves better accuracy
than the baseline. Specifically, the average accuracy of clustering with DBSCAN
over all device-applications is 80.19%, with the highest and lowest accuracy are
100% and 51.35%, respectively. In contrast, the average accuracy of Time Win-
dow over all device-applications is 62.35%, with the highest and lowest accuracy
are 85.00% and 50.48%, respectively. The clustering with DBSCAN method sig-
nificantly outperforms Time Window in 20 out of 23 configurations, with equiv-
alent or slight lower performance in the rest 3 configurations. The reason for the
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higher accuracy of the clustering-based method might be due to its flexibility in
determining a transaction boundary based on the density of URL requests over
time, rather than just a fixed time interval partitioning.

Table 4. Comparison on accuracy

Device Application TimeWindow DBSCAN

Android tablet Facebook 71.74% 86.96%

Twitter 53.57% 89.29%

Instagram 56.18% 98.88%

Path 62.07% 86.21%

MSN 76.83% 67.89%

Sina 60.31% 68.70%

iOS phone Facebook 76.27% 88.14%

Twitter 51.43% 87.14%

Instagram 54.55% 90.91%

Path 71.76% 81.18%

MSN 65.50% 89.96%

Sina 57.45% 100%

iOS tablet Facebook 85.00% 85.00%

Twitter 60.68% 99.15%

Instagram 56.06% 56.92%

Path 50.48% 51.43%

MSN 76.83% 98.35%

Sina 55.48% 81.51%

iOS music player Facebook 56.25% 71.88%

Twitter 61.54% 65.38%

Instagram 51.35% 51.35%

Path 57.32% 73.17%

MSN N/A N/A

Sina 74.67% 74.93%

Average accuracy 62.35% 80.19%

Moreover, we also compare the two methods in terms of purity. It is
observed that the purity is similar between the two methods, with clustering
with DBSCAN performing slightly better than Time Window. Specifically, the
average purity of clustering with DBSCAN over all device-applications is 99.27%;
and the average purity of Time Window over all device-applications is 97.84%.
In addition, the surprisingly good performance of Time Window approach in
purity might be caused by our method in choosing suitable time interval for
each device-application pair based on adequate prior knowledge or good estima-
tion of average transaction duration, which would not be available in a real life
situation.
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It is observed that generally clustering purity is higher than accuracy. In this
case, this phenomenon mainly because a single transaction often split into several
clusters, which will penalised accuracy as much as mixing different transactions
into one cluster. Thus, although each cluster tends to be quite pure as it consists
of URLs within a single transaction, the accuracy will seem to be relative low.
Nonetheless, high purity shows that inter-transaction time gap is quite significant
to distinguish one transaction from another, while future work should also be
addressed to recognize the substantial variation in intra-transaction time gap.

Overall, the experiment results indicate that it is possible to solve the chal-
lenges in the mobile Web logs, and so as to identify transactions from mobile
Web logs by modelling the temporal gaps (via DBSCAN). Note, this is differ-
ent to previous approaches, as they relied on the full URL information or Web
content without considering time gap pattern.

5 Conclusion

The paper introduces the concept of a transaction to determine in-app user
actions from encrypted and noisy mobile Web logs. A clustering algorithm is
deployed to examine the possibility of identifying these transactions by only using
time stamp information and without the assumption of knowing Web content,
which is infeasible due to Web traffic encryption. The experiment results indicate
that the proposed method can identify transactions successfully. In the future,
we plan to improve the model to distinguish different user actions in a particular
app (e.g. browsing on Facebook).
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Abstract. Recent efforts towards digitization of cultural heritage arti-
facts have resulted in a surge of information around these artifacts. How-
ever, the organization of these artifacts falls short with respect to access-
ing the facts across these entities. In this paper, we present a method to
harvest the knowledge and form a knowledge graph from the digitized
artifacts in the Museums of India repository via distant supervision to
enable better accessibility of the facts and ability to extract new insights
around the artifacts. Triples extracted from an open information extrac-
tor are first canonicalized to a standard taxonomy based on a metric-
based scoring. Since a standard taxonomy is insufficient to capture all
the relationships, we propose a sequential clustering based approach to
add artifact specific relationships to the taxonomy (and to the knowledge
graph). The graph is enriched by inferring missing facts based on a prob-
abilistic soft logic approach seeded from a frequent item set framework.
Human evaluation of the final knowledge graph showed an accuracy of
75% on par with knowledge bases like DBpedia.

1 Introduction

Cultural heritage represents a legacy of traditions and customs inherited from
the past, maintained in the present and preserved for the benefit of future gen-
erations. As an attempt to reach wider audiences, various museums across the
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globe have digitized their artifact collections [6,9,14] and have made them avail-
able on web portals to facilitate better availability of the artifacts data to the
public. However, in the absence of a proper organization, the large amount of
digital content in these portals can be overwhelming and infeasible to interpret
the information associated with the artifacts.

For a cultural enthusiast, a simple keyword search might not always fetch
what (s)he is looking for since some of the information can span details from mul-
tiple artifacts. Standard information retrieval system cannot satisfy such needs
since they serve information from a single source only. For example, Fig. 1(a)
shows a sample query “tempera images by Jamini” to Museums of India (MOI)
[14], an online portal about cultural artifacts in India. This illustrates that the
current organization of the artifacts does not capture the specific style of paint-
ings by an author. There could be several such aspects that could be useful for
gaining insights and discovering relationships between the artifacts. This calls
for a systematic approach to harvest the knowledge from cultural artifacts in
order to enhance the understanding and facilitate the organization around them
to enable better accessibility of the facts around these artifacts.

Fig. 1. Search result for query paintings by ‘Jamini Roy’ using ‘Tempera’ from the
Museums of India web portal and the constructed CultKB

There is a growing body of work that focuses on harvesting knowledge from
structured and unstructured data sources [23] towards building a knowledge
base. Such knowledge bases/graphs serve as an excellent organization for insight-
ful explorations as well as cross-artifact fact extraction/retrieval. Popular knowl-
edge bases like DBpedia [2], NELL [7], YAGO [24] contain “facts” of the form
“subject-predicate-object” and are generally extracted from a generic corpus like
Wikipedia and canonicalized based on a standard taxonomy.
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While knowledge graphs offer a good solution towards exploration, stan-
dard taxonomies are insufficient to capture the facts in cultural artifacts and
render the taxonomies from standard knowledge bases inapplicable to the needs
of cultural artifacts. However, building such a taxonomy from scratch specific to
the cultural artifacts is also infeasible since this requires significant input from
domain-experts. To address these challenges, we start with a standard taxonomy
and harvest the facts from artifacts canonicalized to this taxonomy. Simultane-
ously, we also enrich the taxonomy to cover the needs of the cultural heritage
artifacts by adding new artifact-specific relationships to the taxonomy (and the
corresponding facts to the knowledge graph). The proposed approach addresses
3 major challenges:

1. The meta-data in the digitized cultural artifacts do not always have well-
formed text and hence can result in noisy facts. Therefore, processing these
noisy facts to extract meaningful facts via appropriate canonicalization is the
first major challenge that we address in our approach.

2. Since standard taxonomies are insufficient to canonicalize all the facts that
exist in the data from a specific domain, building a systematic approach
to enrich the taxonomy with domain-specific relationships is the second chal-
lenge that we address. Identifying the new predicates for the taxonomy would
require de-duplicating their multiple representations and reducing the overall
noise in the extracted facts.

3. Finally, the uniqueness of the data about cultural artifacts provides an oppor-
tunity to look for patterns in the extracted facts to infer new/missing facts
and enrich the knowledge graph with additional relationships that are not
already present in the data.

Figure 1(b) shows a list of paintings made by the artist using tempera technique
in response to the same query in Fig. 1(a) extracted from our proposed knowledge
graph built on the MOI [14] data.

2 Related Work

Knowledge harvesting deals with extracting meaningful relationships and
constructing knowledge graphs from text and other unstructured as well as struc-
tured sources [15]. Knowledge graph extraction involves the problem of inferring
entities (nodes) and their relations/predicates (edges) from uncertain data while
simultaneously incorporating constraints imposed by ontological inferences [23].
Entities in uncertain data might appear in different forms due to mis-spelled
usages, use of synonyms or any other factors. Therefore, entities and relations
extracted from the uncertain data are canonicalized, which is the process of stan-
dardizing the extracted facts to a taxonomy to achieve a consistent knowledge
graph. Ontologies in the taxonomy aid in adding constraints to the facts for
maintaining consistency and meaningfulness of the extracted facts [7].

There exists a number of large-scale publicly available knowledge bases
like YAGO [24], DBpedia [2], Freebase [5], etc. While DBpedia [2] builds upon
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the structured info-boxes of Wikipedia, YAGO [24] automatically derives its facts
from Wikipedia and Wordnet using a combination of rule-based and heuristic
approaches. But these works deal with knowledge covering a broad range of real-
world concepts and are not restricted to any particular domain. There exists very
limited work on building knowledge bases for a specific domain. Kobren et al.
[16] build a knowledge base of scientists and their affiliation via crowdsourc-
ing. Similarly, Zhao et al. [26] use crowdsourcing to build a software-engineering
knowledge base from StackOverflow. However, given the limited expertise avail-
able for cultural artifacts, such crowd-sourced approaches are not feasible in our
case.

Developments in digitizing cultural artifacts have led to a few efforts to
understand and organize such cultural artifacts. Agirre et al. [1] developed a
system, PATH to aid people in navigating through the Europeana [9] artifacts.
PATH measures artifact similarity to Wikipedia articles/entities by comparing
the topics generated from each artifacts metadata using Latent Dirichlet Alloca-
tion (LDA) with the Wikipedia topics. The matched Wikipedia articles/entities
are used to generate hierarchies which help in browsing and exploring the arti-
facts. Fernando et al. [11] explored techniques to automatically add Wikipedia
links to resources in order to provide relevant background information. How-
ever, these approaches are not suitable to organize our data owing to the limited
information available about Indian cultural heritage on open knowledge sources
like Wikipedia. This restrains the use of external data sources.

With these limitations in mind, we propose a novel algorithm to harvest
knowledge from a cultural artifact corpus [14], canonicalize it to a standard tax-
onomy and simultaneously enrich the taxonomy, and finally refine and infer any
missing information in the extracted facts. The proposed approach is designed
for distant supervision and hence can scale without annotations from a human
expert.

3 Harvesting Data from MOI [14] into CultKB

Table 1(a) shows the list of museums and their artifacts from the portal.
Table 1(b) shows the distribution of different categories of artifacts in the data.
The portal currently hosts information of over 90k artifacts including paintings,
manuscripts, coins, and sculptures.

Figure 2 shows a sample artifact with the associated meta-data. The artifact
meta-data is in the form of field-value pairs which includes the structured data
such as the title, creator and year of work along with the unstructured data
such as brief and detailed description about the artifact. We build CultKB our
knowledge base of cultural artifacts from MOI by harvesting this meta-data.

We begin with the canonicalization of the structured data to the YAGO
taxonomy [24]. We canonicalize the unstructured data to the YAGO taxonomy
using a voting based mechanism across different scoring functions. To account
for predicates not in the taxonomy, we use a density-based spatial clustering
approach to identify valid predicates and de-noise their multiple manifestations.
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Table 1. Statistics around various artifacts in the Museums of India web portal

(a) Artifacts in different museusm

Museums Artifacts
Salar Jung Museum, Hyderabad 23, 981
National Museum, New Delhi 21, 384
The Allahabad Museum 13, 277
Indian Museum, Kolkata 12, 228
Nagarjunakonda Museum 8, 400
Victoria Memorial Hall, Kolkata 2, 900
National Gallery of Modern Art, New Delhi 5, 423
National Gallery of Modern Art, Mumbai 1, 400
National Gallery of Modern Art, Bengaluru 500
Goa Museum 700

(b) Artifacts in top 10 categories

Category Artifacts
Painting 10207
Decorative Art 7227
Manuscript 7152
Coin 6714
Terracotta 4010
Miniature Painting 3889
Soldier 3843
Porcelain 3799
Anthropology 3710
Central Asian Antiquities 2930

Fig. 2. A sample artifact along with the associated structured and unstructured infor-
mation from Museums of India

We finally use a probabilistic soft logic based approach to infer missing facts in
the constructed knowledge graph.
Canonicalization of Structured Data: The structured data, in the form of
field-value pairs, naturally occurs in the <subject, predicate, object> format
with each distinct field representing an edge between the artifact and the corre-
sponding field value. Since the number of predicates in the structured data was
small, we identified the predicates in the structured data as a part of prepro-
cessing and manually mapped them to the appropriate predicates in the YAGO
taxonomy [24] after an initial set of candidate predicates being extracted via
string matching. The triples thus extracted are directly added to our knowledge
graph which has the subject/object as its nodes and the predicates as edges.

Canonicalization of Unstructured Data: For canonicalizing the unstruc-
tured text, the artifact description is preprocessed to resolve all co-referencing
pronouns using the Stanford Co-reference Parser [17]. All possible triples are
extracted from the processed text based on an open information extraction
(OpenIE) architecture [4,10]. OpenIE architecture identifies relation phrases in
sentences based on syntactic and lexical constraints and assigns a pair of noun
arguments for each extracted relation. For each triple, the entity type of sub-
ject and object are recognized using the Stanford Named Entity Recognizer [12].
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The OpenIE triple extraction is based on the sentence structure analysis and
therefore tends to be noisy.

To reduce the noisy triples and resolve redundant and ambiguous facts, the
entities (subject and object) and the predicates are mapped to the YAGO taxon-
omy [24]. For the entities, an edit distance is computed from the matching entities
in YAGO and the map beyond a threshold (σentity) is used as the canonicalized
entity.

The canonicalization of predicates is constrained on the nature of entities
associated in the artifact triples and that of YAGO triples by incorporating the
ontological knowledge of the relationships between entity types to remove noisy
triples. For example, the domain and range constraints DOMAIN(isWrittenBy,
book) and RANGE(isWrittenBy, person) specify that the relation ‘isWrittenBy’
is a mapping from entities with type book to entities with type person. The
appropriate YAGO predicate for a given triple is then identified based on an
ensemble of three approaches:

1. Semantic Mapping: The first approach captures the semantic similarity of
words in the phrase and the YAGO relations using a vector space model.
It involves computing the cosine similarity between the Word2Vec embed-
dings [18,19] of the relationships from artifact triples and those from YAGO.
Word2Vec captures the semantic space of the words and therefore such a
measure maps the relationships based on their semantic closeness to the rela-
tionships in the YAGO taxonomy.

2. Syntactic Mapping: In this approach, the resemblance of two predicates is
determined by the resemblance of the main verbs. A dependency parser is
used to extract the dependency tree from the unstructured source text and
a network of “cognitive synonyms” [20] of the root verb of the dependency
tree is identified. This network of synonyms is compared with the root verbs
of the YAGO relations to establish a correspondence between relations in the
syntactic sense.

3. Pattern based Mapping: Two verbal phrases are likely to be similar if they
share some common pattern of words, with a possible difference of some
words like helper verbs and adjectives. With this intuition, the last approach
is extended from [21] which obtains textual patterns in binary relations, trans-
forms them into syntactic-ontologic-lexical patterns using frequent item set
mining [13] and constructs a taxonomy for these patterns. We match the clos-
est YAGO relationship corresponding to a current pattern taxonomy triple
(including the respective POS tags) and assign it as the predicate.

An empirical threshold is used for every approach to find suitable predicate in
the taxonomy. A ranked order of target predicates (beyond the threshold) from
all the 3 methods is combined based on a voting mechanism to determine the
best canonicalized relationship for the current triple.

Enriching the Taxonomy with Cultural Heritage Specific Predicates:
Canonicalization based on a standard taxonomy does not standardize all the
extracted triples due to the uniqueness of the relationships in the cultural arti-
facts. Since the OpenIE predicates are extracted from the sentences, there are
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multiple manifestations of the same relationships in the database. This calls for
a novel approach to enrich the initial taxonomy with predicates specific to the
cultural heritage.

Starting with the mapped and unmapped relations, cosine similarity between
the Word2vec [18,19] embeddings of the relationships is used to perform a
density-based spatial clustering (DBSCAN) [8]. DBScan is capable of identifying
the number of clusters simultaneously. This resulted in 20,000 different relation
types being grouped into 7000 clusters. Incorporating a constraint of maintain-
ing the same NER tags of the subject and object throughout the cluster resulted
in partitioning into 9,000 clusters.

For the rest of the clusters, if a predicate from YAGO taxonomy is a part of
the cluster, the cluster is tagged with the corresponding YAGO predicate and
all the facts are updated with this predicate. In the absence of such a predicate,
a representative predicate was chosen based on its frequency of occurrence in
the corpus. The NER tags of the subject and object of the associated predicate
are used to define the domain and range of the new relationship. Clusters with
a significant relation (based on the threshold) are added to the taxonomy and
the rest are ignored.

Fig. 3. Illustration of clustering algorithm

Figure 3 shows an illustration of various steps in the clustering process. The
unmapped relations are first clustered depending upon the verb ‘attack’ or ‘born’.
‘was born at’ and ‘was born on’ are originally in the same cluster but the corre-
sponding NER tags are ‘location’ and ‘date’ respectively. Hence, they are parti-
tioned into different clusters.

Inferring Missing Information: Since the facts are extracted from manually
curated content, the knowledge graph is subject to the Open World Assump-
tion, which states that any missing triple is not necessarily false, just unknown.
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The knowledge graph is enriched with new triples based on a probabilistic app-
roach that simultaneously identifies the missing information, strengthens the
confidence value of correct facts and resolves conflicts in the data.

Logical rules are extracted via association rule mining [13] taking into account
the Partial Completeness Assumption (PCA) which states that if there is at least
one object associated with a subject through a relation then the relationship is
considered complete. This implies that the PCA makes predictions only for those
entities that have an object for the relationship, and remains silent otherwise.
Logical rules, of the form,

<E1, R1, E2> ∧ <E2, R2, E3> ∧ . . . ∧ <En, Rn, En+1> ⇒ <E1, Rn+1, Rn>,

encode frequent correlations in the data. The left-hand side of the implication
is called the body and the right-hand side is the head. The rules are assigned a
normalized confidence score based on their support in the extracted knowledge
base. A support for a rule is defined as the number of distinct subject and object
pairs in the head of all the instantiations that appear in the knowledge base. The
confidence score is calculated as the ratio of the support of the rule to the number
of all the known true facts together with the assumed false facts in the extracted
knowledge graph.

A Probabilistic Soft Logic (PSL) model [22] is defined based on the rules
from the frequent items that includes the input set of rules along with the pre-
dicted triples. PSL minimizes a Markov Hinge-Loss function [3] that uses the
input triples and their confidence scores to infer new facts along with their prob-
abilistic confidence. PSL forms a probability distribution over all the interpre-
tations/facts possible out of the derived and extracted facts and then infers the
“most likely” facts. The task of “most likely explanation” inference corresponds
to finding the confidence of each fact in the knowledge graph that maximizes
the probability distribution over the derived facts. Confidence scores of facts
endorsed by multiple rules are amplified, thus reinforcing the correct triples in
the knowledge graph.

4 Evaluation of CultKB

We extracted 847,547 facts from the structured data input of 90,193 artifacts.
The canonicalization of triples from the unstructured data to the YAGO taxon-
omy yielded 3615 more facts. The unmapped relations from the above step went
through the clustering phase and gave us further 147,176 facts and added 5,502
new relationships to the taxonomy. Finally, the enrichment phase added 408,752
more facts to the knowledge base summing up to an overall of 1,407,090 facts.

In the absence of a gold standard dataset, we test the correctness of the facts
in the knowledge base via human annotations from Amazon Mechanical Turk
(AMT). Each AMT worker was presented with a text snippet from the Museums
of India dataset to evaluate the correctness of the facts extracted from them.
Each worker annotates 3 facts extracted from the presented passage, with one
of the subject, predicate or object missing. The worker is tasked with selecting
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the appropriate option for the missing part from a list of options while ensuring
the correctness of the completed fact. Occasionally, none of the options may
correspond to the correct fact. We, therefore, allowed the AMT worker to opt
for “None of the above” for such cases. Note that we are not evaluating the
correctness of facts itself, but only the “correctness of the facts” as present in
the text. Such an evaluation technique allows us to evaluate the correctness of
the facts extracted by the algorithm, as well as establish ground truth for future
experiments.

Each fact or triple is evaluated by 3 annotators. We used the Cohen’s Kappa
score to check for inter-annotator agreement which measures the agreement
between categorical options, while simultaneously accounting for agreement by
chance. Hence it is more robust than simple percentage calculation. We simulated
two annotators by randomly selecting 2 turkers for each fact and calculating the
agreement between them. This is repeated for 1,000 iterations and we report on
the median of these iterations. We obtain a Cohen’s Kappa score of 0.763 with
95% confidence interval of 0.0455 indicating high inter-annotator agreement.
More details about the evaluation is provided in the supplementary material.

Table 2. Accuracy of facts in CultKB. We also report on the Wilson interval for
α = 5% to ensure that the accuracy values are significant.

Stage Accuracy-interval

YAGO canonicalized 63.03% ± 18.15%

Sequential clustering 82.16% ± 6.18%

Overall after enrichment 75.50% ± 6.67%

Table 2 shows the accuracy of CultKB facts extracted. The accuracy of the
facts canonicalized to YAGO (where both the predicates and the entities are
canonicalized) are lower than the rest but is reasonable at 63.03% indicating
that the canonicalization to a taxonomy is fruitful when the entire triple can be
canonicalized.

The accuracy increases when the predicates are enriched using the clustering
technique and this further establishes the need for building a base taxonomy
to the needs of the cultural artifacts. The higher accuracy also justifies the
ability of the proposed approach to introduce the culture specific predicates
thus addressing the inadequacies of the standard taxonomy.

An overall accuracy of 75.50% ± 6.67% of the facts is comparable to that of
DBpedia [2] (81% [25]) built from a cleaner and more structured source estab-
lishing the integrity of the constructed knowledge base.

Exploring CultKB: Table 3 shows the frequency of facts with a given rela-
tionship for the top 20 relationships in CultKB; note that there exists a long
tail of relations with lower frequency counts. This count varies from as high as
1,578 for relation “painted” to as low as 69 for the relation “created”. The rela-
tions ‘painted’, ‘is Fragment of’, ‘painted from’, ‘is decorated with’, ‘has depicted
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Table 3. Distribution of different relationships in CultKB

Predicate Count Predicate Count

painted 1578 belongs to 600

is Fragment of 544 is written in 497

placedIn 483 depicts 466

studied art at 376 visited 201

is Head of 194 is A handle of 158

consists of 131 was born in 131

has studied 129 is written by 126

painted from 123 is decorated with 106

is Drawing of 100 is seated in 88

is seated on 86 has depicted a portrait of 74

Fig. 4. Random subgraph from CultKB

a portrait of’ reflect the facts around the intrinsic details of an artifact itself,
while relations like ‘studied art at’, ‘visited’, ‘created’, ‘belongs to’ reflect the
information about the artist involved.

The constructed knowledge graph facilitates a navigation through the var-
ious artifacts of the Museums of India and allows to hop between different arti-
facts sharing the same facets. Figure 4 shows such a sub graph of CultKB.

The artifacts are labelled with their corresponding title. The labels on edges
are the relationships between nodes. We can visualize information such as
‘placedIn’, ‘created’, ‘wasCreatedOnDate’ for an artifact as well as can also see
how different artifacts are related to each other. It is easy to see that the artifacts



322 A. Sancheti et al.

are placed in the ‘Salar Jung Museum, Hyderabad’. Note that such a navigation
is much richer than the one proposed in PATHS [1] since PATHS connects related
artifacts without providing any reason for connections. But our knowledge graph
representation naturally allows for a deeper artifact navigation experience.

A combination of the navigation experience and the retrievability of the orga-
nized data in CultKB allows for interesting knowledge discovery from the data.
For example, the path between two artists ‘Sheshagiri Rao’ and ‘Vinayak S.
Masoji’ in Fig. 4, whose paintings are housed in Salar Jung Museum, reveals
that the two painters are part of the school of “Modern Paintings”. Such con-
nections are impossible without an organized representation like CultKB.

The knowledge graph also aids in easy accessibility of facts in the original
data. Recall the example in Fig. 1, where a query on “tempera images by jamini”
on the Museums of India portal yields irrelevant results (Fig. 1(a)). The struc-
tured knowledge representation in CultKB facilitated the results via a “path
query” that connects the entities ‘Jamini Roy’ and ‘Tempera Images’ in the
graph yielding the result in Fig. 1(b) which shows that there are four paintings
by ‘Jamini Roy’ in the tempera style. Note that algorithms to understand and
serve such queries are beyond the scope of this paper, but CultKB can aid in
serving such queries.

5 Conclusion

We studied the problems with the accessibility of cultural heritage artifacts and
proposed a novel approach to construct a knowledge base for the artifacts in
Museums of India. The need for such a domain-specific knowledge base is jus-
tified due to the lack of facts supporting Indian cultural artifacts present in
global knowledge bases like YAGO [24], DBpedia [2]. Evaluation of the con-
structed knowledge base with human annotators showed acceptable accuracy
along the scales of existing knowledge bases. The structured knowledge graph
thus obtained facilitates both knowledge discovery and enhanced retrieval of
the cultural artifacts. Although, we had applied the proposed approach to the
domain of cultural artifacts, the approach is generic and can be easily extended
to other domains as well.
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Abstract. Typical pseudo-relevance feedback models assume that the
first-pass documents are the most relevant and use those documents to
select feedback terms for query expansion. In real applications, however,
short documents, such as microblogs, may not have enough information
about the searched topic, thus increasing the chance that irrelevant doc-
uments will be included in the initial set of retrieved documents. This
situation reduces a feedback model’s ability to capture information that
is relevant to users’ needs, which makes determining the best documents
for relevant feedback without requiring extra effort from the user a crit-
ical challenge. In this paper, we propose an innovative mechanism to
automatically select useful feedback documents using a topic modeling
technique to improve the effectiveness of pseudo-relevance feedback mod-
els. The main idea behind the proposed model is to discover the latent
topics in the top-ranked documents that allow for the exploitation of the
correlation between terms in relevant topics. To capture discriminative
terms for query expansion, we incorporated topical features into a rel-
evance model that focuses on the temporal information in the selected
set of documents. Experimental results on TREC 2011–2013 microblog
datasets illustrate that the proposed model significantly outperforms all
state-of-the-art baseline models.

Keywords: Microblog retrieval · Topic model · Query expansion
Pseudo relevance feedback

1 Introduction

Pseudo-relevance feedback (PRF) is a technique for using top-ranked documents
to boost document retrieval performance. However, the top-ranked documents
include both relevant and irrelevant documents. In real applications, such as
microblog retrieval, terms selected from top-ranked documents do not always
represent the users’ information needs because that they encounter language
challenges, such as mismatched vocabularies and queries that are often too short
or ambiguous. Microblog documents also have unique aspects that set them apart
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from other document types. These aspects include insufficient information, short
length, time sensitivity and unstructured phrases [4]. Therefore, query expansion
features (e.g. terms) from top-ranked documents that include microblogs can
introduce a lot of irrelevant feature terms.

The challenging issue remains of how to infer the relevant features (e.g.,
terms, topics or themes) from top-ranked documents. Relevant documents focus
more on the topic being searched and are separated from irrelevant documents
[27]; however, both relevant and irrelevant documents share many common terms
[5,21,35]. Therefore, term-based methods are limited when working to identify
relevant features. Recently, we have observed that there are several focused topics
in relevant documents, but the topics in irrelevant documents are diverse. This
makes it more likely to find relevant topics in the top-ranked documents because
the number of top-ranked relevant documents is normally higher than the num-
ber of top-ranked irrelevant documents, and the frequency of a focused topic is
likely greater than the frequency of all the diverse irrelevant topics. Most exist-
ing PRF-based [10,26,29,30,36] methods use the top-ranked documents without
fully assessing their contents because it is impossible to determine true relevance
feedback. The basic hypothesis is that the top-ranked documents are relevant to
a short query, include much relevant information, and may be helpful for query
expansion. However, this hypothesis does not always hold in the microblogo-
sphere [30,35] due to the overwhelming amount of extraneous and redundant
information it includes.

In this paper, we address this challenging issue by automatically predicting
the best top-ranked documents by using a topic modeling technique. The pro-
posed method views parameter k (top-k documents) as a random variable and
tries to work out the best k value for each query-based pseudo-relevant feed-
back document. The hypothesis states that the proposed method provides better
query expansion than the approach of using a fixed-k for all feedbacks. The pro-
posed method includes two stages. In the first stage, we automatically discern
the top-k documents among the top-ranked documents for a given query. More
specifically, the random variable k arranges the top-ranked documents into dif-
ferent small subsets. Unlike term-based approaches, such as TF-IDF [34], BM25
[33], RFD [20] and two-stage model [22], which have difficulty identifying rele-
vant terms in PRF due to the terms’ weak discriminative power, topic modeling
techniques, such as Latent Dirichlet Allocation (LDA) [7], can find some latent
topics for describing the focusing topics in PRF by using a more discriminative
power than terms. We then use the latent topics to estimate how precise the top-
k documents will be in helping to select the best k value. In the second stage,
we use the top-k documents selected from the first stage to do the query expan-
sion which uses both lexical features and latent topics to select possible relevant
terms for the original query. It also considers the temporal distribution of the
recent documents and provides a model to combine both the lexical features and
latent topics effectively.

The main contributions of this paper include the following. (1) We propose
a topic-based model to automatically determine the best (most likely) top-k
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documents from PRF for a given query (described in Sect. 3.1); and (2) from the
selected relevant feedback, we combine the relevance features with topical fea-
tures to select discriminative features for query expansion taking in account their
temporal distribution (described in Sect. 3.2). We conducted multiple experi-
ments in real-time microblog datasets published by TREC 2011–2013. The eval-
uation was accomplished by comparing the proposed method with the state-of-
the-art baseline models. The evaluation results showed that the proposed method
performs significantly better than all baseline models for the microblog retrieval
task. To the best of our knowledge, the proposed model is the first to inte-
grate automatic query-based selection model into pseudo-relevance feedback for
microblog retrieval application without any human efforts or external evidence,
such as knowledge base.

2 Related Works

Query expansion approaches based on PRF are widely used in microblog retrieval
research [4,30]. Miyanishi et al. [30] proposed a relevance feedback model based
on a two-stage relevance feedback that models search interests through manual
tweet selection and the integration of lexical evidence into its relevance model.
Lin et al. [24] utilised PRF to get relevant information and the graph-based
model-generated storyline for a given query. To emphasise the short-term inter-
ests of user information needs, Albakour et al. [2] applied PRF to expand the
user profile and tackle the sparsity problem. Using global evidence, such as Free-
base or Probase, [15,26,36] proposed a two-stage feedback entity model based
on a mixture strategy developed by observing the underlying entities in the orig-
inal users’ intents. In fact, utilising external evidence, such as Wikipedia under
PRF framework requires a double run for a query, and it can be increased the
complexity efficiency [8]. The majority of the above contributions assume that
the top-ranked documents are relevant to the user’s information needs.

Temporal signal has been extensively utilized in earlier microblog retrieval
studies, proving that time is vital to reflect the relevance of the feedback [12,26].
To discover the relationship between time and relevance, Li and Croft [19] pro-
posed a time-based language model by integrating the time factor and rele-
vance models. Efron and Golovchinksy [13] combined temporal information from
first-pass documents to estimate the rate parameter for the query’s likelihood
model and used PRF to estimate the expansion query and show the effective-
ness of recent user information needs. To discover users’ behaviour using recency
features, Choi and Croft [9] combined temporal evidence from PRF into the
relevance model to improve the query expansion based on user attitude (e.g.,
retweet). Relevant information in a real application, such as microblog retrieval,
tends to cluster together in time (i.e., event). Based on this idea, Efron et al. [14]
proposed a retrieval model for microblog searchs that used temporal feedback
to estimate the density of relevant information.

Recently, probabilistic topic mining models, such as LDA [7], have received
much attention in the information retrieval research community [6,23,28,29].
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LDA is one of the state-of-the-art topic models and holds the assumption that
each document in a given data collection could have multiple topics and the data
collection itself could also contain more than one topic. Andrzejewski and Buttler
[6] proposed an LDA-based model that distinguishes the potentially relevant
latent topics that are manually chosen by the user. It then expands the original
query from the selected topic by using the most associated terms. However, the
user’s manual efforts are expensive in real applications, such microblog retrieval
systems. To extend LDA applications in microblogs, Kotov et al. [17] utilised
the relevance model expansion for microblog collection that are publishing on
geographical area. To infer topic distributions of short-documents over time, a
recent study by Liang et al. [23] proposed a dynamic clustering topic model to
cluster short documents using a dynamic topic model. The proposed framework
utilised LDA to observe the quality of relevant information in the first-pass
documents and determine the best documents for each query based under PFR
framework that does not rely on user efforts or external knowledge.

3 The Proposed Model

3.1 Determining Top-k Documents

The main purpose of this stage is to discover the topical features of a set of ranked
documents using LDA [7]. This stage emphasises the relevant information (i.e.
theme) of the first-pass documents and enables the discovery and preservation
of essential statistical relationships. LDA is typically a generative probabilistic
model to learn the semantic mixture of topics from a set of documents [16]. For
the ith word in document d, denoted as wi, the probability of wi in a document
is defined as:

P (wi|d) =
V∑

j=1

P (wi|zj) × P (zj |d) × P (zj) (1)

where P (wi|zj) is the multinomial probability distribution over all words wi for
zj , P (zj |d) is the topic assignment in document d, P (zj) is the topic assignment
of topic zj and V denotes the number of topics.

The LDA result consists of a mixture of latent topics. Each topic zj is defined
by a multinomial distribution over words, denoted as φj = (ϕj,1, ϕj,2, . . . , ϕj,n)
where ϕj,h is the probability of a word wi in the topic zj , and the sum of all
elements in the topic space denotes as

∑n
h=1 ϕj,h = 1. For all topics Z over all

words in a document, Φ = (φ1, φ2, . . . , φV ) is the composition for each topic zj .
Each document is defined by a multinomial distribution over topics Z as Θd =
(ϑd,1, ϑd,2, . . . , ϑd,V ) where ϑd,j means the distribution of topic zj in document
d, and the sum of all elements in the Θd denotes as

∑V
j=1 ϑd,j = 1. The posterior

distribution is estimated for exact inference using the Gibbs sampler [32].
Here, the probability distribution over words in the topics space emphasises

the degree to which the ranked documents relate to the users’ information needs.
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Fig. 1. Selecting pseudo-relevance feedback

Let Ωk represent a set of top-k documents in the top-ranked documents. Based on
the LDA, we can compute the probability distribution of a word wi in documents
by using Eq. 1. In this paper, we assume feature words come from latent topics
because we need to work out the probability of feature words in Ωk rather than
in a specific document. We use the following equation to calculate P (wi|Ωk).

P (wi|Ωk) =

∑
wi∈d,d∈Ωk

P (wi|d)
|{d|d ∈ Ωk, wi ∈ d}| (2)

In next step of the first stage, we assume that the top-k pseudo documents
in Ωk are relevant. Let Ω be the top-ranked documents for a given query, we
consider Ω = {Ωσ∗1, Ωσ∗2, ..., Ωσ∗m} where σ is an incremental parameter and
the number of subsets are m = |Ω|

σ . For each candidate training subset Ωσ∗x ⊆ Ω,
σ ∗x indicates the size of the subset, (i.e., |.| = σ ∗x). For example, if Ω is equal
50 and an incremental parameter σ is equal 10, thus, the number of subsets
that we considered is 5 = 50

10 . Figure 1 shows the process of selecting the top-k
pseudo-relevant documents.

We examine the features in each candidate subset Ωσ∗x. The discriminative
power of word wi in a subset that has more relevant documents will be signifi-
cant. To do this task, we observe the probability distribution P (wi|Ωσ∗x) from
the topic level of features in the candidate subset Ωσ∗x as in Eq. 2. When the
number of features in the next subset dramatically increase, it indicates more
extraneous features may be introduced and thus more uncertain information
could be included in the relevance feedback model. Finally, the largest integral
of each candidate subset in all the top-k ranked documents is more likely to be
relevant feedback when processed as follows:

argmax1≤x≤m

n∑

i=1

(
P (wi|Ωσ∗x)

σ ∗ x

)
(3)

where the probability distribution P (wi|Ωσ∗x) = 0 if wi /∈ Ωσ∗x.
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3.2 Expansion Terms Selection

During the second stage in our proposed model, expansion terms are selected
using the relevance model for each selected document in the top-ranked docu-
ments. The selected documents derived from the initially retrieved documents
described in Sect. 3.1 are utilised to estimate the relevance model. By following
the work in [1,18], the relevance model is re-weighted so that the candidate terms
w are on top of the selected documents Ωk as follows:

P (w|Q) ∝ P (w|Ωk) +
∑

d∈Ωk

P (w|d)P (d)
n∏

i=1

P (qi|d) (4)

where P (w|Ωk) is the topical distribution weight of word w on the relevant
topics of selected documents Ωk (as estimated in Eq. 2),

∏n
i=1 P (qi|d) is the query

likelihood with Dirichlet smoothing for document d and the document prior P (d)
is usually assumed to be uniform. However, the quality of the documents (e.g.,
microblogs) is not uniform due to the documents’ timestamp variation. The user
usually favors recent relevant information in a microblog search system. In this
paper, we follow the work of [19] to integrate the temporal information into the
recency-based document P (d|Td) in Eq. 4, as follows:

P (d|Td) = r ∗ e−r∗(TQ−Td) (5)

where r is the parameter that controls the temporal information, TQ is the time
the query was issued and Td is the time the document was published.

The final phase of the proposed model is a linear combination of the relevance
model P (w|Q) and the original query model θQ we computed as follows:

P (w|θQ′) = λP (w|θQ) + (1 − λ)P (w|Q) (6)

where λ ∈ [0, 1] is a free parameter. Then, we estimate the simple form for the
original query model as follows:

P (w|θQ) =
c(w,Q)∑

w′∈Q c(w′, Q)
=

c(w,Q)
|Q| (7)

where c(w,Q) is the count of word w in Q, and |Q| is the length of the query.

4 Experiments and Results

4.1 Datasets

The experiments were conducted using the TREC 2011 microblog collection,
called Tweets2011 [31], and the TREC 2013 microblog collection, called
Tweets2013 [25]. The size of the Tweets2011 dataset is about 16 million
tweets over a period of two weeks (January 23, 2011 to February 8, 2011),
which included important events such as, the US Super Bowl and the Egyp-
tian revolution. However, the size of the Tweets2013 dataset is much larger
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than Tweets2011, which is about 240 million tweets, and covers a period of
two months (February 1, 2013 to March 31, 2013). The Tweets2011 dataset
has two topic sets that include 49 (MB2011) and 59 (MB2012) topics while
Tweets2013 has a topic set that contains 60 (MB2013) topics. Each official
query consist of the query number, title and query time stamp. In this paper, we
use all topics for both datasets. The National Institute of Standards and Technol-
ogy (NIST) assessors used a standard pooling strategy for evaluation, assigning
multi-scale judgments to each tweet denoted as highly relevant, relevant and not
relevant.

Pre-processing tweets was a critical stage to improve the retrieving model
effectiveness [3]. In these experiments, we treated the tweets and queries text
based on the following steps. The first step was tweet filtering, Non-English
tweets make data noisy, so we discarded these tweets using language detector
called ldig1. We also filtered out tweets that contain non-ASCII characters, such
as emojis and symbols. Then, following the microblog tracking guidelines2, we
normalised retweets that started with “RT @”. Finally, we used the Porter algo-
rithm to remove stop words and stem word. All tweets in these collections were
indexed using Apache Lucene library3.

4.2 Experiment Metrics

The metrics applied were broadly acknowledged and settled assessment mea-
surements in TREC 2011–2014 Microblog tracks [25,31]. The evaluation metrics,
which are the precision at N (P@N) and the Mean Average Precision (MAP),
are extensively utilized in information retrieval and the official microblog met-
ric at the TREC Microblog tracks. Precision p took all retrieved tweets into
account. We fix N to 30 to adjust with the cut-off utilized in the previous TREC
Microblog tracks. MAP was figured by measuring the precision of each relevant
tweet and then averaging the precision over all the quires of the top 1000 tweets.
All experiments took into account the standard topic set utilised as a part of the
TREC 2011–2013 datasets, called allrel. Moreover, a statistical difference in our
evaluation was utilised with a two-tailed paired t-test with level of p value. The
statistical improvement happened when the value is small enough (p < 0.05%).

4.3 Parameter Tuning

We set λ = 0.6 in our experiment settings for the relevance model in Eq. 6.
For the relevance model settings, we set |Ω| = 50 top-ranked documents and
the number of expansion terms was n = 30. The value of the temporal rate
parameter r in Eq. 5 was 0.01 based on reference [36]. In this experiment, we
tuned all the parameters of the proposed model TBS with TREC 2011 topics
from the Tweets11 collection.

1 http://github.com/shuyo/ldig/.
2 https://github.com/lintool/twitter-tools/wiki/.
3 http://lucene.apache.org/.

http://github.com/shuyo/ldig/
https://github.com/lintool/twitter-tools/wiki/
http://lucene.apache.org/
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Different experimental parameters settings were used with our framework.
In our experimental framework, we utilised the Java Machine Learning for Lan-
guage Toolkit (MALLET)4 in our experimental framework. The hyperparame-
ters settings for the LDA model was α = 50/V and β = 0.01 as was recommended
in [11].

4.4 Baseline Algorithms

The first baseline was a probabilistic, state-of-the-art retrieval model BM25 [33]
that can estimate the similarity between document d and query Q containing
words w. The k1 and b parameters were the experimental parameters (in this
paper we set k1 = 0.9 and b = 0.4, respectively). In the second baseline, the query
likelihood model with Dirichlet smoothing that was referred as QL utilised the
Dirichlet smoothing parameter μ = 100 based on the settings in paper [26].
Recency, which is one of the simplest techniques that allows time to influence
the ranking model, was given by Li and Croft [19], who proposed a document
prior that favoured recently published documents. Kernel Density Estimation
KDE [14] is a state-of-the-art model that estimates the temporal density of
relevance feedback for microblog documents. The final baseline is the RM3
relevance model [1] used to compare with the proposed model. In RM3, for a
given query the relevance model is estimated and then interpolated with the
original query with a control parameter.

4.5 Experimental Results

Table 1 shows the P@30 and MAP performances of the proposed model TBS
compared with the baseline approaches that had statistically significant test
results. The change in percentage is denoted as ch%. The superscript † denotes
statistically significant improvements over the state-of-the-art baseline model
RM3 where all p values were less than 0.05. The best result per evaluation
metric is marked in bold font. All the parameters were tuned on the Tweets2011
collection with MB2011 topics. Then, we tested the proposed model TBS on
the Tweets2011 and Tweets2013 collections with MB2012 and MB2013
topics.

It can be clearly seen in our experiment that our model TBS outperformed
and showed significant improvement over the baseline models in all metrics across
all microblog TREC collections 2011-2013. Table 1 shows that for microblog
TREC 2011 topics, the TBS improved over the P@30 by a maximum improve-
ment of 11.45% compared to KDE and improved by a 4.60% minimum compared
to RM3. The TBS improved over the MAP by a maximum of 24.55% compared
to KDE and a minimum of 14.02% compared to RM3. For microblog TREC
2012 topics, the TBS improved the P@30 by a maximum of 12.45% compared to
KDE and a 2.81% minimum compared to RM3. TBS improved the MAP by a

4 http://mallet.cs.umass.edu/.

http://mallet.cs.umass.edu/
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Table 1. Results comparison of the proposed method TBS and baselines of MB2011,
MB2012 and MB2013 where symbol † represents a (p < 0.05) statistically significant
improvement over RM3.

MB2011 MB2012 MB2013

Model P@30 MAP P@30 MAP P@30 MAP

TBS 0.4169† 0.4232† 0.3729† 0.2680† 0.5226† 0.3506†
BM25 0.3599 0.3310 0.3270 0.2118 0.4383 0.2603

QL 0.3714 0.3561 0.3327 0.2248 0.4544 0.2825

Recency 0.3776 0.3581 0.3349 0.2255 0.4694 0.2875

ch% +10.42% +18.19% +11.35% +18.86% +11.33% +21.94%

KDE 0.3741 0.3398 0.3316 0.2249 0.4644 0.2791

ch% +11.45% +24.55% +12.45% +19.18% +12.53% +25.61%

RM3 0.3986 0.3712 0.3627 0.2534 0.4467 0.3035

ch% +4.60% +14.02% +2.81% +5.77% +16.99% +15.51%

maximum of 19.18% against compared to KDE and a 5.77% minimum against
compared to RM3.

To confirm the superiority of the proposed model, we tested TBS on the
microblog TREC 2103 collections, which were much larger than the TREC 2011-
2012 collections, and showed the variations in performance. For microblog TREC
2103 topics, Table 1 shows that our model TBS improved the MAP by a max-
imum and minimum of 25.61% and 15.51% over KDE and RM3, respectively,
while the corresponding increments of P@30 were a maximum of 16.99% and
minimum of 11.33% over RM3 and Recency, respectively.

4.6 Discussions

The proposed framework’s performance can be affected by using several param-
eters settings. This section shows and analyses the robustness of the proposed
model against a coefficients setting that could affect the overall performance.
All these experiments in this section were done on the microblog TREC 2011
collection that was utilized for parameters tuning.

Figure 2a shows the proposed model TBS’s performance regarding the MAP
across a different number of top-ranked documents Ω (from 10 to 200). The
proposed model TBS achieved the optimal performance when Ω = 50. Figure 2b
illustrates the sensitivity for changing the number of expansion features of the
TBS model. We can observe that, when the number of expansion features was
equal to 30, TBS achieved the optimal performance regarding the MAP value.
As we mentioned in Sect. 3.2, we integrated the topic model with the relevance
feedback in Eq. 4 to get the most likely ranked documents and then interpolated
the features with the original query in Eq. 6. At this stage, parameter λ controlled
the expansion features’ weight with the original query features. Figure 2c shows
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Fig. 2. Sensitivity of (a) the number of feedback documents Ω, (b) expansion terms,
(c) interpolation parameters λ, (d) the number of topics V and (e) the incremental
factor parameter σ for the TBS at microblog TREC 2011 collection.

the performance of TBS across different λ. When λ = 1, we completely ignored
using the relevance model features and the TBS performance degenerates into
the baseline method QL. While λ = 0, we completely ignored the original query
and only used the relevance model features. From Fig. 2c, we could observe that,
when setting the interpolation coefficient λ = 0.6, TBS obtained its optimal
performance regarding the MAP value.

We will demonstrate how the topic numbers can affect the proposed model.
More specifically, based on the analysis of the above figures, we can fix a number
of feedback documents to 50, the number of expansion terms is to 30 and the
interpolation parameter λ is to 0.6. Figure 2d shows the performance across a
different number of topics. When the number of topics was greater than one, the
performance of the proposed model TBS become more stable. The TBS per-
formance was stable against different numbers of topics, and when the number
of topics was seven, it obtained the optimal performance regarding the MAP
value. In Sect. 3.1, we investigated the proposed model TBS to see its perfor-
mance according to the incremental coefficient. Based on the previous param-
eters analysis, we fixed the feedback number to 50, the expansion terms to 30,
the interpolation parameter λ to 0.6, and the number of topics is to 7. Figure 2e
shows the TBS’s performance across different values of an incremental param-
eter σ. It is clearly observed that when an incremental parameter σ = 10, TBS
obtained the best performance across other values.
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5 Conclusions

In real applications, such as microblog retrieval, the challenging task is how to
infer user information needs and to retrieve high-quality results without requir-
ing extra effort from user. PRF is an automatic technique that uses top-ranked
documents to enhance retrieval performance. However, top-ranked documents in
the microblog retrieval application are not optimal for representing the initial
user information needs. To tackle this challenge, in this paper, we proposed a
method that can automatically determine the best the top-rank documents using
a topic modeling technique. The proposed method views the top-k documents
as a random variable and then find the best k value for each query-based PRF.
Furthermore, lexical features and latent topics are combined to select possible
relevant terms for the original query based on temporal evidence. We exhib-
ited that the proposed model’s performance was evaluated on real-time datasets
from TREC collections 2011–2013, and the experimental results showed that our
model achieved significant improvement when compared to all state-of-the-art
baseline models for the microblog retrieval task.
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Abstract. Word2Vec’s Skip Gram model is the current state-of-the-art
approach for estimating the distributed representation of words. How-
ever, it assumes a single vector per word, which is not well-suited for rep-
resenting words that have multiple senses. This work presents LDMI, a
new model for estimating distributional representations of words. LDMI
relies on the idea that, if a word carries multiple senses, then having a
different representation for each of its senses should lead to a lower loss
associated with predicting its co-occurring words, as opposed to the case
when a single vector representation is used for all the senses. After iden-
tifying the multi-sense words, LDMI clusters the occurrences of these
words to assign a sense to each occurrence. Experiments on the contex-
tual word similarity task show that LDMI leads to better performance
than competing approaches.

1 Introduction

Many NLP tasks benefit by embedding the words of a collection into a low
dimensional space in a way that captures their syntactic and semantic informa-
tion. Such NLP tasks include analogy/similarity questions [11], part-of-speech
tagging [2], named entity recognition [1], machine translation [12,16] etc. Dis-
tributed representations of words are real-valued, low dimensional embeddings
based on the distributional properties of words in large samples of the language
data. However, representing each word by a single vector does not properly
model the words that have multiple senses (i.e., polysemous and homonymous
words). For multi-sense words, a single representation leads to a vector that is
the amalgamation of all its different senses, which can lead to ambiguity.

To address this problem, models have been developed to estimate a different
representation for each of the senses of multi-sense words. The common idea
utilized by these models is that if the words have different senses, then they
tend to co-occur with different sets of words. The models proposed by Reisinger
and Mooney [14], Huang et al. [10] and the Multiple-Sense Skip-Gram (MSSG)
model of Neelakantan et al. [13] estimates a fixed number of representations per
word, without discriminating between the single-sense and multi-sense words.
As a result, these approaches fail to identify the right number of senses per word
and estimate multiple representations for the words that have a single sense.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 337–349, 2018.
https://doi.org/10.1007/978-3-319-93037-4_27
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In addition, these approaches cluster the occurrences without taking into con-
sideration the diversity of words that occur within the contexts of these occur-
rences (explained in Sect. 3). The Non-Parametric Multiple-Sense Skip-Gram
(NP-MSSG) model [13] estimates a varying number of representations for each
word but uses the same clustering approach and hence, is not effective in taking
into consideration the diversity of words that occur within the same context.

We present an extension to the Skip-Gram model of Word2Vec to accurately
and efficiently estimate a vector representation for each sense of multi-sense
words. Our model relies on the fact that, given a word, the Skip-Gram model’s
loss associated with predicting the words that co-occur with that word, should
be greater when that word has multiple senses as compared to the case when
it has a single sense. This information is used to identify the words that have
multiple senses and estimate a different representation for each of the senses.
These representations are estimated using the Skip-Gram model by first clus-
tering the occurrences of the multi-sense words by accounting for the diversity
of the words in these contexts. We evaluated the performance of our model for
the contextual similarity task on the Stanford’s Contextual Word Similarities
(SCWS) dataset. When comparing the most likely contextual sense of words,
our model was able to achieve approximately 13% and 10% improvement over
the NP-MSSG and MSSG approaches, respectively. In addition, our qualitative
evaluation shows that our model does a better job of identifying the words that
have multiple senses over the competing approaches.

2 Definitions, Notations and Background

Distributed representation of words quantify the syntactic and semantic relations
among the words based on their distributional properties in large samples of the
language data. The underlying assumption is that the co-occurring words should
be similar to each other. We say that the word wj co-occurs with the word wi if
wj occurs within a window around wi. The context of wi corresponds to the set
of words which co-occur with wi within a window and is represented by C(wi).

The state-of-the-art technique to learn the distributed representation of
words is Word2Vec. The word vector representations produced by Word2Vec
are able to capture fine-grained semantic and syntactic regularities in the lan-
guage data. Word2Vec provides two models to learn word vector representations.
The first is the Continuous Bag-of-words Model that involves predicting a word
using its context. The second is called the Continuous Skip-gram Model that
involves predicting the context using the current word. To estimate the word
vectors, Word2Vec trains a simple neural network with a single hidden layer to
perform the following task: Given an input word (wi), the network computes the
probability for every word in the vocabulary of being in the context of wi. The
network is trained such that, if it is given wi as an input, it will give a higher
probability to wj in the output layer than wk if wj occurs in the context of wi

but wk does not occur in the context of wi. The set of all words in the vocabulary
is represented by V . The vector associated with the word wi is denoted by wi .
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The vector corresponding to word wi when wi is used in the context is denoted
by w̃i . The size of the word vector wi or the context vector w̃i is denoted by d.

The objective function for the Skip-Gram model with negative sampling is
given by [8]

minimize −
|V |∑

i=1

(
∑

wj∈C(wi)

log σ(〈wi , w̃j 〉) +
∑

k∈R(m,|V |)
wk /∈C(wi)

log σ(−〈wi , w̃k〉)
)

,

where R(m,n) denotes a set of m random numbers from the range [1, n] (negative
samples), 〈wi, wj 〉 is the dot product of wi and wj and σ(〈wi , w̃j 〉) is the
sigmoid function.

The parameters of the model are estimated using Stochastic Gradient Descent
(SGD) in which, for each iteration, the model makes a single pass through every
word in the training corpus (say wi) and gathers the context words within a
window. The negative samples are sampled from a probability distribution which
favors the frequent words. The model also down-samples the frequent words using
a hyper-parameter called the sub-sampling parameter.

3 Prior Approaches for Dealing with Multi-sense Words

Various models have been developed to deal with the distributed representations
of the multi-sense words. These models presented in this section work by esti-
mating multiple vector-space representations per word, one for each sense. Most
of these models estimate a fixed number of vector representations for each word,
irrespective of the number of senses associated with a word. In the rest of this
section, we review these models and discuss their limitations.

Reisinger and Mooney [14] clusters the occurrences of a word using the mix-
ture of von Mises-Fisher distributions [3] clustering method to assign a different
sense to each occurrence of the word. The clustering is performed on all the
words even if the word has a single sense. This approach estimates a fixed num-
ber of vector representations for each word in the vocabulary. As per the authors,
the model captures meaningful variation in the word usage and does not assume
that each vector representation corresponds to a different sense. Huang et al. [10]
also uses the same idea and estimates a fixed number of senses for each word. It
uses spherical k-means [5] to cluster the occurrences.

Neelakantan et al. [13] proposed two models built on the top of the Skip-
Gram model: Multiple-Sense Skip-Gram (MSSG), and its Non-Parametric coun-
terpart NP-MSSG. MSSG estimates a fixed number of senses per word whereas
NP-MSSG discovers varying number of senses. MSSG maintains clusters of the
occurrences for each word, each cluster corresponding to a sense. Each occur-
rence of a word is assigned a sense based on the similarity of its context with
the already maintained clusters, and the corresponding vector representation,
as well as the sense cluster of the word is updated. During training, NP-MSSG
creates a new sense for a word with the probability proportional to the distance
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of the context to the nearest sense cluster. Both MSSG and NP-MSSG create
an auxiliary vector to represent an occurrence, by taking the average of vectors
associated with all the words belonging to its context. The similarity between
the two occurrences is computed as the cosine similarity between these auxiliary
vectors. This approach does not take into consideration the variation among the
words that occur within the same context. Another disadvantage is that the aux-
iliary vector is biased towards the words having higher L2 norm. This leads to
noisy clusters, and hence, the senses discovered by these models are not robust.

4 Loss Driven Multisense Identification (LDMI)

In order to address the limitations of the existing models, we developed an exten-
sion to the Skip-Gram model that combines two ideas. The first is to identify the
multi-sense words and the second is to cluster the occurrences of the identified
words such that the clustering correctly accounts for the variation among the
words that occur within the same context. We explain these parts as follows:

4.1 Identifying the Words with Multiple Senses

For the Skip-Gram model, the loss associated with an occurrence of wi is

L(wi) = −
(

∑

wj∈C(wi)

log σ(〈wi , w̃j 〉) +
∑

k∈R(m,|V |)
wk /∈C(wi)

log σ(−〈wi , w̃k〉)
)

.

The model minimizes L(wi) by increasing the probability of the co-occurrence
of wj and wi if wj is present in the context of wi and decreasing the probability
of the co-occurrence of wk and wi if wk is not present in the context of wi.
This happens by aligning the directions of wi and w̃j closer to each other and
aligning the directions of wi and w̃k farther from each other. At the end of the
optimization process, we expect that the co-occurring words have their vectors
aligned closer in the vector space. However, consider the polysemous word bat.
We expect that the vector representation of bat is aligned in a direction closer
to the directions of the vectors representing the terms like ball, baseball, sports
etc. (the sense corresponding to sports). We also expect that the vector repre-
sentation of bat is aligned in a direction closer to the directions of the vectors
representing the terms like animal, batman, nocturnal etc. (the sense correspond-
ing to animals). But at the same time, we do not expect that the directions of
the vectors representing the words corresponding to the sports sense are closer to
the directions of the vectors representing the words corresponding to the animal
sense. This leads to the direction of the vector representing bat lying in between
the directions of the vectors representing the words corresponding to the sports
sense and the directions of the vectors representing the words corresponding to
the animal sense. Consequently, the multi-sense words will tend to contribute
more to the overall loss than the words with a single sense.
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Having a vector representation for each sense of the word bat will avoid
this scenario, as each sense can be considered as a new single-sense word in
the vocabulary. Hence, the loss associated with a word provides us information
regarding whether a word has multiple senses or not. LDMI leverages this insight
to identify a word wi as multi-sense if the average L(wi) across all its occurrences
is more than a threshold. However, L(wi) has a random component associated
with it, in the form of negative samples. We found that, in general, infrequent
words have higher loss as compared to the frequent words. This can be attributed
to the fact that given a random negative sample while calculating the loss, there
is a greater chance that the frequent words have already seen this negative sample
before during the optimization process as compared to the infrequent words. This
way, infrequent words end up having higher loss than frequent words. Therefore,
for the selection purposes, we ignore the loss associated with negative samples.
We denote the average loss associated with the prediction of the context words
in an occurrence of wi as L+(wi) and define it as

L+(wi) = − 1
|C(wi)|

∑

wj∈C(wi)

log σ(〈wi , w̃j 〉).

We describe L+(wi) as the contextual loss associated with an occurrence of wi.
To identify the multi-sense words, LDMI performs a few iterations to optimize

the loss function on the text dataset, and shortlist the words with average con-
textual loss (average L+(wi) across all the occurrences of the wi) that is higher
than a threshold. These shortlisted words represent the identified multi-sense
words, which form the input of the second step described in the next section.

4.2 Clustering the Occurrences

To assign senses to the occurrences of each of the identified multi-sense words,
LDMI clusters its occurrences so that each of the clusters corresponds to a
particular sense. The clustering solution employs the I1 criterion function [15]
which maximizes the objective function of the form

maximize
k∑

i=1

niQ(Si), (1)

where Q(Si) is the quality of cluster Si whose size is ni. We define Q(Si) as

Q(Si) =
1
n2
i

∑

u,v∈Si

sim(u, v),

where sim(u, v) denotes the similarity between the occurrences u and v, and is
given by

sim(u, v) =
1

|C(u)||C(v)|
∑

x∈C(u)

∑

y∈C(v)

cos(x, y), (2)
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According to Eq. (2), LDMI measures the similarity between the two occurrences
as the average of the pairwise cosine similarities between the words belonging to
the contexts of these occurrences. This approach considers the variation among
the words that occur within the same context. We can simplify Eq. (1) to the
following equation

maximize
k∑

i=1

1
ni

∥∥∥∥∥∥

∑

u∈Si

⎛

⎝
∑

x∈C(u)

x

‖x‖2

⎞

⎠

∥∥∥∥∥∥

2

2

.

LDMI maximizes this objective function using a greedy incremental strategy [15].

4.3 Putting Everything Together

LDMI is an iterative algorithm with two steps in each iteration. The first step is
to perform a few SGD iterations to optimize the loss function. In the second step,
it calculates the contextual loss associated with each occurrence of each word
and identifies the words having the average contextual loss that is more than
a threshold. It then clusters the occurrences of the identified multi-sense words
into two clusters (k = 2) as per the clustering approach discussed earlier. The
algorithm terminates after a fixed number of iterations. x number of iterations
of LDMI can estimate a maximum of 2x senses for each word.

5 Experimental Methodology

5.1 Datasets

We train LDMI on two corpora of varying sizes: The Wall Street Journal (WSJ)
dataset [9] and the Google’s One Billion Word (GOBW) dataset [4]. In prepro-
cessing, we removed all the words which contained a number or did not contain
any alphabet and converted the remaining words to lower case.

Table 1. Dataset statistics.

Dataset Vocabulary size Total words
WSJ 88,118 62,653,821
GOBW 73,443 710,848,599

For WSJ, we removed all the
words with frequency less than 10
and for GOBW, we removed all
the words with frequency less than
100. The statistics of these datasets
after preprocessing are presented in
Table 1.

We use Stanford’s Contextual Word Similarities (SCWS) dataset [10] for
evaluation on the contextual word similarity task. SCWS contains human judg-
ments on pairs of words (2,003 in total) presented in sentential context. The
word pairs are chosen so as to reflect interesting variations in meanings.

When the contextual information is not present, different people can consider
different senses when giving a similarity judgment. Therefore, having represen-
tations for all the senses of a word can help us to find similarities which align
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better with the human judgments, as compared to having a single representa-
tion of a word. To investigate this, we evaluated our model on the WordSim-353
dataset [7], which consists of 353 pairs of nouns, without any contextual infor-
mation. Each pair has an associated averaged human judgments on similarity.

5.2 Evaluation Methodology and Metrics

Baselines. We compare the LDMI model with the MSSG and NP-MSSG
approaches as they are also built on top of the Skip-Gram model. As men-
tioned earlier, MSSG estimates the vectors for a fixed number of senses per
word whereas NP-MSSG discovers varying number of senses per word. To illus-
trate the advantage of using the clustering with I1 criterion over the clustering
approach used by the competing models, we also compare LDMI with LDMI-
SK. LDMI-SK uses the same approach to select the multi-sense words as used
by the LDMI, but instead of clustering with the I1 criterion, it uses spherical
K-means [5].

Parameter Selection. For all our experiments, we consider 10 negative sam-
ples and a symmetric window of 10 words. The sub-sampling parameter is 10−4

for both the datasets. To avoid clustering the infrequent and stop-words, we only
consider the words within a frequency range to select them as the multi-sense
words. For the WSJ dataset, we consider the words with frequency between 50
and 30,000 while for the GOBW dataset, we consider the words with frequency
between 500 and 300,000. For the WSJ dataset, we consider only 50-dimensional
embeddings while for the GOBW dataset, we consider 50, 100 and 200 dimen-
sional embeddings. The model checks for multi-sense words after every 5 iter-
ations. We selected our hyperparameter values by a small amount of manual
exploration to get the best performing model.

Fig. 1. Distribution of the average con-
textual loss for all words (Words on the
x-axis are sorted in order of their loss)

To decide the threshold for the aver-
age contextual loss to select the multi-
sense words, we consider the distribu-
tion of the average contextual loss after
running an iteration of Skip-Gram. For
example, Fig. 1 shows the average con-
textual loss of every word in the vocab-
ulary for the GOBW dataset for the
50-dimensional embeddings. We can see
that there is an increase in the aver-
age contextual loss around 2.0−2.4. We
experiment around this range to select
a loss threshold for which our model
performs best. For the experiments pre-
sented in this paper, this threshold is set to 2.15 for the WSJ (50-dimensional
embeddings), and 2.15, 2.10 and 2.05 for the GOBW corresponding to the 50,
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100 and 200-dimensional embeddings, respectively. With increasing dimension-
ality of the vectors, we are able to model the information from the dataset in a
better way, which leads to a relatively lower loss.

For the MSSG and NP-MSSG models, we use the same hyperparameter val-
ues as used by Neelakantan et al. [13]. For MSSG, the number of senses is set to
3. Increasing the number of senses involves a compromise between getting the
correct number of senses for some words while noisy senses for the others. For
NP-MSSG, the maximum number of senses is set to 10 and the parameter λ is
set to −0.5 (A new sense cluster is created if the similarity of an occurrence to
the existing sense clusters is less than λ). The models are trained using SGD
with AdaGrad [6] with 0.025 as the initial learning rate and we run 15 iterations.

