
DeepAD: A Generic Framework Based
on Deep Learning for Time Series

Anomaly Detection

Teodora Sandra Buda(B), Bora Caglayan, and Haytham Assem

Cognitive Computing Group, Innovation Exchange, IBM, Dublin, Ireland
{tbuda,haythama}@ie.ibm.com, bora.caglayan@ibm.com

Abstract. This paper presents a generic anomaly detection approach
for time-series data. Existing anomaly detection approaches have several
drawbacks such as a large number of false positives, parameters tuning
difficulties, the need for a labeled dataset for training, use-case restric-
tions, or difficulty of use. We propose DeepAD, an anomaly detection
framework that leverages a plethora of time-series forecasting models in
order to detect anomalies more accurately, irrespective of the underly-
ing complex patterns to be learnt. Our solution does not rely on the
labels of the anomalous class for training the model, nor for optimizing
the threshold based on highest detection given the labels in the training
data. We compare our framework against EGADS framework on real and
synthetic data with varying time-series characteristics. Results show sig-
nificant improvements on average of 25% and up to 40−50% in F1-score,
precision, and recall on the Yahoo Webscope Benchmark.

1 Introduction

A well-known characterization of an outlier is given by Hawkins as, “an obser-
vation which deviates so much from other observations as to arouse suspicion
that it was generated by a different mechanism” [10]. An anomaly represents a
non-conforming pattern that deviates from the expected behavior, and is often
referred to as an outlier or exception [5]. Detecting and mitigating these anoma-
lies is fundamental in various domains (e.g., health, performance, security), and
translates to potentially saving lives by detecting critical conditions, revenue and
reputation by avoiding downtime, or improvements in application performance.

A popular approach for anomaly detection is employing explicit general-
ization models [1], where a summarized model is created up front to capture
the normal behavior of the monitored instance, and further using the deviation
between the expected normal behavior and actual behavior as error metric for
anomaly detection. Typically the deviation is then monitored and fitted to a par-
ticular distribution (e.g., Gaussian [13]) and then a threshold is identified based

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Grant Agreement No. 700381 (ASGARD) and
No. 671625 (CogNet).

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 577–588, 2018.
https://doi.org/10.1007/978-3-319-93034-3_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93034-3_46&domain=pdf


578 T. S. Buda et al.

on optimizing the precision and recall in the training data through the use of
past labelled anomalous instances. The use of the labels of the anomalous class,
also referred to as golden labels is a requirement for most of the anomaly detec-
tion techniques, either for identifying a threshold or for building a classifier to
detect anomalies based on anomalous patterns in the past. This however limits
the applicability of these techniques to datasets where these labels have been col-
lected and in addition, many times suffering from the class imbalance problem,
since the normal instances typically overweight the abnormal ones. Moreover,
besides the need for golden labels, existing anomaly detection approaches are
typically suitable for a particular type of data or anomaly to capture, which
makes their application more limited in practice [1,5].

This paper introduces a novel Deep learning-based Anomaly Detection frame-
work, named DeepAD. The DeepAD framework discovers anomalies without the
need of golden labels, while maintaining the highest levels of true anomaly detec-
tion, and reducing the number of false positives compared to the best available
technique. DeepAD employs various explicit generalization models to learn the
normal behaviour of the data and utilizes a dynamic sliding window for determin-
ing a dynamic threshold fitted for each time-series under analysis. The dynamic
window is adjusted for each point to contain past rescaled squared errors to
ensure the accuracy is highest. To the best of our knowledge, DeepAD repre-
sents the first framework of its kind that utilizes multiple advanced prediction
models allowing multivariate inputs without the specific use of golden labels.
The use of multiple models, combined with the dynamic threshold on rescaled
errors increases F1-score, precision and recall beyond the state of art. The key
characteristics of DeepAD are identified below:

1. This framework leverages state-of-the-art deep learning models such as long
short term memory (LSTM) neural networks, which are renown for their
ability to remember relevant information in temporal sequence data even
with large gaps in between using memory gates.

