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Abstract. Existing anomaly detection methods are sensitive to units
and scales of measurement. Their performances vary significantly if fea-
ture values are measured in different units or scales. In many data mining
applications, units and scales of feature values may not be known. This
paper introduces a new anomaly detection technique using unsupervised
stochastic forest, called ‘usfAD’, which is robust to units and scales of
measurement. Empirical results show that it produces more consistent
results than five state-of-the-art anomaly detection techniques across a
wide range of synthetic and benchmark datasets.

Keywords: Anomaly detection · Scales of measurement
Local Outlier Factor · Isolation Forest · Unsupervised stochastic forest

1 Introduction

The data mining task of anomaly detection is to detect unusual data instances
which do not conform to normal or expected data automatically. The unusual
data are called anomalies or outliers. Anomaly detection has many applications
such as detecting fraudulent transactions in banking and intrusion detection
in computer networks. The task of automatic detection of anomalies has been
solved using supervised, unsupervised or semi-supervised learning [1].

In supervised techniques, a classification model is learned to classify test
data as either anomaly or normal. They require labelled training data from both
normal and anomaly classes. Obtaining labelled training data from anomaly class
is challenging in many applications [1]. Unsupervised techniques do not require
labelled training data and rank test data based on their anomaly scores directly.
They assume that most of the test data are normal and anomalies are few. They
may perform poorly when the assumption does not hold [1]. Semi-supervised
techniques learn a model representing normal data from labelled normal training
data only and rank test data based on their compliance to the model. Majority
of data in anomaly detection problems are normal, and thus labelled normal
training data can be obtained easily in many applications [1]. This paper focuses
on the semi-supervised anomaly detection task.
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Most existing unsupervised and semi-supervised anomaly detection tech-
niques assume that anomalies are few and different, i.e., anomalies have fea-
ture values that are very different from those of normal instances and lie in low
density regions [1–6]. This assumption may not be always true in data mining
applications where the units and scales of measurement of feature values are
often not known. An anomalous instance may appear to be a normal instance
when feature values are measured in different scales. For example, the instance
represented by red dot in Fig. 1(a) is clearly an anomaly but it looks like a
normal point if the data are measured as x′ = 1/x (represented by red dot in
Fig. 1(b)). Many existing anomaly detection methods fail to detect the anomaly
in Fig. 1(b). In other words, their performances vary significantly if feature val-
ues are measured in different units or scales, i.e., they are sensitive to units and
scales of measurement.

(a) x

(b) x′ = 1/x

Fig. 1. An example of data represented in two scales. The data point represented by
red dot in case (a) is clearly appeared to be an anomaly whereas the corresponding
point in case (b) is more like a normal data.

In real-world applications, feature values can be measured in different units
and/or scales. For example, fuel efficiency of vehicles can be measured in km/litre
or litre/km and annual income of individuals can be measured in an integer scale
like x = 100000 or using a logarithmic scale of base 10 like x′ = 5. Unfortunately,
units and scales of feature values are often not provided when data are given for
anomaly detection where only magnitudes of feature values are available. Many
existing anomaly detection methods may perform poorly if feature values are
not measured in appropriate units or scales for the task.

Recently, the impact of units and scales of feature values in the context of
pairwise similarity measurement of data has been studied [7,8]. Fernando and
Webb (2017) introduced a scale invariant similarity measure using a variant of
unsupervised random forest called ‘Unsupervised Stochastic Forest’ (USF) [7].
Each tree in USF partitions the space into regions using a small subsamples of
data and the partition is robust to units and scales of feature values.

In this paper, we introduce an anomaly detection technique robust to units
and scales of measurement using USF, called ‘usfAD’. In each tree, the space is
partitioned using a small subsamples of labelled normal training data. Then in
each node of trees, normal and anomaly regions are defined based on the labelled
normal training data falling in the node. In the testing phase, anomaly score of
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a test instance is computed in each tree based on the depth of the first node
where the test instance lies in the anomaly region. The overall anomaly score is
computed by aggregating anomaly scores over a collection of trees. Our empirical
results over a wide range of synthetic and benchmark datasets show that it is
robust to units and scales of feature values and it produces more consistent
results in comparison to five state-of-the-art anomaly detection techniques.

