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PC Chairs’ Preface

With its 22nd edition in 2018, the Pacific-Asia Conference on Knowledge Discovery
and Data Mining is the second oldest conference and a leading venue in the area of
knowledge discovery and data mining (KDD). It provides a prestigious international
forum for researchers and industry practitioners to share their new ideas, original and
latest research results, and practical development experiences from all KDD-related
areas, including data mining, data warehousing, machine learning, artificial intelli-
gence, deep learning, databases, statistics, knowledge engineering, visualization, and
decision-making systems.

This year, we received 592 valid submissions, which is the highest number of
submissions in the past 10 years. The diversity and reputation of PAKDD were also
evident from the various regions from which submissions came, with over 25 different
countries, noticeably from North America and Europe. Our goal was to continue to
ensure a rigorous reviewing process with each paper assigned to one Senior Program
Committee (SPC) member and at least three Technical Program Committee
(TPC) members, resulting in an ideal minimum number of reviews of four for each
paper. Owing to the unusually large number of submissions this year, we had to
increase almost doubling the number of committee members, resulting in 72 SPC
members and 330 TPC members. Each valid submission was reviewed by three PC
members and meta-reviewed by one SPC member who also led the discussion. This
required a total of approximately 2,000 reviews. The program co-chairs then consid-
ered recommendations from the SPCs, the submission, and the reviews to make the
final decision. Borderline papers were discussed intensively before final decisions were
made. In some cases, additional reviews were also requested.

In the end, 164 out of 592 papers were accepted, resulting in an acceptance rate of
27.9%. Among them, 58 papers were selected for long presentation and 107 papers
were selected for regular presentation. This year, we introduced a new track in Deep
Learning for Knowledge Discovery and Data Mining. This track was particularly
popular (70 submissions); however, in the end, the number of papers accepted as the
primary category for this track was moderate (six accepted papers), standing at 8.8%.
The conference program contained 32 sessions in total. Long presentations were
allocated 25 minutes and regular presentations 15 mins. These two types of papers,
however, are not distinguished in the proceedings.

We would like to sincerely thank all SPC members, TPC members, and external
reviewers for their time, effort, dedication, and services to PAKDD 2018.

April 2018 Dinh Phung
Vincent S. Tseng



General Chairs’ Preface

Welcome to the proceedings of the 22nd Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD). This conference has a reputable tradition in
bringing researchers, academia, developers, practitioners, and industry together with a
focus on the Pacific-Asian regions. This year, PAKDD was held in the wonderful city
of Melbourne, Australia, during June 3–6, 2018.

The single most important element of PAKDD is the technical contributions and
submissions in the area of KDD. We were very pleased with the number of submis-
sions received this year, which was well close to 600, showing a significant boost in the
number of submissions and the popularity of this conference. We sincerely thank the
many authors from around the world who submitted their work to the PAKDD 2018
technical program as well as its data competition and satellite workshops. In addition,
PAKDD 2018 featured three high-profile keynote speakers: Professor Kate
Smith-Miles, Australian Laureate Fellow from Melbourne University; Dr. Rajeev
Rastogi, Director of Machine Learning at Amazon; and Professor Bing Liu from the
University of Illinois at Chicago. The conference featured three tutorials and five
satellite workshops in addition to a data competition sponsored by the Fourth Paradigm
Inc. and ChaLean.

We would like to express our gratitude to the contribution of the SPC, TPC, and
external reviewers, led by the program co-chairs, Dinh Phung and Vincent Tseng. We
would like to thank the workshop co-chairs, Benjamin Fung and Can Wang; the tutorial
co-chairs, Wray Buntine and Jeffrey Xu Yu; the competition co-chairs, Wei-Wei Tu
and Hugo Jair Escalante; the local arrangements co-chairs, Gang Li and Wei-Luo; the
publication co-chairs, Mohadeseh Ganji and Lida Rashidi; the Web and content
co-chairs, Trung Le, Uyen Pham, and Khanh Nguyen; the publicity co-chairs,
De-Chuan Zhan, Kozo Ohara, Kyuseok Shim, and Jeremiah Deng; and the award
co-chairs, James Bailey, Bart Goethals, and Jinyan Li.

We are grateful to our sponsors: Deakin University as the host institution and gold
sponsor; Monash University as the gold sponsor, University of Melbourne, Trusting
Social, and the Asian Office of Aerospace Research and Development/Air Force Office
of Scientific Research as silver sponsors, Springer as the publication sponsor, and the
Fourth Paradigm, CodaLab and ChaLearn as the data competition sponsors.

April 2017 Tu-Bao Ho
Geoffrey I. Webb
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Classifier Risk Estimation Under Limited
Labeling Resources

Anurag Kumar(B) and Bhiksha Raj

Carnegie Mellon University, Pittsburgh, PA 15213, USA
{alnu,bhiksha}@cs.cmu.edu

Abstract. Evaluating a trained system is an important component
of machine learning. Labeling test data for large scale evaluation of a
trained model can be extremely time consuming and expensive. In this
paper we propose strategies for estimating performance of a classifier
using as little labeling resource as possible. Specifically, we assume a
labeling budget is given and the goal is to get a good estimate of the clas-
sifier performance using the provided labeling budget. We propose strate-
gies to get a precise estimate of classifier accuracy under this restricted
labeling budget scenario. We show that these strategies can reduce the
variance in estimation of classifier accuracy by a significant amount com-
pared to simple random sampling (over 65% in several cases). In terms
of labeling resource, the reduction in number of samples required (com-
pared to random sampling) to estimate the classifier accuracy with only
1% error is high as 60% in some cases.

1 Introduction

The process of applying machine learning for a problem is usually a two phase
process; the training phase, which involves learning meaningful models using the
training data and the testing phase where the learned models are evaluated on
an unseen dataset to estimate how well they perform. For classification prob-
lems, this would involve training a classifier and then obtaining accuracy of the
classifier on test data. Labeled data are required in both phases. Labeling data
is a tedious and expensive procedure and it is desirable to reduce the amount of
labeling effort as much as possible.

There have been concrete efforts to reduce the dependence on labeled data for
training by developing unsupervised and semi-supervised machine learning algo-
rithms [8]. However, irrespective of the method employed in the training phase,
the testing phase always requires labeled data to compute classifier accuracy. In
several cases, it is almost impossible to label the whole test data because of its
enormous size. To reduce the labeling effort in this phase, we need methods to
precisely estimate classifier accuracy by labeling only a small fraction of the test

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-93034-3 1) contains supplementary material, which is
available to authorized users.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-93034-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93034-3_1&domain=pdf
https://doi.org/10.1007/978-3-319-93034-3_1
https://doi.org/10.1007/978-3-319-93034-3_1


4 A. Kumar and B. Raj

data. This restricted labeling budget evaluation is important in this era of big
data. It can be immediately applied to text classification or multimedia event
classification systems deployed to work on the web.

The simplest solution to the above problem is to randomly select instances
for labeling and then estimate the accuracy using the selected labeled set. To
be able to do better than random sampling, a sampling or instance selection
strategy is required. This might make it appear similar to active learning [17].
However, active learning is built around classifier training; the problem of clas-
sifier evaluation is very different from it. Sampling in active learning is done for
classifier training such that classifier performance improves by using the new
labeled sample. In our case, however, sampling needs to be done such that the
estimate of classifier performance improves with new samples. The classifier is
a black box and the training phase is immaterial in this problem. Moreover,
this problem is completely different from cross validation or any such method
employed to measure the goodness of the classifier during the training phase.

Considering the importance of this problem, very few efforts have been made
to address the constraints posed by labeling costs during the classifier evaluation
phase. Very few works have looked into it. Some attempts have been made
towards unsupervised evaluation of multiple classifiers [6,10,14]. However, these
methods are feasible only if multiple classifiers are present. In contrast, our
focus is on the more general and practical case where the goal is to estimate the
accuracy of a single classifier without the aid of any other classifier. Since, the
labeling resources are limited, we need sampling strategies (for labeling) such
that the accuracy estimated on the sampled set is a close approximation of true
accuracy. Simple random sampling leads to high variance in estimates, which
may result in large errors in estimation of classifier accuracy.

Few works have looked into sampling techniques for classifier evaluation [2,7,
11,15]. Our proposed solution to the above problem is Stratified Sampling, which
is a well known concept in statistics [3]. In stratified sampling the idea is to divide
the data into different strata and then sample a certain number of instances
from each stratum. This process usually leads to lower variance of estimated
variable. [2,7] also used stratification for estimating classifier accuracy. However,
several important aspects are missing in these works, such as theoretical and
empirical study of the variances of the estimators and thorough investigation
into stratification and allocation strategies.

There are several novel contributions of this work. (1) We establish variance
relationships for accuracy estimators for both random sampling and stratified
sampling. The variance relations allow us to analyze stratified sampling for accu-
racy estimation in theory, and also helps in thorough analysis of results empir-
ically; leading to a comprehensive understanding. (2) We propose 2 strategies
for practically implementing Optimal allocation in stratified sampling. Our pro-
posed novel iterative method for optimal allocation offers several advantages over
the non-iterative implementation of optimal allocation policy. (3) On the strat-
ification front, we employ panoply of stratification methods and analyze their
effect on the variance of estimated accuracy. Besides stratification methods from
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statistics literature, we also propose to use clustering methods for stratification.
We also delve into factors such as number of strata during stratification. (4) In
our empirical analysis, we employ both probabilistic as well as non-probabilistic
classifiers and show that our method can work on both. (5) Moreover, we also
study how the true accuracy of classifier affects its estimation through sampling.

2 Problem Formulation

Let D be a dataset of N instances, x i and li represents instances and its true
label respectively. We want to estimate the accuracy of a trained classifier C
on dataset D. The score output of the classifier on x i is C(x i) and the label
predicted by C for x i is l̂i. Let ai be instance specific correctness measure such
that ai = 1 if li = l̂i, otherwise ai = 0. Then the true accuracy, A, of the classifier
over D can be expressed as A =

∑N
i=1 ai

N . This is nothing but the population mean
of variable ai where D represents the whole population. To compute A, we need
to know li for all i = 1 toN . Our problem is to estimate the true accuracy A of C
under constrained labeling resources, meaning only a small number of instances,
n, can be labeled. Hence, the samples for labeling should be chosen intelligently.
Mathematically, we require an unbiased estimator of A with minimum possible
variance for a given n.

3 Estimation Methods

3.1 Simple Random Sampling

The trivial solution for the problem described in Sect. 2, is to randomly select
n instances or samples and ask for labels for these instances. This process is
called simple random sampling which we will refer to as random sampling for
convenience. The correctness measure ai can be computed for the selected n
instances, using which we can obtain an estimate of A.

The estimate of the accuracy is the mean of ai over the sampled set,
Âr =

∑n
i=1 ai

n . Âr is an unbiased estimator of A and the variance of Âr is

given by V (Âr) = S2

n , where S2 =

N∑

i=1
(ai−A)2

N−1 . S2 is the variance of ai over
D. The variance formula above will include a factor 1 − n

N if sampling without
replacement. For convenience we will assume sampling with replacement in our
discussion and hence this term will not appear. The following lemma establishes
the variance S2 of ai in terms of A.

Lemma 1. S2 for ai is given by S2 = N
N−1 ·A(1−A). Lemma 1 is fairly simple

to establish and we escape the proof due to space constraints.

Using Lemma 1 for V (Âr), the variance of random sampling based estimator of
accuracy, V (Âr) = N A(1−A)

(N−1) n . Since A is unknown, we need an unbiased estimate

of V (Âr) for empirical evaluation of variance. An unbiased estimate of S2 can
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be obtained from a sample of size n by s2 =
∑n

i=1(ai−Âr)2

n−1 . Following Lemma 1,
we can obtain

s2 =
n

n − 1
· Âr(1 − Âr) (1)

Proposition 1. The unbiased estimate of variance of accuracy estimator Âr,
is given by v(Âr) = Âr(1−Âr)

n−1 .

Proposition 1 follows from Eq. 1. The estimated accuracy becomes more precise
as n increases due to decrease in variance with n. The goal is to achieve more
precise estimation or lower variance estimate for a given n.

3.2 Stratified Sampling

Let us assume that the instances in D have been stratified into K sets or strata.
Let D1, . . . ,DK be those strata. The stratification is such that D1 ∪ D2 ∪ . . . ∪
DK = D and Dj ∩ Dk = ∅, where, j �= k, 1 ≤ j ≤ K, 1 ≤ k ≤ K. All instances
belong to only one stratum. The number of instances in strata Dk is Nk and∑K

k=1 Nk = N . The simplest form of stratified sampling is stratified random
sampling in which samples are chosen randomly and uniformly from each stra-
tum. If the labeling resource is fixed at n then nk instances are randomly chosen
from each stratum such that

∑K
k=1 nk = n.

In contrast to random sampling, the estimate of accuracy by stratified random
sampling is given by Âs =

∑K
k=1

Nk

N Âr
k =

∑K
k=1 WkÂ

r
k. Â

r
k = 1

nk

∑nk

i=1 ai and
Wk = Nk/N are the estimated accuracy in kth stratum and weight of kth stratum
respectively. The superscript r denotes that random sampling is used to select
instances within each stratum.

It is straightforward to show that Âs is an unbiased estimator of A. Under
the assumption of independent sampling for each stratum, the variance of Âs is
V (Âs) =

∑K
k=1 W

2
kV (Âr

k). Since sampling within a stratum is random,

Proposition 2. The variance of stratified random sampling estimator of accu-
racy, Âs, is given by

V (Âs) =
K∑

k=1

W 2
k

S2
k

nk
=

K∑

k=1

W 2
k

Nk Ak(1 − Ak)
(Nk − 1) nk

(2)

S2
k = Nk Ak(1−Ak)

(Nk−1) is the variance of the ai’s in kth stratum. Ak is the true accu-

racy in the kth stratum and clearly,
∑K

k=1 WkAk = A. Similarly, Proposition 1
can be applied to obtain an unbiased estimator of V (Âs).

Proposition 3. The unbiased estimate of variance of Âs is

v(Âs) =
K∑

k=1

W 2
k

s2k
nk

=
K∑

k=1

W 2
k

Âr
k(1 − Âr

k)
(nk − 1)

(3)
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The variance for stratified sampling is related to two important factors (1)
Stratification of D (2) Allocation of labeling resource n to each strata (nk). Since
optimal stratification methods usually depend on the allocation method to be
used, we discuss the allocation aspect first.

3.3 Allocation Methods for Stratified Sampling

Proportional (PRO) Allocation: In proportional allocation the total labeling
resource n is allocated proportional to the weight of the stratum. This implies
nk = Wk × n. Substituting this value in Eq. 2, the variance of Âs under propor-
tional allocation, Vpro(Âs), is

Vpro(Âs) =
1
n

K∑

k=1

WkS
2
k =

1
n

K∑

k=1

Wk
Nk Ak(1 − Ak)

(Nk − 1)
(4)

The unbiased estimate of Vpro(Âs) can be similarly obtained. Stratified random
sampling with proportional allocation is fairly easy to implement. We compute
nk and then sample and label nk instances from kth stratum to obtain an esti-
mate of accuracy Ak.

Equal (EQU) Allocation: In Equal allocation the labeling resource is allo-
cated equally among all strata. This implies nk = n/K, again straightforward
for practical purposes. Under equal allocation the variance of estimator Âs is

Vequ(Âs) =
K

n

K∑

k=1

W 2
kS

2
k =

K

n

K∑

k=1

W 2
k

Nk Ak(1 − Ak)
(Nk − 1)

(5)

Optimal (OPT) Allocation: For a fixed labeling resource n, optimal allo-
cation obtains the most precise estimate of accuracy using stratified sampling.
The allocation of n minimizes the variance of the estimate [3]. It factors in both
the stratum size and variance within stratum for labeling resource allocation [3].
The labeling resource allocated to each stratum is given by nopt

k = n WkSk∑K
k=1 WkSk

.

Using this value in Eq. 2 the variance of Âs comes out as,

Vopt(Âs) =

(
K∑

k=1
WkSk

)2

n =

[
K∑

k=1
Wk

(
Nk Ak(1−Ak)

(Nk−1)

) 1
2

]2

n (6)

A larger stratum or a stratum with higher variance of ai or both is expected
to receive more labeling resource compared to other strata. Thus, a homogeneous
stratum (low variance) gets fewer samples for accuracy estimation compared to
high variance stratum. However, practical implementation of optimal allocation
is not as straightforward as the previous two methods. The true accuracies Ak’s
and hence S2

k are unknown, implying we cannot directly obtain values of nk. We
propose two methods for practical implementation of optimal allocation policy.
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Algorithm 1. OPT-A2 Allocation Method
1: procedure OPT-A2(D1, . . . ,Dk,nini,nstep)
2: Randomly Select and Label nini instances from each stratum
3: Estimate Ak and S2

k for each strata
4: nrem = n − (K ∗ nini)
5: while nrem > 0 do
6: ncurr = min(nstep, nrem)
7: Allocate ncurr among strata using current estimate of S2

k for nopt
k

8: Select and label new instances from each stratum according to allocation
of ncurr in previous step

9: Update estimates of Ak and S2
k for all k

10: nrem = nrem − ncurr

11: end while
12: end procedure

OPT-A1 - In the first method, an initial estimate of all Ak’s are obtained by
spending some labeling resources on each stratum. nini instances are randomly
chosen instances from each stratum for labeling. Then, an unbiased estimate of
S2
k for kth stratum is obtained by Eq. 1. These unbiased estimates are used to

allocate rest of the labeling resource (n−K∗nini) according to optimal allocation
policy given by nopt

k . Estimates of Ak are then updated by sampling the allocated
labeling resource for each stratum.

In theory, optimal allocation is expected to give the minimum possible vari-
ance in accuracy estimation. However, allocation of n according to OPT-A1
heavily depends on initial estimates of S2

k in each stratum. If nini is small, a
good estimate of S2

k might not be obtained, which might result in an allocation
far from true optimal allocation policy. On the other hand, if nini is large, we
essentially end up spending a large proportion of the labeling resource in a uni-
form fashion which is same as equal allocation. Hence, the gain in preciseness or
reduction in variance might not be obtained. Practically, it leaves us wondering
about value of parameter nini.

To address this problem we propose another method for optimal allocation
called OPT-A2. OPT-A2 is an iterative form of OPT-A1. The steps for OPT-
A2 are described in Algorithm 1. In OPT-A2 nini is a small reasonable value.
Instead of allocating all of the remaining labeling resource in the next step, we
adopt an iterative formalism. In this iterative formalism, we allocate a fixed nstep

labeling resources among the strata in each step. This is followed by an update
in estimate of Ak and S2

k. The process is repeated till we exhaust our labeling
budget. We later show that results for OPT-A2 are not only superior compared
to OPT-A1 but also removes concerns regarding parameter tuning (nini).

3.4 Comparison of Variances

The variance results can be established under two cases; (1) 1/Nk � 1 and
(2) the first one does not hold. 1/Nk � 1 is the more practical case which we
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are expected to encounter in classifier evaluation problems. For 1/Nk � 1, it
can be easily established that, V (Âr) ≥ Vpro(Âs) ≥ Vopt(Âs). However, no such
theoretical guarantee can be established for equal allocation.

First, we consider the cases of V (Âr) and Vpro(Âs). For 1/Nk � 1, Nk/

(Nk −1) and N/(N −1) ≈ 1. Then the difference between V (Âr) and Vpro(Âs) is

V (Âr) − Vpro(Âs) = 1
n [A(1 − A) −

K∑

k=1

WkAk(1 − Ak)] = 1
n

K∑

k=1

Wk(Ak − A)2 (7)

The above relation uses the fact that A =
∑

WkAk and
∑

Wk = 1. Stratification
in which accuracy of the strata are very different from each other will have higher
difference between V (Âr) and Vpro(Âs). Hence, stratification which results in
higher variance of Ak will lead to higher reduction in the variance of accuracy
estimator. The worst case is when Ak = A ∀k, and in this case stratified sampling
with proportional allocation will not give any variance reduction over random
sampling.

For stratified sampling, Vopt(Âs) by definition is the minimum possible vari-
ance of Âs for a fixed n. At best we can expect Vpro(Âs) and Vequ(Âs) to attain
Vopt(Âs). Difference between Vpro(Âs) and Vopt(Âs) comes out as

Vpro(Âs) − Vopt(Âs) = 1
n

[∑K
k=1 WkS

2
k − (

∑K
k=1 WkSk)2

]
= 1

n

∑K
k=1 Wk(Sk − SM )2 (8)

In the second step (Eq. 8), SM =
∑K

k=1 WkSk is the weighted mean of the
Sk’s. The second equality in Eq. 8 uses the definition of SM and

∑K
k=1 Wk = 1.

Vpro(Âs) = Vopt(Âs) if and only if Sk = SM . Thus, a stratification of D such
that Sk is constant for all k would result in proportional allocation being optimal
in the sense of variance.

Now, assume WkSk = Swc for all k, where Swc is a fixed constant value.
If WkSk is constant then from Eq. 5, Vequ(Âs) = K2S2

wc

n . Also from Eq. 6,

Vopt(Âs) = K2S2
wc

n . Hence, a stratification such that WkSk is a constant implies
equal allocation is optimal. Hence, if it can be ensured that WkSk = Constant,
then the simpler equal allocation can substitute optimal allocation.

Practical implementation of proportional and equal allocation methods are
much simpler compared to optimal allocation where we need OPT-A1 or OPT-
A2. Hence, conditions under which proportional and equal allocation can achieve
optimal minimum variances are important. As far as equal allocation is con-
cerned, practically it can work well in several situations (as shown in experi-
ments), however, it does not come with a theoretical guarantee that worst case
variance will be same as simple random sampling.

3.5 Stratification Methods

Let z be the stratification variable and let f(z) be the density distribution of z.
zi, i = 1 toN denotes the discrete values of stratification variable for instances
in dataset D. If the classifier outputs C(x i) are probabilistic then we use zi =
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p(l̂i/x i). If the classifier scores are non-probabilistic and the predicted label is
given by l̂i = sign(C(x i)), we use zi = |C(x i)|, that is the magnitude of the
classifier output.

The optimum stratification (in the sense of minimum variance) usually
depends on the allocation policy [4,16]. A large body of stratification literature
consists of approximate methods for optimum stratification. We employ several
such methods from stratification literature. We also introduce use of clustering
and simpler rule based methods which are usually not found in stratification
literature. To estimate the density distribution f(z) of the stratification variable
using zi’s, we use Kernel Density estimation methods [8] with Gaussian kernels.

cum
√
f (SQRT) and f

1
3 (CBRT): This method proposed in [5] is perhaps

the most popular and widely used method for stratification. The simple rule is to
divide the cumulative of

√
f(z) into equal intervals. The points of stratification,

zs1 < zs2 < .. < zsK−1, correspond to the boundary points corresponding to these
intervals. The kth stratum consists of the set of instances for which z lies between
zsk−1 and zsk. z

s
0 and zsK can be set as max and min of z. CBRT is same as SQRT

except that the cube root of f(z) is used in place of square root [18].

Weighted Mean (WTMN): In this method the key idea is to make the
weighted mean of the stratification variable constant [9].

All of the previous methods try to approximate optimum stratification. We
propose to introduce other techniques as well, which while not tailor-made for
stratified sampling, can nevertheless serve as a way for stratification.

Clustering Methods: Clustering is one of the simplest ways to group the data
D into different strata. We use K-means (KM) and Gaussian Mixture Models
(GMM) based clustering to construct strata using z.

Simple Score Based Partitioning: The stratification variable z is obtained
from classifier scores and we propose two simple partitioning methods. The first
one is called EQSZ (Equal Size) in which the instances in D are first sorted
according to the stratification variable. Starting from the top, each stratum takes
away an equal number N/K of instances. It is expected that variation of z within
each strata will be small. We call the other method as EQWD (Equal Width). In
this case the range of z for D (r = max(z) −min(z)) is divided into sub-ranges
of equal width. The points of stratification are zsk = min(z)+ rk/K , k = 1 toK.
zs0 = min(z) is used in this case.

4 Experiments and Results

The variance of stratified sampling depends on three important factors, Alloca-
tion Method, Stratification Method and number of strata. We perform a com-
prehensive analysis of all of these factors. Each allocation method is applied on
all 7 stratification methods. We vary the number of strata from 2 to 10 to study
the effect of K. The previous related work [11] uses the feature space of instances
and are hence not compared with here.
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Fig. 1. MVR for different n on rcv1 dataset (L: Proportional, R: Equal)

Datasets: We use three different dataset in our study. The first one, is the two-
class form of the rcv1 text categorization dataset [13]. The test set D consists
of around 0.7 million instances. A logistic regression classifier is trained on the
training set. The second one is the epsilon dataset from the Pascal Large Scale
Challenge [1]. It contains 0.5 million instances of which we randomly selected
50, 000 for training a linear SVM. The remaining 0.45 million instances are used
as the test set D. The last on is News20 binary dataset, the 2 class form of the
text classification UCI News20 dataset [12]. It consist of a total of around 20000
instances from which 4000 randomly selected instances are used for training a
logistic regression classifier and the rest are used as test set D.

Evaluation Metrics: We will quantify our results in two ways. The first is the
ratio of the variance of the stratified accuracy estimator to a random sampling
estimator at a given n, VR = V (Âs)/V (Âr). Unbiased estimates of V (Âr) and
V (Âs) are used to measure VR. VR less than 1 is desirable; the lower it is
the better it is. The second measure deals with absolute error (AE) percentage
in estimating accuracy. Specifically, we look at the AE vs n plot and observe
the amount of labeling resource required to achieve just 1% absolute error in
accuracy estimates. We focus on % reduction, if any, in required n to achieve 1%
error when using Âs in place of Âr. All experiments are repeated for 3000 runs
and Mean VR (MVR) and Mean AE (MAE) are used to report results. MAE
vs. n plot are shown in Supplementary material which also contains detailed
experimental discussion.

4.1 Proportional and Equal Allocation

Left panel in Fig. 1 shows the MVR values for each stratification method at
different n on rcv1 dataset. We can observe that EQWD is in general better
compared to other methods leading to about 40–45% reduction in variance for
some cases. WTMN is the worst, showing only about 10% reduction in variances.
The number of labeled instances required to achieve a 1% error in accuracy
estimation goes down from 284 in random sampling to 218. This is about 23%
reduction in labeling resources.

The reduction in labeling resources for 1% error in accuracy estimation is
about 12.5% for epsilon dataset and of 16% for news20 dataset. Figures not
shown due to space constraints.



12 A. Kumar and B. Raj

Fig. 2. MVR for different n. OPT-A1 Strat. Samp. (L: epsilon, R: news20 )

Fig. 3. Left: Effect of nini on OPT-A1. Selecting optimal nini can be a major prob-
lem. Right: OPT-A2 performs better and addresses problems of OPT-A1. Both hyper
parameters nini and nstep are no longer critical. See Sect. 4.2 (OPT-A1 vs OPT-A2).

Strata size K is also an important factor in stratified sampling. Increasing
K leads to better results. However, the general trend is that once K is large
enough major variation in MVR values cannot be expected. The trend is same
for all datasets.

The results on rcv1 dataset for Equal Allocation are shown is right panel of
Fig. 1. KM and SQRT stratification are in general better than other methods.
Huge reduction in variance in the range of 55–60% is observed, leading to very
precise estimate of accuracy with very little labeling resource. Using KM based
stratification, n required for 1% error margin is reduced by a substantial amount,
close to 58.5% (from 284 to 118 ). The labeling budget for 1% error in accuracy
estimate reduced by about 16% for epsilon and 22% for news20.

4.2 Optimal Allocation

We observed that for rcv1 dataset, Equal allocation resulted in a substantial
reduction in the variance of estimate. The optimal allocation policy leads to
further reduction in variance by only few percentage points (4–6% more) and
hence we do not show the plots for rcv1. However, for epsilon and news20 optimal
allocation actually results in substantial reduction in variance. We use nini = 10
for OPT-A1 algorithm. For OPT-A1 mid range K such as K = 6 or 7 are better
in general, especially at lower n. K affects the number of samples (nini ∗K) used
up in initial estimation of Sk. Mid range K leads to good stratification and at
the same time leave enough labeling resource which can be allocated optimally.

For epsilon dataset, left panel of Fig. 2 shows that EQSZ gives over 30–
35% reduction in variance compared to random sampling. n required for 1%
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Fig. 4. Effect of True Accuracy on MVR. For epsilon dataset using OPT-A2 method.

error is reduced by 23% using OPT-A1 which is about 10% and 7% higher over
proportional and equal allocation respectively. For news20 (right panel Fig. 2),
the variance is reduced by more than 35% for several cases which is substantially
higher than other two allocation methods. OPT-A1 leads to reduction in n by
about 27% for 1% error which is higher than that for proportional and equal by
11% and 5% respectively. SQRT stratification does well on both datasets.

OPT-A1 vs OPT-A2: We mentioned previously that setting nini in OPT-A1
might present practical difficulties. This is illustrated for epsilon dataset in left
panel of Fig. 3 where we show MVR values for nini equal to 5,10 and 20. For
sufficiently large n (>200), higher nini is better. This is expected as increasing
nini results in better estimation of Sk and for large n, enough labeling resources
are left to be allocated in an optimal sense to help achieve lower variance. How-
ever, problem occurs for lower n (<=200). MVR first reduces by increasing nini

from 5 to 10 but then increases substantially when we increase it further to 20.
Clearly, the optimal value of nini cannot be known a priori.

OPT-A2 gets around problems of OPT-A1. Right panel of Fig. 3 shows the
efficiency and benefits of OPT-A2. Legend are in form nini − nstep. nini − A1
legends represent the corresponding MVR using OPT-A1. First, we observe that
irrespective of the value of nini OPT-A2 results in lower MVR compared to
OPT-A1. OPT-A2 leads to a further reduction in variance of estimated accuracy
by upto 18% in certain cases. Moreover, we note that setting nini is no more
critical; nini = 5 works as good as nini = 10. Even more convenient is the fact
that nstep does not affect MVR in any major way, which removes the role of any
hyperparameter for OPT-A2. Hence, one can set nini to any small value such as
5 and any reasonable value of nstep such as 10 or 20 works fine.

4.3 Dependence on True Accuracy

It is expected that the value of true accuracy would have some effect on the
MVR, which measures how well stratified sampling is doing compared to ran-
dom sampling. Here, we try to empirically study the effect of actual value of true
accuracy on the proposed accuracy estimation process. We use epsilon dataset
for training 3 different classifiers (SVMs) with varying accuracies. The true accu-
racies of the classifiers are 88% (H), 77% (M) and 67% (L). The accuracies have
been reduced by reducing the amount of training data used. Obviously, the test
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data D remains same for all 3 classifiers. Now we try to estimate these accura-
cies for the 3 classifiers by sampling from D and we observe the MVR values for
different n. Figure 4 show the results for three cases using OPT-A2 with nini = 5
and nstep = 10. We observe that MVR follows an inverse trend with classifier
accuracy. Thus, the better the classifier the more effective stratified sampling is
in reducing the variance of accuracy estimate. Similar trend for OPT-A1 also
exist.

5 Discussions and Conclusions

We presented a method for evaluating classifiers in a limited labeling budget sce-
nario. We theoretically derived the variance of accuracy estimates for different
cases and showed that stratified sampling can be used for reducing the variance
of accuracy estimates. It can be applied for both probabilistic (logistic regres-
sion) as well non-probabilistic (support vector machines) classifiers. We observed
that the labeling resource required to estimate accuracy with very low error can
be reduced by as much as 60%. As far as stratification methods are concerned, it
is worth noting that clustering methods in general perform as well as established
stratification methods in sampling literature. We showed that implementation
of optimal allocation is best done through the proposed OPT-A2 method. Per-
formance of OPT-A2 is not only better compared to OPT-A1 but is almost
independent of the parameters (nini and nstep) it takes as input, unlike, where
OPT-A1 where nini plays a critical role.
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Abstract. As an important research topic with well-recognized practi-
cal values, classification of social streams has been identified with increas-
ing popularity with social data, such as the tweet stream generated by
Twitter users in chronological order. A salient, and perhaps also the most
interesting, feature of such user-generated content is its never-failing nov-
elty, which, unfortunately, would challenge most traditional pre-trained
classification models as they are built based on fixed label set and would
therefore fail to identify new labels as they emerge. In this paper, we
study the problem of classification of social streams with emerging new
labels, and propose a novel ensemble framework, integrating an instance-
based learner and a label-based learner by completely-random trees. The
proposed framework can not only classify known labels in the multi-label
scenario, but also detect emerging new labels and update itself in the
data stream. Extensive experiments on real-world stream data set from
Weibo, a Chinese micro-blogging platform, demonstrate the superiority
of our approach over the state-of-the-art methods.

Keywords: Stream classification · Emerging new labels
Model update

1 Introduction

Social stream classification has attracted an ever-increasing level of attention
from both academia and industry due to the recent boom of social media plat-
forms such as Twitter, in which the user-generated contents (i.e., tweets) natu-
rally form a data stream by chronological order. As each item could assume one
or multiple labels based on its content, classifying tweets into their corresponding
labels serves as the foundation for profiling both users and information diffusion
processes, in turn contributing to many real-life applications including targeted
marketing, customer relationship management and credit risk evaluation.

c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. An illustration of SSC-NL problem.

The basic process of social stream classification can be described as follows:
with a set of social data which has been preprocessed and manually associated
with concepts (labels), a classification method, such as SVMs or Random Forest,
can be employed to train a model to predict labels for new incoming data. Despite
the wealth of research efforts on social stream classification [1–3], most existing
solutions, which are built with a fixed label set, face serious challenges when
dealing with social data with emerging new labels due to its salient feature of
topic novelty that is typical of social media content.

We therefore address in this paper a more challenging problem of Social
Stream Classification with emerging New Labels (SSC-NL). Compared to previ-
ous social stream classification problems, the SSC-NL problem needs to accom-
plish three tasks simultaneously: (1) detecting emerging new labels; (2) classify-
ing known labels in the multi-label scenario; and (3) updating the model with
new labels identified. We illustrate this problem with a case for tweet stream
classification in Fig. 1. We assume that the model is built initially with labels
such as Politics, Sports, etc. This model is deployed in a tweet stream to clas-
sify each tweet with known labels, and correctly detect tweets with new labels as
they emerge. These tweets with new labels are placed in a buffer, until the model
update is triggered by some pre-defined criteria. Once the update is completed,
the buffer is reset and the new model is ready for the next tweets in the stream.

To address the SSC-NL problem, we propose a novel ensemble framework
named NL-Forest, which involves two cooperating models, an instance-based
model and a label-based model, both composed of completely-random trees.
NL-Forest can predict a ranking of known labels, and identify emerging new
labels in the social streams. Furthermore, the models are to be updated once
some criteria are met. We summarize some key contributions as follows: (1) The
proposed method accomplishes three tasks simultaneously, including detection of
new labels, classification for known labels, and model updating; (2) A straight-
forward approach for SSC-NL problem is to learn a known labels classifier and
a new label detector like [4]. Compared to methods based on two distinct algo-
rithm structures, completely-random trees are used as a single core to provide
the solution to efficient prediction and updating as shown in Sect. 5.3. In addi-
tion, our model achieves better prediction performance and is more robust due to
its ensemble strategy; (3) Experiments are conducted on both a real-world data
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stream and simulated streams where new labels appear under different scenarios.
Our framework outperforms existing state-of-the-art methods.

The rest of this paper is organized as follows: Sect. 2 examines the related
work. We introduce the proposed framework in Sect. 4 and the experimental
evaluation is detailed in Sect. 5. We conclude the paper in Sect. 6.

2 Related Work

Social stream classification has been extensively studied in recent years. Zubiaga
and Spina [3] analyzed social features, and then performed classification experi-
ments with Support Vector Machines (SVMs). In [1], a text-based classification
method and a network-based classification method were proposed for classifying
social data topics. Other than these supervised classification models, unsuper-
vised learning was also widely used. For instance, topic modeling is effective
in grouping documents into a pre-defined number of coarse clusters based on
inter-document similarity or the co-occurrence patterns of terms [5]. However,
existing algorithms normally employ a classifier with a fixed label set, thus are
unable to address the problem of emerging new labels. Though some online set-
ting methods, such as [6], are able to tackle this problem, each item needs to be
manually labeled before update, making them unsuitable for real data streams.

Class-Incremental Learning (C-IL), which is a branch of incremental learning
[7], has attracted much attention recently. The SSC-NL problem is actually a
C-IL problem in social data stream context. In recent years, a number of algo-
rithms [8–11] have been developed for classification under emerging new classes.
For instance, the ECSMiner [12] tackled the novel class detection and classifica-
tion problem by introducing time constraints for delayed classification. Learning
with Augmented Class (LAC) [13] was proposed for identifying emerging new
classes, assuming the availability of an unlabeled dataset to help identifying
these new classes. In [10], an isolation-based idea was used for new class detec-
tion. However, above-mentioned methods are tailored to the single label problem,
and face serious challenges in identifying new labels if instances are with multi-
ple labels. Although, a new effort, MuENL [4], includes one classifier based on
regularized SVMs and one detector based on tree structure which can tackle the
SSC-NL problem, two strategies for model updating are required, resulting in a
high computation cost and being hard to implement in real-time problem.

Other relevant approaches include tree-based methods to address the multi-
label classification problem [14] and the anomaly detection problem [15]. Indeed,
creating models to cope with environment changes [16], is widely studied in the
machine learning and data mining community. Solving the SSC-NL problem can
be seen as a preliminary step in social stream context.

3 Preliminaries

In general, social data stream is in the form of continuous streams of text
data [17]. Text representation is a fundamental component to represent text
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Fig. 2. An example of ANL and PNL. The initial label set contains four labels, the
second tweet shows the ANL, and the third tweet shows PNL.

into an amenable form. Here, we denote x ∈ R
d as a vector representation for

each text data by using a representation model like [18]. The SSC-NL prob-
lem therefore is defined as follows: given a set of social data as the training set
DT = {(xi,yi)}m

i=1, where xi ∈ R
d, yi ∈ Y = {−1, 1}c is the corresponding

label vector, c is the number of labels. yi,j = 1 iff the jth label is assigned
to the example xi and yi,j = −1 otherwise. The streaming instance is from
DS = {(xt,y

′
t)}∞

t=1, where y′ ∈ Y ′ = Y ⋃ Ynew, Ynew = {−1, 1}a, a > 0. The
goal is to learn an initial model f with DT , then f is used as a detector for emerg-
ing new labels (Ynew) and a classifier for known labels (Y) in the data stream.
In addition, f can be updated when it maintains some criteria. The training set
DT is just used for building model at the beginning of the data stream and will
then be discarded. Once update is completed, it is ready for the next instances
in the data stream. Note that the model can detect instances of any number of
emerging new labels, though they are grouped into one new meta-label.

Detecting emerging new labels in SSC-NL problem is a non-trivial task,
because the instance with new labels is likely to contain known labels simul-
taneously. This is a distinct point of difference from the previous works [10,12].
To specify the form of new label emergence in the multi-label scenario, we define
two types of instances with new label as follows, and Fig. 2 shows an illustration.

Definition 1. [Absolutely New Label (ANL)]. Let Y be the known label
space and Ynew be the new label space. An instance with absolutely new label is
defined as (x,y), where y ∈ Ynew and y /∈ Y.

Definition 2. [Partially New Label (PNL)]. Let Y be the known label space
and Ynew be the new label space. An instance with partially new label is defined
as (x,y), where y ∈ Ynew and y ∈ Y.

4 The Proposed Framework

In this section, we propose a novel framework named NL-Forest, which is com-
posed of two cooperating forests. The instance-based forest (I-F) is built on the
whole training data set, and the label-based forest (L-F) consists of multiple
sub-forests by considering label information. The details are provided as follows.
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Algorithm 1. NL-Forest construction
Input: D - input data, Z - number of trees in I-F,

z - number of trees in L-F, ψ, φ - sample size.
Output: NL-Forest
1: initialize: I-F ← {}, L-F ← {}.
2: for i = 1, . . . , Z do
3: D1 ← sample(D, ψ)
4: I-F ← I-F ∪ Tree (D1)
5: end for
6: for j = 1, . . . , c do
7: D2 ← {(x, y)|x ∈ D, y(, j ) = 1}
8: for k = 1, . . . , z do
9: D3 ← sample(D2, φ)
10: L-F(j) ← L-F(j) ∪ Tree(D3)
11: end for
12: compute the threshold in L-F (j).
13: end for
14: return NL-Forest← L-F ∪ I-F

The function Tree(X)
X - input data, MinSize - minimum

internal node size

1: if |X| < MinSize then
2: return LeafNode{F [·], center, v}.
3: else
4: let Q be a list of attributes in X. Ran-

domly select an attribute q ∈ Q and
randomly select a split point p from
max and min values of attribute q in
X.

5: XL ← filter(X, q ≤ p)
6: XR ← filter(X, q > p)
7: return inNode{Left ← Tree(XL),
8: Right ← Tree(XR)}
9: end if

4.1 NL-Forest: Training Process

The training process is detailed in Algorithm1. Steps 2–5 in the left side of Algo-
rithm1 show the process of building I-F. The function sample(D,ψ) is defined
as randomly sampling a subset with size ψ from the data set D. The function
Tree(·) as shown in the right side is defined as building a completely-random
tree, where a partition is produced by randomly selecting an attribute and its
cut-point between the minimum and maximum values in the sample. The split-
ting is stopped when the number of instances is less than MinSize. Note that
in each node, we just record the mean of instances as “centre”, the label dis-
tribution F [·], and the average number of labels per instance as v. Steps 8–11
in the left side of Algorithm 1 show the L-F construction based on the label
information, which is similar to building I-F.

In line 12, a threshold, which is used to measure new labels emerging in
the data stream, is found in each sub-forest. The idea here is inspired by the
model proposed in [15], wherein Liu et al. presented an isolation-based method.
In the NL-Forest framework, each tree is actually built to isolate every instance
from the rest of the instances in the input data set. Threshold determination
is based on the fact that there exist “differences” between instances with new
labels and original training instances, and thus instances with new labels are
more susceptible to isolation than instances with only known labels. In other
words, the instances with new labels will be isolated using fewer partitions1 in
a tree than instances with only known labels. To obtain threshold, because the
sub-forest contains a subset of labels, we select the instances without this subset
of labels in the training data to compute their average height in this sub-forest.
The average height obtained will be finally used as the threshold.

1 The fewer partitions means that instances with new labels are more likely to be of
the shorter height in each tree.
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4.2 NL-Forest: Deployment

Algorithm 2 describes the deployment of NL-Forest in a data stream. NL-Forest
(x) produces a label vector (y1, . . . , yc, ynew) in line 2 and is defined as:

NL-Forest(x) =
{

y1, . . . , yc ← I-F(x) (1)
ynew ← L-F(x,yknown) (2)

where c is the number of known labels and ynew is new label predicted. In Eq. (1),
x falls into one node in each tree in I-F and the distribution F [·] is recorded.
The output of I-F is the average of label vectors in F [·] as follow:

I-F(xtest) = p(y|xtest) = E[
Z∑

i=1

p(y|xtest, F [i])] (3)

where p(y|xtest, F [i]) is the output of ith tree in I-F. I-F can also output an
accurate number of labels by using the average results of v in each node. This is
because previous works [19–21] have shown that, ensemble of completely-random
trees can be successfully applied as a powerful classifier, and it is evident that
the proposed method can be a classifier capable for classification task.

Equation (2) describes that L-F predicts a new label ynew. We first introduce
a cooperating mechanism to detect instances with PNL. From the I-F outputs, we
can obtain the probabilities of known labels in the form of a label vector, as indi-
cated in Eq. (1). Thus, we generate a vector in descending order of known labels
probabilities, denoted as yknown. According to the order of labels in yknown, we
pass xtest to the corresponding sub-forests. The function L-F(·) is as follows:

L-F(xtest,yknown) = E[
u∑

i=1

p(ynew|xtest, yi)], yi ∈ yknown (4)

where p(ynew|xtest, yi) is the output in one sub-forest in L-F and is defined as:

p(ynew|xtest, yi) =
{

1, if Θ(xtest) < thresholdi

0, otherwise
(5)

where Θ(·) is the average height of the instance in ith sub-forest. Note that each
sub-forest is able to partition instances with the specific label. If xtest contains
new labels, it will be partitioned easier in this known label sub-forest, that is,
xtest will have shorter height in this sub-forest. In Eq. (4), xtest is an instance
with new label if the average height of instance xtest in ith sub-forest is less than
the thresholdi. We finally use the top u labels in yknown to predict whether new
label is emerging in Eq. (3). We can use the predicted number of labels as a
measure to guide the setup of u.

Because an instance with ANL is likely to differentiate from original instances
in the training set, detecting ANL is equivalent to detecting new labels in single
label setting. Hence, the instance with ANL can be directly isolated using fewer
partitions in the I-F. Fortunately, some previous works employed random tree
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Algorithm 2. NL-Forest deployment in the data stream
Input: NL-Forest, B - buffer, s - buffer size.
Output: prediction for each x in a data stream
1: while not end of data stream do
2: (y , ynew) ←NL-Forest(x)
3: if ynew > 1

2 then

4: B ← B ∪ {x}
5: NewLable ← 1
6: else
7: NewLabel ← 0
8: end if
9: Output {y1, . . . , yc, Newlabel}
10: if |B| ≥ s then
11: Update (NL-Forest, B) # detailed in Sect. 4.3
12: B ← NULL
13: end if
14: end while

structures for new class detection and can naturally adapt to I-F. In this paper,
we use the method in [10] to detect the ANL. In line 3–8 in Algorithm2, NL-
Forest outputs a positive decision if ynew is greater than a 0.5 threshold. This
threshold corresponds intuitively to majority voting.

Model is updated when buffer B is full (|B| ≥ s) in line 10–13 in Algorithm
2. The size of buffer s is a user-defined parameter and can be set based on the
memory space available2. Similar to [11], we only need to manually annotate
instances with the true label in the buffer instead of labeling all instances in the
data stream. In the following, we introduce two growing mechanisms.

4.3 NL-Forest: Model Update

Growing a subtree in I-F. Updating I-F is to update each leaf node in every
tree using a random sample of size λ from B. The update at each node involves
either (1) a replacement with a simple update label distribution F [·] to include
the new label yc+1 or (2) a newly grown subtree if the total number of instances
falling into the same leaf node exceeds the limit. At each node, growing a subtree
needs to generate pseudo instances in each node which have the same attribute-
values as “centre”. The number of pseudo instances is as recorded in F [·]. The
combined set of pseudo instances and the randomly selected instances which fall
into this leaf node is used as input to build the subtree.

Growing a new sub-forest in L-F. A new sub-forest can be constructed using
instances with the new label from B. Once the new sub-forest is completed, a
threshold is calculated as mentioned in Sect. 4.1 by using pseudo instances.

4.4 Model Complexity

In the training stage, the overall time complexity to construct random tree is
O(Zψ log ψ+czφ log φ). To predict an instance in the stream, it takes O(Z log ψ+
2 This is a trade-off parameter, the larger means method needs more memory. In prac-

tise, we use the value which is greater than ψ to guide the setup of this parameter.
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uz log φ) time to traverse each of the Z trees in I-F and z trees in u L-F. During
the update, growing a subtree using a s size buffer takes O(Zs log s) and growing
a sub-forest takes O(zφ log φ). The total space required includes the buffer with
size s and all centres and label distribution in leaf nodes in I-F. Thus, the space
complexity is O(s + Zdψ).

5 Experiment

5.1 Experimental Setup

Data Sets. A summary of the data characteristics is provided in Table 1. The
real streaming data is collected from Sina Weibo. This stream is about 220k
items with 10 labels, and each item is preprocessed using word2vec3 to produce
a 300-dimension feature vector.

Competing Algorithms. Table 2 is a complete list of the methods used for
new label detection and known label classification. It includes two multi-label
supervised classifiers – binary relevance SVM (BR-SVM) [22], ML-KNN [23]; one
supervised multi-label streaming classifier – SMART [6]; an existing solution for
emerging new labels – MuENL [4]; an outlier detector as new label detector –
iForest [15].

Experiment Settings and Evaluation Metrics. All methods are executed
in the MATLAB environment with the following implementations: SVM is in the
LIBSVM package [22]; MuENL, iForest and ML-KNN are the codes as released
by the corresponding authors; SMART code is developed based on the original
paper [6]. In NL-Forest, we set Z = 200, z = 100, ψ and φ are set by 0.6 ∗ m
and 0.6 ∗ ni, where m and ni are the sizes of D1 and D2 respectively. λ is
set according to label balance in each tree. The trees stop growing when the
total number of instances, which fall into a leaf node, exceeds the limit, e.g.,
MinSize = 10 in the simulated streams and MinSize = 100 in the real stream.
BR-SVM trains a linear classifier for each label independently and parameters
are set according to cross validation. In ML-KNN, K, the number of nearest
neighbors is set as 10. In SMART, the tree height is h = 30, and the number of

Table 1. A summary of data sets.

Emotions Yeast Enron Weibo

#Attributes 72 103 1001 300

#Labels 6 14 53 10

Volume 593 2417 1702 220K

Table 2. Methods used in the experi-
ments.

Method Detector Classifier

BR-SVM+iF iForest BR-SVM

ML-KNN+iF iForest ML-KNN

SMART+iF iForest SMART

MuENL MuENLForest MuENLMNL

NL-Forest NL-Forest

3 https://radimrehurek.com/gensim/index.html.

https://radimrehurek.com/gensim/index.html
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Fig. 3. A simulated stream on emotions data set. (a) There are six labels, the blue
points represent the known labels, and the red points represent the new labels. (b) and
(c) the results of RL and F-measure. (Color figure online)

trees in the ensemble is nt = 30. The number of trees in iForest is nt = 50. In
MuENL, the parameters in classification model are selected via cross validation,
and the setup of detection model is same as iForest. We employed Ranking
Loss (RL ↓4) and Average Precision (AP ↑) for classification performances
and F-measure (↑) for detection results.
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Fig. 4. Results of the simulated data streams.

5.2 Simulated Data Stream

To evaluate different scenarios under which new labels appear, we perform exper-
iments in multiple simulated data streams which are generated from three bench-
mark multi-label data sets. In each data set, we first randomly select two labels
as the new labels. The instances with any of these two labels are selected as set
A, and the rest will be randomly divided into training set (80%) and testing set
(20%). Then A is added to the testing set, and we simulate a steam by using
the testing set. RL and AP are computed over the entire stream, F-measure is
4 Here “↓” means the smaller the value, the better the performance; and “↑” means

the larger the value, the better the performance.
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computed when the buffer is full. An example is shown in Fig. 3. The simulation
is repeated 30 times for each data set, the average results are reported in Fig. 4.

Detailed Analysis. The proposed NL-Forest has consistently produced better
performance in all three data sets than any other methods for both emerging new
labels detection and known labels classification. In terms of new label detection,
NL-Forest produces higher F-measure than methods directly using an anomaly
detector (i.e., iForest) which do not consider differences between new labels
and anomaly when detecting the PNL. In terms of classification results (RL
and AP), NL-Forest gives results comparable with state-of-the-art methods, e.g.,
MuENLMNL and ML-KNN. What has greatly contributed to the practical values
of NL-Forest is the fact that it can be applied to a wide range of prediction
problems and has fewer parameters to tune.

Compared to NL-Forest, MuENL consists of two independent models, i.e.,
a detector for new labels and a classifier for known labels. Despite its reason-
able good classification and detection performances in simulations, it is not a
good choice for the SSC-NL problem due to its high computational complexity
in model update and practical difficulty in parameter determination. On the
other hand, ML-KNN, BR-SVM and SMART are state-of-the-art multi-label
classification methods for known labels, but they still require anther framework
to detect new labels. In addition, BR-SVM often comes at high computational
costs in an extensive parameter search.

5.3 Real Data Stream

In this section, we conduct experiments on a social stream and compare the pro-
posed method with SMART+iForest and MuENL which focus on the stream-
ing data problem. Figure 5(a) indicates label distribution in the stream. For
convenience, we use “1st” to “10th” to represent the category “traffic safety”
to “finance”. We regard five labels (6th to 10th) as known labels and collect
extra 15 K instances with them to initialize the model. The 1st to 5th labels are
regarded as new labels which occur in the different periods. To be specific, the
2nd, 3rd and 5th label emerge at around point 0 to 50 K; at around point 50 K to
100 K, the 4th label appears; the 1st label emerges at last 100 K points. Note that
when the buffer is full, model will be updated using buffer data with true label.
Evaluation metrics are computed at different time points as shown in Figs. 5(b)
and (c).

Figure 5(c) shows NL-Forest outperforms other methods in detecting new
labels, and NL-Forest gives comparable results with other methods in classifi-
cation in Fig. 5(b). We also show the time of processing 1000 data items and the
average update time in the stream. In Fig. 5(d), the proposed method achieves
the shorter running time than MuENL for the real data stream, and is com-
parable to the state-of-the-art method SMART, which also employs completely
random trees. Figure 5(e) shows the proposed method can be more efficient in
deploying in the real application with the faster update.
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Fig. 5. Results of the real data stream.
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Fig. 6. Results of the sensitivity of parameters.

5.4 Sensitivity of Parameters

We study the influences of parameters in NL-Forest, i.e., z and Z (the number
of trees), ψ and φ (the sampling sizes). We evaluate NL-Forest on the emotions
data set with different settings of one parameter while the other parameters are
fixed. Figures 6(a) and (b) show that the performance of NL-Forest is stable when
we set the size of tree greater than 100. Therefore, in practice, model parameter
setup can follow such guidelines. In Figs. 6(c) and (d), the X-axis represents
a ratio between the sample size and original data size. Generally, the larger
each random tree is, the better the performance is, but larger trees will consume
memory. We observe that the RL or F-measure of NL-Forest converges at a small
ψ or φ. Hence, the ratio set by half is safe and recommended in practise. Note
that similar results are also observed on the other data sets.

6 Conclusion

This paper introduces a novel framework with an instance-based model and a
label-based model to address the SSC-NL problem. The strength of NL-Forest is
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that the completely-random trees are used as a single core to effectively tackle
emerging new labels detection and known labels classification, and provide the
solution to efficient update. Evaluations on simulated streams and a real-world
stream demonstrate the effectiveness of the proposed framework. In the future,
the broader stream classification problem in real-world applications [24] includ-
ing detection of concept drift, issues with outdated data, adaptation to the cur-
rent state, and recurring contexts will be considered. It is also in our interest
to explore the theoretical foundation for our model and extend the idea of this
work to Multi-Instance Multi-Label learning (MIML) [25].
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Abstract. Exploiting dependencies between labels is considered to be
crucial for multi-label classification. Rules are able to expose label depen-
dencies such as implications, subsumptions or exclusions in a human-
comprehensible and interpretable manner. However, the induction of
rules with multiple labels in the head is particularly challenging, as the
number of label combinations which must be taken into account for each
rule grows exponentially with the number of available labels. To overcome
this limitation, algorithms for exhaustive rule mining typically use prop-
erties such as anti-monotonicity or decomposability in order to prune the
search space. In the present paper, we examine whether commonly used
multi-label evaluation metrics satisfy these properties and therefore are
suited to prune the search space for multi-label heads.

1 Introduction

Multi-label classification (MLC) is the task of learning a model for assigning
a set of labels to unknown instances [16]. For example, newspaper articles can
often be associated with multiple topics. This is in contrast to binary or multi-
class classification, where single classes are predicted. As many studies show,
MLC approaches that are able to take correlations between labels into account
can be expected to achieve better predictive results (see [7,11,16]; and references
therein).

In addition to statistical approaches that often rely on complex mathemati-
cal concepts, such as Bayesian or neural networks, rule learning algorithms have
recently been proposed as an alternative, because rules are not only a natural
and simple form to represent a learned model, but they are well suited for mak-
ing discovered correlations between instance and label attributes explicit [11].
Especially for safety-critical application domains, such as medicine, power sys-
tems, autonomous driving or financial markets, where hidden malfunctions could
lead to life-threatening actions or economic loss, the possibility of interpreting,
inspecting and verifying a classification model is essential (cf. e.g., [9]). How-
ever, the algorithm of [11], which is based on the separate-and-conquer (SeCo)
strategy, can only learn dependencies where the presence or absence of a single
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 29–42, 2018.
https://doi.org/10.1007/978-3-319-93034-3_3
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label depends on a subset of the instance’s features. Especially co-occurrences
of labels – a common pattern in multi-label data – are hence only representable
by a combination of rules. Conversely, algorithms based on subgroup discovery
were proposed which are able to find single rules that predict a subset of the
possible labels [5]. However, this framework is limited in the sense that it relies
on the adaptation of conventional rule learning heuristics for rating and selecting
candidate rules and can thus not be easily adapted to a variety of different loss
functions which are commonly used for evaluating multi-label predictions. Such
an adaptation is not straight-forward, because it is not known whether these
measures satisfy properties like anti-monotonicity that can ensure an efficient
exploration of the search space of all possible rule heads – despite the fact that
it grows exponentially with the number of available labels.

Thus, the main contribution of this work (presented in Sect. 3) is to formally
define anti-monotonicity in the context of multi-label rules and to prove that
selected multi-label metrics satisfy that property. Based on these findings, we
present an algorithm that prunes searches for multi-label rules in Sect. 4. Said
algorithm is not meant to set new standards in terms of predictive performance,
but to serve as a starting point for developing more enhanced approaches. Nev-
ertheless, we evaluate that it is able to compete with different baselines in terms
of predictive and – more importantly – computational performance in Sect. 5.

2 Preliminaries

The task of MLC is to associate an instance with one or several labels λi out of
a finite label space L = (λi, . . . , λn) with n = |L| being the number of available
labels. An instance Xj is typically represented in attribute-value form, i.e., it
consists of a vector Xj := 〈v1, . . . , vl〉 ∈ D = A1 × . . . × Al where Ai is a
numeric or nominal attribute. Each instance is mapped to a binary label vector
Yj ∈ {0, 1}n which specifies the labels that are associated with the example
Xj . Consequently, the training data set of a MLC problem can be defined as a
sequence of tuples T := 〈(X1, Y1), . . . , (Xm, Ym)〉 ⊆ D × L with m = |T |. The
model which is derived from a given multi-label data set can be viewed as a
classifier function g(.) mapping a single example X to a prediction Ŷ = g(X).

2.1 Multi-label Rule Learning

We are concerned with learning multi-label rules r : Ŷ ← B. The body B
may consist of several conditions, the examples that are covered by the rule
have to satisfy. In this work only conjunctive, propositional rules are considered,
i.e., each condition compares an attribute’s value to a constant by either using
equality (nominal attributes) or inequalities (numerical attributes). It is also
possible to include label conditions in the body [11,12]. This allows to expose
and distinct between unconditional or global dependencies and conditional or
local dependencies [7].
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The head Ŷ consists of one or several label attributes (ŷi = 0 or ŷi = 1)
which specify the absence or presence of the corresponding label ŷi. Rules that
contain a single label attribute in their head are referred to as single-label head
rules, whereas multi-label head rules may contain several label attributes in their
head.

A predicted label vector Ŷ may have different semantics. We differentiate
between full predictions and partial predictions.

– Full predictions: Each rule predicts a full label vector, i.e., if a label
attribute ŷi is not contained in the head, the absence of the corresponding
label λi is predicted.

– Partial predictions: Each rule predicts the presence or absence of the label
only for a subset of the possible labels. For the remaining labels the rule does
not make a prediction (but other rules might).

We believe that partial predictions have several conceptual and practical advan-
tages and therefore we focus on that particular strategy throughout the remain-
der of this work.

2.2 Bipartition Evaluation Functions

To evaluate the quality of multi-label predictions, we use bipartition evalua-
tion measures (cf. [16]) which are based on evaluating differences between true
(ground truth) and predicted label vectors. They can be considered as functions
of two-dimensional label confusion matrices which represent the true positive
(TP ), false positive (FP ), true negative (TN) and false negative (FN) label
predictions. For a given example Xj and a label yi the elements of an atomic
confusion matrix Cj

i are computed as

Cj
i =

(
TP j

i FP j
i

FN j
i TN j

i

)
=

(
yj

i ŷ
j
i (1 − yj

i )ŷ
j
i

(1 − yj
i )(1 − ŷj

i ) yj
i (1 − ŷj

i )

)
(1)

where the variables yj
i and ŷj

i denote the absence (0) or presence (1) of label
λi of example Xj according to the ground truth or the predicted label vector,
respectively.

Note that for candidate rule selection we assess TP , FP , TN , and FN
differently. To ensure that absent and present labels have the same impact on
the performance of a rule, we always count correctly predicted labels as TP and
incorrect predictions as FP , respectively. Labels for which no prediction is made
are counted as TN if they are absent, or as FN if they are present.

Multi-label Evaluation Functions. In the following some of the most com-
mon bipartition metrics δ(C) used for MLC are presented (cf., e.g., [16]). They
are surjections N

2×2 → R mapping a confusion matrix C to a heuristic value
h ∈ [0, 1]. Predictions that reach a greater heuristic value outperform those with
smaller values.
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– Precision: Percentage of correct predictions among all predicted labels.

δprec(C) :=
TP

TP + FP
(2)

– Hamming accuracy: Percentage of correctly predicted present and absent
labels among all labels.

δhamm(C) :=
TP + TN

TP + FP + TN + FN
(3)

– F-measure: Weighted harmonic mean of precision and recall. If β < 1, pre-
cision has a greater impact. If β > 1, the F-measure becomes more recall-
oriented.

δF (C) :=
β2 + 1

β2

δrec(C) + 1
δprec(C)

, with δrec(C) =
TP

TP + FN
and β ∈ [0,∞] (4)

– Subset accuracy: Percentage of perfectly predicted label vectors among
all examples. Per definition, it is always calculated using example-based
averaging.

δacc(C) :=
1
m

∑
j

[
Yj = Ŷj

]
, with [x] =

{
1, if x is true
0, otherwise

(5)

Aggregation and Averaging. When evaluating multi-label predictions which
have been made for m examples with n labels one has to deal with the question of
how to aggregate the resulting m ·n atomic confusion matrices. Essentially, there
are four possible averaging strategies – either (label- and example-based) micro-
averaging, label-based (macro-)averaging, example-based (macro-) averaging or
(label- and example-based) macro-averaging. Due to the space limitations, we
restrict our analysis to the most popular aggregation strategy employed in the
literature, namely micro-averaging. This particular averaging strategy is formally
defined as

δ(C) = δ
(∑

j

∑
i
Cj

i

)
≡ δ

(∑
i

∑
j
Cj

i

)
(6)

where the
∑

operator denotes the cell-wise addition of confusion matrices.

Relation to Conventional Association Rule Discovery. To illustrate the
difference between measures used in association rule discovery and in multi-label
rule learning, assume that the rule λ1, λ2 ← B covers three examples (X1, {λ2}),
(X2, {λ1, λ2}) and (X3, {λ1}). In conventional association rule discovery the head
is considered to be satisfied for one of the three covered examples (X2), yielding a
precision/confidence value of 1

3 . This essentially corresponds to subset accuracy.
On the other hand, micro-averaged precision would correspond to the fraction
of 4 correctly predicted labels among 6 predictions, yielding a value of 2

3 .
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3 Properties of Multi-label Evaluation Measures

To induce multi-label head rules, we need to find the multi-label head Ŷ which
reaches the best possible performance

hmax = max
Ŷ

h(r) = max
Ŷ

h(Ŷ ← B) (7)

given an evaluation function h(.) and a body B. In this section we consider rule
evaluation functions that are based on micro-averaged atomic confusion matrices
in a partial prediction setting, i.e., h(r) = δ(C) where δ(C) is defined as in (6).

Due to the exponential complexity of an exhaustive search, it is crucial to
prune the search for the best multi-label head by leaving out unpromising label
combinations. The first property which can be exploited for pruning searches –
while still being able to find the best solution – is anti-monotonicity.

Definition 1 (Anti-monotonicity). Let Ŷp ← B and Ŷs ← B denote two
multi-label head rules consisting of body B and heads Ŷp, respectively Ŷs. It
is further assumed that Ŷp ⊂ Ŷs. A multi-label evaluation function h is anti-
monotonic if the following condition is met, i.e., if no head Ya that results from
adding additional labels to Ys may result in hmax being reached:

Ŷp ⊂ Ŷs ∧ h(Ŷs ← B) < h(Ŷp ← B) =⇒ h(Ŷa ← B) < hmax,∀Ŷa : Ŷs ⊂ Ŷa

In addition to the adaptation of anti-monotonicity in Definition 1, we propose
decomposability as a stronger criterion. It comes at linear costs, as the best
possible head can be deduced from considering each available label separately.
Due to its restrictiveness, if Definition 2 is met, Definition 1 is implied to be met
as well.

Definition 2 (Decomposability). A multi-label evaluation function h is
decomposable if the following conditions are met:

(i) If the multi-label head rule Ŷ ← B contains a label attribute ŷi ∈ Ŷ for
which the corresponding single-label head rule ŷi ← B does not reach hmax,
the multi-label head rule cannot reach that performance either (and vice
versa).

∃i
(
ŷi ∈ Ŷ ∧ h(ŷi ← B) < hmax

)
⇐⇒ h(Ŷ ← B) < hmax

(ii) If all single label head rules ŷi ← B which correspond to the label attributes of
the multi-label head Ŷ reach hmax, the multi-label head rule Ŷ ← B reaches
that performance as well (and vice versa).

h(ŷi ← B) = hmax , ∀ŷi

(
ŷi ∈ Ŷ

)
⇐⇒ h(Ŷ ← B) = hmax

In the following we examine selected multi-label metrics in terms of decompos-
ability and anti-monotonicity to reveal whether they satisfy these properties
when making partial predictions (cf. Section 2.1).
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Theorem 1. Micro-averaged precision is decomposable.

Proof. We rewrite the performance calculation for a multi-label head rule r :
Ŷ ← B with h(r) = hmax using the fact that the single label head rules ri :
ŷi ← B with ŷi ∈ Ŷ share the same body B and therefore cover the same number
of examples |C|.

h(r) =

∑
ŷi∈Ŷ

∑
j

TP j
i

∑
ŷi∈Ŷ

∑
j

pj
i

, with pj
i = TP j

i + FP j
i and

∑
j

pj
i = |C| , ∀i

=

∑
ŷi∈Ŷ

∑
j

TP j
i

|Ŷ | · |C| =
1

|Ŷ |
∑
ŷi∈Ŷ

∑
j

TP j
i

|C| ≡ 1
|Ŷ |

∑
ŷi∈Ŷ

h(ri)

(8)

Thus, the micro-averaged precision for r corresponds to the average of the micro-
averaged precision of the single-label head rules ri. As we assume that h(r) is
maximal, it follows that h(r) = h(ri) for all single-label head rules ri.

Theorem 2. Micro-averaged Hamming accuracy is decomposable.

Proof. Similar to (8), we rewrite the micro-averaged Hamming accuracy of a
multi-label head rule r : Ŷ ← B with h(r) = hmax in terms of averaging the
performance of single-label head rules ri : ŷi ← B. This is possible as the
performance for each label ŷi calculates as the percentage of TP and TN among
all m labels. For reasons of simplicity, we use the abbreviations P j

i = TP j
i +FN j

i

and N j
i = FP j

i + TN j
i .

h(r) =

∑
ŷi∈Ŷ

∑
j

(
TP j

i + TN j
i

)

∑
ŷi∈Ŷ

∑
j

(
P j

i + N j
i

) , with
∑

j

(
P j

i + N j
i

)
= m , ∀i

=

∑
ŷi∈Ŷ

∑
j

(
TP j

i + TN j
i

)

|Ŷ | · m
=

1
|Ŷ |

∑
ŷi∈Ŷ

∑
j

(
TP j

i + TN j
i

)

m
≡ 1

|Ŷ |
∑
ŷi∈Ŷ

h(ri)

(9)

Theorem 3. Subset accuracy is anti-monotonic.

Proof. In accordance with Definition 1, two multi-label head rules Ŷp ← B and
Ŷs ← B, for whose heads the subset relationship Ŷp ⊂ Ŷs holds, take part in
equation (10). The subscript notation x|Ŷ is used to denote that a left-hand
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expression x should be evaluated using the rule Ŷ ← B. The proof is based on
writing subset accuracy in terms of TP and TN (cf. line 2).

Ŷp ⊂ Ŷs ∧ h(Ŷs ← B) < h(Ŷp ← B)

⇒ 1

m

∑

j

⎡

⎢⎣
∑

ŷi∈Ŷ

(
TP

j
i + TN

j
i

)
= |Ŷ |

⎤

⎥⎦

∣∣∣∣∣∣∣
Ŷs

<
1

m

∑

j

⎡

⎢⎣
∑

ŷi∈Ŷ

(
TP

j
i + TN

j
i

)
= |Ŷ |

⎤

⎥⎦

∣∣∣∣∣∣∣
Ŷp

≤ hmax

⇒∃j

⎛

⎜⎜⎝0 =

⎡

⎢⎣
∑

ŷi∈Ŷ

(
TP

j
i + TN

j
i

)
= |Ŷ |

⎤

⎥⎦

∣∣∣∣∣∣∣
Ŷs

<

⎡

⎢⎣
∑

ŷi∈Ŷ

(
TP

j
i + TN

j
i

)
= |Ŷ |

⎤

⎥⎦

∣∣∣∣∣∣∣
Ŷp

= 1

⎞

⎟⎟⎠

⇒∃ŷi∃j

(
ŷi ∈ Ŷs ∧

(
TP

j
i + TN

j
i

)
< |Ŷ |

∣∣∣
Ŷs

)

⇒∃ŷi∃j

(
ŷi ∈ Ŷa ∧

(
TP

j
i + TN

j
i

)
< |Ŷ |

∣∣∣
Ŷa

)
, ∀Ŷa

(
Ŷs ⊂ Ŷa

)

⇒∃j

⎛

⎜⎝

⎡

⎢⎣
∑

ŷi∈Ŷ

(
TP

j
i + TN

j
i

)
= |Ŷ |

⎤

⎥⎦

∣∣∣∣∣∣∣
Ŷa

= 0

⎞

⎟⎠ , ∀Ŷa

(
Ŷs ⊂ Ŷa

)

⇒ 1

m

∑

j

⎡

⎢⎣
∑

ŷi∈Ŷ

(
TP

j
i + TN

j
i

)
= |Ŷ |

⎤

⎥⎦

∣∣∣∣∣∣∣
Ŷa

< hmax , ∀Ŷa

(
Ŷs ⊂ Ŷa

)

≡h(Ŷa ← B) < hmax , ∀Ŷa

(
Ŷs ⊂ Ŷa

)

(10)

In (10) it is concluded that when using the rule Ŷs ← B the performance for
at least one example Yj is less than when using the rule Ŷp ← B. Due to the
definition of subset accuracy, the performance for that example must be 0 in
the first case and 1 in the latter (cf. line 3). As the performance only evaluates
to 0 if at least one label is predicted incorrectly, the head Ŷp must contain a
label attribute ŷi which predicts the corresponding label incorrectly (cf. line 4).
When adding additional label attributes the prediction for that label will still
be incorrect (cf. line 5). Therefore, for all multi-label head rules Ŷa ← B which
result from adding additional label attributes to the head Ŷs the performance
for the example Yj evaluates to 0 (cf. line 6). Consequently, none of them can
reach the overall performance of Ŷp ← B, nor hmax (cf. line 7 and 8).

Lemma 1. Micro-averaged recall is decomposable.

Proof. The mediant of fractions a1
b1

, . . . , an

bn
is defined as a1+...+an

b1+...+bn
. The micro-

averaged recall of a multi-label head rule r : Ŷ ← B is the mediant of the
performances which are obtained for corresponding single-label head rules ri :
ŷi ← B with ŷi ∈ Ŷ according to the recall metric.

h(r) =

∑
ŷi∈Ŷ

∑
j

TP j
i

∑
ŷi∈Ŷ

∑
j

(
TP j

i + FN j
i

) (11)
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The mediant inequality states that the mediant strictly lies between the
fractions it is calculated from, i.e., that min

(
a1
b1

, . . . , an

bn

)
≤ a1+...+an

b1+...+bn
≤

max
(

a1
b1

, . . . , an

bn

)
. This is in accordance with Definition 2.

Theorem 4. Micro-averaged F-measure is decomposable.

Proof. Micro-averaged F-measure calculates as the (weighted) harmonic mean
H(.) of micro-averaged precision and recall. This proof is based on the finding
that both of these metrics fulfill the properties of decomposability (cf. Theorem1
and Lemma 1). As multiple metrics take part in the proof, we use a superscript
notation to distinguish between the best possible performances according to
different metrics, e.g., hF

max in case of the F-measure. Furthermore, we exploit
the inequality hF

max ≤ max (hrec
max, hprec

max).

∃i
(
ŷi ∈ Ŷ ∧ hF (ŷi ← B) < hF

max ≤ hrec
max

)

≡∃i
(
ŷi ∈ Ŷ ∧ H (hrec(ŷi ← B), hprec(ŷi ← B)) < hrec

max

)

⇒∃i
(
ŷi ∈ Ŷ ∧ (hrec(ŷi ← B) < hrec

max ∧ hprec(ŷi ← B) < hrec
max)

∨ (hprec(ŷi ← B) < hrec
max ∧ hrec(ŷi ← B) ≤ hrec

max))

⇒
(
hrec(Ŷ ← B) < hrec

max ∧ hprec(Ŷ ← B) < hrec
max

)

∨
(
hprec(Ŷ ← B) < hrec

max ∧ hrec(Ŷ ← B) ≤ hrec
max

)

⇒H
(
hrec(Ŷ ← B), hprec(Ŷ ← B)

)
< hF

max ≤ hrec
max

≡hF (Ŷ ← B) < hF
max

(12)

In (12) the first property of Definition 2 is proved. As the premise of the proof,
we assume w.l.o.g. that the best possible performance according to the recall
metric is equal to or greater than the best performance according to precision,
i.e., that the relation hrec

max ≥ hprec
max holds. We further assume that the F-measure

of a single-label head rule ri : ŷi ← B is less than the best possible performance
hmax (cf. line 1 and 2). When rewriting the F-measure in terms of the harmonic
mean of precision and recall, it follows that either recall or precision of ri must
be less than hF

max, respectively hrec
max. Due to the premise of the proof, hrec

max can
be considered as an upper limit for both recall and precision (cf. line 3). Further-
more, because precision and recall are decomposable, the multi-label head rule
r : Ŷ ← B with ŷi ∈ Ŷ cannot outperform hF

max (cf. lines 5, 7 and 8). In order to
prove the second property of decomposability to be met, the derivation in (13)
uses a similar approach as in (12). However, it is not based on its premise.
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hF (ŷi ← B) = hF
max , ∀ŷi

(
ŷi ∈ Ŷ

)

≡H (hrec(ŷi ← B), hprec(ŷi ← B)) = hF
max , ∀ŷi

(
ŷi ∈ Ŷ

)

=⇒hrec(ŷi ← B) = hprec(ŷi ← B) = hF
max , ∀ŷi

(
ŷi ∈ Ŷ

)

=⇒hrec(Ŷ ← B) = hprec(Ŷ ← B) = hF
max

=⇒H
(
hrec(Ŷ ← B), hprec(Ŷ ← B)

)
= hF

max

≡hF (Ŷ ← B) = hF
max

(13)

4 Algorithm for Learning Multi-label Head Rules

To evaluate the utility of these properties, we implemented a multi-label rule
learning algorithm based on the SeCo algorithm for learning single-label head
rules by Loza Menćıa an Janssen [11]. Both algorithms share a common struc-
ture where new rules are induced iteratively and the examples they cover are
removed from the training data set if enough of their labels are predicted by
already learned rules. The rule induction process continues until only few train-
ing examples are left. To classify test examples, the learned rules are applied
in the order of their induction. If a rule fires, the labels in its head are applied
unless they were already set by a previous rule.

For learning new multi-label rules, our algorithm performs a top-down greedy
search, starting with the most general rule. By adding additional conditions to
the rule’s body it can successively be specialized, resulting in less examples
being covered. Potential conditions result from the values of nominal attributes
or from averaging two adjacent values of the sorted examples in case of numerical
attributes. Whenever a new condition is added, a corresponding single- or multi-
label head that predicts the labels of the covered examples as accurate as possible
must be found.

Evaluating Possible Multi-label Heads. To find the best head for a given
body different label combinations must be evaluated by calculating a score
based on the used averaging and evaluation strategy. The algorithm performs a
breadth-first search by recursively adding additional label attributes to the (ini-
tially empty) head and keeps track of the best rated head. Instead of performing
an exhaustive search, the search space is pruned according to the findings in
Sect. 3. When pruning according to anti-monotonicity unnecessary evaluations
of label combinations are omitted in two ways: On the one hand, if adding a label
attribute causes the performance to decrease, the recursion is not continued at
deeper levels of the currently searched subtree. On the other hand, the algorithm
keeps track of already evaluated or pruned heads and prevents these heads from
being evaluated in later iterations. When a decomposable evaluation metric is
used no deep searches through the label space must be performed. Instead, all
possible single-label heads are evaluated in order to identify those that reach the
highest score and merge them into one multi-label head rule.
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Fig. 1. Search through the label space L = (λ1, λ2, λ3, λ4) using micro-averaged pre-
cision of partial predictions. The examples corresponding to label sets Y4, Y5, Y6 are
assumed to be covered, whereas those of Y1, Y2, Y3 are not. The dashed line ( ) indi-
cates label combinations that can be pruned with anti-monotonicity, the solid line ( )
corresponds to decomposability.

Fig. 2. Training times.
(Color figure online)

red, green, blue, yellow, white ← colors>5, stripes≤3 (65,0)
red, green, blue, yellow, white, black, orange

← animate, stripes≤0, crosses≤0 (11,0)

yellow ← colors>4 (21,0) green ← text (11,0)
red ← yellow (21,0) orange ← saltires<1 (1,0)
blue ← colors>5 (14,0) black ← area<11 (12,0)
white ← blue (14,0)

Fig. 3. Example of learned multi- and single-label
head rule lists. TP and FP of respective rules are
given in brackets.

Figure 1 illustrates how the algorithm prunes a search through the label space
using anti-monotonicity and decomposability. The nodes of the given search tree
correspond to the evaluations of label combinations, resulting in heuristic values
h. The edges correspond to adding an additional label to the head which is
represented by the preceding node. As equivalent heads must not be evaluated
multiple times, the tree is unbalanced.
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5 Evaluation

The purpose of the experimental evaluation was to demonstrate the applicability
of the proposed SeCo algorithm despite the exponentially large search space. We
did not expect any significant improvements in predictive performance since no
enhancements in that respect were made to the original algorithm as proposed
in [11].

Experimental Setup. We compared our multi-label head algorithm to its
single-label head counterpart and also to the binary relevance method on 8
different data sets.1 Following [11], we used Hamming accuracy, subset accu-
racy (only for multi-label heads), micro-averaged precision and F-measure (with
β = 0.5) on partial predictions for candidate rule selection and also allowed
negative assignments ŷi = 0 in the heads.

Predictive performance. Due to the space limitations, we limit ourselves to
the results of the statistical tests (following [8]). The null hypothesis of the
Friedman test (α = 0.05, N = 8, k = 10) that all algorithms have the same
predictive quality could not be rejected for many of the evaluation measures,
such as subset accuracy and micro- and macro-averaged F1. In the other cases,
the Nemenyi post-hoc test was not able to assess a statistical difference between
the algorithms using the same heuristic.

Computational Costs. As expected, SeCo finds rules with a comparable pre-
dictive performance when searching for multi-label head rules. However, from
the point of view of the proven properties of the evaluation measures, it was
more interesting to demonstrate the usefulness of anti-monotonicity and decom-
posability regarding the computational efficiency. Figure 2 shows the relation
between the time spent for finding single- vs. multi-label head rules using the
same heuristic and data set. The empty forms denote the single-label times mul-
tiplied by the number of labels in the data set. Note that full exploration of
the labels space was already intractable for the smaller data sets on our sys-
tem. We can observe that the costs for learning multi-label head rules are in
the same order of magnitude despite effectively exploring the full label space for
each candidate body.

Rule Models. When analyzing the characteristics of the models which have
been learned by the proposed algorithm, it becomes apparent that more multi-
label head rules are learned when using the precision metric, rather than one of
the other metrics. This is due to the fact that precision only takes TP and FP
into account. Therefore, the performance of such a rule depends exclusively on
the examples it covers. When using another metric, where the performance also
depends on uncovered examples, it is very likely that the performance of a rule

1 scene (6, 1.06), emotions (6, 1.87), flags (7, 3.39), yeast (14, 4.24), birds (19, 1.01),
genbase (27, 1.25), medical (45, 1.24), cal500 (174, 26.15), with respective number of
labels and cardinality, from http://mulan.sf.net. Source code and results are available
at https://github.com/keelm/SeCo-MLC.

http://mulan.sf.net
https://github.com/keelm/SeCo-MLC
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slightly decreases when adding an additional label to its head. This causes single-
label heads to be preferred. The inclusion of a factor which takes the head’s size
in account could resolve this bias and lead to heads with more labels.

Whether more labels in the head are more desirable or not highly depends on
the data set at hand, the particular scenario and the preferences of the user, as
generally do comprehensibility and interpretability of rules. These issues cannot
be solved by the proposed method, nor are in the scope of this work. However,
the proposed extension of SeCo to multi-label head rules can lay the foundation
to further improvements, gaining better control over the characteristics of the
induced model and hence better adaption to the requirements of a particular use
case.

The extended expressiveness of using multi-label head rules can be visualized
by the following example. Consider the rules in Fig. 3, learned on the data set
flags which maps characteristics of a flag and corresponding country to the colors
appearing on the flag. The shown rules all cover the flag of the US Virgin Islands.
Whereas in this case the single-label heads allow an easier visualization of the
pairwise dependencies between characteristics/labels and labels, the multi-label
head rules allow to represent more complex relationships and provide a more
direct explanation of why the respective colors are predicted for the flag.

6 Related Work

So far, only a few approaches to multi-label rule learning can be found in the
literature. Most of them are based on association rule (AR) discovery. Alter-
natively, a few approaches use evolutionary algorithms or classifier systems for
evolving multi-label classification rules [2–4]. Creating rules with several labels
in the head is usually implemented as a post-processing step. For example, [15]
and similarly [10] induce single-label ARs which are merged to create multi-label
rules. By using a separate-and-conquer approach the step of inducing descrip-
tive but often redundant models of the data is omitted and it is directly tried to
produce predictive rules [11].

Most of the approaches mentioned so far have in common that they are
restricted to expressing a certain type of relationship since labels are only allowed
as the consequent of a rule. Approaches that allow labels as antecedents of
an implication are often restricted to global label dependencies, such as the
approaches by [6,13,14] that use the relationships discovered by AR mining on
the label matrix for refining the predictions of multi-label classifiers.

The anti-monotonicity property is already well known from AR learning and
subgroup discovery. For instance, it is used by the Apriori algorithm [1] to prune
searches for frequent item sets. [5] already used anti-monotonicity for efficiently
mining subgroups in multi-label problems. However, in contrast to our work,
they have not considered evaluation measures that are commonly used in MLC,
but instead adapted metrics that are commonly used in subgroup discovery. We
believe that the anti-monotonicity property must be assessed differently in a
multi-label context. This is because AR learning neglects partial matches and
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labels that are not present in the heads (cf. Sect. 2.2). In contrast, most MLC
measures are much more sensitive in this respect. This is also demonstrated by
the more restrictive property of decomposability which does not exist in common
metrics for AR.

7 Conclusions

In this work, we formulated anti-monotonicity and decomposability criteria for
multi-label rule learning and formally proved that several common multi-label
evaluation measures meet these properties. Furthermore, we demonstrated how
these results can be used to efficiently find rules with multi-label heads that are
optimal with respect to commonly used multi-label evaluation functions. Our
experiments showed that more work is needed to effectively combine such rules
into a powerful rule-based theory.
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Abstract. Multi-label classification has attracted much interest due to
its wide applicability. Modeling label interactions and investigating their
impact on classifier quality are crucial aspects of multi-label classifica-
tion. In this paper, we propose a multi-structure SVM (called MSSVM)
which allows the user to hypothesize multiple label interaction struc-
tures and helps to identify their importance in improving generalization
performance. We design an efficient optimization algorithm to solve the
proposed MSSVM. Extensive empirical evaluation provides fresh and
interesting insights into the following questions: (a) How do label inter-
actions affect multiple performance metrics typically used in multi-label
classification? (b) Do higher order label interactions significantly impact
a given performance metric for a particular dataset? (c) Can we make
useful suggestions on the label interaction structure? and (d) Is it always
beneficial to model label interactions in multi-label classification?

1 Introduction

Given a set of training samples T = {(xi,yi)}n
i=1, where xi ∈ X ⊆ R

m,
yi ∈ Y = {+1,−1}L, L ≥ 2, multi-label classification aims to construct a rule
h : X → Y , such that for an arbitrary example x̂ ∈ X , “all” the associated
labels can be obtained using ŷ=h(x̂) ∈ Y . An important and interesting prob-
lem is to identify the role of label interactions in learning a multi-label classifier.
Existing approaches [3,4,9,12,15,32] assume that labels interact according to
observed label co-occurrence information or pre-defined local and global proba-
bilistic dependencies. Also label interactions are popularly assumed to always
improve the classifier’s performance. From a practical viewpoint, such fixed
and hard-wired assumptions allow little or no freedom for the curious user to
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interact with the classifier with multiple label interaction structure assumptions
(designed using domain-knowledge or an artificially intelligent hypothesis agent).
When multiple label interaction structures are hypothesized, it becomes natural
to study which structure or collection of structures really leads to improved per-
formance. It is also of great interest to investigate the effect of label interactions
on multiple performance metrics; e.g. Hamming loss, Jaccard accuracy, subset
accuracy, F-measure etc. [21,38].

Contributions and Paper Organization: Catering to the aforementioned
objectives (and motivated by [5]), we propose a multi-structure SVM (MSSVM)
in Sect. 3, which allows the user to consider different prior assumptions on the
nature of label interactions and provides an explicit interface to interact with the
classifier and to investigate if such assumptions really hold for the given data.
We illustrate an efficient optimization algorithm to solve MSSVM in Sect. 4.
Extensive empirical evaluation of MSSVM is given in Sect. 5. Our experiments
reveal that multi-label classification requires more flexibility in modeling label
interaction structures; in fact, every dataset has its own flavor and different types
of label interactions help in improving different performance metrics for different
datasets. To the best of our knowledge, these important insights are a first of
their kind. We conclude (Sect. 6) with some future perspectives.

2 A Quick Review of Existing Work

Perhaps the simplest label interaction structure is that where the label compo-
nents of y are assumed to be independent of each other given the example x,
leading to the well-known binary relevance algorithm [29]. However, exploiting
the label interactions in multi-label classification resulted in improved perfor-
mance in certain cases [9] and has since attracted significant attention. Gener-
ally, label interactions have been called using different names in the literature,
the most popular being label dependencies [5,36] and label correlations [15].
Most of the existing works consider pair-wise interactions among labels [12,39]
or co-occurrence counts of labels [11,14]. Strong assumptions on label interac-
tion structures have been used before; e.g. chains and sequences of labels [33],
trees [7], Ising models [11], graphs with restrictive clique structures [23,28], ran-
dom ensembles of graphs [27], random spanning trees of Markov networks [22],
etc. In these works, it is assumed that the structure assumptions strictly hold
for all training and test samples. Certain algorithms introduce the influence
of label interactions by several heuristic techniques; examples include stacking
[10], chains of classifiers [26], classifiers built upon random subsets of labels
[30] and upon ranked ensembles of label subsets [35], classifier trellises [25], label
forests [32], etc. A suitable label covariance matrix is learned by some approaches
[14,34]. Label interactions and missing labels have been jointly handled in [3].
Learning to predict multiple structured outputs has also been explored in fully
supervised [19] and weakly supervised settings [13].
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3 Multi-structure SVM

We use an equivalent set notation yi = {yl
i}L

l=1 ∈ Y , where yl
i ∈ {+1,−1}

denotes the presence or absence of the l-th label component of yi. The training
samples are assumed to be realizations of random variable pair (X,Y ) from a
fixed but unknown probability distribution P over X × Y , and the notation
(x,y = {yl}L

l=1) denotes a generic (example, multi-label) pair from the training
set T . A natural approach is to use the principle of empirical risk minimization
[31] to minimize a suitable surrogate loss. The surrogate loss function we develop
here will help us to capture the label interactions and identify if certain interest-
ing structures lead to the best generalization performance; in addition, we will
also develop an efficient algorithm for the resultant optimization problem.

If the output space Y is assumed to be endowed with a known label interac-
tion structure s like a tree or sequence (where the components {yl}L

l=1 of each
multi-label output y ∈ Y interact according to structure s, denoted by y�s),
we can use structural support vector machine (structural SVM) [7,33]. However,
it is possible that for some sample (x,y), label components of y do not obey
structure s (denoted by y��s) or that multiple structures lead to the realiza-
tion of y. To handle such cases, we define an appropriate space of structures,
S = {s1, s2, . . . , sJ}, where J = |S| < ∞ is assumed for simplicity and compu-
tational efficiency. Unless advised by domain-specific knowledge, one can safely
assume that y�s, ∀s ∈ S without losing generality. Regardless of the nature
of structure specification (see Appendix A for a discussion), let us assume that
every structure sj ∈ S can be efficiently encoded using a corresponding joint-
feature representation map fj : X × Y → R

dj , 0 < dj < ∞. By associat-
ing a corresponding parameter vector w j ∈ R

dj , we design the score function
Fj(y;x,w j) = w j

�fj(x,y), ∀j. To construct a suitable surrogate loss, we first
fix a structure sj ∈ S, and suppose that y�sj∀y ∈ Y . By fixing the structure
to be sj , we also assume the following: y��sk∀sk ∈ S, sk �= sj ,y ∈ Y . With
an appropriate scaling factor δ(y, sk,yi, sj ;xi) ≥ 0 to measure the dissimilarity
between sj and sk, in addition to the dissimilarity between y and yi for a given
xi, we get the following loss function corresponding to structure sj :

�j
multi(yi;xi) = (max{ max

y∈Y ,y�=yi

{Fj(y;xi,w j) + δ(y, sj ,yi, sj ;xi)},

max
k �=j,y∈Y

{Fk(y;xi,wk) + δ(y, sk,yi, sj ;xi)}} − Fj(yi;xi,w j))+ (1)

where (z)+ = max{0, z}. Note that in (1), the score Fj(yi;xi,w j) for the
actual output yi with the assumed structure sj , should be as large as the
score for y �= yi, and sk �= sj . Now, due to the uniform prior over the
structures in S, we can construct a distinct loss function �j

multi(yi;xi), ∀j :
sj ∈ S. By minimizing the loss �multi(yi;xi) =

∑J
j=1 �j

multi(yi;xi) with an
appropriate regularization term, we arrive at min{wj∈R

dj }J
j=1

1
2

∑J
j=1 γj‖w j‖22 +

∑n
i=1

∑J
j=1 �j

multi(yi;xi), with regularization constants γj > 0,∀j. With minor
assumptions on δ(y, sj ,yi, sj ;xi), this is equivalent to the following problem
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(see Appendix B for details), which we call the multi-structure SVM (MSSVM):

min
{wj}J

j=1,ξ

1
2

J∑

j=1

γj‖w j‖22 +
n∑

i=1

J∑

j=1

ξij

s.t. w�
j fj(xi,yi) − w�

k fk(xi,y) ≥ δ(y, sk,yi, sj ;xi) − ξij

∀i ∈ {1, . . . , n},∀j, k : sj , sk ∈ S,∀y ∈ Y . (2)

A natural rule to infer the output ŷ∈Y for an arbitrary and possibly unseen
example x̂∈X is: ŷ = h(x̂) = arg max

j:sj∈S,y∈Y
Fj(y; x̂,w j) = arg max

j:sj∈S,y∈Y
w�

j fj(x̂,y).

4 Dual MSSVM and an Efficient Optimization Algorithm

The dual of MSSVM in (2) is as follows (see derivation in Appendix C):

min
θ

D(θ) =
1
2

J∑

j=1

1
γj

‖v j(θ)‖2 −
∑

i,j,y,k

θijykδijyk,

s.t. v j(θ) =
∑

i,y

J∑

k=1

(θijykfj(xi,yi) − θikyjfj(xi,y)), ∀j,

∑

y,k

θijyk = 1,∀ (i, j), θijyk ≥ 0, ∀i, j,y, k. (3)

Unless specified otherwise, we assume that the index i ∈ {1, . . . , n}, y ∈ Y =
{+1,−1}L and indices j, k represent the structures sj , sk ∈ S. We also have
δijyk = δ(yi, sj ,y, sk;xi) and let θijyk denote the dual variables. By exploiting
the constraint set in (3), we now design an iterative sequential optimization
method (in the spirit of [1]), which will depend on the following KKT-optimality
conditions of problem (3): ∀(i, j),

ηij = max
(y,k):θijyk>0

∇θijyk
D(θ) − min

(y,k)
∇θijyk

D(θ) ≤ 0, (4)

where ∇θijyk
D(θ) denotes the partial derivative of D(θ) with respect to θijyk

variable and is given by 1
γj

v j(θ)�fj(xi,yi)− 1
γk

vk(θ)�fk(xi,y)−δijyk. However,
solving (3) over the entire output space {+1,−1}L becomes quickly intractable.
Hence, following [1,33], we consider a working set Ai = {y : θijyk > 0} for each
example i. Note that such a working set is naturally used in KKT conditions
(4). Our proposed sequential optimization algorithm operates at two levels: at
the first level, we fix a sample i, change θijyk = θijyk + λijyk ∀j,y ∈ Ai, k, and
optimize λijyk by solving:

min
λ

G(λ) = −
∑

j,y∈Ai,k

λijykδijyk +
1
2

J∑

j=1

1
γj

‖v j(θ) −
∑

y∈Ai

(
∑

k

λikyj)fj(xi,y)‖2

s.t.
∑

y∈Ai,k

λijyk = 0,∀ j, λijyk ≥ −θijyk, ∀j,y ∈ Ai, k. (5)
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Algorithm 1. Sequential Optimization Algorithm to solve MSSVM
1: Input T = {(xi,yi)}n

i=1, S = {s1, . . . , sJ}, {γj}J
j=1.

2: t = 0, Ai = {yi}, ∀ i = 1, 2, · · · , n.
3: {v j(θ) = 0}J

j=1, θijyij = 1, ∀i, j, θijyk = 0, ∀i, j,y /∈ Ai, k �= j.
4: while (4) not satisfied do
5: for i = 1, 2, . . . , n do
6: for j : sj ∈ S do
7: Find (ŷ, k̂) = argmin

y,k:sk∈S
∇θijykD(θ).

8: ηij = max
y∈Ai,k:sk∈S

∇θijykD(θ) − ∇θ
ijŷk̂

D(θ).

9: if ηij > 0 then
10: Ai = Ai ∪ {ŷ}; θijŷk = 0, ∀k : sk ∈ S.
11: Solve (5) to get λijyk, ∀ y ∈ Ai, ∀k : sk ∈ S.
12: θijyk = θijyk + λijyk, ∀ y ∈ Ai, ∀k : sk ∈ S.
13: end if
14: end for
15: Update v j(θ) ← v j(θ) −

∑
y∈Ai

(
∑

k λikyj)fj(xi,y), ∀j : sj ∈ S.
16: end for
17: t = t + 1.
18: end while
19: Output {w j = 1

γj
v j(θ)}J

j=1.

Since the subproblem (5) has a summation constraint, we use a variant of sequen-
tial minimal optimization (SMO) method [24] to solve (5) until the following
KKT-optimality conditions are satisfied: ∀j,

max
(y∈Ai,k):λijyk>−θijyk

∇λijyk
G(λ) − min

(y∈Ai,k)
∇λijyk

G(λ) ≤ 0, (6)

where ∇λijyk
G(λ) denoting the partial gradient of G(λ) with respect to λijyk is

given by −δijyk − 1
γk

(vk(θ) −
∑

ŷ∈Ai
(
∑

k̂ λik̂ŷk)fk(xi, ŷ))�fk(xi,y).
At the next level of our algorithm: we fix index j corresponding to the structure

sj and solve (5) using SMO by repeatedly finding two variables λijy1k1 and λijy2k2

corresponding to the pairs (y1, k1) = arg max(y∈Ai,k):λijyk>−θijyk
∇λijyk

G(λ) and
(y2, k2) = argmin(y∈Ai,k) ∇λijyk

G(λ) in KKT condition (6). If the condition (6)
is not satisfied, we associate a change λijy1k1 +Δ and λijy2k2 −Δ to the variables
and optimize Δ by solving:

min
Δ

H(Δ) =
q1
2

Δ2 + q2Δ s.t. − λijy1k1 − θijy1k1 ≤ Δ ≤ λijy2k2 + θijy2k2 , (7)

where q1 = 1
γk1

‖fk1(xi,y1)‖2 + 1
γk2

‖fk2(xi,y2)‖2, q2=∇λijy1k1
G(λ) −

∇λijy2k2
G(λ). The solution Δ∗ to (7) is easily obtained in closed form as:

Δ∗ = max(−λijy1k1 − θijy1k1 ,min(− q2
q1

, λijy2k2 + θijy2k2)). This procedure is
repeated until the KKT conditions (6) are satisfied for every structure sj ∈ S.
After solving the subproblem (5), the following updates are made v j(θ) ←
v j(θ)−

∑
y∈Ai

(
∑

k λikyj)fj(xi,y), ∀j : sj ∈ S. The overall algorithm is stopped
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when the KKT conditions (4) hold for every (example, label interaction struc-
ture) pair (i, j). The optimization procedure is illustrated in Algorithm 1. See
also Appendix D for a detailed discussion on the 2-level approach to solve dual
MSSVM The following result establishes the sub-linear convergence of Algorithm
1 (see Appendix E for proof details).

Theorem 1. Let {θt}t≥1 be the sequence of iterates generated by Algorithm 1
and let θ∗ denote the optimal solution. Then the number of iterations of Algo-
rithm 1 to attain D(θt) − D(θ∗) ≤ ε is of the order t = O(1/ε).

Label interaction structures, feature vector construction and inference
procedures: The construction of hypothesis space S of structures depends on
the following crucial assumptions: (a) for a given training sample (x,y) and a
hypothesized structure sj ∈ S, computing the transformation fj(x,y) ∈ R

dj

takes polynomial time; (b) finding arg maxy∈Y w�
j fj(x,y), j : sj ∈ S takes

polynomial time. Here, we consider the following simple structures for a sam-
ple (x,y = {yl}L

l=1). The structure s1 represents the case where the occur-
rence of a label component yl in y does not affect the occurrence of another
label component yl̂, l̂ �= l. When no label interactions are assumed (j = 1),
the joint feature vector of dimension d1 = 2Lm is of the form f1(x,y) =
[I(y1 == 1)x� . . . I(yL == −1)x�]�, where I(z) is 1 if z is true and zero
otherwise. The model vector w1 consists of the corresponding components
[w1y1=+1

� . . . w1yL=−1
�]� and the inference rule for an example x̂ can be

decomposed label-wise to get ŷl = arg maxy∈{+1,−1} w1
�
yl=yx̂ ∀l = 1, . . . , L.

A graphical model and a possible inference output for s1 is given in Fig. 1(a)
(the dependence on x is suppressed for brevity). Structure s2 represents pair-
wise (or first-order) interactions among the label components along a lin-
ear chain structure with a fixed label permutation, which results in efficient
inference using the Viterbi algorithm [8]. The graphical model for a linear
chain with label permutation y1−y2−y3 is given in Fig. 1(c). The feature vec-
tor f2(x,y) for Fig. 1(c) is constructed by appending the pair-wise features
I(yl==vl&yl+1==vl+1), vl, vl+1 ∈ {+1,−1},∀l = 1, . . . , L − 1 to f1(x,y). Note
that the dimension of f2(x,y) is d2=2Lm + 4(L − 1). However, when we con-
sider all pair-wise label interactions, the computational complexity of inference
increases due to cyclic dependencies [33] (see graphical model in Fig. 1(b)).
Hence we make simple linear chain structure assumption in s2. We further
consider structure s3 representing the extension to second-order label inter-
actions along a chain structure and a fixed label permutation, as shown in
Fig. 1(d). The feature vector f3(x,y) consists of f2(x,y) appended with second-
order features I(yl==vl&yl+1==vl+1&yl+2==vl+2), vl, vl+1, vl+2 ∈ {+1,−1},
∀l=1, . . . , L−2. The dimension of f3(x,y) is thus d3=d2+8(L−2). Efficient exten-
sions of the Viterbi algorithm [6] can be used for inference on a chain structure
with second-order label interactions. Note that finding an approximately opti-
mal label permutation (similar to that pursued in [20]) is not our goal in this
work. We will show in the next section that simple linear chain structure and
fixed label permutation assumptions give comparable results without much com-
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putational overhead. We will also highlight those specific cases where finding a
suitable label permutation might lead to possible improvements. We further pro-
vide experiments in the next section where we consider MSSVM with a spanning
forest structure assumption. The results show the importance of hypothesizing
distinct structure assumptions in multi-label classifier design.

Iteration complexity: The complexity of each iteration of Algorithm 1 is dom-
inated by O(nJ(τinf + τsmo)), where τinf denotes the complexity of inference
procedure and τsmo denotes the complexity of SMO. Note that τinf is O(Ld1),
O((d2 + 4)L), O((d3 + 8)L) respectively for j = 1, 2, 3. SMO has sub-linear
convergence [2] and hence τsmo = O(1/ε) to attain an ε optimal solution.

y 1y y23

- - -

1 1 1

1 1 1

(a) No interactions.

y 1y y2 3

1 1 1

1 1 1-- -

(b) First-order (pair-wise)
interactions. Cyclic depen-
dency: y2 − y1 − y3 − y2.

y1 y y2 3

1 1 1

1 1 1- - -

(c) First-order interactions
in a linear chain with label
permutation y1 − y2 − y3.

y1 y y2 3

1 1 1

1 1 1-- -

(d) Second-order interactions in a linear
chain with label permutation y1−y2−y3.

y 1y y23

1 1 1

1 1 1-- -

(e) Spanning forest structure.

Fig. 1. Different label interaction structures in multi-label classification. A possible
inference structure is shown highlighted in blue. Colors in Fig. 1(d) indicate different
second-order interaction combinations. (Best viewed in color.) (Color figure online)

5 Experiments

We now provide results from an extensive empirical evaluation of MSSVM. The
experiments were run on a shared Linux box with 128 GB main memory. For
MSSVM, δijyk was defined to be a weighted Hamming loss. We compared our
method with seven state-of-the-art methods for which code is publicly available:
Binary Relevance (BR) [29], ML-kNN [37], RAndom k-labELsets (RAKEL) [30],
MLLOC [15], Multilabel tree ensemble method (ML-Forest) [32], Probabilistic
Classifier Chains (PCC) [5] and Clique Generation Machine (CGM) [28], and
experimented with 11 benchmark datasets (more details are given in Appendix
F). We used 6 performance measures: Hamming loss, Jaccard accuracy, subset
accuracy, example based F-measure, label based micro F-measure and macro
F-measure [21] to evaluate the predictive performance. For fair comparison of
all methods we used only linear kernels.
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Dataset preparation: We follow MLLOC [15] to add clustering-based addi-
tional features for the training examples. These additional features were con-
structed by k-means clustering algorithm (with k = 15), grouping the multi-
label vectors into k clusters. The corresponding test set features were constructed
using support vector regression. It is known that clustering-based additional fea-
tures improve the generalization performance for classification tasks [17]. During
training, MLLOC has an added advantage of tuning these additional clustering-
based features [15]. However, since other methods cannot tune these features as
such, we simply fixed them during their training.

Experimental results with no label interaction structure and pair-wise,
triplet-wise label interactions along a linear chain:

For this set of experiments, we used the proposed MSSVM with three dif-
ferent label interaction structures: s1 for zero-order label interactions (mean-
ing no label interactions), s2 and s3 for pair-wise (first-order) and triplet-
wise (second-order) label interactions respectively, along a linear chain struc-
ture with a fixed label permutation. The feature vector construction was per-
formed according to the procedure given in Sect. 4. We tuned the {γj}3j=1

parameters using a multi-grid 3-fold cross-validation approach where we let
γj ∈ {10−2, 10−1, 1, 10, 102, 103, 104, 105}, j = 1, 2, 3 and chose the best com-
bination distinctly for each performance measure. Note that this can be done
efficiently in parallel using multiple machines. We present in Table 1, the results
on Hamming loss, Jaccard accuracy, example based F-measure and label based
macro F-measure. Additional results on subset accuracy and label based micro
F-measure are given in Appendix F. In our cross-validation experiments, we
noticed that multiple combinations of {γj}3j=1 resulted in the best performance,
indicating the usefulness of multiple label interaction structure combinations.
Hence we highlight those structures which helped to achieve the best generaliza-
tion performance distinctly for each performance metric using their indices, in
the last column of Table 1. A novel aspect of MSSVM is its ability to explicitly
identify the structures which help to achieve the best performance.

Note however that the results presented should be reflected in perspective of
the simplistic label interaction structure assumptions along a fixed label permu-
tation, made in Figs. 1(c) and (d). Even with such simple assumptions, we see
that our results are very comparable to benchmark results. Our goal is not just
to show superiority over existing methods; more importantly, we try to under-
stand the role of label interaction structures from these results. We note the
following interesting and insightful observations:

How do label interactions affect multiple performance metrics
typically used in multi-label classification?

For many datasets, s1 structure denoting zero-order label interactions
achieves the best results for Jaccard accuracy and F-measure (both example
based and label based). On almost all datasets, MSSVM requires a combina-
tion of zero, first and second order label interactions to achieve a comparable
Hamming loss.
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Table 1. Comparison of multilabel classification algorithms. Best results are indicated
in bold. Second best results are indicated in italic fonts. Here s1: no label interactions;
s2 and s3 correspond to first-order and second-order label interactions along a linear
chain with fixed label permutation. We use 1, 2, 3 to denote s1, s2, s3. *** indicates that
we did not get reasonable results after 3 weeks of running the program. Hamming loss:
the smaller the better, other performance measures: the larger the better.

Do higher order label interactions significantly impact a given per-
formance metric for a particular dataset?

For all performance metrics, most of the best results are obtained from zero-
order label interactions (s1) or a combination of zero-order and first-order inter-
actions (s1 and s2). Second-order label interactions (s3) help in improving some
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performance measures, when in combination with zero-order or first-order inter-
actions (see especially Hamming loss, Jaccard accuracy results in Table 1).

Experimental results with no label interaction structure, pair-wise
interactions along a linear chain and a spanning forest structure:

For this set of experiments, we retained the structures s1 and s2 used in
the previous experiments. We let s3 to denote a spanning forest structure (see
Fig. 1(e)). For s3, we used a feature vector f3(x,y) constructed by appending to
f1(x,y), all pair-wise features I(yp==vp&yq==vq), vp, vq ∈ {+1,−1}, ∀p, q =
1, . . . , L, p �= q. Note that the dimension of f3(x,y) for a spanning forest structure
is d3=2L(m + L − 1). The inference was performed using a variant of Kruskal’s
maximum spanning tree algorithm [16]. We followed a tuning procedure to choose
{γj}3j=1 values similar to that used in the previous section. The results on three
datasets are given in Table 2, where the spanning forest structure assumption
leads to superior results when compared to the existing best results of MSSVM.
Thus, we are able to answer the next important questions:

Can we make useful suggestions on the label interaction structure?
The notion of best structure assumption is relative to the hypothesis space S

considered for the particular task. The results in Table 2 indicate that hypothe-
sizing suitable label interaction structures play a pivotal role in improving certain
performance measures for some datasets. Note that for many practical applica-
tions, suitable structures can be designed using domain expertise. When the size
of S is large, powerful computational machines can be employed to speed up
training. We believe (and empirically checked) that label permutation plays an
important role in datasets like Scene, Genbase and Medical, when considering
Hamming loss and Micro F-measure. Adapting MSSVM to automatically choose
the best label permutation is a future work.

Is it always beneficial to model label interactions in multi-label clas-
sification?

Some best results for various performance measures are obtained when no
label interactions are assumed. Hence, contrary to popular belief, modeling label
interactions might not be always useful for all datasets. However, we should
be quick to add that it is always useful to hypothesize as many structures as
possible according to the assumptions given in Sect. 4 and check if they lead to
an improvement in performance. We believe that the proposed MSSVM serves
as a helpful tool in this regard.

Table 2. Results for MSSVM where spanning forest structure s3 yields better perfor-
mance. Superscripts a: {3} b: {1, 3} c: {2, 3} d: {1, 2, 3} denote the various combinations
of label interaction structures s1, s2 and s3.

Dataset Hamming loss Subset accuracy Micro F-measure

Scene 0.0818a 0.6614a —

Medical 0.0140b 0.5752d —

Enron 0.0495d 0.1209b 0.5903b
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Discussion: Note that BR considers L different binary classification problems
(for L labels) and tunes parameters independently for each label. MSSVM rather
uses a structured hinge loss �multi; moreover γ1 for structure s1 is common to
all labels. Interestingly, we also observe that methods which claim to optimize a
particular performance measure do not always achieve the best results for that
performance measure on all datasets despite vigorous parameter tuning (see
Hamming loss for BR and F-measure for PCC in Table 1).

Runtime comparison: Since different algorithms use different programming
languages (RAKEL, ML-Forest, PCC use Java; BR, ML-kNN, MLLOC, CGM
use Matlab; MSSVM uses C) for implementation, CPU times could not be
directly compared. In terms of wall-clock times, MSSVM was comparable to BR,
RAKEL, ML-kNN, PCC and was faster than MLLOC, CGM and ML-Forest.

6 Conclusion

We formulated a multi-structure SVM (MSSVM) for learning a multi-label clas-
sifier using multiple label interaction structures, and provided an efficient opti-
mization algorithm to solve it. The proposed MSSVM allows the user to design
a suitable hypothesis space of label interaction structures and explicitly identi-
fies which structures are useful in achieving the best generalization performance.
We believe that MSSVM will aid the practitioner to better understand the role
of label interactions in multi-label classification. It will be an interesting future
direction to incorporate other loss functions [5,18] in MSSVM framework.

Acknowledgments. The authors thank anonymous reviewers of the current and ear-
lier versions of the paper for their useful comments. The second author thanks Prof.
Francis Bach for the discussion.
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Abstract. Neural networks (NN) have demonstrated powerful ability to
extract text features automatically for sentiment classification in recent
years. Although semantic and syntactic features are well studied, global
category information has been mostly ignored within the NN based
framework. Samples with the same sentiment category should have sim-
ilar vectors in represent space. Motivated by this, we propose a novel
global sentiment centroids based neural framework, which incorporates
the sentiment category features. The centroids assist NN to extract dis-
criminative category features from a global perspective. We apply our
approach to several real large-scale sentiment-labeled datasets, and the
extensive experiments show that our model not only obtains more pow-
erful sentiment feature representations, but also achieves some state-of-
the-art results with a simple neural network structure.

Keywords: Sentiment classification · Sentiment centroids
Deep neural network

1 Introduction

There is a large volume of sentiment rich text data in social websites with the
forms of reviews, comments, tweets, and so on. Sentiment classification technolo-
gies play an important role in analyzing these kinds of texts. Recently, neural
networks (NN) [10], such as recursive neural network (RENN) [21], convolutional
neural network (CNN) [7,8], recurrent neural network (RNN) [22,23], have been
attracting much attention in various natural language processing (NLP) tasks
including sentiment classification. Many neural models are designed to learn
deep features automatically. However, it still remains challenges of revealing
sentiment categories for social review texts. And feature representation is a key
point towards achieving the best possible accuracy.

NN is trained to represent given data by sentiment latent vector for sentiment
classification task where semantics are relevant. For a more intuitive explanation
of learned features, we provide a 2D view for mapped samples (deep features). As
Fig. 1 shown, we illustrate two data distributions which got by HAN model [28]
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 56–67, 2018.
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and our model separately. Five kinds of colors refer to five sentiment categories.
Our observation from Fig. 1 shows same labeled points tend to cluster together
around its own unique sentiment centroid in the form of real-valued vector. At the
same time, there are also many overlapped points (color cycles overlapping parts)
for different classes. For these overlapped points, it usually hard to separate them
and it should to keep its distance from other categories, intuitively.

Points in the same class can be allocate together as close as possible and keep
away from the other categories points as far as possible in the latent semantic
space. To achieve this purpose, we propose a Sentiment Centroid (SC) based
neural framework to help construct text embeddings and make feature vector
more discernable. We use a global vector to represent the global sentiment fea-
tures for each category. The main idea is: First, we assign a sentiment centroid
to each sentiment category, which is originated from the work [18]. Rocchio uses
average vectors as class centroid and assigns test vectors to the class with maxi-
mum centroid similarity. Second, sentiment centroids is used to help NN to learn
text features, which are closer with the other same sentiment category embed-
dings. In order to achieve the second goal, we add a global centroids constraint
to optimization target.

We constrain sentiment centroids with the same dimension of text representa-
tions to enhance the constructing process of deep feature learning. We conduct
extensive experiments on five popular datasets. Our model achieves competi-
tive results compared with the state-of-the-art approaches, and provides strong
baselines for sentiment classification. Our main contributions are as follows:

– To the best of our knowledge, we are the first to introduce sentiment centroids
to sentiment classification. Sentiment centroids are used to capture global
sentiment category features of corpora.

– Also, We design a novel framework for sentiment classification. The entire
model is trained end-to-end with batch gradient descent, where sentiment
centroids are combined with a joint loss.

– The experimental results on several public datasets show that our approach
outperform most state-of-the-art baselines. The sentiment centroids have been
proved to be effective to prefer the sentiment classification performance.

The reminder of the paper is organized as follows: Related work is introduced
in Sect. 2. Section 3 describes the proposed models and our joint objective func-
tion. In Sect. 4, five real-world datasets are discussed in detail, and experimental
results are presented. Finally, the paper is concluded in Sect. 5.

2 Related Work

2.1 Sentiment Features Learning

Sentiment features are important to sentiment analysis. For word representation,
some prior studies [25,26] have reported that words with similar embeddings
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may have opposite sentiment polarities. Tang [25] uses a supervised way to cap-
ture the sentiment information of word level. Ren [17] uses multi-prototype to
improve word embeddings for twitter sentiment classification. To enhance the
features of sentiment information, they typically apply an objective function to
optimize word embeddings. And the enhanced word vectors have improved the
performance of sentiment classification.

Unlike most previous studies that focus on word level sentiment information,
we learn discriminative sentiment features for text representation. The sentiment
features are formed as sentiment centroids.

(a) The Yelp13 dataset

(b) The Yelp14 dataset

Fig. 1. 2D views (obtained by PCA) of data distributions of the Yelp13/Yelp14
datasets. Five kinds of colors refer to five sentiment categories (very negative, neg-
ative, neutral, positive, very positive). For each subfigure (a, b), distribution of the left
part is extracted by HAN model, and the right part is extracted by our approach using
global sentiment centroids. Color cycles are drawn by respective 2D centers and the
overlapped areas contain many overlapped points. It is clear to see that our proposed
centroids help encoder to get more separable text points. (Color figure online)
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2.2 Neural Networks for Sentiment Classification

Sentiment classification via deep learning has achieved promising results in these
years. The existing neural network methods can be divided into two groups:
learning word embedding from text corpus and learning semantic representation
of texts.

For learning word embeddings, Word2Vec [13] is an effective tool to build
word vector which contains CBOW and Skip-Gram models. Global vectors [15]
use statistics of word co-occurrence to train word representation which con-
tains global information of corpus. SSWE [26] has been proposed to combine
context and sentence-level sentiment evidence to learn sentiment-specific word
embedding which proved effective for Twitter sentiment classification. For learn-
ing semantic composition, Recursive autoencoder neural networks (RANN) has
achieved remarkable results [3,11,15,21] which based on syntactic analysis tree.
Convolutional neural network (CNN) is another useful model for sentiment clas-
sification [6,7,20] which use filers to capture n-gram information. Long short-
term memory model is a more powerful model for sequential signal [30]. There
are also some other works that use hybrid structure in sequence generation which
can be seen in [23,27,28].

Different from existing neural network approaches that only focus on embed-
ding text sequence, we take consideration of global sentiment centroids for dif-
ferent categories.

Fig. 2. Global centroids based framework for text sentiment classification.

3 Our Approach

To deal with challenges faced by previous models, we introduce sentiment cen-
triods to represent the corpus global sentiment information. Leveraging global
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centriods to generate discriminative features, our approach has two main steps:
firstly, encode a text sequence to a dense vector z and use the centroids as con-
strain of the text representation to enhance global sentiment features. Figure 2
shows the framework of our sentiment centroids based model for sentiment clas-
sification. The dashed part is our main work.

3.1 Text Sequence Encoder Models

In order to display the generalization of our approach and encode variable-length
text to low dimensional vector z, we experimented with three models of increas-
ing complexity.

Considering a word sequence, x = 〈x1, x2, · · · , xn〉, we define e(∗) as the word
lookup function to map word xi to vxi = e(xi).

AVG-Based Sequence Encoder. The AVG method is a average of the word
embeddings and project it to an another vector using a full connection layer:

z = f(Wp(
1
n

n∑

i

vxi) + bp) (1)

where Wp is the projection matrix, bp is a bias term, f is the nonlinear activation
function. We refer to AVG-based encoder with sentiment centriods as SCAVG.

GRU-Based Sequence Encoder. To gain some order and dependency infor-
mation between words within x, GRU [1] is used to model it:

ht = GRU(ct−1,ht−1,v
xt) (2)

Where ct ∈ R
d is an additional memory cell, and the last hidden vector h−1 is

used to represent the text sequence z = h−1. We refer to GRU-based encoder
with sentiment centriods as SCGRU.

Attention-Based Sequence Encoder. The hierarchical attention network
(HAN) [28] uses an attention mechanism over the hidden states of words and
sentences to generate a representation of a document. In this work, the same
mechanism is used to encode input text x to z. The attention mechanism is
defined as:

z =
n∑

i=1

αihi (3)

αi =
exp(uT

i uw)∑n
t=1 exp(uT

i uw)
(4)

ui = tanh(Wwhi + bw) (5)

where αi is the attention weight for hidden state hi, ui is a hidden representation
of hi, and uw is a context vector. Ww and bw are nonlinear projection parameters.
We refer to Attention-based encoder with sentiment centriods as SCHAN.
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3.2 Sentiment Centriods Constraint

In this section, we explain the proposed sentiment centroids constraint which is
used to capture global category information and enhance sentiment features of
text. We define the following loss function.

Softmax Loss. Most deep neural network based classifier use a full connection
layer to convert text representation to category probability py with a softmax
function, and use cross-entropy error between gold and predicted distribution as
the objective function. The normal direct classification softmax loss is as below:

L1 = − 1
m

m∑

i=1

log(py)

= − 1
m

m∑

i=1

log(softmax(WTz(i) + b))

= − 1
m

m∑

i=1

log
exp(WT

yi
z(i) + byi

)
∑K

j=1 exp(WT
j z(i) + bj)

(6)

where m denotes the number of training samples, z(i) refers to the text repre-
sentation with sentiment category yi. Wj is j-th column of multinomial logistic
regression parameter W ∈ R

d×k and d is dimensionality of text representation,
k is number of categories.

Sentiment Centroids Loss. Give a corpus, we define its sentiment centroids
as C = {ci}, here ci ∈ R

d (i = 1, · · ·, k), and d is centroid vector size, k is number
of sentiment categories.

In order to enhance the sentiment feature of review text representations, it
is natural to think of making the text representation vector to closer with corre-
sponding sentiment centroid which we believe different categories have different
class centers in representation space. To this end, we can use a kernel to mea-
sure the distance between a review text representation and the corresponding
sentiment centroid vector, and try to reduce the distance to reinforce sentiment
information. There are many distance measurement methods to choose, such as
Euclidean distance, Kullback-Leibler divergence, etc.

Triplet loss is proposed to improve face recognition and clustering [19].
About text classification, a weakly-supervised model [4] introduced to identify
customer review sentiment categories, which use a rating lost to obtain a good
enough sentence representation. The normal loss function of triplet loss is:

Lt = − 1
m

m∑

i

[
dist(zi, cyi

) − dist(zi, cy′
i
) + α

]
+

(7)

where dist(·) denotes distance between pairwise. In our work, we use Euclidean
function to measure the distance between centroids and text presentations. α is
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a margin that is enforced the pairwise, cyi
denotes sentiment center which has

a same dimensionality with representation zi. cy′
i

is used to represent corroded
centroids which is randomly chosen in the other categories respectively.

Student’s t-distribution loss is proposed by [10]. In this work, we also
use the Student’s t-distribution as a distance kernel to measure the similarity
between the text point z and corresponding sentiment centroid cy:

pcy
=

(1 + ‖zi − cy‖2 /α)− α+1
2

∑k
j=1(1 + ‖zi − cj‖2 /α))− α+1

2

(8)

where α is the degrees of freedom of the Student’s t-distribution, and we let
α = 1 for all experiments. The soft sentiment centroids lost can be computed as:

Lc = −1
k

k∑

i=1

log(pcy
) (9)

Joint Loss. To make the whole neural network become an end-to-end model, we
use two hyper parameters μ1 and μ2 to joint softmax lost and sentiment centroid
loss. In the training phase, we update the review text embedding part and the
sentiment center representation synchronously. The joint loss L formulated as
below:

L = μ1L1 + μ2L2 +
λθ

2
‖ θ ‖2 (10)

where L2 can be Lt or Lc, and μ1 ∈ (0, 1.0], μ2 ∈ [0.0, 1.0], λθ is a regularization
parameter, θ denote trainable parameters.

In the prediction phase, we use softmax function as a classifier for the follow-
ing reason: Softmax functions have more power of discrimination ability [5], while
centroid vector method is unable to handle the multi-model category problem.

4 Experiments

4.1 Datasets

Table 1 lists the characteristics of the datasets used in the experimental study.
MR and SST are used for sentence-level classification. IMDB and Ylep13/14 are
used for document-level classification. The description of each dataset in detail
as below:

– MR are Movie Review [14] where each instance is a sentence. The objective
is to identify sentiment polarity (positive or negative) of movie reviews.

– SST1/2 are Stanford Sentiment Treebank [21]. We use SST1 for fine-grained
sentiment classification while SST2 for binary.

– IMDB are obtained from [24]. The ratings range from 1 to 10.
– Yelp13/14. Yelp13 and Yelp14 are review datasets derived from Yelp Dataset

Challenge1 of year 2013 and 2014 respectively. The ratings range from 1 to
5. We obtained it from [24].

1 http://www.yelp.com/dataset challenge.

http://www.yelp.com/dataset_challenge
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Table 1. Statistical information of the data sets. K is the number of target classes.
N counts the number of instances. |W | means the average number of words in each
instances. Train/Dev/Test is a division of datasets (CV means 10-fold cross-validation).

Data K N |W | Train/Dev/Test

Sentence MR 2 10,662 20 CV

SST1 5 11,855 18 8,544/1,101/2,210

SST2 2 9,613 19 6,920/872/1,821

Document IMDB 10 84,919 395 67,426/8,381/9,112

Yelp13 5 78,966 189 62,522/7,773/8,671

Yelp14 5 231,163 197 183,019/22,745/25,399

4.2 Evaluation Metrics

We use Accuracy (Acc) and Root Mean Squared Error (RMSE) as evaluation
metrics:

Acc =
T

M
(11)

RMSE =

√∑N
i=1(pi − gi)2

M
(12)

where we use T to account the prediction correct number, and M to account the
whole number of samples in the test. Acc is a standard metric to measure the
overall classification result. RMSE is used to figure out the divergences between
predicted sentiment classes pi and ground truth classes gi.

4.3 Training Settings

Update of Sentiment Centroids. Inspired by k-means, we employ mini-batch
based algorithm to update sentiment centroids as:

cnew
j = cold

j − λcΔcj (13)

Δcj =
∑m

i=1 δ(yi = j)(cyi
− zj)

1 +
∑m

i=1 δ(yi = j)
(14)

δ(cond) =

{
1, if cond is True;
0, if cond is False.

(15)

where λc is the updating rate of sentiment centroids, Δcj is a mean-shift direction
of mini-batch, m is the size of a mini-batch sample, cond refers to condition.
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Other Settings. Both sentiment centroids ck and text embedding z are limited
to same dimensions over {50, 100, 200, 300}. For all the experiments, we trained
the models for 10 epochs. We tuned on two optimization schemes: AdaGrad [29]
and Adam [9] with learning rage over {0.001, 0.005, 0.01, 0.05}. Batch-size is
tuned over {25, 50, 100}.

For sentence-level sentiment classification, we follow Kim [8] to preprocess
the datasets (MR, SST1, SST2) and initialized the word embeddings with GloVe
vectors [16].

For document-level sentiment classification, we use Stanford’s CoreNLP [12]
to split documents into sentences and tokenize words of sentences. We utilize
word2vec [13] to obtain word embeddings and limit the dimensions of word
embeddings to 300. We remove the words if their occurrence less than 5 times
both in the training and validation datasets. For unknown words in the test
datasets, we remove them.

4.4 Sentence-Level Classification

The results on MR as well as SST1 and SST2 are shown in Table 2. We report
the performance of our three models: SCAVG, SCGRU, SCHAN, and compare
them to three baselines: AVG, GRU, HAN.

Table 2. Accuracy of sentiment prediction in Sentence-level datasets. For all of our
models, Ls loss is used. The best performances of our models are in bold.

Dataset AVG SCAVG GRU SCGRU HAN SCHAN

MR 0.787 0.801 0.792 0.810 0.780 0.804

SST1 0.421 0.429 0.437 0.469 0.440 0.454

SST2 0.848 0.861 0.858 0.876 0.852 0.865

The results are very clear that our global sentiment centroids significantly
improve the accuracy of sentiment classification. The SCGRU model shows
strong performance in three datasets, while the SCHAN model has next best
performance. For SST2, our SCGRU gets almost 2.1% improvement of accuracy.
And it also gets a competitive result with the previous state-of-art score 0.881 [8]
while our approach has a simpler structure and easy to reproduce.

4.5 Document-Level Classification

The experiment results are shown in Table 3. Our observation shows that the
proposed model works well in predicting review sentiment. Our model achieves
best results in RMSE indicators, and competitive results in accuracy rates. The
RMSE is a important performance for multi-classification task to measure the
degree of predict category and real category. The lower the RMSE is, the closer
the predicting sentiment category to the true sentiment category.
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Table 3. Document-level sentiment classification results. The best performances are in
bold. Results are grouped as follows: (a) baseline methods with our own implementa-
tion; (b) other competitive neural network based methods; (c) ours. In order to encode
document-level text, hierarchical model HAN is used as a base encoder. SCHAN-t is
Lt based model of SCHAN, SCHAN-c is Lc based model of SCHAN.

Model IMDB Yelp13 Yelp14

Acc RMSE Acc RMSE Acc RMSE

AVG 0.300 1.996 0.523 0.900 0.530 0.896

GRU 0.410 1.605 0.581 0.808 0.591 0.804

HAN 0.470 1.440 0.629 0.713 0.636 0.686

RNTN + Recurrent [23] 0.400 1.764 0.574 0.804 0.582 0.821

NSC [2] 0.443 1.465 0.627 0.701 0.637 0.686

NSC+LA [2] 0.487 1.381 0.631 0.706 0.630 0.715

SCHAN-t 0.477 1.363 0.641 0.677 0.640 0.679

SCHAN-c 0.491 1.327 0.638 0.683 0.641 0.678

For IMDB, our SCHAN-c model achieves a great accuracy, and gets a 6.7%
lower RMSE compared with NSC+LA model. It indicates that our approach is
helpful with the task of sentiment classification. For Yelp13, our SCHA-t model
achieves best results with 1.6% improvement of accuracy and 3.2% lower of
RMSE. For Yelp14, our SCHAN-c model outperforms the NSC+LA model. It
gets 1.74% accuracy improvement and 5.7% RMSE drop.

4.6 The Effect of Sentiment Centroids

The hyper parameter μ1 means strength of softmax loss and μ2 controls the
constrain strength of sentiment centroids loss. To investigate the sensitiveness
of parameters μ1 and μ2, we conduct a experiment on SST2.

We fix μ1 to 1.0 and vary μ2 from 0.0 to 0.5 to learn different models. The
accuracy of these models is shown in Fig. 3(a). It is clear that a carefully choosing
of μ2 can improve the accuracy of sentiment classification. As the same, we fix
μ2 to 0.05 and vary μ1 from 0.5 to 1.0 to learn different models. The accuracy
of these models is shown in Fig. 3(b).

5 Conclusion and Future Work

We propose a general sentiment centeroids based model to predict sentiment of
review text and a novel joint lost function to reinforce global category informa-
tion. Experiments on the sentiment labeled dataset show that the global senti-
ment centroids help to understand the sentiment features, improve association
of inter-class, and improve the accuracy of classification.
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(a) sensitiveness of µ2 where µ1 = 1.0 (b) sensitiveness of µ1 where µ2 = 0.05

Fig. 3. Effect of sentiment centroids.

However, there is still much work to do: (a) apply the centroids mechanism
to the general task of text classification; (b) explore other more powerful neural
networks to encoding text.
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Abstract. Shapelet is a discriminative subsequence of time series. An
advanced time series classification method is to integrate shapelet with
random forest. However, it shows several limitations. First, random
shapelet forest requires a large training cost for split threshold search-
ing. Second, a single shapelet provides limited information for only one
branch of the decision tree, resulting in insufficient accuracy and inter-
pretability. Third, randomized ensemble causes interpretability declin-
ing. For that, this paper presents Random Pairwise Shapelets Forest
(RPSF). RPSF combines a pair of shapelets from different classes to con-
struct random forest. It is more efficient due to omit of threshold search,
and more effective due to including of additional information from dif-
ferent classes. Moreover, a discriminability metric, Decomposed Mean
Decrease Impurity (DMDI), is proposed to identify influential region for
every class. Extensive experiments show that RPSF improves the accu-
racy and training speed of shapelet forest. Case studies demonstrate the
interpretability of our method.

Keywords: Time series classification · Shapelet · Random forest
Interpretability

1 Introduction

Time series is ubiquitous. It is produced everyday and everywhere in real world,
such as ECG recordings, financial data, industrial observations, etc. Time series
classification is an important subject in the field of data mining. Unlike general
classification tasks, it takes attribute order into account. Recent studies have
shown that the 1NN with dynamic time warping (DTW) remains among the
most competitive classification approaches [4]. However, this method has draw-
backs of high classification time complexity and lack of interpretability.

Shapelet is the most discriminant, phase independent subsequence in time
series [15]. It is proposed to detect phase-independent localized similarity within
the same class. In preliminary works, researchers use various methods to extract
shapelet, and to embed it into decision tree directly. The shapelet-based approach
has the following characteristics. First, shapelet shows local features, which is its
main difference from 1NN. Second, since only the comparison with shapelet is
needed, it is not only faster in the classification stage, but also needs less storage
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 68–80, 2018.
https://doi.org/10.1007/978-3-319-93034-3_6
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space. Third, shapelet figures out the key points of classification process and pro-
vides better interpretability. Nevertheless, this method suffers low accuracy and
slow training process though several acceleration strategies are raised [6,11,17].

Random forest can achieve good performance through integrating a series of
weak classifiers [1]. Shapelet-based random forest has attracted significant atten-
tion and research effort recently. Renard et al proposed a method of randomly
extracting shapelet to build decision trees [14]. Karlsson et al introduced ran-
dom shapelet forest. It selects both training instances and shapelet candidates
randomly [10]. Experiment shows that effective result can be achieved when the
amount of selected shapelet candidates is less than 1% of the full set, which
greatly saves time. In response to the interpretability decline caused by random-
ization, a contribution metric Mean Decrease Impurity (MDI) is introduced [8].
Random shapelet forest has also been extended to multivariate time series for-
est, applied successfully to ECG classification [7] and early classification problem
[9]. Deng et al proposed employing a combination of entropy gain and distance
measure to evaluate the node split in forest [3]. Cetin et al proposed a shapelet
discovery technique that allows efficient candidates evaluation in multivariate
time series forest [2].

However, some shortcomings can be seen in shapelet forest. First, a single
shapelet often cannot provide enough information to distinguish different classes.
Second, a time-consuming split threshold searching is needed to evaluate candi-
date shapelet. Third, randomization and ensemble lead to interpretation declin-
ing easily.

Fig. 1. (left) Classic shapelet tree structure; (right) Pairwise shapelets tree structure.

For these challenges above, this paper proposes an ensemble algorithm that
combines a pair of shapelets in decision tree node, called Random Pairwise
Shapelets Forest (RPSF). We also describe an effective metric for identifying
influential data series regions for specific class. Our method is more accurate,
faster and provides better interpretability in comparison to existing shapelet-
based forest. Our main contributions are as follows.

– Better accuracy. The RPSF method provides more information by combining
a pair of shapelets from different classes, each tree node is split according
to subsequence distances between instances to the two shapelets. Figure 1
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compares classic shapelet tree structure with the proposed one in a simple
binary classification task, where like or not is measured by distance between
instance and shapelet. It is easy to observe that our tree extracts discriminant
features for both classes. This helps the classifier to sharpen the contrast
between the two classes. Besides, since pairwise combination has more possible
candidates than a single shapelet, it enhances the diversity of the ensemble
model. Extensive experiments show that our approach improves the accuracy
of the classifier.