Metrics. For evaluation, we use the similarities calculated by our model and
sort them to create an ordering among all the word-pairs. We compare this order-
ing against the one obtained by the human judgments. To do this comparison, we
use the Spearman rank correlation (ρ). Higher score for the Spearman rank cor-
relation corresponds to the better correlation between the respective orderings.
For the SCWS dataset, to measure the similarity between two words given their
sentential contexts, we use two different metrics [14]. The first is the maxSimC,
which for each word in the pair, identifies the sense of the word that is the most
similar to its context and then compares those two senses. It is computed as

maxSimC(w1, w2, C(w1), C(w2)) = cos(π̂(w1), π̂(w2)),

where, π̂(wi) is the vector representation of the sense that is most similar to
C(wi). As in Eq. (2), we measure the similarity between x and C(wi) as

sim(x,C(wi)) =
1
Z

⎛

⎝
∑

y∈C(wi)

m(y)∑

j=1

cos(x, V (y, j))

⎞

⎠ ,

where, Z =
∑

y∈C(wi)
m(y), m(y) is the number of senses discovered for the word

y and V (y, i) is the vector representation associated with the ith sense of the
word y. For simplicity, we consider all the senses of the words in the sentential
context for the similarity calculation. The second metric is the avgSimC which
calculates the similarity between the two words as the weighed average of the
similarities between each of their senses. It is computed as

avgSimC(w1, w2, C(w1), C(w2)) =
m(w1)∑

i=1

m(w2)∑

j=1

(
Pr(w1, i, C(w1))Pr(w2, j, C(w2)) × cos(V (w1, i), V (w2, j))

)
,

where Pr(x, i, C(x)) is the probability that x takes the ith sense given the context
C(x). We calculate Pr(x, i, C(x)) as
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Pr(x, i, C(x)) =
1
N

(
1

1 − sim(x,C(x))

)
,

where N is the normalization constant so that the probabilities add to 1. Note
that, the maxSimC metric models the similarity between two words with respect
to the most probable identified sense for each of them. If there are noisy senses
as a result of overclustering, maxSimC will penalize them. Hence, maxSimC is
a stricter metric as compared to the avgSimC.

For the WordSim-353 dataset, we used the avgSim metric, which is quali-
tatively similar to the avgSimC, but does not take contextual information into
consideration. The avgSim metric is calculated as

avgSim(w1, w2) =
1

m(w1)m(w2)
×

m(w1)∑

i=1

m(w2)∑

j=1

cos(V (w1, i), V (w2, j)).

For qualitative analysis, we look into the similar words corresponding to different
senses for some of the words identified as multi-sense by the LDMI and compare
them to the ones discovered by the competing approaches.

6 Results and Discussion

6.1 Quantitative Analysis

Table 2 shows the Spearman rank correlation (ρ) on the SCWS and WordSim-
353 dataset for various models and different vector dimensions. For all the vec-
tor dimensions, LDMI performs better than the competing approaches on the
maxSimC metric. For the GOBW dataset, LDMI shows an average improvement
of about 13% over the NP-MSSG and 10% over the MSSG on the maxSimC met-
ric. The average is taken over all vector dimensions. This shows the advantage of
LDMI over the competing approaches. For the avgSimC metric, LDMI performs
at par with the competing approaches. The other approaches are not as effective
in identifying the correct number of senses, leading to noisy clusters and hence,
poor performance on the maxSimC metric. LDMI also performs better than
LDMI-SK on both maxSimC and avgSimC, demonstrating the effectiveness of
the clustering approach employed by LDMI over spherical k-means. Similarly,
LDMI performs better than other approaches on the avgSim metric for the
WordSim-353 dataset in all the cases, further demonstrating the advantage of
LDMI.

In addition, we used the Kolmogorov-Smirnov two-sample test to assess if
LDMI’s performance advantage over the Skip-Gram is statistically significant.
We performed the test on maxSimC and avgSimC metrics corresponding to the
1,000 runs each of LDMI and Skip-Gram on the WSJ dataset. For the null
hypothesis that the two samples are derived from the same distribution, the
resulting p-value (≈10−8) shows that the difference is statistically significant for
both maxSimC and avgSimC metrics. Similarly, the difference in the LDMI’s
and LDMI-SK’s performance is also found to be statistically significant.
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Table 2. Results for the Spearman rank correlation (ρ × 100).

Dataset Model d maxSimC
(SCWS)

avgSimC
(SCWS)

avgSim
(WordSim-353)

WSJ Skip-Gram 50 57.0 57.0 54.9

WSJ MSSG 50 41.4 56.3 50.5

WSJ NP-MSSG 50 33.0 52.2 47.4

WSJ LDMI-SK 50 57.1 57.9 55.2

WSJ LDMI 50 57.9 58.9 56.8

GOBW Skip-Gram 50 60.1 60.1 62.0

GOBW MSSG 50 50.0 59.6 57.1

GOBW NP-MSSG 50 48.2 60.0 58.9

GOBW LDMI-SK 50 60.1 60.6 62.8

GOBW LDMI 50 60.6 61.2 63.8

GOBW Skip-Gram 100 61.7 61.7 64.3

GOBW MSSG 100 53.4 62.6 60.4

GOBW NP-MSSG 100 47.9 63.3 61.7

GOBW LDMI-SK 100 61.9 62.4 64.9

GOBW LDMI 100 62.2 63.1 65.3

GOBW Skip-Gram 200 63.1 63.1 65.4

GOBW MSSG 200 54.7 64.0 64.2

GOBW NP-MSSG 200 51.5 64.1 62.8

GOBW LDMI-SK 200 63.3 63.9 66.4

GOBW LDMI 200 63.9 64.4 66.8

6.2 Qualitative Analysis

In order to evaluate the actual senses that the different models identify, we look
into the similar words corresponding to different senses for some of the words
identified as multi-sense by LDMI. We compare these discovered senses with
other competing approaches. Table 3 shows the similar words (corresponding to
the cosine similarity) with respect to some of the words that LDMI identified
as multi-sense words and estimated a different vector representation for each
sense. The results correspond to the 50-dimensional embeddings for the GOBW
dataset. The table illustrates that LDMI is able to identify meaningful senses. For
example, it is able to identify two senses of the word digest, one corresponding
to the food sense and the other to the magazine sense. For the word block, it is
able to identify two senses, corresponding to the hindrance and address sense.

Table 4 shows the similar words with respect to the identified senses for the
words digest and block by the competing approaches. We can see that LDMI
is able to identify more comprehensible senses for digest and block, compared
to MSSG and NP-MSSG. Compared to the LDMI, LDMI-SK finds redundant
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Table 3. Top similar words for different senses of the multi-sense words (different lines
in a row correspond to different senses).

Word Similar words Sense

figure status; considered; iconoclast; charismatic; stature; known;
calculate; understand; know; find; quantify; explain; how; tell;
doubling; tenth; average; percentage; total; cent; gdp; estimate

leader
deduce
numbers

cool breezy; gentle; chill; hot; warm; chilled; cooler; sunny; frosty;
pretty; liking; classy; quite; nice; wise; fast; nicer; okay; mad;

weather
expression

block amend; revoke; disallow; overturn; thwart; nullify; reject;
alley; avenue; waterside; duplex; opposite; lane; boulevard;

hindrance
address

digest eat; metabolize; starches; reproduce; chew; gut; consume;
editor; guide; penguin; publisher; compilers; editions; paper;

food
magazine

head arm; shoulder; ankles; neck; throat; torso; nose; limp; toe;
assistant; associate; deputy; chief; vice; executive; adviser;

body
organization

Table 4. Senses discovered by the competing approaches (different lines in a row
correspond to different senses).

digest (Skip-Gram)

nutritional; publishes; bittman; reader

block (Skip-Gram)

annex; barricade; snaked; curving; narrow

digest (MSSG)

comenu; ponder; catch; turn; ignore

areat; grow; tease; releasing; warts

nast; conde; blender; magazine; edition

block (MSSG)

street; corner; brick; lofts; lombard; wall

yancey; linden; calif; stapleton; spruce; ellis

bypass; allow; clears; compel; stop

digest (NP-MSSG)

guide; bible; ebook; danielle; bookseller

snippets; find; squeeze; analyze; tease

eat; ingest; starches; microbes; produce

oprah; cosmopolitan; editor; conde; nast

disappointing; ahead; unease; nervousness

observer; writing; irina; reveals; bewildered

block (NP-MSSG)

acquire; pipeline; blocks; stumbling; owner

override; approve; thwart; strip; overturn

townhouse; alley; blocks; street; entrance

mill; dix; pickens; dewitt; woodland; lane

slices; rebounded; wrestled; effort; limit

target; remove; hamper; remove; binding

hinder; reclaim; thwart; hamper; stop

side; blocks; stand; walls; concrete; front

approve; enforce; overturn; halted; delay

inside; simply; retrieve; track; stopping

digest (LDMI-SK)

almanac; deloitte; nast; wired; guide

sugars; bacteria; ingest; enzymes; nutrients

liking; sort; swallow; find; bite; whole

find; fresh; percolate; tease; answers

block (LDMI-SK)

cinder; fronted; avenue; flagstone; bricks

amend; blocking; withhold; bypass; stall
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senses for the word digest, but overall, the senses found by the LDMI-SK are
comparable to the ones found by the LDMI.

7 Conclusion

We presented LDMI, a model to estimate distributed representations of the
multi-sense words. LDMI is able to efficiently identify the meaningful senses
of words and estimate the vector embeddings for each sense of these identi-
fied words. The vector embeddings produced by LDMI achieves state-of-the-art
results on the contextual similarity task by outperforming the other related work.
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Abstract. Blocking is an important part of entity resolution. It aims to
improve time efficiency by grouping potentially matched records into the
same block. In the past, both supervised and unsupervised approaches
have been proposed. Nonetheless, existing approaches have some limita-
tions: either a large amount of labels are required or blocking quality is
hard to be guaranteed. To address these issues, we propose a blocking
scheme learning approach based on active learning techniques. With a
limited label budget, our approach can learn a blocking scheme to gener-
ate high quality blocks. Two strategies called active sampling and active
branching are proposed to select samples and generate blocking schemes
efficiently. We experimentally verify that our approach outperforms sev-
eral baseline approaches over four real-world datasets.

Keywords: Entity resolution · Blocking scheme · Active learning

1 Introduction

Entity Resolution (ER), which is also called Record Linkage [11,12], Deduplica-
tion [6] or Data Matching [5], refers to the process of identifying records which
represent the same real-world entity from one or more datasets [17]. Blocking
techniques are commonly applied to improve time efficiency in the ER process
by grouping potentially matched records into the same block [16]. It can thus
reduce the number of record pairs to be compared. For example, given a dataset
D, the total number of record pairs to be compared is |D|∗(|D|−1)

2 (i.e. each
record should be compared with all the others in D). With blocking, the number
of record pairs to be compared can be reduced to no more than m∗(m−1)

2 ∗ |B|,
where m is the number of records in the largest block and |B| is the number of
blocks, since the comparison only occurs between records in the same block.

In recent years, a number of blocking approaches have been proposed to
learn blocking schemes [3,13,15]. They generally fall into two categories: (1)
supervised blocking scheme learning approaches. For example, Michelson and
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Knoblock presented an algorithm called BSL to automatically learn effective
blocking schemes [15]; (2) Unsupervised blocking scheme learning approaches
[13]. For example, Kejriwal and Miranker proposed an algorithm called Fisher
which uses record similarity to generate labels for training based on the TF-IDF
measure, and a blocking scheme can then be learned from a training set [13].

However, these existing approaches on blocking scheme learning still have
some limitations: (1) It is expensive to obtain ground-truth labels in real-life
applications. Particularly, match and non-match labels in entity resolution are
often highly imbalanced [16], which is called the class imbalance problem. Exist-
ing supervised learning approaches use random sampling to generate blocking
schemes, which can only guarantee the blocking quality when sufficient training
samples are available [15]. (2) Blocking quality is hard to be guaranteed in unsu-
pervised approaches. These approaches obtain the labels of record pairs based on
the assumption that the more similar two records are, the more likely they can
be a match. However, this assumption does not always hold [17]. As a result, the
labels may not be reliable and no blocking quality can be promised. A question
arising is: Can we learn a blocking scheme with blocking quality guaranteed and
the cost of labels reduced?

To answer this question, we propose an active blocking scheme learning
approach which incorporates active learning techniques [7,10] into the block-
ing scheme learning process. In our approach, we actively learn the blocking
scheme based on a set of blocking predicates using a balanced active sampling
strategy, which aims to solve the class imbalance problem of entity resolution.
The experimental results show that our proposed approach yields high quality
blocks within a specified error bound and a limited budget of labels.

Fig. 1. Overview of the active blocking scheme learning approach

Figure 1 illustrates our proposed approach, which works as follows: Given a
dataset D, an active sampler selects samples from D based on a set of candidate
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schemes, and asks a human oracle for labels. Then an active scheme learner
generates a set of refined candidate schemes, enabling the active sampler to
adaptively select more samples. Within a limited label budget and an error
bound, the optimal scheme will be selected among the candidate schemes.

The contributions of this paper are as follows. (1) We propose a blocking
scheme learning approach based on active learning, which can efficiently learn
a blocking scheme with less samples while still achieving high quality. (2) We
develop two complementary and integrated active learning strategies for the pro-
posed approach: (a) Active sampling strategy which overcomes the class imbal-
ance problem by selecting informative training samples; (b) Active branching
strategy which determines whether a further conjunction/disjunction form of
candidate schemes should be generated. (3) We have evaluated our approach
over four real-world datasets. Our experimental results show that our approach
outperforms state-of-the-art approaches.

2 Related Work

Blocking for entity resolution was first mentioned by Fellegi and Sunter in 1969
[9]. Later, Michelson and Knoblock proposed a blocking scheme learning algo-
rithm called Blocking Scheme Learner (BSL) [15], which is the first algorithm to
learn blocking schemes, instead of manually selecting them by domain experts.
In the same year, Bilenko et al. [3] proposed two blocking scheme learning algo-
rithms called ApproxRBSetCover and ApproxDNF to learn disjunctive blocking
schemes and DNF (i.e. Disjunctive Normal Form) blocking schemes, respectively.
Kejriwal et al. [13] proposed an unsupervised algorithm for learning blocking
schemes. In their work, a weak training set was applied, where both positive
and negative labels were generated by calculating the similarity of two records
using TF-IDF. A set of blocking predicates was ranked in terms of their fisher
scores based on the training set. The predicate with the highest score is selected,
and if the other lower ranking predicates can cover more positive pairs in the
training set, they will be selected in a disjunctive form. After traversing all the
predicates, a blocking scheme is learned.

Active learning techniques have been extensively studied in the past years.
Ertekin et al. [8] proved that active learning provided the same or even better
results in solving the class imbalance problem, compared with random sampling
approaches such as oversampling the minority class and/or undersampling the
majority class [4]. For entity resolution, several active learning approaches have
also been studied [1,2,10]. For example, Arasu et al. [1] proposed an active
learning algorithm based on the monotonicity assumption, i.e. the more textually
similar a pair of records is, the more likely it is a matched pair. Their algorithm
aimed to maximize recall under a specific precision constraint.

Different from the previous approaches, our approach uses active learning
techniques to select balanced samples adaptively for tackling the class imbal-
ance problem. This enables us to learn blocking schemes within a limited label
budget. We also develop a general strategy to generate blocking schemes that can
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be conjunctions or disjunctions of an arbitrary number of blocking predicates,
instead of limiting at most k predicates to be used in conjunctions [3,13].

3 Problem Definition

Let D be a dataset consisting of a set of records, and each record ri ∈ D be
associated with a set of attributes A = {a1, a2, ..., a|A|}. We use ri.ak to refer
to the value of attribute ak in a record ri. Each attribute ak ∈ A is associated
with a domain Dom(ak). A blocking function hak

: Dom(ak) → U takes an
attribute value ri.ak from Dom(ak) as input and returns a value in U as output.
A blocking predicate 〈ak, hak

〉 is a pair of attribute ak and blocking function
hak

. Given a record pair ri and rj , a blocking predicate 〈ak, hak
〉 returns true

if hak
(ri.ak) = hak

(rj .ak) holds, otherwise false. For example, we may have
soundex as a blocking function for attribute author, and accordingly, a blocking
predicate 〈author, soundex〉. For two records with values “Gale” and “Gaile”,
〈author, soundex〉 returns true because of soundex(Gale) = soundex(Gaile) =
G4. A blocking scheme is a disjunction of conjunctions of blocking predicates
(i.e. in the Disjunctive Normal Form).

A training set T = (X,Y ) consists of a set of feature vectors X = {x1, x2, ...,
x|T |} and a set of labels Y = {y1, y2, ..., y|T |}, where each yi ∈ {M,N} is the
label of xi (i = 1, . . . , |T |). Given a record pair ri, rj , and a set of blocking
predicates P , a feature vector of ri and rj is a tuple 〈v1, v2, ..., v|P |〉, where each
vk (k = 1, . . . , |P |) is an equality value of either 1 or 0, describing whether the
corresponding blocking predicate 〈ak, hak

〉 returns true or false. Given a pair of
records, a human oracle ζ is used to provide the label yi ∈ Y . If yi = M , it
indicates that the given record pair refers to the same entity (i.e. a match), and
analogously, yi = N indicates that the given record pair refers to two different
entities (i.e. a non-match). The human oracle ζ is associated with a budget limit
budget(ζ) ≥ 0, which indicates the total number of labels ζ can provide.

Given a blocking scheme s, a blocking model can generate a set of pair-
wise disjoint blocks Bs = {b1, . . . , b|Bs|}, where bk ⊆ D (k = 1, . . . , |Bs|),⋃

1≤k≤|Bs| bk = D and
∧

1≤i�=j≤|Bs| bi ∩ bj = ∅. Moreover, for any two records
ri and rj in a block bk ∈ Bs, s must contain a conjunction of block predicates
such that h(ri.ak) = h(rj .ak) holds for each block predicate 〈ak, h〉 in this con-
junction. For convenience, we use tp(Bs), fp(Bs) and fn(Bs) to refer to true
positives, false positives and false negatives in terms of Bs, respectively. Ideally,
a good blocking scheme should yield blocks that minimize the number of record
pairs to be compared, while preserving true matches at a required level. We thus
define the active blocking problem as follows.

Definition 1. Given a human oracle ζ, and an error rate ε ∈ [0, 1], the active
blocking problem is to learn a blocking scheme s in terms of the following
objective function, through actively selecting a training set T :

minimize |fp(Bs)|
subject to

|fn(Bs)|
|tp(Bs)| ≤ ε, and |T | ≤ budget(ζ) (1)
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4 Active Scheme Learning Framework

In our active scheme learning framework, we develop two complementary and
integrated strategies (i.e. active sampling and active branching) to adaptively
generate a set of blocking schemes and learn the optimal one based on actively
selected samples. The algorithm we propose is called Active Scheme Learning
(ASL) and described in Sect. 4.3.

4.1 Active Sampling

To deal with the active blocking problem, we need both match and non-match
samples for training. However, one of the well-known challenges in entity reso-
lution is the class imbalance problem [18]. That is, if samples are selected ran-
domly, there are usually much more non-matches than matches. To tackle this
problem, we have observed, as well as shown in the previous work [1,2], that
the more similar two records are, the higher probability they can be a match.
This observation suggests that, a balanced representation of similar records and
dissimilar records is likely to represent a training set with balanced matches and
non-matches. Hence, we define the notion of balance rate.

Definition 2. Let s be a blocking scheme and X a non-empty feature vector set,
the balance rate of X in terms of s, denoted as γ(s,X), is defined as:

γ(s,X) =
|{xi ∈ X|s(xi) = true}| − |{xi ∈ X|s(xi) = false}|

|X| (2)

Conceptually, the balance rate describes how balance or imbalance of the
samples in X by comparing the number of similar samples to that of dissimilar
samples in terms of a given blocking scheme s. The range of balance rate is
[−1, 1]. If γ(s,X) = 1, there are all similar samples in T with regard to s,
whereas γ(s,X) = −1 means all the samples are dissimilar samples. In these
two cases, X is highly imbalanced. If γ(s,X) = 0, there is an equal number of
similar and dissimilar samples, indicating that X is balanced.

Based on the notion of balance rate, we convert the class imbalance problem
into the balanced sampling problem as follows:

Definition 3. Given a set of blocking scheme S and a label budget n ≤
budget(ζ), the balanced sampling problem is to select a training set T =
(X,Y ), where |X| = n, in order to:

minimize
∑

si∈S

γ(si,X)2 (3)

For two different blocking schemes s1 and s2, they may have different balance
rates over the same feature vector set X, i.e. γ(s1,X) �= γ(s2,X) is possible. The
objective here is to find a training set that minimizes the balance rates in terms
of the given set of blocking schemes. The optimal case is γ(si,X) = 0, ∀si ∈ S.
However, this is not always possible to achieve in real world applications.
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4.2 Active Branching

Given n blocking predicates, we have 2n possible blocking schemes which can
be constructed upon blocking predicates in the form of only conjunctions or
disjunctions. Thus, the number of all possible blocking schemes which can be
constructued through aribitary combinations of conjunction and disjunction of
blocking predicates is more than 2n. To efficiently learn blocking schemes, we
therefore propose a hierarchical blocking scheme learning strategy called active
branching to avoid enumerating all possible blocking schemes and reduce the
number of candidate blocking schemes to n(n+1)

2 .
Given a blocking scheme s, there are two types of branches through which

we can extend s with another blocking predicate: conjunction and disjunction.
Let s1 and s2 be two blocking schemes, we have the following lemmas.

Lemma 1. For the conjunction of s1 and s2, the following holds:

|fp(Bsi)| ≥ |fp(Bs1∧s2)|, where i = 1, 2 (4)

Proof. For any true negative record pair t /∈ Bs1 , we have t /∈ Bs1∧s2 , which
means |tn(Bs1)| ≤ |tn(Bs1∧s2)|. Since the sum of true negatives and false posi-
tives is constant for a given dataset, we have |fp(Bs1)| ≥ |fp(Bs1∧s2)|. �

Lemma 2. For the disjunction of s1 and s2, the following holds:

|fn(Bsi)|
|tp(Bsi)|

≥ |fn(Bs1∨s2)|
|tp(Bs1∨s2)|

, where i = 1, 2 (5)

Proof. For any true positive record pair t ∈ Bs1 , we have t ∈ Bs1 ∪Bs2 = Bs1∨s2 .
This is, the number of true positives generated by s1 cannot be larger than that
generated by s1 ∨s2, i.e. |tp(Bs1)| ≤ |tp(Bs1∨s2)|. Since the sum of true positives
and false negatives is constant, we have |fn(Bs1)| ≥ |fn(Bs1∨s2)|. �

Based on Lemmas 1 and 2, we develop an active branching strategy as fol-
lows. First, a locally optimal blocking scheme is learned from a set of candidate
schemes. Then, by Lemma 1, the locally optimal blocking scheme is extended. If
no locally optimal blocking scheme is learned, the strategy selects the one with
minimal error rate and extends it in disjunction with other blocking predicates
to reduce the error rate, according to Lemma 2. The extended blocking schemes
are then used as a candidate scheme for active sampling to select more samples.
Based on more samples, active branching strategy adaptively refines the locally
optimal scheme. This process iterates until the label budget is used out.

4.3 Algorithm Description

We present the algorithm called Active Scheme Learning (ASL) used in our
framework. A high-level description is shown in Algorithm 1. Let S be a set of
blocking schemes, where each blocking scheme si ∈ S is a blocking predicate
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at the beginning. The budget usage is initially set to zero, i.e. n = 0. A set of
feature vectors is selected from the dataset as seed samples (lines 1 and 2).

After initialization, the algorithm iterates until the number of samples in the
training set reaches the budget limit (line 3). At the beginning of each iteration,
the active sampling strategy is applied to generate a training set (lines 4 to 10).
For each blocking scheme si ∈ S, the samples are selected in two steps: (1)
firstly, the balance rate of this blocking scheme si is calculated (lines 5 and 7),
(2) secondly, a feature vector to reduce this balance rate is selected from the
dataset (lines 6 and 8). Then the samples are labeled by the human oracle and
stored in the training set T . The usage of label budget is increased, accordingly
(lines 9 and 10).

A locally optimal blocking scheme s is searched among a set of blocking
schemes S over the training set, according to a specified error rate ε (line 11). If
it is found, new blocking schemes are generated by extending s to a conjunction
with each of the blocking schemes in Sprev (lines 12 and 13). Otherwise a blocking
scheme with the minimal error rate is selected and new schemes are generated
using disjunctions (lines 14 to 16).

Algorithm 1. Active Scheme Learning (ASL)
Input: Dataset: D

Error rate ε ∈ [0, 1]
Human oracle ζ
Set of blocking predicates P
Sample size k

Output: A blocking scheme s
1 S = Sprev = P , n = 0, T = ∅, X = ∅
2 X = X ∪ Random sample(D)
3 while n < budget(ζ) do
4 for each si ∈ S do // Begin active sampling

5 if γ(si, X) ≤ 0 then
6 X = X ∪ Similar sample(D, si, k)

7 else
8 X = X ∪ Dissimilar sample(D, si, k)

9 n = |X| // End active sampling

10 T = T ∪ {(xi, ζ(xi))|xi ∈ X} // Add labeled samples into T
11 s = Find optimal scheme(S, T, ε); Sprev = S // Begin active branching

12 if Found(s) then
13 S = {s ∧ si|si ∈ Sprev}
14 else
15 s = Find approximate scheme(S, T, ε)
16 S = {s ∨ si|si ∈ Sprev} // End active branching

17 Return s
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5 Experiments

We have evaluated our approach to answer the following two questions: (1)
How do the error rate ε and the label budget affect the learning results in our
approach? (2) What are the accuracy and efficiency of our active scheme learning
approach compared with the state-of-the-art approaches?

5.1 Experimental Setup

Our approach is implemented in Python 2.7.3, and is run on a server with 6-core
64-bit Intel Xeon 2.4 GHz CPUs, 128GBytes of memory.

Datasets: We have used four datasets in the experiments: (1) Cora1 dataset con-
tains bibliographic records of machine learning publications. (2) DBLP-Scholar
(see footnote 1) dataset contains bibliographic records from the DBLP and
Google Scholar websites. (3) DBLP-ACM [14] dataset contains bibliographic
records from the DBLP and ACM websites. (4) North Carolina Voter Regis-
tration (NCVR)2 dataset contains real-world voter registration information of
people from North Carolina in the USA. Two sets of records collected in October
2011 and December 2011 respectively are used in our experiments. The charac-
teristics of these data sets are summarized in Table 1, including the number of
attributes, the number of records (for each dataset) and the class imbalance
ratio.

Table 1. Characteristics of datasets

Dataset # Attributes # Records Class imbalance ratio

Cora 4 1,295 1:49

DBLP-Scholar 4 2,616/64,263 1:31,440

DBLP-ACM 4 2,616/2,294 1:1,117

NCVR 18 267,716/278,262 1:2,692

Baseline Approaches: Since no active learning approaches were proposed on
blocking scheme learning, we have compared our approach (ASL) with the fol-
lowing three baseline approaches: (1) Fisher [13]: this is the state-of-the-art
unsupervised scheme learning approach proposed by Kejriwal and Miranker.
Details of this approach have been outlined in Sect. 2. (2) TBlo [9]: this is a
traditional blocking approach based on expert-selected attributes. In the survey
[6], this approach has a better performance than the other approaches in terms
of the F-measure results. (3) RSL (Random Scheme Learning): it uses random
sampling, instead of active sampling, to build the training set and learn blocking

1 Available from: http://secondstring.sourceforge.net.
2 Available from: http://alt.ncsbe.gov/data/.

http://secondstring.sourceforge.net
http://alt.ncsbe.gov/data/
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schemes. We run the RSL ten times, and present the average results of blocking
schemes it learned.

Measurements: We use the following common measures [6] to evaluate blocking
quality: Reduction Ratio (RR) is one minus the total number of record pairs
in blocks divided by the total number of record pairs without blocks, which
measures the reduction of compared record pairs. Pairs Completeness (PC) is
the number of true positives divided by the total number of true matches in
the dataset. Pairs Quality (PQ) is the number of true positives divided by the
total number of record pairs in blocks. F-measure (FM) FM = 2∗PC∗PQ

PC+PQ is
the harmonic mean of PC and PQ. In addition to these, we define the notion of
constraint satisfaction as CS = Ns

N , where Ns is the times of learning an optimal
blocking scheme by an algorithm and N is the times the algorithm runs.

5.2 Experimental Results

Now we present our experimental results in terms of the constraint satisfaction,
blocking quality, blocking efficiency and label cost.

Constraint Satisfaction. We have conducted experiments to evaluate the con-
straint satisfaction. In Fig. 2, the results are presented under different error rates
ε ∈ {0.1, 0.2, 0.4, 0.6, 0.8} and different label budgets ranging from 20 to 500 over
four real datasets. We use the total label budget as the training label size for RSL
to make a fair comparison on active sampling and random sampling. Our exper-
imental results show that random sampling with a limited label sizes often fails
to produce an optimal blocking scheme. Additionally, both error rate and label
budget can affect the constraint satisfaction. As shown in Fig. 2(a)–(d), when the
label budget increases, the CS value goes up. In general, when ε becomes lower,
the CS value decreases. This is because a lower error rate is usually harder to
achieve, and thus no scheme that satisfies the error rate can be learned in some
cases. However, if the error rate is set too high (e.g. the red line), it could gener-
ate a large number of blocking schemes satisfying the error rate, and the learned
blocking scheme may vary depending on the training set.

Blocking Quality. We present the experimental results of four measures (i.e.
RR, PC, PQ, FM) for our approach and the baseline approaches. In Fig. 3(a),
all the approaches yield high RR values over four datasets. In Fig. 3(b), the PC
values of our approach are not the highest over the four datasets, but they are
not much lower than the highest one (i.e. within 10% lower except in DBLP-
Scholar). However, out approach can generate higher PQ values than all the
other approaches, from 15% higher in NCVR (0.9956 vs 0.8655) to 20 times
higher in DBLP-ACM (0.6714 vs 0.0320), as shown in Fig. 3(c). The FM results
are shown in Fig. 3(d), in which our approach outperforms all the baselines over
all the datasets.

Blocking Efficiency. Since blocking aims to reduce the number of pairs to be
compared in entity resolution, we evaluate the efficiency of blocking schemes by
the number of record pairs each approach generates. As shown in Table 2, TBlo
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Fig. 2. Comparison on constraint satisfaction by ASL (with different error rates) and
RSL under different label budgets over four real datasets (Color figure online)

Fig. 3. Comparison on blocking quality by different blocking approaches over four real
datasets using the measures: (a) RR, (b) PC, (c) PQ, and (d) FM



360 J. Shao and Q. Wang

generates the minimal number of record pairs in Cora. This is due to the scheme
that is manually selected by domain experts. Fisher targeted to learn disjunctive
schemes, which can lead to large blocks, thus the number of record pairs is the
largest over four datasets. ASL considers a trade-off between PC and PQ, and
the number of record pairs is often small. In RSL, we use the same label size as
ASL, thus it may learn a blocking scheme that is different from the one learned
by RSL, and accordingly generates different numbers of record pairs for some
datasets such as Cora and DBLP-ACM. When a sufficient number of samples is
used, the results of ASL and RSL would be the same.

Table 2. Comparison on the number of record pairs generated by different approaches

TBlo Fisher ASL RSL

Cora 2,945 67,290 29,306 17,974

DBLP-Scholar 6,163 1,039,242 3,328 3,328

DBLP-ACM 25,279 69,037 3,043 17,446

NCVR 932,239 7,902,910 634,121 634,121

Table 3. Comparison on label cost by ASL and RSL over four real datasets

Error rate Cora DBLP-Scholar DBLP-ACM NCVR

0.8 600 500 300 300

0.6 400 350 200 350

0.4 450 250 150 250

0.2 550 300 200 200

0.1 500 250 300 250

RSL 8,000 10,000+ 2,500 10,000+

Label Cost. In order to compare the label cost required by ASL and RSL for
achieving the same block quality, we present the numbers of labels needed by
our approach to generate a blocking scheme with CS = 100% under different
error rates, and compare them with the labels required by RSL in Table 3. In
our experiments, the label budget for ASL under a given error rate starts with
50, and then increases by 50. The label budget for RSL starts with 500, and
increases by 500 each time. Both ASL and RSL algorithms terminate when the
learned blocking schemes remain the same in ten consecutive runs.

6 Conclusions

In this paper, we have used active learning techniques to develop a blocking
scheme learning approach. Our approach overcomes the weaknesses of exist-
ing works in two aspects: (1) Previously, supervised blocking scheme learning
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approaches require a large number of labels for learning a blocking scheme,
which is an expensive task for entity resolution; (2) Existing unsupervised block-
ing scheme learning approaches generate training sets based on the similarity of
record pairs, instead of their true labels, thus the training quality can not be
guaranteed. Our experimental results show that the proposed approach outper-
forms the baseline approaches under a specific error rate with a sample budget.
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Abstract. Extracting relations from unstructured Web content is a
challenging task and for any new relation a significant effort is required
to design, train and tune the extraction models. In this work, we inves-
tigate how to obtain suitable results for relation extraction with modest
human efforts, relying on a dynamic active learning approach. We pro-
pose a method to reliably generate high quality training/test data for
relation extraction - for any generic user-demonstrated relation, starting
from a few user provided examples and extracting valuable samples from
unstructured and unlabeled Web content. To this extent we propose a
strategy which learns how to identify the best order to human-annotate
data, maximizing learning performance early in the process. We demon-
strate the viability of the approach (i) against state of the art datasets
for relation extraction as well as (ii) a real case study identifying text
expressing a causal relation between a drug and an adverse reaction from
user generated Web content.

1 Introduction

Recent years have seen the rise of neural networks for addressing many Infor-
mation Extraction tasks. Particular interest is focused on Relation Extraction
from unstructured text content. While crafting the right model architecture has
gained significant attention, a major and often overlooked challenge is the acqui-
sition of solid training data and reliable gold standard datasets for validation.

Kick-starting a relation extraction process - i.e. acquiring reliable training
and testing data - for an arbitrary user-defined relation presents many hurdles.
This is especially true when the pool of unannotated data to choose from is
virtually infinite, as in the case of Web data and social streams - where one first
needs to identify a relevant corpus from which relations should be extracted.
Systems extracting relations from open data have been described in the liter-
ature. Although they may perform well, they are in general quite expensive:
on one hand, supervised methods require an upfront annotation effort for each
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 363–375, 2018.
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relation, while on the other hand unsupervised methods present many drawbacks
- mainly the reliance on Natural Language Processing (NLP) tools, which might
not be available for all languages and which do not perform that well on the
ungrammatical text often found in social posts. Moreover for any approach it is
desirable to evaluate the performance: this implies the availability of test data,
which in general involves an expensive manual annotation process.

In this paper, we address these challenges by presenting a system for extract-
ing relations from unlabeled data which minimizes the required annotations,
which needs no NLP tools and performs well with respect to the available state
of the art methods. These relations can be fairly well defined (e.g. given a color
and an object, does the author imply the object is that color) to somewhat
more subjective ones (e.g. detecting asserted causal relations between drugs and
adverse events). Here relation detection is defined in a standard way, i.e. deter-
mining if a relation is present in a text sample or not, or in Relation Extraction
terms, the goal is to recognize whether a predefined set of relations holds between
two or more entities in a sentence. We propose an end-to-end system for extract-
ing relations from unstructured Web content. First, the type of entities involved
in the relation, e.g. drugs and adverse events, must be specified - this step can be
seen as a blackbox component here. Then we obtain a relevant pool of potential
examples of the relations from the Web and social media by selecting sentences
where the entities co-occur. We discard parts of the corpus which seems to con-
tain highly ambiguous data, while retaining useful data for the task (Sect. 3).

After collecting relevant unlabeled data, we ask a Subject Matter Expert
(SME) to annotate the data in small batches (e.g. 100 examples at a time).
The selection of examples that are presented to the SME is dependent on the
learning model and the active learning strategy which in itself is dependent
on the type of relation and data at hand. In this paper, we show how for a
given model the system “learns” a quite successful strategy (in general it is not
feasible to determine an “optimal” strategy with reasonable effort): we measure
the performance of several neural models and several active learning strategies
at the end of each batch, devising a method to only promote the most successful
strategies for subsequent steps (Sect. 3.2). By optimizing the order of examples
to annotate, the work required by the SME is much less than manually creating
labeled training data [29] or building/tuning NLP tools for different languages
and styles. We show this with several experiments on standard benchmarking
datasets.

The contribution of this work is threefold. First, we propose an end-to-end
method for relation extraction with a human-in-the-loop. We design a system-
atic procedure for generating datasets for relation extraction on any domain and
any concept that the user is interested in. This is valuable to kick-start arbi-
trary extraction tasks for which annotated resources are not yet available. Our
method does not have to rely on any NLP tools and hence is independent of
document style and language. Second, we experiment using a combination of
active learning strategies on neural models and devise a method to prune the
ones that are not effective for the task at hand. Besides testing the approach on
a real use case, we prove its efficacy on publicly available standard datasets for
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relation extraction and show that by using our pruning technique - and observ-
ing the results a posteriori - we achieve similar performance to the “optimal
active learning strategy” for the task and the specific dataset. In addition, as
one does not know a priori what the optimal strategy is, our system learns which
strategy among the available ones to use. The technique works comparably well
regardless of the chosen neural architecture. Finally, we present a real use case
scenario where we address the challenging task of extracting the causal relation
between drugs and their adverse events from user generated content.

The advantage of the proposed approach is the possibility to rapidly deploy
a system able to quickly generate high quality train/test data on any relation of
interest, regardless of language and text style of the corpus. Given the fact that
the method gives feedback on performance after every small annotation step,
the user can decide when to stop annotating when she is satisfied with the level
of accuracy (e.g. accuracy above 75%) or decide to stop if she understands that
the underlying data might not be useful for the task at hand. Substantially, we
are able to early identify high quality train/test data for challenging relation
extraction tasks while minimizing the user annotation effort.

2 Related Work

One of the key to success for machine learning tasks is the availability of high
quality annotated data, which is often costly to acquire. For the relation extrac-
tion task, the definition of a relation is highly dependent on the task at hand and
on the view of the user, therefore having pre-annotated data available for any
specific case is unfeasible. Various approaches have been proposed to minimize
the cost of obtaining labelled data, one of the most prominent being distant
supervision, which exploits large knowledge bases to automatically label entities
in text [5,12,16,26,27]. Despite being a powerful technique, distant supervision
has many drawbacks including poor coverage for tail entities [16], as well as the
broad assumption that when two entities co-occur, a certain relation is expressed
in the sentence [5]. The latter can be especially misleading for unusual relations,
where the entities might co-occur but not fit the desired semantic (e.g. a user
wants to classify “positive” or desirable side effects of drugs). One way to tackle
the problem is to use targeted human annotations to expand the large pool of
examples labelled with distant supervision [3]. This combination approach pro-
duced good results in the 2013 KBP English Slot Filling task1. Another way is to
address it as a noise reduction problem: e.g. Sterckx et al. [30] exploit hierarchi-
cal clustering of the distantly annotated samples to select the most reliable ones,
while Fu and Grishman [10] propose to interleave self-training with co-testing.
Nonetheless, it is nearly impossible to refrain from manual annotation entirely:
at the very least test data (that serves as gold standard) needs to be annotated
manually. The question then is how to minimize the human annotation effort.

Active Learning (AL) aims at incorporating targeted human annotations in
the process: the learning strategy interactively asks the user to annotate certain
1 http://surdeanu.info/kbp2013/.

http://surdeanu.info/kbp2013/
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specific data points, using several criteria to identify the best data to annotate
next. Some of the most commonly used criteria are: (i) uncertainty sampling,
which ranks the samples according to the model’s belief it will mislabel them [18];
(ii) density weighted uncertainty sampling, which clusters the unlabeled instances
to pick examples that the model is uncertain for, but also are “representative” of
the underlying distribution [9,23]; (iii) QUIRE, which measures each instance’s
informativeness and representativeness by its prediction uncertainty [15]; (iv)
Bayesian methods such as bald (Bayesian Active Learning by Disagreement)
which select examples that maximize the models’s information gain [11]. The
effectiveness of these criteria is highly dependent on the underlying data and the
relation to extract and it is very difficult to identify strong connections between
any of the criteria and the task [14]. The open question is then how to decide
which technique to use on a new extraction task. Following [14] we argue that it
is best to dynamically decide on the criteria on a task-driven basis. The “active
learning by learning” method (albl) [14] has an initial phase where all criteria
are tested extensively and one is chosen. Our intuition is that the technique
that seems to perform the best at the beginning might not be best one in the
long run. Therefore we propose a method that initially distributes the budget
of annotation among all considered criteria and discards the worst performing
one at each iteration. We argue that keeping a pool of options for a longer
number of iterations will maximize performance on average for a larger number
of tasks, especially given the very small sample set, and we support the claim
with comparative experiments.

For the sake of completeness, it is worth mentioning that in relation extrac-
tion, as in many other machine learning tasks, there is no one-fits-all model
and many have been proposed ranging from early solutions based on SVMs and
tree kernels [7,8,20,32,34] to most recent ones exploiting neural architectures
[24,31,33]. Neither the model nor the active learning strategy or any particular
combination is universally (on all relations/all data) “the best” performer - hence
our proposal of a data driven approach. The aim of this work is to investigate
the influence of different active learning strategies on different extraction tasks
(regardless of the underlying neural model) and to devise strategies to effec-
tively annotate data, rather than proposing a new neural architecture per-se.
Therefore for our experiments we considered several state of the art deep learn-
ing models for relation classification, including Convolutional Neural Networks
(CNNs) [24,33], Recurrent Neural Networks (RNNs) [19], such as bi-directional
GRUs [35], as well as ensembles [31]. For all models, we do not require any NLP
preprocessing (besides tokenization) of the text.

3 Relation Classification

We consider relation extraction as a binary classification task. Given a text
snippet s containing one or more target entities ei

2 our goal is to identify if
2 In our experiments we use pairs of entities, however we should note that our models

can handle n-ary relations as well. We leave this to future work.
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s expresses a certain relation r among the entities ei. Our goal is two-fold: (i)
create a relation classification system that gradually increases accuracy from each
recognized relation, as well as (ii) identifying the sentence snippets for which the
system is most/least confident about expressing the desired relation. We first
obtain a large pool of relevant unlabeled text from a given social media stream
(e.g. the Twitter stream, a social forum etc.), applying the following method.
We consider the (two) types of entities involved in the relation, for which we
construct dictionaries using any off-the-shelf tool (e.g. [2]) and select sentences
where the (two) entities co-occur. Note that this will produce lot of noisy data,
therefore noise reduction needs to be in place. For this work we treat entity
identification in sentences as a blackbox component with various valid available
solutions [16,26,30].

We then segment the learning process into small steps of b examples at a
time (b = 100 in this work3) and interactively annotate the data as we train the
models. Example refers here to a text snippet expressing the relation between
the entities and annotation refers to manually assigning a “true/false” label to
each example. We select the first batch of b examples with a curriculum learning
strategy (details in Sect. 3.2) and manually annotate them. With those we train
(i) several neural models, using (ii) two different data representation paradigms
and (iii) several active learning strategies to determine the next batch of exam-
ples. Our goal is not to specifically improve a particular learning model per-se,
but rather (i) identify at an early stage, i.e. with minimal annotation effort, if
a specific relation can be learned from the available data and (ii) minimize the
labelling effort by using first examples that are more likely to boost the learn-
ing performance. As no active learning strategy is universally preferable (we
show tests on ready-available gold standard datasets for relation extraction in
Sect. 4.2) we propose a pruning method (Sect. 3.2) that dynamically selects the
best strategy for a given task.

3.1 Models, Data Representations and Parameter Choices

We employ commonly used neural models for relation extraction, specifically
CNNs [24,33] and bi-directional GRUs [35].

As for data representation, we do not rely on lexical features or any other
language-dependent information, but after using a simple tokenizer (white
spaces, punctuation) we merely exploit distributional semantics - statistical
properties of the text data - to ensure portability to different languages, domains
and relation types. We explore two different representations for the text: (i) word
sequences concatenated with positional features (as in [33]), i.e. we generate three
embedding matrices, one initialized with pre-trained word embeddings and two
randomly initialized for the positional features; (ii) a context-wise split of the
sentence (as in [1]), i.e. using pre-trained word embeddings and using the two

3 The size of the batch is adjustable, the human-in-the-loop can specify it. In our
experiments, the involved medical doctor indicated 100 as a good size in terms of
keeping focus.
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entities in the text as split points to generate three matrices - left, middle and
right context.

As for the neural network architectures specifications, following literature, all
our models use: 100-dimensional pre-trained GloVe word embeddings [25]; 100-
dimensional positional embeddings optimized with Adam [17]; initial learning
rate = 0.001; batch size b = 100; validation split = 0.2; early stopping [21] to
avoid overfitting (if no improvement happens for 5 consecutive iterations). For
the CNNs we use: 100 filters; kernels width = 3; ReLU nonlinearities [22] - for
CNNs with multiple filter sizes we set the kernels width from 2 to 5. For the
GRU we use: ReLU activations and layer size = 100.

3.2 Active Learning by Pruning

At the bootstrapping phase, we have no information on the performance of each
model as all data is unlabeled. We used curriculum learning (CL) strategies
[6], where the order of the data is decided in advance - before starting the
learning process using several text based criteria. While we tested several criteria,
including random as baseline, the best performance was obtained by maximizing
dissimilary. Starting from a random example (sentence) we sort the data as to
maximize dissimilarity between the sentences. We calculate sentence similarity
exploiting GloVe embeddings as proposed by [4].

For all subsequent steps, we can use previously annotated examples to test
the performance of the different active learning strategies. We consider a pool-
based active learning scenario [28] in which there exists a small set of labeled
data L = (x1, y1), . . . , (xnl

, ynl
) (in this case we consider the batch of 100 exam-

ples selected by CL) and a large pool of unlabeled data U = x1, . . . , xnu
. The

task for the active learner is to draw examples to be labeled from U , so as
to maximize the performance of the classifier (the neural net) while limiting
the number of required annotations to achieve a certain accuracy. We train the
model on the first batch of annotated examples, using 5-fold validation on the
batch itself. At each subsequent iteration we select b

n examples according to
each of the n target active learning strategies; after labelling those b examples
we calculate the performance for each of them and identify the worst performing
AL strategy, which gets discarded in subsequent iterations. After n iterations
we remain with one strategy for the particular task. In this particular work,
we select n = 5 active learning strategies: uncertainty sampling (us), density
weighted uncertainty sampling (dwus), bayesian active learning by disagreement
(bald), QUIRE and we include as baseline the random selection (rs) of examples.
The proposed approach is not limited to those - any other strategy can be added
without changing the overall framework.

We perform extensive experiments testing all possible combinations of mod-
els, data representations and active learning strategies. Results are summarized
in Table 2. We show that our proposed “active learning by pruning” strategy is
robust across relation extraction tasks and datasets (Sect. 4).
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4 Experiments

The relation extraction task is a challenging one. Especially in the case of devel-
oping early prototype systems, little can be done with a traditional neural net-
work in the absence of a significant quantity of hand labeled data. While a task
specific labeling system can help [29], it makes sense to consider the “best order”
to ask the user for input in the hopes of achieving a sufficiently performant sys-
tem with minimal human effort.

Assuming the existence of a relevant corpus of unlabelled examples for the
relation at hand our aim in this work is to identify the best active learning
strategy for each extraction task to prioritize the annotation of examples that
have a better impact on the models. We exploit existing benchmark datasets on
relation extraction and simulate the human-in-the-loop: we treat all examples
as unlabelled and “request” the annotations in small batches from the existing
labels, as if they were annotated in real-time by a user. This gives us useful
insights, as we can compare partial performance (after any given annotation
batch) against the best achievable performance (using the whole dataset), as
well as run in parallel all active learning strategies to figure out if any of them
is “universally” better for all tasks. A post-hoc analysis reveals that in terms of
active learning strategy there is no one-fits-all solution (Sect. 4.2) but that our
proposed solution is able to promote good performing ones for the task. We test
our pruning technique on all the benchmark relations, as well as on our real case
scenario on extracting adverse drug events, for a total of 10 different relations
(details on the data in Sect. 4.1).

4.1 Datasets

We test our method in a real case experiment, extracting Adverse Drug
Events (ADE) relations from a Web forum (http://www.askapatient.com/). Our
human-in-the-loop is a medical doctor using our system to annotate the data.
We produced annotations in the same style as CADEC (CSIRO Adverse Drug
Event Corpus)4, totaling of 646 positive and 774 negative examples of causal
relationships between drugs and ADEs. We name this dataset causalADEs5.
Posts are tagged based on mentions of certain drugs, ADEs, symptoms, find-
ings etc. However, the mere co-occurrence of a drug and an ADE in a sentence
does not necessarily imply a causal relation among the two. Figure 1 shows three
sentences, one where the drug caused an ADE and others where it did not.

We also test our method on the Semeval2010-Task8 dataset [13], which con-
sists of 8,000 training and 2,717 test examples on nine relation types: Cause-
Effect, Component-Whole, Content-Container, Entity-Destination, Entity-
Origin, Instrument-Agency, Member-Collection, Message-Topic, and Product-
Producer.

4 http://doi.org/10.4225/08/570FB102BDAD2.
5 https://github.com/Isminoula/CausalADEs.

http://www.askapatient.com/
http://doi.org/10.4225/08/570FB102BDAD2
https://github.com/Isminoula/CausalADEs
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Fig. 1. Examples of causal and non-causal relations between drugs and ADE mentions
in sentences.

4.2 Fixed Active Learning Strategy VS Dynamic Selection

The aim of the experiments is to compare all the considered active learning
strategies (as used individually) against dynamic selection, either our proposed
pruning strategy or the albl method [14]. We ran experiments using various dif-
ferent configurations of neural networks, data representations and active learning
strategies. For the sake of reporting clarity we use CNN with positional features
to plot results on the different active learning strategies - but we summarize
results for different configurations in Table 2. Figure 2 shows the accuracy on
the Semeval extraction tasks for all the strategies as a function of the number
of labelled examples (Fig. 2): no single AL strategy is always the best, but we
can observe that our pruning strategy has a consistent behavior across all tasks,
approximating top performance.

In a real case scenario, where all data is unlabeled and we do not have
a designated test set, the feedback that we can provide at each step is the
performance calculated with cross-validation on the currently annotated data.

Taking a closer look at individual results (Table 2) one can observe that our
proposed pruning strategy (i) obtains top performance - with respect to other
strategies - with exhaustive annotation, i.e. when all examples are labelled on
most tasks (9 out of 10) and (ii) can consistently “near” top performance (with
a loss ≤2% in most cases (7 out of 10) with less than half of the annotated data,
for some relations as early as after 400 annotations. For completeness we also
compare our pruning strategy to albl [14], which is to the best of our knowledge

Table 1. Examples of correct and incorrect predictions on causalADEs

Sentence y ŷ P (ŷ = y|x)

I was on Crestor for only two months when my knee just
flared up in pain followed by muscle pain

1 1 0.99

However, I am afraid to discontinue the Paxil due to fear of
withdrawal symptoms and/or return of panic attacks

0 0 0.99

I felt like Zoloft turned me into a little bit of a zombie 1 0 0.722

I was crying at the drop of a hat until I started taking the
Celexa, so has been a life saver in my opinion

0 1 0.497

Put me on prozac and it made me more jittery 1 0 0.803
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(a) Cause-Effect (b) Component-Whole (c) Content-Container

(d) Entity-Destination (e) Entity-Origin (f) Instrument-Agency

(g) Member-Collection (h) Message-Topic (i) Product-Producer

Fig. 2. Active learning strategies comparison across all Semeval relation extraction
tasks, fixing CNN as neural model and context-wise splitting as data representation.
Accuracy is calculated on the reference test set.

the best performing method for dynamically selecting active learning strategies.
Our pruning method outperforms albl (or has same performance) in all the runs,
with a maximal increase of 6% (the Entity-Origin task).

A further observation is about the causalADEs dataset, which is our true
real-case experiments (while the others are simulated with existing benchmark
datasets). The presence of a causal relation between a Drug and an Adverse
Drug Event can be very tricky to identify. Table 1 shows examples of correct and
incorrect predictions of our models.

Our overarching goal is to be able to identify a pool of examples for which
we are highly confident to have been annotated correctly leading to a reliable
training/test dataset to train the extraction of a new relation. This is particularly
valuable in situations where the unlabeled sample data is particularly large and
we can afford to discard examples, as long as the selected ones are of high quality.

In Table 2 we summarize our results and report top performance for each
extraction task. Regarding neural architecture we observe that the simple CNN
model performed better in most cases, with a preference for the context-wise
split data representation. Regarding active learning strategies we compare our
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method with (i) each considered state-of-the-art fixed AL strategy (ii) as well
as with the albl dynamic AL strategy selection. The experimental results show
that our pruning method achieves either better or comparable performance with
the best performing AL method, and we surpass the best performance of albl in
almost all cases. Our method also has a computational advantage with respect
to albl. While we train and test in small batches, albl works in a streaming
fashion where a micro-training and performance estimation is done after each
new example. While this is affordable in their tested settings (using a Support
Vector Machine model) it becomes computationally heavy in neural network
settings6. Additionally, our performance using only 500 examples is very close
to the best accuracy we can potentially achieve (but do not know a priori) in
each task, with comparable results to albl with the same number of examples.

Table 2. For each extraction task we report: the best neural network configuration, in
terms of the model and the data representation - either context-wise split or positional
features - which have produced best results; which of the fixed single AL strategies
among rs (r), quire (q), dwus (u), bald (b), us (u) produced the best accuracy - either
using all the data (A@all) or the first 500 examples (A@500) - when a tie occurs
at A@all we report all tying strategies and mark in bold the one with best accuracy
A@500; accuracy for the dynamic selection of AL strategies for albl and for our novel
proposed pruning technique - for which we report the last AL strategy remaining
(selection) after the pruning is completed. We highlight in bold highest performances.

Task Best performing NN Fixed AL strategy ALBL Pruning

Model Data Best AL A@all A@500 A@all A@500 Selection A@all A@500

Content-Container GRUatt positional r, q, d, b 0.95 0.95 0.94 0.93 dwus 0.96 0.95

Member-Collection CNN positional us 0.96 0.96 0.96 0.94 us 0.96 0.95

Message-Topic CNN positional r, q, d, b, u 0.94 0.93 0.94 0.90 rs 0.94 0.93

Cause-Effect CNNmsf context bald 0.94 0.93 0.92 0.90 QUIRE 0.93 0.93

Entity-Destination CNN context r, q, d, b 0.94 0.95 0.94 0.93 dwus 0.94 0.93

Entity-Origin GRU context rs 0.92 0.90 0.87 0.86 QUIRE 0.93 0.89

Component-Whole CNN context q, r, u 0.88 0.86 0.86 0.87 bald 0.89 0.85

Product-Producer CNN context rs 0.88 0.83 0.84 0.83 rs 0.87 0.83

Instrument-Agency CNN positional dwus 0.91 0.89 0.88 0.86 bald 0.88 0.86

causalADEs GRUmp positional q, r 0.80 0.77 0.78 0.75 rs 0.79 0.76

Another observation is that when using the whole available training data, the
different active learning strategies tend to converge. On the other hand at the
first stages of training some strategies might be “slower” in terms of performance
gain. We can observe this in Table 2: after using all available data several AL
strategies achieve top performance (as reported in column Best AL), while
when using only 500 examples (strategies marked in bold in column Best AL)

6 On a Linux server with 48 Intel Xeon CPUs @2.20GHz, 231GBs RAM, NVIDIA
GeForce GTX 1080 GPU, on causalADE task albl (the libact implementation
https://github.com/ntucllab/libact) took 3hrs-10mins, our pruning method took
7 min.

https://github.com/ntucllab/libact
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we have less ties. Regarding our pruning method we report which AL strategy
is selected (column selection) after the pruning is completed. It is important to
note that this is not equivalent to running the selected strategy alone, because
the first stages of training include data selected with various techniques, and this
contributes to learning a slightly different model than with a single technique.

5 Conclusions and Future Work

Previous literature on relation extraction has been focusing on improving model
performance by either developing new architectures, incorporating additional lin-
guistic features or acquiring additional data. We conjecture that in order to be
able to capture any domain specific relation, we need to design models that take
into account the effect of the data size and type in addition to the computational
cost occurring from training under streamed annotations. To this end, we train
neural models with minimal data pre-processing, without using any linguistic
knowledge and we propose a novel active learning strategy selection technique.
We achieve promising performance on various relation extraction tasks. More-
over, we demonstrate that our method is effective for the rapid generation of
train/test data for ambiguous relations and we release a novel dataset for the
detection of adverse drug reactions in user generated data. In future work, we
will investigate pruning strategies, specifically a hierarchical approach which,
given the small amount of data, may result in faster convergence, especially
when exploring many AL options.
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Pennacchiotti, M., Romano, L., Szpakowicz, S.: Semeval-2010 task 8: multi-way
classification of semantic relations between pairs of nominals. In: DEW Workshop,
pp. 94–99. ACL (2009)

14. Hsu, W., Lin, H.: Active learning by learning. In: Bonet, B., Koenig, S. (eds.)
AAAI, pp. 2659–2665. AAAI Press (2015)

15. Huang, S.J., Jin, R., Zhou, Z.H.: Active learning by querying informative and
representative examples. In: NIPS, pp. 892–900 (2010)

16. Ji, G., Liu, K., He, S., Zhao, J.: Distant supervision for relation extraction with
sentence-level attention and entity descriptions. In: AAAI, pp. 3060–3066 (2017)

17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
18. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learn-

ing. In: ICML, pp. 148–156 (1994)
19. Liu, M.X.C.: Semantic relation classification via hierarchical recurrent neural net-

work with attention. In: COLING (2016)
20. Mooney, R.J., Bunescu, R.C.: Subsequence kernels for relation extraction. In:

NIPS, pp. 171–178 (2006)
21. Morgan, N., Bourlard, H.: Generalization and parameter estimation in feedforward

nets: some experiments. In: NIPS, pp. 630–637 (1990)
22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann

machines. In: ICML, pp. 807–814 (2010)
23. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: ICML. ACM

(2004)
24. Nguyen, T.H., Grishman, R.: Relation extraction: perspective from convolutional

neural networks. In: VS@ HLT-NAACL, pp. 39–48 (2015)
25. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-

sentation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)
26. Ratner, A.J., Sa, C.D., Wu, S., Selsam, D., Ré, C.: Data programming: creating
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Abstract. Recently, implicit representation models, such as embedding
or deep learning, have been successfully adopted to text classification
task due to their outstanding performance. However, these approaches
are limited to small- or moderate-scale text classification. Explicit rep-
resentation models are often used in a large-scale text classification, like
the Open Directory Project (ODP)-based text classification. However,
the performance of these models is limited to the associated knowledge
bases. In this paper, we incorporate word embeddings into the ODP-
based large-scale classification. To this end, we first generate category
vectors, which represent the semantics of ODP categories by jointly mod-
eling word embeddings and the ODP-based text classification. We then
propose a novel semantic similarity measure, which utilizes the cate-
gory and word vectors obtained from the joint model. The evaluation
results clearly show the efficacy of our methodology in large-scale text
classification. The proposed scheme exhibits significant improvements of
10% and 28% in terms of macro-averaging F1-score and precision at k,
respectively, over state-of-the-art techniques.

Keywords: Text classification · Word embeddings

1 Introduction

Text classification is the process of determining and assigning topical categories
to text. It plays an important role in many web applications, such as contextual
advertising [7], topical web search [1], and web search personalization [2]. Usually,
text classification requires a sufficiently large taxonomy of topical categories to
capture various topics in arbitrary texts. In addition, it is necessary to collect a
large amount of training data for each category in the taxonomy.

Many studies have utilized an implicit representation model [14], such as
embedding [6,9,10] or a deep neural network [4], which adopts dense semantic
encodings and measures semantic similarity accordingly. Implicit representation
models have been successfully adopted for text classification task. Such implicit
representation models, however, may perform poorly in a large-scale text clas-
sification (as we shall show in Sect. 5.4). This is largely attributed to the fact
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 376–388, 2018.
https://doi.org/10.1007/978-3-319-93037-4_30
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that the training data for each category is relatively insufficient and distributed
unevenly among classification categories. In addition, such approaches are not
intuitively interpretable to humans.

In another line of work, many studies have been done with an explicit rep-
resentation model [14], which uses popular knowledge bases, such as ProBase,
Wikipedia, or the Open Directory Project (ODP)1. Because the explicit model
represents knowledge in terms of vectors that are interpretable to both humans
and machines, it is relatively easy for humans to tune and understand it. Another
advantage of the explicit representation model is that it enables a large-scale text
classification with the direct representation of a large-scale knowledge taxonomy
already built-in.

To handle the large-scale text classification, several works [3,7,12] have uti-
lized the ODP, which is a large-scale and taxonomy-structured web directory.
These studies have used their explicit representation of text to represent ODP
knowledge, based on bag-of-words [3,7] or bag-of-phrases [12] to develop ODP-
based text classification techniques. They showed that ODP-based text classi-
fication techniques are effective at the large-scale text classification. The per-
formance of previous ODP-based text classification, however, is limited to ODP
and/or Wikipedia knowledge bases.

To alleviate the limitation of ODP-based text classification, we incorporate
word embeddings into the ODP-based text classification. To this end, we propose
two novel joint models of ODP-based classification and word2vec, a representa-
tive word embeddings technique. The joint models seek to project both words
and ODP categories into the same vector space. Therefore, category vectors of
ODP categories successfully identify words learned from external knowledge. In
addition, we effectively measure the semantic relatedness between an ODP cate-
gory and a document by utilizing both category and word vectors. In summary,
our contributions are three-fold:

– We propose a novel methodology to handle the large-scale text classification,
which utilizes both the explicit and implicit representation.

– We develop two novel joint models of ODP-based classification and word2vec
to generate category vectors that represent the semantics of ODP categories.
In addition, we develop a new semantic similarity measure that utilizes both
the category and word vectors.

– We demonstrate the efficacy of the proposed methodology through extensive
experiments on real-world datasets. The performance evaluation clearly shows
that our approach significantly outperforms the state-of-the-art techniques in
terms of macro-averaging F1-score and precision at k.

The remainder of this paper is organized as follows. We briefly describe
the ODP-based knowledge representation and word2vec in Sect. 2. Section 3
describes the joint models of ODP-based classification and word2vec to generate
category vectors. Section 4 details the similarity measure between a category and
document. We present the performance evaluation results in Sect. 5. We discuss
related research and conclude this work in Sects. 6 and 7, respectively.
1 http://www.curlie.org.

http://www.curlie.org
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2 Preliminary

2.1 ODP-Based Knowledge Representation

We employ the ODP-based text classification scheme [7] as our explicit repre-
sentation model. To compute the centroid −→μi of category ci, we calculate the
averaged term vector of all ODP documents as:

−→μi =
1

‖Dci‖
∑

d∈Dci

−→
d (1)

where Dci is a set of ODP documents in ci, and
−→
d is a weighted vector repre-

sented as a tf-idf value. Due to the large-scale taxonomy structure of the ODP,
however, each ODP category contains a different number of documents, some-
times resulting in sparsity or unavailability of training documents in a category.
This issue is addressed in the works [3,7], in which they merge the centroid−→μi of the descendant categories to build a classifier. As a result, this approach
outperforms all other ODP-based text classifiers, and exhibits a stable perfor-
mance in large-scale text classification [3,7]. Therefore, we utilize this approach
to compute the centroid −→μi of category ci.

Table 1. Example of ODP-based representation. A document d, “Trump became prez”,
to be classified, and a category c1, Society/Government/President are considered.

Vector Term weights

Trump President Prez Government ...

Term vector of d 0.67 0 0.51 0 ...

Centroid vector of c1 0.10 0.44 0.05 0.31 ...

For example, as shown in Table 1, the category c1, Society/Government/
President is explicitly represented by the centroid vector. Given a document d,
however, “Trump became prez”, the ODP-based classification may not be able
to classify the document d as the category c1. This is because, this approach
cannot capture the semantic relations between words (e.g., prez and president).

2.2 Word2Vec

To complement the ODP-based classification, we adopt the word2vec [9,10], a
popular word embeddings technique. In word2vec, each word vector is trained
using a shallow neural networks language model, such as Skip-gram [9]. Skip-
gram aims to predict context words given a target word in a sliding window.
Mathematically, given a sequence of training words w1, w2, w3..., wT , the objec-
tive of Skip-gram is to maximize the following average log probability:

1
T

T∑

i=1

i+k∑

c=i−k,c �=t

log p(wc|wt) (2)
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where k is the size of the context window centered at the target word, and wt

and wc are the target and context words, respectively.
Trained word vectors with similar semantic meanings would be located at

high proximity within the vector space. In addition, word vectors can be com-
posed by an element-wise addition of their vector representations, e.g., Russian
+ river = Volga River. This property of the vectors is called “additive compo-
sitionality” [10].