2. The model learns the normal behaviour of the monitored instance and devia-
tions from this normal behaviour are signalled as anomalous data points. The
framework does not use the ground truth of actual anomaly locations neither
for training the model nor for determining the dynamic thresholds.

3. The framework does not set hard thresholds which makes it more adaptable
to varying patterns in the dataset considering an online setting.

4. DeepAD supports multivariate analysis since it can receive as input more
than one feature if needed, e.g., through LSTM, and hence can surpass the
first limitation of approaches limited to univariate analysis.

5. The framework combines the predictions of multiple forecasting techniques,
including autoregressive models and triple exponential smoothing, in order
to offer a generic extensible approach for forecasting.

2 Related Work

Advanced anomaly detection techniques usually employ machine learning, which
can be divided into three classes: supervised, semi-supervised and unsupervised.



DeepAD: A Generic Framework Based on Deep Learning 579

Anomaly detection with supervised learning [9] requires a dataset where each
instance is labelled and typically it involves training a classifier on training set.
Semi-supervised algorithms such as [14] construct a model to represent the nor-
mal behaviour from an input training dataset; following the model is used to
calculate the likelihood of the testing dataset to be generated by the model.
Unsupervised models such as [3] do not require a labelled dataset and operate
under the assumption that the majority of the data points are normal (e.g.,
employing clustering techniques [15]) and return the remaining ones as outliers.

LSTMs have captured the attention of researchers recently in anomaly detec-
tion. For instance, [13] utilize LSTM for predicting time series and use the pre-
diction errors for anomaly detection. They assumed that the resulting prediction
errors have a Gaussian distribution, which were used then to assess the likeli-
hood of anomalous behavior. Then a threshold is learnt based on the validation
dataset to maximize the F-score, which was calculated based on the golden labels
within the validation dataset. The approach was validated on four time series.
Moreover, [6] follows a similar approach applied to ECG time series, where the
prediction errors are fit to a Gaussian distribution, and then the threshold is
determined based on optimizing the F-score on the validation set, which similarly
was calculated based on the given golden labels. Furthermore, [12] utilizes an
LSTM-based encoder-decoder for multi-sensor anomaly detection. When enough
anomalous sequences are available, a threshold is learnt by maximizing precision
and recall. The use of recurrent neural networks is also common for intrusion
detection, such as in [2], with the aim of detecting and classifying attacks. How-
ever, the approaches identified above utilize the golden labels for optimizing the
threshold against the prediction errors or building classifiers.

Two major limitations exist in current techniques: (1) Most approaches, such
as statistical and probabilistic models, are typically suitable only for univariate
datasets where a single metric is monitored at a time. This can be extended to
multiple metrics by building a model for each metric. However, this would not
consider any correlations between metrics. Hence these approaches cannot eas-
ily be extended to multivariate analysis where correlations among metrics can
be used to identify potential anomalous behaviour. This is avoided as DeepAD
can receive as input multiple features, since it can use a single LSTM model
that can capture anomalies across multiple features, which makes it multivari-
ate. (2) Existing approaches typically rely on datasets that contain the ground
truth labels, where the anomalies are specifically pin pointed to a data point.
This can be difficult to gather in real-life scenarios as labelled data is expensive
and requires expert knowledge which yet might be affected by human errors in
labelling the data. Moreover, the amount of data to be monitored and labelled
would be unrealistic. In addition, the initial model might not generalize to new
types of anomalies unless retrained and hence requiring expert knowledge for
the entire duration of the deployment of the anomaly detection model, making
these approaches unrealistic to be deployed in dynamic environments. This is
avoided with our dynamic threshold-based anomaly detection approach since no
labels are required for training or detecting the thresholds.