– Faster. RPSF no longer needs to find the split threshold, which saves comput-
ing resources. This is especially true when introducing entropy early pruning
to speed up [15] (constantly evaluating shapelet under limited information
and abandoning apparent inadequate candidates in advance).

– Better interpretability. RPSF provides better interpretability at two levels
rather than existing methods. First, each individual decision tree has better
interpretability. We extract information for both sides of the binary decision
tree. This is beneficial for researchers to understand the profound mecha-
nism of model. Second, the Decomposed Mean Decrease Impurity (DMDI)
proposed to illustrate the importance of each attribute provides better inter-
pretability for RPSF. This method evaluates the contribution of each time
series attribute for each class, and considers those with higher scores hold
better discrimination. Existing MDI provides only a global score, which is
determined by its tree structure [8]. On the contrary, the proposed tree struc-
ture allows us to decompose the contribution into different classes. Figure 2
shows results of the two methods on ECGFiveDays dataset, both methods
point to similar subsequences (red), while the DMDI method also indicates
additional discriminant sequences (blue) for the other class. This result is in
line with medical conclusion (see [12]). In Sect. 5, we will further discuss the
performance of DMDI on other datasets.

The remainder of the paper is organized by the following. In the next
section, we present RPSF algorithm in detail. Section 3 explains the DMDI forest

Fig. 2. (left) Existing MDI interpretation; (right) our DMDI interpretation. Both from
ECGFiveDays dataset. The right one indicates discriminative features for both classes.
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interpretation method. In Sect. 4, the experimental setup and results from the
empirical investigation are described. Case studies are shown in Sect. 5. Finally,
we summarize the main contributions in Sect. 6.

2 Random Pairwise Shapelets Forest

RPSF trains multiple pairwise shapelet-based trees to build an ensemble model,
we will provide a detailed elaboration to the proposed algorithm in this section.

2.1 Providing More Information by Combination

Shapelet-based decision tree makes judgement according to subsequence distance
between instance and shapelet. It can be summarized as follows. If the instance
is similar with shapelet (the subsequence distance is less than the split threshold)
from a specific class, it is assigned to that class. If not, assigned to another class.
However, similarity with features (shapelet) from only one class often cannot
accurately characterize the information in the data. Just as each branch of a
traditional decision tree indicates the splitting attribute value under the branch,
we also hope that each branch of shapelet tree clearly shows what the current
branch means. Under this notion, we propose the idea of combining a pair of
shapelets from different classes in a decision tree, so that “like and not like”
becomes “like A or like B”. Decision can be made according to distances to
the two shapelets in the pair rather than distance to a single shapelet and a
threshold. This improves the accuracy of the classifier due to the additional
information. Besides, diversity of the ensemble model can be improved since
pairwise combination has more possible candidates than single one. At the same
time, this idea also allows researchers to more clearly realize the basis of node
division.

Pairwise-based method also has advantage in terms of training time cost.
Because of the combination, the split threshold calculation, which is a signif-
icant time over-head, is omitted. This is especially true with introduction of
entropy early pruning, where the previously calculated distance information can
be reused, but the split thresholds, which is avoided by RPSF, must be recalcu-
lated each time.

2.2 Proposed Algorithm

RPSF trains a set of trees by taking several parameters: the shapelet length inter-
val l, u, the number of decision trees p, and the number of candidate shapelets
pairs in tree node r. For each tree, we use a Bootstrap sample to generate a
training set and construct the decision tree on the sampled dataset.

The Algorithm 1 shows the process of training each pairwise shapelets tree.
At the beginning, the creation of leaf nodes is determined according to whether
the data is pure enough (entropy < 0.1) (lines 1–3). Then subsequences are
extracted randomly from two random classes r times to form a candidate set.
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Algorithm 1. RandomPairwiseShapeletsTree (D, l, u, p, r)
Input: The training set D, the lower shapelet length l, the upper shapelet length u,

the number of shapelet trees p, and the number of inspected shapelets pair r
Output: Pairwise shapelets tree ST , and shapelets pair (s1, s2)
1: if IsTerminal(D) then
2: return MakeLeaf(D)
3: end if
4: S ← ∅

5: for i = 0 to r do
6: S ← S∪ SampleShapeletsPair(D, l, u)
7: end for
8: (s1, s2)← BestShapeletsPair(D, S)
9: (D1,D2) ←Split(D, s1, s2)

10: STL ← RandomPairwiseShapeletsTree (D1, l, u, r)
11: STR ← RandomPairwiseShapeletsTree (D2, l, u, r)
12: return (s1, s2, STL, STR)

To be accurate, two time series are randomly selected from two randomly selected
classes, then two lengths and starting points are randomly selected to form a
pair of shapelets: si and sj (lines 4–7). After that we assess candidates and find
the best pair (line 8, details in next paragraph). The best pair (s1, s2) is used to
split the dataset D to two subsets D1 and D2. Since there is no split threshold,
we calculate the distances between a training instance D[m] and (s1, s2) as d1,
d2. If d1 is less than or equal to d2, it means that D[m] is closer to s1, and D[m]
is added to D1, otherwise D[m] is added to D2 (line 9). Finally, the algorithm
recursively calls itself on D1 and D2 to construct subtrees (lines 10–12).

Information gain and split interval are typically used when shapelet assess-
ment is needed [10]. For a shapelets pair (s1, s2), we try to split training data
by calculating the subsequence distance between training instance and s1, s2
separately, and assigning each instance to its closer side (similar with splitting
process in previous paragraph). When this process completed, information gain
and split interval can then be calculated for this partition as a measure of the
quality of the pair. A pair with greater information gain and split interval is
considered preferentially. Entropy early pruning is introduced in this process to
abandon apparently inadequate candidate [15].

After training, each internal tree node consists of a shapelets pairs (s1, s2)
and the left, right subtree. The leaf node records the class value. To classify a
test instance T , we begin from the root node. If the distance between T and s1
is less than the distance between T and s2, the left subtree is recursively used.
Otherwise, the right subtree is recursively traversed. The process runs repeatedly
until it reaches a leaf node and gets a prediction. We have p trees, the final result
is obtained by majority voting.
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3 Decomposed Mean Decrease Impurity

The main advantage of shapelet-based decision tree is its interpretability. How-
ever, it is eroded by randomized ensemble since the interpretation of each tree
is different or even contradictory. To solve this problem, we define an attribute
contribution scoring strategy for pairwise shapelets forest. Compared with exist-
ing the method in [8], the improvement is that thanks to the tree structure of
RPSF, attribute scores for each class could be explored so that discriminative
patterns could be discovered.

We decompose all node’s information gain according to shapelet’s contri-
bution (Eq. 1), then add the contribution to attributes that form the shapelet.
For shapelets pair (s1, s2), if the dataset attracted by shapelet s1 cause greater
entropy reduction (Eq. 2), then it is assumed that s1 contributes more. Contribu-
tion of different classes shapelet is accumulated respectively. Based on the above
idea, we define DMDI. Given pairwise shapelet forest R = {ST1, ST2, . . . , STn},
where ST is a pairwise shapelet tree. Each tree has multiple nodes, each node
corresponds to a shapelets pair (s1, s2). Given a training set D with series length
m, for time series attribute k and class c, Decomposed Mean Decrease Impurity
DMDI(k, c) is defined as follows.

DMDI(k, c) =
∑

n

(
∑

node

(k∈s1∧class(s1)=c)CV (node, s1)+
∑

node

(k∈s2∧class(s2)=c)CV (node, s2))

where CV is the contribution value of one shapelet. It is obtained from the
decomposition of total information gain of the node. Let the dataset that
inputted to the node be D0, the dataset obtained by dividing the D0 be D1,
D2. Assume I(s1,s2)(D0) is the information gain of the tree node, then

CV (node, si) =
ER(node, si)

ER(node, s1) + ER(node, s2)
∗ I(s1,s2)(D0) (1)

ER(node, si) = E(D0) − E(Di) (2)

where E(D) is the entropy of D, ER(node, si) is the entropy reduction caused by
a shapelet. We cannot guarantee that ER is positive. It is set to zero in negative
case. If the two terms in denominator are both zero, the node is discarded.

For every class, DMDI searches all nodes that embed a shapelet from it,
decomposes the information gain of these nodes, and adds the contribution of
shapelet to attributes forming it. Eventually we recognize which attributes in
the sequence contribute more for a particular class.

4 Experiment and Evaluation

In this part, we experimentally evaluate the performance of proposed RPSF
algorithm in terms of accuracy and time consumption.
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4.1 Experimental Setup

We select 43 datasets for experiments. All of them are UCR datasets and are
widely used in studies. We discard datasets that cannot finish 10 times training
in 48 h.

Several algorithms are used for comparison. The nearest neighbor method
(1NN) is a widely-used benchmark whose performance can be improved with
DTW (DTW1NN). We also include Euclidean distance based nearest neighbor
(ED1NN). The ShapeletTree (ST) algorithm is a classic shapelet-based method
proposed in [15]. FastShapelet (FS) refers to the decision tree algorithm proposed
in [12] where getting the approximate shapelet quickly through SAX. Learning-
Shapelets (LTS) is an algorithm proposed in [5] that search shapelet by using
optimization approach. gRSF is the state-of-the-art shapelet-based random for-
est algorithm proposed in [10].

For parameter settings, shapelet length interval of ST, gRSF, and RPSF are
set to 25% to 67% of the total length of corresponding time series, which covers
a larger range and is a relatively safe value. The number of decision trees for
the latter two algorithms is set to 50. The number of candidate pairs in each
node is set to 1% of the possible candidate shapelets. For algorithms involving
randomization, the results are the average of ten runs.

4.2 Predictive Performance

In this section, we demonstrate that RPSF is competitive in term of classification
accuracy compared to state-of-the-art algorithms in literature.

We first compare RPSF to single tree based algorithms, ST, LTS, and FS.
Since ST and LTS are time consuming, we finish the experiment on 22 relatively
small datasets (with fewer instances and attributes). Figure 3 shows the results
of this experiment and the average accuracy of each classifier. Ensemble based
and nearest neighbour algorithms are faster, we compared the performance of
RPSF, gRSF, and 1NN on 43 datasets. Figure 4 gives the accuracy comparison
of those classifiers. The area bellows the diagonal line indicates that RPSF is
better.

In Fig. 3, the two methods, LTS and RPSF, show outstanding performances.
Although LTS performs better on a large proportion of the datasets (13 of 22),

Fig. 3. Accuracy of RPSF compared with FS, LTS and ST
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its ad-vantages are not obvious. In contrast, as we can see that three points at
the lower triangular area of Fig. 3 (middle) are far away from the line, indicating
that RPSF shows overwhelming advantage on these datasets. For example, it is
20.8% higher than the LTS on the OliveOil dataset, and 20.7% higher on the
Wine dataset. Therefore, due to the advantage in average accuracy rate, RPSF
overtakes LTS to be the best algorithm in this experiment. This experiment
suggests that, when processing classification tasks, RPSF should be considered
as a prior selection.

Fig. 4. Accuracy of RPSF compared with gRSF, DTW1NN and ED1NN

Figure 4 gives results of the two random shapelet forest methods as well as
1NN method. RPSF achieves enhancement in two-thirds of the datasets (29 of
43) compared to gRSF, and it is obviously superior to the nearest neighbour
method on the vast majority of datasets.

Figure 5 gives the critical differences diagram for the accuracy of individual
algorithms (p = 0.05). Although LTS outperforms RPSF in term of ranking,
there is no significant difference between them, and RPSF holds better average
accuracy. RPSF beats other algorithms and is significantly better than FS, ST
(tested on 22 datasets), and 1NN (tested on 43 datasets).

CD

4 3 2 1

1.7273 LTS
1.9091 RPSF2.9773FS

3.3864ST

CD

4 3 2 1

1.7558 RPSF
2.3256 gRSF2.8023DTW1NN

3.1163ED1NN

Fig. 5. Average rank for methods. Groups of classifiers not significantly different (at p
= 0.05) are connected. (left) 4 methods on 22 small datasets. (right) 4 methods on 43
datasets.

4.3 Computational Performance

Another advantage of RPSF is that it omits split threshold searching. This part
shows the significant increase in time performance. Note RPSF approach is easy
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to parallelize, several times of further acceleration can be achieved using parallel
computing.

Versus Other Algorithms. We compare RPSF with other time series classi-
fication algorithms in terms of training time. Since 1NN is a lazy algorithm, it
is not included. Similar with previous settings, ST, FS, and LTS are tested on
the smaller datasets, while shapelet-based forests are compared on 43 datasets.
Parameter settings are the same as the previous one. Figure 6 shows boxplots
of the relative time consumption using RPSF as benchmark to make it more
intuitive.

As you can see in Fig. 6, FS is faster than other methods, which is the major
ad-vantage of this approach. RPSF method is significantly better than ST and
LTS on the vast majority of datasets. It even appears tens of times faster on
some datasets. It is also noticeable that the single shapelet-based forest (gRSF) is
slower than RPSF on almost all datasets. This result verifies our idea of omitting
the calculation of the split threshold for time saving. In the next part, we will
discuss it further.

Fig. 6. Relative time consumption of LTS, ST, FS and gRSF compared with RPSF.

Stage Analysis. This part divides RPSF and gRSF into two main stages and
analyzes the time consumption of them. We will show that omitting split interval
indeed save computation resources.

The decision tree of RPSF algorithm combines a pair of shapelets while gRSF
is based on a single shapelet. In terms of time, the main difference is that while
assessing candidates, on the one hand RPSF needs to calculate subsequence
distances between two shapelets and all training instance, which is twice as
much as that of single shapelet based method; on the other hand, in the process
of evaluating a single shapelet, a split threshold needs to be found. This is
omitted by RPSF. Note that with entropy early pruning [15], threshold searching
will be executed multiple times during candidate assessment, while subsequence
distance will only be calculated once since distance information can be reused.
This expands the advantage of RPSF.

The process of evaluating shapelets is divided into two main parts: calculat-
ing subsequence distance and information gain (used in threshold searching and
candidate assessment). Table 1 selects several datasets that behave differently in
terms of time performance and compares their relative time cost in the two parts.
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Table 1. Relative time cost of RPSF and gRSF in different stages

Dataset RPSF gRSF

Distance Information
gain

Total Distance Information
gain

Total

Coffee 0.86 0.03 1.00 0.43 0.19 0.70

CBF 0.74 0.14 1.00 0.36 0.98 1.48

ECGFiveDays 0.67 0.10 1.00 0.62 1.18 2.15

FaceFour 0.91 0.03 1.00 0.44 0.14 0.62

ArrowHead 0.91 0.04 1.00 0.57 0.93 1.60

GunPoint 0.86 0.07 1.00 0.42 1.41 1.87

SyntheticControl 0.21 0.44 1.00 0.13 8.61 8.76

As the relative time cost shown in Table 1, the four bolded datasets particu-
larly validate our hypothesis. RPSF’s distance computation consumes approxi-
mately twice as much as that of the gRSF, while the time spent for calculating
information gain is apparently smaller. It is specifically noticeable on Synthet-
icControl dataset. For dataset ECGFiveDays, the time spent to compute subse-
quence distances does not conform to the hypothesis, which may be caused by
entropy early pruning. It also indicates that in some cases the difference between
the two subsequence distance calculations is trivial. In addition, it is clear that
the time consumption of information gain on RPSF is obviously less than gRSF,
and there is no doubt that RPSF is generally more efficient than gRSF, especially
on relatively larger datasets.

5 Case Studies

As discussed in Sect. 3, the pairwise shapelets and DMDI enhance interpretabil-
ity by providing explanation for each possible class. We briefly show the profit of
DMDI on ECGFiveDays dataset in previous. More detailed real-world examples
will be included to demonstrate the usefulness of our DMDI and RPSF model
in this section.

5.1 GunPoint

GunPoint is a dataset that has been studied extensively in literature. The 150-
length dataset describes the action curve of an actor with or without a gun
when doing an action (as shown in Fig. 7). The key discriminant pattern for
this dataset is around 100–120 time stamps. Since inertia carries actors hand a
little too far and she is forced to correct it in Point case [15], in this location
Point instances bear a slight dip, while Gun instances mostly do not. Another
discriminant pattern is near 40–60 time stamps. Some of Point instances are
relatively flat near this range, while all Gun instances are in rising state. This
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Fig. 7. DMDI interpretation for GunPoint dataset

is because the actor can be more agile when she does not hold a gun [13]. The
accuracy of RPSF on this dataset is 99.9%.

The DMDI metric is applied to the dataset, and the results are shown in
Fig. 7. It is clear that the discriminant scores of the two classes arrive at their
highest value near 100–120 time stamps, showing that our method succeeds in
identifying the distinguishing features. This is consistent with the conclusion of
[8,15,16]. In addition, the score of Gun reaches a local peak among the 40–60
indexes, it also matches the range of another discriminant pattern.

5.2 ArrowHead

Arrows classification is an important topic in archaeology. ArrowHead is a multi-
class dataset with 251 attributes. Arrows can be divided into three classes accord-
ing to their place, age, and the race belonged: Avonlea, Clovis, and Mix. Through
starting from arrow tip, moving round and recording distance to the centroid,
the time series describes the outline of the arrows. Figure 8 briefly depicts the
series on the left part. The differences among these three arrows are that, the
Clovis arrow has an unnotched hafting area near the bottom connected by a deep
concave bottom end (near 125 time stamp), while Avonlea and Mix differ in a

Fig. 8. DMDI interpretation for ArrowHead dataset
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small notched hafting area connected by a shallow concave bottom end (near 90,
160 time stamp). These conclusions are confirmed by UCR anthropologists [15].

Our DMDI metric for this dataset is shown on the right side of Fig. 8. As
described in the figure, Clovis peaks near 125 time stamp, and the other two
peaks at 90 and 160 separately. It is obvious that shapelets pairwise forest and
DMDI accurately capture the key points of real problem. In addition, for the
multi-class classification problem, existing MDI can only output a global solu-
tion, it cannot provide a subtle explanation for every class. This example fully
illustrates the superiority of DMDI.

6 Conclusion

In this paper, we present an effective and efficient random forest combining
shapelets from different classes randomly. The model diversity, interpretabil-
ity and classification accuracy are improved by including more information in
a node. Due to the fact that pairwise shapelets do not have to search the split
threshold, the time consumption is optimized. In addition, a novel forest interpre-
tation method DMDI is proposed to evaluate the contribution of each attribute
and to explain the proposed model. Extensive experiments and case studies show
that our method outperforms state-of-the-art random shapelet forest.
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Abstract. In the field of multi-label learning, ML-kNN is the first
lazy learning approach and one of the most influential approaches. The
main idea of it is to adapt k-NN method to deal with multi-label data,
where maximum a posteriori rule is utilized to adaptively adjust decision
boundary for each unseen instance. In ML-kNN, all test instances which
get the same number of votes among k nearest neighbors have the same
probability to be assigned a label, which may cause improper decision
since it ignores the local difference of samples. Actually, in real world
data sets, the instances with (or without) label l from different locations
may have different numbers of neighbors with the label l. In this paper,
we propose a locally adaptive Multi-Label k-Nearest Neighbor method
to address this problem, which takes the local difference of samples into
account. We show how a simple modification to the posterior probability
expression, previously used in ML-kNN algorithm, allows us to take the
local difference into account. Experimental results on benchmark data
sets demonstrate that our approach has superior classification perfor-
mance with respect to other kNN-based algorithms.

1 Introduction

1.1 Background

Multi-Label classification has received considerable attention over the past sev-
eral years. In multi-label classification, each instance in the dataset is associated
with a set of labels, and the task of multi-label classification problem is to output
a label set whose size is unknown for each test instances. Multi-label problems
are ubiquitous in the real world, for example, in image categorization, each image
can be associated with multiple labels, such as sea, desert and mountain [1]; in
text categorization, each text may belong to a set of topics, such as economics,
poetry and health [2]; in bioinformatics, a gene may be related to multiple func-
tions, such as metabolism and protein synthesis [3].

Formally, let X = Rd denote the d-dimensional feature space and Y = {0, 1}L
be the label space with L possible labels, then the goal of multi-label classifier
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 81–93, 2018.
https://doi.org/10.1007/978-3-319-93034-3_7
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is to learn a function f : X �→ Y. Given a multi-label dataset D, we can divide it
into feature space X and label space Y. An instance xi is associated with a subset
of labels Yi ⊆ Y (finite set of labels), and a multi-label dataset is composed of
m examples (x1, Y1), (x2, Y2), . . ., (xn, Yn) [4].

Given a multi-label learning task, it can be transformed into other well-
established learning tasks. This category of approaches is formally defined as
Problem Transformation method. In this way, we can decompose a multi-label
problem into multiple single-label problems, and each single-label problems can
be tackled by a binary classifier. Thus, the multi-label classification function
can be represented in another form f = {f1, f2, . . . , fL} in this way. Problem
Transformation is widely used in multi-label learning problems for its greater
flexibility [8,9,11]. Another way to tackle multi-label classification problems is
so called Algorithm Adaptation method [5]. This category of approaches tackles
multi-label learning problem by adapting existing popular learning approaches
such as AdaBoost, Neural Networks or kNN to deal with the multi-label problems
directly [2,12,13].

According to the idea of Algorithm Adaptation, Zhang and Zhou [6] proposed
Multi-Label k-Nearest Neighbor (ML-kNN). It is the first lazy learning approach
and one of the most influential multi-label classification approaches. The basic
idea of this approach is to adapt the classic kNN algorithm to deal with multi-
label classification problems, where maximum a posteriori (MAP) rule is utilized
to adaptively adjust decision boundary for each new instance. In this method,
the test instances which get the same number of votes among k nearest neighbors
have the same probability to be assigned a label. It may cause improper decision
since it ignores the local difference of samples. Actually, in real world data sets,
the instances with (or without) label l from different locations may have different
numbers of neighbors with the label l. Thus, in this paper, we propose a locally
adaptive Multi-Label k-Nearest Neighbor method to address this problem.

1.2 Motivation

We begin by conducting a simple experiment to try to show the local difference
of samples. The local difference here means the instances with (or without) the
l-th label from different locations may have different numbers of neighbors with
the l-th label.

For a dataset, we first find the k nearest neighbors of each instance x and
denote as N (x). Then we can count the number of neighbors of x with label l.
The counting vector can be defined as:

C x(l) =
∑

(x∗,Y ∗)∈N (x)
Y ∗(l), l ∈ Y (1)

After calculating above statistics, we can figure out if the distribution of
C x(l) is related to the location information. In our experiments, we separate
the dataset into five clusters, and use the cluster index to represent location
information. For each cluster Sj and each label l, we calculate: (1) the average
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C x(l) of the instances with label l (defined as Eq. (2)); (2) the average C x(l) of
the instances without label l (defined as Eq. (3)).

C (Sj , l) =
1

|Sl1
j |

∑
(x,Y )∈Sl1

j

C x(l) (2)

C ∗(Sj , l) =
1

|Sl0
j |

∑
(x,Y )∈Sl0

j

C x(l) (3)

where Sl1
j = {(x, Y )|(x, Y ) ∈ Sj , Y (l) = 1} and Sl0

j = {(x, Y )|(x, Y ) ∈
Sj , Y (l) = 0}.

We conduct the experiment on an image data set scene, which has 2407
instances and 6 labels. The results are shown in Table 1. The first part and the
second part respectively show C (Sj , l) and C ∗(Sj , l) of each cluster Sj and each
label l. As is shown in Table 1, for a same label l, the C (Sj , l) and C ∗(Sj , l) of
different clusters may vary tremendously.

Table 1. Each cell of the table means the average C x(l) of the instances with (or
without) label l in each cluster.

Label beach sunset fall field mountain urban

C Cluster 1 1.432 0.926 1.470 2.000 1.785 5.532

Cluster 2 1.600 1.500 2.047 6.188 2.256 1.000

Cluster 3 1.250 5.265 6.055 1.571 0.500 1.090

Cluster 4 1.044 1.607 1.214 1.936 4.761 2.000

Cluster 5 4.863 1.333 1.000 2.333 1.444 1.956

C
∗

Cluster 1 0.401 0.029 0.083 0.176 1.073 4.503

Cluster 2 0.221 0.005 0.219 4.462 1.116 0.167

Cluster 3 0.098 0.248 1.696 0.201 0.134 0.198

Cluster 4 0.346 0.067 0.123 0.556 3.759 1.369

Cluster 5 3.543 0.006 0.195 0.430 0.891 1.084

The above results hint that the distribution of C x(l) is significantly related to
the location information. In ML-kNN, however, the local difference of samples is
ignored, which may cause the improper decision. To take the local difference into
account, we propose a locally adaptive Multi-Label k-Nearest Neighbor method
in this paper. In our approach, the test instances which get the same number of
votes among k nearest neighbors may have different probabilities to be assigned
a label if they come from different regions. Experimental results on benchmark
data sets demonstrate that our approach has superior classification performance
with respect to previous ML-kNN algorithm, especially on large scale data sets1.

1 The code available at https://github.com/DENGBAODAGE/LAMLKNN.

https://github.com/DENGBAODAGE/LAMLKNN
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1.3 Paper Organization

The rest of this paper is organized as follows. The related work is discussed
in Sect. 2. The details of our approach are proposed in Sect. 3. After that, the
experiment results are reported in Sect. 4. Finally, the conclusion is summarized
in Sect. 5.

2 Related Work

The k-nearest neighbors (kNN) rule [7] is one of the oldest and simplest methods
for pattern classification. For traditional single-label classification problems, the
kNN rule usually classifies each unlabeled instance by the majority label among
its k nearest neighbors in the training data. The kNN-based methods often yield
competitive results and have been widely used in practical applications mainly
due to its implementation simplicity. However, for multi-label classification, the
traditional kNN rule is inappropriate mainly due to the severe class-imbalance
issue.

ML-kNN was proposed based on the traditional kNN algorithm to deal with
multi-label classification problems. Rather than classifying new instance by the
majority label among its k nearest neighbors, ML-kNN employs maximum a
posteriori (MAP) principle to predict the set of labels of the new instance.

Yt(l) = arg max
b∈{0,1}

P (H l
b|El

Ct (l)
)

= arg max
b∈{0,1}

P (H l
b)P (El

Ct (l)
|H l

b)
(4)

where Yt(l) is the label vector for the new instance t. Ct (l) is the same as
described previously. H l

1 represents the event that t has label l, while H l
0 repre-

sents the event that t doesn’t have label l. El
Ct (l)

denotes the event that, among
the k nearest neighbors of t, there are exactly Ct (l) instances which have label
l. The prior probability P (H l

b) and the conditional probability P (El
Ct (l)

|H l
b) in

Eq. (4) can all be estimated from the training dataset in advance.
The reported experiment results show that ML-kNN performed well on sev-

eral real world data sets. However, it ignores the local difference when using
utilizing maximum a posteriori rule, and we think the location information of
the new instance is helpful especially for large scale data sets.

There are also some other kNN based approaches to handle multi-label clas-
sification problems. Note that ML-kNN is a first-order approach which reasons
the relevance of each label separately. Considering that this method is ignorant
of exploiting label correlations, a dependent multi-label classification method
derived from ML-kNN is proposed in [14], which takes into account the depen-
dencies between labels. In order to exploit the non-parametric property of classi-
cal kNN method, Wang et al. [15] further developed classical KNN method, and
proposed a Class Balanced K-Nearest Neighbor (BKNN) approach for multi-
label classification. This method picks up the most representative training data
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points from every class with equal number, such that the label of a test data point
is determined via the information from all the classes in a balanced manner. In
[18], a kNN based ranking approach is proposed to solve the multi-label classifica-
tion problem. This approach exploits a ranking model to learn which neighbor’s
labels are more trustable candidates for a weighted KNN-based strategy, and
then assigns higher weights to those candidates when making weighted-voting
decisions.

3 Methodology

As described in previous sections, we try to take the local difference into account
by modifying the posterior probability expression used in ML-kNN algorithm.
How to exploit the location information when using MAP principle to assign
labels to a new instance? In this section, we introduce a Locally Adaptive Multi-
Label k-Nearest Neighbor algorithm to address this problem.

Inspired by the results presented in Sect. 1.2, we firstly separate the training
data into m groups S1, S2, . . . , Sm via clustering, where the average C x(l) of
instances in the different clusters may vary tremendously. For each test instance
t, we can identify which group should it be assigned to by measuring the distance
between the test instance and each cluster center.

wt = arg min
1≤j≤m

‖xt − cj‖2 (5)

where wt is the index of cluster to which should the test instance t assign. cj
stands for the center point of cluster Sj .

Therefore we can get two important information of the test instance t: C t

(records the numbers of x’s neighbors with each label) and wt (stands for the
index of cluster to which should the test instance t assign). Then based on the
membership counting vector C t and the location information wt, the category
vector Yt can be determined using the following maximum a posteriori principle:

Yt(l) = arg max
b∈{0,1}

P (H l
b|El

Ct (l)
,Wwt

) (6)

where H l
b and El

Ct (l)
is the same as described in Sect. 2. Wwt

denotes the event
that the test instance t can be assigned to the cluster Swt

. Based on Bayes
theorem, we have:

Yt(l) = arg max
b∈{0,1}

P (H l
b)P (El

Ct (l)
,Wwt

|H l
b) (7)

The prior probability P (H l
b) and the likelihood P (El

Ct (l)
,Wwt

|H l
b) can be esti-

mated from the training data.
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Equation (6) can also be rewritten by another way (based on Bayes theorem):

Yt(l) = arg max
b∈{0,1}

P (H l
b, E

l
Ct (l)

, Wwt
)

= arg max
b∈{0,1}

P (H l
b,Wwt

)P (El
Ct (l)

|H l
b, Wwt

)

= arg max
b∈{0,1}

P (Wwt
)P (H l

b|Wwt
)P (El

Ct (l)
|H l

b, Wwt
)

(8)

where P (Wwt
) represents the prior probability that Wwt

holds. P (H l
b|Wwt

) rep-
resents the conditional probability that H l

b holds when Wwt
holds. Furthermore,

the conditional probability P (El
Ct (l)

|H l
b, Wwt

) represents the likelihood that the
instance x has C t(l) neighbors with label l when H l

b and Wwt
both hold.

By comparing Eqs. (8) and (4) (in Sect. 2), it is intuitive to understand how
we exploit the location information by involving Wwt

in posterior probability
expression. In our method, the category vector Yt of the new instance t depends
on the membership counting vector C t as well as the location information wt.
Unlike ML-kNN, our approach can derive different probabilities of assigning a
label to new instances which get the same number of votes among k nearest
neighbors but come from different regions. Actually, ML-kNN can be regarded
as a special case of our approach with m = 1. Note that Eqs. (7) and (8) we
described above are actually equivalent. We choose the latter version in our
implementation.

All the three terms in Eq. (8) can be estimated from the training data. Firstly,
the prior probability P (Wwt

) is estimated by calculating the proportion of the
cluster Swt

in training data:

P (Wwt
) =

|Swt
|

|Strain| (9)

where |Swt
| and |Strain| is the size of cluster wt and training dataset.

Then the conditional probability P (H l
b|Wwt

) are estimated by counting the
number of training examples associated with each label in each cluster:

P (H l
1|Wwt

) =
s +

∑
(x,Y )∈Swt

Y (l)

2 × s + |Swt
| (l ∈ Y)

P (H l
0|Wwt

) = 1 − P (H l
1|Wwt

) (l ∈ Y)

(10)

where s is the smoothing parameter controlling the effect of uniform prior on
the estimation [6].

Finally, the estimation process for likelihoods P (El
Ct (l)

|H l
b, Wwt

) is involved.
For each label l, we calculate:

Kl(r) =
∑

(x,Y )∈Sw t

Y (l) · [[C x(l) = r]] (l ∈ Y, 0 ≤ r ≤ k)

K′
l(r) =

∑
(x,Y )∈Sw t

(1 − Y (l)) · [[C x(l) = r]] (l ∈ Y, 0 ≤ r ≤ k)
(11)



A Locally Adaptive Multi-Label k-Nearest Neighbor Algorithm 87

Kl(C) counts the number of training examples which have label l and have
exactly C neighbors with label l, while K′

l(C) counts the number of training
examples which don’t have label l and have exactly C neighbors with label l.
For any ·, [[·]] equals 1 if · holds and 0 otherwise. After calculate Kl(C) and
K′

l(C), we can estimate the likelihood in Eq. (8):

P (El
Ct (l)

|H l
1, Wwt

) =
s + Kl(Ct (l))

s × (k + 1) +
∑k

r=0 Kl(r)

P (El
Ct (l)

|H l
0, Wwt

) =
s + K′

l(Ct (l))

s × (k + 1) +
∑k

r=0 K′
l(r)

(12)

The following pseudo-code illustrates the complete description of our method. In
training phase, we estimate the prior probability P (Wj), the conditional prob-
abilities P (H l

1|Wj), P (H0
1 |Wj), the statistics Kl(r), and K′

l(r) (steps from 5 to
13). In classifying phase, the predicted label set of test instance t can be deter-
mined using the maximum a posteriori principle (by substituting Eqs. (9), (10)
and (12) into (8)).

Train(Strain, k,m)

1 Divide training data into m clusters {S1, S2 . . . , Sm} with k-means

2 for i = 1 to |Strain| do:

3 Identify k nearest neighbors N (xi) for xi

4 end

5 for j = 1 to m do:

6 P (Wj) =
|Sj |

|Strain|
7 for l = 1 to L do:

8 P (Hl
1|Wj) =

s +
∑

(x,Y )∈Sj
Y (l)

2 × s + |Sj |
9 P (Hl

0|Wj) = 1 − P (Hl
1|Wj)

10 Kl(r) =
∑

(x,Y )∈Sj

Y (l) · [[Cx(l) = r]] ( 0 ≤ r ≤ k)

11 K′
l(r) =

∑

(x,Y )∈Sj

(1 − Y (l)) · [[Cx(l) = r]] ( 0 ≤ r ≤ k)

12 end

13 end
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Classify(t, k)

1 Identify Swt (the cluster should t be assigned to) using Equation (5)

2 Identify k nearest neighbors N (t) for t

3 for l = 1 to L do:

4 Calculate Ct(l) according to Equation (1)

5 Estimate P (El
Ct (l)

|Hl
1, Wwt) and P (El

Ct (l)
|Hl

0, Wwt) according to (12)

6 Yt(l) = arg maxb∈{0,1} P (Hl
b|El

Ct (l)
,Wwt)

= arg maxb∈{0,1} P (Wwt)P (Hl
b|Wwt)P (El

Ct (l)
|Hl

b, Wwt)

7 end

4 Experiment

We compare the our proposed method with other multi-label lazy learning algo-
rithms on several data sets. In the following sections, we first describe the exper-
iment setup including the data sets, the evaluation metrics, and the compared
algorithms; Then we discuss the experiment results.

4.1 Experiment Setup

Data Sets: We evaluated the algorithm presented in the previous section on
twelve data sets2 of varying size and difficulty. The statistics of the data sets are
shown in Table 2. Six regular-scale data sets (first part) as well as six large-scale
data sets (second part) are included (the data sets are roughly ordered by the
number of instances). There are two additional properties [10] to measure the
density of labels:

• The cardinality of a dataset S is the mean of the number of labels of the
instances that belong to S, defined as:

cardinality(S) =
1
n

n∑

i=1

|Yi| (13)

• The density of S is the mean of the number of labels of the instances that
belong to S divided by L, defined as:

density(S) =
1
n

n∑

i=1

|Yi|
L

(14)

Metrics: In multi-label learning, the evaluation is more complicated than that in
single-label learning. Various evaluation metrics have been proposed to measure
2 Data sets were downloaded from http://mulan.sourceforge.net/datasets.html and

http://meka.sourceforge.net/#datasets.

http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/#datasets
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Table 2. Multi-label data sets used in experiments.

name domain instances dimension labels cardinality density

Emotions Music 593 72 6 1.869 0.311

Birds Audio 645 260 19 1.014 0.053

Enron Text 1702 1001 53 3.378 0.064

Scene Image 2407 294 6 1.074 0.179

Yeast Biology 2417 103 14 4.237 0.3003

Slashdot Text 3782 1079 22 1.181 0.054

bibtex Text 7395 1836 159 2.402 0.015

corel5k Image 5000 499 374 3.522 0.009

corel16k (1) Image 13766 500 153 2.859 0.019

corel16k (2) Image 13761 500 164 2.882 0.018

corel16k (3) Image 13760 500 154 2.829 0.018

Ohsumed Text 13929 1002 23 1.663 0.072

the performance of multi-label classifier. We use five commonly used metrics:
hamming loss, ranking loss, coverage, one error and average precision [17].
These above five metrics evaluate the performance of a multi-label classifier from
different horizon. Note that for average precision, the larger the values the better
the performance, while for other four metrics, the smaller the values the better
the performance.

Compared Algorithms: We compare the performance of our proposed method
with that of three other kNN-based multi-label approaches: BRkNN, ML-kNN
and DML-kNN. BRkNN [16] is an adaptation of the kNN algorithm that is
conceptually equivalent to using BR method in conjunction with the traditional
kNN algorithm. As we discussed in Sect. 2, DML-kNN is an extension approach
based on ML-kNN, which takes into account the dependencies between labels.

4.2 Results

Following the experiment setup described above, we conduct the comparison
experiments. The experimental results of each algorithm on each data set are
respectively reported in Tables 3 and 4. For each algorithm, the k value is deter-
mined by cross-validation. We can see that our proposed method LAML-kNN
outperform the compared methods in most cases. Furthermore, the advantages
of our approach are more obvious on the large-scale data sets (in Table 4) than
that on the regular-scale data sets (in Table 3).

The experimental results on benchmark data sets and diverse evaluation
metrics validate the superior effectiveness of our approach to existing kNN-based
multi-label approaches. Meanwhile, the experimental results demonstrate the
number of clusters does not significantly affect the classifier’s performance on
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Table 3. Experimental results of each algorithm on regular-scale data sets.

Metrics Algorithms Emotions Birds Enron Scene Yeast Slashdot

Hamming loss LAMLkNN 0.197 0.045 0.050 0.097 0.198 0.050

MLkNN 0.191 0.044 0.051 0.096 0.198 0.053

BRkNN 0.193 0.045 0.058 0.105 0.203 0.090

DMLkNN 0.187 0.045 0.051 0.097 0.198 0.051

Ranking loss LAMLkNN 0.151 0.093 0.088 0.090 0.170 0.157

MLkNN 0.145 0.102 0.093 0.096 0.171 0.168

BRkNN 0.151 0.119 0.152 0.106 0.183 0.242

DMLkNN 0.147 0.101 0.092 0.083 0.170 0.161

OneError LAMLkNN 0.243 0.709 0.252 0.230 0.236 0.610

MLkNN 0.253 0.728 0.280 0.233 0.242 0.645

BRkNN 0.267 0.726 0.459 0.291 0.242 0.891

DMLkNN 0.253 0.721 0.282 0.238 0.237 0.612

Coverage LAMLkNN 0.307 0.138 0.240 0.093 0.454 0.172

MLkNN 0.298 0.147 0.249 0.096 0.455 0.184

BRkNN 0.303 0.172 0.382 0.105 0.472 0.253

DMLkNN 0.300 0.145 0.246 0.086 0.455 0.176

Avg-Precision LAMLkNN 0.818 0.609 0.654 0.856 0.759 0.530

MLkNN 0.818 0.578 0.640 0.852 0.757 0.502

BRkNN 0.810 0.570 0.564 0.824 0.754 0.334

DMLkNN 0.816 0.580 0.643 0.857 0.758 0.526
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Fig. 1. Comparison results on six regular-scale data sets.
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Table 4. Experimental results of each algorithm on large-scale data sets.

Metrics Algorithms bibtex corel5k corel16k(1) corel16k(2) corel16k(3) Ohsumed

Hamming loss LAMLkNN 0.014 0.009 0.019 0.016 0.017 0.070

MLkNN 0.014 0.009 0.019 0.016 0.017 0.071

BRkNN 0.015 0.010 0.019 0.016 0.017 0.072

DMLkNN 0.014 0.009 0.019 0.016 0.017 0.071

Ranking loss LAMLkNN 0.145 0.118 0.160 0.180 0.184 0.214

MLkNN 0.217 0.127 0.175 0.181 0.183 0.231

BRkNN 0.297 0.292 0.268 0.279 0.259 0.277

DMLkNN 0.208 0.127 0.174 0.179 0.179 0.231

OneError LAMLkNN 0.542 0.670 0.698 0.731 0.732 0.613

MLkNN 0.578 0.706 0.736 0.782 0.769 0.639

BRkNN 0.680 0.742 0.771 0.917 0.769 0.706

DMLkNN 0.576 0.722 0.729 0.767 0.764 0.640

Coverage LAMLkNN 0.222 0.272 0.312 0.316 0.331 0.292

MLkNN 0.354 0.298 0.342 0.326 0.336 0.311

BRkNN 0.431 0.591 0.493 0.475 0.476 0.361

DMLkNN 0.332 0.299 0.339 0.327 0.332 0.311

Avg-Precision LAMLkNN 0.395 0.288 0.305 0.276 0.267 0.470

MLkNN 0.349 0.275 0.288 0.255 0.253 0.442

BRkNN 0.268 0.210 0.200 0.170 0.222 0.394

DMLkNN 0.350 0.265 0.291 0.266 0.258 0.441
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Fig. 2. Comparison results on six large-scale data sets.
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large-scale data sets. We fix the k value as well as change m (the number of
clusters) for our proposed approach, then compare the average precision of
each case with that of ML-kNN. From Fig. 2 we can see, on these six large-scale
data sets, across all the m value, our approach superior to ML-kNN. But the
performance of our approach is sensitive to the cluster number m on small-scale
data sets (see in Fig. 1). The proposed approach may inferior to ML-kNN if we
select improper m for small-scale data sets (e.g. emotions and yeast). We think
one possible reason may be due to lack of prior acknowledge when the size of
each cluster is too small.

5 Conclusion

To achieve more effective multi-label classification using lazy learning method,
in this paper, we introduced an original kNN-based multi-label classification
algorithm. We show how to take into account the local difference of samples by
modifying the posterior probability expression previously used in ML-kNN algo-
rithm. The experimental results on benchmark data sets demonstrate effective
classification of our approach, especially on large scale data sets.

Acknowledgement. It was supported by NSF Chongqing China (cstc2017zdcy-
zdyf0366). Li Li is the corresponding author for the paper.
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Abstract. In this paper, we propose a practically useful means of inter-
preting the predictions produced by a conformal classifier. The proposed
interpretation leads to a classifier with a reject option, that allows the
user to limit the number of erroneous predictions made on the test set,
without any need to reveal the true labels of the test objects. The method
described in this paper works by estimating the cumulative error count
on a set of predictions provided by a conformal classifier, ordered by
their confidence. Given a test set and a user-specified parameter k, the
proposed classification procedure outputs the largest possible amount
of predictions containing on average at most k errors, while refusing to
make predictions for test objects where it is too uncertain. We conduct
an empirical evaluation using benchmark datasets, and show that we are
able to provide accurate estimates for the error rate on the test set.

1 Introduction

Conformal predictors [13] are predictive models that associate each of their pre-
dictions with a measure of statistically valid confidence. Given a test object xj ,
a conformal classifier outputs a prediction set—a class label set Γ ε

j ⊆ Y —where
the probability of making an erroneous prediction (i.e., excluding the correct
class label yj) is at most ε ∈ (0, 1), where ε is a user-specified significance level.
Importantly, conformal predictors are automatically well-calibrated, in that the
error probability ε is guaranteed to correspond with the empirical error asymp-
totically [13].

Due to their ability to provide users with accurate confidence measures, con-
formal predictors are particularly useful in risk-sensitive applications, where poor
predictions might incur large costs (monetary or otherwise), e.g., stroke risk
assessment [4], diagnosis of acute abdominal pain [9] or drug development [3].

However, while conformal predictors are able to supply users with an appro-
priate estimate of error probability, the validity of a conformal classifier holds
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 94–105, 2018.
https://doi.org/10.1007/978-3-319-93034-3_8
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only a priori, i.e., before the prediction is made. After observing a particular pre-
diction, it is no longer automatically correct to interpret ε as a well-calibrated
error probability for any particular prediction, which leads to conformal classi-
fiers instead requiring predictions to be interpreted in a manner that is poten-
tially counter-intuitive to a user less familiar with p-value statistics [6]. Specifi-
cally, some prediction regions are always guaranteed to be correct (because they
contain all possible labels) whereas others are always guaranteed to be incorrect
(because they contain no class labels); since the overall error rate is asymptot-
ically ε, this leads to the more interesting prediction regions (containing, e.g.,
only a single class label) potentially having an error rate that is not immediately
related to ε.

In [6], a method was proposed for providing a more practical interpretation
of the predictions provided by a conformal classifier, by producing adjusted con-
fidence values specifically for predictions containing only a single class label (in
a binary classification context). The method proposed in [6] relied on using pos-
terior information regarding the frequencies of predictions containing one, two
or zero class labels (estimated from the test set, without knowledge of the true
labels). While that method showed promising results, i.e., such that the updated
estimates appeared empirically well-calibrated, it does show obvious limitations;
specifically, it retains a particular dependency on ε that is far from intuitive.

In this paper, we further refine the work presented in [6], and propose a
more flexible method of producing an intuitive interpretation of the predictions
produced by a conformal classifier. We remove the dependency on ε, and replace
it with a new parameter, k, that denotes the maximum expected number of
errors that we wish the classifier to make on the test set. The result is a classifier
that can accurately estimate the error rate for ordered subsets of the test set
(without any need to reveal the true test set class labels); by choosing a value
for k, we are able to output predictions for a subset of the test objects (while
refusing to make predictions when the underlying conformal predictor is too
uncertain), where the predictions that are made contain on average at most k
errors.

In the next section, we briefly describe the conformal classification frame-
work. In Sect. 3, we outline the proposed approach for making predictions with
a bound on the expected number of errors. In Sect. 4, we empirically evaluate the
approach using 20 publicly available datasets. Finally, in Sect. 5, we summarize
the main findings and discuss some directions for future research.

2 Conformal Classifiers

In order to produce confidence predictions, a conformal classifier depends on a
nonconformity function—a function f(z, ζ) → R that scores a pattern z = (x, y)
based on how well it corresponds with a sequence of patterns ζ = z1, . . . , zn,
such that nonconforming (i.e., strange or unlikely) patterns obtain larger non-
conformity scores than more common patterns. A standard way of defining non-
conformity functions is to base them on the predictions made by a traditional
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classification model, as
f(zi, ζ) = Δ [h(xi), yi] , (1)

where h is a classifier (often called the underlying model) induced from ζ, and
Δ is a function that measure the prediction errors of h. A common choice of Δ,
for classification problems, is the margin error function,

Δ[h(xi), yi] = max
y �=yi

P̂h(y | xi) − P̂h(yi | xi), (2)

where P̂h(y | x) denotes the probability estimate provided by h for the class y.
Once a suitable underlying model and nonconformity function have been

selected, a conformal classifier can be constructed in a few different manners.
One of the more popular conformal classifier variants is the inductive conformal
predictor [8,10,13], premiered in particular for its low computational overhead.
In order to train an inductive conformal predictor for classification, the following
training procedure is used:

1. Divide the training set Z into two disjoint subsets:
– A proper training set Zt.
– A calibration set Zc, where |Z| = q.

2. Train a classifier h using Zt as the training data.
3. Let {α1, . . . , αq} = {f (zi, Zt) : zi ∈ Zc}.

When a new test object xj is observed, the standard way of obtaining a
prediction from the conformal classifier is to produce a prediction region Γ ε

j ⊆ Y
as follows:

1. Fix a significance level ε ∈ (0, 1).
2. For each class ỹ ∈ Y :

(a) Tentatively label xj as (xj , ỹ).
(b) Let αỹ

j = f [(xj , ỹ) , Zt].
(c) Calculate pỹ

j as

pỹ
j =

∣
∣
∣

{

zi ∈ Zc : αi > αỹ
j

}∣
∣
∣

q + 1
+ θj

∣
∣
∣

{

zi ∈ Zc : αi = αỹ
j

}∣
∣
∣ + 1

q + 1
, (3)

where θj ∼ U [0, 1].

(d) Let Γ ε
j =

{

ỹ ∈ Y : pỹ
j > ε

}

.

The resulting class label set Γ ε
j contains the true label yj with probability

1 − ε, i.e., an error (meaning that yj /∈ Γ ε
j ) occurs with probability ε.

An alternative way of producing predictions with a conformal classifier is to
output what we will refer to as confidence-credibility predictions [8]. Here, the
output for a test object xj takes the form (ŷj , γj , μj), where

– ŷj is the most likely class label (i.e., the class label for which pỹ
j is greatest),

– γj is the confidence, which is one minus the second largest p-value, and
– μj is the credibility, which is the largest p-value.
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Here, we are effectively forcing the conformal predictor to output the most confi-
dent prediction set containing only a single class label (if we were to increase the
confidence of the prediction, at least one other class label would be included).
Credibility corresponds with the significance level at which all class labels are
rejected, and the prediction becomes empty—if credibility is very low, the con-
formal classifier considers all potential class labels as unsuitable for the test
object.

Since conformal predictors are unconditionally valid by default, there is often
a need to take the true class labels into consideration when evaluating their
predictions [6,7,12,13]; specifically, it is possible that the error probability of a
conformal predictor is greater (or smaller) than ε, depending on the test object’s
true label. In practice, this effectively means that, depending on properties of
the dataset, it is possible that the most confident predictions are made only
for test objects pertaining to a particular class (usually the majority class).
This behaviour is easily rectified by employing a label-conditional (Mondrian)
conformal classifier [12,13], where the p-values are additionally conditioned on
the class labels using

pỹ
j =

∣
∣
∣

{

zi ∈ Z ỹ : αi > αỹ
j

}∣
∣
∣

|Z ỹ| + 1
+ θj

∣
∣
∣

{

zi ∈ Z ỹ : αi = αỹ
j

}∣
∣
∣ + 1

|Z ỹ| + 1
, (4)

where Z ỹ ⊆ Zc are the calibration patterns that belong to the class ỹ.

3 Error Probabilities Using Posterior Information

The confidence measures supplied by a conformal classifier are valid in the sense
that the observed error rate, over a test sequence, is guaranteed to converge to
ε (when the predictor is allowed to output prediction sets). This probability is
by default unconditional, in the sense that we might not make any assertions
regarding the distribution of errors with regard to the problem space; this can be
contrasted to, e.g., label-conditional validity, where we might assert that error
probability is independent of yj or object-conditional validity, where the error
probability is independent of xj [12,13].

More importantly, the confidence measure of a conformal predictor is valid in
an a priori sense, meaning the error probability before making a prediction, and
the error probability after observing a prediction, are not necessarily the same
[6]. In particular, when a conformal predictor is applied in a batch prediction
setting (i.e., we are making predictions for a test set whose size is greater than
one, and those predictions are obtained simultaneously in a batch), it is easy
to see that a priori and a posteriori error probabilities are unequal: consider a
binary classification problem, where we are predicting the output labels of a test
set containing 100 objects, with a significance level 0.1 (i.e., we are expecting
an overall error rate of 10%); if 90 of our predictions contain both class labels,
while the remaining 10 predictions contain only a single class label, we are likely
to fool ourselves if we were to trust the 10 “interesting” singleton predictions—
we are expecting the conformal classifier to make approximately 10 errors over
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the entire test set, and none of the predictions containing both class labels can
possibly be erroneous.

Of course, this seemingly counter-intuitive result stems from a forced mis-
understanding of the conformal prediction procedure (we are effectively trying
to interpret p-values as true probabilities); nonetheless, it is not clear how an
end-user should interpret the predictions in an appropriate manner.

In [6], an attempt was made to utilize posterior information (empirical esti-
mates of the rates of empty, singleton and double predictions, coupled with the
knowledge that empty and double predictions cannot be correct or erroneous,
respectively) in order to produce more reliable estimates of the error probabil-
ity of singleton predictions (which, in a binary classification scenario, arguably
make out the most interesting predictions that can be made). An unconditional
(w.r.t. labels and objects) adjusted estimate was defined as

ε̂s =
ε

P (s) + P (e)
(5)

where P (s) and P (e) are the rates of singleton predictions and empty predictions
observed in the test set (without any need to consider the true output labels of
the test patterns). A label conditional variant was also developed, but is omitted
here.

3.1 Getting Rid of ε

The adjusted estimates proposed in [6] were intended to provide a better assess-
ment of the quality of singleton predictions; unfortunately, these estimates (both
unconditional and label-conditional variants) retain a dependency on the user-
specified ε-parameter, which is rather unintuitive, since the final estimate ε̂ is
only loosely related to ε. As an alternative, we propose an updated procedure,
that is not dependent on ε, but instead operates on top of predictions made on
the confidence-credibility form.

Table 1. Example of confidence-credibility predictions (credibility scores are omitted).

Idx 0 1 2 3 4 5 6 7 8 9

ŷ 0 0 1 1 0 1 0 1 0 1

Confidence 0.60 0.62 0.63 0.65 0.72 0.78 0.82 0.90 0.97 0.99

Suppose we are given a batch of confidence-credibility predictions, where we
have sorted the predictions with respect to their confidence, e.g., as in Table 1.
The appropriate manner of interpreting these confidence scores is: all predictions
with confidence at least c ∈ (0, 1) contain on average n(1−c) errors, where n is the
total number of predictions made (in this case 10). Hence, from the predictions
in Table 1, we should expect approximately four errors across the entire test set,
and approximately one error among the predictions for indices 7–9.
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Table 2. Datasets used in the experiments. #inst denotes the number of instances
contained in the dataset; #min and #maj denote the number of examples belonging
to the minority and majority classes, respectively. %min is the percentage of examples
that belong to the minority class.

Dataset #inst #min #maj %min Dataset #inst #min #maj %min

balance-scale 576 288 288 50.0 hepatitis 155 32 123 20.6

breast-cancer 286 85 201 29.7 ionosphere 351 126 225 35.9

breast-w 699 241 458 34.5 kr-vs-kp 3196 1527 1669 47.8

credit-a 690 307 383 44.5 labor 57 20 37 35.1

credit-g 1000 300 700 30.0 liver-disorders 345 145 200 42.0

diabetes 768 268 500 34.9 mushroom 8124 3916 4208 48.2

haberman 306 81 225 26.5 sick 3772 231 3541 6.1

heart-c 303 138 165 45.5 sonar 208 97 111 46.6

heart-h 294 106 188 36.1 spambase 4601 1813 2788 39.4

heart-s 270 120 150 44.4 tic-tac-toe 958 332 626 34.7

Based on this information, we propose the following: given a test set
x1, . . . , xn, obtain from a conformal classifier the predicted labels and their con-
fidence, (ŷ1, γ1), . . . , (ŷn, γn). For each prediction, compute k̂j = n(1 − γj), and
construct the tentative prediction set Ŷ = (ŷ1, γ1, k̂1), . . . , (ŷn, γn, k̂n); here k̂j

is the expected error rate for all predictions with confidence γj or greater. Note
that k̂j has a anti-monotonic property with respect to γj , i.e., γi ≤ γj → k̂i ≥ k̂j .
Finally, output the predictions

{

γj ∈ Ŷ : k̂j ≤ k
}

, (6)

where k is user-specified, and denotes the maximum number of expected errors
that we allow on the test set. Any prediction where k̂ > k is rejected.

The main reason for constructing this new estimate k̂j is that the confidence
value γj , by itself, has no clear intuitive interpretation; the formal interpretation
given above, i.e., among all test objects, n(1 − c) errors are distributed among
those predictions where γj ≥ c, is inherently dependent on n. Here, we are simply
coding this information into the new estimate k̂j , so that a much more intuitive
interpretation can be obtained.

4 Experiments

In order to assess how well our proposed procedure is able to estimate the error
rate on the test set, an experimental evaluation was performed using 20 datasets
taken from the UCI repository [1], listed in Table 2.

The underlying conformal predictor used a random forest classifier [2], con-
taining 100 decision trees, with a margin error nonconformity function (Eq. 2).
The experiments were implemented in Python using the scikit-learn machine
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Table 3. Average number of predictions and errors made per iteration, over the entire
dataset (using 10 folds), using an unconditional conformal classifier. #pred denotes
the total number of predictions made and %pred denotes the size of the prediction set
as a percentage of the total test set. Finally, #err denotes the number of erroneous
predictions. k is the user-specified expected error count.

k 1 5 10

Dataset #pred %pred #err #pred %pred #err #pred %pred #err

balance-scale 105.0 18.2 1.0 461.7 80.2 4.4 496.3 86.2 10.2

breast-cancer 7.1 2.5 1.3 30.3 10.6 4.8 51.6 18.0 8.8

breast-w 109.8 15.7 0.8 519.0 74.2 4.7 615.4 88.0 8.4

credit-a 23.1 3.3 1.4 114.9 16.7 5.1 210.0 30.4 9.9

credit-g 21.8 2.2 0.9 103.7 10.4 4.5 171.3 17.1 8.8

diabetes 23.6 3.1 0.7 112.9 14.7 4.3 170.7 22.2 9.6

haberman 8.4 2.7 1.2 49.4 16.1 5.0 77.3 25.3 8.7

heart-c 20.2 6.7 0.6 92.6 30.6 4.4 143.6 47.4 9.6

heart-h 20.8 7.1 1.1 87.8 29.9 4.9 143.7 48.9 10.4

heart-s 17.5 6.5 0.9 81.2 30.1 4.1 129.5 48.0 9.9

hepatitis 18.6 12.0 1.2 82.0 52.9 4.4 106.4 68.6 8.9

ionoshere 49.8 14.2 1.0 221.9 63.2 4.8 286.8 81.7 9.5

kr-vs-kp 549.0 17.2 1.2 2482.2 77.7 5.6 2954.9 92.5 10.4

labor 13.1 23.0 0.5 53.4 93.7 3.6 56.6 99.3 4.7

liver-disorders 5.5 1.6 0.6 27.0 7.8 3.6 52.2 15.1 8.3

mushroom 1820.6 22.4 1.1 8124.0 100.0 2.5 8124.0 100.0 2.5

sick 708.9 18.8 0.7 3184.5 84.4 4.9 3444.8 91.3 9.9

sonar 24.6 11.8 1.3 108.0 51.9 5.1 131.3 63.1 10.1

spambase 229.3 5.0 1.0 1112.9 24.2 5.7 1761.6 38.3 11.4

tic-tac-toe 182.6 19.1 1.0 799.8 83.5 4.2 868.6 90.7 8.1

Mean 197.96 10.66 0.98 892.46 47.64 4.53 999.83 58.61 8.91

learning library [11], as well as the nonconformist1 library for conformal pre-
diction. In the experiments, a 10x10-fold cross-validation was performed, and
the results presented are averaged across the 10 iterations. In each fold, 25%
of the training data was used as the calibration set for the inductive conformal
classifier, as suggested in [5].

Table 3 lists the number of predictions made, as well as the number of errors
among those predictions, for the 20 datasets. Here, an unconditional conformal
classifier is used (Eq. 3). Results are averaged over 10 iterations. The maximum
number of predictions possible (per dataset) is given by #inst in Table 2. For
each dataset, the procedure was applied with k = 1, k = 5 as well as k = 10,

1 https://github.com/donlnz/nonconformist.

https://github.com/donlnz/nonconformist
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Table 4. Average number of predictions made per iteration, using an unconditional
conformal classifier. #pred is the total number of predictions made, and #min is the
number of predictions made for test objects where the true label is the minority class.
%min is #min expressed as a percentage of #pred.

k 1 5 10

Dataset #pred #min %min #pred #min %min #pred #min %min

balance-scale 105.0 52.2 49.7 461.7 230.3 49.9 496.3 247.7 49.9

breast-cancer 7.1 1.5 21.1 30.3 5.0 16.5 51.6 8.9 17.2

breast-w 109.8 29.3 26.7 519.0 133.1 25.6 615.4 184.9 30.0

credit-a 23.1 8.9 38.5 114.9 46.5 40.5 210.0 82.7 39.4

credit-g 21.8 0.9 4.1 103.7 4.5 4.3 171.3 9.0 5.3

diabetes 23.6 1.1 4.7 112.9 6.6 5.8 170.7 14.9 8.7

haberman 8.4 1.1 13.1 49.4 5.0 10.1 77.3 8.9 11.5

heart-c 20.2 7.4 36.6 92.6 40.1 43.3 143.6 62.9 43.8

heart-h 20.8 4.1 19.7 87.8 19.6 22.3 143.7 39.6 27.6

heart-s 17.5 6.5 37.1 81.2 31.9 39.3 129.5 53.0 40.9

hepatitis 18.6 1.3 7.0 82.0 5.5 6.7 106.4 11.5 10.8

ionosphere 49.8 13.6 27.3 221.9 62.0 27.9 286.8 93.0 32.4

kr-vs-kp 549.0 260.6 47.5 2482.2 1159.6 46.7 2954.9 1399.3 47.4

labor 13.1 3.9 29.8 53.4 17.8 33.3 56.6 19.7 34.8

liver-disorders 5.5 1.5 27.3 27.0 9.1 33.7 52.2 18.4 35.2

mushroom 1820.6 866.0 47.6 8124.0 3916.0 48.2 8124.0 3916.0 48.2

sick 708.9 7.5 1.1 3184.5 38.9 1.2 3444.8 70.4 2.0

sonar 24.6 12.2 49.6 108.0 46.1 42.7 131.3 55.7 42.4

spambase 229.3 85.3 37.2 1112.9 423.7 38.1 1761.6 667.5 37.9

tic-tac-toe 182.6 51.9 28.4 799.8 222.0 27.8 868.6 264.7 30.5

Mean 198.0 70.8 27.7 892.5 321.2 28.2 999.8 361.4 29.8

i.e., we are asking to make the maximum number of predictions containing on
average 1, 5 or 10 errors. From the results in Table 3, it is evident that the
proposed procedure is able to estimate the error count on the test set rather
well, although the estimates appear to be somewhat conservative in general, in
particular as k increases. In all cases, the procedure is able to output a non-trivial
number of predictions (i.e., the prediction set is substantially greater than k),
while still limiting the number of erroneous predictions.

Since we are using an unconditional conformal classifier, it becomes inter-
esting to evaluate not only the number of predictions output by our proposed
process, but also the number of predictions output for the minority and major-
ity class test objects, respectively. The results shown in Table 4 indicate that,
while there appears to be a bias towards premiering the majority class among
the output predictions (see, e.g., sick, credit-g, diabetes and hepatitis), this bias
is never so strong as to cause the classifier to make predictions only for test
objects belonging to one of the two possible classes. This behaviour—displaying
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Table 5. Average number of predictions and errors made per iteration, over the entire
dataset (using 10 folds), using a label-conditional conformal predictor. #pred denotes
the total number of predictions made and %min denotes the percentage of predictions
made for test objects belonging to the minority class. Finally, #err denotes the number
of erroneous predictions. k is the user-specified expected error count.

k 1 5 10

Dataset #pred %min #err #pred %min #err #pred %min #err

balance-scale 54.2 47.2 1.0 275.4 49.7 4.3 487.7 49.7 8.7

breast-cancer 3.7 35.1 1.1 17.4 39.1 4.4 34.7 35.4 8.9

breast-w 57.1 35.7 1.0 291.2 39.9 4.5 512.3 34.7 10.0

credit-a 20.1 42.8 1.3 101.8 41.3 5.6 195.9 45.0 10.6

credit-g 12.8 32.0 1.4 59.9 31.2 4.7 109.6 29.7 10.2

diabetes 15.1 27.2 1.5 63.3 27.5 5.8 122.0 25.2 9.9

haberman 3.2 21.9 0.6 19.0 17.4 4.6 37.9 16.9 9.2

heart-c 14.9 45.6 0.7 73.8 46.3 6.1 134.9 48.6 10.6

heart-h 13.6 48.5 1.3 63.4 45.9 5.3 114.3 40.3 10.1

heart-s 13.8 48.6 1.0 70.7 46.0 5.3 128.0 49.1 11.5

hepatitis 7.5 37.3 1.2 33.7 30.3 4.3 64.4 23.8 9.9

ionosphere 30.1 47.8 0.6 149.3 48.6 4.5 247.8 43.5 9.8

kr-vs-kp 306.0 47.7 1.2 1560.4 46.1 5.5 2762.9 48.5 9.4

labor 7.2 40.3 1.1 35.1 39.6 3.4 51.8 36.1 5.3

liver-disorders 6.4 28.1 1.0 28.5 33.7 4.0 54.5 36.9 9.1

mushroom 910.4 49.6 1.2 4579.6 50.0 4.1 8124.0 48.2 5.3

sick 81.2 39.8 1.3 388.8 39.8 5.5 624.5 26.9 10.2

sonar 14.0 48.6 0.8 70.3 49.1 4.1 129.5 47.4 9.7

spambase 147.3 41.0 1.9 751.8 41.1 5.6 1388.4 44.0 10.0

tic-tac-toe 94.6 49.6 1.4 464.6 49.8 5.4 775.6 40.8 9.5

Mean 90.7 40.7 1.1 454.9 40.6 4.9 805.0 38.5 9.4

a (sometimes substantial) bias towards the majority class—is common in uncon-
ditional conformal predictors when the dataset is heavily imbalanced. The issue
is easily alleviated however, by employing a label-conditional Mondrian confor-
mal classifier (Eq. 4) instead; results from such a classifier are shown in Table 5.

Table 5 shows results analogous to those in Tables 3 and 4, but instead using
an underlying label-conditional conformal classifier (Eq. 4). The results corre-
spond well with what is normally expected from a label-conditional conformal
predictor: the overall error rate remains relatively untouched (we are still seeing
a good correspondence between k and the empirical error rate), but the sensitiv-
ity of the classifier is reduced (the model is able to output far fewer predictions).
The main benefit shown by the label-conditional variant, however, is that there
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is a clear reduction in bias with respect to the true class labels of the test objects.
The classifier is able to output a more even distribution of positive and negative
predictions, without any substantial negative effect on the error count among
the predictions that are made.

(a) Cumulative errors (real and pre-
dicted) on the balance-scale dataset;
unconditional.

(b) Cumulative errors (real and pre-
dicted) on the hepatitis dataset; uncon-
ditional.

(c) Cumulative errors (real and pre-
dicted) on the balance-scale dataset;
label-conditional.

(d) Cumulative errors (real and pre-
dicted) on the hepatitis dataset; label-
conditional.

Fig. 1. Cumulative errors (real, k, solid lines; and predicted, k̂, dashed lines) on the
balance-scale and hepatitis datasets. Results are shown for a single iteration, with the
x-axis showing the number of predictions made (with decreasing confidence) and the
y-axis showing the cumulative error count among the output predictions.

Finally, in order to provide some insight into how well the proposed procedure
functions over a larger selection of values for k, Fig. 1 shows the true and pre-
dicted cumulative error rates over the full test set for two of the datasets, taken
from a single iteration. Figures 1a and b show results using an unconditional con-
formal classifier, and Figs. 1c and d show results using a label-conditional con-
formal classifier. The x-axis displays the number of predictions made (in order
of decreasing confidence), and the y-axis displays the cumulative error count.
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The two lines—dashed and solid—correspond to the predicted and actual cumu-
lative error counts respectively. In each case, the predictive cumulative error
count (k̂) closely follows the true cumulative error count (k); with respect to
their calibration, there is no clear difference between the unconditional and label-
conditional variants.

5 Concluding Remarks

In this paper, we offer an interpretation of the conformal classification procedure,
that is able to estimate the number of errors made by a classifier on the test set,
without needing to reveal the true test set class labels. The procedure described
results in a classifier with a reject option, that outputs predictions for a subset
of the test set, where the expected error count is limited by a user-specified
parameter k; given a test set and a choice of k, the proposed procedure outputs
the largest possible number of predictions containing on average at most k errors.

We evaluate the procedure empirically using 20 benchmark datasets, and
obtain very promising results, indicating that we are able to provide accurate
estimates of the error rate on the test set.

It is not obvious how well the proposed procedure will perform on multi-
class datasets or heavily imbalanced datasets; as such, evaluating the procedure
on a more diverse selection of datasets would be of great interest. Naturally, it
would also be of great interest to evaluate our proposed procedure to alternative
methods for constructing classifiers with a reject option.

Additionally, it would be interesting to evaluate the proposed procedure
with respect to specific applications—in particular heavily imbalanced problems
where identifying the minority test patterns is the key objective. Extending the
procedure so that errors are only allowed for one of two classes (normally the
minority class) might be beneficial in several applications.
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Abstract. To mine significant dependencies among predictive
attributes, much work has been carried out to learn Bayesian netwrok
classifiers (BNCT s) from labeled training data set T . However, if BNCT
does not capture the “right” dependencies that would be most relevant
to unlabeled testing instance, that will result in performance degrada-
tion. To address this issue we propose a novel framework, called target
learning, that takes each unlabeled testing instance as a target and builds
an “unstable” Bayesian model BNCP for it. To make BNCP and BNCT com-
plementary to each other and work efficiently in combination, the same
learning strategy is applied to build them. Experimental comparison on
32 large data sets from UCI machine learning repository shows that,
for BNCs with different degrees of dependence target learning always
helps improve the generalization performance with minimal additional
computation.

Keywords: Bayesian network · Target learning · Unlabeled data

1 Introduction

The traditional formulation of the machine learning problem has been as a clas-
sification problem, the goal of which is producing a classifier that has good gen-
eralization performance on unlabeled testing instances in the problem domain.
Bayesian networks (BNs) [1] have long been a popular medium for graphically
representing the probabilistic dependencies in a probability distribution. BNs
were considered as classifiers only after the discovery of naive Bayes [2], a very
simple kind of BNs that assumes each attribute to be conditionally independent
of every other attribute given the class variable. Although naive Bayes (NB)
disregards conditional dependencies between predictive attributes and thus the
structure complexity is 0-dependence, it is surprisingly effective and efficient
c© Springer International Publishing AG, part of Springer Nature 2018
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for inference [3]. The success of NB has led to a recent furry of algorithms for
learning Bayesian netwrok classifiers (BNCs) from data.

Numerous BNCs [4–9] learned from labeled training data, i.e., BNCT , have
been proposed to alleviate NB’s independence assumption and mine the signifi-
cant conditional dependencies implicated in training data. Although some BNCs
with sophisticated structures produce good results on some benchmark data sets,
their advantages over those BNCs with simple structures are not obvious as
expected. One plausible explanation is that, scientific data set can be massive,
labeled training data may account for only a small portion. Correspondingly
only a limited number of conditional dependencies, which are always the most
significant, can be represented by BNCT . Moreover, the dependencies that exist
in different unlabeled testing instances may differ greatly. It is impossible for
BNCT to capture all “right” dependencies that exist in each testing instance.

Semi-supervised learning methods, e.g., Self-training [10,11] or Co-training
[12], generally use unlabeled data to either modify or re-prioritize hypotheses
obtained from labeled data alone [13]. To achieve this goal, the unlabeled instance
must be pre-assigned a class label first. Obviously, if the label is wrong, using such
instance to re-train BNCT will result in “noise propagation”, and the negative
effect may lead to the biased decision boundaries. To address this issue, in this
paper we propose a novel semi-supervised learning framework, target learning,
which builds a specific Bayesian model BNCP for each unlabeled testing instance.
That is, BNCP and BNCT will be built independently but work jointly. We reveal
that BNCP is indeed complementary to BNCT and effective in further improv-
ing BNCT ’s generalization performance with minimal additional computation.
The following section introduces some state-of-the-art BNCs. Section 3 intro-
duces the basic idea of target learning. Experimental study on 32 UCI machine
learning data sets is presented in Sect. 4, including a comparison with 7 related
algorithms. The final section draws conclusions and outlines some directions for
further research.

2 Bayesian Network Classifiers

The structure of a Bayesian network on the random variables or attributes
{X1, · · · ,Xn} is a directed acyclic graph (DAG), which represents each attribute
in a given domain as a node in the graph and dependencies between these
attributes as arcs connecting the respective nodes. Thus, independencies are
represented by the lack of an arc connecting particular attributes. A node in the
network for an attribute Xi represents the probability of Xi conditioned on the
attributes that are immediate parents of Xi, denoted as Pa(Xi). Nodes with no
parents simply represent the prior probability for that attribute.

BNs are powerful tools for knowledge representation and inference under
conditions of uncertainty. BNCs are special types of BNs designed for classifica-
tion. A central problem is to estimate the underlying n-dimensional probability
distributions from a finite number of instances. Let each instance x be charac-
terized with n values {x1, · · · , xn} for attributes {X1, · · · ,Xn}, and class label
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y ∈ {y1, · · · , ym} is the value of class variable Y . Given the limitation in avail-
able instances and time complexity, the approximation of P (x, y) is transformed
to a product of several of its component distributions of a lower order. The
performance of these BNCs is, to a very great extent, determined by the approx-
imations employed. That is to say, the estimation of conditional probability of
lower order is reliable whereas the confidence level of the joint probabilities may
differ greatly if the learning strategies of corresponding models differ greatly. As
shown in Fig. 1(a), full Bayesian network classifier (FBC) [4] can fully model the
joint probability distribution P (x, y) according to generative approach and thus
will inevitably achieve optimal performance.

There exists i− 1 conditional dependencies between Xi and its parents. This
general distribution can be captured in dependence tree structure at the most
general extreme. The total number of conditional dependencies (TNCD) for FBC

is TNCDFBC = 0 + 1 + · · · + (n − 1) = n(n−1)
2 .

However, learning a FBC is very time consuming and quickly becomes an
NP-hard problem as the number of predictive attributes grows. In contrast, NB
represents the most restrictive extreme in attribute dependence spectrum based
on the assumption that the predictive attributes are assumed to be conditionally
independent given the class variable Y , i.e., PNB(x|y) =

∏n
i=1 P (xi|y). As shown

in Fig. 1(b), NB strictly allows no dependencies between predictive attributes.
Then the TNCD for NB is TNCDNB = 0.

Fig. 1. Example of (a) full Bayesian network classifier, (b) Naive Bayes, (c) Tree aug-
mented naive Bayes and (d) k-dependence Bayesian classifier.
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Two state-of-the-art BNCs, Tree augmented naive Bayes (TAN) [5] and
k-dependence Bayesian classifier (KDB) [6], allow to accommodate good trade-
offs between bias and variance for different data quantities. TAN maintains
the structure of NB and constructs maximum weighted spanning tree to rep-
resent 1-dependence relations between attributes. The conditional dependence
between attributes Xi and Xj is measured by conditional mutual information
I(Xi;Xj |Y ), which is defined as follows [14],

I(Xi;Xj |Y ) =
∑

xi

∑

xj

∑

y

P (xi, xj , y)log
P (xi, xj |y)

P (xi|y)P (xj |y)
. (1)

The dependence tree structure of TAN is shown in Fig. 1(c). In contrast to
Fig. 1(b), TAN allows each attribute node to have at most one parent. And the
TNCD for TAN is TNCDTAN = 0 + 1 + · · · + 1 = n − 1.

Although TAN can represent the most significant 1-dependence relationships,
Friedman provided no method to generalize to higher degree of dependence. In
contrast, as shown in Fig. 1(d) KDB can represent arbitrary degree of depen-
dence and also capture much of the computational efficiency of NB. KDB first
sorts attributes by comparing mutual information I(Xi;Y ), which is defined as
follows [14],

I(Xi;Y ) =
∑

xi

∑

y

P (xi, y)log
P (xi, y)

P (xi)P (y)
(2)

Once Xi enters the model, its parents are selected from min(i − 1, k)
attributes already in the model with the highest values of I(Xi;Xj |Y ). And the
TNCD for KDB is TNCDKDB = 0+1+ · · ·+(k −1)+k +k + · · ·+k = nk − k2

2 − k
2 .

TNCDKDB will grow as k grows and KDB can represent more dependencies than
TAN.

Sahami [6] suggests that, if k is large enough to capture all “right” conditional
dependencies that exist in a database, then a classifier would be expected to
achieve optimal Bayesian accuracy. Taheri et al. [9] deal with the number k as a
variable that is defined by solving some global optimization problem; accordingly,
the resulting BN generates optimal dynamic structures by not specifying k a
priori.

To perform accurate calculations for structure learning by using (1) and (2),
the critical issue is to choose suitable distributions for the probabilities. We
denote the training data by T = (x̂i1, · · · , x̂in, ŷi), i = 1, · · · , N, where N is
the number of training instances, ŷi ∈ {y1, · · · , ym} is the class label of the i -th
training instance (i.e., there are m classes).

The prior and joint probabilities in (1) and (2) will be estimated by the
training data T as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P (y) = 1
N

∑N
k=1 δ(y, ŷk)

P (xj) = 1
N

∑N
k=1 δ(xj , x̂kj)

P (xj , y) = 1
N

∑N
k=1 δ(< xj , y >,< x̂kj , ŷk >)

P (xi, xj , y) = 1
N

∑N
k=1 δ(< xi, xj , y >,< x̂ki, x̂kj , ŷk >)

(3)
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where < · > denotes the set of attribute values and δ(·) is a binary function,
which is one if its two parameters are identical and zero otherwise. Then, P (xj |y)
and P (xi, xj |y) can be computed by (3):

⎧
⎪⎨

⎪⎩

P (xj |y) = P (xj , y)
P (y)

P (xi, xj |y) = P (xi, xj , y)
P (y)

(4)

3 Target Learning

As Fig. 1 shows, these state-of-the-art algorithms described above, i.e., TAN and
KDB, which learn from training data T and apply different strategies to build
BNCT , may represent different conditional dependencies between attributes. It
seems that BNCT s with higher degree of attribute dependence will more closely fit
the training data and can achieve better generalization performance than those
with lower degree of attribute dependence. However, higher degree of attribute
dependence means more parameters, which increases the risk of overfitting. An
overfitted model does not perform well on new (testing) samples.

Consider a particular testing instance p = {x1, · · · , xn, Y =?}. To assign
the class label to p, only a small number of “right” dependencies, which are
set in BNCT , are necessary. The remaining “redundant” dependencies in BNCT
may counteract the effect of the necessary “right” dependencies. The proposed
approach aims to give high priority the dependencies that related to the elements
in p.

In what follows, we take p as a target and build a specific BNC for p that will
be denoted by BNCP . In contrast to BNCT , BNCP is defined by the conditional
dependencies at the attribute values in p. Then, after training BNCT and BNCP ,
an ensemble learning is generated that combines both predictions. Obviously,
for different testing instances, BNCT remains the same while BNCP may differ
greatly.

Given testing instance p, the corresponding BNCP is constructed by using the
conditional mutual information defined by the joint and conditional probabilities
at the attribute values Xi = xi, Xj = xj ; that is,

IP(Xi;Xj |Y ) =
∑

y

P̂ (xi, xj , y)log
P̂ (xi, xj |y)

P̂ (xi|y)P̂ (xj |y)
(5)

IP(Xi;Y ) =
∑

y

P̂ (xi, y)log
P̂ (xi, y)

P̂ (xi)P̂ (y)
(6)

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P̂ (y) = 1
N + 1

[∑N
k=1 δ(y, ŷk) + 1

m

]

P̂ (xj) = 1
N + 1

[∑N
k=1 δ(xj , x̂kj) + 1

]

P̂ (xj , y) = 1
N + 1

[∑N
k=1 δ(< xj , y >,< x̂kj , ŷk >) + 1

m

]

P̂ (xi, xj , y) = 1
N + 1

[∑N
k=1 δ(< xi, xj , y >,< x̂ki, x̂kj , ŷk >) + 1

m

]

(7)
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Conditional probabilities can be estimated as follows
⎧
⎪⎪⎨

⎪⎪⎩

P̂ (xj |y) = P̂ (xj , y)
P̂ (y)

P̂ (xi, xj |y) = P̂ (xi, xj , y)
P̂ (y)

(8)

Similar to the Laplace correction [15], the main idea behind formula (7) is
equivalent to creating a “pseudo” training set P by adding to the training set T
a new instance (x1, · · · , xn) with multi-label by assuming that the probability
that this new instance is in class y is 1/m for each y ∈ {y1, · · · , ym}.

One advantage of BNCP is its dependence on testing instance. For example,
consider two unlabeled instances p1 = {1, 1, · · · , 0} and p2 = {1, 0, · · · , 0}. A
minor difference between p1 and p2 is the value of X2. Then p1 and p2 are used
to create pseudo training sets P1 and P2, respectively. The differences between
IP1(Xi = xi;X2 = 0|Y ) and IP2(Xi = xi;X2 = 1|Y )(i �= 2), IP1(X2 = 0;Y ) and
IP2(X2 = 1;Y ), may make the structures of BNCP1 and BNCP2 quite different.
Breiman [16] revealed that ensemble learning brings improvement in accuracy
only to those “unstable” learning algorithms, in the sense that small variations
in the training set would lead them to produce very different models. BNCP
is obviously an example of such learners. Thus the negative effect caused by
overfitting will be mitigated to a great extent.

Another advantage of BNCP which makes it very suitable for data mining
domains is its relatively small computational complexity. Computing the net-
work structure BNCT of TAN and KDB, requires O(n2Nmv2) time (dominated
by the calculations of conditional mutual information [6]. Whereas computing
the corresponding BNCP takes only O(n2Nm) time, where n is the number of
attributes, N is the number of data instances, m is the number of class labels,
and v is the maximum number of discrete values that an attribute may take.

To make BNCT and BNCP complementary to each other, the same learning
strategy is applied to build them. In the following discussion, we clarify the
basic idea of target learning by using TAN as the base classifier. The learning
procedures of TANT and corresponding TANP can be described as follows:
————————————————————–

Algorithm 1: The TANT algorithm
————————————————————–
Input: training data T .
Output: TANT , network structure.

1. Calculate the prior and conditional probabilities by (3) and (4).
2. Calculate I(Xi;Xj |Y )(i �= j) between each pair of attributes by (1).
3. Build a complete undirected graph in which the vertices are the attributes

X1, · · · , Xn. Annotate the weight of an edge connecting Xi to Xj by I(Xi;Xj |Y )
(i �= j).

4. Build the maximum weighting spanning tree.
5. Transform the resulting undirected tree to a directed one by choosing a

root variable and setting the direction of all edges to be outward from it.
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6. Construct a TANT model by adding a vertex labeled by Y and adding an
arc from Y to each Xi.

7. Return TANT .
————————————————————–
————————————————————–

Algorithm 2: The TANP algorithm
————————————————————–
Input: training data T and testing instance p = {x1, · · · , xn}.
Output: TANP , network structure.

1. Calculate the prior and conditional probabilities by (7) and (8).
2. Calculate IP(Xi;Xj |Y )(i �= j) between each pair of attribute values by (5).
3. Build a complete undirected graph in which the vertices are the attributes

X1, · · · , Xn. Annotate the weight of an edge connecting Xi to Xj by
IP(Xi;Xj |Y ) (i �= j).

4. Build the maximum weighting spanning tree.
5. Transform the resulting undirected tree to a directed one by choosing a

root variable and setting the direction of all edges to be outward from it.
6. Construct a TANP model by adding a vertex labeled by Y and adding an

arc from Y to each Xi.
7. Return TANP .

————————————————————–
The decision of the ensemble should have better overall accuracy, on average,

than any individual member. There exist numerous methods for model combi-
nation, e.g. linear combiner, the product combiner and the voting combiner.
For subclassifier BNC, an estimate of the probability of class y given input x
is P (y|x,BNC). The linear combiner is used for models that output real-valued
numbers, so is applicable for BNC. And the ensemble probability estimate for
BNCT and BNCP is,

P̂ (y|x) = wT .P (y|x,BNCT ) + wP .P (y|x,BNCP).

If the weights wT = wP = 1/2, this is a simple uniform averaging of the
probability estimates. The notation clearly allows for the possibility of a nonuni-
formly weighted average. If the classifiers have different accuracies on the data,
a nonuniform combination could in theory give a lower error than a uniform
combination. However, it is always difficult to determine the values of wT and
wP . Thus in practice we use the uniformly rather than nonuniformly weighted
average.

4 Experimental Study

We conduct experiments on 32 data sets (size> 1000) from the UCI machine
learning repository [17]. Table 1 summarizes the characteristics of each data
set, including the numbers of instances, attributes and classes. Missing values
for qualitative attributes are replaced with modes and those for quantitative
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Table 1. Data sets

Data set # Instance Att Class Data set # Instance Att Class

Abalone 4177 8 3 Optical Recognition 5620 64 10

Adult 48842 14 2 Page Blocks 5473 10 5

Census-Income (KDD) 299285 41 2 Pen Recognition 10992 16 10

Connect-4 67557 42 3 Phoneme 5438 7 50

Dis 3772 29 2 Pioneer-1 Mobile 9150 36 57

Allhypo 3772 29 4 Poker Hand 1025010 10 10

Hypo 3163 25 2 Landsat 6435 36 6

IPUMS Census 88443 60 19 Statlog (Image) 2310 19 7

Chess 3196 36 2 Statlog (Shuttle) 58000 9 7

Letter Recognition 20000 16 26 Sick 3772 29 2

Localization 164860 5 11 Sign 12546 8 3

MAGIC Gamma 19020 10 2 Spambase 4601 57 2

Multiple Features 2000 6 10 Molecular Biology 3177 60 3

Mushroom 8124 22 2 Thyroid 9169 29 20

Musk (Version 2) 6598 166 2 Wall-Following Robot 5456 24 4

Nursery 12960 8 5 Waveform 5000 40 3

attributes are replaced with means from the training data. For each bench-
mark data set, numeric attributes are discretized using MDL discretization
[18]. Sahami [6] proposed the notion of k-dependence BNC, which allows each
attribute Xi to have a maximum of k attribute nodes as parents. The following
techniques with different structure complexities are compared:

– NB (0-dependence).
– TAN (1-dependence).
– K2DB (2-dependence), KDB with k=2.
– K3DB (3-dependence), KDB with k=3.

These single-structure BNCs except NB learn from the labeled training data
and are examples of BNCT . We can then build corresponding BNCPs by applying
target learning. The final ensemble classifiers, TANe, K2DBe and K3DBe, will
be compared with these BNCT s to verify the efficiency and effectiveness of target
learning. 0-1 loss is the most common loss function to measure the classification
performance. Kohavi and Wolpert [19] presented a bias-variance decomposition
of 0-1 loss from sampling theory statistics for analyzing supervised learning sce-
narios. We perform a stratified 10-fold cross-validation to compare the perfor-
mance of these seven learning algorithms.

We assess a difference as significant if the outcome of a one-tailed bino-
mial sign test is less than 0.05. Cell[i, j] in Table 2 contains the number of
win/draw/loss (W/D/L) records for the classifier on row i against the classifier
on column j. A win indicates that the algorithm has significantly higher clas-
sification accuracy than the comparator. A draw indicates that the differences
in classification accuracy are not significant. Table 2 presents the win/draw/loss
records of the above 7 algorithms with respect to 0-1 loss, bias and variance.
K3DB can represent the largest number of dependencies among all. However, as
the dependence degree or structure complexity increases, K3DB does not enjoy
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Table 2. All pairwise comparisons of the seven BNCs for 32 domains.

Classifier NB TAN K2DB K3DB TANe K2DBe

0-1 Loss TAN 24-5-3 - - - - -

K2DB 26-3-3 9-20-3 - - - -

K3DB 24-5-3 8-13-11 2-19-11 - - -

TANe 26-2-4 17-14-1 14-10-8 15-10-7 - -

K2DBe 28-3-1 19-9-4 18-12-2 19-11-2 14-13-5 -

K3DBe 27-3-2 14-11-7 11-12-9 14-17-1 9-13-10 4-16-12

Bias TAN 27-0-5 - - - - -

K2DB 29-0-3 24-7-1 - - - -

K3DB 29-0-3 22-9-1 8-17-7 - - -

TANe 27-2-3 8-15-9 3-4-25 2-6-24 - -

K2DBe 29-1-2 22-9-1 11-12-9 10-14-8 25-5-2 -

K3DBe 28-0-4 20-8-4 7-13-12 8-14-10 22-9-1 6-14-12

Variance TAN 5-1-26 - - - - -

K2DB 8-0-24 6-7-19 - - - -

K3DB 7-1-24 6-4-22 4-8-20 - - -

TANe 9-4-19 25-5-2 25-4-3 27-0-5 - -

K2DBe 9-3-20 17-9-6 25-4-3 25-5-2 6-7-19 -

K3DBe 9-1-22 18-7-7 22-5-5 25-4-3 7-7-18 10-9-13

significant advantage in classification over the other BNCs. K2DB beats K3DB
in 11 domains and loses in only 2 and TAN even beats K3DB in 11 domains
and loses in 8. Thus overfitting may be the main reason why the classification
performance degrades when k = 3.

When BNCP is introduced for further discovery of more significant depen-
dencies that exist in unlabeled instance, the application of target learning helps
TANe, K2DBe and K3DBe possess significant advantage over corresponding base
BNCs. For example, TANe beats TAN in 17 domains and loses in 1, K2DBe beats
K2DB in 18 domains and loses in 2, and K3DBe beats K3DB in 14 domains and
loses in 1. Although K3DB performs the worst when compared to TAN and
K2DB, K3DBe performs better than TAN (14-11-7) and K2DB (11-12-9). Then
we compare these three ensemble classifiers, i.e., TANe and K2DBe and K3DBe,
we can see that K2DBe performs much better than TANe (14-13-5) and TANe

slightly better than K3DBe (10-13-9). Thus the advantage of ensemble classifier
is greatly determined by corresponding base classifier.

We can also observe that, in terms of bias BNCe may perform better or
worse than corresponding BNC whereas the different is not significant. In terms
of variance, NB performs the best among all because of its definite structure
regardless of the change of training data. TANe beats TAN in 25 domains and
loses in 2, K2DBe beats K2DB in 25 domains and loses in 3, and K3DBe beats
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Fig. 2. Scatter plot of 0-1 loss comparisons for BNC and corresponding BNCe.

K3DB in 25 domains and loses in 3. Thus the advantage of BNCe over corre-
sponding BNC in terms of 0-1 loss can be attributed to the change in variance.
The variance increases as the algorithm becomes more sensitive to the change in
labeled training data. Obviously, target learning helps to alleviate the negative
effect caused by overfitting.

To prove the complementary characteristic introduced by target learning,
we compare the experimental results of BNC and BNCe in terms of 0-1 loss in
Figs. 2(a), 2(b) and 2(c) respectively, where squared symbols are used to indi-
cate much indicate significant advantage of BNCe over corresponding BNC. We
can see that almost no points are far above the diagonal line, thus the nega-
tive effect caused by target learning is negligible. In contrast many more points
are below the diagonal line. That means, target learning works effectively in
most cases. Both BNCT and BNCP are strong rather than weak classifiers, they
can independently achieve high classification accuracy. For 1-dependence BNC,
e.g., TAN and TANe, only the most significant conditional dependencies can
be represented, the structure similarity between them overwhelms the differ-
ence. However, as mentioned above the number of conditional dependencies to
be represented will increase exponentially as k increases. Thus for relatively
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high-dependence BNCs, e.g., K3DB and K3DBe, some non-significant depen-
dencies can be represented. The structure difference between them overwhelms
the similarity and that makes the complementary characteristic work. That can
illustrate why there appear more points with squared symbol as dependence
degree increases.

5 Conclusion

High degree of conditional dependencies may result in overfitting of the training
data and lead to underfitting of unlabeled data. To address this issue, we propose
target learning to build an unstable classifier BNCP for each unlabeled instance
p. To make BNCP complementary to BNCT , we apply the same learning strategy
to build them. Extensive experimental results show that target learning signif-
icantly improves the generalization performance of base classifiers. We explore
reasons for the effectiveness of target learning on 32 data sets. Since BNCP tries to
directly represent the conditional dependencies that exist in unlabeled instance
p, it is more appropriate to fit p than BNCT . Exploration of effective methods of
optimizing the network structure of BNCP to retain the most significant depen-
denices is a further area for future work.

6 Code

The code of the methods proposed in this work and detailed results of 0-1
loss, bias and variance can be obtained from the website, https://github.com/
Bayes514/Target-Learning/tree/master/target-learning.
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Abstract. Owing to the subjectivity of graders and the complexity of
assessment standard, grading is a tough problem in the field of educa-
tion. This paper presents an algorithm for automatic grading of open-
ended Chinese reading comprehension questions. Due to the high com-
plexity of feature engineering and the lack of consideration for word order
in frequency based word embedding models, we utilize long-short term
memory recurrent neural network to extract semantic feature in student
answers automatically. In addition, we also try to impose the knowl-
edge adaptation from web corpus to student answers, and represent the
students’ responses to vectors which are fed into the memory network.
Along this line, the workload of teacher and the subjectivity in reading
comprehension grading can both be reduced obviously. What’s more,
the automatic grading methods for Chinese reading comprehension will
be more thorough. The experimental results on five Chinese and two
English data sets demonstrate the superior performance over compared
baselines.

Keywords: Automatic grading · Knowledge adaptation
Reading comprehension · LSTM · Text classification

1 Introduction

It is a tough problem in the field of education when grading student answers
because of the subjectivity of graders and the complexity of assessment stan-
dards. Particularly, with the evolution of e-learning and online examination, the
demand for assessment is increasing. It is apparent that hiring a great num-
ber of teachers is not a cost-efficient way. A growing number of researchers
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have engaged in automatic grading, especially automatic reading comprehension
grading [1,10,16–18]. Nevertheless, there is little research on automatic open-
ended Chinese reading comprehension grading. Therefore, it is fairly essential
to develop automatic grading methods for open-ended Chinese reading compre-
hension questions.

Table 1. Sample of open-ended Chinese reading comprehension

The reading comprehension question is the one that students should read
a text and answer the questions about it. The questions can be designed with
different openness. In this paper, we concentrate on the open-ended reading
comprehension questions. As the example shown in Table 1, after reading a text,
the students may be asked to express their understanding about the given text
according to their actual experience. The students may answer this question
differently since their different experiences and understandings. Moreover, the
sentence semantic and words used by different students maybe divergent and
diverse, which make the open-end reading comprehension actually no reference
answers.

In the past few years, most of methods for automatic reading comprehension
grading are based on two assumptions: (1) Reading comprehension is close-ended
and can be graded by recognizing some specific words without considering word
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orders in student answers. (2) Reading comprehension questions would provide
graders with reference answer. However, a large proportion of Chinese reading
comprehension questions is open-ended and there is few specific words among
student answers. Under this circumstance, automatic grading by specific words
based on bag-of-words models without word orders would be invalid. What’s
worse, most of Chinese comprehension lack of reference answer, thus the auto-
matic grading methods based on reference answers would not work.

Based on the analysis above, we have the following motivations to propose a
new automatic reading comprehension grading model:

(1) These are enormous demands for automatic reading comprehension grading.
(2) It is significant to propose a framework for grading reading comprehension

without reference answers.
(3) It is crucial to take word orders into consideration for automatic reading

comprehension grading methods.

Along this line, we try to formalize the automatic open-ended Chinese reading
comprehension grading problem as text classification. In this way, the algorithm
can be conducted without reference answers. For word level, we represent each
word as a vector trained by continuous bag-of-words model (CBOW) [20]. For
sentence level, long-short term memory recurrent neural network (LSTM) [9]
is used to model student answers by calculating the word embedding based on
CBOW. LSTM is well approved to model sequence data, which can be used to
extract word order features in student answers. We validate our model on seven
data sets, including Chinese and English reading comprehension questions. The
extensive experimental results demonstrate the superiority of our method over
several state-of-the-art baselines in terms of QWKappa (Cohen’s kappa with
quadratic weight), accuracy, precision, recall, and F1-score.

The remainder of this paper is organized as follows. Section 2 introduces the
framework and its solution details. The experimental results are reported in
Sect. 3. Section 4 discusses the related work and finally Sect. 5 concludes.

2 Model for Automatic Open-Ended Chinese Reading
Comprehension Grading

Figure 1 shows the framework and the training process of our proposed model,
which is constructed based on continuous bag-of-words model (CBOW) [19] and
long-short term memory recurrent neural network (LSTM) [9]. CBOW is a word
embedding model, which represents each word as a vector. These word vectors
are fed into LSTM in sequence. LSTM is a variant of recurrent neural network
(RNN), and we take the advantage of LSTM to extract semantic information
of each student answer. We use Adam in [14] to minimize the cross-entropy [4]
loss function. In order to train the CBOW model more quickly and accurately,
we utilize knowledge adaptation to transfer the external knowledge from web
corpus to student answers (target corpus). Next, we will introduce the details of
our model.
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Fig. 1. Framework of our proposed model.

2.1 Negative Sampling Based Continuous Bag-of-Words Embedding

One hot encoding is a prevalent word representation method for neural net-
work based natural language processing tasks. It encodes each word as a vector
by marking at its index in vocabulary. However, encoding words in this way
can not measure the distances among words. What’s worse, it may be high-
dimensional as the growth of vocabulary. Hence many word representation mod-
els are proposed for estimating continuous representations of words, including
the prominent Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation
(LDA) [19]. In this paper, we use distributed representations of word learned by
deep learning. Distributed representations proved to perform better than LSA
for preserving linear regularities among words [19,21,28].

According to [19], the basic CBOW model is similar to the feed-forward
neural network language model (NNLM) in [3], where the non-linear hidden
layer is removed and the projection layer is shared for all words. In this paper,
we also utilize negative sampling proposed in [20] for CBOW model that results
in faster training and better vector representation for frequent words. Next, we
would like to introduce the CBOW model more clearly.

Input Layer: For one of the target word wk in a sentence, there are 2c
words including c precedent words wk−c, ..., wk−2, wk−1 and c posterior words
wk+1, wk+2, ..., wk+c are used as context words of target word wk, and we ini-
tialize the vector for each word in d-dimension randomly. These vectors will be
updated by back propagation and used as input in look-up table layer.
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Project Layer: Averaging all word vectors in each position to a vector vk

according to Eq. (1)

vk =
1
2c

k+c∑

i=k−c,i�=k

vi, (1)

where vi is the vector of word wi.

Output Layer: For all words in the corpus, the CBOW model try to predict
each target word wk based on the context information vk. The loss function is
as Eq. (2):

LCBOW = log

|D|∏

k=1

{δ(vT
k θk)

|NEGk|∏

j=1

[1 − δ(vT
k θj)]}, (2)

where D is the whole word vocabulary for a corpus, NEGk is the negative sam-
pling set of target word wk. Although the noise words in negative sampling set
for each word is diverse, the total number of noise words |NEGk| are the same.
δ(vT

k θk) is the likelihood of correct prediction, while δ(vT
k θj) is the likelihood of

negative prediction and j is the word index in negative sampling set. The model
maximizes the LCBOW , so that the likelihood of correct predication would be
maximized and the likelihood of negative predication would be minimized at the
same time. The back propagation would update context information vk and the
random initialized word vector during optimizing the CBOW model.

2.2 Knowledge Adaptation for Continuous Bag-of-Word Embedding

According to [25], the parameters in earlier layers of neural network which
trained on large data sets are general to different tasks. Therefore, using existing
parameters for initialization can benefit performance improvement and time-
saving. Knowledge adaptation is a technique that aims to adapt pre-trained
models to new natural language processing tasks.

As we have mentioned in the last subsection, the continuous bag-of-words
(CBOW) model contains three layers, and weights of each layer are updated by
back propagation. The word vectors initialized on input layer would be updated
as well. Hence we first train CBOW model on large scale corpora (wikipedia)
and transfer the existing word vectors to input layers, and add new initialized
word vectors to target automatic grading task. In this way, the existing vectors
transferred from large corpora would complete training quickly and the vectors
for new words on target tasks would be trained precisely with accurate pre-
trained context word vectors. Finally, the external knowledge learned from large
scale corpora would be adapted for new automatic grading tasks.

2.3 Recurrent Layer

Frequency based word embedding models are well-known for statistic machine
learning based automatic grading methods. Boolean vectorization is a model
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that reflects whether a word occurs in a document or not. And term frequency-
inverse document frequency (TF-IDF) [13] is a numerical statistic that reflects
how important a word is to a document in a collection or corpus. Since these
models ignore context information in student answers, therefore we utilize the
excellent sequence modeling technique LSTM to learn the semantic features of
student answers.

LSTM contains special units called memory blocks in the recurrent hidden
layer of RNN, which further contains memory cells with self-connections to store
the temporal state of the network, and special multiplicative units called gates to
control the information flow. Every block in the architecture contains an input
gate and an output gate. The input gate controls the flow of input activations
into memory cell, and the output gate controls the output flow of cell activations
into the rest of the network [9]. The LSTM functions are as follows,

it = σ(Wixt + Uiht−1 + bi), ft = σ(Wfxt + Ufht−1 + bf )
c′
t = tanh(Wcxt + Ucht−1 + bc), ct = it ◦ c′

t + ft ◦ ct−1

ot = σ(Woxt + Uoht−1 + bo), ht = ot ◦ tanh(ct)
(3)

where xt and ht are the input and output vectors at time t, Wi, Wf , Wc, Wo,
Ui, Uf , Uc, and Uo are weight matrices and bi, bf , bc, and bo are bias vectors, ◦
is the element-wise multiplication, and σ represents the sigmoid function.

2.4 Fully-Connected Layer with Softmax Activation

After learning sequence features from student answers, we utilize a fully-
connected layer and softmax activation [6] to calculate the output probability of
each score. Assuming that there are K possible scores for each answer, and the
output is a K-dimension vector as follows,

hθ(xi) = [P (yi = 0|Si; θ), P (yi = 1|Si; θ), · · · , P (yi = K − 1|Si; θ)]
� (4)

where P (y = k|S; θ)(k = 0, 1, · · · ,K − 1) is the probability of each score for a
student answer, and θ indicates the parameter in fully-connected layer. Finally,
we use the Adam optimization algorithm [14] to minimize the cross-entropy [4]
loss function on training data.

3 Experiments

To validate the effectiveness of our proposed model, we conduct experiments on
seven data sets and compare it with several state-of-the-art baselines. Moreover,
we also compare our proposed model with CBOW without knowledge adapta-
tion, TCBOW train on student answers and SCBOW train on web corpus.
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3.1 Data Sets and Preprocessing

The details of all data sets are showed in Table 2, where “Avg#word” denotes
the average number of words for student answers, “#samples” denotes the total
number of student answers for each data set, and “QWKappa” denotes the grad-
ing consistency between two graders. For Chinese data sets, we utilize Chinese
word segmentation system jieba1 to segment Chinese words. For English data
sets, we use scikit-learn2 to tokenize and extract answer features.

Table 2. Overview of all datasets

Problem Avg#word #samples #Score level Language QWKappa

CRCC1 39 2579 0–4 Chinese 0.9847

CRCC2 33 2571 0–2 Chinese 0.9723

CRCC3 26 2382 0–3 Chinese 0.9427

CRCC4 27 2458 0–4 Chinese 0.9733

CRCC5 31 2538 0–3 Chinese 0.8319

ASAP-SAS3 47 2297 0–2 English –

ASAP-SAS4 40 2033 0–2 English –

CRCC Data Set: To evaluate our model in Chinese answers, we construct a
Chinese Reading Comprehension Corpus (CRCC). In order to ensure the reliabil-
ity of the grading label, two Chinese teachers were asked to grade the answer indi-
vidually. The consistency of the two teachers’ scoring is evaluated by QWKappa.
The QWKappa scores of CRCC are shown in Table 2, which demonstrates the
label of each data set is reliable (i.e., the value of QWKappa is required to larger
than 0.8). Higher value of QWKappa indicates a higher consistency between the
two teachers’ scores. At last, two teachers will discuss to make agreements on
those answers that with different scorings.

ASAP-SAS Data Set: There are ten data sets in Kaggle Automatic Stu-
dent Assessment Prize: Short Answer Scoring (ASAP-SAS)3 (denoted as ASAP-
SASx, x ∈ {1, 2, · · · , 10}). We combine the training and test data from the
leaderboard solution to a complete data set. According to the data description
on that competition web site, ASAP-SAS3, 4, 7, 8, 9 are normal reading com-
prehension questions, which belong to “English language arts” and “English”
subjects. Students should read a text in these questions and extract informa-
tion from it. However, only the openness of ASAP-SAS3 and 4 fit our openness
definition. Therefore, we select them for experiments, which have about 2000
samples in each question and average number of words is from 40 to 50.

In total, we construct 7 automatic open-ended reading comprehension grad-
ing tasks for each automatic grading model, 5 for Chinese and 2 for English.
1 https://github.com/fxsjy/jieba.
2 http://scikit-learn.org/stable/index.html.
3 https://www.kaggle.com/c/asap-sas/data.

https://github.com/fxsjy/jieba
http://scikit-learn.org/stable/index.html
https://www.kaggle.com/c/asap-sas/data
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3.2 Baselines

We compare our model, denoted as KAGrader, with several state-of-the-are base-
line automatic scoring models, including MLR [17], ZNB [26], DJDT [7,12],
HSVM [11].

Implementation Details: All these baselines of MLR, HSVM, DJDT and ZNB
are implemented by scikit-learn. We utilize gensim [22]4 to train CBOW model
and the size of window for posterior and precedent words is 5, and the words
whose frequency below 5 are ignored. The size of negative sampling sets is set
to 5, and the wikipedia corpus5 is used for knowledge adaptation.

For TCBOW, SCBOW and KAGrader, LSTM are implemented by the deep
learning library keras [5]. For CRCC and ASAP-SAS data sets, the numbers of
nodes in recurrent layers are {128, 128} and batch size are {512, 1024}, respec-
tively. Finally, we all use 5-fold cross validation to evaluate our approach and
baselines.

3.3 Results and Analysis

Except for four baselines, we also investigate the performance of our model with-
out knowledge adaptation. Specifically, “TCBOW” only uses corpus from stu-
dent answers (target corpus), and “SCBOW” uses Chinese or English wikipedia
corpus (source corpus). While our model “KAGrader” considers both wikipedia
corpus and student answers for knowledge adaptation, and all the results are
reported in Tables 3 and 4. From these results, we have the following observa-
tions,

(1) HSVM is still a strong baseline which outperforms the other baselines many
times, indicating that bag-of-words models can be improved by carefully
selecting competitive classifier.

(2) TCBOW has worse performance than SCBOW. We conjecture that the
volume of corpus has great influence on CBOW training. Therefore, it is
significant for us to utilize the large source corpus to help train the target
corpus vectors.

(3) KAGrader outperforms all the baselines in terms of QWKappa and average
accuracy, which indicates that our model can combine the advantages of
TCBOW and SCBOW.

It is worth mentioning that for neural approaches, sometimes it is limited to
use the source corpus word vectors since some keywords may not appear in
large source corpus, which may lead to the loss of important information in
target student answers and output pure performance. Also the vector training
performance is influenced by the volume of data set.

To further compare the behavior between bag-of-words models and our pro-
posed model, we choose several student answers for analyzing.
4 https://radimrehurek.com/gensim/index.html.
5 https://dumps.wikimedia.org/.

https://radimrehurek.com/gensim/index.html
https://dumps.wikimedia.org/
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Table 3. QWKappa on all data sets

MLR ZNB DJDT HSVM TCBOW SCBOW KAGrader

CRCC1 0.3697 0.1970 0.2959 0.4015 0.2213 0.4431 0.4520

CRCC2 0.3915 0.1729 0.2556 0.4254 0.3752 0.4825 0.4983

CRCC3 0.7913 0.6340 0.8108 0.8680 0.7276 0.8364 0.8694

CRCC4 0.5142 0.2954 0.4333 0.5789 0.5693 0.5612 0.5911

CRCC5 0.6270 0.4465 0.6288 0.6522 0.4214 0.6754 0.7058

ASAP-SAS3 0.5604 0.5046 0.4558 0.5905 0.5947 0.6126 0.6430

ASAP-SAS4 0.5482 0.5644 0.4433 0.5695 0.5655 0.5717 0.6103

Average 0.5432 0.4021 0.4748 0.5837 0.4964 0.5976 0.6230

answer 1.

answer 2.

answer 3.

answer 4.

For these answers, HSVM and KAGrader grade the answer 1 successfully.
However, HSVM failed in answer 2 because it lack of some specific words such
as While KAGrader score it in a right way because
and are closely in CBOW word vector space and KAGrader can recognize
them to output a correct score. Furthermore, the figures of and are
exchanged in sentence 4, which leads to the failure of HSVM. In a word, HSVM
can not recognize the wrong sequence order, while KAGrader can take advantage
of LSTM to address this issue.

Table 4. Average accuracy, precision, recall and F1 on seven data sets

MLR ZNB DJDT HSVM TCBOW SCBOW KAGrader

Accuracy 0.6724 0.6645 0.6367 0.6868 0.7000 0.7256 0.7375

Precision 0.6628 0.6436 0.6334 0.6871 0.6821 0.7144 0.7281

Recall 0.6724 0.6645 0.6367 0.6868 0.7000 0.7256 0.7375

F1 0.6634 0.6304 0.6334 0.6844 0.6745 0.7125 0.7255

3.4 Parameter Sensitivity

In this section, we discuss how the number of nodes in recurrent layer and
the training batch size impact on the performance of our model. To tune the
hyper-parameters, we randomly selected two Chinese and all English problems.
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The number of nodes are sampled from {16, 32, 64, 128, 256}, and the training
batch size is sampled from {64, 128, 256, 512, 1024}. From these results in Fig. 2,
we finally set the numbers of nodes and training batch size to {128, 128, 128,
128} and {512, 512, 1024, 1024} for these four data sets. Furthermore, we tune
the size of negative sampling sets NEGk in CBOW models, and the size is
sampled from {1, 5, 10, 15, 20}. From the results, we finally set the same size to
5 for both Chinese and English data sets.

Fig. 2. Parameter sensitivity

4 Related Work

Short Answer and Reading Comprehension: NLP techniques are often
used to extract various features from student answer to measure the similarity
between the reference answer and student answers. Content Assessment Mod-
ule (CAM) used features to measure the overlap of content on various linguistic
levels [1]. The types of overlap include word unigrams, trigrams, text similarity
thresholds etc. Madnani et al. in [17] used eight features based on the rubric
(BLEU, coherence etc.) for summary assessment. After feature extracting pro-
cess, these features are used to train various classification, regression or clustering
models for grading new student answers automatically. Different machine learn-
ing models are utilized in ASAG task in [1,2,7,11,12,17,26]. Particularly, Zhang
et al. [27] introduced Deep Belief Network (DBN) into short answer.

Automatic reading comprehension grading is regarded as an exception of
ASAG, due to the fact that reading comprehension task need students to “under-
stand” the reading text assuredly, not just “recall” the external knowledge.
Meures et al. [18] considered that answers might show variation on different
levels (lexical, morphological etc.). Horbach et al. [10] demonstrate that the use
of text-based features can promote performance. Automatic reading comprehen-
sion grading was also investigated by Liu et al. [16] and Wang et al. [24].

Neural Network and Text Classification: A growing number of researchers
applied neural network techniques in text classification which is a relevant topic
for automatic grading. Graves et al. [8] applied LSTM into speech recognition.
Tang et al. utilized GRU in sentiment classification [23]. Lai et al. used R-CNN
in text classification [15]. Previous works reveal that neural network techniques
perform well in natural language processing, which may have significant impli-
cations to automatic open-ended reading comprehension grading.
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5 Conclusions

In this paper, we propose to combine continuous bag-of-words model (CBOW)
and long-short term memory recurrent neural network (LSTM) for automatic
open-ended Chinese reading comprehension grading. Our method does not rely
on any reference answer due to the fact that reference answer is not always avail-
able for most open-ended reading comprehension questions. Based on CBOW
and LSTM, our framework can extract semantic information automatically and
effectively by considering the word orders in student response. Additionally,
through knowledge adaptation, the external knowledge is transfered to present
corpus. Experiments on seven data sets, including Chinese and English, demon-
strate the effectiveness of the proposed method.
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Abstract. In this paper, we investigate whether decision trees can be
used to interpret a black-box classifier without knowing the learning algo-
rithm and the training data. Decision trees are known for their trans-
parency and high expressivity. However, they are also notorious for their
instability and tendency to grow excessively large. We present a classi-
fier reverse engineering model that outputs a decision tree to interpret
the black-box classifier. There are two major challenges. One is to build
such a decision tree with controlled stability and size, and the other is
that probing the black-box classifier is limited for security and economic
reasons. Our model addresses the two issues by simultaneously minimiz-
ing sampling cost and classifier complexity. We present our empirical
results on four real datasets, and demonstrate that our reverse engineer-
ing learning model can effectively approximate and simplify the black
box classifier.

1 Introduction

The past decade has witnessed a rapid growth in the use of data mining tech-
niques for better decision making. Statistical implications derived from data can
help us understand and critically assess risks and uncertainties. However, the
ubiquity of data and data mining techniques has also sparked new concerns on
transparency, as has been emphasized in the recent report by PCAST (Presi-
dent’s Council of Advisors on Science and Technology) [16]. Many proprietary
intelligent software applications provide users with interfaces to the “smart algo-
rithms” in their data analytics systems. The inner workings of these smart algo-
rithms are often incomprehensible and opaque to ordinary users. Therefore, the
information released to the end user is usually overly simplified, abstract, and
untestable, which in return raises the problem of transparency and trustability.
There are practical benefits of withholding the inner structure of knowledge the
algorithms have learned, for example, protecting companies’ information assets.
However, data mining models can be discriminatory, making biased decisions on
the basis of race, class, gender, etc. Recent work [22] has shown that some online
ads are selected by intelligent advertising systems based on the racial background
of the names used in search queries. This type of bias may be deeply and uncon-
sciously hidden within data mining models. Increasing the transparency of these
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 130–142, 2018.
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models can help users spot these caveats that would otherwise be hidden, and
is important for ensuring trust and reducing potential abuses and biases.

Clearly, many issues need to be addressed to acquire truly transparent data
mining models, for example, understanding the impact of the structure of data on
a black-box classifier [11], and identifying subspaces where a black-box classifier
does (not) work [6]. In this paper, we focus on learning a simple decision-tree
equivalent of a given black box classifier with a small number of query samples.
An immediate challenge is that decision trees are well known for their poor
stabilities especially when the number of training samples is small [7]. We can
build a decision tree or extract a set of decision rules from the kernel-based
classifier with existing rule extraction algorithms [20]. However, rule extraction
algorithms add additional complexity to existing kernel-based methods [5,9], and
the output of rule extraction algorithms may still be incomprehensible [5].

In this paper, we present a black-box classifier reverse engineering approach
as illustrated in Fig. 1. Our technique builds a kernel-based classifier and a deci-
sion tree classifier simultaneously. The kernel-based classifier is responsible for

Black Box ClassifierBlack Box Classifier

Kernel-based ClassifierKernel-based Classifier Decision TreeDecision Tree

Fig. 1. Our reverse engineering
method.

sampling under the maximum uncertainty con-
straint, and the decision tree classifier assists to
curtail unnecessary growth in its own complex-
ity. Our method provides: (a) a reverse engineer-
ing procedure with good stability and close simi-
larity; (b) a cost and complexity-aware sampling
technique; and (c) a human-comprehensible out-

put. We choose to use a kernel-based classifier for good stability and develop a
new sampling technique to efficiently build a human-comprehensible decision tree
counterpart of the black box classifier. Unlike existing kernel-based rule extrac-
tion algorithms, we do not operate on the kernel methods per se but instead
focus on searching for data samples that naturally result in a simple decision
tree equivalent of the black box classifier.

2 Related Work

Klivans et al. [13] study the learnability of convex bodies under the Gaussian
distribution. They present a sub-exponential time algorithm for learning general
convex bodies in the noise-free PAC-learning setting. Similarly, Rademacher and
Goyal [17] consider learning a convex body in R

d given uniformly random sam-
ples from the convex body. The objective is to approximately learn the body with
the fewest number of samples. They also show that it requires an exponential
number of queries to learn the convex body. Also, Dyer et al. [8] present a ran-
dom polynomial time algorithm for approximating the volume of a convex body
in Euclidean space. Their algorithm requires a membership oracle and samples
are selected nearly uniformly from within the convex body using a random walk.

Craven and Shavlik present an algorithm TREPAN to extract decision trees
from artificial neural networks [3]. They modify the way a decision tree is built
to limit the number of internal nodes. Henelius et al. [11] present a randomiza-
tion approach to measuring the impact of groups of variables on a classification
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model. Duivesteijn and Thaele [6] present the SCaPE model class that highlights
subspaces where the classifier performs particularly well or poorly. Both [6,11]
require a sufficient number of queries to the black-box classifier for their mod-
els to work properly. Most recently, Ribeiro et al. [18] present a sparse lin-
ear model (LIME) for local exploration—providing interpretable representation
locally faithful to the classifier. However, the global effectiveness of their model
is questionable when the black-box classifier is highly non-linear. Datta et al. [4]
present Quantitative Input Influence (QII) to measure the most influential inputs
on the output of a classification model. QII also provides local transparency for a
single instance or groups of instances. Unlike existing research discussed above,
our technique reveals the global knowledge of the entire data domain by lever-
aging the inherent transparency and interpretability of decision trees. Three
important aspects set our technique apart from the existing ones: (1) we assume
querying the black-box classifier is limited; (2) our model can use any fast imple-
mentation of existing and future kernel methods and decision trees; and (3) our
decision tree interpreter is global.

3 Problem Definition

We define the classifier reverse engineering learning problem as follows: given a
black box classifier C and one random sample xc ∈ R

d from each class c = {c1, c2,
. . . cK}, we would like to reverse engineer C with a finite set of samples S from a
distribution D and transform C to a user understandable classification model C ′:

arg min
C′,S

�(C ′, S)

s.t. | S |< δS

Pr
x∼D

[C(x) �= C ′(x, S)] < δ (1)

where � is a function that measures classifier complexity, and δ and δS are prede-
fined constants. The problem has to be solved heuristically because of its expo-
nential complexity [8,13,17]. At first glance, we can solve the problem using tra-
ditional active learning techniques [2,14,19,23]. However, existing active learning
techniques cannot accomplish the task when it has to overcome both cost and
complexity in the desired solution. This merits further research investigations on
transparency inspired issues in terms of cost and complexity. We refer to cost as
the total number of queries sent to the black box classifier and complexity as the
size, that is, the number of leaf nodes in the decision tree.

4 The Reverse Engineering Approximate Learning
(REAL) Model

For increasing human-understandability, we choose to use a decision tree to
represent the approximation of the black box classifier. As mentioned earlier,
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decision trees are well known for their poor stabilities. Since the reverse engi-
neering learning process begins with a small training set, the poor stability of the
decision tree classifier may significantly impact the end result. Existing results
show that when the underlying classifier is a decision tree, query-by-bagging [1]
is more stable and more accurate compared to its competitors [7]. In our study,
we implement a benchmark strategy referred to as direct hypothesis formation
in which we adopt the query-by-bagging method in the query-by-committee
strategy for data sampling.

To circumvent the instability problem of decision trees, we introduce an inter-
mediate kernel-based learner that is more stable than a decision tree learner. The
kernel-based learner is used in data sampling where query points are selected.
After selecting data samples, we build a decision tree approximation of the black
box classifier. We refer to this strategy as indirect hypothesis formation.

4.1 Minimum Cost and Complexity Sampling

Table 1. List of notations

H classifier built on existing training data
φα(x) probability x is assigned to a leaf node α

φ∗
α(x) maximum φα(x) over all leaf nodes

μα prototype of labeled samples in leaf node α

μ set of prototypes of samples in all leaf nodes α

β Lagrange multiplier in Gibbs distribution
ψu function that measures uncertainty
ci the ith class label where i = 1, . . . , K

To reverse engineer
a black box classifier
and transform it into
a tree-structured clas-
sifier, we seek a set
of training samples
that is sufficient to
construct a decision-
tree counterpart of
the black box clas-
sifier under the cost
and complexity con-
straints. To minimize the sampling cost, we follow the principle of maximum
uncertainty and select samples that maximally prune the version space. In the
mean time, to limit the growth of the complexity of the decision tree classifier,
we select samples that have a higher probability to be assigned to a leaf node
with a large population of samples given the topology of the current decision
tree. We provide a list of notations used throughout this section in Table 1.

Our sampling objective function is:

arg max
x∼D

φ∗
α(x)

s.t. max
x,i∈[1,K]

Pr[H(x) = ci] < Pr(ci) + δ (2)

where H is the intermediate classifier built on existing labeled examples L, φ∗
α

is the maximum probability that x falls in a leaf node of the decision tree built
on L, and δ > 0 is a small constant. The objective function selects a sample x
for which its classification by H into any class ci∈[1,K] is no better than random
guessing according to the prior when δ is very small, while in the mean time, the
probability φ∗

α(x) that x is assigned to a leaf node in the decision-tree counterpart
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of H is the greatest compared to other unlabeled samples. The selected sample
achieves maximum homogeneity at leaf nodes, and therefore is unlikely to cause
an internal node to split into new leaves. Our handling of classifier complexity
during the sampling process draws a distinct line between our problem and the
traditional active learning problem.

To estimate the probability that a sample x is assigned to a leaf node given
the topology of a decision tree, we resort to the principle of maximum entropy.
Let X = {xi ∈ R

d | i = 1, . . . , N} be a set of N unlabeled examples, and
μ = {μα ∈ R

d | α = 1, . . . , J} be a set of J � N prototypes of labeled examples
assigned to J leaf nodes in the current decision tree. Given no prior knowledge,
the best way to relate an unlabeled data point in X and the representatives μα

of the labeled data points is the maximum entropy distribution. Let φα(x) =
Pr(x → α) be the probability that data point x is assigned to leaf α, and we
seek to optimize:

max
J∑

α=1

−Pr[x → α] log Pr[x → α]

s.t. E(dx) =
J∑

α=1

Pr(x → α)d(x, μα)

where E(dx) is the expected distance between x and the prototypes of all the
leaf nodes, and d(·, ·) is a distance measure, for example, Euclidean distance.
The solution is the Gibbs distribution:

Pr(x → α) =
exp(−βd(x, μα))∑
j exp(−βd(x, μj))

(3)

where β is the Lagrange multiplier that controls the degree of fuzziness of the
probability distribution [10]. When β = 0, x is equally probable to be assigned
to any leaf node. When β is large, the assignment of x conforms to the nearest
neighbor philosophy. In a sequential sampling process, β can be incremented
gradually in each iteration as more samples are used to estimate the leaf proto-
types. φ∗

α(x), the maximum probability of x over α = {1, . . . , J}, is:

φ∗
α(x) = max

α

exp(−βd(x, μα))∑
j exp(−βd(x, μj))

(4)

The optimization objectives with respect to decision tree complexity, specified
in Eqs. (1) and (2), can be rewritten as: arg maxx∈X φ∗

α(x), given the set of
unlabeled examples X.

Putting everything together, we have a sampling technique uniquely designed
for reverse engineering a black box classifier with minimum query cost and clas-
sification complexity. Without loss of generality, let St be the training set after
the tth sample st has been added to the training set, where t ≥ 0. When t = 0,
St represents the initial training data we have at our disposal. Let the next
query point be st+1. We estimate μt = {μt

α ∈ R
d | α = 1, . . . , J}, the set of J

prototypes of St
α ⊂ St assigned to the J leaf nodes in the decision tree built on

St. We choose a query point st+1 as follows:
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st+1 = arg max
s∈St

u

φ∗
α(s)

s.t. ψu(s) > ψu(s′ ∈ St
u|s′ �= s)

where ψu is a function that measures uncertainty, φ∗
α is defined in Eq. (4), and

St
u is the set of unlabeled points.

4.2 Direct Hypothesis Formation

As mentioned earlier, we can build a decision tree directly from the training set
with the query points. Query-by-bagging [1] is more stable and more accurate in
decision tree active learning. In query-by-bagging, a committee of decision tree
classifiers is built on subsets of training data, and query points are selected if the
committee has the largest variance on the predictions. We modify the sampling
technique by incorporating the minimum classifier complexity objective. Let M
be the number of component classifiers in the committee, and hi|i=1···M be the ith

component classifier. Let c be the total number of classes, at the tth step the total
number of component classifiers that predict s ∈ St

u as ck|k∈{1,··· ,K}, denoted as
Tk, is: Tk(s) = |{m ≤ M |hm(s) = ck)}| and T (s) = [T1(s), · · · , TK(s)] records
the total number of component classifiers that classify s as ck,∀k=1,··· ,K . We
select st+1 ∈ St

u by solving the following optimization problem:

st+1 = arg max
s∈St

u

φ∗
α(s)

s.t.|max(T (s)) − min(T (s))| < |max(T (s′)) − min(T (s′))| ∀s′ ∈ St
u|s′ �= s.

where the largest variance constraint is equivalent to the maximum uncertainty
constraint specified in Eq. (2).

4.3 Indirect Hypothesis Formation

In indirect hypothesis formation, we introduce an intermediate kernel-based clas-
sifier for selectively sampling query points. Let St be the training set after the
tth round of sampling, we update the intermediate classifier and the decision tree
classifier on St. Let St

u be the set of unlabeled data from which query points are
selected. In this study, we choose SVM as the intermediate learning algorithm.
We estimate the uncertainty of a sample point using margin distance.

We now include the minimum complexity constraint in the sampling process.
We relax the minimax margin constraint by including a small group of candidate
points that are δ-close to the one that satisfies the minimax margin constraint:

max φD(s) < min
∀s′∈St

u

max φD(s′) + δ (5)

where φD measures the margin distances of s to the positive and negative borders,
and δ > 0 is a small constant. We select a query point st+1 from St

u such that

st+1 = arg max
s∈St

u

φ∗
α(s)

s.t. max φD(s) < min
∀s′∈St

u

max φD(s′) + δ.
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where φ∗
α(s) is the maximum probability s is consistent with a leaf node and the

minimax margin constraint is equivalent to the maximum uncertainty constraint
in Eq. (2). In general, given a dataset of m features and n instances, the time
complexity of our algorithm is O(mn2) with a nonlinear kernel and the standard
implementation of decision trees. It can be reduced to O(mn) with a linear
kernel [12] and a fast decision tree learning algorithm [21].

5 Experimental Results

We design a set of experiments to verify the applicability of our reverse engineer-
ing techniques for increasing transparency, with DT REAL referring to the direct
hypothesis formation and SVM-DT REAL referring to the indirect hypothesis for-
mation. The success is measured by examining the tree size and the fidelity—
percentage of matching predictions by the reverse engineered classifier and the
black-box classifier on independent unseen data sets. We run our experiments
on four real data sets from the UCI repository [15]. δ in Eq. (5) is set to twice of
the difference between the smallest and the second smallest margin. We clarify
a few issues regarding our experimental setup in Table 2.

Table 2. Empirical study related issues

Issue Clarification

(1) Should we use random
sampling or active learning
as the baseline?

In all our experiments, we choose to compare
against the active learning baselines since they are
significantly better than random sampling

(2) What learning algorithms
should be used to train the
black-box classifier?

Our reverse engineering learning model is classifier
agnostic. It is not designed to gear towards any
particular learning models

(3) Which design of decision
tree should we use to train
our classifier in the reverse
engineering process?

We do not favor one type of decision tree over
another in either our algorithmic design or our
empirical study, because our algorithm is applicable
to any decision tree design

(4) When should we
terminate the reverse
engineering process?

In many real applications, querying black-box for
labels is not free (for example, getting credit score
report). In addition, frequently querying actions
may be considered as a suspicious abnormal
behavior and would not be granted by companies’
security standard. In practice, one can stop when
either the budget or a desired fidelity measure has
been reached. In our experiment, we allow the
number of query points to be at most 10% of the
size of the training data used to train the black-box
classifier
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5.1 Experiments on UCI Datasets

We test our techniques on four UCI Datasets: Banknote Authentication, Car-
diotocography, Phishing Websites and Human Activity Recognition with Smart-
phones (referred to as Smartphone hereafter). The black-box classifiers are
trained with support vector machine (SVM), logistic regression (LOGIT), decision
tree (DT), näıve Bayes (NB), and neural network (NN). For SVM, we use Gaussian
kernels with C = 10000; for NN, we set the number of nodes on the hidden layer
to be 10. All the algorithms in our experiments are implemented in Matlab. All
experiments are repeated 10 times and the average results are reported. The
accuracy of the black box classifier is shown as a dashed line in all figures as
auxiliary information. Detailed results are shown in Appendix A.

Banknote Authentication. The dataset has 1372 instances and two classes
genuine or forged. We divide the data set equally into two parts: one for training
the black box classifiers and the other is for active learning. The latter is further
dived into two parts: one fifth is used for selecting query points to reverse engineer
the black box classifier, and the rest is used for independent testing. The number
of examples used at the beginning of reverse engineering is 1% of the size of the
training data used to train the black box classifiers.
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Fig. 2. Reverse engineering SVM and DT on the Banknote Authentication data set, using
DT Active, DT REAL, and SVM-DT REAL decision tree learners.

Figure 2 shows the results of the two reverse engineering (RE) learners—
DT REAL and SVM-DT REAL, and the baseline decision tree active learner—DT
Active [1] with support vector machine (SVM) and decision tree (DT) as the
black-box classifiers. Figures 2(a) and (b) show the growth of the complexity
of the decision trees in terms of the number of leaf nodes as the number of
queried samples increases. The solid line (—) is the baseline decision tree active
learner (DT Active), the dashed line (- - -) is the decision tree active learner
using our minimum cost and complexity sampling technique (DT REAL). The
solid line with circular markers (–◦–) is the SVM-DT RE classifier (SVM-DT
REAL) also using the minimum cost and complexity sampling technique. It is
clear that the complexity of the SVM-DT RE learner is consistently lower than
that of the DT active learner. Although applying the same minimum cost and
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complexity sampling technique, the DT RE learner cannot effectively produce
decision trees with lower complexity. Figures 2(c) and (d) show the fidelity of
the three classifiers. Note that fidelity is the percentage of agreement between
the predictions made by each classifier and the black box classifier. All three
classifiers have comparable performance in terms of fidelity. The flat dashed
lines show the accuracy of the black box classifiers. All three classifiers manage
to predict similarly as the black box classifier more than 90% of the time, with a
sample size less than 10% of the size of the training data used to train the black
box classifiers. The results for the rest of the black-box classifiers are similar.
Due to page limitations, we do not show the plots.

Cardiotocogram. The dataset consists of 2126 instances of fetal car-
diotocograms. We select 21 features and classify a cardiotocogram to one of
the three fetal states: {N, S, P} where N is normal, S is suspect, and P is
pathologic. We again divide the data set equally into two subsets, one for
training the black-box classifiers, and the other for query point sampling and
testing (among which 20% is used as query data, and the rest is used as the
independent test set).
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Fig. 3. Reverse engineering the näıve Bayes classifier on the Cardiotocogram data set,
using DT Active, DT REAL, and SVM-DT REAL decision tree learners.

Figure 3 shows the results of DT REAL, SVM-DT REAL, and the baseline DT
Active with näıve Bayes as the black-box classifier. Figure 3(a) shows the growth
of the complexity of the decision trees in terms of the number of leaf nodes.
Again, the complexity of the SVM-DT RE learner is consistently lower than
that of the DT active learner and the DT RE learner. Figures 3(b) shows the
fidelity of the three classifiers. The results for the rest of the black-box classifiers
are similar. Due to page limitations, we do not show the plots.

Phishing Websites Dataset. The dataset has 30 attributes that characterize
phishing websites. The learning task is a binary classification problem. There
are 2456 instances in the data set. We again use 50% of the data for training the
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Fig. 4. Reverse engineering the neural network classifier on the Phishing Website data
set, using DT Active, DT REAL, and SVM-DT REAL decision tree learners.

black box classifiers, and the other 50% for query point sampling and testing (15
as query data and the rest 4

5 is used as independent test data).
Figure 4 shows the results of the three algorithms reverse engineering the

artificial neural network black box classifier. Figure 4(a) shows the growth of
the complexity of the decision trees in terms of the number of leaf nodes as the
number of queried data points increases. Again, the complexity of the SVM-
DT RE learner is consistently lower than that of the other two DT learners.
Figure 4(b) shows the fidelity of the three classifiers. Except for the case where
the black box classifier is trained with SVM, all three learners manage to exceed
90% fidelity with a sample size less than 10% of the training data used to train
the black box classifiers. In the case of SVM as the black box classifier, the
fidelity of the three learners is slightly less than 90% (above 88%). The results
for the rest of the black-box classifiers are similar. Due to page limitations, we
do not show the plots of the rest of the black box classifiers.

Smartphone. The dataset contains 10299 instances. Each instance has 562
attributes, and there are six class labels. This is the most complicated data set
we used in our experiment. We randomly select 25% of the data for training
the black box classifiers, 5% of the data for reverse engineering the black box
classifiers, and then 25% random samples for independent testing.

Figure 5 shows the results of the three reverse engineering classifiers for the
black box classifier: logistic regression. Figure 5(a) shows the growth of the com-
plexity of the decision trees in terms of the number of leaf nodes. In this case,
the complexity of the DT RE learner is in general lower than that of the other
two learners. The SVM-DT RE learner is mostly comparable to the DT active
learner in terms of complexity. Figure 5(b) shows the fidelity of the three clas-
sifiers. All three learners manage to achieve approximately 80% fidelity with a
sample size less than 10% of the size of the training data for the black box clas-
sifier. The results for the rest of the black-box classifiers are similar. Due to page
limitations, we do not show the plots of the other four black box classifiers.
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Fig. 5. Reverse engineering the logistic regression classifier on the Smartphone data
set, using DT Active, DT REAL, and SVM-DT REAL decision tree learners.