3 Joint Models of Explicit and Implicit Representation

In this section, we describe two joint models of ODP-based text classification
and word2vec. These joint models generate category vectors, which represent the
semantics of ODP categories. Each category vector not only semantically encodes
the explicitly expressed ODP category, but also understands semantically related
words that do not appear in the ODP knowledge base. This is because they are
projected into the same semantic space as word vectors learned in an additional
volume of knowledge outside the ODP.

3.1 Generating Category Vector with Algebraic Operation

Given the centroid vector of an ODP category and word vectors of the pre-
trained word2vec model, our first approach generates the category vector by
using the vector scalar multiplication and vector addition methods, as follows.

First, we multiply the term weights of each word in the ODP category by
each word vector of the words. Second, the weighted word vectors are composed
as a category vector using element-wise addition. This type of vector algebra is
quite simple, but it can also clearly represent the semantics of an ODP category.
This is because word vectors are not only multiplied by a precisely trained term
weight from the centroid vector, but also have additive compositionality. The
logic for generating the category vector of the ODP category is as follows:

−→
Ci =

∑

w∈Wi

−→μi(w) · −→w (3)

where
−→
Ci is the category vector of ci, Wi is the set of words of ci, −→w is the

word vector (obtained from the pre-trained word2vec model) of word w, and−→μi(w) is the term weight of w in ci. For example, in Fig. 1(a), the word vectors
of president, government, and trump are multiplied by 0.44, 0.31, and 0.10,
respectively, then the weighted word vectors are added. Finally, we obtain the
category vector of the category Society/Government/President. Vector represen-
tations of documents to be classified are generated in the same manner.

3.2 Generating Category Vector with Embedding

Our second approach extends word2vec to represent category vectors, instead
of using the pre-trained word2vec model to compose word vectors in ODP cate-
gories. We first assign appropriate ODP categories for each word in a text corpus.
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Fig. 1. Illustration of category vector generation with algebraic operation (a) and
embedding (b)

Then, we train the category vectors of the assigned ODP categories by apply-
ing a modified Skip-gram model. The category vector of an ODP category is
expected to represent the collective semantics of words under this category.

The process of generating category vectors with embedding is as follows.
First, we identify candidate ODP categories for the target word. If an ODP
category is largely associated with the target word, the ODP-based text classi-
fication selects this category as a candidate. The ODP-based text classification
determines the degree of association by using the term weight of the target
word in each ODP category. For example, when Trump is the target word, the
ODP-based classification identifies categories such as Game/Gambling and Soci-
ety/Government/President, as shown in Fig. 1(b). We then select the most appro-
priate ODP category in the current context by using the ODP-based text classifi-
cation. For example, when the context is “US President Trump urged congress”,
the most appropriate category is Society/Government/President. Finally, we
apply the modified Skip-gram algorithm, which trains the category vector corre-
sponding to the most appropriate category. The objective of category embedding
is to maximize the following average log probability:

1
T

T∑

i=1

i+k∑

c=i−k,c �=t

log p(wc|wt)p(wc|ct) (4)

Unlike the Skip-gram model, where the target word wt is used only to predict
context words, the category embedding model also uses the ODP category ct of
the target word to predict context words.
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4 Semantic Similarity Measure

We develop a novel semantic similarity measure, on the basis of category and
word vectors, which captures both the semantic relations between words and the
semantics of ODP categories.

4.1 Using Word-Level Semantics

First, we propose a semantic similarity measure that considers word-level seman-
tics by using only the word vectors. The word vectors can be used to calculate
the semantic relatedness between two words. The key idea of this measure is to
align words with similar meanings in a category and document, although the
words represented in this category and document are different.

Before describing the proposed measure, we explain how to compute the
similarity between category ci and document d by means of the existing ODP-
based text classification as follows:

cos(ci, d) =

∑nci
j=1

∑nd

k=1 δ(wj − wk) · −→μi(wj) · −→
d (wk)

‖−→μi‖ · ‖−→d ‖
(5)

where wj and wk are non-zero terms in centroid vector −→μi of ci and term vector−→
d , respectively, while nci and nd are the number of non-zero terms in −→μi and−→
d , respectively. δ(·) is the Dirac function defined by δ(0) = 1 and δ(other) = 0
[13].

The cosine similarity between the centroid vector of category and the term
vector of document could increase when wj and wk are equal. However, in
Table 1, we observe that prez has a very similar meaning to president, which
is a very important word in the category Society/Government/President. There-
fore, we propose a new measure that increases the similarity between proper −→μi

and
−→
d by utilizing word2vec. By substituting the Dirac function δ(·) with the

word similarity φ(·), it is possible to consider semantic relatedness between two
words and calculate the weight more densely:

sim(ci, d) =

∑nci
j=1

∑nd

k=1 φ(wj , wk) · −→μi(wj) · −→
d (wk)

‖−→μi‖ · ‖−→d ‖
(6)

where φ(·) is the word similarity function. Given two words wj and wk, we define
the word similarity function φ(wj , wk) in Eq. (6) as follows:

φ(wj , wk) =

{
cos(−→wj ,

−→wk) if cos(−→wj ,
−→wk) > θ,

0 otherwise
(7)

where −→wj and −→wk are the word vectors of wj and wk, cos(−→wj ,
−→wk) is the cosine

similarity between −→wj and −→wk, and θ is a threshold, which is empirically set to
0.6 in our analysis. The similarity between −→μi and

−→
d increases not only when
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wj and wk are equal, but also they have similar semantics. For example, prez
and president have highly similar semantics in Table 1. The semantic similarity
using word-level semantics, thus, is additionally computed by 0.51 × 0.44 ×
φ(prez, president), unlike the original cosine similarity.

4.2 Using Category- and Word-Level Semantics

In this paper, we develop a robust similarity measure by utilizing both the cat-
egory and word vectors. A category vector is utilized as a pseudo word in the
process of computing semantic similarity. We define the measure as follows:

sim′(ci, d) =

∑nci+1

j=1

∑nd+1
k=1 φ(wj , wk) · −→μi(wj) · −→

d (wk)

‖−→μi‖ · ‖−→d ‖
(8)

In Eq. (8), the category vector is inserted into the corresponding category as
the (nci + 1)th word. This is motivated by the fact that category vectors share
the same semantic space with word vectors. Similarly, the document vector is
inserted into the corresponding document as the (nd+1)th word. We will examine
how to determine the weight (i.e., pseudo term weight) α of the category vector
through many parameter experiments in Sect. 5.4.

5 Experiments

5.1 Datasets

Training Datasets. We use the RDF dump from the original ODP dataset
released on January 8, 2017, which contains 802,379 categories and 3,624,444
webpages. To obtain a well-organized ODP taxonomy, we apply heuristic rules
suggested in [7] and build our own taxonomy with 2,735 categories. Thus, the
final training dataset used in our experiments consists of 52,046 webpages. To
construct the moderate-scale classification dataset, we use only 13 top-level cat-
egories from the ODP taxonomy by excluding two categories, Top/News and
Top/Adult, which contain fewer than 100 webpages. Thus, the training dataset
used in the moderate-scale classification consists of 51,856 webpages.

In addition to the ODP dataset, we train our category embedding model
and word2vec model on the “One Billion Word Language Modeling Benchmark”
dataset released by Google2. The word and category vectors are 300-dimensional,
while the window size is set to 5 with 15 negative samples.

Test Datasets. We build two test datasets, ODP and NYT, to evaluate our
methodology. The ODP test dataset consists of webpages collected from the orig-
inal ODP. The webpages in each category are randomly divided into a training
set and a test set at a ratio of seven to three. In particular, we build two kinds
of ODP test datasets. In the large-scale classification task, we collect 24,121

2 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/


Incorporating Word Embeddings into ODP-Based Large-Scale Classification 383

webpages from 2,735 ODP categories in our taxonomy, while collecting 24,046
webpages from 13 ODP categories in the moderate-scale classification task. In
addition to the ODP test datasets, we select six categories related to the New
York Times: art, business, food, health, politics, and sports, as the source for our
second test dataset. We randomly collect 20 news articles from each of these
categories. Table 2 shows the statistics of datasets.

Table 2. Statistics of datasets

Training dataset Test dataset

ODP
(large-scale/moderate-scale)

No. Categories 2,735/13 2,735/13

No. Webpages 52,046/51,856 24,121/24,046

NYT No. Articles - 120

5.2 Evaluation Metrics

For the ODP test dataset, we use the macro-averaging precision, recall, and
F1-score [15] as the classification performance metric. We adopt the macro-
averaging, which assigns equal weights to each category instead of each test
document, because the distribution of the ODP training dataset is highly skewed
[3,7]. For the NYT test dataset, we use precision at k. Three participants manu-
ally assess the top-k ODP categories obtained by text classifiers in three scales:
relevant, somewhat relevant, and not relevant.

5.3 Experimental Setup

We evaluate the performance of six methods. We adopt the ODP-based text clas-
sifier for our experiments. Other baselines include the paragraph vector [6] and
convolutional neural networks-based text classifier [4], which are state-of-the-art
methods on multi-class text classification. In our experiments, we compare the
following methods:

– ODP (baseline): This is the ODP-based text classification only [7].
– PV (baseline): This is the text classification method using paragraph vectors

[6]. The learned vector representations have 1000 dimensions. We represent
ODP categories by averaging the document embeddings for each document
in a category.

– CNN (baseline): This is the convolutional neural networks-based text classi-
fier [4]. The dimension of word embedding is 300, and the number of filters for
the CNN is 900. We use the ReLU for nonlinearity. Optimization is performed
using SGD with a mini-batch size of 64.

– ODPCV : This is our proposed text classification method using category vec-
tors, which are generated by the joint model of ODP-based text classification
and word2vec.
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– ODPWV : This is our proposed ODP-based text classification combined with
the similarity measure of word-level semantics.

– ODPCV+WV : This is our proposed ODP-based text classification combined
with the similarity measure of both category- and word-level semantics.

5.4 Experimental Results

We first compare the two methods to generate category vectors with the
ODP dataset (2,735 categories). In Table 3, ODPCV (Algebra) denotes the text
classification utilizing the category vector generated by algebraic operations,
while ODPCV (Embedding) denotes the text classification utilizing the cate-
gory vector generated by embedding. Unexpectedly, we observe that a simple
ODPCV (Algebra) clearly outperforms a relatively elaborate ODPCV (Embedding).
Thus, we adopt ODPCV (Algebra) in the remaining experiments, which is simply
denoted by ODPCV .

Table 3. Comparison of category vector generations on the ODP dataset (2,735 cate-
gories)

Precision Recall F1-score

ODPCV (Algebra) 0.449 0.458 0.453

ODPCV (Embedding) 0.278 0.195 0.230

Next, we perform a parameter setting to determine the term weight α of a
category vector as a pseudo word. Figure 2 shows the classification performance
obtained by ODPCV+WV based on different α values. We find that the curve
reaches a peak at α = 0.9. This result shows that the category vector plays a
major role in the performance of ODPCV+WV . However, we observe that when
the weight of category vector is 1.0, the performance drops sharply. This means
that the word overlap feature is still helpful. In the remaining experiments, α is
set to 0.9 for ODPCV+WV .

Fig. 2. Classification performance based on different α values
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Table 4(a) summarizes the experimental results for text classification on the
ODP test dataset with 2,735 target classes. We observe that ODPCV+WV out-
performs all the other proposed methods, as well as the baselines. ODPCV+WV

performs better than ODP over 9%, 12%, and 10% on average in terms of preci-
sion, recall, and F1-score, respectively. Our experimental results show that PV
[6] performs worse than ODP . In addition, it turns out that CNN [4] performs
the worst among the six methods. This can be explained by the fact the dis-
tribution of webpages is skewed toward a few categories in the original ODP
[7]. Actually, we observe that 73% of ODP categories contain fewer than five
webpages. We also compare the performance of CNN with the ODP base-
line on the ODP test dataset with 13 target categories. From Table 4(b), we
observe that CNN exhibits a better performance than ODP in the moderate-
scale text classification. From Table 4, we confirm that CNN is indeed limited
to the moderate-scale text classification.

Table 4. Classification performance on the ODP dataset.

(a) large-scale (2,735 categories)

Precision Recall F1-score
ODP [7] 0.431 0.440 0.436
PV [6] 0.331 0.398 0.361

CNN [4] 0.402 0.232 0.294
ODPCV 0.449 0.458 0.453
ODPWV 0.451 0.440 0.446

ODPCV +WV 0.468 0.494 0.481

(b) moderate-scale (13 categories)

Precision Recall F1-score
ODP [7] 0.667 0.707 0.687
CNN [4] 0.736 0.661 0.696

Table 5 shows the evaluation results on the NYT test dataset. Again, the per-
formance of ODPCV+WV outperforms ODP , PV , CNN , ODPCV and ODPWV

over 28%, 119%, 216%, 12%, and 10% in terms of precision at k on average,
respectively. We also observe that both ODPCV and ODPWV outperform ODP .

Table 5. Classification performance on the NYT dataset (2,735 categories).

Precision at k

k 1 2 3 4 5

ODP [7] 0.575 0.496 0.450 0.421 0.403

PV [6] 0.317 0.292 0.261 0.250 0.245

CNN [4] 0.242 0.200 0.186 0.165 0.155

ODPCV 0.583 0.550 0.536 0.510 0.493

ODPWV 0.600 0.583 0.547 0.508 0.482

ODPCV +WV 0.692 0.617 0.583 0.556 0.545
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These results clearly demonstrate that both category and word vectors are effec-
tive at text classification. Specifically, ODPCV+WV , which utilizes both category
and word vectors, achieves the best performance in all experiments. We also per-
form the t-test for the classification results, and find that ODPCV+WV results
are statistically significant with p < 0.01.

5.5 Analysis

We also qualitatively examine the meaning of category vectors to ana-
lyze why adding category vectors improves the performance of ODP-
based text classification. From Table 6, we observe that the category
vector expresses the meaning of category quite well. First, from the
parent category Home/Cooking/Baking and Confections and child category
Home/Cooking/Baking and Confections/Breads, we observe that their category
vectors share the core semantically rich words (e.g., Recipe, Baking, Cookies),
while they have their own unique semantically rich words (e.g., Dessert, Bread).
These observations imply that the category vector actually understands the
semantics better than the centroid vector.

Interestingly, we also observe that the category vector identifies semantically
related words that do not appear in the ODP knowledge base (e.g., Henin, a Bel-
gian former professional tennis player, in the category Sports/Tennis/Players).
Thus, category vectors combined with the ODP-based classification successfully
enable us to improve the performance of text classification.

Table 6. Nearest words of category vector (Explicit + Implicit) and highly weighted
words in centroid vector (Explicit) of ODP categories

Category Nearest words of category vector

(Explicit + Implicit)

Highly weighted words in

centroid vector (Explicit)

Home/Cooking/ Recipe, Baking, Cookies, Cake

Dessert, Cupcake, Bake, ...

Recipe, Baking, Cookies, Cake

Bake, Pastries, Bread, Mix, ...Baking and Confections

Home/Cooking/ Bread, Recipe, Baking, Flour,

Biscuit, Cookies, Pancake, ...

Bread, Recipe, Sourdough,

Baking, Yeast, Quick, ...Baking and Confections/Breads

Sports/Tennis/Players Tennis, Wimbledon, Nadal,

Henin, Federer, Sharapova, ...

Tennis, Wimbledon, Winners,

Players, Detailed, Seed, ...

6 Related Work

For the large-scale text classification, many approaches have been developed to
handle data sparsity on a knowledge base. Data sparsity on a hierarchical tax-
onomy was firstly addressed in [8]. This work applied a statistical technique
to estimate the parameters of data-sparse child categories with their data-rich
ancestor categories. In [3,7], they proposed the merge-centroid (MC) classifica-
tion that utilizes enriched training data for each category based on webpages
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classified into their ancestor and/or descendants in the ODP. In another line
of work [12], they enriched semantic information in the ODP by incorporating
another knowledge base, Wikipedia.

A simple convolutional neural network approach [4] has been proven to be an
effective text classifier. Still, it exhibits limitations in the large-scale text classi-
fication, which is verified in our analysis. A few work [5,11] has recently studied
large-scale multi-label text classification using deep neural networks. However,
they do not utilize the explicit representation model built from knowledge base.
To the best of our knowledge, our current work is one of only a few works that
utilizes both the explicit and implicit knowledge representation, which enables
us to perform the large-scale text classification quite well.

7 Conclusion

In this paper, we have proposed novel joint models of the explicit and implicit
representation techniques to handle the large-scale text classification. Specifi-
cally, we have incorporated the word2vec model into the ODP-based classifica-
tion framework. Our approach involves two tasks. First, we generate category
vectors, which represent the semantics of ODP categories. Second, we develop a
new semantic similarity measure that utilizes both category and word vectors.
We have verified the large-scale classification performance of our methodology
using real-world datasets. The experimental results confirm that our scheme sig-
nificantly outperforms baseline methods. We plan to apply our methodology to
different applications, including contextual and mobile advertising.
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Science, ICT (number 2015R1A2A1A10052665).

References

1. Broder, A., Fontoura, M., Gabrilovich, E., Joshi, A., Josifovski, V., Zhang, T.:
Robust classification of rare queries using web knowledge. In: SIGIR, pp. 231–238
(2007)

2. Chirita, P.A., Nejdl, W., Paiu, R., Kohlschütter, C.: Using ODP metadata to
personalize search. In: SIGIR, pp. 178–185 (2005)

3. Ha, J., Lee, J.H., Jang, W.J., Lee, Y.K., Lee, S.: Toward robust classification using
the open directory project. In: DSAA, pp. 607–612 (2014)

4. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751 (2014)

5. Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label clas-
sification with better initialization leveraging label co-occurrence. In: NAACL, pp.
521–526 (2016)

6. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, pp. 1188–1196 (2014)

7. Lee, J.H., Ha, J., Jung, J.Y., Lee, S.: Semantic contextual advertising based on the
open directory project. ACM Trans. Web 7(4), 24:1–24:22 (2013)



388 K.-M. Kim et al.

8. McCallum, A., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classifica-
tion by shrinkage in a hierarchy of classes. In: ICML, pp. 359–367 (1998)

9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: ICLR (Workshop) (2013)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)
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Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp.
437–452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-
9 28

12. Shin, H., Lee, G., Ryu, W.J., Lee, S.: Utilizing wikipedia knowledge in open direc-
tory project-based text classification. In: SAC, pp. 309–314 (2017)

13. Song, Y., Roth, D.: Unsupervised sparse vector densification for short text simi-
larity. In: NAACL, pp. 1275–1280 (2015)

14. Wang, Z., Wang, H.: Understanding short texts. In: ACL (Tutorial) (2016)
15. Yang, Y.: An evaluation of statistical approaches to text categorization. Inf. Retr.

1(1), 69–90 (1999)

https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.1007/978-3-662-44851-9_28


Inference of a Concise Regular Expression
Considering Interleaving from XML

Documents

Xiaolan Zhang1,2, Yeting Li1,2, Fanlin Cui1,2, Chunmei Dong1,2,
and Haiming Chen1(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{zhangxl,liyt,cuifl,dongcm,chm}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. XML schemas are useful in various applications. However,
many XML documents in practice are not accompanied by a schema
or by a valid schema. Therefore, it is essential to design efficient algo-
rithms for schema learning. Each element in XML schema has its con-
tent model defined by a regular expression. Schema learning can be
reduced to the inference of restricted regular expressions. In this paper,
we focus on learning restricted regular expressions with interleaving from
a set of XML documents. The new subclass is named as CHAin Regular
Expression with Interleaving (ICHARE). Then based on single occur-
rence automaton (SOA) and maximum independent set (MIS), we intro-
duce an inference algorithm GenICHARE. The algorithm is proved to
infer a descriptive ICHARE from a set of given sample. At last, based
on the data set crawled from the Web, we compare the coverage propor-
tion of ICHARE compared with other existing subclasses. Besides, we
analyze the conciseness of regular expressions inferred by GenICHARE
based on DBLP. Experimental results show that ICHARE is more con-
cise and useful in practice, and the inference algorithm is promising and
effective.

Keywords: XML · Regular expression · Interleaving
Language learning · Algorithms

1 Introduction

As a main data exchange format, eXtensible Markup Language (XML) has been
widely used in various applications on the Web [1]. XML schemas are convenient
for data processing, automatic data integration, static analysis of transforma-
tions and so on [16,18,19]. REgular LAnguage for XML Next Generation (Relax
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NG) is a simple schema language recommended by OASIS1. However, many
XML documents are not accompanied by a (valid) schema in practice. A survey
[15] showed that XML documents on the Web with corresponding schema defi-
nitions only accounted for 24.8% in 2013, with the proportion of 8.9% for valid
ones. Therefore, it is essential to devise algorithms for schema inference. And
schema inference can be reduced to learning restricted regular expressions from
a set of given sample [4,6,12].

Gold [14] proposed a classical language learning model (learning in the limit
or explanatory learning) and proved that the class of regular expressions can not
be identifiable from finite positive data only, even for the class of deterministic
regular expressions (proved by Bex et al. [2]). So researchers have turned to the
study of restricted subclasses of regular expressions. Different from the emphasis
of an exact representation of the target language in Gold-style learning, Freyden-
berger proposed another learning model called descriptive generalization in [10].
For a class D of language representation mechanisms (e.g., a class of automata,
regular expressions, or grammars), a representation α ∈ D is called D-descriptive
for the sample S if L(α) is an inclusion-minimal generalization of S. It means
that there is no β ∈ D such that S ⊆ L(β) ⊂ L(α).

Popular subclasses such as SORE [4], Simplified CHARE [4] (originally was
called CHARE), eSimplified CHARE [9], CHARE [3] (originally was called sim-
ple regular expressions), eCHARE [20] were discussed in detail in [17]. They
are all based on standard regular expressions. In data-centric applications, there
may be no order constraint among siblings [1]. But the relative order within
siblings may be still important. In such cases the interleaving is necessary. How-
ever, there is only a few work which support interleaving. In [7], Ciucanu and
Staworko studied the unordered XML documents and proposed two unordered
schema formalisms: disjunctive multiplicity expressions (DME) and disjunction-
free multiplicity expressions (ME). However, they both do not support the con-
catenation operator. Peng [21] proposed a subclass SIRE, which supports the
concatenation but not the union operator. Ghelli et al. [13] introduced a gram-
mar considering interleaving: T ::= ε|a[m,n]|T + T |T · T |T&T where m ∈ N\{0}
and n ∈ N\{0} ∪ {∗}. This grammar requires each terminal symbol appear at
most once and counter can only occur as a constraint for terminal symbols.

As for inference algorithms for subclasses, Bex et al. [4,5] gave two algorithms
RWR and CRX for SORE and Simplified CHARE. However, regular expressions
inferred by these two algorithms are not descriptive generalized. Freydenberger
et al. [10] proposed algorithms Soa2Chare and Soa2Sore for Simplified CHARE
and SORE respectively which satisfy descriptive generalization. Ciucanu and
Staworko introduced an algorithm for DME based on max clique [7]. Peng et al.
[21] developed an approximate and heuristic solution to infer an approximate
descriptive generalized SIRE.

In present paper, we propose a new subclass of restricted regular expressions
called CHAin regular expression with interleaving (ICHARE) and give an infer-
ence algorithm GenICHARE to infer a descriptive generalized ICHARE based

1 https://www.oasis-open.org/standards.

https://www.oasis-open.org/standards
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on single occurrence automaton (SOA) and maximum independent set (MIS).
First, an SOA is constructed for given sample S. Then each non-trival strongly
connected component is renamed by the return value of Repair(). Next, assign
level numbers for the new graph. Finally, all nodes of each level will be converted
to one or more chain factors.

The main contributions of this paper are as follows.

1. We propose a subclass of restricted regular expressions: CHAin regular expres-
sion with interleaving (ICHARE ).

2. We design an inference algorithm GenICHARE to infer descriptive general-
ized ICHAREs.

3. A series of experiments were conducted. We compare the coverage proportion
of ICHARE with existing subclasses. Based on the data set DBLP, we analyze
the conciseness of regular expressions inferred by GenICHARE compared
with other methods. The experimental results show that ICHARE is more
useful and concise in real-world applications.

The paper is organized as follows. Section 2 is the definitions. The inference
algorithm GenICHARE is introduced in Sect. 3. Experiments are given in Sect. 4.
Section 5 is the conclusions.

2 Preliminaries

Definition 1 Regular Expression with interleaving. Let Σ be a finite
alphabet. Σ∗ is the set of all strings over Σ. A regular expression with inter-
leaving is inductively defined as follows: ε or a ∈ Σ is a regular expression. For
any regular expressions E1 and E2, the disjunction E1|E2, the concatenation
E1 · E2, the interleaving E1&E2, or the Kleene-Star E∗

1 is also a regular expres-
sion. E? and E+ are used as abbreviations of E|ε and EE∗, respectively. L(E)
is the language generated by the regular expression E. We use sym(E) to denote
the set of terminal symbols occurred in E and term(v) to denote all symbols of
the form a or a+ where a ∈ Σ.

Let u = au′ and v = bv′ where a, b ∈ Σ and u′, v′ ∈ Σ∗, then u&v = a ·
(u′&v) ∪ b · (u&v′). For example, strings accepted by (abc)&(d) is the set {abcd,
dabc, adbc, abdc}. Regular expressions with interleaving, in which each terminal
symbol occurs at most once is called ISORE extended from SORE in [4]

Definition 2 Single Occurrence Automaton (SOA) [5]. Let Σ be a finite
alphabet. src,snk do not occur in Σ. A single occurrence automaton over Σ is a
finite directed graph G = (V,E) which satisfies the following two conditions.

1. src, snk ∈ V , and V ⊆ Σ ∪ {src, snk}. All nodes in G are distinct.
2. src is the starting node which only has the outgoing edges while the accepting

node snk only has the incoming edges. Each node in the set of {V \{src, snk}}
lies on a path from src to snk.
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A generalized SOA over Σ is a finite directed graph in which each node v ∈
V \{src, snk} is an ISORE and all nodes are pairwise alphabet-disjoint ISOREs.

level number (ln) and skip level (sl) [10]. For a given directed acyclic graph
G = (V,E) of a SOA, the level number of node v is the longest path from
src denoted by ln(v). ln(src) is 0. If there exists a path v1→Gv2 such that
ln(v1)< ln(v) and ln(v)< ln(v2), then ln(v) is a skip level.

Independent Set (IS). An independent set is a set S of nodes in a graph G, in
which there is no edge between every two nodes in S. A maximum independent
set (MIS) is an independent set with largest possible size for a given graph G
where the size means the number of nodes in an IS.

Let POR(S) denote the set of all partial order relations of each string in S.
Then the Constraint Set (CS ) and Non-Constraint Set (NCS ) for a set of given
sample S are computed as follows.

1. CS(S) = {<ai, aj > | <ai, aj >∈ POR(S), and <aj , ai >∈ POR(S)};
2. NCS(S) = {<ai, aj > | <ai, aj >∈ POR(S), but <aj , ai >/∈ POR(S)}.

Clearly, for S, its Constraint Set and Non-constraint Set are both unique. If
CS(S1) �= CS(S2) (or NCS(S1) �= NCS(S2)), then S1 �= S2.

Definition 3 PSubstring (P, s). PSubstring (P, s) is a function in which P
is a finite set of symbols and s is a string. It returns a new string each symbol of
which is computed as follows: πs(P, si) = si if si ∈ P ; πs(P, si) = ε otherwise.

For example, let P = {b, c, r} and s = ebbdfc, PSubstring(P, s) = bbc.

Definition 4 CHAin Regular Expression with Interleaving
(ICHARE). Let Σ be a finite alphabet. An ICHARE over Σ is a ISORE.
It is of the form (f1f2 · · ·fn) where n ≥ 1. Each factor fi has two possible forms.
One is (b1|b2| · · · |bm), (b1|b2| · · · |bm)?, (b1|b2| · · · |bm)∗ or (b1|b2| · · · |bm)+ where
m ≥ 1, bi can be a or a+ (a ∈ Σ). The other is sc1

1 &sc2
2 & · · · &sct

t where t ≥ 2,
si ∈ Σ∗ and ci ∈ {1, ?, ∗,+}.
For example, E = (a1|a+

2 )((a?
3a4)&(a5a6)) is an ICHARE.

3 Inference Algorithm GenICHARE

For a set of given sample S, GenICHARE can infer a descriptive generalized
ICHARE α such that S ⊆ L(α). sym(A) is the set of terminal symbols occur in
A. all mis means the set of all maximum independent sets iteratively obtained
from a graph G. The main procedures are illustrated as follows.

1. Construct the graph G (V,E) = SOA(S) for S.
2. For each node v with a self-loop, remove the self-loop and rename it with v+.

For each non-trival strongly connected component (NTSCC), replace it with
the return value of Repair(). Relations with any node in NTSCC rebuild the
relation with the new node.
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3. Compute the level numbers for the new graph and find all skip levels.
4. Nodes of each level number ln are turned into one or more chain factors. If

there are more than one non-letter node (node with more than one terminal
symbols), or if ln is a skip level, then ? is appended to every chain factor
on ln.

Now is the pseudo-code inference algorithm GenICHARE. Repair() is the sub-
function which is to transform each NTSCC into a regular expression with inter-
leaving. setln(G) is to assign level number to each node. issl(ln) returns true if
ln is a skip level and returns false otherwise. For a given SOA G = (V,E), the
number of NTSCCs, the set of all mis and level numbers are all finite. Then
Repair() will stop after finite steps. Therefore, Algorithm 1 will also stop in finite
steps.

Algorithm 1. GenICHARE(S)
Input: A set of given sample S
Output: An ICHARE R
1: Construct G(V, E) = SOA(S) using method 2T-INF [11];
2: For each node v with self-loop, remove the self-loop and rename it with v+; for each

NTSCC, replace it with Repair(NTSCC, S). Relations with any node in NTSCC,
rebuild the relation with the new node; Update the graph G;

3: G.setln(),R ← ε,level = 1;
4: while level ≤ (ln(G.sink)) − 1 do
5: VT ← all vertices with level and length(sym(v)) ≥ 2;
6: VS ← all vertices with level and length(sym(v)) = 1;
7: for each vT ∈ VT do
8: if G.issl(level) or (|VT | + |VS |) > 1 then
9: R ← R · v?

T

10: else
11: R ← R · vT
12: end if
13: end for
14: if |VS | > 0 then
15: if G.issl(level) or |VT | > 0 then
16: R ← R · AIT (VS)?

17: else
18: R ← R · AIT (VS)
19: end if
20: end if
21: level = level + 1
22: end while
23: return R
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Algorithm 2. Repair(V,S)
Input: A node set V and a set of given sample S
Output: A repaired regular expression newRE
1: Construct the new sample S′ ← ⋃

s∈Strings PSubstring(V, s);

2: if CS(S′) == ∅ then
3: return RE
4: else
5: G = Graph(CS(S′));
6: while G.nodes()! = ∅ do
7: v = clique removal(G); all mis.append(v);
8: end while
9: for each Mi ∈ all mis do

10: T.append(topologicalsort(Mi));
11: end for
12: for nodes in NCS(S′) but not in CS(S′), add them in Mi with largest size.

Determine the orders of symbols in Mi ∈ T under condition of NCS(S′);
13: add repetition operator {1, ∗, ?, +} for each symbol in T using algorithm CRX[4]
14: newRE ← Combine all elements in T using &;
15: return newRE
16: end if

Time Complexity. Let G(V,E) = SOA(S), n = |V | and m = |E|. It costs
O(n) to find all nodes with loops and O(m+n) to find all NTSCCs using depth-
first search algorithm [8]. The time complexity of clique removal() is O(m+n2).
setln() can be finished in time of O(m + n) using breadth-first search [8]. For
each NTSCC, computation of all mis costs time O(m + n3) and the topological
sort for each subgraph Mi costs time O(m+n). The number of NTSCCs is finite.
Then computing all mis for all NTSCCs also cost time O(m + n3). All nodes
will be converted into specific chain factors of ICHARE in O(n). Therefore, the
time complexity of GenICHARE is O(m + n3).

Theorem 1. For a set of given string sample S, α = GenICHARE(SOA(S)).
If S ⊆ L(β) ⊂ L(α), then L(β) = L(α) holds for every ICHARE β.

Proof. We construct SOA for S, α, β as Gs, Gα, Gβ respectively. Clearly, we have
sym(Gs) = sym(Gα) = sym(Gβ). Let α = α1α2 · · · αn, β = β1β2 · · · βm. Now
we first consider α1. α1 contains all nodes with level = 1. We use VS and VT to
denote the sets with only one terminal symbol and multiple terminal symbols,
respectively. 6 cases have to be considered. 1. VS �= ∅, VT = ∅, 1 is not a skip
number. 2. VS �= ∅, VT = ∅, 1 is a skip level. 3. VS = ∅, |VT | = 1, 1 is not a skip
level. 4. VS = ∅, |VT | = 1, 1 is a skip number. 5. VS = ∅, |VT |> 1. 6. VS �= ∅ and
VT �= ∅.
1. VS �= ∅, VT = ∅, 1 is not a skip number.

Let VS = {v1, v2, · · · , vk}. According to Algorithm 1, we know that α1 =
(v1|v2| · · · |vk) and there is no edge between any two nodes. sym(α1) = sym(β1),
otherwise edges from src of Gα and Gβ are different which will cause a con-
tradiction with S ⊆ L(β) ⊆ L(α). & and · operators must not appear in β1.
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Because these two operators would lead to an edge e<vi,vj> that is not in α1.
Therefore, β1 only have union operator. Because ln = 1 is not a skip level, there
does not exist an edge from src to a node in Σ \ {src} \ symbol(α1). Now we
have β1 = α1 and therefore L(β1) = L(α1).
2. VS = ∅, VT �= ∅, 1 is a skip level.

According to the proof of case 1, we can conclude that term(α1) = term(β1).
β1 only have union operator. At the same time, there exists an edge from src to
some node v ∈ Σ \{src}\symbol(α1). α = GenICHARE(Gs), src →S v holds.
Because Gs is a subgraph of Gβ1 , src →β1 v holds also. Therefore, β1 = α1.
L(β1) = L(α1).
3. VS = ∅, |VT | = 1, 1 is not a skip level.

Let VT = {V 1
T }, V 1

T = (v1&v2& · · · &vk)+. VT is a NTSCC of Gα. According
to the theorem, it is also a NTSCC of Gβ and Gs. In this situation, we use
Algorithm 2 to decide whether it needs to be repaired.

– α1 can not be repaired. Then α1 = (v1|v2| · · · |vk)+. The CS of S′ =⋃
s∈S PSubstring(sym(α1), s) is an empty set. If β1 has & operator, it must

generate two edges e<vi,vj> and e<vj ,vi> at the same time which will lead to
a contradiction of L(Gβ) ⊆ L(Gα). If β1 has concatenation operator, then the
order of two nodes vi, vj is fixed. That means in Gβ , vi →+ vj and vj →+ vi

can not hold at the same time. Therefore it leads to a contradiction that
Gs ⊆ Gβ because VT is a NTSCC of Gs.

– α1 can be repaired. In this situation, β1 does not has union operator. Other-
wise, there is a string s ∈ L(Gβ) with a substring aaa but s /∈ L(Gα).

• α1 only has & operator. According to GenICHARE, the NCS of α1 is
empty. The CS of α1 contains all nodes of sym(α1). If β1 has concate-
nation operator, the CS of β1 is different from that of α1. This will
lead to the conclusion that they are generated from different string sam-
ples, which is not right. Therefore, β1 only has & operator. According
to the theorem, the languages of L(α1) is the minimal-inclusion. Because
L(Gs) ⊆ L(Gβ) ⊂ L(Gα) and each terminal symbol can only occur once
at most, L(Gβ1) = L(Gα1) must hold.

• α1 has concatenation and interleaving operators. If β1 does not has con-
catenation operator, the CS of β1 is larger than that of α1 which leads to
the conclusion that they are generated by different string samples, which
is wrong. Therefore, β1 has two operators · and &. And their CS and
NCS must be the same because they are both generated from S. Let
α1 = ABC where A and C only have concatenation and all symbols in
sym(A) must occur before that of sym(B) and sym(C). Similarly, all
symbols in sym(C) must occur after that of sym(A) and sym(B). Due
to L(Gs) ⊆ L(Gβ) ⊂ L(Gα), we can conclude that there must exist A′

and B′ with sym(A) = sym(A′) and sym(B) = sym(B′) in which A′ and
B′ only has concatenation operator. For B in α1, according to the proof
above, B = B′. Otherwise, their CSs must be different. Therefore, we
can conclude that β1 = α1 and L(Gβ1) = L(Gα1).
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4. VS = ∅, |VT | = 1, 1 is a skip number.
Similar as the proof in case 3 and case 2, we can easily come to the conclusion

that L(Gβ1) = L(Gα1).
5. VS = ∅, |VT | > 1.

In this case, there are more than one NTSCC in Gα1 . For each NTSCC Ci
α1

,
we can prove that there exists a βm = αi

1 where αi
1 is the expression of Ci

α1

using the same proof in case 3. Each αi
1 must be added with ?. Otherwise, there

exists one node v ∈ VT with no outgoing edge. Therefore each βm must have
choice operator ? in order to accept all strings in sample S. This leads to the
conclusion that L(Gβ1) = L(Gα1).
6. VS �= ∅ and VT �= ∅.

Obviously L(Gβ1) = L(Gα1) similar with the proof of case 1 and 5.
From the analysis above, we can conclude that there exists a i where 1 ≤ i ≤

m that L(α1) = L(β1 · · · βi) holds. Let α′ = α2 · · · αn and β′ = βi+1 · · · βm. For
each string s ∈ S, if symb(s)∩symb(α1) = ∅, then s∈S′. If symb(s)∩symb(α1) �=
∅, then replace all alphabet in symb(α1) as ε and put the new string in set S′.
We construct GS′ = SOA(S′). α1 is absorbed by src and the new starting node
becomes src · α1. Using the same proof procedure above, we can conclude that
there exist a k such that α2 = βj+1 · · · βj+k. Go on the same operation until the
graph G has only two nodes src ·α1 · · · αn and snk, and αn = βt · · · βm, then we
have L(α) = L(β).

4 Experiments

4.1 Usage of ICHARE in Practice
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Fig. 1. Coverage proportions of sub-
classes

We first investigated the usage and pro-
portion of ICHARE (denoted as G in the
Fig. 1) compared with SORE(A), Simpli-
fied CHARE(B), eSimplified CHARE(C),
CHARE(D), eCHARE(E), SIRE(F) based
on real-world data set, and then validated
our inference algorithm GenICHARE on
DBLP2. All our experiments were con-
ducted on a machine with Intel Core i5-
5200U@2.20GHz, 4G memory, OS: Ubuntu
16.04. All codes were written in python 2.7.

Our data set contains 13946 Relax NG
files crawled from 268 Web sites, Maven3,
and 171 GitHub repositories with 509267 regular expressions extracted from
these files. From Fig. 1, we can find that the coverage proportion of ICHARE is
the highest (85.78%) among these subclasses.

2 http://dblp.uni-trier.de/xml/.
3 http://repo1.maven.org/maven2/.

http://dblp.uni-trier.de/xml/
http://repo1.maven.org/maven2/
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4.2 Analysis of Inference Results Among Different Methods

DBLP is Data-centric database of information on major computer science jour-
nals and proceedings. We downloaded dblp-2015-03-02.xml.gz.

The results are shown in Tables 1 and 2 inferred by methods: Original
Schema, Exact Minimal Schema, Trang4, InstanceToSchema5 and GenICHARE.
The first column is the elements names with corresponding size of strings (consid-
ering both large and small data sets). The second column is regular expressions
inferred by different methods. In both tables, we use “,” to denote the concate-
nation operator. Method of Exact Minimal Schema uses the exact MIS to infer a
regular expression. Trang can infer a schema from one or more XML documents.
InstanceToSchema is a Relax NG schema generator from XML documents.

We analyze the inferred regular expressions from two aspects: conciseness
and descriptive generalization. For conciseness, regular expressions inferred by
the Original Schema, Trang and GenICHARE are in accordance with chain
regular expressions. This form is concise and has a better readability while the
rest two have no notable structure features. For descriptive generalization, we
discuss the experimental inference results from the following four cases.

(1) Language generated by the inferred regular expression must contain all
strings of given sample. Original Schema, Exact Minimal Schema, Trang and
GenICHARE all satisfy this requirement while InstanceToSchema does not.
Take inproceedings for example, the regular expression inferred by Instance-
ToSchema is ee∗&note?&editor∗&year&author∗ &title&cdrom&url?

&number?&pages?&month?&cite∗&booktitle&crossref∗. cdrom in this reg-
ular expression can occur only once. But we find out that the word cdrom
appeared more than once in 1610138 strings i.e. w = author · title · pages ·
year · booktitle · url · ee · cdrom · cdrom · cite · cite · cite · cite · cite · cite · cite.

(2) It is better for inferred regular expressions to support all binary operators
(·, |, &) which will have a higher practicality. However, regular expressions
inferred by Exact Minimal Schema do not support union operator. Trang
supports the generation of Relax NG schema using XML documents. But in
fact it is almost equivalent to DTD. In other words, it does not support the
regular expressions with interleaving. InstanceToSchema supports the inter-
leaving operator but not concatenation and union. GenICHARE supports
all operators which could generate real Relax NG schemas.

(3) Improper use of union will lead to the over-generalization for the
given sample, which will generate many invalid XML documents. This
shortage could be found in Original Schema and Trang. Take ele-
ment of article for example. Regular expression inferred by Trang
is editor∗·(author|booktitle|cdrom|cite|cros sref |ee|journal|month|note|
number|pages|publisher|title|url|volume|year)+. But the title and pub-
lished year for an actual article are both unique. This shortage is also

4 http://www.thaiopensource.com/relaxng/trang.html.
5 http://www.xmloperator.net/i2s/.

http://www.thaiopensource.com/relaxng/trang.html
http://www.xmloperator.net/i2s/


398 X. Zhang et al.

Table 1. Inference results using different methods on DBLP

reflected in the result of Original Schema but rest methods do not have
this problem.

(4) Improper use of & without considering the actual orders in real-world data
will also lead to over-generalization. Take the element of masterthesis for
example. Regular expressions inferred by Exact Minimal Schema, Trang,
InstanceToSchema and GenICHARE are ee?&author·title·year·school·url?;
author · title ·year · school · (ee|url)∗; ee?&year&author&title&url?&school
and author ·title ·year ·school ·(ee?&url?). Compared with the first result, it
is clear that the form of third result will lead to more redundant XML docu-
ments. The results of Trang and GenICHARE reveal that orders of first four
elements are fixed. Therefore, the result inferred by InstanceToSchema is not
good enough. From the investigation of mastersthesis, the combinations of
ee and url (ee · url, url · ee, ee, url or ε) can only occur in the last posi-
tion. Therefore, regular expression inferred by GenICHARE is reasonable
and descriptive generalized.

The proper use of interleaving & can ensure the actual orders of elements
at the beginning. Therefore, the optimization is the significant feature of our
algorithm GenICHARE.
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Table 2. Inference results using different methods on DBLP
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From the analysis above, the subclass ICHARE has a higher coverage propor-
tion based on real-world data. This means that it will have a better practicality
in actual applications. Regular expression inferred by GenICHARE are more
concise and satify descriptive generalization.

5 Conclusion and Future Work

Based on real-world data, we proposed a new subclass ICHARE of restricted
regular expressions with interleaving. Then we introduced an efficient algorithm
GenICHARE to infer a descriptive generalized ICHARE. A series of experiments
were conducted to compare the coverage of ICHARE with other existing sub-
classes based on real-world data. Besides, based on the data of DBLP, we anal-
yse the conciseness of regular expressions inferred by GenICHARE and compare
with other methods. Experimental results show that ICHARE is more useful in
practice with higher coverage proportion than other subclasses. Regular expres-
sions inferred by GenICHARE perform better from the aspects of conciseness
and descriptive generalization than methods of Original Schema, Exact Minimal
Schema, Trang and InstanceToSchema.

In the future, we will consider constructing the automata for regular expres-
sions with interleaving and study the inference algorithms for subclass k-ORE
(each terminal symbol can occur k times at most).
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Abstract. Adaptive subgradient methods are able to leverage the
second-order information of functions to improve the regret, and have
become popular for online learning and optimization. According to
the amount of information used, adaptive subgradient methods can
be divided into diagonal-matrix version (ADA-DIAG) and full-matrix
version (ADA-FULL). In practice, ADA-DIAG is the most commonly
adopted rather than ADA-FULL, because ADA-FULL is computation-
ally intractable in high dimensions though it has smaller regret when gra-
dients are correlated. In this paper, we propose to employ techniques of
matrix approximation to accelerate ADA-FULL, and develop two meth-
ods based on random projections. Compared with ADA-FULL, at each
iteration, our methods reduce the space complexity from O(d2) to O(τd)
and the time complexity from O(d3) to O(τ2d) where d is the dimen-
sionality of the data and τ � d is the number of random projections.
Experimental results about online convex optimization show that both
methods are comparable to ADA-FULL and outperform other state-of-
the-art algorithms including ADA-DIAG. Furthermore, the experiments
of training convolutional neural networks show again that our method
outperforms other state-of-the-art algorithms including ADA-DIAG.

1 Introduction

Adaptive subgradient methods (ADAGRAD) dynamically integrate knowledge
of the geometry of data observed in earlier iterations to guide the direction of
updating [1]. Different from the conventional online methods [2], ADAGRAD
employ adaptive proximal functions to control the learning rate for each dimen-
sion, and the proximal functions are iteratively modified by the algorithm instead
of tuning manually. There are two versions of adaptive subgradient methods:
ADA-DIAG which uses a diagonal matrix to define the proximal function, and
ADA-FULL which uses a full matrix to define the proximal function. Because
ADA-FULL is computationally intractable in high dimensions, ADA-DIAG is
the most commonly studied and adopted version in practice.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-93037-4 32) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG, part of Springer Nature 2018
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However, compared with ADA-FULL, ADA-DIAG cannot capture the cor-
relation in gradients. As a result, the regret bound of ADA-DIAG may be worse
than that of ADA-FULL when the high-dimensional data is dense and has a
low-rank structure. This dilemma prompts a question as to whether we can
design algorithms that possess the merits of two versions: i.e., the light com-
putation of ADA-DIAG and the small regret of ADA-FULL. In a recent work
[3], Krummenacher et al. presented two approximation algorithms to acceler-
ate ADA-FULL, namely ADA-LR and RADAGRAD. Although ADA-LR is
equipped with a regret bound, its space and time complexities are quadratic
in the dimensionality d, which is unacceptable when d is large. In contrast, the
space and time complexities of RADAGRAD are linear in d, but it lacks theo-
retical guarantees.

Along this line of research, this paper aims to attain theoretical guarantees,
and at the same time keeping the computations light. Note that ADA-FULL
is computationally impractical mainly due to the fact it needs to maintain a
matrix of gradient outer products, and compute its square root and inverse in
each round. Actually, similar problems have been encountered in online New-
ton step (ONS) for exponentially concave functions [4]. Recently, Luo et al.
proposed to accelerate ONS using matrix sketching methods including random
projections [5]. Motivated by previous work, we first propose to employ random
projections to construct a low-rank approximation of gradient outer products,
and manipulate this low-rank matrix in subsequent calculations. In this way, the
new algorithm, named ADA-GP, reduces the space complexity from O(d2) to
O(τd) and the time complexity from O(d3) to O(τ2d), implying both the space
and time complexities have a linear dependence on the dimensionality d.

ADA-GP achieves excellent empirical performance in our experiments. How-
ever, due to subtle independence issues, it is difficult to analyze ADA-GP theo-
retically. To circumvent this problem, we propose to replace the outer product
matrix of gradients in ADA-FULL with the outer product matrix of data, and
then develop a similar method, named ADA-DP, that applies random projec-
tions to the outer product matrix of data. The space and time complexities
of ADA-DP are similar to those of ADA-GP. Moreover, we present theoreti-
cal analysis for ADA-DP when the outer product matrix of data is low-rank,
and further extend to the full-rank case. In the experiments, we first examine
the performance of our methods on online convex optimization, and the results
demonstrate that they are highly comparable to ADA-FULL and are much more
efficient. Furthermore, we conduct experiments on training convolutional neural
networks, and show that ADA-GP outperforms ADA-DIAG and RADAGRAD.

Finally, we would like to emphasize the difference between this work and the
recent work [3]. First, although both studies make use of random projections, our
ADA-GP and ADA-DP are much more simple than ADA-LR and RADAGRAD.
Second, our ADA-GP and ADA-DP are very efficient in the sense that their
computational complexities are linear in the dimensionality d, and ADA-DP is
equipped with theoretical guarantees. In contrast, although RADAGRAD has a
similar computational cost, it does not have theoretical justifications.
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2 Related Work

ADAGRAD. Adaptive subgradient methods use the second-order information
to tune the step size of gradient descent adaptively [1]. For sparse data, the regret
guarantee of ADAGRAD could be exponentially smaller in the dimension d than
the non-adaptive regret bound. In the following, we provide a brief introduction
of ADAGRAD. Note that the idea of ADAGRAD can be incorporated into either
primal-dual subgradient method [6] or composite mirror descent [7]. For brevity,
we take the composite mirror descent as an example.

In the t-th round, the learner needs to determine an action βt ∈ R
d and then

observes a composite function Ft(β) = ft(β) + ϕ(β) where ft and ϕ are convex.
The learner suffers loss Ft(βt), and the goal is to minimize the accumulated
loss over T iterations. Let ∂ft(β) denote the subdifferential set of function ft

evaluated at β and gt ∈ ∂ft(βt) be a particular vector in the subdifferential set.
Define the outer product matrix of gradients Gt =

∑t
i=1 gig�

i . Then, we use
the square root of Gt to construct a positive definite matrices Ht, and have the
following two choices:

Ht =
{

σId + diag(Gt)1/2 ADA-DIAG
σId + G1/2

t ADA-FULL

where σ > 0 is a parameter. The proximal term is given by Ψt(β) = 1
2 〈β,Htβ〉

and the Bregman divergence associated with Ψt is

BΨt
(x,y) = Ψt(x) − Ψt(y) − 1

2
〈∇Ψt

(y),x − y〉.

In each iteration, the composite mirror descent method updates by

βt+1 = argmin
β

{
η〈gt,β〉 + ηϕ(β) + BΨt

(β,βt)
}

= βt − ηH−1
t gt, if ϕ = 0

where η > 0 is a fixed step size. When the dimensionality d is large, ADA-FULL
is impractical because the storage cost of Gt and the running time of finding its
square root and inverse of Ht are unacceptable.

To make ADA-FULL scalable, Krummenacher et al. proposed two methods
that approximate the proximal term Ψt(β) [3]. Based on the fast randomized
singular value decomposition (SVD) [8], they presented an algorithm ADA-LR
that performs the following updates:

Gt = Gt−1 + gtg�
t

G̃t = GtΠ Random Projection

QR = G̃t QR-decomposition

B = Q�Gt

UΣV� = B SVD

βt+1 = βt − ηV(Σ1/2 + σIτ )−1V�gt

(1)
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where Π ∈ R
d×τ is the random matrix of the subsampled randomized Fourier

transform. We note that random projections are utilized in the 2nd step to gen-
erate a smaller matrix G̃t ∈ R

d×τ . It is easy to verify that the space and time
complexities of ADA-LR are respectively O(d2) and O(τd2), which are still unac-
ceptable when the d is large. To further improve the efficiency, they presented
algorithm RADAGRAD by introducing more randomized approximations, the
space and time complexities of which are respectively O(τd) and O(τ2d). Unfor-
tunately, RADAGRAD is a heuristic method and lacks theoretical guarantees.

As previous mentioned, in [5], Luo et al. adopted matrix sketching methods to
accelerate ONS that also encounters the similar problems as ADA-FULL. Specif-
ically, their ONS updates by βt+1 = βt −A−1

t gt where At = αId +
∑t

i=1 ηigig�
i ,

α > 0 and ηi = O(1/
√

i) for general convex functions. We can reformulate this
update rule as

βt+1 = βt − ηH−1
t gt

where Ht = δId +
∑t

i=1
1√
i
gig�

i . To accelerate ONS, they use matrix sketching

methods to calculate a low-rank approximation of
∑t

i=1
1√
i
gig�

i . Motivated by
[5], our work employs random projections to calculate a low-rank approximation
of full matrix. But there are obviously differences between our work and this
related work. First, although both our methods and RP-SON in [5] use random
projections to approximate the full matrix, we further propose to use the outer
product matrix of data to replace the outer product matrix of gradients which
leads to ADA-DP. Note that this simple change can avoid the dependence issue
that the gradient gt depends on the random vectors. Second, the theoretical
analysis in our work is obviously different from [5]. The only common part is the
property of the random projections for low-rank data. But we further exploit the
property of the random projection for full-rank data. Third, our methods and
this related work are designed for different tasks. Our paper aims to accelerate
ADA-FULL, and this related work aims to accelerate ONS. Note that ADA-
FULL is a data dependent algorithm for general convex function and ONS is
proposed to derive a logarithmic regret for exponentially concave functions.

Random Projection. Random projection [9–11] is a simple yet powerful
dimensionality reduction method. For a data point x ∈ R

n, random projection
reduces its dimensionality to τ by R�x, where R ∈ R

n×τ is a random matrix. It
has been successfully applied to many machine learning tasks including classifi-
cation [12,13], regression [14], clustering [15,16], manifold learning [17,18] and
optimization [19,20]. Random projection can be implemented in various differ-
ent ways [21,22], and the most classical one is the Gaussian random projection,
where each entry of R is sampled from a Gaussian distribution. In this paper,
we focus on Gaussian random projection due to its nice theoretical properties
and easy implementations.
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3 Main Results

In this section, we introduce our proposed methods and theoretical results. Due
to the limitation of space, we defer the proof of theoretical results to the sup-
plementary material.

3.1 Problem Setting

To facilitate presentations, we consider the case ϕ = 0, and our methods can
be directly extended to the general case ϕ �= 0. The goal of the learner is to
minimize the regret, defined as R(T ) =

∑T
t=1 ft(βt) − ∑T

t=1 ft(β∗) where β∗ is
a fixed optimal predictor.

3.2 The Proposed ADA-GP Method

From previous discussions, we know that if one can find a low-rank matrix to
approximate Gt, then both space and time complexities of ADA-FULL can be
reduced dramatically. Random projections provide an elegant way for low-rank
matrix approximations, as explained below.

Define

A�
t = [g1, ...,gt] ∈ R

d×t, Rt = [r1, ..., rt] ∈ R
τ×t

where the i-th column of A�
t is gradient gi, and each entry of Rt is a Gaussian

random variable drawn from N (0, 1/τ) independently. Then, we have

Gt = A�
t At, E[R�

t Rt] = Id.

To accelerate the computation, we define

St = RtAt =
t∑

i=1

rig�
i ∈ R

τ×d.

Note that St can be calculated on the fly as St = St−1 + rtg�
t . When τ is large

enough, we expect R�
t Rt ≈ Id, implying

S�
t St = A�

t R�
t RtAt ≈ A�

t At = Gt.

Thus, S�
t St could be used as a low-rank approximation of Gt. The matrix Ht in

the proximal term can be redefined as

Ht = σId + (S�
t St)1/2.

Let SVD of St be St = UΣV�, then we have S�
t St = VΣ2V� and Ht = σId +

VΣV�. According to Woodbury Formula [23], we have

H−1
t = (σId + VΣV�)−1

=
1
σ

(
Id − V(σIτ + Σ)−1ΣVT

)
.
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Algorithm 1. ADA-GP
1: Input: η > 0, σ > 0, τ , S = 0τ×d,β1 = 0;
2: for t = 1, ..., T do
3: Receive gt = ∇ft(βt)
4: St = St−1 + rtg

�
t {Random Projections}

5: UΣV� = St {SVD}
6: βt+1 = βt − η

σ

(
gt − V(σIτ + Σ)−1ΣV�gt

)

7: end for

As a result, in the t-th round, our algorithm performs the following updates

St = St−1 + rtg�
t Random Projection

UΣV� = St SVD

βt+1 = βt − η

σ

(
gt − V(σIτ + Σ)−1ΣV�gt

)
.

(2)

The detailed procedure is summarized in Algorithm1, and named as adaptive
online learning with gradient projection (ADA-GP).

Remark. First, it is easy to verify the time and space complexities of our ADA-
GP is O(τd) and O(τ2d), respectively. Thus, both of them are linear in the
dimensionality d. Second, comparing (2) with (1), we observe that our updating
rules are much more simple than those of ADA-LR. Note that the RADAGRAD
algorithm of [3] is even more complicated than ADA-LR.

3.3 The Proposed ADA-DP Method

Although ADA-GP performs very well in our experiments, it is difficult to estab-
lish a regret bound due to dependence issues. To be specific, the gradient gt

depends on the random vectors [r1, · · · , rt−1], and as a result, standard concen-
tration inequalities cannot be directly applied [24].

To avoid the aforementioned problem, we propose a strategy to get ride
of the dependence issues and the new algorithm is equipped with theoretical
guarantees. We consider the case ft(βt) = l(β�

t xt) where xt is a data vector.
Then, we assume the data points x1, . . . ,xt are independent from our algorithm.
The key idea is to replace the outer product matrix of gradients Gt with the
outer product matrix of data Xt =

∑t
i=1 xix�

i . Accordingly, Ht will be defined
as σId + X1/2

t . To accelerate computations, our problem becomes finding a low-
rank approximation of Xt.

Let C�
t = [x1, ...,xt] ∈ R

d×t, where each column is a data vector. Similar to
ADA-GP, we define

St = RtCt =
t∑

i=1

rix�
i ∈ R

τ×d
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Algorithm 2. ADA-DP
1: Input: η > 0, σ > 0, τ , S = 0τ×d,β1 = 0;
2: for t = 1, ..., T do
3: Receive xt and gt = ∇ft(βt) = l′(β�

t xt)xt

4: St = St−1 + rtx
�
t {Random Projections}

5: UΣV� = St {SVD}
6: βt+1 = βt − η

σ

(
gt − V(σIτ + Σ)−1ΣV�gt

)

7: end for

where Rt ∈ R
τ×t is the Gaussian random matrix. In this case, since Rt is inde-

pendent of Ct, we have

E[S�
t St] = C�

t E[R�
t Rt]Ct = C�

t Ct = Xt

which means S�
t St is an unbiased estimation of Xt.

The rest steps are similar to that of ADA-GP. The detailed procedure is sum-
marized in Algorithm 2, named as adaptive online learning with data projection
(ADA-DP). It is obvious that the computation cost of ADA-DP is almost the
same as that of ADA-GP. Thus, both the space and time complexities of ADA-
DP are linear in d.

The main advantage of ADA-DP is that it has formal theoretical guarantees.
We first consider the case that the data matrix CT is low-rank, and have the
following theorem regarding the regret of Algorithm2.

Theorem 1. Let r 	 d be the rank of CT , and 0 < δ < 1 be the confidence
parameter. Assume each entry of rt ∈ R

τ is a Gaussian random variable drawn
from N (0, 1/τ) independently, τ = Ω( r+log(T/δ)

ε2 ) and σ ≥ 0, then ADA-DP
ensures

R(T ) ≤ σ

2η
‖β∗‖22 +

1
2η

max
t≤T

‖β∗ − βt‖22tr(X1/2
T )

+
2η√
1 − ε

max
t≤T

l′(β�
t xt)2tr(X

1/2
T ) +

ε

2η
max
t≤T

‖β∗ − βt‖22
T∑

t=1

‖X1/2
t ‖

with probability at least 1 − δ.

Remark. Theorem 1 means that we can set the number of random projections
as τ = Ω̂(r) when the data matrix is low-rank.

When the data matrix is full-rank, Theorem1 is inappropriate because it
implies the number of random projections is on the order of the dimensionality.
Let λi(·) be the i-th largest eigenvalue of a matrix. For the full-rank case, we
further establish the following theorem to bound the regret of Algorithm2.

Theorem 2. Let c ≥ 1/32, σ ≥ √
α > 0, σ2

ti = λi(C�
t Ct), r̃t =

∑
i

σ2
ti

α+σ2
ti
,

r̃∗ = max
1≤t≤T

r̃t, σ2
∗1 = max

1≤t≤T
σ2

t1, and 0 < δ < 1. Assume each entry of rt ∈ R
τ
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is an independent random Gaussian variable drawn from N (0, 1/τ), τ ≥
r̃∗σ2

∗1
cε2(α+σ2

∗1)
log 2dT

δ and then ADA-RP ensures

R(T ) ≤ σ

2η
‖β∗‖22 +

1
2η

max
t≤T

‖β∗ − βt‖22tr(X1/2
T )

+
2η√
1 − ε

max
t≤T

l′(β�
t xt)2tr(X

1/2
T ) +

ε

2η
max
t≤T

‖β∗ − βt‖22
T∑

t=1

‖X1/2
t ‖

+
√

εαT

η
max
t≤T

‖β∗ − βt‖22.

with probability at least 1 − δ.

Remark. Following [20], we introduce the quantity r̃t to measure the effective
rank of the data matrix Ct. When the eigenvalues of C�

t Ct decrease rapidly, r̃t

could be significantly smaller than d, even when Ct is full-rank. Compared with
Theorem 1, the upper bound in this theorem contains an additional term caused
by the approximation error of full-rank matrices. Note that Theorem2 means
that we can set the number of random projections as τ = Ω̂(maxt r̃t) when the
data matrix has low effective rank.

Note that our methods and theories can be extended to the general case
ϕ �= 0. We just need to replace the updating rule as

βt+1 = argmin
β

{
η〈gt,β〉 + ηϕ(β) + BΨt

(β,βt)
}
.

Although the updating of βt+1 may not have closed-form solution, the compu-
tational cost of H−1

t can still be reduced dramatically. The regret bound remains
on the same order.

4 Experiments

In this section, we conduct numerical experiments to demonstrate the efficiency
and effectiveness of our methods.

4.1 Online Convex Optimization

First, we compare our two methods against ADA-FULL, ADA-DIAG, RADA-
GRAD [3] and RP-SON [5] on a synthetic data, which is approximately low-
rank. Let β∗ = β̂∗/‖β̂∗‖2 where each entry of β̂∗ is drawn independently from
N (0, 1). We consider the problem of online regression where ft(β) = |β�xt −yt|
and yt = β�

∗ xt. We generate a regression dataset with T = 10000 and d = 500.
In order to meet the requirement of low-rankness, each data point xt is sampled
independently from a Gaussian distribution N (μ,Σ) where μ = 1 and Σ has
rapidly decaying eigenvalues λj(Σ) = λ0j

−α with α = 2 and λ0 = 100.
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Fig. 1. The left is the comparison of regret among different algorithms on the synthetic
data, and the right is the comparison of running time

Fig. 2. The left is the comparison of test accuracy among different algorithms on
Gisette dataset, and the right is the comparison of mistakes during training

The parameters η and σ are searched in {1e−4, 1e−3, · · · , 100}, and we
choose the best values for each algorithm. For fairness, all the algorithms are
running with the same permutations of the function sequence. For ADA-GP,
ADA-DP, RADAGRAD and RP-SON, their results are averaged over 5 runs.
Figure 1 shows the regret and running time of different algorithms where we set
τ = 10 for methods using random projections. The regret of our two methods
are very close and better than ADA-DIAG, RADAGRAD and RP-SON, which
indicates our methods approximate ADA-FULL very well. Moreover, our two
methods are obviously faster than ADA-FULL according to the comparison of
running time.

Second, following [1], we perform online classification with the squared hinge
loss (i.e., ft(β) = 1

2

(
max

(
0, 1 − ytβ

�xt

))2) to evaluate the performance of our
methods. In each round, the learning algorithm receives a single example and
ends with a single pass through the training data. There are two metrics to
measure the performance: the online mistakes and the offline accuracy on the
testing data.

We conduct numerical experiments on a real world dataset from LIBSVM
repository [25]: Gisette which is high-dimensional (i.e. d = 5000) and dense.
Similar as before, parameters η and σ are searched in {1e−4, 1e−3, · · · , 10} and
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{2e−4, 2e−3, · · · , 20}, and we choose the best values for each algorithm. To
reduce the computational cost, we set the number of projections τ = 10 for
methods using random projections. We omit the result of ADA-FULL, because
it is too slow.