580 T. S. Buda et al.

3 DeepAD Framework

The DeepAD framework is illustrated in Fig. 1 and has three main phases,
detailed in the following subsections:

1. Time Series Forecasting (TSF): The first phase employs various differ-
ent explicit generalization models. We train the probabilistic and statistical
models and the LSTM models utilizing different architectures for learning
the normal behaviour of the monitored environment and then apply them
on incoming streaming data for scoring. Through this approach, our frame-
work supports plugging in different TSF models and can leverage multivariate
models for forecasting.

2. Merge Predictions (MP): The second phase combines the predictions of
the multiple models, since some techniques provide better results than others
depending on the dataset characteristics. This phase is crucial as it enables
DeepAD to be a generic framework in the sense that it does not depend on
a specific time series forecasting model.

3. Anomaly Detector (AD): The third phase employs extreme value analysis
for computing a dynamic threshold, as follows: it compares the actual values
and the predicted values and when the distance is above a certain threshold
the framework reports the current value as anomalous. The distance repre-
sents the squared error between the actual and predicted value, normalized
between 0 and 1, and the threshold is computed at each time step on the
past scaled squared error. Through this approach, our framework is indepen-
dent of the golden labels and hence can be applied to any time series data
irrespective of them containing anomalous labels in the past.

Fig. 1. DeepAD framework overview.



DeepAD: A Generic Framework Based on Deep Learning 581

(a) TSF+Single-step Merge. (b) TSF+Single-step Merge+AD.

Fig. 2. DeepADMerge: Time series forecasting with single-step merge and AD output
on a sample time series (#90) from A3 benchmark. (color figure online)

3.1 Time Series Forecasting (TSF)

Given a dataset D, the TSF phase aims to learn the normal behavior of the
system under analysis. The output of each TSF model is a one-step ahead pre-
diction which will contain what the value is expected to be at the next times-
tamp. For this purpose, DeepAD supports plugging in different models to enable
the prediction. Currently, DeepAD utilizes the following techniques: Long-short
term memory (LSTM), autoregressive integrated moving average (ARIMA) and
triple exponential smoothing, also commonly referred to in the literature as
Holt-Winters (HW), as the models can complement each other depending on
the dataset. For instance, deep neural networks such as LSTM may provide best
results given large training data, whereas given small datasets, ARIMA and HW
may provide better forecasts.

In the case of LSTM, the look back parameter needs to be specified, which
represents the number of previous time steps to use as input values to predict
the next time step value. DeepAD utilizes the following LSTM architectures:
(i) LSTM simple: 1 hidden layer with n neurons. The following three variations
of this architecture were plugged into DeepAD: n = {4, 10, 16}, (ii) LSTM wide: 3
hidden layers with 64, 256, and 100 neurons, respectively, and (iii) LSTM deep: 7
hidden layers with 16, 48, 48, 96, 96, 48, and 16 neurons, respectively. The
objective is to use simple, wide and deep architectures. For the each architecture
we have trained two models, one with a look back of 1 and another with a
look back of 3, respectively, and for all we have used rmsprop1 as optimizer, since
these resulted in the lowest RMSE. We also evaluated the following look back
variations: 1, 3, 12, 24, 60.
1 http://ruder.io/optimizing-gradient-descent/index.html#rmsprop.

http://ruder.io/optimizing-gradient-descent/index.html#rmsprop


582 T. S. Buda et al.

Furthermore, in the case of ARIMA and HW, DeepAD utilizes the past 24 ·5
values for forecasting, in case of hourly measurements, which leads to utilizing
the past 5 days of data for the next prediction. In particular for ARIMA we
utilize the following values for building the different models: p = {0,1}, d = {1},
and q = {1,2}, where p is the number of time lags of the autoregressive model,
d is the degree of differencing, and q is the order of the moving-average model.
Moreover, for HW we utilize: α = 1, β = 0, γ = 0.7 and α = 0.716, β = 0.029,
γ = 0.993, since these resulted in the lowest RMSE. For both ARIMA and HW,
more models can be plugged in with other parameters values combinations.