6 Conclusions and Future Work

We investigate the feasibility of improving model transparency of data mining
algorithms by reverse engineering a black-box classifier and transforming it to a
decision tree. Our objective is to increase the transparency of the original black-
box classifier with a small number of query points. We develop a reverse engineer-
ing learning technique that samples unlabeled data according to the principle
of maximum uncertainty and minimum classifier complexity. Our experimental
results demonstrate that our idea of reverse engineering classifiers is both feasi-
ble and practical. We also show that our reverse engineering model with indirect
hypothesis formation is superior to traditional active learning with decision trees
and SVMs. In the future, we would like to consider the problem in a game theo-
retic setting in which the black-box classifier employs a defense strategy against
this type of reverse engineering, and the user counters the defense strategy with
more sophisticated reverse engineering techniques.

Acknowledgement. The research reported herein was supported in part by NIH
award 1R01HG006844, NSF awards CNS-1111529, CICI-1547324, and IIS-1633331 and
ARO award W911NF-17-1-0356.

Appendix A Tree Size and Fidelity

Table 3 lists the results of all the test cases. Each row shows the tree size and
the fidelity results of the last round right before the reverse engineering or active
learning process terminates. As can be observed from the table, the SVM-DT REAL
learner almost always produces smaller trees than the DT Active learner while
producing comparable fidelity values. The accuracy results are very similar to the
fidelity and therefore are eliminated from the paper because of page limitations.
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Table 3. Reverse engineering results on all the datasets.

Banknote Authentication

BC DT-A DT-R SVM-DT-R

Tree Size Fidelity Tree Size Fidelity Tree Size Fidelity

SVM 5.0000 ± 0.8433 0.9009 ± 0.0162 5.5000 ± 1.0328 0.9024 ± 0.0304 4.7000 ± 1.1547 0.9005 ± 0.0308

Logit 5.3000 ± 0.9487 0.9035 ± 0.0348 5.4000 ± 0.8433 0.9089 ± 0.0274 4.0000 ± 1.2472 0.8949 ± 0.0256

DT 5.2000 ± 1.1972 0.9171 ± 0.0333 5.2000 ± 0.9944 0.9072 ± 0.0383 4.2000 ± 1.0801 0.9023 ± 0.0417

NB 4.2000 ± 1.3166 0.9322 ± 0.0143 3.9000 ± 0.8165 0.9335 ± 0.0189 3.7000 ± 0.8233 0.9379 ± 0.0139

ANN 5.8000 ± 1.1005 0.9172 ± 0.0298 5.6000 ± 0.9087 0.9029 ± 0.0364 4.1000 ± 0.9033 0.9076 ± 0.0141

Cardiotocogram

BC DT-A DT-R SVM-DT-R

Tree Size Fidelity Tree Size Fidelity Tree Size Fidelity

SVM 3.0000 ± 1.4907 0.9779 ± 0.0158 3.2000 ± 1.6193 0.9740 ± 0.0189 3.1000 ± 1.1972 0.9329 ± 0.0411

Logit 6.2000 ± 1.3984 0.9116 ± 0.0232 5.6000 ± 1.7764 0.9102 ± 0.0306 4.7000 ± 1.3375 0.9141 ± 0.0165

DT 5.5000 ± 0.9718 0.9629 ± 0.0222 5.5000 ± 1.0801 0.9574 ± 0.0222 4.6000 ± 1.0750 0.9267 ± 0.0312

NB 7.5000 ± 1.5811 0.8747 ± 0.0256 7.8000 ± 1.3984 0.8829 ± 0.0297 5.6000 ± 0.9661 0.8558 ± 0.0223

ANN 5.4000 ± 2.0656 0.9249 ± 0.0300 4.9000 ± 1.6633 0.9293 ± 0.0322 4.6000 ± 1.4298 0.9108 ± 0.0112

Phishing Websites

BC DT-A DT-R SVM-DT-R

Tree Size Fidelity Tree Size Fidelity Tree Size Fidelity

SVM 9.1000 ± 1.7288 0.8894 ± 0.0167 9.7000 ± 2.2632 0.8965 ± 0.0168 7.6000 ± 1.3499 0.8879 ± 0.0109

Logit 9.4000 ± 1.7764 0.9214 ± 0.0139 8.9000 ± 1.7920 0.9199 ± 0.0113 7.8000 ± 1.6193 0.9181 ± 0.0131

DT 8.9000 ± 1.3703 0.9189 ± 0.0192 9.3000 ± 1.3375 0.9198 ± 0.0260 7.6000 ± 0.5164 0.9187 ± 0.0119

NB 8.8000 ± 2.2010 0.9054 ± 0.0190 8.4000 ± 1.0750 0.9018 ± 0.0193 7.6000 ± 1.3499 0.9066 ± 0.0152

ANN 7.7000 ± 1.5670 0.9225 ± 0.0233 8.1000 ± 1.7288 0.9223 ± 0.0148 7.5000 ± 1.2693 0.9328 ± 0.0098

Smartphone

BC DT-A DT-R SVM-DT-R

Tree Size Fidelity Tree Size Fidelity Tree Size Fidelity

SVM 8.5000 ± 2.0790 0.7348 ± 0.0110 10.5000 ± 1.6364 0.7377 ± 0.0175 9.8000 ± 2.3118 0.7488 ± 0.0152

Logit 9.1000 ± 1.1785 0.7783 ± 0.0175 8.0000 ± 1.7029 0.7767 ± 0.0112 9.5000 ± 1.9120 0.7927 ± 0.0159

DT 10.9000 ± 1.3038 0.7693 ± 0.0087 10.5000 ± 2.1679 0.7689 ± 0.0152 11.0000 ± 1.0954 0.7634 ± 0.0086

NB 8.0000 ± 2.1145 0.8292 ± 0.0445 8.0000 ± 1.3012 0.8252 ± 0.0422 8.5000 ± 1.8166 0.8280 ± 0.0357

ANN 10.2000 ± 1.1145 0.7878 ± 0.0218 8.9000 ± 1.5166 0.7842 ± 0.0309 10.0000 ± 2.5100 0.7655 ± 0.0125
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Abstract. Label space expansion for multi-label classification (MLC) is
a methodology that encodes the original label vectors to higher dimen-
sional codes before training and decodes the predicted codes back to the
label vectors during testing. The methodology has been demonstrated
to improve the performance of MLC algorithms when coupled with off-
the-shelf error-correcting codes for encoding and decoding. Nevertheless,
such a coding scheme can be complicated to implement, and cannot eas-
ily satisfy a common application need of cost-sensitive MLC—adapting
to different evaluation criteria of interest. In this work, we show that a
simpler coding scheme based on the concept of a reference pair of label
vectors achieves cost-sensitivity more naturally. In particular, our pro-
posed cost-sensitive reference pair encoding (CSRPE) algorithm contains
cluster-based encoding, weight-based training and voting-based decoding
steps, all utilizing the cost information. Furthermore, we leverage the
cost information embedded in the code space of CSRPE to propose a
novel active learning algorithm for cost-sensitive MLC. Extensive exper-
imental results verify that CSRPE performs better than state-of-the-art
algorithms across different MLC criteria. The results also demonstrate
that the CSRPE-backed active learning algorithm is superior to existing
algorithms for active MLC, and further justify the usefulness of CSRPE.

Keywords: Multi-label Classification · Cost-sensitive
Active learning

1 Introduction

The multi-label classification (MLC) problem aims to map an instance to mul-
tiple relevant labels [6,11], which matches the needs of many real-world appli-
cations, such as object detection and news classification. Different applications
generally require evaluating the performance of MLC algorithms with different
criteria, such as the Hamming loss, 0/1 loss, Rank loss, and F1 score [14].
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Most existing MLC algorithms are designed to optimize one or few criteria.
For instance, binary relevance (BR) [14] learns a binary classifier per label to
predict its relevance, and naturally optimizes the Hamming loss. Classifier chain
(CC) [12] extends BR by ordering the labels as a chain and using earlier labels
of the chain to improve the per-label prediction, and optimizes the Hamming
loss like BR. Label powerset (LP) [14] optimizes the 0/1 loss by solving a multi-
class classification problem that treats each label combination as a hyper-class.
These cost-insensitive algorithms cannot easily adapt to different criteria, and
may suffer from bad performance when evaluated with other criteria.

Cost-sensitive MLC (CSMLC) algorithms are able to adapt to different cri-
teria more easily. In particular, CSMLC algorithms take the criterion as an
additional piece of input data and aim to optimize the criterion during the
learning process. Two state-of-the-art CSMLC algorithms are probabilistic clas-
sifier chain (PCC) [3] and condensed filter tree (CFT) [7]. PCC estimates the
conditional probability of the labels to infer the Bayes-optimal decision with
respect to the given criterion. While PCC can tackle any criterion in princi-
ple, the Bayes-optimal inference step can be time-consuming unless an efficient
inference rule of the criterion is derived in advance. CFT can be viewed as an
extension of CC for CSMLC by re-weighting each example with respect to the
criterion when training each binary classifier. Nevertheless, the re-weighting step
depends on going back and forth within the chain, making CFT still somewhat
time-consuming and hardly parallelizable.

The multi-label error-correcting code (ML-ECC) [4] framework is a more
sophisticated algorithm that goes beyond the per-label classifiers to improve
classification performance. ML-ECC uses error-correcting code (ECC) to trans-
form the original MLC problem into a bigger MLC problem by adding error-
correcting labels during encoding. Classifiers on those labels, much like ECC for
communication, can be used to correct prediction errors made from the original
per-label classifiers and improve MLC performance. While ML-ECC is successful
in terms of the Hamming loss and 0/1 loss [4], it is not cost-sensitive and cannot
easily adapt to other evaluation criteria. In fact, extending ML-ECC for CSMLC
problem appears to be highly non-trivial and has not yet been deeply studied.

In this work, we study the potential of ECC for CSMLC by considering a
special type of ECC, the one-versus-one (OVO) code, which is a popular code for
multi-class classification [9]. We extend the OVO code to a cost-sensitive code,
cost-sensitive reference pair encoding (CSRPE), which preserves the information
of the criterion in each code-bit during encoding. We further propose a method
to convert the criterion into instance weights during training, and a method
to take the criterion into account during decoding. To make the whole CSRPE
algorithm efficient enough to deal with exponentially many possible label vectors,
we study the possibility of sampling the code-bits and zooming into a smaller
subset of label vectors during prediction. The resulting algorithm is as efficient as
a typical random forest (when coupled with decision trees) in training, and can
be easily implemented in parallel. Extensive experimental results demonstrate
that CSRPE outperforms existing ML-ECC algorithms and the state-of-the-art
CSMLC algorithms across different criteria.
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In addition, based on the proposed CSRPE, we design a novel algorithm for
multi-label active learning (MLAL). Retrieving ground-truth labels is usually
expensive in real-world applications [11]. The goal of MLAL is to actively query
the labels for a small number of instances while maintaining good test MLC
performance. Nevertheless, current MLAL algorithms [2,8,17] are not capa-
ble of taking the evaluation criterion into consideration when querying. In this
paper, we formulate the cost-sensitive multi-label active learning (CSMLAL) set-
ting, and propose a novel algorithm that leverages the code space computed by
CSRPE to conduct cost-sensitive querying. Experimental results justify that the
proposed algorithm is superior to other state-of-the-art MLAL algorithms.

This paper is organized as follows. First, we define CSMLC problem formally
and introduce the ML-ECC framework in Sect. 2. Our proposed CSRPE algo-
rithm is described in Sect. 3. In Sect. 4, we define the CSMLAL problem and
solve it with a novel algorithm based on CSRPE. The empirical studies of both
CSRPE and its active learning extension are presented in Sect. 5. Finally, we
conclude the paper in Sect. 6.

2 Preliminary

The goal of a MLC problem is to map the feature vector x ∈ X ⊆ R
d to a label

vector y ∈ Y ⊆ {0, 1}K , where y[k] = 1 if and only if the k-th bit is relevant.
During training, MLC algorithms use the training dataset D = {(x(n),y(n))}N

n=1

to learn a classifier f : X → Y. During testing, for any test example (x,y) drawn
from the distribution that generated (x(n),y(n)), the prediction f(x) is evaluated
with a cost function C : Y × Y → R, where C(y, ŷ) represents the penalty of
predicting y as ŷ. The objective of MLC algorithms is to minimize the expected
cost E(x,y)[C(y, f(x))].

Traditional MLC algorithms are designed to optimize one or few cost func-
tions. These algorithms may suffer from bad performance when other cost func-
tions are used. On the contrary, cost-sensitive multi-label classification (CSMLC)
algorithms take the cost function as an additional input and learn a classifier f
from both D and C. Classifier f should adapt to different C easily.

The multi-label error-correcting code (ML-ECC) [4] framework is origi-
nally designed to optimize one cost function (the 0/1 loss). ML-ECC borrows
the error-correcting code (ECC) from the communication domain. ML-ECC
views the label vectors y(n) as bit strings and encodes them to longer codes
b(n) = enc(y(n)) with some ECC encoder enc : Y → {0, 1}M , where M is
the code length. An MLC classifier h is trained on {(x(n),b(n))} to predict
the codes instead of the label vectors. The code-bits store redundant infor-
mation about the label vector to recover the intended label vector even when
some bits are mispredicted by h. In prediction, the corresponding ECC decoder
dec : {0, 1}M → Y, is used to convert the predicted vector from h back to the
label vector f(x) = dec(h(x)). In other words, ML-ECC learns the classifier
f = dec ◦ h. Such an ECC decoder is often designed based on special nearest-
neighbor search steps in the code space [4].



146 Y.-Y. Yang et al.

In the original work of ML-ECC [4], several encoder/decoder choices are
discussed and experimentally evaluated. Nevertheless, none of them take the
cost information into account. In fact, to the best of our knowledge, there is
currently no work that deeply studies the potential of ECC for CSMLC. Next,
we illustrate our ideas on making a special ECC cost-sensitive.

3 Proposed Approach

We start from a special cost-insensitive ECC, the one-versus-one (OVO) code.
The OVO code is the core of the OVO meta-algorithm for multi-class classifica-
tion (MCC). The meta-algorithm trains many binary classifiers, each represent-
ing the duel between two of the classes, and let the binary classifiers vote for the
majority decision for MCC.

To study the OVO code for MLC, we can näıvely follow the label power-
set algorithm [14] to reduce the MLC problem to MCC and then apply the
OVO meta-algorithm to further reduce MCC to binary classification. As a con-
sequence, each label vector y ∈ Y is simply treated as a distinct hyper-class, and
each binary classifier within the OVO meta-algorithm represents a duel between
two label vectors. More specifically, the i-th classifier is associated with two
label vectors yi

α and yi
β , called the reference label vectors. There are

(
2K

2

)
such

classifiers, each can be trained with examples in D that match either yi
α and

yi
β . During prediction, the

(
2K

2

)
binary classifiers can then vote for all the label

vectors ∈ Y towards the majority decision.
The steps of applying OVO to MLC above can be alternatively described as

a special ML-ECC algorithm, similar to how OVO is viewed as a special ECC for
MCC [1]. OVO as ML-ECC encodes each label vector to a code of length

(
2K

2

)

with the following encoder encovo(y)[i] =

⎧
⎪⎨

⎪⎩

1 if y = yi
α

0 if y = yi
β

0.5 otherwise
. The i-th bit in the

code represents whether the label vector matches either of the reference vectors.
The special “bit” value of 0.5 represents other irrelevant label vectors. Then,
decoding based on majority voting is equivalent to nearest-neighbor search in
the code space over all possible encoded y ∈ Y in terms of the Hamming distance
(dham), as the Hamming distance is a linear function of the vote that each y
gets. More precisely, denote the predicted code as b̂ = h(x), the decoder of OVO
is simply decovo(b̂) = argmaxy∈Y(dham(b̂, encovo(y))).

The näıve OVO for ML-ECC above suffers from several issues. First, the code
length

(
2K

2

)
is prohibitively long for large K, making it inefficient to compute.

Second, many of the
(
2K

2

)
classifiers may not be associated with enough data

during training. Last but not least, OVO is not cost-sensitive and cannot adapt
to different cost functions easily. We resolve the issues in the designs below.

Cost-Sensitive Encoding. The OVO code is designed to optimize 0/1 loss
(C(y, ŷ) = [[y �= ŷ]], where [[·]] is the indicator function) for MLC. In the OVO
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code, each bit of encovo(y) is learned from only the instances with y being
exactly the same as yi

α or yi
β . For instances with y being neither yi

α nor yi
β ,

these instances will be dropped from training. This suits the design of optimizing
0/1 loss. Now, we take a different perspective to view the OVO code.

When considering 0/1 loss, what the OVO code does is to decide whether
predict as yi

α or yi
β suffers less 0/1 loss. For the case that y is neither yi

α nor yi
β ,

the costs for predicting as yi
α and yi

β are the same. That is why OVO code
ignores these cases during training. However, for other cost functions, the costs
for predicting y as yi

α and yi
β can be different. Hence, even if the label vector y

is neither yi
α nor yi

β , the vector can still provide information for training.
To generalize the encoding function towards cost-sensitivity, we hold the same

idea that each bit should predict which reference label vector incurs less cost. The

encoding function is designed as enccs(y)[i] =

⎧
⎪⎨

⎪⎩

1 if C(y,yi
α) < C(y,yi

β)
0 if C(y,yi

α) > C(y,yi
β)

0.5 otherwise
.

Training Classifiers for Cost-Sensitive Codes. With the encoding function
defined, we learn a classifier h to predict the encoded vectors outputted from
enccs. Although enccs gives the classifier a better ground truth, different label
vectors are not equally important for the classifier. For example, if C(y,yi

α)
and C(y,yi

β) differ by a lot, there would be a high cost if the classifier gives
the wrong prediction, thus making y very important. In contrast, if there exists
a label vector y s.t. C(y,yi

α) ≈ C(y,yi
β), then y is relatively unimportant

because a misclassified y would not incur a high cost. Thus, we design a weight
function to emphasize the importance for each label vector as weight(y)[i] =
|C(y,yi

α) − C(y,yi
β)|.

Dataset {(x(n), enccs(y(n)), weight(y(n)))}N
n=1 is used to train the classifier h

to predict the encoded vector. Normally, h should be trained on the full-length
encoded vectors. But the exponentially growing code length

(
2K

2

)
makes training

on the full encoding infeasible. However, many classifiers would result in learning
similar problems during training. This could allow us to use fewer bits and
preserves the same amount of information. For example, let the i-th reference
label vectors be yi

α = (1, 0, 1, 0) and yi
β = (1, 0, 0, 1), and the j-th reference

vectors be yj
α = (1, 1, 1, 0) and yj

β = (1, 1, 0, 1). The i-th and j-th classifier
are actually learning similar things: learning to predict whether the last two
labels of the label vector should be (1, 0) or (0, 1). Observing the redundancy
in the encoded vectors, it is clear that the length of the encoded vector can
be decreased and thus learning becomes feasible. For simplicity, we uniformly
sample some bits for from encoded vectors. In Sect. 5, we demonstrate that the
number of needed bits are much smaller than

(
2K

2

)
.

Cost-Sensitive Decoding. OVO code decodes by letting each bit votes on
either of the reference label vectors. Following the idea for encoding, this is
also a special case of decoding by considering the 0/1 loss. To match with our
proposed cost-sensitive encoding, the decoding approach is redesigned to utilize
the information more effectively.
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β
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y2

y1

C(y,yi
α) < C(y,yi
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(a) OVO voting (0/1 loss)
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α
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α) > C(y,yi

β)

(b) proposed voting

Fig. 1. An illustration of the decoding methods.

Figure 1 is an illustration of the relation between encoded vectors under OVO
encoding and our cost-sensitive encoding. In 0/1 loss, all instances that are
predicted incorrectly incur the same cost making all label vectors except yi

α

and yi
β on the decision boundary. Only yi

α and yi
β are distinguishable under the

current bit. Thus, original OVO voting only needs to be done on reference label
vectors. When using our cost-sensitive encoding, all label vectors are generally
separated into two groups by the boundary as Fig. 1(b): the group that is closer to
yi

α (left) (in terms of cost) and the group that is closer to yi
β . A predicted encoded

bit not only provides the information about the reference label vector, but also
the information about all other label vectors in the same group. Following this
thought, if the prediction is yi

α, all label vectors y such that C(y,yi
α) < C(y,yi

β)
should be voted as well. If predicted otherwise, all label vectors in the other group
are voted. By this voting approach, we can use the information encoded within
the vectors to decode more effectively.

In fact, this voting approach echoes the Hamming decoding for ECC [1]. More
specifically, with the predicted encoded vector b̂ = h(x), the decoding function
is written as deccs(b̂) = argmaxy∈Y dham(b̂, enccs(y)). With this formulation,
deccs is formulated as the classic nearest neighbor search problem, where efficient
algorithms exist to speed up the decoding process [10].

Despite the efficient decoding algorithm, the number of possible predictions
|Y| equals 2K , which makes it computationally infeasible. Inspired by [5], we
propose to only work with a subset of label vectors that are more likely to be the
prediction. We define a relevant set Ỹ ⊆ Y, which contains a subset of the label
vectors from the label space, on which we perform the nearest neighbor search.
The decoding function is written as deccs(b̂) = argmaxy∈Ỹ dham(b̂, enccs(y)).

The use of the Ỹ introduces a trade-off between the number of possible
predictions and the prediction efficiency. A reasonable choice of Ỹ would be
{y|(x,y) ∈ D}, which are the distinct label vectors in the training set. Given
that the training and testing sets come from the same distribution, the label
vectors that appear in the testing set are likely to have appeared in the training
set. We justify this choice of Ỹ in Sect. 5.

The algorithm that combines enccs, weight and deccs is called cost-sensitive
reference pair encoding (CSRPE). Our design is inspired by a cost-sensitive
extension of OVO for MCC problem called cost-sensitive one-versus-one [9], but
is refined by our special ideas for encoding and decoding in the MLC problem.
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4 Active Learning for CSMLC

CSRPE is able to preserve cost information in the encoded vectors. In this
section, we design a novel active learning algorithm for MLC based on CSRPE.

MLC algorithms intend to learn a classifier from a fully labeled dataset, in
which every feature vector is paired with a label vector. In many real-world
applications, obtaining a label vector to the corresponding feature vector is very
expensive [11]. This gives rise to a new problem, active learning, which investi-
gates how to obtain good performance with as little data labeled as possible.

In this paper, we consider the pool-based multi-label active learning (MLAL)
setting [13] and formulate the cost-sensitive extension of MLAL called cost-
sensitive multi-label active learning (CSMLAL). In CSMLAL, the algorithm is
presented with two sets of data, the labeled pool Dl = {(x(n),y(n))}Nl

n=1 and
the unlabeled pool Du = {x(n)}Nu

n=1. During iterations t = 1, . . . , T , the MLAL
algorithm considers Du, Dl, a MLC classifier ft trained on Dl and cost function
C to choose a instance xt ∈ Du to query. After the queried label vector is
retrieved as yt, xt is removed from Du and the pair (xt,yt) is added to Dl. With
a small budget of T queries, the goal of the CSMLAL algorithm is to minimize
the average prediction cost of ft on the testing instances evaluated on C.

Many of the current MLAL algorithms are based on the idea of uncertainty
sampling. They query the instance that current classifier ft is most uncertain
about. There are different uncertainty measures being developed. However, most
of these measures consider only one specific C or even completely ignoring C.
Binary minimization [2] was proposed to directly take the most uncertain bit
in the label vector to represent the uncertainty of the whole instance. It queries
based on one label at a time and arguably optimizes towards Hamming loss.
Another work, in contrast, calculates an average over the uncertainty of all labels
[17]. Yet another work uses the difference between the most uncertain relevant
label and irrelevant label as an uncertainty measure [8]. This uncertainty is then
combined with label cardinality inconsistency. However, this measure is designed
heuristically and does not aim at any C.

We propose cost-sensitive uncertainty in the encoded vector space to evaluate
the importance of instances. The cost-sensitive uncertainty can be separated into
two parts, the cost estimation uncertainty and the cost utility uncertainty.

Cost Estimation Uncertainty. Cost estimation uncertainty measures how
well CSRPE estimates the cost between label vectors. Let the predicted encoded
vector b̂ = h(x) and b̃ = enccs(deccs(b̂)). Note that b̃ is actually the nearest
encoded vector of b̂. Ideally, if CSRPE estimates the cost information well, b̂
should be close to b̃. If, unfortunately, the distance dham(b̂, b̃) is large, this
implies that CSRPE does not have a good cost estimation for this x and we
hence need more information about it. In other words, we are uncertain about
this x. For this reason, we define dham(b̂, b̃) as the cost estimation uncertainty.

Cost Utility Uncertainty. The cost utility uncertainty measures how uncer-
tain the classifier ft is under the current cost function. Let the prediction
ȳ = ft(x) and its encoding b̄ = enccs(ȳ). If the classifier ft is certain about
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its prediction under current cost function, b̄ should be close to the cost esti-
mation b̂ = h(x). If unfortunately, distance dham(b̂, b̄) is large, it implies that
classifier ft is uncertain under the current cost function. Therefore, we define
dham(b̂, b̄) as the cost utility uncertainty.

The proposed cost-sensitive uncertainty is the combination of these two parts
of uncertainty, namely dham(b̂, b̃) + dham(b̂, b̄). The cost-sensitive uncertainty
leads to a novel algorithm for CSMLAL. For each iteration, the algorithm selects
the instance with the highest cost-sensitive uncertainty to query its label.

5 Experiments

We justify the proposed algorithm on ten public datasets [15] and three common
evaluation criteria, including F1 score, Accuracy score and Rank loss. [14]. The
experiment was run 20 times, each with a random 50–50 training-testing split.
CSRPE has the flexibility to take any base learner. In CSMLC experiments,
CSRPE is viewed as an ensemble MLC method, each bit with a binary classifier
attached. Because ensemble of decision trees is arguably a popular ensemble
method nowadays, we use decision trees as the base learner in these experiments.
The parameters are searched with 3-fold cross-validation.

In CSMLAL experiments, the experiments are repeated for 10 runs. Since
many competitors designed their algorithms based on linear base learners, the
base learner is changed to logistic regression for fair comparison. The parameters
are searched with 5-fold cross-validation using the initial dataset.

More detailed experimental setup can be found in the full version [18]. In
the following experimental results, we use ↑ (↓) to indicate that a higher (lower)
value for the criterion is better.

Effect of Code Length. To justify our claim in Sect. 3 that the code length can
be reduced by sampling, we conduct experiments to analyzing the performance
of CSRPE with respect to the code length.

Figure 2 shows the average performance and standard error versus code
length. We select two of the datasets with larger label counts to showcase the
effect of the code length on performance. The results of other datasets can be
found in [18]. From the figure, CSRPE performs better as the number of bit
increases. The performance of CSRPE generally converges when the code length
reaches 3000 across all cost functions and datasets. The length is significantly
smaller than the full encoding (2K). This justifies our claim that full encoding
is not needed to achieve top performance. In the following experiments, we set
the code length as 3000.

Influence of the Relevant Set. In Sect. 3, we claim that a good choice for
relevant set Ỹ is all distinct label vectors in the training dataset. To justify our
claim, we demonstrate that the possible downside of this choice, which is the
inability to predict all possible label vectors, will not degrade the performance
much. In particular, we compare CSRPE with CSRPE-ext, which is CSRPE-ext
with a larger relevant set that includes label vectors that appeared in either the
training set or the testing set.
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Corel5k

CAL500

Fig. 2. Different criteria versus code length for CSRPE

Table 1. Experiment results (mean ± ste) of CSRPE and CSRPE-ext

Dataset Rank loss ↓ F1 score ↑ Accuracy score ↑
CSRPE CSRPE-ext CSRPE CSRPE-ext CSRPE CSRPE-ext

Corel5k 490.17 ± 1.20 485.73 ± 0.88 .2455 ± .0012 .2492 ± .0011 .1664 ± .0009 .1674 ± .0009

CAL500 1304.6 ± 4.57 1303.4 ± 4.18 .4083 ± .0017 .4109 ± .0013 .2645 ± .0013 .2690 ± .0014

bibtex 104.94 ± 0.38 102.78 ± 0.32 .4663 ± .0008 .4695 ± .0009 .3926 ± .0011 .3946 ± .0010

enron 34.32 ± 0.182 33.47 ± 0.206 .5911 ± .0014 .5921 ± .0016 .4772 ± .0016 .4777 ± .0017

medical 5.330 ± 0.068 5.415 ± 0.081 .8203 ± .0023 .8204 ± .0023 .7939 ± .0024 .7934 ± .0022

genbase 0.353 ± 0.030 0.360 ± 0.032 .9878 ± .0009 .9876 ± .0009 .9836 ± .0010 .9828 ± .0012

yeast 8.451 ± 0.030 8.448 ± 0.026 .6670 ± .0012 .6679 ± .0012 .5653 ± .0012 .5650 ± .0012

flags 3.010 ± 0.047 3.050 ± 0.050 .7222 ± .0041 .7192 ± .0043 .6056 ± .0058 .6028 ± .0052

scene 0.679 ± 0.008 0.645 ± 0.006 .7860 ± .0020 .7913 ± .0014 .7620 ± .0020 .7563 ± .0017

emotions 0.591 ± 0.001 0.592 ± 0.002 .6655 ± .0035 .6673 ± .0030 .5775 ± .0037 .5774 ± .0036

The results, which contain the mean and standard error (ste) of the criteria,
are listed in Table 1. The results demonstrate that CSRPE-ext is slightly better
performing, but the improvement is at best marginal and insignificant. Even
in the CAL500 dataset, where all the label vectors in training and testing sets
are different, there is only a small performance difference between CSRPE and
CSRPE-ext. The result verifies that our choice of Ỹ as all the distinct label
vectors in the training set is sufficiently good.

Comparison with Other MLC Algorithms. In this experiment, we com-
pare the performance of various MLC and CSMLC algorithms. For the MLC
competitors, we include different codes applied within ML-ECC framework. The
competing codes include the Hamming on repetition code (HAMR), repetition
code (REP), and RAKEL repetition code (RREP) [4]. REP and RREP are equiv-
alent to BR [14] and RAKEL [16], respectively. In addition, CC [12] is added
to serve as a baseline competitor together with REP and RREP. For CSMLC
algorithms, we compete with PCC [3] and CFT [7].
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The results are shown in Tables 2 and 3. The results show that CSMLC algo-
rithms generally outperform traditional MLC algorithms. This justifies that it
is important to take cost information into account. Among the CSMLC algo-
rithms, CSRPE is superior over all other competitors with respect to F1 and
Accuracy score. For Rank loss, PCC performs slightly better, but CSRPE still
performs competitively with PCC and CFT. Such result justifies CSRPE as a
top performing CSMLC algorithm.

Table 2. Experiment results (mean ± ste) on different criteria (best in bold)

F1 score ↑
Dataset REP (BR) RREP (RAKEL) HAMR CC PCC CFT CSRPE
Corel5k .0683 ± .0011 .1028 ± .0010 .0608 ± .0008 .0661 ± .0009 .1759 ± .0008 .1708 ± .0017 .2455 ± .0012
CAL500 .3388 ± .0014 .3527 ± .0011 .3152 ± .0012 .3354 ± .0024 .3540 ± .0018 .3815 ± .0016 .4083 ± .0017
bibtex .3636 ± .0009 .3761 ± .0010 .3658 ± .0008 .3569 ± .0009 .3736 ± .0011 .3957 ± .0015 .4663 ± .0008
enron .5441 ± .0026 .5336 ± .0025 .5459 ± .0023 .5492 ± .0022 .5508 ± .0014 .5530 ± .0013 .5911 ± .0014
medical .7883 ± .0028 .7757 ± .0034 .7877 ± .0031 .7924 ± .0035 .8131 ± .0023 .7970 ± .0031 .8203 ± .0023
genbase .9897 ± .0012 .9893 ± .0014 .9896 ± .0012 .9896 ± .0012 .9911 ± .0007 .9845 ± .0009 .9878 ± .0008
yeast .6119 ± .0014 .6130 ± .0011 .6171 ± .0015 .5968 ± .0018 .6013 ± .0013 .6111 ± .0024 .6670 ± .0012
flags .6954 ± .0045 .6965 ± .0044 .7005 ± .0044 .6973 ± .0048 .7075 ± .0038 .6725 ± .0055 .7222 ± .0041
scene .5895 ± .0026 .5926 ± .0019 .6365 ± .0021 .6547 ± .0019 .7306 ± .0016 .6592 ± .0027 .7860 ± .0020
emotions .5968 ± .0038 .5773 ± .0047 .6100 ± .0035 .6205 ± .0035 .6384 ± .0033 .6015 ± .0043 .6655 ± .0035

Accuracy score ↑
Dataset REP (BR) RREP (RAKEL) HAMR CC PCC CFT CSRPE
Corel5k .0471 ± .0007 .0696 ± .0006 .0408 ± .0009 .0471 ± .0007 .1135 ± .0005 .0790 ± .0019 .1664 ± .0009
CAL500 .2097 ± .0010 .2179 ± .0008 .1925 ± .0007 .2085 ± .0018 .2209 ± .0012 .2425 ± .0015 .2645 ± .0013
bibtex .3063 ± .0009 .3103 ± .0009 .3094 ± .0008 .3031 ± .0010 .2940 ± .0010 .3235 ± .0011 .3926 ± .0011
enron .4303 ± .0023 .4215 ± .0022 .4344 ± .0024 .4437 ± .0021 .4259 ± .0013 .4363 ± .0018 .4772 ± .0016
medical .7559 ± .0034 .7431 ± .0033 .7604 ± .0033 .7643 ± .0035 .7716 ± .0025 .7570 ± .0031 .7939 ± .0024
genbase .9859 ± .0014 .9852 ± .0015 .9856 ± .0014 .9858 ± .0014 .9873 ± .0009 .9792 ± .0012 .9835 ± .0010
yeast .5047 ± .0014 .5065 ± .0012 .5120 ± .0015 .4954 ± .0021 .4872 ± .0017 .5027 ± .0019 .5653 ± .0012
flags .5849 ± .0047 .5860 ± .0046 .5913 ± .0051 .5908 ± .0057 .5974 ± .0041 .5616 ± .0059 .6056 ± .0058
scene .5791 ± .0025 .5816 ± .0020 .6258 ± .0017 .6457 ± .0018 .6821 ± .0019 .6467 ± .0029 .7620 ± .0020
emotions .5179 ± .0037 .4959 ± .0045 .5320 ± .0034 .5417 ± .0035 .5433 ± .0035 .5216 ± .0036 .5775 ± .0037

Rank loss ↓
Dataset REP (BR) RREP (RAKEL) HAMR CC PCC CFT CSRPE
Corel5k 618.1 ± .6695 597.2 ± .6664 623.5 ± .6474 636.0 ± .5374 421.2 ± .6626 300.7 ± .7848 490.2 ± 1.1959
CAL500 1500. ± 5.023 1477. ± 4.835 1537. ± 4.488 1520. ± 6.155 1179. ± 4.498 1122. ± 4.470 1305. ± 4.574
bibtex 132.6 ± .2981 124.1 ± .2511 131.5 ± .2819 136.8 ± .2886 69.10 ± .2454 112.06 ± .2811 104.9 ± .3814
enron 43.39 ± .2919 44.06 ± .2810 43.40 ± .2540 43.56 ± .3000 27.94 ± .1681 27.20 ± .1365 34.32 ± .1815
medical 5.454 ± .1184 5.733 ± .1088 5.601 ± .1232 5.469 ± .0997 3.058 ± .0603 4.117 ± .0741 5.330 ± .0676
genbase .2461 ± .0281 .2422 ± .0273 .2525 ± .0257 .2423 ± .0308 .1976 ± .0178 .4686 ± .0310 .3863 ± .0341
yeast 9.609 ± .0358 9.565 ± .0290 9.443 ± .0312 10.324 ± .0448 9.378 ± .0365 9.473 ± .0363 8.451 ± .0298
flags 3.123 ± .0434 3.139 ± .0383 3.078 ± .0352 3.120 ± .0450 3.012 ± .0490 3.363 ± .0504 3.010 ± .0470
scene 1.136 ± .0066 1.149 ± .0055 1.031 ± .0046 1.098 ± .0080 0.726 ± .0060 0.892 ± .0069 0.679 ± .0083
emotions 1.789 ± .0182 1.906 ± .0220 1.764 ± .0165 1.741 ± .0207 1.563 ± .0176 1.834 ± .0281 1.591 ± .0198

Table 3. CSRPE versus others based on t-test at 95% confident level

Criteria (win/tie/loss) F1 Rank Acc Total

REP 9/1/0 7/2/1 9/0/1 27/7/6

RREP 9/1/0 9/0/1 9/1/0 31/5/4

HAMR 9/1/0 7/2/1 8/2/0 26/9/5

CC 9/1/0 7/2/1 8/2/0 30/6/4

CFT 9/1/0 6/1/3 9/1/0 30/4/6

PCC 9/0/1 2/2/6 8/1/1 22/7/11

Comparison with MLAL Algorithms. In this experiment, we evaluate the
performance of CSRPE under the CSMLAL setting. We compare it with sev-
eral state-of-the-art MLAL algorithms, which includes adaptive active learning
(adaptive) [8], maximal loss reduction with maximal confidence (MMC) [17], and
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Fig. 3. CSMLAL results with F1 score and Rank loss

random sampling as a baseline algorithm. We do not include a comparison with
binary minimization [2] since MMC and adaptive are reported to outperform it.

Figure 3 shows the performance with respect to the number of instances
queried. For F1 score and Rank loss, CSRPE performs better than other strate-
gies on four out of six datasets. These results indicate that CSRPE is able to
consider the cost information, thus enabling it to outperform other competitors
on most of the datasets across different evaluation criteria.

6 Conclusion

In this paper, we propose a novel approach for cost-sensitive multi-label classifi-
cation (CSMLC), called cost-sensitive reference pair encoding (CSRPE). CSRPE
is derived from the one-versus-one algorithm and can embed the cost informa-
tion into the encoded vectors. Exploiting the redundancy of the encoded vectors,
we use random sampling to resolve the training challenge of building so many
classifiers. We also design a nearest-neighbor-based decoding procedure and use
the relevant set to efficiently make cost-sensitive predictions. Extensive exper-
imental results demonstrate that CSRPE achieves stable convergence respect
to the code length and outperforms not only other encoding methods but also
state-of-the-art CSMLC algorithms across different cost functions. In addition,
we extend CSRPE to a novel multi-label active learning algorithm by designing
a cost-sensitive uncertainty measure. Extensive empirical studies show that the
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proposed active learning algorithm performs better than existing active learn-
ing algorithms. The results suggest that CSRPE is a promising cost-sensitive
encoding method for CSMLC for either supervised or active learning.
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Abstract. Non-invasive brain-computer interface using electroen-
cephalography (EEG) signals promises a convenient approach empow-
ering humans to communicate with and even control the outside world
only with intentions. Herein, we propose to analyze EEG signals using
fuzzy integral with deep reinforcement learning optimization to aggre-
gate two aspects of information contained within EEG signals, namely
local spatio-temporal and global temporal information, and demonstrate
its benefits in EEG-based human intention recognition tasks. The EEG
signals are first transformed into a 3D format preserving both topologi-
cal and temporal structures, followed by distinctive local spatio-temporal
feature extraction by a 3D-CNN, as well as the global temporal feature
extraction by an RNN. Next, a fuzzy integral with respect to the opti-
mized fuzzy measures with deep reinforcement learning is utilized to
integrate the two extracted information and makes a final decision. The
proposed approach retains the topological and temporal structures of
EEG signals and merges them in a more efficient way. Experiments on
a public EEG-based movement intention dataset demonstrate the effec-
tiveness and superior performance of our proposed method.

1 Introduction

Attempting to translate brain activities into commands for a computer or other
devices always attracts great research interests due to its various potential appli-
cations. Electroencephalography (EEG) signals reflecting the fluctuations of the
voltages from the scalp are one of the most widely used tools for brain activity
analysis. Despite many efforts have been devoted into EEG-based brain activity
analysis, traditional methods not only separate feature extraction and classifica-
tion stages, but also rely on handcrafted features which need domain knowledge
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 156–168, 2018.
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and extensive experience, for example, determining which frequency bands are
related to specific brain activities. Deep learning techniques have demonstrated
advantages in automatic feature learning, and have dominated in many research
fields [1]. Recently, many works have reported successful applications of deep
learning in EEG analysis [2–4]. However, most neural network based approaches
either still involve in complex preprocess stages or lack reasonable motivations
in decoding EEG signals. There is still large room for in-depth research and
improvement in terms of recognition accuracy and interpretability.

Since EEG signals are acquired on top of different cortical regions of human’s
head over a time period (see Fig. 1), effectively fusing these spatial and tem-
poral information is crucial to identify uncertainties introduced by both inter-
and intra-subject variability. The fuzzy integral has been proven an appropriate
way of aggregating information from different sources according to their correla-
tions in the human-computer interaction areas [5–8]. Compared with the simple
weighted ensemble approach, the major advantage of fuzzy integral is the flexibil-
ity of fusing information with nonlinearity. Kim et al. have conducted extensive
work using the fuzzy integral for human-robot interaction [6,7]. Cavrini [5] and
Shoaie [8] also apply the fuzzy integral for a brain-computer interface application.
However, the fuzzy measure for each information source often heavily depends on
domain experts or massive experience. This is often unreliable, time-consuming
and impractical to implement. Recent advances in deep reinforcement learning
especially the deep Q-network (DQN) has shown promising capability of human-
level control [9]. The reinforcement method simulates the process of a human
brain interacting with an external environment. This enables the artificial intel-
ligence to conduct tasks like human beings, and even beats human experts in
certain areas [10].

In this paper, we present a novel ensemble method combining DQN and fuzzy
logic to take advantages of both two techniques at the same time, wherein the
DQN is utilized to tune the fuzzy measures in fuzzy integral for integrating the
automatically extracted local spatio-temporal and global temporal information
of EEG signals. The local spatio-temporal information represents the complex
dependencies of adjacent sensory nodes, while the global temporal information is
for the long term dependencies of the non-adjacent ones. The proposed model has
good generalization in the cross-subject, multi-class scenario for brain activity
analysis. The main contributions of this study can be summarized as follows:

– We propose to utilize the local spatio-temporal features and the global tem-
poral features extracted by a 3D convolutional neural network (3D-CNN) and
a recurrent neural network (RNN) respectively to enhance the EEG-based
brain activity analysis.

– We develop an ensemble system with the fuzzy integral to combine both the
3D-CNN and the RNN classifiers. Rather than assigning the fuzzy measures
heuristically, the deep reinforcement learning technique is employed to opti-
mize the fuzzy measures of each integrated classifiers in the fuzzy integral.
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– We evaluate the proposed approach on a public EEG-based movement inten-
tion dataset for the cross-subject, multi-class scenario analysis. The results
demonstrate that the proposed ensemble model is able to find the optimal
fuzzy measures of classifiers automatically and enhance the EEG-based human
intention recognition task.

2 Preliminaries

In this section we give a brief introduction of λ-fuzzy measure and Choquet inte-
gral, which we leverage in this study to fuse the local spatio-temporal information
and the global temporal information within EEG signals for human intention
recognition.

Let X = {x1, x2 ... xn} be a finite set represents n information sources and
the function gλ : 2X → [0, 1] be the λ-fuzzy measure on X. The fuzzy measure
satisfies the following conditions:

1. gλ({X}) = 1, gλ({∅}) = 0;
2. If A, B ∈ 2X and A ∩ B = ∅, then gλ({A ∪ B}) = gλ({A}) + gλ({B}) +

λgλ({A})gλ({B})

where λ ∈ (−1,∞) can be obtained through the following equation:

λ + 1 =
n∏

i=1

(λgλ({xi}) + 1). (1)

So given the fuzzy measure density of one information set, the joint fuzzy measure
of any subsets can be achieved via the above axiom 2.

The Choquet integral with respect to fuzzy measure g is defined as

Cg(h) =
n∑

i=1

[h(xi) − h(xi−1)]g(Ai), (2)

where Ai = {xi, xi+1 ... xn} is a subset of X, and h(xi) is the data/information
provided by the information source xi. The h(xi) satisfies the monotonic prop-
erty, that is h(x1) � h(x2) � h(x3) � ... � h(xn), and h(x0) = 0. The joint
fuzzy measure of the subset Ai can be obtained by pre-defined fuzzy measure
rules. The fuzzy measure density, which is the fuzzy measure of each informa-
tion source g({xi}), is usually heuristically assigned. In this study, the g({xi})
is proposed to be determined via the deep reinforcement learning technology.

3 Methodology

3.1 Local Spatio-Temporal Information Extraction

To represent the spatial topological structure of the EEG acquisition system, we
convert the traditional chain-like vectors to two-dimensional matrices according
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Fig. 1. EEG data acquisition and transformation process

to the EEG electrode topology. Let rt = [s1t , s2t , si
t ... sn

t ]T be the EEG sen-
sory readings at time step t, where si

t represents the ith electrode signal. The
1D vector to 2D matrix transformation function is defined as in Fig. 1. Through
this equation each EEG reading vector rt at time stamp t is converted to a
EEG data matrix mt of size 10 × 11. In the transformation function, the null
electrode elements are set to zero as no effects on neural network. Some pre-
vious work has also proposed to apply topological transformation for spatial
information representation [2]. However, our approach is fundamentally differ-
ent from the previous conversion method by preserving both the raw data and
spatial information, in contrast [2] employs complex data preprocess including
frequency filter, data compression and interpolation to covert raw EEG data to
images. On top of spatial representations, we use the sliding window technique
to divide the converted streaming EEG matrices to individual clips for temporal
information extraction. Each clip has fixed length of time slice of EEG matrices,
and neighboring clips have 50% overlapping to keep the signal continuity. Over-
all, the raw streaming EEG readings are converted to clips with a 3D structure
containing both temporal and spatial information:

[rt, rt+1 ... ] ⇒ [Ct, Ct+W ... ],

where Ct = [mt, mt+1 ... mt+W−1] is a 3D-structure clip with window size W
starts at time step t.

The 3D-CNNs have achieved great success in video processing applications,
in which local spatio-temporal features are extracted for further analysis. Herein,
we explore the 3D-CNNs for modeling the local spatio-temporal information of
adjacent sensory nodes from the transformed 3D EEG data structures. The final
local spatio-temporal information representation is the classification probabili-
ties of each aimed brain intention task A = [a1, a2 ... aK ]T performing in the
corresponding windowed period [t, t + W − 1]:
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3D-CNN: ptc = C3D([mt, mt+1 ... mt+W−1]), ptc ∈ R
K .

In the 3D-CNN, we concatenate three convolutional layers directly without pool-
ing operations. Although a convolutional operation is often followed by a pooling
layer, this is not mandated. It is primarily introduced for balancing the infor-
mation integrity and data complexity, while in this situation the data dimension
is much smaller that we withdraw the pooling operation and keep all the infor-
mation for better feature extraction. We utilize the exponential linear unit (elu)
function as the activation function, which performs better than the commonly
used rectified linear units (ReLUs) function in many cases. The kernel size of all
3D-CNN layers is set to 3×3 with a stride of 1, and the number of feature maps
are 32, 64 and 128 respectively. Finally, a fully-connected layer with 1024 hid-
den units is applied on top of the 3D-CNN architecture, followed by a five-way
softmax layer for final prediction.

3.2 Global Temporal Information Extraction

Since mental activities are temporal dynamic processes, modeling the evolu-
tion through time-series sequences with RNN, which has been demonstrated
powerful in processing time series data in various fields, can provide important
information about the ambiguity of brain activities. Long Short-Term Memory
(LSTM) model is an improved RNN model with better capabilities discovering
long-term dependencies. Two LSTM layers between two fully-connected layers
are adopted for the global temporal information extraction. Only the output of
the last LSTM unit after observing the whole time sequence is fed into the final
fully-connected layer. To keep consistent with the local spatio-temporal infor-
mation representations, we use the same window size for the global temporal
feature extraction and 50% overlapping sliding window technique as well. We
experiment with various sizes of hidden states in LSTM cell, and adopt the best
result hidden state size of 1024. The RNN model takes the raw windowed EEG
signal vectors [rt, rt+1 ... rt+W−1] as input, and makes the final prediction with
a softmax layer:

RNN: ptr = L([rt, rt+1 ... rt+W−1]), ptr ∈ R
K .

Different from the 3D-CNN model, which just uses receptive fields to extract the
local spatio-temporal features capturing the relations of the adjacent sensory
nodes, the RNN considers the long-term temporal dependencies of the whole
sensory values including non-adjacent ones. Thus the global temporal features
extracted by the RNN model provides another informative description of raw
EEG signals.

3.3 Choquet Integral with Deep Q-Network

The above local spatio-temporal and global temporal information extraction
describes the EEG signals from different angels, thus aggregating the two aspects
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Fig. 2. Overall flowchart of the proposed approach

of data may enhance the EEG analysis tasks. The overall flowchart of the pro-
posed approach is illustrated in Fig. 2. The two schools of information are inte-
grated with respected to the λ-fuzzy measure by the Choquet integral to make
final predictions. DQN is utilized to optimize the fuzzy measures of the 3D-CNN
and the RNN instead of being selected heuristically in previous study.

Concretely, Algorithm 1 presents the pseudo-code of Choquet integral of 3D-
CNN and RNN ensemble. The input is the probability predictions from the 3D-
CNN and the RNN models, and the output is the aggregated results by Choquet
integral. For the probability of a windowed instance belonging to one class, pk,m

c

and pk,m
r , the Choquet integral is applied to aggregate the two probabilities

regarding their fuzzy measures, and calculate a final probability for this class.
All the predictions from the 3D-CNN share the same fuzzy measure during the
fuzzy fusion process and so do the predictions of the RNN model.

The overall procedure of fuzzy integral optimization with DQN is that an
agent takes actions at tuning the fuzzy measures in a specific environment
characterizing the fuzzy integral ensemble result and gets reward according
to the tuning result. There are totally five candidate actions, namely, keeping
unchanged, ascending or descending 3D-CNN fuzzy measure, and ascending or
descending RNN fuzzy measure. The reward for one action is determined by the
difference between the fusion accuracy before and after executing the action:
rt = δ × (At+1 −At), where δ = 105 is the reward coefficient and At is the fusion
accuracy at tuning step t. Thus the agent gets positive rewards when boosting
the ensemble accuracy, negative rewards when descending the accuracy and zero
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Algorithm 1. Ensemble 3D-CNN and RNN with Choquet fuzzy integral
Input: pc and pr ∈ R

n×K , are the classification probabilities of the 3D-CNN and the
RNN, where n is the number of windowed instances in one dataset and K is the number
of classes; gc and gr are their corresponding fuzzy measures.
Output: pf is the classification probabilities after fuzzy fusion.

1: function ChoquetIntegral(pc, pr, gc, gr)
2: Calculate all the joint fuzzy measures w.r.t fuzzy measure density
3: for the prediction of each windowed time clip pk

c ∈ pc and pk
r ∈ pr do

4: for the probability of each class pk,m
c ∈ pk

c and pk,m
r ∈ pk

r do
// perform Choquet integral

5: if pk,m
c � pk,m

r then
6: pk,m

f = (pk,m
c − 0) × gλ({cnn, rnn}) + (pk,m

r − pk,m
c ) × gλ({rnn})

7: else
8: pk,m

f = (pk,m
r − 0) × gλ({cnn, rnn}) + (pk,m

c − pk,m
r ) × gλ({cnn})

9: return pf

reward when no accuracy changes. We have also tried a fixed reward system with
constant reward regardless of the accuracy fluctuation extent, and this method
would easily lead the ensemble result to a local optimal value. We use how much
the predictions deviate from the ground truth to characterize the state of the
environment. Concretely, we define the state of a model φ as the class-wise sum-
mation of the absolute difference between the predicted probabilities and the
ground truth:

φ = |p[1] − T [1]| + |p[i] − T [i]| + ... + |p[n] − T [n]|; p, T ∈ R
n×K , φ ∈ R

K

where p[i] and T [i] are the prediction and ground truth of the ith sample, respec-
tively, and there are totally n samples over K classes. The states of 3D-CNN
φc

t , RNN φr
t and the fuzzy integral ensemble model φf

t are stacked horizontally
and normalized using the Z-score method to form a final representation of the
environment: φt = [φc

t , φr
t , φf

t ], where φt ∈ R
3K .

The DQN based fuzzy measure optimization is presented in Algorithm2. This
procedure allows us to select optimal actions tuning the fuzzy measure for each
information resource to achieve an optimized ensemble result. We first initialize
the fuzzy measures gc

1 and gr
1 arbitrarily, and keep the same initialization for

every episode. In one episode, there are total T = 2000 tuning steps updating
the fuzzy measures 2000 times with an interval of 10−3. The agent selects and
executes actions according to an ε-greedy policy with ε annealed linearly from
1 to 0.01 over first 72 episodes, and fixed at 0.01 thereafter. It selects a random
action with probability ε, otherwise select the action at with maximum Q value.
Formally the action-value function:

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + ...|st = s, at = a, π] (3)

is approximated using a neural network called Q-network in DQN. Q∗(s, a) is
the maximum sum of rewards rt with discounted factor γ at each tuning step.
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Algorithm 2. Fuzzy measure optimized with deep Q-network
Input: predictions from the 3D-CNN pc and RNN pr; ground truth prediction T
Output: action-value network Q for action selection policy

1: Initialize replay memory D
2: Initialize action-value network Q with random weights θ
3: Initialize target action-value network Q̂ with weights θ− = θ
4: Initialize fuzzy measure density gc

1 and gr
1 ∈ [0, 1] arbitrarily

5: for episode = 1 to MaxEpisode do
6: Observe the initial state of the environment φ1(g

c
1, gr

1)
7: for t = 1 to MaxStep do

8: Select action at=

{
a random action with probability ε

argmaxaQ(φt, a; θ) otherwise

9: Execute action at

10: Observe reward rt, fuzzy measures gc
t+1, gr

t+1 and next state φt+1

11: Store transition (φt, at, rt, φt+1) in replay memory D
// experience replay

12: Sample random minibatch of transitions (φj , aj , rj , φj+1) from D

13: Set yi =

{
rj if episode terminates at step j + 1

rj + γmaxa′Q̂(φj+1, a
′; θ−) otherwise

14: Perform gradient descent on (yj − Q(φj , aj ; θ))
2 w.r.t Q-network parameter

15: Every C steps reset Q̂ = Q. i.e. set θ− = θ// target Q-network update

The reward at each tuning step t is obtained by executing an action a selected
according to state observation s and policy π(a|s). This optimal action-value
function obeys the following Bellman equation:

Q∗(s, a) = Es′ [r + γmax
a′

Q∗(s′, a′)|s, a], (4)

where Q∗(s′, a′) is the optimal value of the state at the next tuning step. Then
the optimal strategy is to select the action a′ maximizing the optimal value
at the next tuning step. A feedforward neural network with two hidden layers
with 32 and 64 neurons respectively is used to approximate the optimal action-
value function. We employ the experience replay and separate target Q-network
techniques [9] to stabilize the Q-network training process. To perform experi-
ence replay, the transitions (φt, at, rt, φt+1) are stored in a memory pool. During
training process, stored transitions are randomly sampled using minibatches to
feed the Q-network. The network is updated with the following loss function :

Li(θi) = [(r + γmax
a′

Q∗(s′, a′; θ−
i ) − Q(s, a; θi)]2, (5)

as illustrated in Algorithm2 line 14. A separate network with parameters θ−
i is

used to generate the target Q value and only updated with the Q-network param-
eters (θi) every C steps. Through the whole process, optimal fuzzy measures gc

and gr are obtained for optimizing fuzzy integral based ensemble.
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4 Experiments

4.1 Dataset and Model Implementation

To evaluate the proposed approach, we adopt the widely used EEG dataset eeg-
mmidb from PhysioNet1 for EEG-based movement intention recognition. The
EEG data is collected using BCI2000 instrumentation system2 [11] with 64 elec-
trode channels and 160 Hz sampling rate. During the data acquisition process,
one subject sits in front of a screen with prompts indicating the subject per-
forming different movement intention tasks: imagine opening and closing left
fist, right fist, both fists and both feet, and think nothing with eye closed. We
select 20 subjects with 5 tasks to construct a cross-subject multi-task dataset.

During the preprocess stage, we carry out experiment with different sliding
window size, namely 10, 20, 40 and 80 recordings per time window. The results
show that 10 recordings in one time window gives the best performance. Thus we
adopt the window size of 10 for all experimental setup. The 3D-CNN and RNN
model are trained with Adam algorithm with a learning rate of 10−4 to minimize
the cross-entropy loss function. Due to the large amount of parameters in the
neural networks, we utilize dropout technique with 50% probabilities after the
final fully connected layer in both models and L2 regularization in the 3D-CNN
model to address the overfitting issue.

4.2 Compared Algorithms

All the methods are based on the same dataset with our model.

– SR-FBCSP [12]. The Shrinkage Regularized Filter Bank Common Spatial
Patterns(SR-FBCSP) algorithm, which is based on the widely used FBCSP
algorithm, outperforms FBCSP in classifying motor imagery tasks.

– ICA+QDA [13]. The independent component analysis (ICA) is for the fea-
ture extraction followed by quadratic discriminant analysis (QDA) for final
classification.

– Autoencoder+XGboost [3]. The autoencoder is used for automatic EEG
feature extraction. XGboost, which has been demonstrated competitive per-
formance in many competitions, is used for final classification.

– 1D-CNN [4]. The 1D-CNN is the traditional neural network based spatial
filter for EEG signal analysis, and we apply it in our dataset.

– 3D-CNN. The 3D-CNN is the model used in this study for classification
based on the local spatio-temporal information of EEG signals.

– RNN. The RNN model is the model used in this study for classification based
on the global temporal information of EEG signals.

– Neural network ensemble. We ensemble the 3D-CNN and RNN with a
neural network based method. In this model, the 3D-CNN part and the RNN

1 https://www.physionet.org/pn4/eegmmidb/.
2 www.bci2000.org.

https://www.physionet.org/pn4/eegmmidb/
www.bci2000.org
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part have the same settings with the above described models. Their represen-
tations from the last fully-connected layer are concatenated together and fed
into a softmax layer for final prediction. The training process and implemen-
tation tricks are also the same with the individual models.

– Fuzzy Integral Ensemble. We ensemble the 3D-CNN and RNN with Cho-
quet integral with randomly selected fuzzy measure density, gc = 0.924 and
gr = 0.158.

– Fuzzy Integral Ensemble with DQN. The proposed method in this study.
The initial fuzzy measures are the same with the Fuzzy Integral Ensemble
method, and the final measures are gc = 0.203 and gr = 0.19.

4.3 Experimental Result

Figure 3 gives the training information of the neural networks in this work. We
stop model training at minimum validation loss. The performance of our pro-
posed approach and the comparison models are summarized in Table 1. It is
observed that the simple 1D-CNN spatial filter model outperforms the previous
studies even without frequency band filter. This result is consistent with [14], in
which it is shown the CNN can act as frequency band filters itself and achieves
competitive performance. What’s more, the 3D-CNN or RNN model performs
better than the traditional 1D-CNN filter approach, demonstrating optimal data
representation is capable of enhancing neural network performance and the local
spatio-temporal and the global temporal information is favourable for success-
ful EEG signal analysis. However, it is interesting to find that ensemble of the
3D-CNN and the RNN with neural network does not performs better perfor-
mance. Although much evidence reveals that deeper network or combination of
different kinds of neural network benefits the feature representation capabilities
for final model performance, it is required careful parameter tuning or diverse
implementation tricks. Complex models derived from suitable simple models may
even suffer performance degradation problem [15]. It is not easy to optimize a
complex neural network system.
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Fig. 3. Train and validation loss with training epochs

Thus in this work we adopt a traditional but widely used fusion approach,
fuzzy integral, to aggregate the local spatio-temporal information and the global



166 D. Zhang et al.

Table 1. Comparison with previous studies and baseline models

Method Multi-class Validation Accuracy

SR-FBCSP [12] Binary Intra-Sub 0.8206

Autoencoder+XGboost [3] Multi(5) Cross-Sub(20) 0.794

ICA+QDA [13] Multi(3) Cross-Sub(30) 0.8724

1D-CNN [4] Multi(5) Cross-Sub(20) 0.8909

3D-CNN Multi(5) Cross-Sub(20) 0.9006

RNN Multi(5) Cross-Sub(20) 0.9110

Neural network ensemble Multi(5) Cross-Sub(20) 0.9108

Fuzzy Integral Ensemble Multi(5) Cross-Sub(20) 0.9082

Fuzzy Integral Ensemble with DQN Multi(5) Cross-Sub(20) 0.9302
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Fig. 5. Confusion matrix

temporal information from the 3D-CNN and the RNN models. Furthermore we
propose to use the DQN to optimize the fuzzy measures instead of relying on
domain knowledge or empirical selection. The results surpass both the single
neural network methods and the neural network ensemble method. It is illus-
trated in the Table 1 that the fuzzy integral ensemble with randomly selected
fuzzy measures does not provide an effective fusion scheme, thus can not enhance
the overall performance. We also randomly select other fuzzy densities, and only
a few sets aggregate information effectively. The Fig. 4 shows the process of the
DQN optimization. It is observed that at the initial stage, the agent chooses
actions according to the Q-network with little training, and large random prob-
ability ε, thus gets negative total rewards. As the training process proceeds, the
total rewards increases and saturates. The test and train accuracy fluctuate in
the same way as the total reward. In the final confusion matrix (Fig. 5), the
model exhibits equally good performance for each class, with little imbalance.
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5 Conclusion

In this study, we propose to employ the fuzzy integral, which is optimized by the
deep reinforcement learning, to aggregate both the local spatio-temporal and the
global temporal information within EEG signals for human intention recognition.
To effectively select the fuzzy measures for each information sources, the DQN
is utilized to search the optimal fuzzy measures. The developed model is further
evaluated on movement intention recognition tasks in the cross-subject, multi-
class scenario. The experimental results demonstrate the effectiveness of neural
network ensemble using the fuzzy integral with respect to the optimized fuzzy
measures with the deep Q-network technique.
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Abstract. This paper introduces a novel classification algorithm for
heterogeneous domain adaptation. The algorithm projects both the tar-
get and source data into a common feature space of the class decom-
position scheme used. The distinctive features of the algorithm are: (1)
it does not impose any assumptions on the data other than sharing the
same class labels; (2) it allows adaptation of multiple source domains at
once; and (3) it can help improving the topology of the projected data
for class separability. The algorithm provides two built-in classification
rules and allows applying any other classification model.

1 Introduction

Heterogeneous domain adaptation (HDA) for classification has recently received
a significant attention [13]. It assumes a given target domain (the primary
domain of interest) and at least one (auxiliary) source domain. These domains are
represented by different input features and usually share the same class labels.
The goal is to improve classification models in the target domain by utilizing
data from the source domain(s).

The approaches to HDA can be either symmetric or asymmetric [13]. The
symmetric approaches project the target and source data into a common fea-
ture space and train prediction models on the projected data. The asymmetric
approaches project the source data into the target domain and train prediction
models on the target data and projected source data. Below we describe the
main approaches within each group.

Domain Adaptation Manifold Alignment (DAMA) [12] is one of the main
symmetric approaches to HDA. DAMA is applicable to problems with a single
target domain and P − 1 source domains that share the same class-label set.
Assuming that each domain is a manifold, a manifold alignment algorithm learns
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P projection functions, one for each domain. It maintains a combinatorial graph
Laplacian matrix to reflect inter-domain class similarity, a combinatorial graph
Laplacian matrix to reflect inter-domain class dissimilarity, and a diagonal block-
matrix of graph Laplacian matrices each reflecting instance similarities within a
domain. The algorithm minimizes an objective function defined over the matrices
so that the resulting P projection functions match same class instances and
separate different class instances when projected. DAMA has its own prediction
algorithm. It first trains regression models for the source data projected, and
then adapts these models to the target domain using manifold regularization
based on the projected target data.

Heterogeneous Feature Augmentation (HFA) [3] is another well-known sym-
metric approach to HDA. It is applied to problems with a target domain and
a source domain that share the same class-label set. HFA augments the com-
mon latent feature space with the target-domain features and source-domain
features. The projection functions are jointly represented by a matrix. To find
the joint projection matrix, a problem to minimize the structural risk functional
of SVMs is defined. The problem is tackled by an alternating optimization algo-
rithm that solves the dual problem of SVMs and finds the corresponding optimal
joint transformation matrix. The final classifier for HFA is the SVM classifier
derived together with the transformation matrix.

Asymmetric Regularized Cross-Domain Transformation (ARC-t) [7] is one of
the main asymmetric approaches to HDA. ARC-t is applied to problems with a
target domain and a single source domain that share the same class-label set.
The projection function is represented by a matrix that maps an instance from
the source domain to an instance in the target domain. This matrix is learned
in a non-linear Gaussian RBF kernel space. This is done by minimizing a matrix
regularizer and a set of constraints imposed on any pair of a target instance and
a projected source instance.

Sparse Heterogeneous Feature Representation (SHFR) [6] is another well-
known asymmetric approach to HDA. It is applied to problems with a target
domain and a single source domain that share the same class-label set. SHFR
is similar ARC-t with a difference that the target data and source data are first
represented in a code space based on a class decomposition scheme [2]. This
allows a projection matrix to be learned by a nonnegative LASSO optimization.

We summarize the main HDA approaches in Table 1. We observe that an
HDA algorithm is lacking that can adapt multiple source domains without impos-
ing any domain assumptions. Such an algorithm has to preserve the data topol-
ogy (at least locally) using class correspondence. The adapted datasets have to
applicable for any classification model. Still, it is desirable that the algorithm
can provide a specific classifier tailored to the projections employed.

In the rest of this paper we introduce a new HDA algorithm called class
code alignment (CCA) algorithm that has all the characteristics listed above. In
Sects. 2 and 3 we provide a problem formulation and background information.
The new algorithm is given in Sect. 4. In Sects. 5 and 6 we present experiments
and conclusions.
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Table 1. HDA approaches

HDA
method

# Source
domains

Domain
assumption

Class corre-
spondence

Topology
preservation

Classifier
independence

Specific
classifiers

DAMA ≥1 yes yes yes yes yes

HFA 1 no yes no yes yes

ARC-t 1 no yes yes yes no

SHFR 1 no yes yes yes no

2 Problem Formulation

We consider the problem of HDA in the context of classification. We define a
classification domain as a triple that consists of an instance space X with d
continuous features X(j) (j ∈ {1, . . . , d}), a finite set Y of K = |Y | class labels,
and an unknown probability distribution p over X ×Y . We assume the presence
of a target domain and at least one source domain. The target domain is the
domain of interest. It is given by a target instance space XT with dT features,
a class-label set Y T , and a target probability distribution pT over XT × Y T .
The target training data DT is a set of NT instances (xT

i , yT
i ) ∈ XT × Y T

generated from pT . Any source domain is an auxiliary domain. It is given by a
source instance space XS with dS features, a class-label set Y S , and a source
probability distribution pS over XS × Y S . The source training data DS is a set
of NS instances (xS

i , yS
i ) ∈ XS × Y S generated from pS .

In HDA, the instance spaces XT and XS are different. The classification
problem in HDA is to provide a good estimate ŷ ∈ Y T of the true class of a
target query instance xT

q ∈ XT according to the target probability distribution
pT given the target and source training data DT and DS . In this paper we
consider this problem under the assumptions that: (1) the target and source
domains share the same label set Y , i.e.: Y T = Y S = Y , and (2) the number K
of class labels in Y is larger than 2.

3 Class Decomposition Schemes and Coding Matrices

The HDA algorithm we propose is based on class decomposition schemes [2].
Such schemes consider any multi-class classification problem (K > 2) as a set
of B binary classification problems [2] for some positive integer B. Any b-th
binary classification problem is given by a binary class partition Pb(Y ) of the
class-label set Y for b ∈ {1, ..., B}. The first (second) element Y +

b ⊆ Y (Y −
b ⊆ Y )

of the partition Pb(Y ) stands for a positive (negative) binary super class. In this
context a class decomposition scheme is a set S(Y ) of B binary class partitions
Pb(Y ) such that for any two distinct classes y1, y2 ∈ Y there exists a binary class
partition Pb(Y ) ∈ S(Y ) with super classes Y −

b and Y +
b that separate y1 and y2;

i.e. ¬(y1, y2 ∈ Y −
b ) ∧ ¬(y1, y2 ∈ Y +

b ).
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Any class decomposition scheme S(Y ) is represented by a binary coding
matrix C ∈ {0, 1}B×K [2]. For any index b ∈ {1, ..., B} and class label y ∈ Y
the element C(b, y) equals 1 if y belongs to the positive super class Y +

b of the
class partition Pb(Y ). If y belongs to the negative super class Y −

b of Pb(Y ), the
element C(b, y) equals 0.

Any binary class partition Pb(Y ) is represented by exactly one row C(b, ·)
in C that we call the partition code word for Pb(Y ). Any class label y ∈ Y is
represented by exactly one column C(·, y) in C that we call the class code word
for y. Class code words C(·, y) are viewed as images of the class labels y ∈ Y in
a code space C.

Definition 1 (Code Space). Given a class decomposition scheme S(Y ) with
B binary partitions Pb(Y ), the code space C is equal to [0, 1]B.

To solve a multi-class classification problem using a class decomposition
scheme S(Y ) we take three steps. First, we train an encoding mapping h that can
project any instance to the code space C. The mapping h consists of binary clas-
sifiers hb, one for each binary class partition Pb(Y ) ∈ S(Y ). Second, we encode
a query instance x using the mapping h; i.e., we create an instance code word
consisting of bits hb(x) assigned by the binary classifiers hb for that instance.
Third, we decode the class of the instance x using the coding matrix C of S(Y ).
We assign a class label y ∈ Y of which the code word matches best with the
instance code word of the instance x.

4 Class Code Alignment Algorithm

This section introduces our class code alignment (CCA) algorithm for the HDA
classification problem from Sect. 2. The algorithm follows the symmetric app-
roach to HDA. It projects the target and source data into a common feature
space using any class decomposition scheme S(Y ). Given that the target and
source domains share the same class-label set Y , the common feature space is
the code space C associated with S(Y ). To project the data into C the algorithm
builds the encoding mappings for the target data and source data as well as an
additional encoding mapping for the class labels. This is done so that the target
and source instances are projected close to the code words of their class labels
in C; i.e., they become class-code aligned.

4.1 Detailed Description

The CCA algorithm assumes that the class-label set Y consists of K standard
unit vectors in R

K (i.e. Y ⊆ R
K) so that the label of the k-th class (k ∈

{1, . . . , K}) is given by a standard unit vector whose k-th bit equals 1. Given a
class decomposition scheme S(Y ) with B class partitions, the algorithm builds
three encoding mappings:

(1) σ ◦ TT : RdT → [0, 1]B from the target feature space XT to the code space
C, and
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(2) σ ◦ TS : RdS → [0, 1]B from the source feature space XS to the code space
C, and

(3) σ ◦ C : RK → [0, 1]B from the set Y of K class labels to the code space C,

where

• σ : RB → [0, 1]B is a multivariate logistic function defined for b ∈ {1, ..., B}
as σb(w) = (1 + e−w(b))−1, and

• TT : RdT → R
B is a linear mapping given as a matrix in R

B×dT , and
• TS : RdS → R

B is a linear mapping given as a matrix in R
B×dS , and

• C : RK → R
B is a linear mapping given as a matrix in R

B×K .

The mappings σ ◦ TT and σ ◦ TS are encoding mappings of the class decom-
position scheme used for the target domain and the source domain, respectively.
More precisely, the rows of the target matrix TT (the source matrix TS) rep-
resent logistic regression models of the binary classifiers trained on the target
data (the source data). The mapping σ ◦ C is a class-label encoding mapping:
it determines the code word for each class label and is common for the target
domain and source domain. We note that the matrix C is a real-value coding
matrix of S(Y ) in contrast to the standard binary coding matrices. The CCA
algorithm adjusts C to better fit the target and source domains.

Once the mappings TT , TS , and C are available, any target instance xT ∈ XT

is projected into σ(TTxT ) ∈ C, any source instance xS ∈ XS is projected into
σ(TSxS) ∈ C, and any class label y ∈ Y is projected into σ(Cy) ∈ C (see Fig. 1).
Below we describe how to build the mappings so that the projected instances
are grouped around the code words of their classes.

Fig. 1. Projection scheme

Any element p of the code space C is viewed as a parameter vector for a multi-
variate Bernoulli variable. If p is a true parameter vector and q is an approximate
parameter vector in C, to quantify the information gain from q to p we use KL
divergence:

KL [p‖q] =
B∑

b=1

[
p(b) log

(
p(b)
q(b)

)
+ (1 − p(b)) log

(
1 − p(b)
1 − q(b)

)]
. (1)
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As we aim at mapping instances and their class labels into similar locations in
the code space C we define a loss l for each instance label pair (x, y) ∈ DT ∪DS .
Since our measure in C is the KL divergence, a loss l of the instance x for class
label y for the mappings T and C can be defined as:

l(x, y | C, T ) = KL [σ (Cy) ‖σ (Tx)] ,where T =
{

TT if (x, y) ∈ DT ,
TS if (x, y) ∈ DS .

Thus, the loss L for all NT target instances (xT
i , yT

i ) ∈ DT is defined as:

L(DT | C, TT ) =
NT∑

i=1

l(xT
i , yT

i | C, TT ),

and the loss L for all NS source instances (xS
i , yS

i ) ∈ DS is defined as:

L(DS | C, TS) =
NS∑

i=1

l(xS
i , yS

i | C, TS).

Minimizing L(DT | C, TT ) for TT and C forces the projected target instances
σ(TTxT

i ) to be close to the code words σ(CyT
i ) of their class labels yT

i in the
code space C. The same is the effect of minimizing L(DS | C, TS) for TS and C
for the projected source instances. Taken together, minimizing:

L(DT | C, TT ) + L(DS | C, TS) (2)

causes the same-class target and source instances to be close in the code space
C independently on their domain. For this reason we analyze the mapping
(matrix) C.

The matrix C has to have large separation properties [2]. The large column
separation property means that for any class label y1 ∈ Y the code word Cy1 has
to be distant from the code Cy2 of any other class label y2 ∈ Y . If this property
holds, then the code words σ(Cy1) and σ(Cy2) are distant in the code space
C; i.e. KL [σ (Cy1) ‖σ (Cy2)] and KL [σ (Cy2) ‖σ (Cy1)] are both large. Since the
projected instances arrive close to the code words of their class labels, this causes
the projected instances of different class labels to be distant in the code space C.

The large row separation property means that for any b1 ∈ {1, . . . , B} the
partition code word C(b1, ·) has to be distant from the partition code word
C(b2, ·) and its complement for any other b2 ∈ {1, . . . , B}\{b1}. If this property
holds, the logistic regression models represented by rows C(b1, ·) and C(b2, ·)
commit less errors simultaneously. This causes the loss l(x, y | C, T ) (defined
in Eq. (1)) for any labeled instance (x, y) to decrease which in turn decreases
the objective function (2) for all the projected target and source instances. The
latter means that the projected instances are grouped more around the code
words of their classes in the code space C.

From the above it is clear that the large separation properties of the matrix
C improves the topology of the data for class separability in the code space C.
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Thus, we initialize C using a reference coding matrix Cref with known large
separation properties. Since we learn C, we make sure that it is close to Cref.
Hence, we add the following loss term to the objective function (2) to penalize
the KL divergence between the projections of the classes obtained by C and Cref

for the target and the source instances:

L(DT | Cref, C) + L(DS | Cref, C), (3)

where

• L(DT | Cref, C) =
∑

(xT
i ,yT

i )∈DT
KL

[
σ

(
CyT

i

) ‖σ
(
Cref yT

i

)]
, and

• L(DS | Cref, C) =
∑

(xS
i ,yS

i )∈DS
KL

[
σ

(
CyS

i

) ‖σ
(
Cref yS

i

)]
.

The final objective function to minimize for TT , TS and C is defined as
follows:

O(DT ,DS | TT , TS , C) =L(DT | C, TT ) + L(DS | C, TS)
+ α (L(DT | Cref, C) + L(DS | Cref, C)) ,

(4)

where α > 0 is a regularization parameter.
Once the objective function (4) is defined, we introduce the CCA algorithm.

The algorithm learns the mappings TT , TS , and C from the target and source
data by minimizing this function. It is given in Algorithm 1. The CCA algorithm
is of Alternating Minimization type. It first improves the matrix TT for the
matrix C, then improves the matrix TS for the matrix C, and, finally, improves
the matrix C for the matrices TT and TS . The process is repeated to minimize
the objective function (4).

Algorithm 1. Class Code Alignment Algorithm
Input: target data DT , source data DS , reference projection matrix Cref, initial

projection matrices T T
0 and T S

0 , step parameter β ∈ (0, 1), regularization
parameter α > 0, outer iteration number M > 1, and inner iteration
number N > 1.

Output: projection matrices T T , T S , and C.

1: C0 := Cref;
2: for t := 1 to M do
3: T T

t := IMPROVE-T(DT , Ct−1, T
T
t−1, β, N);

4: T S
t := IMPROVE-T(DS , Ct−1, T

S
t−1, β, N);

5: Ct := IMPROVE-C(DT , DS , α, Cref, T
T
t−1, T

S
t−1);

6: return T T , T S , and C.

The IMPROVE-T function improves the mapping TT (resp. TS) for C (see
Algorithm 2). It minimizes the loss term L(DT |C, TT ) (resp. L(DS |C, TS)) of the
objective function (4). The IMPROVE-T function is a gradient descent algorithm
with the backtracking line-search method. In each iteration it first computes the
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gradient matrix G and then executes the backtracking method using a parameter
β to determine a step size η that reduces the objective function (4) (see lines
6–8 in IMPROVE-T ). The function stops after N iterations and outputs the
improved matrix TT (resp. TS).

Algorithm 2. IMPROVE-T Function
Input: data D, projection matrices C and T , step parameter β ∈ (0, 1), and

iteration number N > 1.
Output: projection matrix T .

1: let B and d be the sizes of T ;
2: for t := 1 to N do
3: η := 1;
4: for i := 1 to B and j := 1 to d do

5: G(i, j) =
∑

(x,y)∈D

x(j)

(
σ
( − C(i, ·)y)

σ
(
T (i, ·)x) − σ

(
C(i, ·)y)

σ
( − T (i, ·)x))

;

6: while L(D|C, T − ηG) > L(D|C, T ) − η
4

‖G‖2 do
7: η := βη;
8: T := T − η × G;
9: return T .

Algorithm 3. IMPROVE-C Function
Input: target data DT , source data DS , regularization parameter α > 0,

reference projection matrix Cref, and projection matrices T T and T S .
Output: projection matrix C.

1: let B and K be the sizes of Cref;
2: for i := 1 to B and j := 1 to K do
3: DTj :=

{(
xT , y

) ∈ DT | y = yj ∧ yj ∈ Y
}

;

4: DSj :=
{(

xS , y
) ∈ DS | y = yj ∧ yj ∈ Y

}
;

5: C(i, j) := 1
1+α

(
αCref(i, j) +

∑

(xT ,y)∈DTj

T T xT +
∑

(xS ,y)∈DSj

T SxS

|DTj |+|DSj |

)
;

6: return C.

The IMPROVE-C function improves the mapping C for TT and TS by min-
imizing the term (3) in the objective function (4) (see Algorithm 3). Minimizing
is analytical, since the function (4) has a unique stationary point for a fixed
choice of TT and TS .

The objective function (4) can be extended for HDA classification problems
with several source domains. In this case the IMPROVE-T function is called for
each source domain and the IMPROVE-C function reflects the data from all the
source domains.
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4.2 CCA Classification of Target Instances

Once TT , TS , and C are available, any target instance xT ∈ XT is projected into
σ(TTxT ) ∈ C, any source instance xS ∈ XS is projected into σ(TSxS) ∈ C, and
any label y ∈ Y is projected into σ(Cy) ∈ C. This allows three CCA classification
rules.

The first classification rule CCA.CDS is based on the class decomposition
schemes [2]. It first projects a target query instance xT

q ∈ XT into σ(TTxT
q ) ∈ C.

Then CCA.CDS assigns to xT
q a class label ŷ whose code word σ(Cy) in C is

closest to the projection σ(TTxT
q ); i.e. ŷ = argmin

y∈Y
KL[σ(Cy) ‖ σ(TTxT

q )].

The second classification rule CCA.IDS is based on the instance
decomposition schemes [5]. It first projects a target query instance xT

q ∈ XT

into σ(TTxT
q ) ∈ C. Then CCA.IDS determines set NN of the nearest neighbors

of σ(TTxT
q ) from the set of the projected target and source instances in C. It

assigns to xT
q a class label ŷ that has a majority among the instances in NN ; i.e.

ŷ = argmax
y∈Y

#{xi ∈ NN |yi = y}.

In addition any other classification rule is possible. Once the target and source
data are in the code space C we can train any classifier on these data.

5 Experiments

This section provides the experiments of the CCA algorithm applied on three
HDA datasets. The CCA generalization performance is compared with that of
baseline classifiers trained on the target data only and two domain adaptation
approaches.

5.1 Settings of the CCA Algorithm

The CCA algorithm was set up as follows. The reference coding matrix Cref was
set to be the One-vs-All coding matrix [10]. The regularization parameter α took
values from the set {0.04, 0.02, 1, 5, 25} and the results are reported for the α
value that maximizes the accuracy. The iteration numbers M and N were set
to 50 and 10, respectively. The parameter of the backtracking method β of the
function IMPROVE-T was set to 0.5. The CCA.CDS and CCA.IDS classification
rules were applied.

We note that the reference coding matrix Cref was set equal to the One-vs-All
coding matrix to make the setup of the CCA algorithm comparable with that of
the baseline classifiers. The Cref setup ensures a kind of worst-case generalization
performance of the CCA.CDS and CCA.IDS rules due to small column and row
separation of the One-vs-All matrices. This means that the comparison with the
baseline classifiers is rather fair: the setup is unfavorable for the CCA algorithm.
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5.2 Baseline Classifiers

We compare the CCA algorithm against two groups of baseline classifiers. The
first group is the group of classifiers trained on the target data only1. It con-
sists of:

– kNN.T, a first nearest neighbor classifier [4].
– SVM.T, a SVM classifier with a linear kernel and default setting from LIB-

SVM. It employs the One-vs-All class decomposition scheme for multi-class
classification.

– Bunching.T, the Bunching algorithm [1] with One-vs-All reference coding
matrix Cref, regularization parameter α equal to 1.0, and iteration number
equal to 100.

The second group is the group of domain adaptation approaches trained on
the target data and source data. It consists of:

– HFA, the Heterogeneous Feature Augmentation approach with default setting
[3]: the regularization parameter was set to 1 and the parameter that controls
the complexities of the transformation matrices was set to 100.

– SHFR, the Sparse Heterogeneous Feature Representation approach with
default setting (One-vs-All coding matrix was used for asymmetric trans-
formation) [7].

HFA and SHFR used one-vs-all SVM ensembles with linear kernel in common
spaces.

5.3 Experiments on the Office Dataset

The Office dataset was introduced in [11]. It contains 4652 images from three
domains: Amazon, dSLR, and webcam, that share the same 31 classes. The
images in each domain were captured under different lighting conditions. We
defined two classification problems. The first problem (resp. second problem)
considers the dSLR domain as target domain and the amazon domain (resp. the
webcam domain) as source domain. To estimate the accuracy of the classifiers
we followed the hold-out protocol from [3,7]. 20 (resp. 8) training images were
randomly selected for the source domain amazon (resp. webcam) and 3 training
images were randomly selected from the target domain dSLR from each class.
The remaining target dSLR images were served as target test instances. The
hold-out evaluation was repeated 10 times. The results are given in Table 2.

5.4 Experiments on the Wikipedia Dataset

The Wikipedia dataset was introduced in [9]. It contains 5732 instances from a
text domain and an image domain. Both domains have 2866 instances and share
the same 10 classes. One classification problem was considered. It views the text
1 This is indicated with postfix T.
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Table 2. Classification accuracies (in percent) for the Office Data. Bold numbers indi-
cate accuracies that are statistically greater than others based on a t-test on significance
level of 0.05.

Target
domain

Source domain kNN.T SVM.T Bunching.T HFA SHFR CCA.IDS CCA.CDS

dSLR amazon 46.12 53.13 49.17 54.7 52.66 54.66 57.7

webcam 53.77 55.1 54.13 58.65

domain as target domain and the image domain as source domain. To estimate
the accuracy of the classifiers we followed a hold-out protocol. For each class
10 training text instances were randomly selected as target instances and the
remaining 2856 text instances were used as target test instances. All the image
instances served as source instances. The hold-out evaluation was repeated 10
times. The results are given in Table 2.

Table 3. Classification accuracies (in percent) for the Wikipedia Data.

Target
domain

Source
domain

kNN.T SVM.T Bunching.T HFA SHFR CCA.IDS CCA.CDS

Text Image 59.95 60.02 61.66 62.35 63.59 56.88 64.53

5.5 Experiments on the Multiple Feature Dataset

The Multiple Feature (Mfeat) dataset [8] contains 2000 hand-written images of
ten numbers (classes) from 0 to 9. The images were preprocessed using different
techniques which resulted in six domains: mfeat-fou (given with 76 Fourier coef-
ficients), mfeat-fac (given with 216 profile correlation features), mfeat-kar (given
with 64 Karhunen-Love coefficients), mfeat-pix (given with 240 pixel average
features), mfeat-zer (given with 47 Zernike moment features), and mfeat-mor
(given with 6 morphological features). The mfeat-mor domain is considered as
target domain. In this context, we defined five classification problems so that
each remaining domain is considered as source domain once. To estimate the
accuracy of the classifiers we followed a hold-out protocol: for each number 10
training mfeat-mor instances were randomly selected as target instances and the
remaining 1990 mfeat-mor instances were used as target test instances. All the
instances of the corresponding source domain served as source instances. The
hold-out evaluation was repeated 10 times. The results are given in Table 4.

5.6 Results and Discussions

Tables 2, 3 and 4 provide the accuracies of the CCA classification rules and the
baseline classifiers. They show that the HDA methods outperform the classi-
fiers trained on the target data. For example, the CCA.IDS rule improves the
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Table 4. Classification accuracies (in percent) for the Mfeat Data. Bold numbers indi-
cate accuracies that are statistically greater than others based on a t-test on significance
level of 0.05.

Target
domain

Source
domain

kNN.T SVM.T Bunching.T HFA SHFR CCA.IDS CCA.CDS

mfeat-mor mfeat-fou 44.71 43.7 50.14 63.03 64.22 70.21 62.92

mfeat-fac 64.4 65.28 70.91 62.47

mfeat-pix 63.07 64.45 69.41 58.12

mfeat-kar 63.5 66.16 71.1 60.53

mfeat-zer 63.51. 65.12 70.01 65.01

accuracy with 25% on the Mfeat dataset compared with the kNN.T classifier
(a target-domain classifier with a similar classification rule) and the CCA.CDS
rule improves the accuracy in the range of [2.87%, 14.87%] compared with the
Bunching.T classifier (a target-domain classifier similar to CCA). Thus, source
data from different instances spaces can improve the classification accuracy on
unseen target instances.

When comparing the CCA classification rules with the HDA methods, HFA
and SHFR, we observe that they have a similar accuracy on the Wikipedia
dataset while on the Office dataset and the Mfeat dataset one of the CCA clas-
sification rules is a winner (statistically significant improvement in accuracy is
in the range of 1% − 4%). Thus, the CCA classification rules are capable of
outperforming the HFA and SHFR methods.

When comparing the CCA classification rules themselves, we observe that
they are rather different. The CCA.CDS rule outperforms the CCA.IDS rule
on the Office dataset and Wikipedia dataset. This is due to the fact that the
projected instances are spread around the code words of their classes in the code
space C for these datasets. For the Mfeat dataset, however, this does happen
and in this case the CCA.IDS rule outperforms the CCA.CDS rule (the accuracy
improvement is around 10%). Thus, the CCA classification rules correspond to
very different states of HDA. The CCA.CDS rule is preferred when the minimized
sub-loss (2) has relatively low values; i.e. the projected instances are spread
around the code words of their classes. The CCA.IDS rule is preferred when the
minimized sub-loss (2) has relatively high values; i.e. the projected instances are
not spread around the code words of their classes.

6 Conclusion

This paper proposed the CCA algorithm for HDA classification that can use
several source domains. The algorithm builds the encoding mappings for the
target data, source data, and class labels by minimizing the total loss function
(4). This aligns the projected target and source instances with the code words of
their classes in the code space C. To make different-class instances more separable
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in C the class encoding mapping is initialized using a coding matrix with well-
presented separation properties [2]. This allows improving the topology of the
projected data in the code space C for class separability. Once the encoding
mappings have been learned, the CCA algorithm projects all the data and class
labels in the common code space C. In this context, we note that the CCA
algorithm does not make any assumption on the underlying structure of the
target and source domains. It only necessities common class labels for domain
correspondence.

The CCA algorithm offers two built-in classification rules: the CCA.CDS
rule and the CCA.IDS rule. CCA.CDS (resp. CCA.IDS) is preferable when the
spread of the same class instances is relatively low (high) around the code words
of their classes. In addition, any other classification rule can be trained on the
projected data.

The CCA algorithm was experimentally tested. The experiments showed that
the CCA algorithm is capable of outperforming standard HDA methods.
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Abstract. The fast-growing volume of online activity and user-generated
content increases the chances of users being exposed to spoilers. To address
this problem, several spoiler detection models have been proposed. How-
ever, most of the previous models rely on hand-crafted domain-specific
features, which limits the generalizability of the models. In this paper, we
propose a new deep neural spoiler detection model that uses a genre-aware
attention mechanism. Our model consists of a genre encoder and a sentence
encoder. The genre encoder is used to extract a genre feature vector from
given genres using a convolutional neural network. The sentence encoder
is used to extract sentence feature vectors from a given sentence using a bi-
directional gated recurrent unit. We also propose a genre-aware attention
layer based on the attention mechanism that utilizes genre information for
detecting spoilers which vary by genres. Using a sentence feature, our pro-
posed model determines whether a given sentence is a spoiler. The exper-
imental results on a spoiler dataset show that our proposed model which
does not use hand-crafted features outperforms the state-of-the-art spoiler
detection baseline models. We also conduct a qualitative analysis on the
relations between spoilers and genres, and highlight the results through an
attention weight visualization.

Keywords: Deep learning · Spoiler alert · Spoiler detection
Classification · Attention mechanism

1 Introduction

A spoiler is a description of any plot element of a fictional creative work such
as a novel, movie, and TV program, and can reveal some important details on
the climax or ending. Potential users of creative works generally do not want to
be exposed to the spoiler materials beforehand because prior knowledge of the
plot details can spoil the enjoyment. Spoilers are typically found in social media
such as tweets and Facebook feeds, and review sites such as Rotten Tomato
and IMDb. Due to the growing volume of online activities and user-generated
contents, the chances of users being exposed to spoilers rapidly increase.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 183–195, 2018.
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To protect users from spoilers, some review sites alert users of the spoil-
ers in reviews. When reviewers post their reviews that include spoilers, IMDb1

and Metacritic2 encourage the reviewers to specify the spoiler information. The
review sites then use the provided information to warn the users about the exis-
tence of spoilers in the reviews. TV Tropes3 is a wiki that collects descriptions of
scenes in movies and TV programs. TV Tropes also encourages participants to
provide spoiler information along with descriptions. Based on provided spoiler
information, TV Tropes hides spoiler phrases in descriptions before present-
ing them to users. However, these manual spoiler alert approaches are limited
because they rely on solely the active participation of reviewers. Some reviewers
may be thoughtful enough to provide spoiler information but some others may
not bother to provide information about spoilers.

To overcome the limitation of the manual spoiler alert systems, machine
learning-based spoiler detection models have been proposed. Jeon et al. [6] pro-
posed a spoiler detection model for tweets about a TV program. The authors
consider four representative features of tweets such as named entity, frequency
of verb, objectivity, and tense as significant indicators of spoilers. Also, Boyd-
Graber et al. [2] proposed a spoiler detection model that utilizes meta-data on
the genre of works and the country of production for TV Tropes. However, these
models also have their own limitations. The models do not leverage the seman-
tic relations of words in descriptions because the models employ discriminative
representations such as binary vectors for representing input words. More impor-
tantly, these models require a considerable amount of feature engineering, which
limits the generalizability of the models.

To address these problems, we propose a deep neural model for automatic
spoiler detection which does not require labor-intensive feature engineering. Our
proposed model mainly consists of two components: genre encoder and sentence
encoder. We consider genre information as an important factor in detecting
spoilers because different plot elements serve as spoilers in different genres. For
example, a plot element involving “kill” is more likely to become a spoiler in
the thriller genre than in the romance genre. Since a creative work can belong
to multiple genres, the genre encoder captures the characteristics of the genre
composition of the given work and encodes them into a dense continuous feature
vector. A convolutional neural network (CNN) is used for the genre encoder.
The sentence encoder extracts a sentence feature from an input sentence using
a bi-directional gated recurrent unit (GRU). In this process, we employ a genre-
aware attention layer which computes the attention weight of each word in the
input sentence by calculating the similarity of the hidden state vector and the
genre feature vector in each GRU time step. The computed attention weight
enables the sentence feature generation process to focus on the words that are
more likely to be spoilers in the given genres. Our proposed model uses the

1 http://imdb.com/.
2 http://www.metacritic.com/.
3 http://tvtropes.org/.

http://imdb.com/
http://www.metacritic.com/
http://tvtropes.org/
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extracted sentence feature vectors as inputs for the final fully-connected binary
classifier to determine whether the given sentences are spoilers.

The contributions of this paper are summarized as follows.

– We introduce a novel deep neural network model that uses a genre-aware
attention mechanism to utilize the characteristics of the spoilers, which vary
by genre, for automatic spoiler detection.

– We analyze the relations between spoilers and genres in the TV Tropes spoiler
dataset, and show the relationship between spoiler words and genres by visu-
alizing the attention weights of the genre-aware attention layer.

– Without labor-intensive feature engineering, our proposed spoiler detection
model outperforms the baseline models.

The remainder of the paper is organized as follows. In Sect. 2, we describe
previously proposed spoiler detection models and several tasks utilizing attention
mechanisms. In Sect. 3, we describe the TV Tropes spoiler dataset and investigate
the characteristics of spoilers in the dataset. In Sect. 4, we describe our proposed
spoiler detection model. In Sect. 5, we compare our proposed model to baseline
models and analyze the experimental results. Last, in Sect. 6, we provide our
concluding remarks of this paper.

2 Related Work

2.1 Spoiler Detection

To protect users from spoilers, several automatic spoiler detection models have
been proposed. Jeon et al. [6] proposed a spoiler detection model that focuses on
spoilers contained in Twitter posts. The authors crawled about 170,000 tweets
about a reality TV show and manually labeled 5,618 tweets as spoilers. Based on
Support Vector Machine (SVM), their model utilizes the following four features:
named entities in a tweet, frequency of verbs, objectivity of the tweet, and tense
of the tweet. Using a named entity recognizer [10], the model extracts named
entities from a tweet. The information of the named entities may provide some
important details about the reality TV show. The model also considers verbs
frequently used in spoiler tweets to improve the performance. Since the authors
observed that the spoiler tweets are more objective than the non-spoiler tweets,
the model utilizes the objectivity of the tweets. Finally, the authors also observed
that the spoilers of the reality TV show are written in the past tense. They
extract the main tense of a tweet using a rule-based tense identifier [5], and
utilize the tense to improve the performance.

However, their model has some limitations. The hand-crafted features cannot
be applied to various creative works because the model is designed for the single
TV reality program “Dancing with the Stars”. Their manual labeling method is
also unsuitable for handling a large amount of data from various creative works.

Boyd-Graber et al. [2] proposed a spoiler detection model that focuses on
descriptions posted in TV Tropes. The authors labeled descriptions containing a
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spoiler phrase as spoilers. Their model employs a discriminative representation
using a bi-gram to represent a description. Their model also utilizes meta-data
on the running times, countries of production, and genres of works to improve
the performance. Their model is more generalizable than the model proposed by
Jeon et al. [6] as it does not limit the types of TV programs and uses primarily the
content of descriptions. However, discriminative representations make it difficult
for the model to exploit the semantics of words in descriptions.

To overcome the problems mentioned above, in this paper, we propose the
deep neural spoiler detection model that utilizes the semantic information of
words without using hand-crafted features.

2.2 Attention Mechanism

An attention mechanism is a tool that finds and emphasizes the most informative
part in an input. As an example, an attention mechanism in Neural Machine
Translation (NMT) [8] helps to determine which words in a source sequence
to translate when generating the next word of a target sequence. An attention
mechanism is as widely used for machine comprehension (MC) [11] as it is for
NMT. In an MC task, it is important to understand the relationship between
a document and a question. There are many structures that use an attention
mechanism to find the most relevant part of a document for answering the given
question. In addition to these examples above, an attention mechanism is used
in many tasks such as document classification [13], speech recognition [4], and
image caption generation [12].

Inspired by various studies using an attention mechanism, our model uses an
attention mechanism so that it better focus on spoiler words for each genre.

3 Dataset Analysis

3.1 Dataset Description

In this paper, we use the available TV Tropes spoiler dataset used in Boyd-
Graber et al. [2] to evaluate our proposed spoiler detection model and the base-
line models.

Boyd-Graber et al. [2] constructed the dataset D4 by collecting TV program
descriptions on TV Tropes. TV Tropes, which is a wiki site about creative works,
collects the descriptions of works from users. TV Tropes also collects spoiler infor-
mation from the users. Figure 1 shows an example of a TV Tropes description.
In the description, a sequence of spoiler words, which is called span, is hidden
by the HTML span tag. The authors labeled 8,573 sentences containing the span
as spoiler sentences. To create a balanced dataset, they randomly sampled 7,688
non-spoiler sentences that do not include the span. Finally, the authors divided
the sentences into a training set (70%), two validation sets (10% each), and a test
set (10%). Since the published dataset D does not contain genre information, we
collected genre information from the IMDb page of each work.
4 http://umiacs.umd.edu/jbg/downloads/spoilers.tar.gz.

http://umiacs.umd.edu/jbg/downloads/spoilers.tar.gz
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Fig. 1. An example of TV Tropes data. The
spoiler words are hidden by an HTML span tag.

Table 1. KL divergence scores of
genre pairs.

Thriller Action Comedy Romance

Thriller - 0.0648 0.0793 0.1183

Action 0.0614 - 0.0276 0.0837

Comedy 0.0771 0.0259 - 0.0438

Romance 0.1116 0.0701 0.0378 -

3.2 Spoiler Characteristics Analysis

In the spoiler detection task, genre information is critical to improving model
performance [2]. Here, we hypothesize that the contents of spoiler sentences in
different genres differ significantly. To test our hypothesis on the dataset D,
we use FrameNet [1]. Based on semantic frame theory, FrameNet is a tool that
captures semantic components in sentences. For example, in the sentence “After
Patrick walked into the room he killed him as well” we can obtain frames such
as “Killing” and “Victim”. It is important to note that FrameNet is not a word
to frame pairwise matching model. FrameNet uses the structure of a sentence to
find appropriate frames. In our example, “him” can be recognized as “victim”
by the fact that he was killed by someone. Therefore, we assume that semantic
frames represent the general tone of sentences. By analyzing occurrence patterns
of semantic frames with respect to different genres, we can evaluate whether the
contents of semantic frames have meaningful differences.

Using the SEMAFOR parser,5 we first extracted semantic frames from spoiler
sentences in the dataset D. We counted each frame in spoiler sentences from each
genre. Then we divide each frame occurrence by the sum of all frame occurrence
to obtain the normalized frame frequency (NFF) of each frame. We calculated
KL Divergence scores of pairs of genres using their NFFs to compare the distri-
butions of frame occurrences. Table 1 shows the resulting KL Divergence scores.
As KL Divergence scores represent the difference between two distributions, a
higher KL Divergence score indicates more differences in content exist. We can
see that KL Divergence scores of inherently different genres are much higher.

For further analysis, we focused on the most contrasting genres, “Thriller”
and “Romance”. We calculated the difference of NFFs for each frame. Then
we picked 10 frames with the most extreme values, which indicate that the
frames appeared much more in one genre than others. Figure 2 shows the 10
most different frames from the genres. In thriller spoilers, frames associated with
“kill” or “death” frequently appeared. However, for romance, we have many more
frames which are mostly related to personal relationship.

Using frame based analysis, we showed that there exists a meaningful rela-
tionship between the genre and contents of a spoiler sentence. These relationships
help our model more accurately detect spoilers with given genre information. In
5 http://www.cs.cmu.edu/∼ark/SEMAFOR/.

http://www.cs.cmu.edu/~ark/SEMAFOR/
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Fig. 2. Top10 differentially expressed frames between Thriller and Romance (NFF of
Thriller frames - NFF of Romance frames).

our experimental section, we show how the attention mechanism of our model
focused on different aspects of sentences in different genres.

4 Our Approach

In this section, we describe our proposed spoiler detection model. The architec-
ture of our model is shown in Fig. 3.

Our proposed model consists of a genre encoder and sentence encoder. Since
genres information can be used to understand the characteristics of spoilers, we
design the genre encoder to extract genre features. Since a work can belong to
multiple genres, it is necessary to capture the relationship between genres. For
example, “Dawn of the Dead, 2004” is a horror and thriller movie, and “Shaun of
the Dead, 2004” is a horror and comedy movie. Although the latter is a parody
of the former, the two movies show different patterns of spoilers due to the
differences between the horror-thriller genre pair and the horror-comedy genre
pair. To consider these genre relationships, we employ CNN [7] as our genre
encoder. The genre encoder uses various filter sizes for extracting genre feature
vectors from genre combinations.

Since the textual context of the input sentence S provides important informa-
tion that can be used to determine whether the sentence is a spoiler, we design a
sentence feature vector to capture the textual context of the input sentence using
a bi-directional GRU. GRU [3] is one of the gating mechanisms that prevents
the vanishing gradient problem by information flow control. We also assume that
there are different spoiler words in different genres. For example, the word “kill”
is more likely to be a spoiler in the thriller genre rather than in the romance
genre. To utilize these characteristics in the sentence feature extraction process,
we propose a genre-aware attention layer. In the attention layer, our proposed
model computes the attention weight of each input word by multiplying the
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Fig. 3. Components of our proposed model that performs the spoiler detection task.
(a), (b), (c), (d), and (e) indicate the genre encoder, sentence encoder, attention layer,
binary classifier, and last hidden state respectively.

GRU hidden state and extracted genre feature. The sentence encoder gener-
ates sentence features by the attention weighted sum of the GRU hidden states.
Finally, our proposed model classifies input sentences using a binary classifier
on sentence features.

4.1 Task Formulation

The data d in spoiler detection dataset D consists of a sentence and meta-data
on the genre, production country, and the number of episodes of a work. The
sentence S is a sequence of words, and is denoted as S = [w1, w2, w3, ...]. In this
paper, we utilize and describe only the meta-data on genres. The input genre G is
a sequence of genres, and is denoted as G = [g1, g2, g3, ...]. When the sentence S
and genre G are given, our spoiler detection model performs binary classification
to determine whether the sentence S is a spoiler.

4.2 Genre Encoder

The genre encoder is illustrated in Fig. 3(a). We associate each genre in the
dataset with a real-valued embedding vector g ∈ R

r where r is the dimension of
the genre embedding vector. We denote a set of genres of a work as xg. All the
input xg ∈ R

Maxg×r are constructed by juxtaposing a work’s genre embedding
vectors with zero padding. Maxg is the maximum number of genres of work. We
generate a feature ci by applying a convolutional operator f to rows xgi:i+h−1

with a filter w ∈ R
h×r where h is a window size. We use Rectified Linear Unit



190 B. Chang et al.

(ReLU) as our non-linear activation function in the convolution process. We
create a feature map c ∈ R

Maxg−h+1 by sequentially applying the convolutional
operation to the windows of an xg. We create 50 filter maps each for window
sizes 1, 2, and 3. To extract the genre feature vg ∈ R

150, we apply max-pooling
to create feature maps. The pooled feature maps are concatenated as a 150-
dimensional genre feature vector vg.

4.3 Sentence Encoder

The sentence encoder is illustrated in Fig. 3(b). The sentence encoder uses a bi-
directional GRU [3] which is one of the gating mechanisms in recurrent neural
networks (RNNs). To apply the GRU, we first represent an input sentence S as
xs ∈ R

Maxs×d where Maxs is the maximum length of a sentence in dataset D and
xsi ∈ R

d is the word representation vector of the i-th word in input sentence S.
We use word embedding vectors6 pre-trained with GloVe [9]. Next, we compute
the hidden state ht ∈ R

e using the GRU at time t as follows ht =
←−−→
GRU(xst).

We then use the genre-aware attention layer to capture the correlation
between the input word and genre. The attention layer is illustrated in Fig. 3(c).
We expect that focusing on spoiler words improves the spoiler detection perfor-
mance. To compute the attention weight at of input word xt, we first compute
the attention feature qt by multiplying the ht and vg, as

qt = ht · vg. (1)

Using a soft-max function, we compute the attention weight at as

at =
exp(qt)

∑T
i=1 exp(qi)

. (2)

A high attention weight indicates that the hidden state is highly correlated
with the genre feature. Finally, a sentence feature vs ∈ R

e is computed by the
attention weighted sum of the hidden states.

vs =
T∑

i=1

at · ht, (3)

The computed sentence feature captures how much each word in the input sen-
tence S contributes to classifying the spoiler.

4.4 Binary Classifier

We design a binary classifier as shown in Fig. 3(e). We first concatenate the
sentence feature vector vs generated by the sentence encoder and the last hidden
state vector hT of the GRU (Fig. 3(d)). The last hidden state vector hT provides

6 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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the textual context of an input sentence. By concatenating the two vectors,
our proposed model can not only focus on the words containing crucial spoiler
information but can also utilize the entire textual context. The concatenated
vector x is denoted as x = [vs, hT ]. We then forward the concatenated vector x
to the fully connected hidden layer with the ReLU activation function as follows

xb = ReLU(xWb + bb), (4)

where xb is the hidden vector, and Wb ∈ R
(2e)×2 and bb ∈ R

2 are weight and bias
terms for the hidden layer respectively. Using the soft-max function, we calculate
the probability that a given input sentence is a spoiler. We use the calculated
probability distribution ŷ as the output of our proposed model. For training our
proposed model, we employ Binary Cross-Entropy (BCE) as our cost function
which is represented by

BCE(ŷ) = −(y · (log(ŷ)) + (1 − y) · (log(1 − ŷ)), (5)

where y is the true label of the input data (the one-hot vector with digit labels)
and ŷ is a spoiler probability produced by the model. The parameters of our
proposed model are optimized in the training step.

We trained our proposed model using mini-batches of size 1024 and the Adam
optimizer with a learning rate of 0.001. We set the word embedding and genre
embedding as 300 and 25-dimensional vectors respectively. For the genre encoder,
we use 50 filters each for window sizes 1, 2, and 3 respectively.

5 Experimental Evaluation

In this section, we conduct an experimental evaluation to compare the perfor-
mance of our proposed model on the spoiler alert task with that of baselines. We
evaluate our proposed model on the dataset D described in Sect. 3. We describe
the metrics and baselines. Then, we show and analyze the experimental results.

5.1 Experimental Setup

Metric. To measure the performance of the spoiler alert models, we employ the
following two evaluation metrics: Accuracy and F1-Score, which were used in
Boyd-Graber et al. [2] and Jeon et al. [6] respectively. Accuracy is summarized
by the following equation Accuracy = 1

|Dtest|
∑

d∈Dtest
1(ŷ = d.l) where 1(.)

is an indicator function, ŷ is a candidate label produced by the model, and
d.l is the true spoiler label. F1-score is summarized by the following equation
F1 − score = 2∗Precision∗Recall

Precision+Recall .

Baselines. Since the spoiler alert model of Jeon et al. [6] designed for a single
TV program (Sect. 2) cannot be applied to various works, it is unsuitable as
a baseline. Therefore, we compare our proposed model with only the state-of-
the-art spoiler alert model introduced by Boyd-Graber et al. [2]. To the best of
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Table 2. Evaluation results of our model and baselines.

Approaches Models Accuracy F1-score

SVM Boyd-Graber et al. 0.6019 0.6947

Boyd-Graber et al. + Genre 0.6777 0.6327

Deep learning based CNN 0.7082 0.7351

CNN + Genre Encoder 0.7400 0.7609

Sentence Encoder of HAN 0.7231 0.7480

Our proposed models Sentence Encoder (w/o attention)
(Fig. 3(b))

0.7183 0.7584

Sentence Encoder + Genre Average
(Fig. 3(b)+(c))

0.7393 0.7671

Sentence Encoder + Genre Encoder
(Fig. 3(a)+(b)+(c))

0.7536 0.7682

Sentence Encoder + Genre Encoder +
Last Hidden State
(Fig. 3(a)+(b)+(c)+(d))

0.7556 0.7847

our knowledge, our proposed model is the first deep learning-based spoiler alert
model. For a fair comparison, we also use the deep-learning based sentence classi-
fication models [7,13] as deep learning-based baselines. The detailed descriptions
of each baseline model are as follows.

SVM Approaches: The SVM model of Boyd-Graber et al. [2] uses a 130,534-
dimensional bi-gram vector to represent an input sentence. The original model
utilizes several meta-data but in our implementation, we use only genre data
because the other meta-data are unavailable in our dataset D and it is shown
that genre data has a more significant impact on the performance than other
meta-data [2]. The genre data is represented as a 30-dimensional binary vector,
and is concatenated with the sentence vector. We report both results produced
with genre and without genre data.

Deep Learning Based Approaches: To evaluate the effectiveness of the
genre-aware attention layer, we use deep learning based sentence classification
models as baselines. The CNN model [7] was proposed to perform sentence
sentiment classification. The model represents a given sentence as a sequence
of word embedding vectors in the same way as our proposed model. We use 50
filters each for window sizes 3, 4, and 5 to create feature maps for each window.
HAN [13] was proposed to classify documents using a hierarchical attention
mechanism. Since the spoiler task is a sentence-level problem, we implement
the sentence encoder of HAN as the deep learning-based baseline employing the
attention mechanism.

With a grid search, we tune the hyper-parameters of each baseline model
using validation set.
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5.2 Results

Table 2 shows the experimental results. Our proposed model outperformed the
baseline models in both evaluation metrics. Overall, deep learning based models
achieved better performance than SVM models. Our proposed model achieved
an accuracy and F1-Score at least 11.5% and 24.0% higher, respectively, than
the SVM models. Also, the accuracy and F1-Score of our proposed model were at
least 2.1% and 3.0% higher, respectively, than the deep learning-based models.
When the sentence encoder utilizes the genre-aware attention layer, the per-
formance is significantly increased. The genre features extracted by the genre
encoder contributes more to improving performance than the average of genre
embedding vectors. These results demonstrate that the genre encoder and the
genre-aware attention layer are useful for capturing the characteristics of spoiler
words categorized in various genres. We also observe that our proposed model
performs better when we augment the hidden state of the last GRU cell. The
result proves that the hidden state provides helpful information by capturing
the context of input sentences.

Fig. 4. Examples of visualized attention weights

Our proposed genre-aware attention layer plays an important role in spoiler
detection. We visualize the attention weight of the attention layer to investigate
how the layer works with respect to given genre. Figure 4 shows the examples of
visualization. We observe that the genre-aware attention layer focuses on spoiler
words. For example, in the case of a “crime” genre, the attention weight of the
words related to the identity of the villain is high. In the case of a “thriller” genre,
death related words such as “dead” and “kill” were highlighted to detect spoilers.
On the other hand, in “romance” genre, the attention weights of the words
related to “personal relationship” were high. These observations demonstrate
that our proposed model is automatically trained to detect and classify spoiler
words, without additional feature engineering.
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6 Conclusion

In this paper, we proposed a novel deep neural network based spoiler alert model
with a genre-aware attention layer. To capture the characteristics of a genre, we
extracted the genre features using the CNN based genre encoder. We also used
the GRU based sentence encoder to extract the sentence features. The sentence
encoder utilizes the genre-aware attention layer which focuses on spoiler words
providing crucial clues that help to determine whether a given sentence is a
spoiler. Without feature engineering, our proposed spoiler alert model outper-
formed the spoiler alert baselines. The visualized attention weight demonstrated
the effectiveness of the genre-aware attention layer. We believe that our proposed
spoiler alert model can contribute to protecting users from spoilers on review
sites and to promoting subsequent research in this area.
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Abstract. Graph-regularized semi-supervised learning has been effec-
tively used for classification when (i) data instances are connected
through a graph, and (ii) labeled data is scarce. Leveraging multiple
relations (or graphs) between the instances can improve the prediction
performance, however noisy and/or irrelevant relations may deteriorate
the performance. As a result, an effective weighing scheme needs to be
put in place for robustness.

In this paper, we propose iMUNE, a robust and effective approach
for multi-relational graph-regularized semi-supervised classification, that
is immune to noise. Under a convex formulation, we infer weights for
the multiple graphs as well as a solution (i.e., labeling). We provide a
careful analysis of the inferred weights, based on which we devise an algo-
rithm that filters out irrelevant and noisy graphs and produces weights
proportional to the informativeness of the remaining graphs. Moreover,
iMUNE is linearly scalable w.r.t. the number of edges. Through exten-
sive experiments on various real-world datasets, we show the effective-
ness of our method, which yields superior results under different noise
models, and under increasing number of noisy graphs and intensity of
noise, as compared to a list of baselines and state-of-the-art approaches.

1 Introduction

Given (i) a network with multiple different relations between its nodes, and (ii)
labels for a small set of nodes, how can we predict the labels of the unlabeled
nodes in a robust fashion? Robustness is a key element especially when the data
comes from sources with varying veracity, where some relations may be irrelevant
or noisy for the prediction task.

This abstraction admits various real-world applications. For example, in
fraud detection one may try to classify individuals as fraudulent or not based on
the phone-call, SMS, etc. interactions. In biology, genes are classified as whether
or not they perform a certain function through various similarity and interaction
relations between them.

c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. A synthetic multi-relational graph (n = 100 nodes, m = 5 views), with 3
informative (top) and 2 noisy (bottom) graphs. Shown are adjacency matrices; red dots:
cross-edges between nodes from two different classes, black dots: within-class edges. G1–
G3 are in order of informativeness. G4 depicts random noise. G5 contains adversarial
noise. Inferred weights (all graphs): [25.17, 16.54, 12.79, 17.82, 27.68], Average Precision
(AP) = 0.734. Weights after noisy graphs removed: [0.5000, 0.3003, 0.1997, 0, 0], AP =
0.974. (Color figure online)

Accomplishing the above task requires addressing two main problems: (1)
identifying and filtering out irrelevant and noisy relations, and (2) automati-
cally weighing other relations by their informativeness for the task. Existing
methods either are vastly affected in the presence of noise [1], produce locally
optimal solutions due to their non-convex objective formulations [2–4], use only
the labeled data [5–7], or are too expensive to compute [8–11].

In this work we introduce iMUNE, a robust, scalable, and effective graph-
regularized semi-supervised classification approach for MUlti-relational NEt-
works. In the example shown in Fig. 1, iMUNE recognizes and removes G4

and G5 as irrelevant/noisy, and estimates weights for relations G1-G3 so as to
combine them effectively to achieve improved performance. Our contributions
are as follows.

– Model Formulation: Under a convex formulation, we simultaneously esti-
mate weights for the multiple relations (also graphs or views) as well as a
solution (labeling) that utilizes a weighted combination of them. (Sect. 2)

– Analysis of Weights: We show that in the presence of noise, the inferred
weights reflect the impact of different relations on the solution, where
both dense informative and irrelevant/noisy graphs receive large weights.
(Sect. 2.3)
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– Robust Algorithm: Analysis of weights enable us to devise a robust algo-
rithm that filters out irrelevant/noisy graphs, so as to produce weights pro-
portional to the informativeness of graphs and yield improved performance.
(Sect. 3)

– Scalability: Our proposed approach scales linearly w.r.t. the number of edges
in the combined graph. (Sect. 3.1)

– Effectiveness: We show the efficacy of iMUNE on real-world multi-networks
with (i) varying number of relevant/noisy graphs, (ii) under different noise
models, and (iii) varying intensity of noise; where it outperforms six baseline
approaches including the state-of-the-art. (Sect. 4)

– Reproducibility: We share the code of iMUNE and all datasets in experi-
ments at http://www3.cs.stonybrook.edu/%7ejuyye/semi/semi.html

2 Problem Formulation

In this work we consider real-world problem settings in which (1) the problem is
cast as a binary classification task, (2) data objects are related through multiple
different relationships, and (3) ground-truth class labels are scarce. The data
can be represented as a multi-graph, in which the nodes represent data objects
and multiple sets of undirected edges capture associations implied by different
relationships.

Using various relationships between data objects may provide more infor-
mation for a given classification task, especially when input labels are scarce.
Collectively, more accurate predictions can be made by combining these multi-
ple association networks. However, it is not realistic to assume that all available
relationships (i.e., graphs) would be equally, if at all, relevant for a given predic-
tion task. Filtering irrelevant/intrusive relations is especially important when the
data sources cannot be carefully controlled—for example, when data is collected
from various repositories with varying veracity. In addition, the input graphs
may have varying degree of relevance for a task, which necessitates a careful
weighing scheme.

Overall, it is essential to build robust classification models that can effec-
tively leverage multiple relationships by carefully weighing relevant graphs while
filtering out the intrusive ones. Our work addresses this problem of Robust Semi-
supervised Classification for MUlti-NEtworks (RSC-mune): Given a binary clas-
sification task, a multi-graph, and a small set of labeled objects, the goal is to
build an effective classifier that is robust to noisy and irrelevant data. We give
the formal problem definitions as follows.

Definition 1. Multi-Graph: A multi-relational graph (or a multi-graph) G(V,
E) consists of a set of graphs (or relations) {G1(V,E1), G2(V,E2), . . . , Gm(V,
Em)}, on the same node set V , |V | = n. Undirected (weighted) edges E = {E1,
. . . , Em} correspond to links implied by m different types of relations, where we
denote |G| = m.

http://www3.cs.stonybrook.edu/%7ejuyye/semi/semi.html
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Definition 2. RSC-mune Problem: Given a multi-graph G(V, E), |G| = m,
and a set of labeled seed nodes L ⊂ V ; devise a learning procedure to infer the
labels of unlabeled nodes V \L, which assigns a list of weights w = {w1, . . . , wm}
to individual graphs such that (i) intrusive graphs are filtered (i.e., wk = 0), and
(ii) relevant graphs receive weights relative to their informativeness.

2.1 Graph-Based Semi-supervised Learning

There exist various objective formulations for graph-regularized semi-supervised
classification provided a single graph [12–16]. Generalizing from those traditional
semi-supervised learning objectives to multi-graphs, we can write

arg min
f ,w

‖f − y‖22 + λ
∑

k

f�wkLkf

s.t. wk ≥ 0,
∑

k

wk = 1
(1)

where λ is a regularization parameter, Lk is the normalized Laplacian matrix of
kth graph, wk is the weight of Lk , y is the input vector of known labels and f
is the solution.

This objective function, however, is non-convex in both f and w. To get
around this, several previous approaches have proposed alternating optimization
schemes for similar objectives [2,4]. However, these methods only produce locally
optimal solutions.

2.2 Objective Formulation

In this work, inspired by the TSS approach [1], we introduce a scheme that
infers f and w together under a convex setup. The graph weights we infer (i.e.,
wk’s) capture the impact that each graph has on the solution f . Building on this
interpretation, we devise a learning procedure that estimates f which is robust
to intrusive graphs.

Our objective function is defined as in Eq. (2).

min
f ,ξ

(f − y)�(f − y) + c0

m∑

k=1

ξk

s.t. f�Lkf ≤ c + ξk, ξk ≥ 0 ,∀k = 1, . . . , m

(2)

The dual form of Eq. (2) that estimates the graph weights as well as the final
solution are respectively given in Eqs. (3) and (4) (derivations are omitted for
brevity).

min
w

y�(I +
∑

k

wkLk)−1y + c‖w‖1

s.t. c0 ≥ wk ≥ 0 ,∀k = 1, . . . , m

(3)

f = (I +
∑

k

wkLk)−1y (4)
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Handling Class Bias. In semi-supervised learning, only part of the nodes are
labeled for training, and the rest are unlabeled (depicted with ‘0’). For each
node type (‘+1’,‘0’, ‘−1’), we assign a different penalty coefficient, c+, cu, c−
respectively. Let C be a n × n diagonal matrix, called the class penalty matrix,
where C(i, i) = c+ if yi = 1, c− if yi = −1, and cu if yi = 0. As such, the
criterion in Eq. (2) can be reformulated:

min
f ,ξ

(f − y)�C(f − y) + c0

m∑

k=1

ξk

The dual form and the solution are Eqs. (5) and (6).

min
w

y�C(C −
∑

k

wkLk)−1Cy + c‖w‖1

s.t. c0 ≥ wk ≥ 0 ,∀k = 1, . . . , m

(5)

f∗ = (C +
∑

k

wkLk)−1Cy . (6)

The dual program in Eq. (5) is convex and can be solved (e.g., using the
projected gradient descent method) to infer the graph weights w. One can then
plug in those weights directly into Eq. (6) to estimate f∗. However, this procedure
as we show in the experiments yields inferior results in the presence of irrelevant
and noisy graphs.

2.3 Graph Weights Interpreted

Next we provide a detailed discussion on the interpretation of the inferred weights
by Eq. (3) (instead of Eq. (5) for brevity). In a nutshell, we show that in the
presence of intrusive graphs, the weights do not reflect the relative informative-
ness of individual graphs—but rather the relative impact of each graph on the
solution.

Ideally, we want to infer a weight wk for each graph Gk proportional to its
informativeness for the task, where the weights for intrusive graphs are zero.
For example, in Fig. 1 we illustrate a toy multi-graph with five views. The ideal
weights would be w1 > w2 > w3 > w4 = w5 = 0. As we show in the following,
however, the estimated weights should be interpreted carefully when we have
intrusive graphs.

Gk ’s with Larger f ′Lkf Tend to Get Larger wk . We have the dual
problem d(w) in (3) when learning the weights. We know from basic calculus
that

∂

∂x
Y −1 = −Y −1(

∂

∂x
Y )Y −1 . (7)

Thus we derive the derivative of d(w) w.r.t wk as

∂d(w)
∂wk

= −y�(I +
m∑

i=1

wiLi)−1Lk(I +
m∑

i=1

wiLi)−1y + c (8)
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Since f = (I +
∑m

i=1 wiLi)−1y, we obtain

∂d(w)
∂wk

= −f�Lkf + c (9)

Based on (9), we make the following inference:
Both Dense Informative and Intrusive Graphs Gk has Large f�Lkf—
and Hence Large wk . Consider a graph with no noisy edges (i.e., no
edges between nodes from different classes) but with high edge density
among nodes that belong to the same class. For such a graph, f�Lkf =∑

i,j∈V Wk(i, j)( fi√
Dk(i,i)

− fj√
Dk(j,j)

)2 can be large due to the numerous non-zero

(although likely small) quadratic terms in the sum. Importantly, it is not only
the dense informative graphs that would have large f�Lkf , but also the intrusive
graphs. This is due to the many cross-edges that irrelevant and noisy graphs have
between nodes from different classes, that would yield large quadratic terms. We
demonstrate this through the inferred weights on our example multi-graph in
Fig. 1. Notice that while the highly informative G1 and G2 receive large weight,
the noisy graphs G4 and G5 also obtain comparably large weights.

3 iMUNE Algorithm

Our goal is to filter out the intrusive graphs. The main idea is to explore the
search space through simulated annealing by carefully removing large-weighted
graphs one at a time. Steps of our proposed algorithm is outline in Algorithm 1.
We start with introducing a queue of graph-sets, which initially includes the set
of all graphs (line 2). We process the graph-sets in the queue one by one until the
queue becomes empty (line 3). For each graph-set GS that we dequeue (line 4),
we compute its cross-validation performance cvP on the labeled data (line 5). In
our experiments, we use average-precision (AP) as our performance metric. This
metric is more meaningful than accuracy, especially in the face of class bias.

We record the best AP as bestP during the course of our search (line 14).
With probability exp( cvP−bestP

tm−|GS|+1 ), we “process” the graph-set in hand (lines 7–
13, which we will describe shortly), otherwise we discard it. In line 6, t ≤ 1 is
the temperature parameter of simulated annealing and (m − |GS|) denotes the
number of removed graphs from the original set. If the graph-set GS in hand
yields a cvP that is larger than bestP , we always process the set further, since
when (cvP − bestP ) ≥ 0, exp( cvP−bestP

tm−|GS|+1 ) ≥ 1. On the other hand, if GS yields
inferior performance, we still process it with some probability that is proportional
to the size of the graph-set. That is, the probability of processing a set decreases
as they have more graphs removed from the original set. The probability is also
inversely proportional to the performance distance (cvP − bestP ). The larger
the gap, the higher the chance that GS will be discarded.

Next we describe the steps to “process” a graph-set GS. We first solve the
optimization problem (5) using GS for the graph weights wGS and compute
the solution using wGS in (6) (lines 7–8). Next we cluster the weights into two
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Algorithm 1. iMUNE (proposed algorithm for robust semi-supervised classi-
fication for multi-graphs with noise)
Input: Multi-graph G = {G1, . . . , Gm}, labeled nodes L, initial temperature t, class

penalty matrix C
Output: Label estimations f
1: Init y with L;
2: bestf ← ∅, bestP = 0, m = |G|, Q ← G
3: while Q is not empty do
4: GS ← dequeue(Q)
5: cvP = Compute cross validation performance of GS
6: if rand(0, 1) ≤ exp( cvP−bestP

tm−|GS|+1 ) then
7: wGS ← Solve (5) using GS and input C
8: fGS ← Compute solution using (6) and wGS
9: Cluster the weights: (Ws,Wl) ← 2-means(wGS)

10: for each Gk ∈ GS for which wk ∈ Wl do
11: v ← hash(GS\Gk)
12: if v is null then Q ← Q ∪ GS\Gk

13: end for
14: if cvP > bestP then bestf ← fGS , bestP = cvP
15: end if
16: end while
17: return bestf

groups, those with small weights Ws and those with large weights Wl (line 9).
We know, through the analysis in Sect. 2.3, that intrusive graphs are among the
large-weighted graphs. The issue is we do not know in advance which ones, as
dense informative ones are likely to also belong to this group. As such, we create
from GS candidate graph-sets that contain all but each large-weighted graph and
add those to the queue. Note that we maintain a hash table of the candidate
graph-sets (line 11), so that we avoid re-considering the same sets that might be
generated through different removal paths. At the end, we return the solution
bestf with the bestP .

3.1 Complexity Analysis

At each node of our “search tree”, we solve Eq. (5) using projected gradient
descent, where the main computation involves computing the gradient (See Eq.
(8) in Sect. 2.3). The gradient involves the term (I +

∑m
i=1 wiLi)−1, i.e., the

inverse of a (n × n) matrix which is O(n3) if done naively. The same is true
for the solution f which requires a similar inverse operation (See Eq. (4) or (6)).
Importantly, however, we do not compute the inverse explicitly, because it always
appears in vector form x = (I +

∑m
i=1 wiLi)−1y. We can obtain x as a solution

of sparse linear systems [17], where the computational cost of the derivative is
linear w.r.t. the number of non-zero entries of

∑m
i=1 wiLi, i.e., proportional to

the number of edges in the multi-graph.
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Computing the dual objective then takes O(s|E|) for s number of gradient
steps. All in all, total time complexity of an implementation that traverses each
search path in parallel is O(s|E|mu), which is linear on the total number of
edges in the multi-graphs with small mu (max. number of noisy graphs) and
constant s.

4 Evaluation

4.1 Experiment Setup

Table 1. Four real-world multi-graph datasets.

Dataset #Graphs #Nodes #Pos. #Neg.

RealityMining 4 78 27 51
Protein 5 3,588 306 3,282
Gene1 15 1,724 185 1,539
Gene2 15 3,146 214 2,932

Datasets. The multi-
graphs used in our work
are publicly available, and
are listed in Table 1. (i)
RealityMining [18] is a
dataset collected through
tracking activities on cell-
phones. It contains 4 dif-
ferent relations between two classes (MIT Sloan and CS students): phone call,
SMS, friendship, and Bluetooth scans that capture proximity relations. (ii) Pro-
tein [1] consists of Yeast proteins, associated through 5 different relations. Those
proteins with function transport facilitation constitute the positive class, and
others are negative. Gene1 and Gene2 contain different sets of Yeast genes,
each associated through 15 different genomic sources. The genes are labeled
according to Gene Ontology association file from the Saccharomyces Genome
Database. For Gene1, we choose the label with the maximum number of genes
in Cellular Component (CC) domain as positive class. We construct Gene2 in
a similar way, where this time genes in Molecular Function (MF) domain are
labeled as positive. See [5] for more details on datasets.

Baselines. We compare iMUNE against four state-of-the-art: ClusDCA [19],
TSS [1], RobustLP [2], and GeneMania [5]. We also introduce two simple
baselines, EqlWght that assigns equal weight to all graphs and PerfWght that
assigns weights proportional to the cross-validation accuracy of individual graphs
on labeled nodes. To make it a fair game, we use the same class-bias penalties
described in Sect.,4.2 for the compared methods.

Noise-testing. To test the robustness of the methods, we injected intrusive
graphs with varying level, model, and intensity of noise as described below.

– Number of intrusive graphs: We tested the effect of increasing noise level on
classification performance by injecting 2, 4 and 6 intrusive graphs at a time.

– Noisy graph models: We adopted 3 strategies to generate intrusive graphs; (1)
Erdos-Renyi random graphs (ER), (2) edge-rewired original graphs (RW), and
what we call (3) adversarial graphs (AV) (where most edges are cross-edges
between the different classes).
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– Noise intensity (Low/High): Intensity reflects injected graph density (L: 5%,
H: 50%) for ER, ratio of within-class edges randomly rewired to become cross-
edges (L: 60%, H: 80%) for RW, and ratio of cross-edges (L: 60%, H: 80%)
for AV model.

Overall, there are 3 different number of injected graphs, 3 noise models,
and 2 noise intensities. Overall, the “noise-testing” involves 18 (3*3*2) different
settings.

4.2 Parameters

Our algorithm expects two hyper parameters; the initial simulated annealing
temperature t, and the class penalty matrix C. We describe how we set these in
the following. Note that our objective function in Eq. (5) has two further (hyper)
parameters c and c0, which are chosen by cross-validation.

Initial Temperature t. As we remove more and more graphs from the input
multi-graph, the probability of further considering a set with inferior perfor-
mance should decrease. That is when d = (cvP −bestP ) < 0, p = exp( d

tm−|GS|+1 )
should decrease as r = (m−|GS|+1) increases. As such, we need t ≤ 1. Assume
that we have an expected range [ml,mu] for the number of intrusive graphs
in the data where ml and mu respectively denote the minimum and maximum
number. We would then want the probability p = exp( d

tr ) to approach zero as
r gets closer to mu even for a considerably small d. That is, as r → mu and
0 > d ≥ dmin for small dmin, we want pmax > p > 0 for small pmax. Since
t = ( d

ln p )
1
r , the range for t satisfying the above constraints can be given as

t ∈ [( dmin

ln pmax
)

1
mu , ( dmin

ln pmax
)

1
ml ]. Empirically, we let dmin = −0.1 and pmax = 0.01.

For example, if we expect ml = 5 and mu = 10, then the initial temperature is
chosen randomly from t ∈ [0.465, 0.682].

Class Penalty Matrix C. As described in Sect. 2.2, we can normalize biased
class distribution by assigning larger penalty to minority-class (‘+1’) mis-
classification. Recall that c+, cu, c− denote penalty coefficients for classes ‘+1’,
‘0’ (unlabeled), and ‘−1’, respectively. We set these parameters as c+ = 1 +
sign(1−2p)∗γ∗max(p, 1−p), cu = 1, and c− = 1+sign(2p−1)∗γ∗max(p, 1−p),
where γ is a constant drawn from [0.5, 1], and p is the proportion of class ‘+1’
instances in the labeled set. For e.g., for γ = 0.7 and p = 0.1, we would have
c+ = 1.63, cu = 1, c− = 0.37.

4.3 Evaluation Results

To perform semi-supervised classification, we label 5% of the nodes in Protein,
Gene1, and Gene2 and 30% in RealityMining which is a smaller dataset. We
randomly sample the labeled set 10 times, and report the mean Average Precision
(area under precision-recall curve) in Table 2 (notice in Table 1 that the datasets
are class-imbalanced, hence accuracy is not a good measure to report). From the
precision-recall plots in Fig. 2, we see that our method outperform baselines in
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Table 2. iMUNE consistently outperforms competing methods across various real-
world and synthetic datasets. Dataset RM is injected with 2, 4, and 6 intrusive graphs
with various noise settings. Values depict mean Average Precision (10 runs).