The rest of the paper is organised as follows. Preliminaries and previous
work related to this paper are discussed in Sect. 2. The proposed semi-supervised
anomaly detection technique of ‘usfAD’ is discussed in Sect. 3 followed by the
empirical evaluation in Sect. 4 and concluding remarks in the last Section.

2 Preliminaries and Related Work

We assume that data are represented by vectors in an M -dimensional real domain
(RM ) where each dimension represents a feature of data. Each data instance x
is an M -dimensional vector 〈x1, x2, · · · , xM 〉 where each component xi ∈ R

represents its value of the ith feature. Let D be a collection of N training data
of normal instances and Q be a collection of n test instances which is a mixture
of normal and anomalous data. The task in semi-supervised anomaly detection
is to learn an anomaly detection model from D and rank instances in Q based
on their anomaly scores.

Popular nearest neighbour (NN) based methods [2,9,10] rank a test instance
x ∈ Q based on its kNNs in D. Being very different from normal data, anoma-
lies are expected to have larger distances to their kNNs than normal instances.
Local Outlier Factor (LOF) [2] is the most widely used kNN-based anomaly
detection method. It does not require any training. Test instances are ranked
based on the ratio of their local reachability distance (lrd) to the average lrd of
their kNNs in D. The lrd of an instance is estimated using the distance to its
kth NN. Euclidean distance is a common choice of distance measure.

Another distance or similarity based anomaly detection technique is One-
Class Support Vector Machine (SVM) [3]. It learns a model of normal
data based on pairwise similarities of training instances using kernel tricks [11]. It
requires a kernel function to compute pairwise similarities of instances. Gaussian
kernel is a common choice of kernel function that uses Euclidean distance. Test
instances are ranked based on their deviation from the model of normal data.

Both NN-based and SVM-based methods can be computationally expensive
when training data size N = |D| is large. Though the time complexity of NN
search can be reduced to O(log N) from O(NM) by using indexing schemes
such as k:d-trees [12], their effectiveness degrades as the number of dimensions
increases and become useless in high dimensional spaces. Recently, Sugiyama and
Borgwardt (2013) introduced a simpler and efficient NN-based anomaly detector
called Sp [5] where test instances are ranked based on their distances to their
nearest neighbours (1NN) in a small random subsamples of training data, D ⊂ D,
|D| = ψ � N . They have shown that Sp with ψ as small as 25 performs better
than or competitive to LOF but runs several orders of magnitude faster.
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Liu et al. (2008) introduced an efficient anomaly detector using unsuper-
vised random forest called Isolation Forest (iforest) [4] which does not use
distance measure. It constructs an ensemble of random trees where each tree
is constructed from a small subsamples of training data (D ⊂ D). It attempts
to isolate instances in D through recursive axis-parallel random split of feature
space in each tree. Because anomalies are few and different, they are expected
to have shorter average path lengths than those of normal instances over a col-
lection of trees.

Another efficient anomaly detection method which does not require distance
measure is based on histograms [6,13]. It discretises feature values in each dimen-
sion into a fixed number of equal-width bins and frequency of training data in
each bin is recorded. Being few and different, anomalies are expected to fall in
bins with small frequencies in many dimensions. Aryal et al. (2016) introduced a
simple histogram-based anomaly detection method called Simple Probabilis-
tic Anomaly Detector (SPAD) [6] which is more robust to skewed training
data because bin width in each dimension depends on the data variance in that
dimension.

All these existing methods discussed above rely on the assumption that
anomalies have feature values significantly different from normal instances. As
discussed in Sect. 1 (Fig. 1), this may not be always true because the distribu-
tion of feature values depends on the units and scales of measurement. Existing
methods may not perform well if feature values are not measured in appropriate
scales so that this assumption holds. Therefore, existing methods are sensitive
to units and scales of measurement.