For training data, we generate 5 random permutations, and report the aver-
age result. Figure 2 shows the comparison of test accuracy and mistakes among
different algorithms. From Fig. 2, we have some conclusions as following. First,
the performance of ADA-DIAG is much worse than all the other methods, which
means only keeping a diagonal matrix is insufficient to capture the second-order
information. Second, our two methods, ADA-GP and ADA-DP, are better than
RADAGRAD and RP-SON. Third, ADA-GP and ADA-DP are close to ADA-
FULL, which indicates that random projections cause little adverse affect on the
performance.

4.2 Non-convex Optimization in Convolutional Neural Networks

Recently, ADA-DIAG becomes popular for non-convex optimization such as
training neural networks, and Krummenacher et al. also show that RADAGRAD
performs well for training neural networks [3]. Therefore, we also examine the
performance of our method on training convolutional neural networks (CNN).
Because the convolutional layer does not meet the case ft(βt) = l(β�

t xt), we
only perform ADA-GP on training CNN. We use the simple and standard archi-
tecture shown in Fig. 3 to perform classification on the MNIST [26], CIFAR10
[27] and SVHN [28] datasets.

Fig. 3. The 4-layer CNN architecture used in our experiment

Parameters η of all algorithms and δ of ADA-GP and RADAGRAD are
searched in {1e−4, 1e−3, · · · , 1}. For ADA-DIAG, δ is set to 1e−8 as it is typi-
cally recommended. We choose the best values for each algorithm. Following as
[3], we only consider applying ADA-GP and RADAGRAD to the convolutional
layer, and other layers are still trained with ADA-DIAG for all datasets. For all
algorithms, we run 5 times with batch size 128 and report the average results.
Figure 4 shows the comparison of training loss and test accuracy during training
among different algorithms where we set τ = 20. We find that ADA-GP obviously
improves the performance of ADA-DIAG on all datasets, and note that RADA-
GRAD is outperformed by ADA-DIAG in term of training loss on CIFAR10.
This results shows that ADA-GP is a better approximation of ADA-FULL than
RADAGRAD.
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Fig. 4. The comparison of training loss (top row) and test accuracy (bottom row)
among different algorithms

5 Conclusions and Future Work

In this paper, we present ADA-GP and ADA-DP to approximate ADA-FULL
using random projections. The time and space complexities of both algorithms
are linear in the dimensionality d, and thus they are able to accelerate the
computation significantly. Furthermore, according to our theoretical analysis,
the number of random projections in ADA-DP is on the order of the low rank or
low effective rank. Numerical experiments on online convex optimization show
that our methods outperform ADA-DIAG, RADAGRAD and RP-SON and are
close to ADA-FULL. And experiments on training convolutional neural networks
show that ADA-GP outperforms ADA-DIAG and RADAGRAD.

Besides random projection, there exist other ways for low-rank matrix
approximations, such as matrix sketching [11]. In the future, we will investigate
different techniques to approximate ADA-FULL.

Acknowledgements. This work was partially supported by the NSFC (61603177),
JiangsuSF (BK20160658), YESS (2017QNRC001), and the Collaborative Innovation
Center of Novel Software Technology and Industrialization.
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Abstract. Recent efforts have been made on mining mobility of taxi
trajectories and developing recommender systems for taxi drivers. Exist-
ing systems focused on recommending seeking routes to the place with
the highest passenger pick-up possibility. They mostly ignore that wait-
ing at nearby taxi stands may also help increase the profit. Furthermore,
the recommended results seldom consider potential competitions among
drivers and real-time traffic. In this paper, we propose a shared rec-
ommender system for taxi drivers by including waiting as one kind of
seeking policy. We model a seeking process as a Markov Decision Pro-
cess, and propose a novel Q-learning algorithm to train the model based
on massive trajectory data efficiently. During online recommendation, we
update the model using feedbacks from drivers and recommend the opti-
mal seeking policy by taking competitions among drivers and real-time
traffic into account. Experimental results show that our system achieves
better performance than the state-of-the-art approaches.

Keywords: Recommender system · Reinforcement learning · MDP

1 Introduction

Taxi plays an important role in public transportation service. By analyzing about
1500 million records of taxi trips collected from Shanghai over one year, we
observe that different seeking policies may cause huge daily income differences.
As shown in Fig. 1a, we can see that (1) the difference between minimum and
maximum profits per hour can be up to 60 yuan; (2) on average, only 10% drivers
earn more than 40 yuan per hour and up to 10% drivers earn lower than 20 yuan
per hour. We further plot the average profit earned by top 10%, middle 30% and
bottom 10% drivers over different hours in Fig. 1b, and find that the average
profit earned by top 10% drivers in any of the 24 h is roughly twice than that
earned by bottom 10% drivers. We raise a question: can we identify effective
passenger seeking policies with potentially maximum profit in real time?

Recent efforts have been devoted to recommending effective passenger seek-
ing policies for taxi drivers [1–3]. Most existing systems formulate the prob-
lem of discovering the best seeking policy as an optimization problem, with the
objective of maximizing potential profit for the next trip. While the proposed
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 418–430, 2018.
https://doi.org/10.1007/978-3-319-93037-4_33
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(a) Profit distribution (b) Three types of drivers (c) Cruising and waiting

Fig. 1. Profit analysis results from trajectory data

approaches are effective in achieving the objective, there still exist several limi-
tations. First, finding optimal seeking policy is known to be NP-hard [5]. Qu et
al. [2] proposed a recursion tree method, but it has to make a trade-off between
optimality and efficiency. Second, the recommended results often have nothing
to deal with real-time environments such as traffic jams and the potential com-
petitions between drivers. Last but not least, taxi drivers may choose to queue
at taxi stands waiting for passengers rather than cruise along the roads, but
existing systems typically ignore the advantages of waiting. To illustrate the
benefits of waiting, we conduct a case study on Shanghai taxi dataset. We iden-
tify drivers that wait at airport terminals and those cruise to seek passengers
near airports. Figure 1c shows the average profit earned by two groups of drivers
in different hours. Apparently, waiting for passengers sometimes achieves higher
average profits and hence should also be considered as an effective passenger
seeking policy.

To address the above limitations, we develop a recommender system to pro-
vide effective seeking policy, with the consideration of real-time environments.
Waiting is also included as one of the seeking policies. We model a passen-
ger seeking process as a Markov Decision Process (MDP). We propose a novel
Q-learning algorithm to compute the seeking policy with maximum expected
profit. The main contributions of this paper are summarized as follows:

– We develop a shared recommender system for taxi drivers that suggests a
series of passenger seeking actions in real time with the objective of maximiz-
ing the expected profit. We propose a Q-learning approach to the problem
efficiently. To the best of our knowledge, we are the first to include waiting
as one kind of seeking policy.

– We consider potential competitions among drivers and real-time traffic during
online recommendation. We produce seeking actions based on a weighted
round robin algorithm to avoid recommending routes run into traffic jams.

– We conduct extensive experiments on real-world trajectories. Results show
that our approach makes higher profit than the state-of-the-art solutions.

The remainder of this paper is organized as follows. Section 2 discusses the
related works. Section 3 formulates the seeking policy recommendation problem
and introduces preliminaries. Section 4 provides details of our system. Section 5
illustrates the experimental results. We conclude this paper in Sect. 6.
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2 Related Work

We discuss two categories of works that are related to this paper.

Trajectory Data Mining. Many researches have proposed techniques for min-
ing trajectory data including classification [6], clustering [7] prediction [8] and
route planning [12,13]. Some works learn urban mobility from taxi traces [10],
while others leverage trajectories for urban planning [9]. Zhang et al. [11] built a
model to represent driving patterns and predict drivers’ revenue. Chen et al. [13]
addressed the bus route planning issue by analyzing taxi traces. Our work also
tries to find driving patterns from trajectory data, but we focus on using them
to recommend routes for taxi drivers.

Seeking Policy Recommendation for Taxi Drivers. Several works have
focused on recommending seeking policy for taxi drivers. The first type is pick-
up point recommendation. Existing systems for pick-up point recommendation
are developed based on probabilistic models [1], which return the places with high
probabilities to pick up passengers. The second type is route recommendation
[2–4]. Instead of suggesting several pick-up points, many systems recommend
a connected trajectory to increase the profits for taxi drivers. In [2], Qu et al.
modeled the road network with a graph and developed effective pruning rules to
produce the best seeking routes efficiently. Other works consider the influence
of other drivers. Wang et al. [4] proposed a novel approach to calculating the
expected revenue of possible routes for individual taxicabs while considering the
influence of others. SCRAM [3] provided recommendation fairness for a group of
competing taxi drivers, without sacrificing driving efficiency. But none of them
considered waiting as a seeking policy.

3 Definition and Problem

Consider a city that is divided into grids of the same size. A taxi trip T is a
sequence of spatial points logged by a working taxi from one pick-up point to
the corresponding drop-off point, where each point p has the following fields:
timestamp p.t, latitude p.lat, longitude p.lon.

Definition 1 (Cruising cost). We define the cruising cost Costc(T ) of a trip
T as: Costc(T ) = l(T ) × GasFee + tc(T ) × β, where l(T ) is the cruising (i.e., a
taxi is seeking passengers) distance of T , tc(T ) is the cruising time of T and β
is a constant cost per time unit, e.g. vehicle depreciation or company fee.

Definition 2 (Waiting cost). We define the waiting cost Costw(T ) of trip T
as: Costw(T ) = tw(T ) × β, where tw(T ) is the waiting time of T and β is a
constant cost per time unit.

Definition 3 (Profit). We define the average profit of trips in which pick-up
points are in grid g as Profit(g, t), as follows.

Profit(g, t) =
∑Ns(g,t)

i=1 Earn(Ti; g)
Ns(g, t)
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where Ns(g, t) is the number of taxi trips that have pick-up events in grid g

during time period t. Earn(T ; g) = Fee(T )−Cost(T )
t(T ) . t(T ) is the total time of T .

Fee(T ) is the taxi fee getting from trip T . Cost(T ) contains gas fee caused by
the trip and the cruising/waiting costs before the trip starts.

Definition 4 (Action). An action of a taxi is its moving direction from one
grid to another. We consider 9 actions: {up, down, left, right, upper left, upper
right, bottom left, bottom right, waiting nearby}, where waiting nearby is a novel
action in this paper.

Definition 5 (Road network). The road network can be represented by a
graph G= 〈V,E〉, where V= {gi} consists of all grids and E is the edge set
which satisfies ∃eij ∈ E iff gi, gj are neighboring grids and there exists a path
connecting them.

Given a road network, the location of a taxi and time t, our goal is to pro-
vide a seeking policy in the current grid at time t to maximize the expected
profit. To formulate the problem, we first model the passenger seeking process
as a Markov Decision Process (MDP) [14], which is defined as a four-field tuple
(S,A, P (s′|s, a), R). In our context, (1) S is a set of states and each state cor-
responds to a pair of gird g and time t; (2) A(s) is the set of valid actions that
can be taken in grid s; (3) P (s′|s, a) is the transition probability from state s
to state s′ when action a is taken; (4) Ra(s, s′) represents the immediate reward
received after transition from state s to state s′, due to action a.

We define the seeking policy as π, which is a mapping from S to A. π : S → A.
π(s) is action to do at state s. We use a value function V : S → R to measure
the reward accumulated by π, i.e., the accumulated profit obtained when a taxi
moves among states according to the policy. Let V π(s) denotes value of policy
at state s. V π(s) not only depends on immediate reward, but also the reward
subsequently by following π which is referred to delayed reward.

V π(s) =
n∑

i=1

γiRai
(si, si+1) (1)

where 0 ≤ γ ≤ 1 is a discount factor represents the importance of delayed reward
and immediate reward. n is the number of actions taken following policy π.

We now formalize the optimal seeking policy discovery problem as follows.

Definition 6 (Optimal Seeking Policy Discovery). The Optimal Seeking
Policy Discovery problem is to find an optimal policy π that maximizes the cumu-
lative expected profits V π(s).

π∗ ≡ argmax
π

V π(s) (2)

Since our problem is a finite-horizon MDP problem, the optimal seeking
policy on our problem exists [15]. However, the MDP problem is known to be
NP-hard, and there exist many heuristic strategies to solve the problem including
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dynamic programming methods [16], Monte Carlo methods [17] and temporal
difference learning [18]. As the computation complexity of dynamic programming
is very high and the convergence rate of Monte Carlo methods is known to
be low, we propose to use Q-learning which is a kind of temporal difference
learning methods. Q-learning combines the advantages of Monte Carlo methods
and dynamic programming and can handle optimization problems without the
knowledge of the environment.

4 Online Shared Recommender System

4.1 Overview

Figure 2 shows the framework of our shared recommender system. It contains
two major components:

– Offline optimal policy learning: given historical trajectory data, we develop
an MDP model to simulate passenger seeking process and leverage Q-
learning [22] method to learn model parameters efficiently. The resultant
model is able to deliver optimal seeking policy that maximizes the expected
profit for drivers.

– Competition-aware online recommendation: given a location and current time
from a taxi driver, our shared recommendation system provides the best seek-
ing policy that considers both traffic condition and potential competitions
from other drivers.

4.2 Offline Optimal Policy Learning

Taxi Stands Detection. In our MDP model, A(g) is the set of available move-
ments from grid g to another grid. For each grid g, we use road network to decide
valid actions that can be taken in the grid. However, whether waiting at nearby

Offline Policy Learning Online Recommendation

GPS Data POI Data

Taxi stands detection

Compute Pick up 
Possibility Expected Profit

MDP Model

Output: Seeking Policy

Weighed Round Robin

Policy flittering

Top-k  Policy

Input Current time 
Location

Pick-up Possibility

Real-time Traffic

Real-time

Fig. 2. System framework
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action is allowed depends on the existence of taxi stands in the current grid.
A straightforward way is to use POI information. If POIs such as airports, shop-
ping malls and railway stations exist in a grid, it is very likely to have a taxi
stand in that grid. However, this approach may not be able to identify all the
taxi stands accurately. In this section, we propose a data-driven algorithm to
detect taxi stands that leverages both POI information and taxi trajectories.
Our algorithm consists of three steps: waiting trajectory detection, filtering and
clustering.

Waiting Trajectory Detection. Given a trajectory T , we try to detect whether it
contains a subsequence that is a waiting trajectory. If so, we add the subsequence
into a set C. The algorithm of detecting waiting trajectories as follows:

– Stage 1: Finding start waiting point. Given a trajectory T , if the distance
between two consecutive points pj and pj+1 is smaller than a distance thresh-
old τ , pj is considered as a start waiting point.

– Stage 2: Finding end waiting point. We compute the distances between every
two adjacent points after ps, and find the first two points (pj , pj+1)(j > s)
whose distance is large than τ . pj is identified as the end waiting point pe.

– Stage 3: Getting waiting trajectory. We calculate the time difference t between
start waiting point ps and end waiting point pe. If t is within the range
of [δmin, δmax], the sub-trajectory from ps to pe is regarded as a waiting
trajectory and put into set C.

– Stage 4: Termination. When all trajectories T ∈ T are checked, the algorithm
terminates and outputs candidate set C.

Fig. 3. Three types of trajectories.

Waiting Trajectory Filtering. Given a set C of waiting trajectories, we have to
distinguish whether the taxi is waiting at a taxi stand or experiencing traffic
jams. Figure 3 shows the differences between parking places, traffic jams and
waiting for passengers. If a waiting trajectory satisfies the following two con-
ditions, we consider it to be waiting at taxi stands and add it to C ′. (1) The
distance from pc (the geometrical center of the trajectory) to its nearest POI
with a taxi stand is within a given threshold. (2) Taxi state in the end of waiting
trajectory changes from unoccupied to occupied.

Waiting Trajectory Clustering. Different waiting trajectories may actually point
to the same waiting place. Hence, we perform clustering over waiting trajectories
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Algorithm 1. Discovering optimal seeking policy
Input: Trajectory T ; Learning rate α; Discount rate γ
Output: Policy Q

1 Initialize Q;
2 repeat
3 Random choose a start state s;
4 repeat
5 greedy = random(0,1);
6 if greedy < ε then
7 Select an action a with the highest Q(s, a)
8 else
9 Select possible action a at random

10 end
11 Take action a, observe next state s′;
12 Compute expected revenue as reward Ra(s, s

′));
13 Q(si, ai) ←

Q(si, ai) + α · (Rai(si, si+1) + γ · max
a

Q(si+1, a) − Q(si, ai));

14 s ← s′;
15 until Find passengers;

16 until Converage;
17 Return Q

in C ′ to eliminate duplicated taxi stands. To do this, we first calculate the
geometrical center pi

c of a waiting trajectory Ti. We then use DBSCAN [19] to
cluster all pi

c and each cluster center is a taxi stand.

Discovering Optimal Seeking Policy. We now present our Q-learning algo-
rithm that finds an optimal seeking policy for any given (finite) Markov decision
process (MDP). And it has been proved [22] that for any finite MDP, Q-learning
eventually converges to an optimal policy.

Our method works by learning an action-value function Q(s, a) that ulti-
mately gives the expected utility of taking an action in a given state s following
the optimal policy. After the function is learned, optimal policy can be con-
structed by selecting the action with the highest value in each state.

Before learning starts, Q is first initialized by a fixed value. Each time the
agent selects an action, observes a reward and a new state based on the previous
state and the selected action. Then Q is updated. The update of action-value
function follows the Bellman equation as follows [20].

Q(si, ai) ← Q(si, ai) + α · (Rai
(si, si+1) + γ · max

a
Q(si+1, a) − Q(si, ai)) (3)

where α is the learning rate (0 < α < 1) and Ra(s, s′) represents the immediate
reward in our MDP model. Here, γ is the discount rate that indicates the trade-
off between the sooner rewards and later rewards.
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The taxi seeking policy recommendation algorithm is outlined in Algorithm1.
We use ε − greedy policy algorithm to make a balance between exploration and
exploitation. ε is the possibility the agent selects the action with the highest
value and 1 − ε is the possibility the agent randomly selects an action.

After taking the selected action(moving to a certain grid), the taxi gets a
reward. Meanwhile, the action-value function is updated. An episode of the algo-
rithm finishes when the driver finds passengers.

Simulating Seeking Process. Different from traditional reinforcement learn-
ing for routing problem in which taxi can learn from real driving experience,
we cannot let taxi drivers to drive for Q-learning. Furthermore, it is difficult to
use historical trajectory data directly. The reasons are two-fold. First, at the
beginning of learning process, the agent sometimes cannot make a reasonable
recommendation. In fact, it is almost impossible to find historical trajectories
that match our recommended routes. Second, our algorithm may need a large
number of iterations to converge and it may not be likely to find enough historical
trajectories for each grid.

To address the problems, we design a method to simulate seeking process
based on historical trajectories. In the Q-learning algorithm, we can assume that
there is a taxi following our policy to drive using the simulating seeking process.
Given the time period tc, current location gi and action ai, we first calculate
the possibility P (gi, tc) for a taxi to find passengers in grid gi. P (gi, tc) equals
to the total numbers of taxi pass through grid gi divided by the pick-up events
in gi in time period tc. If the taxi finds passengers, the process will terminate.
Else the taxi will continue moving to the next grid according to the action ai in
our policy until it finds passengers.

4.3 Online Recommendation

We use action-value function Q to find the best action for each state. When a taxi
asks for a recommendation, its current grid and time will be forwarded to the
system. Our system responses to the request by continuously providing a seek-
ing policy to the driver until she finds passengers successfully. When providing
seeking policies, we also consider road condition and the potential competitions
between drivers. Our algorithm performs the following three steps.

Top k Policy Candidate Generation. Let the current state be s. For all
actions in A(g), we first rank them by the values of Q(s, a). We then obtain the
first k actions with the highest Q-values and add them into the candidate set K.

CandidatePolicyFiltering. This step aims to filter actions which will lead taxis
into traffic jams based on the candidate policies. We decide whether a grid at time
t involves traffic jams by computing the traffic performance index idx(g, t) for the
grid. idx(g, t) = V (g)

Vc(g,t) , where Vc(g, t) is the average speed of all taxis in grid g dur-
ing the time period t, and V (g) is the average speed of all taxis in grid g during all
day time. After analyzing historical data in peak hours and according to our expe-
rience, we use traffic performance index to remove the actions from the candidate
set which lead taxis to grids with traffic index above 2.5.
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Situation-Aware Policy Recommendation. When more than one taxi
drivers are asking for seeking policy at the same place during the same time
period t, we have to consider the competitions between them. We adopt a
weighted round robin algorithm [21] to solve this problem.

Consider a taxi asks for recommendation in grid g at time period t, we first
calculate the weight w of each action in candidate set C. wa = P (ga, t), where
ga is the grid the taxi will move to after action a. Then the taxi will select the
action a with the highest weight in C. Finally, the traffic index idx(ga, t) and the
pick up possibility of P (ga, t) will be updated based on the feedback information.

At last, we want to discuss the computational complexity of online recom-
mendation to make sure it is fast enough to handle all the online traffic. Given
the number of all actions in A(g) as N , the computational complexity of online
recommendation is O(NlogN), where N < 10, which means that our system is
fast enough to handle all the online traffic.

5 Experiments

5.1 Experimental Setup

Datasets. Taxi GPS traces. We use the real-world taxi GPS traces in Shanghai
within one year. This dataset contains about 1.5 billion records where each record
consists of the longitude, latitude, speed, status (occupied or not), time stamp
and direction angle for a taxi. After preprocessing, we obtain about 11 million
pick-up activities. We use the first 270-day data to build our system and evaluate
the method using the remaining 95-day data.

POI data. We use the POI data obtained from Baidu Map which has 17
categories including transport facilities, living quarters and so on.

Compared Methods. We compare our proposed waiting strategy considered
MDP(WMDP) method with the following two methods.

MNP approach [2]. Given a current location of a taxi, the MNP approach rec-
ommends the next five road segments with the maximum total expected profit.
If the taxi cannot find passengers, the algorithm will recommend the next five
road segments based on the new location.

Pick-up possibility based method. Given a current location of a taxi, this
method recommends the next grid with the largest passenger pick-up possibility.

Parameter Settings. In our experiment, we set Gasfee = 0.4 yuan/km and
β = 43 yuan/day by default. For a trip T with the total journey of x kilometers,

fee =

⎧
⎨

⎩

14yuan x ≤ 3
(14 + 2.5(x − 3))yuan 3 < x ≤ 15
(44 + 2.5(x − 15))yuan x ≥ 15

We follow the discussions in Sect. 5.2 for setting the parameters in the Q-learning
algorithm.
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5.2 Parameter Tuning

We evaluate the effects of learning rate α, discount rate γ and the probability of
exploration ε. We measure the average passing grids before finding passengers
in Table 1.

Table 1. Impact of parameters

Fixed parameters Unfixed parameter Average grids

γ = 0.3, ε = 0.2 α = 0.75 10.40

α = 0.5 10.11

α = 0.25 9.53

α = 0.5, ε = 0.2 γ = 0.3 10.11

γ = 0.5 10.26

γ = 0.7 10.19

α = 0.5, γ = 0.3 ε = 0.1 10.63

ε = 0.2 10.11

ε = 0.3 10.34

We first discuss the impact of α by fixing γ = 0.3 and ε = 0.1. The average
number of passing grids decreases when α becomes smaller which means that
lower learning-rate value performs better. We then fixed α = 0.5 and ε = 0.1,
and vary the value of γ. When γ = 0.3, the algorithm performs slightly better
than other values of gamma. This is because in our problem, immediate rewards
have more impact than future rewards. Finally, we compare different ε by fixing
α = 0.5 and γ = 0.3. Smaller value of ε gets better results, but at first, ε should
be larger, because the agent need more exploration to find better policy at the
beginning of the algorithm. Therefore, in the following experiment, we choose
α = 0.25, γ = 0.3. ε is changed every 10,000 episodes. For the N -th episode, if
N < 5, 000, 000, ε = 0.3 − 0.0004 N

10000 . Otherwise, we set ε to 0.1.

5.3 Comparison Results

To evaluate the influence of load balance method, we consider our algorithm with
load-balance method (LWMDP) and without load-balance method (WMDP).
We simulate queries in Shanghai with all the drop-off points (in total 166,241
points) during five days. Assuming that half of the taxi drivers use our system,
and they will query seeking policy when they finish a trip, and assume our system
to be queried every 5.22 s. The results of the two algorithm are shown in Fig. 4.
Comparing to WMDP, LWMDP can improve 21.28% profits.

We compare the driving routes based on the recommendation results with
those without recommendation. Figure 5 presents the results for average profits
of different driving routes. Obviously, our method outperforms the competing
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methods for all time slots. Moreover, as shown in Fig. 6, the advantage of our
recommender system is more significant in off-peak hours than peak hours. The
reason is that the passenger pickup demands during peak hours are typically
higher than off-peak hours and it is easier for ordinary taxi drivers to find pas-
sengers even without recommendation. During off-peak hours, it is difficult for
inexperienced drivers (whose profit is lower than 50% drivers) to find passengers
because of the limited pickup demands. And our method can help inexperienced
drivers to find passengers and make higher profits.
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Fig. 4. Load balance results
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Fig. 6. Average profit results Fig. 7. Improvement achieved by wait-
ing strategy

We further discuss the effects of waiting strategy on recommendation. We
compare distance and profit with and without using waiting strategy in our
algorithm. As shown in Fig. 7, during off-peak hours, considering waiting as a
seeking policy can reduce the total seeking distance significantly. During peak
hours, waiting strategy can also reduce the total seeking distance, although the
improvement is not as much as that in off-peak hours.



Cruising or Waiting: A Shared Recommender System for Taxi Drivers 429

6 Conclusion

In this paper, we develop a shared recommender system for taxi drivers. We
model the seeking policy recommendation problem as an MDP problem. We
propose a Q-learning algorithm to find an optimal solution efficiently. During
the real-time recommendation, our system produces seeking policies by taking
both the competitions between drivers and traffic jams into account. We con-
duct extensive experiments using real-world taxi trajectories. The results show
that our method can increase the profits by 36.59%. Compared to the existing
solutions, we are the first to include waiting as one kind of seeking policy. As
our system is considering competitions among drivers, we can use game theory
to find an equilibrium the drivers can cooperate to reach in order to increase
driving efficiency in our future work.
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Abstract. The efficiency and scalability of online learning methods
make them a popular choice for solving the learning problems with big
data and limited memory. Most of the existing online learning approaches
are based on global models, which consider the incoming example as lin-
ear separable. However, this assumption is not always valid in practice.
Therefore, local online learning framework was proposed to solve non-
linear separable task without kernel modeling. Weights in local online
learning framework are based on the first-order information, thus will
significantly limit the performance of online learning. Intuitively, the
second-order online learning algorithms, e.g., Soft Confidence-Weighted
(SCW), can significantly alleviate this issue. Inspired by the second-
order algorithms and local online learning framework, we propose a Soft
Confidence-Weighted Local Online Learning (SCW-LOL) algorithm,
which extends the single hyperplane SCW to the case with multiple
local hyperplanes. Those local hyperplanes are connected by a common
component and will be optimized simultaneously. We also examine the
theoretical relationship between the single and multiple hyperplanes. The
extensive experimental results show that the proposed SCW-LOL learns
an online convergence boundary, overall achieving the best performance
over almost all datasets, without any kernel modeling and parameter
tuning.

Keywords: Online learning · Optimization · Non-linear data

1 Introduction

In recent years, online learning algorithms play more important role in data
mining and machine learning. Opposed to traditional batch learning techniques
which generate the best prediction by learning on the entire training data, online
learning just processes one instance at a time and updates the current model with
streaming data repeatedly. The key idea of online learning is to update current
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model by retraining the new model close to the current one, while imposing a
margin separation on the most recent examples [21]. As online learning does
not need to track any history examples, it avoids expensive re-training cost and
reduces large memory consumption. These advantages of online learning make
it increasingly popular in applications: such as malicious URL detection [25],
anomaly detection [20], image retrieval [24], learning to rank [19], collaborative
filtering [15], and etc. Hence, the efficiency and scalability of online learning
methods make them a popular choice for solving the learning problems with big
data and limited memory.

A variety of global online learning algorithms have been developed by
machine learning community to process sequential data, which handle the exam-
ples with a global hyperplane. Some first-order online learning algorithms were
proposed, such as Perceptron Algorithm [7,18] and Passive Aggressive (PA) algo-
rithm [3]. Because first-order online learning algorithm only uses the first-order
information, a large number of second-order algorithms have emerged to improve
the performance on sequential data. The most representative second-order online
learning algorithms are Confidence-Weighted (CW) [6], Adaptive Regularization
of Weights (AROW) [4] and Soft Confidence-Weighted (SCW-I, SCW-II) algo-
rithms [21]. These second-order algorithms maintain a Gaussian distribution
over some linear classifier hypotheses and apply it to control the direction and
scale of parameter updates [6]. Both first-order and second-order online learning
algorithms assume that incoming examples are almost linearly separable. How-
ever, the examples are linearly non-separable or even non-linear in practice. To
address the non-linear separation problem in online learning, kernel algorithms
were studied. These algorithms include direct application of kernel tricks on
online linear classifiers [7,13], budget-based online models [1,5,8,22], and kernel
approximation mapping based models [16]. Because of keeping wrong classified
examples as support vectors, kernel online learning methods require more com-
putation and memory.

On the other hand, in order to address linearly non-separable tasks, some
local classifiers have been proposed in offline learning. Locally linear support
vector machine [14] and local deep kernel learning [12] assume that in a suffi-
ciently small region the decision boundary is approximately linear and the data
is locally linearly separable. Those local classifiers avoid kernel modeling and
are significantly faster than kernel methods, however they are not specifically
designed for online learning tasks. As an improvement of local prototype meth-
ods [9,10,14,23], a novel local online learning framework [26] was proposed,
which jointly learns multiple local hyperplanes to process non-linear sequential
data in a one-pass manner. The weights in local online learning framework are
based on first-order information, thus limits its performance. Meanwhile, the
second-order based online learning algorithms, e.g., Soft Confidence-Weighted
(SCW), can overcome this limitation.

Inspired by both second-order algorithms and local online learning frame-
work, we propose a Soft Confidence-Weighted Local Online Learning (SCW-
LOL) algorithm, which extends the single hyperplane SCW method to the case
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with multiple local hyperplanes. The SCW-LOL algorithm consists of two com-
ponents: a global hyperplane and multiple local hyperplanes. All the local hyper-
planes are connected by one global hyperplane and will be optimized simulta-
neously. We also show the theoretical relationship between the single and mul-
tiple hyperplanes and proof the online convergence boundary is not higher than
SCW method. Experiment results show that our proposed method consistently
achieves the best performance on various tasks compared to other online learning
methods, especially on multi-class classification tasks.

The paper is outlined as follows. Section 2 reviews the related literature.
Section 3 details the SCW-LOL algorithm and the theoretical analysis. Experi-
ment results are shown in Sect. 4, and finally Sect. 5 concludes our paper.

2 Related Work

2.1 Global Methods

One of the well-known online learning algorithms for learning a linear threshold
function is Perceptron Algorithm [7,18]. Another popular thread of first-order
online learning approach is Passive-Aggressive algorithm [3], which only updates
the classifier when a new example’s prediction loss score is less than a prede-
fined margin. Rosenblatt [18] empirically shows that the maximum margin based
online learning algorithms are more effective than the Perceptron Algorithm.

Because first-order based online learning algorithms only use the first-order
information, a large number of second-order algorithms have emerged to improve
online learning performance on sequential data. The most representative second-
order online learning algorithms are Confidence-Weighted (CW) [6], Adaptive
Regularization of Weights (AROW) [4] and Soft Confidence-Weighted (SCW-I,
SCW-II) algorithms [21]. These second-order algorithms maintain a Gaussian
distribution over some linear classifier hypotheses and apply it to control the
direction and scale of parameter updates [6]. Experimental results show that
SCW algorithms significantly outperform the original CW algorithm and per-
form better than other second-order online learning methods with greater effi-
ciency [21].

Both first-order and second-order online learning algorithms assume that
incoming examples are almost linearly separable. However the examples are lin-
early non-separable or even non-linear in practice. To address the non-linear
separation problem in online learning, some non-linear algorithms were stud-
ied. These algorithms include direct application of kernel tricks on online linear
classifiers [7,13], budget-based online models [1,5,8,22], and kernel approxima-
tion mapping based models [16] by using random Fourier features or method.
However, some limitations exist in these methods, including memory overflow
after processing a large amount of data while keeping the historical examples
[7,13] and huge computational burden caused by processing support vectors in
the budget [1,5,8,22].
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2.2 Local Methods

Local classifiers, such as locally linear support vector machine [14] and local
deep kernel learning [12], have been proposed recently to solve the linearly non-
separable tasks in offline learning, which avoid kernel modeling and are signifi-
cantly faster than kernel methods. In those local classifiers, data examples are
assigned to a set of prototypes and used for updating the weights for model com-
bination of local classifiers. Those classifiers assume that in a sufficiently small
region the decision boundary is approximately linear and data is locally linearly
separable. However, they are not specifically designed for online learning tasks.

As an improvement of local prototype methods [9,10,14,23], a novel local
online learning framework [26] was proposed, which jointly learns multiple local
hyperplanes to process non-linear sequential data in a one-pass manner. This
approach considers the non-linear separable task as multiple linear separable
tasks and aims to learn multiple local hyperplanes on one-pass examples. It
achieves notably better performance without using any kernel modeling in one-
pass manner. The weights in local online learning framework are based on
first-order information, thus could significantly limit the performance of online
learning.

3 SCW Local Online Learning

First, we present the preliminary in Subsect. 3.1. Then we describe the objective
function and the inference for weight updating in SCW-LOL algorithm in Sub-
sect. 3.2. As online clustering is the key difference between local and traditional
global online learning methods, we further describe our online clustering strat-
egy in Subsect. 3.3. Finally, we present the pseudo-code of SCW-LOL algorithm
and proof the online convergence boundary in Subsect. 3.4.

3.1 Preliminary

Online learning focuses on processing streaming examples with time steps. At
time step t, the algorithm meets an incoming example xt ∈ Rd and predicts its
label yt ∈ {−1,+1}. After the prediction, the true label yt ∈ {−1,+1} is received
and the suffered loss � (yt, yt) is calculated, which is the difference between its
prediction and true label. The loss is updated to weights wt of the model at each
time step t and the goal of online learning is to minimize the cumulative error
over the whole streaming examples.

Soft Confidence-Weighted (SCW) learning is one of widely used online learn-
ing methods. It extends the confidence-weighted learning for soft margin learning
and assumes that weights w follow the Gaussian distribution with mean vector μ
and covariance matrix Σ, which makes it more robust than other online learning
methods. The optimization of SCW learning is formulated as:

(μt+1,Σt+1) = arg min
μ,Σ

DKL (N (μ,Σ), N(μt,Σt)) ,

s.t. ytμ
T xt ≥ φ

√
xT

t Σxt , (1)
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where DKL stands for the Kullback-Leibler divergence, φ = Φ−1 (η) (Φ is the
cumulative function of the normal distribution and η is the hyper-parameter)
and the loss function is stated below [21]:

�SCW (N (μ,Σ) ; (xt, yt)) = max
(

0, φ
√

xT
t Σxt − ytμ

T xt

)
. (2)

Similar to Passive-Aggressive algorithms, SCW-I includes slack variable ξ
and reformulates optimization (1) for learning soft-margin classifiers as follows:

(μt+1,Σt+1) = arg min
μ,Σ

DKL (N (μ,Σ), N(μt,Σt))

+C�SCW (N (μ,Σ) ; (xt, yt)) . (3)

The above optimization (3) has the closed-form solution:

μt+1 = μt + αtytΣtxt, Σt+1 = Σt − βtΣtxtx
T
t Σt. (4)

The updating coefficients are as follows:

αt = max{C,max{0,
1

vtζ
(−mtψ +

√
m2

t

φ4

4
+ vtφ2ζ)}}, βt =

αtφ√
ut + vtαtφ

,

where ut = 1
4

(
−αtvtφ +

√
α2

t v
2
t φ2

t + 4vt

)2

, vt = xT
t Σtxt, mt = ytμ

T xt,

φ = Φ−1 (η), ψ = 1 + φ2

2 and ζ = 1 + φ2.

3.2 Model

Although SCW algorithm can handle some noisy and non-separable cases, it has
limitations on linearly non-separable or even non-linear classification tasks. We
propose SCW-LOL algorithm to address classification tasks for non-linear data.

In SCW-LOL model, there are two components: a global component (μ,Σ)
shared by all local components and k specifical local components (θi,Γi) ,
i = 1, ..., k. The optimization of SCW-LOL is formulated as follows:

((μt+1,Σt+1) , (θ1,t+1,Γ1,t+1) , ..., (θk,t+1,Γk,t+1)) =
arg min

(μ,Σ ),(θ1,Γ1),...,(θk,Γk)
λDKL (N (μ,Σ)||N(μt,Σt))

+
k∑

i=1

DKL (N (θ,Γ )||N(θi,t,Γi,t)),

s.t. yt

(
μT xt +

k∑
i=1

θT
i xt

)
≥ φ

√√√√xT
t Σxt +

k∑
i=1

xT
t Γixt . (5)

Let the incoming example x̃t be redefined as:

x̃t =
[

xT
t√
λ

,0T
1 , ...,0T

j−1,x
T
t ,0T

j+1, ...,0
T
k

]T

, (6)
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where xt is clustered to the jth local component. Similarly, the weights of global
and local components could be represented as follows:

μ̃ =
[√

λμT ,θT
1 , ...,θT

j−1,θ
T ,θT

j+1, ...,θ
T
k

]T

, (7)

Σ̃ =

⎡
⎢⎢⎢⎣

√
λΣ, 0, ..., 0
0, Γ1, ..., 0
... 0,

. . . 0
0, ..., ..., Γk

⎤
⎥⎥⎥⎦ . (8)

We use SCW-I optimization function as an example and other methods can be
extended easily in our framework.

Plugging Eqs. (6), (7) and (8) into the optimization model (5), the objective
function could be rewritten as follow:

(
μ̃t+1, Σ̃t+1

)
= arg min

μ̃,Σ̃
DKL

(
N

(
μ̃, Σ̃

)
||N

(
μ̃t, Σ̃t

))
,

s.t. ytμ̃
T x̃t ≥ φ

√
x̃T

t Σ̃x̃t . (9)

In this way, SCW-LOL algorithm learns locally sensitive online classifier. The
above formulation (9) also has the closed-form solution:

μ̃t+1 = μ̃t + α̃tytΣ̃tx̃t, Σ̃t+1 = Σ̃t − β̃tΣ̃tx̃tx̃
T
t Σ̃t. (10)

The updating coefficients are calculated as Eq. (10):

α̃t = max{C,max{0,
1

ṽtζ̃
(−m̃tψ̃ +

√
m̃2

t

φ̃4

4
+ ṽtφ̃2ζ̃)}},

β̃t =
α̃tφ̃√

ũt + ṽtα̃tφ̃
, (11)

where ũt = 1
4

(
−α̃tṽtφ̃ +

√
α̃2

t ṽ
2
t φ̃2

t + 4ṽt

)2

, ṽt = x̃T
t Σ̃tx̃t, m̃t = ytμ̃

T x̃t,

φ̃ = Φ−1 (η), ψ̃ = 1 + φ̃2

2 and ζ̃ = 1 + φ̃2.

3.3 Online Clustering

Different from traditional online learning algorithm, local online learning (LOL)
needs to assign the incoming example to specific local prototype component
and updates the prototype weights online. In order to process example xt for
prototyping in a sequential order, we include a sequential version of K-means
[17] which uses the first k examples as initial prototypes at time step t <= k.
When at time step t > k, it assigns the new incoming example xt to the closest
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local prototype which is learned from time step t − 1, and update the assigned
local prototype weights [26]. So the rule of online clustering could be defined as:

Pi,t+1 = Pi,t +
xt − Pi,t

ni,t
, (12)

where Pi,t is the ith local prototype and ni,t is the total number of previous
examples assigned to the ith local prototype at time step t. It is possible that
some noisy examples could affect the online clustering performance, but experi-
ments show that the gaps between sequential K-means and the offline K-means
are small enough to be tolerated after sufficient training [26].

3.4 Algorithm

Algorithm 1 shows the details of SCW-LOL algorithm.

Algorithm 1. SCW Local Online Learning (SCW-LOL)
Input: parameters: C > 0, η > 0, λ > 0
the number of local prototypes: k > 0

1 Initialization: μ̃0 = (0, ..., 0)T , Σ̃0 = I.
2 for t = 1 to T do

3 receive example: xt ∈ Rd

4 if t ≤ k then
5 local prototype initialization: Pt ← xt, nt = 1
6 end
7 else
8 find the closest local prototype: i = arg minj Distance(Pj , xt)

9 update assigned local prototype: Pi ← Pi + xt−P i
ni

, ni ← ni + 1

10 end

11 build example: x̃t =
[

xT
t√
λ
,0T

1 , ...,0T
i−1, x

T
t ,0T

i+1, ...,0
T
k

]T

, x̃t ∈ Rkd

12 make prediction: yt = sgn
(
μ̃T x̃t

)
13 receive true label: yt

14 calculate loss: � = max

(
0, φ̃

√
x̃T

t Σ̃x̃t − ytμ̃
T x̃t

)
, φ̃ = Φ−1 (η)

15 if � > 0 then

16 μ̃t+1 = μ̃t + α̃tytΣ̃tx̃t, Σ̃t+1 = Σ̃t − β̃tΣ̃tx̃tx̃
T
t Σ̃t

17 where α̃t and β̃t are calculated by Eq. (11)

18 end

19 end

In SCW-LOL algorithm, we project the weights μ̃ by Eq. (7) and
Σ̃ by Eq. (8). Based on the rebuilt example x̃t in Eq. (6), we have
�SCW (N(μ,Σ); (xt, yt)) = �LOL

(
N(μ̃, Σ̃); (x̃t, yt)

)
, where �SCW and �LOL
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represent the same loss function. Thus, local online learning is actually equiv-
alent to linear SCW method, which indicates that SCW-LOL method will not
obtain a higher loss bound than SCW algorithm.

4 Evaluation

4.1 Environment Setup

Datasets: We evaluate our approach on 10 benchmark datasets [2] from different
domains: (1) MIT cbcl face data1; (2) machine learning datasets from LIBSVM,
such as “ijcnn1”, “splice”, “cod-rna”, “svmguide1”, “usps”, “letter”, “mnist”,
“pendigits” and “shuttle”2. Table 1 shows the details of the datasets.

Table 1. Datasets details

Dataset #Training #Testing #Features #Classes

ijcnn1 49,990 91,701 22 2

splice 1,000 2,175 60 2

cod-rna 59,535 271,617 8 2

cbcl face 6,977 24,045 361 2

svmguide1 3,089 4,000 4 2

ups 7,291 2,007 256 10

letter 15,000 5,000 16 26

mnist 60,000 10,000 780 10

pendigits 7,494 3,498 16 10

shuttle 43,500 14,500 9 7

Baselines: We compare our approach with various baselines: (1) first-order
Passive Aggressive (PA) [3], (2) second-order confidence weighted family meth-
ods, such as Confidence-Weighted (CW) [6], Adaptive Regularization of Weight
(AROW) [4], and Soft Confidence-Weighted (SCW-I, SCW-II) algorithms
[11,21], (3) kernel approximation online learning methods [16] such as FOGD
and NOGD and (4) Passive Aggressive Local Online Learning (PA-LOL) algo-
rithm [26] (Table 2).

Parameter Setting: We follow the similar parameter settings in [21]. The
parameter C in PA, SCW-I, and SCW-II as well as the parameter r in
AROW are all determined by cross validation to select the best one from{
2−4, 2−4, ..., 23, 24

}
; the parameter η in CW, SCW-I, and SCW-II are deter-

mined by cross validation to select the best one from {0.5, 0.55, ..., 0.9, 0.95}. For

1 http://cbcl.mit.edu/software-datasets/FaceData2.html.
2 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

http://cbcl.mit.edu/software-datasets/FaceData2.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2. Properties of compared methods

Methods Second order Using kernel Non-linear Local

PA No No No No

CW Yes No No No

AROW Yes No No No

SCW-I Yes No No No

SWC-II Yes No No No

FOGD No Yes Yes No

NOGD No Yes Yes No

PA-LOL No No Yes Yes

SCW-LOL Yes No Yes Yes

kernel approximation online learning methods3, the number of fourier compo-
nents D in FOGD is set as 2000 and k in NOGD is set as 200 and learning
rate is 0.001. After parameters are determined, all experiments are conducted
over 10 random shuffles for each dataset and all results are averaged over these
10 runs. For local online learning method, similar to parameter setting in [26],
we fix the number of local prototypes k to 60, balancing parameter λ to 1 and
the aggressive parameter C to 1. In multi-class classification task, we adopt
one-vs-all strategy to predict result.

Metrics: We evaluate the performance on the following metrics: (1) cumulative
error rate, which is defined as

∑t
i=1 I(yt �=yt)

t at time step t. It shows the accuracy
of prediction for sequential examples and (2) test error rate: the model is trained
by the train set and tested using the test set. It indicates the generalization
ability of the model on unseen examples.

Table 3. Test error of the methods in binary-class classification

Methods ijcnn1 splice cod-rna cbcl face svmguide1

PA 0.0763 ± 0.0023 0.1921 ± 0.0496 0.1132 ± 0.0029 0.0364 ± 0.0145 0.2173 ± 0.0001

CW 0.1043 ± 0.0209 0.2342 ± 0.0101 0.1080 ± 0.0346 0.0311 ± 0.0022 0.2162 ± 0.0000

AROW 0.0803 ± 0.0002 0.1473 ± 0.0014 0.1111 ± 0.0001 0.0341 ± 0.0005 0.2041 ± 0.0003

SCW-I 0.0587 ± 0.0011 0.1530 ± 0.0022 0.0486 ± 0.0000 0.0286 ± 0.0061 0.2099 ± 0.0005

SCW-II 0.0589 ± 0.0007 0.1520 ± 0.0018 0.0487 ± 0.0002 0.0260 ± 0.0015 0.1990 ± 0.0001

FOGD 0.0437 ± 0.0061 0.2095 ± 0.0769 0.1259 ± 0.0001 0.0401 ± 0.0069 0.0357 ± 0.0009

BOGD 0.0950 ± 0.0001 0.3178 ± 0.0999 0.1217 ± 0.0030 0.0654 ± 0.0231 0.0359 ± 0.0021

PA-LOL 0.0489 ± 0.0048 0.1811 ± 0.0806 0.1672 ± 0.0032 0.0338 ± 0.0048 0.1537 ± 0.0151

SCW-LOL 0.0235 ± 0.0018 0.1282 ± 0.0101 0.1098 ± 0.0021 0.0219 ± 0.0019 0.1351 ± 0.0106

3 https://github.com/LIBOL/KOL.

https://github.com/LIBOL/KOL
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Fig. 1. Cumulative error rate (%) on training datasets for different methods.
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Table 4. Test error of the methods in multi-class classification

Methods usps letter mnist pendigits shuttle

PA 0.1141 ± 0.0054 0.5109 ± 0.0240 0.0943 ± 0.0040 0.1685 ± 0.0153 0.0979 ± 0.0248

CW 0.1107 ± 0.0029 0.5646 ± 0.0239 0.1275 ± 0.0037 0.1459 ± 0.0076 0.0733 ± 0.0372

AROW 0.0872 ± 0.0016 0.3724 ± 0.0015 0.0867 ± 0.0008 0.1411 ± 0.0028 0.0738 ± 0.0005

SCW-I 0.0868 ± 0.0015 0.3915 ± 0.0052 0.0772 ± 0.0006 0.1277 ± 0.0028 0.0255 ± 0.0027

SCW-II 0.0844 ± 0.0022 0.3758 ± 0.0044 0.0789 ± 0.0006 0.1351 ± 0.0062 0.0285 ± 0.0161

FOGD 0.0758 ± 0.0096 0.2416 ± 0.0027 0.9083 ± 0.0124 0.1654 ± 0.01066 0.1588 ± 0.0026

BOGD 0.0968 ± 0.0041 0.5961 ± 0.0227 0.9012 ± 0.0317 0.5965 ± 0.01348 0.1047 ± 0.0278

PA-LOL 0.0948 ± 0.0048 0.3118 ± 0.0132 0.0591 ± 0.0041 0.0764 ± 0.0094 0.0228 ± 0.0086

SCW-LOL 0.0725 ± 0.0029 0.2097 ± 0.0022 0.04829 ± 0.0013 0.0568 ± 0.0089 0.0138 ± 0.0028

4.2 Results

Table 3 shows the test error for different methods on binary-class classification
task over 5 different datasets. SCW-LOL performs the best for 3 datasets and
achieves lower error rate than PA, CW, AROW, and PA-LOL on all datasets.
The SCW family algorithms perform well on “cod-rna” dataset and is far ahead
of other methods. Online kernel methods, i.e., FOGD and NOGD, outperform
the rest of the methods on “svmguide1” dataset by one order of magnitude.

Table 4 shows the test error for multi-class classification on 5 different
datasets. SCW-LOL performs the best among all datasets. FOGD and NOGD
are inferior on “mnist” dataset as opposed to others. Both PA-LOL and SCW-
LOL perform better than other baselines in multi-class classification.

Figure 1 shows the cumulative error rate (%) on all datasets. Overall, the
error rates decrease over time, except for FOGD and NOGD on “mnist” dataset.
SCW-LOL method achieves the best cumulative error rate in most datasets.

Overall, we can see that SCW-LOL significantly outperforms other methods
in most datasets. Compared with the second-order algorithms, such as CW and
AROW methods, SCW consistently outperforms the traditional second-order
online learning algorithms, while SCW-LOL algorithm still performs better than
SCW method in all datasets except for “cod-rna” dataset. This demonstrates
that local hyperplane technique is a good way to address non-linear separable
task. For online kernel methods, both FOGD and NOGD, have good performance
in binary classification and close to other online learning algorithms. But in
multi-class task, the kernel methods performance are worse. Meanwhile, local
online learning methods PA-LOL and SCW-LOL perform well in multi-class
classification. As SCW-LOL method can learn the second-order information, it
outperforms PA-LOL on all datasets and has stable improvement.

5 Conclusion

In order to solve non-linear separable task on streaming data, we proposed a soft
Confidence-Weighted local online learning (SCW-LOL) algorithm, which learns
from streaming data and updates local model. The incoming samples will be
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assigned to the right local model, thus solving the non-linear separable problem.
Moreover, our method keeps the second-order information and outperforms the
first-order online learning methods. From the loss bound analysis, SCW-LOL
will not obtain a higher loss bound than SCW. Our experimental results show
that SCW-LOL has outstanding performance in streaming data, especially in
multi-class classification tasks. In the near future, we will improve our proposed
sequential version of the K-means clustering with an online Gaussian Mixture
Model (GMM), where the parameter k will be automatically learned.

References

1. Cavallanti, G., Cesa-Bianchi, N., Gentile, C.: Tracking the best hyperplane with a
simple budget perceptron. Mach. Learn. 69(2–3), 143–167 (2007)

2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. TIST
2(3), 27 (2011)

3. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. JMLR 7, 551–585 (2006)

4. Crammer, K., Kulesza, A., Dredze, M.: Adaptive regularization of weight vectors.
In: NIPS, pp. 414–422 (2009)

5. Dekel, O., Shalev-Shwartz, S., Singer, Y.: The forgetron: a kernel-based perceptron
on a budget. SIAM J. Comput. 37(5), 1342–1372 (2008)

6. Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification.
In: ICML, pp. 264–271. ACM (2008)

7. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algo-
rithm. Mach. Learn. 37(3), 277–296 (1999)

8. Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data
analysis. IEEE Trans. Comput. 100(9), 881–890 (1974)

9. Gou, J., Zhan, Y., Rao, Y., Shen, X., Wang, X., He, W.: Improved pseudo nearest
neighbor classification. KBS 70, 361–375 (2014)

10. Gu, Q., Han, J.: Clustered support vector machines. In: AISTATS, pp. 307–315
(2013)

11. Hoi, S.C., Wang, J., Zhao, P.: LIBOL: a library for online learning algorithms.
JMLR 15(1), 495–499 (2014)

12. Jose, C., Goyal, P., Aggrwal, P., Varma, M.: Local deep kernel learning for efficient
non-linear SVM prediction. In: ICML, pp. 486–494 (2013)

13. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE
Trans. Sig. Process. 52(8), 2165–2176 (2004)

14. Ladicky, L., Torr, P.: Locally linear support vector machines. In: ICML, pp. 985–
992 (2011)

15. Lu, J., Hoi, S., Wang, J.: Second order online collaborative filtering. In: ACML,
pp. 325–340 (2013)

16. Lu, J., Hoi, S.C., Wang, J., Zhao, P., Liu, Z.Y.: Large scale online kernel learning.
JMLR 17(47), 1 (2016)

17. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

18. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65(6), 386 (1958)



A Local Online Learning Approach for Non-linear Data 443

19. Wang, J., Wan, J., Zhang, Y., Hoi, S.C.: Solar: scalable online learning algorithms
for ranking. In: ACL (2015)

20. Wang, J., Zhao, P., Hoi, S.C.: Cost-sensitive online classification. TKDE 26(10),
2425–2438 (2014)

21. Wang, J., Zhao, P., Hoi, S.C.: Soft confidence-weighted learning. ACM Trans. Intell.
Syst. Technol. (TIST) 8(1), 15 (2016)

22. Wang, Z., Crammer, K., Vucetic, S.: Breaking the curse of kernelization: budgeted
stochastic gradient descent for large-scale SVM training. JMLR 13, 3103–3131
(2012)

23. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature
hashing for large scale multitask learning. In: ICML, pp. 1113–1120. ACM (2009)

24. Wu, P., Hoi, S.C., Xia, H., Zhao, P., Wang, D., Miao, C.: Online multimodal deep
similarity learning with application to image retrieval. In: MM, pp. 153–162 (2013)

25. Zhao, P., Hoi, S.C.: Cost-sensitive online active learning with application to mali-
cious URL detection. In: SIGKDD, pp. 919–927. ACM (2013)

26. Zhou, Z., Zheng, W.S., Hu, J.F., Xu, Y., You, J.: One-pass online learning: a local
approach. Pattern Recogn. 51, 346–357 (2016)



Contextual Location Imputation
for Confined WiFi Trajectories

Elham Naghizade1(B), Jeffrey Chan2, Yongli Ren2, and Martin Tomko1

1 Department of Infrastructure Engineering,
University of Melbourne, Melbourne, Australia

{enaghi,mtomko}@unimelb.edu.au
2 School of Science, RMIT University, Melbourne, Australia

{jeffrey.chan,yongli.ren}@rmit.edu.au

Abstract. The analysis of mobility patterns from large-scale spatio-
temporal datasets is key to personalised location-based applications.
Datasets capturing user location are, however, often incomplete due to
temporary failures of sensors, deliberate interruptions or because of data
privacy restrictions. Effective location imputation is thus a critical pro-
cessing step enabling mobility pattern mining from sparse data. To date,
most studies in this area have focused on coarse location prediction at
city scale. In this paper we aim to infer the missing location information
of individuals tracked within structured, mostly confined spaces such
as a university campus or a mall. Many indoor tracking datasets may
be collected by sensing user presence via WiFi sensing and consist of
timestamped associations with the network’s access points (APs). Such
coarse location information imposes unique challenges to the location
imputation problem. We present a contextual model that combines the
regularity of individuals’ visits to enable accurate imputation of miss-
ing locations in sparse indoor trajectories. This model also considers
implicit social ties to capture similarities between individuals, apply-
ing Graph-regularized Nonnegative Matrix Factorization (GNMF) tech-
niques. Our findings suggest that people’ movement in confined spaces is
largely habitual and their social ties plays a role in their less frequently
visited locations.

Keywords: Spatio-temporal trajectories · Data imputation
Matrix factorization

1 Introduction

The uptake in sensor-enabled smartphones and devices has enabled capturing
human mobility data at a fine-grained scale. Such rich spatio-temporal datasets
facilitate the (i) understanding of individuals’ movement patterns and potentially
their intention, (ii) delivery of tailored recommendations and services to individ-
uals or groups as well as (iii) understanding the space use patterns and provision
of public and social applications that benefit from people-centric sensing.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 444–457, 2018.
https://doi.org/10.1007/978-3-319-93037-4_35
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In data mining, data quality is a key predictor of the success of analyses. Large
spatio-temporal datasets are, however, often incomplete due to sensor failure or,
low sampling rates to maximise a sensor’s life. Location data imputation has
been suggested as a solution to tackle this issue [8].

Research has focused primarily on large-scale outdoor mobility datasets. Such
trajectories cover a larger space and are the location is captured at fine precision
using GPS measurement at fine intervals. These approaches are not suitable to
coarse trajectories based on proximity sensing (symbolic trajectories) [5]. We
explore location imputation for trajectories recorded using WiFi sensing across
multiple indoor or well defined confined spaces. These trajectories capture a
user’s proximity to a single access point. This imposes unique challenges to
trajectory sensing: the captured locations are coarse and may be sparse. A range
of efforts has focused on using additional information such as Received Signal
Strength Indicators to improve location points, or used crowd-sourced data to
calibrate the location information and interpolate missing points [7,16].

Social ties between visitors to these environments represent a significant
source of information that remains largely unexplored in location prediction.
Human physical behaviour is strongly mediated by social interactions. A key
question is how can social ties between individuals improve location imputation
models in coarse trajectories? Several studies explored the ability to predict
social links between users given their trajectories [12,15], primarily over large
areas and using explicit social links (e.g., using Facebook data). Here, we explore
physical co-presence to explore implicit social ties.

Factorization techniques has been successfully used in recommender systems
– systems that estimate users’ preferences (e.g., rankings) for unrated items.
As such, they address a similar problem – the inference of missing values associ-
ated with a user’s behaviour. Here, we utilise the graph-regularized non-negative
matrix factorization technique (GNMF) to impute missing locations., based on
the intuition that individuals with stronger social ties express higher trajectory
similarity and are also more likely to visit specific locations together. Motivated
by the approach proposed in [9], we build user profiles that capture users spatio-
temporal behaviour (regularity, temporal entropy and gaps of visits). We further
implicitly capture social ties between users. These are inferred based on physical
co-presence, as actual information about users’ relationships may not be known.
A co-presence graph captures the strength of users’ associations through edge
weights (frequency, duration and location of co-presence between pairs of users).
Finally, we build an affinity graph between locations, with edges capturing the
number of times each pair of locations has been visited together in a trajectory.

Using two real-world datasets (a university campus and a shopping mall)
we explore two location imputation scenarios: (i) the case of partially missing
location information in individual trajectories (i.e., due to sensor failure), and
(ii) the case of location imputation for new users, never observed in the envi-
ronment in the past (cold start). Our experiments show that the consideration
of social co-presence improves the performance of location imputation for, in
particular, less frequently visited locations of a user, e.g., top 10 to 20 locations.
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This is significant, as these are individually important locations that are not
shared with others. We also observe that the history of users’ visits plays an
important role in predicting missing locations.

2 Related Work

2.1 Collaborative filtering in location recommendation

Collaborative filtering techniques have been successfully used for recommending
movies, books, points of interest to users whose rating for a certain item is not
known. This is why we focus on it for our location imputation problem.

Zheng et al. [19] provide an example of successfully using tensor factorization
to decompose a user-location-activity tensor and provide suggestions on points
of interest or activities using GPS trajectories of the individuals and their social
network profiles. Yin et al. [17] use a user’s location history as well as local pref-
erence to provide location recommendations. This approach particularly focus
on recommending location/event to users with known profiles, but no location
history. The model in [11], takes the the distance between regions, their popular-
ity and user mobility patterns to build a geographical probabilistic latent model
for location recommendation.

Similar to [6], this work assume an implicit feedback based on the frequency of
users’ visit to each places. The collaborative filtering model proposed in [9], lever-
ages users’ mobility to retrieve user similarities, however, it assumes an implicit
positive feedback for locations that the user has visited rather than considering
a negative feedback to the unvisited locations. It also uses the retrieved user
profile or location features as the additional contextual information to improve
the model. Further, the authors in [10,18] have focused on time-aware location
recommendation problem and utilise the temporal affects of visiting places as
well as spatial influences when providing location recommendations. Unlike the
above-mentioned studies, we focus on a confined area and proximity-based tra-
jectories rather than explicit location check-ins or GPS trajectories within large
areas. Also, most of these studies assume the availability of other sources of data
to extract additional information and boost the performance of the algorithm,
while we do not use any information other than the mobility data.

2.2 Social Ties and Mobility Patterns

The study in [4] is one of the early attempts to find the relationship between
individuals’ movement patterns and their online social network. Similarly, the
authors in [2] explore the spatial and social influences on individuals’ mobility
patterns. Mobility patterns has been used to predict users’ social ties, includ-
ing using an entropy-based measure of the diversity and frequency of their co-
locations [13] and similarities between users’ trajectories [14]. Similar to [14], we
use how specific the location of co-presence is.

On the other hand, social ties have been consequently used to predict users’
location. In [12], McGee et al. build a network based on social ties to estimate
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the location of users. In particular, they used the links between users in Twitter
as well as users’ profile information to estimate the distance between any pair
of users. The authors in [15], proposed a hybrid model to capture both the
regularity of individuals’ repetitive patterns as well as the influence of their social
network, to predict their location. This approach also uses additional sources of
information and ensures improved location information through heterogeneous
data sources. These studies mainly focus on low resolution location predictions,
e.g., city level resolutions.

3 Problem Description

Consider a mobility dataset D consisting of observations o of tracked individual
users. Each observation o, o = {id, t, l}, is a tuple of a user, identified by a unique
id, at (symbolic) location l ∈ L at timestamp t. Assuming time to be discrete
offsets from an arbitrary origin, the time of the observations belongs to a range
between [0, Tmax], where Tmax is the timestamp of the last observation in the
dataset. Dividing the timestamps into intervals of window size w, results in a
set of distinct trajectories of an individual:

For all users ui from the set of users U (∀ui ∈ U) we have a set of sequences,
sj , in the form of sj = {(l1, td1), (l2, t

d
2), ..., (lm, tdm)} where 1 ≤ i ≤ M and

td ∈ Tmax

w . Assuming Ni is the number of ui’s trajectories in the dataset, we
denote the set of distinct trajectories of ui as Si = {sj |j = 1, 2, ...Ni}. In this
paper we assume a day as the window size w, i.e., a user has at most one
trajectory per day (Table 1).

Table 1. Frequently used notations.

Symbol Description Symbol Description

A User/Location matrix α Confidence weighting
function

C User/Location confidence
matrix

Gs, Gl Implicit social and
spatial(location) graphs

P User profile matrix λs, λl Social and location graph
weighting parameters

M Number of users ω Social strength parameter

N Number of locations ρ Regularization parameter

k Number of latent features K top location query
parameter

We assume some sessions are either partially or completely missing in D. We
focus on the location information in the data and aim to impute users’ location.
One possible formalisation of this problem is to represent individuals’ visited
locations in a matrix:
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Definition 1 - User-location Matrix (A): From the set of users’ sequences, Si,
one can derive a matrix of size M ×N , where N is the cardinality of the location
set and Ai,n corresponds to the number of times ui has been observed at ln over
all his/her trajectories. For any location n that is not visited by the ith user,
Ai,n = 0. It is noteworthy that elements in A do not consider the sequence of
a user’s movement, but rather the frequency of being seen by a certain access
point during all visits.

Fig. 1. Two sample trajectories of a user in an indoor space. The red circles indicate
the location of access points. Note that s∗

1,2 represent the footprint of a session and
the time of the observations is not captured in the user-location matrix (Color figure
online).

Intuition: Individuals movement behaviour in an indoor space largely fol-
lows a frequent pattern. Intuitively, we would like to use the similarities between
such movement pattern (reflected in the frequency of visits to certain loca-
tions) as well as user similarities that is potentially reflected in their tempo-
ral profile in order to impute the missing location frequencies. Furthermore,
being socially connected to others can be reflected in an individual’s movement
pattern [13–15]. We aim to leverage the knowledge on potential social ties to
improve our location imputation model.

Figure 1a depicts two sample trajectories of a user (dashed lines). The red
circles represent the access points and Fig. 1b shows the corresponding row in A
for this scenario. Thus, assuming some location information of ui in Fig. 1b is
missing and the respective row in A is then [1, 1, ?, 0, 1, ?, 2, ?, 0, 1, 0, ?, 1, 0], the
aim of our location imputation technique is to predict the missing values, shown
as question marks.
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4 Matrix Factorization for Location Imputation

4.1 Location Imputation with Implicit Feedback

One possible approach to infer unknown values in A is to apply matrix factor-
ization (MF) techniques and decompose A into two matrices. The underlying
idea is that MF uses the data of other users to discover the latent features that
govern the interaction between uses and locations.