Dataset #Graph Model Intensity iMUNE PerfWght EqlWght TSS RobustLP Mania ClusDCA

RM 4 —— —— 0.970 0.944 0.939 0.970 0.947 0.951 0.933

4+2 AV Low 0.970 0.707 0.554 0.525 0.851 0.470 0.894

4+2 AV High 0.970 0.611 0.484 0.554 0.809 0.359 0.898

4+2 RW Low 0.970 0.695 0.669 0.718 0.873 0.505 0.912

4+2 RW High 0.970 0.563 0.537 0.65 0.824 0.290 0.927

4+2 ER Low 0.970 0.905 0.841 0.657 0.928 0.773 0.918

4+2 ER High 0.970 0.942 0.920 0.895 0.930 0.883 0.936

4+4 AV Low 0.970 0.531 0.372 0.390 0.427 0.260 0.866

4+4 AV High 0.970 0.383 0.297 0.576 0.339 0.215 0.846

4+4 RW Low 0.930 0.610 0.503 0.561 0.505 0.319 0.870

4+4 RW High 0.907 0.437 0.349 0.542 0.334 0.217 0.899

4+4 ER Low 0.970 0.867 0.770 0.482 0.869 0.698 0.895

4+4 ER High 0.970 0.942 0.917 0.659 0.930 0.834 0.933

4+6 AV Low 0.970 0.389 0.277 0.354 0.284 0.217 0.822

4+6 AV High 0.970 0.257 0.223 0.577 0.225 0.197 0.817

4+6 RW Low 0.930 0.468 0.396 0.597 0.371 0.235 0.845

4+6 RW High 0.907 0.292 0.267 0.571 0.264 0.202 0.903

4+6 ER Low 0.970 0.860 0.756 0.494 0.810 0.645 0.882

4+6 ER High 0.970 0.937 0.896 0.621 0.907 0.773 0.931

Protein 5 —— —— 0.457 0.452 0.441 0.457 0.439 0.424 0.441

Gene1 15 —— —— 0.703 0.658 0.632 0.648 0.628 0.509 0.651

Gene2 15 —— —— 0.838 0.83 0.809 0.734 0.460 0.229 0.907

almost all cases, which is especially evident in the presence of noise, when the
performance of other methods degrade considerably. Interestingly, the baselines
appear to be more robust against random noise than the other noise models.

We further investigate the effect of noise using RealityMining as a run-
ning example, as in the absence of noise all methods perform similarly on this
multi-graph. Figure 3 (left) shows how the performance of the methods change
with increasing number of intrusive graphs (under rewiring and low-intensity).
Figure 3 (right) shows the same with different noise intensity (under rewiring, 6
intrusive graphs). These show that iMUNE’s performance remains near-stable,
while the competing methods are relatively hindered by noise. In fact, as Fig. 5
shows iMUNE is robust under all settings: increasing level and intensity as well
as different noise models.

We also analyze the inferred weights by each method (except ClusDCA, which
adopts matrix factorization instead of learning graph weights). Figure 4 shows
the normalized weights on RealityMining with 6 injected graphs, under AV with
high intensity.

Notice that all competing methods give non-zero weights to all the injected
graphs G5−G10, which hinders their performance. In contrast, iMUNE puts non-
zero weight only on the informative graphs G1 −G4, particularly large weights on
the first two. These are in fact the well-structured and denser informative graphs.
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Fig. 2. Noise hinders existing methods notably, whereas iMUNE remains near-stable.
Precision vs. Recall of competing methods in four real-world multi-graphs: (a) Real-
ityMining (4 views), (b) Protein (5 views), (c) Gene1 (15 views), and (d) Gene2 (15
views). Inset plot in (a) shows performance when 6 rewired graphs with low intensity
are injected to RealityMining
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Fig. 3. iMUNE performs better than all competitors by (left) increasing number of
intrusive graphs, and (right) increasing intensity of noise.
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graphs. Competing methods are indifferent to noise and assign near-uniform weights.
Inferred graph weights on RealityMining (+6 injected noisy graphs G5-G10 under AV
and high-intensity).
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Fig. 6. Performance vs. % labeled nodes.
iMUNE maintains high performance with dif-
ferent ratio of training data.

Finally in Fig. 6 we show how the performance of the methods change when
we increase the labeled set percentage in RealityMining from 30% up to 90%
(6 injected graphs, under rewiring with low intensity; results are avg’ed over 10
runs).

As expected the performance improves for all methods with increasing labeled
data. However, most competing methods cannot achieve improved robustness
and reach the same performance level by iMUNE, even when they are provided
90% of the data labeled. While ClusDCA achieves comparable performance when
50% of data is labeled, it is not as robust to noise as iMUNE as shown in Table 2.

5 Conclusion

In this work we introduced iMUNE, for robust, scalable, and effective semi-
supervised transductive classification for multi-relational graphs. The proposed
method employs a convex formulation that estimates weights for individual
graphs, along with a solution that utilizes a weighted combination of them.
Based on the analysis of weights, we devise a new scheme that iteratively
discards intrusive graphs to achieve robust performance. Moreover, iMUNE is
linearly scalable w.r.t. the size of the combined graph. Extensive experiments on
real-world multi-graphs show that iMUNE produces competitive results under
varying level, intensity, and models of noise.
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1408287. Any conclusions expressed in this material are of the authors and do not
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Abstract. We propose a novel support vector regression approach called
ε-Distance Weighted Support Vector Regression (ε-DWSVR). ε-DWSVR
specifically addresses a challenging issue in support vector regression:
how to deal with the situation when the distribution of the internal data
in the ε-tube is different from that of the boundary data containing sup-
port vectors. The proposed ε-DWSVR optimizes the minimum margin
and the mean of functional margin simultaneously to tackle this issue. To
solve the new optimization problem arising from ε-DWSVR, we adopt
dual coordinate descent (DCD) with kernel functions for medium-scale
problems and also employ averaged stochastic gradient descent (ASGD)
to make ε-DWSVR scalable to larger problems. We report promising
results obtained by ε-DWSVR in comparison with five popular regres-
sion methods on sixteen UCI benchmark datasets.

Keywords: Regression analysis · Support vector regression
Distance Weighted Support Vector Regression
Dual coordinate descent · Averaged stochastic gradient descent

1 Introduction

Support Vector Regression (SVR) has received a significant amount of attention
due to its competitive performance [2] compared with other regression methods,
including the method of least squares [13], Neural Networks (NN) [15], logistic
regression [9], and ridge regression [5]. However, the performance of SVR tends
to be sensitive to parameter values and easily affected by the boundary data. In
this research, the internal data indicates the data which are densely distributed
together in the ε-tube, and the boundary data indicates the data which are
distributed on the boundary of the ε-tube, which generally contain many support
vectors. In this paper, we present a novel SVR approach by considering recent
progress in support vector (SV) theory and addressing the above limitations.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 209–220, 2018.
https://doi.org/10.1007/978-3-319-93034-3_17
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In general, SVR constructs decision functions in high-dimensional space for
linear regression while the training data are mapped to a kernel Hilbert feature
space. ε-SVR [4] was the first popular SVR strategy, which finds a function whose
deviation from the actually observed values for all the training data is less than
ε, thus forming the so-called ε-tube, to fit training data. To find the best fitting
hyperplane, ε-SVR tries to maximize the minimum margin containing data in the
ε-tube as much as possible, which is similar to Support Vector Machines (SVMs)
[16]. However, ε-SVR is susceptible to the distribution of those boundary data. In
fact, the optimization objective greatly depends on the margin between support
vectors, and this makes the fitting function heavily reliant on the distribution of
the boundary data: if the distribution of the internal data is very different from
that of the boundary data, the final fitting function may not be reliable.

Recent progress in SV theory [11,19] suggests that maximizing the minimum
margin is not the only optimization goal to achieve better learning performance.
Unlike traditional SVMs, Distance-weighted Discrimination (DWD) [11] maxi-
mize the mean of the functional margin (i.e. the harmonic mean of the distances
of all data to the separating hyperplane), thus greatly improving the classifica-
tion performance. Inspired by the idea of DWD, we can also improve the original
optimization objective for our regression problems by introducing the concept
of the mean of the functional margin in regression.

Considering the above limitations and recent progress in SV theory, we pro-
pose a novel SVR method called ε-Distance Weighted Support Vector Regression
(ε-DWSVR), which optimizes the minimum margin and the mean of functional
margin simultaneously. To solve the optimization problem, ε-DWSVR adopts the
dual coordinate descent (DCD) [18] strategy with kernel functions on medium-
scale problems, and it also employs the averaged stochastic gradient descent
(ASGD) [17] strategy to improve its scalability. A comparison of ε-DWSVR
with five popular regression methods (i.e. ε-SVR, linear regression, NN, logistic
regression, and ridge regression) on sixteen UCI datasets indicates ε-DWSVR
outperforms these methods: ε-DWSVR fits better the distribution of the internal
data in most cases, especially for those datasets with strong interference noise.

2 Background

Let S = (X,Y ) be a training set of n instances. X = [x1, ..., xn] are the input
instances where xi ∈ Rm, and Y = [y1, ..., yn] are the output instances where
yi ∈ R. For classification problems, Y = {+1,−1} is the label set. For regression
problems, Y is the corresponding target values, where yi ∈ {−∞,+∞}. The
objective function is f(x) = w · φ(xi) + b, where x ∈ Rm, w ∈ Rm, and φ(·) is
the mapping function induced by a kernel K, i.e., K(xi, xj) = φ(xi) · φ(xj).

2.1 Recent Progress in SV Theory

Recently, SV theory has made great progress. SVM aims to maximize the
minimum margin, which denotes the smallest distances of all instances to the
separating hyperplane [16]. The optimization problem is represented as follows:
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min
w,ξ

1
2‖w‖2 + C

n∑

i=1

ξi

s.t. yi (w · φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, ..., n,

where C is the regularization parameter and ξ measures the losses of instances.
DWD is proposed to solve data pilling problems [11], which uses a new cri-

terion, that is, maximizing the mean of the functional margin, to replace the
criterion of maximizing the minimum margin in SVM for solving the optimiza-
tion problem [12]. DWD denotes the functional margin as ui = yi(w · φ(xi) + b)
and let ri = ui + ξi be the adjusted distance of the i-th data to the separating
hyperplane, and the optimization problem is then given below:

min
w,b,ξ

n∑

i=1

(
1
ri

+ Cξi

)

s.t. ri = yi (w · φ(xi) + b) + ξi, ri ≥ 0, ξi ≥ 0, ‖w‖2 ≤ 1, i = 1, 2, ..., n.

Since SVR [4] is the application of SV theory to regression problems, the
fitting hyperplane is also affected by the distribution of the boundary data. When
the distribution of the internal data is different from that of the boundary data,
the fitting hyperplane produced by SVR may not be consistent with the actual
data distribution, which is similar to the data piling problems. Therefore, we
introduce recent progress in SV theory into the original optimization objective
of SVR and hope that it will lead to better regression performance.

3 The Proposed ε-DWSVR

In this section, we propose the novel ε-DWSVR method, which applies the idea
of the mean of the functional margin, and we adopt the DCD method to handle
general conditions and employ the ASGD method to deal with larger problems.

3.1 The Formulation of ε-DWSVR

To simplify the complexity, we enlarge the dimension of the vectors w and φ(xi)
to handle the bias term b as in [6], i.e.,w ← [w, b]T , φ(xi) ← [φ(xi),1]. Thus the
regression function becomes f(x) = w · φ(x). Then the margin in regression will
be the distance of the data to the fitting hyperplane, i.e., |w · φ(xi) − yi| / ‖w‖.
Based on the concept of margin, we define the functional margin in regression.

Definition 1. The functional margin in regression is defined as follows: γ =
(w · φ(xi) − yi)2, i = 1, 2, ..., n.

The functional margin in regression can describe the difference between the
real values and the estimated ones. It also has a significant connection with the
geometrical distance. If the value of w is determined, the ranking of all data to the
fitting hyperplane with respect to the margin can be decided by the functional
margin. Next, we define the mean of the functional margin in regression.
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Definition 2. The mean of the functional margin in regression is as follows:

γ̄ = 1
n

n∑

i=1

(
wT φ(xi) − yi

)2 = 1
n

(
wT φ(X)φ(X)T w − 2(φ(X)Y )T

w + Y Y T
)

,

where φ(X) = [φ(x1), ..., φ(xn)] and φ(X)φ(X)T =
n∑

i=1

φ(xi)φ(xi).

Based on Definitions 1 and 2, we add the mean of the functional margin to
ε-SVR objective problems. As in the soft-margin of ε-SVR [4] we also consider
the soft-margin in our problem. So the final optimal function is as follows:

min
w,ξ,ξ∗

1
2‖w‖2 + λ1γ̄ + C

n∑

i=1

(ξi + ξi
∗)

s.t. yi − w · φ(xi) ≤ ε + ξi,
w · φ(xi) − yi ≤ ε + ξi

∗, ξi, ξi
∗ ≥ 0, i = 1, 2, ..., n,

(1)

where λ1 is the parameter for achieving the trade-off between the mean of func-
tional margin and the model complexity.

In our ε-DWSVR, we maximize the minimum margin and minimize the mean
of the functional margin at the same time, to obtain a better tradeoff between
the distribution of the internal data and that of the boundary data. ε-DWSVR
considers the influence of all data to the fitting hyperplane, as this is closer to
the actual distribution of the internal data, and it is more robust to noise.

To illustrate the robustness of ε-DWSVR to noise and the differences between
ε-SVR and that of ε-DWSVR, we use an example for comparison among linear
regression, ε-SVR, and ε-DWSVR on an artificial dataset. In Fig. 1, the green
points represent the data in which the distribution of the internal data is different
from that of the boundary data, and the purple points represent noise.

Obviously, the curve produced by linear regression largely deviates from the
actual distribution of the dataset, which indicates the linear regression is more
sensitive to noise. ε-SVR and ε-DWSVR are more robust with the presence of
noise, so the grey dashed curve and the red solid curve are within the area
of non-noisy data. However, ε-SVR is controlled by boundary data. Once the
distribution of the internal data is different from that of the boundary data
(which is the case in Fig. 1), ε-SVR may not achieve good performance. The
grey dashed curve is different from the curve. Because ε-DWSVR considers the
influence of all data to the fitting hyperplane, the red solid curve produced by
ε-DWSVR is closer to the actual distribution of the internal data.

It is obvious that the optimization problem of (1) is more complicated than
that of the original SVR. Thus, as mentioned before, to solve (1) and improve
the scalability, we implement different methods for ε-DWSVR, that is, we adopt
the DCD method with kernel functions for medium problems and the ASGD
method for larger problems. These will be presented in the following sections.



ε-Distance Weighted Support Vector Regression 213

Fig. 1. The fitting curves produced by linear regression, ε-SVR, and ε-DWSVR. The
data (green points) are composed of (1) 86.3% of all data which are evenly distributed
across the line with a slope being -2 and y ∈ [0, +∞) , x ∈ [0, 10], and (2) 12.5% of all
data which are evenly distributed on the line with a slope of 0 and y ∈ [0, +∞) , x ∈
[0, 40]. This means the distribution of the internal data is different from that of the
boundary data (those 12.5% of data). The rest 1.2% of data are noise (purple points).
Due to noise, the cyan dashed curve produced by linear regression is very different from
the rational one. The grey dashed curve produced by ε-SVR is adversely influenced by
the distribution of the boundary data, while the red solid curve produced by ε-DWSVR
better reflects the distribution of the internal data. (Color figure online)

3.2 The Regression of Medium Problems with Kernel Functions

Considering the mean of the functional margin γ̄ in (1) and Definition 2, we can
obtain the following form:

min
w,ξ,ξ∗

1
2‖w‖2 + λ1

n

(
wT φ(X)φ(X)T w − 2(φ(X)Y )T

w
)

+ C
n∑

i=1

(ξi + ξi
∗)

s.t. yi − w · φ(xi) ≤ ε + ξi,
w · φ(xi) − yi ≤ ε + ξi

∗, ξi, ξi
∗ ≥ 0, i = 1, 2, ..., n.

(2)

Here we omit the term Y Y T in γ̄ (Definition 2) because it is regarded as
a constant in an optimization problem. Obviously, the high dimensionality of
φ(·) and its complicated form makes (2) intractable. To simplify (2), we take
the suggestion from [14] and the optimal solution w in [19]. We first give the
following theorem which can be proved.

Theorem 1. The optimal solution w for (2) can be represented as follows:

w =
n∑

i=1

(αi − α∗
i ) · φ(xi) = φ(X) (α − α∗) , where α = [α1, ..., αn]T and α∗ =

[α1
∗, ..., αn

∗]T are the parameters of ε-DWSVR.

According to Theorem 1, (2) can be cast as

min
α,α∗,ξ,ξ∗

1
2 (α − α∗)T

Q (α − α∗) + pT (α − α∗) + C
n∑

i=1

(ξi + ξi
∗)

s.t. yi − (α − α∗)T
Gi ≤ ε + ξi,

(α − α∗)T
Gi − yi ≤ ε + ξi

∗, ξi, ξi
∗ ≥ 0, i = 1, 2, ..., n,

(3)
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where G = φ(X)T φ(X), Gi denotes the i-th column of G, Q = 2λ1G
T G/n + G,

and p = −2λ1GY/n. Thus (3) can be transformed into a dual formulation with
Lagrange multipliers, so the Lagrange function of (3) leads to

L = 1
2 (α − α∗)T

Q (α − α∗) + pT (α − α∗) + C
n∑

i=1

(ξi + ξ∗
i ) −

n∑

i=1

(ηiξi + η∗
i ξ∗

i )

−
n∑

i=1

βi

(
ε + ξi − yi + (αi − α∗

i )
T
G

)
−

n∑

i=1

βi

(
ε + ξ∗

i + yi − (αi − α∗
i )

T
G

)
,

(4)
where η, η∗, β, β∗ are Lagrange multipliers. To satisfy the KKT conditions [8],
we set the partial derivatives of (α − α∗) and ξ(∗) to zero and thus obtain the
following equations:

∂L

∂(α − α∗)
= Q (α − α∗) + p −

n∑

i=1

(βi − β∗
i )Gi = 0, (5)

∂L

∂ξi
(∗) = C − β

(∗)
i − η

(∗)
i = 0, i = 1, 2, ..., n. (6)

By substituting (5) and (6) into (4), and inspired by the work of [3], (4) can

be written as follows to compute the values of
[

β
β∗

]

separately:

min
β,β∗ f(β, β∗) = 1

2

[
βT , (β∗)T

] [
H − H
−H H

] [
β
β∗

]

+
[
εeT +

(
2λ1
n HY − Y

)T
, εeT − (

2λ1
n HY − Y

)T
] [

β
β∗

]

s.t. 0 ≤ βi, βi
∗ ≤ C, i = 1, 2, ..., n,

(7)

where H = GQ−1G, and e means the all-one vector.
We adopt the DCD method as in [18] to solve (7). This method continu-

ously selects one variable for minimization and keeps others as constants at each
iteration. In our situation, we minimize the variation of f(β

′
) by adjusting the

value of β
′
k with a step size of t while fixing other β

′
l �=k, where β

′
= (β, β∗)T ,

and the following equation needs to be solved: min
t

f(β
′
+ tbk) s.t. 0 ≤ β

′
k + t ≤

C, k = 1, 2, ..., 2n, where bk means the vector with 1 in the k-th element and
0’s elsewhere. Then, we have the form of this sub-problem as follows:

f(β
′
+ tbk) =

1
2
hkkt2 + ∇f(β

′
)kt + f(β

′
), (8)

where hkk is the diagonal entry of
[

H − H
−H H

]

. It can be seen that f(β
′
) is inde-

pendent of t, so we omit this term in (8).
Hence f(β

′
+tbk) is transformed into a simple quadratic function of t. Assume

that β
′iter
k is the value of β

′
k at the iter-th iteration, then the value of β

′
k at the
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(iter+1)-th iteration is β
′(iter+1)
k = β

′iter
k + tbk. According to (8), the minimiza-

tion of t which satisfies (8) is t = −∇f(β
′iter)k

hkk
. Considering the box constraint

0 ≤ β
′
k ≤ C, the minimization for β

′(iter+1)
k has the following form:β

′(iter+1)
k ←

min(max(β
′iter
k − ∇f(β

′iter)k

hkk
, 0), C). After β

′
converges, we can obtain (α − α∗)

according to (5) as follows: (α − α∗) = Q−1G
(

λ1
n Y + (β − β∗)

)
.

Therefore, the final fitting function becomes: f(x) =
n∑

i=1

(αi − α∗
i )K(xi, x).

Algorithm 1 presents the steps of the DCD method for updating β
′
.

Algorithm 1. ε-DWSVR with Kernel Functions

Input: Dataset X, Y , λ1, C, ε, K; Output: α−α∗; Initialization: β
′
= 0, (α−α∗) =

2λ1
n

Q−1GY, A = Q−1G, hkk = bT
k GQ−1Gbk;

1: while β
′

not converges do
2: for k = 1, 2, ..., 2n do
3: ∇f(β

′
)k ← ε + (G (α − α∗) bk − yk) ; if k = 1, 2, ..., n

4: ∇f(β
′
)k ← ε − (G (α − α∗) bk − yk−n) ; if k = n + 1, n + 2, ..., 2n

5: β
′temp
k ← β

′
k; β

′
k ← min(max(β

′
k − ∇f(β

′
)k

hkk
, 0), C);

6: for i = 1, 2, ..., n do

7: (αi − α∗
i ) ← (αi − α∗

i ) +
(
β

′
k − β

′temp
k

)
Abk; if k = 1, 2, ..., n

8: (αi − α∗
i ) ← (αi − α∗

i ) −
(
β

′
k − β

′temp
k

)
Abk; if k = n + 1, n + 2, ..., 2n

9: end for
10: end for
11: end while

3.3 The Regression of Larger Problems

In regression analysis, processing larger datasets may increase the time com-
plexity. Although the DCD method can solve ε-DWSVR efficiently for medium
problems, it is not the best strategy for larger problems. To improve the scalabil-
ity of ε-DWSVR, we adjust the ASGD method to ε-DWSVR, which solves the
optimization problem by computing a noisy unbiased estimate of the gradient,
and it randomly samples a subset of the training instances rather than all data.

Considering the constraints in (2), we reformulate (2) as follows:

min
w

g(w) = 1
2‖w‖2 + λ1

n

(
wT XT Xw − 2(XY )T

w
)

+ C
n∑

i=1

max {0, yi − w · xi − ε, w · xi − yi − ε} (9)

Computing the gradient of w in (9) is time consuming because we need all
the training instances for computation, especially when the dataset is large.
Considering this issue, we use Stochastic Gradient Descent (SGD) [1] to reduce
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the computational time for larger problems. According to [1], the SGD method is
expected to converge to the global optimal solution when the objective is convex.

Therefore, we give an unbiased estimation of the gradient ∇g(w) in our case.
For representing the last term of (9) formally, we define a function s(w) that has
different values under different constraint conditions, as shown below:

s(w) =

⎧
⎨

⎩

−xi, i ∈ I1
xi, i ∈ I2
0, otherwise

, i = 1, 2, ..., n,

where I1 ≡ {i |yi − w · xi ≤ ε}, and I2 ≡ {i |w · xi − yi ≤ ε}. In order to obtain
an unbiased estimation of the gradient ∇g(w), we first present the following
theorem which can be proved for computing ∇g(w).

Theorem 2. An unbiased estimate of the gradient ∇g(w) in (9) has the follow-
ing form: ∇g(w, xi) = 2λ1xix

T
i w + w − 2λ1yixi + nC · s(w), where (xi, yi) is an

randomly sampled instance from the training set.

Based on Theorem 2, the stochastic gradient can be updated as follows:

wt+1 = wt − ϕt∇gt (wt, xi) , (10)

where ϕt is the learning rate at the t-th iteration.
To make the solution to (9) more robust, we can adopt the ASGD method

to solve the optimization problem in (9), which outperforms the SGD method
[17]. In ASGD [17], a good choice for ϕt can be obtained by the form ϕt =
ϕ0(1 + aϕ0t)−c to compute (10), where a, ϕ0, and c are set by constant values
as in [19]. In addition to updating the ordinary stochastic gradient in (10), we

also compute w̄t at each iteration as follows: w̄t= 1
t−t0

t∑

i=t0+1

wi, where t0 is used

to decide when we apply the averaging process. This average value can also be
calculated in a recursive manner as follows: w̄t+1 = δtwt+1 + (1 − δt)w̄t.

Finally, Algorithm 2 presents the detailed steps of the ASGD method for
larger problems, where T ∗ n′ determines the number of iterations. T is a coef-
ficient for adjusting the number of iterations; n′ is the sampling number from n
instances. The settings of these two variable values follow those in [19].

Algorithm 2. ε-DWSVR for Larger Problems

Input: Dataset X, Y , λ1, C, ε; Output: w̄
Initialization: w0 = 0, ∇g0 = 0, t = 1

1: while t ≤ T ∗ n′ do
2: Randomly select one instance (xi, yi) from the training set;
3: Compute ∇gt (wt, xi);wt+1 ← wt − ϕt∇gt (wt, xi);w̄t+1 ← δtwt+1 + (1 − δt)w̄t;
4: t ← t + 1;
5: end while
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4 Experiments

In this section, we compare the fitting performance between ε-DWSVR and other
regression methods on real datasets to assess the performance of our method.

4.1 Experimental Setup

We select sixteen datasets from UCI [10] to perform the evaluations on ε-
DWSVR, ε-SVR, linear regression, NN, logistic regression, and ridge regression.
This includes eight medium-scale datasets and eight larger datasets. The char-
acteristics of all datasets are in Table 1. All the features of the datasets and
target set are normalized into [0, 1] to balance the influence of each feature.
After normalization, we use PCA with 95% for feature extraction to reduce the
interference of irrelevant attributes. During the construction of the model, we
divide the datasets into training sets and test sets by 5-fold cross validation.
Parameters selections are processed on the test sets to obtain better results.

Table 1. The characteristics of benchmark datasets.

Scale Datasets Instances Features Datasets Instances Features

Medium Slump 103 7 Housing 506 14

Automobile 205 26 Stock 536 9

Yacht 308 7 Concrete 1030 8

Auto MPG 398 8 Music 1059 68

Larger Crime 1994 128 Bike 17389 16

SkillCraft 3338 18 ONP 39797 61

CCPP 9568 4 CASP 45730 9

Drift 13910 129 Buzz 140000 77

Finally, we use mean square error (MSE) [7] as the evaluation metric, and
evaluations are also processed on the test sets. The experiments are repeated 30
times, and the average values of the evaluation metric are recorded. For medium-
scale datasets, we evaluate both the linear and RBF kernels [16]. In addition, we
record the computational time for larger datasets.

4.2 Results and Discussion

For medium-scale datasets, Table 2 shows the results of MSE on all methods,
including linear and RBF kernel function for ε-DWSVR and ε-SVR. We can
see that the performance of ε-DWSVR is much better than ε-SVR. Besides, the
Housing dataset is ideal with less noise and a consistent distribution of overall
data; thus linear regression works better on this dataset. The average MSE values
on all datasets are shown in Table 2 and the best ones are indicated in bold.

For larger datasets, Fig. 2 summarizes the results of MSE on all methods. As
one can see from Fig. 2, ε-DWSVR outperforms other methods on most datasets.
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Table 2. The evaluation of average MSE on medium-scale datasets.

Datasets ε-
DWSVR
(RBF)

ε-SVR
(RBF)

ε-
DWSVR
(Linear)

ε-SVR
(Linear)

LINEAR NN Logistic Ridge

Slump 0.0036 0.0037 0.0047 0.0050 0.0063 0.0055 0.0054 0.0215

Automobile 0.0057 0.0063 0.0092 0.0102 0.0094 0.0129 0.0136 0.0232

Yacht 0.0101 0.0166 0.0154 0.0171 0.0180 0.0175 0.0171 0.0434

Auto MPG 0.0133 0.0137 0.0135 0.0136 0.0140 0.0148 0.0152 0.0380

Housing 0.0142 0.0170 0.0169 0.0176 0.0117 0.0199 0.0182 0.0178

Stock 0.0080 0.0083 0.0087 0.0088 0.0101 0.0111 0.0093 0.0148

Concrete 0.0227 0.0251 0.0256 0.0257 0.0262 0.0267 0.0261 0.0362

Music 0.0306 0.0348 0.0359 0.0360 0.0368 0.0388 0.0408 0.0594

In addition, the Drift dataset contains less noise, and there exists a consistent
distribution of all data. So linear regression works better on this dataset. Besides,
linear regression did not return the results on some datasets after 48 h.

Fig. 2. The evaluation of MSE on larger datasets.

4.3 Parameter Effects

ε-DWSVR has three main parameters: λ1, C, and ε. To further investigate the
influence of these three parameters, we evaluate the MSE value by changing one
of them on the medium-scale datasets and larger datasets, while fixing others.

Figures 3 and 4 show that the MSE on the medium-scale and larger datasets
does not change significantly with the change of the parameters. This indicates
that the performance of ε-DWSVR is not sensitive to parameter values, which
demonstrates the robustness of ε-DWSVR.
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Fig. 3. Parameter influence on medium-scale datasets.

Fig. 4. Parameter influence on larger datasets.

4.4 Time Cost

We present a comparison of CPU time taken between ε-SVR and ε-DWSVR on
each larger dataset in Fig. 5. For ε-SVR, C is set to 1; ε is set to 0.1. For ε-
DWSVR, λ1 is set to 1; C is set to 10; ε is set to 0.1. ε-SVR for larger problems
was implemented by the LIBLINEAR [6] package and ε-DWSVR was imple-
mented by ASGD. Figure 5 shows that ε-DWSVR cost less time than ε-SVR on
most datasets, and it is only slightly slower than ε-SVR on two datasets.

Fig. 5. The CPU time on larger datasets.
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Abstract. Sewer corrosion is a widespread and costly issue for water
utilities. Knowing the corrosion status of a sewer network could help the
water utility to improve efficiency and save costs in sewer pipe mainte-
nance and rehabilitation. However, inspecting the corrosion status of all
sewer pipes is impractical. To prioritize sewer pipes in terms of corro-
sion risk, the water utility requires a corrosion prediction model built on
influential factors that cause sewer corrosion, such as hydrogen sulphide
(H2S) and temperature. Unfortunately, monitoring sites of influential
factors are very sparse on the sewer network such that a reliable pre-
diction has often been hampered by insufficient observations – It is a
challenge to predict H2S distribution and sewer corrosion levels on the
entire sewer network with a limited number of monitoring sites. This
work leverages a Bayesian nonparametric method, Gaussian Process, to
integrate the physical model developed by domain experts, the sparse
H2S and temperature monitored records, and the sewer geometry to pre-
dict corrosion risk levels on the entire sewer network. A case study has
been conducted on a real data set of a water utility in Australia. The
evaluation results well demonstrate the effectiveness of the model and
admit promising applications for water utilities, including prioritizing
high corrosion areas and recommending chemical dosing profiles.

1 Introduction

Sewer corrosion is a key issue in wastewater systems worldwide, particularly
in warm climate countries such as Australia. Corrosion results in concrete loss,
sewer pipe cracks and ultimately, structural collapse [8]. It gradually deteriorates
sewer network, which is one of the most critical infrastructure assets for modern
urban societies [7], and as a result of this, the value of public assets is being
significantly diminished. The mitigation and renewal of corroded sewer pipes
are highly costly. The cost of sewer corrosion in Australia is estimated to be
hundreds of millions of AUD per year [20] (http://www.score.org.au) – This
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 223–235, 2018.
https://doi.org/10.1007/978-3-319-93034-3_18
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has not included those indirect costs, e.g., lost time and productivity caused by
corrosion-related outages, delays, failures, and litigation [10]. Moreover, the cost
is expected to increase in the future as the aging sewer pipes continue to corrode.

Considering the serious negative effect of sewer corrosion, measures should
be taken to mitigate the corrosion process, e.g., dosing chemicals [3,6,7] or using
protective coatings and liners [2,14,16,19]. A preliminary requirement of these
preventive operations is to know the corrosion status of the sewer network. How-
ever, inspecting the corrosion status of all pipes is infeasible in practice. Firstly,
there are a large number of sewer pipes (e.g., several thousands in Sydney) in
a modern city. Vast human and material resources are required to inspect all
these pipes, making it unaffordable for water utilities. Secondly, many pipes are
not easily accessible because of their sizes, locations or hazardous conditions.
Therefore, a water utility expects to inspect a small portion of the sewer pipes
which are at high corrosion risk.

In this case, predicting sewer corrosion on the entire sewer network is a
critical task for water utilities around the globe in order to improve efficiency
and save costs in chemical dosing and sewer pipe rehabilitation. The water util-
ity requires a corrosion prediction model built on influential factors that cause
sewer corrosion, such as hydrogen sulphide (H2S) and temperature. However
reliable prediction of sewer corrosion has often been hampered by insufficient
observations of influential factors (e.g., H2S and temperature) and inspections
of corrosion status as groundtruth for accurate modelling. As aforementioned,
increasing the number of monitoring and inspection sites may be infeasible due
to cost and accessibility. Therefore, modelling of sewer corrosion on the entire
sewer network with a limited number of monitoring sites is nontrivial. Current
study of corrosion rate prediction for concrete sewers is mainly conducted in very
few testbeds deployed in the sewer system, with an array of coupons installed
along with a variety of sensors for measuring different influential factors. How-
ever, the physical model [20] is calibrated in a certain testbed and it may not
be versatile in any sewer system of any city due to very different environments
and lack of measurements of the required factors.

This paper attempts to leverage a Bayesian nonparametric method to predict
the sewer corrosion risk on the entire sewer network with a limited number of
observations. Specifically, this is achieved in two steps: (1) Gaussian Process [13]
is used to estimate the distributions of the two influential factors, H2S and tem-
perature, on the entire sewer network; (2) Based on the estimation results of
influential factors, a second-level Gaussian Process is used to further predict the
corrosion risk levels on the entire sewer network. Thanks to the Bayesian non-
parametric method, the corrosion prediction model based on Gaussian Process
is able to integrate the physical model developed by domain experts, the sparse
H2S and temperature monitored records, and the sewer geometry to predict cor-
rosion risk levels on the entire sewer network. Because of incorporating physical
model as prior knowledge, the hypothesis space of the model parameters can be
regularized and the issue of insufficient observations can be mitigated.
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The proposed method has the following desirable properties: (1) The pro-
posed method is able to integrate expert domain knowledge (physical model) into
the prediction model to alleviate the issue of insufficient data. The adopted data
analytics technique is a Bayesian nonparametric method which provides a way
to regularize the prediction with domain knowledge; (2) The proposed method
is flexible. The prediction model in this work can readily incorporate more fac-
tors related to sewer corrosion. Therefore, the model can be easily improved
by employing additional data collected in the future. In addition, the proposed
model could well handle large-scale sewer networks, making it widely applica-
ble; (3) The proposed model built on Gaussian Process not only predicts the
sewer corrosion level quantitatively, but also estimates the uncertainty of the
prediction. This uncertainty is an important measure in decision makings and
cost-effective sewer operations. For example, it can be used to prioritize high
corrosion areas, recommend chemical dosing locations, and suggest deployment
of sensors.

A case study is conducted on real data set from a water utility in Aus-
tralia. The empirical study demonstrates that the proposed method could achieve
promising sewer corrosion prediction results. The results admit several promis-
ing further applications for water utilities, including prioritizing high corrosion
areas and recommending chemical dosing profiles.

2 Case Study Background

This work is to collaborate with an Australian water utility to make use of data
analytics techniques for sewer corrosion prediction. The water utility manages
around 24,000 km of sewers, of which approximately 900 km is large concrete
trunks up to 2 m in diameter. Sewer corrosion is a serious concern for the water
utility, who spends about 40 million AUD per year on the rehabilitation of
corroded sewer pipes. Therefore predicting sewer corrosion is a critical task for
the utility to improve efficiency and save costs in sewer pipe rehabilitation and
chemical dosing. This motivates a collaborative project between the utility and
Data61, aiming to assess the feasibility of predicting corrosion in sewer network
using data analytics. The data provided by the water utility include:

– Sewer network geometry data: Including the length and GPS coordinates
of the sewer pipes in the sewer system;

– H2S observation data: Including GPS coordinates of 17 observation sites
the sewer system, as shown in Fig. 1 (left), and the H2S records of these sites
from Jan-2011 to Dec-2015 with a sampling frequency of 15 min;

– Temperature observation data: Including GPS coordinates of 13 obser-
vation sites, as shown in Fig. 1 (right), and the temperature records of these
sites from Jan-2011 to Dec-2015 with a frequency of 15 min;

– Traverse reports: Including two batches of traverse reports conducted dur-
ing 2007–2010 and 2011–2016, respectively. In each period, a set of sewer
pipes are inspected and their corrosion risk levels (1–5) were recorded. The
corrosion risk levels in the reports are shown in Fig. 2(a) and (b).
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With the data provided above, sewer corrosion prediction aims to construct
a mapping from two influential factors, H2S and temperature, as input to the
corrosion risk level as output. The challenge lies in the data sparsity, that is,
the data sampling points on the sewer network is very sparse. Thus, developing
a robust sewer corrosion prediction model requires techniques suitable for this
particular problem. This study is an attempt to construct a prediction model
for sewer corrosion on the entire sewer network.

Fig. 1. H2S (Left) and Temperature (Right) observation sites on the sewer network.

3 Preliminaries

3.1 Related Work on Sewer Corrosion

In the last decades, extensive research has been conducted on understanding and
managing sewer corrosion [4,5,7,11,22]. It has been verified that the production
and emission of hydrogen sulfide (H2S) is a major cause of corrosion in sewer
systems [1,15]. Sulfate-reducing bacteria residing in the sewer system could turn
sulfate in the wastewater into sulfide when anaerobic conditions prevail in a sewer
system. During this process, H2S emits into the sewer atmosphere [8]. In a later
stage, H2S present in the sewer system will be consumed by bacteria and sulfuric
acid will be generated in biological oxidation of H2S [12,18]. The sulfuric acid
generated in this stage causes internal cracking and pitting in the sewer pipe,
which exposes more pipe surface for acid attack [8]. Step by step, mass corrosion
of sewer pipe happens. Also, it has been found that the conversion rate of sulfuric
acid in the sewer system from H2S is proportional to the concentration of H2S
in the sewage [12].

Besides H2S, temperature is also a marked factor affecting the rate of sewer
corrosion since sulfuric acid generation is a biological phenomenon. Specifically,
temperature plays an important role in the emission of H2S from liquid to gas
phase [21] and can affect various abiotic and biotic reaction rates important
for corrosion [9]. It has been found in [9,12] that the generation rate of sulfide
increases with the rise of temperature.

The findings above motivate this work to first conduct estimation of H2S and
temperature on the entire sewer network; and based on the estimation results,
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prediction of corrosion risk level on the entire sewer network is further carried
out. This is because: (1) Both H2S and temperature are well-verified influential
factors to sewer corrosion in the literature; and (2) in comparison with inspecting
corrosion status of the sewer network, H2S concentration and temperature can
be more conveniently monitored and collected by using electronic sensors and
telecommunication techniques.

)c()b()a(

Fig. 2. (a) and (b): Two batches of traverse reports in (2007–2010) and (2011–2016).
Five different colours denote five levels of corrosion risk 1–5 (1 for lowest risk and 5
for highest risk) while black lines denote those pipes without a traverse report. (c):
Illustration of the prediction and the associated prediction uncertainty of a Gaussian
Process on a segment of sewer. The red curve denotes the mean value of the prediction
and the bandwidth denotes the uncertainty. The farther the prediction point away from
the observation points (red dots), the more uncertain the prediction result is. (Color
figure online)

3.2 Brief Introduction to Gaussian Process

Gaussian Process (GP) is a generic supervised learning method designed to solve
regression and probabilistic classification problems. The general idea behind GP
for regression is illustrated in Fig. 2(c). As seen, the unknown value of a certain
type of measurement (in the following we take H2S for example) at site U can
be estimated as a weighted combination of values collected at the observation
sites A, B and C.

V (U) = wA→UV (A) + wB→UV (B) + wC→UV (C) (1)

where V (U) denotes the predicted H2S at any unknown point U (the green dot
in Fig. 2(c)) on the sewer network while V (A), V (B), and V (C) denote those
points with observed H2S (the three red dots in Fig. 2(c)). The weights wA→U ,
wB→U , wC→U are learned automatically through the GP. By repeating this
prediction for any unobserved point on the network, the estimation of H2S on
the entire network can be obtained, as shown by the red line in Fig. 2(c).

GP has several advantages: (1) GP enables integration of prior knowledge,
such as the physical model developed by domain experts of sewer corrosion. This
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prior knowledge could regularise the hypothesis space of the prediction model;
(2) The prediction of GP is a Gaussian distribution, such that one can compute
empirical confidence interval using the variance of the Gaussian distribution and
make decisions based on these confidence intervals. The confidence interval is
illustrated in Fig. 2(c). As seen, the farther the prediction point away from the
observation points (red dots), the more uncertain the prediction result is; (3)
GP is flexible and versatile. Different regression objectives can be achieved by
simply specifying different kernels (will be introduced in the following section).
This enables both influential factor estimation and corrosion prediction on the
entire sewer network in a similar framework.

A GP is a generalization of the Gaussian distribution in the infinite dimen-
sional space. Similar to a Gaussian distribution, a GP is also fully specified by
a mean function and a covariance function (also known as a kernel function).
Therefore, the key to use GP is just to specify these two functions for our goals.
The design of two functions for influential factor estimation and corrosion pre-
diction will be introduced in the following section.

4 Methodology

The aim of this work is to develop a prediction model based on a Bayesian
nonparametric method. A typical Bayesian model is in the form of “Prediction
(posterior distribution) = Domain Knowledge (prior distribution) × Data Fit-
ness (likelihood)”, where “Domain Knowledge” provides a hypothesis space to
the model such that the model is not only driven by the data (in terms of “Data
Fitness”) when data are sufficient, but also does not deviate too far from the
domain expert’s hypothesis when data are insufficient.

Through Bayesian modelling, we can thus (1) integrate domain experts’
knowledge, for example, using the existing physical model as prior knowledge,
and (2) conduct prediction as a posterior distribution, whose variance can be
viewed as the uncertainty of the prediction. In the following we first introduce the
Gaussian Process based prediction model and then elaborate how it is adapted
to H2S, temperature and corrosion prediction on the entire sewer network.

4.1 Gaussian Process Based Prediction Model

The prediction problem introduced above is essentially a regression problem on
a network. To address this problem, we adopt a Bayesian nonparametric method
- Gaussian Process (GP) [13] to achieve this goal due to its outstanding perfor-
mance and desirable properties aforementioned. In order to make this paper self-
contained, this section briefly introduces GP. GP assumes that all the training
(observed) and test (unobserved) data can be represented as a joint multivariate
Gaussian distribution:[

yO

yU

]
∼ N

([
µO

µU

]
,

[
KOO KOU

K�
OU KUU

])
(2)
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where µO and µU denote the means of training and test points, respectively;
KOO denotes the covariance matrix of the training set, KOU denotes the covari-
ance matrix between the training set and the test set, and KUU denotes the
covariance matrix of the test set.

Given the values of the training set yO, the conditional distribution of the
test value yU can be expressed as:

yU |yO ∼ N (
µU + K�

OUK
−1
OO (yO − µO) ,KUU − K�

OUK
−1
OOKOU

)
(3)

The optimal estimation of yU is the mean of the above Gaussian distribution:

ŷU = µU + K�
OUK

−1
OO (yO − µO) (4)

and the uncertainty of the estimation is reflected in its variance:

var(yU ) = KUU − K�
OUK

−1
OOKOU (5)

As discussed above, a GP is fully specified by its mean function to obtain
µO and µU and covariance function k(·, ·) to calculate KOO, KOU , and KUU .
Please refer to [13] for more details about GP.

In our case study, µO and µU can be the observed and unobserved values
of a factor (e.g., H2S and temperature) or the corrosion risk level, respectively;
and KOO, KOU , and KUU are the covariance matrices between these observed
and unoberserved sites. The specification of these functions will be introduced
in the following.

4.2 Factor Estimation

This section introduces how mean and covariance functions of the GP-based
prediction model are specified to estimate H2S concentration and temperature
on the entire sewer network.

Mean Function. The mean function for estimating H2S is the output of the
absorbing state random walks (ASRW)1 [17]. ASRW is a widely used algorithm
for interpolation and extrapolation on a network (e.g., electricity network). The
input of an ASRW algorithm is the network structure represented as a directed
graph and the values of some observed points on the network; the output of the
ASRW is the interpolation and extrapolation results on the entire network. Since
the interpolation and extrapolation are based on smoothing, the results can be
naturally viewed as a coarse estimation of the mean values of H2S (assigned with
the results of ASRW), with the assumption that the real distribution of H2S will
not be far away from the mean function.

ASRW is adopted as the mean function of the prediction model for the fol-
lowing reasons: (1) ASRW has no specific assumption on the underlying graph

1 The introduction to ASRW is out of the scope of this paper. Interested readers are
referred to [17] for details.
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structure and it can be easily applied to sewer networks, which usually have
complicated graph structures; (2) The interpolation and extrapolation results
of ASRW are smooth on the network and this coincides with the status of gas
phase H2S, which is smoothly distributed in sewer networks due to diffusion;
and (3) ASRW is very efficient to compute which makes it applicable to large
sewer networks.

Covariance Function. The commonly used exponential kernel function is
employed as the covariance function of the GP-based prediction model. Due
to the constraints of the network structure, H2S can only diffuse along the sewer
networks. Instead of the traditional Euclidean distance used in the exponential
kernel, this work argues that geodesic distance should be used in the kernel
function to incorporate the underlying network structure. Therefore, we need to
first compute the shortest geodesic distance, denoted as dij , between any two
points i and j on the network as the distance between these two points. Then,
the exponential kernel can be defined in terms of the shortest geodesic distance
as follows:

Ki,j = exp

(
−d2ij
σ2

)
(6)

where Ki,j denotes the i-th row and j-th column of the kernel matrix, and
σ is the band-width of the exponential kernel. With this kernel function, the
covariance matrices KOO, KOU and KUU in Eq. (2) can be computed using
training-training, training-test, and test-test data sets, respectively. Then the
mean and variance of the H2S concentration on the entire sewer network can be
estimated by applying Eqs. (4) and (5), respectively. In this way, the spatial H2S
estimation is achieved. By repeating this process for the unknown points at any
time point, the estimation of H2S is finally obtained.

Similar to the H2S estimation introduced above, the estimation of tempera-
ture on the entire sewer network can be obtained in the same manner with the
observed temperature.

4.3 Corrosion Prediction

This section introduces how mean and covariance functions of the GP-based
prediction model are specified to predict sewer corrosion rate on the entire sewer
network.

Mean Function. The mean function, i.e., µO and µU in Eq. (2), is set as the
physical model derived from [20]:

Rm = A · H0.5 · 0.1602η − 0.1355
1 − 0.977η

· e
−45,000

RT (7)

where A is a constant calibrated empirically using the training data (coupons on
the testbed), H denotes the H2S concentration, η denotes the fractional relative
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humidity of the sewer atmosphere, which is set as the average humidity of several
coupon sites in the sewer network, R denotes the universal gas constant, T
denotes the absolute temperature; the result Rm denotes the corrosion rate.

As aforementioned, Eq. (7) was developed by the domain experts of sewer
corrosion research [20] based on the coupons. Therefore, this mean function rep-
resents a hypothesis space of the corrosion rate based on domain knowledge such
that the prediction of the proposed prediction model will not deviate domain
experts’ hypothesis too far. In other words, the mean function is used as prior
knowledge to regularize the hypothesis space of the proposed prediction model.

Fig. 3. Evaluation of sewer corrosion prediction. (Color figure online)

Covariance Function. Considering the fact that the sewer corrosion rate is
closely related to the sewer network geometry, H2S concentration and tempera-
ture [1,9,12,15], the kernel function of the GP-based prediction model for sewer
corrosion is set as a linear combination of three kernels corresponding to these
three factors, respectively:

K = α1K
G + α2K

H + α3K
T (8)

where KG is the exponential kernel with pairwise geodesic distance defined in
Eq. (6), KH is an exponential kernel with pairwise difference of H2S concentra-
tion between two points as the distance, KT is another exponential kernel with
pairwise difference of temperature between two points as the distance, and αis
are the linear combination coefficients for the three kernel matrices.

With the mean and kernel functions defined above, the corrosion rate predic-
tion can be performed by applying Eqs. (4) and (5) on the entire sewer network
at each time point, by assigning µO with the observed corrosion rate calculated
based on the two batch of traverse reports.
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5 Case Study

In this section a case study is conducted to evaluate the proposed corrosion
prediction model using the data provided by the water utility introduced in
Sect. 2.

5.1 Evaluation

In order to predict the sewer corrosion, we first estimate H2S and temperature
distributions on the entire network over five years (2011–2015) using the method
introduced in Sect. 4. The training data used in this estimation procedure are
the H2S and temperature records as described in Sect. 2. The hyper-parameters,
including σ in Eq. (6), A in Eq. (7) and αi in Eq. (8), are all tuned automatically
by maximizing the log marginal likelihood [13].

The estimation of monthly average H2S and temperature along with the
sewer geometry data are then used as the input to predict corrosion rate as
in Sect. 4.3. The ground-truth corrosion rates are derived from the two batches
of traverse reports. Specifically, there are 17 sewer pipes having corrosion risk
level records in both periods of traverse reports. This enables calculating the
ground-truth average corrosion rates, denoted as Rg, of these 17 pipes using the
following equation: Rg = C(t2)−C(t1)

t2−t1
, where C(t) denotes the corrosion risk level

record at time t in the traverse reports.

Fig. 4. Example sewer corrosion risk maps in Jan. 2011 (left) and Dec. 2015 (right). The
corrosion risk levels on the maps are the prediction results of the proposed corrosion
prediction model.

The case study adopts the commonly used leave-one-out (LOO) evaluation
method. Specifically, the 17 sewer pipes with known corrosion rates are used in
the evaluation. At each time, one of these 17 pipes is reserved for evaluation
and the remaining 16 sewer pipes are used for training the GP-based predic-
tion model. The trained model is then used to predict the corrosion rate of the
reserved pipe. The evaluation is conducted in turn on each of the 17 sewer pipes
and the final prediction accuracy is averaged over the 17 prediction results.
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As the input of the GP-based corrosion prediction model is corrosion rate,
the direct output of the model is also the corrosion rate, denoted as Rp. In order
to obtain the corrosion risk level at a certain time, the following equation can be
used: C̃(t) = C(t0) + Rp · (t − t0), where C(t0) denotes the known corrosion risk
level at time t0 while C̃(t) denotes the predicted corrosion risk level at time t.
Figure 3 plots the predicted corrosion risk levels (in green) for the 17 sewer pipes
in comparison with the ground-truths (in blue). One can see that the majority
of predictions have less than 10% difference comparing to the corresponding
ground-truths. In average, the prediction error is less than 10% (0.49/5 = 9.8%).
The absorbing state random walks (ASRW) is also applied for a comparison with
the proposed method. As seen in Fig. 3, ASRW (in yellow) has larger prediction
errors than the proposed method for most pipes. Statistically, ASRW has an
prediction error of 17.6% (0.88/5 = 17.6%).

The proposed GP-based prediction model is able to perform corrosion predic-
tion at any time on the entire sewer network as long as there are some observed
H2S and temperature records. The prediction results from Jan. 2011 to Dec. 2015
are illustrated in Fig. 4 for example. As seen, the corrosion risk levels are gradu-
ally increased from Jan. 2011 to Dec. 2015. It can also be found that the pipes in
the same area often share similar corrosion risk levels while the pipes in different
areas could vary much. This is probably because the corrosion rate of the pipes in
the same area are similar since the two influential factors, H2S and temperature,
are likely to be similar; while these two factors could be significantly different in
different areas. For example, the organic or chemical components in the wastew-
ater released in industrial areas could accelerate the generation of H2S and in
turn leads to higher corrosion rates in comparison to residential areas.

5.2 Discussion

The above evaluation results have well demonstrated the high prediction accu-
racy of the proposed corrosion prediction model. Nevertheless, the model still
has space to be improved in the following aspects: (1) the temporal patterns
of H2S or temperature; (2) Installing more H2S and temperature sensors and
collecting more H2S and temperature records; and (3) collecting several other
factors, e.g., humidity or pH.

Besides improving the model, more applications can be built on the corrosion
prediction results. For example, smart chemical dosing is an on-going project
tacking advantages of the H2S and corrosion prediction results. A set of chemical
dosing unites are installed to dose certain chemicals, e.g., Ferrous Chloride, to
reduce H2S concentration and sewer pipe corrosion. However, how much chemical
should be dosed at each site to maximally reduce H2S is a challenging issue. The
H2S and corrosion prediction play an important role in optimizing the dosing
strategy.
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6 Conclusion

This paper proposed a corrosion prediction model based on a Bayesian nonpara-
metric method, named Gaussian process, on the entire sewer network with con-
fidence. The proposed corrosion prediction model was evaluated on a real data
set of a water utility in Australia. The evaluation results have demonstrated the
high prediction accuracy of the proposed model, with average corrosion risk level
prediction error 9.8%, which has been well received by the domain expert in the
water utility.
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Abstract. Energy disaggregation is the task of decomposing a house-
hold’s total electricity consumption into individual appliances, which
becomes increasingly important in energy reservation research nowa-
days. In this paper, we propose a novel algorithm taking the context
of disaggregation task into consideration. First, we design a new method
to efficiently extract each appliance’s typical consumption patterns, i.e.
powerlets. When performing the disaggregation task, we model it as an
optimization problem and incorporate context information into the cost
function. Experiments on two public datasets have demonstrated the
superiority of our algorithm over the state-of-the-art work. The mean
improvements of disaggregation accuracy are about 13.7% and 4.8%.

1 Introduction

Energy efficiency has aroused more and more public concerns due to the massive
use of fossil fuels in recent decades. To better monitor the electricity consump-
tion, many urban households are equipped with smart meters [4]. Although smart
meters can present detailed information about the total electricity consumption
in real time, they fail to perform appliance-level monitoring of energy use. Hence
there is now a significant interest in the research of energy disaggregation.

Energy disaggregation, also known as non-intrusive appliance load monitor-
ing (NALM), tries to break down a household’s aggregate electricity consump-
tion into its component appliances [1], taking advantage of the fact that differ-
ent appliances tend to show different consumption patterns. According to [2],
if informed of appliance-level electricity consumption, residents will take steps
to correct their consumption behavior, which may improve energy efficiency by
12%. Besides, disaggregated electricity consumption plays an important role in
detecting malfunctioning of electrical appliances and forecasting demands [3].
c© Springer International Publishing AG, part of Springer Nature 2018
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Research on energy disaggregation can be divided into unsupervised and
supervised ones, depending on whether a training dataset of electricity consump-
tion from individual appliances is used. Unsupervised work utilizes Factorial
Hidden Markov Model (FHMM) to infer the state of each appliance. However,
those approaches are highly task-dependent [7]. Besides, it is worthwhile spend-
ing some time collecting training data which usually guarantees more accurate
disaggregation results [6]. Therefore, our algorithm works in a supervised setting.

Most supervised algorithms [5,6,8] first extract consumption patterns of each
appliance and then use those patterns to decode the total electricity consump-
tion. Usually they try to find a combination of devices’ consumption patterns
that sums up close to the total consumption. However, the context of disaggre-
gation task is ignored by those works. Common context information includes
the hour of day, weekday or weekend, temperature, humidity and so on. In fact,
people’s use of electrical appliances is heavily associated with those factors. For
example, people who work during weekdays tend to watch TV at night or at
weekends rather than at 11 am on a weekday. Similarly, air conditioner may
be at one of its working patterns when it is hot while in contrast stove is more
likely being used in a chilly weather. Disaggregation without considering contexts
sometimes leads to unreasonable results. Therefore, it is promising to introduce
context information to benefit energy disaggregation.

In this paper, we propose a context-aware powerlet-based algorithm
(CAPED) for energy disaggregation. Powerlets are typical electricity consump-
tion patterns of appliances during a short time interval [6]. For each appliance,
we extract its powerlets from the training data containing a series of power values
over some period. Then we estimate the occurrence probability of each powerlet
under different contexts. When disaggregating the total electricity consumption,
we try find a combination of powerlets with high occurrence probability under
specific context. It is a challenging problem because of following two reasons:

– Frist, it is difficult to maximize context-aware occurrence probabilities of
selected powerlets and meanwhile minimize the discrepancy between their
sum and the real electricity consumption when doing disaggregation.

– Second, the state-of-the-art method learning powerlets is too time-consuming
to be applied in practical training, which needs to be further improved.

To solve these challenges, we first classify candidate consumption patterns
and apply a subset selection algorithm for each category to select representa-
tive ones as powerlets, which accelerates the training process. For disaggrega-
tion with learned powerlets, we model it as an optimization problem and take
both the aforementioned discrepancy and context-aware occurrence probabilities
of selected powerlets into consideration. Experimental results on two different
datasets show the superiority of our proposed approach. On two datasets, the
mean improvements of disaggregation accuracy over a previous state-of-the-art
algorithm are 13.7% and 4.8% respectively.



238 J. Gao et al.

Finally, the main contributions of this paper can be summarized as follows:

– We propose a context-aware powerlet-based algorithm, CAPED, which intro-
duces context information into supervised energy disaggregation for the first
time.

– We design a new powerlets learning method, which allows us to select repre-
sentative consumption patterns of each appliance more efficiently.

– We conduct experiments on real-world datasets for evaluation and demon-
strate that CAPED significantly outperforms baseline methods.

2 Related Work

The initial solution for energy disaggregation was first proposed by Hart [1]. He
assumes different electrical appliances generate distinct consumption signatures
and on-off events are sufficient to characterize the use of appliances. [1] mod-
els each appliance as a finite state machine and looks for sharp edges in power
signals to classify state transitions. However, appliances with similar power lev-
els are almost indistinguishable. Subsequently, researchers incorporate transient
and harmonic information with high-frequency sampling to better distinguish
appliances [9]. But the requirement of installing expensive sensors makes such
methods costly and impractical.

Another category of energy disaggregation algorithms directly decomposes
electricity consumption into its appliances rather than detects on-off events.
Those approaches can be further divided into unsupervised and supervised
ones. Unsupervised work are mainly based on Factorial Hidden Markov Model
(FHMM) which estimates each appliance’s hidden state using EM algorithm
[10]. [12] conducts energy disaggregation in an iterative way and [11] introduces
approximate inference into traditional FHMM. However, unsupervised work is
thought to be ill-defined and highly task-dependent [7]. Moreover, usage of EM
makes those algorithms dependent on initialization and get stuck in local optima
easily. Supervised work starts in [5]. It leverages nonnegative sparse coding to
learn each appliance’s consumption patterns from training data and performs
disaggregation with those patterns. Similarly, [8] uses nonnegative tensor factor-
ization to extract devices’ patterns. However, patterns learned by [5,8] are week-
long, which need a large training dataset and fail to perform real-time energy
disaggregation. To solve this problem, Elhamifar proposes a powerlet-based app-
roach where the duration of powerlets are usually tens of seconds [6], which is the
state-of-the-art work to the best of our knowledge. However, existing supervised
work neglects the significance of context in real-time energy disaggregation task
and this paper will focus on context-aware disaggregation.

3 Preliminary

In this section, we formulize the problem of energy disaggregation and describe
a commonly used form of required training data in earlier studies.
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3.1 Problem Definition

There are K electrical appliances in one household. xi(t) is the power value of
appliance i at time t ∈ {1, 2, . . . , L}. x̂(t) denotes the aggregate power value
recorded by a smart meter at time t. Thus, we can get

x̂(t) =
K∑

i=1

xi(t) (1)

Energy Disaggregation : Given only total power consumption {x̂(t)}L
t=1, it

aims to estimate {xi(t)}L
t=1 for i ∈ {1, 2, . . . ,K}, which decomposes the whole

electricity consumption into all K appliances.

3.2 Description of a Typical Training Dataset

In a typical training dataset, we have already known xi(t) for i ∈
{1, 2, . . . ,K}, t ∈ {1, 2, . . . ,M}, which is consistent with [5,6]. M is the dura-
tion of the dataset. Each power value xi(t) has a time stamp t. Thus we can
extract some self-contained types of contexts, including hour of day and week-
day. Temperature, humidity and occupancy condition can also serve as context
information if specially collected in the training dataset.

4 Proposed Approach: CAPED

The framework of CAPED consists of two parts: powerlets learning and context-
aware signal decoding. We will describe each of the two parts in details.

4.1 Learning Powerlets

In the training dataset, from {xi(t)}M
t=1, i = 1, 2, . . . ,K, we learn a powerlets

dictionary composed of each appliance’s typical consumption patterns. In Fig. 1,

Fig. 1. Left: power signals of a freezor. Right: power signals of a fridge. Horizontal and
vertical axes correspond to time and power consumption respectively.



240 J. Gao et al.

one appliance has several distinct consumption patterns corresponding to differ-
ent operation modes. We set the length of consumption window as ω (typically
ω � M) and thus get the fixed-length energy snippet of appliance i at time t,
defined as:

yi(t) = [xi(t), xi(t + 1), . . . , xi(t + ω − 1)]T ∈ Rω (2)

After traversing energy signals {xi(t)}M
t=1 with a sliding window, a collection of

energy snippets {yi(t)}M−ω+1
t=1 is generated. However, it is impractical to add all

M −ω+1 snippets into our powerlets dictionary. We need to select a representa-
tive subset of snippets, whose cardinality is denoted as Ni, standing for various
operation modes of appliance i.

The state-of-the-art work [6] simply employs a dissimilarity-based sparse sub-
set selection algorithm [13] to find typical snippets. To select representatives from
ϕ items, [13] have to compute a ϕ × ϕ dissimilarity matrix and solve a convex
optimization problem containing ϕ2 parameters. To process a weeklong power
series in the training dataset where ϕ � 100000, it takes hundreds of hours on
a server with an Intel Xeon E5-2683 Octa-Core CPU and 64 GB memory, which
is intractable for family deployment. To accelerate the above process, our app-
roach will first partition energy snippets into several categories and then select
representatives for each category independently.

Symbolizing Energy Signals. For appliance i, xi(t) records its power con-
sumption at time t. According to [10,12], its power consumption is determined
by its state and follows the Gaussian distribution when appliance i is at the same
state. Thus {xi(t)}M

t=1 are subject to Gaussian Mixture Model (GMM), where
each Gaussian distribution corresponds to one state of appliance i. A typical
GMM model is formulated as:

p(x) =
H∑

h=1

πhp(x|h) (3)

H is the number of Gaussian distributions and πh is the weight of h-th distribu-
tion in GMM model. The assumed GMM model is consistent with our obsear-
vation in Fig. 2. The parameter H is determined according to Davies-Bouldin
index [15]. Given {xi(t)}M

t=1, we estimate each Guassian component in GMM
model with EM algorithm [13]. We give each power value a symbol according to
its associated Guassian component and thus symbolize the whole power series.

Selecting Powerlets for Classified Snippets. Since we have symbolized the
whole power series, energy snippets {yi(t)}M−ω+1

t=1 have their symbol represen-
tation respectively. Snippets with same symbol representation are assigned to
the same category, indicating appliance i shows similar consumption behaviour
when generating those snippets. For example, one category of snippets is gen-
erated when appliance i is at “on” state. Another category is generated when
the appliance is transforming from “on” to “standby”. After classifying snippets
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Fig. 2. The frequency of power values’ occurrence in power series of a fridge. Hori-
zontal and vertical axes correspond to value of power consumption and its frequency
respectively.

by symbol representation, we employ [13] to select representative snippets for
each category and construct the powerlets dictionary Bω×Ni

i with all selected
ones. Ni is the number of powerlets for appliance i. Combining powerlets of all
appliances, we form the dictionary B as:

B = [B1,B2, . . . ,BK ] ∈ Rω×N (4)

Analysis of Efficiency. As mentioned above, to select powerlets from ϕ energy
snippets, tradional method has to compute an ϕ × ϕ dissimilarity matrix and
solve an optimization problem with ϕ2 parameters [6]. In our approach, we apply
this procedure to each category respectively. If ϕ snippets have been equally
divided into K categories, we need to compute K matrices whose size is ϕ

K ×
ϕ
K and solve K optimization problems with totally ϕ2

K parameters. Moreover,
computation for K categories can be parallelized with multiple processors. Thus
the efficiency of learning powerlets is greatly improved, making our method
feasible in practical training.

4.2 Estimation of Context-Aware Occurrence Probability

The occurrence probabilities of powerlets under different contexts tend to be dif-
ferent. For example, the powerlets relating to “on” state of an oven are probable
to occur near lunch hours but the probability is much lower in sleep hours. Thus
we estimate the occurrence probability of powerlets under different contexts.

Taking hour of day as an example of context information, number of times
ni∗ that powerlets in Bi occur in each hour can be modeled as a multinomial
distribution with Ni categories. The parameters of the underlying multinomial
distribution, i.e. the occurrence probability can be estimated by the maximum
likelihood estimator (MLE), which is the normalized frequency of powerlets in
Bi occur in each hour.

pi(j) = normalize([ni,1, ni,2, ..., ni,Ni
])T (5)
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With estimated probability distribution vector pi(j) ∈ RNi for each hour j, we
build occurrence probability matrix Phour

i for appliance i and subseqently all
appliances in one household:

Phour
i = [pi(1),pi(2), . . . ,pi(24)]T ∈ R24×Ni

Phour = [Phour
1 ,Phour

2 , . . . ,Phour
K ] ∈ R24×N

(6)

Similarly, we can estimate such matrices for other types of context information,
like Pweekday for weekday or weekend, Ptemperature for different temperature
levels, Phumidity for different humidity levels and so on.

4.3 Context-Aware Signal Decoding

Having learned the powerlets dictionary B and related context-aware probability
matrices such as Phour, we consider the problem of energy disaggregation. Given
the aggregate signal {x̂(t)}L

t=1, we define household’s total energy consumption
snippet in the interval [t, t + ω − 1] as:

ŷ(t) = [x̂(t), x̂(t + 1), . . . , x̂(t + ω − 1)] ∈ Rω (7)

To decompose electricity consumption into individual appliances, we search for
a representation of ŷ(t) in the learned dictionary B which contains powerlets of
all appliances. The representation can be formulated as:

ŷ(t) ≈ Bc(t) (8)

Here c(t) = [c1, c2, . . . , cK ]T and ci ∈ RNi is the coefficent vector of appliance
i’s powerlets dictionary Bi. Each powerlet of in Bi corresponds to one typical
operation mode of appliance i. In time t, appliance i must be in no more than
one working mode. Thus, we put the following constraint on ci(t)

1Tci(t) ≤ 1, ci(t) ∈ {0, 1}Ni (9)

Let L denote the loss function which measures the difference between the ŷ(t)’s
representation and its true value. We need to find an optimal representation
Bc(t) that approaches the aggregate signal ŷ(t). A simple method is to solve
the optimization problem subject to constraint (9)

min L(ŷ(t) − Bc(t)) (10)

Incorporating Context Information. It is often the case that different com-
binations of powerlets from different appliances lead to similar aggregate signals.
Under such circumstance, merely minimizing the representation error as (10)
may result in unreasonable results. For example, (10) may decompose electricity
consumption to stove just because of less representation error, even when it is at
a hot summer noon. Therefore, CAPED leverages the context-aware occurrence
probabilities of different powerlets to address the problem. We will use hour of
day as an example of context information to explain our algorithm.
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We have learned Phour
i ∈ R24×Ni in the training process. j-th row in Phour

i is
the occurrence probability of appliance i’s powerlets in j-th hour of day. Let fhour

be a function which maps time t to its one-hot representation. fhour(t) = eTj if
time t is in j-th hour of day, where ej ∈ R24 denotes a vector whose j-th
entry is one and the rest is zero. Considering context information(i.e. hour of
day), the occurrence probability of appliance i’s selected powerlet at time t is
fhour(t)Phour

i ci(t). For all K appliances, the probability of selected powerlets at
time t can be formulated as

Ψhour(t) = fhour(t)Phourc(t) (11)

Similarly, we construct items of other available context information, including
Ψweekday,Ψtemperature,Ψhumidity and so on. In order to maximize the probability
of selected powerlets as well as minimize the representation error, the optimiza-
tion problem under constraint (9) can be extended to

min L(ŷ(t) − Bc(t)) −
∑

τ∈S

λτΨτ (t) (12)

where S is the set of available context information such as hour of day, week-
day and temperature. It is worth noting that such context information can be
obtained without much extra effort, which guaratees the feasibility of CAPED.

Moreover, there are some priors we can impose on the structure of c(t), fol-
lowing the research of [6]. Inter-Appliance priors fully use co-occurrence relation-
ships between appliances. For example, kitchen appliances tend to work together
while air-conditioner hardly works together with stoves. These two types of inter-
appliance prior are denoted as ρa and ρb.

ρa(c(t)) =
∑

(i,j)∈A

(ci(t)Tci(t) − cj(t)Tcj(t))2

ρb(c(t)) =
∑

(i,j)∈B

(ci(t)Tci(t))(cj(t)Tcj(t))
(13)

where set A indicates the set of all pairs of appliances that work simultaneously
and set B contains all pairs of appliances that usually do not work together. Our
context-aware energy disaggregation can be formulated as:

min L(ŷ(t) − Bc(t)) −
∑

τ∈S

λτΨτ (t) + λρ(ρa(c(t)) + ρb(c(t)))

s.t. 1Tci(t) ≤ 1, ci(t) ∈ {0, 1}Ni

(14)

where λτ and λρ are parameters controlling the weight of each part in cost
function. Once obtaining optimal c(t), we estimate the electricity consumption
of appliance i in the interval [t, t + ω − 1] by ỹi(t) = Bici(t).

5 Experiments

In this section, we compare CAPED with baseline methods on two real world
datsets for evaluation.
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5.1 Experimental Setup

Datasets

– ECO. It consists of electricity consumption signals from 6 houses. For each
house, the whole consumption data as well as appliance-level consumptions
are recorded at the frequency of 1 Hz. Each record is associated with a UTC
time stamp, from which we can extract context information like hour of day
and weekday [16].

– REDD. It is another widely used energy disaggregation dataset, which is
sampled at 15 kHz and contains consumption data from 6 houses. Each record
is also associated with a time stamp [17].

Baseline Methods

– Simple Mean. It estimates the total consumption percentage of each appli-
ance and predicts that the whole electricity signal breaks down according to
this percentage at all times.

– PED. It is the state-of-the-art supervised algorithm for energy disaggregation
to the best of our knowledge [6]. It first extracts powerlets for each appliance
and searches for an optimal combination without considering context infor-
mation.

Performance Metric. Similar to [6,16], We measure the disaggregation accu-
racy as:

Acc = 1 −
∑

t∈W

∑M
i=1‖ỹi(t) − yi(t)‖

2
∑

t∈W
‖ŷ(t)‖1

(15)

where W � {1, ω + 1, 2ω + 1, . . .}. (15) has considered the problem of “double
counting errors” by multiplying 2 in the denominator. ỹi(t) and yi(t) denote the
estimated and actual energy consumption of appliance i at [t, t + ω − 1].

Parameter Settings. We set the window size of powerlets ω = 10. Earlier
research [6] demonstrates that ω ∈ [10, 50] is a suitable setting if the sampling
rate is 1 Hz. As for the cost function in (14), we set loss function L(·) = ‖·‖1
to be robust to errors. After data filtering and completion on ECO and REDD,
we use one week of recorded electricity consumption for training and the rest of
available data for testing. Due to restrictions of datasets, we only incorporate two
common contexts—hour of day and weekday when inplementing CAPED. Thus,
λhour,λweekday and λρ are determined through a coarse-grained grid search.
Parameters in baseline methods are determined similarly.

5.2 Performance Discussion

The disaggregation performance of different algorithms on ECO and REDD is
shown in Table 1. The results of House 3 in ECO and House 5 in REDD are
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excluded due to low level of data quality [16,17]. Our algorithm significantly
outperforms the naive Simple Mean and PED, achieving disaggregation accura-
cies of 75.1% on ECO and 75.6% on REDD. We attribute this improvement to
the introduction of context information. People tend to show different energy
consumption behaviors under different contexts, which is fully taken advantage
of by context-aware energy disaggregation. Notice that we only use two common
types of contexts for convenience of access. The framework of context-aware
energy disaggregation has the potential of performance boosting if more context
information like temporature and occupancy condition is available.

Table 1. Energy disaggregation accuracies on ECO and REDD dataset.

ECO House 1 House 2 House 4 House 5 House 6 Total

Simple Mean 38.05% 37.02% 32.70% 63.16% 56.92% 45.57%

PED 61.62% 62.85% 59.64% 70.52% 52.26% 61.37%

CAPED 67.39% 73.99% 77.64% 83.31% 73.14% 75.09%

REDD House 1 House 2 House 3 House 4 House 6 Total

Simple Mean 40.55% 51.08% 46.10% 54.36% 38.33% 46.08%

PED 76.27% 78.64% 61.41% 59.46% 78.14% 70.78%

CAPED 79.92% 85.02% 68.97% 57.76% 86.31% 75.59%

(a) Estimated (b) Actual

Fig. 3. The electricity consumption proportion of each appliance in House 5 of ECO.
The estimated result is shown in left and the actual one is in right.

According to the results of energy disaggregation, we further estimate the
proportion of electricity consumption for each appliance. Fig. 3 shows the Pie
charts corresponding to the actual and the estimated electricity consumption by
CAPED for House 5 of ECO dataset over one week. The consumption estimated
by CAPED is close to the actual one, achieving 90.56% accuracy by Eq. (15). It
shows that our algorithm can accurately give poeple an appliance-level feedback
of electricity consumption.
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5.3 Parameter Study

As we introduce two types of context information, there are two corresponding
parameters λhour and λweekday. We first find a relatively reasonable parameter
setting by grid search for all the parameters. To examine the impact of λhour

and λweekday on disaggregation accuracy, we fix the values of all other param-
eters and study how the accuracy changes with the value of the remaining one
parameter. Fig. 4 shows the accuracy curves of varying parameters in House 4 of
ECO. CAPED performs well for parameters λhour, λweekday ∈ [10, 100], which
demonstrates the robustness of our approach to parameter tuning. Notice that
the disaggregation accuracy decreases for larger λhour and λweekday because too
much emphasis is put on context information while the representation error is
neglected. Comparing two curves, we find λhour plays a more important role in
disaggregation than λweekday. It is attributed to the fact that the regularity of
people’s consumption behaviors is more obvious daily than weekly. Moreover, the
time span of testing data is too short for weekly regularity to be fully utilized.

Fig. 4. Accuracy curves of varying λhour and λweekday in House 4 of ECO.

6 Conclusion

In this paper, we propose a novel context-aware energy disaggregation algorithm,
which incorporates context information of the disaggregation task into our frame-
work. We also develop a method to efficiently learn typical consumption patterns
of appliances. Experimental results on two datasets show the effectiveness of our
approach. In the future, we will collect more types of context information to
further improve the disaggregation accuracy.

Acknowledgments. This work was mainly funded by NSFC Grant (No. 61772045),
Research Fund from China Electric Power Research Institute (No. JS71-16-005).
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Abstract. The problem discussed in this paper stems from a project
of cellular network traffic prediction, the primary step of network plan-
ning striving to serve the continuously soaring network traffic best with
limited resource. The traffic prediction emphasizes two aspects: (1) how
to exploit the potential value of physical and electronic properties for
tens of thousands of wireless stations, which may partly determine the
allocation of traffic load in some intricate way; (2) the lack of suffi-
cient and high-quality historical records, for the appropriate training of
long-term predictions, further aggravated by frequent reconfigurations
in daily operation. To solve this problem, we define a general framework
to accommodate several variants of multi-step forecasting, via decom-
posing the problem into a series of single-step vector-output regression
tasks. They can further be augmented by miscellaneous attributive infor-
mation, in the form of boosted multiple kernels. Experiments on multiple
telecom datasets show that the solution outperforms conventional time
series methods on accuracy, especially for long horizons. Those attributes
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describing the macroscopic factors, such as the network type, topology,
locations, are significantly helpful for longer horizons, whereas the imme-
diate values in the near future are mainly determined by their recent
records.

Keywords: Multi-dimensional time series · Multi-horizon prediction
Multi-kernel learning · Network traffic prediction

1 Introduction

Nowadays, mobile communication has become a pivot ingredient for every-
one’s life and delivers the connectivity and infrastructure powering new digital
economies and unleashing novel applications. The telecom operators must con-
duct network planning and optimization with limited budget at least one year
ahead, to support the surging data traffic growing 18-fold for every five years
in global [1]. The first step of network construction is to predict how traffic will
evolve in a long-term view for tens of thousands of cell towers in the broad scope
of a region. The underlying power of pushing the traffic blow up or fluctuate
arises in two aspects: one is objective, including natural growth in consumption,
the movement of population, and seasonal oscillation. The other is subjective,
which means the reaction of user behavior towards the network change. Usually,
given the higher bandwidth of a network, the users will intend to spend more
time on enjoying the mobile apps, and vice versa.

The problem of traffic forecasting can be initially recognized as the geograph-
ical time series prediction, which has been extensively studied for decades, as
summarized in [2]. These models include linear model, like ARIMA (Autore-
gressive Integrated Moving Average), VAR (Vector Autoregression), which have
the advantage of simplicity and robust, and non-linear model, such as neural
network and its deep learning variants [6], which sometimes can provide higher
accuracy, but also need more training data and more computing resource.

We have adopted and tested these popular solutions to our problem, and pay
attention to its specific difficulties: (1) long-term prediction of noisy data. The
interested target in practice is the peak load of every day, not the summation
or average, which results in the forecasting be much noisier. As the predicting
horizon moves forward, the inherent noise of time series will accumulate with the
increasing variation, and the possible bias will be amplified, which leads to the
rapid deterioration of accuracy. (2) high dimensionality and scarceness of data.
The number of cell towers serving as access points in a metropolis can reach
up to more than ten thousand, which make the classic VAR vulnerable by the
curse of dimensionality. Meanwhile, the traffic volumes are also determined by
the layout and configuration of the network itself, and the model may benefit
from these properties at inferring the underlying manifolds where series evolves,
though some of them may be redundant and irrelevant. Though we can give
an explicit explanation for every attribute as they are defined in a humanmade
system, it is impossible to figure out, which part of them and how they influence
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the complex dynamics of user behavior and traffic characteristics. It seems that
we must resort to some variable selection methods to find out a useful subset of
attributes.

In the previous work of wireless network prediction, various popular tech-
nologies have been tested on this problem [2]. Two jobs worth to be noticed
particularly. The work [9] arranges the historical measurements and values to
be predicted (as zeros) into a matrix, which will be factorized based on a com-
pressed sensing approach with spatial constraints. The work [5] makes use of
the sensors’ location based on CNN (Convolutional Neural Networks) in deep
learning, via converting the traffic snapshot into images describing the spatial-
temporal relation of traffic flows, and thus automatic feature extraction becomes
viable. Although the advantage of these spatial-temporal models is proven, none
of above works considers how to make use of miscellaneous properties other than
locations, and inspect their potential benefit as forecasting horizons vary.

To explore this issue, we clarify several variations of long-term prediction
and define a general framework to entangle one-step tasks in a cascading fash-
ion. The properties of each entity are divided into small groups based on the
business knowledge, and they are encoded by various kernels; all of these make
the function space larger than an original linear regression could reach. The
importance of attributes given by model can be used as an important reference
for data collectors and system admins. The contributions of this paper include:
(1) a customizable solution to transform, select and fuse properties containing
context information, and apply them sequentially into a multi-step forecasting;
(2) some practical skills are given, including a set of commonly used kernels
and how they are combined; (3) effectiveness on multiple telecom sites, com-
pared to commonly-used methods, are validated, and each kernel’s contribution
to different horizons are analyzed.

The left of paper is organized as follows: in Sects. 2 and 3, we briefly introduce
the necessary background knowledge to understand the problem and summarize
the works in related domains. Next, the solution is presented in detail, with its
formalized model and kernel design. In Sect. 5, a set of experiments are executed
and demonstrated with results. Finally, we conclude the whole article.

2 Background: Network Traffic and Device Configuration

The mobile network is a communication network where the last link is wire-
less. In a range of territory, the base stations are scattered with proper intervals
to carry the network packets issued from a specific block of an area, shown in
Fig. 1a. It can be further split into several sectors, each of which served by an
individual cell transceiver installed on the same station tower, but with an inde-
pendent antenna pointing towards a unique direction. In Fig. 1b, the high-level
network architecture of such network is comprised of three main components:
the user equipment, the radio access network composing of a bunch of base sta-
tions, and the core network offering routing and management services. Usually,
the traffic meters are deployed at the interface between the base stations and
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the core network, and their readings are reported for every a predefined period.
In practice, only the max of aggregated traffic for every clock hour, namely
maxt∈{0,...,23}

∑
i I(hour(i) = t)len(pi) where len(pi) is the length of the ith

packet per day, will be studied for later engineering propose. This transformation
makes the data much noisier and even harder to predict. For the cell transceivers,

(a)
(b)

Fig. 1. (a) The base station layout of dataset D1 in Table 2. Each polygon roughly
represents the land area a base station ought to cover, in the form of Voronoi diagram.
(b) The concise architecture of the mobile network. The core network acts as the bridge
of base stations and the Internet.

Table 1. The primary attributes in the Engineering Parameter table. Only the param-
eters relevant to our problem are kept, either based on domain knowledge or empirical
tests.

Group Attr. Type Desc.

Location Longitude Real Acquired from GPS (Global Positioning System)

Latitude Real

Topology Cell id Nominal A hierarchical structure, where tens of nodes at
a lower level are connected to one node at a
higher level

Station id Nominal

District id Nominal

Site id Nominal

Scene Outdoor Boolean Indicate if the antenna is installed outdoor or
indoor

Antenna Azimuth Real The direction on horizontal plane

Downtilt Real The direction on vertical plane

Antenna
type

Nominal Manufacturers and versions

Power Real The transmission power of electromagnetic
signal

Extra Converge Real A derived property, suggested by domain
experts, approximately indicates the area size of
a cell estimated by Voronoi method (Fig. 1(a))
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there are many (suppose K) engineering parameters, to describe various config-
urations, whose names, data types, and business meaning are briefly given in
Table 1.

3 Related Work

There are two purposes for traffic prediction: one is for planning&optimization,
corresponding to month-level prediction; the other is for day-2-day maintenance
or device controlling at minute-level. We focus on the former one. Many popular
models have been tested on this problem, including ARIMA and RNN (Recur-
rent Neural Networks) [2]. If we take the purely multi-dimensional approach,
there are already works based on VAR, sometimes considering with geographic
information. Even deep learning methods are tested on this problem [6]. Models
from other related domains, such as transportation traffic [7] and geostatistics
[3], can also be immigrated onto this problem.

As for the long-term time series prediction, the paper [8] summarize the
main strategies of forecasting, including direct, recursive, and hybrid. The most
counter-intuitive result is that the recursive and direct are not necessarily equiv-
alent especially under the nonlinear situation, derived from both theoretical and
empirical results. The main reason is that the repetitive applying of the same
non-linear generative function, even it is the ground truth for one-step predic-
tion, will possibly result in asymptotical bias and cannot be eliminated during
recursion [8]. Influenced by many factors, such as ground truth, data size, and
optimization process, the question of which multi-step strategy best is an empir-
ical one.

A guide for using multiple kernels can be found in [4]. Here we use the
boosting methods [10], for its advantage in easy-to-implement and low demand
on the computing resource.

4 Solution

4.1 Overall Process

The multi-horizon prediction can be formalized as:

Yt+1:t+H = {yt+1, . . . ,yt+H} = F(Y1:t), (1)

where the value of the series Y, having N consecutive and D dimensional obser-
vations, at the future H steps, are determined by an unknown stochastic function
F, taking the Y1:t as input. The auxiliary attributes {Ai,j : i ∈ 1..D, j ∈ 1..K}
are not digested by F directly, but used for designing candidate kernels later in
Sect. 4.2. The F can be designed to be the composition of a set of single horizon
models f , according to the four schemes in Fig. 2:

(1) Recursive, shown in Fig. 2a, only an one-step-forward model is trained and
applied repeatedly to future steps:

yt+h = f (h)1 (Xt) + ε; (2)
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Fig. 2. Four approaches for composing a multiple-horizon model from single ones. Here
we give the organization when H = 2. The D block means delay one step, i.e., passing
through the input at next period.

(2) Direct, shown in Fig. 2b, one model for each step:

yt+h = fh(Xt) + ε; (3)

(3) Adjustable, shown in Fig. 2c, adding a rectification for each step before output
based on (1), specially:

yt+h = f (h)1 (Xt) + f∗
h(Xt+h) + ε, specially f∗

1 ≡ 0; (4)

(4) Multi-recursive, shown in Fig. 2d, overlay existing models at every step with
one new recursive model:

yt+h =
h∑

i=1

f (h)i (Xt+i) + ε, (5)

where f (h) means applying f repeated along the time axis for h times, Xt+i

denotes the concatenation of true measurements Y1:t and estimated futures
Ŷt+1:t+i(Xt+i � [Y1:t, Ŷt+1:t+i]), and ε � N (0, σ2). After the entire model
F has converted to a sequence of single-step tasks, at each step we are seeking
a function f to solve the following optimization problem:

f̂ = min
f

L [yt+h, f(X)] , (6)

where L is the squared error loss on N −h samples, X is a unified denotation of
all variable length of inputs from (1) to (4). The vector-output f can be solved
under a gradient descent approach:

fm = fm−1 − ρgm, (7)

where ρ is the step length, and gm is the gradient residual at each data point. We
use a weak learner h, here is the multi-output ridge regression equipped with
a matrix-valued kernel, to approximate the negative gradient signal, then the
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problem is transformed to seek a best-effort kernel representing the underlying
correlation between every two observations:

K̂m = argminKm

N−h∑

i=1

[
−gim − h(X(i);Km)

]2
, (8)

h(X;Km) =
N−h∑

i=1

αimKm(X,X(i)), (9)

αim � (Km + λIN )−1gim, (10)

where λ in the ridge regression h is set to avoid overfitting. Mentioned in Sect. 3,
matrix-valued kernel K are usually learned from a linear combination of basic
kernels. To make it more applicable, K is further assumed to be separated into
the product of one composite kernel on the input-space, and the other composite
kernel representing the correlations among the outputs. Moreover, we add the
Dirac Delta kernel, or identity matrix in discrete form, to the pool of candidates
for the outputs, which allows the evolvement of devices can be independent if
possible. In all, we get the following form of combinations:

(K(X,X′))i,j =

[
Q1∑

i=1

β
(I)
i κ

(I)
i (X:,i,X′

:,j)

] [

β
(O)
0 δi,j +

Q2∑

i=1

β
(O)
i κ

(O)
i (A:,i,A′

:,j)

]

,

(11)
where κ(I) and κ(O) are scalar-value kernels defined in the input and output
spaces, and δ is the Dirac Delta kernel; Q1 and Q2 are the number of their
candidates, and β is the coefficients for each kernel. Here we have

∑Q1
1 β

(I)
i = 1

and
∑Q2

0 β
(O)
i = 1. To simplify the computation and make the model at each

iteration more sparse, the algorithm selects only one basic kernel, either for
inputs or outputs, namely, the βm � [β(I)

1:Q1
,β

(O)
1:Q2

] = β̂mej has only one non-
zero entry at position p. At the start point of gradient descent, the algorithm
firstly seeks the best position pm at the range of [1 : Q1], and sets the Dirac
Delta kernel as the initial kernel for outputs [Q1 + 1 : Q1 + Q2 + 1], which will
be probably enriched by more non-zero values during later iterations.

4.2 Kernel Design

The kernels come from two groups of sources: historical records and device
property. The similarity on time series can be further classified into two cat-
egories: inter-series and trans-series; the former includes AR, MA, and season-
ality, inspired from the seasonal ARIMA model, and the latter is the DTW
(Dynamic Time Warping) for capturing the nonlinear correlation, which is not
easy to accomplish by VAR in the high dimensional setting. A practical method
of converting the distance to a kernel is to encapsulate it in the form of RBF
(Radial Basis Function):

κ(x,x′; d) = eε·d(x,x′). (12)
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One common heuristic for choosing ε is 1/D, and the d can replace by the
various definitions, such as the 1st–4th rows of Table 2. The usage of DTW is
straightforward by substitution in Eq. 12, whereas the distance of two sub-series
inside one series is determined by the L2 distance of their next step prediction
values, based on AR, MA, or seasonal AR(1).

For devices, there are three kinds of data types: nominal, numerical, and
nodes on a linked tree. The numerical and nominal can be simply handled by
the RBF and Dirac Delta, while nodes on network topology need to compare
their number of common ancestors:

κTree(s, s′) =
L∑

i=0

2L−iδs(i),s′(i), (13)

where s is the nominal vector of a node’s id along with the top-down path of a
L-height topology tree. In all, we have five kinds of attributive kernels, listed in
5th–9th rows of Table 2.

Table 2. The kernels used in our solution. The names in the source column are kept
consistent with the group column Table 1

ID Space Source Kernel Desc.

1 Input Traffic Record RBF of AR(2) Short term correlation

2 RBF of MA(6) Long term correlation

3 RBF of Seasonal AR(12, 1) Year-on-year comparison

4 Output RBF of DTW, window
length = int(10% * N)

Nonlinear correlation

5 Location Matérn Distance between two points

6 Topology Lowest common ancestor #ancestors two nodes share

7 Scene Dirac Indoor or outdoor

8 Coverage RBF Land area a site serve

9 Antenna RBF for numeric, Dirac for
nominal

Parameters of hardware

5 Experiments

5.1 Data

We have collected three representative datasets from different types of sites,
shown in Table 3. They are located in a western province of China and serves
more than 250 million users with nearly 80k base stations. The dataset covers
different standards of networks, ranging from 2G, 3G, and latest LTE (Long
Term Evolution) networks, with different size of nodes. The earlier a network
established, the longer records we have. The D2 contains a high rate of miss-
ing values, because of the owner’s continuously large-scale reconstruction, when
nearly 1/3 of stations were newly constructed or removed.
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Table 3. Description of network traffic datasets.

Name Unit Type Area #unit #month #record Missing

rate

Mean STD

D1 Base

station

2G Rural 5191 46 19915

8.34%

1.60E+02 1.94E+02

D2 Cell 3G Metropolis 17097 35 151394 25.30% 1.01E+03 2.66E+03

D3 Base

station

LTE City 9946 27 36280 13.51% 3.87E+03 3.45E+04

There are some details on data preprocessing. The month level aggregation
are taken from the average of top 3 days of every month. Before training, all data
points are transformed by diffi(log(Yi,j +1)), to make it linearly predictable and
stationary, and an inverse transform is needed before the accuracy evaluation.
Miss values are filled by linear interpolation for each series.

5.2 Setup

The experiment composes of two parts: (1) comparative study of different mod-
els, including popular time series models as baselines and different strategies of
multi-term prediction; (2) the contribution of properties or kernels at different
horizons.

The ability of model needs to be evaluated with a proper train/test sets
construction on genuine data. With a sliding window of length, H = 12 moving
from right to left along the time axis, the section lying inside the window is
used as test part, and the sub-series before the window is left as train part, also
required to not shorter than H = 12. We’re interested in the MAPE (Mean
Absolute Percentage Error), which is calculated firstly by taking the mean of
all trails’ scores, and take their median for all entities at each horizon, namely
medianj(meani(MAPEi,j)), i = H + 1..N − H, j = 1..D. The reason for using
median is that some sites may be activated or deactivated over a given period,
which makes the mean unreliable.

The model is implemented by writing a boosting framework and modifying
the KernelRidge in the open source scikit-learn library (to support weights on
samples). The ARIMA is implemented by auto.arima in R’s forecast package,
and the VAR is from the MTS package. The RNN is 3-layered and is built in the
style of seq-2-seq, whose number of nodes in the middle layer is determined by
grid search, and implemented by Keras with L1 regularization with other default
parameters unchanged. Other default settings in experiments include, number
of boosting step = 100, shrinkage rate = 0.1, ridge regularization strength = 1.0.

5.3 Comparison Results

Table 4 gives the experimental results of 8 models, which can be compared by 3
aspects: model, horizon, and dataset. For the model, we compare two kinds of
models: the 1st–4th are popular models for benchmarks, including a naive way
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(as the 1st) using the current observation directly for output; the 5th–8th are
the realizations of the 4 strategies illustrated in Sect. 4.1. The classical models
relying on the recursive strategy, such as ARIMA, can achieve comparable results
at short-term prediction, but deteriorate rapidly, especially for VAR, as steps go
forward. The seq-2-seq RNN can do much better than others, but usually worse
than our solution without the help of context information. In the 4 strategies,
the direct and mixing can keep the errors growing much slower. The mixing
strategies, including S3 and S4, are usually better than the direct strategy S1,
while S4 is slightly better than S3 in 2 datasets.

Table 4. The comparison of MAPE for 8 models on 3 datasets. The 4 horizons are
designed to observe the value change of short, mid, and long-term prediction.

Dataset Model Horizon

1 m 3m 6m 12 m

D1 Naive 0.285 0.511 0.869 1.367

ARIMA 0.159 0.247 0.378 0.539

VAR 0.131 0.185 0.261 0.341

RNN 0.108 0.144 0.197 0.258

S1-dir 0.111 0.126 0.157 0.187

S2-rec 0.111 0.154 0.219 0.301

S3-adj 0.111 0.125 0.152 0.170

S4-mrec 0.111 0.124 0.149 0.166

D2 Naive 0.319 0.589 1.020 1.631

ARIMA 0.080 0.127 0.204 0.315

VAR 0.124 0.188 0.283 0.399

RNN 0.082 0.125 0.192 0.281

S1-dir 0.081 0.114 0.165 0.231

S2-rec 0.081 0.128 0.204 0.313

S3-adj 0.081 0.111 0.159 0.220

S4-mrec 0.081 0.107 0.148 0.196

D3 Naive 0.425 0.781 1.349 2.154

ARIMA 0.145 0.201 0.28 0.356

VAR 0.278 0.382 0.538 0.732

RNN 0.137 0.184 0.246 0.294

S1-dir 0.150 0.176 0.225 0.267

S2-rec 0.150 0.199 0.267 0.330

S3-adj 0.150 0.161 0.197 0.221

S4-mrec 0.150 0.165 0.201 0.225
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In all situations, the long-term tasks are always harder than short ones. The
single variable models (ARIMA, RNN), usually can achieve well enough results
for the short-term prediction, even without the assistance of properties, which
means it mainly depends on each series’ own recent history. They are surpassed
by the more sophisticated methods when the horizon goes into mid-term above.
The recursive strategy is obviously not suitable for long terms.

The inherent intensity of noise and the missing rate of datasets result in the
fundamental difference, even in applying the naive model. The length of data and
the consistency of distribution limit the potential for accuracy improvement. The
more aged network, the more stable their trends intend to be, and thus easier to
predict. Anyway, the choice of strategy is still an empirical problem in practice.

5.4 Contribution of Kernels

We’re interested in the effects of attributes when horizons and strategies change.
At each horizon, we take the normalized weights of each basic kernel as their
contributions and display them in the heatmap as Fig. 3. It can be discovered
that the prediction for next month is mainly related to kernels from AR, MA,
and seasonality, and meanwhile Dirac Delta kernel dominates the correlation
of outputs, which implies these series can hardly correlate each other given a
short period. When we switch to the mid-term, the weights start to shift to the
DTW and topology, which means the model starts to refer the factors in a wider

Fig. 3. The contribution of 9 kernels in boosting for the stages 1–12. Every row of
sub-figures denotes a dataset, from D1 to D3; the left column denotes the S1 strategy,
and the right column is the S4 strategy. In every sub-figure, the above 3 rows mean
the kernel for inputs, while the others below are for outputs.
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range. For long-term, the indoor/outdoor factor nearly dominates the decision,
which is the most macroscopic factor we can find. The seasonality takes heavier
proportion on D1, and D3 collected at higher station level. The weights of S4 are
much sparser than S1, since the kernels found at previous stages will be applied
repeatedly for later ones, and have much less possibility to appear again.

6 Conclusion

In this paper, we incorporated the context information into the multi-horizon
network traffic prediction, and verify its effectiveness on long-term requests for
the first time. The introduction of multi-kernel and multi-recursive is helpful to
this problem, though with more development cost. This discovery builds a con-
nection between the scales of temporal requests and the ranges of geographical
terrain or the grains of device properties. This solution can further suggest the
business operators find more macroscopic factors to support even longer fore-
casting, such as more traffic records from nearby provinces, or macroeconomic
statistics of the whole country. The model may also be simplified or promoted
by a solid theoretical analysis on the relationship between temporal scales and
contextual information in future work.

References

1. Cisco Visual Networking Index: Global mobile data traffic forecast update,
2016–2021 white paper. https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.
html. Accessed Mar 2017

2. Bui, N., Cesana, M., Hosseini, S.A., Liao, Q., Malanchini, I., Widmer, J.: A survey
of anticipatory mobile networking: context-based classification, prediction method-
ologies, and optimization techniques. IEEE Commun. Surv. Tutor. (2017)

3. Das, A.K., Pathak, P.H., Chuah, C.-N., Mohapatra, P.: Contextual localization
through network traffic analysis. In: Proceedings of INFOCOM 2014, pp. 925–933.
IEEE (2014)

4. Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res.
12, 2211–2268 (2011)

5. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images:
a deep convolutional neural network for large-scale transportation network speed
prediction. Sensors 17(4), 818 (2017)

6. Oliveira, T.P., Barbar, J.S., Soares, A.S.: Computer network traffic prediction: a
comparison between traditional and deep learning neural networks. Int. J. Big Data
Intell. 3(1), 28–37 (2016)

7. Park, J., Raza, S.M., Thorat, P., Kim, D.S., Choo, H.: Network traffic prediction
model based on training data. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova,
M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015.
LNCS, vol. 9158, pp. 117–127. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21410-8 9

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://doi.org/10.1007/978-3-319-21410-8_9
https://doi.org/10.1007/978-3-319-21410-8_9


260 D. Zhang et al.

8. Taieb, S.B.: Machine learning strategies for multi-step-ahead time series forecast-
ing. Ph.D. Thesis (2014)

9. Wen, Q., Zhao, Z., Li, R., Zhang, H.: Spatial-temporal compressed sensing based
traffic prediction in cellular networks. In: 1st IEEE International Conference on
Communications in China Workshops (ICCC), pp. 119–124. IEEE (2012)

10. Xia, H., Hoi, S.C.H.: MKBoost: a framework of multiple kernel boosting. IEEE
Trans. Knowl. Data Eng. 25(7), 1574–1586 (2013)



IDLP: A Novel Label Propagation
Framework for Disease Gene

Prioritization

Yaogong Zhang1, Yuan Wang2(B), Jiahui Liu1, Xiaohu Liu1, Yuxiang Hong1,
Xin Fan1, and Yalou Huang1

1 College of Software, NanKai University, TianJin 300350, China
huangyl@nankai.edu.cn,

{ygzhang,jiahui,liuxiaohu,hongyuxiang,nkufanxin}@mail.nankai.edu.cn
2 School of Computer Science and Information Engineering,

Tianjin University of Science and Technology, Tianjin 300222, China
wangyuan23@tust.edu.cn

Abstract. Prioritizing disease genes is trying to identify potential dis-
ease causing genes for a given phenotype, which can be applied to reveal
the inherited basis of human diseases and facilitate drug development.
Our motivation is inspired by label propagation algorithm and the false
positive protein-protein interactions that exist in the dataset. To the best
of our knowledge, the false positive protein-protein interactions have not
been considered before in disease gene prioritization. Label propagation
has been successfully applied to prioritize disease causing genes in pre-
vious network-based methods. These network-based methods use basic
label propagation, i.e. random walk, on networks to prioritize disease
genes in different ways. However, all these methods can not deal with
the situation in which plenty false positive protein-protein interactions
exist in the dataset, because the PPI network is used as a fixed input
in previous methods. This important characteristic of data source may
cause a large deviation in results. We conduct extensive experiments over
OMIM datasets, and our proposed method IDLP has demonstrated its
effectiveness compared with eight state-of-the-art approaches.

Keywords: Gene prioritization · Label propagation
Heterogeneous network · Bioinformatics

1 Introduction

Disease gene prioritization aims to identify potential implications of genes in dis-
ease susceptibility. The accurate identification of corresponding disease genetic
information is the first step toward a systematic understanding of the molecular
mechanisms of a complex disease. Also, it is essential to know disease-related
genes for diagnosis and drug development [2]. However, identifying disease-
related genes is not an easy work, which is still one of the major challenges
in the field of bioinformatics.
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With the accumulation of studies on systems biology, researches have shown
genes that are physically or functionally close to each other tend to be involved
in the same biological pathways and have similar effects on phenotypes [4,12].
Based on such assumption, many network-based prioritization approaches have
been developed to prioritize candidate genes [7–9,15,17,18]. Early algorithms
prioritize candidate genes based on their similarity to known disease genes [8,15].
Though such type of methods perform well, they still have two limitations. The
first limitation is caused by the fact that these methods only consider label prop-
agation on homogeneous network (i.e. the PPI network). Thus, these methods
easily fail when few disease-related genes are known. Later, methods that inte-
grate heterogeneous networks have been proposed. Propagating label on both
PPI network and phenotype similarity network [7,9,18], the prediction results
have been boosted. Nevertheless, there is another limitation. Due to the alter-
nating iterative learning approach they use, traditional methods still suffer from
noise in data source and are limited to less satisfying performance. As we know,
high-throughput technologies have produced vast amounts of protein-protein
interaction data. However, imprecise measuring technology brings a large num-
ber of false-positives in the current available protein-protein interaction data
[10,16]. The false positive interactions between proteins in the PPI network
would introduce a bias while prioritizing disease genes by methods mentioned in
previous research works [7–9,15,18].

To tackle these challenges, we propose an Improved Dual Label Propagation
(IDLP) method. Firstly, we present a dual label propagation (DLP) framework
on the heterogeneous network to prioritize disease genes. We construct a het-
erogeneous network by connecting the gene network and the phenotype similar-
ity network with gene-phenotype associations. Then, we extend the basic label
propagation (LP) [19] framework to the heterogeneous network. Target disease
phenotypes and target disease genes are selected as seed nodes alternatively
to propagate labels on the heterogeneous network. Secondly, an improved dual
label propagation (IDLP) framework is proposed to reduce the bias introduced
by false positive protein-protein interactions. To be specific, the PPI network
adjacent matrix is considered as a variable to learn under IDLP framework, its
values are amended from noise by optimizing the loss function of IDLP. In case
of overfitting to the training data, an additional fitting term [19] is introduced to
constrain the values in the PPI network matrix to be consistent with its initial
values. The same fitting term is introduced to the phenotype similarity network
as well. The target matrices are optimized by minimizing the loss function. Fur-
thermore, we propose an effective closed-form solution to improve calculation
efficiency.

Our contribution is constituted by two parts. (1) It’s the first time that the
basic label propagation (Zhou et al. Nips 2005) is extended from homogeneous
networks to heterogeneous networks by directly modeling the label loss function
between labeled data and unlabeled data, through which it’s possible for us to
take additional constraints into the loss function. On the contrary, alternating
iteration strategy adopted by almost all previous works cannot deal with any
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constraints. (2) It’s the first time that data bias regularization term has been
taken into consideration, which greatly helps us to reduce the disturbance of
data and improve the prediction accuracy in gene-phenotype prediction task as
the bias is naturally and inevitably introduced by many false positive protein
interactions (Tuan 2006, Christian 2002) in PPI network.

2 Materials and Methods

2.1 Materials

We downloaded two versions (Aug-2015 version and Dec-2016 version) of human
gene-phenotype associations from OMIM database [5]. The Aug-2015 version
consists of 5,117 associations between 4,392 phenotypes and 3,400 genes, and
the Dec-2016 version contains 5,465 associations between 4,741 disease pheno-
types and 3,638 genes. The human protein-protein interaction (PPI) network
was obtained from BioGRID [1] in Aug. 2015. The PPI network contains 356,720
binary interactions between 19,511 genes. The disease phenotype network is an
undirected graph with 8,004 vertices representing OMIM disease phenotypes,
the disease phenotype similarity between two phenotypes is calculated by text
mining [14]. After filtering interacting gene and disease phenotypes, we obtained
4,678/4,801 associations (Aug-2015/Dec-2016) between 4,120 disease phenotypes
and 3,292 genes, corresponding PPI network and disease phenotype similarity
network are extracted as well.

2.2 Notations

Let n be the number of genes, m be the number of phenotypes, and W1 ∈
R

n×n be the binary PPI network, and W2 ∈ R
m×m be the phenotype similarity

network. The known gene-phenotype associations are represented by a binary
matrix Ŷ(n×m) with 1 for entries of known associations and 0 otherwise. W1 and
W2 are used to construct a normalized network S̄1 = D− 1

2W1D
− 1

2 and S̄2 =
D− 1

2W2D
− 1

2 , and D is a diagonal matrix with the row-sum of corresponding
Wi (i = 1, 2) on the diagonal entries. S1, S2 and Y are target matrices needed
to learn.

2.3 Dual Label Propagation on Heterogeneous Network

Firstly, we introduce the conventional label propagation algorithm [19]. Given
the PPI network W1 and a target phenotype p, the objective of label propagation
is to learn an assignment score for each gene with the query phenotype p as
illustrated in Fig. 1(A). The score shows how close each gene is to the phenotype
p. The target labeling y = Y•p is the p-th column of the target association matrix
Y , the initial labeling ŷ = Ŷ•p is the p-th column of the known association matrix
Ŷ . Label propagation assumes that genes should be assigned the similar labels



264 Y. Zhang et al.

Fig. 1. Illustration of the IDLP framework. Square nodes represent phenotypes,
all pairwise phenotype similarity relationships make up the phenotype similarity net-
work. Circular nodes represent genes, all pairwise gene interactions make up the PPI
network. Nodes surrounded by oval are query phenotypes (or genes), Nodes surrounded
by triangle are seed genes (or phenotypes). (A) For a query phenotype p, the corre-
sponding related genes are selected as seed nodes. (B) By modeling the noises in the
PPI network, the interactions between gene nodes have been changed. In order to bet-
ter explain the situation, we consider two extreme cases here, i.e., edge deletion and
edge addition. During the optimization of IDLP, the interaction between gene g and f
has been added, the interaction between gene d and e has been removed. The changes
of the PPI network result in a high score on gene g, because gene g directly receive
score from seed gene f . What’s more, gene d no longer receives scores from gene e,
which indirectly results in gene d receives more support from gene e. (C) For a query
gene g, the corresponding related phenotypes are selected as seed nodes. (D) By mod-
eling the noises in the phenotype network, the similarity scores between phenotypes
have been changed. The edge addition between phenotype r and p and edge deletion
between phenotype r and t result in a high score on phenotype p.

if they are connected in the PPI network, which leads to the following objective
function,

Ψ(y) =
∑

i,j

(W1)ij(
yi√
Dii

− yj√
Djj

)2 + μ
∑

i

(yi − ŷi)

= yT (I − S̄1)y + μ||y − ŷ||2,
(1)

Equation (1) can be extended to predict associations with all the phenotypes as
Eq. (2),

Ψ1(Y ) = tr(Y T (I − S̄1)Y ) + μ||Y − Ŷ ||2F . (2)

In the same way, phenotypes should be assigned the similar labels if they have
a high score in the phenotype similarity network for a given gene, as illustrated
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in Fig. 1(C). Let z = Yq•, i.e. the q-th row of the target association matrix Y ,
ẑ = Ŷq•, i.e. the q-th row of the known association matrix Ŷ . Label propagation
on phenotype similarity network for a given gene can be expressed as follows,

Ψ(z) =
∑

i,j

(W2)ij(
zi√
Dii

− zj√
Djj

)2 + ζ
∑

i

(zi − ẑi)

= z(I − S̄2)zT + ζ||z − ẑ||2,
(3)

Equation (3) can be extended to predict associations with all the genes as fol-
lowing Eq. (4),

Ψ2(Y ) = tr(Y (I − S̄2)Y T ) + ζ||Y − Ŷ ||2F . (4)

2.4 Improved Dual Label Propagation on Heterogeneous Network

To deal with false positive protein interactions, we consider S1 as a variable
needed to learn, and introduce fitting term

∑
i,j((S1)ij − (S̄1)ij)2 to capture the

noise in PPI network, where S1 is the target normalized PPI network we need
to learn, S̄1 is the normalized known PPI network. For a given phenotype, it
leads to the following loss function,

Ψ
′
(y) = yT (I − S1)y + μ||y − ŷ||2 + ν

∑

i,j

((S1)ij − (S̄1)ij)2

= yT (I − S1)y + μ||y − ŷ||2 + ν||S1 − S̄1||2F ,

(5)

Equation (5) can be extended to predict associations with all the phenotypes as
follows,

Ψ
′
1(Y ) = tr(Y T (I − S1)Y ) + μ||Y − Ŷ ||2F + ν||S1 − S̄1||2F . (6)

To minimize the loss function in Eq. (6), an alternative iterative schema is
adopted. It solves the problem with respect to one variable while fixing other
variables. The loss function in Eq. (6) is not convex on Y and S1 jointly, but it
is convex on one variable with the other fixed.

The closed form solutions Y and S1 can be expressed as,

Y ∗ = β(I − αS1)−1Ŷ

α =
1

1 + μ
, β =

μ

1 + μ

S∗
1 = S̄1 + γY Y T , γ =

1
2ν

(7)

After the label propagation on the PPI network, the result is shown in Fig. 1(B).
Besides the value of target gene-phenotype association matrix, the weight of each
edge in the PPI network has been updated as well.
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We introduce term
∑

i,j((S2)ij − (S̄2)ij)2 to capture the noise in the pheno-
type similarity network. For a given gene, as shown in Fig. 1(C), it leads to the
following loss function,

Ψ
′
(z) = z(I − S2)zT + ζ||z − ẑ||2 + η

∑

i,j

((S2)ij − (S̄2)ij)2

= z(I − S2)zT + ζ||z − ẑ||2 + η||S2 − S̄2||2F ,

(8)

For all the genes, Eq. (8) can be extended to predict associations as follows,

Ψ
′
2(Y ) = tr(Y (I − S2)Y T ) + ζ||Y − Ŷ ||2F + η||S2 − S̄2||2F . (9)

The closed form solutions of Y and S2 can be expressed as,

Y ∗ = β
′
Ŷ (I − α

′
S2)−1

α
′
=

1
1 + ζ

, β
′
=

ζ

1 + ζ

S∗
2 = S̄2 + γ

′
Y TY , γ

′
=

1
2η

(10)

Figure 1(D) shows the result after the label propagation on phenotype network.
Besides the target gene-phenotype association matrix, the phenotype similarity
network has also been updated.

The algorithm details of IDLP are shown in Algorithm 1. The illustration of
the IDLP is shown in Fig. 1.

Algorithm 1. IDLP
Input:

Ŝ1: normalized PPI network
Ŝ2: normalized phenotype similarity network
Ŷ : known binary gene-phenotype associations for training
Y : initialized with random values
α, β, γ, α

′
, β

′
, γ

′
: hyper-parameters

Output: model parameters Y ,S1,S2

1: repeat
2: S1 ← S̄1 + γY Y T

3: Y ← β(I − αS1)
−1Ŷ

4: S2 ← S̄2 + γ
′
Y TY

5: Y ← β
′
Ŷ (I − α

′
S2)

−1

6: until convergence

3 Results

3.1 Baselines

We compare our methods to both classic and the state-of-the-art network-based
algorithms. We give a brief introduction to the baselines used in our experiments.
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CIPHER employs the regression model to quantify the concordance between the
candidate gene and the target phenotype, then candidate genes are ranked by
the concordance score [17]. RWR and DK (Diffusion Kernel) prioritize candidate
genes by use of random walk from known genes for a given disease [8]. RWRH
extends RWR algorithm to the heterogeneous network, it makes better use of
the phenotypic data by using the target phenotypes and corresponding genes
as seed nodes simultaneously [9]. PRINCE uses the known disease relationships
to decide an initial set of genes that are associated with a query disease pheno-
type, then it performs label propagation on the PPI network to prioritize disease
genes [15]. MINProp is based on a principled way to integrate three networks
in an optimization framework and performs iterative label propagation on each
individual subnetwork [7]. BiRW performs random walk on PPI network and
phenotype similarity network alternatively to enrich genome-phenome associ-
ation matrix, then prioritizes disease genes based on the enriched association
matrix [18].

3.2 Experimental Settings

IDLP has four parameters, i.e. α, γ, α
′
, γ

′
. Since the constraint α + β = 1 and

α
′
+ β

′
= 1, the value of β and β

′
are fixed when α and α

′
are chosen. For

the data of training in cross-validation, we select parameter values by using a
usual manner of (5-fold) cross-validation: only a part (four folds) of the training
dataset is used for getting model results of IDLP meanwhile the rest (one fold)
for validation, this is done five times with each fold as validation set in turns.
The average result of five folds is used for choosing best parameters. In this
parameter value selection, we consider all combinations of the following values:
{0.0001, 0.001, 0.01, 0.1, 1} for α and α

′
, {1, 10, 100, 1,000, 10,000} for γ and γ

′
.

We implement all the baselines according to the descriptions in their papers.
CIPHER doesn’t have any parameters to tune, so it is applied to the test set
directly. For RWR, DK, and PRINCE, they are network-based methods only
walk on gene interaction network, the parameter α is chosen from {0.1, 0.3,
0.5, 0.7, 0.9} by 5-fold cross-validation. For RWRH, MINProp and BiRW, they
perform a random walk on a heterogeneous network of gene interactions and
human diseases (i.e. OMIM phenotypes similarity network). We use the average
version of BiRW which is shown to be the best among the three versions of BiRW
proposed by Xie [18], and the left and right walk step is set to 4 as suggested
by Xie. There is one parameter in BiRW, which is chosen from {0.1, 0.3, 0.5,
0.7, 0.9} by cross-validation. There are two parameters in MINProp, which are
chosen from {0.1, 0.3, 0.5, 0.7, 0.9} by grid through cross-validation. There are
three parameters in RWRH, which are all chosen from {0.1, 0.3, 0.5, 0.7, 0.9}
by grid search.

3.3 Evaluation

We evaluated the ranks of the tested genes with two metrics: (i) we calculated
the area under the curve (AUC) [3,6] for each method and (ii) we calculated
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Table 1. Average AUCs scores of gene prioritization on test set and validation set. We
compared AUCs when the number of false positive genes are up to 20, 50, 100.

Performance on test set Performance on validation set

AUC20 AUC50 AUC100 AUC20 AUC50 AUC100

CIPHER SP 0.0029 0.0046 0.0066 - - -

CIPHER DN 0.0015 0.0027 0.0042 - - -

RWR 0.0075 0.0178 0.0283 0.0233 0.0358 0.0475

DK 0.0192 0.0255 0.0294 0.0211 0.0306 0.0399

RWRH 0.0916 0.1250 0.1664 0.2009 0.2724 0.3288

MINProp 0.0771 0.1266 0.1799 0.1963 0.2625 0.3104

BiRW 0.0421 0.0780 0.1142 0.1544 0.2180 0.26672

PRINCE 0.1117 0.1468 0.2088 0.1433 0.2137 0.2715

IDLP 0.1123 0.1492 0.1909 0.2004 0.2572 0.2990

the average precision and recall on test set at top-k positions (k = 20, 50, 100).
The two metrics are complimentary: the AUC evaluates the entire rank of genes,
while the top-k precision and recall emphasize the top-ranked genes.

Since the accuracy of top-ranked genes is more important than the lower
ranked genes, we highlight a set of false positive cutoffs for the ROC curves and
compare the corresponding average AUCs between methods. The higher AUC
score, the better the performance. In this paper, AUC20 is chosen as a criteria
for comparison between different methods.

Conventional cross-validation evaluation strategy, such as leave-one-out
cross-validation strategy, does not necessarily reflect the property of novel gene-
phenotype associations prediction. To address such cases, we adopt the strategy
that has been utilized by [11,13,18], i.e. two versions of data are used in the
experiments, the Aug-2015 version data are used as validation set to train the
model, the newly added data accumulated between Aug-2015 and Dec-2016 are
used as test set to measure the performance of the model. In the experiment,
we split the known gene-disease associations of Aug-2015 version data into five
folds. After doing 5 folds cross-validation, the average results of the five folds are
used for selecting parameters for each method. Then, the methods are applied to
predict the associations in an independent set of associations added into OMIM
between Aug-2015 and Dec-2016.

3.4 Accuracy Evaluation

To quantitatively evaluate IDLP and other baseline methods, i.e. CIPHER,
RWR, DK, RWRH, MINProp, BiRW, and PRINCE, these algorithms are applied
to predict the disease genes for each phenotype.

The performance of IDLP and baseline methods on test set and cross-
validation set are shown in Table 1. The performance results on cross-validation
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(A)
(B)

(C)

Fig. 2. Data analysis. (A) The phenotype distribution based on the genes it asso-
ciates with. (B) The distribution of newly added phenotypes based on whether they
have known disease causing gene(s). (C) The AUC20 scores of different methods in
two situations: 1. Phenotypes with known disease genes are used as queries (left); 2.
Phenotypes with unknown disease genes are used as queries (right).

are used for choosing parameters for each method. RWRH gets the best results
on cross-validation set. However, the performance of RWRH on test set dra-
matically falls compared with that of IDLP. RWRH heavily depends on the
completeness and correctness of PPI network and phenotype similarity network,
which brings the serious overfitting. It can be seen that IDLP achieves the best
performance under AUC20 and AUC50 on test set, which means the proposed
IDLP can predict newly discovered gene-phenotype associations well. By intro-
ducing the dual label propagation framework and modeling the bias on the PPI
network and phenotype similarity network into the framework, it successfully
utilizes the information in the heterogeneous network and overcomes the inter-
ference of the noise in data source. This demonstrates the advantage of IDLP
over other baselines.

In order to understand IDLP further, we give an analysis of the constitution
of the data. Figure 2(A) shows the phenotype distribution of the two versions
according to the disease genes they associate with. More specifically, there are
3785 phenotypes associated with one disease gene in Aug-2015 version data,
the number of phenotypes increases to 3877 in Dec-2016 version data; the num-
bers of phenotypes which have been found with more than one disease genes
change slightly. There are 123 newly added gene-phenotype associations. More
specifically, as shown in Fig. 2(B), 100 phenotypes are newly added to Dec-2016
version data, which means there are 100 phenotypes with unknown disease genes
in Aug-2015 version data. The remaining 23 associations can be divided into 2
categories, 19 phenotypes with known disease genes being added with one more
disease gene and 1 phenotype with known disease genes being added with 4
new disease genes. From Fig. 2(A) and (B), we know the phenotypes involved in
newly added gene-phenotype associations between Aug-2015 version and Dec-
2016 version are mostly phenotypes with unknown disease genes in Aug-2015
version. Here we define these phenotypes without any known disease genes as
singleton phenotypes. Since the number of singleton phenotypes accounts for a
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large percentage, it is important and necessary to explore the performance on
singleton phenotypes.

Figure 2(C) shows the results when different associations are used as test set.
The left histogram in Fig. 2(C) shows the performance when 23 associations with
none singleton phenotypes are used as test set. The right histogram in Fig. 2(C)
shows the performance when 100 associations with only singleton phenotypes are
used as test set. Because the results of CIPHER SP and CIPHER DN are too
small in the histogram, we ignore them in this discussion. Comparing these two
histograms in Fig. 2(C), we can observe that predictions on phenotype queries
that have known disease genes are more precise than phenotype queries that
have non disease genes for each method. It is consistent with the intuition that
enriched phenotypes (i.e. phenotypes with at least one known disease gene) are
easier to find disease genes. RWRH, PRINCE, and IDLP have relatively high
AUC20 scores on enriched phenotype queries. On the contrary, it’s hard to iden-
tify disease genes for singleton phenotypes, because no known disease genes are
discovered for these singleton phenotypes. That’s why RWR and DK decrease
to zero. Meanwhile, IDLP achieves best at this situation, which demonstrates
IDLP’s effectiveness on singleton phenotypes.

4 Robustness Evaluation of IDLP

We check the AUC20 performance result for each method under four disturbed
PPI networks: (1) randomly delete 10% PPI data; (2) randomly delete 10% PPI
data and add 10% PPI data; (3) randomly delete 20% PPI data; (4) randomly
delete 20% PPI data and randomly add 20% PPI data. The best and the worst
performance of these four situations are drawn as error bars on the histogram.
Figure 3(A) shows the result when choosing all disease phenotypes as test set,
and we can see that IDLP has a greatly stable performance under all kinds of
disturbance. Figure 3(B) shows the result when total new disease phenotypes
are chosen as test set. The advantage has become more obvious when we only
consider the total new phenotypes (i.e. singleton phenotypes defined above) as
test set. From the results in Fig. 3, we can conclude that IDLP has a good
robustness.

The robustness comes from the design of the loss function of IDLP. More
specifically, the update mechanism determines the robustness of IDLP. Let us
go over the first two steps of Algorithm 1. At first, the target normalized PPI
network matrix is updated by S1 ← S̄1+γY Y T , then the target gene-phenotype
associations matrix Y is updated by Y ← β(I − αS1)−1Ŷ . After sufficient
iterative update, γY Y T has much influence on S1 and the influence is even
stranger when γ becomes a large value.

5 Conclusion

A new framework IDLP is proposed based on network methods to prioritize
candidate disease genes. IDLP effectively propagates the labels through out the
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(A) (B)

Fig. 3. Robustness of IDLP. Four disturbed PPI networks are applied into each
algorithm: (1) randomly delete 10% PPI data; (2) randomly delete 10% PPI data
and add 10% PPI data; (3) randomly delete 20% PPI data; (4) randomly delete 20%
PPI data and add 20% PPI data. The best and the worse performance of these four
situations are drawn as error bar on the histogram. (A) It shows the results when all
diseases are chosen as test set. (B) It shows the results when totally new diseases are
chosen as test set.

PPI network and phenotype similarity network, which avoids the method falling
when few disease genes are known. Meanwhile, IDLP models the bias caused by
false positive protein interactions and other potential factors by treating PPI
network matrix and phenotype similarity matrix as target matrices to learn. By
amending the noise in training matrices, it improves the performance results
significantly. We also give a closed-form solution, which makes the algorithm
more efficient. In our experiments, we find that IDLP has an outstanding per-
formance for ranking top genes and a good robustness to deal with the noise in
PPI network, which makes IDLP a better gene prioritization tool for biologists.
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Abstract. Many studies have been undertaken by using machine learning
techniques, including neural networks, to predict stock returns. Recently, a
method known as deep learning, which achieves high performance mainly in
image recognition and speech recognition, has attracted attention in the machine
learning field. This paper implements deep learning to predict one-month-ahead
stock returns in the cross-section in the Japanese stock market and investigates
the performance of the method. Our results show that deep neural networks
generally outperform shallow neural networks, and the best networks also
outperform representative machine learning models. These results indicate that
deep learning shows promise as a skillful machine learning method to predict
stock returns in the cross-section.

Keywords: Deep learning � Stock returns � Cross-section � Forecasting
Neural networks � Industrial application

1 Introduction

Stock return predictability is one of the most important concerns for investors. In
particular, many authors attempt to explain the cross-section of stock returns by using
various factors, such as earnings–price ratio, company size and stock price momentum,
and the efficacy of using such factors [1–3]. Conversely, the investors themselves must
decide how to process and predict return, including selection and weighting of such
factors.

One way to make investment decisions is to rely upon the use of machine learning
models. This is a supervised learning approach that uses multiple factors to explain
stock returns as input values and future stock returns as output values. Deep learning
has attracted attention in recent years in the machine learning field because of its high
performance in areas such as image recognition and speech recognition [4, 5]. Deep
learning is a representation-learning method with multiple levels of representation. This
method passes data through many simple but nonlinear modules. The data passes
through many more layers than it does in conventional three-layer neural networks.
This enables a computer to build complex concepts out of simpler concepts [4, 5].

By inputting data of multiple factors and passing them through many layers, deep
learning could extract useful features, increase representational power, enhance
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performance, and improve the prediction accuracy for future stock returns. Currently,
there have been few applications of deep learning to report on stock return pre-
dictability. Positive results of such applications could certainly be said to expand the
versatility of the deep learning technique across multiple fields.

In this paper, we use deep learning to predict one-month-ahead stock returns in the
cross-section in the Japanese stock market. We calculate predictive stock returns
(scores) from the information of the past five points of time for 25 factors (features) for
MSCI Japan Index constituents. As a measure of the performance, we use rank cor-
relation between the actual out-of-sample returns and their predicted scores, directional
accuracy, and performance of a simple long–short portfolio strategy. We compare with
conventional three-layer neural networks and support vector regression and random
forests as representative machine learning techniques.

2 Related Works

Many studies on stock return predictability have been reported on neural networks [6,
7]. Most of those are forecasts of stock market returns; however, forecasts of individual
stock returns using the neural networks dealt with in this paper have also been con-
ducted. For example, Olson and Mossman [8] attempted to predict one-year-ahead
stock returns for 2,352 Canadian companies using 61 accounting ratios as input values
and reported that neural networks outperform traditional regression techniques. As an
application to emerging market, Cao et al. [9] predicted stock returns in the Chinese
stock market. They showed that neural networks outperform the linear model. Besides
those, Kryzanowski et al. [10] found that neural networks correctly classify 72% of the
positive/negative returns to predict one-year-ahead stock returns by using financial
ratios and macroeconomic variables.

Studies on deep learning have been recently undertaken due to the heightened
attention toward this technique. Krauss et al. [11] used three different machine learning
models, deep neural networks, gradient-boosted trees and random forests to predict
one-day-ahead stock returns for the S&P500 constituents. As a result, they showed that
combining the predictions of those three as an equal-weighted ensemble outperforms
each individual model. Among each model, random forests outperform deep neural
networks and gradient-boosted trees. Conversely, they stated that careful hyper-
parameter optimization may still yield advantageous results for the tuning-intensive
deep neural networks. Outside the stock market, Dixon et al. [12] attempted to predict
the direction of instrument movement for 5-min mid-prices for 43 CME listed com-
modity and FX futures. They showed 68% accuracy for the high ones. Moreover, in an
application to a simple trading strategy, the best instrument has an annualized Sharpe
Ratio of 3.29, indicating its high prediction ability. These studies were implemented for
short investment horizons and do not use financial variables as input values. The
present paper predicts one-month-ahead stock returns using multiple factors from both
market and financial data as input values.

274 M. Abe and H. Nakayama



3 Data and Methodology

3.1 Dataset for MSCI Japan Universe

We prepare dataset for MSCI Japan Index constituents. The MSCI Japan Index
comprises the large and mid-cap segments of the Japanese market. As of January 2017,
the index is composed of 319 constituents and covers approximately 85% of the free
float-adjusted market capitalization in Japan [13]. The index is also often used as a
benchmark for overseas institutional investors investing in Japanese stocks. We use the
25 factors listed in Table 1. These are used relatively often in practice. In calculating
these factors, we acquire necessary data from WorldScope, Thomson Reuters, I/B/E/S,
EXSHARE, and MSCI. The actual financial data is acquired from WorldScope and
Reuters Fundamentals (WorldScope priority). Taking into account the time when
investors are actually available, we have a lag of four months. Forecast data is obtained
from Thomson Reuters Estimates and I/B/E/S Estimates (Thomson Reuters priority).
The data is used to calculate the factors from No. 2 to No. 8 and Nos. 16 and 17.
Factors are calculated on a monthly basis (at the end of month) from December 1990 to
November 2016. Note that factor calculation is not performed for Nos. 18 and 24. We
directly use “Historical Beta” for No. 18 and “Predicted Specific Risk” for No. 24 from
the MSCI Barra JPE4 model. Stock returns with dividends are acquired on a monthly
basis (at the end of month).

Table 1. List of factors.

No. Factor No. Factor 
1 Book-to-market ratio 14 Investment growth 
2 Earnings-to-price ratio 15 Investment-to-assets ratio 
3 Dividend yield 16 EPS Revision(1 month) 
4 Sales-to-price ratio 17 EPS Revision(3 months) 
5 Cash flow-to-price ratio 18 Market beta 
6 Return on equity 19 Market value 
7 Return on asset 20 Past stock return(1 month) 
8 Return on invested capital 21 Past stock return(12 months) 
9 Accruals 22 Volatility 

10 Sales-to-total assets ratio 23 Skewness 
11 Current ratio 24 Idiosyncratic volatility 
12 Equity ratio 25 Trading turnover 
13 Total asset growth 
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3.2 Problem Definition

To define the problem as a regression problem. For example, for stock i in MSCI Japan
Index constituents at month T (end of month), 25 factors listed in Table 1 are defined
by xi;T 2 R25 and input values are defined by vi;T ¼ xi;T ; xi;T�3; xi;T�6; xi;T�9;

�

xi;T�12g 2 R125 using the past five points of time in three month intervals for 25 factors.
The output value is defined by the next month’s stock return, ri;T þ 1 2 R. As a more
specific example, Fig. 1 shows the relationship between the input values and the output
value for stock i from one set of training data at December 2001 as T + 1. The set
consists of all stocks in MSCI Japan Index constituents at November 2001 (T). The
input values are as follows: November 2001 (T), August 2001 (T−3), May 2001 (T−6),
February 2001 (T−9), and November 2000 (T−12), as factors of past five points of
time. The output value is the actual stock return at December 2001 (T+1). For data
preprocessing, rescaling is performed so that each input value is maximally 1 (mini-
mum � 0) by ranking each input value in an ascending order by stock universe at each
time point and then dividing by the maximum rank value. Similar rescaling is done for
output values ri,T+1, to convert to the cross-sectional stock returns (scores). Note that
vi,T and ri,T+1 are assumed to be the values after data preprocessing.

This procedure is extended to using the latest N months rather than the most recent
set of training data (one training set). We use the mean squared error (MSE) as the loss
function and define MSET+1 when training the model at T + 1 as follows:

MSET þ 1 ¼ 1
K

XT

t¼T�Nþ 1

X

i2Ut

ri;tþ 1 � f vi;t; hT þ 1
� �� �2

( )

ð1Þ

In (1), K is the number of all training examples. Ut is the MSCI Japan Index
universe at t. hT+1 is the parameter calculated by solving (1) and makes the form of a
function f :ð Þ.

Factor: No.1–25

November 2001 Return
August 2001 (Ground truth)

May 2001 December 2001

February 2001

November 2000

December 2001

Input: 125 dim. Output: 1 dim.

Fig. 1. Stock i from one set of training data at December 2001.
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3.3 Training and Prediction

We train the model by using the latest 120 sets of training from the past 10 years. To
calculate the prediction, we substitute the latest input values into the model after
training has occurred. The cross-sectional predictive stock return (score) of stock i at
time T+2 is calculated from time T+1 by (2) substituting vi,T+1 into the function f :ð Þ in
(2) with the parameter h�T þ 1, where h�T þ 1 is calculated from (1) with N = 120:

Scorei;T þ 2 ¼ f vi;T þ 1; h
�
T þ 1

� � ð2Þ

For example, in order to calculate the prediction score at January 2002 (T+2) from
December 2001 (T+1), the input values are as follows: December 2001 (T+1),
September 2001 (T−2), January 2001 (T−5), March 2001 (T−8), December 2000 (T
−11), as factors of the past five time points. The MSCI Japan Index constituents are
from December 2001 (T+1). However, the prediction scores are not calculated for
stocks with 63 or more missing input values, which is about half of the total number
(125) of input values. For stocks with 62 or less missing input values, each missing
value is replaced by the median value for the stocks that are not missing. For this series
of processes, the model is updated by sliding one-month-ahead and carrying out a
monthly forecast. The prediction period is 15 years: from January 2002 to December
2016 (180 months). An illustration of the flow of the processing is shown in Fig. 2,
which shows the relationship between prediction and training data at each time point.
For example, December 2001 in the “Training: 120 sets” is associated with Fig. 1 and
January 2002 in the “Prediction: 1 set” represents the prediction for January 2002 from
December 2001. The arrows indicate that the model is updated every month with the
data sliding one-month-ahead.

3.4 Performance Measures

Rather than using the value of the loss function directly as a performance measure, we
use the rank correlation coefficient (CORR) and directional accuracy (Direction)
because these are more relevant measures of performance than the loss function. In
addition, the performance of a simple long–short portfolio strategy is evaluated in

Fig. 2. Training-prediction set.
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comparison with support vector regression and random forests. In practice, these are
used as methods to evaluate the performance of the cross-sectional stock returns.
CORR is Spearman’s rank correlation coefficient between the actual out-of-sample
returns (next month’s returns) and the prediction scores, which is used to measure the
prediction accuracy of the entire predicted stock excluding the influence of outliers of
individual stock returns.