Very recently, the impact of units and scales of measurement of feature val-
ues in distance-based pairwise similarity measurement of data has been studied
[7,8]. When feature values are measured in different units or scales, the ordering
of feature values is either preserved or reversed. Exploiting this characteristic,
Fernando and Webb (2017) introduced a non-distance based similarity mea-
sure which is robust to units and scales of measurement. The similarity of two
instances is defined as the number of shared leaves in a collection of t trees called
Unsupervised Stochastic Forest (USF) [7]. Each tree is constructed from
a small subsamples of data, D ⊂ D where |D| = 2h and h is a user-defined
parameter that determines the height of trees. At each internal node in a tree,
subsamples are partitioned into two equal subsets by splitting at the median of
values in a randomly chosen attribute. Because of the median split, the similarity
measure is robust to units and scales of measurement.

In the next section, we combine the ideas of USF and iforest to introduce a
new effective and efficient anomaly detection method which is robust to units
and scales of measurement.

3 New Method Robust to Units and Scales
of Measurement

iforest [4] attempts to isolate instances in data subsamples using random splits
resulting in unbalanced binary trees. Anomalies are expected to fall in leaves
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Algorithm 1. node(D)
Input: D - Subsamples of training data

1 if |D| = 1 then /* check if leaf node is reached */

2 return ; /* return */

3 self · a ← select(1, 2, · · · ,M) ; /* randomly select an attribute */

4 S ← sort(Dself ·a) ; /* sort values of the selected attribute */

5 self · s ← (S[|D|/2] + S[1 + |D|/2])/2 ; /* median split point */

6 DL ← F (Dself ·a ≤ self · s); DR ← F (Dself ·a > self · s) ; /* filter data */

7 self · lNode ← node(DL); self · rNode ← node(DR) ; /* build sub-trees */

8 return ; /* return */

with shorter pathlengths in many trees. However, the implementation of iforest
is sensitive to units and scales of feature values. At each internal node of a
tree, the space is partitioned by selecting a random split between the range of
sample values in a randomly selected dimension. The probability of having a
split between two consecutive points is proportional to their distance which is
sensitive to units and scales of measurement.

USF [7] isolates instances in data subsamples using median splits resulting
in balanced binary trees. The median split makes it robust to units and scales
of measurement. However, the concept of pathlength can not be used to detect
anomalies because all leaves are at the same height.

We propose the following extensions to USF so that pathlengths in trees can
be used as a measure to rank test instances to detect anomalies. Once a balanced
binary tree is constructed from D ⊂ D, the entire training data D are passed
through the tree to define normal and anomaly regions in each node. In each
internal node, the normal range is defined by the minimum and maximum of
feature values of the normal training data falling in the node in the dimension
j selected to partition the space. In each leaf node, the normal range is defined
by the bounding hyper-rectangle covered by the training data falling in the leaf
node i.e., minimum and maximum values of training data in all M dimensions.
Regions outside of the normal range is considered as anomaly regions in each
node. The number of training data falling in each leaf is also recorded.

While a test instance x is traversing ith tree during testing, first we check
whether it lies within the defined normal range at each node. We traverse further
down the tree only if it is within the range, otherwise we terminate and return
the pathlength of the node where it lies outside of the normal range as the
anomaly score of x in ith tree (let’s say pi(x)). If x traverses to a leaf and lies in
the normal region, the anomaly score is defined as the pathlength augmented by
the training data mass in the leaf (let’s say m) as pi(x) = h+log2 m. The second
term is the height of a binary search tree constructed from m data instances and
pi(x) will the be the total height if the leaf node was allowed to grow further
until all instances are isolated. This augmentation is important to differentiate
leaf nodes with high data mass from those with low data mass because their
anomaly scores should be different. Similar adjustment was done in iforest [4].
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Algorithm 2. update(D)
Input: D - Training data

1 if leafNode then /* if it is leaf node */

2 self · m ← |D| ; /* training data mass */

3 self · range ← rangeAll(D) ; /* min & max values in all M dims. */

4 return ; /* return */

5 self · range ← range(Dself.a) ; /* min & max values in dim. self.a */

6 DL ← F (Dself ·a ≤ self · s); DR ← F (Dself ·a > self · s) ; /* filter data */

7 self · lNode · update(DL); self · rNode · update(DR) ; /* do on sub-trees */

8 return ; /* return */

Algorithm 3. score(x, p)
Input: x - A test data, p - pathlength so far (p = 0 for the root)