We illustrate the outputs of the TSF phase in Fig. 2a, where the Actual values
are highlighted with orange, and the Predicted with blue. In this phase, we can
observe that the predicted values typically follow the actual values, except for
most of the sudden spikes in the data.

3.2 Merging Predictions (MP)

Similarly to an ensemble, the second phase combines the predictions of the mul-
tiple models following two distinct approaches:

1. Single-step merge (DeepaADMerge): This strategy aims to combine the out-
puts of multiple models in order to get a more accurate forecast for a single
dataset. For this purpose, this strategy compares the predicted values pro-
duced by each individual model with the actual value and selects the predic-
tion with the lowest RMSE to forward to the AD phase at each timestamp.

2. Vote (DeepaADV ote): This strategy aims to select the use of a single model
for a given dataset. For this purpose, this strategy follows a voting approach,
keeping only the model that provided the most accurate predictions in terms
of RMSE for the training dataset to be utilized further for forecasting.

3.3 Anomaly Detector (AD)

Once the predictions are merged, a dynamic threshold is determined based on
the squared error as follows: for each predicted value, a queue representing the
sliding window of the previous squared errors is maintained. A scaler is applied
to fit and transform the past squared errors from the sliding window between 0
and 1. In order to ensure DeepAD is not bound to the underlying distribution
of the errors, we leverage Chebyshev’s inequality [7]. In contrast to the 68-95-99
rule, also referred to the empirical rule [8], which applies to normal distributions
only, the Chebyshev’s inequality guarantees that, for a wide class of probability
distributions, no more than a certain fraction of values can be more than a
certain distance from the mean. In order to allow our framework to work with
a variety of distributions, we utilize this inequality to determine the threshold.
We identify that 99%(i.e., 1 − 1

102 ) of the values must lie within 10 times the
standard deviation, and hence to identify the <1% that might lie outside, we
use 10 times the standard deviation of the errors as dynamic threshold. This



DeepAD: A Generic Framework Based on Deep Learning 583

Algorithm 1. isAnomaly(actualV alue, pastV alues, squaredErrors,
predictedV alue, look back, slidingWindow)
1 scaler ← MinMaxScaler(feature range = (0, 1)));
2 //Rescale errors from sliding window for dynamic threshold fitting;
3 scaledSErrors ← scaler.fitTransform(squaredErrors[−slidingWindow :]);
4 //Compute dynamic threshold as 10 times standard deviation;
5 dynamic thresh ← 10 · numpy.std(scaledErrors);
6 //Calculate squared error and apply transformation on current error

crtSError ← (actualV alue − predictedV alue) ∧ 2;
7 crtScaledSError ← scaler.transform(crtSError);
8 //If current error bigger than dynamic threshold signal return True;
9 if crtScaledSError ≥ dynamic thresh then return True // Otherwise add

non scaled squared error to the queue;
10 squaredErrors ← squaredErrors.put(crtSError);
11 return False

confirmed optimum results for detecting anomalies across the 367 time series
analysed in Sect. 4.

Following, if the squared error of the predicted value is higher than 10 times
the standard deviation of the previous squared scaled errors then the module
signals the instance as anomalous. Hence the squared errors and threshold are
dynamic and generally change at every prediction to adapt for the new values
and increase accuracy. The module is set to wait for a period of 50 timestamps
before calculating the standard deviation in order to make sure the standard
deviation calculated has sufficient values to derive it and also that there are
not too many false positives reported at the beginning runtime of AD. This
wait period is a tuneable parameter, however we observed that waiting for 50
timestamps was sufficient for the considered datasets. The step is described in
Algorithm 1. Moreover, we illustrate the output of the AD phase in Fig. 2b,
where the upper part of the diagram illustrates the TSF outputs (i.e., the actual
and predicted values), and the lower part of the diagram illustrates AD outputs,
i.e., the squared error (SError) and the anomaly label (AnomalyLabel), which
is 1 for detected anomalous data points and 0 for normal points. The dashed
vertical lines represent the actual anomalous instances from the ground truth. We
observe that the AnomalyLabel produced by DeepADMerge follows the dashed
lines either at the time of the anomaly or slightly after.