In an actual investment, there are many cases where the number of stocks is limited
to those with higher prediction scores and those with lower prediction scores. We
construct a portfolio comprising stock groups with top and bottom prediction scores.
Direction is calculated by dividing the total number of the top stocks with high pre-
diction scores that are above the cross-sectional median for next month’s return on the
stock universe and the bottom stocks with low prediction scores that are below the
median by the total number of the top and bottom stocks.

The long–short portfolio strategy is a net zero investment strategy that buys the top
stocks with equal weighting and sells the bottom stocks with equal weighting. To form
into the top and bottom stock groups, we make two types of portfolios: tertile and
quintile portfolios. These performance measures are calculated monthly during the
prediction period. For example, at the evaluation starting point January 2002 (Pre-
diction: 1 set in Fig. 2), these measures are calculated from the prediction scores for
January 2002 from December 2001 and the actual out-of-sample returns at January
2002. Considering the stability of these evaluation results, it is necessary to consider a
stock universe with at least a few dozen members in each category. Table 2 shows the
monthly average numbers for the stock universe for the evaluation period from
December 2001 to November 2016 with top and bottom stocks for both tertiles and
quintiles. The total number of stocks exceeds 300; moreover, for quintiles, the total
number of top and bottom stocks exceeds 100. Therefore, we consider that the size of
the stock universe is adequate.

3.5 Compared Models

Neural Networks. All of the neural networks examined this paper are fully-connected
feedforward neural networks. Table 3 shows all 16 types of the neural networks. The
number in the “Hidden layers” column represents the number of units. For multiple
layers, the layer numbers are connected with hyphens. We examine a total of 8 patterns
of deep neural networks (DNN) with 8 layers (DNN8) and with 5 layers (DNN5). The
dropout rate is set uniformly to 50%. The number of units in each layer is designed to
decrease as the layer becomes closer to the output layer. The patterns of DNN5 are
designed to exclude duplicated layers of DNN8. For the conventional three-layer
architectures, there are 8 patterns in total, 4 patterns with dropout rate set to 50%

Table 2. Number of stocks (monthly average).

All Tertile Quintile
Top Bottom Top Bottom

336.5 112.5 111.8 67.7 66.9
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(NN3_DO) and 4 patterns with dropout rate set to 0% (NN3). For NN3_DO, the
number of units of the hidden layer is adjusted so as to be approximately equal to the
number of parameters (all weights including bias) of each pattern of DNN8. For
example, the total number of parameters for NN3_DO_1, with 244 units in the hidden
layer, is 30,989. This is approximately equal to 30,931 parameters for DNN8_1. For
the number of units in the hidden layer of NN3, we select 4 large units in order from all
the hidden layers of DNN8. As an intersection, we use the hyperbolic tangent as the
activation function, Adam [14] for the optimization algorithm. The mini batch size is
the size of the stock universe at each time point (approximately 300) with 100 epochs.
We use TensorFlow for implementation. We initialize the biases to be 0 and generate
the initial weight from TensorFlow’s function “tf.truncated_normal” set to mean “0”
and standard deviation “1=

ffiffiffiffiffi
M

p
” (M is the size of the previous layer).

Support Vector Regression and Random Forests. Support vector regression
(SVR) and random forests (RF) are implemented with scikit-learn. The problem def-
inition for SVR is e-SVR [15] which is implemented with the class “sklearn.svm.
SVR”. For hyper-parameters C, gamma, epsilon, we implement 24 patterns of com-
binations of C = {0.1, 1.0, 10.0}, gamma = {0.0001, 0.001, 0.01, 0.1}, epsilon =
{0.01, 0.1}. As an intersection, we use Radial Basis Function (RBF) as the type of
kernal. We also define RF as a regression problem [16], and implement with the class
“sklearn.ensemble.RandomForestRegressor” in scikit-learn. For hyper-parameters
max_features, max_depth, we implement 37 patterns added by 16 patterns of combi-
nations of max_features = {5, 10, 15, 20}, max_depth = {3, 5, 7, 9} and 21 patterns of
combinations of max_features = {25, 30, 35}, max_depth = {3, 5, 7, 9, 11, 15, 20}.
As an intersection, we set n_estimators (number of trees) to 1,000.

Table 3. Architectures of neural networks.

Neural
networks

Architectures
Number of layers Hidden layers Dropout

DNN8_1 8 100-100-50-50-10-10 50%
DNN8_2 100-100-70-70-50-50
DNN8_3 120-120-70-70-20-20
DNN8_4 120-120-80-80-40-40
DNN5_1 5 100-50-10 50%
DNN5_2 100-70-50
DNN5_3 120-70-20
DNN5_4 120-80-40
NN3_DO_1 3 244 50%
NN3_DO_2 322
NN3_DO_3 354
NN3_DO_4 399
NN3_1 3 70 0%
NN3_2 80
NN3_3 100
NN3_4 120

Deep Learning for Forecasting Stock Returns in the Cross-Section 279



4 Experimental Results

4.1 Shallow Versus Deep Neural Networks

Table 4 shows results from the neural networks patterns listed in Table 3. All values
are monthly averaged. We have conducted a one-sided test of H0: p = 50% against H1:
p > 50% for Direction. The best value for each set of 4 patterns is shown in bold, and
the best value in each column is also underlined.

First, we look at CORR. DNN8_3 has the highest value of 0.0591, NN3_3 is the
lowest at 0.0437, and values tend to increase as the number of layers increases. It can
be confirmed that the DNN group outperforms even NN3_DO, which has had the
number of units in its hidden layer adjusted to approximately match the number of
parameters in DNN8.

The results for Direction are generally consistent with those for CORR and tend to
be better as the number of layers increased in both the tertile and the quintile groups.
Direction values reject the null hypothesis at the 0.1% significance level for all the
patterns. Top and bottom quintiles had Direction values that are 0.4 to 1.0% higher than
those for top and bottom tertiles.

The values of MSE for the loss function are also shown for reference. Although
there are no differences between DNN8 and DNN5, it can be seen that the values of
MSE are larger when there are fewer layers, as can be seen when comparing against
NN3_DO and NN3.

Table 5 shows the average of each category in order to see the tendency of the
result by pattern more simply. We can easily confirm that the higher the number of
layers, the higher the CORR and Direction.

4.2 Comparison with Support Vector Regression and Random Forests

Table 6 picks out each pattern with the highest CORR from the combination of
hyper-parameters in SVR and RF, respectively, described in Sect. 3.5 and also picks
out those pattern of neural networks from Table 4 that outperform the highest CORR of
the SVR and RF patterns. The best values for each column are labeled in bold. The
highest CORR from the combination of hyper-parameters in SVR is {C, gamma,
epsilon} = {0.1, 0.01, 0.1}, and RF is {max_features, max_depth} = {25, 7}. For SVR
and RF, we find that the tertile and quintile Direction reject the null hypothesis at the
0.1% significance level, and RF outperforms SVR including CORR. Four neural
networks have been picked out, all of which are DNN, and three of which are the
DNN8 patterns with the largest number of layers. In the rank relationship between
CORR and Direction, DNN8_3 with the highest CORR is not completely correlated so
that DNN8_3 is not the highest Direction. It is necessary to observe carefully for this in
cases where CORR does not differ much. In comparison with SVR and RF, DNN
patterns outperform SVR for almost all categories, but show little superiority to RF.
These results can not completely indicate the superiority of DNN, including DNN
patterns which are not picked up on Table 4. However, in terms of DNN8 patterns,
three patterns out of four patterns outperform in CORR and the pattern of DNN8_4
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outperforms RF in all items, hence deep learning promises to be one of the leading
machine learning methods.

4.3 Ensemble

Next, we apply ensemble methodology to combine different machine learning models
and to examine whether the results improve beyond each individual pattern of Table 6.
The monthly prediction scores of SVR, RF and the DNN8_3 with the highest CORR
are weighted equally to create the ensemble. Table 7 shows the CORR and Direction
for the tertile and quintile portfolios. We find that CORR is the highest at 0.0604,
which is higher than each of the three machine learning models before combination.
This demonstrates the effectiveness of the ensemble approach. For Direction, on the

Table 5. Rank correlation, directional accuracy, and mean squared error of neural networks
(average).

Neural
networks

CORR Direction% MSE
Tertile Quintile

DNN8_Avg 0.0582 52.59 53.36 0.0836
DNN5_Avg 0.0563 52.37 53.27 0.0835
NN3_DO_Avg 0.0523 52.23 52.89 0.0840
NN3_Avg 0.0451 52.05 52.73 0.0857

Table 4. Rank correlation, directional accuracy, and mean squared error of neural networks.

Neural
networks

CORR Direction% MSE
Tertile Quintile

DNN8_1 0.0580 52.56*** 53.36*** 0.0834
DNN8_2 0.0568 52.49*** 53.24*** 0.0838
DNN8_3 0.0591 52.64*** 53.37*** 0.0834
DNN8_4 0.0587 52.66*** 53.48*** 0.0837
DNN5_1 0.0582 52.43*** 53.34*** 0.0833
DNN5_2 0.0555 52.25*** 53.24*** 0.0835
DNN5_3 0.0560 52.36*** 53.22*** 0.0835
DNN5_4 0.0557 52.43*** 53.26*** 0.0836
NN3_DO_1 0.0537 52.35*** 52.99*** 0.0839
NN3_DO_2 0.0520 52.15*** 52.75*** 0.0840
NN3_DO_3 0.0509 52.16*** 52.94*** 0.0841
NN3_DO_4 0.0527 52.24*** 52.87*** 0.0841
NN3_1 0.0450 52.09*** 52.69*** 0.0856
NN3_2 0.0472 52.10*** 53.02*** 0.0856
NN3_3 0.0437 51.79*** 52.60*** 0.0858
NN3_4 0.0445 52.23*** 52.61*** 0.0859
***p < 0.001, **p < 0.01, *p < 0.05.

Deep Learning for Forecasting Stock Returns in the Cross-Section 281



other hand, only quintile portfolio is the highest for the ensemble, so the improvement
gained through the ensemble technique is limited.

4.4 Long–Short Portfolio Strategy

We have used CORR and Direction as performance measures so far, but in practice
when investing based on this information, we need to analyze performance related to
return more directly. We construct a portfolio strategy and use risk-adjusted return as a
performance measure defined by Return/Risk (R/R) as return divided by risk. As
described in Sect. 3.4, we construct a long–short portfolio strategy for a net-zero
investment to buy top stocks and to sell bottom stocks with equal weighting in tertile
and quintile portfolios. The transaction cost is not taken into account, and we examine
the patterns described in Tables 6 and 7.

The results are shown in Table 8. Return is annualized from the monthly average,
and Risk is also annualized. The highest R/R is shown in bold for each tertile and
quintile portfolio. We find that the highest R/R is DNN in both portfolios, DNN8_3 is
1.24 in tertile and DNN5_1 is 1.29 in quintile. Let us focus on the quintile profiles to
analyze the rank relationship between Direction in Tables 6 and 7 and R/R. RF, which
is higher for Direction, is the lowest for R/R, and conversely, DNN5_1 which is lower
for Direction is the highest for R/R. Thus we cannot make clear conclusions.

In Table 8, some DNN patterns do not outperform SVR, RF and the ensemble so
that we cannot show the complete superiority of DNN, but we can note that the pattern
which has the highest R/R for each tertile and quintile comes from the DNN patterns.

Table 6. Rank correlation and directional accuracy of SVR, RF, and DNN.

Machine
learning

CORR Direction%
Tertile Quintile

SVR (best) 0.0569 52.53*** 53.30***

RF (best) 0.0576 52.64*** 53.44***

DNN8_1 0.0580 52.56*** 53.36***

DNN8_3 0.0591 52.64*** 53.37***

DNN8_4 0.0587 52.66*** 53.48***

DNN5_1 0.0582 52.43*** 53.34***

***p < 0.001, **p < 0.01, *p < 0.05.

Table 7. Rank correlation and directional accuracy of Ensemble.

Machine
learning

CORR Direction%
Tertile Quintile

Ensemble 0.0604 52.56*** 53.50***

***p < 0.001, **p < 0.01, *p < 0.05.

282 M. Abe and H. Nakayama



5 Conclusions

In this paper, we implement deep learning techniques to predict one-month-ahead stock
returns in the cross-section in the Japanese stock market. Our conclusions are as
follows:

• In the comparison of different NN architectures, with more layers, the rank corre-
lation coefficient (CORR) and the directional accuracy (Direction) are high. We find
that DNN with greater numbers of layers could increase representational power by
repeating nonlinear transformations and improve the prediction accuracy of the
cross-sectional stock returns.

• In comparison with SVR and RF, there are 4 patterns of DNN that outperform the
CORR of both, while the highest Directions in each tertile and quintile are DNN
patterns. Ensemble gives a limited improvement. We also examine the performance
of a simple long–short portfolio strategy and find that the best R/R in each tertile
and quintile portfolio is selected from DNN patterns. These results cannot com-
pletely indicate the superiority of DNN, but deep learning promises to be one of the
best machine learning methods.

• We examined only 8 DNN patterns consisting of 8 layers and 5 layers compared
with 24 patterns of SVR and 37 patterns of RF, and applied simple fully-connected
feedforward networks. Application of recurrent neural networks, which are
designed to handle time series data, is a candidate for future research. We expect
that an investigation of various deep learning models could further enhance the
prediction accuracy of stock returns in the cross-section.
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Abstract. Financial variables such as asset returns in the massive mar-
ket contain various hierarchical and horizontal relationships that form
complicated dependence structures. Modeling these structures is chal-
lenging due to the stylized facts of market data. Many research works
in recent decades showed that copula is an effective method to describe
relations among variables. Vine structures were introduced to represent
the decomposition of multivariate copula functions. However, the model
construction of vine structures is still a tough problem owing to the
geometrical data, conditional independent assumptions and the stylized
facts. In this paper, we introduce a new bottom-to-up method to con-
struct regular vine structures and applies the model to 12 currencies
over 16 years as a case study to analyze the asymmetric and fat tail
features. The out-of-sample performance of our model is evaluated by
Value at Risk, a widely used industrial benchmark. The experimental
results show that our model and its intrinsic design significantly outper-
form industry baselines, and provide financially interpretable knowledge
and profound insights into the dependence structures of multi-variables
with complex dependencies and characteristics.

1 Introduction

Modeling complex dependence structures of financial variables is a fundamental
research problem in the financial domain, useful for a wide range of applications
including economics prediction and risk management. Its extreme importance
has been partially demonstrated in the 2008 global financial crisis (GFC). Exist-
ing studies are usually concerned with the degree of dependence rather than the
other important respects of dependence – the dependence structure, especially
the asymmetric and tail dependence characteristics. However, as demonstrated
in GFC, it is useless when all stocks tend to fall as the market falls.

Asymmetric dependence between different markets can be easily seen
from Fig. 1. Figure 1(a) shows the correlation of daily returns between the
United States comprehensive index S&P500 and the index of Eurozone stocks
STOXX50E, which indicates the strong negative dependence and normal posi-
tive dependence between them. The dependence between the United Kingdom
comprehensive index FTSE100 and the foreign exchange rate GBP against the
USD is shown in Fig. 1(b), which indicates strong dependence on both sides.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 285–297, 2018.
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Fig. 1. Asymmetric dependence across markets

These examples show that the financial market are not only dependent but also
asymmetric.

The challenge of modeling dependence in financial market lies in the three
major aspects concerning us in this paper. (1) As with any complex behavioral
and social system, the cross-market dependence structure is often embedded with
strong couplings [5] on high dimensionality. Flexible dependence structure with-
out imposing any assumptions or restrictions are desired. (2) Financial variables,
such as daily return, have been shown to follow non-normal distributions, which
means dependence models should cover a wide range of dependencies in order to
capture both positive and negative dependencies. (3) As discussed above, various
lower and upper tail dependencies also need to be considered.

The dependence across markets has been studied by different communities,
including statistics and machine learning. The typical approaches in the statisti-
cal community are joint distributions with Gaussian assumption and conditional
correlation. The first method has been demonstrated that Gaussian assumption
is inappropriate when studying either stock markets or exchange rate markets.
The second one uses conditional correlation to calculate the covariance, which
is generally used in empirical studies. As the current correlation depends on the
previous one, the dependence structure is not flexible. The dependence stud-
ies in the machine learning community consist of hidden Markov models and
graphical probability models. The hidden Markov models, however, could have
a large number of hidden states when applied to a high dimensional case, which
invariably leads to computational intractability in the algorithms when inferring
the hidden states from observations. The graphical probability models, such
as Bayesian logic program [12], impose unrealistic assumptions in constructing
dependence structures.

In recent decades, a number of research works based on regular vine model
capture the asymmetric dependence in currency markets and show decent effects
[6,7,11,15]. A popular methodology is to combine the time series models (e.g.
ARMA, GARCH) and copula to observe the joint distribution on multivari-
ates. With this framework, we can simplify the problems about observing joint
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distribution into two parts: the marginal distribution of each variable and copula
between variables. The multivariate Archimedean copula family has been stud-
ied in [2,13]. They show that Gaussian Copula models do not have lower and
upper tail dependence, while the multivariate t copula does not have flexible
tail dependence as the symmetric structure of t copula. Vine structures includ-
ing canonical vine and D vine copula models [1,3] can implement a wide range
of dependencies by decomposing the multivariate copula into different bivariate
copulas. However, due to the structure assumptions, they do not have flexible
dependence structures. Due to the assumptions imposed on dependence struc-
tures, their dependence structures may not reflect the actual dependence in real
world.

In order to model the asymmetric dependencies in multivariate data with
various dependence structures, we propose a new weighted partial regular vine
copula model (WPRV) with asymmetric dependencies. WPRV is more power-
ful, because: (1) A new partial correlation-based algorithm constructs the reg-
ular vine structure. Our WPRV can uniquely determine the correlation matrix
and is algebraically independent without any strong restriction on the depen-
dence structure; The dependence structure is more flexible, since the current
tree structure is independent of the established tree structure and bivariate cop-
ulas selection. (2) The bivariate copula with different types of tail dependencies
(e.g., BB1, survival BB1, BB7 and survival BB7) are implemented to capture
various tail dependencies between financial variables. (3) The moving trends of
lower and upper tail dependence with the multivariate data structures and also
the trends of lower and upper tail dependence during the dynamic period are
analyzed.

The rest of paper is structured as follows. Section 2 introduces the related
definitions of copula and different tail dependencies. Section 3 discusses how to
construct our weighted partial regular vine copula model, copula family selection,
and the parameter estimation in partial regular vine copula and marginal dis-
tribution. The case study results are shown in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Preliminaries

2.1 Vine Copula

Vine theory was introduced in [4], which is one kind of graphical models. Let
V , T , E and N represent vine structure, trees, edges, nodes respectively. The
regular vine and its related definitions are given below.

Definition 1 (Regular Vine). V is a regular vine on n variables if

(1) T1 is a tree with nodes N1 = 1, ..., n and a set of edges denoted by E1;
(2) For j = 2, ..., n − 1, Tj is a tree with nodes Nj = Ej−1 and edge set Ej;
(3) (proximity condition) For j = 2, ..., n−1 and a, b ∈ Ej, #(a� b) = 2, where

� denotes the symmetric difference operator and # denotes the cardinality.
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Definition 2 (Complete Union, Conditioning and Conditioned Sets of
an Edge). The complete union of an edge ei ∈ Ei is the set Uei = {n1 ∈ N1 |
∃ej ∈ Ej , j = 1, 2, . . . , i − 1 with n1 ∈ e1 ∈ e2 ∈ . . . ∈ ei−1 ∈ ei} ⊂ N1. For
ei = {a, b} ∈ Ei, a, b ∈ Ni, i = 1, 2, . . . , n−1, the conditioning set of an edge ei is
Dei = Ua∩Ub, and the conditioned sets of an edge ei are Cei,a = Ua\Dei , Cei,b =
Ub \ Dei and Cei = Cei,a ∪ Cei,b = Ua�Ub, where A�B := (A \ B) ∪ (B \ A)
denotes the symmetric difference of two sets.

Hence, Uei is a set of all nodes in Ni that are connected by the edges ei. By
definition, Uei(1) = ei. The constraint set is defined below.

Definition 3 (Constraint Set). The constraint set for V is a set:
CV = {({Cea , Ceb}, De) | e ∈ Ei, e = {a, b}, i = 1, . . . , n − 1}

The edge e can be written as {Ce | De}, or {Ce(a), Ce(b)|De, e = {a, b}}, where
the conditioning set De is shown to the right of “|”, and the conditioned set Ce

to the left. {Ua \ De} is the set which includes all variables in the set Ua, but
excludes the variables in the set De.

2.2 Tail Dependencies

One important copula-based dependence measurement is tail dependence coeffi-
cient, which indicates the dependencies between extreme events. The extremal
dependence of a multivariate distribution F can be described by various
tail dependence parameters of its copula C. Suppose that random vector
(U1, ..., Un) := (F1(x1), ..., Fn(Xn)) with standard uniform marginal distribu-
tion. The lower and upper tail dependence coefficients are defined as follows.

λL = lim
u→0

Pr{U1 ≤ u, ..., Un ≤ u | Un ≤ u}

= lim
u→0

C(u, ..., u)
u

λU = lim
u→0

Pr{U1 > 1 − u, ..., Un > 1 − u | Un > 1 − u}

= lim
u→0

C(1 − u, ..., 1 − u)
u

(1)

where C is the survival function of C. If λU exists and λU ∈ (0, 1], then copula C
has an upper tail dependence coefficient, but there is no upper tail dependence
coefficient when λU = 0. Similarly, if λL exists and λL ∈ (0, 1], then copula C has
an upper tail dependence coefficient, but no upper tail dependence coefficient
when λL = 0.

Frahm et al. [8] proposed a non-parametric method to obtain the nonpara-
metric estimator of lower and upper tail dependence by using Pickand’s depen-
dence function [14]. One simple nonparametric estimator of tail dependence is
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the log estimator. which is denoted by :

λ̂L = 2 − lim
u∗→0

log
(
1 − 2(1 − u∗) + T−1

∑T
t=1 1{U1 ≤ 1 − u∗, ..., Un ≤ 1 − u∗}

)

log(1 − u∗)

λ̂U = 2 − lim
u∗→0

log
(
T−1

∑T
t=1 1{U1 ≤ 1 − u∗, ..., Un ≤ 1 − u∗}

)

log(1 − u∗)
(2)

In this work, the above nonparametric method is implemented for roughly ana-
lyzing the tail dependence coefficient before the regular vine model construction.

3 Our Weighted Partial Regular Vine Model

As highlighted in the introduction, our WPRV is centered on the bottom-to-top
regular vine structure. According to the method proposed by Bedford and Cooke
[4] for building vine structure by using partial correlation, for elliptical distribu-
tions, partial correlation is equal to the corresponding conditional correlation.
We can thus use partial correlation instead of conditional correlation to measure
the correlations on each node and every tree does not depend on the structure
of the previous tree, which is more flexible.

3.1 Partial Regular Vine Construction

The regular vine on n variables shares several important properties (see details
in [9]):

(1) There are (j−1) and (j+1) variables in the conditioning sets and constraint
sets of an edge of the jth tree respectively;

(2) If two or more nodes have the same constraint sets, they are the same node;
(3) If variable i is a member of the conditioned set of an edge e in a regular

vine, then i is a member of the conditioned set of exactly one of the m-child
of e, and the conditioning set of an m-child is a subset of De.

According to the above properties, we derive two lemmas, which are important
for constructing the partial regular vine tree structure. The two lemmas are
given as follows.

Lemma 1. Let I ∈ {1, ..., n}, x1, x2, y1, y2 ∈ I and x1 	= x2, the nodes of Tj be
N1 = {x1, y1 ; I\{x1, x2, y1}} and N2 = {x2, y2 ; I\{x1, x2, y2}}. For a regular
vine on n variables, nodes N1 and N2 have a common m-child. If y1 	= y2, the
common m-child is {y1, y2 ; I\{x1, x2, y1, y2}}.
Proof. According to Definition 1, each node has two m-children. For N1,
the constraint set CVx1 of its m-children are {x1, I\{x1, x2, y1}} and
{y1, I\{x1, x2, y1}}. For N2, the constraint set CVx2 of its m-children are
{x2, I\{x1, x2, y2}} and {y2, I\{x1, x2, y2}}. We can see that {y1, I\{x1, x2, y1}}
and {y2, I\{x1, x2, y2}} are equal, but indexed by different variables in a con-
ditioned set. According to Property (4), N1 and N2 have a common m-child. If
y1 	= y2, y1 and y2 should be in the conditioned set of the m-child.
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Algorithm 1. Tree Structure Construction via A Bottom-to-Top Strategy
Require: Observations of n input variables
1: Calculate all values of partial correlation, and then allocate the smallest absolute

value of partial correlation to the node in Tn−1 (Tn−1 is the bottom tree).
2: for k = 1, . . . , n − 2 do
3: for i = n − 1, . . . , �n

2
� do

4: if Ti > Tk then
5: Find variable combinations for nodes on both sides in tree Ti which can

minimize the function |ρc:d|, where Ti indicates the ith tree and Tk is tree
inverse level tree;

6: else
7: Find variable combinations for nodes on both sides in tree Ti which can

minimize the function of
∑

ln(1 − ρ2
c:d)

8: end if
9: end for

10: end for
11: There will be n − 2 regular vines as k = 1, . . . , n − 2.
12: return A group of partial regular vine dependence structure candidatures.

Lemma 2. For a regular vine on n variables, j = 2, ..., n − 1, the edge e in Tj

has only two constraint sets of m-children in Tj−1, which are indexed by different
variables in a conditioned set.

Proof. Suppose there are three identical constraint sets indexed by different
variables in a conditioned set, according to Property (4), nodes with the same
constraint sets should be the same node. Based on Property (5), the variables
in the conditioned set will still be in the conditioned set of its m-children. This
means that the node will have three variables in its conditioned set, which vio-
lates Property (3) and the proximity condition in the regular vine definition.
Therefore, one edge has only two constraint sets which are indexed by different
variables in a conditioned set.

According to the above properties of regular vine and the two lemmas, we con-
struct the partial regular vine by using Algorithm1.

3.2 Vine Structure Selection

After building the 
n
2 � candidate regular vines, the next step is to find the

‘Best’ regular vine among these candidates. In order to remove the bias by only
selecting the strongest correlation on the top, giving a weight to each tree can
enhance the influence of the trees on the top or at the bottom, and a balanced
structure can be selected. We assume each level is a unit height and the tree
inverse level k is the zero potential energy level. Hence, the weight of each level
will increase from level k to level n − 1 and level 1. Since the parameters m, g,
K and T are constants in a given environment, Eq. (3) can be simplified as:

W = e−m0h (3)
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where m0 is the parameter and h is the distance from the level of each tree to
the tree inverse level. To restrict the value of weight for each level in interval
[0, 1], we standardize the weight:

W (h) =

⎧
⎪⎪⎨
⎪⎪⎩

0.5 × e−m0(k−h)
∑k

i=1 e−m0(k−i) , h ∈ [1, k];

0.5 × e−m0(h−k)
∑N−1

i=k+1 e−m0(i−k) , h ∈ (k,N − 1].
(4)

where N is the number of variables, k is the tree inverse level, h is the level of
a tree and m0 is a parameter which falls in interval [0, 1].

The ‘Best’ regular vine structure maximizes the value of function −ln(D),
where D is the weighted determinant which is calculated by using:

D =
∏
i,j

(1 − Wiρ
2
i,j;d(i,j)) (5)

where Wi is the corresponding weight and d(i, j) is the conditioning set excluding
variables i and j. The corresponding conditioned set is i and j.

3.3 Bivariate Copula Selection

Once the partial regular vine tree structure is identified, the next step is to
select bivariate copulas for each edge in all trees. As discussed above, the partial
correlation is equal to its corresponding conditional correlation for the elliptical
family. This means our partial regular vine tree structure is built based on an
elliptical copula family (i.e., Gaussian or t copulas). However, according to the
following theorem, the limitation of partial correlation can be removed by map-
ping the partial regular vine tree structure to typical regular vine via conditional
correlation.

Theorem 1. For any regular vine on n variables, there is one-to-one correspon-
dence between the set of n × n positive definite correlation matrices and the set
of partial correlation specification of the vine.

The proof of Theorem 1 can be referred to [4], which is omitted here. It
shows that there is a one-to-one relationship between the partial regular vine
specification and the correlation matrix, which ensures that we can map our
partial regular vine tree structure to the typical conditional correlation based-
regular vine tree structure. We can then choose bivariate copulas from a large
number of copula family candidates, rather than the elliptical copula family.
Hence, the limitation can be removed while selecting the bivariate copulas.

There are a huge of copula families, which have various tail dependencies.
The detail of tail dependence of copula families are listed in Table 1. To capture
the asymmetric characteristics, the BB1, S.BB1, BB7 and S.BB7 copulas are
the best choice since they have various lower and upper tail dependencies, which
can vary independently from 0 to 1.
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Table 1. The tail dependence of copula family

Lower tail dependence Upper tail dependence

Gaussian - -

t 2tν+1(μ(ν, φ)) 2tν+1(μ(ν, φ))

Gumbel - 2−1/φ

Frank - -

Clayton 2−1/φ -

Joe - 2 − 21/φ

BB1 2−1/(φδ) 2 − 21/δ

S.BB1 2 − 21/δ 2−1/(φδ)

BB6 - 2 − 21/(δφ)

BB7 2 − 21/δ 2 − 21/φ

S.BB7 2 − 21/φ 2 − 21/δ

BB8 - 2−1/φ when δ = 1

S.BB1 and S.BB7 are survival BB1 and BB7 copula respec-
tively. φ and δ are parameters of the corresponding copula

family. For t copula, μ(ν, φ) =
(
−√

ν + 1
√

1−φ
1+φ

)

3.4 Marginal Distribution Specification and Parameter Estimation

For the financial applications of the partial regular vine copula model, we use
volatility models (i.e. ARMA-GARCH models) as the margins. Typically, let
Xt(t = 0, 1, ...,T) be a time series of the prices of a financial asset, such
as the stock market index. The return of financial asset can be defined as
rt = log(Xt/Xt−1). If there are n assets with returns rt,1, ..., rt,n, we first
select the appropriate marginal distribution of individual variables (i.e., returns
of financial variables), which is a univariate distribution. Due to the char-
acteristics of financial assets, such as volatility cluster, a common choice is
ARMA(1,1)−GARCH(1,1) with skewed student t innovations, which is defined
as follows.
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rt,j = cj + Φjrj,t−1 + Θjεj,t−1 + εj,t,

εj,t = σj,t · Zj,t

σ2
j,t = ωj + αjε

2
j,t−1 + βjσ

2
j,t−1

(6)

where j = 1, ..., n, t = 1, ...,T and Zj,t is the innovations which follow skewed
student t distribution.

Let θmj = (cj , Φj , Θj , ωj , αj , βj) be the parameter set of marginal distribution,
θc be the parameters of multivariate copula functions, the multivariate joint log-
likelihood is given by:

L(θm1 , ..., θmn , θc) =
T∑

t=1

logf(r1,t, ..., rn,t; θm1 , ..., θmn , θc)

=
T∑

t=1

log c(F1(r1,t), ..., Fn(rn,t); θc) +
T∑

t=1

n∑
j=1

log fj(rj,t; θmj )

(7)
where the multivariate c(· ; θc) is denoted as the regular vine model.

4 Case Study

4.1 Data and Marginal Distribution Specification

To evaluate the performance of our model, we use real-world data, involving
12 currency exchange rates against USD. These trading currencies are EUR,
GBP, CHF, SEK, CAD, BRL, AUD, NZD, JPY, HKD, SGD, and INR, which
are sequentially numbered from v1 to v12. They represent major currencies in
the global market and can be arranged into portfolios. The training data set
uses observations from 04/01/1999 to 27/08/2004, a total of 1298 daily returns.
Observations from 6/09/2004 to 21/06/2013, a total 1912 daily returns are used
for out-of-sample testing. All the data was downloaded from Yahoo Finance
(http://finance.yahoo.com/).

As discussed in the last section, the standardized residuals are transferred to
uniform data by using the empirical probability integral transformation, which
is actually the input of partial regular vine. The raw returns are fitted with
univariate ARMA(1, 1)−GARCH(1, 1) models with the skewed student-t error
distribution. The Ljung-Box (LB) test [10] is introduced to remove the autocor-
relation among these financial returns. In this experiment, the corresponding p
values of the LB test are all greater than the significant value 0.05.

4.2 Regular Vine Copula Structure Specification and Tail
Dependence Analysis

The next step is to build our weighted partial regular vine copula model. Figure 2
shows the tree structure built by Algorithm 1. Due to space limitations, we only
show the last three trees of our vine structure.

http://finance.yahoo.com/
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Typically, the selection of m0 of the WPRV model is determined by the
characteristics of data and domain knowledge. According to the discussion in
Sect. 3.2, m0 is restricted to interval [0, 1]. Table 2 shows the performance of the
Log-likelihood of WPRV with parameter m0 from 0.1 to 1.0. The high value of
the Log-likelihood indicates good performance. According to Table 2, the WPRV
model with parameter m0 = 0.7 achieves the best performance.

Table 2. Log-likelihood Performance of WPRV with Parameter m0

m0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LL 2767.23 2767.23 2929.91 2929.91 3031.56 3031.56 3031.56 2929.91 2929.91 2767.23
a LL is short for Log-likelihood

Once the structure is identified, the next step is to choose the copula for each
edge. As discussed above, the bivariate copula which can provide flexible lower
and upper tail dependence is most appropriate to build the partial vine copula
model with asymmetric dependence. Based on Sect. 3.3, BB1, S.BB1, BB7 and
S.BB7 copulas can provide both lower and upper tail dependencies. Therefore,
the BB1, BB7, S.BB1 and S.BB7 copulas are used to build vine copula model
with asymmetric dependence to capture the asymmetric characteristics.

Fig. 2. Weighted partial R vine trees

The tail dependence in Tree 12 of Fig. 2 is shown in Table 3. The non-
parametric and t copula results are listed as reference. From the table we can
conclude that lower tail dependence of pairs in Tree 1 are less than their cor-
responding upper tail dependence. Although various bivariate copulas provide
different results, similar conclusion can be drawn that lower tail dependencies
are less than upper ones.

In order to investigate the tail dependence and its movement trend, two
different fixed periods (24 months and 36 months) are used as the investigation
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Table 3. Tail dependence analysis by using various copulas

Non-paraa t BB1 S.BB1b BB7 S.BB7b

λL λU λL λU λL λU λL λU λL λU λL λU

{v1, v2} 0.18 0.33 0.25 0.25 0.28 0.41 0.39 0.62 0.41 0.48 0.46 0.44

{v1, v3} 0.45 0.23 0.37 0.37 0.45 0.61 0.50 0.69 0.61 0.68 0.63 0.67

{v1, v4} 0.50 0.60 0.54 0.54 0.63 0.76 0.71 0.78 0.76 0.82 0.77 0.82

{v1, v5} 0.73 0.63 0.71 0.71 0.74 0.81 0.78 0.82 0.83 0.85 0.82 0.87

{v1, v6} 0.28 0.49 0.42 0.42 0.59 0.70 0.65 0.76 0.72 0.74 0.73 0.76

{v2, v7} 0.29 0.42 0.19 0.19 0.41 0.56 0.49 0.68 0.53 0.63 0.58 0.60

{v2, v10} 0.53 0.60 0.63 0.63 0.72 0.80 0.78 0.82 0.79 0.83 0.80 0.83

{v7, v8} 0.28 0.43 0.35 0.35 0.37 0.51 0.49 0.72 0.51 0.58 0.56 0.53

{v7, v9} 0.20 0.32 0.23 0.23 0.30 0.45 0.39 0.56 0.43 0.51 0.46 0.51

{v10, v11} 0.55 0.36 0.51 0.51 0.55 0.69 0.65 0.80 0.72 0.80 0.73 0.77

{v10, v12} 0.38 0.57 0.47 0.47 0.50 0.59 0.53 0.65 0.61 0.65 0.62 0.65
a Non-para means that the tail dependence coefficient is calculated via the non-
parametric method;
b S.BB1 and S.BB7 are the survival BB1 and BB7 copula respectively

period of tail dependence to show the relationship between the length of period
and the movement trend. Then, a moving window of 620 daily observations is
introduced, from 07/02/2011 to 21/06/2013. The result of pair {v1, v2} in tree
1 is shown in Fig. 3.

The gap in a short investigation period with 24 months is larger than those
in a long investigation period with 36 months. It indicates that the difference
between lower and upper tail dependence is more significant in a short inves-
tigated period than in a long one. However, the difference decreases when the
length of investigation period increases.

Fig. 3. Lower and upper tail dependence

4.3 Out-of-Sample Performance Analysis

The out-of-sample performance is evaluated by the Value at Risk (VaR), which
a widely used industrial benchmark. Typically, backtesting methods based on
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Log-likelihood ratios and a null hypothesis consist of unconditional and condi-
tional coverage tests. A large p-value indicates that the VaR forecastings are
accurate and reliable. However, the p-value should at least be greater than 0.05.
In this experiment, we do not use any machine learning models since they do
not directly support forecasting VaR. Table 4 presents the backtesting results of
our WPRV, canonical vine and D vine with various copula. The bivariate cop-
ula selection is indicated in the second row. The results indicate the BB1 and
S.BB1 copulas have the best performance, followed by the BB7 and S.BB7 cop-
ulas. The model with t copula is better than Clayton, Gumbel and BB6 copulas
which have only one tail dependence.

In conclusion, the results of VaR forecasting indicate that the partial regular
vine copula with asymmetric dependence is better than those with symmetric
lower and upper tail dependence, and the models with two tail dependencies are
better than those with only one tail dependence.

Table 4. The backtesting results of value at risk forecasting

Weighted partial regular vine Canonical vine D vine

1 − α BB1 S.BB1 BB7 S.BB7 t Clayton Gumbel BB1 BB7 BB1 BB7

LRuc 99% 0.002 0.002 0.100 0.100 0.048 0.354 3.74 0.048 0.248 0.100 0.100

(0.964) (0.964) (0.751) (0.751) (0.626) (0.552) (0.503) (0.826) (0.618) (0.751) (0.751)

95% 0.020 0.068 0.068 0.145 0.051 0.224 1.466 0.145 0.385 0.220 0.145

(0.899) (0.794) (0.794) (0.703) (0.621) (0.636) (0.264) (0.703) (0.309) (0.488) (0.225)

90% 0.473 0.919 0.023 0.175 1.101 1.101 0.258 0.357 0.385 0.423 0.175

(0.492) (0.338) (0.880) (0.676) (0.294) (0.294) (0.212) (0.550) (0.535) (0.338) (0.676)

LRcc 99% 0.282 0.282 0.341 0.341 0.369 0.859 0.934 0.369 0.569 0.641 0.541

(0.869) (0.869) (0.843) (0.843) (0.831) (0.651) (0.609) (0.831) (0.831) (0.467) (0.869)

95% 1.436 2.599 2.599 2.479 1.946 1.729 2.662 1.685 2.351 1.436 1.436

(0.488) (0.273) (0.273) (0.290) (0.378) (0.421) (0.264) (0.431) (0.309) (0.488) (0.488)

90% 1.467 2.316 0.862 0.837 1.613 1.997 1.023 1.633 1.374 2.316 1.387

(0.480) (0.314) (0.650) (0.658) (0.446) (0.369) (0.312) (0.442) (0.503) (0.394) (0.363)
a LRuc and LRcc are short for the likelihood ratio of unconditional and conditional coverage respectively.

The first row shows the value, while the corresponding p value is given the parenthesis in the following

row. The critical value of LRuc and LRcc are 3.841 and 5.991

5 Conclusion and Future Work

Modeling the dependence between multivariate variables in asymmetric and tail-
dependent data is a very challenging task in demanding applications related to
big data and financial business, and existing methods cannot handle it well. This
paper presents a weighted partial regular model to resolve the issue without
imposing restrictions and on the dependence structures. The model is demon-
strated through analyzing the complicated structures of portfolios in currency
markets. The out-of-sample performance evaluation results highly outperform
other methods from statistic and risk evaluation perspectives. Our future work
will explore the performance of the regular vine with other high-dimensional
time series data.
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Abstract. Alcoholic spirits are a common target for counterfeiting and
adulteration, with potential costs to public health, the taxpayer and
brand integrity. Current methods to authenticate spirits include exami-
nations of superficial appearance and consistency, or require the tester
to open the bottle and remove a sample. The former is inexact, while
the latter is not suitable for widespread screening or for high-value spir-
its, which lose value once opened. We study whether non-invasive near
infrared spectroscopy, in combination with traditional and time series
classification methods, can correctly classify the alcohol content (a key
factor in determining authenticity) of synthesised spirits sealed in real
bottles. Such an experimental setup could allow for a portable, cheap
to operate, and fast authentication device. We find that ethanol content
can be classified with high accuracy, however methanol content proved
difficult with the algorithms evaluated.

Keywords: Classification · Spectroscopy · Non-invasive
Authentication

1 Introduction

Up to 25% of licensed premises in some parts of the UK have been found to
have counterfeit alcohol for sale1. Brown-Forman, the company that makes Jack
Daniels, estimates that around 30% of all alcohol in China is fake2.

Counterfeit alcohol poses a health risk to the consumer, as illegally produced
spirits may contain harmful contaminants such as methanol, an economic risk

1 http://www.bbc.co.uk/news/uk-12456360.
2 https://www.theguardian.com/sustainable-business/2015/sep/16/china-fake-

alcohol-industry-counterfeit-bathtub-booze-whisky.
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due to the avoidance of taxes, and a risk to brand integrity in cases where the
fakes are being sold as named brands.

Forgeries can sometimes be detected through external appearance such as
inconsistent labelling or bottling, but currently there is no way to conclusively
tell whether spirits are forged without opening the bottle to analyse a sample
directly. Breaking the seal and taking samples from a bottle is effectively a
destructive process, because even if authenticity is confirmed the bottle cannot
later be sold on store shelves or at auction, and collectors’ whisky will be greatly
devalued. Also, testing of samples can be an expensive and time consuming
process that is not suitable for mass screening. No matter what process is used
it will require one or more of: transport of the sample to a centralised lab; expert
knowledge and handling; consumable materials used in the analysis; and time for
methods such as chromatography. It is therefore desirable to develop a system
that can non-invasively determine authenticity of a suspect bottle in a cheap,
portable, simple and fast manner.

Vibrational spectroscopy in combination with modern machine learning tech-
niques provides a promising potential solution to these problems. Ever improv-
ing computing power, spectroscopy equipment and algorithms mean that on-site
classification using cost effective equipment is becoming evermore feasible.

The alcohol concentration of genuine spirits in the UK is tightly controlled.
For example, Scotch whisky must contain the level stated on the bottle to within
0.3% (v/v). Forgeries typically do not have this level of quality control, with
the alcohol content often being lower than reported. Alternatively, methanol
and many higher alcohols and heavy metals have regulations prohibiting their
presence in spirits to within certain maximal concentrations to ensure safe con-
sumption, and are also tightly controlled. Both ethanol level and methanol level
can in principle be characterised by vibrational spectroscopy, and ultimately
determined with chemometric and machine learning techniques.

We wish to evaluate to what extent non-invasive determination of alcohol con-
centrations in arbitrary sealed bottles using vibrational spectroscopy is possible
and worth pursuing. We describe experiments carried out on synthesised alcohol-
water solutions, analysed through-bottle using near infrared spectroscopy (NIRS),
and classified using a set of benchmark machine learning algorithms into ‘genuine’
and ‘forged’ categories based on their ethanol and methanol concentrations.

First, related work is reviewed in Sect. 2, and an overview of the data collec-
tion process and a high-level analysis of it is given in Sect. 3. The experimental
and evaluation methods used are outlined in Sect. 4 and results presented in 5,
before conclusions are drawn in Sect. 6.

2 Background

2.1 Spectroscopy

Vibrational spectroscopy (VS) is the term used to describe two complementary
analytical techniques, infrared spectroscopy (IRS) and Raman spectroscopy (RS).
These are non-destructive, non-invasive tools that provide information about
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the molecular composition of a sample by measuring the intensities of different
vibrational interactions between a light source and sample. The spectra produced
by VS acts like a fingerprint for the contents, and can be used qualitatively and
quantitatively for identification, characterisation, and quality control.

VS methods, along with many competing techniques, are much researched
within the food and drink sector [4,9] due to VS’s non-invasive and relatively low
operating-cost nature as an analytical technique. However, VS suffers from lower
discriminatory power when compared with more time consuming and destruc-
tive techniques such as gas or liquid chromatography, one of which is often the
technique used to determine the ground truth of studied samples.

As early as 2005, [10] carried out a comparison of NIR and Raman spec-
trometries for their suitability in combination with regression techniques for the
determination of alcohol content in whisky and vodka contained within clear and
coloured glass bottles. The study was conducted to evaluate the techniques for
possible use in non-invasive, in-situ quality assurance in bottling plants.

Univariate regression models for each type of drink were calibrated for the
Raman data in the first derivative spectrum, while a multivariate Partial Least
Squares (PLS) model was calibrated for the NIR data. The latter calibration
procedure involved some optimisations on the test data, and therefore the results
specifically should be treated with caution. However, the higher level conclusions
in terms of the relative difficulty of different aspects of the experiments are still
insightful: that differences between bottles accounted for the greatest variation
and difficulty in the analysis, relative to differences in bottle positioning and
time of measurement. The authors concluded that both NIR and Raman were
not suited to the analysis of samples within coloured glass in particular, due to
the effect of large amounts of fluorescence on the spectra. They also found that
for the doubly-transmitted NIR method, a signal could not be collected from
the widest part (70 mm path length) of the largest bottles, whereas comparable
signals to that of the smallest bottles could be found by measuring through the
neck of the bottle (40 mm path length).

More recent work in this area is described in [7]. The ability for Raman spec-
troscopy to analyse and discriminate between certain Scotch whisky production
factors from within their original containers is tested. 44 whisky samples, three of
which had samples transferred to glass vials due to their original bottles being
made of green glass, were measured directly through the glass walls using an
Avantes Raman instrument. Although not detailed in full, the authors note that
the location of measurement (from the neck, base or centre) had no influence on
the quality of the readings. Furthermore, the stability of the sampling suggested
excellent reproducibility, with normalised spectra being ‘virtually identical’.

In an initial Principal Component Analysis (PCA) visualisation, separation
could already be found between the type of cask each whisky was matured
in. However, factors such as the source distillery and use of artificial caramel
colourings could not be defined by the first three principal components (PC).

PLS Regression (PLSR) and Principal Component Regression (PCR) were
subsequently evaluated. However PLSR reportedly delivered far better results
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and was therefore the only method discussed. Leave-one-out cross validation
was used as an evaluation procedure. A quantitative analysis of important fac-
tors related to authentication was described: age; ethanol concentration; and a
second attempt at the presence of artificial colourings. Age could be estimated
within 0.42 years (root mean squared error (RMSE)), from the samples in the
range 3–22 years. On average ethanol concentration could be estimated to within
0.44% (RMSE), which is only just outside the regulatory limits of Scotch Whisky
(0.3%). These are very strong results, suggesting the feasibility of quantitatively
determining key factors to whisky authentication.

Continuing on from these works, our own investigation into this problem
focuses on portability, simplicity, and speed in all aspects of the analysis of a
sample. The final aim is to allow a non-expert to determine the authenticity of
an arbitrary spirit on-site and within seconds.

2.2 Classification

Classically, machine learning and chemometric methods handling spectral data
have been linear regressive models built on top of (automatically or manually)
selected attributes or PCA-transformed spaces. The physical interactions giving
rise to the spectra are understood to be linear in nature, and the resonances of
molecules being looked for are known to occur at certain wavelengths, even if the
particular wavelengths are not known a priori. Given this, more complex systems
may not have much room to increase predictive accuracy, be prone to overfitting,
and in some cases may lose interpretability of results. Linear systems on reduced
attribute spaces work satisfactorily for clean spectra collected under professional
and standardised conditions. However, they may be unable to handle structural
changes in the data.

The nature of the problem suggests a regression model. However, through
consultation with industry, the ultimate use case designed to aid field use is
a traffic light classification scheme; green (genuine), yellow (suspect), and red
(forged). The confidence thresholds for each class can be set by the user in
response to factors such as the costs of verification and screening.

The classification of spectra can be phrased as a time series classification
(TSC) problem [1]. A time series is a set of (typically numerous) ordered and
numeric attributes. While different sets of TSC data will have different under-
lying properties, the typical higher-order structures informing classification are
the shapes and patterns of series and/or subseries.

Recent large scale evaluations on entire dataset archives in both traditional
classification [6] and TSC [1] give indications as to the classification methods that
could be suitable for this particular problem space. [1] found that for spectral
datasets (of which there were 7 of 85 datasets in total) classifiers that considered
the full series similarity were consistently better than those considering subseries
similarity, frequency or distribution. Throughout both evaluations, the effective-
ness of ensembling was clearly evident. In the benchmark experiments presented
in this work we use a range of classifiers classically used in chemometrics, in
addition to state of the art and ensemble classification methods.
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3 Data

There are many experimental factors that could confound a non-invasive alcohol
classification system in the field: ambient light and environmental conditions;
variation in spectral hardware; and the measurement habits of different users
may all cause variation in the resulting spectra. However, we believe one of
the largest sources of variation which needs to be accounted for arises from
the properties of the bottle a sample is contained in. Bottle shape and size,
glass thickness and colour, and interfering labeling and embossing can all work
to frustrate the collection of consistent, reliable spectra. Therefore, with these
experiments, we primarily wish to determine the difficulty of measuring and
classifying the alcohol content of samples in arbitrary bottles.

We have conducted experiments using 44 different examples of real, non-
standardised bottles. While most of the bottles are transparent and cylindrical,
some are coloured, rectangular or skewed. Using a single StellarNet BLACK-
Comet-SR spectrometer, transmission near-infrared spectra over a one second
integration time of ethanol, methanol and water solutions within each bottle were
collected to form two datasets. For the ethanol concentration experiments, 40%
ethanol (with the remainder being water) is taken to be the ‘genuine’ case, while
concentrations of 35% and 38% ethanol are taken to be ‘forgeries’. The second
dataset is detecting the presence of methanol. With 40% total alcohol concentra-
tion being maintained, solutions with 1%, 2% and 5% methanol (v/v) form the
forged class, while 0% methanol (i.e 40% ethanol) constitutes not forged. The
two classification problems are therefore to determine from a spectra whether or
not a solution within an arbitrary sealed bottle (1) has less than 40% alcohol or
(2) contains dangerous levels of methanol. Information on the bottles and the
raw data, including labels for bottle and concentration for each reading, can be
downloaded at3.

Three batches of each alcohol concentration were produced, and for each
solution in each bottle the sample is placed, a spectra taken, and placed again
for a total of three readings. A total of over 2000 readings were taken. Bottles
were positioned such that the light travels through the widest part of the bottle
while avoiding labelling, embossing and seals as much as possible. However, to
mimic future conditions a precise recreation of the exact path on each place-
ment was intentionally not attempted. For simplicity, and to mimic a possible
portable sampling station, the geometry of the light source and receiver was fixed
at 15 cm; enough to accommodate the widest bottles tested. Dark readings were
subtracted from each spectra. Data collection took place over the course of mul-
tiple weeks by a single tester. Batches of each concentration were spread out over
that time-frame, to reduce the chance of any patterns based on time of measure-
ment forming. Spectra are presented in the wavelength range 876.5 nm–1101 nm,
sampled every 0.5 nm, and each spectrum is standardised.

To help give an intuition of the classification problem, Fig. 1 shows the aver-
age series of each class to demonstrate their differences. The progressively shaded

3 http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Data/.

http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Data/
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Fig. 1. Graphs showing the average series of each class, overall standard deviation and
range for the ethanol and methanol concentration datasets. For each image, the main
discriminatory region is zoomed.

regions show the overall standard deviation and range of intensities at each wave-
length. The fact that these are difficult to distinguish by eye is itself quite telling.
The overall variance in the dataset is very low, and the inter-class variance a frac-
tion of that.

The zoomed regions show the wavelength ranges where alcohols are known to
have a strong resonance. A clear separation between classes can be seen within
the ethanol problem. However, for methanol the classes appear to be indistin-
guishable. Ethanol and methanol have overlapping resonances, and therefore the
fact that the overall concentration of alcohol remains at 40% means any differ-
ence between the class values in the resulting spectra is drastically reduced.

Relative to the apparent differences in the average class spectra, individual
series are greatly affected by noise introduced by a variety of means through the
nature of the experiment, further increasing classification difficulty. For example,
an individual series may be skewed by the lensing effects of a uniquely shaped
bottle. This is evidenced by Fig. 2. It shows the first three PCs of the transformed
ethanol dataset, which explain 95% of the total variance. In (a), the instances
are categorised by their ethanol concentrations. While some separation is found
between the two classes, this is observed mostly in the second and third PCs,
which account for only 17% of the total variation. The first PC, as (b) shows,
for the most part explains variance due to the bottles. This is in line with our
expectations that bottle variation would be one of the larger obstacles to over-
come for the final use case of an authentication system. While many bottles are
clustered close together, there are some that form clear and separate clusters of
their own. As might be expected, these are bottles that have some particularly
non-standard bottle property, such as irregular shape or colour.

Promisingly, the PCA transform does suggest a good separation between
ethanol concentrations within a particular type of bottle, as illustrated by the
outlying bottle clusters when compared between figures. The equivalent figures
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Fig. 2. Graphs of the top three PCs of the PCA-transformed ethanol forgery dataset,
with samples categorised by (a) ‘genuine’ (blue dot) and ‘forgery’ (red cross), and (b)
by bottle. (Color figure online)

for the methanol dataset are not included in this paper for the sake of readabil-
ity and space, however they (and the source ethanol images including keys) are
available on-line4. What they show is analogous to Fig. 1(b); that the PCA is
almost entirely unable to distinguish between the alcohol concentrations, how-
ever trends by bottle type are largely the same.

4 Experimental Setup

For this application, our long-term hypothesis is that TSC methods that con-
sider overall shape may be able to correct for structural defects in the spectra
brought about by the many sources of noise involved with non-invasive spectra
collection. For example, a linear method built on a small number of selected
attributes may not be able to account for high-level structural changes in a new
test case caused by an abnormally shaped bottle. Using the datasets that have
been formed, we perform benchmark and exploratory evaluations with a wide
variety of classification schemes.

The classifiers evaluated are: Logistic Regression (LR); Partial Least Squares
Regression (PLSR); Multilayer Perceptron (MLP); 1-Nearest-Neighbour with
Euclidean Distance (1NN); C4.5 Decision Tree (C45); linear SVM (SVML);
quadratic SVM (SVMQ); radial basis function SVM (SVMRBF); Rotation For-
est [11] (RotF); Random Forest [3] (RandF); Heterogeneous Ensemble of Stan-
dard Classification Algorithms [8] (HESCA), and for the TSC-specific classi-
fiers: Random Interval Spectral Ensemble [2] (RISE); Bag of SFA Symbols [12]
(BOSS); and Time Series Forest [5] (TSF).

We evaluated each classifier on the datasets using a leave-one-bottle-out
(LOBO) cross validation. In this scheme, all samples contained within a sin-
gle bottle are reserved for the test set, with the remainder forming the training

4 http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/FiguresAndTables/.

http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/FiguresAndTables/
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set. By evaluating in this manner, classifiers should not be able to leverage any
discriminatory features caused by the bottle itself, focusing on alcohol level as
the only commonly varying factor.

To avoid ambiguity, we stress that in all cases the training of a classifier,
including any hyper-parameter tuning and model selection required, is performed
independently on the train set of a given fold, and the trained classifier is evalu-
ated exactly once on the corresponding test set. Our code5 reproduces the splits
used in this evaluation exactly, and results6 are able to be recreated.

Our primary concern is generally accuracy (ACC) because of its ease of moti-
vation and interpretability. However, in applications such as this the costs of
measurement, verification, and misclassification externally influence the ways in
which decisions need to be made. For example, if the costs of confirming the
legitimacy of a suspect bottle are high, relative to the resources available to
the tester, then the decision boundary may be skewed to favour the ‘genuine’
label. As a result, only samples that the device is more confident are fake will be
seized or sent for further analysis. Accuracy cannot entirely capture these factors.
Therefore balanced accuracy (BALACC) and measures that assess the quality of
the classifiers’ probabilistic outputs are also reported; the Log-Likelihood (LL)
and the Area Under the Receiver Operating Characteristic (AUROC).

5 Results

Table 1 details the average accuracies achieved by each classifier on all datasets
formed for the sake of space, however each subset of experiments is separately
discussed in turn with the superscripts in column and section headers denoting
the particular results being discussed.

5.1 Leave-one-bottle-out Cross Validationa

When considering the LOBO experiments on the original (time series form) data,
two trends are immediately apparent: ethanol concentration, with the correct
models, can be classified with high accuracy; determining methanol concentra-
tion in a constant overall alcohol level is much more difficult. Only some of the
classifiers tested achieving higher than the minimum expected accuracy of 0.75,
the proportion of the majority class.

To discover what classifiers are best for each evaluation statistics, we can
perform statistical tests of difference over fold scores because all classifiers are
evaluated on identical splits, which are reproducible with the published code.
Figure 3 is a critical difference diagram over all folds of the LOBO-sampled
ethanol and methanol datasets combined. Classifiers are ordered by average rank
over fold scores, and those connected by a bar are pairwise not significantly
different between each other, p = 0.05.

5 http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Code/.
6 http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Results/.

http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Code/
http://research.cmp.uea.ac.uk/DetectingForgedAlcohol/Results/
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Table 1. Average accuracies (and standard deviations) over all folds of the alcohol
datasets. The best classification accuracies on each dataset are bold.

Classifier Ethanol LOBOa Methanol

LOBOa
PCA Ethanol

LOBOc
PCA Methanol

LOBOc
Bottleb

1NN 0.866(0.093) 0.672(0.103) 0.779(0.104) 0.627(0.101) 0.541(0.017)

BOSS 0.913(0.086) 0.786(0.050) - - 0.622(0.021)

C45 0.824(0.132) 0.658(0.098) 0.796(0.106) 0.750(0.001) 0.412(0.017)

HESCA 0.965(0.069) 0.843(0.079) 0.818(0.104) 0.750(0.001) 0.639(0.020)

LR 0.964(0.045) 0.809(0.100) 0.807(0.092) 0.744(0.030) 0.430(0.018)

MLP 0.960(0.068) 0.834(0.083) 0.813(0.108) 0.750(0.001) 0.617(0.027)

PLSR 0.965(0.053) 0.860(0.073) 0.801(0.089) 0.745(0.026) 0.061(0.010)

RandF 0.888(0.105) 0.758(0.047) 0.817(0.093) 0.714(0.060) 0.587(0.015)

RISE 0.776(0.115) 0.780(0.031) - - 0.622(0.016)

RotF 0.938(0.078) 0.839(0.049) 0.815(0.104) 0.750(0.001) 0.653(0.014)

SVML 0.945(0.075) 0.838(0.077) 0.801(0.094) 0.750(0.001) 0.517(0.017)

SVMQ 0.959(0.103) 0.864(0.102) 0.803(0.092) 0.750(0.001) 0.656(0.019)

SVMRBF 0.881(0.098) 0.841(0.092) 0.806(0.091) 0.750(0.001) 0.349(0.015)

TSF 0.868(0.112) 0.769(0.029) - - 0.635(0.018)

Because each test fold represents a single bottle, the accuracy on a fold gives
an indication of the difficulty that a particular bottle adds to the classification
problem. We took the top four classifiers on the ethanol problem (PLSR, LR,
MLP, and HESCA) which all achieved similarly strong performances, and looked
at which bottles were preventing perfect classification. On 34 of the 44 folds, at
least one of these top four classifiers achieved an accuracy of 1. Where only a
subset of the four classifiers met this criteria, the rest only ever misclassified only
one or two test cases.

The worst fold accuracy represents the Bernheim Original Kentucky Straight
wheat whiskey bottle, where the average accuracy across the four classifiers is
0.76. Only five bottles had an average accuracy of less than 0.9, and all of
them are irregular in some way. This does lend credence to the idea that the
determination of alcohol concentration cannot be done entirely irrespective of
bottle. However, the fact that there is clearly some transferability (evidenced by
better-than-guessing accuracy in this LOBO format) is promising.

In [7,10], coloured glass posed challenges for the collection of Raman spectra,
which particularly struggles to handle fluorescence, but also for NIRS in [10]. Our
experiments included three green-glass bottles, however on these no significant
drop in predictive accuracy was observed in the same analysis of the top four
classifiers. These three bottles also showed no clear separation from the largest
central cluster in the PCA transform presented in Fig. 2b.

5.2 Classifying the Bottleb

The PCA transform of the ethanol dataset, shown in Fig. 2b, indicated that
the majority of the variance corresponded with differences in the containing
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Fig. 3. Critical difference diagrams for the four evaluation statistics on the alcohol
datasets.

bottle’s properties. Further, most of the first PC was caused by a small number
of irregularly shaped bottles. The majority of bottles otherwise formed a dense
cluster. To further investigate the extent to which features of the bottle are
detectable in the spectra, we ran experiments with the same set of classifiers but
with the containing bottle as the class label, instead of alcohol concentration. The
full dataset was split 30 times using random stratified sampling with a 70/30
train/test split. We would expect the outlying bottles on the PCA transform
to be the easiest to classify, while most standard bottles can only be guessed
at. The best accuracies achieved were up to 0.656 (SVMQ), which on a 44 class
problem is quite high. It is worth noting also that the non-linear methods and
especially TSC methods make a relative improvement on this problem, signifying
the different nature of the discriminatory features.

In the interest of finding where the classifiers were making their errors,
we grouped bottles by whether they could be described as being standard
(clear glass and cylindrical, 28 bottles) or irregular (coloured glass and/or non-
cylindrical, 16 bottles). Considering the SVMQ’s predictions, we counted the
incorrect classifications for cases with a standard bottle label classified as a stan-
dard bottle, standard classified as irregular, irregular classified as standard, and
irregular classified as irregular. The first of these four cases accounts for 69%
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of the total error, while the remaining three account for a little over 10% each.
When correcting for the number of possible ways to misclassify in each scenario,
SVMQ was still twice as likely to make the first kind of error as the last.

These results have positive implications for the original goal of non-invasive
alcohol level determination. The fact that it is relatively much easier to mistake
one standard bottle for another suggests that a classifier could be reliably trained
under the assumption that the test sample bottle has certain properties matching
those in the train set. In terms of the practical use and production costs of a
device, the worst case is that each individual type of bottle requires its own
adequately populated training data for a model to learn on. While this or at least
a two-stage classification procedure may still be needed for irregular bottles, a
device that can effectively classify the contents of bottles within some particular
range of properties is still a worthwhile improvement over the worst case.

5.3 PCA Transformsc

Lastly, we repeated the LOBO classification experiments again with PCA-
transformed versions of the datasets (calculated and applied to each resample
individually), maintaining components that explain 95% of the variance. Anal-
ysis of spectral data in the literature often involves a dimensionality-reducing
transformation such as PCA, both to highlight discriminatory variance and
reduce the computation time of analysis. However, in this case it appears to
reduce accuracy relative to classification performed on the time series, in agree-
ment with [7].

The methanol PCA transform seemingly cannot discriminate between concen-
trations at all, with all classifiers simply picking the majority class. For ethanol,
all classifiers except 1NN achieve very similar accuracies. Referring to Fig. 2a,
it would seem that most of the classifiers are forming almost identical decision
boundaries, the same that a human naively would by eye.

6 Conclusions

We have demonstrated the feasibility of determining alcohol concentration non-
invasively in arbitrary bottles using near infrared spectroscopy in combination
with machine learning. While ethanol level could be classified with high accu-
racy, methanol concentration within a consistent overall alcohol level was much
more difficult to detect. However, some classifiers demonstrated results signifi-
cantly better than random guessing, suggesting that the discriminatory features
are not entirely lost at the physical hardware level. There may still be room for
improvement with different optical geometries and better-tailored data process-
ing and model selection. Bottles with particularly unique properties introduced
extra difficulty, but the contents of more standard bottles could be learned and
determined with very good transferability.

Traditional methods within chemometrics such as Logistic and Partial Least
Squares regression were strong. However, Principal Component Analysis led to
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significantly decreased performance. A quadratic support vector machine and
simple neural network architecture also performed well. A larger computational
investment for more thorough tuning would likely lead to improved results for
these. A combination of tuning and ensembling these along with the regressive
methods is a promising route to follow, especially due to their relatively fast
prediction times once trained. Algorithms bespoke to time series classification
did not provide an immediate increase in predictive power.
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12. Schäfer, P.: The BOSS is concerned with time series classification in the presence
of noise. Data Min. Knowl. Discov. 29(6), 1505–1530 (2015)



Research and Application of Mapping
Relationship Based on Learning Attention

Mechanism

Wanwan Jiang(B), Lingyu Xu, Jie Yu, and Gaowei Zhang

Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai, China
jiangwanwan0327@163.com

Abstract. The study on the interactions between different or the same
variables of financial markets is an interesting topic. Many efforts have
been devoted to investigate this issue. However, there has been little
work studying the relationship of the various attributes within the stock,
while this relationship is essential for us to have a deeper understand-
ing of stock’s internal mechanisms. So in this paper, we explored using
sequence-to-sequence model for extracting the relationship of arbitrarily
two properties of the stock. We not only give a qualitative description
of the relationship between stock’s attributes, but also quantify the rela-
tionship through the model. The experimental results show that there are
certain correlations between the internal attributes of the stock, among
which the correlation between Close&%Tuv and %Chg&%Tuv are more
prominent. In addition, we also conducted the anomaly detection on
network public opinion information, and found out the starting points
of abnormal events combined with the network news information. By
comparing the starting points of the events and the changes in the rela-
tionship between stock attributes, we concluded that there is a certain
regularity between them.

Keywords: Stock transaction data · Mapping relationship
Time series · Neural network

1 Introduction

In recent years, more and more researchers have been getting to focus on stock
market. With time goes by, numerous research methods on the relevance of the
stock market have been put forward [1–10]. However, most of these methods
have studied the relevance of the stock. There are few scholars, to the best of
our knowledge, study the relevance of the various attributes within the stock.
As important indicators of the stock market, the properties of the stock are
interrelated and interact on each other [11]. So, it is necessary to study the
correlation between them. For investors, they can determine whether there are
abnormal phenomena based on changes in the relationship between the stock
properties to efficiently grasp the trading opportunities to reduce investment
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 310–321, 2018.
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risk. For government regulators, they can guard against stock market risk. Also,
for the researchers, they can optimize the existing relational analysis method
based on internal relations, and to propose new ideas and practical methods for
the future research.

China’s stock market is a complex system, which affected by political, eco-
nomic and other factors. The traditional time series analysis methods, such as
Auto-regressive model (AR), Moving-average model (MA) and Auto-regressive
and Moving-average model (ARMA), have been slightly inadequate. At the same
time, more and more methods of neural network are proposed, such as Deep
Neural Network (DNN), Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) et al. But they can only be applied to problems whose
inputs and targets can be sensibly encoded with vectors of fixed dimensionality.

In this paper, we use the sequence-to-sequence model for extracting the
relationship among the internal properties of the stock. The advantage of this
model is that it is good at dealing with the mapping problem of variable-length
sequences, which is characterized by follows: (1) both input and output are
sequences; (2) the length of the sequence is not fixed; (3) there is no correspon-
dence between the input and output sequence length.

2 Problem Definition

Stock transaction data is a time series data, because it is sampled according to
the order of time continuously. In this paper, we use the sequence-to-sequence
learning methods to study the correlation between the internal properties of the
stock.

2.1 Definition

Definition 2-1 Multivariate Time Series (MTS)
Multivariate time series refers to a sequence of multiple data at the same time.
In general, it can be seen as a combination of multiple univariate time series.
We define the MTS as:

X =< D1,D2, ...,Dk, ...,Dn > (1)

where n expresses the number of attributes in X, and Dk is expressed as:

Dk =< (t1, dk1), (t2, dk2), ..., (tj , dkj), ..., (tm, dkm) > , 1 ≤ k ≤ n . (2)

In (2), Dk represents the k-th attribute time series in X, tj represents the
sampling time. dkj ∈ R represents the recorded value of Dk at time tj , and
m represents the length of the time series Dk. Usually the sampling interval
Δt = ti+1 − ti is the same.

Definition 2-2 Segmented Time Series
A segmented time series is a sequence obtained by the division of the original
time series according to the length of the segment. It is denoted as:

D
(l)
k =< H1,H2, ...,Hi, ...,Hm−l+1 > (3)
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where l is the length of the segment, and Hi is expressed as follows:

Hi =< (ti, dki), (ti+1, dk(i+1)), ..., (ti+l−1, dk(i+l−1)) > (4)

Therefore, the segmented time series D
′
k corresponding to the original time

series Dk can be defined as follows:

D
′
k =< D

(a)
k ,D

(a+1)
k , ...,D

(l)
k , ...,D

(b)
k > , a ≤ l ≤ b (5)

2.2 Evaluation Method

In this paper, we employed the Pearson correlation coefficient (ρ) to evaluate
the correlation between two time series, and calculate mean square error (MSE)
value to compare different forecasting series.

ρX,Y =
COV (X,Y )

σXσY
=

E(XY ) − E(X)E(Y )
√

E(X2) − E2(X)
√

E(Y 2) − E2(Y )
(6)

where X and Y represent two time series respectively. The value of ρX,Y is
between the interval [−1,1], and ρX,Y = 1 means that X and Y are com-
pletely positive correlation; ρX,Y = −1 indicates a complete negative correlation
between X and Y ; ρX,Y = 0 means that X and Y are completely irrelevant. The
larger the |ρX,Y |, the higher the degree of correlation between X and Y .

MSE =

n∑

t=1
|actual(t) − forecast(t)|2

n
(7)

where actual(t) denotes the original series, forecast(t) denotes the forecasting
series, n is the length of time series. We define B12 as follow:

B12 =
|MSE1 − MSE2|

MSE2
(8)

where MSE1 is the MSE of time series 1, MSE2 is the MSE of time series 2.
When MSE1 < MSE2, B12 means how much MSE1 is better than MSE2.

2.3 Problem Definition

The purpose of this paper is to study the correlation between the internal prop-
erties of the stock. Hence, according to the above definition, we can describe the
stock trading sequence as:

X =< Close,High, Low,Open, Pcl,%Chg,%Tuv, V ol > (9)

where X is a multivariate time series, and each attribute in X also represents a
univariate time series respectively. The specific meaning of each variable in X is
described in Table 1.
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Table 1. Definition of each property of stock

Stock properties Definition

Close The closing price of stock

High The highest price of stock

Low The lowest price of stock

Open The opening price of stock

Pcl The closing price of the previous day of stock

%Chg The change rate of stock

%Tuv The turnover rate of stock

V ol The volume of stock

Therefore, the research problem of this paper can be formally defined as
follows: Given two stock attribute time series DA and DB , which are segmented
according to the size of l to obtain their corresponding segmented time series sets
D

′
A and D

′
B . Among them, A and B represent arbitrarily two properties of stock,

such as A indicates Close and B indicates High. Take D
′
A as the input sequence

of the model, through training, predict the corresponding output sequence, which
is expressed as D

′′
B . The ρD′′

B ,D
′
B

for D
′′
B and D

′
B is then calculated. According

to the value of ρD′′
B ,D

′
B
, we determine whether there is a certain relationship

between A and B, and the strength of the relationship.

3 Definition of Model

Our model takes the encoder-decoder-based learning framework accompanied
by attention mechanism [12,13] to study the correlation between the internal
properties of the stock.

As illustrated in Fig. 1, the model typically consists of three components: an
encoder network, a decoder network, and an attention mechanism.

3.1 Encoder

Given a variable-length input sequence X = (x1, ..., xTx
), the encoder reads each

symbol of X sequentially, until a special end-of-sequence symbol “< eos >” is
read. When reading each symbol, the hidden state ht of the encoder is changed
by iterating the following equation:

ht = f(ht−1, xt) (10)

where f is a non-linear activation function (here is gated recurrent unit) that
computes the current hidden state ht given the previous hidden state ht−1 and
the current input xt.

In this paper, we take each subsequence of D
′
A as model’s input, where the

end of each subsequence is marked by an end-of-sequence symbol.
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Fig. 1. The process of the experiment and the illustration of Encoder-Decoder frame-
work.

3.2 Decoder

The decoder is trained to generate the output sequence Y = (y1, ..., yTy
) by

predicting the next symbol yt given the hidden state st. In this paper, Y refers
to each subsequence of D

′′
B . Unlike the RNN, both yt and st depend on previous

symbol yt−1 and context vector ct of the input sequence. Therefore, the hidden
state at time t of the decoder is computed by the following equation:

st = f(st−1, yt−1, ct) (11)

where f is a non-linear activation function (still GRU unit), and st−1 denotes
the hidden state at time t − 1. What’s more, the conditional distribution of the
next symbol is

p(yt|y1, ..., yt−1, x) = g(yt−1, st, ct) (12)

where g is a softmax activation function.

3.3 Attention Mechanism

For each output symbol yi, the attention mechanism calculates the weight over
each source hidden state hi, and then decides how much attention should
be paid to that hidden state. It is this feature that allows model to learn
alignment between the input sequence and the partial output sequence auto-
matically. In our model, the context vector ct conditioned on a sequence of
annotations(h1, ..., hTx

), which is obtained by the encoder.
The context vector ct is computed as a weighted sum of hidden states:

ct =
Tx

Σ
j=1

αtjhj (13)

where weighting factors αtj is computed by

αtj =
exp(etj)

Tx

Σ
k=1

exp(etk)
(14)
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etj = score(st−1, hj) (15)

is considered as a matching model. The higher the score, the greater the degree
of alignment between st−1 and hj .

4 Experiments and Results

The purpose of our experiments is to extract the relationship among the internal
properties of the stock. We prove this by testing different attributes pairs of
stock by using our model. The detailed description of our experimental setup
and results are given below.

4.1 Datasets

The stock data used in our experiment is downloaded from NetEase Finances
website. And the experiment was carried out on twenty stocks. We first match
any two stock attributes in pairs, and then delete the data with the value of
None and normalize the entire data between 0–1 for unify comparison. Then we
segment the data according to the segmentation rules described in Sect. 2 so as
to obtain segmentation sets. At last, 70% of the data is treated as the training
set, 10% of the data is treated as the validation set, and the rest data is treated
as the testing set.

4.2 Results and Analysis

The encoder and decoder of our model have 3 hidden layers of GRU units respec-
tively, and each layer has 32 hidden units. We initialize all the weights of our
model with a distribution between −0.1 and 0.1 uniformly. For training, we use
SGD (stochastic gradient descent) without momentum, with a start learning
rate of 0.25. A decay of 0.99 is employed and learning rate will be decreased by
this much if no improvement was seen over last three times.

4.2.1 The Discovery of the Mapping Relationship
Figure 2 depicts the average correlation coefficient matrix of the attribute pairs
of six stocks when the length of the segmented time series is 7. Each small matrix
represents the degree of correlation between an attribute pair, and the color is
closer to yellow, indicating that the association is stronger. From the figure we
can see that, in addition to the matrix on the main diagonal, there are also
four other matrices close to yellow, while the other matrices are close to blue.
And these four matrices represent V ol&Close, Pcl&Open, Close&%Tuv, and
%Chg&%Tuv respectively. Therefore, we think that there are certain correlation
between these four attribute pairs. The results of this experiment provide a basis
for the expansion of our subsequent experiments.

Figure 3 shows the average correlation coefficient between two different
attributes. P1 represents V ol&Close, P2 represents Close

′
&Close, P3 represents
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Fig. 2. The average correlation coefficient matrix of each attribute pair. (Color figure
online)

Pcl&Open, P4 represents Open
′
&Open, P5 represents Close&%Tuv, P6 repre-

sents %Tuv
′
&%Tuv, P7 represents %Chg&%Tuv, P8 represents %Tuv

′
&%Tuv,

where Close
′
, Open

′
and %Tuv

′
are all predicted by our model. From the figure,

we can see that the average coef of P2, P4, P6 and P8 are always large, when-
ever the average coef between the two original time series is large (P3), medium
(P1,P5) or small (P7). On the one hand, this shows that only using the correla-
tion coefficient is not able to determine whether there is a correlation between
the two stock attributes correctly; on the other hand, it proves that our model
has the ability to discover potential relationships that can not be obtained by
correlation coefficient.

Furthermore, with the comparison of P2, P4, P6 and P8, we can see that
when l = 3, 4, the average coef is small. But when l > 4, it is greater than 0.6
(except for the point of l = 8). We believe that the above phenomenon may
be due to the time dependence of stock data and the memory of the model.
The model lacking ability to learn the knowledge when the length of the input
sequence is small. However, with the increase of sequence length, the amount of
information obtained by the model is more and more, so it can better to predict
based on the information and reflect the correlation between attributes.

From the above experimental results, we can know that the proposed model
has a certain ability to find out whether there is a potential relationship between
attribute time series. In order to further validate this conclusion, we compare
this model with LSTM and RNN. Figure 4 displays the predicted time series
of one attribute generated by the time series of another attribute when using
different models. Forecast 1, Forecast 2 and Forecast 3 are predicted by the
proposed model, LSTM and RNN respectively. The MSE of each predicted time
series is shown in Table 2, where the MSEP is the MSE of forecast1, MSEL is
the MSE of forecast2, MSER is the MSE of forecast3, and the BPL, BPR are
the B of MSEP and MSEL, MSEP and MSER respectively. From the Fig. 4
and Table 2 we can know that the proposed model has a better performance in
the exploration and prediction of attribute relations.
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Fig. 3. The average correlation coefficient between two different attributes when l takes
different values. The four charts (P1, P3, P5 and P7) on the left represent the average
coef between the two original time series, while the four charts (P2, P4, P6 and P8)
on the right represent the average coef between the time series predicted by our model
and the original time series.

4.2.2 The Application of Mapping Relationship
When a hot event occurs, people’s views and comments on this event will spread
rapidly on the Internet, and form online public opinions with a certain scale and
influence. At the same time, investors’ sentiment is also easily affected by these
online public opinions and other investor sentiment. Therefore, in this section,
we choose the amount of post and click as indicators to analyze the event, and
find the event by detecting the abnormal points in the time series of post and
click. Then, we compare and analyze the trend of changes in the association of
stock attributes with hot events to find out the relationship between them.

Table 2. The MSE of different models and B value. stockcode: 600652

Stock MSEP MSEL MSER BPL BPR

V ol&Close 0.000354 0.001744 0.002401 79.70% 85.26%

Pcl&Open 0.000395 0.001179 0.001832 66.50% 78.44%

Close&%Tuv 0.000296 0.002170 0.002309 86.36% 87.18%

%Tuv&%Chg 0.000401 0.001500 0.002160 73.27% 81.44%
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Fig. 5. The left subgraph shows the total number of click every day and the right
subgraph shows the total number of post every day.

We crawled comments data of 20 stocks from 01/01/2014 to 12/31/2016 from
East Wealth Network stock BBS. Figure 5 shows part of the click and post data
of 6 stocks. From the figure we can observe that the trend of two maps is highly
consistent, and the abnormal time periods of the events are all concentrated in
20–30. However, we can not find an accurate anomaly period for an event only
by the observation of Fig. 5. Therefore, we use the EGADS (Extendible Generic
Anomaly Detection System) proposed by Yahoo to detect the abnormal time
period more precisely. Figure 6 shows the click time series, post time series, and
abnormal point detection maps of stock 000799, where the point with the value
1 indicates the point is an abnormal point (the red point in the figure) and
the point with the value 0 indicates that point is not an abnormal point. By
comparing the outliers of click time series with the outliers of post time series,
we find that the distribution of outliers in two time series is basically consistent.
Then we match the anomalous starting points of these two sequences, as shown
in Fig. 7, the red dashed line marks the start time of them. From the figure, we
can see that there are nine abnormal starting points(A-I) marked on the map
and eight of them are shared by Click and Post. According to these starting
point, we conducted a event advanced search through Baidu News. The search
results are shown in Table 3, where News indicates the start time of the event,
Events indicates the specific event, and Amount indicates the total amount of
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related news within 5 days from the occurrence of the event. From the table,
we can see that the four abnormal points labeled A, B, C and F correspond
to a larger amount of news. We believe that this phenomenon may be caused
by man-made invalid posts, personal emotions and other reasons. And Baidu
News, which can truly reflect the hot news all the time, does not contain any
artificial editing ingredients, so we define events that occurred at A, B, C and F
as hot events. The third subgraph of Fig. 7 shows the changes in the relationship
between Close&%Tuv and %Chg&%Tuv. From the graph, we can see that there
are several obvious declines, and we mark them out in red circles. And the time of
inflection points is highly matched with the time of the hot event that we defined
above. For the other 19 stocks, we also can find this rule, and the matching rate
is about 78.3%.

Based on the above experimental results, we draw the following conclusions:
the occurrence of hot events will affect the relationship between the attributes of
the stock. By observing the changes in the relationship between stock attributes,
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Fig. 6. The click time series, post time series, and their own abnormal point detection
maps. (stock code: 000799) (Color figure online)

Table 3. A list of events that occurred during 2014–2016. stockcode: 000799

Points News Events Amount

A 2014/01/27 Nearly 100 million yuan of Jiugui Liquor Company

was stolen

414

B 2014/03/06 Jiugui Liquor Company trapped in plasticizers storm

again

321

C 2014/08/19 COFCO may enter and host the Jiugui Liquor 251

D 2015/04/08 The first-season performance of Jiugui Liquor soared 20

E 2015/04/24 Jiugui Liquor Company loss of nearly 100 million, and

helpless to morph “* ST Jiugui”

12

F 2015/10/23 Jiugui Liquor Company announced the termination of

the reorganization of assets

122

G 2015/12/14 The chairman of Jiugui Liquor Company resign, and

COFCO will take over

8

H 2016/04/07 *Jiugui apply to withdraw delisting risk warning 17

I 2016/10/26 The large amount flow of Jiugui Liquor ranked No. 6 21
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between Close&%Tuv and %Chg&%Tuv, and the time period with a value of 0 indi-
cates that the stock is in suspension. (Color figure online)

we can find the starting point of anomalous events effectively. This will help
investors to identify valid information, form a comprehensive judgment on the
stock market, and ultimately make effective investment decisions.

5 Conclusions and Future Work

In this paper, we have used sequence-to-sequence model to investigate the rela-
tionship among the internal properties of the stock. The experimental results
show that there is a certain correlation between them, and the correlation
between Close&%Tuv and %Chg&%Tuv are the most obvious. Besides, we
also applied the changes of correlation to the discovery of the starting points of
the anomalous event. However, this paper only considers the impact of one stock
attribute on another stock attribute and does not take into account the com-
mon effects of multiple stock attributes on another stock attribute. Therefore,
in future work, we will be on this issue for further study.
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Abstract. This paper presents an automated approach to automatically
distinguish the identity of multiple residents in smart homes. Without
using any intrusive video surveillance devices or wearable tags, we achieve
the goal of human identification through properly processing and analyz-
ing the received signals from the ultra-wideband (UWB) radar installed
in indoor environments. Because the UWB signals are very noisy and
unstable, we employ unsupervised feature learning techniques to auto-
matically learn local, discriminative features that can incorporate intra-
class variations of the same identity, and yet reflect differences in distin-
guishing different human identities. The learned features are then used
to train an SVM classifier and recognize the identity of residents. We
validate our proposed solution via extensive experiments using real data
collected in real-life situations. Our findings show that feature learn-
ing based on K-means clustering, coupled with whitening and pooling,
achieves the highest accuracy, when only limited training data is avail-
able. This shows that the proposed feature learning and classification
framework combined with the UWB radar technology provides an effec-
tive solution to human identification in multi-residential smart homes.

Keywords: Human identification · Unsupervised feature learning
UWB · Smart home

1 Introduction

The ability to recognize daily activities of residents is a core premise of smart
homes for assisting with remote health monitoring. For a smart home with only
one resident, by deploying various types of sensors in the living space and assum-
ing all sensor data is generated by this only person, a resident’s daily activities
can be accurately recognized through various types of machine learning models.
In reality, however, homes are often occupied by more than one residents. As
a result, activity recognition models designed for single living environments fail
to yield satisfactory results from environmentally deployed sensors, because of
the absence of evidence with regards to which sensors are triggered by whom.
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Therefore, human identification is one of the most crucial problems faced by
multi-residential smart homes to fully realize their functionality and potential.

Computer vision systems have been widely used to recognize human iden-
tity [12]. However, they have limited performance in poor visibility conditions
(e.g., at night), and inevitably raise privacy concerns. This restricts them to be
deployed in real-life smart homes that require to respect the privacy and comfort
of residents under monitoring [10]. Another popular solution to human identi-
fication is the use of wearable devices that need to be carried by residents. In
such wearable systems, each resident carries a tag which continuously advertises
its unique ID through various types of wireless communication, such as Wi-Fi,
Bluetooth, or RFID. These tags can be used as unique identifiers to help distin-
guish individuals. Each of these tags, however, is always assumed to be carried
by a particular resident, and any of its presence is simply associated with that
resident. These wearable systems require the residents to always remember and
carry wearable devices all day, which leads to unsatisfactory acceptance by senior
communities, let alone by people with neurodegenerative diseases.

In this work, we achieve the goal of detecting the identity of residents in
smart homes through properly processing and analyzing the received signals
from UWB radar. UWB radar systems can be installed in indoor environments
in a non-intrusive way, offering many advantages such as high-resolution rang-
ing, low power cost, and strong resistance to narrowband interference [2,5,19].
They have abilities to detect the changes within the vicinity of a UWB radar
when people pass by. However, due to the multi-path effect, the received UWB
signals are very noisy; they are very sensitive to changes in the environment,
as well as differing walking modes of people. Thus, the major challenge is to
find robust features that are invariant enough to incorporate naturally occur-
ring intra-class variations, for example, resulting from differing walking modes of
people or changes in surrounding environments, but discriminative enough to dis-
tinguish between different classes. Another significant challenge is to collect large
amounts of labeled data for learning, which is very difficult, labor-intensive, and
sometimes even impossible when considering practical operation of smart homes.
Thus, it is desirable to build models that are both accurate and lightweight to
enable effective and efficient human identification in real-life smart homes.

To cope with these challenges, we propose an unsupervised feature learn-
ing and classification framework to recognize the identity of multiple residents
in smart homes. This framework utilizes unsupervised feature learning based
on K-means clustering to automatically learn a sparse representation from the
UWB signals. Specifically, we consider UWB signals in a two-dimensional space
and discover discriminative local features that capture useful patterns while fil-
tering out redundant noisy information. This way, the original UWB signals are
locally transformed into sparse representations that have desirable properties for
distinguishing different human identity. The derived new features are then used
to train an SVM classifier to recognize the identity of individuals. We demon-
strate the effectiveness of our proposed solution through extensive experiments
using real UWB data collected from eight participants in real-life scenarios.
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We compare our approach against several deep learning models, including sparse
auto-encoders, sparse Restricted Boltzmann machines (RBMs), and convolu-
tional neural networks (CNNs), and investigate the effect of several important
factors (i.e., whitening, pooling, etc.) that affect their performance. We show
that, despite its simplicity, K-means based feature learning achieves the highest
accuracy, when only limited training data is available. This testifies its ability
to discover discriminative patterns that are effective for human identification.

2 Related Work

The ultra-wideband technology has been widely used to identify targets in both
military and civilian applications owing to its strong penetrability, high resolu-
tion, and anti-interference ability. A method for detecting human presence using
UWB impulse-based radar in urban environments is proposed in [2]. Several
other methods use UWB radar to detect and classify targets in foliage envi-
ronments [5,19]. These methods rely on manually extracted features, such as
energy, maximum amplitude, or excess delay of received signal, to perform clas-
sification. In contrast, we consider UWB signals in a two-dimensional space and
automatically learn discriminative features for distinguishing human identity.

Much recent work in machine learning has focused on learning good feature
representations from unlabeled input data to facilitate subsequent analytical
tasks such as pattern recognition and classification. Deep architectures trained in
an unsupervised manner have been proposed as an automatic method for extract-
ing useful features. The focus has been on building different variants of deep
neural networks with many hidden layers to learn multi-level representations,
such as sparse auto-encoders [4], sparse RBM [6,15], and CNNs [16]. Although
these recently introduced algorithms often yield better classification results on
benchmark datasets like MNIST [14] and CIFAR [11] for handwriting/object
recognition, they require careful selection of multiple hyper-parameters, such as
learning rates, number of hidden nodes, etc., in search of better performance.
Unfortunately, how to tune these hyper-parameters is a non-trivial task; their
values are often carefully chosen via cross-validation, thus dramatically increas-
ing the amount of training data and running times. Moreover, they require large
amounts of labeled data to achieve the current state-of-the-art results; their
performance may dramatically degrade with insufficient training data.

In the computer vision area, extensive research has been dedicated to extract-
ing higher-level image features to achieve better performance on object recog-
nition or scene categorization [13]. It has been shown that the classification of
natural images can be significantly improved using a multi-stage architecture
of feature learning [9]. Among others, K-means clustering, as the unsupervised
learning module in these feature learning pipelines, can lead to excellent results,
often beating state-of-the-art systems [3]. In this work, we analyze the UWB sig-
nals which are essentially different from natural images that are widely studied
in computer vision; the UWB data is noisy, uncertain, and does not contain clear
visual objects or edges, making it difficult to identify useful visual features. Thus,
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instead of working on the full-sized UWB data, we extract random patches and
discover local patterns that are discriminative for recognizing human identity.

3 Characteristics of the UWB Data

Subject to reflection, refraction, diffraction, and even absorption by human body
and the surrounding structures, UWB signal propagation suffers from sever
multi-path effect; the impinging UWB electromagnetic wave scatters from dif-
ferent human body parts at different times with various amplitudes, depending
on the distance to the body part, and the size and material of the reflecting part.
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Fig. 1. Scattered UWB signals of two different subjects walking within the vicinity of a
UWB radar. (a) and (b) indicate Subject A’s straight and diagonal walking. (c) and (d)
indicate Subject B’s straight and random walking. It is evident that the local patterns
of the UWB signals are quite different for different subjects, or the same subject but
with differing walking modes.

Figure 1 shows scattered UWB signals of two different subjects walking
within the vicinity of a UWB radar, where brighter colors indicate closer dis-
tance between the UWB radar and the target. Because the two subjects have
different height and body shape, when they pass by the UWB radar, the UWB
signals reflected from their bodies have different strength; the signals scattered
from a taller subject would be stronger as the signals travel shorter distance to
and back from his reflecting body (e.g., head, shoulder). As can be seen, scat-
tered UWB signals of Subject A (Fig. 1(a)) are noticeably different from those
of Subject B (Fig. 1(c)) when they both pass by the UWB radar along a straight
line.

Moreover, due to the multi-path effect, the reflected UWB signals might vary
a lot even when the same subject passes by using different walking modes; for
example, a person might walk by randomly or diagonally, instead of strictly
following a straight line. As an example of UWB radar’s sensitivity to different
walking modes, consider Fig. 1(c) and (d) that exhibit different local patterns of
UWB signals when Subject B takes a straight/random walk.
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4 Unsupervised Feature Learning and Classification
for Human Identification

To cope with the noisy characteristics of the UWB signals, the major challenge
is to discover class models that are invariant enough to handle intra-class vari-
ations of the same subject, such as differing walking modes or gaits, and yet
discriminative enough to distinguish between different subjects. Because there is
a lack of prior knowledge about what features are potentially useful, we resort to
automatically learning useful features from the unlabeled data and use them for
classification. We extract random patches from the UWB signals and discover
local patterns that are discriminative for distinguishing human identity.

Unsupervised 
Feature  
Learning

Convolu onal Extrac on
Feature Transforma on

.

.

.

Classifica on

New features

Pre-Processing

UWB Data

Fig. 2. The workflow of unsupervised feature learning and classification

The workflow of unsupervised feature learning and classification for human
identification is shown in Fig. 2. It consists of five major components: (1) con-
volutional extraction module that generates random patches from the original
UWB data, (2) pre-processing module that performs normalization and whiten-
ing on the input patches, (3) unsupervised feature learning module that learns a
mapping function from an input patch to a new feature vector, (4) feature trans-
formation module that converts an original UWB data into a new representation
using the learned mapping function, and (5) classification module that takes the
new representation as input and trains a classifier for identity recognition.

4.1 Convolutional Extraction

Given a set of input UWB data U = {u(1), . . . , u(n)}, we start by extracting
random patches from unlabeled data, since we expect that the most useful,
discriminative features are localized to a small region. Suppose each patch has
dimension p-by-p, where p is referred to as the patch size. Each p-by-p patch can
be represented as a vector x(i) ∈ R

N of pixel intensity values, with N = p × p.
This way we construct a dataset of m patches X = {x(1), . . . , x(m)} that are
randomly sampled from the input UWB data U .

4.2 Pre-Processing

Before applying any feature learning algorithm, it is useful to perform several pre-
processing steps on the input patches x(i). The first step is normalization which
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normalizes the brightness and contrast of the patches. For each patch x(i), we
subtract out the mean of its elements and divide by the standard deviation, given
by x(i) = (x̃(i) − μx̃(i))/σx̃(i) , where μx̃(i) and σx̃(i) are the mean and standard
deviation of any unnormalized patch x̃(i). After normalization, we apply ZCA
whitening [8] on the entire dataset X. This process is commonly used in deep
learning to remove correlations between nearby pixels. We will later empirically
assess the usefulness of whitening on the UWB data for identity recognition.

4.3 Unsupervised Feature Learning

After the pre-processing steps, we now apply an unsupervised learning algorithm
on dataset X to extract discriminative features. Specifically, we aim to learn a
function Φ : RN → R

K , which maps an input vector x(i) ∈ R
N to a new K-

dimensional feature vector z(i) ∈ R
K . In this work, K-means clustering is used as

the unsupervised feature learning module. The classic K-means algorithm finds
cluster centroids that minimize the distance between data points and the nearest
centroids. In our context, the data points are randomly extracted patches and
the centroids are the filters that will be used to newly encode the data. From this
perspective, K-means algorithm learns to construct a dictionary D ∈ R

N×K from
the input vector x(i) ∈ R

N for i = 1, 2, . . . ,m, such that the reconstruction error
can be minimized. We use a modified version of K-means, similar to spherical
K-means [7], that aims to find the dictionary D according to:

min
D,z

∑

i

‖Dz(i) − x(i)‖22, (1)

s.t. ‖z(i)‖0 ≤ 1,∀i ‖D(j)‖2 = 1,∀j

where z(i) ∈ R
K is a code vector associated with the input x(i), and D(j) is the

j’th column of the dictionary D. Here, the objective is to find a dictionary D and
a new representation, z(i), of each input x(i), that can minimize the difference
between x(i) and its reconstruction Dz(i). The objective function is optimized
under two constraints. The first constraint, ‖z(i)‖0 ≤ 1, indicates that each
z(i) is restricted to having at most one non-zero entry. The second constraint,
‖D(j)‖2 = 1, requires that each dictionary column has unit length, preventing
them from becoming arbitrarily large or small. This objective function is similar
in spirit to learning coding schemes, such as sparse coding [18], which requires to
solve a convex optimization problem and thus is difficult to scale up. K-means,
by contrast, has proved very useful for learning features due to its efficiency [3].

This optimization problem (1) can be easily solved by alternatively optimiz-
ing D and z(i) as follows:

z
(i)
j =

{
D(j)�x(i) if j = arg maxl|D(l)�x(i)|,
0 otherwise,

(2)

D = XZ� + D, (3)

Dj =
D(j)

||D(j)||2 , (4)
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where matrices X ∈ R
N×m and ZK×m have columns x(i) and z(i), respectively.

Finally, the columns of the dictionary D, D(j)’s, are returned as K cluster
centriods. Each patch x(i) is mapped to a new K-dimensional vector z(i) ∈ R

K ,
with each element being the “distance” to the corresponding cluster centroid.

4.4 Feature Transformation

After obtaining a new representation z(i) ∈ R
K for each patch x(i), we can build a

new representation of any given UWB data. Given a w-by-v UWB data, we define
a (w−p+1)-by-(v−p+1)-by-K array of features by computing the representation
z for every p-by-p patch of the input data. To alleviate invariance to small
distortion, we further reduce the dimensionality of the new representation via
average pooling that combines local regions of z(ij)’s using an average operation.
Concretely, we split the z(ij)’s into s spatial regions, and compute the average
z(ij)’s in each region. This results in a reduced K-dimensional representation for
each pooling region, and a total of s × K new features for each UWB data.

4.5 Classification

Given these pooled feature vectors for a set of training UWB data and their
class labels, we adopt a linear support vector machine (SVM) algorithm to train
a classifier for human identification. When an unseen UWB data is observed, we
first apply the same feature transformation method described above to obtain
a new representation, and then apply the learned classifier to predict its class
label, that is, the corresponding human identity.

5 Experiments

In this section, we validate the performance of our proposed solution using the
UWB data collected from a real-world scenario. We first describe the set-up for
data collection and pre-processing, and then discuss experimental results.

5.1 Data Collection and Pre-Processing

We used the system as shown in Fig. 3 to collect the UWB data in an indoor
environment [17]. The system mounts a UWB transmitter and a UWB receiver
on the top of the door frame at the entrance of a room. The UWB waveforms
are propagated through the transmitter antenna, with a bandwidth of 3–6 GHz,
into the detection zone of the radar. When people are passing the door, the
UWB waveforms are scattered from human body and the surrounding objects,
and are received at the receiver antenna via multiple paths. The UWB sensor is
connected via USB to a PC to record the received signals.

For the task of human identification, eight subjects with different body shapes
and heights participated in the experiments. The characteristics of these subjects
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Table 1. Participating subjects

Subject Gender Height (cm)

A Male 170

B Male 171

C Male 168

D Male 177

E Male 169

F Female 165

G Male 160

H Male 176

Fig. 3. Data collection set-up

are listed in Table 1. To simulate how people pass the door in real life, each sub-
ject was requested to pass the door using four walking modes: straight walking,
diagonal left-to-right walking, diagonal right-to-left walking, and random walk-
ing. For each walking mode, each subject continuously passed the door back
and forth until he was asked to stop. Thus, we collected continuous UWB data
sequences that contained multiple regions of interest that indicate the presence
of participating subjects within the vicinity of the UWB radar.

For each UWB data sequence, we employed Canny edge detection [1] com-
bined with density thresholding for efficiently localizing subjects in the sequence.
The first step was to remove sparse signals to emphasize possible regions of inter-
est where subjects might be detected. Second, we accumulated the densities along
the time and frequency dimensions within a sliding window and used a threshold
to find a center of a bounding box. With this we segmented regions of interest
with dimension of 200 × 121, but due to the complexity in human’s trajectory
the localization was not perfect. This is why treating each data sample as a set of
local batches is needed in this work. In total, we obtained 768 samples of UWB
data, with 96 samples per subject.

For evaluation, we randomly partitioned the data into three sets, each main-
taining the same class distribution. We used the first two sets for training, and
the third set was held out for testing. We compare K-means clustering with
two other feature learning algorithms, sparse auto-encoders and sparse RBMs.
For each feature learning algorithm, we learned features from either raw data or
whitened data, and trained a linear classifier using the L2-SVM objective func-
tion. The classification results are evaluated on the test data using accuracy.

For all feature learning algorithms, the number of pooling regions s is set to
4, and the number of random patches is set to 100,000. For sparse auto-encoders
and sparse RBMs, the regularization term of sparsity penalty is set to 0.001.
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5.2 Effect of Whitening and Patch Size

We first performed experiments to test the performance of all algorithms with
respect to different patch sizes both with whitening and without whitening. We
expected that larger patch sizes would allow us to discover more complex features
that cover a larger region of the original data. On the other hand, this increases
the dimensionality of patches to be processed and may require to use more data
for learning or to learn more features. In this experiment, we tested the patch
size of 4, 6, 8, 10, 12, and 14 pixels, and set the number of features to 100. The
classification results are shown in Table 2.

Table 2. Effect of whitening and patch size

Patch size 4 6 8 10 12 14

Sparse RBM 43.04 47.47 53.16 58.23 60.75 46.83

Sparse RBM (white) 47.47 60.13 67.72 77.22 72.15 71.52

Sparse auto-encoder 40.51 48.73 53.80 55.06 55.06 50.82

Sparse auto-encoder (white) 58.23 68.35 77.22 70.25 48.73 53.80

K-means 77.85 77.85 73.41 75.94 74.68 74.68

K-means (white) 79.11 80.34 76.58 77.85 76.58 77.31

Table 2 clearly shows the benefit of whitening: all algorithms generally achieve
higher classification accuracy by performing whitening on the random patches.
This confirms that whitening is a crucial pre-processing step for all feature learn-
ing algorithms. We can see that, K-means with whitening achieves the highest
accuracy in most cases, except that with the 8 pixel patch size, sparse auto-
encoder performs slightly better than K-mean clustering. This is particularly
notable because K-means is easy to implement and requires much less tuning,
unlike sparse auto-encoders and sparse RBMs that require us to carefully choose
several hyper-parameters to guarantee reasonable results. Despite of its simplic-
ity, the feature vectors produced by K-means constitute a powerful sparse and
localized basis for distinguishing different human identity. Overall, the 6 pixel
patch size works best for K-means, which achieves an accuracy of 80.34%.

5.3 Effect of Number of Feature Bases

Since the number of feature bases K is an important parameter, we carried out
experiments by varying the value of K from 50, 80, 100, 200, to 400. The value
of K is equivalent to the number of centroids for K-means clustering, and the
number of hidden units for sparse auto-encoders/RBMs. These experiments used
the 6 pixel patch size and whitening for all algorithms.

Figure 4 shows classification accuracy of all algorithms with respect to differ-
ent values of K. We can see that, at the very beginning, all algorithms generally
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Fig. 4. Effect of number of feature bases

achieve higher performance by learning more features. This is expected because
with more features learned, all algorithms have greater representative power,
resulting in higher classification accuracy. However, at the later stage, learning
more features decreases the accuracy, because the learned features are less dis-
tinguishable. Overall, K-means clustering achieves the best accuracy when the
number of centroids is 100. Sparse RBMs and sparse auto-encoders performs
best when the number of hidden units is 80 and 200, respectively. On the other
hand, learning more features indeed increases the computational load and may
require more data for training. Thus, carefully choosing an appropriate number
of feature bases can help achieve a good trade-off between classification accuracy
and computational efficiency.

5.4 Final Classification Results

We have shown through previous studies that whitening, 6 pixel patch size, and
100 feature bases work best in general across all feature learning algorithms.
Using these parameters, we ran our full pipeline on the training set, trained an
SVM classifier, and evaluated on the test set. We also compare against two other
baselines: (1) Raw features + SVM, which trains an SVM classifier on the vec-
torized UWB data, (2) CNN, which is one state-of-the-art deep learning model
trained on the original UWB data. Our final results are reported in Table 3.

Table 3. Classification accuracy

Algorithm Test Accuracy (%)

Raw features + SVM 28.22

CNN 58.07

Sparse RBM 59.49

Sparse auto-encoder 68.35

K-means 80.34

From Table 3, we can see that the three feature learning algorithms, sparse-
auto-encoders, sparse RBMs and K-means clustering outperform the other two
baselines that directly work on the original UWB data. This confirms that local
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patterns learned from input patches have more discriminative power than origi-
nal features. Although CNN has been demonstrated to render high performance
on many image classification tasks, in the case that we only a limited number of
training data, it produces unsatisfactory results for human identification. Again,
K-means clustering achieves the highest performance with 80.34% accuracy.

Table 4. Confusion matrix with features learned by K-means clustering

Truth / predict A B C D E F G H Accuracy (%)

A 17 0 2 0 1 0 0 0 85.00

B 0 20 0 0 2 0 0 2 83.33

C 2 0 16 0 0 2 0 0 80.00

D 0 0 0 13 0 1 0 0 92.86

E 1 1 0 2 12 0 1 0 70.59

F 0 0 2 5 2 13 1 1 56.52

G 0 0 0 0 1 1 17 0 89.47

H 0 0 0 0 2 1 0 17 85.00

Overall 80.34

Table 4 shows classification confusion matrix for identifying eight partici-
pants, with features learned by K-means clustering. As can be seen from the
table, most of the errors occur when distinguishing participants with close
heights, for example, for participants A (170 cm), B (171 cm), C (168 cm), and
E (169 cm). Participants D (177 cm) and G (160 cm) are classified correctly with
high accuracy of 92.86% and 89.47%, because they are the tallest and shortest
among eight participants. Unexpectedly, the classifier sometimes has difficulty
in distinguishing participant F (165 cm, female) from other male participants,
yielding 56.52% accuracy only. This is probably because she walks by the UWB
radar in a gait somehow similar to some other males, making it difficult to dis-
tinguish.

6 Conclusion and Future Work

In this paper, we proposed an automatic approach to human identification in
multi-residential smart homes. We argued that, due to privacy or operational
issues, previous approaches to human identification that rely on video surveil-
lance or wearable devices are not suitable as a practical solution in real-life smart
homes. Instead, we achieved the objective of human identification through prop-
erly processing and analyzing the received signals from the UWB radar. We
investigated the use of unsupervised feature learning techniques to automati-
cally learn local, discriminative features for human identification. We evaluated
our proposed solution through extensive experiments using real data collected
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from eight participants. Our results showed that K-means based feature learning,
coupled with whitening and pooling, yields the best performance. This suggested
that, while more complex algorithms like sparse auto-encoders/RBMs may have
greater representative power, they may not always be the best choice, given that
in real-life smart homes there may exist only a limited number of training data.

In the future, we will explore other feature learning methodologies to improve
the accuracy of human identification and generalize to online learning scenarios
where unseen human identity can also be detected. We will also implement our
solution in a real-time system and test its effectiveness and efficiency for recog-
nizing the identity of a larger number of people in complex indoor environments.
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Abstract. Prescriptive analytics leverages predictive data mining algo-
rithms to prescribe appropriate changes to alter a predicted outcome of
undesired class to a desired one. As an example, based on the conver-
sation of a reformed addict on a message board, prescriptive analytics
may predict the intervention required. We develop a novel prescriptive
analytics solution by formulating a constrained Bayesian optimization
problem to find the smallest change that we need to make on an action-
able set of features so that with sufficient confidence an instance can be
changed from an undesirable class to the desirable class. We use two pub-
lic health dataset, multi-year CDC dataset on disease prevalence across
the 50 states of USA and alcohol related data from Reddit to demon-
strate the usefulness of our results.

Keywords: Prescriptive analytics · Bayesian optimization
Linear and nonlinear classifiers · Constrained optimization

1 Introduction

Prescriptive analytics [3] is a machine learning approach to utilize prediction
towards better outcomes. It stems from the often asked question of what we
can change given our prediction of adverse events. If there are features which
are actionable (can be changed) then prescriptive analytics can be used as an
important decision making tool, for a variety of social media and public health
applications.

Consider detecting and providing feedback for a group of people who want
to quit binge drinking. Using social media participation data, we can build a
classifier that can be used to identify participant risk using features that include
different aspects of lifestyle, social life and family life. Then we may ask: what is
the minimum lifestyle change that is required to avert the undesirable outcome?
Such questions can be answered by our proposed prescriptive analytic framework.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 335–347, 2018.
https://doi.org/10.1007/978-3-319-93034-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93034-3_27&domain=pdf


336 H. Harikumar et al.

Fig. 1. Intuition of our proposed prescriptive analytics framework. Our goal is to find
minimum required change to transform the data from original (red) to desired class
(blue). (Color figure online)

Previous work in relation to prescriptive analytics often use inverse classifica-
tion methods are [1,7]. Whilst most have been developed to explain classification
decisions [2], some can be used for prescriptive analytics. The most closely related
works are [7,8]. [8] assumes linear boundaries between classes and is unsuitable
for general non-linear classifications. [7] formulates an optimization problem to
maximize the probability of desired class given a budget on the amount of change,
but does not directly minimize the change. To avoid such limitations, we propose
a method for prescriptive analytics through constrained Bayesian optimization.
We formulate an optimization problem to minimize the change in actionable
feature sets such that the probability of belonging to the desired class reaches
a desired confidence level (see Fig. 1). The probability requirement is included
as a constraint and coupled with bound constraints on the allowable change in
a global optimization framework. The functional form of the probability con-
straint is unknown and needs to be estimated during optimization. Bayesian
optimization [4], a global optimizer can efficiently optimize a black box func-
tion. It can be applied irrespective of the nature of the classifier, sample-efficient
(optimizes with as less sample as possible) and has good guarantee on the con-
vergence [4,13]. We use a variant of the algorithm of Bayesian optimization with
unknown constraints [5].

We apply our algorithm to two public health datasets, Centers for Disease
Control and Prevention (CDC) and Reddit dataset. CDC dataset has the demo-
graphic and disease incidence rates of all the states of USA for 6 years. The
diseases include diabetes, heart attack and stroke. We chose a set of actionable
features in CDC, i.e. education, marital status and employment profile. Addi-
tionally, we put extra constraints in our formulation if some features can only be
increased or decreased i.e. we cannot decrease the education status or the num-
ber of people who had never been married. We demonstrate the results based
on both linear (logistic regression) and non-linear classifiers (kNN and Random
Forest). We show that high education and less unemployment leads to healthier
outcomes irrespective of the disease. We use Reddit dataset to demonstrate the
utility of our algorithm for prescribing changes to people who are predicted to
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have relapsed on their drinking habit. Our method has potential to bring positive
changes in public health applications.

2 Framework

2.1 Prescriptive Analytics

Consider we have a dataset with n instances
{
x1,x2, ......,xn

}
. Each instance

in the dataset has m features, i.e. xi ε R
m. We assume that each of these n

instances are from binary class, {C−, C+}, where C− is undesirable and C+ is
desirable class. Our goal is to find the minimum changes that can transform
an instance, which is originally in the undesirable class to the desirable class
with sufficient confidence. Though we can prescribe changes to m features, it is
practically impossible to change all if xi is high dimensional and in situations
when a feature cannot be directly changed (Table 1).

Table 1. Notations and definitions.

Notations Definitions

xi i-th instance with m features

πc Probability constraint

C+ Desirable class

C− Undesirable class

A Set of actionable features

|A| Number of actionable features

�xi
A Change in set of actionable features of xi

�xi Zero vector of size m with feature set A replaced by �xi
A

xi + �xi Sum of original features and new values of actionable features

Dtrain Training dataset

More specifically, given an instance xi, we want to find minimum changes in
some actionable features, i.e �xi

A, where A is the set of actionable features, in
order to transform the data from C− to C+. These feature set A could be iden-
tified through feature importance or could be user specified in some situations.
The set of features essentially should satisfy the criteria of being actionable,
hence in this paper we would assume it being supplied by a domain expert.

Since we want to prescribe changes such that the modified data vector, xi +
�xi moves into the class C+ with probability greater than or equal to πc, we
formulate the following optimization problem:

min f(�xi
A) � ||�xi

A||p
|A|

s.t. P(C+/xi + �xi) ≥ πc,
�xi

Aε
[�xi

min ,�xi
max

]
(1)
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where (a). The first constraint (probability constraint) ensures that after
applying the prescribed changes, the data instance belongs to C+ with sufficient
confidence and (b). The second constraint is required to restrict the prescription
vector search space, where �xi

min = 0 − xi
A and �xi

max = 1 − xi
A. In the

above objective function, any convex norm can be used. Use of p = 1 would
provide parsimonious change vector, whereas using p = 2 would provide overall
smallest change. For normalization, we divide the p-norm of prescription vector
�xi

A by the size of the actionable set, |A|.

2.2 Computing πc

The computation of probability constraint, πc is crucial in our framework. We
can chose a probability constraint of 0.5 to give us the minimum change for
class transformation near the boundary of the model. This value is sufficient
enough for prescribing changes for balanced datasets. But, for unbalanced class
problems, πc = 0.5 may not correspond to the classification boundary. Since a
custom computation of πc is required.

We compute the probability constraint πc from the data using the prediction
model. We require πc as the most common probabilities of data which is near the
boundary of the classifier. So we use the median of the minimum probabilities
assigned to the bottom 10% data from our desired class to set the value of πc.
Depending upon the classifier and the data topology, this value of πc will vary.

2.3 Optimization

The goal of the optimization problem (Eq. 1) is to find the global minimum of
the prescription vector, �xi

A, sufficient enough to transform an instance to a
desired class. There are several global optimization algorithms, but Bayesian
optimization [4] is an efficient global optimization method with best possible
guarantee on convergence for a global optimization problem.

Bayesian optimization works by setting a prior over the unknown objective
function and combines it with the evidences to get a posterior function. It has
mainly two components, Gaussian process as the prior over the function and
an acquisition function. For p = 1 the objective function is not smooth, how-
ever, from our experience Gaussian process can approximate it well. We discuss
the modeling of objective function with Gaussian process and construction of
acquisition function below.

Bayesian Modeling of Functions. We use Gaussian process (GP) as prior
to both the objective and the constraint function, since both of them are
unknown. For convenience, let us describe GP with a generic vector u, where
u = �xi

A for the objective and the probability constraint function. Gaus-
sian process is a distribution over smooth function, and is fully defined by a
mean function, m(u) and variance function, k(ui,uj). It can be represented
as, f(u) ∼ GP(m(u), k(u,u

′
)). Since Gaussian process maintains a distribu-

tion over the function, instead of returning a scalar value as output, for an
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arbitrary u it returns the mean and variance of a normal distribution over
the possible values of f at u. We assume prior mean is the zero function,
m(u) = 0. The co-variance function, k(., .) we use in our method is squared
exponential function, where the hyper parameter l controls the width of the
kernel, k(ui, uj ) = exp(− 1

2l2 ‖ ui − uj ‖2). Consider the pairs,
{
u1:t , f1:t

}
,

where f1:t = f(u1:t) and
{
u1:t

}
are the sampled values at the indices from

{1 : t}. Based on the Gaussian process,
{
u1:t

}
follows a multivariate normal

distribution N (0,K), where the kernel matrix is, K(i, i′) = k(ui, ui′
). Given a

new point ut+1, the predictive mean and the variance of the Gaussian process
is, μt(ut+1) = kTK−1f1:t and σ2

t (ut+1) = k(ut+1,ut+1) − kTK−1k, where
k = [k(ut+1,u1), ..., k(ut+1,ut)]. Updating the Gaussian process with a new
observation involves simply updating the observation set and updating the kernel
matrix. We use two Gaussian processes: one for the objective function, denoted
by GPo, and the other for the constraint function, denoted by GPc.

Construction of the Acquisition Function. The search for the global optimum
given the GP models is guided by using an acquisition function. One of the
most commonly used acquisition functions for Bayesian optimization is called
Expected Improvement (EI) [9]. The idea is to seek the global optimum by
seeking the location with highest expected improvement over the current best
value in the observation. In absence of any constraints, the formulation for EI
can be derived as:

EI(�xi
A) =

{
σ

(�xi
A

)
τ

(
z

(�xi
A

))
if σ

(�xi
A

)
> 0

0 otherwise
(2)

where τ(z) = zΦ(z)+φ(z), z
(�xi

A
)

= μ(�xi
A)−f(�xi

A
+
)

σ(�xi
A)

and f(�xi
A

+) is cur-

rent best maximum over the previous observations. As defined earlier, μ
(�xi

A
)

is the predictive mean at �xi
A and σ2

(�xi
A

)
is the predictive variance as

computed based on GPo, Φ(.) and φ(.) are the standard normal CDF and PDF,
respectively. We negate our objective function in order to convert the minimiza-
tion to a maximization problem.

As our problem is constrained optimization, we use constraint weighted
expected improvement function [5] for maximizing the acquisition function. The
constraint weighted expected improvement function is obtained by modifying
the expected improvement function through adding a constraint weight. Though
there are some acquisition function which has constraint weight incorporated in
it, we chose constraint weighted EI in our work. This will guarantee the max-
imum value of the acquisition function without violating the constraint. The
weighted expected improvement acquisition function is,

EIC(�xi
A)=

{
EI(�xi

A)c
(�xi

A
)

if σ
(�xi

A
)

> 0 and σc

(�xi
A

)
> 0

0 otherwise
(3)
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where c
(�xi

A
)

= Φ
(
zc

(�xi
A

))
, zc

(�xi
A

)
=

μc(�xi
A)

σc(�xi
A)

, μc

(�xi
A

)
and σ2

c

(�xi
A

)

are the predictive mean and variance, respectively, as computed using GPc. The
constrained Bayesian optimization (CBO) procedure which we use in our method
is shown in Algorithm 1. The input to this algorithm is the instance xi which
belongs to C−, the actionable feature set A, the bounds for �xi

A and the desired
class C+. The CBO is a variant of Bayesian optimization in which we have to
model the objective and constraint functions as separate Gaussian processes.
The predictive mean and variance of both Gaussian processes, GPo and GPc are
used in Eq. (3) for maximizing the acquisition function. The optimal changes can
be computed by maximizing acquisition function using the Gaussian processes.
In Step 3, �xi,t is a zero vector of size m with feature set A replaced by �xi,t

A ,

which is obtained from Step 2. The probability computation varies for different
classifiers, e.g., the logistic function can be used for logistic regression classi-
fier whereas mean of the predicted class probabilities of trees for random forest
classifier. The output �D1:t, of CBO is the set of prescription vectors and the
probability of new vector, xi + �xi,t being in class C+. Step 5, is to augment
the data for modeling objective and constraint Gaussian processes, GPo and GPc

, where �Df
1:t and �Dc

1:t is the observations for objective and constraint func-
tions. The objective (f(�xi,t

A )) and the constraint functions (C(xi + �xi,t))
are explained in Eq. 1. The Maxiter is a user-specified value which decides the
number of iterations required for the algorithm. As a thumb rule, Bayesian opti-
mization converges very close to optima within 10 × d iteration, where d is the
dimension of the problem. The steps for our proposed prescriptive analytics
method is illustrated in Algorithm 2. The input to this algorithm is a training
dataset Dtrain and the actionable feature set A. A predictor M can be generated
with Dtrain using any linear or non-linear classifiers. This generated predictor,
M is used for the computation of probability value of an instance xi in C−,
denoted as P(C−/xi). If the class predicted by M, for instance xi is C− we
find the prescriptions vectors for it, by constrained Bayesian Optimization algo-
rithm in Algorithm 1. The bound constraints, for limiting the values of �xi

A,
denote as minimum bound, �xi

min and maximum bound, �xi
max is computed

in Step 3 and 4. In addition, we may have some extra known constraints for
acquisition function optimization if some features are one way (explained more
in Experiments section). We use NLopt [6] implementation of the derivative free
constrained local optimizer, COBYLA [11] for acquisition function optimiza-
tion with 100 random starts. From the output, in �D1:t, we select the mini-
mum change (prescription vector), �xi

A that satisfies the probability p which is
greater than or equal to the constraint, πc.

3 Experiments

We illustrate and validate our method with experiments conducted on various
datasets. We use synthetic datasets to demonstrate the utility of Bayesian opti-
mization compared to genetic algorithm based method. We use Iris dataset to
visually illustrate the prescriptive analytic setting and the prescription vectors.
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Algorithm 1. Constrained Bayesian Optimization
Inputs : xi , A,

[�xi
m in , �xi

m ax

]
, C+

Output : �D1:t

1. while (t ≤ Maxiter) do
2. Find �xi,t

A by optimizing the acquisition function in Eq. (3) using Gaussian
Process GPo

and GPc.
3. Compute probability, p of xi + �xi,t in class C+.
4. Augment prescription vector, �D1:t =

{�D1:t−1, (�xi,t
A , p)

}
5. Augment the data, �Df

1:t =
{

�Df
1:t−1, (�xi,t

A , f(�xi,t
A ))

}
and

�Dc
1:t =

{�Dc
1:t−1, (�xi,t

A , C(xi + �xi,t ))
}

and update GPo and GPc.
6. set t = t + 1.
7. end while

Algorithm 2. Prescriptive Analytics
Inputs : Dtrain, xi , C− , C+, A
Output : �xi

A
1. Generate model M with Dtrain

2. if (P(C−/xi)) ≥ 0.5 then
3. �xi

m in = 0−xi
A.

4. �xi
m ax = 1−xi

A.
5. Generate �D1:t, by calling Algorithm 1 with bounds as

[�xi
m in , �xi

m ax

]
, xi ,

A and C+

as parameters.
6. Find min �xi

A from �D1:t with p � πc.
7. end if

Next, we use two real world datasets, one from the Centers for Disease Control
and Prevention (CDC) disease incidence rates over 50 states of USA and another
constructed from the Reddit \stopdrinking message board. We use a linear, logis-
tic regression with L2 norm regularization and non-linear classifiers, kNN with
5 neighbors and random forest with 50 trees, to demonstrate the results.

3.1 Constrained Bayesian Optimization vs Genetic Algorithm

We use Improved Stochastic Ranking Evolution Strategy (ISRES) [12] as our
baseline since it admits arbitrary nonlinear constraints. In order to compare
these two methods, we use binary classification dataset in two dimensions. We
generated data within (C−) and outside (C+) a circle. Our goal is to find minimal
changes in the feature values of data in C− to C+. The true minimum change
required can be computed by the difference from the radius of the inner circle.

In real cases we have to generally deal with high dimensional data and com-
plex models resulting in more than a few milliseconds of test time. We simu-
late that scenario by introducing a delay in function evaluation using sleep().
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(a) (b)

Fig. 2. Error vs optimization time for constrained Bayesian optimization and ISRES.
(a) no function evaluation time, (b) function evaluation time of 100 ms.

We chose two different settings, no function evaluation time and a function eval-
uation time of 100 ms respectively. The performance comparison between CBO
and ISRES is shown in Fig. 2. We observe that ISRES converges faster when
there is no function evaluation, P(C+/xi + �xi). In the case of expensive func-
tion evaluation of 100 ms ISRES fails to converge within the stipulated time,
whereas Bayesian optimization is faster and converges. Hence, it validates our
choice of using constrained Bayesian optimization to solve our prescriptive ana-
lytics optimization problem.

3.2 Iris Dataset

Iris dataset is available under UCI repository. It has data from three Iris flower
species, Iris Setosa, Iris Versicolour and Iris Virginica. In order to show the
prescriptive analytics for class inversion we selected data from two classes: Iris
Setosa and Iris Versicolor. It has 100 instances with 4 features. We selected
2 features petal width and sepal width as actionable features, to demonstrate
the intuition of our prescriptive analytic framework (in reality neither can be
changed). Figure 3 shows the prescription vectors to change the class from Iris
Setosa to Iris Versicolor. We used logistic regression and random forest as pre-
dictors. The original data (green points) in class Iris Setosa (light blue) and the
transformed data (green points) to Iris Versicolor class (brown) with the red lines
shows the L1 norm change prescribed on the selected data points. This illustrate
the differences in the prescription vectors suggested when we use a linear and a
non-linear classifier. We set a probability constraint (πc) of 0.5 for the logistic
regression classifier to show the efficiency of constrained Bayesian optimizer to
capture the minimal changes near boundary. From Fig. 3, it is clear that our
method prescribes changes, which is near the boundary of the regression model
target class (brown), that is able to find the minimum change to achieve the
required confidence of p(C+) = 0.5.
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Fig. 3. Iris-setosa (light blue) and Iris-versicolor (brown). Chosen data points in Iris-
setosa (green) for transforming to Iris-versicolor. (a) L1 norm change (red line) for
random forest and (b) L1 norm change (red line) for logistic regression. (Color figure
online)

3.3 Application to Policy Design for Better Community Health

CDC Dataset. The CDC data set contains state level prevalence of diabetes,
heart attack and stroke diagnosis over 50 United State states from the year
2007–2012. We apply our prescriptive analytics solution to these three diseases.
Each dataset has 24 features and 300 instances. Out of 24 features we have
taken 7 features as actionable: Bachelor degree or higher, High school graduate,
Some college or associate degree, Unemployed, Separated, Divorced and Never
married. Some of these features can only be increased or decreased i.e. we cannot
increase the Never married percentage. Whilst some of them are inter related
e.g. when High School Graduate percentage decreases then we should only expect
the reduction amount of population to move upwards in the education level
i.e. totally absorbed in the increasing percentage of either College or Bachelors
degree. We treat all such restrictions as ‘known’ constraints during optimization.

We first create binary classification datasets from the original CDC preva-
lence data for diabetes, heart attack and stroke. To create the label we find the
median prevalence rate for each and then mark the states which have prevalence
rate below that median rate as the positive class and the states with higher
prevalence rate as the negative class. For example, diabetes median prevalence
rate is 8.7 based on the training data from 2007–2011. Hence, the states below

Table 2. Accuracy (in %) and probability constraint (πc) for diabetes, heart attack
and stroke dataset.

Dataset kNN Logistic regression Random forest

Accuracy πc Accuracy πc Accuracy πc

Diabetes 68% 0.6 70% 0.51 84% 0.68

Heart attack 84% 0.6 76% 0.53 78% 0.78

Stroke 88% 0.6 84% 0.55 84% 0.8
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(a) Diabetes (b) Heart attack (c) Stroke

Fig. 4. Average L1 norm change vs actionable features. (a) diabetes, (b) heart attack
and (c) stroke for different classifiers.

(a) Georgia (b) West Virginia (c) Arkansas

Fig. 5. Maximum L1 norm change vs actionable features. (a) diabetes, (b) heart attack
and (c) stroke.

this incidence rates falls in class C+ and the rest in class C−. We use data from
2012 as the test data.

The accuracy obtained after running k-Nearest Neighbor, logistic regression
and random forest classifiers on the three datasest is shown in Table 2. The
performance of classifiers on the stroke dataset is comparatively higher than
other datasets.

The computed probability constraint (πc) for each classifier is shown in
Table 2. The most common probability of the bottom 10 percentage data when
using k-Nearest Neighbor as classifier is 0.6 for all datasets, for logistic regression
it is in the range of 0.5 and 0.55 and for random forest classifier it is between
0.68 to 0.8. Classifiers with higher capacity would generally have higher prob-
ability constraints, since they can explain the training data. This is evident by
consistently higher probability constraint values for random forest.

From Fig. 4, it can be seen that the most influential factors across the board is
education and unemployment. To reduce the prevalence of such diseases, unem-
ployment is to be decreased and people should be educated more. We can see that
the factors detrimental to family life such as divorce or separated are required to
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Table 3. Accuracy (in %) and probability constraint (πc) for Reddit dataset.

Measures kNN Logistic regression Random forest

Accuracy (%) 66.57 68.0 71.42

Probability constraint (πc) 0.6 0.51 0.72

(a) Average change. (b) Change for Steve (c) Change for John

Fig. 6. L1 norm change vs actionable features. (a) Average L1 norm change vs action-
able features. Actionable features before (short-term) and after (long-term) class
change: (b) Steve (name changed) and (c) John (name changed) in Reddit dataset.

be lower. We also plot the maximum changes that has been suggested out of all
the states based on the average of all three classifiers in Fig. 5. Similar factors are
at play: adopting a policy to increase education and increase family life reduces
the prevalence of these diseases. A more educated and working population is also
a healthy one.

Reddit Dataset. Reddit (https://www.reddit.com/) is an online community
having many ‘subreddits’, which are primarily based on specific topics. The
‘/r/stopdrinking’ subreddit inspires alcoholics to control their drinking habit. We
collected data from this subreddit using PRAW, a Python Reddit API Wrapper
for collecting posts and its associated meta data such as the badge information,
score, post title, post content, username from Reddit community. A redditor
can request for a badge, which can be used to count the number of abstinent
days. Although self-reported, this can be used as mostly correct ground truth of
abstinence.

We used the badge information, for grouping the posts into two categories.
A badge value of less than 30 days at the time of posting belongs to short-term
group and greater than 365 days at the time of posting belongs to long-term
group. The number of days, 30 versus 365 days time frame seems to be suffi-
cient to identify the behavioral differences between the two groups. We collected
42, 337 posts from years 2011–2016 and created short-term group which contains
6, 910 posts and the long-term group which contains 3, 641 posts from them. We
use LIWC 2015 [10] package to extract LIWC feature set for representing the
posts. LIWC feature represents percentage of words that reflect different emo-
tions, thinking styles, social concerns, and even parts of speech using a 78 dimen-

https://www.reddit.com/
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sional vector. We chose social, family, friend, feel and health as the actionable
features. Any changes on these features should signify increasing or decreasing
the involvement to those aspects of the social life and personal health.

The accuracy of the classifiers along with the probability constraint (πc) is
reported in Table 3. Figure 6a shows the average L1 norm change along actionable
features for Reddit dataset. Original feature values of two persons, Steve (name
changed) and John (name changed) in the short-term abstainer group (C−) and
the new feature values they have got in the long-term abstainer group (C+)
by prescriptive analytics method is shown in Fig. 6b and c respectively. Our
method suggests to Steve that, he has to be more social, family oriented and
health conscious to become a long-term abstainer, same can be seen for John
as well. Though it is prescribing positive changes along the three features, Steve
needs to more social than John to become a long-term abstainer. On the other
way, John has to be more health conscious than the other features to achieve his
goal.

4 Conclusion

We have developed a novel prescriptive analytic solution by formulating a con-
strained optimization problem to find the smallest change that we need to make
on actionable features so that with sufficient confidence an instance can be
changed from an undesirable class to the desirable class. We used constrained
Bayesian optimization to solve our problem where both the objective function
and the constraint function are modeled using Gaussian process priors. Experi-
ments demonstrate both suitability of our method over genetic algorithm based
global optimizer and applicability in wide scenarios of public health data to find
minimum prescriptive vectors on the actionable features to change the outcomes.

Acknowledgment. This research was partially funded by the Australian Government
through the Australian Research Council (ARC) and the Telstra-Deakin Centre of
Excellence in Big Data and Machine Learning. Professor Venkatesh is the recipient of
an ARC Australian Laureate Fellowship (FL170100006).

References

1. Aggarwal, C.C., Chen, C., Han, J.: The inverse classification problem. J. Comput.
Sci. Technol. 25(3), 458–468 (2010)

2. Barbella, D., Benzaid, S., Christensen, J.M., Jackson, B., Qin, X.V., Musicant,
D.R.: Understanding support vector machine classifications via a recommender
system-like approach. In: Proceedings of the ICDM, pp. 305–311 (2009)

3. Basu, A.: Five pillars of prescriptive analytics success. Anal. Mag. 8–12 (2013)
4. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of

expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

5. Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian optimization with unknown con-
straints. arXiv preprint arXiv:1403.5607 (2014)

http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1403.5607


Prescriptive Analytics Through Constrained Bayesian Optimization 347

6. Johnson, S.G.: The NLopt nonlinear-optimization package (2014)
7. Lash, M.T., Lin, Q., Street, W.N., Robinson, J.G.: A budget-constrained inverse

classification framework for smooth classifiers. arXiv preprint arXiv:1605.09068
(2016)

8. Mannino, M.V., Koushik, M.V.: The cost-minimizing inverse classification prob-
lem: a genetic algorithm approach. Decis. Support Syst. 29(3), 283–300 (2000)

9. Mockus, J.: On Bayesian methods for seeking the extremum and their application.
In: Proceedings of the Optimization Techniques IFIP Technical Conference, pp.
400–404 (1975)

10. Pennebaker, J.W., Booth, R.J., Boyd, R.L., Francis, M.E.: Linguistic Inquiry and
Word Count: LIWC 2015 [Computer software]. Pennebaker Conglomerates, Inc.
(2015)

11. Powell, M.J.: A view of algorithms for optimization without derivatives. Math.
Today Bull. Inst. Math. Appl. 43(5), 170–174 (2007)

12. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-
mization. IEEE Trans. Evol. Comput. 4(3), 284–294 (2000)

13. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization
in the bandit setting: no regret and experimental design. In: Proceedings of the
ICML, pp. 1015–1022 (2010)

http://arxiv.org/abs/1605.09068


Neighborhood Constraint Matrix
Completion for Drug-Target Interaction

Prediction

Xin Fan, Yuxiang Hong, Xiaohu Liu, Yaogong Zhang, and Maoqiang Xie(B)

College of Software, Nankai University, Tianjin, China
{nkufanxin,hongyuxiang,liuxiaohu,ygzhang}@mail.nankai.edu.cn,

xiemq@nankai.edu.cn

Abstract. Identifying drug-target interactions is an important step in
drug discovery, but only a small part of the interactions have been vali-
dated, and the experimental determination process is both expensive and
time-consuming. Therefore, there is a strong demand to develop the com-
putational methods, which can predict potential drug-target interactions
to guide the experimental verification. In this paper, we propose a novel
algorithm for drug-target interaction prediction, named Neighborhood
Constraint Matrix Completion (NCMC). Different from previous meth-
ods, for existing drug-target interaction network, we exploit the low rank
property of its adjacency matrix to predict new interactions. Moreover,
with the rarity of known entries, we introduce the similarity information
of drugs/targets, and propose the neighborhood constraint to regular-
ize the unknown cases. Furthermore, we formulate the whole task into
a convex optimization problem and solve it by a fast proximal gradient
descent framework, which can quickly converge to a global optimal solu-
tion. Finally, we extensively evaluated our method on four real datasets,
and NCMC demonstrated its effectiveness compared with the other five
state-of-the-art approaches.