Given that matrix A has missing values, i.e., missing location information
for some users, and assuming that we have k latent features, the aim of MF is
to find two matrices UM×k and Vk×N that approximate A in the following way:

U × V = A′ ≈ A where a′
ij =

k∑

k=1

uikvkj

U intuitively captures user similarities in the k-dimensional latent feature
space and V reflects location similarities. The product of the obtained U and V
provides the estimate values for missing location information.

As discussed in [9], in a mobility dataset, a visit to a certain location can
reflect an individual’s positive feedback to that location. However, not visit-
ing a location does not necessarily imply negative feedback. In our setting, an
individual can actually be present at a location, but not accessing the WiFi
network would exacerbate this issue, e.g., having the mobile phone off. Hence,
similar to [6], we define a confidence matrix, C, whose elements are computed
as follows:

ci,j =
{

α(ai,j) if ai,j > 0
1 otherwise, (1)

where α is a monotonically increasing function. Having a binary matrix R,
where ru,l = 1 if ui has visited lj at least once during his/her visits, the objective
function can be expressed as minimizing the following error (ρ is the regulariza-
tion parameter):

O =
∑

i,j

ci,j(rij − uikvkj)2 +
ρ

2
(‖U‖2F + ‖V ‖2F )

4.2 Contextual Imputation

The direct factorization does not use the contextual information to improve the
location predictions. In this paper we assume no additional source of information
about the users is available and propose to create a user profile matrix, P , which
mainly incorporates temporal features of users’ visits. We focus on the following
factors:

– The average duration of each visit, which is determined as 1/Ni

∑Ni

j=1(tendj
−

tstartj ), where tstartj and tendj are the first and last point of trajectory sj of
user i.
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– Regularity of the visits captures the predictability of an individual’s visits
with respect to time. We compute the entropy of a user’s visits given specific
days of the week, hour of the day as well as the combination of both, i.e.,
{D}, {H}, {D,H} to estimate whether or not they follow some repetitive
temporal pattern.

– Temporal Gap between the visits reflects how often a user is observed in the
dataset. The regularity measure cannot differentiate regular visits that hap-
pen daily from those that happen monthly, hence we compute the temporal
gap, in terms of the intervening number of days between a user’s consecutive
visit.

The above-mentioned factors are estimated for each individual and form a
M × k′ matrix, where k′ is the number of derived factors in P . We augment
U with this information and create Û(M+k′)×k matrix. Following the proposed
algorithm in [9], we can rewrite the objective function as:

O =
∑

i,j

ci,j(rij − ûikvkj)2 +
ρ

2
(‖Û‖2F + ‖V ‖2F )

4.3 Implicit Social Ties and GNMF

The Contextual Imputation approach aims to capture users’ similarity to assign
locations to users, however, the features discussed in the previous section does
not consider potential social ties. As discussed in Sect. 2, mobility patterns of
individuals can be strongly correlated to their social dependencies. As a result,
we propose to leverage such connections to improve our location imputation
task. Similar to the previous section, we assume that no additional source of
data, e.g., social networks, is available and aim to build an implicit social graph
using the available movement data.

To create our implicit social graph, Gs, we build a co-presence graph where
there is an edge between any pair of users who have been present at a given
location at least for one timestamp. Given that such graph may be noisy (since
it adds an edge between random users who are at a popular location at the same
time), we use the following parameters in addition to the co-presence frequency
to estimate the social strength between any pair of individual:

– Relative Average Duration: The duration of co-occurence at each session can
be an indicator of the strength of the relationship, however, considering the
absolute duration of the co-presence has two weaknesses as i) it does not
consider the overall length of users’ trips, i.e., a co-presence of for instance
10 min for a 10-min trip is much more intense compared to a 60-min trip and
ii) it has not an absolute upper-bound. Hence, the relative average duration
computes the duration of co-presence divided by the duration of users’ trips:

di,j = 1/N

fi,j∑

n=1

dij,n

min(di,n, dj,n)
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where 1 ≤ n ≤ fi,j is the frequency of co-presence between ui and uj and
di,n,dj,n, dij,n denote the duration of uith, duration of ujth and the duration
of their co-presence, at the nth session respectively.

– Specificity of the co-presence: Specificity aims to capture the popularity of
the location where the co-presence has occurred. This aims to differentiate
between popular locations such as main entrances or food courts, where ran-
dom users may be seen at the same time, compared to less popular locations
that can better reflect potential social ties. For any pair of users, (ui, uj) we
compute the location specificity, i.e., zi,j , at location l as the number of times
ui and uj co-presence has been observed at l divided by the total number of
co-presences occurred at l. We further average the location specificity for all
the co-presences of ui and uj .

We define a decay function, score(ui, uj) = ωefi,j∗di,j∗log(ẑi,j), to compute the
social strength between any pair of users. This function assigns lower weights to
the edges that are likely to be noisy.

We use the GNMF technique to incorporate potential social ties in our model.
GNMF builds a nearest neighbour grap, W , using score(.) to determine the
neighbours, and aims to decompose the original matrix in a way that connected
points in the graph are closer in the latent space. Hence, similar to [1], we define
our objective function as:

O = ‖A − UV ‖2F + λTr(UT LU) +
ρ

2
(‖U‖2F + ‖V ‖2F )

where L is the graph Laplacian [3] of the nearest neighbour graph and Tr(.) is
the trace of the matrix. L can be estimated as D − W , where D is a diagonal
matrix whose entries are column sums of W .

Furthermore, we can build a graph, Gl to capture the similarity between the
location points, where the edges indicates how frequently any pair of locations
are visited together. The objective function can then be expressed as:

O = ‖A − UV ‖2F + λsTr(UT LsU) + λlTr(V T LlV ) +
ρ

2
(‖U‖2F + ‖V ‖2F )

and the update rules to minimize O are as follows:

uij ← uij
(AV + λsWsU)ij

(UV T V + λsDsU)ij
vij ← vij

(AT U + λlWlV )ij

(V UT U + λlDlV )ij

5 Experiments

5.1 Dataset and Experimental Setup

Dataset: In this work we evaluate the performance of our location imputation
algorithm using the following two mobility datasets:

D1: This dataset is the collection of users connecting to the WiFi network of
a University over a period of 22 days (10 days in May and 22 days in September)



452 E. Naghizade et al.

in 2016. We focused on a coarser location granularity (building level) to address
the sparsity issue. We focused on individuals that have at least 2 sessions in the
dataset and further filtered users whose overall footprint perfectly matches their
daily visited locations (As shown in Fig. 2c, we compute the mutual information
between daily sessions of each user and the set of all their visited locations. For
more than 18% of users in the dataset, the average NMI is equal to 1, i.e., they
visited the same set of locations in every session). Hence, we obtained a dataset
of ≈120, 000 users visiting 118 buildings.

D2: This dataset has been collected from over 120,000 anonymized users
connecting to the operating Wi-Fi network of a shopping mall in the city of X
between September 2012 to October 2013. There are 67 Wi-Fi access points in
an area of around 90,000 square meters. We focus on users who have visited the
mall at least 5 times (5% of the users).

Fig. 2. Properties of the sessions in D1. Figure 2a shows the distribution of number of
unique locations visited by users. Figure 2b shows the correlation between Day, Hour
and Day/Hour entropy. Figure 2c shows the distribution of normalised mutual infor-
mation between users’ daily trips and the overall footprint.

Methods: To evaluate our approach consider the following scenarios:
f-fold missing : We adopt an f fold cross validation framework where for each

user we randomly split their mobility data into f folds and for each fold we train
our model based on f − 1 folds and test its performance to predict the visited
locations on the remaining fold. Our default is a 2 fold cross validation which
assumes half of the location information of all users is missing. For D1, we train
our model based on the sessions in one period and test it on the other.

cold start : In this scenario we evaluate the perfomance of our model in finding
the top locations of new users. We use a 10 fold cross validation framework where
the model is trained using the entire location history of 90% fold of the users
and is evaluated based on its success in inferring the location of the remaining
users.

We consider four varieties of the GNMF-based models: a model that only
uses the location graph (λs = 0), L, a model that only considers the users’ social
graph, called U , a model that uses both graphs to make the prediction, called
LU , and a model that uses users’ profile when building the users’ graph, called
LU + P .
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We compare the performance of the GNMF-based model with approaches
proposed in [6,9], denoted as WRMF and ICCF respectively. For the f-fold miss-
ing scenario, we assume a model, called HIST , that returns the observed set of
locations in the train set as the estimates of the missing locations, i.e., it relies
on the history of users’ location. We also implemented a Frequency-based Impu-
tation technique (FI) for the cold start scenario that selects the top K locations
visited by all users who have complete location information as the result of the
top K query for any new user.

Metric: Similar to [6,9] we used the precision at K and recall at K to
evaluate the performance of our algorithm. For each user, we sort the score for
each location and select the top K predicted locations. The precision at K and
recall at K, denoted as p@K and r@K respectively are therefore computed as:

p@K =
1
M

M∑

i=1

|Ti(K) ∩ Vi|
K

, r@K =
1
M

M∑

i=1

|Ti(K) ∩ Vi|
|Vi|

where Ti(K) is the set of top K predicted locations and Vi is the set of actual
visited locations for ui. Note that r@K does not necessarily reach 1.

Setting: Our default number of latent features, k is set to 40 for D1 and 20
for D2 since the location set in D2 is much smaller. Also, the number of factors
that are considered when building P is 6 in our work since we add the average
and maximum gap between users’ visits to our feature set. Prior to feeding P
to the model, we perform PCA to reduce the dimensionality of P to 3 since
we observed that the derived temporal features in our datasets are moderately
correlated (Fig. 3b). When building the affinity graph, we set n = 20% ∗ M and
ω = 10. We also used a similar function suggested in [9] to build our confidence
matrix: α(ci,j) = 1 + log(1 + ci,j ∗ 10ε), where ε = 300. We also set λs and λl to
0.5, 100 for D1 and 0.05, 0.1 for D2. Also, ρ = 0.05.

5.2 Results

Figure 3 shows the performance of our proposed model with regard to the first
scenario. Figure 3a and b consider the case where the imputation models are
trained based on sessions in May and are then tested on sessions in September
(D1). As can be seen, the naive baseline outperforms all varieties of our proposed
model as well as ICCF and WRMF for smaller Ks. However, with an increase
in K, i.e., more specific or less frequent locations, the model that uses both
location and user information outperforms the other methods. This suggests
that in confined spaces, individuals’ habits plays the most important role in
predicting their top visited locations. Another interesting observation is that
when user profile is used as the extra side information is a similarity graph, it can
actually help to improve the performance of the GNMF-based model. However,
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Fig. 3. The performance of our location imputation models in the case that 50% of the
location data for all users is missing. The dashed grey line shows the highest achievable
recall@K. Also, note that we changed the y-axis scale in Fig. 3d for visibility. (Color
figure online)

the same trend is not observed when it is added as extra feature columns in the
matrix, and is mixed with the location data (ICCF versus WRMF). We do not
include the performance of WRMF in Fig. 4 since the same observation holds in
that scenario. As can be seen in Fig. 3c and d, the same trend is not observed
for D2, which may be due to the limited number of options in a shopping mall.

Figure 4 depicts the performance of our proposed model in the cold case
scenario. It can be observed that considering spatial and social influences as well
as users’ profile, i.e., LU + P , improves the performance of the model, however,
FI performs almost as good as LU + P . This may be due to the fact that the
new users are predicted to visit the most popular places, such as libraries in a
campus and food court in a shopping mall. This assumption seems to be largely
true in confined spaces.
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Fig. 4. The performance of our location imputation models in the cold start scenario.

6 Conclusion

In this paper, we proposed a data imputation model for sparse spatio tem-
poral trajectories. In contrast to most previous research, we have focused on
constrained and indoor environments, such as a large, multi-building campus
environment or a complex shopping mall. The highly regular user behaviour and
sparsity of the data capturing their behaviour poses a challenge to sophisticated
imputation algorithms. First, the highly regular nature of the movements renders
the prediction of the top K locations (here, up to K = 10) trivial. We see that
the näıve baseline matching the users to the most frequently visited locations
in the dataset performs surprisingly well, and significantly outperforms previous
state-of-the-art-models, WRMF and ICCF. Yet, the inclusion of physical asso-
ciations between visitors, captured by their physical co-occurrences outperforms
all models for the less frequently visited locations. Our findings is consistent with
the observations of the authors in [2]: ‘social relationships explain about 10% to
30% of all human movement, while periodic behaviour explains substantially
more, 50% to 70% of the behaviour.’ As the value in sophisticated location pre-
diction lies in the ability to reflect on the less frequently visited locations, our
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LU + P model improves on the state-of-the-art and can support personalised
services.
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Abstract. The dramatic increase in the availability of large collections
of time series requires new approaches for scalable time series analysis.
Correlation analysis for all pairs of time series is a fundamental first step
of analysis of such data but is particularly hard for large collections of
time series due to its quadratic complexity. State-of-the-art approaches
focus on efficiently approximating correlations larger than a hard thresh-
old or compressing fully computed correlation matrices in hindsight. In
contrast, we aim at estimates for the full pairwise correlation structure
without computing and storing all pairwise correlations. We introduce
the novel problem of low redundancy estimation for correlation matrices
to capture the complete correlation structure with as few parameters
and correlation computations as possible. We propose a novel estimation
algorithm that is very efficient and comes with formal approximation
guarantees. Our algorithm avoids the computation of redundant blocks
in the correlation matrix to drastically reduce time and space complexity
of estimation. We perform an extensive empirical evaluation of our app-
roach and show that we obtain high-quality estimates with drastically
reduced space requirements on a large variety of datasets.

1 Introduction

The monitoring of earth, society and personal life through various sensors has
led to a ubiquity of large-scale collections of time series. Correlation analysis for
all pairs of time series is often the first step of analysis of such data. In the past
decade, many works have used estimates of the full pairwise correlation matrix
among time series, e.g., to infer functional brain networks [17], for portfolio
selection in empirical finance [9], to detect periods of financial crisis [19] and to
better understand the climate system [20]. Since the time and space complexity
for computing the full pairwise correlation matrix is quadratic in the number of
time series, analyses that rely on exact computation of the full matrix do not
scale with the increasing size of time series collections. For this reason, there is
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a need for approaches that estimate all pairwise correlations without computing
and storing the entire matrix.

We introduce the novel problem of low redundancy estimation for correlation
matrices. A low redundancy estimate describes the complete correlation matrix
R of a time series collection using a smaller representation R and without com-
puting all pairwise correlations. Our estimation approach COREQ (CORrelation
EQuivalence) is driven by the observation that many time series collections show
inherent group structure that leads to blocks of redundant entries in the corre-
lation matrix. We exploit this structure by computing equivalence classes of
highly correlated time series and pooling the redundant correlation estimates
into a single class estimate. The resulting estimate is visualized in Fig. 1. We
describe an algorithm to obtain the estimate R on the right directly from the
data after computing only a small fraction of the actual correlations in R. The
computational problem lies in finding—with as few correlation computations as
possible—a suitable partition of the time series collection into equivalence classes
that allows correlation estimation with bounded loss.

Fig. 1. Example correlation matrix R (left) and low redundancy estimate R (right).

Our contributions are as follows. We formalize low redundancy estimation as
an approximation problem and formally derive low redundancy estimates with
error guarantees. Furthermore, we propose a greedy approximation algorithm
and two powerful heuristics to obtain high-quality estimates with few correlation
computations. We carefully evaluate our algorithm on 85 time series collections
from the UCR Time Series Classification Archive [1] and a large satellite image
time series dataset from the geoscientific domain as a real-life use case.

2 Related Work

There are two challenges for efficient correlation estimation for large time series
collections. The first challenge is the increasing number of time series that are
jointly analyzed, while the second challenge is the increasing velocity of newly
arriving observations in streaming time series.

COREQ addresses the first challenge. Most work in the field has been done on
rapidly retrieving all pairs of highly correlated time series [16,23,25] and avoid-
ing the computation of weak correlations. Conceptually, all these approaches
discard information about weak correlations. In contrast, our COREQ algorithm
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provides estimates for the complete correlation structure, including weak correla-
tions. Low-rank approximations to a correlation matrix remove redundancies for
a more space efficient representation of the full correlation structure, but exist-
ing methods [7,24] take fully estimated correlation matrices as inputs for their
approximations. In contrast, we aim at low redundancy estimates without com-
puting all pairwise correlations first. Mueen et al. [11] propose two algorithms
to approximate all entries in the correlation matrix that are larger than some
threshold τ . By design, they lose information about correlations below the hard
threshold τ , while we provide accurate estimates for all correlations. We briefly
describe their algorithms in Sect. 5 and evaluate COREQ against them.

Methodologically, COREQ exploits structure in time series collections by
computing equivalence classes of time series that behave similarly under correla-
tion. There is extensive literature on clustering time series with similar behavior
for generic subsequent processing [10,14,18]. In contrast to these works, COREQ
has theoretical quality guarantees for the resulting correlation estimates.

Orthogonal to our approach, works on streaming time series have focused on
efficient updating schemes for correlation monitoring [4,12,25], robust correla-
tion tracking [13], detection of lag correlations [15,21,22] and correlated windows
[2,5,6] in streaming time series. We assume for now that our time series collec-
tions are static and defer streaming versions to future work.

3 Low Redundancy Estimation

3.1 Preliminaries

Let X = {X1, ...,XN} be a collection of N univariate time series of length T
with Xi = (Xi1, ...,XiT ). We assume that the time series are equi-length and
temporally aligned as in many use cases from the geosciences, neuroimaging,
finance and other domains. The Pearson correlation coefficient between time
series Xi and Xj (at lag 0) is given by ρij = 1

T

∑T
t=1

Xit−μi

σi
· Xjt−μj

σj
, where μi

and σi denote the mean and standard deviation of time series Xi, respectively.
The correlation coefficient captures linear relationships and ranges from 1 (strong
positive correlation) to −1 (strong negative correlation). A value of 0 means that
time series are uncorrelated. The matrix R ∈ [−1, 1]N×N denotes the symmetric
correlation matrix that contains all pairwise correlations between the input time
series, i.e. R = (ρij)i,j∈{1,...,N}. A useful property of Pearson’s correlation coef-
ficient is that it comes with triangular bounds similar to the triangle inequality
in metric spaces [8]. These bounds allow estimating the correlation between two
time series Xi and Xj via their correlations with a third time series Xk:

Theorem 1 (Triangular bounds). For time series Xi, Xj and Xk it holds

that ρikρkj −
√

(1 − ρ2ik)(1 − ρ2kj) ≤ ρij ≤ ρikρkj +
√

(1 − ρ2ik)(1 − ρ2kj).
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3.2 Problem Statement

Our goal is to obtain a small estimate R that well approximates the full cor-
relation matrix R without computing all pairwise correlations. Intuitively, the
size of an estimate is the number of model parameters that need to be stored,
and the quality is measured by the absolute deviation from the true correlation.
Formally, let ρ̂(i, j | R) : {1, ..., N}2 −→ [−1, 1] be an estimator for the corre-
lation ρij based on the representation R. The loss of an estimator is given by
the absolute deviation from the true correlation �ij = |ρ̂(i, j | R) − ρij |. The
traditional brute force estimator is the special case R = R and ρ̂(i, j | R) = ρij .
The brute force approach has 1

2N(N + 1) model parameters and incurs a loss of
zero. The other extreme is the special case R = c ∈ [−1, 1] and ρ̂(i, j | R) = c,
which has only a single parameter to store, but potentially high loss. We aim
at trade-offs between these two extremes. The general problem is thus to find
a low redundancy representation R with a small number of parameters and an
estimator ρ̂(i, j | R) that incurs a small loss.

Fig. 2. Estimating pairwise time series correlations by inter-class correlations

We restrict ourselves to representations based on partitions of the dataset into
classes of similar time series. The idea is illustrated in Fig. 2 for time series from
two equivalence classes Pk and Pk′ . All pairwise correlations between members
of the two classes are redundant and can be collapsed to a single estimate for the
inter-class correlation ck,k′ with minor loss. Formally, we aim at representations
of the form R = (P, C), where P is a partition of X into K = |P| equivalence
classes and C = {ck,k′ ∈ [−1, 1] | 1 ≤ k ≤ k′ ≤ K} is a set of inter-class
correlations. The respective estimator is ρ̂(i, j | P, C) = ck,k′ for i ∈ Pk and j
in Pk′ . Such representations have N + 1

2K(K +1) parameters. The fewer classes
K are necessary to capture all pairwise correlations with small loss, the lower
the redundancy in the final estimate. We formalize our problem as the following
approximation problem:

Problem 1. Given a collection of time series X and an error bound ε ≥ 0, find a
partition P of X and a set of inter-class correlations C, such that the estimate
R = (P, C) has a loss �ij = |ck,k′ − ρij | ≤ ε for all i ∈ Pk and j ∈ Pk′ .
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The challenge is to obtain such estimates with as few correlation computations
as possible. In particular, without computing the full matrix R. A trivial solution
for Problem 1 is the partition into N singleton classes P = {{X1}, ..., {XN}} such
that the inter-class correlations are exactly the pairwise time series correlations.
This solution collapses to the full correlation matrix R with zero loss but without
reduction of redundancy or any computational efficiency improvements. In the
following, we formally derive non-trivial approximations that guarantee a loss
of at most ε with lower redundancy than R, and can be computed way more
efficiently than the full matrix.

4 COREQ

The intuition behind our construction is that homogeneous equivalence classes
with high intra-class correlations lend themselves to high-quality estimates for
the inter -class correlations. Based on our formal analysis we propose the efficient
greedy partitioning algorithm COREQ (CORrelation EQuivalence) and three
estimators to obtain pairwise class correlations from the resulting partitions: an
estimator with approximation guarantees and two powerful heuristics.

4.1 Approximations with Quality Guarantees

We start with the formal construction of a solution to Problem 1 with quality
guarantees. The idea is to build homogeneous equivalence classes by a pivoting
approach. Each class is identified with a unique pivot time series, and all other
time series are assigned to classes such that the correlations to their respective
pivot time series are at least α ∈ (0, 1]. The parameter α controls the class
homogeneity: the closer α to 1, the more homogeneous the equivalence classes,
and the lower the estimation loss. Since we do not specify the number of classes
K in advance, such partitions exist for any choice of α. The following theorem
establishes how large α needs to be chosen to guarantee a loss of at most ε:

Theorem 2. Let α ∈ (0, 1] and ε ≥ 0. Let P = {Pk | k = 1, ...,K} be a partition
of X with associated pivot time series Xik ∈ Pk such that ∀Xi ∈ Pk : ρi,ik ≥ α.
Furthermore, let the inter-class correlations C be the correlations between these
pivot time series scaled by a correction factor that depends on α:

ck,k′ =
1
2

(
1 + α2

)
ρik,i′

k
. (1)

It holds that �ij ≤ ε for all Xi,Xj ∈ X , if α ≥
√

1 −
(

2ε√
5+2

)2

.

A proof based on the triangular bounds from Theorem1 can be found in the Sup-
plementary Material.1 Sect. 4.2 provides an efficient greedy algorithm to compute
such partitions. The scaling factor 1

2 (1 + α2) in Eq. 1 can be interpreted as the

1 Available on the project website https://hpi.de/mueller/coreq.html.

https://hpi.de/mueller/coreq.html
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uncertainty about the representativeness of pivot correlations: the smaller α, the
more heterogeneous the equivalence classes, and the less representative the pivots
for their classes. Consequently, it is safer—in the general case—to estimate cor-
relations close to zero instead of extremal values. Theorem 2 states that for any
desired error bound ε we can find a (possibly) non-trivial solution R = (P, C)
to Problem 1 that guarantees �ij < ε for all pairs of time series. However, the
quality guarantee is based on the worst-case bounds from Theorem1 which do
not make any assumptions on the distribution of correlations within a dataset.
In particular, we do not assume that the time series cluster into homogeneous
groups as motivated in Fig. 2 for many real-life time series collections. For any
realistic choice of ε the theorem thus requires a threshold α very close to 1 to
guarantee the quality on any possible input dataset. For example, a loss �ij ≤ 0.1
can only be guaranteed for all pairs of time series on any input dataset if we set
α ≥ 0.9989. The downside of choosing a value of α close to 1 is that we will most
likely obtain the trivial solution with high redundancy and no computational
efficiency improvements. As we see in Sect. 5, we can efficiently obtain estimates
with low redundancy and low losses on many real-life datasets for much lower
values of α.

4.2 A Greedy Estimation Algorithm

We compute the pivot-based partitions formally defined in Theorem2 as follows.
We start by picking an arbitrary time series Xi from X as a pivot series and
compute the correlations between Xi and all remaining time series. All time series
with a correlation to Xi not smaller than α are stored in a new equivalence class
P . The class P always contains Xi itself. All elements from P are removed from
the original time series collection X , and the procedure is repeated with a newly
picked pivot series until all time series are processed. This procedure terminates
with a partition as of Theorem 2 for any α ∈ (0, 1] with at most 1

2N(N + 1)
correlation computations. In the best case, if all correlations are larger than α,
it terminates with only N correlation computations. Given such a partition, the
question is how to best estimate the inter-class correlations C. We propose three
alternatives to obtain a complete correlation estimate:

(i) COREQ-P1: scaled pivot correlations from Eq. 1 in Theorem 2 which the-
oretically guarantee low errors on all datasets for α −→ 1 but have a bias
towards zero for smaller choices of α.

(ii) COREQ-P2: simplified estimate that uses unscaled pivot correlations
ck,k′ = ρik,i′

k
to remove the bias for smaller choices of α.

(iii) COREQ-A: average estimate that samples a logarithmic number of corre-
lations between pivot Xik and the class Pk′

ck,k′ =
1

max (1, �log2 Nk′�)
max(1,�log2 Nk′ �)∑

j′=1

ρik,rand(Pk′ ),

where Nk′ = |Pk′ | and rand(Pk′) returns a random time series from Pk′ .
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All of these estimates can be obtained from the correlations computed during
class construction and do not require additional correlation computations. In
COREQ-A we sample a logarithmic number of correlations to account for the
heterogeneity in large equivalence classes. All three estimates converge to the
pivot correlations for α −→ 1 and differ only for α 	 1.

4.3 Formal Relation to Clustering Algorithms

There is a clear relationship between our equivalence class-based correlation
matrix approximations and the well-known optimization problem of time series
clustering. We could relax the goal of strict approximation guarantees for all
pairs of time series towards estimation with minimal aggregated loss. Let X ∈
R

N×T be a matrix representation of X where all time series are standardized
to have zero mean and unit variance over time. Furthermore, let R = 1

T XX�

be the true correlation matrix, Z = {0, 1}N×K be an indicator matrix that
encodes class memberships of a partition P = {P1, ..., PK}, and C ∈ [−1, 1]K×K

be a matrix of inter-class correlations. The error function E = ‖R − ZCZ�‖2
encodes the goal of finding an estimate R = (P, C) that well represents all
correlations within R. We observe that this error function is a quadratic form
of the sum of squared errors (SSE) that is used extensively for clustering, most
prominently in K-Means. To see this relation, let M ∈ R

K×T be the matrix of
cluster centroids in K-Means. The sum of squared errors is defined as SSE =
‖X − ZM‖2. Using the pairwise centroid correlations as estimates for the inter-
class correlations C = 1

T MM�, we obtain E = ‖ 1
T XX�−Z 1

T MM�Z‖2. Due to
the structural similarity of E and SSE, we use K-Means clustering as a baseline
in our experiments. However, to the best of our knowledge, there is no clustering
algorithm that allows approximating correlations up to an error bound ε.

5 Empirical Evaluation

Our empirical evaluation consists of two parts. In the first part, we extensively
analyze the quality of the estimates obtained by COREQ in terms of average loss
and model size on a large variety of datasets. In the second part, we compare
the performance of COREQ against two state-of-the-art competitors and the
K-Means baseline on a real-life dataset from the geoscientific domain. We imple-
mented COREQ as a Python C module. All source codes necessary to reproduce
our results are available on GitHub.2 Additional information is provided on our
project website.3

5.1 Experimental Setup

Performance Measures. The average loss for an estimate R is given by
�̄ = 1

Z

∑N
i=1

∑N
j=i �ij with Z = 1

2N(N + 1). The closer to 0, the better. The

2 https://github.com/KDD-OpenSource/coreq.
3 https://hpi.de/mueller/coreq.html.

https://github.com/KDD-OpenSource/coreq
https://hpi.de/mueller/coreq.html
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model size is given by the total number of model parameters that need to be
stored by an algorithm, divided by the number of entries in the true correla-
tion matrix. Model sizes close to 0 indicate a low redundancy, whereas values
close to 1 indicate high redundancy. We also count the number of correlation
computations necessary to obtain an estimate. All performance measures are
averaged over ten independent runs to obtain stable results for each algorithm
and dataset.

Data. To analyze the performance of COREQ over a large variety of time
series collections, we run experiments on all 85 time series collections from the
well-known publicly available UCR Time Series Classification Archive [1]. For
a real-life comparison with state-of-the-art algorithms, we use satellite image
time series obtained from the NASA Terra MODIS satellite mission [3]. The
dataset contains 236,197 EVI time series (Enhanced Vegetation Index) for South
America, captured with a temporal resolution of 16 days between 2000 and 2015
(length 368). The EVI is computed from multi-spectral satellite images and
captures the level of greenness at a given point in time as a proxy for vegetation
cover.

Competitors. As a baseline, we perform one iteration of K-Means clustering
with a fixed K to obtain a partition of the dataset and use the pairwise cen-
troid correlations as class correlations. Using more iterations is infeasible since
it drastically increases the number of correlation computations. We also com-
pare against two state-of-the-art algorithms proposed by Mueen et al. [11] to
compute an Approximate Threshold Correlation Matrix (ApproxThresh) and
a Threshold Boolean Correlation Matrix (ThreshBoolean). ApproxThresh
approximates (up to an error ε) all correlations larger than a threshold τ by
exploiting a Discrete Fourier Transform-based early-abortion criterion for indi-
vidual correlation computations; all correlations below τ are set to 0 without
error guarantee. ApproxThresh is designed to reduce the number of operations
for individual correlation computations. To compare the total costs of correlation
estimation with our approach, we scale the number of correlation computations
with the speedup factor per correlation computation. ThreshBoolean uses a
dynamic programming-based pruning strategy to reduce the number of pairwise
comparisons. It estimates all (absolute) correlations above τ as ±1 and all other
correlations as 0, without any quality guarantees.

5.2 Quality of Estimates

We first analyze the performance of COREQ in terms of average loss and result-
ing model size on all 85 UCR datasets for various values of α. Figure 3 visualizes
the distribution of average loss over all UCR datasets as boxplots along with
the mean model size. We provide separate boxplots for COREQ-P1/P2 and
COREQ-A; mean model sizes are identical. As expected, increasing α pushes
the average loss on all datasets towards zero since equivalence classes become
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Fig. 3. Distribution of average loss (boxplots) and mean model size (line) across all
UCR datasets for α ∈ [0, 1].

more homogeneous. At the same time, it increases the model size. COREQ-A
outperforms COREQ-P1/P2 over the full parameter space, with the margin of
improvement largest for low values of α. Lower values of α typically come with
larger and more heterogeneous equivalence classes, such that the pivot corre-
lations are not representative. The scaled pivot correlations from COREQ-P1
perform worse than the unscaled variant COREQ-P2 on many datasets. The
datasets where COREQ-P2 outperforms COREQ-P1 contain time series that
are all very strongly correlated. In these cases, the theoretically justified bias
towards zero correlations is harmful. With α = 0.9, all three estimation variants
achieve high-quality estimates with average losses below 0.1 and a mean model
size below 0.35.

Detailed scatter plots of the results of COREQ-A can be found in Fig. 4.
Each point in a plot shows the model size and average loss achieved on a single
dataset. The histograms below show the corresponding distributions of model
sizes. We observe that even for α = 0.9 the large majority of datasets can well
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Fig. 4. Average loss against model size achieved by COREQ-A on all UCR datasets
for α ∈ [0, 1], along with histograms over model size.
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be estimated with model sizes below 0.1. Only a few datasets appear on the far
right with model sizes close to 1. Manual inspection of these datasets revealed
that they contain purely uncorrelated time series or ambiguous group structures.
These instances cannot be estimated more efficiently with our approach. COREQ
provides low redundancy estimates with low average losses on all datasets with
strong group structures.

5.3 Comparison with Existing Methods

We now compare COREQ-A with the state-of-the-art algorithms introduced by
Mueen et al. [11] and our K-Means baseline. We address two questions in our
analysis: (1) How much loss does an algorithm incur at a given model size?
(2) How many correlation computations are necessary to obtain an estimate
with that model size? All algorithms in our evaluation depend on different input
parameters that affect the estimation performance. These input parameters
directly control the model size: the larger α in COREQ and K in K-Means, the
more pairwise class correlations have to be estimated and stored, while a smaller
threshold τ in ApproxThresh and ThreshBoolean means that more pair-
wise time series correlations have to be stored. To compare these approaches in
a meaningful and fair way, we run all algorithms over a wide range of parameter-
izations (α ∈ {0.1, 0.2, ..., 0.9}, K ∈ {1, 2, 4, ..., 8192}, τ ∈ {0.9, 0.8, ..., 0.1}) and
use the resulting model size as the unified scale. The error bound for Approx-
Thresh is set to ε = 0.05. We use the EVI dataset4 as a real-life example from
the geoscientific domain.5
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Fig. 5. Performance on EVI data over the full parameter space of each algorithm.

4 Subsamples of 10,000 time series for COREQ/K-Means/ApproxThresh and 1,000
time series for ThreshBoolean due to performance reasons.

5 We also ran experiments on the chlorine concentration data used in the original
publication by Mueen et al. [11]; the results are consistent with the results presented
in this paper and reported for completeness in the Supplementary Material.
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To answer the first question, Fig. 5 (left) shows the average loss of the result-
ing correlation estimates against the model size. If a curve is close to the ori-
gin, it means that small estimates obtained with that algorithm capture most
of the information from the correlation matrix. COREQ-A clearly outperforms
K-Means, ApproxThresh and ThreshBoolean over the full parameter space:
our algorithm has lower losses at the same model sizes. The improvement is
largest for very small estimates. The ThreshBoolean approach behaves unusu-
ally: since it can only estimate correlations as either 0 or ±1, lowering the thresh-
old τ means that more and more weak correlations are stored and estimated
as ±1. The algorithm is not designed to capture weak correlations accurately.
Overall, COREQ-A provides the highest quality estimates for the full correlation
structure, with improvements being largest for very small estimates.

For the second question, Fig. 5 (right) shows the number of correlation com-
putations required to obtain the final estimates (normalized by the total number
of pairs) against model size. Our approach scales linearly with the model size:
the number of correlations that we compute is roughly the same as the number
of model parameters we output. The K-Means baseline performs worst, even
though we run only one iteration. More iterations or more sophisticated clus-
tering algorithms could improve the quality of the estimates, but come with an
even higher computational cost. ApproxThresh requires a constant number of
correlation computations for all threshold values τ . The early abortion criterion
yields an average speed-up of only 2 per correlation computation, meaning that
the EVI time series are uncooperative [2]. ApproxThresh outperforms our app-
roach in terms of correlation computations only in the large model size region
on the right. The pruning strategy employed in ThreshBoolean is effective at
the far left of the plot, where the threshold τ is close to 1. For lower threshold
values almost all pairwise correlations are computed. COREQ is the fastest algo-
rithm in terms of correlation computations in the small model size region of the
parameter space—with a large margin to all competitors. In the same region, we
obtain the lowest average loss values.

6 Conclusion and Future Work

We provide a novel way to estimate correlation matrices for large time series
collections that exploits redundancies in the input data to drastically reduce the
number of parameters to estimate. We show that the partitions we obtain for
estimation have theoretical approximation guarantees, allow for very small high-
quality estimates on a large variety of real-life datasets, and outperform state-of-
the-art approaches. There is still need for a robust way to select the parameter
α optimally for any input dataset as to obtain the best trade-off between model
size and average loss. Algorithmically, dynamically adapting α during estimation
to process datasets with weak and strong group structures could be beneficial.
We defer this challenge to future work. Furthermore, combining our estimation
approach with a probabilistic model for time series collections would allow us
to devise more concise probabilistic error guarantees on top of the worst-case



Low Redundancy Estimation of Correlation Matrices 469

bounds we used in Theorem 2. At last, an extension of COREQ for streaming
time series would allow efficient monitoring of correlations for anomaly detection.
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Abstract. Traffic incidents continue to cause a significant loss in deaths,
injuries, and property damages. Reported traffic accident data contains
a considerable amount of human errors, hindering the studies on traffic
accidents. Several approaches have been developed to detect accidents
using traffic data in real time. However, those approaches do not con-
sider the spatiotemporal patterns inherent in traffic data, resulting in
high false alarm rates. In this paper, we study the problem of traffic acci-
dent detection by considering multiple traffic speed time series collected
from road network sensors. To capture the spatiotemporal impact of traf-
fic accidents to upstream locations, we adopt Impact Interval Grouping
(IIG), which compares real-time traffic speed with historical data, and
generates impact intervals to determine the presence of accidents. Fur-
thermore, we take a multivariate time series classification approach and
extract three novel features to measure the severity of traffic accidents.
We use real-world traffic speed and accident datasets in our empirical
evaluation, and our solutions outperform state-of-the-art approaches in
multivariate time series classification.

Keywords: Traffic accident · Multivariate time series classification

1 Introduction

Traffic accidents have been an essential concern in our society. In 2015 the total
number of motor-vehicle deaths was 38,300, and the estimated cost of deaths,
injuries, and property damage reached $412.1 billion [1]. Studying traffic acci-
dents would help us understand the causes and potentially reduce the damage of
such events. However, accident data is usually collected from various state and
local agencies: these reports often contain duplicates, missing data, and/or inac-
curate information as they are based on victim/witness estimates [2]. Therefore,
we are in need of accurate characterization and detection of traffic accidents,
which can be achieved utilizing the data from ubiquitous traffic sensors.
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In the past decades, a plethora of research studied automatic incident detec-
tion (AID) [3–8]. However, these approaches are prone to false alarms [9] due to
improper calibration on insufficient and noisy data. On the other hand, video
recordings by traffic cameras [8] and traffic flow data collected from probe cars [6]
have also been used. But such data is expensive to acquire and does not pro-
vide a thorough coverage of the entire road networks. Traffic data, e.g., speed,
has specific spatial and temporal patterns, which are unfortunately neglected in
AID research. Such spatial and temporal pattern could be helpful in differenti-
ating accidents from fluctuations that are often observed in ordinary traffic and
attribute to false alarms. However, it is challenging to model and recognize such
spatial and temporal patterns. Furthermore, real-world data could be noisy and
has missing data or outliers. Hence it is also important to make the detection
robust and not sensitive to such noise.

In this paper, we address the aforementioned challenges by considering traffic
speed time series data collected from multiple sensors close to the accident loca-
tion. We first adopt the Impact Interval Grouping (IIG) algorithm [2] to detect
traffic accidents by recognizing the spatiotemporal patterns in traffic speed data.
In addition, we propose a multivariate time series (MTS) classification technique,
and define three novel features that measure the severity of traffic accidents. We
propose two versions, i.e., Severity-I and Severity-T, to balance the algorithm’s
sensitivity to signals and noise in the traffic data. For evaluation, we utilize
real-world traffic speed and accident dataset collected from Los Angeles and our
proposed approaches are shown to outperform the state-of-the-art MTS classifi-
cation methods. We conclude that our proposed severity features can sufficiently
characterize the spatiotemporal impact of traffic accidents, and can be used for
efficient and accurate traffic accident detection.

2 Related Work

Automatic Incident Detection. In the field of transportation, automatic inci-
dent detection (AID) has been an active area of research since the end of the last
century. The classical and widely used approach is California Algorithms [3,4].
The basic idea is to use three levels of rules to raise an alarm, based on the dif-
ference between the upstream and downstream sensors. Other researchers also
tried recognizing vehicles’ behaviors from the camera videos. For example, Sadek
et al. [8] estimated optical flow from the videos and constructed histograms of
flow gradient to build a classifier. However, classical algorithms are not satis-
factory due to high missing rate and false alarm rate. Moreover, the video data
does not offer a sufficient coverage of most road networks. Yuan et al. [7] uti-
lized SVM to classify accidents by traffic metrics but they do not consider the
temporal and spatial correlations. We believe by using time series data from
multiple sensors and utilizing multivariate time series classification approaches,
the accidents could be modeled and recognized more accurately.

Multi-dimensional Dynamic Time Warping. To the best of our knowledge,
most of the current study on Multivariate Time Series Classification (MTSC)
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are extended from the Univariate Time Series Classification (TSC) methods. For
TSC, the kNN approach is typically used with certain distance measures, such
as the Dynamic Time Warping (DTW) distance. kNN-DTW is proven to be a
reliable approach in TSC [10]. Moreover, for DTW distance in multivariate case
(MD-DTW), researchers usually calculate DTW distance between two MTS by
summing over individual DTW distances of each variate [11], or formulating
values in multiple variates at the same timestamp as a vector and computing
p-norm of vectors [12]. A kNN classifier based on 2-norm MD-DTW is used as
a baseline in our empirical evaluation in Sect. 5.

Feature Based MTS Classification. The feature-based representation of
time series can be efficient in classification and can discover more latent pat-
terns if the right set of features is extracted. Therefore, researchers developed
various feature extraction approaches for time series. Yang et al. [13] proposed
a feature selection technique for MTS based on Common Principal Component
Analysis. Wang et al. [14] extracted statistical features such as trend and peri-
odicity from MTS for clustering. Fulcher et al. [15] developed a comprehensive
feature extraction approach which constructs features including statistics, cor-
relations, and non-linear model fits, etc. Over 7000 features are extracted from
the time series and forward selection is utilized to generate feature vectors for
classification. This Feature Selection (FS) approach is also used as a baseline in
Sect. 5.

3 Preliminaries

(a) Sample Accident [16] (b) Traffic Speed MTS

Fig. 1. Multivariate Time Series

In this paper, the time
series represents the
sequence of traffic speed
detected by a sensor
every minute. Here, a
sensor s is a loop detec-
tor located on major
roads recording traffic
metrics.

Since time series
collected from a single
sensor is noisy and sen-
sitive to abnormal behaviors of vehicles, it is important to study multiple sensors
at different locations. Thus, we represent the time series collected from multiple
sensors close to an accident as a single MTS and label it as “positive”. Accord-
ingly, we also generate MTS of regular traffic from random locations when there
is no accidents as the negative class. Specifically, the MTS is generated from
time series of each upstream sensor, as defined below.

Definition 1 (Multivariate Time Series (MTS)). A Multivariate Time
Series is a set of time series: X = {x1, x2, ..., xK}. In this paper, a time series
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xk is a sequence of speed, indexed by time: xk = {xk(1), xk(2), ..., xk(n)}. The
kth time series xk is collected by the kth sensor sk.

In the definition, n denotes the window size of the MTS, and K is the number
of upstream sensors. The upstream sensors of a location l on a road are defined
as a sequence of nearest sensors S = {s1, s2, ..., sK} ordered by the distance to
l with the same direction as l, as shown in Fig. 1a. Figure 1b presents the MTS
of upstream sensors relative to the accident location/time. The time series are
generated at different distances in different colors. Hence we define the problem
of traffic incident detection based on MTS classification as follows.

Problem 1 (MTS based Traffic Accident Classification Problem (MTS-TACP)).
Given a multivariate time series X = {x1, x2, ..., xK}, in which each time series
xk is collected from the kth upstream sensor sk of location l, during the same
time window [t1, tn], the goal is to identify whether an accident happened at
location l from t1 to tn, classify the MTS to be accident or normal instance.

4 Traffic Accident Classification with Traffic MTS

4.1 A Discrete Unsupervised Solution: IIG

In our previous study [2], we proposed an approach to realign the start of existing
accidents based on the upstream traffic speed around the reported time. Though
it has different assumptions and problems, the idea of identifying the propagation
pattern in MTS can be extended to detect an accident.

First, impact interval in Definition 2 is defined to reduce the dimensionality
while keeping the accident patterns. Basically, a time series will be compared to
its historical average and the intervals below a given ratio are extracted. Such
definition is derived from real-world intuitions. Essentially, accidents usually
result in visible and consecutive speed drops at upstream sensors. However, rush
hours and narrow roads could also have regular speed drops. We assume the
accidents cause unusual speed drops, i.e. the speed should be observed at a
lower value than regular speed if an accident happened. Therefore the real-time
speed should be compared to the historical speed to quantify the impact [16].
Here historical speed is calculated using the average of speed at the same location
and same time [16]. So the unusual speed drop is modeled in a discrete way by
extracting impact intervals. Via such discretization, we can convert the complex
time series into a concise formulation which is easier to model as in Fig. 2a. The
following paragraphs will describe the procedure of detecting accidents by the
modified IIG method. The existence of accident in an MTS will be decided by
the identification of propagated impact intervals via following steps.

Definition 2 (Impact Interval). An impact interval is a tuple (ts, te), s.t.
∀t, ts ≤ t ≤ te,

|x(t)−x(t)|
x(t) ≥ θ. Here x(t) denotes the real-time speed at time t,

and x̄(t) denotes the historical average speed of the same sensor, at time t. θ is
a tuning parameter determining how strict the impact is measured.
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Discretization. First, for each upstream sensor sk, we calculate a set of impact
intervals Ik = {(t1s, t1e), (t2s, t2e), ...} as described above. For example, in Fig. 2a,
the time series (red line) will be compared to the historical time series (solid blue
line). Then the impact intervals (solid bold segments) are generated by applying
a threshold θ to the historical time series (dashed blue line). In this way, the
MTS will be discretized into K sets of impact intervals {I1, I2, ...IK}.

Smoothing. Since fluctuations and outliers could generate useless and noisy
impact intervals, smoothing and cleansing should be applied before and after
discretization. We smooth the time series before creating impact intervals by
moving average with windows size 5 min for both real-time and historical data.
After discretization, we concatenate adjacent impact intervals with distance less
than 2 min, similar to one-dimensional clustering. Because close impact intervals
may result from the same event. Then isolated intervals not concatenated to any
other intervals with a small length, i.e., 2 min will be eliminated. Those impact
intervals are actually noises, i.e. speed fluctuations. After that, we have a clean
formation of impact intervals from all sensors.

(a) Generate Impact Intervals (b) Impact Interval Groups

Fig. 2. Procedure of IIG (Color figure online)

Grouping. Intuitively,
upstream sensors are
affected by accident in
the spatial order based
on the traffic flow: a
further upstream sen-
sor is affected only
after other upstream
sensors closer to the
accident. Temporally,
the impacts of the
same accident, observed
at different upstream sensors, should be relatively close in time. So impact inter-
vals can be grouped by their spatial and temporal distances, using heuristics such
as maximum overlap and nearest center as in Fig. 2b. Specifically, each impact
interval in the closest sensor will form a group. Then other impact intervals in
the adjacent sensors will be iteratively added to the groups they belong to using
maximum overlap or nearest center. The grouping procedure finishes until all
impact intervals are visited. Groups with too few intervals will be filtered out.
Then if a group of impact intervals exists after this IIG procedure, we classify
the MTS as an accident. Otherwise, we label the MTS as a normal instance.

4.2 Severity Features Based Solution (Severity-I)

Admittedly, the IIG approach models the spatiotemporal propagation pattern
intuitively using impact interval groups. However, it could be too strict to iden-
tify an accident. A slight turbulence or malfunction could disqualify the entire
impact interval group. Thus, we need more robust characteristics of accidents.
In this section, three types of features are defined and extracted from a traffic
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speed MTS based on empirical observations. Then the features can be adopted
by various classifiers to detect accidents.

Dropping Severity λ. We first consider drops in traffic speed. Different from
the IIG approach, the extent of speed drop should be essential in detecting
accidents as opposed to the binary comparison to the threshold θ. Hence, we
have the following observation: An accident will cause a speed drop in upstream
sensors to a certain extent. A larger extent of speed drop can provide more
confidence of an accident. For example, in Fig. 2a, the red line depicts the time
series of speed from the nearest sensor to an accident. As shown in the figure,
the speed drops from 60 miles/hour to around 20 miles/hour, which can indicate
a severe accident. The dropping severity can be estimated by the ratio of speed
change from historical data to real-time data. As described in IIG approach, the
comparison to historical speed is necessary to eliminate the rush hour or other
periodical effects. Given an MTS of traffic X = {x1, x2...xk}, the historical
average of speed is denoted by X = {x1, x2...xk}. We define the measurement of
dropping severity in the following equation.

λmax = max
i,k

(1 − xk(i)/xk(i));λavg = avg
i,k

(1 − xk(i)/xk(i)) (1)

In the equation, we propose two options for this measurement for comprehensive-
ness. Dropping severity is first measured as the maximum speed drop ratio λmax,
which reflects the worst impact to all sensors of the accident. The other option
is the average ratio λavg, aggregating the overall speed change in all sensors.

Figure 3a depicts the intermediate step in extracting dropping severity. The
red line depicts the real-time speed reported by a certain sensor near an accident.
The solid blue line represents the historical speed. Denoted by the red dot line,
the maximum distance between real-time speed and historical speed is used for
calculating λmax, and such computation is applied to all upstream sensors.

(a) Extract λ and τ (b) Extract τ and σ

Fig. 3. Severity features (Color figure online)

Lasting Severity τ . Not all accidents have grave speed drops and moreover nor-
mal traffic also has occasional drops, i.e., traffic MTS with moderate drops can
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be either normal traffic or accidents. To better differentiate these two conditions,
we introduce the temporal criteria, lasting severity. For example, in Fig. 2a, the
speed drops at 8 min and resumes at 28 min, staying at a low value for 20 min.
Then we can conclude such speed drops are not caused by normal traffic fluctu-
ations. After an accident happens, the drop of speed will last for a certain time.
Significant dropping time can be the evidence of an accident. Impact interval
is used to measure lasting severity because the discretization provides an easy
extraction of temporal patterns. A list of impact intervals Ik (horizontal cyan
segments in Fig. 3a) is generated. |xk| denotes the length of time series xk. Then
lasting severity is measured by the following formulation.

τmax = max
i,k

(Ik(i)[1] − Ik(i)[0])/|xk|
τavg = avg

k
(max

i
(Ik(i)[1] − Ik(i)[0]))/|xk| (2)

The lasting severity is provided with two options as well. We assume each impact
interval after smoothing and concatenation is individually impacted by a single
event, as supposed in IIG. So the maximum length of impact intervals should
be the upper bound of all the events(the longer cyan segment in Fig. 3a). Thus
τmax is the maximum of these maximum lengths in all sensors which indicates
the longest impact. τavg is the average of the maximum lengths indicating the
overall affected time in all sensors.

In addition, We also define a relaxed definition of τ , to overcome fluctuations
in traffic speed which may prevent the formulation of impact intervals. Rather
than extracting impact intervals, we compute impact timestamps(dark blue dots
in Fig. 3a), which are the set of time index at which the relative speed drop is
below θ. Then the sizes of the impact timestamps sets are used instead of the
lengths of impact intervals in calculating τ ′

max and τ ′
avg.

Distant Severity σ. We also believe an accident usually influences a succession
of cars rather than a single one, i.e. an accident will affect a certain distance in the
upstream traffic. The longer stream of cars are affected, the traffic MTS is more
likely to reflect an accident. To be consistent with lasting severity, the distant
severity is measured based on the existence of impact intervals, as described in
the following formulation. Here dk denotes the distance of sensor sk.

σcons = dk/dK , k = arg max
k

{I1 to Ik �= ∅}
σdisc = dk/dK , k = arg max

k
{Ik �= ∅} (3)

We provide two options for distant severity measurement to overcome the incon-
sistent behaviors among individual sensors. First we assume the impact at differ-
ent locations be consecutive since the first sensor cannot affect the third sensor
without influencing the second one. So σcons computes the furthest consecutively
impacted distance. Optionally, σdisc lifts such restriction to the furthest discrete
impact location in case of noise or missing data.

Figure 3b shows the extraction of distant severity. The solid red lines depict
impact intervals. The y-axis represents the distance to the detecting location l.
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The distant severity is measured by the distance of furthest impacted sensor.
The difference between σcons and σdisc is the absence of impact interval in the
6th sensor s6 (the bare-fine dotted blue line). σcons requires the impacts be
consecutive so that it can separate events at different locations. σdisc allows
skipping some sensors to give more tolerance to malfunction of sensors. Similar
to lasting severity, we also defined a relaxed definition of σ, to capture a loose
distant severity. The relaxed impacted distant severity σ′

cons and σ′
disc will be

computed based on the existence of the impact timestamps at different locations
instead of the impact intervals. By replacing τ and σ with their relaxed version
τ ′ and σ′, we can derive a relaxed version of Severity-I, namely Severity-T.

Severity Based Classification. The advantage of measuring different types
of severity (extent, time and space) is the capability of capturing enough variety
of accidents. For example, an accident with low λ and large τ and σ could be
caused by an emergency vehicle parked on the shoulder which does not reduce
the traffic speed significantly but may last for 30 min and affects many upstream
vehicles. An accident with low τ and large λ and σ may be a minor accident with
no injury. So upstream drivers all brake and the speed drops a lot, but traffic is
resumed soon after the accident is clear. Therefore, the combination of the three
severity could describe accidents in a wide variety. After generating the three
severity features from a traffic speed MTS, we can utilize various classifiers, e.g.
Logistic Regression, SVM, Gradient Boosting Decision Tree (GBDT), etc. for
classification. GBDT is adopted as the default classifier in Severity-I.

The complexity of extracting a severity-I feature is quite low. With n as the
window length and K as the number of upstream sensors, it takes O(Kn) time to
traverse all historical and real-time speed to get Dropping Severity λ. Moreover,
the extraction of impact intervals of one time series takes O(n) time. So Lasting
Severity τ and Distant Severity σ extractions also cost O(Kn) time.

5 Empirical Evaluation

5.1 Experiments Settings

System Environment. For all experiments, we implemented the algorithms in
Python to ensure a fair comparison. All the experiments were conducted on a
64-bit Windows machine with a 2.60 GHz CPU and 8.00 GB memory.
Data Set. In this paper, we use the accident reports in June 2012 as ground
truths, which were reported by California Highway Patrol. Traffic metrics includ-
ing speed, volume and occupancy, collected from more than 4,000 sensors during
the same period are retrieved as real-time data. The historical average of traffic
is generated from the sensor dataset during March to May 2012. 70% of real-time
data is sampled as training data, and the rest 30% is testing data.

Baseline Approaches. As baseline approaches, we implemented kNN-MD-
DTW and the FS approach [10,15]. In the implementation of kNN-MD-DTW,
we set k = 3 and set the size of warping window in MD-DTW to 5 min.
As for the extended FS approach using HTCSA [15], 4 features are selected
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from more than 7000 features. We generated 7000 features only using a 200
size sample because the extraction takes significant computation. The 4 feature
extraction methods are SY KPSStest 0 10.lagminstat (KPSS stationarity test),
SY LocalDistributions 5 each.meandiv (minimum divergence between two seg-
ments’ distribution), MF CompareAR 1 10 all.whereen4 (order of AR with little
error), and CO tc3 1.num (numerator of Normalized nonlinear autocorrelation
function). We also tested the CA Algorithm [3] on real-world data, but the recall
is lower than 5%. Therefore, it is not included in the following experiments.

5.2 Parameter Effects in Impact Based Approaches

(a) Precision (b) Recall

Fig. 4. Vary θ

Effect of θ. The impact
threshold θ is a hyper-
parameter which deter-
mines how strict we are
evaluating an impact.
As shown in Fig. 4, we
can make the follow-
ing observations as θ
increases. (1) Severity-I
and Severity-T have sim-
ilar trends but Severity-T is less sensitive to large θ, because Severity-T uses
impact timestamps which may still exist while impact intervals disappear when
θ is large. (2) For severity based approaches, the precision increases first then
drops. Since a higher threshold θ is more strict to impact generation, most
detected accidents should have severe enough impacts and are always real acci-
dents. However, as we use an overly strict threshold, only a small portion of
impacts are captured in accidents, which will be mixed with the normal instances
with drastic fluctuations. (3) On the other hand, the recall decreases first and
then rise in severity approaches. (4) Though IIG can reach a very high precision
as θ reaches 0.9, it fails to detect most real accidents. However, for the severity
based approaches, the precision and recall are well-balanced, and θ = 0.3 is cho-
sen to strike a balance between the two metrics. Note that we can tune θ, e.g.,
choosing a high value for θ for detecting very severe accidents. In the following
experiments, θ will be set to 0.3 as the impact threshold.

Effect of Severity Options. While controlling all other parameters, we vary
the selection of different severity options and compare their effects. As listed in
Table 1, λavg has a lower recall than λmax since the average option can smooth
a significant speed drop, the algorithm may miss those accidents. The effect and
trend of τ are very similar to λ. In addition, the use of consecutive option in σ will
exclude fluctuating normal traffic speeds. So σcons has a better precision than
σdisc. In the end, we choose λmax, τmax, σcons as the default severity options.

Effect of Classifier. After extracting severity features of Severity-I, we applied
different approaches to make the classification. In Table 2, we can observe that
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Table 1. Vary severity options

λ prec. rec. f-score τ prec. rec. f-score σ prec. rec. f-score

max 0.78 0.57 0.66 max 0.78 0.57 0.66 avg 0.79 0.55 0.65

avg 0.79 0.52 0.63 cons 0.78 0.57 0.66 disc 0.75 0.58 0.65

Table 2. Vary classifiers

Method prec. rec. f-score acc.

Logistic Regression 0.78 0.57 0.66 0.72

SVM 0.78 0.57 0.66 0.73

DecisionTree 0.66 0.58 0.62 0.67

GBDT 0.79 0.58 0.67 0.73

Neural Network 0.78 0.58 0.66 0.73

AdaBoost 0.78 0.59 0.67 0.73

Table 3. Comparison of approaches

Metric prec. rec. f-score acc.

Severity-I 0.79 0.58 0.67 0.73

FS 0.72 0.61 0.66 0.71

DTW 0.7 0.6 0.64 0.69

IIG 0.75 0.41 0.53 0.66

decision tree is not so good as others because the overall severity is the combi-
nation of the three severity features, which is not easily separable by decisions.
GBDT, Logistic Regression, SVM and AdaBoost have similar performance.

5.3 Comparison of Different Approaches

To evaluate the reliability of the proposed approaches, we compare them using
4 metrics: precision, recall, f-score and accuracy. As shown in Table 3, we can
make following observations: (1) IIG has a high precision but low recall, f-score
and accuracy. The reason is that IIG is the most strict among all approaches
since it identifies accidents based on the existence of a propagation behavior
across all upstream sensors; (2) kNN-MD-DTW is neither too bad nor too good
in all metrics. Due to the fluctuations often observed in traffic data, the optimal
alignment may not be accurate; (3) Severity-I has better precision, f-score and
accuracy than any other approaches. The FS approach has the highest recall,
but requires exhaustive computation to select from more than 7000 features.
Our Severity-I method only relies on three features and achieves the highest
precision, f-score and accuracy for accident detection.

Understand Misclassification Cases. Real-world data always does not follow
theoretical assumptions since some system noises and outliers are inevitable.
Figure 5a shows a false negative case by Severity-I. Different colors of lines depict
the speed at different sensors. We can observe that speed does not change much
in all sensors, except a small drop at the 4th sensor. However this case is an
accident in our record. Such case is difficult to be detected by any approach
without any observable impact. It is possible that some reported accidents may
not show much impact to the traffic because of a wrongly reported time or
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location. Figure 5b shows a false positive case of Severity-I. It is observable that
there are many nontrivial propagated speed drops, which does not like a normal
instance. For these instances, none of the proposed approaches can successfully
differentiate accidents with normal cases.

(a) A False Negative Case (b) A False Positive Case

Fig. 5. Severity-I misclassification cases (Color figure online)

6 Conclusions

We presented IIG and Severity-I, two techniques that detect traffic accidents
from the traffic speed data by exploiting the spatiotemporal impact of traffic
accidents. IIG detects the presence of propagation behavior by impact interval
groups thus has a high precision with proper impact threshold. Severity-I takes
an MTS classification approach and extracts three features i.e., drop ratio, last-
ing time, and impact distance, to measure the severity of an accident. As the
three severity features capture different aspects of the accident impact, we are
able to classify traffic speed MTS generated from nearby sensors into accidents
and normal instances. Our proposed methods are evaluated and compared to
state-of-the-art MTS classification methods with real-world accident and traffic
data: Severity-I is shown to be superior to other methods. Future work includes
integrating our algorithms into real-time traffic streaming systems. Our work
can also be applied to accident severity evaluation for routing problems.
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Abstract. Data stream clustering aims to produce clusters from a data-
stream in a real-time. Many of existing algorithms focus however on solv-
ing a single problem, leaving anomalous noise in data streams at the way-
side. This paper describes the MicroGRID approach to cluster data from
single data-streams to handle noisy data streams, accurately identifying
and separating noise-affected data points from outlier points. In partic-
ular, MicroGRID utilises a combination of micro-cluster and grid-based
prospectives, an approach that has not been attempted when clustering
data-streams. The experimental results clearly show that MicroGRID
significantly outperforms the baseline methods: MicroGRID is up 87%
faster and up to 80% more accurate clustering outputs.

1 Introduction

Data stream clustering has been used for many different real world applications,
such as analyzing stock market data and network intrusion detection systems.
A number of different innovations have been made recently into improving dif-
ferent aspects of real-time data stream clustering, such as adapting to multiple
data streams [8,15] and data streams with a high number of dimensions [2,14].
However, many of these innovations only focus on improving one such a problem,
leaving other weaknesses not handled, such as noise [10].

Noise is data points transmitted by the data streams, which have had their
contained information modified into content which is not related/relevant to the
data values that should be transmitted by the stream. This can be as a result
of sensor failure [7] or interference in data transmission [13], for example. Noise-
affected points can still contain relevant information to the clustering algorithm,
and as such should still be expected to be clustered appropriately by a clustering
algorithm. The problem arises in correctly identifying these noisy points as valid
data points, and not incorrectly identifying these points as possible outliers, or
attributing these points to the incorrect cluster. This reduces the accuracy of
the clusters generated, and this is caused by modified information within these
points affecting their identification by a clustering algorithm.
c© Springer International Publishing AG, part of Springer Nature 2018
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As with noisy data points, outliers can also be the result of noise. However,
noise-created outliers [5] means that these outlier points will not form any clus-
ter, containing dimension values that are not uniform with the rest of the data
set, and are not indicative of the system operation. This is a problem, as if
these points are placed in the same clusters as valid, non-outlier data points,
the resulting clusters will be inaccurate to a degree [7]. The aim of this paper to
provide both more efficient and accurate clustering results than similar, exist-
ing, algorithms in the field of real-time data streams. This paper introduces the
MicroGRID approach that makes use of a joint micro-clusters array and grid-
based clustering algorithm. The MicroGRID approach adapts micro-clusters to
represent information received from data streams allowing many data points to
be summarised into a single element, thereby reducing the amount of points
within a clustering grid to improve both the accuracy and efficiency of cluster
generation. By limiting the amount of micro-clusters that are stored and pro-
cessed by the proposed approach at any given time via a micro-cluster array,
this is expected to reduce the execution time of cluster generation, while also
allowing outlier data to be removed from clustering equations at a faster rate.
MicroGRID was experimentally compared with two baseline methods including,
namely CluStream [3] and DenStream [7], on real data sets (i.e. Forest Cover-
Type, Sensor Readings, Electricity Market and Spam) and the results show the
followings: up to 87% faster average execution times than the comparison algo-
rithms, and up to 96% more accurate clustering outputs.

Next section provides overviews existing work, and Sect. 3 provides details
of the MicroGRID approach. In Sect. 4, the experimental results are discussed,
and Sect. 5 concludes the paper.

2 Related Work

There are several problems to address with when dealing with data streams. One
of the first ones is handling data streams which evolve over time [1]. CluStream
uses of micro-clusters for summarising data, and the online-offline structure for
processing data streams. Data points are summarised by creating a vector for
each data point. These vectors include the time the point reached the system, a
weight value of the point, and the weighted sum of all the data values within a
point. The other problem relates to the variance of data when this is unknown
[11]. A similarity between existing algorithms is that most of them are based on
k-means. SUBCFM [16] is an example that extends k-means to create clusters
with “fuzzy” boundaries. These clusters have set radius boundaries, but they
also include a second boundary that surround the cluster.