4 Evaluation

This section presents the evaluation of our proposed framework DeepAD. We
compare our framework to a recently published generic and scalable anomaly
detection framework called EGADS [11], since it follows similar steps to
DeepAD for detecting anomalies. The framework compares against the Anomaly



584 T. S. Buda et al.

Detection R library2 released by Twitter, change point methods, and outlier
detectors with static threshold, on the Yahoo Webscope Benchmark, claiming to
provide highest accuracy levels, irrespective of the dataset.

In addition, we compare DeepADMerge and DeepADV ote against the results
of three of the individual TSF models coupled with the AD based on dynamic
threshold. In this way, we illustrate the benefits of the MP phase of our frame-
work compared to each individual TSF model. Since ARIMA+AD and HW+AD
showed similar results across all evaluation metrics, we only illustrate the results
of ARIMA+AD, further denoted by DeepADARIMA. In addition, we illustrate
the results of the simple and deep LSTM architectures, denoted further by
DeepADLSTM−S and DeepADLSTM−D, as each was more suitable for a par-
ticular dataset, based on the evaluation metric.

Finally, we ranked the performances of the six compared approaches based
on the evaluation metrics. We chose modified competition ranking as ranking
methodology (also known as “1334” ranking). In this ranking methodology, a
model’s rank is equal to the lowest rank of the model(s) it has a tie with. The
modified competition ranking approach guarantees that: (a) The results of the
ranking would be deterministic, (b) The best model would be ranked 1st and the
worst model would be ranked 6th for all of the datasets, thus making it possible
to aggregate the results.

4.1 Dataset

We utilized the Yahoo Webscope Benchmark3 for our evaluation since this bench-
mark has been widely referenced in the community and consists of a wide set of
time-series with tagged anomaly points. The benchmark is suitable for testing
the detection accuracy of various anomaly-types including outliers and change-
points. The benchmark consists of a total of 367 time series, split into four main
benchmarks. The A1 Benchmark is based on the real production traffic to some
of the Yahoo properties. The other three benchmarks are based on synthetic
time-series. A2 and A3 Benchmarks include outliers, while the A4 Benchmark
includes change-point anomalies. The synthetic time-series generated have vary-
ing length, magnitude, number of anomalies, anomaly type, anomaly magnitude,
noise level, trend and seasonality. The real dataset is comprised of Yahoo Mem-
bership Login (YML) data and it tracks the aggregate status of user logins to the
Yahoo network. Both the synthetic and real time-series contain 3000 data-points
each, which for the YML data represents 3 months worth of data-points.

4.2 Evaluation Metrics

We evaluate the techniques based on the standard measures of precision, recall
and F1-score. Furthermore, we evaluate the early detection of a technique with

2 https://github.com/twitter/AnomalyDetection.
3 Yahoo! Webscope dataset ydata-labeled-time-series-anomalies-v1 0. http://

webscope.sandbox.yahoo.com.

https://github.com/twitter/AnomalyDetection
http://webscope.sandbox.yahoo.com
http://webscope.sandbox.yahoo.com


DeepAD: A Generic Framework Based on Deep Learning 585

the Ed-score defined in [4]. The Ed-score evaluates how early an anomaly was
detected relative to the anomaly window. The Ed-score is between 0 and 1,
where 1 represents that the anomaly was discovered at the beginning of the
interval and 0 at the end of the interval. In this way, the techniques are compared
against even if they discover the anomaly after it had occurred (i.e., Ed-score
less than 0.5). The Ed-score is relative to the time interval, i.e., a 10% increase in
Ed-score means that a technique detected an anomaly 10% of the time interval
earlier on average.