Keywords: Low rank matrix completion · Neighborhood constraint
Drug-target interaction

1 Introduction

The prediction of drug-target interactions (DTIs) is an important part of drug
discovery. But capturing the association between drugs and targets is an expen-
sive and time-consuming procedure [16]. Many biochemical experiments have
been made to discover new drugs in the past few years. However, the number
of known DTIs remains quite low, there are only less than 7,000 compounds
with confirmed target protein information in PubChem [17], one of the largest
compound databases with currently around 35 million entries. Meanwhile, recent
effort on the high-throughput experiments led to the creation of large open access
databases of chemicals and associated bioactivity data [10], which provides us the
c© Springer International Publishing AG, part of Springer Nature 2018
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chemical space of compounds and helps us understand the genomic spaces popu-
lated by the pharmaceutically useful protein targets. Therefore, there is a strong
incentive to develop the computational methods for DTI prediction. These tech-
niques can help discover the new unknown interactions for further experimental
confirmation, which significantly improve the efficiency of drug discovery.

Docking simulation and machine learning are two major types of computa-
tional methods in DTI prediction. Docking simulation is well-accepted in biology
because of its high prediction accuracy. However, simulation is computationally
expensive and always needs 3D structural information of targets which are not
unavailable in most cases [3]. Due to these difficulties, machine learning methods
have been widely used in DTI prediction recently, which is much more efficient.
An intuitive idea is to formulate the DTI prediction as a binary classification
problem, where the observed drug-target pairs are treated as instances, and the
chemical descriptors of drugs and the amino acid subsequences of targets are
treated as the features. In [14], Support Vector Machine (SVM) was used to
build the model. Bleakley et al. [1] used the information of drug/target simi-
larity as kernel matrix and predicted DTIs by the SVM-based Bipartite Local
Models (BLMs). Xia et al. [19] proposed a semi-supervised approach by Lapla-
cian Regularized Least (LapRLS), and improved it by incorporating a new ker-
nel established from the known DTI network (NetLapRLS). These methods have
good performance on DTI prediction but face a common shortcoming, which the
prediction process is decomposed into two steps (drug/target side) and the two
sides are predicted independently. This indicates that the potential information
of drug-target interaction network is not captured well in these methods.

The problem of DTI prediction can also be regarded as the recommendation
task. As an effective recommendation method, matrix factorization has been
used for DTI prediction in recent studies. For example, Cobanoglu et al. [4]
introduced the Probabilistic Matrix Factorization (PMF) to predict unknown
DTIs. Moreover, Zheng et al. [21] proposed a Collaborative Matrix Factoriza-
tion (CMF) model, which exploited the drug/target similarities to constraint
the low-dimensional represents of drug/target. Gönen [7] proposed a Kernelized
Bayesian Matrix Factorization (KBMF2K) method, which extended the ker-
nelized matrix factorization with a full-Bayesian treatment for DTI prediction.
Ezzat et al. [6] proposed a factorization model with a dual graph regularization.
However, the useful information can be lost with the low-dimensional represent
of drug/target and various constraints might be not accurate any more. In addi-
tion, the optimization objective of these method are not-convex, which means it
will convergence slowly and could only find the local optimal solution.

In this paper, we propose a new approach for the task of DTI prediction,
namely Neighborhood Constraint Matrix Completion (NCMC). In order to anal-
yse the DTI information, we construct the adjacency matrix R to represent the
DTI network. Based on our observation that the matrix R is low rank, mean-
ing the different drugs can be divided into several clusters with high cohesion
while the different targets can also be divide into several groups through their
corresponding drugs. In our method, the interaction matrix R is recovered by
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matrix completion with low rank constraint. Moreover, there is a challenge of this
task lies in the rarity of observed entries, especially in prediction of new drugs
which without any known targets. Unlike previous methods, which only focus on
known pairs [13,19] or treat the unknown cases as negative instances [1,4]. We
take advantage of the drug/target similarity information and define the concept
of neighbors, then utilize the affine combination of neighbors to dynamically
estimate and constraint the unknown cases. Experimental results on real-world
datasets demonstrated the effectiveness of both neighborhood and low rank con-
straint. Besides, NCMC also performs better than other five state-of-the-art
methods. In this context, our contributions are summarized as following:

– We transform the DTI prediction into a low rank matrix completion problem
and improve the standard matrix completion to fit the binary matrix.

– We combine the original completion model with neighborhood constraint to
adapt to the rarity of known entries and improve the recovery accuracy.

– We formulate the whole task into a convex optimization problem and solve it
by a fast proximal gradient descent framework, which is guaranteed to obtain
a global optimal solution with the convergence rate of O( 1

k2 ).

The remainder of this paper is organized as follows: In Sect. 2, we describe the
materials and propose our method. In Sect. 3, we introduce the competing meth-
ods and experiment settings firstly, then present the experimental results and
provide relevant discussion. Finally, we end with a conclusion in Sect. 4.

2 Materials and Method

2.1 Materials

We use four real benchmark datasets which correspond to four different target
protein types, namely Nuclear Receptor, G-Protein Coupled Receptor (GPCR),
Ion Channel, and Enzyme. These datasets are provided by [20]1 and frequently
used in DTI prediction [6,7,12,19,21]. Some statistics of these datasets are listed
in Table 1. Each dataset contains three parts: the observed DTIs, the chemical
structure similarities of drug and the amino acid sequences similarities of targets.
The observed DTIs were retrieved from four general databases: KEGG BRITE
[10], DrugBank [18], BRENDA and SuperTarget, the drug similarities were mea-
sured by the SIMCOMP algorithm and the target similarities were computed by
a normalized Smith-Waterman score [20].

2.2 Notation and Problem Description

In this paper, we use D = {di}m
i=1 to denote the set of drugs, use T = {tj}n

j=1

to denote the set of targets, where m and n are the number of drugs and tar-
gets, respectively. The interactions between drugs and targets are represented by

1 http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget.

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget
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binary matrix R ∈ {0, 1}m×n, where Rij is 1 if drug di and target tj are known
to interact with each other and 0 otherwise. In addition, we use Sd ∈ R

m×m

to represent the drug similarities and use St ∈ R
n×n to represent the target

similarities. Let X ∈ R
m×n be a score matrix and assume Xij represents the

likelihood of interaction between drug di and target tj . The object of this study
is to estimate X by {Sd,St,R}, then we can find out potential drug-target
interactions through selecting the candidate drug-target pairs which have high
scores in X.

Table 1. Statistics of the used dataset

Dataset #Drugs #Targets #Interactions

Enzyme 445 664 2926

Ion channel 210 204 1476

GPCR 223 95 635

Nuclear receptor 54 26 90
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Fig. 1. Visualization of the low-rank pattern of drug-target interactions

2.3 Neighborhood Constraint Matrix Completion

To predict unknown interactions, we first analyze the benchmark datasets.
Figure 1 shows the interaction matrix of datasets. Following [13], we only present
the drugs/targets with the most number of interactions. Besides, in order to
better explore the property of interaction network, we arrange the similar
drugs/targets together. From Fig. 1, we can observe several blocks in Enzyme
and Ion Channel datasets, and there is a similar situation on the GPCR and
Nuclear Receptor datasets. It means according to therapeutic targets, the dif-
ferent drugs can be divided into several clusters and each drug in a cluster
has the similar targets. Similarly, the different targets can be divided into sev-
eral groups through their corresponding drugs and there is a strong association
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between the targets within each group. Due to these correlations between dif-
ferent drugs/targets, we assume the whole interaction matrix R is inherently
low rank, which motivates us to use the standard matrix completion model to
recover it. We use ‖X‖∗ =

∑
i σi to denote the nuclear norm of X, where σi is

the i-th singular value of X, low rank matrix R can be recovered by solving the
following optimization problem:

min
X

τ‖X‖∗ + ‖X‖2F
s.t. Ω ◦ X = Ω ◦ R,

(1)

where ◦ is the Hadamard product operator. Ω ∈ {0, 1}m×n is the indicator
matrix of R, that is Ωij = 1 if Rij is a known drug-target pair and Ωij = 0
otherwise. ‖X‖F is the Frobernius norm of matrix X, which is used to adapt
the standard completion model to the binary matrix, and τ ≥ 0 is a tradeoff
parameter which will be used in soft-thresholding operation.

Constraint by Neighborhood. With the help of matrix completion, we can
get the new DTIs through the recovery results of R. However, because we only
focus on known drug-target pairs in the objective function, the above matrix
completion model can not predict for new drugs which do not have known inter-
actions with any targets, or new targets which without any known drugs. In
order to solve this problem and improve the accuracy of our model, we introduce
the similarity information between drugs/targets and propose the neighborhood
constraint to assist the prediction.

Previous studies [8,11] show that the interaction probability between di and
tj should be close to the interaction probabilities between di’s neighbors and
tj ’s neighbors. Hence, many of the unknown cases in R can be constraint by
their neighbors. Firstly, for drug di, we choose the K most similar drugs as
its neighbors and use N (di) to denote the set of them. In this experiments,
we empirically set the threshold value K to 5. We use adjacency matrix S̃d to
represent the drug neighborhood information, where the (i, μ) element S̃d

iμ is
defined as following:

S̃d
iμ =

⎧
⎨

⎩

Sd
iμ∑

p:dp∈N(di)
Sd

ip

if dμ ∈ N (di)

0 otherwise.
(2)

Similarly, we use N (tj) to denote the set of tj ’s neighbors, and calculate the
adjacency matrix S̃t in the same way. Then, we notice that when R is com-
pletely recovered, the each element of final completion results X need to satisfy
the foregoing assumption that Xij ≈ XN

ij , where XN denote the drug-target
interaction likelihoods that calculated based on their nearest neighbors:

XN = ωS̃dX + (1 − ω)X(S̃t)�, (3)

and the tradeoff parameter ω(0 ≤ ω ≤ 1) balances the impacts of drugs side and
targets side. Stated differently, we want the loss

∑
i,j �(Xij ,X

N
ij ) to be small,
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so we add this loss as a constraint term into the original matrix completion
problem:

min
X

λ
∑

i,j

�(Xij ,X
N
ij ) + τ‖X‖∗ + ‖X‖2F

s.t. Ω ◦ X = Ω ◦ R.

(4)

To produce a concrete problem, we focus on the case where � is squared loss in
this work. We use LN (X) to represent the neighborhood constraint of X and it
can be written as:

LN (X) =
∑

i,j

�(Xij ,X
N
ij ) = ‖ω(Im − S̃d)X + (1 − ω)X(In − S̃t)�‖2F , (5)

where In denote the identity matrix of size n.
Moreover, following a method of solving equality constrained problems [2],

we relax the equality constraint in (4), change it into an inequality constraint,
to handle noise. Subsequently we can transform (4) to an unconstrained opti-
mization problem:

min
X

λLN (X) + ρ‖Ω ◦ (X − R)‖2F + τ‖X‖∗ + ‖X‖2F . (6)

Optimization Algorithm. The difficult point in optimization problem (6) is
the ‖X‖∗. Since the non-smooth property of trace norm, we can’t derive its
gradient directly. In this paper, we utilize the accelerated proximal gradient
descent algorithm [9] to solve it. Firstly, We define α = ω

√
λ, β = (1 − ω)

√
λ

and let:
M = α(Im − S̃d),N = β(In − S̃t), (7)

then let:

g(X) = ρ‖Ω ◦ (X − R)‖2F + ‖MX + XN�‖2F + ‖X‖2F . (8)

The objective in (6) is also given by:

min
X

F (X) = g(X) + τ‖X‖∗. (9)

Then, we introduce a auxiliary matrix Y ∈ R
m×n and construct an approxima-

tion of F (X) at a given point Y as:

Qη(X,Y ) = g(Y ) + tr((X − Y )�∇g(Y )) +
η

2
‖X − Y ‖2F + τ‖X‖∗, (10)

where η is a constant satisfies the inequality condition:

F (X) ≤ Qη(X,Y ). (11)

Finally, given the initial X0, Y0 and η0, the optimization problem (9) is solved
by following alternative updating processes.
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Computing Xk: In the kth iteration, we fix Yk−1, ηk−1 and update Xk as
the unique minimizer of Qηk−1(X,Yk−1):

Xk = arg min
X

Qηk−1(X,Yk−1)

= arg min
X

{
ηk−1

2
‖X − (Yk−1 − 1

ηk−1
∇g(Yk−1))‖2F + τ‖X‖∗

}

= D τ
ηk−1

(Yk−1 − 1
ηk−1

∇g(Yk−1)).

(12)

where Dλ(C) = Udiag
(
(σ − λ)+

)
V �; the U , V and σ are the singular

value decomposition (SVD) results of C such as C = Udiag(σ)V �; and
(·)+ = max(·, 0).

Computing Yk: Following the fast convergence update scheme from [9], the
auxiliary matrix Yk is updated as:

sk =
1 +

√
1 + 4s2k−1

2

Yk = Xk−1 +
sk−1 − 1

sk
(Xk − Xk−1).

(13)

Computing ηk: We compute the value of η̄ with multiplier γ to satisfy the
inequality condition F (Xk) ≤ Qη̄(Xk,Yk):

η̄ ← ηk−1, and η̄ = γη̄, (14)

then assign ηk ← η̄. According to [9], it can be confirmed that if we find an
appropriate value for η at each iteration, then for any k ≥ 1, we have:

F (Xk) − F (X∗) ≤ 2γη‖X0 − X∗‖2F
(k + 1)2

, (15)

where X∗ = arg minX F (X). This conclusion shows that the sequence {Xk}
will converge to the optimal solution of problem (9), and the convergence rate
of our method can be O( 1

k2 ).

3 Results and Discussion

3.1 Comparison Methods

We compare our proposed method with other four popular DTI prediction algo-
rithms as follow:

– NetLapRLS [19]: A manifold regularization semi-supervised learning method,
which predicts the potential DTIs from the drugs/targets side respectively,
and gets the final result by the average of two sides.
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– BLM [1]: It uses drug similarity matrix as the kernel to train the SVM model
as first. Then the same operation is done on targets side. The final prediction
is combined by the results of two SVM models.

– CMF [21]: It’s a prediction method based on matrix factorization. The object
of CMF is find low dimension drug matrix and target matrix to reconstruct
R. Besides, it requires the inner product of two drug/target latent vectors
should be close to the corresponding score in drug/target similarity matrix.

– KBMF2K [7]: A Bayesian matrix factorization method which is similar to
CMF. The innovation point of KBMF2K is the usage of fully Bayesian frame-
work, and the variational methods is used to estimate two latent variables.

Besides the above baselines, we also consider a effective link prediction method
which treats the side information as feature and integrates the linear model into
low rank matrix completion, called Inductive Matrix Completion (IMC) [15],
and compare its performance with our method on DTI prediction.

3.2 Experimental Settings

In this experiment, we conducted 5 repetitions of 10-fold cross validation (CV) to
evaluate the performance of each method. Moreover, in order to test the different
aspect of the prediction method, we considered two types of CV as following:

– CVD: CV on drugs where entire row in R were wiped for testing;
– CVT: CV on targets where entire column in R were wiped for testing.

We used both Area Under the ROC Curve (AUC) and Area Under the
Precision-Recall curve (AUPR) [5] as the evaluation metrics. AUC is one of the
effective metrics to evaluate the performance of interaction prediction method
and it is widely used in recent studies. As a complement to AUC, AUPR is a
more sensitive metric to assess the prediction result of sparse data, which is more
applicable in this experiment.

NCMC has three trade-off parameters, α, β, τ , where α, β balance the impacts
of the neighborhood constraint from drugs and targets, τ controls the impact
of low rank constraint. We did parameter selection by using 10-fold cross-
validation on the training set, and considered the following combinations:
{0, 2−3, 2−2, 2−1, 20, 21, 22, 23} for α and β, {0, 2−2, 2−1, 20, 21, 22} for τ . Besides,
in this experiment, we set the soft approximation parameter ρ to 5 empirically.

3.3 Performance Results

Table 2 shows the result of AUC and AUPR under the setting CVD. As shown
in Table 2, NCMC obtains the best results on all datasets except the Nuclear
Receptor dataset, where NCMC performs slightly worse than CMF algorithm
on AUC result. This is because the number of drug-target interactions is small,
especially in the Nuclear Receptor dataset, most drugs only correspond to one
target. In this case, the true positive rate is easy to reach a high value thus AUC
is insufficient to distinguish the performance of methods. In contrast, AUPR
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Table 2. AUC and AUPR results for DTI prediction under CVD

AUC

Dataset KBMF2K CMF BLM NetLapRLS IMC NCMC

Enzyme 0.702 ± 0.006 0.832 ± 0.007 0.768 ± 0.009 0.831 ± 0.002 0.882 ± 0.002 0.894 ± 0.001

Ion channel 0.727 ± 0.009 0.808 ± 0.005 0.736 ± 0.006 0.848 ± 0.002 0.851 ± 0.004 0.870 ± 0.006

GPCR 0.756 ± 0.016 0.812 ± 0.007 0.730 ± 0.012 0.847 ± 0.004 0.849 ± 0.006 0.861 ± 0.005

Nuclear receptor 0.826 ± 0.011 0.876 ± 0.010 0.800 ± 0.020 0.813 ± 0.010 0.805 ± 0.006 0.858 ± 0.002

AUPR

Enzyme 0.208 ± 0.004 0.437 ± 0.005 0.372 ± 0.008 0.482 ± 0.005 0.451 ± 0.005 0.495 ± 0.008

Ion channel 0.295 ± 0.006 0.430 ± 0.005 0.353 ± 0.008 0.434 ± 0.003 0.392 ± 0.007 0.489 ± 0.010

GPCR 0.373 ± 0.005 0.420 ± 0.006 0.353 ± 0.011 0.418 ± 0.003 0.367 ± 0.010 0.463 ± 0.009

Nuclear receptor 0.505 ± 0.017 0.481 ± 0.015 0.467 ± 0.032 0.460 ± 0.005 0.363 ± 0.007 0.507 ± 0.015

Table 3. The AUC and AUPR for DTI prediction under CVT

AUC

Dataset KBMF2K CMF BLM NetLapRLS IMC NCMC

Enzyme 0.824 ± 0.008 0.877 ± 0.006 0.806 ± 0.007 0.895 ± 0.008 0.909 ± 0.003 0.928 ± 0.003

Ion Channel 0.896 ± 0.006 0.924 ± 0.001 0.913 ± 0.002 0.936 ± 0.001 0.934 ± 0.004 0.963 ± 0.001

GPCR 0.791 ± 0.010 0.844 ± 0.013 0.848 ± 0.016 0.794 ± 0.005 0.826 ± 0.005 0.890 ± 0.005

Nuclear Receptor 0.686 ± 0.036 0.762 ± 0.019 0.687 ± 0.034 0.603 ± 0.032 0.730 ± 0.020 0.826 ± 0.022

AUPR

Enzyme 0.553 ± 0.010 0.604 ± 0.007 0.521 ± 0.012 0.625 ± 0.010 0.564 ± 0.009 0.725 ± 0.007

Ion Channel 0.675 ± 0.005 0.646 ± 0.007 0.688 ± 0.006 0.746 ± 0.005 0.691 ± 0.002 0.777 ± 0.004

GPCR 0.374 ± 0.006 0.488 ± 0.012 0.473 ± 0.007 0.431 ± 0.006 0.455 ± 0.004 0.529 ± 0.009

Nuclear Receptor 0.379 ± 0.021 0.421 ± 0.015 0.369 ± 0.012 0.412 ± 0.011 0.366 ± 0.011 0.476 ± 0.013

heavily punishes the highly ranked false positives. On the Nuclear Receptor
dataset, the AUPR value of NCMC is 5.41% higher than that of CMF. There
is a similar situation on the Enzyme and Ion Channel datasets, where the AUC
value of NCMC is close to that of IMC, but NCMC achieves a better AUPR
value, which is 9.76% and 24.74% higher than IMC on Enzyme and Ion Channel
respectively. These results demonstrate NCMC has a higher accuracy on top
ranked drug-target pairs, which is more meaningful in drug discovery process.

The results obtained under setting CVT are shown in Table 3. For target pre-
diction, NCMC outperformed all five competing methods. Another phenomenon
that can be observed is the both AUC and AUPR scores under CVT are higher
than those under CVD on three dataset (Enzyme, Ion Channel and GPCR).
That is, the different methods can achieve a better prediction result with the
absence of target interaction profiles. It indicates that compared with the simi-
larity information of drug structure, the target sequence similarity data is more
informative, which is also a conclusion reached in previous studies [6,12].

Parameter Analysis. In order to confirm the impact of neighborhood and low
rank constraint, we made the sensitivity analysis for three parameters α, β, τ .
Firstly, we compared NCMC‘’s results against variants of NCMC where we set



Neighborhood Constraint Matrix Completion for DTI Prediction 357

α = 0 for the first variant which means using only target similarity information,
β = 0 for the second variant which means using only drug similarity information,
the average AUPR scores for those variants under CVD and CVT are reported
in Table 4. We can see that the NCMC has an advantage over all variants in most
case, these results verify that the introduce of neighborhood constraint is useful
for DTI prediction. In addition, note that the use of drug similarity informa-
tion has little influence on target prediction, especially in Nuclear Receptor and
Enzyme datasets, which also implies that the drug chemical structure similarity
information might not be necessarily useful in these cases.

(a) Enzyme (b) Ion Channel (c) GPCR (d) Nuclear Receptor

Fig. 2. AUPR with different settings of τ under CVD

(a) Enzyme (b) Ion Channel (c) GPCR (d) Nuclear Receptor

Fig. 3. AUPR with different settings of τ under CVT

Then, we tested NCMC under different low rank constraint parameters τ .
As shown in Figs. 2 and 3, the AUPR results are improved after adding the low
rank constraint. However, on the Nuclear Receptor dataset, the promotion is
not significant. This is because the small size of the Nuclear Receptor dataset,
and the low rank property of Nuclear Receptor is less evident than those of the
other three datasets, which is causing the results to be unstable. Furthermore,
the promotion is more pronounced on drug prediction, which means the low rank
constraint is more effective when less reliable information is available.

Novel Interactions Prediction. In order to illustrate the ability of NCMC
in real case, we selected the high probabilities interactions that do not occur
in benchmark datasets, then tested them with the latest data in KEGG and
DrugBank. Our method performed best on the GPCR dataset, and the top 10
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Table 4. AUPR results for NCMC variants

Dataset Drug prediction Target prediction

NCMC
(α = 0)

NCMC
(β = 0)

NCMC NCMC
(α = 0)

NCMC
(β = 0)

NCMC

Nuclear receptor 0.087 0.497 0.507 0.476 0.121 0.475

GPCR 0.147 0.454 0.463 0.519 0.112 0.529

Ion channel 0.123 0.476 0.489 0.773 0.263 0.777

Enzyme 0.024 0.487 0.495 0.724 0.077 0.725

Table 5. Novel interactions predicted by NCMC on GPCR

Rank DrugID TargeID Probability Evidence Rank DrugID TargeID Probability Evidence

1 D00604 hsa147 0.805 DrugBank 6 D00283 hsa1814 0.709 DrugBank

2 D02358 hsa154 0.776 DrugBank 7 D04375 hsa151 0.704 KEGG

3 D02614 hsa154 0.757 \ 8 D00715 hsa1129 0.674 KEGG

4 D04625 hsa154 0.753 KEGG 9 D00110 hsa1128 0.653 \
5 D02147 hsa153 0.727 DrugBank 10 D01712 hsa136 0.648 DrugBank

novel interactions predicted by NCMC are shown in Table 5. The interactions
which exist in the reference databases are in bold while the fourth column shows
the predicted probability of these pairs. The last column shows the databases
evidence for each novel pair, and we found that 80% of predictions are confirmed
in latest databases. In addition, there are 70%, 50%, 50% of top 10 novel inter-
actions predicted by NCMC on the Enzyme, Ion Channel and Nuclear Receptor
datasets have been confirmed respectively. These encouraging results indicate
that NCMC is effective for finding new DTIs, which means it can provide reliable
guidance for drug discovery and may reduce the cost of biological experiments.

4 Conclusion

In this paper, we proposed a novel matrix completion based method for drug-
target interaction prediction, called Neighborhood Constraint Matrix Comple-
tion (NCMC). The novelty of NCMC comes from integrating low rank matrix
completion with neighborhood constraint to predict the interaction probability of
a unknown drug-target pair. Specifically, our method can capture the strong cor-
relation between drugs/targets through the minimization of trace norm. More-
over, we proposed a neighborhood constraint, which provides a new idea for
using side information to recover a matrix with fewer known entries. Further-
more, we formulate the whole task into a convex optimization problem which
makes the algorithm more efficient. In our experiments, we find that NCMC has
an outstanding performance over the five current state-of-the-art methods and
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achieves a high accuracy on novel interaction prediction, which makes NCMC a
better tool for new drug discovery.
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Abstract. We present a novel approach for detecting hypopnea and
obstructive apnea events during sleep, using a single channel nasal air-
flow from polysomnography recordings, applying a Convolutional Neural
Network (CNN) to a 2-D image wavelet spectrogram of the nasal signal.
We compare this approach to directly training a 1-D CNN on the raw
nasal airflow signal. The evaluation was conducted on a large dataset
consisting of 69,264 examples from 1,507 subjects. Our results showed
that both approaches achieved good accuracy, with the 2-D CNN out-
performing the 1-D CNN. The higher accuracy and the less complex
architecture of the 2-D CNN show that converting biological signals into
spectrograms and using them in conjunction with CNNs is a promising
method for sleep apnea recognition.

Keywords: Sleep disorder · Obstructive Sleep Apnea
Convolutional Neural Networks · Wavelets · Supervised learning

1 Introduction

Sleep apnea is a disorder characterized by either a period of reduced breathing
(hypopnea) or no breathing (apnea) during sleep. It affects 2–4% of the adult
population [1]. Factors that contribute to sleep apnea include obesity, age, gen-
der, smoking and drinking [2]. Sleep apnea has been found to be a major risk
factor for motor vehicle accidents, increasing the risk 2–7 times due to daytime
sleepiness, cognitive impairment and other associated factors [3]. Untreated sleep
apnea has also been found to increase the risk of non-fatal and fatal heart events
[4], stroke and also the risk of death, independent from other cerebrovascular
risk factors [5]. There are three main types of apnea events: obstructive apnea,
where breathing is obstructive but there is a continued respiratory effort; cen-
tral apnea, where there is no respiratory effort, and mixed apnea which has a
combination of obstructive and central apnea symptoms [6].
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Diagnosing sleep disorders such as sleep apnea traditionally uses polysomnog-
raphy (PSG), for objective measurement of the abnormal activity. PSG involves
overnight monitoring of the patient and measuring a number of signals with
sensors attached to the body, e.g. respiratory, blood oxygen saturation, elec-
troencephalography (EEG) brain activity and body movement signals.

After the PSG data is recorded, physicians and sleep experts inspect it, using
statistical tools, to detect and classify sleep events such as sleep stages, hypopnea
and obstructive apnea. This manual analysis of long, multi-channel PSG data is
very labor intensive and time consuming. Numerous methods have been devel-
oped to identify sleep apnea and hypopnea events automatically using machine
learning techniques, with a focus on PSG channels that are less intrusive such
as the nasal airflow.

These techniques typically rely on manual feature selection and classifiers
such as Support Vector Machine (SVM). However, manual feature selection is
difficult to perform on the noisy and very long PSG recordings and requires high-
level domain knowledge. Deep neural networks are an attractive alternative as
they can learn the informative features effectively, without prior knowledge. In
particular, CNNs are a popular class of deep neural networks that has had wide
success analysing visual imagery [7], speech recognition [8] and text recognition
[9]. They can identify motifs invariant of position in a signal or image and can
merge semantically similar motifs together. In this paper, we evaluate the ability
of CNNs to detect hypopnea, obstructive apnea and normal events, using two
different types of signals: raw nasal and nasal wavelet spectrogram.

Wavelet analysis is a time-frequency decomposition technique suitable for the
non-stationary and noisy PSG signals, and allowing better time localisation than
Fourier analysis. It can be used to create spectrograms which are visualisations of
the frequency spectrum of a signal, as it varies with time. Spectrograms are very
useful in showing changes of events that occur at different frequencies. They
have been used extensively in speech processing, music, radar and seismology
research as visual representation of signals. Recently, spectrograms of EEG data
have been used in [10] for sleep stages recognition. In this paper, we explore the
use of spectrograms for sleep apnea detection.

The contributions of this paper are as follows: (1) we investigate the applica-
bility of CNNs to detect hypopnea, obstructive apnea and normal events with-
out manual feature engineering; (2) we investigate a novel CNN approach using
Continuous Wavelet Transformation (CWT) spectrograms of a single respiratory
channel (the nasal airflow), which can be recorded easily and non-intrusively; (3)
we evaluate the performance of these approaches on a large dataset of 69,264
examples from 1,507 subjects.

2 Related Work

The methods used to detect both apnea and hypopnea events are typically based
on SVM [11–13] and classical non-deep neural networks [14,15]. Other novel
approaches include voice activity detection [16], EEG frequency variation [17],
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and ensemble methods [18]. The majority of research into sleep apnea investi-
gates multiple respiratory signals such as abdominal, chest, nasal or thoracic.

The most similar work to our study is [19], where the performance of a 1-
D CNN without feature selection was compared to a traditional SVM method
with manual feature selection, for the recognition of two classes: normal and
abnormal (obstructive apnea and hypopnea together). It was found that the CNN
method outperformed SVM and was able to automatically learn the informative
features from the raw signal, in a dataset of 100 subjects. We extend [19] with
our investigation of CWT spectrograms. Furthermore we consider obstructive
apnea and hypopnea events as distinct classes, and evaluate performance using
a much larger dataset (1,507 subjects).

3 Data

We use data from the Multi-Ethnic Study of Atherosclerosis (MESA) collected
by the National Sleep Research Resource (NSRR) [20]. This study investigated
factors associated with the development and progression of cardiovascular dis-
ease. As part of it, 2,056 participants were enrolled in a sleep examination
which included full night unattended PSG. The PSG recordings had durations
of at least 8 h, and included airflow (by nasal-oral thermocouple and pressure
recording from a nasal cannula), cortical EEG, bilateral electrooculograms, chin
EMG, thoracic and abdominal respiratory inductance plethysmography, ECG,
leg moments and finger pulse oximetry. Trained human scorers manually exam-
ined the PSG signals and marked the location and duration of the events (includ-
ing apnea and hypopnea) and also marked every 30 s epoch of the signal as a
wake or one of the four stages of sleep.

3.1 Data Preprocessing and Preparation

We used the PSG nasal airflow signal, recorded with a sampling rate of 32 Hz,
along with the time and duration of each respiratory event identified by sleep
experts. We classified every 30-s epoch as either obstructive apnea, hypopnea or
normal from these respiratory events. An epoch was labeled as obstructive apnea
if it had an obstructive apnea event lasting for more than 10 s. Similar labeling
was applied for hypopnea events. An epoch was labeled as normal if it didn’t
have any apnea or hypopnea events (or any other types of abnormal events), or
if it included apnea and hypopnea events with combined duration less than 10 s.
Epochs that had both apnea and hypopnea events for combined duration more
than 10 s were excluded.

After cleaning the data we had 534,840 normal events, 39,799 obstructive
apnea, and 177,437 hypopnea events. To avoid bias we extracted a balanced set
of normal, obstructive apnea and hypopnea epochs from each subject. Subjects
that did not have both obstructive apnea and hypopnea events were therefore
excluded, limiting our dataset to 1,507 subjects of the 2,056 subjects in MESA.
This resulted in a total of 69,264 epochs (23,088 per event class).
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4 Method

We built two competing CNN-based classifiers, trained and tested with a com-
mon dataset, and compared their performance. The two models are summarised
in Fig. 1. Our first model used the 1-D nasal signal directly, while our novel
2-D approach used a CNN on wavelet spectrograms on nasal airflow for the
classification of hypopnea, obstructive apnea and normal events.

Fig. 1. Summary of the proposed CNN methods to classify 30-s epochs of nasal airflow
as Normal (N), Obstructive apnea (O) and Hypopnea (H) events

To develop the CNN models and evaluate their performance, we followed
the procedure described in [21]. The dataset was divided into stratified training
(75%) and test (25%) sets. Both CNNs were developed using this training set
with 10-fold cross validation for parameter selection. Each model was then built
with the full training set using the selected parameters, and its performance was
evaluated and compared on the hold-out test set.

Below we discuss the normalisation of the nasal signal, and the architecture
of the two CNN models.

4.1 Signal Normalization

The airflow signals used in this study consist of all epochs between the sleep
onset and the last sleep event. The nasal airflow signals were normalized by the
mean and standard deviation of the normal epochs of the airflow signal for each
subject. The normalized signal was calculated as:

Ŝi =
Si − ¯Sn,i

σSn,i

(1)

where Si is the signal for subject i, Sn,i is the signal of the normal epochs of
subject i, ¯Sn,i is the mean of the normal epochs signal for subject i and σSn,i

is
the standard deviation of the normal epochs signal.
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(a) Normal event signal (b) Normal event spectrogram

(c) Hypopnea event signal (d) Hypopnea event spectrogram

(e) Obstructive apnea event signal (f) Obstructive apnea event spectrogram

Fig. 2. Examples of normal, hypopnea and obstructive apnea event epochs using the
two representations: nasal signal and visual spectrogram of the nasal signal
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4.2 CNN Design

A CNN consists of convolutional, pooling and fully connected layers. The con-
volutional layer includes a number of filters, which analyse certain portions of
the data to identify features or motifs (i.e. presence of edges at particular orien-
tations or locations). Typically each convolution layer is followed by a pooling
layer, which seeks to systemically merge similar motifs together. This allows the
identification of motifs with small variations in position or shape. After a number
of convolutional and pooling layers, fully connected layers are used [22]. We used
a single fully connected layer with softmax activation function, which produces
the probability for each class. The input example is assigned to the class with
highest probability.

Finding optimal configurations for neural networks like CNNs requires expert
knowledge, estimation or exhaustive search [23]. There are four main approaches
for selecting CNN hyper-parameters: manual search, grid search, random search
[24] and Bayesian methods [23].

In this work the hyper-parameters were determined by performing a non-
exhaustive manual search of parameter combinations, and using 10-fold cross-
validation within the training set to select the best combination. The following
hyper-parameters were investigated: number of layers, filter size and number of
filters. The number of epochs was set to 50 and the training was stopped early
if there was poor performance after the first fold. The CNN parameters that
resulted in the highest average performance over the 10 folds were selected, and
then the 1-D and 2-D CNNs with the selected parameters were re-trained on the
full training set and their performance was evaluated on the hold-out test set.

4.3 1-D CNN: Nasal Signal

The input to the 1-D CNN was the normalized signal of each epoch. Every 30-s
epoch included 960 features; no feature extraction or selection were applied. The
1-D CNN architecture is shown in Fig. 3 and consisted of 6 convolutional layers
and 3 max pooling layers, followed by 1 fully connected softmax layer. Each
convolutional layer had 32 filters with Rectified Linear Unit (ReLu) activation
function, and each max pooling layer had a pool size of [2 × 1] nodes. Each
convolutional layer of kernel size [3 × 1] with 3 strides is followed by another
convolutional layer of kernel size [2 × 1] with 2 strides, and then a max pooling
layer. The fully connected softmax layer consisted of 3 nodes with each node
representing a probability output for each of the 3 classes.

The 1-D CNN model was trained using the backpropagation algorithm, opti-
mising the categorical cross entropy function with the Adam optimizer [25] and
a 50% dropout [26] was employed to prevent overfitting. The batch size was set
to 100 samples.

4.4 2-D CNN: Nasal Signal Spectrogram

The input to the CNN was a spectrogram of the nasal airflow signal. The spec-
trograms were calculated by using CWT with the analytical Morlet wavelet. The
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Fig. 3. Summary of 1-D CNN: nasal signal

Fig. 4. Summary of 2-D CNN: nasal signal spectrogram

Morlet wavelet has good time localization properties which makes it well suited
for detecting the transient properties of a signal. No feature selection was used
to reduce the number of features. The frequency axes of the spectrogram images
were scaled by log2 to show high frequency features with a similar size to the
low frequency features. Examples of the spectrograms of normal, hypopnea and
apnea events are shown in Fig. 2.

The 2-D CNN architecture is shown in Fig. 4. This CNN consisted of two con-
volutional layers with ReLu activation layers afterwards and 1 max 2-D pooling
layers followed by a fully connected layer and softmax layer. The first convo-
lutional layer used 56 filters of kernel size [10 × 10] with stride [5, 5] and the
second used 56 filters of kernel size [5 × 5] with stride [2, 2]. The 2-D max pool-
ing layer had a size of [2 × 2] with stride [2, 2]. Similarly to the 1-D architecture,
the fully connected layer and softmax layer consisted of 3 nodes, outputting the
probability of each class.
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The 2-D CNN was trained with the backpropagation algorithm, optimis-
ing the categorical cross entropy using the Stochastic Gradient Descent with
Momentum (SGDM). The batch size was set to 128 samples per training epoch
and 50% dropout was used at the end of each epoch.

Table 1. Performance (%) for obstructive apnea, hypopnea and normal events on the
test set for the 1-D and 2-D CNN methods

Method Event Recall Precision F1 score

1-D CNN N 76.1 73.7 74.9

H 65.6 71.0 68.2

O 91.2 87.4 89.3

Average 77.6 77.4 77.5

2-D CNN N 76.2 80.4 78.3

H 73.6 68.8 71.1

O 89.2 90.2 89.7

Average 79.7 79.8 79.7

5 Results and Discussion

Table 1 summarizes the performance of the 1-D CNN and 2-D CNN models
against the 25% test set, after training on the full 75% training set.

Both methods show excellent performance detecting obstructive apnea (O)
with F1 scores close to 90%. This is likely due to such events being distinctly
different to the others: as can be seen in Figs. 2f and 2e, obstructive apnea tends
to have a total reduction in nasal airflow as breathing is completely stopped
for more than 10 s. Although the performance of the CNNs in detecting the
hypopnea and normal events was somewhat lower, it was significantly higher
than the dataset baseline (33% for each class).

Comparison to other work is complicated by differences in measurement. The
SVM work in [13] reports accuracies in detecting hypopnea and apnea events of
90.3% and 93.8%, respectively, but using a definition of accuracy that is the
sum of recall and false negative rate. By the same criteria the 1-D CNN achieves
respective scores of 83% and 103% (the accuracy formula used in [13] exceeds
100% when the number of detected events exceeds the true number), while the
2-D CNN achieves 98% for both hypopnea and apnea events. Importantly the
SVM was tested on 26 recordings without balancing of event types, while our
test set draws a balanced set from 1,507 recordings. The classifier in [11] reported
a sensitivity (recall) of 87% for detecting apnea events of 12 subjects. Both 1-D
and 2-D CNN models outperform this, at 91.2% and 89.2%, respectively. Our
wavelet spectrogram CNN approach also shows significant improvement over
the CNN method from [19], as we achieved 79.8% accuracy classifying normal,
hypopnea and obstructive apnea events on 1,507 subjects compared to 75%



Detecting Hypopnea and Obstructive Apnea Events 369

accuracy classifying normal and abnormal (combined hypopnea and obstructive
apnea) events on 100 subjects.

Table 2. Confusion matrices with the predicted and actual classes for obstructive
apnea, hypopnea and normal events on the hold-out test set for the 1-D and 2-D CNN
methods

(a) 1-D CNN

Prediction

N H O Sum

A
ct
u
al N 4391 1188 193 5772

H 1421 3785 566 5772

O 148 358 5266 5772

Sum 5960 5331 6025

(b) 2-D CNN

Prediction

N H O Sum

A
ct
u
al N 4640 982 150 5772

H 1325 3968 479 5772

O 123 443 5206 5772

Sum 6088 5393 5835

The confusion matrices for the 1-D and 2-D CNNs are shown in Table 2. In
both models there was significant misclassification of normal events as hypopnea
(20.6% in the 1-D CNN, 17.0% in the 2-D CNN) and hypopnea as normal events
(24.6%, 23.0%). This misclassification between normal and hypopnea events can
be understood from examining the events in Fig. 2, in which it can be seen that a
hypopnea event has a similar waveform as a normal event, but with a reduction
of amplitude as breathing is reduced. A hypopnea event is also only a portion
(>10 s) of the 30 s epoch which would be otherwise normal breathing.

Some misclassification may also be due to large artefacts in the signal during
the night. There are also limits of the accuracy of the CNN based on the quality
of the manual scoring, as there are examples of misclassification of normal and
hypopnea events that were classified based on nasal pressure but actually contain
little or no nasal pressure and should be classified as apnea events. Some of these
events could be verified by examining other respiratory channels. In our exper-
iments, only the nasal airflow signal was examined and adding more channels
might improve the accuracy as artefacts in one channel could be identified.

Sleep apnea severity is commonly rated by the Apnea-Hypopnea Index (AHI),
calculated from the average number of apnea and hypopnea events per hour dur-
ing the night. It is important then to be mindful of the biases in the classification
of each event. Both models show a bias towards classifying events (particularly
hypopnea) as normal, which could lead to an artificially low AHI. The bias
from falsely detected normal events is mostly offset by abnormal events (mostly
hypopnea) misclassified as normal, leading to a 3% bias in the 1-D CNN and
5% in the 2-D CNN. This could possibly be compensated for by suitable scaling
of the counts. In practice, as can be seen in Sect. 3, a sleep does not consist of
a balanced set of events but is strongly skewed towards normal events so care
would be needed in applying such an adjustment.
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In terms of training time, the 2-D CNN was slower than the 1-D CNN,
although it has a simpler architecture. In particular, the 2-D CNN spectrogram
approach required 40 min to train with only two convolutional layers while the
1-D CNN required 5 min using six convolutional layers. However, as training is
done off-line, both training times are acceptable for practical applications.

We also note that for the 2-D CNN approach (which examines 2-D spectro-
gram images), the optimal architecture found included only two convolutional
layers, while the 1-D CNN approach included six convolutional layers. Since
more convolutional layers are expected to correspond to higher complexity of
the data, or more non-linearities, this demonstrates that the 2-D spectrograms
are able to show the important features of the signal in a significantly less com-
plex representation.

It is interesting to consider whether there would be a benefit to combining
both approaches, using the raw 1-D in combination with the CWT spectrogram
information. Within our test set the number of events correctly identified by both
models was 3991, 3225 and 5010 for normal, hypopnea and apnea, respectively.
This is significantly lower that the numbers along the diagonals of the confusion
matrices in Table 2, suggesting that using information from both approaches
could correctly identify a significantly larger number of events.

6 Conclusion

We proposed a novel CNN method using wavelet spectrograms to detect hypop-
nea, obstructive apnea and normal events, and demonstrated its applicability
against a CNN using raw 1-D signal using a large dataset of 69,264 instances
from 1,507 subjects. Both methods use a single respiratory signal from PSG - the
nasal airflow, which is easy and non-intrusive to obtain. The first method uses
the raw 1-D nasal airflow, while the second method uses 2-D spectrogram images
of the nasal airflow. Both methods learn the informative features automatically,
without prior feature extraction and selection.

Our results showed that both methods achieved good accuracy, with the
2-D CNN providing higher accuracy (79.8%) than the 1-D CNN (77.6%), and
both considerably outperforming the baseline of 33.3%. An accuracy of 79.8%
is a very promising result, especially given that only the nasal signal was used.
Consistent with previous studies of sleep apnea, both methods performed better
at identifying the obstructive apnea class than the other two classes, achieving
F1 scores greater than 89%.

The less complex architecture of the 2-D CNN suggests that it is easier
to identify the most significant features from spectrograms than from the 1-D
signal. This demonstrates that converting biological signals into spectrograms
can provide valuable information which is difficult to see in the original signal.

Further work will include investigating the use of other respiratory signals,
e.g., thoracic, abdominal and chest, in addition to the nasal airflow. In this
study, other apnea events including central apnea and mixed apnea were not
investigated, and we plan to test the applicability of this method on detecting
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other types of apnea events in the future. Additionally, it would be interesting to
compare the performance of other methods, including time series classifiers such
as motif-based time series classifiers, to identify sleep apnea events [27]. We also
plan to test the accuracy of our methods on other sleep apnea datasets. A high
quality re-classification of the MESA dataset by several experts is also desirable.
Our research also highlights the need to create a common, large benchmark
dataset for comparing different apnea and hypopnea detection methods.
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Abstract. Modern customer analytics offers retailers a variety of
unprecedented opportunities to enhance customer intelligence solu-
tions by tracking individual clients and their peers and studying clien-
tele behavioral patterns. While telecommunication providers have been
actively utilizing peer network data to improve their customer analytics
for a number of years, there yet exists a very limited knowledge on the
peer effects in retail banking. We introduce modern deep learning con-
cepts to quantify the impact of social network variables on bank customer
attrition. Furthermore, we propose a novel deep ensemble classifier that
systematically integrates predictive capabilities of individual classifiers
in a meta-level model, by efficiently stacking multiple predictions using
convolutional neural networks. We evaluate our methodology in applica-
tion to customer retention in a retail financial institution in Canada.

1 Introduction

Customer retention is crucial for company profitability and growth. Satisfied
customers provide ongoing cross-sell and up-sell opportunities, and tend to refer
a pool of new clients. Acquiring a new customer can be 5–25 times (depending on
the industry) more expensive than retaining a current one [11]. In the saturated
markets of retail banking, the intense competition pushes these costs toward
the upper boundary. At the same time, there is a strong association between
customer retention and profitability: long-term customers buy more and are less
costly to serve, while new ones are likely to continue their churning behavior [16].

Loss of clients, also known as churn or customer attrition, is widely recognized
as one of the most critical business challenges for a variety of companies, from
telecommunication providers to financial institutions. While companies pursue
new customers through acquisition marketing efforts, customer churn under-
mines the business growth. Voluntary turnover rates for banking and finance
are the third largest (after hospitality and healthcare) among all industries
[7]. Hence, analysis of customer characteristics, such as socio-demographics and
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 373–385, 2018.
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activity patterns, is crucial for predictive identification of customers who are
likely to churn, as well as for more efficient targeted application of marketing
strategies for customer retention.

Through the theoretical and economic framework of customer retention strat-
egy, [18] show that such reasons as purchase intention, proportion of category
purchases and purchase regularity are strongly associated with loyalty decisions.
Moreover, decisions of many customers tend to be strongly affected by customer’s
social neighbors. In the banking industry, 71% of customers turn to friends, fam-
ily, and colleagues for information on bank products [10]. Still, most marketing
tools primarily employ direct approaches, neglecting network effects and treat-
ing customers independently of their social network environment. As a result,
banks lose invaluable information on the driving forces of customer’s purchasing
behavior and churn.

Despite the well-documented impacts of peer networks on customer behavior,
still very few studies incorporate the network information of bank clientele in
the retention models, and one of the reasons is the lack of the explicit network
ties in the customer databases. For example, [3] use kinship information delib-
erately collected from bank customers for the study – this is a costly approach
with a number of data quality and data privacy issues. As an alternative, [19]
use information on bank transfers and joint loans to build customer networks.
This approach, however, is applicable only for large banks, because a single bank
with a moderate market share has a high portion of transfers being inter-bank
transactions, where detailed information on the second customer is not available,
thus, resulting in highly sparse data. In an attempt to enhance customer service
and, possibly, the network database, HSBC has recently launched a social net-
work for its business customers [14], which can be considered at this point as an
experiment, rather than a standard practice. In this study, we adopt a different
method of building the customer network, by taking advantage of information
that is readily available at any bank – family name and address of each customer.

Furthermore, our customer dataset is highly unbalanced. That is, the number
of non-churners is much larger than that of churners. In turn, most statistical
and machine learning classifiers suffer from the inability to detect weak signals
in such unbalanced datasets. In binary classification problems, such as customer
retention, this phenomenon implies a low specificity or low sensitivity of a clas-
sifier. To address this issue, we propose a new deep ensemble classifier which
harnesses powers of individual classifiers in a meta-level classifier, using con-
volutional neural networks. The rationale behind this novel framework is that
convolutional neural networks can extract useful features by efficient stacking of
multiple predictions. We demonstrate the performance of the new technique in
binary classification tasks.
The main contributions of our study are as follows:

– We develop a novel predictive tool for customer churn in retail banking that
accounts for the invaluable information on clientele social network effects.

– We introduce deep learning concepts to customer retention analysis in retail
banking and propose a cost-effective way of building customer networks.
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– We develop a novel deep ensemble classifier, which integrates predictive capa-
bilities of single models in a meta-level classifier, using convolutional neural
networks. Our studies indicate that the new deep ensemble classifier delivers a
competitive performance, especially in largely unbalanced datasets, and hence
has a potential for high utility in a wide variety of classification problems,
well beyond customer retention.

The paper is organized as follows. Section 2 provides a background on
the related work in social network analysis and customer retention modeling.
Section 3 describes the data, and Sect. 4 presents the proposed methodology.
Section 5 discusses the main results of the study. Section 6 summarizes the results
and outlines directions for future research.

2 Related Work

Nowadays, there exists a plethora of machine learning approaches to customer
data mining and retention modeling, ranging from classical regression to neural
networks to random forests (e.g., see [12,17,20,23] for a general topic overview).
The experiments in [21] showed that neural networks typically outperform logis-
tic regression and decision trees in churn prediction. Nevertheless, the perfor-
mance of neural networks noticeably deteriorates under a lower monthly churn
rate (unbalanced data), that is, the problem that we address in this paper using
a new deep ensemble classifier.

Peer networks are known to influence a variety of customer decisions. Appli-
cations of social network analysis to customer retention, however, are often lim-
ited due to poor availability of data on customer peer networks. Most progress
in this direction has been achieved in telecommunication industry, where social
networks are naturally observed from the call and message records (e.g., see
[1,2,13,24,28]). Constructing networks of bank customers requires additional
steps, such as targeted surveys [3], mining the databases of customers and their
transactions [19], and, potentially, employing big data approaches for harness-
ing customer information from disparate sources, including online social media
[22]. Overall, the analysis of the impact of peer networks on customer behavior
in retail banking remains largely at its infancy, comparing with other indus-
tries. We address this challenge by introducing a cost-effective way to collect
peer information in retail banking and integrate these data with high predictive
utility into customer analytics solutions.

Deep learning (DL) methods continue to attract increasing interest in cus-
tomer churn prediction, while being a relatively new tool in customer analytics.
DL architectures, like the multi-layer feedforward architecture, can effectively
capture features of the underlying customer data and learn hierarchical clientele
data structures [4,25]. To our knowledge, this paper is the first one to introduce
DL concepts into customer retention models in retail banking.
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3 Data

The data used in this study comprise a database of all transactions, accounts, and
(monthly) snapshots of a customer database of a retail financial institution in
North America over a period of 3.5 years (2011.1–2014.6). The customer database
contains information collected from the customers themselves (name, address,
age, gender, etc.; some of these records are missing or outdated) and from the
bank’s records about each customer (tenure, number of accounts of each type,
total amount owned, etc.; complete and up-to-date records). The customer data
were redacted – first names completely removed, family names and addresses
replaced by encrypted numeric IDs – so that customers’ privacy was protected,
but some information about their closeness (derived by matching family name
and address IDs) was preserved.

From approximately 30 thousand customers in the sample dataset, we select
customers who can make their own financial decisions (above 18 years old) and
are likely alive (below 100 years old), then split the data into consecutive baseline
and prediction periods. Information from a baseline period is used to predict
whether a customer will churn in the nearest future, where churn is defined as
inactivity (number of transactions is zero) during the prediction period. Hence,
churn can be represented as a binary variable taking on the value 0 for customers
who stay active in the prediction period and value 1 for those who churn. We
use one-year baseline periods (2011, 2012, and 2013) with respective prediction
periods of one year (2012 and 2013) and six months (2014.1–6).

3.1 Feature Engineering

Building a set of features for customers is an important step for capturing and
quantifying nuances of customer behavior and achieving a superb predictive per-
formance of the customer retention models. We use domain knowledge to create
individual features (variables) that are potentially associated with customer’s
retention or churn: age, average time between transactions, time since last trans-
action, number of loans, number of past transactions, tenure, total savings and
total credit balances. For example, middle-aged customers or those having large
credit balances often are mortgage owners and will likely stay with the bank
for some time. Conversely, older customers may become activity churners when
they retire and direct their pension payouts to another bank.

Age = 40 y
Savings = $50

F. age = 41 y
F. savings = $60

...

Age = 42 y
Savings = $10

F. age = 41 y
F. savings = $60

...

Age = 47 y
Savings = $80

F. age = 36 y
F. savings = $90

...

Age = 18 y
Savings = $0

F. age = 36 y
F. savings = $90

...

Age = 43 y
Savings = $10

F. age = 36 y
F. savings = $90

...Age = 55 y
Savings = $40

F. age = 55 y
F. savings = $40

...1
2

3

4 5

6

Fig. 1. An example network of six bank customers (nodes), where edges connect people
from the same family. Each node has individual and family network features identified
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The matching address and family name IDs allow us to create family net-
works (Fig. 1) that join customers who have the same address and family name
(the IDs do not reveal any other details, such as neighbor or co-worker rela-
tionships). These family networks are cliques, because we consider each family
member as connected to everyone else in that family. To capture the depen-
dence of customers on their family members, we apply the egocentric network
approach and define family network features for each customer. The network
features include the individual features aggregated within a family (average age,
tenure, total savings, etc.), family size, and two variables indicating whether a
family has had churners in the baseline period (“Presence of churners”) and how
many (“Number of churners in the family”).

4 Methods

4.1 Deep Convolutional Neural Networks

Convolutional neural networks (CNN) is a class of artificial neural networks that
are based on translational invariance and are weight-shared. These two charac-
teristics increase learning efficiency and make CNN less prone to overfitting than
simple artificial neural networks. Hence, for multi-label (binary) datasets, CNN
can be trained as a feature extractor and perform better than other classification
techniques. An attractive property of CNN is that CNN trained on large datasets
have demonstrated an ability to capture high-quality features describing data.

CNN are widely used for image and natural language processing because
they can handle static content, like an image or a sentence, well. We make the
first attempt to apply CNN for churn prediction in retail banking. In contrast to
2D inputs in image classification, churn input data are 1D. We create a super-
vised feedforward neural network for binary predictive classification of customer
retention. Using the features listed in Sect. 3.1, we found that CNN are able to
efficiently mine interesting classification rules.

Architecture. Convolutional Filter Layer. Let X = (X1,X2, . . . , Xn) be a
high-dimensional input matrix and Y be the output vector. Deep learning can
be treated as learning a function, F , mapping input to output:

Y = F (X), where Xi ∈ R
p, Yi ∈ {0, 1}. (1)

In the convolution process, set a filter w of size k. Then, to obtain a feature
mi of the feature map m = [m1,m2, . . . ,mp−k+1], where mi = f(w·Xi:i+k−1+b)
and b is its corresponding bias offset, apply activation function f to Xi:i+k−1.

Activation Layer. The role of activation function is to transform the input space
of each layer in neural network in such a way that output units become linearly
separable. Commonly used activation functions are ReLU f(x) = max(0, x),
logistic σ(x) = 1/(1 + exp(−x)), and hyperbolic tangent tanh(x) = 2σ(2x) − 1.
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Pooling Layer. Pooling (downsampling) layer decreases the computational com-
plexity and prevents overfitting by reducing number or dimensions in a previ-
ous layer. It is done by applying sum-pooling, average-pooling, or max-pooling
[24,27]. In our study, we apply max-pooling: m̂ = max{m}.

Loss Function and Regularization. The goal of our study is to train the
learner (1) using a loss function L(y,o), where o is the output from learner and
y is the true output label. Typically L1 = ‖y − o‖ and L2 = ‖y − o‖2 are
applied to the regression problem and training process of neural networks. In
our case, we use cross-entropy L = −

∑k
i=1 yi log(oi), because it delivers stable

good performance with softmax layer, which is the last layer of our CNN:

f(x)i = exi

/∑J

j=1
exj , for i = 1, . . . , J.

When fitting a model on a relatively small training dataset, overfitting is
always a problem for out-of-sample prediction. Neural networks have particularly
many parameters that contribute together to building an excessively complex
model, which may overfit the data. Dropout [26] is a regularization technique
that helps to get an efficient final neural network architecture and to avoid
overfitting. The dropout deletes some of the features in X and, in the training
phase, sets the output of each hidden neuron to 0 with probability p. The feed-
forward operation for layers l = 1, . . . , L − 1 [26]:

d
(l)
k ∼ Bernoulli(p); ỹ(l) = d(l) ◦ y(l); y(l+1) = f(W (l+1)ỹ(l) + b(l+1)) , (2)

where d is a vector of Bernoulli random variables, W (l) and y(l) are the vectors
of biases and outputs from layer l, and ◦ denotes the element-wise product.

4.2 Deep Ensemble Classifier

A single model cannot guarantee a uniformly optimal, or at least stable, per-
formance in all cases for which we need to make predictions [29]. Some models
are better than others in responding to specific patterns in the data, e.g., those
mentioned in Sect. 3.1. A possible solution to this problem is training an ensem-
ble of models and combining their results in some way to obtain more stable
and accurate predictions. The stability of out-of-sample (generalization) errors
is achieved in ensembles by aggregating information from many models that can
potentially overfit the training data, but each model in its own way. Higher accu-
racy is often achieved even by simple averaging of the single model predictions,
but more informed methods, which take into consideration specific strengths and
weaknesses of each model, may lead to even better results.

The widely used ensemble methods include bagging, boosting, Bayesian
model averaging (BMA), and stacking. Compared with stacking, BMA uses dif-
ferent posterior probabilities to weight each base-level model. The empirical
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Fig. 2. Stacking with K-fold cross-validation

results in [6] showed that stacking consistently delivers more competitive per-
formance than BMA. BMA works better only when the correct data generating
model belongs to the set of model candidates and the noise is low, i.e., under
the conditions that are very difficult to satisfy in applications. In turn, stack-
ing outperforms other ensemble methods due to its ability to learn and flexibly
account for the behaviors of other classifiers in a combining model [9].

The standard stacking technique is based on applying a logistic regression on
the outputs of base-level models, which limits us to the case of monotonic rela-
tionships (also, with the same speed of approaching both asymptotes) between
predictions from each base-level model and the response. We relax this condition
and develop a new deep ensemble classifier for building the second layer of classi-
fiers, based on more flexible machine learning methods. In particular, we propose
and evaluate the performance of the following stacking approaches: stacking with
CNN (StCNN); stacking with RF (StRF); stacking with XGB (StXGB); stack-
ing with Extra-Trees (StET); stacking with NN (StNN), and stacking with KNN
(StKNN). We also use K-fold cross-validation, which provides a good trade-off
between variance and bias (see Algorithm 1 and Fig. 2).

5 Results

To compare the performance of single and stacked models and see the effect of
adding network features, we design the following four scenarios: (i) single base-
level model with individual features alone; (ii) single base-level model with both
individual and network features; (iii) stacked models with individual features
alone, and (iv) stacked models with both individual and network features.

We split the data into training (D, 70%) and testing (T , 30%) subsets and
report results for predicting for the testing subset. On the dataset D, we train
five different single base-level models with the following methods: random for-
est (RF), extreme gradient boosting (XGB [5]), K-nearest neighbor algorithm
(KNN), neural networks (NN), and CNN. Each of the considered five methods
can provide several well-performing models with different tuning parameters,
and we can use all of them when creating an ensemble (thus, each ensemble we
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Algorithm 1. Stacking with K-fold cross-validation
INPUT: Training set D = {xi, yi}m

i=1 and testing set T = {xi, yi}n
i=1

(xi ∈ R
p, yi ∈ {0, 1}), number of folds K, and V different base-level classifiers

OUTPUT: A meta-level classifier Ψ
1: Randomly split D into K equal-size subsets: D ← {D1, D2, . . . , DK}
2: for v in 1 to V do
3: for k in 1 to K do
4: Train a classifier h

(v)
k on D \ Dk

5: Let h
(v)
k (Dk) be the out-of-fold predictions for the set Dk

6: Let h
(v)
k (T ) be predictions for the testing set

7: end for
8: Construct a new variable from out-of-fold predictions in the training set:

D′(v) ← {h
(v)
1 (D1), h

(v)
2 (D2), . . . , h

(v)
K (DK)}

9: The new variable in the testing set is an average of K predictions:

T ′(v) ← AVG{h
(v)
1 (T ), h

(v)
2 (T ), · · · , h

(v)
K (T )}

10: end for
11: Train a meta-level classifier ψ on

{(
D′(1), D′(2), . . . , D′(V )

)
, yi

}m

i=1

12: Return Ψ(T ) ← ψ
(
T ′(1), T ′(2), · · · , T ′(V )

)

created had more than five members). In the stacking Algorithm1, we use 4-
fold cross-validation for the first two time periods and 7-fold cross-validation for
the third period. The optimal parameters for each base-level model were chosen
through a grid search.

The CNN architectures used in this study are shown in Table 1. In the CNN
training, we use tanh as an activation function, and ReLU in the second layer.
The advantages of ReLU include faster model training and smaller chance of the
gradient to vanish. We apply dropout with the probability p = 0.6 at the second
layer before pooling and insert a batch normalization layer [15] (eps = 0.00001,
momentum = 0.99) before applying the activation function in the second layer.
Stochastic gradient descent was chosen as the CNN optimizer, with the learning
rate of 0.001 and momentum value of 0.9 as optimal parameters.

For each of the scenarios (i)–(iv), Table 2 layouts a confusion matrix[
TN FP
FN TP

]

for the subset T , where TN is the number of non-churners classi-

fied as non-churners, FP is the number of non-churners classified as churners,
FN is the number of churners classified as non-churners, and TP is the number
of churners classified as churners. Table 2 shows that improved churn predictions
can be achieved by leveraging the CNN architecture, novel stacking approach
(StCNN), and customer network features.

Figure 3 reports the misclassification rates R = (FN + FP )/N (where N =
|T | is the size of the testing set) delivered by various base-level models on the
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Table 1. Architectures of CNN

Layer Layer type Size of base level Size of meta level

1 Convolution + tanh 1 × 2 20 filters 1 × 2 30 filters

1 Max pooling 1 × 3, stride 1 1 × 2, stride 1

2 Convolution + ReLU 1 × 3 50 filters 1 × 2 50 filters

2 Max pooling 1 × 5, stride 1 1 × 2, stride 1

3 Fully connected + tanh 500 hidden units 500 hidden units

4 Fully connected + tanh 2 hidden units 2 hidden units

5 Softmax 2 ways 2 ways

test datasets. The base-level models XGB, RF, and CNN outperform NN and
KNN in each period.

Remarkably, CNN that include both individual and network features perform
noticeably better than other baseline models for the 1st and 2nd periods. We also
observe that RF performs better in the 3rd period when using both individual
and network features. The results in Fig. 3 prove that most of our single models

Table 2. Confusion matricesa of predictive classifying of bank customers

Baseline
period

Prediction
period

Model Individual features Individual & network features

Single model Stacked models Single model Stacked models

2011.1–12 2012.1–12 CNN
6634 13

108 240

6628 19

101 247

6629 18

101 247

6630 17

99 249

XGB
6618 29

101 247

6621 26

102 246

6617 30

104 244

6616 31

97 251

RF
6627 20

103 245

6626 21

105 243

6623 24

102 246

6630 17

105 243

2012.1–12 2013.1–12 CNN
8305 20

29 280

8304 21

26 283

8305 20

26 283

8305 20

26 283

XGB
8304 21

41 268

8303 22

34 275

8304 21

37 272

8305 20

30 279

RF
8304 21

27 282

8304 21

31 278

8303 22

29 280

8304 21

30 279

2013.1–12 2014.1–6 CNN
8227 14

78 749

8219 22

54 773

8219 22

66 761

8221 20

61 766

XGB
8207 34

57 770

8212 29

54 773

8214 27

61 766

8214 27

59 768

RF
8220 21

62 765

8216 25

59 768

8217 24

58 769

8214 27

56 771
aEach cell is a 2×2 confusion matrix. For each period, matrices with minimal sum FP+FN

are highlighted.
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Fig. 4. Performance of meta-level algorithms with different sets of features

(especially CNN and RF) trained on both individual and network features are
more accurate (lower R) than models trained exclusively on individual features.

Aggregation of results by stacking further improves the predictive perfor-
mance. Among the six considered stacking algorithms, the best three are based
on CNN, RF, and XGB – the algorithms that also show the best performance in
the base-level scenarios (Fig. 3). Accuracy of these three methods is noticeably
higher than of the other three (StET, StNN, and StKNN), while running time of
XGB is considerably shorter. Figure 4 shows that StCNN always outperforms the
other stacking schemes. Compared with Fig. 3, accuracy of the best-performing
combinations changed as follows:

– improved from 98.30% (CNN with both individual and network features) to
98.34% (StCNN with both individual and network features), i.e., by 0.04
percentage points, for the period 2011–2012;

– stayed at about 99.47% (CNN and StCNN, each with both individual and
network features) for 2012–2013;

– improved from 99.10% (RF with both individual and network features) to
99.16% (StCNN with individual features), i.e., by 0.06 points, for the period
2013–2014.6.

The results imply that the architecture of CNN can improve the performance
of churn predictive classification with automatically capturing and extracting
relevant features, especially after adding network features into the model. Fur-
thermore, StCNN can simultaneously reduce false negative rates and yield the
optimal true negative rate. Nevertheless, in the absence, to the best of our knowl-
edge, of a formal statistical test applicable to a stacking scheme, more extensive
experiments based on a cross-validation argument are needed to prove the sta-
tistical significance of the improvement of using StCNN.

In the StCNN, we use Adagrad [8] as the optimizer, and set learning rate,
epsilon, and L2 regularization coefficient (wd) to 10−2, 10−10, and 10−3 by tuning
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with a grid search. The accuracy of the above results is high (i.e., errors R are
low) in part due to a very low proportion of churned customers (below 6%). The
dataset is unbalanced, as well as the costs of losing a customer. Various studies
suggest that such costs can be 5–25 times higher than the costs of retaining an
existing one [11], but the results above assume equal costs of FP and FN .
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Fig. 5. Misclassification rates R′ (dark color shade means smaller) when churners weigh
20 times more than non-churners (r = 20)

In Fig. 5, we use cost ratio (r = 20) of FN to FP to upweight the errors in
misclassifying churners (FN + TP ):

R′ =
r · FN + FP

N + (r − 1)(FN + TP )
. (3)

Figure 5 shows that the egocentric network approach and model stacking, in
particular, the StCNN, improve the churn predictions.

6 Conclusion

We have proposed a novel predictive tool for customer retention in retail bank-
ing by introducing deep learning concepts into churn analysis. Our approach
allows to systematically and consistently integrate invaluable information on
customer peer effects into the customer analytics process. We have developed
a new deep ensemble classifier that fuses predictive powers of individual clas-
sifiers in a meta-level model, by efficiently stacking multiple predictions using
convolutional neural networks. The proposed deep ensemble classifier delivers
competitive performance in largely unbalanced customer data and, hence, has a
potential for a wide applicability in classification problems well beyond customer
analytics.
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Abstract. Present day computing environments consist of different bits
of hardware and software that are associated with each other in a com-
plex way. Hence, in case of failures of such system, it is very difficult to
detect the exact module which has caused the problem. In such a situ-
ation, an automated technique which can pin down to (at least) a set
of modules that may be responsible for the failure would be very use-
ful for support engineers. This paper makes an important step towards
that direction. We propose a graph based troubleshooting methodology
exploring storage system logs (EMS) of around 4500 customer cases to
troubleshoot customer problems. We provide a ranked list of modules
to the support engineers which can significantly narrow down the trou-
bleshooting process for around 95% cases with only 10% false positive
rate whereas the competing baseline MonitorRank covers only 74% cases
with 23% false positive rate.

1 Introduction

Efficient enterprise system should provide reliable and fast support service in
face of anomalous events and failures; customers consistently rely on support
engineers for troubleshooting. In effect, support engineers try to resolve issues
within minimum case resolution time1. They typically rely on thumb rules (e.g.
severity-based filtering for logs) or prior experience to identify the glitch & the
responsible subsystems, and thereby the root cause. However, the study shows
that about 50% of the cases take anytime between 3 to 20 days for resolution.
Evidently, this approach is not scalable, accurate or fast enough, especially when
it comes to managing multiple node clusters in large data centers.
Recently, attempts have been made to automate the timely detection of impend-
ing failures. However, the challenge of troubleshooting gets manifold if support

1 Case resolution period is the duration between ‘Case opened date’ and ‘Case closed
date’ from customer support database.
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engineers need to identify the exact system modules responsible for the glitch.
This may be hard to exactly pinpoint the problem creating module in a large
scale complex system; however an automated troubleshooter can potentially nar-
row down the search space, and even localize faulty components within a very
short time. The challenge in developing such a troubleshooter comes from mul-
tiple sources. (a) Most of the real systems are complex as various constituent
system components exhibit functional dependencies [7]. Although the support
& monitoring team of a subsystem are equipped with deep domain knowledge,
however this is extremely hard for them to have a holistic view of the complete
system. This may be an artifact of the presence of a massive number of system
components, poor coordination between the teams etc. (b) Individual compo-
nents such as storage systems are themselves composed of many interconnected
modules, each of which has its own failure modes. For example, a storage system
failure can be caused by disks, physical interconnects, shelves, RAID controllers
etc. (c) Typically in such a large evolving complex system the prior knowledge
of dependency tree between modules is not available.

Complex enterprise systems generate massive amounts of telemetry data
(counters, system log, etc.) for efficient troubleshooting. In [9,12], techniques
have been developed leveraging on those system counters and storage logs respec-
tively, for the accurate early warning capability for anomaly detection. Moving
ahead, a bigger challenge is to provide the necessary tools and techniques for the
operators to focus their attention to specific problematic subsystems (modules),
thus reducing the complexity of the diagnostic process. Attempts have been
made in bits and pieces in the gamut of troubleshooting and failure diagnosis
using system log. [1] focused in the area of intrusion detection, where it learns
popular problem signatures from past history of their corresponding system logs.
It subsequently assigns a severity score per message extracting distributions of
error messages. The proposed methods in [8,16,17] diagnosed the problem by
connecting clues from system runtime logs to the static code, whereas in [4]
problem symptoms are used to locate diagnostic logs. However, the performance
of aforesaid supervised approaches heavily depends on the training signatures;
they quickly tend to produce false positives if (a) the problem description is ill-
defined, (b) it does not contain any correlation with the actual technical issue.
For instance, [14] troubleshoots only a particular subset of cases (system mis-
configuration), but in practice, the breadth of variety of cases are pretty broad.
Moreover, these approaches are more relevant for finding software bugs as they
offer a fine-grained view of the software code paths.

Importantly, the overall health of a system gets reflected by the frequency and
type of message interactions between the constituent modules (e.g. wafl, raid,
etc.). Graph appears to be an elegant way of representing the dependency infor-
mation, where nodes and links denote the modules and corresponding message
exchanges respectively. Substructures, embedded within the graph, represent the
group of closely associated modules indicating component dependencies. Study
[10] shows that, in the normal phase, due to the routine and regular interac-
tions between the modules, a major fraction of substructures regularly appear
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in the graph. However, as the system enters into the anomalous phase, irregular
and sporadic message exchanges result in formation of anomalous substructures
in the graph, which can be quickly identified due to its occasional presence.
Moreover, communities [3], present in the graph, represent the cohesive mod-
ules in terms of message interaction and dependencies. In a nutshell, anomalous
substructure, coupled with the detected communities, may provide unique sig-
nature for identifying the modules responsible for the problem. Leveraging on
the aforesaid observation, this paper takes an important step in developing an
unsupervised troubleshooting infrastructure.
In this paper, we develop Graph Based Troubleshooting Methodology GBTM
- an unsupervised troubleshooting methodology for identifying modules respon-
sible for system failure, termed as problem creating set (PCS). The methodol-
ogy works in following two steps; first, we construct a sequence of time evolving
dynamic graph from the collected system log and customer filed cases. We extract
the initial set of problem creating modules identifying the anomalous substruc-
ture in the graph. In the second step, we extend this set of anomalous modules
by detecting communities in the graph (Sect. 3). Apart from providing trou-
bleshooting modules, we rank the modules in PCS based on confidence score,
which might be helpful for support engineers. We demonstrate the performance
of GBTM through extensive evaluation (direct and indirect) and comparative
study between baselines across metrics (Sect. 5). Obtaining the information of
the real problem creating modules is a major challenge. Our support engineers
extracted the trouble creating modules from domain knowledge for only 20.50%
of cases, where evaluation becomes straightforward. However, for rest 80% cases,
we leverage on an indirect method of evaluation, leveraging on the similarity
between customer filed cases (Sect. 4). In this proposed method, actual problem
causing module comes within top five rank in 86% cases covering 95% cases
within top ten rank with only 9.71% as false positive rate.

We start this paper describing the details of the collected dataset and intro-
ducing the related terminologies (Sect. 2).

2 Background and Dataset

System generated data like counters, logs and command history etc. are crit-
ical for timely troubleshooting and improving customer service. Auto Support
(ASUP) infrastructure provides an option of sending the daily logs from the indi-
vidual machine to the support center’s (here NetApp) server. While customers
can opt out of this facility, most of them choose to go for it since it provides proac-
tive system monitoring capabilities and hence faster customer support. When a
customer faces certain problem, she files a case - the case history is filed in a
customer support database. A support engineer attends the case by filing an
instance in a bug report database. Note that bug reports are arranged according
to the category of bugs (for example misconfiguration, performance, hardware
failure etc.). The service engineer makes an entry in the database which she
thinks to be relevant at first instance. This may not be exactly same as what
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she finally diagnoses which is stored in a problem category database - this
she fills up after finishing the job. The customer is also advised to speak out
the problem as technically as possible - the data of which is stored in another
database called sym-text. Following is a sample example of sym-text. OIN-
ODE: Out of index node error; System Notification from eg-nascsi:
node name in the cluster-h11.

Corresponding to each filed case, the event message system (EMS) logs are
available in the support center server (from ASUP) - we thus collect 18 weeks
of EMS log data for our analysis. The last week is the week after the case has
been filed. For our analysis we have assumed for the first 16 weeks, the system
was in healthy state. The detail field of EMS log is stated next.

Table 1. EMS message structure

Field Log entry example Description

Event time Sat Aug 17 09:11:12 PDT Day, date, timestamp and
timezone

System name cc-nas1 Name of the node in cluster
that generated the event

Event ID filesystem1.scan.start EMS event ID. Contains
module name and event type

Severity info Severity of the event

Message string Starting block reallocation on
aggregate aggr0

Message string with
argument values

2.1 Event Message System (EMS) Logs

Support infrastructure gives access to daily EMS logs2. Interpretation of fields of
following typical EMS log is summarized in Table 1. An example of which is Sat
Aug 17 09:11:12 PDT [cc-nas1:filesystem1.scan.start:info]: Starting
block reallocation on aggregate aggr0.

Each log entry contains time of the event with fields like module name, day,
date, timestamp and timezone, severity etc. Severity field can take a value from
‘Debug’, ‘Info’, ‘Notice’, ‘Warning’, ‘Error’, ‘Critical’, ‘Alert’, ‘Emergency’.

2.2 Data Filtering

For the evaluation of the methodology, we identify most severe and impactful
bugs (from bug report) filed by customers.
(a). We select bug reports (Bj) having a sufficient number of cases associated
with them. This ensures adequate data to validate the model and also provides
robustness and generality to the mechanism as these cases are spread across
2 https://library.netapp.com/ecmdocs/ECMP1196817/html/event/log/show.html.

https://library.netapp.com/ecmdocs/ECMP1196817/html/event/log/show.html
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multiple systems, customers and configurations. (b). We filter out instantaneous
failures - bugs that are race conditions3, coding errors etc. (c). We filter cases
based on the priority label. (d). We filter out cases with missing data. This
produces 32 bug reports each having at least 70 customer support cases. There
are 4827 cases from 4305 unique systems that span over 5.5 (January 2011 to
June 2016) years.

2.3 Graph Construction from EMS Log

The snapshot of weekly log is abstracted as graph as discussed below.

(a) Vertex: From raw EMS log, the module name (mu) can be extracted
from event message string. Each module (mu) is treated as a vertex in the
graph. The vertex set of the graph Gi

k : V i
k ⊂ M , where M is the set of all

modules.
(b) Edge: If the timestamp difference between two event messages originated
from two modules mu and mv lies within a threshold (set as 300 s), we incor-
porate a directed edge muv between them. The edge set of the graph Gi

k: Ei
k

⊂ E, where E represents all possible edges between modules.
(c) Edge Weight: Lower timestamp difference (i.e. messages generated from
mu and mv within a close interval) denotes high dependency between mod-
ules, so higher weight will be assigned to that edge (muv). The edge weight
of edge muv is formulated as wuv = r ∗ ∑r

s=1
1
ts

where ts denotes the time
difference and r denotes the number of occurrence of edges between vertex
mu and mv.

Corresponding to each case (Ck), as mentioned we collect 18 weeks of data - we
construct a graph corresponding to each week (T 1 to T tmax where tmax = 18) -
consequently, we get 18 graphs (Gi

k, Gi+1
k , .... Gtmax

k ) from a single case. The
last two graphs we assume is arising out of the anomalous state of the system.

3 Troubleshooting Methodology

Given a case filed by the customer, our aim is to shortlist a set of modules respon-
sible for the specified issue. From a particular case, we construct 18 graphs as per
the algorithm defined in the previous section. Taking a graph as an input, Graph
Based System Troubleshooter (GBST) outputs an abnormal substructure. We
consider the modules belonging to the resultant substructure as problem cre-
ating candidate set (PCCS). Further, the community structure of the graph is
discovered (using a standard community detection algorithm) and the commu-
nity which matches closest with the anomalous substructure is chosen. The nodes
(modules) in that chosen community are added to PCCS and we get expanded
problem creating set (EPCS). Consequently, we get 18 EPCS - one for each time
window. We merge the first 16 (normal period - obtain NEPCS) and the last

3 https://en.wikipedia.org/wiki/Race condition.

https://en.wikipedia.org/wiki/Race_condition
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two (abnormal period - obtain AEPCS) separately. Finally, we construct final
problem creating set (PCS) and rank the modules based on causality score, i.e.
if a module appears very frequent in AEPCS while it is rare in NEPCS we assign
higher causality score to that module. We posit that the top ranking modules
are the modules where certain failure has happened.

Algorithm 1. Graph Based Troubleshooting Methodology (GBTM)
1: Call GBST algo // Finding initial candidate set of the problem creating modules
2: Call Clustering // Discovering communities by Louvain algo
3: Call Set Expansion // Get expanded problem creating set (EPCS)
4: Create NEPCS, AEPCS // Merge all the problem creating sets in two sets
5: Call Ranking Modules and PCS construction // Construct final problem creating

set and rank the modules based on causality score

3.1 GBST Algorithm

Inspired by the graph based anomaly detection technique SUBDUE [10], which
uses MDL (minimum description length) principle as an evaluation method,
we propose GBST algorithm. MDL states that the best description of a data
set is the one that minimizes the description length of the entire data set -
correspondingly in a graph the substructure which describes the entire graph in
minimum length can be considered the best substructure. Whereas an anomalous
substructure which won’t be repeated much in the graph would require higher
number of bits to represent the graph. GBST at first outputs a set of candidate
substructures - we discard the ones with lower DLs - we use a graph encoding
technique [6] to measure the description length. For each of the member of the
reduced set, we calculate the number of instances the substructure matches in
the entire graph - we use an approximate matching algorithm [5] to do so. The
members with lower score are filtered in the candidate set. For each entity of
the filtered list, we compute anomaly score by the transformation cost (using
insertion and deletion of vertex and edges) to match [5] the entity with the
best substructure. We finally shortlist only those abnormal substructure where
anomaly score exceeds a certain threshold (0.95). Hence the problem creating
candidate set (PCCS) is the union of the modules present in the shortlisted
anomalous structure.

3.2 Clustering

The community structure of a graph states information of nodes which are ‘close’
(here functionally dependent) to each other. Taking Gi

k = (V i
k ⊂ M,Ei

k ⊂ E) as
input, a standard community detection algorithm (we choose Louvain [2]) returns
some set of clusters represented as ci = {c1k, c

2
k, ..c

n
k}4, where

∣
∣ci

∣
∣ = n. Further,

4 Note that case index is denoted by Ck whereas cluster index by ck.
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to check consistency, we also ran various state of the art community detection
algorithms on a subset of the graphs and compared the obtained community
structure with that obtained through Louvain. We observe high NMI score [15]
between the clusters which ensures the consistency of clusters.

3.3 Set Expansion

From the graph, GBST method produces the PCCS - let these modules be the
initial members of PCS. In the second step, the vertex set of the graph is parti-
tioned into some clusters cik. We calculate normalized overlapping index denoted
by OI between PCCS and each community cpk ∈ cik, 1 ≤ p ≤ n. Mathemati-
cally, for two arbitrary sets S1 and S2, OI(S1, S2) = |S1 ∩ S2| / |S1 ∪ S2|. If OI

exceeds some threshold (0.75) for a particular cluster (cpk), we expand PCS by
incorporating the modules of that specific cluster, at the end of which we get
the expanded problem creating set (EPCS).

3.4 Creation of NEPCS and AEPCS

NEPCS set is constructed taking the union of all EPCS of first 16 normal period
graph. Merging the EPCS of abnormal period graph G17

k and G18
k we get AEPCS.

Final set of AEPCS for case k denoted by Vepsk = V 17
epcsk

∪ V 18
epcsk

. NEPCS for

case k denoted by V ′
epsk

=
16⋃

j=1

V j
epcsk

where V j
epcsk

denotes EPCS of kth case at

jth timestamp.

3.5 Ranking Modules and PCS Construction

We measured how far a module (mk) of AEPCS (Vsk) is associated with abnor-
mal period vs. normal operating condition. For a case, suppose we discover that
module mk appears n1 times in abnormal set AEPCS out of total nabn samples
and it also appears in NEPCS n2 times out of total nnorm normal samples. Then
causality score (CS) is as follows

CS =
X1

(X1 + X2)
; X1 =

n1

nabn
, X2 =

n2

nnorm
(1)

First, we cluster the list of causality scores of modules using x-means clustering
[11]. Then we choose the cluster having high mean and low standard deviation.
The modules belonging to that cluster forms final problem creating set (PCS).
The final PCS of case k denoted by Vsk . We rank the modules of PCS based on
causality score - we posit top ranking modules are modules which are responsible
for the failure.

4 Experimental Setup

Obtaining the ground truth information of the real problem creating modules is
a major challenge for evaluation of the proposed model. In our context, support
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engineers extracted the trouble creating modules as ground truth from domain
knowledge for only 20.50% of cases, where evaluation becomes straightforward.
However, for rest 80% cases, we leverage on an indirect method of evaluation.

4.1 Evaluation Procedure

Our indirect method of evaluation relies on the following hypothesis; ‘Similar
cases will have an approximately similar problem creating modules set’. Consider
that set Ssim denotes the collection of similar cases (Ssim = {Cj : 1 ≤ j ≤
|Ssim|}) where Vsj be the final problem creating module set (refer Sect. 3.5) of
case Cj . According to our hypothesis, ideally, Vsk \Vsk′ = ∅, ∀ 1 ≤ k, k′ ≤ |Ssim|
where k 
= k′, indicating Vsk and Vsk′ both contains same set of modules.

Grouping Similar Cases: In the following, with the help of domain knowledge
and rigorous analysis, we mine the similar cases from the corpus and construct
the set Sj

sim. Since support engineers link each case with the corresponding bug
report Bj , apparently, the set of all cases Cj under the bug report Bj should
appear as similar. However, in order to further narrow down the group of similar
cases under bug report Bj , we first populate two sets of similar cases Ssym

sim

and Sesm
sim from Sym-Text and EMS-Log respectively and finally obtain Sj

sim

considering only the overlapping cases for bug report Bj .

(a) Sym-Text Based Similarity: We transform the collected sym-text
(see Sect. 2) of case Ck into a tf-idf [13] vector sveck . We compute the pairwise
cosine-similarity cossymk,k′ (sveck , sveck′ ), ∀ Ck, Ck′ ∈ Bj . If cosine-similarity cossymk,k′

exceeds a threshold δsim (we set δsim as 0.80), we populate the set Ssym
sim with

similar cases Ck, Ck′ .
(b) EMS-Log Based Similarity: For each case Ck ∈ Bj , we collect all the
event message string from the corresponding EMS-LOG (refer Sect. 2.1) and
transform into a tf-idf vector eveck . Next, like Sym-Text based similarity, we
compute the pairwise cosine-similarity cosems

k,k′ , ∀ Ck, Ck′ ∈ Bj and populate
the set Sems

sim with similar cases Ck, Ck′ (where cosems
k,k′ (eveck , eveck′ ) exceeds a

threshold 0.65).

Finally, taking the overlapping cases appearing in Ssym
sim and Sems

sim , we construct
the final similar cases set (Ssim) for bug Bj as Sj

sim = Ssym
sim ∩ Sems

sim .

4.2 Evaluation Metrics

We validate the model with following metrics.

(a) Overlapping score of two PCS:
We compute OI(Vsk , Vsk′ ) =

∣
∣Vsk ∩ Vsk′

∣
∣ /

∣
∣Vsk ∪ Vsk′

∣
∣ as the overlap between

two PCS, where Vsj be the final problem creating module set (PCS) of case Cj .

According to our hypothesis, ∀ Cj
k, C

j
k′ ∈ Sj

sim, for bug report Bj , we expect
OI(Vsk , Vsk′ ) to attain a high index. For all cases under bug report Bj , we compute

Ocases
Iavg

(Bj) =
∑n=|Sj

sim|
n=1 OI (Vsk

,Vs
k′ )

|Sj
sim| , Cj

k, C
j
k′ ∈ Sj

sim.
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(b) Confidence score: We assign a confidence score with each module mk identified
in PCS set. For each bug report we observe how frequently a module mk appears
in the corresponding PCS of associated cases. Suppose we discover that module
mk appears in PCS for a set of cases under the bug Bj for na times out of total
nb samples. Then we assign na

nb
as confidence score of mk.

(c) False Positive Rate: Intuitively, the problem creating modules should appear
only in the abnormal state. If a module mk appears in both NEPCS and AEPCS
set we treat that module as a false positive. We measure false positive rate as
the fraction of problem creating modules of PCS appeared in both normal and
abnormal period.

4.3 Baseline Models

(a) MonitorRank: Taking system metrics as input, the batch-mode engine
of MonitorRank [7] generates call graph and random walk algorithm is applied
over the evolving graphs. MonitorRank assigns a root cause score for each sen-
sor which reduces the time and human effort to find problem cause in service-
oriented architectures. We consider our constructed graph as call graph and
apply random walk (personalized page rank) and assume returned root cause
as problem creating set for the sake of comparison.
(b) GBST: We implement a variation of GBTM model as baseline, where
we consider the outcome of GBST as the problem creating module PCS. Here
we don’t explore the community structure.

5 Evaluation

We evaluate the performance of GBTM in two steps, (a) direct validation, where
ground truth is available and (b) indirect validation, where ground truth can be
obtained from similar cases.

)b()a(

Fig. 1. (a) Overlapping of PCS between similar cases (b) Overlapping between consec-
utive PCS set; shows stability of GBTM
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5.1 Direct Validation

We start the evaluation procedure with the small fraction of cases (20.50%),
where the support engineers have reported the exact problem creating modules
(one ground truth trouble creating module per case). We rank the modules in
final problem creating set (PCS) recommended by our proposed methodology
GBTM based on confidence score and observe the position of the ground truth
problem creating module. In Fig. 2(a) we exhibit the (cumulative) fraction of
cases where the ground truth problem creating module appears at the top-k rank
in the recommended PCS. Notably for only 9.66 % cases, the actual problem
creating module appears at the top of the GBTM recommended PCS, never-
theless, we observe ≈ 86% cases the actual problem creating module appears
within top-5 rank and ≈ 95% cases within top-10 rank. As an example GBTM
discovers ‘wafl’ (matched with ground truth) as main problem creating module
of a customer filed case mentioned as “There is some load from RAID domain
workload in CPU, during back up the write latency becomes extremely high and
slow speeds saving files”. This result points to the fact that GBTM would signif-
icantly help the support engineers to narrow down their troubleshooting space.
On the other hand, in case of MonitorRank, only 2.55 % cases exactly matches
with ground truth and only 66% cases are covered within top-5 rank and 74%
cases within top-10 rank whereas GBST covers 78% cases within top-10 rank.

5.2 Indirect Validation

Next, we evaluate the performance of the GBTM algorithm indirectly, consider-
ing only the similar cases identified in Sect. 4.1. We aim to validate the hypothesis
introduced in Sect. 4. In Fig. 1(a), we show the overlapping score Ocases

Iavg
(Bj) for

all the similar cases under each bug report Bj . We observe average overlap as
high as 0.807 (SD 0.06) across all the bugs. This indicates the PCS set of similar
cases are ≈81% overlapping. However, in GBST , we observe average overlap as
0.638 (SD 0.07) and 0.553 (SD 1.03) in case of MonitorRank.

Table 2. Comparison with baseline model

Model FPR (%) APCS overlap (%) Ground truth match (%)

MonitorRank 23 55.3 74.12

GBST 9.15 63.8 78.23

GBTM 9.71 80.7 95.42

5.3 Comparative Study Across Metrics

We evaluate the overall performance of GBTM across the different metrics
(Table 2). MonitorRank gives 23% average FPR over all the bug reports whereas
only 9.71% FPR in GBTM (Fig. 2(b)). GBST slightly gives better result in
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(a) (b)

Fig. 2. (a) Cumulative distribution of case coverage % w.r.t rank (b) Comparison of
baseline models and GBTM regarding FPR (%) over all bug reports

terms of false positive rate (9.15 %) as it does not consider set expansion. FPR
of MonitorRank is high as it gives more importance to cluster the sensors (mod-
ule in our case) rather than reducing FPR. But compared to GBTM (80.7% PCS
overlap; ground truth match 95%) its variation (GBST ) leads very low overlap
(63.8%) between similar cases and covers less no of cases (78.23 %) under top
ten ranking. The overlap (55.3%) and case coverage (74%) both are low in case
of MonitorRank than GBTM and GBST . Finally, in Table 3, we demonstrated
the performance of GBTM for three sample bug reports. For each bug report, we
show three modules and their corresponding confidence score. Higher confidence
score establishes the reliability of our model.

Table 3. Top three ranked modules based on confidence score

Bug report 1 Bug report 2 Bug report 3

R1 R2 R3 R1 R2 R3 R1 R2 R3

Module wafl ems cifs nbt api disk disk raid shelf

Confidence 0.90 0.88 0.85 0.93 0.92 0.90 0.97 0.96 0.92

5.4 Stability of GBTM

Finally, we evaluate the stability of the recommended problematic modules in
GBTM methodology. We compute the overlap of PCS set between two consecu-
tive anomalous time window. Essentially we observe whether the PCS set persist
(from timestamp T 17

k to T 18
k ) after the case filed date. We compute OI between

two problem creating set of an individual case at two consecutive timestamp T 17
k

and T 18
k respectively.
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∀Ck ∈ Bj , we measure OI(V 17
sk

, V 18
sk

) and report the mean of consecutive PCS
overlap score in Fig. 1(b). The average value of 0.79 across all the bug reports
prove the stability of GBTM .

6 Conclusion

Logs are challenging to analyze manually because they are noisy and the key
events are often buried under hundreds of uninteresting messages. This paper
presents GBTM , a troubleshooting tool which solely works on system logs. We
abstracted the raw event message system log by a graph structure which effi-
ciently incorporates dependency information and infers a probable set of mal-
functioning modules with the help of community structure. Our proposed work
ranks the modules based on the confidence score which further significantly
reduces the number of candidate system modules. As we know customer prob-
lem troubleshooting is a time consuming and challenging task, we believe the
tool developed here will immensely help support engineers to speed up the case
resolution times.
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Abstract. Detecting humans in video is becoming essential for mon-
itoring crowd behavior. Head detection is proven as a promising way
to realize detecting and tracking crowd. In this paper, a novel learning
strategy, called Deep Motion Information Network (abbr. as DMIN) is
proposed for head detection. The concept of DMIN is to borrow the tra-
ditional well-developed head detection approaches which are composed
of multiple stages, and then replace each stages in the pipeline into a cas-
cade of sub-deep-networks to simulate the function of each stage. This
learning strategy can lead to many benefits such as preventing many
trial and error in designing deep networks, achieving global optimiza-
tion for each stage, and reducing the amount of training dataset needed.
The proposed approach is validated using the PETS2009 dataset. The
results show the proposed approach can achieve impressive speedup of
the process in addition to significant improvement in recall rates. A very
high F-score of 85% is achieved using the proposed network that is by
far higher than other methods proposed in literature.

Keywords: Head detection · Motion representation
Learning strategy · Deep architecture

1 Introduction

Monitoring large crowds using video cameras is an important task since it could
improve the security and safety in large areas where people gather, such as train
stations, stadium and other public places. However, occlusion and low resolution
in the region of interest hinders accurate crowd segmentation. In such scenario,
accurate detection and tracking of people in crowds is the promising option.
However, recent study shows that it is difficult to perform accurate pedestrian
detection for handling small instances because of insufficient resolution [8,27].
Based on the detailed observations [8] from the popular Caltech Pedestrian
Dataset, it could be found that the head is the only visible part in 97% of
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 399–410, 2018.
https://doi.org/10.1007/978-3-319-93034-3_32
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occlusions. This strengthens the motivation of detecting pedestrians in crowds
by finding their heads.

Pedestrian detections, the general case of head detection in video, have
attracted many research efforts [2,6,7,27,28]. These approaches could be roughly
categorized into three classes: multi-stages-based approaches [5,7,16], where they
are majorly benefited by powerful boosting methods and simple low-level features
(HOG, LUV); and deep-network-based approaches [2,17,21,27,28], where repre-
sentative features are learned through non-linear deep transformation. Multi-
stages-based approaches refer to the conventional approaches which tend to
detect objects through multiple phases, as shown in the top of Fig. 1. With
the rise of deep networks, deep-network-based approaches tends to build a end-
to-end convolution deep network to extract features and an extra classifier for
detecting heads as shown in the middle of Fig. 1. Another approach which has
fewer research but has significant performance over single feature detector is
joint-features detection [23]. Earlier research by Hsu et al. [14] belongs to this
kind of approaches, which has demonstrated the advantage of applying motion
information in the detection of human heads over color when the environment
is cluttered and heavily occluded.

These two approaches are with their own advantages and disadvantages. The
multi-stage-approaches are easy to understand due to the hand-crafted features
and stages. Due to the independency of each stage, the training data can be
prepared separately for each stage. However, this kind of approaches compute
features and make decisions at each stage. For example, producing TV-L1 optical
flow is independent from creating motion boundary histogram (MBH). There-
fore, the poor performance in the previous stage will lead to that in the current
stage. On the other hand, the deep-network approaches could adjust the weights
of the whole networks when minimizing the loss functions. The disadvantages of
this kind of approaches are in two-folds. First, the design of deep networks are
usually dependent on the experience of the designer and need to make several
trial until the better performance is made. Second, more and more training data
are needed to train end-to-end deep networks when the size of deep networks
become bigger and bigger, which may not be always available in practice.

This paper proposes a multi-stage-based deep network approach for head
detection: Deep Motion Information Network (abbr. as DMIN). In the nutshell,
the philosophy of DMIN is to use the modern technique (deep-network-based
solution) with the traditional design (multi-stage-based solutions). The concept
could be best understood in the bottom of Fig. 1. It could be seen that the
deep network is composed of three sub-networks with a softmax layer, which
simulate the functions of stages in the top of Fig. 1, respectively. Specifically,
DMIN exploits two fully convolution networks FCN1 and FCN2 to learn the
motion gradient images (corresponding to the stage of pre-processing features),
a fully convolution network FCN3 to motion proposal (corresponding to the stage
of advanced hand-crafted features), motion convolution network (corresponding
to the stage of sophisticated feature engineering) to detect the head by merging
the bottom layers and attaching a multi-layers-perceptron and a softmax layer.
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The design philosophy of DMIN is to borrow the experience of well-developed
multi-stages-based approaches.

1. The time for designing deep networks could be saved.
We believe that the pipeline of stages which are refined by experienced
researchers for years could be very sophisticated. Based on such a sophis-
ticated design, the structure of the end-to-end deep network could be easily
decided which could prevent time consuming trial-and-error process when
building deep networks for head detection.

2. The global optimization among stages could be achieved.
Since the approach implements the function of each stage and connect them
into a deep network, each sub-network could be fine-tuned during the opti-
mization of the final network cascade.

3. The size of training data needed could be reduced.
With the specific function of each stage, pre-training of each stage could be
easy achieved. First of all, many existing training dataset for each stage could
be re-used for pre-training. Moreover, good pretraining could be beneficial
to the convergence of learning when optimizing the whole end-to-end deep
networks. Therefore, the size of training data can be further reduced.

The proposed approach DMIN is validated using the PETS2009 dataset. The
results show that by adding the intermediate motion objectness proposal network
ahead of the deep head classification network, impressive speedup of the process
is achieved in addition to significant improvement in recall rates.

This paper is organized as follows. Section 2 describes the technical details
of the proposed network DMIN. Section 3 presents the experimental results.
Section 4 concludes this paper.

2 Deep Motion Information Network

Teney et al. [22] have demonstrated end-to-end training of CNNs on videos for
high-level tasks like action recognition. They show limited capability for identi-
fying intermediate representations of motion. The proposed motion information
network can be seen as a cascade of motion feature extractors. In this network,
first we extract dense optical flow using the first FCN network as in [9]. The
2-channel flow image is then input to the Motion Image Network to learn the
motion boundary that includes MBX, MBY, and magnitude of Histogram of
Optical Flow [14]. With the 3-channels learned motion images we then develop
the motion proposal network to generate the candidate windows. The final deep
network is then used to predicted heads/non-heads.

2.1 Motion Image and Its Representation

Extracting optical flow is considered the most general way to capture motion.
Regardless of the image content, extraction of optical flow is not trivial and
has been addressed by successful dense optical flow algorithms. In [14] the raw
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Fig. 1. Top: Traditional single task CNN. The weights and the abstraction of the
knowledge in this network are strongly influenced and decided by the single task.
Bottom: Architecture of the proposed Multi-Task Deep Motion Information Network.
Output of intermediate tasks are also shown.

Table 1. The table shows the parameters of Motion Proposal FCN. Paddings are
added in the bottom layers to avoid loss of important boundary information during
early stages.

Layer 1 2 3 4 5 6 7 8 9

# Channels 64 64 - 96 96 - 128 64 2

Kernel size 3 × 3 3 × 3 2 × 2 3 × 3 3 × 3 2 × 2 3 × 3 4 × 4 1 × 1

Stride 1 1 2 1 1 2 1 1 1

Paddings 1 1 0 1 1 0 0 0 0

# Parameters 2368 36928 - 55392 83040 - 110720 131136 130

Map size 24 × 24 24 × 24 24 × 24 12 × 12 12 × 12 12 × 12 6 × 6 4 × 4 1 × 1

motion features used as input to detect heads are extracted using the TV − L1
algorithm [3]. The TV − L1 algorithm has the advantage of regulating varying
illumination and the traditional optical flow constraints. However, getting such
highly optimized dense optical flow requires massive amount of computation
resource and time. Using a feed-forward convolutional network not only learns
the various patterns of movement but also speedup the process in magnitudes.
In this work, as the first intermediate task, optical flow is extracted using a full
connected (FCN) architecture developed by Dosovitskiy et al. [9]. This results
in motion images, which is a collection of gradient magnitude maps from the
U and V channel and the magnitude of the optical flow. These maps are often
used as input to the module that calculates histogram of optical flow (HOOF)
and motion boundary histogram (MBH - MBX and MBY, which are motion
boundary in X and Y directions respectively). They contains useful information
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such as determining the contour of a moving object, or the strength of movement
within a group. For applications, Laptev et al. [15] presented a combination of
Histogram of Oriented Gradients and Histogram of Flow (HOF) to capture shape
and local motion. HOF is a popular feature and has been applied in many action
recognition tasks [4,15,24]. In this work, a FCN of motion boundary capable
of learning the structures of images of MBX, MBY, and HOOF is presented.
These images are approximated using a small but fully convolutional network
(parameters in Table 2).

Table 2. The table shows the parameters of Motion Image FCN. The total parameters
is less 3,000.

Layer 1 2 3

# Channels 32 64 3

Conv. kernel size 3 1 1

Conv. stride 1 1 1

Zero paddings 1 0 0

Activations ReLU ReLU ReLU

# Parameters 608 2112 195

Spatial input size H ×W H ×W H ×W

Table 3. Comparison of different features detectors: Results from the proposed method
were compared with three state-of-the art features: Wojek’s et al. ’s [26] multi-features
and Dollar’s et al. [7] channel features, and Maji’s et al. [16] multi-layer pyramid
features. The last part of the table compares the proposed method to Hsu’s et al. [14]
detector result. The top two are highlighted in each category.

Detector TP FP FN Recall (%) Precision (%) F -Score Region Motion Static

Wojek [26] 2708 11272 2254 54.57 19.37 28.59 Only head Yes Yes

Dollar [7] 3054 10004 1908 61.55 23.39 33.89 Only head No Yes

Maji [16] 2076 160 2886 41.84 92.84 57.68 Full body No Yes

Hsu [14] 3184 969 1778 64.17 76.67 69.88 Only head Yes No

This work 3908 387 1054 78.76 90.99 84.43 Only head Yes No

2.2 Deep Motion Proposals Network

Convolutional Neural Networks has become the state-of-the-art among differ-
ent object detection tasks from pedestrian detection [21] to large-scale object
recognitions [20]. R-CNN, its successor faster R-CNN, and more recently
YOLO [12,19,20] have shown a huge improvement in accuracy and speed by
employing proposal detection in early stage of object detection. Despite the suc-
cess of using proposal in object detection, in certain scenarios such as in a mass
group of small objects, in cluttered and occluded environment, the performance
degrades rapidly [19]. The main reason can be referred to too less information
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contained in a small window. Secondly, when targets are occluded, more data are
corrupted and loss. Recently, motion boundary are viewed as an key to build a
deep CNN network to find moving objects. In [10], authors learned the moving
object proposals using hand-crafted motion boundary along with color features
in a dual-CNN network. In our work, after extracting input from the prediction
of motion boundary images, we extend the motion network by adding a deep pro-
posal network to find the motion objectness or so called motion proposal. There
are two types of existing approaches for generating object proposals: segment
grouping methods and window scoring methods. Generating from low-level fea-
tures and aiming for fast computation are two mostly approached strategies [13].

Ghodrati et al. [11] suggest that features in high-level convolutional layers
is more capable of capturing objects and have good performance in recall rate.
In contrast, the lower-layer features are better in detecting the location of the
objects. Therefore, the first few layers of the network share the low-level object
characteristics with the latter head detection network, and can be fine-tuned by
head information. Two key aspects are highlighted in the design of our network:
First, we built a deep motion proposal network which is a fully convolutional
network that uses motion feature to perform prediction of moving proposals.
The fully convolutional network can take a motion boundary image of arbitrary
size and output a dense moving objectness map showing the probability of con-
taining a moving object for each candidate region. The non-maximal suppression
(NMS) is performed to remove redundant and low-ranking proposals having low
prediction score. Secondly, benefited from FCN, time is significantly reduced
compared to the traditional hand-crafted data flow strategies. The parameters
and architecture of the network is summarised in Table 1.

The final resulting prediction map of our motion proposal network is a down-
sampled version of input images, and it has to be mapped back to the original
co-ordinates to extract windows. To map back to the input proposal boxes from
the dense output map, the key is to decide the area of the box in the input image
that correspond to the output pixel (receptive field size). The inverse mapping
requires the information of strides, padding, and size of convolutional kernel in
each layer and use these to compute backward from the output to the first CONV
layer. In layer Li, with stride si, padding pi, and kernel size ki, the mapping of
output in position (i, j) to layer Li is: si ∗ (i, j) + (�ki

2 � − pi). This process is
recursively performed until reaches input layer.

2.3 Coarse-Fine Multi-level CNN for Head Detection

The outputs produced by Deep Motion Proposals Network are windows or hot
areas that have high probabilities of moving objects. To detect heads, we further
design a CNN extending from the DMPN to transform the hot areas to head
regions. The network shares layer 1 to 7 with DMIN which is referred in Table 1.
On top of it, we add a softmax layer to predict the probability of head/non-heads.
The design of network is benefited from a good initialization that is transferred
and shared with Deep Motion Proposals Network. Thus increases the possibility
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to successfully train a head network with small amount of data without the need
to re-design a new network from scratch.

3 Results and Discussion

The dataset used throughout this paper is the popular PETS2009 dataset [18].
The PETS2009 dataset contains a mass group of small pedestrians in a cluttered
and occluded environment. First we presented the qualitative and quantitative
result of our Motion Information Network. Then we discussed the result of DMIN
based on the observation of performance versus the design of network architec-
tures. Finally, we compare our head detection results with the previous state-of-
the-art shallow color features and our previous work on shallow motion features.
All the networks are trained on Tensorflow framework [1], and the optimizer is
Adagrad. Different training strategies among these sub-networks are mentioned
correspondingly.

Fig. 2. Weights of the 1st layer in our Motion Image Network. The network try to
approximate the motion images and the resulting filters represents the gradients of a
single pixel to its neighborhood in all eight directions.

The Motion Images Network approximates the functions to produce these
motion images from optical flows. We split the optical flow produced in last stage
from the PETS2009 dataset into training and testing set in a 7:3 ratio. Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Binary Cross Entropy
(BCE) were compared to find the loss function that could produce better image
approximation under same FCN architecture. Three common metrics are used
for comparison: Average PSNR, Structural SIMilarity index (SSIM) [25], and
RMSE. In general, all three loss functions perform well in all three metrics.
However, we found that BCE achieves highest score in two of the metrics and
only slightly fall behind MSE in SSIM. It is intuitive that optimizes on cross-
entropy in BCE could get higher PSNR, but in RMSE that cross-entropy loss
also performs slightly better than MSE. Hence, BCE has been used in all our
experiments. From the qualitative perspective: From Figure 2, the first 3×3 layer
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learn the gradient filters of a single pixel and its neighborhood in our Motion
Image Network, which is exactly what motion histogram of gradients trying to
do in their early stages. The final two 1 × 1 layers perform non-linear pixel-wise
approximation of the square-root magnitude computation, which is the last stage
of motion image histogram. We showed a sample prediction in Fig. 3, where our
predictions can approximate the original motion images well. It is noted that the
network is able to smooth the motion images, avoiding extreme values sometimes
happen in rapid movements between targets.

Fig. 3. Original Motion Boundary X-Image (MBX) - left and the predicted MBX -
right. The predicted MBX becomes more smooth and extreme values (large movements)
are cropped by the learned network

To determine the quality of proposals, people often apply IOU (Intersection-
Over-Union) VS Recall rate to validate the quality of these generated propos-
als [13]. Three different setting based on two important factors of design the
Convolutional Network were compared to assess DMIN: Pooling and padding,
pooling but no padding, and no pooling and no padding. From Fig. 5, it was
observed that by padding in early layers, the recall rate reaches almost 95%,
much higher than others. We argue that when padding is applied, more spatial
boundary information are kept in each layer. Whereas the IOU metric requires a
better approximation of locations of these proposals, losing boundary informa-
tion in early stages will sacrifice the precision of locations. In Fig. 3, we see the
confidence and the density are high around the locations of pedestrian heads.
Most body parts and backgrounds, are removed in this stage (Fig. 4).

As a final step, head detection was assessed and compared. The head data
from PETS2009 dataset [18] were extracted and annotated. The average height of
the ground truth bounding box is 18.49 pixels. The height/width of annotations
span from (17, 27) due to different perspective distortions. Researches of proposal
learning [13] often suggest to enlarge the dataset by creating more windows
close to the Ground-Truth (GT) ones within the Intersection-Over-Union (IOU)
larger than 0.5. In our case, we controlled the translation of the GT bounding
box within a range of [−3, 3] pixels. For each GT annotation, we generated 5-
times more boxes in this range randomly. Background and body (apart from the
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Fig. 4. The figure shows the result of the moving proposals. Most false-positives heads
are from body parts similar to the heads which will be removed at the head classification
stage

Fig. 5. Results of Recall vs. IOU between different convolutional kernel setting: Pooling
with padding, Pooling without padding, and no Pooling.

heads) patches are annotated and generated three times and two times more
respectively. We extracted 59,428 patches in total and divided into training,
testing, and validation randomly in the ratio of 7:1:2. Early-stopping is performed
on the loss of validation data.

We compared our result with three previously state-of-the-art shallow hand-
crafted color features detectors, and a shallow hand-crafted motion feature detec-
tor [7,14,16,26]. We highlight the importance of learning the most discrimina-
tive features to detect heads in small region, and keep the comparison among
the state-of-the-art features without other techniques such as boosted classi-
fiers, bounding box regression(Faster R-CNN), and one shot detector(YOLO).
The final results with comparison of different head detectors are summarised
in Table 3. The F -Score of our system reaches 85%, and the precision reaches
91%. It should be noted that although the precision is slightly less than [16],
our recall overwhelm their features significantly, mostly due to the presence of
highly occluded crowds. Comparing with Hsu et al. [14], which they also learns
features from motion, this work improves in all metrics by employing the pro-
posal network first to removes background and non-heads moving objects in
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Fig. 6. Result of the proposed multi-stages Deep Motion Head detector over a series of
images from the PETS 2009 dataset (PETS 2009 S1-L1-View1-1357). Most of the heads
were detected accurately, while some heads are missing due to the sensitive removal by
the Deep Motion Proposal Network.

early stages, and keep as many positive windows as possible to perform the lat-
ter CNN network to refine the detection of heads. In Fig. 6, we show our results
of correctly and accurately find the heads in small regions.

4 Conclusion

A new end-to-end convolutional architecture that uses motion information for
head detection is proposed. The end goal of head detection is divided into a
number of sub-networks that each of them can be used for multiple applications.
The proposed network first calculates the optical flow (using FlowNet), followed
by several motion features that is in turn used to develop motion proposals
(similar to R-CNN). Finally, a convolutional network which extends the deep
motion proposal network can produce accurate identification of head regions. A
very high F -score of 85% is achieved using the proposed network that is by far
higher than other methods proposed in literature.
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Abstract. Appropriate treatment regimens play a vital role in improv-
ing patient health status. Although some achievements have been made,
few of the recent studies of learning treatment regimens have exploited
different kinds of patient information due to the difficulty in adopting
heterogeneous data to many data mining methods. Moreover, current
studies seem too rigid with fixed intervals of treatment periods cor-
responding to the varying lengths of hospital stay. To this end, this
work proposes a generic data-driven framework which can derive group-
treatment regimens from electronic medical records by utilizing a mixed-
variate restricted Boltzmann machine and incorporating medical domain
knowledge. We conducted experiments on coronary artery disease as a
case study. The obtained results show that the framework is promising
and capable of assisting physicians in making clinical decisions.

Keywords: Treatment regimen · Treatment learning
Treatment recommendation · Electronic medical records

1 Introduction

The two most important issues in healthcare are disease diagnosis and treatment.
While many works have been conducted on the problem of diagnosis prediction,
the problem of learning treatment regimens has not yet been extensively studied
from the research community. This shortage becomes more serious when hospi-
tals essentially need to make efforts to adopt treatment regimens that best fit
their available resources. Additionally, it seems hard to have a fixed care plan for
a particular disease due to its high dependency on various patient conditions. As
a result, capturing treatment regimens in practice turns out to be meaningful for
not only assisting physicians in making right clinical decisions but also helping
hospitals manage their resources thoroughly.

In principle, treatment regimens could be learned based on the knowledge-
driven approach which requires medical domain or expert knowledge. It can be a
piece of information written in the literature or accumulated experience gained
by physicians during their career. While this approach seems to be reliable, tak-
ing various domain knowledge into account is costly and not straightforward in
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 411–422, 2018.
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reality. In contrast to the knowledge-driven approach, the data-driven approach
derives treatment patterns from a large number of observations thanks to the
availability of electronic medical records in recent years. Studies followed this
approach could be found in [2,5,6,8,9].

Although many interesting results have been achieved, those studies have sim-
ply utilized a limited subset of features while many other kinds of data are usually
omitted. Such data can be patients’ demographics, laboratory test results or clin-
ical notes consisting of signs and symptoms during patients’ hospitalization. It
is apparent that the more values from those data shared between two patients,
the more possibility that the patients are treated with similar regimens. The
lack of considering such valuable information simultaneously in current research
could be attributed to the poor-feature data used in their experiments. More-
over, even when the above data is made available, it generally exists in form
of numerical, binary, categorical, or text format. Such a heterogeneous data is
not ready to use for many data mining methods. Another challenge stems from
the fact that treatment regimen is typically defined over periods. Each period
is distinct from others at milestones where major changes in a patient’s health
status happen that lead to a notable adjustment in subsequent prescriptions for
the patient. Therefore, given a set of prescription records, identifying suitable
treatment periods can considerably affect the learned treatment patterns.

This work aims to propose a treatment regimen learning framework which
addresses both the above challenges. Our framework first divides patients into
clusters from which treatment regimens over periods are discovered then. To
overcome the challenges of learning from mixed-type data, we employ a mixed-
variate restricted Boltzmann machine (MV.RBM) [11]. The advantage of this
model is at its robustness in transforming heterogeneous objects to their homo-
geneous representations. The new latent representations are in the form of hid-
den binary vectors that could be further processed easily by clustering methods.
To tackle the challenge of treatment period identification, we propose an algo-
rithm which can relatively capture significant changes in prescription indications.
Moreover, we also suggest another algorithm which derives treatment regimens
from each cluster as a regimen tree. The tree can highlight frequently prescribed
drugs and infrequently prescribed drugs inside each patient cluster which would
be useful for recommending prescribed drugs to patients.

In short, the main contributions of our work are listed as follows. Firstly,
we propose a generic framework which can exploit different kinds of relevant
patient records. The framework is superior to others in terms of data utilization.
Secondly, we employ both knowledge-driven approach and data-driven approach
in our framework. The exploited medical domain knowledge is drug indications
and their importance in the treatment for a particular disease. The combination
approach used in our framework seems more feasible to deal with the longitudi-
nal property inherent in prescription records. Lastly, we propose a new way to
represent treatment regimens flexibly. Frequent drugs are learned from individ-
ual level to group level and organized as regimen trees which could be useful for
recommending possible regimens to new patients.
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2 Related Work

This section provides a brief review of studies about the treatment-related learn-
ing problem. Notable works can be found in [2,3,9]. In [3], the authors developed
a process mining method to derive clinical pathway from medical behaviors.
Their work, however, mainly focused on learning clinical procedures rather than
a detailed treatment.

Inspired by the emergence of electronic medical records, recent studies have
exploited prescription records which would provide more useful insights about
patient treatment. In [2] the authors proposed a probabilistic model that linked
patient features and treatment behaviors together to mine treatment patterns.
Their model, however, employed many hyperparameters with almost no domain
integration. This limitation undermines the model interpretability. Moreover, it
was not explicitly described in that work how the chronological order among
the learned treatment patterns related. In [9], the inspired work of our research,
treatment regimens were derived solely from a set of prescription records. While
many typical regimens could be described in an unsupervised mechanism, their
prescription-based approach appears to lack of interpretability regarding patient
profile and health conditions that lead to the derived regimens. Additionally,
although the authors in [9] attempted to describe the chronological order between
regimens with predefined treatment periods, their approach capture little med-
ical domain knowledge as well as seems inflexible in dealing with the varying
lengths of hospital stay. Regarding the treatment recommendation task, [9] also
presented a way to recommend typical treatment regimen for a patient based on
demographics and disease severity of patients. This approach, however, seems
hard to be applied to new patients whose disease severity may not be recognized
at the beginning dates of hospitalization.

3 Methods

In this section, we describe our framework of treatment learning problem. This
generic framework is designed for a particular disease. Our approach is based
on the assumption that a patient cohort may be divided further into groups
of more homogeneous patients who share latent characteristics underlying in
patient profile or health status. Patients in one group, therefore, are supposed
to be treated by similar care plans that share many parts in common. Figure 1
illustrates the framework overview. It consists of two main tasks: clustering a
cohort of patients and learning treatment regimens for each resulting cluster.

3.1 Data Collection and Preprocessing

Our framework takes medical records of cured patients as trained data. We are
interested in the data that characterizes health conditions, for example, demo-
graphic information, discharge summary, and laboratory test results. It should
be noted that for longitudinal data such as discharge and laboratory indicators,
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Fig. 1. An overview of the proposed framework for learning treatment regimens.

we only collected the records at the early stage of patients since such longitudinal
data is usually not fully available for new patients at the time of admission. This
solution is based on the intuition that patients who share initial signs, symptoms
and laboratory indicators are likely to be treated in the same way.

After being filtered, patient medical records are encoded as one-hot vectors
for categorical data or are normalized to zero-mean unit-variance for numerical
data. For discharge summary, only text sections mentioning about the patient
history of illness and description about their situation at admission are pre-
ferred. We note that segmenting these sections depends on how well-structured
discharge summaries were written. In our experiment on MIMIC III database,
some clue phrases enabled this solution to become implementable. For simplic-
ity, signs and symptoms mentioned in the segmented text are extracted as new
features of the trained patients. Our framework uses the collection processing
engine (CPE) component with AggregatePlaintextFastUMLSProcessor provided
in cTAKES [7], a well-known tool specifically designed for clinical text process-
ing, to accomplish this task. It is worth noting that extracted signs and symp-
toms using this tool links to concepts in the Unified Medical Language System
(UMLS) [1], the comprehensive ontology built for the biomedical domain.

3.2 Data Representation and Patient Clustering

The encoded data obtained from the previous step contains numerical, binary or
categorical values. Such kind of mixed-type data is not ready to fit traditional
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clustering methods. Therefore, our framework employs MV.RBM, an extension
of the restricted Boltzmann machine for data transformation and representation.

MV.RBM is a RBM where visible nodes are not restricted to binary units.
Similar to the original RBM, each binary hidden unit in MV.RBM also tries
to capture latent aspects in the imhomogeneous visible units. In other words,
MV.RBM could be considered as a model to transform heterogeneous input to
homogeneous space. Let v = (v1, v2, .., vN ) denote the set of visible features and
h = (h1, h2, .., hK) be the set of hidden units. The energy function of MV.RBM
is defined more deliberately to handle the mixed variate input.

E(v,h) = −(
∑

i

Gi(vi) +
∑

k

bkhk +
∑

ik

Hik(vi)hk)

where b = (b1, b2, .., bN ) are biases vectors for hidden layer, Gi(vi) and Hik(vi)
are specified-type functions. By exploiting the conditional independence prop-
erty within nodes in a layer of bipartite structure, we can get the following
factorization equations: P (v|h) =

∏N
i=1 P (vi|h), P (h|v) =

∏K
k=1 P (hk|v).

The functions Gi(vi), Hik(vi) and corresponding Pi(vi|h) for each kind of
data are given as follows [11].

Gi(vi) Hik(vi) Pi(vi|h)

Binary aivi wikvi
exp(aivi+

∑
k wikhkvi)

1+exp(ai+
∑

k wikhk)

Gaussian −v2
i /2σ2 + aivi wikvi N (σ2

i (ai +
∑

k wikhk), σi)

Categorical
∑

m aimδm[vi]
∑

m,k aimkδm[vi]
exp(

∑
m aimδm[vi])+

∑
m,k wimkδm[vi]hk)∑

l exp(ail+
∑

k wilkhk)

where ai, aim are input bias parameters, wik, wimk are input-hidden weighting
parameters. Those with extra subscript m are dedicated for categorical features.

Fig. 2. A MV.RBM for patient records. The green, blue and orange circles represent
for binary, categorical and continuous input units. The circles with labels D, S, L
indicate demographic, signs/symptoms and laboratory data, respectively.



416 K. H. Hoang and T. B. Ho

In our work, we assume features in the preprocessed data are mutually
independent given their latent factors. Figure 2 illustrates our idea to utilize
a MV.RBM. We suppose demographic data could receive numerical, binary or
categorical values while extracted signs and symptoms are represented as one-
hot vectors. Indicator values are assumed to take numerical values. Once the
MV.RBM model has been learned, the computable hidden posteriors and hidden
states are extracted as transforming features for input v. Those latent vectors
could be used as input of well-known clustering algorithms. In this concrete work,
we utilize the learned binary hidden vectors and select the hierarchical cluster-
ing algorithm to divide patients into groups. We use the Hamming distance as
similarity measurement for binary vectors and the complete linkage which was
reported to give low error rate for symmetric distance measurement [10].

3.3 Treatment Period Identification

For each resulting patient cluster obtained from the previous step, prescrip-
tion records from its patients are collected to derive typical treatment regimens
over periods. We represent every drug dr in prescription of patient p as a tuple
drp = (name, startdate, enddate, dosage) that describes drug name, starting
date, ending date of usage and its dosage. Let Θp = {drp} be the set of drugs
given to the patient, and T p = {drp.startdate} be the ordered set of dates the
patient p was prescribed. As |T p| varies according to p, we propose an algorithm
to split each T p into the same number of treatment periods. The idea is for each
timestamp in T p, we compute an accumulated score that captures the changes
in drug indications that have been delivered to the patient so far. We observe
the plot of these scores for many patients in the clusters and decide an appro-
priate number of periods. The splitting dates for each period are the dates with
significant changes in their associated scores.

It is worth noting that in our framework the scoring function takes into
account newly prescribed drugs, re-prescribed drugs being stopped using for
a while, recently stopped using drugs, or re-prescribed drug with changes in
dosage. The aggregate score also gives different weights to those drugs based on
their indication. Given a disease de and a set of its common symptoms Sympde,
we extract from DrugBank database [12] the drugs whose indication description
directly mentions about de. We name those drugs as main drugs. Drugs with
indication mentioned in Symp are also extracted as symptom-healing drugs. Pre-
scribed drugs for the patient p therefore are classified as main drugs, symptom-
healing drugs, and unclassified drugs. The weight of each kind of drug is assigned
decreasingly according to its importance for the treatment of de. We denote
MDB, SDB as sets of main and symptom-healing drugs which are extracted
from DrugBank; wmain, wsymp, wunk as the weight for main drugs, symptom-
healing drugs, and unclassified drugs, respectively. The detailed algorithm for
scoring changes in prescribed drug indications for a patient p is presented in
Algorithm 1. For readability, we remove the superscript p and use Set notations
in the pseudocode.
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Algorithm 1. Scoring prescription records
Data: Θ, T , MDB, SDB
Result: return scores as a list of accumulated scores
Initialize U as an empty set ; � set of recently delivered drugs

Initialize scores as an empty list ;
aScore := 0 ; � the accumulated score

for each d ∈ T do
D := {dr | ∀dr ∈ Θ ∧ dr.startdate == d} ; � delivered drugs on date d

N := {dr | ∀dr ∈ D ∧ dr.name /∈ U.name} ; � newly delivered drugs

DC := {dr | ∀dr ∈ D, ∃dr′ ∈ U such that dr.name ==
dr′.name ∧ dr.dosage <> dr′.dosage} ; � dosage changed drugs

S := {dr | ∀dr ∈ U ∧ dr.name /∈ D.name ∧ dr.enddate < d} ; � recently

stopped using drugs

for each d′ ∈ U do
if ∃d′′ ∈ D such that d′.name == d′′.name then

d′ := d′′ ; � update U with redelivered drugs

U := (U \ S) ∪ N ; � update U with newly delivered drugs

CD := N ∪ DC ∪ S ; � considering drugs for calculating scores

CMD := CD.name ∩ MDB; � considering main drugs

CSD := CD.name ∩ SDB; � considering symptom-healing drugs

UD := CD.name \ (CMD ∪ CSD); � unclassified drugs

aScore = aScore + |CMD| × wmain + |CSD| × wsymp + |UD| × wunk;
Add aScore to scores

3.4 Learning Group Treatment Regimens

The previous section has demonstrated our domain integrated algorithm which
allows prescription recorded to be divided into periods based on the associated
scores which reflect the change in the indication of prescribed drugs. In this
section, we describe how a treatment regimen over a period of a given patient clus-
ter is derived. We relax the chronological order of delivered drugs in a period and
restrict the element of constructed treatment regimens to drug names only. Other
information such as dosage, route, is assumed to be decided by the physicians.

The learned regimens were organized in a tree form. Starting from the root,
we assign the most frequently prescribed drug d to its left child node and extract
prescribed drugs excluding d of the patients who were treated by d. The drug
assignment for next right child nodes will follow the similar approach applied on
prescribed drugs of those patients who were not treated by left-hand side nodes
in the same level. We recursively perform this procedure on internal nodes. To
avoid learning too complicated details of the derived tree, we only perform the
procedure until a certain level of the tree or when the number of patients treated
by the most frequent drug for the parent node is still greater than a threshold.
Algorithm 2 presents our ideas to construct the treatment regimen tree for a
particular group of patients in a period.
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Algorithm 2. Procedure for the construction of a treatment regimen tree
regimen-Tree(depth, prescData, parent, traces)

if prescData is empty or depth == maxDepth then
return

d := most frequent drugs from prescData ;
nPatients := number of patients who were treated by d;
traces[parent, d] = “ ↖”;
cNodePresc := prescribed records excluding d of patients treated by d ;
rNodePresc := prescribed records of patients who were not treated by d ;
if nPatients < threshold then

regimen-Tree(depth, rNodePresc, parent, traces);
else

regimen-Tree(depth + 1, cNodePresc, d, traces);
regimen-Tree(depth, rNodePresc, parent, traces);

return ;

4 Experimental Evaluation

This section presents our experimental evaluation of the proposed framework
for deriving typical treatment regimens from electronic medical records. The
obtained results of the clustering analysis, treatment period identification and
learned treatment regimen trees are also given and analyzed. Lastly, we propose
a method to evaluate the efficacy of the derived treatment regimen trees in
recommending prescribed drugs for new patients.

4.1 Experimental Design

Our experimental evaluation was performed on MIMIC III, a freely accessible
critical care database [4]. We considered the treatment regimen of patients who
were diagnosed with coronary artery disease as a case study. Since a patient could
be diagnosed with multiple ICD codes, to ensure the homogeneity of our patient
cohort, we only selected those whose primary ICD is coronary artery disease and
comorbidity scores are zero for other disease groups. In addition, patients who
were prescribed fewer than three times were also excluded from the experimen-
tal evaluation. The number of extracted patients is 707 of which we randomly
selected 687 patients for training and left 20 patients for testing the efficacy of
the learned treatment regimens. We followed the approach described in the Data
Representation section to preprocess raw data. A summary of preprocessed data
with illustration features is given in Table 1.

We fit preprocessed data as input for MV.RBM with 200 hidden units since
the trained error did not decrease significantly with a larger number of hidden
units. The learned binary hidden states were then extracted as representation
features for the subsequent clustering task. We employed hierarchical clustering
with parameters are described in the previous section. For the task of treatment
period identification, we extracted main drugs and symptom-healing drugs from
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Table 1. A short summary of features in the dataset

Kind of data (no.features) Sample features (data type)

Demographic info (11) Age (numerical), gender (binary) admission
type (categorical)

Laboratory data (175) Arterial blood pressure (numerical) atrial
pacemaker(numerical)

Signs and symptoms data (1466) Abdominal discomfort (binary) ability to climb
(binary) able to sleep (binary)

DrugBank database. The referred typical symptoms of coronary artery disease
in the literature are “heart attack”,“shortness of breath” and “chest pain”. We
assigned the weight of main drugs, symptom healing drugs, and unclassified
drugs to 1, 0.5 and 0.1, respectively. The threshold of cutting node in treatment
learning algorithm was set to 10 patients. In our experiment, we derived regimens
until a certain level of the tree. The depth parameter was set to 4.

4.2 Results

Figure 3 describes a dendrogram of clustering results. It is noted that the trained
patients themselves are homogeneous subjects in terms of diagnostic perspective.
Thus, we preferred a relatively small number of clusters. Based on the visualiza-
tion, we decided to group the trained patients into six clusters. The size of each
cluster is 198, 69, 148, 43, 111 and 118 patients, respectively.

Figure 4 presents a few randomly taken line charts of accumulative scores
for eight patients. Interestingly, most of the plots follow similar patterns. There
is a slight increase in scores at the beginning and the end of every treatment
compared to the significant change at the center interval. Therefore, we decided
to divide prescription records of trained patients into three periods. Figure 5
illustrates an example of constructed regimen trees. Given a path in the tree, we
note that the order of the nodes in this path should be understood as frequency
order of drug use rather than chronological order of prescription time. It can be
seen that the visualization can provide hint-drugs probably delivered together

Fig. 3. Dendrogram of hierarchical cluster analysis
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Fig. 4. Sample line charts of accumulative scores of randomly taken patients. For each
line chart, the vertical axis represents the accumulative scores, the horizontal axis
represents the timestamps when a patient was prescribed.

Fig. 5. Sample of learned regimen tree. The prefix “m” denotes for main drugs while
the last integer denote the number of prescribed patients.

with a given drug. Therefore, physicians can use the learned trees as a checklist
to decide which drugs are likely and unlikely to be prescribed.

4.3 Evaluation

We evaluate the efficacy of learned regimen trees in recommending prescribed
drugs to new patients. It should be noted that patient records of the testing
set are represented by the trained MV.RBM. We consider the patients in each
resulting clusters as labeled data and assign the cluster index for test patients
based on their nearest neighbors. Given a new patient p, let p′ be his/her nearest
neighbor which has been assigned to cluster ci. The recommended drugs should
be given to p in a particular period are drugs on the path of regimen tree of ci
in the same period such that p′ was prescribed with each drug on that path.

Let T , nP , D̂
tj
p , and D

tj
p denote the test set, the number of periods, the

recommended path, i.e., the set of recommended drugs for p over period tj , and
the set of prescribed drugs for p in that period, respectively. We propose two
measures to evaluate the efficacy of learned regimens for the prescription rec-
ommendation task. These measures reflect how likely D̂

tj
p is a subset of D

tj
p .

D̂
tj
p is said “correct” if it is a non empty subset of D

tj
p . In case D̂

tj
p has non

empty intersection with D
tj
p but not its subset, we say the set D̂

tj
p is “approxi-

mately correct”. We denote mcor as the percentage of recommended paths which
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are “correct” and mapp as the percentage of recommended drugs actually pre-
scribed in both “correct” and “approximately correct” paths. Let IA(B) define
the indicator function which return 1 if B ⊂ A or 0 otherwise. We have:

mcor =
1

|T | × nP

∑

p∈T

∑nP

j=1
I

D
tj
p

(D̂
tj
p ); mapp =

1

|T | × nP

∑

p∈T

∑nP

j=1

|D̂tj
p ∩ D

tj
p |

|D̂tj
p |

We repeated our experiment 10 times for different training and testing sets.
The obtained values of m̄cor and m̄app are 0.527 and 0.729, respectively. Although
the obtained values of m̄cor should be further improved, to some extent, these mea-
sures show the efficacy of the regimen trees derived from our proposed framework.

5 Discussion

Comparing to related works in the literature, our work obtained more interesting
results in terms of domain exploitation and knowledge representation. Rather
than defining a similarity metric by a frequency-based approach for complex
objects [9], we tracked the change of drug indication in prescribed drugs as a
hint to discover treatment periods. It can be seen that the idea fits our nat-
ural thinking on detecting patients’ treatment periods given their prescription
records. The common pattern found in Fig. 4 has reconfirmed the rationality of
our proposed domain-based algorithm. Moreover, representing the learned reg-
imens in form of trees not only fully reflects the usage-frequency of drugs but
also allows doctors to quickly recognize groups of frequently and infrequently
prescribed drugs in each patient sub-cohort. Therefore, in terms of knowledge
representation, it could be said that our work is superior to [2,9] where the
authors simply organized treatment patterns in flat form.

There are several reasons to explain the primitive results of our initial study
on the task of treatment recommendation. Firstly, it is worth noting that we
addressed the problem of treatment recommendation on MIMIC III, a practical
and very challenging dataset. Even if it has been simplified to recommend in total
up to 12 among many prescribed drugs for every patient, the problem is still
not trivial as there are hundreds of different drugs given in the prescription
records. Additionally, while our evaluation metrics directly assess whether the
recommended drugs are prescribed to new patients, it is not clearly described in
other studies how well the recommended treatments match the actual prescribed
drugs. We leave the task of improving our prediction accuracy with a more
deliberated framework for the future work.

6 Conclusion

In this paper, we have presented a generic framework to derive treatment reg-
imens from electronic medical records. The proposed framework is novel in
terms of data utilization, domain incorporation, and regimen representation.
The experimental evaluation has shown the efficacy of learned treatments for
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the task of prescription recommendation. Although further improvement should
be made such as data cleaning and normalizing for clinical features, this study
is a pioneering work which encourages researchers to exploit medical domain
knowledge and address the treatment learning problem more thoroughly.
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Abstract. In location-based analysis for microblogs, it is important to
know if two toponyms refer to the same point-of-interest, i.e., alias. How-
ever, existing online knowledge bases are often incomplete or inaccurate
for toponym alias data, especially for those used in informal conver-
sations. In this paper, we propose a method for extracting compati-
ble toponyms from microblog conversations. We first extract a number
of coordinate-associated toponyms, then use compatibility measures to
identify compatible toponyms. We propose three compatibility measures,
namely, geographical closeness, surface name similarity, and association
similarity. We show that by combining these measures and using parti-
cle swarm optimization for weight tuning, we can reach a high matching
accuracy. The finding of this paper can be useful for improving location-
based analysis as well as extending existing knowledge bases.