While k-mean [1] is a popular method of implementing data-stream cluster-
ing, it is not the only proposed method. Another such method is the density-
based algorithm, called D-Stream. First proposed by Chen et al. [9], this method
still uses an online-offline approach (as in CluStream), but maps the summarised
data points to a grid within the online-component. As updating a grid cell only
takes a single update of the cell’s summary vector for each new data point added,
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processing each data point in the online component is a constant time complex-
ity, allowing D-Stream to be a suitable real-time clustering algorithm. To keep
storage costs of the grid lower, each grid cell contains a summary vector of all
data points contained within the cell, rather than the points themselves. Like
CluStream, D-Stream has been expanded upon to solve evolving data streams
with noise (unwanted data) [7], as well as a number of different possible improve-
ments to time and space complexity [5,6,12].

Another type of algorithms is the grid-based clustering algorithms, which
have been designed for data streams. MG-Join [4] is a grid-based clustering
that takes a user defined window of each stream, and summarises a function of
each streams dimension values into a set number of coefficients. The values of
a streams coefficients dictate its position on a grid, where each coefficient is a
different axis of the grid. Streams are mapped onto the grid, with each stream
being represented by a single point on the grid. Once all streams are mapped
onto the grid according to their coefficient values, streams are then clustered
together with other streams in the same grid cell, as well as streams located
within neighbouring grid cells. MG-Join chooses the grid cell containing the
largest number of stream points as the central clustering point. All non-empty
neighbouring cells are then attached to this cluster, with each of these cells
having their own neighbouring cells checked for non-empty cells, in a recursive
fashion.

3 The MicroGRID Approach

As shown in Algorithm 1, MicroGRID can efficiently and accurately clusters and
summarizes the incoming data. Firstly, each data point received from the data
stream is converted into a micro-cluster. MicroGRID keeps an array of a user-
defined length of micro-clusters, in which all incoming micro-clusters are added
into, removed from or merged into. The purpose of this array is to capture a
summary of the recent history and trends of the data stream. This is possible
as each micro-cluster generated must be inserted into the array, so older micro-
clusters are removed or merged, keeping the information within the array recent.
The second stage of MicroGRID is the mapping of each micro-cluster within the
array to a 2D Grid. The grid is updated each time the array is updated, to
constantly reflect the status and trends of the stream in real-time. The purpose
of mapping these micro-clusters to a grid is to organise these micro-clusters by
their content, representing the current data trends of the stream, as well as
isolating any micro-clusters representing outliers to different grid areas. Finally,
clusters are generated at regular intervals based on the locations of micro-clusters
on this grid. As this clustering is performed based on the grid, the time taken to
produced clusters can be greatly reduced, as this clustering is generated based
on the grid cells, rather than the individual micro-clusters themselves. These
cluster results will also highlight the outlier patterns of the data stream, as grid
cells containing outlier micro-clusters will not be contained in the clusters.

The advantage of MicroGRID over other clustering algorithms is twofold.
Firstly, the use of a micro-cluster array of limited size allows a summary of
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Algorithm 1. MicroGRID
1: Begin
2: St = Data Stream
3: Ar = Micro-Cluster Array
4: G = Clustering Grid
5: H = Horizon time
6: m = Current size of Ar
7: q = Maximum size of Ar
8: Repeat
9: Receive next data stream point Xi

10: Convert Xi into a new micro-cluster Mi

11: If m < q
12: Add Mito Ar
13: Else If an underweight micro-cluster Mu exists in Ar
14: Add Mito Ar and remove Mu

15: Else find two closest micro-clusters Ma and Mb in Ar
16: Merge Ma and Mb into Mab

17: Add Mi to Ar
18: Update clustering grid Gwith changes to Ar
19: If it has been H time units since last clustering
20: Generate Clusters from clustering grid G
21: Until Data Stream St ends
22: End

the streams current pattern and trends to be used for clustering, rather than
the entire history of the stream. Assuming an array of appropriate size is used,
this allows the clustering results of MicroGRID to be produced more efficiently,
as less micro-clusters are used for clustering. This also reduces the impact that
micro-clusters from further in the past (which are less relevant) have on the most
recent clustering results, as these are naturally merged or removed within the
array as more data points are processed. This produces more accurate clustering
results than other algorithms, which can include irrelevant or outdated data
points in their most recent clustering results. Secondly, a clustering grid is used
to generate clusters to also improve efficiency. Clusters are generated based on
grid cells. As many micro-clusters can be contained within a single grid cell, this
greatly increases the efficiency of generating clusters, as opposed to algorithms
where each individual micro-cluster must be considered when generating clusters.

3.1 The Micro-cluster Structure

The micro-clusters are used to store the information of a point in a summarized
form [1]. A point is defined as a set of d-dimensions, where a point X can be
represented as X = (x1, x2, x3, . . . , xd). In the MicroGRID algorithm described
in this paper, each micro cluster stores a set of information used to calculate
its position and validity within the central grid. A micro-cluster of O(2d + 5)
size, of a fixed radius r and containing a set of d -dimensional points, stores the
following information:
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– The sum of values per each dimension, across all points stored within a micro-
cluster. This results in a vector S, containing d values. Of a micro-cluster
storing n points, the p-th entry of S is described as

∑n
k=1 xp

k.
– The squared sum of values per each dimension, across all points stored within

a micro-cluster. This results in a vector SS, containing d values. Of a micro-
cluster storing n points, the p-th entry of SS is described as

∑n
k=1(x

p
k)2.

– The combined sum of values of all dimensions from all points stored within a
micro-cluster. This results in a single value SumTotal, which can be described
as

∑n
k=1

∑p
l=1 xl

k.
– The combined squared sum of values of all dimensions from all points stored

within a micro-cluster. This results in a single value SqSumTotal, which can
be described as

∑n
k=1

∑p
l=1 xl

k.
– The number of points stored within the micro-cluster, represented by an

value N.
– The time stamp at which the micro-cluster was created, CreateTime.
– The time stamp at which the last point was added to the micro-cluster,
LastTime.

CreateTime and LastTimeare used to track the weight of a micro-cluster, and
are used in calculating the minimum weight-limit and current weight of a micro-
cluster defined by Cao et al. [7]. However, some modifications to the algorithm
(as shown in Sect. 2) for calculating the current weight have been made. The
modified weight calculation is as follows:

W (t) = e−λt, λ ∈ [0, 1]

where t is LastTime,which is either (a) a new data point was added to the
micro-cluster, or (b) the last time another micro-cluster was merged into this
micro-cluster. W(t) is used during the maintenance of the micro-cluster array,
to determine if the current micro-cluster is underweight and should be removed.
The use of this weight calculation is shown Line 11 of Algorithm 2.

As micro-clusters now only keep the latest time of modification within Last-
Time, instead of time stamps for all included data points, the space requirements
of each micro-cluster is reduced, especially as the running time of the algorithm
increases and more possible additions to micro-clusters can be made. In addi-
tion, the computational complexity of calculating a micro-cluster’s weight is
reduced, as only a single weight must be calculated, rather than the weight of
each data point within a micro-cluster. This changes the current weight algo-
rithm’s time complexity from O(N) to O(1). The space requirements of micro-
clusters is reduced to improve MicroGRID’s scalability. As the data-stream is
presumed infinite, the space requirements of keeping time-stamps of each data
point within each micro-cluster increases and can exceed any set space limits for
the algorithm. Therefore only requiring a single time stamp value, regardless of
data stream length, removes this potential space limitation.

Once the micro-cluster array has no remaining empty spaces, at worst O(q)
weight calculations will be made for every incoming data point. Therefore, reduc-
ing the weight calculation to a constant time complexity greatly increases the
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speed at which every new data point can be processed, in order for the micro-
cluster array to be maintained in real time. S, SS and N are used in calculating
the centre of the micro-cluster, needed for clustering evaluation, and the distance
of the cluster from other clusters or incoming points. SumTotal and SqSumTotal
are used in calculating the mapping of the micro-cluster onto the central grid.

The use of micro-clusters to represent data points is beneficial, as storing this
information in micro-clusters means that these attributes only need to be calcu-
lated once per each micro-cluster creation and addition. This reduces execution
times, as these values (cluster centre, distance and mapping) are used frequently
in the clustering process. These micro-clusters are different from micro-clusters
used in other algorithms in a number of ways. One major difference is that the
radius of the micro-clusters is fixed. This eliminates the chance that a single
micro-cluster will expand to too large of a size from having many data points
added to it. The larger a micro-cluster becomes, the higher a chance that out-
lier data points, or data points of differing classes (in particular noise-affected
points), being included into these large micro-clusters. In addition, the single val-
ues of SumTotal and SqSumTotal are kept within each micro-cluster, rather than
just the vector summations (S and SS) that are stored in other micro-clusters.
These values are used for faster calculations when mapping the micro-clusters to
the grid (as explained in Sect. 3.2). The computation and maintenance of both
of these values can also be performed at the same time as those for both vector
values, thus incurring no further calculation costs to produce these values.

3.2 The Proposed Grid Clustering

The grid structure is used for distributing all the current micro-clusters over a
fixed plane, based on the values of dimensions of all points represented by the
cluster. A grid structure is used for generating clusters, as it provides a plane
of fixed size that all micro-clusters are mapped to. This allows for more dense
clusters to be generated, as all micro-clusters must fit inside this grid of fixed
size, rather than the size of the clustering plane being unbounded. Each grid cell
can store multiple micro-clusters within it at any given time, which means that
when clusters are generated, they are generated based on the grid cells, rather
than the individual micro-clusters.

Clustering based on grid cells eliminates the need to perform distance calcula-
tions between micro-clusters when detecting clusters. The use of grid structure of
fixed size also eliminates the need for assumptions about the number of clusters
that will be generated by the clustering algorithm. This is because the cluster-
ing grid is already a fixed size, and only non-empty cells are used in cluster
calculation, so no limits on the number of clusters made within this grid need
to be defined. This improves the accuracy of the clustering results obtained, as
the number of clusters generated can change to reflect the current status of the
data stream much better. This lowers the time taken to generated these clusters,
while keeping the clustering content accurate. The method chosen is useful as
it results in both identifying accurate clusters of current data stream trends, as
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Algorithm 2. Micro-cluster Array Maintenance
1: Begin
2: Mn = New Micro-Cluster to insert
3: Ar = Micro-Cluster Array
4: m = Current size of Ar
5: q = Maximum size of Ar
6: If m < q
7: Add Mnto Ar
8: Increment m
9: End

10: For each Mi in Ar
11: Calculate current weight of Mi → Wc

12: Calculate current weight threshold of Mi →Wt

13: If Wc < Wt

14: Replace Mi with Mn

15: End
16: M1→Closea
17: M2 → Closeb
18: Distance from Closea to Closeb→ Closecurr
19: For each Mi in Ar
20: For each Mj in Ar
21: Distance from Mi to Mj→ Closenext

22: If Closenext < Closecurr
23: Closenext→Closecurr
24: Mi→Closea
25: Mj → Closeb
26: Merge Closeb into Closea
27: Replace Closeb with Mn

28: End

well identifying outlier micro-clusters from those non-empty grid cells which are
not attributed to a cluster.

The first stage of the proposed grid clustering is maintaining the content
of the grid each time the micro-cluster array, in order for the grid to reflect
the most up-to-date content available from the data stream. Maintenance of
this grid involves adding, removing and remapping of micro-clusters within the
grid, in order to always reflect the current micro-clusters contained within the
micro-cluster array. The second stage of the grid clustering is the generation of
the clusters, which is undertaken at regular intervals set by the horizon. This
clustering algorithm is accesses each grid cell that currently contains micro-
clusters, and attempts to generate a cluster based on non-empty neighbouring
grid cells.

This proposed clustering method is used as it will naturally cluster the most
densely packed grid regions first, quickly reducing the number of cells to be
checked for clusters, as many cells will be assigned to these first, larger clusters
in most scenarios. The results of this clustering algorithm both show the current
trends of a data stream, as well as the size of these trends (in comparison to the
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rest of the current clusters). This clustering algorithm also identifies any recent
outlier data points, which are presented as non-empty grid cells that are not
attributed to a generated cluster.

Grid Maintenance. A single square grid of size s × s cells is stored, which is
used for determining the resulting clusters of the data stream. Multiple micro-
clusters can be stored within a grid cell, but the location of a micro-cluster
within the grid does not modify any information within the micro-cluster. When
a change is made to the micro-cluster array, this change is communicated to the
grid, to reflect the current array content. The grid changes as follows:

1. If a micro-cluster Mi has been added to the array with no further modifica-
tions, Mi is mapped to a grid cell.

2. If Mi has been added to the array and an underweight micro-cluster (as
identified in Step 2 of the Micro-Cluster Array Maintenance process), Mj , is
removed, Mi is mapped to a grid cell and Mj is removed from the grid.

3. If Mi has been added to the array and micro-cluster Mb has been merged
into Ma, Mi is mapped to a grid cell, Mb and Maare removed from the grid
and Mab is mapped to the grid.

One of these three actions are performed every time a new data point is received
from the data stream. This allows each stored micro-cluster’s grid location to
always accurate, while only requiring a recalculation of a micro-cluster on the
grid when it is either new, being removed or modified.

Micro-cluster Mapping Function. To map a micro-cluster to the grid, the
appropriate cell reflecting the micro-cluster’s dimensional values must be cal-
culated. This is done by generating two coefficient values from a micro-cluster,
xd and xy, each reflecting a micro-cluster’s position along the x and y axis of
the grid respectively. Initially, these two coefficients were to be generated using
a Discrete Fourier Transformation (DFT) function, as explained by Aghbari
et al. [4]. The use of a DFT as a mapping function is beneficial as it reduces
the number of dimensions of a micro-cluster (the number of components within
S and SS), down to a user specified number of coefficients, without sacrificing
accuracy. The number of coefficients can be set as the number of axis within
a clustering grid, allowing the DFT coefficients to be used as the location of a
micro-cluster within the grid. To calculate this function, S and SS are used to
determine the coefficients. However, the time complexity of using this function
would be O(d2 + d) to calculate the cell of a single micro-cluster. Therefore,
when adding a micro-cluster, or adding/deleting a micro-cluster, the mapping
function would take place in O(d2 + d) time. However, when adding a micro-
cluster, and adding a merged micro-cluster, the mapping of this action would
take O(2d2 + 2d) time, as the mapping of a micro-cluster must be performed
twice.
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4 Experiments and Analysis

This section describes the experiment environment, variable values used for the
MicroGRID algorithm, and the process undertaken to insert random noise into
the experiment data sets. In particular, the experiments were conducted to mea-
sure this algorithm using four (4) different data sets to measure the algorithms
time-based performance and clustering accuracy. The MicroGRID algorithm is
implemented in Java, with version 1.8 of the Java Runtime Environment. The
DenStream and CluStream algorithms were evaluated using their implementa-
tions provided by the MOA (Massive Online Analysis) software, produced by
the University of Waikato (http://moa.cms.waikato.ac.nz/).

The following algorithms are used as baseline methods in these experiments:
CluStream [1] and DenStream [7]. The former is a popular clustering algorithm
which has been used for comparison in data stream clustering [3,7,17]. The data
sets used in our experiments are: Forest Covertype, Electricity Market, Sensor
Readings, and Spam. Finally, two metrics are used to evaluate the accuracy
(Rand Index) and efficiency (Execution Time) of the MicroGRID approach, and
the baseline methods: Rand Index and Execution Time.

Several results were obtained to show the advantage of MicroGRID over the
baseline methods in efficient and effective clustering, when tested upon the four
real-world data sets explained in the previous section. As mentioned earlier,
because of the space limitation, we will only present the experimental results for
Rand Index. Figures 1, 2, 3 and 4 show the average Rand Index results of the
MicroGRID, CluStream and DenStream algorithms when tested with the Forest
Covertype, Electricity Market, Sensor Readings and Spam data sets.

Fig. 1. Average rand index with the
Forest Covertype Dataset

Fig. 2. Average rand index with the
Sensor Readings Dataset

From the results presented in Figs. 1, 2, 3 and 4, it is clear that under most
cases, MicroGRID provided significantly higher Rand Index values than both
CluStream and DenStream.This is true when using the Forest Covertype, Sensor
Readingsand Electricity Market data sets, where MicroGRID is more accurate
than both baseline methods. When using the Spam data set, the average results
of MicroGRID are more accurate than the average result of DenStream, however

http://moa.cms.waikato.ac.nz/
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Fig. 3. Average rand index with the
Electricity Market Dataset

Fig. 4. Average rand index with the
Spam Dataset

a statistically significant conclusion cannot be drawn. When using the three pre-
vious data sets, it is evident that CluStream and DenStream both give extremely
similar Rand Index values, while MicroGRID outperforms these results by 22%,
20% and 96% respectively. In the case of the Covertype and Sensor Readings data
sets, both of these data sets contain 7 and 4 possible class values, used for calcu-
lating the rand index of generated clusters. These two data sets also produced the
lowest overall Rand Index values for all algorithms. This is indicative of the diffi-
culty faced by clustering algorithms as the number of different classes increases.
However, MicroGRID still performs better than both baseline methods. The
Electricity Market data set contains 2 possible class values, and MicroGRID has
shown the highest advantage in accuracy.

These results indicate that having only 2 distinct classes allows for the great-
est amount of separation between micro-clusters of each class upon the grid,
greatly reducing the chances of false positives or false negatives when cluster-
ing. As the number of classes increases, the separation between each group of
micro-clusters (of different classes) on the grid will naturally decrease, lead-
ing to a higher chance of false positive and negatives. When clustering, both
CluStream and DenStream use a distance function to calculate if micro-clusters
should be included in the same created cluster. However, the distance of micro-
clusters that should be grouped together is greatly affected by the data set itself.
Secondly, the radius of micro-clusters in CluStream and DenStreamare not fixed,
and can expand as other micro-clusters are merged into them. When the num-
ber of classes increases, this can lead to a number of very large micro-clusters,
increasing the possibility that micro-classes attributed to different classes are
assigned to the same cluster. Micro-clusters in MicroGRID are of a fixed radius,
making it more difficult for micro-clusters of different classes to be assigned to
the same cluster, as their distance together depends purely on dimension val-
ues, instead of cluster radius also. MicroGRID presents a greater advantage in
accuracy in the Electricity Market data set, as even if many of the resulting
micro-clusters are mapped very close to each other upon the grid, these micro-
clusters do not expand, keeping the overall area covered by these micro-clusters
smaller. However, even under 2 possible class values, many micro-clusters may be
merged together, if their resulting distances are very close. This once again can
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lead to larger micro-clusters, increasing the chance of these large micro-clusters
being clustered with other micro-clusters of different class values.

In summary, MicroGRID outperforms both CluStream and DenStream in
terms of both clustering accuracy and efficiency across the majority of data sets.
MicroGRID outperforms both CluStream and DenStream in average execution
time across all four data sets, and also outperforms these algorithms in aver-
age Rand Index across the Forest Covertype, Sensor Readings and Electricity
Market data sets.

5 Conclusion

This paper proposed a new approach for clustering data-streams in real time,
combining a micro-cluster array of limited size, a decaying weight function and
a central clustering grid to cluster both single data streams. In addition, the
use of a decaying weight function allows the proposed MicroGRID approach to
still produce accurate clustering results when faced with both noisy and outlier
data points. We have shown that the use of a limited-size micro-cluster array,
and clustering based on grid cells rather than individual micro-clusters, produces
more efficient clustering results than other common clustering algorithms that
also make use of micro-clusters. We have shown that these efficiency results
are consistent across multiple real-world data sets, which illustrates that these
measures, along with grid mapping and weight calculation functions being of a
constant time complexity, make a significant efficiency difference when clustering
a single data stream. We also show that the use of a decaying weight function
to remove outdated and outlier micro-clusters from a micro-cluster array, and
the use of mapping micro-clusters to a grid of fixed size for clustering, results
in more accurate clustering results across all data sets, which also indicates an
improved ability to handle noise when clustering.
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Abstract. Streaming features applications pose challenges for feature
selection. For such dynamic features applications: (a) features are sequen-
tially generated and are processed one by one upon their arrival while the
number of instances/points remains fixed; and (b) the complete feature
space is not known in advance. Existing approaches require class labels
as a guide to select the representative features. However, in real-world
applications most data are not labeled and, moreover, manual labeling
is costly. A new algorithm, called Unsupervised Feature Selection for
Streaming Features (UFSSF), is proposed in this paper to select repre-
sentative features in streaming features applications without the need to
know the features or class labels in advance. UFSSF extends the k-mean
clustering algorithm to include linearly dependent similarity measures so
as to incrementally decide whether to add the newly arrived feature to
the existing set of representative features. Those features that are not
representative are discarded. Experimental results indicates that UFSSF
significantly has a better prediction accuracy and running time compared
to the baseline approaches.

1 Introduction

High dimensionality is a major challenge for machine learning algorithms in data
stream environments. Irrelevant features decrease the prediction accuracy and
the running time of such algorithms. Feature selection has been widely used as a
pre-processing technique to select representative features from streams in order
to tackle the dimensionality issue. However, existing feature selection approaches
assume that features are static because they need to be known in advance so as
to accurately select a set of representative features. Therefore these approaches
are not appropriate for data stream applications, where features are not static
and instead arrive one by one.

Data streams can be broadly classified into streaming data and streaming fea-
tures [6]. In streaming data, the number of features is fixed while the instances
c© Springer International Publishing AG, part of Springer Nature 2018
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arrive sequentially. Regarding streaming features, however, which is the focus
of this paper, the number of instances remains fixed while the features arrive
sequentially and are processed one by one. In real-world applications such as
Twitter, features such as slang words are dynamically created and therefore need
to be processed upon their creation instead of waiting for all features to arrive,
as required by traditional feature selection approaches. Actually waiting for all
features to arrive before starting the selection process is impractical, as the num-
ber of streaming features is unknown in advance and new features appear over
time. The process of feature selection in streaming features applications consists
of two main parts [7]: (1) the evaluation of the new feature to check whether
this is a representative one based on a specific criterion (e.g. dependency of the
features), and (2) the evaluation of the selected set of features to check whether
they remain representative. The non-representative features are discarded. By
following this process, we ensure that only the representative features are added.
Additionally, we ensure that features that tend to be no longer representative
over time are removed from the selected set of features, as new more represen-
tative features will be added.

Only a few previous works [10,13,15] have addressed feature selection for
streaming features. These, however, require class labels so to guide the selection
of representative features. To the best of our knowledge, the only unsupervised
feature selection approach for streaming features is the one proposed in [7].
Although this approach does not require class labels, their model is limited
to the scenarios where link information could be established (i.e. a friendship
relationship between Twitter users). Although a trick can be used to replace
the link information by computing the similarity of the data, their model is no
different from traditional feature selection approaches because it is limited to
using the link information to evaluate the relevance of the features.

The proposed UFSSF approach extends the k-mean algorithm to cluster a
stream of features that are not known in advance. It integrates three linearly
dependent similarity measures, namely PCC (Pearson Correlation Coefficient),
LSRE (Least Square Regression Error) and MICI (Maximal Information Com-
pression Index), to incrementally measure the dependency of the newly arrived
streaming features to decide whether or not to add them to the existing set of
representative features. The features arrive sequentially and they are processed
upon their arrivals one by one in a real-time manner. Linearly dependent mea-
sures are used because they are not sensitive to the order and the scatter of
the distribution of the features. Additionally, UFSSF incrementally updates the
centroids to cope with concept drift in streaming features, as one feature is rele-
vant at a given time. After assigning a feature to its relevant cluster, the mean is
updated and we compare the similarity of the arrived feature with the existing
representative features.

Extensive experiments have been carried out to benchmark the proposed
UFSSF against two well-known unsupervised approaches, namely SPEC [14]
and the one proposed in [8]. These approaches are evaluated in terms of the
prediction accuracy and the running time. The evaluation work is carried out
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in two parts. In the first part, we simulated the streaming features environment
such that: (a) features are not completely known in advance; and (b) they are
processed in real time. In the second part of the evaluation, we assume the
existence of the entire stream in order to test the stability of the results. We
therefore vary the number of features selected from the whole stream (i.e. select
10, 15, 30, etc. from the entire stream). In both experiments, UFSSF outperforms
these two selected approaches in both prediction accuracy and running time.

This paper is organized as follows. The next section discusses existing solu-
tions, and a description of the problem is followed. Section 3 provides full details
of the proposed approach and Sect. 4 presents the experimental results in details.
We conclude with our findings in Sect. 5.

2 Related Work

To the best of our knowledge, there are few studies that have been conducted
on feature selection in streaming features applications. Perkins et al.’s work [10]
proposed an approach, called grafting, which selects a subset of streaming fea-
tures that have arrived so far as an integral part of a regularized learning process.
It incrementally and gradually builds the selected subset of features in addition
to training the predictive model using gradient descent. Because it works in an
incremental way, this approach can efficiently cope with the dynamic nature of
the streams. However, in order to specify a good regulariser parameter value,
this approach requires an insight into the complete feature space in advance.
Therefore, it cannot process streaming features of an unknown size. Alpha-
investing [15] evaluates the relevance of the arrived feature based on a dynamic
threshold of error reduction (called p-value). In particular, the p-value is intro-
duced to determine whether or not to add a feature to the selected set of features.
Although Alpha-investing can process the unknown size of streaming features,
no selected features can be removed. Finally, Online Streaming Feature Selection
(OSFS) was proposed in [13] to select in real time relevant features and remove
redundant ones. Whenever a feature arrives, OSFS measures its dependency on
the available class labels and then adds the feature to the best candidate fea-
ture if this meets a specific criterion. OSFS can dynamically remove redundant
features using the Markov Blanket.

The approaches discussed above require the class label as a guide to select
representative features. However, in real-world applications most of the data is
un-labeled and, moreover, labeling is a time consuming. To the best of our knowl-
edge, the only approach that is unsupervised (i.e. no labels) and is applicable
for streaming features applications is proposed in [7]. Although this approach
has good performance, it is limited to scenarios where link information must
be established (i.e. a friendship relationship between Twitter users). Also, the
authors assume that the link information is stable, which obviously is not true
as this could dynamically change.
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Preliminaries and Problem Statement. We formally introduce the notation
used in this paper and describe the problem of unsupervised feature selection
for streaming features in this section. We assume a stream of feature vectors,
F = {f1, f2, . . .} (possibly infinite in their number), where each fi is a vector
of the feature values for n instances. Let Ft be the features observed up to
time t. E.g., if F represents a stream of tweets from Twitter, then the features
are individual words, and each post is an instance, and a feature vector would
represent the frequency with which that word (feature) appears in each of the
tweets. Ft is the feature/word vectors observed up to time t. Each feature vector
in F arrives one by one, there are no restrictions on the order in which they
arrive, and they do not have class labels.

We wish to maintain a representative set of features that approximates
the feature stream seen so far. As the feature stream is potentially infinite
in length and the relevant set of features could change with time due to con-
cept drift, it is not efficient to wait for all the features to be collected. Let
Rt = {fR

1 , fR
2 , . . . , fR

k }, fR
i ⊂ Ft, 1 ≤ i ≤ k, denote the set of k representa-

tive features at time t. k can range from 1 to kmax, the maximum number of
representative features.

As features arrive one by one, the problem of unsupervised feature selection
for streaming features is to maintain a set of representative features Rt, such
that Rt approximates the features Ft observed up to time t. Each representative
feature fR

j of Rt represents a subset/cluster of features in Ft.
For each incoming feature fi, the problem we are addressing in this paper

considers the following two issues:

1. How to determine which existing representative feature and associated feature
cluster fi must be assigned to?

2. How to update the feature cluster and representative feature?

For both (1) and (2) above, the following three similarity measures are
selected: Pearson Correlation Coefficient (PCC) [9], Least Square Regression
Error (LSRE) [12], and Maximal Information Compression Index (MICI) [8].
We have chosen these linearly dependent measures because they are known not
to be sensitive to the order and scatter of the features [8]. These similarity mea-
sures will measure the dependency of streaming features in order to (1) allocate
a feature to a relevant cluster; (2) decide whether to add a feature to a set rep-
resentative features; and (3) dynamically update a set of selected features by
removing those that are no longer representative.

3 The UFSSF Approach

This section provides details of the proposed approach. Let’s first define the
concepts of cluster centroid and representative feature.

Definition 1 (Cluster Centroid). We represent each feature cluster by a cen-
troid, which is a weighted mean of all the features assigned to it. The weights
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are largest for recently arrived features, and smallest for features that arrived in
the distant past.

Definition 2 (Representative Feature). A feature assigned to a cluster is
considered to be representative if it has the maximum similarity to the cluster’s
centroid amongst all other stream features assigned to the same cluster. Given
a centroid cr, fr ∈ Ft is a representative feature in cr, namely fr ∈ Rt, if and
only if we have one of the following properties:

PCC(fr, cr) > PCC(fj , cr)
LSRE(fr, cr) < LSRE(fj , cr)
MICI(fr, cr) < MICI(fj , cr)

where Rt is the set of current representative features and fj is any feature
of cr.

Any feature that is not representative is therefore discarded. This will lead
to less usage of space and will also allow UFSSF to rapidly filter out non-
representative features in dynamic feature space.

3.1 The UFSSF Model

This section explains how the proposed UFSSF approach computes the set of
representative features. The model consists of two parts: (1) adding features
to the set of representative features; and (2) updating the set of representative
features by removing the ones that are no longer representative. To do so, we
employ the similarity measures provided above. We rely on clustering approaches
that are capable to select the representative features without the requirement
of class labels. The k-mean algorithm [5] works well with multi-dimensional
datasets, and is therefore well suited for streaming features.

Linearly dependent measures are more efficient for the purpose of feature
selection as they are not sensitive to the order and the scatter of the distribu-
tion of the features. Three well-known linearly dependent measures (i.e. PCC,
LSRE, MICI) are used for the following reasons. Firstly, a single similarity mea-
sure might produce bias towards a specific model, and therefore produces better
selection of representative features for that model over other models. Secondly,
the three measures proved their effectiveness for feature selection as experimen-
tally shown in [8]. Therefore, PCC, LSRE and MICI are used in the k-mean
algorithm to compute the dependency between features and cluster centroids.

The following steps show how UFSSF selects a set of representative features
from a stream of features. Features are processed one by one upon their arrivals
in a first-in-first-out strategy as they are not known in advance. The first step
is the initialisation of the clusters and the representative features:

– UFSSF assigns the first arrived k features from a stream as centroids of k
number of clusters. For example, if k = 10 then the first ten features collected
from a stream are the initial centroids of 10 clusters.



500 N. Almusallam et al.

– UFSSF sets the initial centroid of every cluster as the initial representative
feature of that cluster.

Whenever a Feature fj Arrives
For every similarity measure PCC/LSRE/ MICI, the following steps are carried
out to update the representative feature set:

– The similarity between fj and the centroid of every cluster is computed. fj is
assigned to a cluster Clus if fj has the maximum similarity to Clus’s centroid
amongst all other clusters centroids. The mean of Clus is then incrementally
updated and fj is assigned to Clus.

– In Clus, we compare the similarity (say S) between fj and the representative
feature (i.e. fr) with Clus’s centroid cr. If S(fj , cr) > S(fr, cr), fj is set as
the representative feature and fr is removed.

– The representative feature from every cluster comprises the set of represen-
tative features.

UFSSF has one-pass over data, as it reads the stream of the data only once.
Additionally, UFSSF incrementally updates the mean of the clusters: (i) to accu-
rately measure the representativeness of the features (as a feature fr might be
representative at time t but not in t + 1); and (ii) to tackle the concept drift in
clusters that could result from the dynamic nature of the stream. This helps to
improve the prediction accuracy of the classifiers.

Finally, UFSSF requires only a reasonable storage capacity as it stores only
the representative feature and the centroid of every cluster. Because UFSSF is
able to meet the requirements of major streaming applications, we believe that
it is capable to efficiently work in streaming features applications as shown by
the experimental results. The pseudo code of UFSSF is given in Algorithm1.

4 Experimental Evaluation

This section describes the experimental setup of the proposed UFSSF approach.
This approach is compared against two well-known traditional unsupervised fea-
ture selection approaches, namely the one proposed in [8] and SPEC [14]. To the
best of our knowledge, no other unsupervised feature selection approach has
been developed for streaming features applications without the requirement of
link information. Therefore, these two approaches have been selected as they are
the most common traditional unsupervised feature selection approaches (e.g.
batch applications).

The respective computed representative feature sets of these three approaches
are evaluated by taking the average of three well-known classifiers, namely Naive
Bayes [4], J48 Decision Tree [11] and Lazy Nearest Neighbour [1] (also called
IB1). In addition to these classifiers, the k-fold-cross validation is applied on all
selected features to produce better results by avoiding the problem of over fitting
data. The selected feature set is first divided into subsets of equal size depending
on the selected k folds. Then, only one k is used as a testing subset and the rest
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Algorithm 1. UFSSF
Input: D = {f1, f2, ..., fn}, a stream of features vectors
Input: j = {1 = PCC, 2 = LSRE, 3 = MICI}, similarity measure
Input: n, number of clusters centroids
Output: representative features
// Initialization of centroids matrix and representative features matrix

1 cluster centroids=NaN(size(D,1),n);
2 representative features(:,q)=D(:,q);

// Assigning the first n features to be both the centroids and the representative
features of the first n clusters

3 for q=1:n do
4 cluster centroids(:,q)=D(:,q);
5 representative features(:,q)=D(:,q);

6 end
7 feature indexes=zeros(1,n);
8 for u=1:n do
9 feature indexes(1,u)=u;

10 end
// Looping over the remaining stream of features

11 for w=n+1:size(D,2) do
12 for r=1:n do

// Compute the similarities between the arriving feature and every centroid
13 similarity(r,1)=calcDistance(D(:,r),D(:,w),j);

14 end
// Finding the most similar cluster centroid to the arriving feature

15 if j==1 then
16 cluster most similar=find(similarity==max(similarity));
17 else
18 cluster most similar=find(similarity==min(similarity));
19 end

20 end
// Incremental mean computation

21 cluster centroids(:,cluster most similar)=mean([cluster centroids(:,cluster most
similar),D(:,w)],2);

// Computing the similarity of arriving feature fjand representative feature fr to
the cluster centroid

22 fj=calcDistance(cluster centroids(:,cluster most similar),D(:,w),j);
23 fx=calcDistance(cluster centroids(:,cluster most similar),representative

features(:,cluster most similar),j) // checking the representativeness of feature
24 if j==1 then
25 if fj > fr then
26 representative features(:,cluster most similar)=D(:,w);
27 feature indexes(1,cluster most similar)=w;;

28 end
29 else if fj < fr then
30 representative features(:,cluster most similar)=D(:,w);
31 feature indexes(1,cluster most similar)=w;;

32 end

33 end

34 end
35 Return representative features;

are used as training subsets. Finally, the average value of all folds is set to be the
average result. In the evaluation, k is set to 10 to demonstrate the efficiency of
our proposed algorithm, as suggested in [3]. Following the experimental settings
given in [7,13], the experiments conducted in two phases:

– In the first part of the evaluation, we simulated the streaming features envi-
ronment such that: (a) features are not completely known in advance; and (b)
they are processed in real time [13]. The feature space is split into five subsets:
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20%, 40%, 60%, 80% and 100%. First, we pick the 20% subset of streaming
features and then 40% and so on to sequentially simulate the arrival of the
features. In each subset of streaming features, we apply UFSSF, SPEC [8,14]
to select representative features. We ensure that all the approaches select the
same number of features for a fair comparison.

– In the second part of the evaluation, we vary the number of features selected
from the full feature stream, i.e., 100% of features. In this case, we assume
the existence of the entire space. The reason is to test the stability of the
results and to avoid the randomness.

Although the benchmarked approaches are not designed for streaming fea-
tures applications, the way we conducted the experiments ensures the fairness of
the comparison. We apply the UFSSF, SPEC [8,14] to every subset individually
and select the same number of features. Also, the entire dataset is tested with
different numbers of selected representative features for every approach in order
to compare the non-streaming features benchmark approaches.

Two datasets, namely Waveform (5000 × 40)1 and Ionosphere (351 × 34)2

are used to evaluate the performance of the proposed UFSSF approach. They are
commonly used for data mining algorithms and they are from diverse domains.
They are used for classification and clustering purposes.

The evaluation of UFSSF will provide answers to the following questions:

– How accurate is UFSSF in selecting a set of representative features?
– How efficient is UFSSF in terms of running time?

Two evaluation metrics are used to answer the above questions, namely
F-measure and the running time in seconds. F-measure is the harmonic mean
of precision and recall, which precisely demonstrates the accuracy of the classi-
fication task [2]. First, we present the results related to the stream of features,
where features are not known in advance. Then, we present the results relating
to the one that considers the existence of the entire stream, where we investigate
the selection of different numbers of features to show the stability of the pro-
vided results. Finally, we present the results relating to the efficiency of UFSSF
along with those for the two other approaches in terms of the running time. For
each dataset, every approach runs its own similarity measure/s to investigate its
prediction accuracy. The approach proposed in [8] already includes these three
similarity measures (i.e. PCC, LSRE and MICI), while SPEC works with the
RBF Kernel similarity measure.

Figure 1 shows the experiment results of the streaming features when features
are not completely known in advance but arrive sequentially. For the Wave-
form dataset shown Fig. 1(a), UFSSF outperforms [8] and SPEC [14] for every
percentage of streaming features as well as for every similarity measure. The
selected representative features by UFSSF has the highest prediction accuracy

1 https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version
+2).

2 https://archive.ics.uci.edu/ml/datasets/Ionosphere.

https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version+2)
https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Version+2)
https://archive.ics.uci.edu/ml/datasets/Ionosphere
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Fig. 1. Comparison of prediction accuracy of the proposed UFSSF scheme along with
the two baseline approaches on two datasets. The columns in the figure show the results
produced by using different similarity measures. The x-axis denotes the percentage of
streaming features while the y-axis denotes the corresponding F-measure

(F-measure) compared to the baseline approaches. Although UFSSF and [8]
have a similar prediction accuracy at the early stage of arrival of streaming
features (i.e. 20% and 40%), the accuracy of UFSSF distinctly increases for all
other percentages of arriving streaming features (i.e. 60%–100%). UFSSF waits
for the arrival of more features from these this dataset to significantly perform
well. Indeed, UFSSF gradually builds the model due to the incremental updat-
ing of the clusters, which affects the selection of representative features. UFSSF
processes a stream of features one by one and incrementally selects the represen-
tative feature seen so far from a cluster. Therefore, in a few scenarios where we
do not really have good representative features, UFSSF is forced to select the
maximum representative features that have just arrived. Therefore, the accu-
racy gradually improves with the arrival of more features. Conversely, the other
two approaches statistically search the complete subset of the streaming features
that have arrived and select the best of them.

For the Ionosphere dataset, as shown in Fig. 1(b), UFSSF has significantly
the highest prediction accuracy for all different percentages of streaming features
compared to the two other approaches. This is valid when using either PCC,
LSRE or MICI as the similarity measure for UFSSF and [8].
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Fig. 2. Comparison of prediction accuracy of the proposed UFSSF scheme along with
the two baseline approaches on two datasets. The columns in the figure show the results
produced by using different similarity measures. The x-axis denotes the selected number
of features while the y-axis denotes the corresponding F-measure

SPEC [8,14] do not incrementally update their models to cope with the
dynamic nature of the streams. A feature arriving from the stream can be rep-
resentative at only a specific time due to dynamic nature of the stream. By con-
trast, UFSSF incrementally updates its clusters to check whether the selected
representative features are still representative for every arriving new feature.
Therefore, UFSSF outperforms the other two approaches in terms of predic-
tion accuracy. Figure 2 demonstrates the accuracy of UFSSF along with baseline
approaches when selecting different numbers of features by considering the entire
feature space as a stream (i.e. 100%). For the Waveform dataset, as depicted in
Fig. 2(a), UFSSF significantly outperforms [8] and SPEC [14] in terms of pre-
diction accuracy. This holds for all the different numbers of selected features
and for all the different similarity measures. However, when only 10 features are
selected, UFSSF and [8] are quite similar in terms of prediction accuracy when
LSRE and MICI are used as similarity measures.

For the Ionosphere datasets, as illustrated in Fig. 2(b), UFSSF has either
a slightly better or a competitive prediction accuracy compared to [8] and
SPEC [14]. This is valid for all different numbers of selected features and for
all different similarity measures. Baseline approaches are indeed designed to
work with statistical datasets. In contrast, UFSSF is designed to work in a
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Fig. 3. Comparison of running time of the proposed UFSSF approach along with the
two baseline approaches on two datasets

stream environment where features are not completely known in advance but
arrive sequentially. Although UFSSF has a lower accuracy than the baseline
approaches for a few of selected features, the accuracy difference is negligible.

It worth pointing out that the UFSSF is not sensitive to the order of the
features. This is due to the methodology of selecting the representative features.
Indeed, every cluster retains only the feature that has the maximum similarity
to the cluster centroid. Therefore, it does not matter which feature arrives first
as the similarity is computed based on its values.

The running time for the three approaches is depicted in Fig. 3. UFSSF has
the lowest running time for all different similarity measures on the provided
datasets. It consistently outperforms the baseline approaches on all the differ-
ent percentages of the streaming features. The approach in [8] is competitive
with UFSSF while SPEC [14] has a higher running time. [8] relies on K-Nearest
Neighbour (K-NN) search to partition the subset of arrived features. As a result,
it has a higher running time due to the computation of the similarity between
features. The performance of SPEC [14] is the worst in terms of running time
due to the time required to build the Laplacian matrix, which is computationally
expensive. The reason for UFSSF having the best running time is that it does
not have to search the entire subset of newly arrived features as the other two
approaches do to select features. Instead, UFSSF processes the arriving features
one by one by computing their dependency on only the cluster’s centroids, which
are very few compared to the number of streaming features.
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5 Conclusion

This paper proposed an unsupervised feature selection approach to reduce the
dimensionality of a stream in streaming features applications. Unlike existing
streaming features approaches that require class labels, UFSSF can efficiently
select a set of representative features without requiring class labels or information
such as the link between users. In UFSSF, a k-mean clustering algorithm is
extended to work in streaming features applications. It clusters a stream of
features that are not known in advance. It uses three similarity measures namely,
PCC, LSRE and MICI, in order to: (a) allocate a feature to a relevant cluster, (b)
decide whether to add the arrived feature to the set of representative features and
(c) decide whether to dynamically update a set of selected features by removing
those that are no longer representative. Experimental results show that UFSSF
generates a representative feature set with the lowest running time. The selected
set of representative features has mostly achieved the best prediction accuracy
according to F-measure evaluation metric.
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Abstract. Clustering data streams is an emerging challenge with a wide
range of applications in areas including Wireless Sensor Networks, the
Internet of Things, finance and social media. In an evolving data stream,
a clustering algorithm is desired to both (a) assign observations to clus-
ters and (b) identify anomalies in real-time. Current state-of-the-art algo-
rithms in the literature do not address feature (b) as they only consider
the spatial proximity of data, which results in (1) poor clustering and
(2) poor demonstration of the temporal evolution of data in noisy envi-
ronments. In this paper, we propose an online clustering algorithm that
considers the temporal proximity of observations as well as their spatial
proximity to identify anomalies in real-time. It identifies the evolution of
clusters in noisy streams, incrementally updates the model and calculates
the minimum window length over the evolving data stream without jeop-
ardizing performance. To the best of our knowledge, this is the first online
clustering algorithm that identifies anomalies in real-time and discovers
the temporal evolution of clusters. Our contributions are supported by
synthetic as well as real-world data experiments.

1 Introduction

Data stream clustering [1] has become a fundamental part of data analysis and
data mining in online digital applications. In data streaming environments the
volume of data is unbounded, while memory is limited, in contrast to the assump-
tions made by traditional data clustering that all data can be stored indefinitely.
Stream clustering has a wide range of applications, such as Wireless Sensor Net-
works (WSNs) [2], meteorological analysis [3] and the Internet of Things (IoT).
While traditional clustering has been widely studied, it differs from stream clus-
tering in several important ways. First, traditional algorithms have a global view
of the data, i.e., all observations are randomly accessible whereas in the stream-
ing environment a window is defined that slides over the stream, creating a
c© Springer International Publishing AG, part of Springer Nature 2018
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partial view of the data. Second, in streaming environments, clusters of data
emerge, evolve and change over time but static datasets lack this kind of tempo-
ral evolution within the current data window and therefore an effective approach
to stream clustering should discover the temporal evolution of clusters as well.

There are three main approaches for data stream clustering: (1) data summa-
rization clustering [4,5], (2) online (real-time) clustering [6,7], and (3) time-series
clustering [8,9]. The primary focus of this paper is online clustering where the
main challenges are (1) the stream evolves gradually and identifying the evolu-
tion of patterns in noisy environments is not trivial, and (2) algorithms do not
have a global view of the data but instead a partial view, i.e., a window that
slides over the stream. Current state-of-the-art algorithms in this category are
sequential K-means and competitive neural network based algorithms such as
Adaptive Resonance Theory (ART-2) [6] and Self-Organizing Map (SOM) [10].
A limitation of the current algorithms is that they do not identify the evolution
of clusters in streams effectively, mainly because they only consider the spatial
proximity of data in the stream. In this paper, we propose an algorithm that
considers the temporal proximity of observations as well as their spatial proxim-
ity to identify anomalies in real-time. Our algorithm incrementally updates the
model and identifies the evolution of clusters. It takes a single input parame-
ter to calculate the minimum window length without jeopardizing performance,
and detects the number of clusters automatically. Accordingly, the contributions
of this paper are two-fold: (1) we provide an online clustering algorithm with
online anomaly detection that identifies the evolution of clusters, and (2) we
only require a single parameter to be specified to calculate the minimum win-
dow length without sacrificing performance. To the best of our knowledge, this
is the first online clustering algorithm with these capabilities.

This paper is structured as follows. In Sect. 2, we provide a brief review of
data stream clustering. Section 3 formally defines the problem of online clustering
in evolving data streams. In Sect. 4, we describe our proposed algorithm in detail.
Then we analyze the performance of our algorithm by modeling its worst-case
time complexity. In Sect. 5, we present the results of our experiments on both
synthetic and real datasets, and in Sect. 6, we propose several possible future
directions for research.

2 Related Work

Data stream clustering algorithms can be categorized into three groups : (1) data
stream summarization, (2) online clustering and (3) time-series clustering. The
algorithms in the first group, such as ClusTree [4] and DenStream [5] mainly
comprise two phases: (online) data abstraction phase and (offline) clustering
phase. In the online phase, they maintain statistical information of data locality
with the help of particular data structures to deal with memory constraints, and
in the offline phase a batch-mode clustering algorithm is applied to the summary
to find clusters. The main drawback of these algorithms is that cluster labels for
observations are not identified in real-time.
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Online clustering algorithms (the second group) produce cluster labels on the
fly and can be subdivided into two major subgroups: (1) sequential K-means and
(2) competitive neural networks. K-means [7] is a well-known batch clustering
algorithm that has been extensively studied in the literature. The authors of [7]
introduced sequential (online) K-means that updates the cluster centers with
the arrival of each observation. This algorithm has been improved in [11] by
setting an upper bound on the performance of the resulting clusters. However, in
noisy environments these algorithms tend to partition the data into Voronoi cells
which restricts the shape of clusters found, and cannot determine the temporal
evolution of the data.

Online K-means can be extended to a competitive neural network, where the
output layer neurons are the K centres of the clusters, and with the arrival of a
new observation, the nearest neuron (winner) is identified and is updated. One
type of network structure for choosing the winner is through lateral inhibition
[12], where each neuron reinforces itself and undermines others. Another com-
petitive network is Hebbian learning [8], where correlated neurons are updated
to reinforce the correlation. In these networks only the winner neuron is updated,
which usually results in having dead neurons in the network. To avoid this, one
way is to update a group of neurons in the neighborhood of the winner neuron,
i.e., using self-organizing maps (SOM) [10].

The abovementioned algorithms all require the number of clusters in advance.
A neural network that automatically identifies the number of clusters is presented
in [6] named adaptive resonance theory (ART-2). In this algorithm, clusters
are defined with hyper-spheres where the radius is calculated from an input
parameter named vigilance. The algorithm starts with a single cluster (neuron)
and if a new observation does not belong to any clusters, a new cluster is defined.
In this network, setting a suitable value for the vigilance parameter is difficult
because it defines the radius of the clusters and if it is not set correctly, the
algorithm will have a poor performance.

The third group of algorithms is for time-series data [9,13] where data points
are indexed in time order. These algorithms exploit the principle of locality,
limiting their practicality in various domains of application and we do not con-
sider them in this paper. Table 1 briefly compares current data stream clustering
algorithms in the literature where none of the current algorithms are capable of
detecting anomalies in real-time.

3 Problem Definition

In this section, the problem of evolving data stream clustering is defined. Suppose
a stream of observations X = (x1,x2,x3, . . . ,xn, . . .) are generated from a set of
γ unknown distributions denoted by H = {h1, h2, . . . , hγ} where each hi ∈ H is
a mixture of Ki components. Let Θ = {θi,j , j = 1, . . . , Ki} denote the parameters
corresponding to the components of hi, e.g., if hi is a multivariate Gaussian
distribution, θi,j = {μi,j , Σi,j} determines the mean and the covariance matrix
of the jth component and the mixture weights for hi ∈ H is denoted by Φ =
{φi,j , j = 1, . . . ,Ki}.
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Table 1. Related Work Summary - OL: Online Labelling, EVS: Evolving Data Streams,
OAD: Online Anomaly Detection

Alg. Name ClusTree [4] DenStream [5] On. KMeans [7] SOM [10] ART-2 [6] OnCAD

OL ✗ ✗ ✓ ✓ ✓ ✓

EVS ✓ ✓ ✗ ✗ ✓ ✓

OAD ✗ ✗ ✗ ✗ ✗ ✓

Each observation xi ∈ X (drawn from a random hi ∈ H) is a feature vector
(x1, x2, . . . , xd) ∈ R

d where each xi, 1 � i � d is an arbitrary type of variable
such as temperature in xi. A small subset of observations are i.i.d random anoma-
lies, i.e., do not come from any distributions in H. X is potentially unbounded
and there is no control over the order of which observations arrive. At any time
interval, one of the distributions in H is active (contributing to the stream) and
active distributions change over time. When a distribution becomes active for
the first time it is called an emerging distribution We aim to cluster X into
several dense and separated partitions and identify the temporal evolution of
data. A good clustering algorithm should reflect the structure imposed by θi,j

in the input space, and filter out anomalies.
Data Presentation: Observations become available to the algorithm one at a
time and data is presented in a window of length L. When a new observation
arrives, all observations in the window move one cell to the left (the observation
at the leftmost cell is discarded) and the new observation is put in the rightmost
cell.

4 Methodology

In this section we propose OnCAD (Online Clustering and Anomaly Detec-
tion). In a non-stationary environment where clusters of data emerge, evolve
and change over time, a new observation may: (1) belong to an existing cluster
in the model, (2) be an anomaly, or (3) be part of an emerging cluster. Our goal
is to determine the fate of an observation, update the model, and represent each
underlying component with a cluster. We name the leftmost cell in the win-
dow as the check cell and the rightmost cell as the update cell because of their
importance.

When a new observation xn+1 arrives, the algorithm performs two main
steps:
Step 1: It checks if xn+1 belongs to case 1 by determining its membership to
the clusters in the model and updating them.
Step 2: If xn+1 does not belong to any clusters in the model, it should be
assigned to either case 2 or 3. Distinguishing between these two cases is impos-
sible at this stage, therefore we postpone the assignment of xn+1 until it is in
the check cell where either a new cluster is formed or the observation is labelled
as anomalous. At this stage one iteration of the algorithm terminates and the
algorithm proceeds to the next iteration. However, to perform these steps the
main questions that we need to answer are:
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1. How to define the membership of observations to clusters?
2. How to distinguish between anomalies and emerging clusters?
3. How to calculate the minimum window length (L)?

Answering these questions is not trivial because the algorithm has only a partial
view of the data that evolves over time.

4.1 Step 1 (Cluster Update Rule):

In this section, we answer question 1 by building a cluster model for the under-
lying components in the stream using Gaussian clusters C = {C1, C2, . . . , Cv}
where the cluster prototypes are hyper-ellipsoidal and each cluster is represented
by its mean and inverse of its covariance matrix. To determine the membership
of xn+1 w.r.t the clusters in the model, we employ the boundary definition in
[14] for hyper-ellipsoids:

(x − m)T S−1(x − m) ≤ t2. (1)

In this formula, x is an observation, m is the center of the hyper-ellipsoid (the
mean of the cluster), S−1 is the inverse of covariance matrix of the cluster and
t2 is a constant that marks a specific level set of the cluster. When t2 is chosen
from the cumulative inverted chi-squared distribution with d degrees of freedom
for a probability value P , ((χ2

d)
−1
P ) sets the boundary of the cluster such that

the probability of an observation falling outside the boundary is 1 − P . In our
experiments, we set the value of P to 0.99.

If xn+1 falls inside the boundary of a cluster, we update it by the weighted
incremental update formulas in [15] (Eqs. 20 and 23). These formulas are used to
update mn,i (the mean of the cluster at time n) and S−1

n,i (the inverse of covari-
ance matrix of the cluster at time n) with xn+1. By determining the membership
and updating the selected clusters step 1 terminates.

4.2 Step 2 (Detecting Emerging Clusters)

The key to identifying emerging clusters from anomalies is the window length
L that defines the temporal locality of observations. If L is large enough to fit
the whole dataset, it is identical to batch-mode clustering, and if L is too small
the algorithm would not be able to capture any statistically significant patterns.
Hence, our aim is to calculate the smallest L that enables emerging clusters to
be distinguished from anomalies.

The prominence of the Ki components of a distribution in the window can be
described by the mixture-weight and sample size. Therefore, we set a threshold
p (parameter set by the user) on mixture-weights to cap the number of emerging
components and calculate the minimum number of observations to model each
component with a cluster (sample size). As a result, the value of L is calculated
such that the algorithm is capable of detecting an emerging mixture distribution
hi ∈ H with Ki components where their mixture-weights are greater than p. For
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instance, if p is set to 0.2, the algorithm can detect any emerging hi ∈ H where
φi,j ≥ 0.2 for all j = 1, . . . ,Ki, i.e., it can detect at most 5 simultaneous emerging
components.

Assume Xs = {x1,x2, . . . ,xq} is a sample of size q from a single random
component with mean μ and covariance matrix Σ. Also, let m and S be the
maximum likelihood estimates (unbiased) of μ and Σ based on Xs, respectively.
We compute q such that the distance between m and μ is less than a threshold
by calculating an elliptical confidence region (ECR) for μ with a high confidence
level.

A confidence region A ⊂ Rd for μ ∈ Rd with confidence level 1 − α ∈ (0, 1)
is a region where P (μ ∈ A) ≥ 1 − α and it is defined as [16]:

A =
{

μ ∈ Rd : (m − μ)S−1(m − μ)′ <
d

q − d
F1−α;d,q−d

}
(2)

where d is the dimensionality of the data, q is the sample size, F is the
F -inverse cumulative distribution and α is the confidence level. Here, the term
(m − μ)S−1(m − μ)′ is the Mahalanobis distance between m and μ based on
S−1 and the term d

q−dF1−α;d,q−d sets the boundary of the confidence region
where the user usually sets α to a fixed value as the confidence level. Therefore,
it is the value of q that determines the boundary of the ECR and as q grows,
the area (volume) of the ECR shrinks and the cluster becomes a more accurate
representation of the component.

To model a component with a cluster, Eq. 2 gives us an effective tool for
achieving any desired precision. Our aim is to minimize q but the question is how
small q should be. The criterion that we define for minimizing q is that q should
be set to a value such that only one cluster is formed for each component. Having
Xs in memory and creating the cluster Cs based on it, we need the majority
of the subsequent observations of the component to fall inside Cs. Otherwise,
the algorithm may form another cluster for the same underlying component.
Therefore, the ECR should be small enough (or q should be large enough) such
that Cs covers at least half of the component. To do so, we combine the boundary
definitions in Eqs. 1 and 2 to extract the maximum q. Therefore, we find the
maximum q such that

d

q − d
F1−α;d,q−d � P ((χ2

d)
−1
P ). (3)

This equation means that the true mean μ is within the boundary of the cluster
Cs that covers at least P% of the observations of Cs. Accordingly, by having P
set to 0.5, μ would be within the boundary of Cs such that it covers at least
half of the observations in the component. In practice, the value of q with a 95%
confidence level in a two dimensional environment is 11 and it grows to 69, in a 20
dimensional environment. Finally, the value of L is calculated as L = �1/p� × q.
Detecting Emerging Clusters: Detecting emerging clusters is achieved by
performing a batch clustering algorithm on the window. In the second step, if
the observation at the check cell is not assigned to case 1, we extract all such
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observations from the window and apply DBScan [17] to them. DBScan is a
well-known clustering algorithm on static data that requires two parameters
MinPts and ε that we extract in the initialization phase. Accordingly, any cal-
culated cluster by DBScan is added to the model. Although using DBScan limits
the practicality of the algorithm to data streams where clusters have similar den-
sities, it can be replaced by any other batch clustering algorithm. This concludes
one iteration of the algorithm for updating the current model and identifying
anomalies from emerging clusters.

Initialization: We have demonstrated that q observations are sufficient to rep-
resent a cluster in this methodology, so we set MinPts to q and we assume
that the first q observations in the stream are coming from a single component
without anomalies. Hence, with the first q observations we form the first cluster
by calculating the mean and the inverse of the covariance matrix. Then, we cal-
culate ε as the distance between the farthest and the closest observation from
the mean.

Time Complexity: In the initialization phase, the mean and the inverse of
the covariance matrix of the first q observations are calculated with complexity
O(qd2). The first step of the algorithm includes calculating the Mahalanobis
distance of the new observation from all the clusters in the model in O(|C|d2)
and updating the mean and the covariance matrix of the selected clusters (we
assume all of the clusters) in O(|C|d2). This step applies to any observation that
belongs to at least one cluster. Therefore, for a stream of size N , the total time
complexity is O(N |C|d2).

In the second step, the time complexity of calling DBScan on the window
(we assume the whole window) is O(L2). At this point, since DBScan is called
for each underlying component (in the worst-case), we can rewrite the time
complexity as O(|C|L2). Calculating the mean and covariance matrix for each
new cluster is O(d2), and we can rewrite it as O(|C|d2) for all components. As a
result, the total time complexity of OnCAD is O(qd2 + N |C|d2 + |C|L2) in the
worst-case. When the algorithm models all the underlying components, the time
complexity for the rest of the stream is O(N |C|d2), which is linear in terms of
the number of observations and underlying components.

5 Evaluation

We have conducted an extensive experimental evaluation on both synthetic and
real-world datasets. We generated streams of data in various numbers of dimen-
sions in the range [2, 20], in both clean and noisy environments (with 5% noise)
and various minimum mixture-weights (0.1, 0.2, 0.5, 1) for distributions. The size
of the streams is at least 500,000 with a random number of underlying compo-
nents in the range [100, 110].

For comparison, we used two state-of-the-art online clustering algorithms,
i.e., online KMeans and the ART-2 network. We implemented online KMeans
in MatLab and employed the ART-2 network implementation in [18]. We first
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present the parameter settings for each algorithm, then we present the measures
that are employed for comparison, and finally, the results are presented.

Parameter Setting: Online KMeans takes a single parameter that determines
the number of clusters in the data stream. While setting this number in static
datasets is not trivial, in evolving streams it is even more challenging. Conse-
quently, we set the KMeans parameter to the true number of clusters for each
stream. When the vigilance parameter of ART-2 is set close to 1, ART-2 creates
many small clusters (more vigilant), and when it is close to 0, it creates a few big
clusters (less vigilant). In order to get the best performance of this algorithm,
the first 500 observations of each data stream are from a randomly selected single
component without anomalies. We start this algorithm with the value 0.999995
and reduce this parameter by the value 0.000003 until it forms a single cluster
for the first 500 observations to calculate the optimal vigilance value.

Finally, OnCAD takes a parameter p ∈ (0, 1] that determines the minimum
weight of a component in a mixture distribution that the algorithm is able to
detect. Having p set to a value close to 1 makes the algorithm a time-series
clustering algorithm where there is one emerging cluster at any time. In contrast,
setting p to a value in the range (0, 0.5] causes the algorithm to detect mixture
distributions with various numbers of components. In our experiments, we set
this parameter to 0.1 and recommend a value in the range [0.1, 0.15] to be chosen
for this parameter.

Performance Measure: To compare the performances we used the Normalized
Mutual Information (NMImax) [19], which is a well-known information theoretic
cluster validity index (higher values determine better clusterings), and compu-
tation time.

Results on Synthetic Datasets: The results on synthetic clean data streams
over different data dimensions are presented in Fig. 1. The results on noisy
datasets are omitted because of space limitations, as they are similar to clean
datasets. Figure 1a illustrates the NMImax value of the online KMeans in clean
data streams, which is modest in all dimensions. The reason for this is that
it generally converges to a local minimum by partitioning the input space into
Voronoi cells. We observed that the noise in the stream does not affect the results
greatly, but surprisingly the NMImax value improves slightly by a few percent.
The reason for this behavior is that the noise in the stream causes the cluster
centers to be distributed better in the input space.

The results of the ART-2 network on clean data are illustrated in Fig. 1b. This
network normalizes the input points to unit length and employs hyper-spherical
cluster prototypes. When the number of dimensions is 3, an abrupt drop of
NMImax value is observed. A close investigation revealed that when the num-
ber of dimensions is 3, the components are densely packed and it is difficult for
ART-2 to characterize all of these densely packed components. In contrast, in
other number of dimensions the individual component distributions are more
clearly separated and it is easier for them to be covered by ART-2. The behav-
ior of this algorithm is similar in noisy environments. Finally, Fig. 1c illustrates
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Fig. 1. NMImax values on clean synthetic data streams.

the results of OnCAD, where it outperforms the existing state-of-the-art algo-
rithms. The main reason for this is that OnCAD identifies emerging clusters
from anomalies in real-time and filters them out of subsequent clusterings.

In order to demonstrate how real-time anomaly detection contributes to the
results of OnCAD, in Table 2 we briefly compare this capability of OnCAD with
an ensemble model anomaly detection algorithm [20] and an efficient anomaly
detection algorithm [21] on a randomly generated noisy stream. Online KMeans
and ART-2 label all observations normal, achieving an accuracy of 95%. The
methods in [20,21] achieve the best accuracy of 98% (rounded to two decimal
places) and OnCAD has the best anomaly detection rate of 93% with a slightly
lower accuracy.

Table 2. Anomaly detection table.

Algorithms Online

KMeans [7]

ART-2 net. [6] Eff. method [21] Ens. model [20] OnCAD

Sensitivity 0% 0% 86% 82% 93%

Specificity 100% 100% 99% 99% 98%

Accuracy 95% 95% 98% 98% 97%

To elaborate the results in Table 2, the clustering results and the cluster
membership figures of the algorithms are presented in Fig. 2. The cluster mem-
bership figures (second row of Fig. 2) show the evolution of clusters over time,
where the x-axis is the timestamp of an observation and the y-axis is its cluster
label. In these figures, we present the first 25,000 observations of the stream for
better visualization.

The clustering of online KMeans (Fig. 2a) shows the Voronoi cells created by
this algorithm. Moreover, Fig. 2d shows that this algorithm exhibits hardly any
knowledge about the evolution of clusters. The ART-2 network performs poorly
as well, as illustrated in Fig. 2b since it cannot identify anomalies in the stream.
Besides, the similarity measure that this algorithm employs is the dot product
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between the network pattern and the input point, therefore, maximizing this
measure is equivalent to minimizing the angle between them. The cluster mem-
bership (Fig. 2e) is not informative as this algorithm does not identify anomalies
in real-time.

The results of OnCAD are presented in Fig. 2c where anomalies are rep-
resented by blue points and clusters are represented by various colors. Since
OnCAD identifies anomalies in real-time, it detects emerging clusters, and from
the cluster membership of OnCAD in Fig. 2f, the time of emergence of each clus-
ter is clearly apparent. Moreover, the times when a cluster becomes active and
inactive can be determined.

(a) Online KMeans (b) ART-2 network (c) OnCAD
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Fig. 2. The clustering results and the evolution of clusters in synthetic data. (Color
figure online)

The second row of Fig. 2 provides useful insights into how these algorithms
work. For instance, the first few hundred observations in online KMeans (Fig. 2d)
are assigned to all cluster centers, but then a few clusters dominate the input
space and the majority of observations are assigned to them. Figure 2e shows
that the ART-2 network is unable to identify emerging clusters because of the
noise in the stream. However, the results of OnCAD in Fig. 2f demonstrate that
OnCAD identifies emerging clusters by filtering out anomalies (anomalies are
assigned to cluster 0).