1 if leafNode then /* if leaf, check range in all dimensions */

2 if inRange(x) then /* if within the range in all dimensions */

3 return p + log2(self · m) ; /* return augmented pathlength */

4 return p ; /* out of range, return pathlength */

5 if inRange(xself ·a) then /* if non-leaf, check range in dim. self.a */

6 p ← p + 1 ; /* increase pathlength */

7 if xself ·a ≤ self · s then /* go to respective child */

8 return self · lNoded · score(x, p)
9 else

10 return self · rNode · score(x, p)
11 return p ; /* out of range, return pathlength */

Algorithms to construct a tree from D (a random subsamples of D of size 2h),
updating ranges and data mass using D and computing score of a test instance
x are provided in Algorithms 1, 2 and 3, respectively.

The overall anomaly score of x is estimated by aggregating pathlengths over
t trees, score(x) = 1

t

∑t
i=1 pi(x). Anomalies will have smaller score than normal

instances. We call the proposed unsupervised stochastic forest based anomaly
detection method ‘usfAD’. It is based on the same idea of isolating anomaly
regions from normal regions as used in iforest [4] but using different mechanism
of isolation.

As distance is not involved and trees are construct using median splits, usfAD
is robust to units and scales of measurement. Even though the size of ranges can
be changed with the change in units or scales of measurement, the ordering of
values is either preserved (e.g., logarithmic scale) or reversed (e.g., inverse). If a
point u lies in the range [x, y] in one scale, the corresponding point u′ is expected
to lie in the corresponding range [x′, y′] in another scale. Because of the split at
the mid point of two values in the middle (median in the case of even data), there
will be small variations in the definition of regions in different scales resulting in
small differences in the anomaly detection accuracy.
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Figure 2 shows the contour plots of anomaly scores of every point in a two-
dimensional space using iforest (t = 100, ψ = 256) and usfAD (t = 100, h = 5) in
a dataset in two scales: x and x′ = 1/x. It shows that though iforest can detect
the anomaly in the original space (Fig. 2(b)), it fails to detect the same anomaly
after inverse transformation (Fig. 2(e)). But usfAD has no problem detecting the
anomaly in both scales (see Figs. 2(c) and (f)).

(a) x (b) iforest (c) usfAD

(d) x′ = 1/x (e) iforest (f) usfAD

Fig. 2. Anomaly contours of iforest and usfAD in a two-dimensional dataset in two
different scales. Note that data are normalised to be in the unit range of [0, 1] in each
dimension in all contour plots. The darker the colour, the higher the chances of being
anomaly. Note that the anomaly point represented by the red dot is not considered as
a part of training data D or D′ which includes only the normal instances represented
by blue asterisks. (Color figure online)

In the training phase, usfAD requires to create t trees and update normal data
range in each tree using the entire training data. It’s training runtime complexity
is O(Nth + ψM). Note that ψ = 2h. It needs O(tψM) space to store t trees and
normal range for all M dimensions in each leaf node. In the testing phase, the
runtime complexity of ranking n test instances is O(n(th+M)). Because testing
time is independent of training data size N , it runs faster than LOF and SVM in
datasets with large N . It runs slower than iforest due to the overhead to check
range in each node from the root to a leaf in each tree.

4 Empirical Evaluation

In this section, we present the results of experiments conducted to evaluate the
performance of usfAD against five state-of-the-art anomaly detectors: LOF, one-
class SVM, iforest, Sp and SPAD. We used synthetic and benchmark datasets
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in our experiments. All experiments were conducted in semi-supervised setting
where half of the normal instances in a dataset were used as labelled training
data and the remaining other half of normal data and anomalies are considered
as test data as done in [14]. Anomaly detection model was learned from the
training data and tested on the test data. Area under the ROC curve (AUC)
was used as the performance evaluation measure. For random methods: iforest,
Sp and usfAD, each experiment was repeated 10 times and reported the average
AUC. A significance test was conducted using the confidence interval based on
the two standard errors over 10 runs. The same training and test sets of a dataset
were used for all experiments with the dataset. Feature values are normalised to
be in the unit range of [0, 1] in each dimension.