Keywords: Location analysis · Alias extraction
Compatibility measures · Microblog information processing

1 Introduction

Location analysis on microblog platforms such as Twitter has become an impor-
tant research topic in recent years [3,6,11,14,17,23]. Locations of microblog mes-
sages have been used in applications such as natural disaster monitoring [21],
crime detection [16], and disease surveillance [4]. One crucial issue that hinders
accurate location detection of messages and events is the lack of a comprehensive
gazetteer that covers toponyms of various forms. Even though location databases
such as Geonames1 contain a large number of toponyms, they are still unable to
cover various ways to name a location on microblog communications, which leads
to limited detection rates for gazetteer-based location detection approaches [22].
For example, in an online conversation between two Singaporeans, the statue
often means the same thing as the merlion sitting beside the Marina Bay. This
kind of informal and generalized alias are usually not included in the location
1 http://www.geonames.org/.
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database. In this paper, we deal with the problem of mining different toponyms
that refer the same point-of-interest (POI), in other words, alias, from informal
microblog conversations. The finding of this paper is beneficial for improving
location detection rates on microblog location analysis, as well as extending
existing location databases.

Given two toponyms, we are interested in discovering their compatibility.
Two toponyms are considered alias to each other if they are compatible. The
compatibility considers the geographical location as well as the meaning of the
name. Two POIs can have the same name but are in different locations, for
example, two outlets of a restaurant chain. Two POIs can also have the same
location, for example, a building and a shop located within it. In this case the
names of the building and the shop are not compatible because they refer to
POIs of different meaning. But if a building is solely occupied by an institute,
and the names of the building and the institute are used interchangeably in daily
conversations, they are considered compatible. Two toponyms are considered
compatible if they are similar in geographical and semantic measures. In this
paper, we use alias and compatible toponym interchangeably.

There are many reasons one name is used instead of another to indicate a
POI. The most common reason is to shorten the word for easier expression. In
this case, abbreviations and shortened forms of a long name would be used. But
there are also cases where two completely different names are used to indicate a
same POI. The choice of alias in this case depends on the context and personal
preferences. Also depending on the context, in some other cases, a codified name
that includes digits can be used in place of the more common name. Table 1
shows examples of various types of alias. In this work, we do not treat different
types of alias separately, and our method is designed to handle any type of alias.

Table 1. Examples of compatible toponyms

Type Compatible toponyms

Shortened Republic polytechnic Republicpoly

Shortened Fatpapas burgers and shakes Fatpapas burgers

Alternative The statue Merlion

Alternative Theatres on the bay Esplanade

Codified Woodlands mrt station ns9

Codified Bus stop 76249 blk 370

The focus of our work is not in name entity recognition (NER). NER deals
with identifying unlabeled keywords in text data as name entities, including
persons, locations and events, as studied by a large number of existing researches
[15,18,20]. We assume an effective way to extract location from tweet texts, given
that microblog messages have geo-location information. In this paper, we use a
method similar to the one propose by Abdelhaq et al. [1], which detects spatial
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keywords based on geo-tagged tweets. This method may not have high retrieval
rate due to the limited availability of geo-location information, but the precision
of detection is generally high. Given the location extraction method, we put our
focus on providing a valid compatibility measurement for toponyms and an alias
prediction method based on the measurements. To the best of our knowledge,
this paper is the first to tackle to problem of mining POI alias used in microblogs
based on compatibility measures. Our main contributions with this paper can
be summarized as following:

– We quantify the compatibility of toponyms for efficient alias mining. Our
measurement considers the geographical distance, surface name similarity, as
well as the semantics of toponyms, taking advantage of the readily available
geographical data and unlabeled text messages on platforms such as Twitter.

– We propose an algorithm for automatically tuning factor weights. In our
experiments with real-world POIs and Twitter data, we found that our weight
tuning method effectively improves the alias detection accuracy.

The remainder of this paper is organized as the following: in Sect. 2, we
discuss related works. Section 3 introduces our method for selecting toponym
candidates from raw tweets and associating them with geo-coordinates. Section 4
presents our toponym compatibility measurement and alias prediction methods.
In Sect. 5, we present our experiments on real Twitter datasets and discuss the
results. Finally, Sect. 6 concludes this paper.

2 Related Works

There is a number of works that focus on resolving an entity mention to a par-
ticular entity, effectively disambiguates when a name can mean multiple entities
[7,8,12]. In this paper we do not deal such a problem of one-to-many linking
and disambiguation. Instead our work aligns more closely to works that focus
on many-to-one linking of compatible names.

Early works often detect alias based on the surface form of the name. For
example, Hsiung et al. [9] first propose an alias detection method that considers
association of names. It uses orthographic measures such as edit distance and
normalized edit distance, as well as semantic measures that considers the co-
occurrence of two names. While their method is relatively simple, it highlights
the fundamental elements for alias detection in linked data, and some elements
are used in this paper. Gelernter and Balaji [5] present a gazetteer-based method
of geoparsing for tweets. A novelty in their work is that they include four different
parsers, including machine learned parser and rule-based parser. They provide a
module that matches misspelled names with the correct names in the gazetteer,
with candidates ranking by frequency and edit distance. However, this kind of
technique is not effective when two compatible names have completely different
spellings, for example, “the statue” and “merlion”.

Another group of works detects alias using language patterns that indicates
alias usage. For example, Bollegala et al. [2] propose a web-search-based method
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for discovering alias. Their assumption is that when a name and its alias co-
occur in a web document, some frequent patterns such as “also known as” would
appear between them indicating the alias. However, in microblog environment,
such cases are rare because with a limited length, a name and its alias are unlikely
to appear in the same message. Huang et al. [10] propose a method to detect
morphs used in censored microblogs. Their method considers orthographical,
semantic, and social features. However their method cannot be directly applied to
location alias detection, because unlike morphs, which are produced in censored
environment, and therefore have an original name-morph relationship, location
alias are compatible and interchangeable names used in the same environment.
In our work, we use geographical distance and entity associations instead of
language patterns as the basis for detecting alias.

3 Selecting Toponym Candidates

The first step to mine toponym alias is to select a number of candidate toponyms
from the data. In existing work there are mainly two approaches to iden-
tify toponyms from text data. First, there is gazetteer-based approach, which
matches tokens in the text with an existing list of toponyms [4,22,24]. While
this approach is generally accurate, it does not cover a large number of infor-
mal spellings that are frequently used in social media, and not included in a
formal gazetteer. Second, there are machine learning-based approaches, which
tags token in the text with a trained language model [14]. The drawback of this
approach is that it is accuracy may be poor depending on the training data, and
does not provide information other than the category of the word. It is desirable
to use an approach that detects informal spellings of toponyms and at the same
time also extracts their geographical information.

Based on the fact that a portion of tweets are geo-tagged, we proposed an
approach to detect spatial keywords based on its geographical correspondence.
With this approach, we first extract noun phrases from geo-tagged tweets using
existing part-of-speech (POS) tagging techniques. Then we associate each noun
phrase with the coordinates of the tweets that mention it. As a result, each noun
phrase w will be associated with a list of coordinates Lw = {c1, ..., cn}. Then we
calculate the median absolute deviation (MAD) for each w:

MAD(w) = median(dist(ci,median(Lw)), ci ∈ Lw)

where dist(.) measures geographical distance between two geographical points2,
and median(Lw) is selecting as the point in Lw that has the minimum total
distance to all other points.

A low MAD means the noun phrase has a high correspondence with a certain
location. Another factor we consider is the support, which is the count of occur-
rence of the phrase in the data. We select noun phrases with MAD and support
that meet certain thresholds as the toponym candidates. In our experiments, we

2 Calculation can be found at http://www.movable-type.co.uk/scripts/latlong.html.

http://www.movable-type.co.uk/scripts/latlong.html
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set threshold for MAD and support as 0.5 and 3, respectively. At this point, each
candidate is also associated with a corresponding coordinate as median(Lw).

We need to note that not all candidates are valid toponyms. Some of these
noun phrases may be the name of a local event, which is not a toponym but
also have strong geographical correspondence. Some other noun phrases may be
associated with a user. Because a user has a limited geographical area for their
activities, some nouns associated with them can also appear to have a strong
geographical correspondence but is not a valid toponym. Some of these non-
toponym candidates, however, can be detected and ignored during the process
of toponym alias detection.

4 Finding Compatible Toponyms

Given two toponym candidates, we calculate their compatibility in order to
detect potential alias. The information we have for the toponyms include their
string representation, corresponding geographical location, and a number of
unlabeled microblog messages that mention them. Based on such information, we
propose three measures for testing toponym compatibility, namely Geographical
Closeness, Surface Name Similarity, and Association Similarity.

4.1 Compatibility Measures

The proposed compatibility measures are defined as the following.

Geographical Closeness. If two toponyms are referring to the same POI, their
corresponding location must be close to each other. We calculate the geographical
closeness of two toponyms w1 and w2 based on the geographical distance of their
corresponding location:

f(w1, w2) = 1 − geo dist(w1, w2) = 1 − dist(median(Lw1),median(Lw2))

where median(Lw) is the corresponding coordinate of the toponym described
in the previous section. The geo dist(.) is measured in kilometers, and we can
generally ignore toponym pairs whose distance to each other is more than 1 km.

Surface Name Similarity. Surface name similarity is considered as an impor-
tant factor for determining the compatibility of two concepts in existing works
[23]. While we expect only a small portion of compatible toponyms to be similar
in their surface form, we nevertheless include this in our compatibility calcula-
tion, because it is easy to obtain. The surface name similarity is calculated based
on the edit distance of two names:

g(w1, w2) = surface sim(w1, w2) = 1 − edit distance(w1, w2)
max(|w1|, |w2|)

where the edit distance indicates the number of insertion, deletion and replace-
ment required to change one string into the other3.
3 An algorithm for calculating edit distance can be found in https://nlp.stanford.edu/

IR-book/html/htmledition/edit-distance-1.html.

https://nlp.stanford.edu/IR-book/html/htmledition/edit-distance-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/edit-distance-1.html
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Association Similarity. We now consider the semantics of toponyms. In exist-
ing works, semantic is often considered with respect to the linking of entities
[19]. Following what Huang et al. [10] propose, we consider the semantic of a
toponym with respect to its co-occurrence with other entities in the data. More
specifically, for a toponym w, we generate a number of associated noun phrases
Qw, which are noun phrases co-occur with w in unlabeled tweets (geo-tagged and
non-geo-tagged). After obtaining the associated noun phrases, we calculate the
association similarity of two toponyms based on frequency and cosine similarity:

h(w1, w2) = assoc sim(w1, w2) =
∑

i tf(Qw1, ti) × tf(Qw2, ti)
√∑

i tf(Qw1, ti)2 × √∑
i tf(Qw2, ti)2

where ti ∈ T is all the terms in Qw1

⋃
Qw2, and tf(Q, t) is the term frequency

of term t in set Q.
A simple way to reach an overall compatibility score for two toponyms is to

combine all three factors using summation:

compatibility(w1, w2) = f(w1, w2) + g(w1, w2) + h(w1, w2) (1)

However, a better way to measure the compatibility between toponyms than
simple combinations is to assign a weight to each factor then find the suitable
weights using some training examples. In the next section, we will propose one
such method.

4.2 Tuning Factor Weights

A weighted version of formula (1) can be written as:

compatibility(w1, w2) = αf(w1, w2) + βg(w1, w2) + γh(w1, w2) (2)

Suppose we have a training set where a list of toponyms W = {w1, ..., wl}
has a corresponding alias list A = {a1, ..., wl}, where wi and ai are also from
a list of toponym candidate T = {t1, ..., tn}. The goal of training is to find the
weights α, β, and γ so that compatibility(wi, ai) will have the higher score than
compatibility(wi, tj), for any tj �= ai ∈ T .

In this paper we propose a particle swarm optimization (PSO) [13] solution
for tuning the parameters, due to its capability to tune continuous parameter
with non-linear objective function. A PSO solution first randomly initializes
a number of solutions. Then in each optimization iteration, it selects a opti-
mal solution based on a certain objective function, and “moves” other solution
towards the optimal solution. We define our objective function based on the
ranking of ai in the ranked candidate list T ′ with respect to their compatibility
with wi:

score(α, β, γ) =
l∑

i=1

1
rank(wi, ai, T, α, β, γ)

(3)

where rank(wi, ai, T, α, β, γ) gives the rank of ai among T with compatibility
calculated using α, β, γ and formula (2).
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The steps for finding optimal parameter are shown in Algorithm1. In addi-
tion to W , A, T , we need to supply three additional parameter, the number
of particles nPart, the number of iterations nIter, and particle moving speed
speed. In our experiments, we find that these parameters are not sensitive, and
with high enough nPart, the particles always converge to the same optimal solu-
tion in a few iterations, regardless of random initial state. In the experiments,
we set nPart = 100, nIter = 10, and speed = 0.2.

Algorithm 1. PSO for parameter tuning
INPUT: W , A, T , nPart, nIter, speed
OUTPUT: α, β, γ
1: randomly initialize nPart particles (αp, βp, γp)
2: for nIter iterations do
3: for each particle p do
4: scorep ← calculated score using formula (3)
5: end for
6: best particle ← the particle with the highest scorep
7: for each particle p do
8: p ← p + (best particle − p) × speed
9: end for

10: end for
11: return best particle

5 Experimental Results

We conduct experiments to test the effectiveness of our alias mining method.
Our experiments are conducted on real Twitter data we collected through its
API. We analyze the effectiveness of individual factors as well as combinations
of factors. In this section, we discuss our experimental data, evaluation metric,
and accuracy results.

5.1 Dataset and Evaluation Metric

We focus our experiment on data and POIs from Singapore. We collect a dataset
of tweets from Singapore as following. First we monitor Twitter’s Sample API4,
which provides a small random sample of all public tweets. From the moni-
tored tweets, we extract 5,000 users whose home location contains the word
“Singapore”. Then we use Twitter’s timeline API5 to collect up to 1,0006 past
tweets from each user. In total we collect a dataset of more than 3 million tweets,
and it contains about 68k geo-tagged tweets. We then extract noun phrases using
StanfordNLP POS tagger from the geo-tagged tweets, and generate a number
of toponym candidates using the thresholds MAD <0.5 and support >3. The
resulted number of toponym candidates and other statistics for the dataset are
shown in Table 2.
4 https://dev.twitter.com/streaming/reference/get/statuses/sample.
5 https://dev.twitter.com/rest/reference/get/statuses/user timeline.
6 If a user has posted less than 1,000 tweets, we collect all past tweets.

https://dev.twitter.com/streaming/reference/get/statuses/sample
https://dev.twitter.com/rest/reference/get/statuses/user_timeline
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Table 2. Statistics about experiment dataset

Number of tweets 3,826,259

Number of users 5,000

Number of geo-tagged tweets 68,618

Number of noun phrases from geo-tagged tweets 266,902

Number of toponym candidates 3,199

We manually label some pairs of toponyms as compatible toponyms. First
we calculate pair-wise geographical distance and filter out pairs whose distance
is more than 0.05 km, with the assumption that if two toponyms are compati-
ble, they must be in the same location. Then we manually check each remain-
ing pair and see if they refer to the same POI. The manual checking process
involves applying common sense and experiences as a Singapore resident, exam-
ining Google search results and Google Map search results, looking up knowledge
bases such as Wikipedia. Finally we determine 102 pairs of toponyms as com-
patible toponyms.

We use Accuracy@k to measure the effectiveness of an alias mining approach.
For each toponym in the manually labeled pairs, we generate a ranked list of alias
candidates by calculating the compatibility of the toponym to all other toponym
candidates. Accuracy@k means the percentage of toponyms among labeled pairs
that have their compatible toponym within first k in their respective ranked list
of candidates. Although we have not found a compatible baseline method for
comparison, it is clear that if chosen at random, the theoretic Accuracy@1 will
be 1/102 ≈ 0.01.

5.2 Results and Discussion

Effectiveness of Single Factor. We first test the effectiveness of three indi-
vidual factors, namely, geographical closeness (GC), association similarity (AS),
and surface name similarity (SS). When tested an individual factor, the compat-
ibility is calculated using only the respective measurement function, f(.), g(.),
or h(.). The accuracy results are shown in Table 3.

Table 3. Accuracy results for individual factors

Acc@1 Acc@2 Acc@3 Acc@5 Acc@10

GC 0.58 0.76 0.88 0.97 1

AS 0.57 0.61 0.66 0.67 0.68

SS 0.17 0.25 0.33 0.37 0.46

Among individual factors, the geographical closeness is the most effective
for identifying alias, which is consistent with our intuition that two compatible
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toponyms should have the same location. However, it is unable to achieve high
Accuracy@1, mostly because some toponyms have the same location but are
not compatible. For example, “national gallery singapore” is first matched by
geographical closeness with “smoke & mirrors”, a restaurant located within the
gallery, instead of its alias. Therefore it is clear that individual factor is not
sufficient to provide high mining accuracy.

Using association similarity achieves a comparable Accuracy@1. If two com-
patible toponyms are used in the same way, they can be detected at the top of
the rank. However, it is unable to push the alias to higher rank when there is a
substantial difference between the association of a name and its alias. This hap-
pens when two compatible toponyms are used in different context by habit, for
example, the building name and the institute that occupies it. We are unable to
achieve high detection accuracy using the surface similarity because it is obvious
that most pairs of compatible toponyms in our labeled data do not appear to be
similar on the surface.

Effectiveness of Combination of Factors. We then investigate the effective-
ness of different factor combinations. The accuracy results are shown in Table 4.
First we notice that, any combination of factors performs better than individual
factors. Particularly, combining geographical closeness and association similar-
ity significantly increases Accuracy@1 to over 70%, while individually they only
achieve less than 60%. This is because the two measurements effectively mitigate
the problem in each other. For example, when a restaurant is located within a
building and causes a problem using geographical distance measures, we can
distinguish two POIs using the association similarity. Adding surface name sim-
ilarity measures further improves Accuracy@1 by two percentages. However, it
decreases accuracy@10 by one percentage, because it introduces some noises
when more candidates are considered.

Table 4. Accuracy results for factor combinations

Acc@1 Acc@2 Acc@3 Acc@5 Acc@10

GC+AS 0.71 0.80 0.92 0.95 0.99

GC+SS 0.59 0.81 0.88 0.92 0.99

AS+SS 0.60 0.70 0.77 0.80 0.82

GC+AS+SS 0.73 0.87 0.92 0.94 0.98

Effectiveness of Weight Tuning. Finally, we test the effectiveness of auto-
matic weight tuning using the PSO algorithm. We follow the leave-one-out app-
roach, that for each toponym in the labeled pairs, we first find the weights using
all other labeled pairs as the training data for the PSO, then using the tuned
weights to detect the alias for the toponym. In other words, we have a training
step and a prediction step for each labeled toponym. For the parameters, we set
nPart = 100, nIter = 10, and speed = 0.2. Because the random initialization
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may affect the result, we run the experiment 10 times and record the mean and
standard deviation. The results are shown in Table 5. We can see that the result
variances for different runs are very low. In fact the results in different runs only
differ by one or two percentage. Therefore we can consider the impact of random
initialization negligible.

Table 5. Accuracy results using tuned parameters

Acc@1 Acc@2 Acc@3 Acc@5 Acc@10

Mean 0.77 0.89 0.95 0.97 1

Stdev 0.007 0.004 0.005 0.003 0

Figure 1 shows the accuracy comparison between simple combination of all
three factors and combination using tuned weights. We can see that by tuning
the weights using the PSO algorithm, we effectively improve the alias detection
accuracy in all ranking ranges. Particularly, the weight tuning algorithm improve
Accuracy@1 by 4%.

Fig. 1. Accuracy comparison of simple combination and tuned weight

Another interesting insight we gain in this experiment is that the optimal
weights found by the algorithm center around a ratio of 8:2:3, which tells us
that the most important factor for alias detection is the geographical closeness,
followed by surface name similarity. Contradict to our initial expectation, the
association similarity actually contributes less to the detection accuracy than
the other two factors.
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6 Conclusion

In this paper, we deal with the problem of mining POI alias from microblog
conversations. One issue that hinders accurate location detection on microblogs
is the lack of a comprehensive gazetteer that includes toponyms of various forms.
Our work is beneficial for increasing location detection rates on microblogs as
well as extending current POI knowledge bases. We propose three compatibility
measures and a parameter tuning algorithm to further improve alias detection
accuracies. To the best of our knowledge, this is the first work that aims to mine
POI alias from microblogs using compatibility measures. Our work can serve as
a baseline for future solutions.

In this paper, we mainly deal with two-to-one alias, in other words, two
toponyms referring to the same POI. We have not deal directly the case of
many-to-one alias, a group of toponyms referring to the same POI, although
they can be dealt with similarly as the two-to-one alias. In the future we plan
to extend our work to deal with many-to-one alias. We also plan to include
more information that can be obtained from microblogs to further improve alias
detection accuracy.
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Abstract. In this paper, we propose DyPerm, the first dynamic com-
munity detection method which optimizes a novel community scoring
metric, called permanence. DyPerm incrementally modifies the com-
munity structure by updating those communities where the editing of
nodes and edges has been performed, keeping the rest of the network
unchanged. We present strong theoretical guarantees to show how/why
mere updates on the existing community structure lead to permanence
maximization in dynamic networks, which in turn decreases the compu-
tational complexity drastically. Experiments on both synthetic and six
real-world networks with given ground-truth community structure show
that DyPerm achieves (on average) 35% gain in accuracy (based on NMI)
compared to the best method among four baseline methods. DyPerm also
turns out to be 15 times faster than its static counterpart.

Keywords: Incremental algorithm · Dynamic communities
Permanence

1 Introduction

Last one decade has witnessed tremendous advancement in the detection and
analysis of community structure (densely connected groups containing homoge-
neous nodes) in different types of networks [7]. So far, major research has con-
centrated on detecting communities from static networks [9]. However, today’s
real-world networks, especially most of the social networks, are not always static
– networks such as Facebook, Twitter are evolving heavily and expanding rapidly
in terms of both size and complexity over time. This has recently led to turn the
research focus from static networks to dynamic networks (where nodes and edges
are added/deleted continuously) [5]. The evolving nature of network structure
raises several new challenges to traditional community detection methods – on
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one hand, the new community structure obtained due to certain changes in the
network structure should not be drastically different from that in the previ-
ous time-stamp; on the other hand, the algorithm needs to guarantee that the
communities has a dynamic adaptability to deal with the dynamic events.

Existing research on dynamic community detection either run static com-
munity detection method on different snapshot of the networks [11] and then
correlate the community structures in two consecutive time-stamps, or adopt
standard community goodness metrics such as modularity [7] and optimize them
to obtain final communities [10,15]. In this paper, we propose DyPerm1, the first
dynamic community detection method that adopts an effective community good-
ness metric, called “permanence” [8] and optimizes it to incrementally detect
the community structure. The benefits of adopting permanence as an optimiza-
tion function are two-fold: (i) Permanence, being a local vertex-centric metric
(as opposed to the global network-centric metrics such as modularity, conduc-
tance), allows us to reassign communities to only those nodes whose associated
topological structure has changed, and guarantees that the remaining nodes do
not affect the optimization. This leads to very low computing complexity in
updating the community structure when the network changes dynamically. (ii)
Incremental changes in the local portion of the community structure guarantee
that the resultant communities are highly correlated with that in the previous
time-stamp. We present theoretical justifications why/how mere changes in the
community structure lead to maximize permanence.

We experiment with both synthetic and six real-world dynamic networks with
known ground-truth community structure. A thorough comparative evaluation
with four state-of-the-art baseline methods shows that DyPerm significantly out-
performs all the baselines across different networks – DyPerm achieves up to 35%
improvement in terms of Normalized Mutual Information (NMI) w.r.t. the best
baseline method. Moreover, DyPerm turns out to be extremely fast, achieving
up to 15 times speedup w.r.t. its static counterpart. In short, DyPerm is a fast
and accurate dynamic community detection method.

2 Related Work

Community detection has been extensively studied in last one decade mostly
for the static networks (see [7,9] for comprehensive reviews). However, due to
the enormous growth of the network size and the evolving nature of the net-
work structure, people turned their focus from static network to dynamic net-
work. Major research on dynamic community detection can be divided into three
categories [5]: (i) traditional clustering where a static community detection
method is applied to different snapshots of the dynamic networks [11]; (ii) evo-
lutionary clustering [6] where clustering at a particular time-stamp should be
similar to the clustering of the previous time-stamp and should accurately reflect
the data arriving during that time, and (iii) incremental clustering [10,15]
where given the clustering result of the initial snapshot, it incrementally modifies
1 For code and datasets, please visit https://tinyurl.com/dyperm-code.

https://tinyurl.com/dyperm-code
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clusters based on every occurrence of an event in the network. Modularity [7], a
well-studied goodness metric for static communities, has recently been adopted
for dynamic community detection [2,3,16]. QCA [12] is another such method
which adopts modularity to identify and trace dynamic communities. Shang et
al. [14] proposed GreMod which first uses Louvain algorithm [4] to detect the
initial community structure, and then applies incremental updating strategies to
track the dynamic communities. They further proposed LBTR [13] which uses
machine learning classifiers to predict the vertices that need to be inspected for
community assignment revision.

3 Methodology

DyPerm (Dynamic community Detection by maximizing Permanence) is an
incremental method which maximizes a vertex-centric community scoring met-
ric, called permanence [8]. In this section, we start by providing a brief idea of
permanence, followed by a detailed description of our proposed method.

Permanence: It measures the extent to which a vertex v remains consistent
inside a community c based three factors [8]: (i) v’s internal connectedness,
measured by the ratio of its internal neighbors inside c, I(v) to its degree d(v);
(ii) v’s cohesiveness, indicating how connected its internal neighbors are and
measured by Cin(v) = Eneig(v)

(I(v)
2 ) , the ratio of actual number of connections among

its internal neighbors Eneig(v) to the total number of possible connections among
them; and (iii) v’s external pull, measured by the maximum number of external
connections of v to any of the external communities Emax(v). These three factors
are suitably combined to obtain permanence of v as follows:

Perm(v) = [
I(v)

Emax(v)
× 1

d(v)
] − [1 − Cin(v)] (1)

Figure 1 shows an illustrative example to calculate permanence of a vertex.
If Emax = 0, then Perm(v) = I(v)

d(v) .

Fig. 1. A toy exam-
ple showing perma-
nence of vertex v. C1,
C2 and C3 are three
communities.

Given a network G(V,E) and its community structure
C, permanence of the graph is obtained by Perm(G) =
1

|V |
∑

v∈V Perm(v). Perm(G) always ranges between −1
(indicating weak community structure) to 1 (indicating
strong community structure). We chose permanence as
our objective function for two reasons: (i) it is a local
vertex-centric metric, which enables us to inspect only
the changes happened in a local portion of the network,
instead of looking at all the changes as a whole, and (ii)
it was already shown to outperform many well-studied
local and global metrics such as modularity, conductance,
SPart, significance etc. on different static networks (see a
detailed survey in [7]).
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Dynamic network: A dynamic network G(E, V ) can be conceptualized by a
time evolving process where the underlying network is continuously updated over
time by either inserting or removing nodes/edges. Therefore, the atomic events
can be of following types:

– newNode(V ∪ u): A node u is added to the network. It may or may not have
one or more associated edges.

– removeNode(V \ u): A node u is removed from the network along with its
associated edges.

– newEdge(E ∪ e): A new edge e is added between two existing nodes in the
network.

– removeEdge(E \ e): An existing edge e is removed from the network.

Therefore, the dynamic network G can be expressed as a collection of t static
snapshots G = {G0, G1, G2, · · · , Gt}, where Gi+1 = Gi∪ΔGi indicates the static
snapshot of G at (i + 1)th time-stamp. Gi+1 has evolved from Gi due to ΔGi

change in Gi, where ΔGi is one of the four atomic events mentioned above.

3.1 The DyPerm Algorithm

DyPerm2 requires the community structure C0 (referred as base community struc-
ture) of the initial snapshot G0, which can be obtained by running a static com-
munity detection method on G0 or from an oracle who knows the ground-truth
community structure of G0. Depending upon the atomic event which causes the
change in the network structure, DyPerm executes one of the following routines
in order to maximize permanence:

(A) Addition of a new node: When a new node u is added into the network
(i.e., case: newNode(V ∪ u)), two scenarios may arise (see Algorithm 1):

• Case A.1: u does not have any associated edges. It then forms a new singleton
community containing only itself.

• Case A.2: u has more than one associated edges. Adding u can be approached
as inserting edge(s) associated with u, one by one, if the order of edge addition
does not affect the final community structure (shown in Proposition 1).

Proposition 1. The order in which the edges (both intra- and inter-community)
associated with a node are inserted, is immaterial for permanence maximization.
2 See supplementary [1] for the proofs of all the propositions.
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(B) Removal of an existing node: When an existing node u present in com-
munity Cu is removed (i.e., case: removeNode(V \ u)), its associated edges are
also deleted (see Algorithm 2). Therefore, node removal can be handled by delet-
ing the associated edges, one by one, if the order of edge deletion does not affect
the final community structure (see Proposition 2).

Proposition 2. The order in which the edges (both intra- and inter-community)
associated with a node are deleted, is immaterial for permanence maximization.

(C) Addition of a new edge: Let us consider adding an edge eu,v between
two existing nodes u and v. There are two possible cases (See Algorithm 3):

• Case C.1: Addition of an intra-community edge: Both u and v belong
to the same community C. Accordingly to Proposition 3, addition of eu,v will
increase the permanence value of the entire network, and the community will
not split into smaller communities (See Algorithm 4).

Proposition 3. If C is a community in the current snapshot of G, then adding
any intra-community edge to C does not split it into smaller communities.

• Case C.2: Addition of an inter-community edge: Let eu,v be the edge
connecting communities Cu and Cv. Its presence could make either u or v leave
its current community and join the new community (See Algorithm 5). Also,
if u or v decides to change its membership, it can advertise its new community
to all its neighbors and some of them might eventually want to change their
memberships as a consequence. We first move u to its new community and
consequently let its internal neighbors (both direct and indirect) determine
their best modules to join in, using an algorithm similar to breadth first
search. Similar steps are followed for v after moving it to its new community.
Overall permanence for both the communities, Cu and Cv are calculated,
once before changing the communities of u and v (lines 8–9, Algorithm 5),
then after moving u and its neighbors, recursively to Cv. Finally, permanence
of the two communities is computed again after moving v and its neighbors,
recursively, to Cu (lines 13–23, Algorithm 5). The neighbors of u (and then
v) are moved recursively to the other community till the move results in an
increase in permanence of that node. The set of the moves that maximizes
the overall permanence of the communities is finally accepted to determine
the new community structure.

(D) Deletion of an existing edge: Let us consider the deletion of an edge
eu,v connecting u and v which are a part of existing network. There are total 3
possible cases (Algorithm 6):

• Case D.1: Single edge connecting only u and v: In this case, u is only
connected to v, and v is only connected to u. Let PermC(u) and Perm

′C(u)
be the permanence of u before and after the edge removal respectively. If
Emax(u) = 0 and d(u) < 3, permanence of u is calculated as PermC(u) = I(u)

d(u)
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(as mentioned in the beginning of Sect. 3). Therefore, PermC(u) = 1 and
Perm

′C(u) = 0, i.e., the permanence value decreases. Similarly, the perma-
nence value of v will also decrease. And u and v form their own singleton
communities. This case is handled in Algorithm 8.

• Case D.2: Node v has unit degree, i.e., d(v) = 1: In this case, v has only
one neighbor in the entire network, and u can have more than one neighbors
(See Algorithm 8). There are further two sub-cases:

Case D.2.1 u and v belong to two different communities Cu and
Cv, respectively: There are further two sub cases as permanence of u is
dependent upon Emax(u), and it can be due to either Cv or some other
community.

Case D.2.1.1: Cv is responsible for Emax(u). Here, the new Emax(u) i.e.,
E

′
max(u) < Emax(u) as the edge is deleted and one neighbor goes, while

everything else remains constant. The new PermCu(u) i.e., Perm
′Cu(u) >

PermCu(u). Permanence of v remains 0 before and after edge deletion as
I(u) = 0.
Case D.2.1.2: Cv is not responsible for Emax(u): In this case, the per-
manence values of both u and v will increase because the new degree of u i.e.,
d

′
(u) = d(u) − 1 and the new degree of v i.e., d

′
(v) = d(v) − 1 has decreased.

Therefore, permanence increases as everything else remains constant.
Case D.2.2: Both u and v belong to the same community: Let us
assume that both u and v belong to community C. PermC(v) = 1, and
after deleting the edge, new permanence i.e., Perm

′C(v) = 0. PermC(u) =
I(u)

Emax(u)
1

d(u) − (1 − Cin(u)). The new degree of u becomes d
′
(u) = d(u) − 1

and the new I(u) becomes I
′
(u) = I(u) − 1, therefore, Perm

′C(u) =
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I(u)−1
Emax(u)

1
d(u)−1 − (1 − C

′
in(u)). And, C

′
in(u) < Cin(u) because I(u) has

decreased; therefore Perm
′C(u) < PermC(u). Algorithm 7 handles this case.

• Case D.3: u and v belong to communities Cu and Cv, respectively
and degrees of u and v are greater than 1: (See Algorithm 8). There are
further four sub-cases:

Case D.3.1: Cv is responsible for Emax(u), but Cu is not responsi-
ble for Emax(v): The new d(u) i.e., d

′
(u) < d(u) and the new Emax(u) i.e.,

E
′
max(u) < Emax(u) because one edge goes away. I(u) remains the same.

Therefore, the new permanence of u i.e., Perm
′Cu(u) > PermCu(u). Simi-

larly, Perm
′Cv (v) > PermCv (v).

Case D.3.2: Cu is responsible for Emax(v) but Cv is not responsible
for Emax(u): The new D(v) i.e., D

′
(v) < D(v) and the new Emax(v) i.e.,

E
′
max(v) < Emax(v) because one edge goes away. I(v) remains the same.

Therefore, the new permanence of v i.e., Perm
′Cv (v) > PermCv (v). Also,

Perm
′Cu(u) > PermCu(u).

Case D.3.3: Cu and Cv do not influence Emax(v) and Emax(u), respec-
tively: The new d(u) i.e., d

′
(u) < d(u) and Emax(u), I(u) remain the same.

Therefore, the new permanence of u i.e., Perm
′Cu(u) > PermCu(u). Simi-

larly, Perm
′Cv (v) > PermCv (v).

Case D.3.4: Both Cu and Cv influence Emax(v) and Emax(u), respec-
tively: The new Emax(u) i.e., E

′
max(u) < Emax(u) and the new degree

decreases by 1 i.e., d
′
(u) < d(u). Therefore, the new permanence

Perm
′Cu(u) > PermCu(u). Similarly, the new Emax(v) i.e., E

′
max(v) <

Emax(v) and d
′
(v) < d(v). Therefore, Perm

′Cv (v) > PermCv (v).
Case D.4: Both u and v belong to the same community i.e., intra-
community link: Assume that both u and v belong to community C. After
the edge between u and v is deleted, permanence of both the nodes decreases as
shown in Proposition 4. Therefore, C may split. Algorithm 7 handles this case.
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Proposition 4. Deleting an intra-community edge between nodes u and v
decreases the permanence value of the two nodes.

The time complexity of DyPerm is O(E) (see Supplementary [1]).

4 Experimental Results

4.1 Datasets

Synthetic networks: We use the dynamic LFR benchmark model3. It allows
users to specify different parameters – number of nodes (N), mixing coefficient
(μ) which controls the ratio of external neighbors of a node to its degree, the
average (k) and maximum degree (kmax), and the number of time-stamps s to
generate the dynamic network. Here, we vary N from 500 to 3500, s from 10
to 30, μ from 0.10 to 0.80. The default values are considered for the rest of the
parameters. However, unless otherwise mentioned, the default LFR network is
generated with the following parameter setting: N = 1000, s = 20, μ = 0.2.

Real-world networks: Four real-world dynamic networks are used whose
ground-truth communities are known to us: (i) Cumulative co-authorship
network (Coauth-C) [8], (ii) Non-cumulative co-authorship network
(Coauth-N) [8], (iii) 2011 High school dynamic contact networks (HS-11)4,
(iv) 2012 High school dynamic contact networks (HS-12)(see footnote 4),
(iii) Primary school contact networks (PS)(see footnote 4), and (iv) Con-
tact network in a workplace (CW)(see footnote 4). Table 1 presents statistics
of the datasets.

Table 1. Description of the real-world networks (notation: N (E): # of unique nodes
(edges), N̄ (Ē): avg. # of nodes (edges) per time-stamp, C̄: avg. # of communities per
time-stamp, s: # of time-stamps).

Network N (N̄) Node-type E (Ē) Edge-type C̄ Community-type s

Coauth-C 708497(41676) Author 1166376(68610) Coauthorship 24 Research area 17

Coauth-N 708497(41676) Author 1166376(68610) Coauthorship 24 Research area 17

HS’11 126(18) Student 1710(244) Contact 3 Class 7

HS’12 180(22.5) Student 2220(225) Contact 5 Class 8

PS 242(47) Student 77602(323) Contact 5 Class 6

CW 145(18) Individual 1193(149) Contact 5 Department 8

3 http://mlg.ucd.ie/snam/.
4 http://www.sociopatterns.org/.

http://mlg.ucd.ie/snam/
http://www.sociopatterns.org/


DyPerm: Maximizing Permanence for Dynamic Community Detection 445

4.2 Baseline Methods

We use the following state-of-the-art dynamic community detection methods
to compare with DyPerm: (i) Quick Community Adaptation (QCA): This
framework uses a modularity-based approach for dynamic community detec-
tion [12]; (ii) Fast Community Detection for Dynamic Complex Net-
works (FCDDCN): This is a community detection method for real-time
dynamic networks. Modularity is optimized using heuristic search [3]; (iii) Gre-
Mod: It is an incremental algorithm that performs per-determined actions for
every edge change to maximize modularity [14]; (iv) Learning-based Targeted
Revision (LBTR): It uses machine learning classifiers to predict the vertices
that need to be inspected for community assignment revision [13].

4.3 Comparative Evaluation

We compare the obtained community structure with a given ground-truth struc-
ture based on the following metrics: Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI). The value of NMI (resp. ARI) ranges from 0 (resp.
−1) (no match) to 1 (perfect match).

Fig. 2. Accuracy (average NMI and its standard deviation across different time-stamps
for each network) of the competing methods with the change of LFR parameters for
experimental setup I (similar pattern is observed for ARI, see Supplementary [1]).

Experimental setup I: Running best static community detection
method to obtain base communities. In order to obtain the base commu-
nity structure C0 for DyPerm, we run MaxPerm (a permanence maximization
algorithm for static networks) [8] on the initial snapshot of the network. Since all
the baseline methods maximize modularity, we run Louvain algorithm (a mod-
ularity maximization algorithm for static network) [4] on the initial snapshot.
In each time-stamp, we compare the output of each competing method with the
ground-truth and report the average accuracy and the standard deviation.

Figure 2 shows the NMI value (and its standard deviation) of the com-
peting methods with the change in different parameters of the LFR networks
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Table 2. Accuracy (avg. NMI and ARI) of the competing methods on the default LFR
and real-world networks for experimental setup I. Top results are in bold-face.

Dataset QCA LBTR GreMod FCDDCN DyPerm

NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

LFR (default) 0.55 0.41 0.65 0.41 0.57 0.34 0.53 0.36 0.81 0.54

Coauth-C 0.37 0.03 0.04 0.01 0.05 0.08 0.05 0.03 0.49 0.11

Coauth-N 0.39 0.04 0.04 0.01 0.04 0.05 0.03 0.02 0.48 0.11

HS’11 0.39 0.02 0.04 0.06 0.04 0.06 0.04 0.05 0.59 0.13

HS’12 0.43 0.19 0.02 0.05 0.02 0.05 0.02 0.04 0.56 0.24

PS 0.39 0.14 0.04 0.02 0.04 0.02 0.04 0.01 0.53 0.25

CW 0.41 0.01 0.02 0.07 0.03 0.01 0.03 0.03 0.52 0.09

(see Supplementary [1] for the same plot w.r.t ARI). We observe that the NMI
value of DyPerm is consistently higher than those of the baseline methods irre-
spective of any LFR parameters. DyPerm outperforms the best baseline method
(LBTR) by 20.6%, 26.74%, 35.75% on average with the increase of the number
of nodes, time-stamps and μ respectively, which is significant according to the
t-test with 95% confidence interval. The standard deviation of DyPerm is also
less compared to that of LBTR, indicating that DyPerm is consistent in pro-
ducing accurate community structure across different time-stamps of a network.
Table 2 shows the results of the competing methods on the default LFR and
real-world networks. Once again, we observe a significant gain in the perfor-
mance of DyPerm compared to the other baselines, specially on the real-world
networks. QCA turns out to be the bast baseline method for real-world net-
works. DyPerm outperforms QCA by 35.20% and 275.4% in terms of NMI and
ARI respectively, averaged across all the networks.

Experimental setup II: Using ground-truth community structure as
base communities. We would like to reiterate that all the dynamic commu-
nity detection methods are highly dependent on the base community structure.
The noise in the detection of the base community structure may propagate to
the next stage of the algorithm and affect the overall performance. Therefore,
one may argue that the baseline methods seem to be incompetent (as observed in
Table 2) due to the inefficiency of the static community detection method applied
on the initial snapshot, not due to the problem in dynamic community detection
method itself. To verify this argument further, we use the ground-truth com-
munity structure of the initial network as the base community structure. This
ensures that the base community structure is completely accurate. Following
this, we run each competing dynamic method on the remaining snapshots and
measure the accuracy.

Figure 3 shows the NMI value (and its standard deviation) of the competing
methods with the change in different LFR parameters (see Supplementary [1]
for the same plot w.r.t. ARI). Once again, we observe similar pattern – DyPerm
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Fig. 3. Accuracy (average NMI and its standard deviation across different time-stamps
for each network) of the competing methods with the change of LFR parameters for
experimental setup II (similar pattern is observed for ARI, see Supplementary [1]).

significantly outperforms all other baseline methods. However, here both LBTR
and QCA seem to be quite competitive. DyPerm beats LBTR by 27.11%, 30.88%
and 45.03%, and QCA by 111.5%, 29.17% and 23.89% with the increase of the
number of nodes, time-stamps and μ respectively, averaged over all the time-
stamps. Table 3 shows the accuracy of the competing methods on the LFR and
different real-world networks for experimental setup II. We again observe a sig-
nificant improvement of the performance of DyPerm compared to the baselines.
This implies that irrespective of the community detection method used on the
initial snapshot of the network, our method always outperforms other baselines.

Interesting, while comparing Tables 2 and 3, we notice that the performance
of the baselines does not improve much considering ground-truth as base com-
munity structure, specially for the real-world networks. However, DyPerm seems
to achieve a significance performance gain in most cases – 4.41% and 1.23% in
terms of NMI and ARI, averaged over all the datasets. This implies that with a
better initialization, DyPerm can achieve even better performance.

Table 3. Accuracy (avg. NMI and ARI) of the competing methods on the default LFR
and real-world networks for experimental setup II. Top results are in bold-face.

Dataset QCA LBTR GreMod FCDDCN DyPerm

NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

LFR (default) 0.57 0.47 0.76 0.55 0.62 0.28 0.55 0.41 0.87 0.58

Coauth-C 0.13 0.03 0.03 0.02 0.04 0.08 0.05 0.05 0.53 0.12

Coau-N 0.10 0.05 0.02 0.04 0.04 0.01 0.05 0.01 0.53 0.12

HS’11 0.08 0.05 0.04 0.06 0.04 0.06 0.03 0.05 0.52 0.10

HS’12 0.02 0.09 0.02 0.05 0.03 0.02 0.03 0. 03 0.60 0.22

PS 0.03 0.08 0.04 0.02 0.04 0.02 0.04 0.02 0.53 0.23

CW 0.03 0.02 0.02 0.03 0.04 0.06 0.05 0.04 0.57 0.09
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Table 4. (a) Runtime (in minutes) of MaxPerm and DyPerm for different real-world
networks. (b) Time complexity of the competing methods (N : # of nodes, E: # of
edges, d: avg. degree of nodes).

(a)

Method
Runtime (in minutes) for different datasets
Coauth-C Coauth-N HS’11 HS’12 PS CW

MaxPerm 3,420 3,020 180 192 17 40
DyPerm 300 204 45 48 1.5 5

(b)
QCA LBTR GreMod FCDDCN DyPerm

O(E2) O(E) O(E) O(Ed logN) O(E)

4.4 Run-Time Analysis

Table 4(a) reports the runtime of MaxPerm and DyPerm, the static and
dynamic community detection methods which maximize permanence, respec-
tively. DyPerm seems to be 10 times faster than MaxPerm, averaged over all the
real-world datasets. Maximum gain (15 times faster) is observed on Coauthor-N
network. This result provides enough motivation to design an efficient dynamic
community detection method. Note that we can not compare the runtime of other
competing methods as the source codes were written in different languages. The
theoretical time complexity of these methods is compared in Table 4(b).

5 Conclusion

In this paper, we proposed DyPerm, a novel dynamic community detection
method that maximizes permanence (a local community scoring metric) in every
snapshot of the network to detect the community structure. DyPerm significantly
outperformed four state-of-the-art baselines on both synthetic and real-world
networks – we observed a gain in NMI up to 35% compared to the best baseline
method. Moreover, DyPerm turned out to be extremely faster than its static
counterpart (MaxPerm), achieving up to 15 times speedup.
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Abstract. The increasing popularity of smart mobile phones and their
powerful sensing capabilities have enabled the collection of rich contex-
tual information and mobile phone usage records through the device
logs. This paper formulates the problem of mining behavioral association
rules of individual mobile phone users utilizing their smartphone data.
Association rule learning is the most popular technique to discover rules
utilizing large datasets. However, it is well-known that a large proportion
of association rules generated are redundant. This redundant production
makes not only the rule-set unnecessarily large but also makes the deci-
sion making process more complex and ineffective. In this paper, we
propose an approach that effectively identifies the redundancy in associ-
ations and extracts a concise set of behavioral association rules that are
non-redundant. The effectiveness of the proposed approach is examined
by considering the real mobile phone datasets of individual users.

Keywords: Mobile data mining · Association rule mining
Non-redundancy · Contexts · User behavior modeling

1 Introduction

Now-a-days, mobile phones have become part of our life. The number of mobile
cellular subscriptions is almost equal to the number of people on the planet [12].
The phones are, for most of the day, with their owners as they go through their
daily routines. People use smart mobile phones for various activities such as voice
communication, Internet browsing, apps using, e-mail, online social network,
instant messaging etc. [12].

The sensing capabilities of smart mobile phones have enabled the collection of
rich contextual information and mobile phone usage records through the device
logs [20]. These are phone call logs [15], app usages logs [18], mobile notification
logs [11], web logs [8], context logs [20] etc. The discovered behavioral association
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 450–461, 2018.
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rules from such mobile phone data, can be used for building the adaptive, intel-
ligent and context-aware personalized systems, such as smart interruption man-
agement system, intelligent mobile recommender system, context-aware smart
searching, and various predictive services, in order to assist them intelligently in
their daily activities in a context-aware pervasive computing environment.

In this paper, we mainly focus on mining individual’s phone call behavior
(Accept|Reject|Missed|Outgoing) utilizing their phone log data. In the real-
world, mobile phone users’ behaviors are not identical to all. Individual user
may behave differently in different contexts. Let’s consider a smart phone call
handling service, a mobile phone user typically ‘rejects’ the incoming phone
calls, if s/he is in a ‘meeting’; however, ‘accepts’ if the call comes from his/her
‘boss’. Hence, [reject, accept] are the user phone call behaviors, and [meeting,
boss] are the associated contexts that have a strong influence on users to make
decisions. Context is defined as “any information that can be used to characterize
the situation of a user”, such as temporal (e.g., day, time), social activity or
situation (e.g., meeting), location (e.g., office), social relationship (e.g., boss)
etc. In this work, we aim to extract a concise set of behavioral association rules
that are non-redundant, expressing an individual’s phone call behavior in such
multi-dimensional contexts for a particular confidence threshold preferred by
individuals. The setting of this threshold for creating rules will vary according
to an individual’s preference as to how interventionist they want the call handling
agent to be. Let’s consider an example, one person may want the agent to reject
calls where in the past he/she has rejected calls more than, say, 95% of the
time - that is, at a threshold of 95%. Another individual, on the other hand,
may only want the agent to intervene if he/she has rejected calls in, say, 80% of
past instances. Such preferences may vary from user-to-user in the real world.

In the area of mobile data mining, association rule learning [2] is the most
common techniques to discover rules of mobile phone users. In particular, a num-
ber of researchers [11,18,20] have used association rule learning to mine rules
capturing mobile phone users’ behavior for various purposes. However, the draw-
back is - Association rule learning technique discovers all associations of contexts
in the dataset that satisfy the user specified minimum support and minimum
confidence constraints. As a result, it produces a huge number of redundant rules
(affects the quality and usefulness of the rules) because of considering all possible
combinations of contexts without any intelligence. According to [5], association
rule learning technique produces up to 83% redundant rules that makes the
rule-set unnecessarily large. Therefore, it is very difficult for the decision mak-
ing agents to determine the most interesting ones and consequently makes the
decision making process ineffective and more complex.

In this paper, we address the above mentioned issues and propose an app-
roach that effectively identifies the redundancy in associations and extracts a con-
cise set of behavioral association rules that are non-redundant. In our approach,
we first design an association generation tree, in which each branch denotes a
test on a specific context value determining according to the precedence of con-
texts, and each corresponding node either interior or leaf represents the outcome,
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including the identified ‘REDUNDANT’ nodes, for the test. Once the tree has
been generated, we extract rules by traversing the tree from root node to each
rule producing node that satisfies the user preferred confidence threshold.

The contributions are summarized as follows:

– We effectively identify the redundancy in associations while producing rules
rather than in post-processing.

– We propose an approach that extracts a concise set of behavioral association
rules that are non-redundant.

– We have conducted experiments on real mobile phone datasets to show the
effectiveness of our approach comparing with traditional association rule
learning algorithm.

The rest of the paper is organized as follows. Section 2 reviews the background
of association rule learning techniques. We discuss the redundancy in associations
in Sect. 3. Section 4 presents our approach. We report the experimental results
in Sect. 5. Finally, Sect. 6 concludes this paper highlighting the future work.

2 Association Rules: A Background

Association rule mining is one of the most important and well researched tech-
niques in data mining. In this section, we introduce some basic and classic
approaches for association rule mining. An association rule is an implication in
the form of A ⇒ C, where, A is called antecedent while C is called consequent,
the rule means A implies C.

The AIS algorithm, proposed by Agrawal et al. [1], is the first algorithm
designed for association rule mining. The main drawback of the AIS algorithm
is too many candidate itemsets that finally turned out to be small are generated,
which requires more space and wastes much effort that turned out to be use-
less. At the same time this algorithm requires too many passes over the whole
database. The SETM algorithm proposed by [10] exhibits good performance and
stable behavior, with execution time almost insensitive to the chosen minimum
support but has the same disadvantage of the AIS algorithm.

Apriori, Aprioiri-TID and Apriori-Hybrid algorithms are proposed by Agrawal
in [2]. The performance is these algorithms are better than AIS and SETM. The
Apriori algorithm takes advantage of the fact that any subset of a frequent item-
set is also a frequent itemset. The algorithm can therefore, reduce the number of
candidates being considered by only exploring the itemsets whose support count
is greater than the minimum support count. All infrequent itemsets can be pruned
if it has an infrequent subset. Apriori-TID and Apriori-Hybrid are designed based
on Apriori algorithm. Another algorithm Predictive Apriori proposed by Scheffer
[17] generates rules bypredicting accuracy combining fromsupport and confidence.
So sometimes it produced the rules with large support but low confidence and got
unexpected results.

Han et al. [9] have designed a tree based rule mining algorithm FP-Tree.
However, FP-Tree is difficult to be used in an interactive mining system. Dur-
ing the interactive mining process, users may change the threshold of support
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according to the rules. The changing of support may lead to repetition of the
whole mining process. Das et al. [3] have designed another tree based association
rule mining method RARM that uses the tree structure to represent the original
database and avoids candidate generation process. RARM is claimed to be much
faster than FP-Tree algorithm but also faces the same problem of FP-tree [19].
Flach et. al [7] introduces an approach with learning first-order logic rules. This
algorithm is able to deal with explicit negation. However, this algorithm can not
learn rules in case of depth search.

Among the association rule mining algorithms, Apriori [2] is a great improve-
ment in the history of association rule mining [19]. This is the most popular and
common algorithm for mining association rules. The key strength of association
rule mining is it’s completeness. It finds all associations in the data that satisfy
the user specified constraints. However, the main drawback is that - it produces
a huge number of redundant associations, that makes the behavior modeling
approach ineffective for mobile phone users.

Unlike these works, in this paper, we propose an approach that effectively
identifies the redundancy in associations and extracts a concise set of behav-
ioral association rules that are non-redundant for individual mobile phone users
utilizing their mobile phone data.

3 Redundancy in Association Rules

Association rule learning algorithms produce many rules (A ⇒ C) that have
common consequent (C) ‘behavior’ but different antecedent (A) ‘contexts’.
Indeed many of those antecedent contexts are proper subset of others rules.

Let, two rules R1 : A1 ⇒ C1 and R2 : A2 ⇒ C2, we call the latter one
redundant with the former one if A1 ⊆ A2 and C1 = C2. From this definition
of redundancy, if we have a general rule Rg : A1 ⇒ C1 and there is no other
more specific rule A1B1 ⇒ C2 in existence such that confidence of A1B1 ⇒ C2 is
equal or larger than the confidence of Rg : A1 ⇒ C1 and A1 ⊆ A1B1, C1 = C2,
then the rule A1B1 ⇒ C2 is said to be non-redundant with Rg : A1 ⇒ C1.

For example, typically a user rejects most of the incoming calls (83%), when
she is in a meeting, i.g., the rule is (meeting ⇒ reject) [say, user preferred
confidence threshold 80%]. Another example is, the user rejects most of the
incoming calls (90%) of her friends, when she is in a meeting, i.g., the rule is
(meeting, friend ⇒ reject). Both rules are valid in terms of confidence as the
rules satisfy the user preferred confidence threshold. However, the later one is
considered as redundant rule as the former one is able to take the same decision
with minimal number of contexts. Additional context can play a significant role
if it reflects different behavior. Table 1 shows an example of a set of association
rules and their non-redundant production for a preferred minimum confidence
80%. According to Table 1 R2, R3, R4, R5 are redundant rules as only R1 is able
to take the same decision with minimal number of contexts. On the other hand,
R1 and R6 are considered as non-redundant rule, in which we are interested in.
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Table 1. Sample traditional association rules and corresponding non-redundant behav-
ioral association rules of a sample user.

Association rules (Traditional) Association rules (Non-redundant)

R1 : Meeting ⇒ Reject

(conf = 83%)

R2 : Meeting, Friend ⇒ Reject

(conf = 90%)

R3 : Meeting, Colleague ⇒ Reject

(conf = 88%)

R4 : Meeting, Friend, Monday[t1] ⇒ Reject

(conf = 100%)

R5 : Meeting, Colleague, Friday[t2] ⇒ Reject

(conf = 98%)

R6 : Meeting, Boss ⇒ Accept

(conf = 100%)

R1 : Meeting ⇒ Reject

(conf = 83%)

R6 : Meeting, Boss ⇒ Accept

(conf = 100%)

4 Our Approach

In this section, we present our approach for mining behavioral association rules
of individual mobile user behavior utilizing their mobile phone data.

4.1 Association Generation Tree (AGT)

In this first step, we generate a tree based on multi-dimensional contexts and
corresponding usage behavior of mobile phone users. As different contexts might
have differing impacts in behavioral rules, we identify the precedence of contexts
in a dataset while generating the tree.

Identifying the Precedence of Contexts: In order to identify the precedence
of contexts in a dataset, we calculate information gain which is a statistical
property that measures how well a given attribute separates training examples
into targeted behavior classes. The one with the highest information is considered
as the highest precedence context. In order to define information gain precisely,
we need to define entropy first.

Entropy is a measure of disorder or impurity. The entropy characterizes the
impurity of an arbitrary collection of examples. It reaches it’s maximum when the
uncertainty is at a maximum and vice-versa. Formally entropy is defined as [13]:

H(S) = −
∑

x∈X

p(x)log2p(x)

Where, S is the current data set for which entropy is being calculated, X repre-
sents a set of classes in S, p(x) is the proportion of the number of elements in
class x to the number of elements in set S.
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Information gain (IG) measures how much “information” a feature gives us
about the class. It is the expected reduction in entropy caused by partitioning
the examples according to a given attribute. Features that perfectly partition
should give maximal information. Unrelated features should give no information.
To decide which attribute should be tested first, we find the one with the highest
information gain. The formal definition of information gain is [13].

IG(A,S) = H(S) −
∑

t∈T

p(t)H(t)

Where, H(S) is the entropy of set S, T represents the subsets created from
splitting set S by attribute A such that S = ∪t∈T t, p(t) is the proportion of the
number of elements in t to the number of elements in set S, H(t) is the entropy
of subset t.

Let’s consider a sample dataset of three different contexts and corresponding
call response behavior of a mobile phone user X. For example, the contexts might
be ranked as follows:

Rank1 : Social Activity/Situation(S) ∈ {meeting, lecture, lunch}
Rank2 : Social Relationship(R) ∈ {boss, colleague, friend, unknown}
Rank3 : Temporal(T ) ∈ {time-of -the-week}
Where,
User phone call behavior(BH) ∈ {Accept,Reject,Missed}

Tree Generating Procedure and Extracting Non-redundant Rules: A
tree is a structure that includes a root node, branches, interior and/or leaf nodes
[6]. Each branch denotes a test on a specific context value, and each node (interior
or leaf) denotes the outcome containing the behavior class with confidence value
of the test.

To build tree, we follow a top-down approach, starting from a root node. The
tree is partitioned into classes distinguished by the values of the most relevant
context according to the precedence. Once the root node of the tree has been
determined, the child nodes and it’s arcs are created and added to the tree with
the associated contexts and corresponding dominant (highest occurrences) [16]
behavior with confidence value. While creating a node, we check whether it is
redundant (‘REDUNDANT’ node) or not.

“A child node in the tree is called ‘REDUNDANT’ node, if both the child
node and it’s parent node contain same behavior class and satisfy individual’s
preferred confidence threshold”.

The algorithm recursively add new subtrees to each branching arc by adding
child node one by one. If a node has 100% (maximum) confidence then there is
no need to elaborate it’s children, otherwise we continue this process according
to the number of contexts in the datasets. The final result is a multi-level tree
with various nodes including ‘REDUNDANT’ node according to their associated
contexts. The overall process for constructing the tree is set out in Algorithm 1.
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Algorithm 1. Association Generation Tree
Data: Dataset: DS = X1, X2, ..., Xn // each instance Xi contains a number of

nominal context-values and corresponding behavior class BH, confidence
threshold = t

Result: An association generation tree

1 Procedure AGT (DS, context list, BHs);
2 N ← createNode() //create a root node for the tree
3 if all instances in DS belong to the same behavior class BH then
4 return N as a leaf node labeled BH with 100% confidence.
5 end
6 if context list is empty then
7 return N as a leaf node labeled with the dominant behavior class and

corresponding confidence value.
8 end
9 identify the highest precedence context Csplit for splitting and assign Csplit to

the node N .
10 foreach context value val ∈ Csplit do
11 create subset DSsub of DS containing val.
12 if DSsub �= φ then
13 identify the dominant behavior and calculate the confidence value.
14 create a child node with the identified dominant behavior.
15 //check with it’s parent node
16 if both nodes satisfy the confidence threshold then
17 if both nodes represent same behavior class then
18 mark the child node as ‘REDUNDANT’ node.
19 end

20 end
21 add a subtree with new node and associated context values.
22 //recursively do this with remaining contexts
23 AGT (DSsub, {context list − Csplit}, BHs))

24 end

25 end
26 return N

Figure 1 shows an example of such an association generation tree containing
‘REDUNDANT’ nodes for the contexts (mentioned above) in phone call behav-
iors of a user, when the minimum confidence preference is 80%.

Once the tree has been generated, rules are extracted by traversing the tree.
To do this, we first identify the valid rule generating nodes from the tree. A node
is taken into account as a valid rule generating node if it satisfies individual’s
preferred confidence threshold and not classified as ‘REDUNDANT’ node. The
followings are examples of produced behavioral association rules from the tree.

R1 : Lecture ⇒ Reject (conf = 100%, using Node 2)
R2 : Meeting ⇒ Reject (conf = 85%, using Node 3)
R3 : Lunch, Friend ⇒ Accept (conf = 92%, using Node 4)
R4 : Lunch, Unknown ⇒ Missed (conf = 95%, using Node 5)
R5 : Meeting,Boss ⇒ Accept (conf = 100%, using Node 7)
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Fig. 1. An example of the tree (AGT) identifying ‘REDUNDANT’ nodes

Rule R1 states that the user always rejects the incoming calls (100%) when
she is in a lecture, which is produced from node 2 in the tree. Similarly, the
other non-redundant rules R2, R3, R4, R5 are produced from node 3,4,5, and 7
respectively according to the tree shown in Fig. 1.

5 Experiments

In this section, we have conducted experiments on four individual mobile phone
users’ datasets that consist the phone call records in different contexts. We have
implemented our approach in Java programming language and compare the out-
put with the most popular association rule learning technique Apriori [2].

5.1 Dataset

We randomly select four individual mobile phone users’ datasets from Mas-
sachusetts Institute of Technology (MIT) Reality Mining dataset [4]). These
datasets contain three types of phone call behavior, e.g., incoming, missed and
outgoing. As can be seen in the dataset, the user’s behavior in accepting and
rejecting calls are not directly distinguishable in incoming calls in the dataset.
As such, we derive accept and reject calls by using the call duration. If the call
duration is greater than 0 then the call has been accepted; if it is equal to 0
then the call has been rejected [14]. The contextual information includes tem-
poral, locational, and social. We also pre-process the temporal data in mobile
phone log as it represents continuous time-series with numeric timestamps values
(YYYY:MM:DD hh:mm:ss). For this, we use BOTS technique [16] for producing
behavior-oriented time segments, such as Friday[09:00–11:00], Monday[12:00–
13:00] etc. Table 2 describes each dataset of the individual mobile phone user.
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Table 2. Datasets descriptions

Datasets Data collection period Instances

Dataset-01 5 months 5119

Dataset-02 3 months 1229

Dataset-03 4 months 3255

Dataset-04 4 months 2096

5.2 Evaluation Results

Effect of Confidence: In this experiment, we show the effect of confidence
on producing behavioral association rules using both approaches. For this, we
first illustrate the detailed outcomes by varying the conference threshold from
100% (maximum) below to 60% (lowest) for different datasets. Since confidence
is directly associated to the accuracy of rules, we are not interested to take into
account below 60% as confidence threshold. To show the effect of confidence,
Figs. 2 and 3 show the comparison of rule production for different confidence
thresholds (accuracy level) for different datasets.

100% 90% 80% 70% 60%
Confidence (%)

500

1000

1500

2000

2500

3000

N
um

be
r o

f R
ul

es

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Fig. 2. Effect of confidence in “Apriori”
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Fig. 3. Effect of confidence in our app-
roach

If we observe Fig. 2, we see that the produced number of association rules
using existing Apriori algorithm [2] increases with the decrease of confidence
threshold. The reason is that it simply takes into account all combination of
contexts while producing rules. Thus, for a lower confidence value, it satisfies
more associations, and as a result, the output becomes larger. On the other
hand, the produced number of behavioral association rules using our technique
decreases with the decrease of confidence threshold, shown in Fig. 3. The main
reason is that - for lower confidence threshold, more number of child nodes
subsume in their parent node because of creating generalized nodes with the
dominant behavior, and as a result, the number of produced rules decreases.
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Effectiveness Analysis: To show the effectiveness of our approach, Figs. 4, 5,
6 and 7 show the relative comparison of produced number of rules for dataset-
01, dataset-02, dataset-03 and dataset-04 respectively. For each approach, we
use minimum support 1 (one instance) because no rules can be produced below
this support [14]. Moreover, we have explored different confidence threshold, i.e.,
100% (maximum) below to 60%.

From Figs. 4, 5, 6 and 7, we find that our approach significantly reduces the
number of extracted rules comparing with traditional association rule learning
algorithm for different confidence thresholds. The main reason is that existing
approach Apriori [2] does not take into account redundancy analysis while pro-
ducing rules and makes the rule-set unnecessarily larger. On the other-hand,
we identify and eliminate the redundancy while producing rules and discovers
only the non-redundant behavioral association rules. As a result, it significantly
reduces the number of rules for a particular confidence threshold for each dataset.

100% 90% 80% 70% 60%
Confidence (%)

0

500

1000

1500

2000

2500

N
um

be
r o

f R
ul

es

Apriori Our Approach

Fig. 4. Utilizing dataset 01
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Fig. 5. Utilizing dataset 02
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Fig. 6. Utilizing dataset 03
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6 Conclusion and Future Work

In this paper, we have presented an approach to effectively identify the redun-
dancy in association rules and to extract a concise set of behavioral association
rules which are non-redundant, in order to model phone call behavior of individ-
ual mobile phone users. Although we choose phone call contexts as examples, our
approach is also applicable to other application domains. We believe that our
approach opens a promising path for future research on extracting behavioral
association rules of mobile phone users.

In future work, we plan to conduct a range of experiments using additional
mobile phone datasets and to use the discovered non-redundant rules in vari-
ous predictive services. We have also a plan regarding efficiency analysis of our
approach to use in real-time applications, in order to provide the personalized
services for the end mobile phone users.
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Abstract. As Uber-like chauffeured car services become more and more
popular, many drivers have joined the market without special training.
To ensure the safety and efficiency of transportation services, it is an
important task to accurately evaluate the driving performance of individ-
ual driver. Most of the existing methods basically depend on the statistic
of abnormal driving events extracted from individual vehicles. However,
the occurrence of abnormal events can be affected by various factors, such
as road conditions, time of day and weather. It can be bias to judge the
driver’s performance by merely counting the abnormal events without
considering the driving context. In this paper, we analyze the influence
of driving context over driving behaviors and propose a context-aware
evaluation method. Instead of taking all the occurrence of driving events
as the same, we adopt the TF-IDF to determine the risk weight of a
driving event in a specific driving context. Based on the risk-weighted
statistics, we evaluate the driving performance precisely and normalize
it using the Z score model. An evaluation system is implemented. We
evaluate the effectiveness of our method based on a real dataset with
3-year traces of 1000 drivers. The normalized score determined by our
method have a greater correlation (0.611) with the accident records than
that of the number of abnormal driving events (0.523).

Keywords: Driving behavior · Driving event · Driving context
Risk weight

1 Introduction

With the improvement of living standards, people’s travel demand increases
steadily and various driving service has become the indispensable part in people’s
daily life. At the same time, according to the statistics from the World Health
Organization (WHO), traffic accidents become one of the top 10 leading causes
of death in the world and the drivers’ personal factors are the main reasons of
traffic accidents. To improve driving safety and traffic efficiency, the demand
of driving behavior evaluation is proposed in many fields. For instance, in the
c© Springer International Publishing AG, part of Springer Nature 2018
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field of auto insurance [2], many insurance companies provide premiums based
on personal driving behavior. For the tailored-taxi companies, such as Uber
in America and Didi-taxi in China, driving behavior evaluation can be used
as one of the criteria to assess driving skills and performance. In the field of
environmental protection, since different driving behavior patterns may have
different impact on vehicle fuel consumption and exhaust emissions, researchers
try to identify more energy-efficient and environmental friendly driving mode
[13]. All these driving behavior evaluation methods are helpful to correct poor
driving behavior and improve driving safety and traffic efficiency.

The evaluation methods of driving behavior can be divided into two cate-
gories: classifying the driving style and counting the abnormal driving events.
Methods in the first category [1,4,6,11,15] classify the drivers using the super-
vised learning algorithms based on the original vehicle data. Methods in the
second category [3,8] give the evaluation of driving performance based on the
number of abnormal driving events (e.g. sharp turnings, abrupt deceleration and
acceleration), which is detected from the data of moving vehicles. However, it is
not easy to get plenty of labeled training data in the first kind of methods. And
for the second kind, it relies on simple counts of driving events which exhibit a
limited view of drivers’ intentions and behaviors.

The existing driving behavior evaluation methods do not take driving context
into consideration and may present systematic bias in evaluation. Indeed, during
driving, drivers control the vehicle by reacting to various external factors (e.g.
traffic condition) and internal factors (e.g. aggressive driving habits). The same
driving event may result from drivers’ general tendency to take risks or could
represent a protective measure in a hazardous situation. For example, a sudden
brake can be deduced from either the tendency of aggressive driving style of the
driver, or a necessary measure when the red traffic signal lights up suddenly. An
effective evaluation method should be able to measure the actual driving skill
(internal factors) and eliminate the influence of external factors.

To solve this problem, we present an evaluation method of driving behavior
that not only relies on the number of events but also considers the driving con-
text. In order to eliminate the influence of external factors, we analyze the exter-
nal factors of driving behavior and demonstrate that these factors truly affect
driving behavior. We proposed a driving behavior evaluation method, which not
only based on the counts of abnormal diving events, but also considering the
influence of driving context. The main contributions are summarized as follows:

– We provide an extensive data analysis of the factors which have impact on
the driving behavior. Through the analysis of the periodicity, distribution and
frequency of all driving events, we determine three significant factors: Time
of day, Road segment and Weather (Sect. 4).

– We propose a novel method that applies TF-IDF to integrate driving context
into the evaluation of driving behavior (Sects. 5 and 6). The IDF algorithm
is an effective method to quantify the risk of different driving context and
the TF-IDF algorithm provide a solution to the comprehensive evaluation
problem.
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– We evaluate the proposed algorithms extensively over three year real driving
data (i.e., from1/1/2014–12/31/2016) in Beijing. The correlation coefficient
between the driving behavior and the evaluation result increase from 0.523
to 0.611 after integrating the driving context into evaluation. (Sect. 7).

2 Related Work

In this section, we introduce some evaluation works for driving behavior, divided
into two categories: classifying driving style and counting abnormal driving
events.

Classifying Driving Style. These methods classify the drivers using the super-
vised learning approach based on the original driving data. The researchers
choose some drivers and give different safety levels according to their driving
behavior as their labels. Then the safety levels of other drivers are determined
by the safety classification model created by SVM, HMM and other algorithms.
[4,6,15] propose methods that make use of SVM, AdaBoost and HMM algo-
rithms to create a driving behavior classification model, and finally could deter-
mine whether the driving behavior is safe or not. [11] models driving behaviors
as car-following and pedal operation patterns with GMM. Several mathematical
strategies are presented to analyze collected vehicle data for driver classification
in [1].

Counting Abnormal Driving Events. SenseFleet system [3] uses fuzzy logic
to detect driving behavior events like acceleration, deceleration and sharp turn
based on the data collected by acceleration sensor, magnetic force sensor and
GPS. It can provide different abnormal driving events threshold. This system
can also score drivers subjectively by considering driving events, weather and
timestamp. [8] is based on the vehicle movement data. They explore the rela-
tion between driving context and driving event using the real driving data and
determine the measurement of road condition and traffic condition. It helps to
provide a way for future research on integrating driving context into driving
behavior evaluation.

However, it is not easy to get plenty of labeled training data in the classifying
method and the counting method rely on simple counts of driving events which
do not incorporate the effects of driving context fully.

3 Preliminary

In this section, we describe the evaluation problem and illustrate the dataset,
important concepts and notations used in the work.

3.1 Problem Description

This study aims to propose an evaluation method of driving behavior which
takes the influence of driving contexts in to consider.
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Driving skill of a driver can be revealed from his abnormal driving events. In
order to give a comprehensive evaluation, first, we should identify what kind of
driving contexts are related to abnormal driving events. Then we should quan-
tify the risk in different driving context and give a normalized score of driving
behavior not only relies on the number of events but also the driving context.

The study is based on the fusing heterogeneous data, including all kinds of
driving data and the information of different driving context. The output can
be used to improve the driving behavior and ensure safety.

Table 1. Summary of notations.

Terms Description

t time 24 h of a day

r road segment road segments in Beijing

w weather the weather types

E event set five negative driving events

e event e ∈ events set

d driver a driver

rt running time the vehicle running time

pt passing times the passing times in a road segment

N event number number of events

F event frequency event frequency in a driving context

TF driver’s event frequency event frequency of driver

IDF inverse event frequency inverse event frequency in a context

P performance driving performance of a driver

3.2 Driving Data and Driving Events

The dataset of driving data is collected in three years (i.e. 01/01/2014–
12/31/2016) in Beijing and is offered by one of the largest car rental and car-
booking service provider of China. The dataset contains 3.6 billion driving data
produced by 1000 drivers at a frequency of 0.2 Hz. Each driving data contains
a driver ID, a timestamp, a GPS point, a direction and a velocity to record the
vehicle movement data at that moment.

From this dataset, we detect a set of abnormal driving events by a SVM-
based multi-class classifier model [5]. These events are common in daily life and
easy to cause safety problem. The five types of events we detected are sudden
acceleration, sudden deceleration, rapid swerving, rapid turning and fast U-turn.

3.3 Driving Contexts

In this study, the external factors that affect driving behaviors are collectively
called the driving contexts. Driving contexts mainly contain the time period of
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the day, driving road segment and the weather condition. In order to analyze
the impacts of driving contexts toward driving events, we describe the driving
contexts and analyze the effects of driving contexts on driving events using the
time, location and weather information of driving events.

Time Period. In the factor of time, we divide one day into 24 time peri-
ods and the length of each is 1 h. We define the time set of a day as T =
{0, 1, 2, 3 . . . 22, 23}.

Road Segments. The set of road segments is defined as R = {r1, r2, r3, . . .},
where ri, i ≥ 1, is a road segment. We use the road network within the fifth
Ring Road of Beijing from Shapefile map, which contains 57852 road segments.

Weather Condition. The historical weather records are obtained by sim-
ply requesting the weather web [14]. We define the set of weather as W =
{sunny, rainy, cloudy, haze}.

The notations used in this paper are summarized in Table 1.

(a) Events Frequency (b) Periodic Detection (c) Temporal Distribution

Fig. 1. Impact of driving time.

4 Analysis of Driving Contexts

In this section, we analyze the effects of driving contexts on driving behaviors
from three aspects: time period, road segment and weather.

Impact of Time Period. In order to conduct statistical analysis on abnormal
driving events in different time periods, we calculate the events frequency per
hour during three year (26,280 h). We conduct Fourier Transformation on events
frequency to analyze the periodicity characteristics [7,9]. Figure 1(a) shows the
frequency of all abnormal driving events in one week (168 h) and Fig. 1(b) shows
the result of periodic detection in three years.

According to the analysis of Fourier Transformation, events frequency has
obvious periodicity of 24 h (the sharp peaks around 0.0416h−1). So we can take
one day as a cycle while analyzing the impacts of different time period on events
frequency. The temporal distribution of all kinds of events frequency and traffic
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volume in a day is shown in Fig. 1(c). The frequency of each driving event varies
among different periods of a day and the frequency of different driving events in
each hour of a day still has different distribution.

Impact of Road Conditions. In order to analyze the influence of road condi-
tions on driving behavior, we investigate the traffic volume and road topological
structure with in the Fifth Ring in Beijing. Among the five driving events we
have detected, the acceleration and deceleration are related to the traffic volume
while the swerving, turning and U-turn are closely related to the road topologi-
cal structure. Take sudden deceleration and rapid turning as examples and the
corresponding thermodynamic diagram of event frequency is shown in Fig. 2.

The figure shows that each kind of driving events distribute unevenly in
spatial domain. Influenced by traffic conditions and topological structures, one
road segment would have different effects on different driving events and different
events have different high-risk areas.

Impact of Weather. To verify the impacts of weather conditions to driving
events, we calculate the frequency of driving events in all kinds of weather. The
event frequency in rainy days is lower. From the perspective of safe driving, lower
speed in rainy days than usual and cautious driving would lead to less anomalous
events. The frequency in haze days is a little higher because of the low visibility.

Table 2. The correlation between frequency of driving events and weather condition

Weather All events Acc Dec Swerving Turing U-turn

Spearman correlation .478** .376** .477** .359** .314** .314**

Sig. (2-tailed) .000 .000 .000 .000 .000 .000

N (day) 184 184 184 184 184 184

The spearman correlation coefficients are shown in Table 2. Significant Posi-
tive correlation coefficients indicate the positive relationship between weather
condition and frequency of driving events. The sudden deceleration has the
largest correlation with the weather condition. The degree of correlation between
weather conditions and driving events is different.

5 Evaluation Method

In this section, we present a method to integrate driving context into driving
behavior evaluation. We first introduce the method to measure the risk weights
of event in driving context. Then, we give the evaluation method considering
driving context.
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5.1 Fundamental Idea

According to the analysis in Sect. 4, the number of driving events varies in each
driving context among different drivers. Hence, if an event occurs in the driving
context in which more events occur, the main reason of the event is probably
the driving context rather than driving skill. This means if we simply compare
the number or the frequency of events, it is unfair to drivers who have to work
at the rush hours, black spot or bad weather.

In order to measure the effects of driving context on driving event, we adapt
the TF-IDF, widely used in discipline of information retrieval. Where the term
frequency (TF) and inverse document frequency (IDF) are two kinds of measure
of the information quantity a word provides. The basic idea of the method is
that a word is a keyword to distinguish a document from others in the corpus
if it occurs many times in the document, which can be measured by TF, but
occurs rarely in other documents in the corpus, which can be measured by IDF.

(a) Traffic Volume (b) Deceleration (c) Turning (d) Turning (Larger)

Fig. 2. Spatial distribution of driving events in Beijing

In a similar way, if one type of driving event occurred frequently in a specific
driving context, the risk weight of such event is low, because this type of event
is more likely caused by driving context rather than the driver. Based on this
consideration, we diminish the risk weight of driving event in driving context
where the event occurs frequently, and increase the risk weight in driving context
where the event occurs rarely. At last, the driving behavior can be evaluated by
combining the driver’s event frequency and the risk weights of them in driving
context.

5.2 Weighting Event in Driving Context

We define the risk weights of different types of events in various driving context,
by frequencies of these events in different hours of a day, road segments and
weather. The calculating of risk weight of an event in driving context includes
two steps:

Step 1. Getting frequencies of events in driving contexts. Using recorded
driving data, we can detect the abnormal driving events. Then we can count
the number of events in different driving context and collect the running time in
different time of day, the passing times in different road segments and the running
time in different weather conditions. The frequency of events in different driving
context can be calculated.
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Equation (1) are the formulas of frequency calculation of different types of
events in the road segment.

F (r, e) =
N (r, e)
pt (r)

(1)

where N represents the number of events in the road segment and pt represents
the number of passing times in the road segment. For a road segment, considering
that there may be no vehicle passing, the frequency of event in this road segment
is depicted using the average frequency of the same events at all road segments.
The F formulas of time and weather are similar.

Step 2. Determining the risk weight of events in driving contexts. The
risk weights of different events in different driving context are given according to
IDF formula. The formula which calculates the risk weight of a road segment is
given in equation (2). The IDF (here we use the same symbol “IDF” and “TF”
as they are in information retrieval for convenience) formulas represent the risk
weight in specific driving context by quantify the frequencies of the events.

IDFr,e = lg
( ∑

r∈R F (r, e)
Min{F} + F (r, e)

)
(2)

where F (r, e) represents the event frequency of an event type that occurs on
a certain road segment and the numerator represents the total frequency of
an event type occurring on all road segments; and Min{F} is the minimum
event frequency of this context to avoid the denominator becoming zero. When
the frequency of events on a road segment is high and the frequency of events
on other road segments is low, the risk weight is low and the IDF value of this
specific driving context will be low, which means an event happening in this road
segment is more likely caused by the context rather than the driver himself.

The IDF formulas of time and weather are similar.

5.3 Evaluating Driving Performance

Combining with drivers’ events frequency and the event risk weight in differ-
ent context, the evaluation of driving behavior can be given using the TF-IDF
weighting technique. The formula of event frequency (TF) in different road seg-
ments context is given in Eq. (3) and the TF formula of time and weather are
similar.

TFr,e (d) =
N (d, r, e)
pt (r)

(3)

The TF formula represents the event frequency of driver in specific driving con-
text. Note that, in some cases, some drivers’ historical records do not fully cover
all of the contexts. Then the event frequency of the driver in these contexts can
be depicted using all other drivers’ average frequency of the same events in these
contexts.
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According to the driver’s events frequency (TF) and corresponding risk
weights (IDF) in specific contexts, the driver’s driving behaviors in every driv-
ing contexts are evaluated. The driving performance of a driver is defined by
Eq. (4).

P (d, r) =
∑
e∈E

TFr,e (d) · IDFr,e (4)

In this definition, the higher frequency of a certain type of event in a particular
context or the higher the risk weight of this context is, the worse the driving
performance might be. Namely, the larger the driving performance value is, the
worse the driver will be in this context.

Then, the comprehensive evaluation of all road segments is the sum of perfor-
mance value of all road segments in Eq. (5), and the comprehensive evaluation
of time and weather are similar.

P (R, d, e) =
∑
r∈R

P (r, d, e) (5)

All time of day, road segments and weather driving performance present drivers’
driving performance of a certain dimension separately, and combining all three
dimensions can demonstrate a more comprehensive evaluation of drivers’ perfor-
mance.

The level of a driver’s driving skill in all drivers cannot be learnt directly if
his or her driving performance value is given simply, the driver’s performance
can be normalized using the z-score normalization method.

6 System Design

We implement an evaluation system of driving behavior (Fig. 3), mainly includ-
ing two components: Pre-Processing and Evaluation.

6.1 Pre-Processing

This part finishes the events detection and determines driving context measures
based on the driving data, the road network and weather information.

Event Detection. This step takes the velocity and direction as input and
detects abnormal driving events using a machine learning method (Support Vec-
tor Machine [5]). These events can reflect the driving behavior of drivers.

Map Matching. In this step, the system maps each GPS point onto the cor-
responding road segment. We consider the distance of the GPS point and road
segment and the topological structures of the road network in the matching algo-
rithm [10]. In order to improve the accuracy of turning and U-turn events, we
adopt modifying-backward to solve the Y-junction problem [12].
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Driving Context Measures. In this step, we calculate the running data of
different driving context and different driver using the longitude, latitude and
timestamp data. Running data includes the actual driving time of every hour,
passing times of a road segment and driving time under certain weather. The
running data is used for the subsequent calculation of event frequency.

Fig. 3. The driving behavior evaluation system.

6.2 Evaluation

This part takes the events information and the running data of different driving
context as input. The context-aware is implemented in this system.

Determining Driving Context Risk Weight. In this step, we use the spatio-
temporal information of events and the running data of driving context to cal-
culate the event frequency in each driving context. Then, we determine the risk
weight of each driving context using the method depicts in Sect. 5.2.

Evaluating Driving Behavior. In this step, we calculate the event frequency
of drivers and combined them with risk weight of each driving context to give
a comprehensive evaluation (Sect. 5.3). Finally, the normalized score is given to
show the professional level of the driver among others.

7 Experimental Study

In this section, we conduct extensive experiments to demonstrate the effective-
ness of our evaluation method using the dataset described in Sect. 3. Besides,
we choose 100 drivers randomly and get their accident records as an objective
measure of their driving skills. We first illustrate the distribution of drivers’ per-
formance to prove the validity of the normalizing method of driving performance.
Then, we investigate the relationship between the score of driving performance
and the accident records to explore the effectiveness of our method. Finally, we
demonstrate that our method is better than other evaluation methods.
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7.1 Effectiveness of the Normalizing Method

In order to prove the validity of the use of normalized score, we check whether
the driving performance of all drivers obeys the normal distribution. We get the
driving performance of 1000 drivers using our evaluation method and calculate
the Probability Density Function based on the performance value. And the result
is shown in Fig. 4(a).

The classic bell curve in the figure verifies that the performance obeys a
normal distribution. So we can give a normalized performance score for each
driver.

7.2 Effectiveness of the Evaluation Method

Effectiveness. To demonstrate the effectiveness of our method, we pick 100
drivers randomly and get their accident records during the past three years,
which can reflect their driving skills objectively. We calculate the driving per-
formances of these 100 drivers and compare them with the number of accidents.
Since we don’t have the complete accident reports, we just use the number of
abnormal driving events under a safe environment instead. The results are shown
in Fig. 4.

(a) Distribution of Driving Performance (b) Score and Drivers with Accidents

(c) Score and Number of Accidents (d) Score and Accidents

Fig. 4. Experiment results.

Figure 4(b) shows the relationship between the scores of driving performances
and the number of accident records. 12 drivers have accident records, which are
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Table 3. The correlation of performance score and accident records

Accident records Events frequency Performance score

Spearman Correlation .523** .611**

Sig. (2-tailed) .000 .000

N (driver) 100 100

highlighted in red. We can find that all the drivers whose performance score is
less than 50 have accident records. In contrast, all the drivers whose score of
performance is higher than 80 do not have any accident records.

Figure 4(c) illustrates that the lower scores the drivers get, the more likely
they are to have the accident records. The performance scores are especially
low for those drivers who have lots of accident records. Figure 4(d) shows the
scatter-plot of performance score and the number of accident records. In terms
of the overall situation, there is a clear linear positive correlation between the
driving performance scores and the number of accident records.

Comparative Experiment. In order to prove the evaluation method that
considers the driving context is more effective than the events-frequency based
methods, we compare the correlation between the number of accident records
and driving performances generated from these two methods respectively. The
spearman correlation coefficients are showed in Table 3.

The correlation coefficients are both positive and the P-values of the two-
tailed significance test on irrelevance are all 0.00, which indicate extremely sig-
nificant positive correlation between accident records and the results of two
methods. While comparing the value of coefficients in the two methods, we find
that our evaluation method obtains higher correlation. Accordingly, the context-
aware method outperforms the event-frequency based method since the external
factors of driving behaviors are weakened by the TF-IDF algorithm.

8 Conclusion

In this study, we propose an context-aware evaluation method of driving behav-
ior and implement an evaluation system based on the fusion of vehicle data
and the information of driving context. By using a large dataset collected from
a chauffeured car service provider, we demonstrate the real influence of driv-
ing context. The correlations between the frequency of driving events and the
environmental factors (road, time, weather) are prominent. By using TF-IDF,
we can determine the risk weight of each specific driving context and highlight
real abnormal behaviors. To demonstrate the effectiveness of our method, we
calculate the correlation coefficient between the driving behavior under a safe
environment (as the ground truth) and the evaluation score generated by our
method. The results show that after integrating the driving context, more precise
evaluation of driving behavior can be generated.
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In the future, we plan to combine this method with the assignment of orders,
the prediction of traffic condition and other scenarios to further improve the
safety and efficiency of the transport system.
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Abstract. Explicit measurement of experience, as mostly practiced,
takes the form of satisfaction scores obtained by asking questions to users.
Obtaining response from every user is not feasible, the responses are
conditioned on the questions, and provide only a snapshot, while expe-
rience is a journey. Instead, we measure experience values from users’
click actions (events), thereby measuring for every user and for every
event. The experience values are obtained without-asking-questions, by
combining a recurrent neural network (RNN) with value elicitation from
event-sequence. The platform environment is modeled using an RNN,
recognizing that a user’s sequence of actions has a temporal dependence
structure. We then elicit value of a user’s experience as a latent con-
struct in this environment. We offer two methods: one based on rules
crafted from consumer behavior theories, and another data-driven app-
roach using fixed point iteration, similar to that used in model-based
reinforcement learning. Evaluation and comparison with baseline show
that experience values by themselves provide a good basis for predicting
conversion behavior, without feature engineering.

1 Introduction

Customer experience is the new “battleground” for firms [2], with experience-
measurement as an imperative to benchmark actions and enhance user experi-
ence (UX) [2]. Also, personalization of UX pervades firms’ aspirations, calling for
individual level measurement of UX. Yet, there remains considerable reliance on
explicit measurement through surveys, prone to large non-response rates (the
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gold standard ACSI reports upwards of 85% [1]), response biases, are retro-
spective in nature and utilized at an aggregate level. While implicit measure-
ment has been proposed in search satisfaction [19] to improve search, it has not
been embraced in UX domains. Notably, experience is distinct from satisfaction.
The latter is an outcome while experience is a journey [13]. In addressing these
gaps we propose methods for computing UX values, that captures the process
of experience as a journey.

The term UX covers experiences derived from any usage scenarios such as
using knowledge software, or, using website/app for eCommerce, and includes
customer experience. Experience is latent in users’ mind and difficult to measure
[13]. Explicit measurement by surveys supposedly avoid this difficulty. But, very
few respond to surveys, responses are conditioned on questions asked and provide
only a snapshot. Instead, using clickstream logs that reflect actual behavior we
measure the latent user experience. We offer two methods, each with two steps.
In step one, both simulate an off-line learned model of the environment. In step
two, which computes UX values, they differ; whereas one method crafts rules
using consumer psychology, the other uses value iteration by drawing from rein-
forcement learning. We rely on an RNN with long short-term memory (LSTM) [7]
units for modeling the environment. This allows us to use the multidimensional
and continuous historical information encoded in the LSTM cell along with the
current event to characterize states. Toward measurement of latent UX our con-
tributions are:

1. Introducing formulations and rules based on consumer behavior theories
toward computing UX values. Moreover, combining these rules with mod-
eling dynamics of an on-line platform using an LSTM network.

2. Additionally, introducing a data-driven method without pre-defined rules,
where we define experience in terms of the value of different events which
elicit delayed rewards. This flexible framework allows generalizability across
domains. Specifically, measuring the value of interaction sequences is new.

3. A novel application of state value iteration method, commonly used for solving
Markov Decision Processes and in Reinforcement Learning, to the domain of
click-stream data analysis.

4. Representation of partially observable states in the journey of user as the
memory cell of an RNN pre-trained to predict next event.

Note that we exclude features available in clickstream data such as types of
product, page content, etc. By relying only on click action sequences to measure
UX values, our method has less dependence on feature engineering.

2 Related Work and Defining Experience Value

Drawing from the rich customer experience literature in Marketing and Con-
sumer Psychology, [13] points out “what people really desire are not products but
satisfying experiences”. Customer experience is a process, or, a journey over time
[13], which comprises three phases - pre-purchase, during, and post-purchase.
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Measuring UX over the whole journey could be of interest [13]. UX comprises
a “customer’s behavioral, emotional, cognitive, and social responses to a firm’s
offerings ([13], pp. 71).” Thus, UX is a latent construct, in the mind of the user.
Explicit measurement of UX by asking questions may capture stated experience
on some aspects (e.g. emotion), but fails to capture actual actions. Our premise
is that click action sequences observed in usage logs are crucial clues about
revealed experience. Values of the latent construct UX can be computed for each
phase based on phase-specific clickstream action sequence data. Considering the
during-phase, footprints on a website or on a mobile app include click actions of
filter, add to cart, for ecommerce; or, tasks performed during in-product usage of
knowledge software. The actions are observed, but experiences are unobserved.
By modeling these action sequences we assign values to latent experience, which
drives actions observed in data.

We define experience as the value of being in a certain state of the envi-
ronment in terms of proximity to a goal state. Consumer behavior literature
highlights goal-orientation in online behavior and how goal-directed activities
can achieve compelling experiences [17]. For the use case of e-Commerce, Pur-
chase is an indicator of experience and consistent with goal attainment. Hence,
we treat states in which Purchase event takes place as goal states. With a goal of
making purchase, users go through several events on a site and incur transaction
costs in search, time and psychological costs, which increase with efforts [15].
The events can be sequenced with respect to a goal; e.g., a sequence (brows-
ing, deliberate search, add to cart, purchase). Moving forward from one stage
to another in the sequence brings users closer to the goal and goal-gradient
decreases [10], improving UX and encouraging behavior toward goal completion.
Moreover, the process of purchase decision making itself contributes to experi-
ence [6]. From [16] we know the higher order event of directed-buying sessions
has the highest conversion rate (12.94%), followed by the lower order stage of
search sessions (8.02%).

The search literature in CS studies implicit measurement of satisfaction in
order to improve search outcomes and finds that implicit measurement corre-
lates with explicit, question based measures of satisfaction [8,19]. This provides
support for our thesis. Deviating from metrics such as dwell time, search results
click, [19] offers a latent structural learning model of search satisfaction, which
recognizes action level dependencies and uses rich structured features. Other
efforts examine struggling in search to obtain relevant information [18]. The
problem we study is about decision making (e.g., whether to purchase) based on
online platform interactions and sets our work apart from that of search which
is about obtaining relevant information. Typically, a poor search has less conse-
quences for a user than a poor purchase, making the goal orientation stronger in
our context of browsing experience. In browsing there is a hierarchical structure
imposed by the site, whereas in search a poor result leads to user formulating
another query which may not have a hierarchical basis. Finally, our model does
not rely on features unlike these papers in search. Clickstream mining for mea-
suring UX has been used to provide visualizations of common paths for site



478 D. Jain et al.

visitors [14] and to infer personas of users [22], but none suggests a method to
extricate UX metrics from user logs, which we do.

We draw upon the literature in use of RNN to understand consumer behav-
ior from clickstream data. Usefulness of RNN to link individual click actions to
predictions is shown in [12]. For improved purchase prediction [11] depict the
benefit of using sequential input of tweets for RNN. A manifestation of RNN [23]
is in predicting sequential clicks for sponsored search. None of these papers inves-
tigates experience, which is a continuous evolution from sequential behaviors [13].
Traditionally, HMMs are used to model latent states for obtaining insights into
user behaviors [3,4,20]. Our RNN model of the environment is Markovian, but in
histories of states [21] as described later. The multidimensional and continuous
historical information encoded in the LSTM cell is a major departure from the
finite, discrete values for HMM. Previous application of Markov Chain model
to clickstream includes mapping of journals based on logs available in schol-
arly portal [5], but does not include decision-making which we do. In the class of
sequential data modeling techniques we have not seen in the literature any exist-
ing method that specifically measures the value of an interaction sequence. In
this regard, our data-driven approach of using value-iteration has been derived
from classical literature in reinforcement learning and decision theory.

3 Framework

We model the browsing behavior of on-line users of an eCommerce Website as
a first-order Markov process. Consider a state space, S = {s1, s2, s3, ...} and a
reward function r : S → R. At time t, a user in state St ∈ S receives a reward
r(St). The transition probability function is P(si, sj) = Pr(St+1 = sj |St = si).
Let the sequence of events observed in a user’s browsing journey till time t
be E1, E2, ..., Et where Ei ∈ E = {e1, e2, ..., e|E|}. Events can be actions or
sets of actions. Let a vector H t−1 of d dimensions encode all the historical
information from the sequence E1, E2, ..., Et−1. Then, the state at t is represented
as a tuple, St = (H t−1, Et). Consider the encoding function, g : S → R

d such
that, H 0 = 0 and H t = g(H t−1, Et). Also, let us define the operator ⊕
such that,

St ⊕ Et+1 = St+1

(H t−1, Et) ⊕ Et+1 = (H t, Et+1)
(H t−1, Et) ⊕ Et+1 = (g(H t−1, Et), Et+1)

(1)

4 Learning Experience Values

We first build a model to simulate the dynamics of the environment and then
apply two alternative methods for exploiting the learned model to extract latent
experience values. The first method is based on predefined rules that experience
values must satisfy. The second method is based on value-iteration, is data-driven
and autonomous.
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The environment is simulated using an RNN trained to predict the next event
in the customer journey. The network encodes the information from the historical
sequence of events in its d dimensional cell state. The gates of the LSTM unit of
the RNN model the history encoding function g introduced above. The network
estimates the transition probability function (P̂ =̂ P) of the underlying Markov
process of the environment. For every input sequence of events, a one step ahead
sequence is predicted. The architecture of the model is as follows:

– Input Layer: The data are input in the form of sequences of events.
– Embedding Layer: The categorical variable, i.e. the event is then embedded

into a latent space of dimension 150.
– LSTM Layer: The input is then fed into an LSTM layer with 200 hidden

dimensions. The LSTM layer acts as the memory unit of the model. The
hidden state of the LSTM is carried over as input to the future timestep,
thus allowing the model to encode historical information.

– Fully Connected Output Layer: The output from the LSTM layer goes to
a fully connected dense layer which produces the output of size |E| through
softmax activation at each time-step of the sequence. The output at each
time-step is a probability distribution vector over all possible next events.

The model is trained to minimize the categorical cross-entropy loss using
Adam [9] optimization algorithm.

4.1 Rule-Based Method

For this first method we formalize the concepts of event base values (B) and
event transition importance (TI). Then we outline intuitive rules that experience
values ought to satisfy. While these rules are crafted from domain knowledge,
some companies may prefer to impose own rules which conform to their specific
situation. Later we show how the values B and TI along with the next event
prediction model are used to compute final experience values (XV ) at each state.

Drawing upon consumer behavior theories, a base value B(e), is assigned to
every event e, in the order of progression toward the goal task (Purchase, in
this case). For example, a user who has added a product to cart is closer to
completing the purchase-goal task than someone exploring products. Thus, we
assign higher base value to the Add to cart event than the Browsing event.

An importance value, TI(ei, ej) is assigned to a transition from any event ei

to another event ej . This importance value captures how discriminative a transi-
tion is across purchase and non-purchase journeys. In other words, if a transition
occurs equally frequently in both purchase as well as non-purchase journeys, then
it is less important than a transition whose frequencies are unequal. Intuitively
for example, transition from Hedonic Browsing to Directed Search is less impor-
tant than that from Directed Search to Add to Cart, since the former likely
occurs about as frequently in purchase and non-purchase journeys, while the
latter occurs more frequently in purchase journey but less frequently in non-
purchase journey. More formally, let
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p =
K∑

k=1

τ∑

t=1

(Ek
t = ei) ∧ (Ek

t+1 = ej) ∧ (Ek
τ = Purchase)

np =
K∑

k=1

τ∑

t=1

(Ek
t = ei) ∧ (Ek

t+1 = ej) ∧ (Ek
τ �= Purchase)

Then, TI(ei, ej) =
|p − np|
p + np

(2)

where, K is the number of event sequences and τ is the length of each sequence.
Let St = (Ht−1, ei) and St+1 = (Ht , ej). The following rules characterize a

desired property of experience value XV (St):

if XV (St) ≥ B(ei) then E(B(ej)) ≥ B(ei) and
if XV (St) < B(ei) then E(B(ej)) < B(ei)

(3)

These rules imply that a user who is having a better experience than that indi-
cated by the base value of the current event, is expected to transition to an event
with higher base value and vice-versa. The objective is to find experience values
that minimize the number of rules violated for a journey.

We propose alternative formulations for computing XV (St). Later, we pro-
vide intuition for these formulations.

ΔBi,j = ωjP̂(St, St ⊕ ej)(B(ej) − B(ei)) (4)

Formulation 1: XV (St) = ω0B(ei) +
|E|∑

j=1

ΔBij

Formulation 2: XV (St) = ω0B(ei) +
|E|∑

j=1

TI(ei, ej)ΔBij

Formulation 3: XV (St) = ω0B(ei) + Tz(St)
|E|∑

j=1

TI(ei, ej)ΔBij

where, Tz(St) =
T (St) − mean(T (ei))

std(T (ei))

(5)

where, W = {ω0, ω1, ..., ω|E|} is a set of unknown parameters and T (.) is the
time spent in a state or event. To examine each of the proposed formulations
in a simple manner, consider the special case when ωi = 1 ∀i. In Formulation
1, XV is defined as weighted sum of the current base value and the expected
change in base values from current to next time step (equivalently, the expected
base value of the next event). In Formulation 2, the importance of the transition
to next event is also taken into account. Formulation 3 builds upon Formulation
2 through the incremental inclusion of the effect of normalized time spent in the
current state (Tz(St)). This recognizes that time spent may impact experience.
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We estimate the optimal value for W by linear regression with the loss function
as follows

ŷt = σ(XV (St) − B(ei)) and yt = σ(B(ej) − B(ei))

LW =
K∑

k=1

τ∑

t=1

(ŷk
t − yk

t )2
(6)

where, K is the number of event sequences, τ is the length of each sequence
and σ is a Sigmoid function with a high slope to simulate a unit step function.
This is an implementation of number of rules violated in a differentiable form to
facilitate gradient descent based parameter estimation.

4.2 Value Iteration Method

Our second method overcomes the deficiencies of hand-crafted rules which may
not generalize to all domains. Herein, we need to use very little domain knowledge
in the form of a reward function, r as follows

r(St) =

{
1, if Et = Purchase
−ε, otherwise

(7)

where, −ε is a small penalty. Now, consider a user traversing the state space of
the environment and assimilating rewards along the way according to the above
reward function. She achieves high reward in Purchase event and a small penalty
(ε) everywhere else. We can now define the experience value of any state, St as
the total expected discounted reward after t.

XV (St) = E(r(St+1) + γr(St+2) + γ2r(St+3) + ...) (8)

where, γ ∈ (0, 1) is the discounting factor. The above expression can be written
in the form of a Bellman Equation as follows

XV (St) = E(r(St+1) + γXV (St+1))

XV (St) =
|E|∑

i=1

P̂(St, St ⊕ ei)(r(St+1) + γXV (St+1))
(9)

Since the state space is very large (all possible sequences of events), it is
not feasible to get exact solution to this equation through methods such as
dynamic programming or linear regression. To deal with this problem, we rely on
a function approximation method. We define a simple linear estimation function
fθ with a set of parameters θ, to model the experience values.

fθ(St) = X̂V (St) =̂ XV (St) (10)

We use the fixed-point iteration method to find θ. Start with random initial
values, θ0. At iteration number n, experience values for all observed states in
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the training data are estimated using θn−1. Based on these estimates, expected
values, XV n are calculated using the Bellman Equation.

XV n(St) =
|E|∑

i=1

P̂(St, St ⊕ ei)(r(St+1) + γ ˆXV n−1(St+1)) (11)

The mean square error, Ln
θ between expected (XV n(St)) and estimated

( ˆXV n(St) = fθ(St)) values is used to update θ with gradient descent method
until convergence. For a training dataset with K sequences with τ time-steps
each,

Ln
θ =

K∑

k=1

τ∑

t=1

(fθ(Sk
t ) − XV n(Sk

t ))2

θn = θn−1 + α
dLn

θ

dθ

(12)

Fig. 1. Illustration of rule based (left) and value iteration (right) method

Table 1. Actions corresponding to
each category

Category Actions

Hedonic

browsing (c1)

Search, Search Filters,

Product Details, Product

Categories

Deliberate

Search (c2)

Reading Reviews,

Product Comparison

Add to Cart

(c3)

Add to Cart, Add to List

Purchase (c4) Checkout, Payment,

Place Order

Table 2. Category level transition frequency
for sequences (Read from category in row to
category in column)

No

Pur./Pur

c1 c2 c3 c4

c1 - 7153/2331 4075/8236 1694/4058

c2 6626/2177 - 177/324 197/500

c3 2302/3850 113/113 - 1903/5241

c4 3375/4664 261/410 207/567 -
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Precision Recall F1
0

0.2
0.4
0.6

0.75 0.71 0.73

0.53
0.45 0.490.45 0.49 0.47

0.58 0.57 0.58

Hedonic Browsing Directed Search Add to Cart Purchase

Fig. 2. Results for the next category prediction model

Table 3. Evaluation with purchase prediction

Method Accuracy (%) Precision Recall F1-Score AUC

Category Sequences 66.52 0.63 0.75 0.69 0.67

Rule-based Form. 1 (W = 1) 66.64 0.69 0.65 0.67 0.66

Rule-based Form. 2 (W = 1) 66.48 0.71 0.64 0.67 0.66

Rule-based Form. 3 (W = 1) 66.64 0.73 0.64 0.68 0.67

Rule-based Form. 1 (optimal W ) 66.76 0.58 0.69 0.63 0.67

Value iteration 63.16 0.82 0.59 0.69 0.65

Fig. 3. Evolution of experience during journeys (Color figure online)

5 Experimentation

Click-stream data from an e-Commerce site, spanning a period of three months,
are used. After cleaning the data only click actions corresponding to the Appli-
ances category are retained. All click actions, for each user, are stitched together
chronologically into a sequence of click actions. Altogether 31 relevant click
actions such as View product details, Apply search filter and Add to cart are iden-
tified from the data. The set of unique actions is denoted A = {a1, a2, ..., a31}. As
reasoned earlier, inspired by [16], click actions are categorized into a set of four
categories i.e. Hedonic Browsing, Directed Search, Add to Cart and Purchase.
Each category characterizes a different stage in a user’s journey towards the goal
state of purchase. The set of categories is denoted C = {c1, c2, ..., c4}. Categories
and corresponding sample click actions are shown in Table 1. The algorithm for
finding experience values is applied at category level, i.e. set of events E refer to
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the set of categories, C. The final data are sets of sequences of events. In Table 2
we show the frequencies of transition among categories when journeys end in no
purchase vs. end in purchase. Finally, the data are randomly split into two sets,
training and testing, with a total of 12800 and 4600 sequences, respectively.

6 Results and Discussion

We have no access to survey based experience measurement scores of users whose
usage logs we model. Firms do not share such scores. This obstacle of survey and
the current use case of goal fulfillment toward purchase guide our evaluation. We
compute a UX value for each user, for each event from usage log and then based
solely on UX values predict the goal fulfillment (purchase), under the thesis that
UX affects goal fulfillment. Purchase prediction is not the focus, but merely
a way of evaluating the worth of derived UX values. We show that using UX
values can give purchase prediction comparable to that of feature-engineered
model. As exemplar of the latter, within the data we have, category (event)
sequence based model is comprehensive since it captures the sequence along
with frequency of sub-events and time spent on events and forms the baseline.
True to our objectives, the methods are to be judged by how closely the accuracy
of feature-based model can be reproduced by our methods.

A multi-layer RNN module performs purchase prediction by taking as input
either sequence of events or experience values generated from one of the proposed
methods. Prediction accuracies of models with fixed architecture and different
inputs is then compared. The model architecture is similar to next event predic-
tion model, with a difference in the final layer which produces a single output
(purchase probability) per time-step through sigmoid activation. The training is
done to minimize binary cross-entropy loss.

We evaluate both environment simulation and UX value generation models.
Results for the former for next event prediction on test data are shown in Fig. 2.
These measures are obtained by averaging across categories from which arrival
into a category can occur. We find some variability in these measures across
the categories. Results for UX value generation are shown (in Table 3) for four
variations of UX value computation using the rule based method - Formulations
1-3 (AUC = 0.66, 0.66 and 0.67 respectively) and one with parameter tuning
for Formulation 1 (AUC = 0.67). The results from the value iteration method
(AUC = 0.65) are also compared. For each of these, purchase prediction is carried
out by using the generated UX values as the only input. The baseline used is
an event-sequence based prediction. We find that although the UX values are
extracted based on rules, their performance in predicting purchase is very close
to the baseline (AUC = 0.67), which uses features such as frequency of actions
and time spent within each category. This suggests that computed experience
values capture latent components of browsing experience, which explain purchase
propensity as accurately as using information in raw data.

Figure 3 depicts UX values (red), as users move through states (green), for
three users. Note the red UX values are leading indicators. E.g., from state 1 to
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state 2 if UX value decreases, it is expected the user moves from the stage in state
2 to a lower stage in state 3. For red lines, last segments are not interpretable.
The left figure shows an upward drift consistent with higher stage attainment,
and early sign of UX leading to higher stage. The leading indicator between
states 2 and 3 suggests movement from stage 1 to stage 4 going from state 3
to state 4. The middle figure shows a user oscillates between stages 1 and 2
over states, without ever going to a higher stage. The overall downward drift
is an early indicator of poor experience and no purchase. The right figure is
less informative since the slightly upward tendency is not consistent with stage
traversal.

7 Conclusion

We show that UX values can be uncovered from readily available user behavior
logs. Drawing from theory we grouped actions into categories to build the model.
An alternative thought could be to build a model directly from the raw actions.
The action-level model using value iteration shows that for the task of purchase
prediction we obtain accuracy (0.67), precision (0.87), recall (0.67), F1 (0.75)
and AUC (0.57). Comparing with stage-level results from the last line of Table 3
we find that in AUC, the stage level model performs better.

Rules based method may fit customers who ‘live’ click to click or are myopic,
while value iteration captures long-view customers’ behaviors. Several challenges
include how to do a direct evaluation based on experience metrics obtained in
a direct way. Limitations also pertain to the generalizability of the approach to
non-discretionary and low involvement products. The appliance category used
here constitutes discretionary spending and a high ticket purchase engendering
extensive browsing behaviors. Our use case is for the during phase of the whole
customer journey. With data from the pre and post phases, future work can
extend the approach to mine UX values for those phases. It is noted that our
approach can ingest any goal, not just purchase. For example, information seek-
ing. As well, other rewards and intermediate rewards can be provided. None of
these applies in a purchase prediction model.

References

1. The American customer satisfaction index. http://www.theacsi.org/, http://www.
theacsi.org/

2. Cx index - forrester. https://go.forrester.com/data/cx-index/
3. Anderson, C.R., Domingos, P., Weld, D.S.: Relational Markov models and their

application to adaptive web navigation. In: Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
143–152. ACM (2002)

4. Balakrishnan, G., Coetzee, D.: Predicting student retention in massive open online
courses using hidden markov models. Electrical Engineering and Computer Sci-
ences University of California at Berkeley (2013)

http://www.theacsi.org/
http://www.theacsi.org/
http://www.theacsi.org/
https://go.forrester.com/data/cx-index/


486 D. Jain et al.

5. Bollen, J., Van de Sompel, H., Hagberg, A., Bettencourt, L., Chute, R., Rodriguez,
M.A., Balakireva, L.: Clickstream data yields high-resolution maps of science. PLoS
ONE 4(3), e4803 (2009)

6. Chylinski, M., Sinha, A., Lie, D.S., Neill, W.: Experience infusion: How to improve
customer experience with incidental activities. Marketing Science Institute Work-
ing Paper Series (17–106) (2017)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Kim, Y., Hassan, A., White, R.W., Zitouni, I.: Modeling dwell time to predict
click-level satisfaction. In: Proceedings of the 7th ACM International Conference
on Web Search and Data Mining, WSDM 2014. ACM (2014)

9. Kingma, D., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv
preprint arXiv:1412.6980

10. Kivetz, R., Urminsky, O., Zheng, Y.: The goal-gradient hypothesis resurrected:
purchase acceleration, illusionary goal progress, and customer retention. J. Mark.
Res. 43(1), 39–58 (2006)

11. Korpusik, M., et al.: Recurrent neural networks for customer purchase prediction
on twitter. In: ACM Conference on Recommender Systems (2016)

12. Lang, T., Rettenmeier, M.: Understanding consumer behavior with recurrent neu-
ral networks. In: International Workshop on Machine Learning Methods for Rec-
ommender Systems (2017)

13. Lemon, K.N., Verhoef, P.C.: Understanding customer experience throughout the
customer journey. J. Mark. 80(6), 69–96 (2016)

14. Liu, Z., Wang, Y., Dontcheva, M., Hoffman, M., Walker, S., Wilson, A.: Patterns
and sequences: interactive exploration of clickstreams to understand common vis-
itor paths. IEEE Trans. Vis. Comput. Graph. 23(1), 321–330 (2017)

15. Masten, S.E., Williamson, O.E.: Transaction cost economics. Edward Elgar, Alder-
shot, Hants, England; Brookfield, Vt. (1995)

16. Moe, W.W.: Buying, searching, or browsing: differentiating between online shop-
pers using in-store navigational clickstream. J. Consum. Psychol. 13(1–2), 29–39
(2003)

17. Novak, T.P., Hoffman, D.L., Duhachek, A.: The influence of goal-directed and
experiential activities on online flow experiences. J. Consum. Psychol. 13, 3–16
(2003)

18. Odijk, D., White, R.W., Hassan Awadallah, A., Dumais, S.T.: Struggling and
success in web search. In: Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, pp. 1551–1560. ACM (2015)

19. Wang, H., Song, Y., Chang, M.W., He, X., Hassan, A., White, R.W.: Modeling
action-level satisfaction for search task satisfaction prediction. In: Proceedings of
the 37th International ACM SIGIR Conference on Research & Development in
Information Retrieval, pp. 123–132. ACM (2014)

20. Ypma, A., Heskes, T.: Automatic categorization of web pages and user cluster-
ing with mixtures of hidden Markov models. In: Zäıane, O.R., Srivastava, J.,
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Abstract. Human periodic behaviors is essential to many applications,
and many research work show that human behaviors are periodic. How-
ever, existing human periodic works are reported with limited improve-
ments in using periodicity of locations and unsatisfactory accuracy for
oscillation of human periodic behaviors. To address these challenges,
in this paper we propose a Mobility Intention and Relative Entropy
(MIRE) model. We use mobility intentions extracting from dataset by
tensor decomposition to characterize users’ history records, and use sub-
sequence of same mobility intention to mine human periodic behaviors.
A new periodicity detection algorithm based on relative entropy is then
proposed. The experimental results on real-world datasets demonstrate
that the proposed MIRE model can properly mining human periodic
behaviors. The comparison results also indicate that MIRE model sig-
nificantly outperforms state-of-the-art periodicity detection algorithms.

1 Introduction

Periodic behaviour is one of the most common phenomena in human society.
Nowadays, with the popularity of location-based services (LBSs) [4] and rapid
development of Internet of Things (IOT) devices, a large amount of human
footprints have been recorded as spatiotemporal datasets, and this provides an
important resource for analyzing human periodic behaviors. Insights into human
periodic behaviors can be useful in a variety of applications ranging from public
security, privacy preserving [19] to mass movement prediction [17].

In general, the task of human periodic behavior mining refers to identify those
human periodic activities that repeat with regular time intervals. In the past
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 488–499, 2018.
https://doi.org/10.1007/978-3-319-93034-3_39
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Fig. 1. A history footprint of a user

decade, a number of efforts have been devoted to mine human periodic behavior
from spatiotemporal data, though in their context, the periodic behavior means
that a user regularly visited certain locations. Unfortunately, because of the
complexity of human behavior and the personality trait of neophilia [13], many
periodic behaviors, like traveling or dining, may occur at different locations.
Therefore, the appearances at one single location are not obvious periodic. Two
significant barriers exist for more accurate human periodic behaviors mining.

– Locations related to one periodic behavior may be far away from each other.
– Multiple periodic behaviors could happen at the same location.

We use a running example in Fig. 1 to illustrate above two barriers. Suppose a
fitness club and a store are located in the same shopping mall, and a supermarket,
a beauty parlour and a swimming pool are scattered at different locations in
downtown. A user regularly attends the recreational activities like gymming,
hairdressing or swimming every Thursday night, and randomly goes to either the
store or the supermarket every Friday after work. It’s obvious that two periodic
behaviors recreation and shopping, occur at the same location, but it is hard
to differentiate them from locations only. Moreover, the user randomly goes to
one of two markets which are far away from each other. Hence, it’s impossible
to detect the above two human periodic behaviors based on locations. From this
example, we can see that existing periodic behavior detection methods remain
unsatisfactory in handling this situation.

Generally speaking, human mobility is fundamentally driven by personal
intentions [7], such as commuting. As intrinsic factor for human mobility, mobility
intention shows more periodicity than location [16]. As shown in Fig. 1, it is obvi-
ous that recreation and shopping are two mobility intentions on which the user
exhibits the periodic patterns, both with the period of one week. It implies that
mobility intention is a promising factor in modelling human periodic behaviors.

From the perspective of human mobility intention, we propose a novel human
periodic behavior detection model called the mobility intention and relative
entropy (MIRE) model. We first discover the human mobility intentions from
spatiotemporal dataset using the tensor decomposition. Through a comprehen-
sive feature engineering, a multiclass classifier is trained to map every footprint
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into a mobility intention. Then a user’s records are converted into a sequence of
mobility intentions, from which the human periodic behaviors are to be detected.

For the task of periodicity detection, Li et al. [12] show that most observations
concentrate in some time intervals when the timeline is segmented by the true
period and the segments are overlayed. In other words, the observations are
more disordered in incorrect period than in true period. Based on information
theory [9], we use relative entropy which is a measure of discrepancy between
two probability distributions as our periodic measurement.

The major contributions of this paper are as follows:

– To the best of our knowledge, this is the first work in explicitly using mobility
intentions for the human periodic behavior detection.

– We propose a novel period detection method based on the relative entropy.
We further provide the rigorous proof validity of conclusion for the method.

– Extensive experiments on both synthesis and real spatiotemporal datasets
show that the proposed model is effective and more precise than the state-of-
the-art methods.

The remaining of this paper is organized as follows. Section 2 presents the
related works. Section 3 details the proposed model. Section 4 reports the exten-
sive experiment results and analysis. Finally, we conclude the paper in Sect. 5.

2 Related Work

2.1 Human Periodic Behavior Mining

A number of studies have been proposed to analyze human periodic behaviors
from spatiotemporal dataset. The key challenge lies on how to transform a two-
dimensional movement sequence into one-dimensional symbolic time sequence.
Mamoulis et al. replace the exact locations with the pre-defined regions to which
they belong [14]. Many clustering algorithms are usually used for transforming,
such as DBSCAN [2,14] and kernel density [11]. Location type [17] are also used
for transforming and get good results. Yuan et al. propose a new method based on
Dirichlet Process to automatically detect periodic regions [17]. Zhang et al. [18]
utilize text of social network to obtain semantic information of locations and use
them for transforming. After transformation, many traditional period detection
methods in time series can then be adopted to discover the periodic patterns,
such as cyclic association rules mining [15]and Frequent Pattern tree [3].

For the challenges mentioned above, there are limited periodic behaviors on
locations and the results are often imprecise. The semantic information has been
largely unexplored in human periodic behavior mining.

2.2 Periodicity Detection

The period detecting is a long-standing problem in data mining. Widely used
period detecting methods include Fast Fourier transform (FFT) and Autocorre-
lation. However, they don’t perform well on sparse, incomplete and noisy obser-
vations [11]. Researchers have also proposed many period detecting techniques,
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such as WARP [5], Lomb-Scargle periodogram [8], the combination of autocorre-
lation function and FFT [1,11]. Li et al. [12] proposed a probability measurement
to evaluate the score of every potential period T and consider the T with the
largest score as the true period. However, the measurement proposed by [12]
favors shorter period, and performance badly when there is only one observa-
tion in a period. Yuan et al. [17] model the time gap between two consecutive
records as a univariate Gaussian distribution and detect the periodicity using a
probability generative model.

Existing periodicity detection algorithms are not suitable for detecting peri-
odicity in sparse, incomplete and noisy spatiotemporal dataset. In this paper,
we propose a novel periodicity detection method to address above challenges.

3 Mobility Intention Based Period Behaviors Mining

Given a spatiotemporal dataset D of N users, let Oi be the collection of records
for user ui, and each record oi

j ∈ Oi is 2-tuple oi
j = (loci

j , t
i
j) which indicates

that ui visited loci
j at time tij . The location loci

j is a geographic coordinate.
Let oi

k = (loci
k, tik) and oi

k−1 = (loci
k−1, t

i
k−1) be the k-th and the (k − 1)-th

record of ui, respectively. Let oi
k′ = (loci

k, tik′) be the last record of oi
k which

means oi
k′ and oi

k are two continuous records at the same location loci
k. As

aforementioned, we attempt to mine human periodic behaviors based on the
mobility intentions rather than locations. Here, the mobility intention m refers
to a common cause that explains why a user appeared in location loc at time t.
Let M = {mi|1 � i � M} denote the set of M mobility intentions.

We use a binary sequence X = {I(t)|t = 0, . . . , n − 1} to denote a time
sequence, where I(t) = 1 if and only if user ui has the mobility intention mi

k at
timestamp t, otherwise I(t) = 0.

A user ui has a periodic behavior with period T0 if ui has a mobility intention
every T0 time span. However, in the real world, human periodic behaviors may
not occur at exactly the same period in different cycles, and it may oscillate
across different intervals. Hence, the human periodic behavior can be formally
defined as follow.

Definition 1 (Human Periodic Behavior). Suppose T0 > 1 and 0 � t0 <
T0, for any 0 � t� < T0

I(t�) =
{

1, t� = t0
0, otherwise (1)

If there is one and only one timestamp t′ ∈ [t0−δ+kT0, t0+δ+kT0] of X which
satisfies I(t′) = I(t0) for k = 0, 1, . . . , mod (n − 1, T0), the binary sequence X
is a periodic behavior binary sequence with the period T0.

Here t0 is the average timestamp that mi
k happened in a true period T0. δ is a

relative buffer that enables mi
k to oscillate in the interval [t0−δ+kT0, t0+δ+kT0]

instead of being fixed at an exactly timestamp t0 + kT0.
Given the spatiotemporal dataset D, the aim of periodic behavior mining

includes: (1) revealing a set of mobility intentions M and (2) detecting the true
period T0 associated with the mobility intention mi

k.
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Recrea on Shopping08/18/2014 00:00
(a)

(b)

(c)

92 427 1100 1268596
1148

618 954 1289113 178 282 730 1122

Fig. 2. The mix sequence corresponding to Fig. 1.

3.1 Mobility Intention Extraction

As aforementioned, mobility intention is latent but with a high degree of spa-
tiotemporal regularity. For example, commuting, a basic mobility intention in
many spatiotemporal datasets, can explain why a worker arrived at the work
place around 9 a.m. every workday. Before utilizing the mobility intention, it
is important to know what kinds of mobility intentions are embedded in a spa-
tiotemporal dataset.

In this paper, we use the CANDECOMP/PARAFAC (CP) decomposition algo-
rithm [10] to extract mobility intentions from a spatiotemporal dataset. CP
decomposition is an effective tool for analyzing the relationship between spa-
tial and temporal attributes in spatiotemporal datasets [6]. In order to utilize
the CP algorithm, a three-dimensional tensor composed by location-hour-day
is constructed. In the CP algorithm, the tensor Y is factorized into a sum of
rank-1 component tensors Yr. After the decomposition, every rank-1 tensor Ys

is a mobility intention ms. We use mi to denote the i-th mobility intention and
M = {mi|1 � i � q} to represent the set of q mobility intentions.

Every mobility intention can be considered as one class. A record fi cor-
responds to one mobility intention, in other words, belongs to a class. Then
mapping from fi to mj can be considered as a multi-class classification problem.

In order to acquire good performance of multi-class classification, we per-
form a comprehensive feature engineering and model training. After analyzing
the vectors of rank-1 tensor and feature engineering, we propose three kinds of
distinguishable features: spatial features, hour features and day features, such
as location entropy and day type. Finally, with those three kinds of features, we
train an Adaboost model to map the record into a mobility intention. Then, Oi

can be characterized by the tuple set {(mu
1 , t1), (mu

2 , t2), . . . }.
For the running example, records in Fig. 1 can be characterized by a mixed

sequence that contains two mobility intentions, recreation and shopping, as
shown in Fig. 2(a). Then, as shown in Fig. 2(b) and (c), we obtain a time sequence
X for each mobility intention. Though the Adaboost model, the tricky problem
of separating mixed multiple periods can be solved.

3.2 Period Identification

Suppose a binary sequence of behavior X is periodic with the period T0.
According to Definition 1, the observations should fall in the compact interval
[t0 − δ, t0 + δ] when X is segmented by the true period T0. However, they should
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618 954 1289113 178 282 730 1122
Segment X by 168 hours

Overlay the segments

Segment X by 192 hours

Fig. 3. Illustration example of folded time sequence X in Fig. 2(c).

dispersedly fall in the scattered intervals when X is segmented by an incor-
rect period Tf . For example, as shown in Fig. 3, the observations of the binary
sequence X will fall around 114 when X is segmented by the true period 168 h
(a week). The observations scatter in a wide time interval when X is segmented
by 192 h. In general, suppose a binary sequence X with length n is segmented
by a trial period T , we define

Si(T ) = {t| mod (t, T ) = i ∧ I(t) = 1}, t = 0, 1, . . . , n − 1, i = 0, 1, . . . , T − 1
(2)

The probability at each timestamp in T is then

pi(T ) =
|Si|∑T−1

j=0 |Sj |
, i = 0, 1, . . . , T − 1 (3)

For X, the distribution of observations is different from different candidate
periods. It’s more ordered when X is segmented by the true period T0, and it’s
disordered when X is segmented by a incorrect period. An extreme case is that
a mobility intention happens at every timestamp with nearly equal probabil-
ity when X is segmented by a incorrect period Tf . There is no period in this
extreme situation. Hence, we can use the discrepancy of entropy between pi(T )
and uniform distribution on a potential period T as our periodic measurement.

KL(T ) = H(T ) −
T−1∑
i=1

1
T

log
1
T

= log T + H(T ) (4)

The periodic measurement KL(T ) is indeed the relative entropy between pi(T )
and uniform distribution on T . So, given a periodic behavior binary sequence X
with unknown period, if the probability distribution pi(T ) is more peaked and
the discrepancy with uniform distribution on T is more obvious, T is more close
to the true period T0 .

We have the following lemma which states that the relative entropy will reach
the maximum at the true period T0.

Lemma 1. If a binary sequence X is periodically generated according to a cat-
egorical distribution μμμ′

0 for some period T0, then for any T � 2, T ∈ N, we
have

lim
n→∞ KL(T0) � lim

n→∞ KL(T ) (5)
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Proof. Based on the Definition 1, we can suppose a periodic time sequnce X is
generated according to a categorical distribution for some T0, and the param-
eter of this categorical distribution is a vector μμμ0 = (μ0, μ1, . . . , μT0−1), where∑T0−1

i=0 μi = 1. It’s clear that μg � μh, g ∈ Iv, h ∈ [1, T0]/Iv, where Iv = [t0 − δ,
t0 + δ] ⊆ [1, T0].

We will use T0 to denote the true period and use T to denote a candidate
period. Suppose there is an interval [0, T · T0 − 1], it’s obvious that this interval
contains T periods of T0 and T0 periods of T . Let pi,j be the i-th position of
period T in j-th segment. Then, we have:

pi,j = μ(i+j·T ) mod T0 . (6)

The i-th position’s parameter of period T is:

μ′
i(T ) =

1
T

T0−1∑
j=0

pi,j . (7)

Then,

KL(T0) − KL(T ) � ln T0 +
∑
k∈Iv

μk ln μk − 1
T

T−1∑
i=0

T0−1∑
j=0

pi,j

⎛
⎝ln

T0−1∑
j=0

pi,j

⎞
⎠

= ln T0 +
1
T

T−1∑
i=0

T0−1∑
j=0

⎧⎨
⎩

1
T0

∑
k∈Iv

μk ln μk − pi,j

⎛
⎝ln

T0−1∑
j=0

pi,j

⎞
⎠

⎫⎬
⎭

� ln T0 +
1
T

T−1∑
i=0

T0−1∑
j=0

pi,j ln
1
T0

= ln T0 + ln
1
T0

= 0

Therefore, in order to find T0, it is sufficient to compute KL(T ) and select
the one that maximizes KL(T ) as the true period.

4 Experiment and Analysis

4.1 Periodicity Detection on Synthetic Time Series Data

In order to evaluate performance of the proposed periodicity detection method,
we first generate synthetic datasets using the following four steps:

1. Given a fixed period T0, a periodic segment XF is a Boolean sequence of length
T0. The time ti around t0 when a mobility intention happens is modelled by
Gaussian distribution

p(ti) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(ti − t0)2

}
, (8)

where the σ2 is the variance.
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Fig. 4. The performance comparison with various parameter settings

2. XF is repeated for N times to generate complete sequence XC .
3. Sample XC with sampling rate δ and get sequence XS .
4. We randomly flip one value of 0 to 1 in each period segment with noise rate

γ from XS and obtain the synthetic dataset XB .

In our experiments, the default values of above parameters are: T0 = 24,
t0 = 12, σ = 1, N = 120, δ = 0.2 and γ = 0.1. Three baseline models are
chosen for performance comparison: FFT, ePeriodicity [12] and Periodic Region
Detection(PRED) [17], and they are discussed in 2.2. The parameters of baseline
methods are set to be their suggested values. For each experiment, one parameter
is varied while others are set to the default values. For each parameter setting
of synthetic time sequence, we repeat the experiment for 1000 times and report
the percentage of correct period detections as accuracy.

The performance of compared methods on synthetic dataset is shown in
Fig. 4, which indicates that the accuracy of our method is higher than that of
baselines in most cases. Figure 4 shows that most methods have better perfor-
mance when the data is with better quality, such as a larger number of period
repetitions N , a greater sampling rate δ, lower noise rate γ and smaller vari-
ance σ2.

Our method can detect more than 80% period when the observations only
contains 60 periods which is very common in most spatiotemporal dataset, and
baselines needs more periods to achieve same accuracy. The performance of all
methods except FFT is worse when T0 is greater, probably due to the increasing
distraction of noise in longer periods. The center of observed time t has no effect
on the performance of all methods. Figure 4(d) and (e) show that, with the
decrease of noise rate γ and the increase of sampling rate δ, all methods achieve
better results for periodicity detection. Figure 4(f) shows that it’s much harder
to detect the true period when the oscillation is large.
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(a) check-in of a user (b) Dining (c) Shopping

Fig. 5. A example of human periodic behaviors mining using MIRE.

In conclusion, from those results, it’s clear that the proposed periodicity
detection method is more suitable for periodicity detection than other compared
methods in real spatiotemporal dataset.

4.2 Performance Evaluation Using Real Dataset

We use a real spatiotemporal dataset Gowalla to illustrate the performance of
our proposed human periodic behavior detecting model. Gowalla dataset is a
public available social media check-in dataset [4] with 6, 442, 890 check-ins of
196, 591 users from February 2009 to October 2010. After tensor decomposition,
we extract 10 mobility intentions from this dataset.

We randomly select a user from Gowalla to discover the human periodic
behavior. Figure 5a shows 75 check-ins of a randomly selected user #11838,
and it’s hard to identify the period behavior patterns directly from locations
for history records are scattered in the map. However, five periodic behaviors
including commuting, dinning, recreation, shopping and daily routine are mined
by our proposed periodicity detecting method with the default sampling rate 1 h.

Figure 5b and c shows the locations where Dining and Shopping happened.
The locations of Dining disperse across the north area of Atlanta City, as shown
in Fig. 5b. Most Shopping intentions of #11838 appeared at a shopping centre.
However, the user occasionally went to some new place for shopping. It’s obvious
that existing methods can not mine these two kinds of periodic behavior. On the
contrary, the result of our proposed method based on mobility intention provides
more satisfactory and intuitive results.

4.3 Location Prediction on Real Datasets

As aforementioned, human period behavior mining has a variety of applications.
In this section, we use human period behavior to predict users’ next locations.

Two real spatiotemporal datasets are used for location prediction. One is
Gowalla check-ins dataset and the other is Beijing Bus Smart Card (BBSC)
dataset. The BBSC dataset collects prepaid smart card records for public trans-
portation in Beiing, China. The BBSC dataset contains 275,951,094 bus trans-
action records about 16,161,460 users in October of 2014. We divide users into 5
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Fig. 6. Location prediction error distance.

groups based on their record density which refers to the record count per user per
day. Each group has 500 users which are random selected from the two datasets.
90% records of each selected user in chronological order are for training and the
left for testing.

There are three baseline for comparison in our experiments: PMM (Peri-
odic Mobility Model) [4], Periodica [11] and PRED [17]. The PMM adopts a
Gaussian mixture model which centers at home and work to learn user locations
constrained by independent truncated Gaussian distribution temporal compo-
nent. The Periodica model extract regions by kernel density estimation (KDE),
and then estimate the period for each region using combination of FFT and
autocorrelation. The PRED is discussed in Sect. 2.1. The parameters of above
baseline methods are set to be their suggested values. The effectiveness is mea-
sured by error distance, which is the Euclidean distance between the true and
predicted location of a testing record. The measurement result is the average
value of all test records.

Figure 6a and b shows the performance on all testing records which are aver-
aged by 5 groups. In general, for the two datasets, the error distance value of
MIRE is much lower than that of baseline methods. PRED improve the clus-
ter algorithm of Periodica by Chinese Restaurant Process (CRP) and use time
model as one constrain for clustering, and its performance is prominent among
all baseline models. Our proposed MIRE model outperforms the baseline mod-
els significantly, owing to that we use mobility intention to model spatial and
temporal facts and detect periods by relative entropy.