The computation times of the algorithms on clean synthetic datasets are
illustrated in Fig. 3. Since the computation times on noisy datasets are similar to
these figures, they are not included here. Figure 3a shows the computation times
of the online KMeans, which is the fastest algorithm and takes about 30 s for
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Fig. 3. Computation times on synthetic data streams.

each stream. Although online KMeans is fast, its anomaly detection performance
is limited. The computation times of ART-2 are illustrated in Fig. 3b where it
generally takes about 15 to 20 min for each stream. Finally, the computation
times of OnCAD are illustrated in Fig. 3c. Although OnCAD is slower than
others, it models the evolution of clusters (second row of Fig. 2) better than
others and has better clustering results, i.e., the NMImax value of OnCAD is the
highest compared to other algorithms.

Results on real-world datasets: For the real-world datasets, we used two
publicly available datasets. The first one is the gas sensor array under dynamic
gas mixtures1 where we compare the clustering qualities in terms of NMImax

values. In this labeled dataset gas mixtures of varying concentration levels were
exposed to 16 chemical sensors. We chose 12 of these 16 sensors along with the
data acquired from Ethylene and CO mixtures. After exposing the gas to the
environment, it takes about 4 s for the sensors to capture the change. Therefore,
we chose a subset of the data after about 4 s of exposing a new mixture where
it reaches an equilibrium, considering them as clusters. The NMImax values
on this dataset are presented in Table 3 where OnCAD outperforms the other
algorithms. Note that since the clusters are well-separated in this real-world
dataset, ART-2 outperforms online KMeans.

Table 3. NMImax values on the gas sensor array dataset.

Algorithm name Online KMeans ART-2 OnCAD

NMImax 0.47 0.79 0.92

For the second real-world dataset we evaluate the capabilities of the algo-
rithms to identify the temporal evolution of clusters on the global terrorist
attack dataset2 which contains the coordinates of the terror attacks around the

1 https://goo.gl/zcAijP.
2 https://www.kaggle.com/START-UMD/gtd.

https://goo.gl/zcAijP
https://www.kaggle.com/START-UMD/gtd
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world from 1970 through 2016. In this context, detecting emerging clusters from
anomalies is crucial as an anomaly represents a single attack but an emerging
cluster is a new group of attacks.
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Fig. 4. The evolution of clusters in Europe on global terrorist attack dataset.

We chose Europe as the area of interest (latitude in range (35,70) and lon-
gitude in range (−10,35)) and the cluster membership of online KMeans are
illustrated in Figs. 4a and d. We set the parameter of this algorithm to 10 using
the elbow method to determine the optimal number of clusters. This algorithm
fails to show the evolution of the clusters in Fig. 4d because it only considers the
spatial proximity of observations.

The results of ART-2 are presented in Fig. 4e. Since it does not identify
anomalies in real-time, it is not clear when a new cluster emerges. As an example,
clusters like 2, 9, 11, 15, 18, 19 are formed with a single observation (an anomaly),
which is not effective. However, with OnCAD (Fig. 4f) the emergence of the
clusters can be determined as it filters out anomalies in real-time. For instance,
clusters 11 (Hungary, Serbia, and Croatia), 12 (East Germany, west Poland) are
formed later than clusters 1 (Ireland), 2 (north of Spain), 3 (West Germany and
Netherlands), and clusters 16 (North Africa), 17 (Ukraine) and 20 (Denmark)
are formed towards the end of the stream. Meanwhile, some clusters become
inactive towards the end of the stream such as cluster 2 (north of Spain) as
there have not been any terror attacks in that region.
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6 Conclusion and Future Directions

In evolving data streams where patterns of data emerge, mature and evolve over
time, identifying the temporal evolution of data is crucial. In this paper, we
proposed an algorithm that performs online clustering and real-time anomaly
detection on evolving data streams. It scales linearly with the number of obser-
vations and underlying clusters. In our experiments OnCAD outperformed the
state-of-the-art algorithms in the literature on both synthetic and real-world
datasets. It employs the flexibility of hyper-ellipsoidal cluster prototypes along
with online anomaly detection to better explain the distribution and evolution of
data in the stream. In the future, we intend to extend this algorithm to higher
dimensional data where clusters of data tend to appear in a subspace of the
original input space.
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Abstract. Support vector regression (SVR) has been a hot research topic for
several years as it is an effective regression learning algorithm. Early studies on
SVR mostly focus on solving large-scale problems. Nowadays, an increasing
number of researchers are focusing on incremental SVR algorithms. However,
these incremental SVR algorithms cannot handle uncertain data, which are very
common in real life because the data in the training example must be precise.
Therefore, to handle the incremental regression problem with uncertain data, an
incremental dual nu-support vector regression algorithm (dual-v-SVR) is pro-
posed. In the algorithm, a dual-v-SVR formulation is designed to handle the
uncertain data at first, then we design two special adjustments to enable the dual-
v-SVR model to learn incrementally: incremental adjustment and decremental
adjustment. Finally, the experiment results demonstrate that the incremental
dual-v-SVR algorithm is an efficient incremental algorithm which is not only
capable of solving the incremental regression problem with uncertain data, it is
also faster than batch or other incremental SVR algorithms.

Keywords: Support vector regression � Regression learning algorithm
Incremental regression problem � Uncertain data

1 First Section

1.1 A Subsection Sample

Support vector regression (SVR) has been a hot research topic for several years because
it is an effective regression learning algorithm [1–4]. It aims to minimize a combination
of the empirical risk and a regularization term [5]. Early studies on SVR mostly focus
on solving large-scale problems [6–8]. Nowadays, an increasing number of researchers
are focusing on incremental SVR algorithms [9–13]. Junshui et al. introduced e-SVR
and developed an accurate online support vector regression (AOSVR) [9]. Omitaomu
et al. propose AOSVR with varying parameters that uses varying SVR parameters
rather than fixed SVR parameters [11]. Later, Gu et al. proposed an exact incremental
m-SVR algorithm (INSVR) [13].
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These incremental SVR algorithms require precise data for the training examples.
However, the data in many practical applications is not precise yet represented by an
uncertain data. For example, the height of a man is between 180 cm and 185 cm.
Therefore, some researchers have proposed many improved SVR algorithms [14–16]
which explicitly handle uncertain data and perform better than traditional SVRs. Hao
et al. incorporate the concept of fuzzy set theory into the SVM regression model [15].
Peng proposed an interval twin support vector regression algorithm for interval
input-output data [16]. Several SVR algorithms treat uncertain data as random noise
[17–19]. By replacing the constraints in the standard e-SVR with probability con-
straints, chance-constrained, robust regression formulations can be obtained. For
example, an robust SVR algorithm which is robust to bounded noise was proposed in
[19]. However, the quadratic programming problems (QPPs) of these algorithms is too
complex to translate these algorithms into incremental algorithms directly.

Hence, to handle the incremental regression problem with uncertain data, the incre-
mental dual nu-support vector regression (dual-v-SVR) algorithm is proposed. In the
algorithm, a dual-v-SVR formulation be designed to handle the uncertain data at first, then
we design two special adjustments to enable the dual-v-SVR model to learn incremen-
tally: incremental adjustment and decremental adjustment. Finally, the experiment results
demonstrate that the incremental dual-v-SVR algorithm is an efficient incremental
algorithm which is not only capable of solving the incremental regression problem with
uncertain data, it is also faster than batch or other incremental SVR algorithms.

The rest of this paper is organized as follows. In Sect. 2, we describe the formu-
lation, KKT conditions and two adjustments of the incremental dual-v-SVR algorithm.
The experimental setup, results and discussions are presented in Sect. 3. Section 4
provides the concluding remarks.

2 An Incremental Dual-v-SVR

As previously mentioned, the QPPs of many SVR algorithms are too complex to
translate into online algorithms directly. Hence we propose a dual-v-SVR algorithm
estimates the upper bound functions f1 xð Þ ¼ w1�xh iþ b1 and lower bound functions
f2 xð Þ ¼ w2�xh iþ b2 at same time, and the final regression function is constructed as
follows: f xð Þ ¼ 1

2 f1 xð Þþ f2 xð Þ½ �.

2.1 The Formulation

For cases with data uncertainties, we suppose the independent variables are perturbed
by noise: xi ¼ exi þ di, such that dik k� s, where di represents a bounded perturbation
with s [ 0 and xi constructs a nominal vector X ¼ x1; x2; . . .; xNð Þ. The dependent
variable Y is also perturbed by noise: Y ¼ eyþ r ¼ ½u; l�, such that rk k�bs, where r
represents a bounded perturbation with bs [ 0. Thus, we can get:

w � U exi þ dið Þh i ¼ w � U exið Þh iþ w � U dið Þh i ð1Þ

By the Cauchy-Schwarz inequality, we have:
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w � U dið Þh ij j � wk k � dik k� s wk k ð2Þ

Hence a formulation of dual-v-SVR is:

min
w1;b1;n1i

N
2 w1k k2 þC1 v1b1Nþ PN

i¼1
n1i

� �
s:t: w1�U exið Þh iþ s w1k kþ b1 � u� n1i; n1i � 0; i ¼ 1; . . .;N

ð3Þ

and

min
w2;b2;n2i

N
2 w2k k2 þC2 v2b2Nþ PN

i¼1
n2i

� �
s:t: w2�U exið Þh iþ s w2k kþ b2 � lþ n2i; n2i � 0; i ¼ 1; . . .;N

ð4Þ

where U is a nonlinear transform: RN ! F to map the data points into a higher

dimensional feature space F, w1;2
�� ��2 is the regularization term, C1, C2 � 0 are the

regularization parameters and n1i, n2i are the slack variables. Parameter v1 2 (0, 1)
controls the tradeoff between the minimization of b1,2 and the minimization of errors
(Fig. 1).

2.2 KKT Conditions

Let Qi;j ¼ 1
N k xi; xj
� � ¼ 1

N U xið Þþ sð Þ � U xj
� �þ s

� �� �
, the dual problem of (3) can be

written as:

min
a

1
2

PN
i;j¼1

a1ia1jQij �
PN
i¼1

y1ia1i

s:t:
PN
i¼1

a1i ¼ C1v1N; 0� a1i �C1; i ¼ 1; . . .;N

ð5Þ

Fig. 1. Incremental dual-v-SVR
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From Eq. (5), we can see the box constraints of a1i are independent of the size of
the training sample set.

Then, we introduce the extended training set S, which is defined as S ¼ S
� [ S

þ
,

where S
� ¼ x1i; y1i; z1i ¼ �1ð Þf gNi¼1, S

þ ¼ x1i; y1i; z1i ¼ þ 1ð Þf gNi¼1 and zi is the label
of the training sample x1i; y1ið Þ. Thus, the minimization problem (5) can be further
rewritten as:

min
a

1
2

P2N
i;j¼1

a1ia1jQij

s:t:
P2N
i¼1

z1ia1i ¼ 0;
P2N
i¼1

a1i ¼ 2C1v1N; 0� a1i �C1; i ¼ 1; . . .; 2N

ð6Þ

The solution of the minimization problem (6) can also be obtained by minimizing
the following convex quadratic objective function under constraints:

min
0� a1i �C1

W ¼ 1
2

X2N
i;j¼1

a1ia1jQij þ l
X2N
i¼1

z1ia1i

 !
þ e

X2N
i¼1

a1i � 2C1v1N

 !
ð7Þ

Then by the KKT theorem, the first-order derivative of W leads to the following
KKT conditions:

@W
@l

¼
X2N
i¼1

z1ia1i ¼ 0 ð8Þ

@W
@e

¼
X2N
i¼1

a1i ¼ 2C1v1N ð9Þ

8i 2 S : g1i ¼ @W
@a1i

¼
X2N
j¼1

Qija1i þ z1ilþ e
� �

� 0 for a1i ¼ 0

¼ 0 for 0 \a1i \C1

� 0 for a1i ¼ C1

8><>: ð10Þ

According to the value of the function g1i, the extended training set S is partitioned
into three independent sets (see Fig. 2):

Support Set SS ¼ ijg1i x1ið Þ ¼ 0; 0 \a1i \C1f g
Error Set SE ¼ ijg1i x1ið Þ� 0; a1i ¼ C1f g
Remaining Set SR ¼ ijg1i x1ið Þ� 0; a1i ¼ 0f g

ð11Þ
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The function f2(x) can use the same procedure for the analyses and the KKT
condition is same as Eq. (9). Therefore, the two functions build an insensitive zone.
Furthermore, only errors outside the insensitive zone contribute to the cost function,
and only those points (i.e. SVs [2]) determine the final regression model. Hence, the
obtained regression model of dual-v-SVR is sparse.

2.3 Incremental and Decremental Adjustment

From Sect. 2.2, we know when a new sample arrives, the weights of the new sample
are set to 0 initially, and then it needs to be assigned into a set to satisfy the KKT
conditions. Hence, if the assignment violates the KKT conditions, the weights of the
new sample will be adjusted. Furthermore, due to a conflict between Eqs. (8) and (9),
the adjustment of dual-v-SVR involves two steps: incremental and decremental.

Incremental Adjustment
In the incremental adjustment step, we need to ensure all the samples satisfy the KKT

conditions, but the restriction
PN
i¼1

a1i ¼ 2C1vN does not need to hold for all the weights,

so we have the following linear system:

Dg1i ¼
X
j2SS

Da1jQij þ z1iDlþDe� DacQic ¼ 0 ð12Þ

X
j2SS

z1jDa1j þ z1cDa1c ¼ 0 ð13Þ

where Da1j, z1j, De and Dg1i denote the corresponding variations. Then we define eSS ¼
1; . . .; 1½ �T as the Ssj j dimensional column vector with all ones, let zSS ¼ z1; . . .z SSj j

	 
T
,

and let QSSSS denote the matrix, the above liner system can be further rewritten as:

Fig. 2. The partitioning of the training samples S into three independent sets by KKT
conditions. (a) SS. (b) SE. (c) SR.
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0 zTSS
zSS QSSSS

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}fQnee

� Dl
DaSS

� �
|fflfflfflffl{zfflfflfflffl}

Dhne

¼ � z1c 0
QSSc eSS

� �
� Da1c

De

� �
ð14Þ

where eQnee is the abbreviation of the matrix above the under brace, Dhne is also the
abbreviation which is defined in the same way.

Let R ¼ eQ�1
nee and De ¼ 0, then the linear relationship between Dhne and Da1c can

be easily solved as follows:

Dhne ¼ Dl
DaSS

� �
¼ �R � z1c

QSSc

� �
� bcl

bcSS

� �
|fflfflffl{zfflfflffl}

bcne

Da1c ð15Þ

where bcne stands for the dimension corresponding to l in the vector bcne. b
c
SS is the

vector with the same meaning of bcne. Accordingly, let b
c
ne ¼ 0, then the relationship

between Dhne and Dac can also be defined as:

Dhe ¼ De ¼ bceDac ð16Þ

By substituting (15) and (16) into (12), we can get the linear relationship between
Dg1i and Dac as follows:

Dgi ¼
X
j2SS

bcj Qij þ z1ib
c
l þ bce þQic

 !
Da1c � cc1iDa1c; 8i 2 S ð17Þ

Obviously 8i 2 SS, so we have cc1i ¼ 0. Thus, for each incremental adjustment, we
can compute the maximal increment of Da1c (here denoted as Damax

1c ), update a, g, SS,
SE, SR and the inverse matrix R, similar to the approaches in [20].

Decremental Adjustment
In the decremental adjustment step, we gradually adjust

P
i2S a1i to restore the equalityP

i2S a1i ¼ 2CvðN þ 1Þ, so that the KKT conditions are satisfied by all the samples. For
each adjustment of

P
i2S a1i, in order to ensure all the samples satisfy the KKT con-

ditions, the weights of the samples in SS, the Lagrange multipliers l and e should also
be adjusted accordingly, and these have the following linear system:

Dg1i ¼
X
j2SS

Da1jQij þ z1iDlþDe ¼ 0; 8i 2 SS ð18Þ

X
j2SS

z1iDa1j ¼ 0 ð19Þ
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X
j2SS

Da1j þ gDeþDx ¼ 0 ð20Þ

where Dx is the introduced variable of adjusting
P

i2S a1i, g is any negative number,
and gDe is incorporated in (20) as an extra term. Using this extra term can prevent the
recurrence of conflicts between Eqs. (8) and (9). The above linear system can also be
further rewritten as:

0 0 zTSS
0 g eTSS
zSS eSS QSSSS

24 35
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bQ

Dl
De
DaSS

24 35
|fflfflfflfflffl{zfflfflfflfflffl}

Dh

¼ �
0
1
0

24 35Dx ð21Þ

Let bR ¼ dQ�1 , then the linear relationship between Dh and Dx can be obtained as
follows:

Dh ¼
Dl
De
DaSS

24 35 ¼ �bR 0
1
0

24 35Dx �
cblbbecbSS

264
375

|fflfflffl{zfflfflffl}bb
Dx ð22Þ

From Eq. (20), we have
P

i2S Da1i ¼ � 1þ g bbe� �
Dx, which implies that the

control of the adjustment of
P

i2S Da1i is achieved by Dx.
Finally, substituting Eq. (20) into Eq. (16), we can also get the linear relationship

between Dg1i and Dx as follows:

Dgi ¼
X
j2SS

bbjQij þ z1icbl þ bbe
 !

Dx � cc1iDx; 8i 2 S ð23Þ

Obviously, 8i 2 SS, and we also have cc1i ¼ 0. However, the decremental adjust-
ments cannot be used directly to obtain the optimal solution to the minimization
problem (6). Hence, to solve this problem, we need to compute the adjustment quantity
Dx� for each decremental adjustment such that a certain sample migrates among the
sets SS, SR and SE. If

P
i2S a1i [ 2CvðN þ 1Þ, we will compute the maximal adjustment

quantity Dxmax and let Dx� ¼ Dxmax; otherwise, we will compute the minimal
adjustment quantity Dxmin and let Dx� ¼ Dxmin.
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3 Experiment Result

3.1 Experiment Setup

In this section, we validate the performance of the proposed incremental dual-v-SVR
algorithm (IDVSVR) through several experiments which compare our algorithm with
standard TSVR [22], AOSVR [9], and INSVR [12]. All regression models are
implemented in MATLAB 2016a version on Windows 7 running on a PC with system
configuration Intel Core i5 processor (2.40 GHz) with 8-GB RAM. We also use ca-
data, and Friedman data sets. Cadata [12] is a real data set, Friedman is an artificial
data set [21]. The details of the three data sets are shown in Table 1.

For simplicity, the Gaussian radial basis function kernel is adopted for all examples.
We set the model parameters C1 = C2 = C and v1 = v2 = v. The values of parameter C,
q, e, v are, respectively, selected from the sets {10i | i = 0, 1, …, 6}, {2i | i = −9, −8,
…, 2}, {0.01, 0.02, …, 0.4}, and {0.01, 0.02, …, 0.6}. As for uncertainty, as the
aforementioned data sets are not noisy, we artificial introduce a noisy ei into predictor
variable X and dependent variable Y, and ei is drawn from a uniform distribution on U
(−k, k). Here, U(−k, k) represents the uniformly random variable in [−k, k].

3.2 Performance Evaluation

In the first experiment, we compare their trends in relation to regression risk on noisy
data when the data size N is increased. We use RMSE [22] to represent the accuracy
where a smaller RMSE represents a lower risk. Figure 3 shows the comparison result
for different data sets, different data size N and different k.

From Fig. 3, we can see that when the data size N is increased, no matter how much
k is, the RMSE of any regression is gradually decreasing. When k = 0, IDVSVR and
INSVR have the better performance. These results identify that both IDVSVR and
INSVR have the advantage of using parameter v to control the bounds on the fraction
of SVs and errors. However, when k increases, or in other words, when the data is
perturbed by noise, the IDVSVR still has the better performance, as the performance of
INSVR is very poor. Furthermore, Fig. 3 also shows that the accuracy of IDVSVR
remains relatively stable even when k = 1. Hence, a major advantage of the proposed
IDVSVR over the other algorithms is its effectiveness in handling uncertain data.

In the second experiment, we compare the training speed on noisy data when the
data size N is increased. In the previous experiment, we know TSVR has the worst
generalization ability. Hence, we only test the training time of AOSVR, INSVR, and
IDVSVR. Figure 4 shows the comparison results in terms of time for the different data
sets, different data size N and different k.

Table 1. Data sets used in the experiments

Data set # training set # attributes

cadata 20000 8
Friedman 40000 10
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(a). k=0.0, cadata (b). k=0.0, Friedman

(c). k=0.5, cadata (d). k=0.5, Friedman

(e). k=1.0, cadata (f). k=1.0, Friedman

Fig. 3. Comparison result of RMSE
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(a). k=0.0, cadata (b). k=0.0, Friedman

(c). k=0.5, cadata (d). k=0.5, Friedman

(e). k=1.0, cadata (f). k=1.0, Friedman

Fig. 4. Comparison result of training speed.
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Figure 4 demonstrates that the learning speed of the IDVSVR algorithm is gen-
erally much faster than the other online SVR algorithms when data size N increases.
One reason for this is that in IDVSVR, the two nonparallel functions are estimated by
solving two SVR-type QPPs of smaller size at the same time, so the learning speed of
IDVSVR is faster. The second reason is using an extra term to prevent the recurrence of
conflicts between the Eqs. (8) and (9) and reduce the number of adjustment. Figure 4
furthermore suggests that the prediction speed of IDVSVR model remained relatively
stable in different k. But the training speed of other online SVR algorithms becomes
slower with the k increased.

4 Concluding Remarks

As there is no effective SVR algorithm which can handle incremental regression
problem with uncertain data, we design an incremental dual-m-SVR algorithm in this
paper. Our proposed incremental dual-v-SVR has good robustness against uncertainty
and can handle the incremental regression problem efficiently. Furthermore, there are a
total of five advantages of our proposed incremental algorithm: (1) the learning speed
of incremental dual-v-SVR algorithm is fast; (2) the sparsity of incremental dual-v-
SVR algorithm is improved; (3) the incremental dual-v-SVR algorithm has good
generalization performance; (4) the incremental dual-v-SVR algorithm also can use
parameter v to control the bounds on the fractions of SVs and errors; and (5) in
incremental dual-v-SVR algorithm, the box constraints are independent of the size of
the training sample set. The experimental results also prove our conclusion.
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Abstract. Huge mounds of data are generated every second on the
Internet. People around the globe publish and share information related
to real-world events they experience every day. This provides a valuable
opportunity to analyze the content of this information to detect real-
world happenings, however, it is quite challenging task. In this work,
we propose a novel graph-based approach named the Dynamic Heart-
beat Graph (DHG) that not only detects the events at an early stage,
but also suppresses them in the upcoming adjacent data stream in order
to highlight new emerging events. This characteristic makes the pro-
posed method interesting and efficient in finding emerging events and
related topics. The experiment results on real-world datasets (i.e. FA
Cup Final and Super Tuesday 2012) show a considerable improvement
in most cases, while time complexity remains very attractive.

Keywords: Dynamic graph · Time series analysis · Event detection
Text stream · Big data · Emerging trend

1 Introduction

In recent years, with the unprecedented growth of social media and blog net-
works, huge amounts of diverse types of data are being generated every day. The
information that is collectively generated on such platforms is of great value. In
addition to its huge volume and diversity, much of the data is inter-dependent
in nature. The analysis of such data is quite important and helps to successfully

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 534–545, 2018.
https://doi.org/10.1007/978-3-319-93037-4_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93037-4_42&domain=pdf


Text Stream to Temporal Network - A Dynamic Heartbeat Graph 535

detect meaningful information that could be used for searching, discovering pat-
terns and sensing trends. The detection of emerging trends from social media
text streams has recently become a research area of great interest. However,
real-time streaming data is quite complicated to analyze. Recent work mainly
focuses on event detection using bursty features or graph similarity patterns
using subgraph matching [6,7], however, there is a need for a more scalable and
localized pattern analysis approach to detect emerging events in text streams.

Analyzing large, diverse and noisy data, especially social media, requires
addressing scalability, accuracy as well as complexity challenges. Documents
describing the same event and story have a similar set of collocated keywords
that could be used to identify time and its description. In order to identify signif-
icant and unusual patterns, recently graph-based methods have been extensively
applied to deal real-world data efficiently [9,11–13].

Graph mining has received considerable attention in the data analytic com-
munity [4,5,9,10,12]. Most of the time, data is gathered as a stream of time,
thus traditional graph-based algorithms are not efficient to process data of such
complex nature (i.e. dynamic and non-stationary). Most of the existing graph-
based methods focus on frequent, co-occurrent, and highly weighted patterns to
highlight the significance of data entities, but ignores the fact that the burstiness
often dominates the other related details that exist in the data which, sometimes,
can be very important. In this work, we present a novel graph-based approach
named Dynamic Heartbeat Graph (DHG) based on the differences between tem-
poral graphs. The proposed DHG approach not only detects events at an early
stage but also suppresses the burstiness of event related topics in the upcoming
data stream for a certain time interval in order to highlight new emerging events.
This characteristic makes the DHG approach unique and efficient in finding new
emerging events and related topics.

We formulate the text stream as a series of disjoint temporal graphs. These
disjoint graphs are further processed to generate heartbeats within each time
window of fixed temporal length. We design three features growth factor, trend
probability, and topic centrality. Based on these features, we use a binary classifier
to detect emerging events in data stream.

The goal of this paper is to address the key aforementioned problems. By
employing the proposed DHG approach which analyzes the patterns in adjacent
time windows, we can overcome the limitations of the state-of-the-art work by
identifying key occurrences efficiently. We describe the theoretical and empirical
key contributions of this work as follows:

– A novel graph-based approach named Dynamic Heartbeat Graph (DHG)
which is efficient in the detection of events.

– Low computational complexity of proposed method, which generates a series
of DHGs in O(K(|V |)2), where K is total number of DHGs within a sliding
window, which is a considerably small in value. Event candidate DHGs are
identified in O(K(|V | + N)).
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– The latter method is evaluated empirically on the FA Cup and Super Tuesday
datasets. The experiment results on data show that the DHG outperforms
state-of-the-art methods.

2 Preliminaries

A Micro-document is short textual content consisting of words that are pub-
lished online through some micro-blog. It is defined as 3-tuple di = (t, u,W ),
where u is a user who publishes a micro-document di with some set of words
W at a specific time instance t. A Text Stream is a set of micro-documents
D = {d1, d2, d3, ..., dn}, where di and d(i−1) are the ith and (i − 1)th micro-
documents published at time π1(di) and π1(di−1) respectively, such that π1(di) ≥
π1(d(i−1)). The lengths of micro-documents are usually short hence, the measures
based on burstiness, similarity as well as distance may not yield good results, how-
ever this issue could be resolved by creating a super-document. Let D be the set of
all micro-documents available in a text stream, then a Super-document dρ

i is a
continuous temporal accumulation of each di ∈ D separated at ta and t(a+b) time
intervals (we refer as ti later in the paper). To create a super-document, instead of
merging the micro-documents into one core document, we create k partitions in
text stream Dρ = {{d1, d2, ..., dp}, {dp+1, ..., dp+q}, ..., {..., dn}}. By doing so, we
are able to retain the identity of each micro-document that we use later to generate
a network series (See Sect. 3.1 for details) which increases the cohesiveness among
the topics and keywords. Thus, this super-document can be defined as k number
of mutually exclusive partitions i.e.

⋂|Dρ|
i=1 dρ

i = ∅. A Sliding Window is a set of
super-documents (chunk of data) whose temporal length Δt. Each sliding window
is processed independently in each sliding window to detect event related infor-
mation. A set of word(s) in a text stream may refer to a topic. When more people
are using specific topic in their micro-document, it becomes a trend, often called
a trending topic. Similar to other research studies, we use the terms “trend” and
“event” interchangeably and also the terms “word(s)” and “topic” [1–3,8,14,15].

3 Dynamic Heartbeat Graph (DHG)

Using text stream, we devise a technique that creates a series of dynamic disjoint
graphs and then maps each adjacent pair of graphs in a network series on to
another DHG series. In order to classify DHGs as candidates for events, we
design and use trend probability, change in burstiness, and normalized degree
centrality in the DHGs as key features. This section defines all the components
involved in the transformation of text stream into series of temporal networks.

3.1 Network Series

Against each super-document dρ
i ∈ Dρ, a network Gi is created in such

a way that each node is a “word” and an edge between two nodes repre-
sents co-occurrence relationship. A network series is a set of disjoint graphs
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G = {G1, G2, G3, ..., G|Dρ|}, where each Gi ∈ G is built against dρ
i ∈ Dρ such

that Gi is a labeled graph, i.e. Gi = (V,E,W ,S ), where V is a set of nodes
such that ∀vi ∈ V are the unique words which appear in dρ

i , and E ⊆ V × V is
a set of edges such that ek = (vk, v

′
k) ∧ vk �= v

′
k. W : V → R and S : E → R

are the functions that assign weights to each node and edge in the graph Gi as
shown in Eqs. 1 and 2, where |dρ

i (vk)| is the term-frequency of vk and |dρ
i (vk, v

′
k)|

is the frequency of co-occurrence of nodes vk and v
′
k in super-document dρ

i .

W (vk) = |dρ
i (vk)| (1)

S (ek) = |dρ
i (vk, v

′
k)| (2)

The network is created in such way that it retains the coherence among the
words of each micro-document di participating in the building of the network.
The coherence is enhanced by creating a clique among the words of each di.
Clique — each node vk ∈ di is connected to every other node v

′
k ∈ di. This

results in an increase in the central tendency of topics within the large network
of diverse words.

3.2 DHG Series

To create a DHG series, Algorithm 1 linearly combines and maps every pair of
adjacent graphs Gi and Gi−1 on to a new DHG Gh

i which is used further for
emerging trend detection. The goal of generating a set of DHG Gh is to dis-
criminate among topics and the drift in their popularity within each subsequent
graph.

Algorithm 1. Generate Set of Dynamic Heartbeat Graphs

input : G = {G1, G2, G3, ..., G|P |} set of a graph series
where ∃Gi ∈ G is generated against ∃dρ

i ∈ Dρ

output: Gh = {Gh
1 , Gh

2 , ..., Gh
|G|−1}

ε = {ε1, ε2, ε3, ..., ε|G|−1}
1 for i ← 1 to |G| − 1 do

2 U ← Join(V Gi , V Gi+1)

3 A ← RegenerateMatrix(Gi , U)

4 B ← RegenerateMatrix(Gi+1 , U)

5 ε[i] ← EstimateHeartbeat A, B, V Gi , V Gi+1

6 end

The DHG algorithm takes network series G as input and generates another
series of networks which we call Dynamic Heartbeat Graph (DHG) series. For
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every adjacent pair of graphs Gi−1 and Gi, the algorithm aligns the dimensions
of the adjacency matrices by taking union of the vertices in both graphs and
then reorders them canonically. In later step (at Line 5), the algorithm esti-
mates the change in the node and edge weights (see Algorithm 2) and stores
it in an indexed vector ε[i] ∈ Rn×3. The step-by-step implementation detail is
given in Algorithm 1. An example in Fig. 1 shows how the DHG between two
networks is calculated, where node weights (given by “()”), and edge weights
can be seen in the graphs as well as in the adjacency matrices. Reordering each
graph Gi canonically and transforming the DHG into vector-space reduce the
computational complexity significantly from O(K|V |4) to O(K(|V |)2), where K

is considerably a small value, i.e. K = |Gh| and V = Max(|V Gh
i |).

Algorithm 2. Estimate change in burstiness

input : A, B are adjacency matrices that represent Gi−1 and Gi respectively.
V A and V B are lists of vertices in Gi−1, Gi respectively

output: e vector that represents a DHG against Gi−1 and Gi

V H list of vertices in DHG

1 for k ← 1 to |V B | do
2 V H [k] ← V B [k] − V A[k]
3 end

4 for x ← 1 to |V B | do
5 for y ← 1 to x do

6 edgeWt ← B[x, y] − A[x, y]

7 if edgeWt! = 0 then

8 e.Add( x,y, edgeWt)

9 end

10 end

11 end

The DHG approach implicitly suppresses and handles the dominance of
bursty topics by calculating the change in the weights of each node and edge
between each pair of adjacent graphs G(i−1) and Gi in order to highlight other
details which are less frequent. Algorithm2 estimates and labels all the corre-
sponding nodes and edges with new weights in DHG Gh

i . The DHG series is a set
of disjoint graphs, generated in a streaming fashion; therefore, it is temporally
well aligned with the text stream. Furthermore, these DHGs are used to detect
emerging events. The detail of the detection method is given in next section.
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Fig. 1. Example for the creation of DHG from two subsequent time intervals

3.3 Event Detection Method

In the following section, we present our event detection method using DHGs.
The event detection method works on the following assumptions:

– The text stream has diverse contents, but an emerging event may only occur
in a text stream whenever there is a significant change in either burstiness
displacement of existing topics or the appearance of new topics in the text
stream between two adjacent time intervals at t(i−1) and ti.

– The significant change is not only dependent upon the burstiness of topics,
but also the change in their probability distribution and central tendencies
within the network.

In all of the following equations, for the simplification of the notations, let
ψ = Gh

i where Gh
i is ith heartbeat graph. The detection method uses the

fusion of three key features growth factor, trend probability, and topic centrality
to calculate HeartbeatScore H (ψ). growth factor Grfact(ψ), trend probability
TrProb(ψ), and topic centrality ΣC (vψ) represent the significance of the change
in the burstiness of topics, possibility of an emerging event at time interval ti,
and central tendency and coherence among different topics in DHG ψ, respec-
tively. The growth factor of DHG ψ is calculated as shown in Eq. 3 where W (vψ

k )
is the kth node weight that represents a change in burstiness of a topic between
Gi and Gi−1 (see Algorithm 2). A higher score of growth factor shows that the
topics are appearing with high frequency in sliding window kΔt.

Grfact(ψ) =
|V ψ|∑

k=0

W (vψ
k ) (3)

A node in DHG ψ can have negative and positive weights. To calculate trend
probability TrProb(ψ), the probability distribution against positive W (vψ+

k ) and
negative W (vψ−

k ) weights of each word are calculated within the DHG ψ. The
probability distribution over positive and negative weights are then linearly com-
bined, as shown in Eq. 4, which shows the convergence of DHG ψ towards trend-
ing topics, where β1 and β2 are 1 and −1 respectively. TrProb(ψ) > 0 indicates
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Fig. 2. Graph visualization (Beehive and Partition-based) of two subsequent DHGs
Gh

(i−1) and Gh
i at time t(i−1) and ti respectively, from the FA Cup 2012 dataset. At

ti a significant event “Goal” occurs. Red and green are the nodes with positive and
negative weights respectively. The DHG approach shows hyper-sensitivity to burstiness
and as well as newly emerging topics. (Color figure online)

that topics are gaining popularity, thus, denoting the possibility of emerging
event(s) in sliding window kΔt.

TrProb(ψ) = β1

|V ψ+|∑

k=0

W (vψ+
k )

∑|V ψ|
l=0 |W (vl)|

+ β2

|V ψ−|∑

k=0

|W (vψ−
k )|

∑|V ψ|
l=0 |W (vl)|

(4)

topic centrality C (vψ
k ) is then calculated to highlight the central tendency of

topics in each DHG ψ, as shown in Eq. 6 where vψ
k , εi ∈ ε, π3(ei), and |V ψ|

represent the topic, indexed edge vector, weight of edge ei connected to vψ
k ,

and the total number of topics in DHG ψ, respectively. In the calculation of
topic centrality, all the edges with negative weights are dropped because of the
initial assumption (see Sect. 3), which positively influences the centrality of newly
emerging topics with respect to the existing ones. A higher aggregated centrality
score shows that the emerging topics are coherent and concurrently appearing in
text stream in sliding window kΔt. The detection method comprises two steps:

1. If TrProb(ψ) ≤ 0 then DHG is assigned to the “Weak” class. Once the highly
frequent topics reach their peak, they start to lose their importance because
of the decay in their burstiness. If the weights of certain topics are reduced at
time ti compared to ti−1 and there is no significant increase in the weights of
the other topics, then the trend probability score is always negative, therefore
indicating the fact that the heartbeat between Gi−1 and Gi is not significant.

2. Otherwise calculate heartbeat score H (ψ) which is the product of growth
factor Grfact(ψ), trend probability TrProb(ψ), and aggregated topic centrality
ΣC (vψ) in DHG ψ (as shown in Eq. 7).
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To assign a binary class membership (i.e. [Strong,Weak ]) to each DHG ψ, where
“Strong” means DHG ψ contains emerging trends and “Weak” means an insignif-
icant heartbeat, a classification function Est(ψ) (as shown in Eq. 8) estimates
and assigns two-class labels to each DHG ψ ∈ Gh. Here, θ is an adoptive mea-
sure that finds the local optimum value in each sliding window kΔt to set a
threshold for classification function Est(ψ) as shown in Eq. 5, where Δt, τ are
the temporal length of each sliding window and super-document dρ

i respectively
such that Δt(mod τ) = 0, i is the index of the first DHG in the sliding window
under consideration, Grfact(ψ) is the growth factor (as shown in Eq. 3) of each
DHG ψ, and ω is the adjustment parameter. We set ω as 1 and 0.6 for the FA
Cup and Super Tuesday datasets, respectively.

θ(kΔt) =
τ

k+Δt
τ∑

i=k

(H (ψ))

Δt
+ ω

√
√
√
√
√
√
√

τ
k+Δt

τ∑

i=k

(H (ψ) −
τ

k+ Δt
τ∑

i=k

(H (ψ))

Δt )2

Δt
(5)

C (vψ
k ) =

|εψ|∑

i=1

[(π1(ε
ψ
i ) = k ∨ π2(ε

ψ
i ) = k) ∧ π3(ε

ψ
i ) > 0]

|V ψ| (6)

H (ψ) = Grfact(ψ) × TrProb(ψ) ×
|V ψ|∑

k=0

C (vψ
k ) (7)

Est(ψ) =

{
‘Strong’, if H (ψ) ≥ θ(kΔt)

‘Weak’, otherwise
(8)

The transformation of the DHG series into vector-space ε (see Sect. 3.2)
results in reducing the computational complexity of binary classification from
O(|V | + |E|) to O(|V | + N)), where V = Max(|V ψ|)and N = Max(|εi|). Here,
the value of N � |E|. In the worst case scenario, O(|V | + |E|) = O(|V | + N)) if
and only if there is a continuous increase in temporal frequency of all the words
in the text stream, however, the occurrence of such scenarios is nearly impossible
due to the fact that real-world events have an evolutionary pattern (i.e. build-
up, stable/peak, decay). Later, in each sliding window kΔt a ranked topic list in
the candidate DHGs that are classified as “Strong” is generated by calculating
the score of each topic, as shown in Eq. 9. Figure 2 shows the heartbeats of two
subsequent DHGs and their class labels using classification function Est(ψ) with
top ten trending topics.

Rank(vψ
k ) = C (vψ

k ) × W (vψ
k ) (9)

4 Experiment and Results

In this section, we evaluated the performance of proposed dynamic heartbeat
graph as discussed in Table 1.
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4.1 Evaluation

To evaluate the performance of proposed DHG method, two benchmark datasets
“FA Cup” and “Super Tuesday”, and the framework introduced by [1] are used
for the comparison. We create partitions for the super-document accumulation as
one minute and five minutes for the “FA Cup” and “Super Tuesday” datasets,
respectively. The DHG method takes input data in a streaming fashion and
create time series disjoint network and then DHG series based on the temporal
length of accumulation.

Two evaluation measures: Topic-Recall@K (T-Rec), which is the percentage
of ground truth topics detected correctly at top K retrieved topics; and Keyword-
Precision@K (K-Pre), which is the percentage of keywords detected correctly out
of the top K number of keywords are used. T-Rec and K-Prec are calculated by
micro-averaging the individual T-Rec and K-Prec scores. Similar to our baseline
framework [1], we did not use Topic-Precision@K because the ground truth is
formulated through main stream media that contains only those topics which are
reported by the main stream media. The data may also have other newsworthy
topics that took place at the same time. Moreover, it is impractical to list all
possible topics directly from the huge data. Therefore, the Topic-Precision@K
cannot be measured in this context. We did not use Topic-Precision@K because
the ground truth is formulated through main stream media that contains only
those topics which are reported by the main stream media. The data may also
have other newsworthy topics that took place at the same time, and it is imprac-
tical to analyze all possible topics directly from the huge data. Therefore, the
Topic-Precision@K cannot be measured in this context.

4.2 Dataset

We conducted our experiments on a well-known benchmark datasets (“FA Cup
final” and “Super Tuesday” [1]). The “FA Cup” is one of the oldest knock-
out football competition and very popular among the fans around the world.
The dataset consists of a text stream of the final match held on May 5th, 2012,
between the Chelsea and Liverpool teams. The ground truth comprised 13 topics,
including goals, bookings and fouls, kick-off, half-time and match ending. The
“Super Tuesday” dataset is the US presidential primary election held on Tuesday
6 March 2012, the key moment when it is likely that the party nominee is
elected as presidential candidate. The ground truth comprised 22 topics covering
stories related to the projection and success of nominees in particular states and
their speeches. For evaluation purposes, the temporal length Δt of each sliding
window is set to one minute and one hour for the FA Cup and Super Tuesday
datasets, respectively. The ground truth contains topics with respect to each
sliding window. To reduce noise, the datasets are pre-processed. To improve data
quality, retweets, tweets containing URLs or those containing less than three (3)
words are removed. Furthermore, common words, stop words, the words which
have less than three letters, and punctuation are removed.
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4.3 Results

We present the results for Topic-Recall (T-Rec) at K = 2, 4, 6, ..., 20 in Fig. 3,
and Keyword-Precision (K-Prec) in Table 1 to compare the six different event
detection methods including DHG. Our method gives best results on FA Cup,
because of the users those publishing contents on micro-blogs, are very focused,
consistent, and to the point due to the popularity and limited time of the under-
lying event. Therefore, the topics reported in the text stream are less diverse,
making them easier to detect compared to the Super Tuesday dataset. The topics
which are reported by the ground truth are taken from the mainstream media
and cover a broader semantic prospective. For instance at time window 17:56 in
the FA Cup, ground truth marked “Andy, Carroll” as topic, whereas “header,
cech, over, claim, equalize” are among the other keywords therefore, it is more
likely that the topics are among the top trends but they do not necessarily
appear in the top most position every time. The DHG method has comparable
T-Rec at K = 2, 4, 6, and 8. It eventually achieves the maximum possible T-Rec
at K ≥ 10 for the FA Cup dataset. Similarly, the DHG method outperforms
the other detection methods after K > 30 for the Super Tuesday dataset. The
results for T-Rec are shown in Fig. 3.

Fig. 3. Topic-Recall@K for six (6) different well-known methods for the FA Cup (left)
and Super Tuesday (right) datasets.

Conversely, the DHG method combines the scores of change in topics’ bursti-
ness and central tendency in the graph, therefore it is able to detect relevant
keywords with high precision compared to the other methods for both datasets,
as shown in Table 1. Hence, DHG exhibits one of the effective detection method
in terms of performance and accuracy.

Figure 4 shows user participation, network size, and the heartbeat score sig-
nals using the DHG series across the temporal data of the FA Cup from 17:21 to
18:11. User participation is the total number of unique users who published at
least one micro-document, and network size is the total number of unique words
in the DHG ψ at time ti. It is observed that the DHG method detects emerging
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Table 1. DHG outperforms all other detection methods for K-Prec@2 for both the FA
Cup and Super Tuesday datasets

Method FA Cup Super Tuesday

LDA 0.164 0.000

Doc-P 0.337 0.511

Gfeat-P 0.000 0.375

SFPM 0.233 0.471

BNGram 0.299 0.628

DHG 0.682 0.875

events at an early stage. Whenever an event occurs on a particular time interval,
the proposed method detects the event-related topics before the diversity in the
text stream increases. On the other hand, we also observe that user participation
also increases whenever an event occurs.

Fig. 4. Detected events with respect to the heartbeat pattern. The figure also shows
the variations in the number of unique words and user participation across different
time intervals

5 Conclusion

In this paper, a novel Dynamic Heartbeat Graph (DHG)-based method is devel-
oped that is efficient for text streams such as Twitter. We formulated the text
stream as a series of disjoint temporal graphs that are further processed to gener-
ate heartbeats within each time interval of fixed temporal length. Furthermore,
we have designed three unique features growth factor, trend probability and
topic centrality to identify the emerging events using DHG. In order to evalu-
ate the performance of DHG, we have used two publicly available benchmark
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datasets (the FA Cup Final 2012 and Super Tuesday 2012). The quantitative
evaluation shows that the DHG method is sensitive to the dynamic nature of text
streams and detected emerging events with high precision compared to the state-
of-the-art methods. Empirical evaluation showed that DHG method is robust in
terms of computational complexity and scalability thus, it could be used for live
streaming as well.
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Abstract. Facial Expression Recognition (FER) has been a challeng-
ing task for decades. In this paper, we model the dynamic evolution of
facial expression by extracting both temporal appearance features and
temporal geometry features from image sequences. To extract the pair-
wise feature evolution, our approach consists of two different models.
The first model combines convolutional layers and temporal recursion to
extract dynamic appearance features from raw images. While the other
model focuses on the geometrical variations based on facial landmarks,
in which a novel 2-distance representation and resample technique are
also proposed. These two models are combined by weighted method in
order to boost the performance of recognition. We test our approach on
three widely used databases: CK+, Oulu-CASIA and MMI. The experi-
mental results show that we achieve state-of-the-art accuracy. Moreover,
our models have minor-setup parameters and can work for the variable-
length frame sequences input, which is flexible in practical applications.

1 Introduction

Facial Expression Recognition (FER) gives machines the ability to perceive and
understand human emotions. Recognizing human emotions has been the focus
of attention in computer vision and pattern recognition [6,12,15].

With the rapid development of deep learning, Convolutional Neural Net-
works (CNNs) are used in facial expression recognition recently [15]. However,
traditional CNNs can not model the sequential data such as the consecutive
frames. While another deep learning model Recurrent Neural Networks (RNNs)
are good at learning relations from sequence inputs [2,7], it is encouraging to
combine CNNs and RNNs for extracting the spatial information from image
frames as well as the temporal features between consecutive frames. Such jointly
trained convolutional and recurrent networks are promising for many temporal
classification tasks such as video description and activity recognition [4].

Noticing that facial expressions are actually tiny activities which perform on
face, in this work, we propose a new neural networks called Facial Appearance
Convolutional Recurrent Network (FACRN) which combines convolutional layers

c© Springer International Publishing AG, part of Springer Nature 2018
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and temporal recursion to extract temporal appearance features and model the
dynamic evolution from consecutive frames. Specifically, in our FACRN, a simple
CNN is used to extract appearance features from each frame among the whole
sequence. Then RNN takes the features extracted by CNN as input and learns
the temporal information between different frames. Finally, the output of RNN
passes through a fine-tuning average pooling layer to give the prediction of facial
expression.

Moreover, facial expression recognition is not totally same as other image
classification problems. In particular, the dynamic geometrical variations of sev-
eral key areas such as eyes, mouth and eyebrows play important roles in facial
expression recognition. Therefore, capturing the geometry features of different
key areas becomes the main challenge [1,3].

In this work, we propose another deep neural network – Facial Geometry
Recurrent Network (FGRN) which focuses on the dynamic geometrical variations
of facial key areas based on facial landmarks. First, we use a new 2-distance
representation method to normalize the facial landmarks, which can eliminate
the effect of out-of-plane rotations. Then the facial landmarks are resampled
into two groups based on the facial physical structure. In our FGRN, we use
two independent RNN subnets to take the resampled two parts of landmarks
as input and extract the low-level geometry features of facial landmarks. These
features concatenate in the upper layers to form the global high-level features.

We use weighted summation to combine FACRN and FGRN in order to boost
the performance of recognition. The main contributions of our work can be listed
as follows:

1. We model the dynamic evolution of facial expression from consecutive
frames by proposing two deep network models: Facial Appearance Convolu-
tional Recurrent Network (FACRN) and Facial Geometry Recurrent Network
(FGRN).

2. In order to normalize the facial landmarks and extract more powerful local
features, we propose a new 2-distance representation and resample technique.

3. Our model has moderate parameters and can handle the variable-length frame
sequences input, which is flexible in practical applications.

The remainder of this paper is structured as follows. We present some related
work about Facial Expression Recognition in Sect. 2. Section 3 explains our
FACRN and FGRN models in detail and Sect. 4 gives an introduction of the
databases and results in our experiments. Section 5 concludes the paper.

2 Related Work

Recent CNN-based approaches have been studied in the field of FER. These
methods only use single CNN to capture the appearance features without mod-
eling the temporal information of image sequences. 3DCNN-DAP [11] utilized
a deformable parts learning component in 3DCNN framework to capture the
expression features from video sequences. Jung et al. [8] proposed 3D filters
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in a small CNN to capture the dynamical variations of appearance. These
3D-based methods take temporal information into account, but they are confined
to fixed and preset inputs which is not flexible in practical application. Moreover,
3D-based methods consume a lot of computing resources, which spend much
time during training. Therefore, to address these problems, we propose FACRN
method which combines CNNs and RNNs in order to extract the appearance
features from still frames as well as learning the temporal features between con-
secutive frames. Besides, the parameters in our FACRN are moderate, and it is
an end-to-end trainable deep neural network without being constrained to fixed
length inputs.

Facial landmark, which is another important factor in facial expression recog-
nition, has also been studied in recent years. Daniel et al. [1] proposed the
geometric-based descriptor to model the triangle formed by facial landmarks.
Paul et al. [3] analysed the trajectories of facial landmarks from different expres-
sion frames. Jung et al. [8] utilized a small DNN to capture the dynamical vari-
ations of facial landmarks. Inspired by these method, the FGRN we proposed
also focuses on facial landmarks which reflect the dynamic variation of several
key facial parts. Moreover, in order to eliminate the effect of out-of-plane rota-
tion in two-dimensional images, we preprocess facial landmarks by using a new
2-distance representation method. We also resample the facial landmarks into
two groups based on facial physical structure, which can learn more powerful
local features.

3 Our Approach

Our approach consists of two independent deep neural networks: Facial Appear-
ance Convolutional Recurrent Network (FACRN) and Facial Geometry Recur-
rent Network (FGRN). Specifically, FACRN combines convolutional layers
and temporal recursion to extract temporal appearance features from frame
sequences. FGRN focuses on geometrical variations of facial key areas based on
facial landmarks. The outputs of the FACRN and FGRN are integrated to boost
the performance of expression recognition. Our model is shown in Fig. 1.

Fig. 1. The architecture of our model
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3.1 Facial Appearance Convolutional Recurrent Network

CNN for Extracting Appearance Features. Some powerful CNN structures
which are mainly used for image classification have been proposed in [17]. Unlike
these methods, the classes and frame sequences in facial expression databases are
insufficient. If directly using some well-known CNN models such as GoogleNet
[17] for facial expression recognition, it can easily fall into overfitting when
training.

Fig. 2. CNN for extracting appearance features

To address this problem, in this work, we propose a CNN model with a mod-
erate depth and a moderate number of parameters which is shown in Fig. 2.
Specifically, first the network contains two convolution layers and pooling layers.
Then we apply two Inception layers proposed by [17]. The benefit of Inception
layer in this work is that the smaller convolution filters can improve the recog-
nition of local features such as eyes and mouth. Noticing that the CNN we used
is to extract the appearance features of each frame rather than classification, we
remove the classification layer after the last full-connected layer.

RNN for Extracting Temporal Features. Seeing that we can view the vari-
ation of facial expression as an image sequence from neutral expression to peak
expression, RNN can be modeled in accordance with people’s understanding
behavior of a facial expression. Therefore, after CNN extracts appearance fea-
tures from each frame, instead of using 3D filters to extract temporal information
like [8], we use RNN to model the temporal relations between expression frames.
Moreover, in [6] a CRF module was added to extract the temporal information.
But the model is a two-step network. On contrast, by applying the RNN for
modeling consecutive frames in vision problems, our approach can jointly train
convolutional and recurrent networks in order to make the FACRN end-to-end
trainable. Another advantage of RNN in our FACRN is that it is not confined
to fixed length inputs allowing simple modeling for sequential data of varying
lengths such as the expression frames in videos.

The RNN structure is shown in Fig. 1. The inputs of RNN are appearance
features extracted by CNN of each frame. In order to average the predictions of
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each time step for final classification, we propose an average pooling layer with
a weight function W (t):

zi =
1
N

∗
N∑

t=1

hti ∗ W (t), (1)

where Hi = (ht1, ht2, ..., htn) is the output of RNN at time t, Z = (z1, z2, ..., zn)
is the result of average pooling. W (t) is a weight function which linearly increases
from 0...1 over frames t = 0...T . By applying W (t) in pooling layer, we emphasize
the importance of prediction at later frames in which hidden units capture more
information.

3.2 Facial Geometry Recurrent Network

2-Distance Representation. The facial landmarks at frame t can be consid-
ered as a vector and defined as:

L(t) = [x(t)
1 , y

(t)
1 , x

(t)
2 , y

(t)
2 , ..., x(t)

n , y(t)
n ], (2)

where n is the total number of landmark points in a facial expression frame, x
(t)
i

and y
(t)
i are coordinates of the i-th facial landmark points at frame t.

Directly using these coordinates to extract the dynamical variations of facial
landmarks is inappropriate and difficult to process. When there is an out-of-
plane rotation in two-dimensional images, the absolute xy-coordinates are no
longer accurate. To address this problem, we propose a 2-distance representa-
tion method for facial landmarks.

First, we define a reference point of all facial landmarks, which is the xy-
coordinates between the eyebrows. The 1-distance refers to the Euclidean Dis-
tance between each facial landmark and reference point as following formulas:

d1(t)i =
√

(x(t)
i − x

(t)
0 )2 + (y(t)

i − y
(t)
0 )2 (3)

D1(t) = [d1(t)1 , d1(t)2 , ..., d1(t)n ], (4)

where d1(t)i is the Euclidean Distance between i-th facial landmark point and
the reference point x0 at frame t.

The 1-distance eliminate the effect of out-of-plane rotations in two-
dimensional images. But in practical, the position of the five facial organs varies
from person to person. Therefore, the 1-distance can not regulate these physical
variations. Based on 1-distance, we proposed the 2-distance representation of
facial landmarks. Specifically, after getting the 1-distance vectors D1(t) at t
frame, we calculate the difference between D1(t) and D1(t−1):

D2(t) = D1(t) − D1(t−1) t = 2, 3, ..., n (5)

By using 2-distance representation method, no matter how the position of facial
organs varies from person to person, we only capture the dynamical variations
of facial landmarks between frames.
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Resample Technique and RNN Subnets. We propose a resample technique
and two RNN subnets for partly extracting the dynamic geometrical variations.
According to the physical structure of faces, we find that the eyes and eyebrows
usually move together when perform an expression, and so are the mouths and
noses. Therefore, we resample the facial landmarks into two groups: eyebrows
and eyes, nose and mouth. Our FGRN is shown in the lower part of Fig. 1. The
two resampled parts of landmarks are input into two independent RNN subnets
in order to extract local low-level features. The whole facial high-level features
are formed in the upper layers.

3.3 Integration Method

The outputs of FACRN and FGRN are integrated as follows:

oi = εai + (1 − ε)gi 0 ≤ ε ≤ 1, (6)

where oi is the output of the entire network, ai is the output of FACRN, and gi
is the output of FGRN. The ε is a coefficient used to balance the performance of
each network. For all the experiments, we set ε to 0.5. i = 1, 2, ..., 7 is the total
number of emotion class.

4 Experiments

In this section, we evaluate our model on three widely used databases: CK+
[13], MMI [19] and Oulu-CASIA [18]. For all experiments, we use the 10-fold
validation protocol.

4.1 Databases

CK+. This database has 327 image sequences with seven emotion labels: hap-
piness, anger, surprise, fear, disgust, sadness and contempt.

Oulu-CASIA. The database includes 480 image sequences with 80 subjects
taken under normal illumination conditions.

MMI. A database with 205 facial image sequences and only about 30 subjects.
The size of MMI database is much smaller than CK+ and Oulu-CASIA, which
is challenging to use the deep learning method.

4.2 Evaluation of the FACRN

In order to determine the optimal RNN structure in our FACRN, we compare
three different models in our experiment, including standard RNN model, LSTM
[7] and GRU [2]. Intuitively, the curves in Fig. 3 show the test accuracies of three
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RNN models during one training process. From Fig. 3 we find that the conver-
gence rate of LSTM is slower than the standard RNN and GRU, in large part
because of the more network parameters in LSTM training. Unlike other video
classification tasks [4], the number of frames in facial expression databases are
normally less than 20. Therefore, the weakness of standard RNN for capturing
long-term dependencies does not come out in this work. But we do not know
the exact number of frames extracted from facial expression videos in practice
and the number of frames will be more than 20 compared with the databases.
Therefore, we can use LSTM or GRU in the FACRN in order to avoid gradients
vanish (Fig. 3).

Fig. 3. Test accuracies with different RNN models. (a) CK+. (b) MMI. (c) Oulu-
CASIA

Fig. 4. Test accuracies with different pooling. (a) CK+. (b) MMI. (c) Oulu-CASIA

We also conduct experiments to evaluate our pooling methods, including
average pooling with a weight function W (t), max pooling and directly using
the last output of RNN without pooling. The result is shown in Fig. 4. From the
curves we can clearly see that the average pooling method with W (t) in FACRN
performs better.

4.3 Evaluation of the FGRN

To show the 2-distance representation and resample technique have a promoting
effect on capturing dynamic geometrical variations, we design an experiment to
compare FGRN with other two models. The first model inputs the absolute coor-
dinates of facial landmarks to a simple DNN. The second model transforms the



Model the Dynamic Evolution of Facial Expression from Image Sequences 553

facial landmarks into 2-distance vectors but use a single RNN without resam-
pling the landmarks into two groups.

Figure 5 shows the results of these models on three databases. Since our
FGRN and the second model preprocess the facial landmarks by using 2-distance
vectors, these two models can obtain higher accuracies than the first model,
which shows the effectiveness of 2-distance representation for normalizing the
facial landmarks. Moreover, the performance of FGRN is better than the second
model, which indicates that, by resampling the facial landmarks into two groups
and using two RNN subnets to extract the local low-level features, it can achieve
significant performance for modeling dynamic geometrical variations. Because
the parameters in our FGRN are much more than the other two models. From
Fig. 5 we also notice that FGRN has relatively slow convergence rate.

Fig. 5. (a) (b) (c) show the test accuracies with different methods of facial landmarks

4.4 Classification Results

Accuracies and Error Analysis. Tables 1, 2 and 3 show the recognition
accuracies of our model achieved on each database and comparison with the
state-of-the-art methods. Specifically, we mainly compare our model with the
hand-crafted methods and 3D-based models. For the CK+ and Oulu-CASIA
databases, our proposed model outperform the previous methods which can be
seen from Tables 1 and 2. The parameters in our model are moderate compared
with 3D-based methods. Besides, our model is not confined to fixed length inputs
as described in Sect. 3.1, which is more flexible in practical applications.

However, for MMI database, the number of subjects and frame sequences
is much smaller than that in the other two databases, which means that it
is especially not competent for deep learning methods. Moreover, the frame
sequences in MMI database are also different from the other two databases. Each
subject starts and ends with a neutral facial expression. The peak expressions
of each emotion are in the middle of the frame sequence. This characteristic will
limit the performance of our model, because the RNN and pooling methods we
proposed can perform better in capturing the unidirectional variations rather
than modeling bidirectional evolution.

It is worth mentioning that after integrating our FACRN and FGRN, the
performance reaches the highest. In other words, FACRN and FGRN are com-
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Table 1. CK+ database

Method Accuracy

HOG-3D [9] 91.44

SPTS+CAPP [13] 83.33

ITBN [20] 86.31

CRF [6] 93.04

3DCNN [9] 85.9

Cov3D [15] 92.3

STM-ExpLet [12] 94.19

3DCNN-DAP [9] 92.4

FACRN 91.78

FGRN 92.15

Integration 95.63

Table 2. MMI database

Method Accuracy

3D SIFT [16] 64.39

HOG-3D [9] 60.89

ITBN [20] 59.7

3DCNN [9] 53.2

3DCNN-DAP [9] 63.4

AUDN [10] 74.76

STM-ExpLet [12] 75.12

PCA-SR [14] 78.51

FACRN 71.54

FGRN 72.69

Integration 75.0

Table 3. Oulu database

Method Accuracy

LBP-TOP [21] 68.13

HOG-3D [9] 70.63

AdaLBP [21] 73.54

Atlases [5] 75.52

STM-ExpLet [12] 74.59

3D SIFT [16] 55.83

FACRN 74.18

FGRN 73.24

Integration 76.50

Table 4. Oulu database

An Di Ha Sa Fe Su

An 70.5 15.4 2.5 2.5 9.1 0

Di 19.3 69.2 0 3.8 7.7 0

Ha 0 0 89 0 0 11

Sa 12.8 0 0 81.2 6 0

Fe 0 0 5.8 8.6 73.6 12

Su 0 6.3 0 0 18.1 75.6

Table 5. MMI database

An Di Ha Sa Fe Su

An 58.3 32.5 0 9.2 0 0

Di 23 65.1 0 11.9 0 0

Ha 0 0 95.4 0 0 4.6

Sa 13.2 2.1 0 69 15.7 0

Fe 0 0 10.7 10.7 73.2 5.4

Su 0 0 20 0 5.7 74.3

plementary to each other. FACRN has the ability to extract the temporal appear-
ance features from raw frame sequences, while FGRN can model the dynamic
geometrical variations based on facial landmarks. As a result, integrating FACRN
and FGRN can boost the performance of facial expression recognition.

Confusion Matrix. Tables 4, 5 and 6 show the resulting confusion matrices
of our model on three databases. It can be seen that our model achieved high
recognition accuracies of each emotion. In particular, our model performs well
on happiness (Ha), surprise (Su), sad (Sa) and fear (Fe). The high confusion
in contempt (Co) expression can be caused by the few number of contempt
sequences in CK+ database. Another reason is that the geometrical variations
of contempt expressions are slight which creates more confusions for FGRN.

Intuitively, we visualize the 2-distance vectors between the first and the last
frames which are shown in Fig. 6. The 2-distance vectors of six basic expression
are obviously different from each other except the disgust (Di) and angry (An),
which leads to the high confusion in these two emotions. This is because that
the motions of facial key areas of these two expressions are similar based on
2-distance representation.
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Fig. 6. 2-distance vector of (a) angry (b) disgust (c) sad (d) fear (e) happy (f) surprise

Table 6. CK+ database

An Co Di Ha Sa Fe Su

An 94.1 0 4.2 0 1.7 0 0

Co 8.4 89.4 0.7 0 1.5 0 0

Di 5.1 0 93.8 0 0 0 1.1

Ha 0 0 0 97.3 0 0 2.7

Sa 0 0 1.7 0 95.6 0 2.7

Fe 2 0.7 0 0 3.1 94.2 0

Su 0 0 0 0.9 0 3.6 95.5

5 Conclusion

In this paper, two deep networks are presented in order to model the dynamic
evolution of facial expression from image sequences. FACRN combines convo-
lutional layers and temporal recursion to extract temporal appearance features
from raw frame sequences. FGRN focuses on dynamic geometrical variations of
facial expressions based on facial landmarks. We also proposed a new 2-distance
representation and resample technique for normalizing the facial landmarks and
extracting more powerful local features. We evaluated two deep network models
on CK+, MMI, and Oulu-CASIA databases respectively. Meanwhile, we showed
the test accuracies and the recognition accuracy of each emotion based on confu-
sion matrix. Furthermore, we analysed that our model has much fewer network
parameters than some 3D-based methods and can handle the variable-length
frame sequence input, which is more flexible in practical applications.
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Abstract. Resource consumption is typically monitored at a single
point that aggregates all activities of the household in one time series. A
key task in resource demand management is disaggregation; an operation
that decomposes such a composite time series in the consumption parts
that comprise it, thus, extracting detailed information about how and
when resources were consumed. Current state-of-the-art disaggregation
methods have two drawbacks: (a) they mostly work for frequently sam-
pled time series and (b) they require supervision (that comes in terms of
labelled data). In practice, though, sampling is not frequent and labelled
data are often not available. With this problem in mind, in this paper, we
present a method designed for unsupervised disaggregation of consump-
tion time series of low granularity. Our method utilizes a stochastic model
of resource consumption along with empirical findings on consumption
types (e.g., average volume) to perform disaggregation. Experiments with
real world resource consumption data demonstrate up to 85% Recall in
identifying different consumption types.