(a) Gaussians (b) Ring (c) Waves

(d) Corners (e) Spiral (f) Curves

Fig. 3. Two-dimensional synthetic datasets. Each dataset contains 2000 normal
instances represented by blue asterisks and 12 anomalies represented by red dots. (Color
figure online)

We used the implementation of LOF and SVM included in the Scikit-learn
machine learning library [15]. Other methods and experimental setups were
also implemented in Python using the Scikit-learn library. All the experiments
were conducted in a Linux machine with 2.27 GHz processor and 8 GB memory.
Parameters in algorithms were set to suggested values by respective authors:
k = �√N	 in LOF; subsample size ψ = 25 in Sp; number of bins b = �log2 N	+1
in SPAD; and t = 100 and ψ = 256 in iforest. We used the default settings of
SVM. For usfAD, default values of h = 5 and t = 100 were used.
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4.1 Synthetic Datasets

We used six two-dimensional datasets as shown in Fig. 3 to evaluate the robust-
ness of anomaly detection algorithms with different scales of measurement. We
used four order preserving and order reversing transformations of data using
square, square root, logarithm and inverse, where each feature value x was
transformed as x2 and

√
x, log x and 1

x , respectively. Because 1
x and log x are

not defined for x = 0, all transformations were applied on x̂ = c(x + δ) where
δ = 0.0001 and c = 100. Note that the original feature values in both dimensions
were normalised to the unit range of [0, 1] before applying the transformations
to ensure the same effect of δ and c in both dimensions. Once the feature values
were transformed, they were renormalised to be in the unit range again. We used
exactly the same procedure of transformation as employed by [7].

(a) Gaussians (b) Ring (c) Waves

(d) Corners (e) Spiral (f) Curves

Fig. 4. AUC of contending methods in the six synthetic datasets with order preserving
and order reversing transformations of data.

AUC of all contending measures in six synthetic datasets with and without
transformations are presented in Fig. 4. It shows that usfAD produced best or
equivalent to the best results in all cases. It produces similar results in all datasets
with the original feature values and all four transformations. This results show
that it is robust to units and scales of measurement.

All five existing measures were sensitive to transformations of data. Among
them, LOF is the least sensitive. It could be because of the use of relative kthNN
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distance of x to its kNNs’ kthNN distances which captures the contrast in the
locality well even though overall variance of data is changed due to transforma-
tions. Its performance also dropped with inverse and logarithmic transformations
in Waves and Corners. Other four contenders failed to detect all anomalies cor-
rectly even in the original scale in four datasets. It is interesting to note that
some existing methods produced better results with a transformation than in the
original space, e.g., SVM produced best results with the inverse transformation
in Gaussians and Spiral.

Table 1. Benchmark datasets

ID. Name #dim (M) Training size (N) Test data

Total (n) #Anomalies

1. Arrhythmia 274 193 259 66

2. Covertype 10 141650 144398 2747

3. Ionosphere 32 112 239 126

4. Ism 6 5461 5722 260

5. Kddcup99 31 30296 34463 4166

6. Mammography 6 5461 5722 260

7. Miniboone 49 46554 53446 6892

8. Mnist 96 9884 10560 676

9. Mulcross 4 117965 144179 26214

10. Musk2 166 2790 3082 291

11. Pima 8 250 518 268

12. Satellite 36 2199 4236 2036

13. Shuttle 9 22793 26304 3511

14. Smtp 3 47563 47593 30

15. U2r 33 30296 30525 228

4.2 Benchmark Datasets

We used 15 benchmark datasets from UCI machine learning data repository
[16], many of which were used in the iforest and SPAD papers. The properties
of datasets are provided in Table 1. Data in each dimension were normalised to
be in the unit range of [0, 1]. To demonstrate the robustness of usfAD to scales
of measurement, we also evaluated the performance of contending measures in
benchmark datasets with the inverse transformation (x′ = 1/x) which was done
as discussed in Sect. 4.1.

The AUC of all contenders in the 15 benchmark datasets is provided in
Table 2. In the original scale, usfAD produced best or equivalent to the best
result in seven datasets followed by LOF in five, iforest in four, SPAD and SVM
in three each and Sp in one dataset only. usfAD produced significantly better
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AUC than the closest contender in Musk2 (ID 10) - AUC of 0.908 by usfAD
vs that of 0.700 by LOF. The average results in the last row show that usfAD
produced more consistent results than existing methods across different datasets.