4.3 Results

Figure 3a, b, and c present the DeepAD results compared to EGADS for
F1-score, precision and recall, respectively. First, we observe that DeepAD
achieves an improvement on average across all datasets as follows by metric:
(i) F1-score: 26%, with a median improvement from 2% in A1 to 40% and 44%
in A3 and A4, respectively, (ii) precision: 25%, with a median improvement from
−13% in A1 to 50% in A4, and (iii) recall: 24%, with a median improvement
from 0 in A2 to 53% in A4. Note that only for A1 in the case of precision, EGADS

(a) F1-score. (b) Precision.

(c) Recall. (d) Ed-score.

Fig. 3. Evaluation results in terms of F1-score, precision, recall and early detection
score.



586 T. S. Buda et al.

achieves a higher median by 13% compared to DeepAD. This suggests that the
framework may be biased towards some datasets than others. However, it can
be observed from Fig. 3c that the higher median in precision resulted in a less
stable and lower median for recall for EGADS in A1. Second, we observe that the
performance of some individual TSF models is unstable across different datasets
for various evaluation metrics: e.g., for the A1 benchmark consisting of real time
series, DeepADLSTM−D provides better results than DeepADLSTM−S in terms
of recall in Fig. 3c, however it provides worse results for the other benchmarks.
DeepADMerge and DeepADV ote aim to address this commonly found challenge
of instability through their ensemble strategy by employing multiple prediction
models and results show a more stable performance across datasets and evalua-
tion metrics. Third, depending on the requirements, different MP strategy can
be followed: (i) DeepADMerge typically maintains a higher level of recall than
DeepADV ote for all datasets due to picking the closest prediction to the actual
value at each timestamp, since for the true anomalies typically the TSF predic-
tions are far from the actual value which is expected, and (ii) DeepADV ote typ-
ically maintains a higher level of precision than DeepADMerge for all datasets,
since it avoids the case of low RMSE TSF models that don’t quite learn the
underlying patterns but report close to actual values at each time stamp (e.g., a
model that learns that the next timestamp has a close value to the current one).

Furthermore, Fig. 3d illustrates the early detection score for all techniques.
We observe that for the A1 benchmark, the models powered by AD have reached
a median of 0.51, compared to 0.34 for EGADS, as the A1 corresponds to the
real dataset contain more dynamic realistic patterns. In A2, the performance
of the models was very close, with EGADS reaching an Ed-score higher with
0.04 than the rest of the models. However, for A3 and A4 none of the models
managed to reach a higher value than 0.5, with a median up to 0.44 in A3
and 0.42 in A4 for DeepAD and 0.3 in A3 and 0.17 in A4 for EGADS, leading
to the observation that most anomalies have been detected slightly after their
occurrence. We observe that in general DeepAD outperforms EGADS in terms
of early detection score across all benchmarks reaching the highest difference
of 0.24 in A4.

Figure 4 shows the distribution of ranks for the four performance measures
and for all datasets. The figure illustrates the number of datasets for which a
model scored a rank between 1 and 6, where rank 1 represents the best model
and rank 6 represents the worst model for a given dataset. It should be noted
that each model has one or more wins (i.e., rank 1) and one or more lowest rank
(i.e., rank 6) for all of the performance measures. This result shows that there
is no model that categorically perform best or worst. However, the distribution
illustrates the probability of lower and higher rankings. EGADS had the lowest
number of wins for and highest number of lowest ranks among the six models
based on F1-score, precision and recall. Surprisingly, for Ed-score, EGADS has
both the highest number of wins and highest number of lowest rank cases. This
suggests once again that EGADS may be biased towards certain datasets. For
all the performance measures, EGADS has the lowest median and mean rank