1 Introduction

Resource conservation, concerning for instance water, energy or fuel, is an impor-
tant challenge for modern societies. Monitoring and analysing the consumption of
resources is a valuable tool in developing resource conservation policies. Analysis
of consumption time series includes several tasks, one of which, disaggregation,
is the focus of this paper.

Disaggregation is the process of analysing a composite time series into the
individual components that it consists of. In the case of resource consumption,
the composite time series consists of several discrete consumption types. As an
example of resource disaggregation we consider a household’s water consump-
tion: A household’s water consumption is measured at the main supply where the
consumption of all the various consumption types (e.g., clothes-washing, show-
ering) is aggregated. The goal of a disaggregation algorithm would be to identify
when a shower was taken, when the washing-machine was being used, etc.
c© Springer International Publishing AG, part of Springer Nature 2018
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An important property that affects disaggregation performance is the relation
between consumption type duration and measurement interval length. When the
measurement interval is smaller than the expected consumption type duration,
disaggregation can be effectively approached as a pattern recognition problem,
since there are enough measurements for the pattern of each consumption type
to be identified. However, if the measurement interval is equal or larger than
the duration of a consumption type, an occurrence of a consumption type can
start and finish inside the interval of a single measurement. This means that the
pattern of the consumption type is essentially lost. This makes the disaggrega-
tion problem much more challenging. An example of this is presented in Fig. 1.
Generally, in residential resource consumption, major consumption types have
durations ranging from several minutes to 2–3 h. Thus, in this setting, time series
with measurement interval of 15 min or larger (e.g., 30 min, 1 h) can be consid-
ered of low granularity. In practice, resources, especially water, are measured
at low granularity. The reasons for this are limitations of the sensors, usually
due to battery life, and increased infrastructure costs required for the trans-
mission of high frequency measurements from a very large number of sensors.
However, very few works have handled the problem of resource disaggregation
in low granularity data.

Fig. 1. An example of a group of patterns aggregated within an one hour measurement.
In this example two toilet flushes and a washing machine cycle are aggregated within
the measurement of 17:00 h.

Another shortcoming of most existing disaggregation algorithms is that they
need to be trained on a labelled dataset [1,6,16]. This means they require a
dataset with time series of each consumption type measured separately and
labelled, so that the algorithm can learn to identify its pattern. However, gath-
ering such datasets requires costly and intrusive measurement trials.

All existing algorithms have one or both of the above requirements, which
makes them unsuitable for many real world applications. Motivated by this,
we present a disaggregation method for low granularity time series that does
not require a labelled dataset. Our method is based on a stochastic model
of resource consumption that we have developed. Instead of labelled data, it
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requires approximate assumptions concerning the volume, frequency and usual
time of occurrence of each consumption type. These assumptions are simple and
intuitive and can be retrieved from the literature [12–15], provided by experts
or be requested from the users. Utilizing those assumptions and the stochastic
model, our method calculates the probability that each consumption type has
occurred at each time.

In order to thoroughly evaluate our algorithm, we test it in two datasets: one
consisting of residential water consumption data, and one consisting of residential
energy consumption data, both of hourly granularity. Our algorithm achieves
good performance on both datasets.

The rest of the paper is organized as follows: in Sect. 2 we present related
work, in Sect. 3 we describe and formulate our method and, finally, in Sect. 4 we
present the experimental evaluation.

2 Related Work

Reviewing the literature on time series disaggregation, we can discriminate exist-
ing work into two categories. The high granularity algorithms, that are designed
for data with measurements intervals ranging from milliseconds up to one minute
and the low granularity algorithms, that can be applied to data with measure-
ment intervals from several minutes to several hours. Our distinction between
low and high granularity is based on the relation of the measurement interval to
the average consumption type duration, as we described in Sect. 1.

In the high granularity setting [2,3,7–11], existing works usually scan the
time series to identify significant step changes in consumption that indicate the
start or the end of a specific consumption event. Then, using a Machine Learning
model and labelled data, they identify the consumption types each consumption
event. Existing methods mainly vary in the adopted Machine Learning model.
In [9], the authors use a Hidden Markov Model (HMM) to classify the events.
[8] use a convex optimization approach, similar to Support Vector Machines
(SVM), and [11] use a Neural Network. There also exist a few unsupervised
approaches in the setting of high granularity data. In [3], the authors model
consumption using an extension of the HMM. Instead of labelled data, they
use detailed assumptions about each device’s consumption pattern and usage.
They evaluate their algorithm on data with granularity of 3 s. In the same line
of work, [2] use a version of HMM to perform disaggregation on time series
with 1 min granularity. The algorithm does not require labelled data, however,
it requires information concerning each device’s exact consumption pattern. We
note that HMM models are successful in high granularity time series, where the
transitions between different operating stages of an appliance are detectable in
the time series pattern. On the contrary, those transitions are, generally, not
detectable in low granularity data.

In the setting of low granularity data [1,6], the general approach is to model
the aggregate time series as a sum of separate components, that represent the
various consumption types, and apply an optimization algorithm in order to
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decompose the time series into those components. In [1], the authors apply Sparse
Coding, a model that allows the combination of a large number of basis functions
by imposing sparsity constraints, on low granularity (15 min) time series. [6] use
the same idea as [1], but modify the algorithm to work iteratively, disaggregating
only one consumption type in each iteration. These approaches also require a
set of labelled time series for the various consumption types, which they use as
basis functions.

3 Model Formulation and Disaggregation Algorithms

In this section, we present our method. We start by providing an intuitive
overview and, then, we describe the details of the method.

Fig. 2. A time series of the water consumption of a day, for a single household, divided
in its major consumption events.

We can obtain an intuitive understanding of the challenge by looking at an
example. Given a consumption time series like the one depicted in Fig. 2, we
aim at identifying the occurrences of each consumption type in time. There are
two sources of information about the occurrence of a consumption type: (i) The
footprint that the occurrence leaves on the aggregate time series. For example,
in a water consumption time series, if a shower is taken at some time, we would
expect to observe consumption of around 50 L or more at that time; (ii) The
external information we have about each consumption type: how frequently it
occurs and at which hours within a day.

Our disaggregation approach is based on developing a model for the consump-
tion behaviour of the household that incorporates the aforementioned sources
of information and which we can use to infer the occurrence of the various
consumption types. In order for disaggregation to be performed effectively, the
model needs to capture the structure of the problem, use only available informa-
tion and handle the variability of human behaviour. The model is based on the
assumption that there exists a set of major consumption types, each of which is
represented by an amount of consumption, an expected time and a frequency of
occurrence. The model is stochastic in nature since: (i) These quantities may ran-
domly vary between different occurrences of the consumption type and between
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different households; (ii) There is inherent uncertainty in our estimates of these
quantities for each household. The model and the disaggregation process are
described in detail in the next subsection.

3.1 Method Description

Events Identification. The first issue that arises is that an occurrence of a
consumption type may be divided in more than one measurements. For example,
if an activity started at 09:50 and finished at 10:10, its consumption would
be distributed in two consecutive measurements. However, if we select a part
of the time series that starts and ends with (near) zero consumption, given
the assumption that no consumption type can have a pause of one hour or
greater, we can be certain that all consumption types that started inside this
interval have also ended, i.e., this interval comprises only complete consumption
types. We refer to those parts of the time series, that start and end at near zero
consumption, as consumption events or just events. Figure 2 shows an example
of a day’s consumption events.

Thus, our first step is to identify the distinct consumption events. To achieve
this, we sequentially scan the time series and isolate the sequences of all consec-
utive points whose value exceeds a threshold θe, above which the consumption
is considered significant. Threshold θe is set using the assumptions about the
volume of each consumption type, so that it is only exceeded if some consump-
tion type is occurring. We denote as tjstart

, tjend
the times of start and end of

consumption event j.

Model Description. We consider a set of n major consumption types. For
each consumption type i, 1 ≤ i ≤ n, we assume that its total consumption ci
is distributed according to a normal distribution with mean μi and standard
deviation σi. We treat all minor consumption types as background noise and
model them using variable b with mean μb and standard deviation σb. We denote
the probability of consumption type i occurring at time h as τih. In order to limit
the computational complexity of the model, we make the assumption that each
occurrence of a consumption type is only affected by other occurrences of the
same consumption type within a specified time period. For most cases, this period
would be a day or a week (e.g., people tend to shower once a day or use the
washing machine two or three times a week). We denote as vik the probability
that consumption type i occurs k times in the duration of the predefined time
period. We also define K as the maximum value of k. For simplicity, we do not
include in the model any dependencies between the total number of occurrences
of different consumption types, i.e., vik is independent of vlk, l �= i.

Given a set of m consumption events, each event j, 1 ≤ j ≤ m is represented
by the following: the time it started tjstart

, the time it ended tjend
and its total

consumption sj . We denote as Itj a vector containing both tjstart
and tjend

,
which defines the time interval of event j. The total consumption of event j is
the result of the aggregation of each major consumption type i occurring xij

times, plus the background noise:
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sj =
n∑

i=1

cixij + b (1)

with xij ∈ N. As x∗j we denote a vector [x1j , · · · , xmj ], that contains the number
of occurrences of every consumption types in the interval of event j. All notation
is gathered in Table 1 for convenience.

The probability of occurrence of consumption types x∗j in an event j depends
on the total consumption of the event sj , the time of the event Itj and all other
occurrences of consumptions of the same type x∗l, inside the time period. For
further analysis, it is convenient to formulate these dependencies into a Bayesian
Network (BN). For example, the BN of Fig. 3 illustrates a period containing
three events. More events may be handled in a similar fashion. We note that the
directions of the arrows show the order of decomposition of the joint probability,
however the dependencies between the variables are bidirectional [17].

Table 1. Notation

i, 1 ≤ i ≤ n index of consumption
type

μi, σi mean and stand. dev.
of ci

j, 1 ≤ m ≤ m index of consumption
event

b volume of background
noise

sj total consumption of
event j

bμ, bσ mean and stand. dev.
of b

xij occurrences of type i in
event j

Itj interval (tjstart , tjend)
of event j

x∗j all occurrences within
event j

τih prob. of cons. type i at
hour h

ci consumption volume of
type i

vik prob. of type i
occurring k times

The purpose of the disaggregation algorithm is to infer the values of x∗j , 1 ≤
j ≤ m. Since we consider each period to be independent from the others, we
can treat each period separately. We assume that period d has md consumption
events j, 1 ≤ j ≤ md. We denote as ∩jx∗j the joint possibility of all occurrences
x∗j , 1 ≤ j ≤ md, i.e. the possibility of occurrences x∗1, x∗2, · · · , x∗md

happen-
ing in the same period. ∩jx∗j contains the occurrences of all consumption types
in all the events of a period. ∩jsj and ∩jItj are defined in the same way.

The probability of ∩jx∗j can be written as:

p(∩jx∗j | ∩j Itj , ∩jsj) =
p(

⋂
j Itj ,

⋂
j sj | ⋂

j x∗j)p(
⋂

j x∗j)
p(

⋂
j Itj ,

⋂
j sj)

(2)

Given the dependencies modelled by the BN, Eq. (2) is transformed to:

p(∩jx∗j | ∩j Itj , ∩jsj) =
p(

⋂
j x∗j | ⋂

j Itj)
∏

j p(sj | x∗j)
p(

⋂
j sj | ⋂

j Itj)
(3)
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Fig. 3. The Bayesian Network that describes the dependencies within a period com-
prised of three consumption events. Each consumption type occurrence depends on
the observed consumption, the time of day and the previous occurrences in the given
period.

From Eq. (1) we have:

p(sj | x∗j) = Normal(
n∑

i=1

μi ∗ xij + μb,

n∑

i=1

σ2
i ∗ xij + σ2

b ) (4)

as sj is a sum of normally distributed variables. The term p(sj |x∗j) models the
probability of observing consumption sj , given that consumption types x∗j have
occurred.

The term p(∩jx∗j | ∩j Itj) corresponds to the prior probability of the con-
sumption types occurring at the specific times ∩jItj , irrespective of the observed
∩jsj . It depends on the probability that the activities defined by ∩jx∗j occur
all in a single period and that the occurrences are distributed accordingly in the
time of the observed consumption events. We model it using the assumptions
about frequency and time of occurrence of each consumption type:

p(∩jx∗j | ∩j Itj) =
n∏

i=1

viki
∗ Multinomial(xij ∀j, πij ∀j) (5)

As defined, the term viki
is the probability of consumption type i occurring k

times overall. The multinomial distribution models the probability for the con-
sumption types to occur at the specific intervals of the consumption events j. We
can break the joint probability into a product because we have assumed that the
occurrence of the different consumption types are independent. In Eq. (5), ki is
the total number of occurrences of consumption type i and πij is the probability
of consumption type i occurring in the interval defined by Itj :

ki =
md∑

j=1

xij , πij =
tjend∑

h=tjstart

τih (6)

Finally, the denominator of Eq. (3) is the sum of the probability of all possible
joint events ∩jx∗j and is constant for all x∗j :

p(∩jsj | ∩j Itj) =
∑

∩jx∗j

p(∩jx∗j | ∩j Itj)
∏

j

p(sj | x∗j) (7)
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In order to perform the disaggregation, we need to find ∩jx∗j that maximizes
the probability of Equation (3):

argmax∩jx∗j
p(∩jx∗j | ∩j Itj , ∩jsj) (8)

The above maximization problem is too complex to solve exhaustively, since
the number of possible combinations grows exponentially. For example, in a case
with five events, and five activities that can occur up to five times, there are more
than 1017 combinations. In order to find a solution for Eq. (8), we implement
two different algorithms: a greedy approximation and a Markov Chain Monte
Carlo simulation. Next we describe each method.

Algorithm: GreedyApproximation

Input : Itj , sj , 1 ≤ j ≤ m
Output : ∩jx∗j of maximum probability

1 for j = 1 to md do
2 x∗j = EventOfMaxProbability(Itj , sj , x∗1, . . . , x∗j−1)

3 return ∩jx∗j

1. Greedy Approximation. We start by calculating the most probable occur-
rences for the first event, ignoring all next events. Then we incrementally cal-
culate the most probable occurrences for following events, given the occur-
rences of all previously calculated ones. This process is described in Algorithm
GreedyApproximation.

The probability of occurrences given the previous events are:

p(x∗j | Itj , sj , ∩j−1
l=1 x∗l) =

p(sj | x∗j) · p(x∗j | Itj ,
⋂j−1

l=1 x∗l)

p(sj | Itj ,
⋂j−1

l=1 x∗l)
(9)

where p(sj |x∗j) is calculated as in Eq. (4). The term p(x∗j |Itj ,∩j−1
l=1 x∗l), is only

conditioned on the occurrences of the previous events ∩j−1
l=1 x∗l. Since only one

event is examined at each step, the binomial distribution is used instead of the
multinomial, to calculate the probability of occurrence of each consumption type
in the specific time of the event:

p(x∗j | Itj , ∩j−1
l=1 x∗l) =

n∏

i=1

K∑

k=ki

vik ∗ Binomial(xij , k, πij), ki =
j∑

l=1

xil (10)

For each x∗j , we exhaustively search all its possible values and select the one
with the maximum probability (Algorithm EventOfMaxProbabillity).
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Algorithm: EventOfMaxProbabillity

Input : Itj , sj , x∗1, . . . , x∗j−1

Output : x∗j of maximum probability

1 xmax = ∅, pmax = 0
2 for every possible value of x∗j do

3 p = p(x∗j |Itj , sj , ∩j−1
l=1 x∗l)

4 if p > pmax then
5 pmax = p, xmax = x∗j

6 return xmax

2. Markov Chain Monte Carlo (MCMC). MCMC is a set of algorithms
used to sample from the joint probability distribution described by a Bayesian
Network. Given a set of observed variables (∩jsj ,∩jItj in our case), we want
to sample from the distribution of the unobserved variables (∩jx∗j), in order to
find their most probable values. To achieve this we apply the Gibbs sampling
algorithm, which sets the observed variables to their observed values, randomly
initialises the unobserved variables and sequentially updates the value of each
unobserved variable with a value sampled from its conditional distribution, con-
ditioned on all other variables. The conditional distribution of x∗j is:

p(x∗j | ∩j Itj ,∩jsj ,∩md,l �=j
l=1 x∗l) =

p(sj |x∗j)p(x∗j |
⋂

j Itj ,
⋂md,l �=j

l=1 x∗l)

p(
⋂

j sj |
⋂

j Itj ,
⋂md,l �=j

l=1 x∗l)
(11)

The terms of Eq. (11) can be derived in a straightforward way from Eqs. (4)
and (5). Due to lack of space we skip those derivations. After many iterations
of this process, the sampled values follow the joint probability of the Bayesian
Network. Based on the obtained samples we find the most probable value for
∩jx∗j .

4 Evaluation

4.1 Baseline

To the best of our knowledge our work is the first to handle the problem of unsu-
pervised disaggregation in time series of low granularity (>1 min). To obtain
some comparative results, we device a baseline method that uses clustering sim-
ilarly to [7]. Each consumption event is represented as a triple, containing the
starting time, the total consumption and the total length of the event. The
k-means algorithm is used to cluster the consumption events and the known
instances of all consumption types are assigned to the clusters accordingly. Then,
in order to perform disaggregation of an event, we find its closest cluster and
take the most probable consumption types of the cluster. For the water con-
sumption dataset, where, as we explain in Sect. 4.2, the negative events are not
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known with certainty, we select as representing of showering behaviour a set of
clusters that has a total number of events close to the known total number of
showers.

4.2 Water Consumption Dataset

The water consumption dataset was gathered from a real world trial performed
in the context of DAIAD1 project, that addresses the issue of water sustainabil-
ity through the use of Information Technology. The dataset consists of water
consumption data for 17 households, measured hourly. Also, for each household,
there are measurements that contain starting, ending time and total consump-
tion of numerous shower occurrences. Due to the real-world conditions of the
experiment, the time of occurrence of a significant portion of the showers is
actually unknown. Thus, we cannot state with certainty that at a given day and
time a shower was not taken. This means that, while we can directly measure the
recall of identifying the showers, we are unable to directly measure the accuracy
of the algorithm. However, we have knowledge of the total number of showers,
which we use to compensate for the latter. We achieve that by using appropriate
evaluation metrics, which we describe next.

The first metric we use is Recall (RC ), which measures how many of the
known occurrences are retrieved by the algorithm. In order to evaluate if the
algorithm is overly biased towards positive classification, we use the following
two metrics: Total Positive Ratio (TPR) and Positive Rate (PR). Let A be the
total number of showers that the algorithm predicts, B the total number of
showers that have actually occurred and C the total number of consumption
events. Then TPR and PR are defined as:

TPR =
A

B
, PR =

A

C
(12)

Finally, we use the Average Length of an Event (AEL), in hours, to evaluate
the precision of the disaggregation in time. The results are presented next.

As we can see in Fig. 4, our proposed methods achieve very good RC, with
acceptable values of TPR and PR. We note that the optimal value for TPR is
1.0. For PR, values significantly different than 0 and 1 indicate a non-trivial
behaviour. The greedy approximation algorithm achieves the highest RC (0.85).
From the PR metric, we can see that such high RC is achieved without classifying
excessively many instances as positive. The TPR metric shows that the greedy
approximation overestimates the total number of showers by an acceptable factor
of 20%. The MCMC algorithm is balanced in both metrics (0.84 RC, 1.08 TPR).
The baseline method does not perform well in terms of RC, while it also severely
underestimates the total number of showers. The fact that the baseline’s PR is
similar to that of the other methods, while its TPR is much lower, is because
the algorithm does not predict multiple showers in the same event. Due to that,
we experimented with a modified version of the baseline, which predicted two

1 http://daiad.eu/.

http://daiad.eu/
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Fig. 4. The performance of all algorithms in terms of (a) Recall, (b) Positive Rate and
(c) True Positive Ratio, on the water dataset.

showers in each event that it classifies as positive. This did not improve RC while
it severely increased TPR. Finally, the AEL value for all algorithms is 2.71 h,
which means that each occurrence of the consumption type is specified within
a window of 2.71 h, by average. It is the same for all algorithms because they
share a common consumption events identification step.

4.3 Energy Consumption Dataset

For energy consumption, we use the Reference Energy Disaggregation Dataset
(REDD) [18]. REDD contains separate consumption time series for several appli-
ances, as well as the aggregate power consumption, for 6 households. The interval
of measurement is 1 s. Since we are intereset in lower granularity datasets, we
downsample the data to 1 h. In this dataset, both positive and negative labels
are available, thus we can use the Accuracy (ACC) measure. We calculate the
AEL measure for this dataset as well.

Fig. 5. The performance of each algorithm on the energy consumption dataset: (a)
The average Accuracy (b) The average Accuracy per consumption type.

In Fig. 5a, we see the performance of the algorithms on the energy consump-
tion dataset. We can see that our algorithm achieves relatively high ACC (0.68)
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and outperforms the baseline (0.59). Figure 5b presents the performance on each
consumption type separately. We can see that our algorithm achieves high ACC
and outperforms the baseline in four consumption types (clothes-washer, dish-
washer and air-conditioner). On the other hand, the baseline performs better
in two consumption types (oven and furnace). The most likely explanation for
this is that our assumptions were not sufficiently accurate for those particular
consumption types, thus comprising a subject for further investigation, in future
work.

5 Conclusion

In this paper, we presented a novel method for resource consumption disaggrega-
tion, that works effectively on low granularity data (e.g., 1 h). Our method does
not have the demanding requirement for labelled observations, which are hard
to obtain. To our knowledge, our algorithm is the first that addresses the dis-
aggregation problem under those constraints. This is particularly important in
real world settings, especially for water consumption, where high frequency and
labelled data are rarely available. We evaluated our algorithm in two residential
consumption datasets and showed that it achieves high performance (up to 85%
Recall) in identifying consumption types. Thus, our algorithm constitutes an
effective solution for analysing resource consumption in real world settings.
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Abstract. Human activity recognition from ubiquitous sensor data is
an important but challenging classification problem for applications such
as assisted living, energy management, and security monitoring of smart
homes. In this paper, we present a soft probabilistic classification model
for human activity recognition from multi-modal sensors in a smart home
environment. The model employs a softmax multi-task learning app-
roach to fit a joint model for all the rooms in the smart home, taking
into account the diverse types of sensors available in different rooms.
The model also learns the transitional dependencies between activities
to improve its prediction accuracy. Experimental results on a real-world
dataset showed that the proposed approach outperforms several baseline
methods, including k -nearest neighbors, conditional random field, and
standard multinomial logistic regression.

1 Introduction

Rapid advances in the development of inexpensive, low-power, wireless sensing
technology have enabled the deployment of sensors ubiquitously in a smart home
environment to support various applications, from personal safety and security to
water conservation and energy management. Real-time data generated from the
myriad of sensors in the smart home provide a unique opportunity for monitoring
daily living activities, alerting the residents or the authorities if any unusual
activities are detected. The ability to accurately recognize human activities from
the multi-modal sensor data is essential to support such applications.

However, classifying human activities from smart home sensor data is not a
trivial task for several reasons. First, the sensor data are often noisy, and thus,
require substantial preprocessing to extract discriminative features for the clas-
sification task. Second, the data are heterogeneous and may vary depending on
the type of sensors deployed for monitoring the user activities. For example,
wearable sensors such as accelerometers would generate data continuously at all
times unlike other sensors such as motion detectors and surveillance cameras,
which may only be available in certain rooms. For example, Fig. 1 shows the
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 571–583, 2018.
https://doi.org/10.1007/978-3-319-93037-4_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93037-4_45&domain=pdf
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(a) Accelerometer. (b) RGB-D camera.

Fig. 1. Percentage of time data from an accelerometer and RGB-D camera are available
for each human activity. The list of activities are shown in Table 1.

percentage of time in which data from two sensors—accelerometer and surveil-
lance camera—are available for each human activity in the smart home dataset
investigated in this study. The results suggest that the accelerometer data is
available at all times for most of the classes (human activities) whereas the
surveillance camera data has a more imbalanced and irregular distribution as
they are affected by the user’s location as well as the rooms where the cameras
are deployed. Thus, one of our key challenges is to develop a modeling approach
that can handle the multi-modal sensor data, whose availability varies from one
location to another depending on the sensor placement. Furthermore, the model-
ing approach must consider the imbalanced class distribution in different rooms
since some activities could be restricted to certain locations only (e.g., one will
more likely lie down in a bedroom or living room than in a kitchen).

The activities performed by each user can be represented by a sequence of
actions, where the transition from one action to another proceeds in a continuous
fashion. Since the data are collected and annotated at discrete time periods, some
activities could be interleaved together in the same time period (e.g., walking and
turning at the same time or going from a standing posture to a bending and even-
tually kneeling position). For example, Fig. 2 shows a 30-s segment of user activity
from the labeled data used in this study. Since there could be more than one activ-
ity performed in each second, each class label (human activity) is associated with
a confidence score, represented by its gray scale color. One of our goals of this
study is to develop a modeling approach that can leverage the soft labels to deter-
mine the probability an activity is performed at a given time period. The temporal
dependency between activities is another factor that must be taken into consider-
ation. For example, the lie-to-sit transition activity typically occurs between
the lie and sit postures. However, we do not expect the sequences to contain
transitions from lie to jump activities. How to effectively incorporate such tem-
poral dependencies into the modeling framework is another challenge that needs to
be addressed. Although such constraints can be pre-defined from domain knowl-
edge, they may vary depending on the dataset used. Instead of encoding them
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Fig. 2. A segment of ground truth activities.

as hard constraints, our goal is to infer the temporal dependencies automatically
from the data.

To address these challenges, this paper presents a soft classification approach
for activity recognition in a smart home environment. The approach employs a
softmax classifier to predict user activities in a sequence based on the multi-
modal sensor data available. Training a global softmax classifier is not effective
since some features (e.g., surveillance camera data) are only available in certain
rooms. Imputing their missing values may introduce errors into the model while
discarding the data with incomplete features may lead to suboptimal models.
Conversely, training a local model for each room is also not the answer due to the
limited training data available for some rooms and the large number of classes
that need to be predicted. To overcome this limitation, we propose a multi-task
learning framework that allows the local models for all the rooms to be jointly
trained, taking into account the relationship between the tasks and the varying
types of features available. Specifically, the framework enables the model for
predicting, say, the walk activity in one room, to be related to the same activity
in another room even if their features are not identical. This is accomplished
by decomposing the weight matrix associated with the prediction of each class
into a set of low rank latent factors, where the decomposition is performed
only on the common features for the rooms. Using a real-world multi-modal
sensor dataset [16] as our case study, we showed that the proposed framework is
more effective than other sequential and non-sequential classification algorithms,
including multinomial logistic regression and conditional random fields.

2 Preliminaries

Consider a multi-modal sensor dataset, D = {D1,D2, · · · ,DR}, where each
Dr = (Xr,Yr) is the training set for room r. Furthermore, each Xr = R

Nr×dr

corresponds to the data matrix derived for room r, where Nr is the number
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of training examples available and dr is the number of features. For notational
convenience, we denote Xi: as the i-th row of matrix X and Xj: as its j-th col-
umn. The sensor data considered in this study [16] include 3-d acceleration fea-
tures generated by a portable triaxial accelerometer worn by the subject, RGB-
D camera data, and location data from passive infrared (PIR) and strength of
acceleration signals (RSSI) recorded by access points location in different rooms.
The raw sensor data are preprocessed to extract various features (e.g., kurtosis,
frequency, and entropy of accelerometer time series and bounding box infor-
mation about subjects from RGB-D camera data) associated with the human
activities measured at every 1 s interval. We apply similar feature extraction and
preprocessing methods as described in [12] for the sensor time series data.

Table 1. List of human activity classes from the Sphere challenge data [16].

Ascend Bent Stand Sit-to-stand

Descend Kneel Stand-to-bend Stand-to-kneel

Jump Lie Kneel-to-stand Stand-to-sit

Loadwalk Sit Lie-to-sit Bend-to-stand

Walk Squat Sit-to-lie Turn

Let Yr ∈ [0, 1]Nr×K be the class membership matrix for all Nr observations
in room r, where Yr

ik ∈ [0, 1] denotes the confidence score for the i-th training
instance in room r belonging to the k-th class. There are altogether 20 classes
in our dataset, which are divided into 3 groups: (1) Active motion (a), which
include activities such as ascending or descending stairs, jumping, and walking,
(2) Stationary postures (p), which include bending, sitting down, and standing,
and (3) Transition movements (t), which include stand-to-bend, lie-to-sit, sit-to-
lie, and stand-to-kneel. The complete list of classes is shown in Table 1.

3 Methodology

3.1 Multi-class Learning with Softmax Regression

Softmax regression can be used to compute the posterior probability that the
i-th instance in room r belongs to class k as follows [3]:

P (Y r
i = k|Xr

i:) =
exp(Xr

i:W
r
k:)

∑K
s=1 exp(Xr

i:Wr
s:)

≡ Pr
ik, (1)

where Wr ∈ �K×dr is the model parameter matrix for room r. The parameters
can be estimated by minimizing the following cross entropy loss function:

Wr = arg min
Wr

Nr∑

i

K∑

k

−Yr
ik logPr

ik (2)
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Intuitively, the loss function measures the discrepancy between the estimated
posterior probability and annotated confidence score of each class for the training
examples. The loss function is well-suited for handling soft labels in the human
activity recognition problem shown in Fig. 2, in which multiple activities may
occur in the same time period.

3.2 Proposed Method: STARS

Although the softmax regression approach can be applied to the smart home
data, it has several limitations. First, it does not account for the temporal depen-
dencies of activities in the sequence data. Second, it is designed for learning
models independently for each room. Since the amount of training examples
available in each room may vary, this may lead to suboptimal local models. Fur-
thermore, the features available to classify the human activities can be different
from one room to another. It would be useful to develop a multi-task learning
approach that can jointly train the models for all the rooms, taking into account
the relationships among the prediction tasks and variable features of the rooms.

To overcome these limitations, we propose the following soft multi-task learn-
ing framework called STARS, which is designed to optimize the following objec-
tive function:

min
Θ

L1 + L2 + L3 (3)

s.t. Wr
k: = [Wcom

rk: ,Wdif,r
k: ]1×dr

, Wcom
rk: = Ukr:Vk:: (4)

Pr
ik =

exp(Xr
i:W

r
k:

T + Zr
i−1:F1

rk:
T + Zr

i+1:F2
rk:

T )
∑K

s exp(Xr
i:Wr

s:
T + Zi−1:F1

rs:
T + Zr

i+1:F2
rs:

T )
(5)

Zr
i: = Xr

i:W
rT (6)

where L1 =
R∑

r

Nr∑

i

K∑

k

−Yr
ik logPr

ik

L2 =
R∑

r

β||Pr − GrPr||2F

L3 =
K∑

k

(λU ||Uk,:,:||1 + λV ||Vk,:,:||1)

+
R∑

r

(λW ||Wdif,r||1 + λF1||F1
r::||1 + λF2||F2

r::||1)

Gr =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 ... 0 0
1 0 0 ... 0 0
0 1 0 ... 0 0
... ...
0 0 0 ... 1 0

⎤

⎥
⎥
⎥
⎥
⎦

Nr×Nr
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where Θ = {U ,V,Wr,F1,F2} corresponds to the set of model parameters for
all the rooms r = 1, 2, · · · , R. The framework assumes a linear model for each
room r, parameterized by the matrix Wr = [Wcom,r,Wdif,r], where Wcom,r

is represented by the r-th slice of tensor Wcom, and denotes the weight matrix
associated with the common features for all the rooms. And Wdif,r denotes the
weight matrix associated with the unique features of the room. For example, the
common features may include those derived from accelerometer sensors worn
by the users whereas the unique features may correspond to those derived from
surveillance cameras located only in certain rooms.

Note that the objective function consists of three parts: (1) L1, which is
the cross entropy loss function associated with the classification error, (2) L2,
which captures the temporal persistence of the classes (to be explained below),
and (3) sparsity constraints L3. The posterior probability Pr

ik in the proposed
formulation depends not only on the features Xr

i: at time i, but also on the
temporal features Zi−1: and Zi+1: at time i−1 and i+1, respectively. We consider
Zr

i−1: = Xr
i−1:W

rT and Zr
i+1 = Xr

i+1:W
rT as temporal features because they

are related to the predicted probabilities in the previous and next timesteps.
Our model also encapsulates information about the class transitions by using the
transition tensors F1 and F2. Specifically, F1

r:: encodes the relationship between
the activity at previous timestep i − 1 to the activity at current timestep i in
room r. Conversely, F2

r:: encodes the relationship between the activity at the next
timestep i + 1 and the activity at current timestep i in room r. These transition
tensors are estimated automatically in the STARS framework. The second term
of the objective function, L2, is a regularization term to ensure the temporal
persistence of the classes. As illustrated in Fig. 2, most activities tend to last
for more than several seconds. This suggests a trivial approach to predict user
activity in the next timestep is by using the predicted activity for the current
timestep. The temporal persistence of an activity between two adjacent time
steps is reflected by the soft constraint ||Pr

i: −Pr
i−1:||2F , where Pr

i−1: = (GrPr)i:.
Finally, the third term in the objective function, L3, is used to ensure sparsity
of the model parameters and to avoid model overfitting.

One unique feature of the proposed STARS framework is that it uses a multi-
task learning approach to train the models for all rooms simultaneously. Further-
more, instead of treating classification task for different rooms as independent
learning problems, it assumes the tasks are related via the common features
shared by all the rooms. Specifically, although the weight matrix Wcom,r for all
the rooms can be different, they share a pair of common low-rank factors, U and
V. Here, we use the notation Wcom to represent a 3-dimensional tensor, where
the r-th slice of the tensor corresponds to the weight matrix Wcom,r for room r.

3.3 Optimization

Observe that the L1 and L2 terms of the objective function given in Eq. 3 are
differentiable functions unlike L3, which is non-differentiable due to �1 regu-
larization. The accelerated proximal gradient descent (PGD) method [4,13] can
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Algorithm 1. Training Phase for STARS Framework
Input: training set {Xr,Yr} and set of regularizers {β, λU , λV , λW , λF1, λF2}.
Output: Θ(t) = {U (t), V(t),Wdiff,r(t), F1(t), F2(t)}
Set t = 0 and initialize Θ(0) = {U (0), V(0),Wdiff,r(0), F1(0), F2(0)}.
repeat

t = t + 1
∀r, q : Uqr: ← SλU t(Uqr: − α(t)( ∂L 1

∂Uqr:
+ ∂L 2

∂Uqr:
))

∀q : Vq:: ← SλV t(Vq:: − α(t)( ∂L 1
∂Vq::

+ ∂L 2
∂Vq::

))

∀r, q : Wdif,r
q: ← SλW t(W

dif,r
q: − α(t)( ∂L 1

∂W
dif,r
q:

+ ∂L 2

∂W
dif,r
q:

))

∀r, q : F1
rq: ← SλF1t(F1

rq: − α(t)( ∂L 1
∂F1

rq:
+ ∂L 2

∂F1
rq:

))

∀r, q : F2
rq: ← SλF2t(F2

rq: − α(t)( ∂L 1
∂F2

rq:
+ ∂L 2

∂F2
rq:

))

until convergence

Algorithm 2. Prediction Phase for STARS Framework
Input: test example, Xr

i:, its adjacent predictors, Xr
i−1: and Xr

i+1:, and estimated
model parameters, Θ = {U , V,Wdif,r, F1, F2}, r = 1, 2, ..., R
Output: predicted probability
P (y = k|Xr

i:,X
r
i−1:,X

r
i+1:, Θ) = Pr

ik, k = 1,2,...K, with formula 5 and 6

be applied to learn the model parameters. A pseudo-code of the algorithm for
inferring the model parameters is provided in Algorithm1 while the pseudo-code
for predicting the next activity of the sequence is shown in Algorithm2.

Specifically, the soft thresholding proximal mapping operator is used to
update the model parameters as follows:

Θ(t) = Sλt

[

Θ(t−1) − α(t)

(
∂L1

∂Θ(t−1)
+

∂L2

∂Θ(t−1)

)]

(7)

where Sδ(x) = (x − δ)+ − (−x − δ)−, and α(t) is the gradient descent
step size during iteration t. Since there are multiple model parameters, Θ =
{U ,V,Wdif,r,F1,F2}, the parameters are each updated in an alternating fash-
ion. The hyper-parameter of the soft thresholding operator λ depends on the
Lasso regularizer for each model parameter, e.g., λ is set to λU when updating
U , λV when updating V, and so on. A backtracking line search is also imple-
mented to adaptively choose the step size of the gradient descent [4] and ensure
faster convergence.

In the remainder of this section, we show the gradient computation of the
differentiable part of the loss function with respect to each model parameter.
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Gradient Computation for U . Taking the partial derivative of L1 w.r.t. Uqr:,
where k = 1, 2, ...,K, and q = 1, 2, ...,K, yields the following:

∂L1

∂Uqr:
=

Nr∑

i

(Pr
iq − Yr

iq)X com
ri: VT

q::

+
Nr∑

i

K∑

k

(Pr
ik − Yr

ik)(F1
rkqX com

r(i−1):VT
q:: + F2

rkqX com
r(i+1):VT

q::) (8)

where X com
ri: VT

q:: denote the latent representation of the common features X com
ri:

for room r. The preceding equation suggests that the update formula for Uqr:

depends on two terms. The first term on the right hand side of Eq. (8),
∑Nr

i (Pr
iq−

Yr
iq)X com

ri: VT
q::, measures the difference between the predicted and true class in

terms of the latent, common feature vectors. The second term,
∑Nr

i

∑K
k (Pr

ik −
Yr

ik)(F1
rkqX com

r(i−1):VT
q:: + F2

rkqX com
r(i+1):VT

q::) measures the difference in terms of the
latent feature vectors for adjacent time periods, taking into account the temporal
dependencies between activities, F1

r:: and F2
r::.

Furthermore, the gradient of L2 w.r.t. Uqr: is given by

∂L2

∂Uqr:
=

N∑

i

K∑

k

2β(Pr
ik − (GrPr)ik) × (

∂Pr
ik

∂Uqr:
−

Nr∑

j

Gr
ij

∂Pr
jk

∂Uqr:
)

where,

∂Pr
ik

∂Uqr:
= Pr

ik

(

(1{q = k} − Pr
iq)X com

ri: VT
q:: + (F1

rkqX com
r(i−1):VT

q:: + F2
rkqX com

r(i+1):VT
q::)

−
K∑

s

(F1
rsqX com

r(i−1):VT
q:: + F2

rsqX com
r(i+1):VT

q::)P
r
is

)

Gradients Computation for V. Similarly, the gradients w.r.t. V are:

∂L1

∂Vq::
=

R∑

r

Nr∑

i

(Pr
iq − Yr

iq)Uqr:X com
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+
R∑

r
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i
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k
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i
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k
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∂Pr
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−

Nr∑

j
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ij

∂Pr
jk

∂Vq::
)
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Gradients Computation for Wdif,r .

∂L1

∂Wdif,r
q:

=

Nr∑

i

(Pr
iq − Yr

iq)X
dif,r
i: +

Nr∑

i
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rkqX
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i+1: )
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q:

=

Nr∑

i
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k

2β(Pr
ik − (GrPr)ik) × (

∂Pr
ik

∂Wdif,r
q:

−
Nr∑

j

Gr
ij

∂Pr
jk

∂Wdif,r
q:

)

Gradients Computation for F1 (or F2).

∂L1

∂F1
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=
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i

(Pr
iq − Yr

iq)Z
r
i−1:

∂L2

∂F1
rq:

= 2β

Nr∑

i

K∑

k

(Pr
ik − (GrPr)ik) × (

∂Pr
ik

∂F1
rq:

−
Nr∑

j

Gr
ij

∂Pr
jk

∂F1
rq:

)

The gradients ∂L1
∂F2

rq:
and ∂L2

∂F2
rq:

can be obtained in a similar way.

4 Experimental Evaluation

We performed our experiments on a real-world data set from the SPHERE Chal-
lenge competition [16]. The dataset contains classes of human activities recorded
in a house containing 9 different rooms. The raw data contains 10 sequences,
where each sequence corresponds to a series of activities performed by a subject
for a time period lasting between 1,392 to 1,825 s. Using the sensor observations
at each second as a data instance, we ended up with a total 16,124 instances. Each
instance was labeled by a team of 12 annotators [16], whose results are aggre-
gated to obtain a confidence score for each class label. For evaluation purposes,
we apply 5-fold cross-validation and report the mean and standard deviation of
their prediction accuracies.

Following the approach described in [16], we employ the weighted Brier score
to evaluate the classification performance. The metric is defined as follows:

BS =
1
N

N∑

i=1

K∑

k=1

lk(Yik − Pik)2 (9)

where Yik is the confidence score for the i-th instance and k-th class, computed
based on the labels provided by a team of annotators, whereas Pik is the pre-
dicted posterior class. The weight for each class, lk, is defined in [1], which is
negatively correlated with the class size.
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4.1 Baseline Algorithms

We compare the performance of our proposed framework, STARS, against the
following baseline algorithms:

– SR: Softmax regression, which trains a local softmax regression model for
each room with Eqs. (1) and (2). Unlike our proposed framework, it is a
single-task learning model and does not incorporate temporal dependencies.

– KNN: A k-nearest neighbor classifier, which is another baseline used in [1] for
the SPHERE competition data. The parameter k is tuned on the validation
data in order to provide the best result. We sums up the weights associated
with each neighboring instance Yik for the test instance i and normalize the
weighted sum to obtain the predicted posterior probabilities.

– CRF: Conditional Random Field [15], which is a widely used model for
sequence classification problems [8,10] and has been applied to activity recog-
nition problems [9,17].

4.2 Experimental Results

The results comparing the weighted brier score of the proposed framework
STARS, against the baseline methods (SR, KNN and CRF) are shown in Table 2.
We reported the weighted Brier score for all rooms (denoted as Overall) as well as
for individual rooms. The results suggest that the overall performance of STARS
is significantly better than the baseline methods. In terms of performances for
individual rooms, STARS achieves the best (i.e., lowest score) in 7 out of the 9
rooms. The performance of STARS is slightly worse than SR for bedroom2 and
hallway due to the lack of transitional activities, making it harder to learn the
temporal dependency accurately based on their limited training data.

In addition to its lower Brier score, another advantage of using the STARS
framework is that the model can be used to learn the transition between activities

Table 2. Weighted Brier Scores for various competing algorithms.

Room SR KNN CRF STARS

Bathroom 0.1334 ± 0.0149 0.1315 ± 0.0103 0.1479 ± 0.0152 0.1269± 0.0173

Bedroom1 0.0853± 0.0129 0.1026 ± 0.0085 0.0935 ± 0.0118 0.0920 ± 0.0156

Bedroom2 0.2817 ± 0.0148 0.2862 ± 0.0178 0.2886 ± 0.0223 0.2675± 0.0172

Hallway 0.1926± 0.0953 0.2323 ± 0.0675 0.2115 ± 0.0816 0.1953 ± 0.0849

Kitchen 0.0842 ± 0.0122 0.0915 ± 0.0099 0.0917 ± 0.0133 0.0820± 0.0106

Living room 0.1594 ± 0.0181 0.1774 ± 0.0171 0.1710 ± 0.0201 0.1468± 0.0142

Stairs 0.3827 ± 0.0705 0.4366 ± 0.0552 0.3834 ± 0.0288 0.3373± 0.0505

Study room 0.0441 ± 0.0407 0.0649 ± 0.0240 0.0506 ± 0.0556 0.0381± 0.0365

Toilet 0.1440 ± 0.0380 0.1368 ± 0.0304 0.1442 ± 0.0358 0.1360± 0.0417

Overall 0.1700 ± 0.0095 0.1815 ± 0.0089 0.1794 ± 0.0121 0.1598± 0.0087
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via F1 and F2. Figure 3a and b depict a heat map of the two tensor slices F1
r::

and F2
r:: for the living room. The results shown in these figures are mostly

consistent with our common sense knowledge. For example, Fig. 3a shows that
the bent posture is mostly followed by the activity bend-to-stand whereas
stand-to-bend often leads to the bent posture. Similarly, Fig. 3b shows that
the stand-to-kneel activity would lead to the kneel posture in the next time
step, while lie-to-sit begins with lie posture and ends with the sit posture.

Activities in the previous second

jump
 loadwalk

walk
 bent
kneel

 lie
 sit

 squat
 stand

stand-to-bend
 kneel-to-stand
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(a) Transition matrix from (i− 1) to i
timestep.

Activities in the next second
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Fig. 3. The estimated transition matrices F1
r:: (left) and F2

r:: (right) for living room.
The ordering of the classes on the horizontal and vertical axes are the same.

5 Related Work

Numerous approaches have been developed for human activity recognition. Clas-
sic approaches include decision tree [5], support vector machine [18], logistic
regression, and Bayesian networks [7]. For example, a comparison between logis-
tic regression and non-linear SVM on human activity recognition is given in [12].
These approaches do not consider the temporal/sequential dependencies between
activities. In contrast, methods such as Hidden Markov Model (HMM) and
Conditional Random Fields (CRF) are more well-suited for handling sequential
data [8,21], and thus, have been widely utilized for activity recognition tasks
[11,17]. However, these approaches are primarily designed for single-task learn-
ing, unlike the multi-task approach proposed in this study. The success of multi-
task learning for activity recognition has been well-documented [2,6,14,19,20].
In [14], a structured multi-task classification method was proposed, where each
task corresponds to the classification of a specific person. [19] presented a multi-
task clustering framework for analyzing daily living activities from visual data
collected by wearable cameras. In addition, [20] focused on multi-task feature
selection whereas [2] focused on online matrix regularization. Unlike other exist-
ing works, our proposed framework considers the classification in different rooms
as separate tasks, with possibly different types of features.
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6 Conclusion

In this paper, we present a soft multi-task learning technique for human activ-
ity recognition from multi-modal sensor data in a smart home. Our technique
incorporates the temporal dependencies between classes in a multi-task learning
setting. Experimental results using a public human activity recognition dataset
showed that the proposed technique outperforms baseline methods including
K-Nearest Neighbor, Conditional Random Field, and single-task learning with
multinomial softmax regression. The framework not only improves the classifica-
tion performance, it also reveals the typical type of transitions between activities.
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Abstract. Time series data is a common data type in real life, and
modelling of time series data along with its underlying temporal dynam-
ics is always a challenging job. Temporal point process is an outstand-
ing method to model time series data in domains that require temporal
continuity, and includes homogeneous Poisson process, inhomogeneous
Poisson process and Hawkes process. We focus on Hawkes process which
can explain self-exciting phenomena in many real applications. In clas-
sical Hawkes process, the triggering kernel is always assumed to be an
exponential decay function, which is inappropriate for some scenarios, so
nonparametric methods have been used to deal with this problem, such
as model independent stochastic de-clustering (MISD) algorithm. How-
ever, MISD algorithm has a strong dependence on the number of bins,
which leads to underfitting for some bins and overfitting for others, so
the choice of bin number is a critical step. In this paper, we innovatively
embed a Gaussian process regression into the iterations of MISD to make
this algorithm less sensitive to the choice of bin number.

Keywords: Hawkes process · MISD · Gaussian process
Nonparametric

1 Introduction

In a real application, data is always collected in sequential mode. How to model
time series data to discover the underlying temporal dynamics is a challenging
problem in this domain. To solve it, different models have been proposed in the
past such as recurrent neural network (RNN) [1] and temporal point process [2].
There are many variants of the latter, such as homogeneous Poisson process [3],
inhomogeneous Poisson process [4] and Hawkes process [5].

Hawkes process is a self-exciting temporal point process which can explain the
self-exciting phenomenon in time series data. In real applications, the occurrence
of events in the past will usually have a triggering influence on the future which
leads to a clustering effect, for example, in the earthquake domain [6], the crime
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domain [7] and the social network domain [8]. In classical Hawkes process, the
conditional intensity function can be expressed as:

λ(t) = μ +
∑

ti<t

γ(t − ti) (1)

where μ > 0 is the baseline intensity which is a constant, {ti} are the timestamps
of observed events before time t indexed by i, and γ(·) is the triggering kernel
representing the influence from ti to t. Generally, the triggering kernel γ(t − ti)
is always assumed to be an exponential decay function: α ·exp(−β(t−ti)), which
is inadequate to represent the actual influence in scenarios where it is not like
that. Furthermore, in some new fields, there could be lack of prior knowledge
about the form of γ(t − ti) or there is no analytic form to describe it [9,10]. In
this case, nonparametric methods can be used to estimate the general form of
the triggering kernel and the baseline intensity.

An expectation-maximization (EM) algorithm called model independent
stochastic de-clustering were proposed to perform nonparametric estimation of
the triggering kernel and baseline intensity [11]. Essentially MISD is a histogram
density estimator, so there are problems with it: the triggering kernel obtained
from MISD is a discrete function and the number of bins used in the model
has a vital impact on learning results. It can be seen from the experiments in
this paper that the learned triggering kernel is underfitting when fewer bins
are used and overfitting when using more. How to determine the optimal num-
ber of bins? We can compute the log-likelihood conditioned on bin number M :
log L({ti}|M) and compute M̂ from maximum likelihood estimation (MLE), or
from an un-normalized posterior distribution by multiplying the likelihood with
a prior distribution on M such as Poisson distribution1. But both these methods
will lead to extra computation which is undesirable. Can we propose a refined
MISD algorithm which does not depend on the choice of bin number severely?
In this paper we innovatively embed a Gaussian process (GP) regression into the
iterations of MISD to design a refined algorithm which is less sensitive to the
choice of bin number; we call it GP-MISD. In this new method, M can be set
to a large number to use over-segmented bins since it can prevent the learning
result from overfitting to some extent.

The remainder of the paper is organized as follows: In Sect. 2, we summarize
the related work in Hawkes process and its nonparametric estimations. In Sect. 3,
we describe the background knowledge about Hawkes process, MISD algorithm
and Gaussian process regression and propose our new algorithm GP-MISD. Syn-
thetic data and real data experiments and the detailed discussion are provided
in Sects. 4, and 5 concludes this paper.

2 Related Work

Temporal point process has been used as a continuous mathematical model to
reflect temporal dynamics and to predict the arrived time of the next event in
1 We assume all the bins are equally wide.
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many domains such as seismology [12], financial engineering [13], and stock mar-
ket [14]. Recently, the self-exciting process has become a hot topic for explaining
the clustering phenomenon in social networks [15] and crime. The classical self-
exciting processes, such as Hawkes process, have a limitation that the latent
triggering effect is always assumed to be parametric, which introduces compu-
tational convenience but limits the expressive ability of the model. To conquer
this problem, various nonparametric methods have been proposed, such as con-
sidering the triggering kernel as a linear combination of some kernels [16,17],
approximating the triggering kernel by an RNN [18] and empirically estimat-
ing the triggering kernel using a histogram density estimator (MISD) where the
resolution can be adapted by setting different number of bins for the histogram
[19]. Although maximum penalized likelihood estimation (MPLE) has been pro-
posed [19], which is a regularized MISD with an l2 norm on the gradient to
avoid overfitting, the gradient information can only regularize the local variance
which limits the use of this method. Based on MISD, the GP-MISD algorithm
we propose can produce a continuous triggering kernel function which introduces
dependence on all the locations on the triggering kernel. As a result, the method
is less likely to be overfitting when the bin number is chosen improperly.

3 Proposed Model

The GP-MISD algorithm is closely related to Hawkes process, MISD and Gaus-
sian process regression, so in Sects. 3.1 and 3.2 the preliminary knowledge about
these is provided. Most of the details about MISD are draw from [19]. GP-MISD
is formally described in Sect. 3.3.

3.1 Hawkes Process

Temporal point process is a stochastic process, whose realization is a sequence of
timestamps {ti}N

i=1 in [0, T ] where ti is the occurrence time of i-th event and T
is the observation time for the process. In temporal point process, an important
characterization is the conditional intensity function λ(t) which is defined as:

λ(t) = lim
δt→0

P (event occurring in [t, t + δt)|Ht)
δt

(2)

where Ht = {ti|ti < t} is the history before time t. Different temporal point
processes will have different conditional intensity functions to distinguish them.
For example, λ(t) is a constant for homogeneous Poisson process, a function of
time f(t) for inhomogeneous Poisson process, and a function of time and history
for Hawkes process. The specific intensity form of Hawkes process is already given
in (1). The summation of triggering kernels explains the nature of self-excitation,
which is the occurrence of events in the past will intensify events occurring in
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the future. Given a sequence of observed data {ti}n
i=1 in time interval [0, T ], the

log-likelihood of this list of event times can be expressed as:

log L =
n∑

i=1

log λ(ti) −
∫ T

0

λ(t)dt (3)

which can be used in MLE to perform inference for the parameters in the model.

3.2 MISD

Lewis and Mohler [19] provide details on how to use MISD algorithm in one
dimension Hawkes, which is an EM-based nonparametric algorithm to ease MLE.
Firstly, when the branching structure of a Hawkes process is observable, we can
define the following matrix:

Xij =

{
1 if event i is caused by event j

0 otherwise

Xii =

{
1 if event i is a baseline event

0 otherwise.

(4)

Let us assume baseline intensity μ is a constant and there is no prior knowl-
edge about the form of γ(·), so given the branching matrix, the log-likelihood
(3) could be decoupled into two independent parts: part μ and part γ(·),

log L({ti}|μ, γ) =

[
n∑

i=1

Xii log(μ)

]
− μT

+
n∑

i=2

⎡

⎣
i−1∑

j=1

Xij log (γ(ti − tj))

⎤

⎦ −
n∑

i=1

∫ T

ti

γ(t − ti)dt.

(5)

It is straightforward to rewrite this problem into an EM framework, which is
the MISD algorithm. When the branching structure is unobservable, the MISD
algorithm works by maximizing the expectation of the log-likelihood. Thus Xij

is replaced by pij , which is the probability of event i caused by event j. The
matrix pij is a lower triangular matrix

⎡

⎢⎢⎢⎢⎢⎣

p11
p21 p22
p31 p32 p33

...
. . .

pn1 pn2 pn3 · · · pnn

⎤

⎥⎥⎥⎥⎥⎦
(6)

where
∑i

j=1 pij = 1, because event i must be caused by previous events or the
baseline event.
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Then the EM iteration is:

(1) E-step: The update for the matrix P :

ps
ij =

γs(ti − tj)

μs +
∑i−1

j=1 γs(ti − tj)

ps
ii =

μs

μs +
∑i−1

j=1 γs(ti − tj)

(7)

where s is the iteration step.
(2) M-step: The update for baseline intensity:

μs+1 =
1
T

n∑

i=1

ps
ii (8)

where T is the observation duration.

Assuming the duration of γ(Δt) is limited: [0,Mδt] where M is the number of
bins, δt is the bin width, the update for rates is given by:

γs+1
m =

1
Nmδt

∑

i,j∈Am

ps
ij (9)

where Am is the set of pairs of events s.t. mδt � |ti−tj | � (m+1)δt, γm = γ(mδt)
where 0 � m � M −1, and Nm is the corresponding normalizing parameter with
respect to m-th bin. Equations (8) and (9) are derived from ∂

∂μE[log L] = 0 and
∂

∂γm
E[log L] = 0.

3.3 GP-MISD

The key idea in GP-MISD is to embed a Gaussian process regression into the
EM iterations, which makes use of those rates learned in each iteration step
to perform a regression and get a smooth mean triggering kernel. This smooth
mean triggering kernel will be used in the next iteration step, so the iteration
goes on.

Gaussian process is an infinite dimensional extension of multivariate nor-
mal distribution. In GP, every finite set of points has a multivariate normal
distribution, so it can be expressed as a distribution over functions in a contin-
uous domain. GP is specified by the mean function m(x) and covariance kernel
k(x, x′):

f(x) ∼ GP(m(x), k(x, x′)) (10)

where f(x) is a sample function drawn from GP. Without loss of generality, the
prior mean function can be assumed to be zero: m(x) = 0, and the only work
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left is to define the covariance kernel k(x, x′). A widely used kernel is squared
exponential kernel:

k(xi, xj) = θ0 exp
(

−θ1
2

‖xi − xj‖2
)

(11)

where θ0, θ1 are the hyperparameters.
After getting the observation points (γs

1 , γ
s
2 , · · · , γs

M ) in iteration step s
in MISD, the GP regression is used to evaluate the posterior mean function
m(x|(γs

1 , · · · , γs
M )) which will be used as the γ(Δt) in the next iteration step.

Specifically, the new algorithm can be divided into three steps:

(1) E-step: The update for the matrix P :

ps
ij =

γ̄s(ti − tj)

μs +
∑i−1

j=1 γ̄s(ti − tj)

ps
ii =

μs

μs +
∑i−1

j=1 γ̄s(ti − tj)

(12)

(2) M-step: The update for baseline intensity and rates is same as before.
(3) GP-step: The update for Gaussian process predictive distribution:

γ̄s+1(Δt) = kT C−1
M γs+1 (13)

where CM is the matrix of C(Δtn,Δtm) = k(Δtn,Δtm) + σ2
noiseδnm, {Δti}M

i=1

are the x-values of M rate points, k(·) is the covariance kernel, and σ2
noise

is the variance of observation points’ noise, k = (k(Δt1,Δt), k(Δt2,Δt), · · · ,
k(ΔtM ,Δt))T , γs+1 = (γs+1

1 , γs+1
2 , · · · , γs+1

M )T are the y-values of M rate points
on step s+1. The final triggering kernel we obtain from this algorithm is γ̄(Δt).
Equation (13) is derived from the standard Gaussian process regression [20].

4 Experiment

4.1 Synthetic Data

For simplicity, we assume the true triggering kernel is an exponential decay
function: μ = 1, γ(t − ti) = 1 · exp(−2 · (t − ti)). Two sets of synthetic data are
generated from the Hawkes process specified above using the thinning algorithm
[12]. For each set, the observation duration T is set to 400, resulting in a real-
ization of about 850 events. The first set is used as the training data, and the
second one is the test data.

For the inference, it is assumed that the baseline intensity is a constant
and the form of the triggering kernel is unknown, so the goal is to infer μ and
γ(Δt). For MISD algorithm, we apply the training data for different bin numbers
ranging from 3 to 100. γ(Δt) is assumed to be zero outside the interval [0, 3] and
the number of iterations is set to 100. In the evaluation, the training error is
defined as − log L of the training data. Then the model learned is applied to the
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test data to get the test error which is defined as − log L of the test data. The
same process is also applied to the GP-MISD algorithm. The hyperparameters
θ0, θ1, σ2

noise are set to 2.3, 2.3 and 0.01 in the GP step.
The training error and test error for both algorithms appear in Fig. 1. It can

be seen that as the number of bins increases from 3 to 100, the training error
of MISD will decrease monotonically, while the test error will increase after
#bin = 8. But when we look at GP-MISD, the training error will not decrease
rapidly after #bin = 8 and the test error is almost constant after #bin = 8. These
results show that GP-MISD is less sensitive to the choice of bin number than
MISD which is very likely to be overfitting when too many bins are used. More
importantly, from test error we can see that GP-MISD is always superior to
MISD no matter how many bins are used, and this can also be found from the
fitting result of γ(Δt) in Fig. 2 which is based on #bin = 10, 40 and 100. It is
clear that the γ(Δt) learned from GP-MISD is closer to the ground truth and
more stable, which shows the superiority of GP-MISD.

Fig. 1. The training error and test error of MISD and GP-MISD.

Fig. 2. The fitting result of γ(Δt) from MISD and GP-MISD based on 10 bins (left),
40 bins (middle) and 100 bins (right).

4.2 Real Data

We evaluate the performance of GP-MISD and MISD on real world datasets
from two different domains.
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Motor Vehicle Collisions in New York City: This motor vehicle collision
dataset2 is provided by the New York City Police Department (NYPD). It con-
tains about 1.05 million vehicle collision records in New York City from July,
2012 to September, 2017. The dataset includes the collision date, time, borough,
location, contributing factor and so on. For our model, the most valuable infor-
mation is the date and time. We filter out the collision records in Manhattan,
Queens and Bronx caused by ‘Alcohol Involvement’. For each borough, half of
the records are used as the training data and the other half as the test data. Just
as the synthetic data, we define the test error as − log L of the test data. There
are some collisions happening at the same time, as the resolution is at minute
level, which violates the definition of the temporal point process. To avoid this,
we add a small time interval to all the simultaneous records to separate them.
The hyperparameters θ0, θ1, σ2

noise are set to 3.5, 3.5, 0.01 for Manhattan, 4.5,
4.5, 0.01 for Queens and 3.9, 3.9, 0.01 for Bronx. 100 iterations are performed
in both algorithms. The duration of γ(Δt) is set to 3.0 and the time unit is
1.16 day.

NYPD Complaint Data 2017: This dataset3 includes all valid felony, misde-
meanour and violation crimes reported to the NYPD for all complete quarters so
far in 2017. It includes 228 thousand complaint records in New York City. The
columns are complaint number, date, time, offense description, Borough etc. We
filter out the complaints in Manhattan, Queens and Brooklyn, and the offense
description is ‘THEFT-FRAUD’. Again, for each borough, half the records are
used as training data and the others as test data. Add a small time interval to
separate all the simultaneous records. The hyperparameters θ0, θ1, σ2

noise are
set to 6.45, 6.45, 0.01 for all boroughs. 100 iterations are performed in both
algorithms. The duration of γ(Δt) is set to 3.0 and the time unit is 11.6 days.

Experiment Results: For Motor Vehicle Collisions in New York City, the
learned μ, γ(Δt) and the test errors of both algorithms for #bin = 20, 50, 80,
100 are shown in Table 1 and Fig. 3.

Table 1. Motor Vehicle Collisions in New York City: the learned baseline intensity μ
from MISD and GP-MISD based on #bin=20, 50, 80, 100.

2 https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi
-nx95.

3 https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-YTD/
5uac-w243.

https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-YTD/5uac-w243
https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Current-YTD/5uac-w243
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Fig. 3. Motor Vehicle Collisions in New York City: the learned γ(Δt) from MISD and
GP-MISD based on #bin=20, 50, 80, 100 (upper, time unit is 1.16 day), and test
errors of both algorithms for #bin=20, 50, 80, 100 (lower).

For NYPD Complaint Data 2017, the learned μ, γ(Δt) and the test errors of
both algorithms for #bin = 30, 50, 75, 100 are shown in Table 2 and Fig. 4.
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Table 2. NYPD Complaint Data 2017: the learned baseline intensity μ from MISD
and GP-MISD based on #bin=30, 50, 75, 100.

From both experimental results, we can see that γ(Δt) from GP-MISD is
smoother and more stable than that from MISD and the test error of GP-MISD
is always lower than MISD, which is consistent with the synthetic data result: the
former effectively avoids the overfitting phenomenon and makes this algorithm
less sensitive to the choice of #bin. For vehicle collision, the triggering patterns
in different boroughs are similar and the triggering effect lasts for about 4.5
days; for crime complaint, the triggering patterns in different boroughs are sim-
ilar and the triggering effect lasts for almost one month, but significant in the
first 10 days. Moreover, we can see that the trend of triggering kernel is quite
dynamic, especially in the short period after the source event happened, e.g.,
within about 0.5 day after the initial collision in Fig. 3, or about 5 days after
the initial complaint in Fig. 4. To capture the trend, the #bin must be set to
be large enough so that the resolution is high, however, too large a #bin will
cause overfitting, such as spikes in the triggering kernel. This is the advantage
of GP-MISD to represent the triggering kernel with continuity, capturing any
dynamic trends without overfitting.

Setting hyperparameters θ0 and θ1 is also a key step in all GP-based meth-
ods. The hyperparameters used to determine the GP kernel values implicitly
encode the information on how flexible the GP could be. The optimization of
hyperparameters in GP has been proved to be a non-convex problem [20], which
may introduce some difficulty in learning hyperparameters. In our experiments,
we use grid search to find the optimal hyperparameters and find that setting the
hyperparameters in a reasonable range does not severely affect the final result.
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Fig. 4. NYPD Complaint Data 2017: the learned γ(Δt) from MISD and GP-MISD
based on #bin=30, 50, 75, 100 (upper, time unit is 11.6 days), and test errors of both
algorithms for #bin=30, 50, 75, 100 (lower).

5 Conclusion

To conclude, in this paper we propose a refined MISD algorithm for Hawkes
process: GP-MISD algorithm which can effectively avoid overfitting when more
bins are used. The key thought of embedding a Gaussian process regression
into the EM iterations actually can be applied to most algorithms based on
bins, resulting in a smooth effect to avoid overfitting. GP-MISD inherits the
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advantage from MISD to predict the baseline intensity and triggering kernel
without any prior knowledge of the function form of latent triggering kernel. We
have performed experiments on both synthetic and real datasets demonstrat-
ing that GP-MISD is less sensitive to the choice of #bin and has consistent
superiority to MISD.
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