Table 2. Anomaly detection performance (AUC) in benchmark datasets in the given
original scale (x) and inverse transformation (x′ = 1/x). First column is the dataset ID
from Table 1. The average AUC over the 15 datasets is provided in the last row. Best
or equivalent to the best results based on the two standard errors confidence interval
of random methods over 10 runs in each scale are underlined.

ID. Given original scale (x) Inverse transformation (x′ = 1/x)

LOF SVM SPAD Sp iforest usfAD LOF SVM SPAD Sp iforest usfAD

1. 0.800 0.810 0.823 0.807 0.826 0.812 0.714 0.751 0.841 0.746 0.816 0.811

2. 0.992 0.921 0.828 0.870 0.848 0.990 0.949 0.622 0.902 0.818 0.968 0.996

3. 0.958 0.816 0.721 0.949 0.896 0.969 0.922 0.834 0.898 0.901 0.929 0.969

4. 0.893 0.843 0.790 0.816 0.883 0.896 0.833 0.457 0.485 0.776 0.645 0.897

5. 0.895 0.997 0.978 0.996 0.995 0.994 0.870 0.986 0.988 0.968 0.993 0.996

6. 0.889 0.850 0.786 0.826 0.880 0.900 0.830 0.463 0.555 0.777 0.652 0.905

7. 0.700 0.685 0.702 0.599 0.750 0.717 0.727 0.548 0.741 0.746 0.745 0.708

8. 0.877 0.824 0.799 0.810 0.835 0.853 0.579 0.721 0.766 0.716 0.771 0.849

9. 1.000 1.000 0.998 1.000 0.999 1.000 1.000 0.973 0.928 0.983 0.973 1.000

10. 0.700 0.195 0.604 0.552 0.427 0.908 0.700 0.579 0.597 0.631 0.585 0.911

11. 0.704 0.706 0.743 0.741 0.754 0.667 0.409 0.579 0.436 0.405 0.454 0.653

12. 0.837 0.651 0.867 0.837 0.793 0.821 0.834 0.655 0.806 0.816 0.799 0.821

13. 0.991 0.987 0.999 0.989 0.997 1.000 0.991 0.979 0.998 0.987 0.996 1.000

14. 0.868 0.728 0.932 0.841 0.883 0.873 0.840 0.785 0.960 0.863 0.929 0.875

15. 0.886 0.987 0.977 0.982 0.986 0.926 0.860 0.976 0.988 0.976 0.987 0.923

Av. 0.866 0.800 0.836 0.841 0.850 0.889 0.804 0.727 0.793 0.807 0.816 0.888

With the inverse transformation, the performance of all existing methods
dropped in many cases. usfAD produced best or equivalent to the best result
in 10 datasets followed by SPAD in four, iforest and LOF in two each, and Sp
in one dataset only. SVM did not produce best or equivalent to the best result
in any dataset. It is interesting to note that some existing methods produced
better results with the inverse transformation than in the original space, e.g.,
LOF, SPAD and Sp in Miniboone (ID 7); iforest, Sp and SVM in Musk2 (ID 10)
etc.

In terms of runtime, usfAD was one order of magnitude faster than LOF and
SVM in large and/or high dimensional datasets. For example, to complete one
run of experiment in Miniboone, usfAD took 440 s whereas LOF and SVM took
2308 s and 1187 s, respectively. However, it was up to one order of magnitude
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slower than Sp, SPAD and iforest. In Miniboone, Sp took 22 s, SPAD took 43 s
and iforest took 83 s.

5 Concluding Remarks

Existing anomaly detection methods largely rely on spatial distances of data
to identify anomalous instances. They may fail to detect anomalies which are
masked due to the use of inappropriate units or scales of measurement. In many
data mining applications, units and scales of feature values are often not provided
where only magnitudes of feature values are given. Thus, an anomaly detection
method which is robust to units and scales of measurement is preferred. In this
paper, we introduce one such technique using unsupervised stochastic forest. Our
empirical results in synthetic and benchmark datasets suggest that the proposed
method is robust to units and scales of measurement and it’s performance is
either better or competitive to existing methods. It produces more consistent
and stable results across a wide rage of data with different order preserving and
order reversing transformations.
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