DeepAD: A Generic Framework Based on Deep Learning 587

Fig. 4. Modified competition ranking of the models for all datasets

overall. EGADS had a mean rank of 4.67 for F1-score, 3.30 for recall, 4.59 for
precision and 3.36 for Ed-score. EGADS had a median rank of 6 for F1-score
and precision, 3 for recall and 4 for Ed-score. Lastly, we found that the rank
distribution of EGADS is significantly lower than all the other models based on
DeepAD using Wilcoxon test (P < 0.001). This result shows that on the con-
sidered benchmark datasets, picking EGADS would not be the optimal choice.
Moreover, the median rankings for all the DeepAD models are 1 for precision,
recall and F1-score and 2 for Ed-score. The mean ranking difference between
the best and worst DeepAD model is less than 1, which shows similar ranking
across all DeepAD models.

5 Conclusion

This paper presented a generic anomaly detection framework based on deep-
learning (DeepAD) that does not utilize the prior knowledge of the anomalous
class neither for training the model nor for determining the threshold. We com-
pared our framework against a state-of-the-art anomaly detection framework
EGADS [11] on the Yahoo Webscope Benchmark. We observed that DeepAD
generally outperformed and outranked the EGADS framework in terms of early



588 T. S. Buda et al.

detection score, precision, recall and F1-score. As future work, we plan to plug
in other TSF models into the framework, such as convolutional neural networks
which can be leveraged in spatiotemporal datasets.

References

1. Aggarwal, C.C.: An introduction to outlier analysis. In: Outlier analysis, pp. 1–40.
Springer, New York (2013)

2. Al-Jarrah, O., Arafat, A.: Network intrusion detection system using neural network
classification of attack behavior. J. Adv. Inf. Technol. 6(1) (2015)

3. Amer, M., Goldstein, M., Abdennadher, S.: Enhancing one-class support vector
machines for unsupervised anomaly detection. In: ACM SIGKDD, pp. 8–15 (2013)

4. Buda, T.S., Assem, H., Xu, L.: Ade: an ensemble approach for early anomaly
detection. In: IFIP/IEEE IM, pp. 442–448 (2017)

5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

6. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-
term memory networks. In: IEEE DSAA, pp. 1–7 (2015)

7. Dixon, W.J., Massey Frank, J.: Introduction to Statistical Analsis. McGraw-Hill
Book Company Inc., New York (1950)

8. Dunlop, N.: Statistical Calculations, pp. 203–224. Apress, Berkeley (2015)
9. Görnitz, N., Kloft, M.M., Rieck, K., Brefeld, U.: Toward supervised anomaly detec-

tion. J. Artif. Intell. Res. 46, 235–262 (2013)
10. Hawkins, D.M.: Identification of outliers, vol. 11. Springer, Netherlands (1980)
11. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable framework for automated

time-series anomaly detection. In: ACM SIGKDD, pp. 1939–1947 (2015)
12. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.:

LSTM-based encoder-decoder for multi-sensor anomaly detection (2016). arXiv
preprint arXiv:1607.00148

13. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks
for anomaly detection in time series. In: ESANN (2015)

14. Noto, K., Brodley, C., Slonim, D.: Frac: a feature-modeling approach for semi-
supervised and unsupervised anomaly detection. Data Min. Knowl. Discov. 25(1),
109–133 (2012)

15. Rajasegarar, S., Leckie, C., Palaniswami, M.: Hyperspherical cluster based dis-
tributed anomaly detection in wireless sensor networks. J. Parallel Distrib. Com-
put. 74(1), 1833–1847 (2014)

http://arxiv.org/abs/1607.00148

	DeepAD: A Generic Framework Based on Deep Learning for Time Series Anomaly Detection
	1 Introduction
	2 Related Work
	3 DeepAD Framework
	3.1 Time Series Forecasting (TSF)
	3.2 Merging Predictions (MP)
	3.3 Anomaly Detector (AD)

	4 Evaluation
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Results

	5 Conclusion
	References