We are also interested in the connection between records density with per-
formance of human period behavior models. Figure 6c and d shows the error dis-
tance of different models in different data groups. With growth of record density,
the performance of Periodica and PRED based on location cluster get better at
the beginning and worse then. The reason is probably models obtain more infor-
mation at the beginning and perform more well, and human period behaviors are
simple. However, many complex human period behaviors are mixed in history
records when record get more dense, and Periodica and PRED can not handle
this situation. Our proposed model achieves better performance with increasing
record density. The experiment results indicate that the proposed MIRE model
outperform the baseline models.
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5 Conclusions

In this paper, we address the important and challenging problem of human
period behavior detection from spatiotemporal dataset. We first apply a method
based on tensor decomposition to obtain mobility intentions from the spatiotem-
poral dataset and propose a novel human period behavior based on the mobility
intention. Then, we design a novel measure based on relative entropy for peri-
odicity and a practical algorithm to detect periods in real scenarios. We give a
rigorous proof of its validity for our proposed method. The experiment results
show that the proposed method is robust and significantly outperforms existing
periodicity detection methods. The case study on real spatiotemporal dataset
further demonstrates the effectiveness of our method and its capability in many
applications, such as location prediction.

While our approach is designed for one observation in every period, one
important extension is to handle the case that there are multi observations in
every period. It’s is about period pattern detection and is more general in reality.
However, there is a problem that how to decide whether a binary sequence X is
periodic or random. We consider this as interesting future work.
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Abstract. We propose a context-uncertainty-aware chatbot and a rein-
forcement learning (RL) model to train the chatbot. The proposed model
is named Parameterized Auxiliary Asynchronous Advantage Actor Critic
(PA4C). We utilize a user simulator to simulate the uncertainty of users’
utterance based on real data. Our PA4C model interacts with simulated
users to gradually adapt to different users’ utterance confidence in a
conversation context. Compared with naive rule-based approaches, our
chatbot trained via the PA4C model avoids hand-crafted action selection
and is more robust to user utterance variance. The PA4C model opti-
mizes conventional RL models with action parameterization and auxil-
iary tasks for chatbot training, which address the problems of a large
action space and zero-reward states. We evaluate the PA4C model over
training a chatbot for calendar event creation tasks. Experimental results
show that our model outperforms the state-of-the-art RL models in terms
of success rate, dialogue length, and episode reward.

1 Introduction

Recently, personal assistants [10–12,14] become increasingly popular, such as
Apple Siri, which can interact with human and provide with intelligent service.
These personal assistants are also called task-oriented chatbots (“chatbot” for
short in the rest of the paper) that help users complete tasks of certain domains,
such as creating a calendar event. A task may consist of several slots, such as
time and location for a calendar event. A chatbot needs to identify these slots
correctly via a dialogue with a user. Due to the uncertainty of language fluency
among different people, it is not a simple task to identify these slots accurately.
This problem is particularly challenging if the user utterance confidence given by
automatic speech recognition (ASR) and natural language understanding (NLU)
systems is low (e.g., a user is new to the language spoken or has a heavy accent).

A straightforward approach to tackle this problem is to confirm with a user
whenever his or her utterance confidence is lower than a predefined threshold.
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 500–512, 2018.
https://doi.org/10.1007/978-3-319-93034-3_40
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Table 1. Example dialogues of a rule-based chatbot and a context-uncertainty-aware
chatbot.

Turn Role Rule-based chatbot Context-uncertainty-aware
chatbot

1 user inform (title=[(“dinner”, 0.6)],
invitee=[(“Mike”, 0.6)])

inform (title=[(“dinner”, 0.6)],
invitee=[(“Mike”, 0.6)])

2 bot confirm (title) confirm (title)

3 user inform (title=[(“dinner”, 0.7)]) inform (title=[(“dinner”, 0.7)])

4 bot confirm (invitee) request (time)

5 user inform (invitee=[(“Mike”, 0.7)]) inform (time=[(“6 p.m.”, 0.6)])

6 bot request (time) request (location)

7 user inform (time=[(“6 p.m.”, 0.6)]) inform (location=[(“Korean
BBQ”, 0.6)])

8 bot confirm (time) complete ()

9 user inform (time=[(“6 p.m.”, 0.7)])

10 bot request (location)

11 user inform (location=[(“Korean
BBQ”, 0.6)])

12 bot confirm (location)

12 user inform (title=[(“Korean BBQ”,
0.7)])

14 bot complete ()

However, in a practical scenario, this threshold may vary from person to per-
son, and is also related to a specific dialogue context. Meanwhile, users would
expect chatbots not only to complete the tasks required, but also complete in a
limited dialogue length. A fixed threshold cannot adapt to various users’ utter-
ance confidences and may lead to lengthy dialogues, which might discourage the
use of chatbots. To illustrate the problem, We use Table 1 to show two interac-
tion sequences between a user and two different chatbots to create a calendar
event for “dinner with Mike at 6 p.m. at Korean BBQ”. The user input in these
sequences is represented as an “inform” tuple, which contains slots including
title, invitee, time, and location of the event. These slots are generated by ASR
and NLU systems, which are beyond the scope of our study. Each slot is asso-
ciated with a number representing the user utterance confidence proposed by
the ASR and NLU systems. The “Rule-based chatbot” column showcases how a
rule-based chatbot may interact with the user. In each turn, the rule-based chat-
bot takes one of three possible actions as a response to user input: (1) confirm
(to request a confirmation of a slot previously captured from user input with low
confidence), (2) request (to request a new slot from user), and (3) complete (to
set up the calendar event and finish the conversation). The rule-based chatbot
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confirms with the user for each slot until its confidence reaches a fixed threshold
0.7. This has resulted in a lengthy dialogue with 14 turns.

We aim to overcome the problem of fixed confidence thresholds as illustrated
above with a chatbot, which can adaptively choose a threshold according to the
user and dialogue context. We call such a chatbot a context-uncertainty-aware
chatbot. The “Context-uncertainty-aware chatbot” column of Table 1 illustrates
how such a chatbot will interact with a user. This chatbot also has a starting
confidence threshold of 0.7, and it needs to confirm with the user for the first
slot (title) that has a confidence below this threshold (Turn 2). Once this is
confirmed, the chatbot learns that only a threshold of 0.6 is sufficient to accept
the input of this user. As a result, the invitee slot (and any slots afterwards)
which also has a confidence of 0.6 does not need a confirmation anymore. This
has shortened the dialogue to 8 turns and improved the user experience.

We take the above issues into account and propose an RL model named
PA4C for chatbot training. This model addresses the following two problems of
existing RL models. The first problem is that, in chatbot training, traditional RL
models often have a large space for action selection, making it difficult to learn
the best action to be selected with a large reward. The output of these models
at a turn of the chatbot is a one-hot vector indicating which action should be
selected. An action of the chatbot consists of two components: a function (the
type of actions) and its parameter (slots). For example, the action request(time)
has a function request and a parameter time. Traditional RL models simply
list all possible combinations of functions and slots. Suppose that there are M
action functions and N slots. Then the number of actions in these models will
be M × N . To reduce the action space and improve the reward, we introduce
the action parameterization to separate the actions into two channels: one for
functions and the other for parameters (cf. Fig. 1b). In this way, the action space
can be reduced from quadratic (i.e., M × N) to linear (i.e., M + N).

The second problem addressed is that only a few states in dialogues have
positive rewards. This makes early discovery of states that may lead to large
rewards difficult. RL models thus may encounter a bottleneck due to missing
valuable states. Traditional methods only focus on the target task (e.g., predict
the target action) without explicitly paying attention to estimate the reward of
states. Inspired by [2], we propose to add additional tasks to the chatbot during
training and guide it to discover large-reward states (detailed in Sect. 5.2). In
particular, we design two auxiliary networks: (1) a reward prediction network for
predicting the reward of dialogue states, and (2) a value function replay network
for helping the RL model estimate the expected state value.
This paper makes the following contributions:

– To the best of our knowledge, we are the first to propose a context-
uncertainty-aware chatbot that is self-adaptive to the uncertainty of users’
utterance confidence in a dialogue context via reinforcement learning.

– To overcome the quadratic action space problem in chatbot training by rein-
forcement learning, we propose the action parameterization technique which
learns the functions and slots in two separate channels.
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– We further propose two auxiliary networks to guide our model to pay extra
attention to valuable states, which is more robust to both short-term imme-
diate rewards and long-term expected returns.

2 Related Work

Most commercial chatbots are based on hand-crafted rules design for dialogue
state tracking and action selection, which naively choose the action with the
largest NLU confidence [16]. It is non-trivial to create a large set of rules to cover
diverse user utterances. To avoid manually developing rules, machine learning
approaches have been used to build chatbots. Chatbot training has been modeled
as a Markov decision process (MDP) [3] or a partially observable Markov decision
process (POMDP) [17]. It is then formulated as a sequential labeling problem in
The Dialog State Tracking Challenge (DSTC) [1,16].

Machine learning approaches, however, need a large amount of training data,
and it is labor-intensive to prepare such data. Reinforcement learning (RL) then
is used to reduce the amount of training data needed. A noticeable progress has
been made on training chatbots with RL models [4,8,18], which demonstrates
the feasibility of training chatbots via reinforcement learning. However, due to
the “cold-start” problem in reinforcement learning, existing RL approaches have
to use supervised learning as a bootstrap. These approaches may interfere with
the action exploration of reinforcement learning and cause many ceilings on
the success rate, length and episode reward of dialogues. To the best of our
knowledge, no existing studies have tackled the problem of breaking the ceilings
of RL models in chatbot training. Our study aims to address it.

3 Preliminaries

We start with basic concepts in deep reinforcement learning (DRL). A DRL
model is essentially a Markov decision process (MDP). It can be defined as a
tuple 〈S,A,P,R, γ〉, where S denotes the environment state; A denotes the
action space; P denotes the transition probability P (st+1|st, at); R denotes the
expected immediate reward function R(st, at); γ denotes a discount factor, γ ∈
(0, 1] [19]. The goal of a DRL model is to maximize the return (cumulative
expected rewards from the state st) Gt =

∑∞
k=0 γkrt+k, where rt = R(st, at).

To maximize the return, there are two approaches in general: value-based DRL
and policy-based DRL.

3.1 Value-Based DRL

Value-based DRL estimates the value of executing different actions in a state,
and selects the action with the largest value. A typical value-based model is
Q-learning, where “Q” represents the action value. Q-learning defines an action-
value function Qπ(s, a), where a is an action, s is a state, and π is a policy to be
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learned. It aims to find an optimal policy π with the maximum Q value according
to Q∗(s, a) = maxπ E[Gt|st = s, at = a, π] and π∗(s) = argmaxaQ∗(s, a) [6].
Bellman equation [15] is used to search for the optimal policy:

Q∗(st, at) = Est+1

[
rt + γmax

at+1
Q∗(st+1, at+1)|st, at

]
(1)

Here, st+1 is the next state and at+1 is any possible actions for st+1.

3.2 Policy-Based DRL

Instead of directly optimizing the policy, value-based DRL models estimate a
Q value for each action and chooses the action with the maximum Q value.
This approach may cause some biases. For example, assume that there are two
actions a1 and a2 with Q values 50 and 49, respectively. The action a2 will not
be selected, although it may have a larger long-term value than that of a1.

Policy-based DRL models are proposed to tackle this problem by directly
optimizing the policy [13]. A typical approach is called policy gradient, which
can define a stochastic policy a = π(a|s;u), where u is the weight. The total
reward can be computed as:

L(u) = E
[
r1 + γr2 + γ2r3 + ...|π(·;u)

]
(2)

The gradients can be updated via [13]:

∂L(u)
∂u

= E

[∂logπ(a|s;u)
∂u

Qπ(s, a)
]

(3)

4 User Simulator

We construct a user simulator for chatbot training. As an example application,
we focus on training a chatbot for calendar event creation tasks, although the
techniques proposed may be applied to train a chatbot for other tasks. All avail-
able user actions, system actions, and slots are defined in Table 2.

Table 2. Available actions and slots in the user simulator

User actions inform(slot), confirm deny(slot), confirm accept(slot),
complete(), abort(), dont care(slot)

System actions greeting(), request(slot), confirm(slot), complete(), abort()

Slots title, time, invitee, location

Table 3. User intent database: the number in each tuple represents a confidence level,
which is the product of ASR and NLU confidence

Id Title Time Location Invitee

1 (“dinner”, 0.9) (“7 p.m.”, 0.95) (“Korean BBQ”, 0.87) (“Michael”, 0.54), (“Mike”, 0.46)
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Algorithm 1. User simulation

1: Initialize:
2: T ← 0, complete ← False, terminal ← False
3: Ω ← RandomSelect(IntentDB) // user intent (a distribution)
4: ω ← Sample(Ω) // user real goal
5: ω′ ← {} // chatbot recorded goal
6: z ← RandomSelect(NoiseDB) // noise, a pair of (μ, σ)
7: Auser ← null // user action
8: Abot ← Action.greeting // chatbot action
9: repeat
10: Auser ← UserRespond(Abot, Ω, z) // randomly selected with Abot, Ω, z
11: Abot ← ChatbotRespond(Auser) // ouputted by RL model
12: T ← T + 2
13: ω′ ← ω′ + ParseEntity(Abot)
14: if T > Tmax or Abot == Action.complete then
15: terminal ← True
16: reward ← R(terminal, complete, T )
17: until terminal
18: if ω == ω′ then complete ← True

19: reward ← R(terminal, complete, T )

4.1 Data Preparation

We collect 300 calendar events from volunteers through a data collector web-
site, including 300 titles, 300 time, 113 invitees and 173 locations. Since the
uncertainty produced by ASR and NLU may cause a user’s real intent to be
distorted, such as “Mike” being misunderstood into “Michael”, we construct a
database IntentDB to store these intents with probabilities as shown in Table 3.
In addition, we calculate the mean μ and the standard deviation σ of the ASR &
NLU uncertainty for each dialogue in The Dialogue State Tracking Challenge 2
(DSTC2) dataset (in the domain of restaurant booking) [16]. We save the pairs
of μ and σ into a NoiseDB. At each step of a dialogue simulation, a Gaussian
noise with μ and σ will be introduced to augment the collected data (detailed in
Sect. 4.2). In this way, we can simulate millions of dialogues by adding different
noises to the 300 events collected from volunteers.

4.2 Dialogue Simulation

The simulation is based on the fact that a user’s intent is known by himself (i.e.,
user simulator) but unknown by the chatbot. A step of a simulation includes
two parts: (1) the chatbot asks the user a question, and (2) the user answers the
question honestly. Each step will be assigned with a scalar reward according to
the reward function R(terminal, complete, T ) defined in the Eq. 4. The goal of a
chatbot is to learn to ask a user questions which can maximize the total reward
of a dialogue. The intuition of R is to give a higher reward to states that lead
to a short dialogue that completes a user task successfully.

R(terminal, complete, T ) =

⎧
⎪⎨

⎪⎩

−0.1, if not terminal

2.0 × Tmax−T
Tmax

, if terminal and complete

−1.0, if terminal and not complete

(4)



506 C. Yin et al.

Here, terminal indicates whether the simulation finishes, complete indicates
whether the chatbot completes the task, T represents the length of the current
dialogue, and Tmax represents the predefined maximum length of a dialogue.
A simulation terminates once Tmax steps are executed regardless whether the
user task has been completed. The reward function is Markovian because it only
depends on the current dialogue state (i.e. terminal, complete, and T ). At the
end of each simulation, we compare the user’s real goal ω (i.e., the ground truth)
with the entities ω′ captured by the chatbot. If ω is equal to ω′, it means that the
chatbot completes the user’s task. Otherwise, the task fails. Algorithm 1 shows
the detail of a simulation.

5 Proposed Model

As mentioned in Sect. 2, existing works usually use supervised learning as boot-
strap before training with RL models. This approach may interfere with the
action exploration and cause a ceiling on RL models because the data collected
may produce some biases. In this paper, we propose a model named parame-
terized auxiliary asynchronous advantage actor-critic (PA4C) based on the A3C
model [5]. Our PA4C model consists of two parts: (1) Parameterized A3C
(PA3C), which solves the huge action space problem in traditional RL models
for chatbot training; (2) Auxiliary tasks, which helps model discover the states
with large rewards and enhances model robustness [2].

5.1 Parameterized A3C

PA3C is built on the vanilla A3C model, which is a hybrid value-based and
policy-based DRL model. It can be expressed by two separate networks with
shared weights (cf. Fig. 1a): (1) Actor network outputs the policy π(at|st;u);
(2) Critic network estimates a state value function V (st; v) [5], where u and v
denotes the weights of the actor and critic network, respectively.

V (st; v) = E
[
rt+1 + γrt+2 + γ2rt+3 + ...|st

]
(5)

A function A(st, at; v, u) is defined in Eq. 6 to estimate the advantage of executing
at on st over the state value V (st; v):

A(st, at;u, v) =
k−1∑

i=0

γirt+i + γkV (st+k; v) − V (st; v) (6)

Therefore, the weights u of actor network can be updated as follow:

∂L(u)
∂u

=
∂logπ(at|st;u)

∂u
A(st, at;u, v) (7)

The critic network can be optimized by minimizing the MSE loss [5]:

L(v) = (A(st, at;u, v))2 (8)
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Fig. 1. Model structure: (a) Vanilla A3C model. (b) Parameterized A3C model.
(c) Reward prediction sub-model. (d) Value function replay sub-model.

Like other RL models, vanilla A3C still cannot avoid the large action space
problem. For example, assume that there are a set of M functions {f1, f2, ..., fM}
and N parameters {p1, p2, ..., pN} available (functions and parameters are system
actions and slots respectively in the user simulator). For vanilla A3C, the number
of actions is M × N , because its actor network simply outputs all combinations
of functions and parameters (cf. Fig. 1a).

To address this problem, we propose PA3C by introducing action param-
eterization into the vanilla A3C model. Rather than listing all combinations,
our model will split the policy π of vanilla A3C into two sub-policies πf and
πp, which directly learns functions and parameters, respectively (cf. Fig. 1b). In
this manner, the number of actions in our model can be reduced from M × N
(quadratic) to M + N (linear). Correspondingly, the loss of actor network in
PA3C has a slight difference. We modify the loss defined in Eqs. 7–9, where uf

and up denote the weights of πf and πp respectively, and Λ is a mask vector for
indicating whether the function fm has a parameter.

∂L(u)
∂u

=
∂L(uf )

∂uf
+ Λ

∂L(up)
∂up

=
(

∂logπf (ft|st;uf )
∂uf

+ Λ
∂logπp(pt|st;up)

∂up

)

A(st, ft, pt;uf , up, v) (9)

5.2 Auxiliary Tasks

A recent DRL model named UNsupervised REinforcement and Auxiliary Learn-
ing (UNREAL) [2] suggests that incorporating reasonable auxiliary tasks can
improve the model robustness and performance. In chatbot training, the rewards
are usually sparse. Only a few states can provide immediate rewards (e.g., large
negative or positive rewards only occurs when the chatbot finishes the task).
The rewards of most states during a conversation are zeros or very small num-
bers, making it difficult to learn the values of these states. This may cause many
ceilings on RL models used in chatbot training, such as low success rate and
lengthy dialogues. To address this problem, we design two auxiliary networks
to assist the PA3C sub-model to take into account both short-term immediate
rewards and long-term expected returns.
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Reward Prediction (RP) is an auxiliary network to predict the immediate
reward of the next unseen state given a historical context. It helps PA3C sub-
model better evaluate the value of dialogue states, To train this task network,
we sample a historical sequence St = (st−k, st−k+1, ..., st−1) from a replay buffer
and predict the reward rt of the state st. Here, we focus on whether the state
is valuable rather than the specific reward. Instead of estimating the real value
of rt, RP only predicts the sign of rt in three classes: positive, negative and zero
(cf. Fig. 1c).

Value function Replay (VR) is an auxiliary network to enhance the state-
value function V (st; v) (Eq. 5) of the critic network in the PA3C sub-model. The
function V (st; v) is designed to estimate the long-term expected return of the
current state st. Therefore, VR shares weights with the critic network in PA3C.
The only difference is that the critic network is trained with on-policy, while VR
can be trained with off-policy. It will sample a state sequence as input from a
replay buffer like the RP network (cf. Fig. 1d). In this way, V (st; v) combines the
strength of both on-policy and off-policy training, which is more robust when
estimating the expected return.

5.3 PA4C Model

Our full PA4C model integrates the PA3C sub-model and auxiliary networks.
The full model is illustrated in Fig. 2. Firstly, the PA3C sub-model interacts
with the user simulator, which generates a dialogue. The dialogue will be saved
into a small replay buffer, where RP and VR can sample historical sequences to
update their weights. The final loss of PA4C is the combination of PA3C, RP,
and VR networks [2]:

LPA4C = LPA3C + λRP LRP + λV RLV R (10)

where λRP and λV R are the weight factors of the RP and VR networks respec-
tively; LPA3C is the loss of the PA3C network defined in Eq. 9; LRP is the cross
entropy loss of the RP network; LV R is the MSE loss (cf. Eq. 8) of the VR
network.

Our PA4C model also extends the asynchronous training from vanilla A3C
via multiple threads. First, PA3C will create a global network in the main thread

buffer

(1) PA3C
User Simulator

(2.1) RP (2.2) VR

sample
πf πfπp πpV V V Vr r

+ −

(2) Auxiliary Tasks

st+1st st+1st
st st+1

save dialogues

sample

Fig. 2. Full PA4C model consists of (1) PA3C and (2) Auxiliary Tasks (RP and VR
networks). All LSTM layers share the same weights.
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and multiple local networks in several independent threads. The global network
is responsible for dispatching gradients to each local network, which will run a
user simulator to compute the local gradients. At the end of each simulation,
the gradients of local networks will be aggregated back to the global network.

6 Experiments

In this section, we compare the performance of chatbots trained with our PA4C
model and with baseline models in six metrics: success rate (SR), dialogue length
(DL), episode reward (ER), and their standard deviations (“std” for short in the
rest of the paper) over 10 runs, i.e., std SR, std DL, and std ER [7,9]. All the DRL
models are trained on 180 dialogues with noises and evaluated on 120 dialogues.
The result shows that our model outperforms the state-of-the-art models in these
metrics for training a chatbot in the calendar event creation task.

6.1 Baseline Models and Hyperparameters

We implement 4 baselines, including a rule-based model and 3 existing DRL
models:

– Rule-based. We implement a rule-based chatbot by if-else triggers. If a slot
is informed by a user and its confidence is larger than a predefined threshold
0.724 (the average confidence of the collected events), the chatbot will request
the next slot; Otherwise, the chatbots will confirm it with the user. When all
slots are obtained, the chatbot will finish a simulation.

– DQN. We stack two consecutive states as the input st at step t, and use
two fully-connected layers with 256 and 64 hidden units, respectively. The
replay buffer size is 105 and batch size is 128. In the first 106 step, we use the
epsilon-greedy policy to explore actions, with ε annealing from 1.0 to 0.1.

– DRQN. We only feed one single state into DRQN at step t. Unlike DQN, the
replay buffer for DRQN stores the full episode of a dialogue. The timestep of
LSTM is set to 10. The remaining hyperparameters are the same as those in
DQN.

– A3C. We use LSTM in A3C, and update the gradients in local networks per
episode rather than a fixed step in vanilla A3C [5]. We also set the regular-
ization of policy entropy β = 0.1 to encourage action exploration and train
with 16 threads.

– A4C. We only add auxiliary networks into A3C. Both λRP and λV R in Eq. 10
are set to 1.0. The replay buffer for auxiliary networks is 2000. When training
the RP network, we clip the rewards whose absolute value is smaller than 0.1
to 0 to get their sign (i.e., positive, negative, zero). We assume these small
rewards cannot guide to discover valuable states. Other settings are identical
to those in A3C.

– PA3C. We only add action parameterization into A3C. The number of
actions now becomes to 8. Other settings are identical to those in A3C.
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– PA4C. In our full PA4C model, we integrate PA3C with A4C sub-models.
The hyperparameters of these two sub-models are the same as those in A4C
and PA3C.

The input feature is composed of a 52-dimensional vector provided by the
user simulator, including the last system action, the current user action, and
the current dialogue length. All LSTM layers have 256 hidden units, followed by
an ReLU activation function. The discounted factor of reward γ is 0.99 for all
models. We use the RMSProp optimizer for gradients computing with learning
rate η = 0.001 and weight decay α = 0.99. The maximum dialogue length Tmax

is set to 20. The action greeting() is removed from the set of actions because
greeting() is always called firstly by the chatbot. The number of actions for non-
parameterized models and parameterized models are Mp×N +Mnp = 2×4+2 =
10 and M + N = 4 + 4 = 8, respectively, where Mp denotes the number of
functions with parameters, i.e., {request(slot), confirm(slot)}; Mnp denotes the
number of functions without parameters, i.e., {complete(), abort()}; N denotes
the number of slots, i.e., {title, time, location, invitee}; M = Mp + Mnp.

6.2 Results

In the section, we compare the performance of the PA4C model with baselines.

Comparison with the Rule-based Model: The result in Table 4 shows that
PA4C outperforms the rule-based model in all metrics: 47% in success rate (SR),
52% in std SR, 42% in dialogue length (DL), 62% in std DL, 35% in episode
reward (ER) and 54% in std ER. In particular, PA4C can achieve over 0.93 in
SR, with less than 7.6 turns to complete the task. In contrast, the rule-based
model just reaches 0.63 in SR while it takes more than 12 turns. This shows that
PA4C can adapt to the utterance uncertainty according to the dialogue context.
It can produce a high success rate and a short dialogue.

Table 4. Performance comparison. Larger success rate (SR) and episode reward (ER)
indicate better performance. Smaller dialogue length (DL), std SR, std DL and std ER
indicate better performance. The number in the parenthesis shows the improvement
over the rule-based model. When computing the improvement, we scale the value of
ER to [0,+∞] because of negative rewards. The results are averaged over 10 runs

Model SR std SR DL std DL ER std ER

RULE 0.634 0.052 12.925 5.769 −0.286 1.018

DQN 0.794(+25%) 0.041(−21%) 7.075(−45%) 1.889(−67%) 0.443(+29%) 0.651(−36%)

DRQN 0.691(+09%) 0.046(−12%) 10.925(−15%) 2.429(−58%) −0.194(+04%) 0.999 (−02%)

A3C 0.843(+33%) 0.037(−29%) 9.889(−23%) 3.075(−47%) 0.302(+23%) 0.560(−45%)

A4C 0.854(+35%) 0.034(−35%) 10.402(−20%) 3.675(−36%) 0.261(+22%) 0.669(−34%)

PA3C 0.900(+42%) 0.029(−44%) 8.382(−35%) 2.894(−50%) 0.519(+32%) 0.492(−52%)

PA4C 0.932(+47%) 0.025(−52%) 7.558(−42%) 2.216(−62%) 0.585(+35%) 0.469(−54%)
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Fig. 3. Performance comparison with RL models: DQN, DRQN, A3C, and PA4C. Each
figure is averaged over 10 runs.

Comparison with RL Models: Table 4 also shows that PA4C outperforms
existing RL models, with 14%, 19%, and 12% improvement in SR, DL, and ER,
respectively, compared with the most recent RL model A3C. We further illustrate
the learning curves of SR, DL, and ER in Fig. 3. As the figure shows, although
DQN has shorter dialogues, it sacrifices the success rate. It often fails when
interacting with low-confidence users, while our PA4C model is more robust to
these users.

Comparison within Sub-models: To verify the effect of action parameteri-
zation and auxiliary tasks, we compare A3C, A4C, PA3C, and PA4C. Table 4
shows that PA4C outperforms sub-models in all metrics. Using action param-
eterization achieves 9% improvement in SR, 12% in DL, 9% in ER over A3C.
Although only adding auxiliary tasks to A3C (i.e., A4C) does not have such
significant effect, the auxiliary tasks do help boost the model performance when
integrated together with action parameterization to A3C (i.e., PA4C).

7 Conclusion

We presented a context-uncertainty-aware chatbot trained via reinforcement
learning. A user simulator is designed to simulate the uncertainty of different
users’ utterance confidence. Our chatbot trained with this simulator can adapt
to different users’ utterance confidence based on the dialogue context. We pro-
posed a reinforcement learning model named PA4C to optimize chatbot training,
which can avoid a large action selection space via action parameterization and
can discover valuable states via auxiliary tasks. We evaluate our model by train-
ing a chatbot for the calendar events creation task. Experimental results show
that our PA4C model outperforms the state-of-the-art models in the metrics of
success rate, dialogue length, and episode reward.
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Abstract. Network embedding is a very important method to learn low-
dimensional representations of vertexes in networks, which is quite use-
ful in many tasks such as label classification and visualization. However,
most existing network embedding methods can only learning embed-
ding from single relational network, which only contains one type of
edge relationship between two nodes. However, in real world, especially
in product network, many information is presented in multi-relational
network. Based on user behavior, edges in product network have many
types: “co-purchasing”, “co-viewing”, “view after purchasing” and so
on. Therefore, we propose a novel network embedding method aiming to
embed multi-relational product network into a low-dimensional vector
space. The results show that our method leads to better performance on
label classification and visualization tasks in product network.

Keywords: Multi-relational network · Product network · Embedding

1 Introduction

With the rapid development of e-commerce, a large number of interactive rela-
tionships between products based on different types of user behaviors are gen-
erated. An effective way to deal with these huge and complex information is to
construct a network [1,2]. Based on different user behaviors, we can construct
a multi-relational product network, whose vertices refer to products and edges
refer to the relationships between different products, such as “co-purchasing”,
“co-viewing”, “view after purchasing” and so on. Figure 1 shows a simple multi-
relational product network demo. Many researchers find that network embed-
ding, which is used to represent each vertex of a network with a low-dimensional
vector, is a very significant and useful approach to analyze complex information
network, such as visualization [3], node classification [4], and recommendation [5].

In the past decades, many network embedding methods have been proposed,
such as MDS [6], IsoMap [7], Laplacian eigenmap [8]. These methods suffer from
huge computational cost as they are based on eigen-decomposition. In recent
years, researchers, inspired by a natural language processing method: word2vec
[9], establish analogies for networks, such as Deepwalk [10], node2vec [11] and
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 513–524, 2018.
https://doi.org/10.1007/978-3-319-93034-3_41
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LINE [12]. They perform well for large-scale network. However, all of the above
methods can’t handle multi-relational product network. Some researchers have
focused on heterogeneous network embedding methods in some specific areas,
such as text network [13], location information network [14]. The authors of [15]
use metapath to learn embeddings from heterogeneous networks, but it is only
effective for the networks with multiple types of nodes. All of these methods are
not suitable for product network, which contain multi-relational links.

Fig. 1. A sample of multi-relational information network. There are four products and
three types of edges based on different user behaviors: “Also Bought”, “Also Viewed”
and “Bought Together”. In particular, “Bought Together” means two products are
bought together in the same shopping basket. “Also Bought” means the two products
are not limited to the same order to buy

There are three challenges to handle multi-relational product network: (1)
the existence of directed/undirected and weighted/unweighted edges makes the
product multi-relational network very complex, (2) in order to learn the latent
similarity from the complex network, a model which is able to integrate multi-
relational information is required, (3) the proposed model has to be scalable as
the product multi-relational network is massive at most time.

In this paper, we present a novel multi-relational product network embedding
method called “MRPNE (Multi-Relational Product Network Embedding)”. We
divide a multi-relational information network into multiple bipartite networks.
We elaborately design objective function, which can compute different networks
together. This function is an extension of the LINE algorithm [12]. For the sake
of training MRPNE more efficiently, we use stochastic gradient descent and
edge-sampling method using alias table for the optimization.

We evaluate MRPNE for label classification and visualization on real-world
product data sets. Experiments show that MRPNE outperforms other methods.
And the training step of MRPNE is trivially parallelizable, it can scale to large
networks with millions of nodes in a few hours.

Overall our paper makes the following contributions:

1. We propose MRPNE, an efficient scalable algorithm for multi-relational prod-
uct network embedding, which can efficiently optimize a novel neighborhood
preserving objective using stochastic gradient descent.
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2. MRPNE accelerates the objective function calculating by edge-sampling and
updates weights by stochastic gradient, which can be run in parallel.

3. We evaluate MRPNE on real-world multi-relational product network. Exper-
imental results prove the effectiveness and efficiency of our method.

The rest of this paper is organized as follows. In Sect. 2, we discuss related
works in product network, network embedding methods and heterogeneous net-
work. Section 3 formally defines the problem of multi-relational product network
embedding and describes the details of our method. Section 4 shows our experi-
ments, evaluation metrics, and results. Lastly, we conclude this study in Sect. 5.

2 Related Work

2.1 Product Information Network

Users’ various behaviors in e-commerce sites, such as buying, viewing, etc., pro-
vide a lot of information. How to mine the commercial value from these informa-
tion, for example finding the relationships between products and recommending
products to consumers, attracts a lot of academic and industrial interests. In the
area of business, researchers mainly focus on the characteristics of consumers
[16,17], substitutional and complementary relationships between products [18]
and so on. In the area of data mining, researchers focus on finding out hidden
relationships and association rules in shopping records, such as Apriori [19] and
FP-growth [20] algorithms in market basket analysis.

However, traditional techniques of market basket analysis fail to process huge
amount of scattered data [2]. In recent years, more and more researchers have
begun to apply network analysis in market and goods. By treating products
as nodes in networks, this method no longer uses the specific contents of users
and products. The key idea of this approach is that information is hidden in
the relationship between them. Network-leveled analysis is expected to be more
effectively and efficiently used in personalized services, such as cross selling,
up selling, and personalized product display, utilizing the deep relation between
products [1,21]. Thereby, analysing product information network is a very useful
method for mining the relationships between products.

2.2 Network Embedding

It is not very easy to directly deal with network structure, therefore researchers
want to find an embedding method to find feature vector representations for
these nodes. In the past decades, many network embedding methods have been
proposed, such as MDS [6], IsoMap [7], Laplacian eigenmap [8], which utilize
spectral properties of various matrix representations of graphs, especially the
Laplacian and the adjacency matrices. These methods perform well on small
networks, but they are expensive for large real-world networks because these
methods are all based on eigendecomposition.
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With the development of representational learning for natural language pro-
cessing, word2vec [9] is put forward to automatically learn the word representa-
tions, which uses the context of a word to predict the word (CBOW) or uses the
word to predict its context (Skipgram). Inspired by word2vec, Deepwalk [10] is
proposed, which uses many random walks on the node as sequences and these
sequences are analogous to the contexts in the text. Then, Node2vec [11] devel-
ops Deepwalk method, which no longer perform pure random walks, but controls
the depth and breadth of random walk with two parameters p and q. And LINE
[12] method uses neighborhood nodes as supervisor to learn node feature vector
representation. But all of above methods can’t handle heterogeneous information
network, which contains different kinds of nodes or multi-relational edges.

In some specific areas, researchers propose some heterogeneous network
embedding methods. PTE [13], based on LINE [12], is a typical method, which
constructs heterogeneous network through word-label, word-word and word-
document relationships. However, PTE is a semi-supervised learning model that
incorporates label information. Our method, only using the network structure
information, is an unsupervised learning method. What’s more, the heterogene-
ity in PTE comes from the text network, and our method is based on the user
behavior information to the multi-relational product network.

Metapath2vec [15] is the latest study on heterogeneous networks embedding.
It is also based on Deepwalk method [10] using random walk. The author pro-
pose to do random walks along metapath. For example, in the author-paper-
conference network, the walks must follow “author-paper-conference-paper-
author” path. Metapath2vec requires manual selection of a suitable metapath
and can only apply to the network with heterogeneous types of nodes. In product
networks, there are only one kind of nodes, so metapath does not exist in product
networks. In multi-relational product network, Metapath2vec degenerates into
the Deepwalk method.

3 Multi-relational Product Network Embedding

In this section, we firstly describe some definitions of our problem: Multi-
Relational Product Network, Bipartite Network and Multi-relational Product
Network Embedding. Then, we introduce our model and derive loss function. At
last, we use two methods to accelerate our algorithm.

3.1 Problem Definition

We formally define the problem of product information network embedding using
second-order proximities. We first define an information network as follows:

Definition 1 (Multi-relational Product Network). A product network is
defined as G = (V,E1, E2, · · · ), where V is the set of vertices, each representing a
product object and Ei is the set of edges between the vertices, each representing a
relationship between two product objects based on user behavior. Each edge e ∈ Ei
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is an ordered pair e = (u, v) and is associated with a weight wuv > 0, which
indicates the strength of the relation. If G is undirected, we have (u, v) ≡ (v, u)
and wuv ≡ wvu.

Definition 2 (Bipartite Network). A bipartite network is defined as G =
(VA, VB , E), where each edge eij ∈ E is a pair e = (vi, vj) vi ∈ VA and vj ∈ VB.
There is no edge inside VA or VB.

Definition 3 (Multi-relational Product Network Embedding). Given a
multi-relational product network G = (V,E1, E2, · · · ), the problem based on
user behavior multi-relational product network embedding aims to represent
each vertex v ∈ V into a low-dimensional space R

d, i.e., learning a function
fG : V −→ R

d, where d � |V |. In the space R
d, different types of interaction

between the vertices are preserved.

Next, we introduce our model: MRPNE.

3.2 Learning Embedding

As dealing with the multi-relational product network directly is quite difficult,
multi-relational networks can be regarded as the combination of several homoge-
neous networks and we can deal with each kind of edge separately. For example,
we only focus on “Also Bought” edge in Fig. 1 and “Also Bought” network is
a homogeneous network. Any kind of homogeneous network can be seen as a
bipartite network, whose vertices can be divided into two disjoint sets VA and
VB. And every edge connects a vertex in VA to one in VB. We can compute the
objective function of each bipartite network. Finally, we combine the results of
each homogeneous network together.

Bipartite Network. Because multi-relational product network has different
types of edges, we can divide a multi-relational product network into several
homogeneous sub-networks. And all these sub-networks can be treated as bipar-
tite networks, which means we decompose the task of multi-relational product
network embedding to several sub-tasks of bipartite network embedding.

There are several homogeneous network embedding methods, such as Deep-
Walk [10], LINE [12] and node2vec [11]. However, all of them can only deal with
one homogeneous network, which means we can’t combine the information in
several homogeneous sub-networks together. Inspired by LINE [12], we develop
a new algorithm to learn the embeddings of multi-relational networks.

In [12], the authors propose a second-order proximity in the network, which
assumes that vertices sharing many connections to other vertices are similar to
each other. The neighbors of a vertex can be treated as “context” of the vertex
and vertices with similar distributions over the “contexts” are assumed to be
similar.
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Given a bipartite network G = (VA

⋃
VB , E), where VA and VB represent two

separate sets of nodes and E is the set of edges between nodes, the conditional
probability of observing vertex vj in set VB given the vertex vi in set VA is
defined as:

p(vj |vi) =
exp(u ′T

j · u i)
∑

k∈B exp(u ′T
k · u i)

, (1)

where u i is the embedding vector of node vi in VA, and u ′
j is the embedding

vector of node vj in VB. According to Eq. (1), the closer the embedding vectors
of two vertices vj and vi are, the more likely observing vj given vi. And p(·|vi)
actually computes the conditional probability distribution of node vi in VA over
all nodes in VB . Thus the second-order proximity can be preserved if let p(·|vi)
close to its empirical distribution p̂(·|vi). Therefore, the objective function to be
minimize is:

O =
∑

i∈V

λid(p̂(·|vi), p(·|vi)), (2)

where d(·, ·) is the KL-divergence between two probability distribution, λj is
the importance of vertex vj in the network and can be defined as the degree
degreei =

∑
j wij , and the empirical distribution can be defined as p̂(vj |vi) =

wij

degreei
. Simplify Eq. (2) and we can get the following formula:

O = −
∑

(i,j)∈E

wij log p(vj |vi). (3)

Equation (3) is a bipartite network embedding loss function we will optimize.

Multi-relational Product Network Embedding. Because we can treat the
multi-relational product network as some homogeneous sub-networks, we com-
pute the loss functions of sub-networks separately.

OMRPNE = −
∑

k

Ok = −
∑

k

∑

(i,j)∈Ek

wij log p(vj |vi). (4)

3.3 Model Optimization

Computing and optimizing loss function (3) is extremely expensive. Because it
requires calculating the similarity between any two nodes in the network. A nice
solution is using positive sampling for existent edge [12] and negative sampling
for nonexistent edge [22]. The new loss function is as followed.

O =
∑

(i,j)∈E

{

log σ(u ′T
j · u i) +

K∑

i=1

Evn∼Pn(v)[log σ(u′T
n ·ui)]

}

, (5)

where σ(x) = 1
1+exp(−x) is the sigmoid function. The first term models positive

edge samples, while the second term models the negative edge samples and K is
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the number of negative sampling. The same as in [22], we draw negative edges
from the noise distribution Pn(v) ∝ d

3/4
v where dv is the out degree of node v.

Using negative sampling, we can greatly reduce the amount of calculation.
If we don’t use negative edge sampling, we have no ability to choose a suit-

able learning rate for stochastic gradient descent because some edges have large
weights and some edges have much small weights. To address the large variance
of edge weights, we sample the edges according to their weights. The probability
of edge eij is wij∑

(k,l)∈E wkl
. If we choose the Roulette wheel selection algorithm, it

takes O(log|E|) time to sample an edge, which is a little costly when |E| is large.
So we use the alias table method [23] to draw a sample according to the weights
of the edges, which takes only O(1) time when repeatedly drawing samples from
the same discrete distribution.

Above is the method to calculate the objective function of one network. We
want to calculate the total objective function Eq. (5), so we can sequentially
sample from each network and then update the embedding vector.

3.4 Algorithm Complexity Analysis

Sampling an edge using alias method takes O(1) time, and negative sampling
takes O(K) time, where K is the number of negative samples. Therefore, each
step takes O(K) time. So the overall time complexity of MRPNE is O(KN),
where N is the number of iterations. In practice, we find that N is usually
proportional to the number of edges |E|. Therefore, the overall time complexity
is O(K|E|), which is linear to the number of edges E. Consequently, MRPNE is
quiet efficient by using stochastic gradient descent with edge sampling.

4 Experiments

4.1 Data Sets and Experimental Setup

We use the data from [24]. The authors of the article crawled 9.4 million Amazon
products information. These product data consists of 24 subcategories, such as
Video Games, Kindle Store, Books, etc. As the data in these categories does
not intersect, we conduct experiments with the data in each category. The data
set contains four different user behaviors information: which goods users bought
that product together with (Bought Together Relationship) in the same order,
which goods users bought that product and also bought (Also Bought Rela-
tionship), which goods users viewed that product and also viewed (Also Viewed
Relationship), which goods users bought that product after viewing (Bought
after Viewing Relationship). We use these four user behaviors information to
build multi-relational network.

Our experiments evaluate the embedding results on a visualizations task and
a standard supervised learning task: label classification for nodes. We evaluate
the performance of MRPNE against the following network embedding algorithm:
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• DeepWalk [10]: This algorithm learns d-dimensional embedding vector by ran-
dom walks. As mentioned in Sect. 2.2, Metapath2vec is the same as Deepwalk
in product network.

• LINE [12]: This algorithm learns two representations separately, one preserving
first-order proximity and the other preserving second-order proximity. Then,
it directly concatenates the two vectors to form the final representation.

• Node2vec [11]: This algorithm can be seen as an extension of Deepwalk. Deep-
walk only simulates uniform random walks, but Node2vec uses two parameters
p and q to control the depth and breadth of random walk.

However, all the baseline algorithms ms can only deal with homogeneous net-
works. So we run our algorithm MRPNE on the multi-relational product net-
work which contains four types of edges. Then we treat the multi-relational
product network as four homogeneous subnetworks and run the three baseline
algorithms on them independently to get four independent embedding vectors.
At last, we use our embedding result to compare with the four embedding results
respectively.

For the different tasks in the following experiments, we set the optimal param-
eters (p&q) manually. In Sect. 4.2, we choose the best performance parameters:
p = 4, q = 1. In Sect. 4.3, for the “Also Bought” network, p = 1 and q = 1 are
optimal, which means Node2vec is same as Deepwalk. For “Viewed Together”
network, p = 1 and q = 2. For “Buy After Viewing” network, p = 1 and q = 2.
For “Bought Together” network, p = 4 and q = 1.

4.2 Visualizations

Displaying a network in a 2-D space is a very important application of network
embedding algorithm and also an intuitive method of evaluating the results of
network embedding. We visualize “Bought Together” network from Video Game
data set, which contains 20,654 nodes and 31,305 edges. We first get network
embedding vectors through MRPNE and baseline algorithms. Then, we map the
vectors of the vertices to a 2-D space with the t-SNE method [3]. As the video
game data set contains more than 1,000 categories of the products and most of
the categories are rare, it is not convenient to display all the products. So we
choose the three most categories in Video Game “Bought Together” network:
“PC games”,“Nintendo DS Games” and “Wii Games” and randomly choose 500
products from each category. Figure 2 shows the visualization results with dif-
ferent embedding approaches. “Bought Together” network is relatively sparse
and Deepwalk and LINE can not learn effective information, so their visualiza-
tion are not very meaningful. Node2vec is able to avoid 2-hop redundancy in
sampling and performs much better. However, the information that “Bought
Together” network has is very limited. In the visualization of Node2vec, points
with different category labels are not able to be separated from each other.
MRPNE is a multi-relational network embedding method, and it can use much
more information than homogeneous network embedding methods. Therefore,
MRPNE performs quite well and generates meaningful results.



Learning Product Embedding from Multi-relational User Behavior 521

(a) Deepwalk (b) LINE (c) Node2vec (d) MRPNE

Fig. 2. Visualization of the Video Game “Bought Together” network. Products are
mapped into the 2-D space using the t-SNE method. Color of a node indicates the
category of the product. Blue:“PC games”, Red:“Nintendo DS Games”, Yellow:“Wii
Games” (Color figure online)

4.3 Label Classification

Label classification task is a very classic method for measuring the embedding
performance [10–12]. Every node is assigned with one label from a finite set L.
During the training phase, we observe a certain fraction of nodes and all their
labels. This task is to predict the labels for the remaining nodes. In product
network, the label of each product refers to its category. In particular, the cat-
egory here refers to the most subdivided category. In other words, a product in
Amazon has multi-level category, for example, a dance skirt has categories from
big to small: “Clothes”, “Sports Clothes”, “Dance” and “Skirts”. Only when all
the subdivided categories of two products are the same can we say that they
have the same label.
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Fig. 3. Performance evaluation of different baselines on label classification task. The
x axis denotes the fraction of labeled data, whereas the y axis in the top and bottom
rows denote the Micro − F1 and Macro − F1 score.

Figure 3 shows the comparison of the results of our algorithm with the base-
line algorithms in Video Games products network, which contains 50,953 nodes.
The statistics of the four homogeneous sub-networks are as follows:
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1. “Also Bought” network contains 28,965 nodes and 1,406,222 edges
2. “Viewed Together” network contains 14,839 nodes and 267,948 edges
3. “Buy After Viewing” network contains 39,905 nodes and 144,070 edges
4. “Bought Together” network contains 20,654 nodes and 31,305 edges

We can see that among the baseline algorithms Node2vec performs well in
three networks, but choosing optimal parameters for Node2vec is an extremely
time-consuming job. The result of MRPNE is the best, especially in “Bought
Together” network. Because “Bought Together” network is a very sparse net-
work, which makes it impossible for baseline algorithms to learn much use-
ful information. However, MRPNE is able to learn the multi-relational infor-
mation and not only uses “Bought Together” network but also uses “Also
Bought”,“Viewed Together” and “Bought Together” network information. This
also shows that considering a single homogeneous information network will result
in the loss of a lot of information and learning directly from multi-relational net-
work is much better.

Table 1. Results of label classification on two data sets: Kindle Data Set and Grocery
and Gourmet Food Data Set

Kindle Data Set
Metric Alogrithm Also Bought Also Viewed Buy After Viewing Bought Together

Micro − F1

Deepwalk 67.01 72.61 57.67 34.07
LINE 66.24 74.68 62.32 36.20

Node2vec 67.48 74.02 63.23 48.52
MRPNE 69.68 75.67 66.57 66.40

Macro − F1

Deepwalk 44.95 55.26 46.91 33.90
LINE 50.62 58.48 47.94 35.03

Node2vec 52.70 58.89 48.08 41.72
MRPNE 57.87 60.03 56.76 57.41

Grocery and Gourmet Food Data Set
Metric Alogrithm Also Bought Also Viewed Buy After Viewing Bought Together

Micro − F1

Deepwalk 69.00 58.67 63.91 47.07
LINE 75.19 61.09 64.94 47.10

Node2vec 73.89 64.66 66.08 48.56
MRPNE 75.97 54.36 66.76 55.67

Macro − F1

Deepwalk 54.11 47.53 45.89 43.28
LINE 57.45 49.30 50.97 45.03

Node2vec 56.61 53.12 51.36 44.72
MRPNE 59.47 67.12 51.89 51.41

We also use other data sets to do experiments, but due to space constraints,
the results can not be fully displayed. Table 1 shows the experiment results on
a part of the data sets using a 50-50 split between labeled and unlabeled data.
These results further show that our algorithm, through using the information of
the whole multi-relational network, gets better results than only using a single
homogeneous network information algorithm.

4.4 Parameter Sensitivity and Scalability

Unlike Node2vec method, MRPNE only uses little hyper-parameters. We inves-
tigate how the different choices of parameter dimension d affect the performance
of MRPNE. Figure 4 shows the Macro − F1 score w.r.t. the dimension d on the
Video Games data set using a 50-50 split between labeled and unlabeled data.
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We can see that with the increasement of the vector dimension, the label classifi-
cation effect is also good. When the dimension grows from 16 to 128, Macro − F1

score increases very fast. When the dimension is greater than 128, Macro − F1

score is not sensitive to parameter d.
At last, we investigate the scalability of the MRPNE algorithm. Figure 5

reports the speed up ratio w.r.t. the number of threads on the Kindle data set.
It shows good parallel performance. That is to say MRPNE algorithm is quite
scalable.

5 Conclusions

This paper presents a novel multi-relational product network embedding model
called “MRPNE”. We carefully design objective functions which can handle com-
plex product network containing different types of edges. Experimental results on
multiple tasks prove the efficiency and effectiveness of MRPNE. In the future, we
plan to investigate the general embedding method for heterogeneous information
networks, which contains multiple types of not only edges but also vertices.
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Abstract. Invulnerable metro systems are essential for the safety and
efficiency of urban transportation services. Therefore, it is of significant
interest to systematically assess the vulnerability of metro systems. To
this end, in this paper, we assess the vulnerability of metro systems with
a data-driven framework in which dynamic travel patterns are consid-
ered. Specifically, we use effective attack strategies based on the topol-
ogy structure of metro networks. The network structure depends on
not only connectivity among metro stations but also dynamic passenger
flow patterns. Thus, two data-driven metrics, satisfaction rate (SR) and
satisfaction rate with path cost (SRPC), are proposed to quantify the
vulnerability of metro networks after our attack strategies. Finally, we con-
duct experiments on Shanghai metro system. The results indicate that
the metro system is vulnerable to malicious attacks while it shows strong
robustness to random failures. Our results also highlight weak-points and
bottlenecks in the system, which may bear practical managerial impli-
cations for policymakers to improve the reliability and robustness of the
metro systems and the public transportation services.

Keywords: Metro systems · Network vulnerability · Node centrality
Travel patterns · Dynamic networks

1 Introduction

With the rapid development of the economy, public infrastructure such as metro
system has played an essential role in public transportation services for large
cities. Due to the severe and ever-increasing traffic pressure in the metropolis,
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more and more passengers consider the public transportation services especially
the metro system as their primary choices for short-distance travels. For instance,
the daily ridership of Shanghai metro system is about 10 million on average, and
the annual ridership was 3.4 billion in 20161.

Developing at such a rapid pace, metro systems are facing new challenges and
requirements on providing secure, reliable, and sustainable services. A number
of attacks at city metro systems have occurred in the past few years around
the world. Therefore, analyzing the vulnerability of metro systems will help
policymakers and urban administrators to develop and operate metro systems
in a well-informed way. In particular, the vulnerability analysis for a city metro
network provides us with a better understanding of the robustness of the system
in the case of unexpected events.

In this paper, we develop a data-driven framework to assess the vulnerability
of metro systems based on dynamic topology structure of metro networks. To be
specific, we construct the metro network and measure the vulnerability of the
network under different ridership distributions. We develop the framework on
the basis of various attack strategies and spectral analysis of network centrality.
Particularly, we develop a weighted subgraph centrality method to incorporate
dynamic passenger flow patterns. Further, we propose two data-driven metrics
based on dynamic ridership data to quantify the vulnerability and the trans-
portation efficiency of metro systems. With our framework, we can analyze the
vulnerability of metro systems not only from the static topology perspective but
also by incorporating dynamic travel patterns.

In the empirical study, we use Shanghai metro system and the daily ridership
data to evaluate our framework. The Shanghai metro system, established in
1993, is now the world’s largest urban metro traffic system measured by route
length. Up to present, Shanghai urban metro system consists of 14 lines (not
including magnetic lines) and covers 13 municipal districts with the total route
length of 617 km. Our results indicate that the metro system is vulnerable to
malicious attacks while it shows strong robustness to random failures. A detailed
analysis based on our results provides policymakers and urban administrators
with practical managerial implications to improve the reliability and robustness
of the metro systems and the public transportation services.

The rest of our paper is organized as follows. Section 2 introduces related
works about vulnerability assessment mainly from the view of topology struc-
tures of metro networks. Section 3 describes our framework with three parts:
attack strategies, subgraph centrality, and vulnerability metrics. Finally, we
present experimental results in Sect. 4 and conclude our work in Sect. 5.

2 Related Work

Network vulnerability has been the focus of research in various fields [1–4,6–
10,16]. As one of the pioneering studies on network vulnerability, Albert and

1 http://www.shmetro.com/.

http://www.shmetro.com/
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Barabási [1] studied the robustness of two real networks under malicious attacks
and random failures, and showed that the scale-free networks were more vulnera-
ble to intentional attacks. Holme [7] et al. adopted four different attack strategies
based on network betweenness to evaluate the vulnerability of the Internet and
interpersonal relationship networks. As the transportations around us can be
easily modeled with networks, many scientists introduced the vulnerability con-
cept into the transportation field. Jenelius and Mattsson [9] analyzed the road
network vulnerability and argued that an event which happened locally may
spread on the network thus lead to serious disasters. Berche et al. [2] used two
ways to construct the transportation networks, and then studied the resilience of
public transportation networks by simulating different attack strategies. Derrible
[3] looked at 33 metro systems and used theoretical network methods to analyze
the robustness of metro systems. Jenelius and Cats [8] evaluated the network
robustness with the consideration of passenger welfare under disruptions after
adding new links to networks.

Those studies mentioned above mostly analyzed network vulnerability from
the static view of network topology. However, transportation network structures
often change with dynamic ridership distributions and passenger travel patterns.
A network with different ridership distributions may bear different vulnerabilities
and inefficiencies when faced with unexpected changes in the network topology.
Therefore, in this paper, we study the problem of vulnerability assessment for
transportation systems based on dynamic network structure.

3 Vulnerability Assessment Framework

One straightforward and effective approach to vulnerability assessment of a net-
work system is to conduct a variety of attacks and measure the attack impacts
on the network system. Obviously, implementing this approach in real-world is
often too costly to be feasible. For example, disrupting the metro networks in
cities could lead to social and economic losses of a large population. Therefore,
in this paper, we develop a data-driven framework to simulate both random and
malicious attacks on the network system, then estimate the attack impacts using
vulnerability metrics.

3.1 Attack Strategies

The attack strategies basically fall into two types: random failure and malicious
attack [12,18]. These two kinds of attacks are carried out by removing the nodes
(e.g., metro stations) and all the edges linked to the nodes. The malicious attack
aims at destroying the most important nodes so as to paralyze the functionality
of the whole network (e.g., a metro system) to the greatest extent [11,15,17].
The random failure is specified as the dysfunction which results from the failures
on some nodes with a random probability [15]. In this work, we adopt these
two strategies to randomly and intentionally paralyze (remove) network nodes
respectively. For malicious attacks, we target a set of important nodes, where
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the importance of each node is measured by subgraph centrality [5]. Particularly,
we develop the weighted subgraph centrality by incorporating dynamic ridership
distributions.

3.2 Subgrpah Centrality

Prior to malicious attacks, a crucial step is to measure the centrality of each sta-
tion and identify the hubs. Several measurements, such as degree and between-
ness, are usually adopted in many studies [2,15]. However, Yan et al. [14] argued
that the measurement based on spectral method is a better indicator for network
analysis, as it contains abundant characteristics of networks [13]. Therefore, in
our study, we adopt a spectral method – subgraph centrality [5] to calculate the
importance of each station.

The subgraph centrality is an improvement of degree centrality, and it better
explains the centrality from the view of the topology of a network. It deter-
mines the importance of each node on the basis of its participation to the local
subgraphs. Specifically, it is defined as the sum of closed walks that start and
end at a certain node. Each closed walk represents a connected subgraph of the
network, and a weight is assigned to it as smaller subgraph gets a higher weight.
Thus, the centrality of a node can be measured by counting the sum of the dif-
ferent subgraphs that the node participates in, and smaller subgraph adds more
importance to the node. The subgraph centrality is defined as follows:

SC(i) =
∞∑

k=0

μk(i)
k!

(1)

μk(i) = (Ak)ii (2)

where μk(i) denotes the number of closed walks that start and end at node i

through k steps. To avoid the case that
∞∑

k=0

μk(i) diverges, it is divided by the

factorial of length k. (Ak)ii is the i-th diagonal element of the k-th power of
adjacency matrix A of a network.

Lemma 1. Given an undirected network G(V,E), where V is the set of N nodes
and E denotes L edges. The upper bound of the subgraph centrality for each node
i in V is:

�SC(i)� = eλmain

where λmain is the main eigenvalue of adjacency matrix A of network G.

Proof. The network G is an undirected graph and thus adjacency matrix A is a
symmetric matrix. Therefore, the eigen decomposition for A can be written as:
A = QΛQT , where Q is an orthogonal matrix (the orthonormal basis) with real
and normalized eigenvectors q1, q2, ..., qN of A. The corresponding eigenvalues
are λ1, λ2, ..., λN and the diagonal matrix is written as Λ = diag(λ1, λ2, ..., λN ).
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Thus we can obtain Ak = QΛkQ and Λk = diag(λ1
k, λ2

k, ..., λN
k), so (Ak)ii =

‖qi‖22 λk
i . As qi is an orthogonal and normalized real eigenvector, we can obtain

‖qi‖22 = 1 and (Ak)ii = λk
i thus SC(i) =

∞∑
k=0

(Ak)ii
k! =

∞∑
k=0

λk
i

k! . Based on Maclaurin

series, it turns to:
∞∑

k=0

λk
i

k! = eλi . Thus we arrive at SC(i) = eλi ≤ eλmain .

Mathematically, the subgraph centrality can be calculated from the spectra
of the adjacency matrix of the network, as shown in Theorem 1.

Theorem 1. Let RN be the space generated by the eigenvectors of the adjacency
matrix A, and (q1, q2, ..., qN ) be the orthonormal basis of space RN . qj denotes
an eigenvector corresponding to the eigenvalue λj and qj(i) is the i-th element
in qj. Thus, the subgraph centrality SC(i) can be obtained by:

SC(i) =
N∑

j=1

[qj(i)]
2
eλj (3)

Furthermore, in this paper, we not only measure the centrality based on static
network topology, but also propose a weighted measurement by incorporating
the ridership distribution. That is, the dynamic ridership matrix W is considered
in the measurement instead of the adjacency matrix A. Thus, we modify SC to
a weighted one – WSC, which is described as follows:

WSC(i) =
N∑

j=1

[qwj(i)]
2
eλwj (4)

where (qw1, qw2, ..., qwN ) are the eigenvectors corresponding to the eigenvalues
(λw1, λw2, ..., λwN ) of the normalized weight matrix W̃ which is obtained by
normalizing the original ridership matrix W using min-max scaling:

W̃i,j =
Wi,j − min(W )

max(W ) − min(W )
(5)

where element Wi,j means the number of passengers who have to go through the
edge between stations i and j to achieve their destinations.

3.3 Vulnerability Metrics

The attacks (i.e., the removal of stations) will usually have a significant impact on
the metro system operation. Thus, we define vulnerability metrics by quantifying
such an impact on the vulnerability of the metro network. Specifically, we use
the real ridership data to define the evaluation metrics. To this end, we assume
that all passengers choose the shortest paths as their travel paths from the start
stations to the destination stations. After the attacks, the passengers will cancel
their travels by metro if: (i) the length of the new travel path is n stations more
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than the path before; or (ii) there is no way to connect the source and destination
stations.

On the basis of the assumptions, we can estimate the number of travels
(ridership) which are not influenced by the attacks, as defined by satisfaction
rate (SR):

SR =
M − C

M
=

∑
i,j∈G′,i �=j

I(i, j) × ri,j

∑
i,j∈G,i �=j

ri,j
, (6)

where

I(i, j) =

{
0 if l′(i, j) − l(i, j) > n

1 otherwise
. (7)

Note that, M is the total ridership and C is the sum of cancelled travels. G and
G′ are connected graphs of the original metro network and the network after
attacks, respectively. ri,j is the number of ridership that gets on at i and gets off
at j. l(i, j) measures the length of shortest path between i and j in G. According,
l′(i, j) is the shortest path length calculated in the network G′ after attacks. In
other words, I(i, j) is the indicator function that indicates whether the new path
length between station i and j is n or above longer than that before attacks.

The satisfaction rate (SR) effectively quantifies the changes in ridership due
to the attacks on the metro network. However, different ridership often bears dif-
ferent travel cost, as measured by the length or the number of stations travelled
by the passengers. To incorporate the travel cost in evaluating the network vul-
nerability, we define the satisfaction rate with path cost (SRPC), which combines
the length of the shortest path and the ridership on the same path:

SRPC =

∑
i,j∈G′,i �=j

I(i, j) × ri,j × l′(i, j)
∑

i,j∈G,i �=j

ri,j × l(i, j)
(8)

Both SR and SRPC can be regarded as the efficiency of a metro system,
as they estimate to which level the metro system can satisfy the demand of all
passengers with efficient transportation services.

4 Experimental Analysis and Discussion

4.1 Data Preprocessing

In 2016, Shanghai Government Data Service Website2 released several types of
public transportation data, including the transaction data of public transporta-
tion cards generated in April 2015. The sensitive personal information has been
kicked out in the transaction, and it mainly records the elements as: {card ID,
date, time, station, amount and type of transportation}. According to this data,

2 http://www.datashanghai.gov.cn/.

http://www.datashanghai.gov.cn/
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Fig. 1. The left panel shows the subgraph centrality (SC) for each numbered station,
and the right one shows the cumulative distribution function (CDF) of SC values.

we first extract the transactions made on the metro system. As a cardholder
only have to swipe the card when getting in and getting out of the metro sys-
tem, we tease out the travel routes based on the records of stations over time
for every cardholder. So each pair of stations ordered by time is regarded as one
travel and the shortest path between them is the travel route. Thus the rider-
ship on one travel route can be easily obtained by summing up the same pairs of
source and destination stations from different cardholders. The map of Shanghai
metro network operated in 2015 can be referenced from the website of Shanghai
Metro3.

4.2 Topological Properties of Metro Network

To give an overall understanding of Shanghai metro, some basic topological
characteristics of the network are concluded. Firstly, the metro network is con-
structed as an undirected graph, in which the nodes represent the stations and
the links mean that the two connected stations are neighbors. Then we calculate
the characteristics, and there are 289 stations and 322 edges within the network.
The diameter (the longest shortest path) of the network is 42. The average short-
est distance 〈l〉 is 15.294 and the average degree 〈k〉 is 2.228, which means most
of the stations are normal stations.

Prior to malicious attack simulations, we use the subgraph centrality (SC)
to evaluate the importance of each station based on the network topology. The
SC results and the cumulative distribution function (CDF) are shown in Fig. 1.

The left figure in Fig. 1 shows the SC values for the stations, and the values
of most stations are concentrated in 2.0–2.5. The CDF indicates that nearly
90% stations are with an SC value lower than 4. Afterwards, we pick up the
top-10 important stations as the targets of malicious attack. These stations are
Century Ave. (SC = 9.166), Xujiahui (SC = 8.052), People’s Square (SC =

3 http://service.shmetro.com/en/.

http://service.shmetro.com/en/
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Fig. 2. The top-10 influential stations of Shanghai metro system.

6.642), Shanghai Indoor Stadium (SC = 6.291), Yishan Rd. (SC = 5.499), Longde
Rd. (SC = 5.218), Jinshajiang Rd. (SC = 5.181), Caoyang Rd. (SC = 5.069),
Oriental Sports Center (SC = 5.038) and Longyang Rd (SC = 4.978). Figure 2
depicts the locations of these important stations with red circles. As can be seen
from Fig. 2, these stations are located in every direction of the city and they are
indeed the important transfer stations in reality. Besides, these stations are all
on the edge of downtown areas and serving as the connecting stations between
suburban and downtown.

4.3 Vulnerability Analysis and Travel Patterns

Since most lines of Shanghai metro open at 5:30 and close at 23:30, we aggregate
the ridership within every three hours from 3:00 to 24:00 for each day. Thus there
are 7 aggregated periods on each day and totally 210 periods in April.

The ridership (upper panel in Fig. 3) presents a periodic pattern over time,
with rush commuting hours from 6:00 to 9:00 and from 18:00 to 21:00 on every
day. However, during the weekends and holidays (April 6th is the Tomb-sweeping
Festival of China), the ridership has fallen by half and the rush hours turn to
the period from 12:00 to 15:00. To analyze the vulnerability of each time period,
we simulate the two attack strategies as described before on the metro system.
Firstly, we suppose that the travel will be cancelled if the new shortest path is
n = 5 (or above) stations longer than before. SR and SRPC are used to indicate
the vulnerability of the metro system after attacks. In malicious attacks, we
mainly attack and remove the top ten stations which are measured by subgraph
centrality (SC). While in random failures, we randomly remove ten stations to
calculate the vulnerability metric values and repeat this for ten times. Thus the
results for random failures are averaged from ten simulations. The results are
shown in the middle and bottom figures of Fig. 3.
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Fig. 3. The top panel shows the ridership aggregated for every three hours from 3:00
to 24:00 of every day in April. The lower two ones show the vulnerability ratios of the
metro network after malicious attacks and random failures, respectively.

As can be seen from the middle figure of Fig. 3, SR metric indicates that
the metro network appears to be extremely vulnerable to the malicious attacks.
Only nearly 50% travels can be still carried on the metro, and the delivery
efficiency indicated by SRPC is about 40%. However, from the bottom figure in
Fig. 3, the metro network shows strong robustness to random failures. SR metric
illustrates that about 90% travels can be satisfied after random failures, and
SRPC shows that the delivery efficiency of the metro system reaches 80%. Two
metrics both indicate that the most robust period is from 21:00 to 24:00 for each
day after malicious attacks and random failures. Whereas, the weakest period is
the morning rush-hour from 6:00 to 9:00, as this period is always with the lowest
vulnerability value.

To better understand the correlation between the absolute amount of rider-
ship and vulnerability, we pick out the ridership data during the period from
6:00 to 9:00 for each day and the corresponding SR and SRPC values. As shown
in Fig. 4(a), SR and SRPC are positively correlated with the ridership after both
random failures and malicious attacks.

Besides, the vulnerability results from two metrics exhibit a strong correla-
tion after both random failures and malicious attacks. The reason for this phe-
nomenon can be explained by the definitions of these two metrics. SR mainly
considers how many travels are not affected by the attacks, while SRPC focuses
on the delivery efficiency of the metro system rather than simply considers the
number of the travels. In addition, as can be seen from Figs. 3 and 4(a), SRPC
is always lower than SR after all kinds of attacks. This means the travels with
length shorter than the average make up the majority of the unaffected trav-
els, and the long-distance travels are more likely to be affected and cancelled by
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Fig. 4. (a) The correlation between ridership and vulnerability. (b) The upper one
shows the number of unaffected and cancelled travels after malicious attacks. The
lower one calculates that average distance for these two kinds of travels.

attacks. Specifically, to prove this, we further separately aggregate the unaffected
travels and cancelled travels after malicious attacks and then calculate the aver-
age distance (the number of stations) of these two kinds of travels. Figure 4(b)
indicates that the average distance of the cancelled travels is longer than that
of the unaffected ones in all periods. Plus, another interesting travel pattern is
that the people who travel from 3:00 to 6:00 (actually 5:30 to 6:00) always have
relatively longer travel routes.

Table 1. The time periods for weekday and rest-day.

Weekday Rest-day

Period 1 5:00 a.m–11:00 a.m Period 5 5:00 a.m–1:00 p.m

Period 2 11:00 a.m–5:00 p.m Period 6 1:00 p.m–8:00 p.m

Period 3 5:00 p.m–8:00 p.m Period 7 8:00 p.m–11:00 p.m

Period 4 8:00 p.m–11:00 p.m

Due to the dynamic passenger flow, the metro network can be seen as a
weighted one and its structure changes over time with the passenger flow. There-
fore, the ridership should be considered when measuring the centrality of each
station. As can be seen from Fig. 3, the peak of the ridership appears in differ-
ent periods on rest-days (weekends and holidays) and weekdays. The peaks are
always the rush-hours in weekdays, while in rest-days the peaks appear at period
12:00 to 15:00. To incorporate these facts, we re-aggregate the travels data to
several periods for weekdays and rest-days separately, as shown in Table 1. This
division of the periods is in accordance with our understanding of the daily traf-
fic flow. The Period 1 and Period 3 are the morning and evening rush hours on
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Fig. 5. The SR and SRPC results of dynamic malicious attacks on the last seven
weekdays and two rest days in April, 2015.

weekdays. Thus the important stations in these periods may be different from
Period 2 and Period 4 when considering the dynamic distribution of passengers.

We firstly calculate the average weight matrices for each of the seven periods
based on the travel data of the first 21 days. The fourteen weekdays are used to
calculate the average ridership matrices W1,W2,W3 and W4 for the four periods
on weekdays. The seven rest-days (one holiday and three weekends) are used
to calculate the matrices W5,W6 and W7 for the three periods in rest-days.
Afterwards, we use the proposed weighted subgraph centrality WSC to measure
the top-10 stations for each of these seven periods. Last, the malicious attack
strategy as described before is simulated on the seven periods of the remaining
nine days (including seven weekdays and two rest-days). The results for dynamic
malicious attacks are shown in Fig. 5.

As can be seen from it, on weekdays, more than half of the passengers have
to cancel their travels on the metro after the dynamic attacks in every period. In
each weekday, Period 1 seems the most robust period of the whole day. However,
according to the SR results on two rest-days, every period presents almost the
same vulnerability. But SRPC results show that Period 7 (8:00 p.m– 11:00 p.m.)
has relatively stronger robustness on delivery efficiency when compared with the
other two periods in rest-days.

5 Conclusion

We assess the vulnerability of metro system based on the dynamic network struc-
ture and travel patterns. Specifically, we develop a framework combining a series
of attack strategies and two vulnerability metrics based on dynamic ridership
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data. By incorporating the ridership, we further develop a weighted subgraph
centrality and simulate a dynamic malicious attack strategy. We conduct the
empirical study on Shanghai metro system, and the results indicate that the
metro system is vulnerable to malicious attacks while it shows strong robustness
to random failures. Our results also high-light weak-points and bottlenecks in
the system, which may bear practical managerial implications for policymakers
to improve the reliability and robustness of the metro system. In the future, we
will deploy our vulnerability analysis on more metro systems.
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Abstract. Visual relation, such as “person holds dog” is an effective
semantic unit for image understanding, as well as a bridge to connect
computer vision and natural language. Recent work has been proposed
to extract the object features in the image with the aid of respective tex-
tual description. However, very little work has been done to combine the
multi-modal information to model the subject-predicate-object relation
triplets to obtain deeper scene understanding. In this paper, we propose
a novel visual relation extraction model named Multi-modal Translation
Embedding Based Model to integrate the visual information and respec-
tive textual knowledge base. For that, our proposed model places objects
of the image as well as their semantic relationships in two different low-
dimensional spaces where the relation can be modeled as a simple trans-
lation vector to connect the entity descriptions in the knowledge graph.
Moreover, we also propose a visual phrase learning method to capture the
interactions between objects of the image to enhance the performance of
visual relation extraction. Experiments are conducted on two real world
datasets, which show that our proposed model can benefit from incorpo-
rating the language information into the relation embeddings and provide
significant improvement compared to the state-of-the-art methods.

Keywords: Visual relation extraction · Multi-modal network
Translation embedding

1 Introduction

Knowledge graph contains abundant semantic relation information from multi-
relational data, which is essential for reasoning and question answering. Multi-
modal knowledge graph needs to extract more information from multi-modal
data. Recently, many visual question answer and image captioning tasks attempt
to make machine understand the sematic information in image and language.
However ,most existing efforts only do a coarse scene-level understanding, but
fall short in modeling and understanding the relationships among objects. As a
result, visual relation detection task is receiving increasing attention [1–3]. The
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complex compositional structure of language makes problems at the intersection
of vision and language challenging.

But language also provides a strong prior for image understanding. We pro-
pose a multi-modal framework to learn sematic information from language as
well as extracting the relations between objects in images.

Recently, the Visual Translation Embedding Network is proposed for this
task [1]. Using relational representation learning of knowledge bases [4], VTransE
assumes embeddings of entities and relations being in the same space R

k and
wants h+r ≈ t when triplet (h, r, t) holds. We discuss some mapping properties of
relations which should be considered in embedding, such as 1-to-N, N-to-1, and
N-to-N. We note that VTransE does not do well in dealing with these properties.
In image relation detection, there are more cases like this than Knowledge graphs
such as “person-ride-horse”, “person-ride-bike”. Hence, we introduce TransR [5]
to improve VtransE. TransR models entities and relations in distinct spaces. i. e.
, entity spaces and multiple relation spaces (i.e., relation-specific entity spaces),
and performs translation in the corresponding relation space. For example, there
are person+ride ≈ bike and person+ride ≈ horse in “ride” space, but in “push”
space person is not usually “push” a horse while person+push ≈ bike still holds.

Human have the remarkable ability of understanding image, because we can
accumulate a lot of knowledge from free text. Inspired by this, we propose an
extension to relation detection by adding an extra language module. We utilize
pre-trained word vectors to help the model learn the similarity of relations from
free text which allows our model to address zero-shot relations. For example, in
word vectors space, horse and elephant are semantically similar, “person-ride-
elephant” can be inferred by “person-ride-horse” , even though “person-ride-
elephant” is not in the training set. Language prior also has been used to select
visual attention. It suppresses non-relevant stimuli present in the visual field,
helping model search for “goals”.

In this work, we present a multi-modal framework for visual relation detec-
tion. For that, we first propose a novel visual relation extraction model to inte-
grate the visual information and respective textual knowledge base, which places
objects of the image as well as their semantic relationships in two different low-
dimensional spaces where the relation can be modeled as a simple translation
vector to connect the entity descriptions in the knowledge graph. Moreover, we
also propose a visual phrase learning method to capture the interactions between
objects of the image to enhance the performance of visual relation extraction.
We then evaluate our model on two public benchmark visual relation datasets:
Visual Relationship Dataset [2] and Visual Phrase Dataset [3]. We show that our
model significantly outperforms several state-of-the-art visual relation models in
visual dataset detection and zero-shot learning.

2 Related Work

Recently, the development of deep learning makes AI technology by leaps and
bounds. Some tasks require multi-modal knowledge beyond a single sub-domain,
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Fig. 1. An illustration of the architecture of our model. Given an image as input,
Faster-RCNN outputs a set of detected objects. Then, every pair of objects and word
embeddings are fed into relation prediction module.

Input Image RoI Feature Phrase Feature

Fig. 2. The difference between relation feature and phrase feature. The ROI feature
treats two objects as two separate pictures.Visual phrase feature put the two objects
in one picture.

such as VQA [6], image captioning [7], and complex query retrieval [8] target-
ing for “AI-complete” is still a difficult and open research problem. Our work is
expected to produce a generalized semantic understanding of the image to under-
pin high-level vision-language tasks. Visual relation is not a new concept, Lu [2]
build a dataset with millions of types of relationships. They present a “visual
appearance and language module” modeling visual and language information
respectively that can learn to detect visual relationships. Zhang [1] proposed
an end-to-end relation detection network named as VTransE which models the
visual relationships by TransE [4] and object detection. In particular, our method
draws on recent Knowledge Graph Embedding and language module.

2.1 Knowledge Graph Embedding

Knowledge graph with multi-relational data is a very important tool for many
high-level tasks, such as QA and retrieval. To complete a knowledge graph, we
need to predict what kind of relationship between the two entities. Recently,a
promising approach to solve this task is embedding entities and relationships in
the knowledge graph in low-dimensional vector spaces.
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TransE [4] represents relations and entities in low-dimensional spaces. For
triplet (h,r,t), TransE wants h + r ≈ t. This makes t the nearest neighbor of
h + r. To learn such embeddings, TransE assumes the score function:

Fr = ||h + r − t||22 (1)

is low if (h,r,t) holds, and high otherwise. TransE works well in 1-to-1 relations,
but still has issues in 1-to-N, N-to-N and N-to-1 cases.

TransR [5] assumes that relations and entities are not in the same space.
Each relation has its own space, when computing similarity between relation
and entity, we should project embedding of entities to relations space firstly.
This can address the issues in TransE.

2.2 Visual Relation Detection

Some papers explicitly collected relationships in images [9–13] and videos [11,14,
15] and helped models map these relationships from images to language. There
are some explicit relation models [3,9,16,17] which define a unique triplet (h,r,t)
as a class. But in real world images, there is a long tail property of infrequent
relationships. Therefore, separate model [1,2,18–20] which model objects and
relations individually may perform better. Inspired by VTransE, which combines
visual detection and large-scale knowledge representation [4,5], we propose a
Multi-modal model to address some issues in VTransE.

Visual relation detection is based on object detection. R-CNN [21] com-
bines selective search region proposals and convolutional network based post-
classification brings a dramatic improvement in object detection. Fast-RCNN
[22] and Fatser-RCNN [23] improve R-CNN in a variety of ways. In particular,
we use Faster-RCNN to provide candidates of entity for relation detection.

3 Method

We propose a multi-modal framework to extract semantic relations between
objects in an image. As illustrated in Fig. 1, our multi-modal framework con-
sists of three parts:Objects Detection Module, Visual Phrase Attention Mod-
ule,Translation Embedding Module. In Objects Detection Module, we detect a
set of objects D = {xn}Nn=1 and visual phrase feature I = {In}Mn=1 for the
next two parts. Afterwards, we have projection matrices U and W which project
objects and word embeddings to the same space. Visual Phrase Attention Mod-
ule and Translation Embedding Module incorporate the visual information with
the word embeddings. In Translation Embedding Module, a set of relation matrix
M = {Mr1,Mr2, ...,Mrk} is defined to construct relation spaces.

Word embeddings are distributed representations of words that map each
word in texts to a low-dimensional vector. Many works have shown its power in
many NLP tasks. we also use pre-trained word vectors [24] to cast relationships
into a vector space where similar relationships are optimized to be close to each
other.
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4 Objects Detection Module

Our framework is based on an object detection module composed of a region
proposal network (RPN) and a classification layer.In practice, we use Faster-
RCNN [23]) with the VGG-16 architecture to extract RoI from images. After
that, we use a hierarchical structure to incorporate visual and semantic features
to retain the objects’ similarity in the word embedding space.

5 Visual Phrase Attention Module

We propose an attention structure incorporating the word embeddings into visual
information which helps the model focus on objects interested. And we use visual
phrase feature to extract more information to describe visual relation between
two objects in an image. Visual phrase has shown benefit to improve object
detection, i. e., detecting “a person riding a horse” improves the detection and
localization of “person” and “horse” [3]. The difference between visual phrase
and visual relation can be seen in Fig. 2. The RoI feature extracts the visual fea-
tures of the detected individual object, and the visual phrase extracts the two
objects that may be related as an interactive whole. We believe that a complete
visual phrase contains more information about the interaction of two objects,
while a single object feature can only provide graphic features of objects and
ignoring the relationship. We argue that the complete visual phrase can describe
interactions between objects while RoI pooling features of individual object only
contains graphic information. As in Wang’s work [25], we also use word embed-
dings to help model search for interactions between objects. Experiment shows
that the framework can focus on the corresponding object regions when predict-
ing relations.The score of visual phrase is defined as:

Sp,s,o = δ(Up(word2vec(o) ◦ word2vec(s)) + UII) (2)

where δ(.) is an activation function, ◦ means concatenate two vectors, Up and
UI are the projection matrices for word2vec and visual phrase representation
respectively, and I denotes visual phrase feature extracted by objects detection
module.

6 Translation Embedding Module

We introduce TransR to address the issue of embedding space in VTransE [1]
and we also improve on VTransE by leveraging language priors from pre-trained
word embeddings.

VTransE transfers TransE in the visual domain. For triplet subject −
predicate − object, VTransE wants to model the entities and relations within
the same space R

k as vectors h, r and t which h+r ≈ t. TransE will encounter a
lot of problems when modeling 1-N, N-1 and N-N’s relationships. For example,
because there are “person-ride-bike” and “person-ride-horse” in the real world,
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there should be person + ride ≈ bike and person + ride ≈ horse which makes
the vectors of horse and bike very similar. However, when the relation becomes
“push”, the translation becomes person+push ≈ bike �= horse. This will confuse
our model and hinder the convergence of the model. We introduce TransR to
solve the issue of embedding space in VTransE. In our model, we embed objects
and relations respectively. When performing translation, we project objects from
object space to relation space.

In the visual relation problem, we extract visual features xs, xo ∈ R
M from

subject-predicate-object in an image which are deep learning features provided by
Objects Detection Module. We should learn a relation translation vector r ∈ R

d

and projection matrices Us,Uo ∈ R
r×M. With word embeddings, we extend

object embedding as:

h = δ(Usxs ◦ Wsword2vec(s)), t = δ(Uoxo ◦ Woword2vec(o)) (3)

where ◦ denotes vector concatenation. we define triple as (h, r, t), h, t ∈ R
k are

objects embeddings and relation embeddings is set as r ∈ R
d. For each relation

r, we set a projection matrix which projects objects embedding to relation space
as Mr ∈ R

k×d. Thus, in r’s relation space, triplet relation can be represented as:

hr,s = hMr, tr,o = tMr (4)

The score function is correspondingly defined as:

Sr,s,o = ||hr,s + r − tr,o||22 (5)

Scoring and Testing. Following VTransE, instead of using large-margin metric
learning, we use score only rewards the valid relations r ∈ R, R is the set of
relations. We replace Eq. 6 with Eq. 5.:

Sr,s,o = r(hr,s − tr,o) (6)

We define score of relations as:

Sr,p = softmax(W(Sr,s,o + Sp,s,o)) (7)

W projection matrices. We use softmax to calculate the score of relationship
prediction, inputting a set of training images containing three tuples (h, r, t)
and the object bbox. The model will optimize all the parameters according to
the loss function.When testing, for every input image, we use our learnt model
to predict all visual relationships (h, r, t) in an image using:

Sh,r,t = (1 − α)(Sh + St) + αSr,p (8)

Sh and St are the objection detection scores. α is hyper-parameter that were
obtained though grid search to maximize performance on the validation set
(Fig. 3 and Table 2).
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Table 1. Comparison to related work in phrase, relation, predicate detection on VRD.
Some of results are from [1,2]

Dataset VRD

Task Phrase det. Relation det. Predicate det.

Metric R@50 R@100 R@50 R@100 R@50 R@100

Joint CNN 0.07 0.09 0.07 0.09 1.47 2.03

Visual Phrase [3] 0.04 0.07 - - 0.97 1.91

Lu-VLK [2] 16.17 17.03 13.86 14.70 47.87 47.87

VTransE [1] 19.42 22.42 14.07 15.20 44.76 44.76

VTransR 21.55 24.22 15.10 16.11 49.32 49.32

VTransR with WEF 22.35 25.10 15.97 16.89 51.01 51.01

VTransR with VPF 22.19 24.96 15.74 16.71 50. 8 50.88

Full Model 22.57 25.33 16.08 17.30 51.71 51.71

Fig. 3. Qualitative results of our model in VRD testing set. We show result of relation
detection with top 4 detections. Red borders denote incorrect results. (Color figure
online)

7 Experiments and Analysis

7.1 Datasets and Metrics

Datasets. We conduct experiments on two popular benchmark datasets:Visual
Relationships dataset(VRD) [2], and Visual Phrases dataset(VPD)
[3]. VPD contains 2,769 images with 5,067 bounding-box annotations and
17 kinds of visual phrases. VRD contains 5000 images with 37,993 triplets
subject − predicate − object, 6,672 kinds of relations and 24.25 predicates per
object category. There are 1,877 relationships for zero-shot task which only occur
in test set.

Metrics. We also use the evaluation metrics in [1,2]. In relation detection task
we use recall@50 and recall@100. R@K represents the accuracy of the pre-
dicted relationships in the top K confident predictions in a image.
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7.2 Comparison with State-of-the-Art

Because visual relationship detection includes two subtasks objects detection and
relation prediction, we train three models in both VRD and VPD for predicate,
phrase and relationship detection. Predicate detection allows us to study how
difficult it is to predict relationships without the limitations of object detection.

Comparing Models. We compare our model with previously published meth-
ods and we get a new state-of-the-art in all the three tasks. And we further
conduct a set of ablation studies to understand how each component affects our
model in relation detection. (1) Joint CNN. We train a CNN model [26] to
predict the three components of a relationship together. (2) Visual Phrase. A
joint relation model [3] that treats a triplet as an individual class. (3) Lu’s-VLK.
A two-stage separate model [2] that combines Lu’s Visual Appearance Module
and language priors. (4) VTransE. An end-to-end relation detection network
[1] with embedding translation and feature extraction layer. (5) VTransR. We
only use the detection model with multi-space embedding translation described
in Eq. 6 by optimizing Lrel. (6) VTransR with word embeddings. We use
both VTransR model and word embeddings feature (Eq. 3). (7) VTransR with
visual phrase. We use both VTransR model and visual phrase feature (Eq. 2).
(8) Full Model. This is our full model. It contains the TransR (Eq. 6), word
embeddings feature (Eq. 3) and visual phrase feature (Eq. 2).

Results. Visual Phrases [3] and Joint CNN [26] treat a triplet object1 −
predicate − object2 as an individual relationship, the number of their classes
is 6,672(there are 6,672 unique relationships in training set of VRD). Because of
the long tail of infrequent relationships, there are insufficient samples to train
good parameters. Therefore, both of them perform poorly in all the three tasks
(Table 1). Lu’s-VLK [2], VTransE [1] and VTransR are separate relation models,
they work well in VRD. Using position feature, VTransE outperforms Lu’s-VLK
in relation and phrase detection. However, the language priors help Lu’s-VLK
work better in predicate classification. Word2vec brings sematic similarity from
free text, person can ride a horse, so the elephant may be ridden too. VTransR
improves the ability when modeling N-to-1, 1-to-N and N-to-N relations and gets
some improved in R@100 and R@50. Word embeddings provide language priors
like lu’s-VLK and visual phrase module get global feature from RoI of relations.
We infer that a person-taller-person with an image of two persons instead of two
persons in separated image. So the Full Model get about 1% improved in R@100
on relation detection. In VPD, there is less phrase than VRD, Visual Phrases
and Joint CNN are able to perform better. Full Model still shows its advantages
in this dataset.

7.3 Zero-Shot Learning

In the real world images, if we have N object types and R relations, the total
possible number of relationship predictions is N × R × N. It is difficult to build
a dataset with every possible relationship. Hence, zero-shot prediction is an
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Table 2. Comparison to related work in phrase, relation, predicate detection on VPD.
We evaluate the models for visual relationship detection on 12 phrases in VPD that
can be represented as a object1 − predicate− object2 relationship. Some of results are
from [2]

Dataset VPD

Task Phrase det.

Metric R@50 R@100

Joint CNN 49.3 52.7

Visual Phrase [3] 71.5 75.3

Lu-VLK [2] 78.1 82.7

Full Model 89.79 94.10

Table 3. Results for zero-shot visual relationship detection. Visual Phrases, Joint CNN
are omitted from this experiment as they are unable to do zero-shot learning

Dataset VRD

Task Phrase det. Relation det.

Metric R@50 R@100 R@50 R@100

Lu-VLK [2] 3.36 3.75 3.13 3.52

VTransE [1] 2.65 3.51 1.71 2.14

VTransR 3.01 3.67 2.11 2.86

Full Model 3.41 3.88 3.22 3.61

important task in visual relation detection to address the long-tailed relation
distribution.

In VRD, there are 1,877 relationships which only occur in test set(e. g.
elephant − standon − street). We compare our model with previous models
in zero-shot task in Table 3 for phrase and relationship detection.

We notice a huge drop in R@100 for all the task. For the purely visual models,
VTransR performs a little better than VTransE. Lu’s-VLK and our Full Model
which are multi-modal model with language priors outperform visual models,
because they can use sematic similarity from free text.

8 Conclusion

In this work we present a multi-modal framework to detect multiple visual rela-
tionships in a single image. We introduce the TransR network to address the
problem in VTransE model, and show its effectiveness for visual relationships
detection. We utilize a language prior and visual phrase feature to improve our
prediction, and outperform previous state of art on Visual Relation Dataset.
Future work on developing more sophisticated visual relationships models for
understanding image and apply it to more complex tasks such as visual question
answering will be conducted.
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Abstract. Precisely and efficiently anomaly detection over trajectory
streams is critical for many real-time applications. However, due to
the uncertainty and complexity of behaviors of objects over trajectory
streams, this problem has not been well solved. In this paper, we propose a
novel detection algorithm, called STN-Outlier, for real time applications,
where a set of fine-grained behavioral features are extracted from the
sub-trajectory instead of point and a novel distance function is designed
to measure the behavior similarity between two trajectories. Addition-
ally, an optimized framework(TSX) is introduced to reduce the CPU
resources cost of STN-Outlier. The performance experiments demonstrate
that STN-Outlier successfully captures more fine-grained behaviors than
the state-of-the-art methods; besides, the TSX framework outperforms
the baseline solutions in terms of the CPU time in all cases.

Keywords: Outlier · Sub-trajectory · Trajectory streams

1 Introduction

Today, the location-acquisition devices such as GPS and smart phone, moni-
toring the behaviors of vehicles and people, are generating massive-scale high-
speed trajectory streams. The applications like traffic management and security
surveillance, need continuously detect the abnormal objects from high volumes
of objects in such heavy data. Those abnormal objects such as drunk drive in
traffic management or espionage in security surveillance, whose erratic behaviors
are different from the majority in trajectory streams, must be detected efficiently
based on the behaviors over a period of time and reported in time. Even a short
time delay may lead to losses of huge funds.
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In existing studies, part of researchers use the techniques that normally are
machine learning to get the discriminative model using the global characteristics
of the dataset [3–8]. However, due to the concept drift in trajectory stream, which
means the behaviors of the target object change over time in unforeseen ways,
using one single pre-trained model to continuously detect outliers would lead
to inaccurate results; besides, rebuilding the model periodically would result in
expensive modeling costs for real-time applications. In addition, in a trajectory
stream populated with massive scale moving objects, the moving patterns of
high volumes of moving objects are more dynamic and complex than single
object. That is, the moving pattern of one object over trajectory streams with
a lot of objects is not suit to be modeled by the local continuity assumption
[1,2,9]. Considering the above challenges, Yu et al. [6] proposed a novel method
called TN-Outlier to detect the trajectory outliers over a real-time trajectory
stream. However, the work only used the spatial distance between trajectory
points to evaluate the relationships among trajectories. As a result, it is difficult
to distinguish the difference of behaviors of moving objects especially when they
are close to each other. Although the importance of continuously detecting such
types of outliers, this problem has not been well solved.

Because distance-based outlier is robust against concept drift and amenable
to swiftly evicting obsolete models of outlierness [16]; besides, many works
[4,13,14] used sub-trajectories instead of points to measure the trajectory simi-
larity and achieved better results, but they only considered the directional and
spatial differences between two sub-trajectories which is hard to capture the
detail differences of behaviors. In this paper, we propose a novel distance-based
outlier definition, called Sub-trajectory- and Trajectory-Neighbor-based trajec-
tory Outlier(STN-Outlier), to detect the complex abnormal behaviors in a tra-
jectory stream. The definition not only considers the behavioral approximation
of moving objects in a region, but also takes the duration of the behavioral sim-
ilarity across time into account. Specially, a novel distance function that com-
bines both the inter- and intra-trajectory features in an integrated manner is
designed to measure the fine-grained difference between two trajectories. Then,
a comprehensive framework, called the temporal and spatial-aware examination
(TSX), is introduced to efficiently detect the outliers over high volume trajectory
stream. The experimental studies on synthetic and real Taxi [6,10,11] datasets
demonstrate that the STN-Outlier successfully captures the deviating behav-
iors effectively over other state-of-the-art methods; besides, the TSX framework
outperforms the baseline solutions in terms of the CPU time in all cases.

2 Overview

2.1 Preliminary

We define the scenario of trajectory outlier detection. O = {o1, o2, . . . , on}
denotes a dataset composed of n observed moving objects. Each moving object
om ∈ O is represented as an infinite sequence of trajectory points Trm =
{p1m, p2m, . . . pi

m, . . .} at timebins {t1, t2, . . . ti, . . .}, where the term ”timebin” is
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referred to the smallest time granularity that ensures each trajectory has at
least one point fall into each bin. Given n moving objects, a trajectory stream
S is represented as n infinite sequences of trajectory points ordered by time-
bins S = {p11p

1
2 . . . p1n, p21p

2
2 . . . p2n, . . . , pi

1p
i
2 . . . pi

n, . . .}, where pi
1p

i
2 . . . pi

n are said
to fall into the same timebin i in S. Then, a periodic sliding window W with a
fixed window size w and slide length s is used to extract a finite sub-stream for
processing.

Additionally, we use the tuple (pi
m, pi+1

m ,fsi,i+1
m

) to represent a sub-trajectory
si,i+1

m of Trm, where fsi,i+1
m

is a feature vector collected by other devices.

2.2 Problem Formulation

In Fig. 1, according to [6] Tr6 is obviously recognized as an outlier since it changes
its neighbors frequently. On the contrary, Tr1 and Tr2 would be detected as
inliers, if they keep being neighbors, namely the Euclidean distances between
their points are less than d (a distance threshold) at all 6 timebins. Likewise,
Tr3−5 would be labeled as inliers w.r.t the same d. However, note that Tr3 whose
behavior is completely different from others should be detected as outlier not an
inlier even though its points are close to the points of Tr4 and Tr5.

Fig. 1. Six trajectories in a window with size w = 6. Outlier: Tr6, Tr3; Inlier:
Tr1, T r2, T r4, T r5

To describe the trajectory outliers, e.g. Tr3 in Fig. 1, classes of novel notions
of distance-based outliers are defined referring to the semantics [6].

Definition 1 (Sub-trajectory Neighbor). Given two sub-trajectories si,i+1
m

and si,i+1
n , they are said to be sub-trajectory neighbors if dist(si,i+1

m , si,i+1
n ) ≤

d where dist(si,i+1
m , si,i+1

n ) is a distance function and d is a distance threshold.

The sub-trajectory neighbor set between Trm and Trn w.r.t a distance
threshold d in a W is denoted as N

d
mn, with |Nd

mn| denoting the size.

Definition 2 (Trajectory Neighbor). In window W , given a distance thresh-
old d and timebin count threshold thrt, trajectory Trm is called a trajectory
neighbor of Trn if |Nd

mn| ≥ thrt.
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Definition 3 (Trajectory Outlier). Given a distance threshold d, a neighbor
count threshold k, and timebin count threshold thrt, a trajectory Trm in the
window W is a trajectory-neighbor based trajectory outlier if Trm has at
most k−1 trajectory neighbors in W with trajectory neighbor as per Definition 2.

Given the parameters d, k, thrt and n trajectories in window W , our goal is
to detect and report all trajectory-neighbor based trajectory outliers in the window
W with high accuracy and efficiency.

3 Methodology

In this section, we introduce a novel distance function for sub-trajectories. The
key of this function is the combination of two types of features that ensures a
significant difference between outliers and inliers can be captured.

3.1 Feature Extraction

To describe the difference of behaviors of trajectories minutely, two types of
features intra- and inter-trajectory features are extracted for each sub-trajectory.

Intra-trajectory Feature. Intra-trajectory features indicate the moving
behavior of each trajectory that can be quantized by the differences of attributes
between two consecutive trajectory points.

(a) The intra-trajectory featurese (b) The inter-trajectory features

Fig. 2. The elements for intra- and inter-trajectory features

Let us consider a window with n 2-dimensions points belonging to Trm.
Specifically, suppose the point is GPS point. Each point pi

m can be denoted
as (ti, lonpi

m
, latpi

m
) where ti is the ith timebin, lonpi

m
and latpi

m
denote the

longitude and latitude respectively. For sub-trajectory si,i+1
m , four attributes

that intuitively describe the behaviors of one trajectory are extracted as
the intra-trajectory features. As shown in Fig. 2(a), the features are change
of longitude Δlonsi,i+1

m
= lonpi+1

m
− lonpi

m
, change of latitude Δlatsi,i+1

m
=

latpi+1
m

− latpi
m

, speed vsi,i+1
m

=
√

(Δlonsi,i+1
m

)2 + (Δlatsi,i+1
m

)2 / (ti+1 − ti) and

change of rate of turn(ROT) Δrsi,i+1
m

= rsi,i+1
m

− rsi+1,i+2
m

, where rsi,i+1
m

=
arctan(Δlatsi,i+1

m
/Δlonsi,i+1

m
). Specially, for the last sub-trajectory sn−1,n

m of
Trm, we set Δrsn−1,n

m
= 0.
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In order to intuitively reflect the moving direction change of a trajectory,
attribute d̂si,i+1

m
is defined to flag whether object changes its moving direction

between two consecutive sub-trajectories or not. Given the moving direction of
si+1,i+2

m as the standard direction, d̂si,i+1
m

= 0 if |Δrsi,i+1
m

| ≤ π/4 and d̂si,i+1
m

=
1 otherwise. After computing these features for each sub-trajectory, we get a
feature vector fsi,i+1

m
= (Δlonsi,i+1

m
,Δlatsi,i+1

m
, vsi,i+1

m
,Δrsi,i+1

m
, d̂si,i+1

m
).

Inter-trajectory Feature. Inter-trajectory features reflect the spatial differ-
ence and directional difference of two trajectories. It ensures the outliers that
always moves alone or always in the areas where other objects rarely visit can
be detected. The inter-trajectory features consist of two components: the spatial
distance dc and angle distance dθ. Suppose there are two sub-trajectories si,i+1

m

and si,i+1
n , and their elements are intuitively illustrated in Fig. 2(b).

The spatial distance between si,i+1
m and si,i+1

n is denoted as the Euclidean
distance between center points of si,i+1

m and si,i+1
n , namely dc(si,i+1

m , si,i+1
n ) =

‖Cm −Cn‖. The angle distance between si,i+1
m and si,i+1

n is defined as Formula 1.
It is the intersection angle between si,i+1

m and si,i+1
n . Here, ‖si,i+1

m ‖ denotes the
length of si,i+1

m .

dθ(si,i+1
m , si,i+1

n ) =

{
arccos( si,i+1

n ·si,i+1
m

‖si,i+1
m ‖‖si,i+1

n ‖ ) if ‖si,i+1
m ‖ �= 0 & ‖si,i+1

n ‖ �= 0

0 otherwise
(1)

3.2 Distance Function

Now based on the features denoted above, the distance function is defined to mea-
sure the similarity between si,i+1

m and si,i+1
n . The function consists of two terms:

similarity measure sim(fsi,i+1
m

,fsi,i+1
n

) and punishing item ω(dc, dθ). Namely:

dist(si,i+1
m , si,i+1

n ) = 1 − ω(dc, dθ) × sim(fsi,i+1
m

,fsi,i+1
n

) (2)

In particular, considering the differences of intra-trajectory features in seman-
tic and value, we need a normalization function to normalize the features. How-
ever, due to the uncertainty caused by the concept drift over continuous tra-
jectory streams, the minimum or maximum of each feature cannot be fixed. It
is not suit to use the Min-Max scaling to normalize the features. Likewise, the
Z-score standardization cannot be used.

Given two feature vectors fsi,i+1
m

, fsi,i+1
n

, a ratio ρj = |f j

si,i+1
m

−
f j

si,i+1
n

| /max{f j

si,i+1
m

, f j

si,i+1
n

} is computed to normalize the differences between
features into [0, 1], where f j is the jth feature in feature vector. However,
when f j ∈ {Δlon,Δlat,Δr}, if one of f j

si,i+1
m

and f j

si,i+1
n

is equal to 0, the ρj

would be amplified to 1 even if their difference is small; otherwise, we expect
a small difference amplify to 1 when one of objects is static. Therefore, we use
σ = sin(dθ(si,i+1

m , si,i+1
n )) as the constraint factor to limit the value of ρj . That

is, the smaller dθ is, the smaller ρj is. The new ratio ρ̂j is defined as follows.
If vsi,i+1

m
= 0 or vsi,i+1

n
= 0, then ρ̂j = ρj . And if vsi,i+1

m
�= 0, vsi,i+1

n
�= 0 and

f j ∈ {Δlon,Δlat,Δr}, then ρ̂j = ρj × σ.
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Specially, for max{f j

si,i+1
m

, f j

si,i+1
n

} = 0, we set ρj = 0. Based on the formulas
above, a new vector ρ̂ = (ρ̂Δlon, ρ̂Δlat, ρ̂v, ρ̂Δr, ρ̂d̂) is computed for each sub-
trajectory pair. Then, to map the similarity between two sub-trajectories into
[0, 1], the function sim(fsi,i+1

m
,fsi,i+1

n
) is defined as

sim(fsi,i+1
m

,fsi,i+1
n

) = 1 − ‖ρ̂‖2√|ρ̂| (3)

where ‖ · ‖2 denotes the L2 norm and |ρ̂| is the size of ρ̂. It means that the more
similar fsi,i+1

m
and fsi,i+1

n
are, the bigger value of sim(fsi,i+1

m
,fsi,i+1

n
) is.

Next, considering the influence of spatial distance and moving direction on
similarity comparison we define a punishing item ω(dc, dθ) to control the value of
sim(si,i+1

m , si,i+1
n ). Given a spatial distance limit ξ, the punishing item ω(dc, dθ)

is defined as:

ω(dc, dθ) =

{
e− |dc−ξ|

ξ × cos(dθ) if dc > ξ

cos(dθ) otherwise
(4)

Namely, given the spatial distance threshold ξ set by user, the farther apart
two sub-trajectories the less similar they are. Likewise, the bigger difference of
moving direction between two sub-trajectories the less similar they are.

4 Detection Framework

4.1 The Basic Framework

The basic framework of our trajectory outlier detection is shown as Fig. 3. In the
basic framework, the STN-Outlier detects the outliers by first running a range
query search for each trajectory at current window. The time complexity is O(n)
where n is the number of trajectories in current window. Then, it traverses all
neighbor of Trm to determine the status of Trm, of which the worst case is to
traverse all n − 1 trajectories. Thus, its worst complexity is O(wn2) where w is
window size. And, it would fully reuses the neighbor relationships collected in
the previous window, there is high computational costs when n is large.

Fig. 3. The basic framework of STN-Outlier
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Inspired by the minimal examination (MEX) framework [6] and the locality-
sensitive hashing (LSH) algorithm [16], we design a temporal and spatial-aware
examination (TSX) framework that efficiently solves this issue.

4.2 The Optimized Framework

A trajectory Trm will be labeled based on the neighbor evidence that has been
acquired for this object. Note that those neighbors must be near to Trm in
space. If a trajectory is far away from Trm, namely exceeding a radius R, then
the trajectory must be non-neighbor of Trm. This fact leads to an important
observation. That is, to identify whether a trajectory Trm is a neighbor-based
inlier, it is unnecessary to compare with all other trajectories in window W .
Instead a subset of the full trajectories that are near to Trm often can be suffi-
cient to prove that it is an inlier. To acquired the small yet sufficient subset of
trajectories for Trm a concept of R-near Subset with LSH is defined.

Specially, in TSX framework, the location of a trajectory is represented as
an average of full points in the current window. Namely, the location lm of a tra-

jectory Trm in window W is denoted as
∑w

j=1 pj
m

w , where W = {p1m, p2m, . . . , pw
m}.

Definition 4 (R-near Subset). Given an LSH family F and a trajectory set
DBTr in a window W , for a trajectory Trm ∈ DBTr, its R-near Subset TRTrm

is
denoted as {Trn|h(ln) = h(lm), h ∈ F , T rn ∈ DBTr} with a collision probability
at least 1 − δ, which denotes the probability that Trm, T rn collide for a hash
function uniformly chosen from the family F .

In particular, we choose E2LSH [17] that is defined for the case where the
distances are measured according to the Euclidean norm to solve the R-near
Subset problem. In E2LSH, a new family G of hash functions g is defined. Each
function g is obtained by concatenating K functions h1, . . . , hK from F , i.e.,
g(p) = [h1(p), . . . , hK(p)]. Finally, the algorithm constructs L hash tables, each
corresponding to a different randomly chosen hash function g. Based on the
definitions and theory analysis for E2LSH, we get the following lemma.

Lemma 1. Given a E2LSH family G and L corresponding hash tables, a tra-
jectory Trm could find a R-near subset TRTrm

= {Trn|gj(lm) = gj(ln), gj ∈
{g1, . . . , gL}} with a collision probability 1 − δ ≥ 0.9 iff L ≥ log10

−log(1−P K
1 )

for a
fixed K and P1, where P1 = p(R) = Prh∈F [h(p) = h(q)] = 1 − 2norm(−b/R) −

2√
2πb/R

(1 − e−b2/2R2
) that b is the size of bucket.

Proof. Consider a query trajectory Trm and an R-near trajectory Trn of Trm.
According to the definitions of E2LSH, we get Prg∈G [g(q) = g(p)] ≥ PK

1 .
Thus, Trm and Trn fail to collide for all L functions gj with probability at most
(1−PK

1 )L. Requiring that the trajectory Trm collides with Trn on some function
gj is equivalent to saying 1 − (1 − PK

1 )L ≥ 1 − δ. Therefore, given a fixed K and
P1, if setting 1 − δ ≥ 0.9 namely δ ≤ 0.1, then we get: 1 − (1 − PK

1 )L ≥ 0.9 ⇔
(1 − P k

1 )L ≤ 0.1 ⇔ L × log(1 − PK
1 ) ≤ log(1/10) = −log10 ⇔ L ≥ log10

−log(1−P K
1 )

.
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Lemma 1 shows the effectiveness of R-near Subset that guarantees the effec-
tiveness and efficiency of STN-Outler. with the R-near subset, we are ready to
propose one spatial-aware principle for optimizing the MEX framework.

Algorithm 1. STN-Outlier using TXS framework
Input: Trajectory Set DBT r , the current window Wc, hash tables H, a E2LSH family G,

parameters: d, k, and thrt
Output: Outliers

1 DBlt = []
2 for each Tri ∈ DBT r do
3 if Tri.lifetime ≤ Wc.start then
4 DBlt ← Tri

5 for each Tri ∈ DBlt do
6 for each Trj ∈ Tri.NT do
7 Time-aware Examination for Tri and Trj
8 Minimal Support examination for Tri

9 if |Tri.Neighbors| < k then
10 TRT rm ← queryRnearSubset(H, G, Trm)

11 for each Trj ∈ (TRT rm ) do
12 Time-aware Examination for Tri and Trj
13 Minimal Support examination for Tri

14 if |Tri.getNeighbors| < k then
15 Tri is ”outlier”

16 updating the lifetime of Tri

PRINCIPLE 1. Spatial-aware examination : Given a query Q and the
trajectory set DBTr in the current window Wc, for evaluating a trajectory Trm,
the examination principle suggests that a R-near subset TRTrm

can replace the
full trajectories DBTr to determination the status of Trm.

This principle aims to prove the status of a given trajectory Trm by only
discovering its R-near trajectories instead of searching through full trajectories.
For space reasons, we omit the three principles(lines 2–4, 7 and 8 in Algorithm1)
of MEX framework and their proofs. See [6] for detail principles and proofs.

The new trajectory outlier detection algorithm is shown as Algorithm 1.
The status of a trajectory will be re-examined when its lifetime expires(lines
2−4). And whenever a trajectory is being re-examined, the minimal support
examination(lines 8 and 13) will cooperate with time-aware examination(lines 7
and 12) to re-establish the minimal support(=k) in its R-near subset(line 10).
It does so by only acquiring enough new evidence rather than building a new
minimal support from scratch.

5 Experiments

All experiments are performed on a server with Intel Xeon CPU 2.10 GHz. In our
implementation, we simulate the streaming manner by using a sliding window
in the main memory.

Datasets. The experiments are performed on synthetic datasets and real taxi
data [6]. The real taxi data contains 1k trajectories and a outlier set manu-
ally labeled by a user study. However, in the user study the behavior of a taxi
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driver is classified as abnormal by users only if he always operates in areas that
other drivers rarely visit. Therefore, we apply two transformations [18], namely
Add Noise Transformation and Random Shift Transformation, to the original
trajectories and generate a series of new outliers to enrich the types of outliers.

Metrics and Measurements. For the effectiveness evaluation, we measure the
quality of reported outliers by F1-Measure, at which Precision = |R0∩D0|

|D0| and

Recall = |R0∩D0|
|R0| where R0 denotes the set of outliers and D0 is the outliers

detected by the algorithm.
For the efficiency evaluation, we measure the CPU resources cost by recording

the cost of the first window, at which each trajectory searches its neighbors over
all trajectories and compares at least thrt segments with other trajectories.

5.1 Effectiveness Evaluation

We generate a stream with a controlled number of outliers. Specifically, 200
normal trajectories are first randomly sampled from the real taxi dataset. A
random offset of radius R = 5m is added to each sampled trajectory to emulate
3–10 trajectories. Then, 100 trajectories are randomly chosen from the sampled
trajectories. Half of them are transformed by Add Noise Transformation, while
the other half are transformed by Random Shift Transformation.

As shown in Table. 1, we evaluate the performance of STN-Outlier in
comparison with TN-Outlier and a number of well-known sub-trajectory-based
similarity measures, including CTraStream [14] and Hausdorff [13]. We execute

Table 1. Performance comparison by three evaluation metrics.

w = 15

Method k = 1 k = 4 k = 8

Precision Recall F1 Precision Recall F1 Precision Recall F1

STN-Outlier thrt = 8 0.9177 0.9602 0.9385 0.5488 0.9668 0.7002 0.1702 0.9867 0.2904

thrt = 11 0.7956 0.9801 0.8783 0.4639 0.9801 0.6297 0.1576 0.9867 0.2718

TN-Outlier thrt = 8 1.0 0.3907 0.5619 0.4957 0.3907 0.4370 0.1442 0.6688 0.2373

thrt = 11 1.0 0.4304 0.6018 0.5038 0.4304 0.4642 0.1478 0.6953 0.2439

STN-CTraStream thrt = 8 1.0 0.3576 0.5268 0.45 0.3576 0.3985 0.1443 0.6423 0.2357

thrt = 11 1.0 0.3841 0.5550 0.3295 0.3841 0.3547 0.1380 0.6754 0.2292

STN-Hausdorff thrt = 8 0.1604 0.4569 0.2375 0.0576 0.5430 0.1041 0.0747 0.7549 0.1359

thrt = 11 0.1579 0.5629 0.2467 0.0585 0.5695 0.1061 0.0742 0.7682 0.1353

w = 30

Method k = 1 k = 4 k = 8

Precision Recall F1 Precision Recall F1 Precision Recall F1

STN-Outlier thrt = 15 0.9423 0.9735 0.9576 0.5424 0.9735 0.6966 0.1710 0.9801 0.2913

thrt = 22 0.8333 0.9933 0.9063 0.5 0.9933 0.6651 0.1651 0.9933 0.2832

TN-Outlier thrt = 15 1.0 0.3509 0.5196 0.4690 0.3509 0.4015 0.1389 0.6357 0.2280

thrt = 22 1.0 0.4105 0.5821 0.4920 0.4105 0.4476 0.1456 0.6887 0.2404

STN-CTraStream thrt = 15 1.0 0.3377 0.5049 0.4690 0.3509 0.4015 0.1403 0.6357 0.2299

thrt = 22 1.0 0.3576 0.5268 0.4782 0.3642 0.4135 0.1434 0.6688 0.2362

STN-Hausdorff thrt = 15 0.184 0.4569 0.2623 0.0554 0.5298 0.1003 0.0723 0.7417 0.1319

thrt = 22 0.1611 0.5496 0.2492 0.0596 0.5827 0.1081 0.0744 0.7748 0.1358
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Fig. 4. The perfor-
mance of methods on
detecting three types of
outlier

Fig. 5. The change of F1
with varying K and b/R

Fig. 6. The change of
CPU time with varying K
and b/R

multiple queries that vary the parameters k, thrt and w to study how the metrics
is impacted in parameter space. Referring the experimental parameters setting
in [6], the distance threshold d is fixed as 0.1 and 300 m (=ξ) for STN-Outlier
and other methods respectively. Besides, we set the weight set of Hausdorff to
(1, 1, 1) after tuning.

From Table. 1, STN-Outlier shows the better performance than other meth-
ods in F1-Measure, even if the inlier criteria is vary strict. In other words, STN-
Outlier not only detects more outliers than others but also guarantees less false
alarms. Furthermore, we study the performance of methods on detecting three
types of outliers. When the inlier criteria is most relaxed where k = 1, thrt = 8
and w = 15, the results are shown as Fig. 4. The most of outliers detected by
TN-Outlier or CTraStream are manually labeled outliers, of which the detecting
probability is near to 100%, while the outliers generated by the transformations
are rarely or not detected. This is because the distance function in TN-Outlier
or CTraStream is less focused on the differences of behaviors. In summary, com-
pared with STN-Outlier, the TN-Outlier and other methods are worse in cap-
turing and modeling more complex abnormal behaviors.

5.2 Efficiency Evaluation

Next we evaluate the efficiency of STN-Outlier with TSX. We vary the most
important parameters, to (1) assess the impact of TSX framework versus the
baseline, (2) evaluate sensitivity of parameter variations on STN-Outlier.

Varying Parameters of LSH. In this scenario, we vary the thresholds K
and b/R(P1) to study how F1-Measure and CPU time are impacted. The other
parameters are fixed as k = 1, thrt = 22, w = 30, R = ξ = 300 and d = 0.1.

Figure 5 shows that the F1-Measure is directly proportional to b/R, because
more trajectories are mapped into the same bucket with the size of bucket
increasing. It ensures that STN-Outlier finds enough evidences to classify one
trajectory as inlier. By contrast, the F1-Measure decreases when K enlarges.
That is, with K increasing, the trajectories in the same bucket must have a
more similar encoding (g(li)), causing that one trajectory lacks enough R-near
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Fig. 7. The change of
CPU time with varying
thrt

Fig. 8. The change of
CPU time with varying k

Fig. 9. The change of
CPU time with varying n

trajectories to determine its status. However, we notice that when the buckets
(b/R) are enough big, the K has less influence on F1-Measure and the results
are near to that of the solutions without the TSX framework in Table. 1.

Figure 6 shows that the CPU time of algorithm is also directly proportional to
b/R due to one trajectory has to compare with more trajectories in one bucket to
label its status. Then, the CPU time decreases with K increasing for a fixed b/R.
That is, an increase on collision probability caused by K reduces the number
of misclassification trajectories, and enables one trajectory not to compare with
unnecessary trajectories.

In summary, the R-near subset could improve the efficiency of algorithm
while ensure the effectiveness by selecting appropriate parameters.

Varying Other Parameters. Next we evaluate the efficiency of STN-Outlier
using the real taxi data and synthetic datasets. We denote the MEX-based base-
line solution for STN-Outlier as STN-MEX and the TSX-based solution as STN-
TSX respectively. In particular, we fix the window size to 30, d to 0.2, ξ to 2,000 m
and R to 4,000 m for the experiments on the real taxi data, while fix the window
size to 30, d to 0.9, ξ to 300 m and R to 300 m for the synthetic datasets. In
addition, the parameters K and b/R in LSH for all the cases are set to 10 and
100 respectively.

First, we evaluate the effect of varying the timebin count threshold thrt from
1 to the full window size. As shown in Fig. 7, STN-TSX are superior to the
corresponding basic solution w.r.t the CPU time in all cases. Especially when
thrt is set to the full window size, the STN-TSX outperforms the STN-MEX
by a factor of 9x. We notice that the effect of STN-TXS decreases with thrt

increasing. There are two reasons for this trend: (1) the STN-TSX only needs
a few non-neighbor sub-trajectories (Time-aware Examination in Algorithm 1)
to label the relationship of two trajectories as non-neighbor with thrt being big,
and (2) the R-near subset of a trajectory is constant no matter how thrt varies.

Then, we vary the neighbor count threshold k from 4 to 64. The results are
shown as Fig. 8. The STN-TSX saves on average 76% of CPU time compared to
the corresponding MEX solution. As the parameter k increases, the CPU time
of the STN-MEX increases linearly due to more neighbors have to be acquired
to determine the status of a trajectory. By contrary, for the STN-TSX instead
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we observe no sensitivity for varying k. This is because the STN-TSX finds
the neighbors of Trm only by searching its R-near subset that always remains
unchanged no matter how large k is.

Finally, we vary the number of trajectories n from 1k to 10k. In this case, we
generate five synthetic datasets containing 1k to 10k trajectories. To eliminate
the effect of variations in the outlier rates, we stabilize the outlier rate in all
cases to around 4% by slightly adjusting the number of outliers. As expected,
Fig. 9 shows that the CPU time cost of STN-Outlier increases linearly as the
number of trajectories increases, since a trajectory must compare with more
trajectories in the current window until it finds k neighbors. Furthermore, it
is obvious that STN-TSX exhibit much better performance than MEX-based
solution. Especially, when n is up to 10k, the factor can be more than 300x.

6 Conclusion

In this work we focus on the outlier detection on trajectory streams. After
analyzing the requirements of trajectory stream applications, we introduce a
distance-based trajectory outlier definitions. Considering the complex behaviors
of trajectories over streams, we select sub-trajectory as the analytic unit and
design a novel distance function. We introduce an optimized TSX framework
scalable to big data trajectory streams. The experiments on real taxi data and
synthetic datasets show that STN-Outlier can effectively and efficiently detect
the abnormal objects over high-volume trajectory stream.
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Abstract. Ensemble techniques have been applied to the unsupervised
outlier detection problem in some scenarios. Challenges are the gener-
ation of diverse ensemble members and the combination of individual
results into an ensemble. For the latter challenge, some methods tried
to design smaller ensembles out of a wealth of possible ensemble mem-
bers, to improve the diversity and accuracy of the ensemble (relating to
the ensemble selection problem in classification). We propose a boosting
strategy for combinations showing improvements on benchmark datasets.

Keywords: Outlier detection · Ensembles · Boosting
Ensemble selection

1 Introduction

The identification of outliers (i.e., data objects that do not fit well to the general
data distribution) is very important in many practical applications. Application
examples are the detection of credit card fraud in financial transactions data, the
identification of measurement errors in scientific data, or the analysis of sports
statistics data.

Recent research on the unsupervised problem of outlier detection advanced
the area by applying ensemble techniques [40]. Ensemble methods, i.e., com-
bining the findings or results of individual learners to an integrated, typically
more reliable and better result, are well established in the supervised context
of classification or regression [3,6,26,36]. In unsupervised learning, the theoret-
ical underpinnings are less clear but can be drawn in analogy to the supervised
context as it has been done for clustering ensembles [8,9,11,22,32,34,39].

Our focus in this paper is on ensemble selection, which has been well stud-
ied in supervised scenarios [5] (also called selective ensembles [38], or ensemble
pruning [20,35,39]). Ensemble selection is also related to boosting [28], which
is often used to change training conditions for additionally sought, yet to be
trained ensemble members or to select the most suitable additional ensemble
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 564–576, 2018.
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members from a pool of solutions. In this paper we transfer the supervised
boosting technique to the unsupervised scenario of outlier detection ensembles.
We thus propose a new outlier ensemble selection technique named BoostSelect.

In the remainder, we discuss related work in Sect. 2. We introduce our method
in Sect. 3. We compare our method on a large collection of benchmark datasets
against baselines and state of the art in Sect. 4. Finally, we conclude and sum-
marize the paper in Sect. 5.

2 Related Work

The ensemble approach to learning has been studied in outlier detection sev-
eral times. In analogy to supervised learning, an ensemble can be expected to
improve over its components if these components deliver results with a reason-
able accuracy while being diverse [40]. The two main challenges for creating
good ensembles are, therefore, (i) the generation of diverse (potential) ensemble
members, and (ii) the combination (or selection) of members to an ensemble.

Some strategies to achieve diversity among ensemble members have been
explored, such as feature bagging (i.e., combining outlier scores learned on
different subsets of attributes) [18], different parameter choices for some base
method [7], the combination of actually different base methods [15,21,29], the
introduction of a random component in a given learner [19], the use of different
subsamples of the data objects (parallel [42] or sequential [25,27]), adding some
random noise component on the data (“perturbation”) [41], or using approximate
neighborhoods for density estimates [13]. Likewise, different combination proce-
dures have been proposed based on outlier scores or on outlier ranks [7,15,18,40].

Some methods have also been proposed to select the more diverse or the more
accurate ensemble members [24,29]. These unsupervised methods construct a
target result vector from unfiltered results and then sequentially select individual
results that somehow fit to the target vector while being different from already
selected solutions.

The “Greedy ensemble” [29] target vector is produced considering the union
of the top K ranked results of each potential ensemble member (i.e., a pool of
various results) as true outliers, and the rest as inliers, placing 1 or 0 in the target
vector for outliers or inliers, respectively. The similarity between result vectors is
assessed through a weighted variant of Pearson correlation, where the weights are
set to 1

2K for outliers and 1
2(n−K) for inliers (according to the estimated truth in

the target vector), where K is the amount of outliers in the target vector (which
is typically an estimate of the unknown amount of outliers) and n is the size of
the dataset. Outlier score lists are then sorted in decreasing order w.r.t. weighted
Pearson correlation to the target vector, and the first member is included into the
ensemble. The remaining members of the list are then sorted in ascending order
of weighted Pearson correlation similarity to the current ensemble, aiming at
maximization of diversity. If the new member can improve the weighted Pearson
correlation to the target vector, it is included into the ensemble and the order
of the remaining list is updated, otherwise the member is discarded.
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An obvious problem with this ensemble selection strategy is the target vec-
tor generation. Even though it uses all possible ensemble members to generate
the target vector, selecting a union of top K objects as alleged outliers can be
quite misleading. If one member has some inliers ranked among the top K posi-
tions (which typically is the case due to the imbalance between few outliers and
many inliers), then these inliers will be labeled as outliers in the target vector.
As a result, the construction of the ensemble selection procedure will focus on
including those members that wrongly detect these inliers as outliers.

To overcome this downside of the “Greedy ensemble”, “SelectV” [24] uses
the combination of all outlier scores to produce the target vector, i.e., the target
vector is not binary. Second, the weights for Pearson correlation are set as 1/r,
where r is the rank of each item after sorting the target vector in descending
order of the outlier scores. However, “SelectV” does not maximize the diversity
when selecting new members for the ensemble. As in the “Greedy ensemble”,
SelectV initializes the ensemble with the method exhibiting largest weighted
Pearson correlation to the target vector. However, instead of ordering the list
of remaining potential members to prefer those that are highly uncorrelated
to the current ensemble (the strategy of maximizing diversity persued by the
“Greedy ensemble”), “SelectV” uses the inverse approach, ordering the list in
descending order w.r.t. weighted Pearson correlation. This way, “SelectV” prefers
those remaining potential members that are highly correlated to those members
that are already in the ensemble, i.e., the method values agreement (and as a
consequence, accuracy, as given by the target vector) higher than diversity.

3 Boosting for Ensemble Selection

Starting from the ideas discussed for the “Greedy ensemble” [29] and for
“SelectV” [24], we propose here an improved outlier ensemble selection method
that is amenable to the application of boosting techniques. Boosting is well stud-
ied in supervised contexts [28]. We design and apply an equivalent technique in
the unsupervised setting, to select good components for an ensemble of outlier
detectors, resulting in our method BoostSelect.

3.1 Construction of the Target Vector

As a prerequisite for the combination of different outlier score lists (i.e., indi-
vidual results, potential ensemble members), we normalize the scores following
established procedures [15]. The target vector is constructed by combining the
scores of all available results. Different combination methods could be used here,
without further assumptions taking the average score is the most natural app-
roach [40], i.e., the target vector lists the average scores of all individual results
for each data object. From this target vector, we preliminarily assume the top
�n · t� objects (ranked by their combined score) to be outliers, where n is the
dataset size and 0 < t � 1 is a parameter capturing the expected percentage of
outliers in the dataset (i.e., there are K = �n · t� outliers assumed to be present).
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Algorithm 1. BoostSelect
Input: P := set of normalized outlier score lists, d := drop rate (percentage), t :=
threshold (percentage), combination := combination technique
Output: E := ensemble members

1: W := [n], E := ∅
2: target := combination(P ) � Generating the target vector
3: target := convertBinary(target, t) � Top K = �n · t� scores ← 1, others ← 0

4: W :=
[
out = 1

2K
, in = 1

2(n−K)

]
� K = number of outliers, n = size

5: Sort P by weighted Pearson Correlation (wPC) to target � Descending order
6: f := getF irst(P ) � Remove f from P
7: E := E ∪ f
8: while P �= ∅ do
9: curr := combination(E) � Current prediction

10: sort P by wPC to curr � Ascending order
11: f := getF irst(P ) � Remove f from P
12: if wPC(combination(E ∪ f), target) > wPC(curr, target) then
13: E := E ∪ f � Include into ensemble
14: Boosting(W, target, f, t, d) � Adapt the weights
15: end if
16: end while

The target vector thus becomes a binary vector, listing 1 for an (alleged) outlier
and 0 for an (alleged) inlier and serves as pseudo ground truth for the boosting
approach to ensemble selection.

3.2 Weights and Ensemble Diversity

Weighted Pearson correlation has been proposed as a similarity measure for
outlier rankings [29]. We follow the procedure of Schubert et al. [29], setting the
weights for Pearson correlation to 1

2K for outliers and 1
2(n−K) for inliers. Different

from previous approaches, though, these values are only the initial weights. The
weights will be updated by the boosting procedure.

The potential ensemble members are sorted according to their weighted Pear-
son correlation to the target vector. The candidate that is most similar to the
target vector is chosen as the first ensemble member.

Remaining potential ensemble members are iteratively re-sorted in ascend-
ing order according to their similarity to the current prediction of the ensem-
ble, resulting in a preference for the more different (i.e., most complementary)
additional ensemble members. Potential members are included if their inclusion
would increase the similarity of the ensemble prediction to the target vector, oth-
erwise they are discarded. If the correlation improves, the ensemble is updated
and the remaining lists are re-sorted by their weighted Pearson correlation to
the updated prediction.



568 G. O. Campos et al.

Algorithm 2. Boosting
Input: W := weight vector, target := target vector, f := new ensemble member, t :=
threshold (percentage), d := drop rate (percentage)
Output: W := Updated weights

1: outliers := convertBinary(f, t)
2: for i ∈ 1 : size(target) do
3: if target(i) == 1 & outliers(i) == 1 then
4: W (i) := W (i) ∗ d
5: end if
6: end for

3.3 Boosting Procedure

The boosting is performed upon the inclusion of a new member into the ensemble.
The idea is to reduce the weights for those outliers that have already been
identified by any ensemble member. The weights are reduced by some specified
parameter 0 < d < 1 (drop rate).

The boosting effect is that the selection will prefer to include such additional
ensemble members that detect those outliers that have not yet been detected
by any ensemble member, while very easy outliers that have been detected by
many ensemble members already will get assigned smaller and smaller weights.

Algorithm 1 lists the steps of the overall framework BoostSelect in pseudo
code. The boosting procedure is detailed in Algorithm 2.

4 Experiments and Evaluation

4.1 Datasets

For evaluation, we use a benchmark data repository for outlier detection [4]. The
repository is based on 23 basic datasets, processed in different ways mainly to
provide variants with different percentage of outliers and with different handling
of dataset characteristics such as duplicates, attribute normalization, and cate-
gorical values. As suggested for analysis [4], we focus on the normalized datasets
without duplicates, which leaves us with 422 dataset variants.

4.2 Ensemble Members

As basic outlier detection results (i.e., potential ensemble members) we use the
results provided along with the datasets [4], testing 12 neighborhood-based out-
lier detection algorithms changing the neighborhood size k from 1 to 100. The
algorithms are: KNN [23], KNNW [1], LOF [2], SimplifiedLOF [31], LoOP [14],
LDOF [37], ODIN [10], FastABOD [16], KDEOS [30], LDF [17], INFLO [12],
and COF [33]. For LDOF and KDEOS, k must be larger than 1, for FastABOD,
k must be larger than 2, resulting in 1196 results per dataset (less on some small
datasets where k cannot reach 100). These results compose the set of potential
ensemble members.
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The outlier scores of these results are processed (following Kriegel et al. [15])
by applying an inverse logarithmic scaling on FastABOD results and an inverse
linear scaling on ODIN results, since FastABOD and ODIN give inverse score
results (i.e., the lower the scores, the higher is the chance of an observation to
be an outlier). Then a simple linear scaling from 0 to 1 is applied to transform
all scores into the same range.

4.3 Competitors and Settings

We compare BoostSelect against the Greedy [29] and SelectV [24] ensembles.
We also generate a “Näıve” ensemble and Random ensembles as baselines. The
“Näıve” ensemble is a combination of all individual outlier results (i.e., a full
ensemble without selection procedure).

For each instance of an ensemble selection strategy (Greedy, SelectV, and
BoostSelect, respectively, on each dataset), we generate 1000 “Random” ensem-
bles consisting of the same number of members as the corresponding selective
ensemble, where the ensemble members are randomly selected.

We used the Greedy ensemble rate parameter as 0.01, as suggested by the
authors of the Greedy ensemble [29]. We test a range of parameters for BoostS-
elect: d = [0.25, 0.5, 0.75] and t = [0.05, 0.1, 0.15].

As combination technique for ensembles we use the average score.

4.4 Results

Figure 1 shows pairwise comparisons between all ensembles over all datasets,
considering the ROC AUC evaluation measure (area under the curve of the
receiver operating characteristic). We compare the ensemble selection techniques
“Näıve”, “Greedy”, “SelectV”, and “BS” (BoostSelect). We include random
ensembles for each ensemble selection strategy and for each parametrization
of BoostSelect: RG (Random Greedy), RS (Random SelectV), RBS (Random
BoostSelect). The numbers represent on how many datasets the ensemble listed
in the row has performed better than the ensemble listed in the column. Numbers
representing the majority (more than 50%) of the datasets are white, smaller
numbers black. The larger the number, the darker is its background. For the
random ensemble, we take the average performance over the 1000 instances.

The best overall method is BoostSelect with d = 0.75 and t = 0.05, which has
only more losses than wins when competing against BoostSelect with d = 0.25
and t = 0.1. The Greedy ensemble does not perform well in general, having
more losses than wins against every other competitor. SelectV is better than all
random variants and Greedy, but worse than Näıve and worse than all BoostS-
elect results. The Näıve ensemble behaves very consistent, as it beats by a large
margin all random ensemble approaches, but still has more losses when com-
pared to BoostSelect. Even though neither the threshold t nor the drop rate d
has a strong impact on wins, setting a relatively large drop rate and a relatively
small threshold overall seems to be a good choice of parameters for BoostSelect,
although the optimal parameter choice differs from dataset to dataset.
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Fig. 1. Summarization of pairwise comparisons over all 422 datasets. The number
counts the wins in term of ROC AUC (average ROC AUC in case of random ensembles)
of the ensemble listed in the row against the ensemble listed in the column.

Looking at the top left quadrant of the heat map (Fig. 1), where the ran-
dom ensembles compete against themselves, we also see a broad dominance by
the random ensembles based on BoostSelect. This suggests that the number of
ensemble members selected by BoostSelect is a better choice than those selected
by the other strategies.

Figure 2 shows a comparison in terms of ROC AUC between BoostSelect
(different parameter settings), the Näıve, the Greedy, and the SelectV ensemble
averaged over all datasets (Fig. 2(a)) and on some dataset families as examples
(i.e., seven sets of benchmark dataset variants generated from seven original
datasets, Fig. 2(b)–(h)). While we see that BoostSelect behaves competitively
over all datasets on average (Fig. 2(a)), the selected examples show different
behavior regarding both parameters t and d. On Annthyroid (Fig. 2(b)) low
threshold values achieves better ROC AUC overall, the reverse effect can be
seen on Wilt (Fig. 2(e)), which is also an example where BoostSelect performs
worse than the competitors.

These results highlight how close the SelectV ensemble and the Näıve ensem-
ble are to each other. As SelectV generates the target vector using the Näıve
result (i.e., combining all single results) and keeps methods sorted in decreasing
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Fig. 2. Comparison of the ensemble techniques in terms of ROC AUC distributions
over some dataset families.
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order w.r.t. weighted Pearson correlation to the current ensemble. While SelectV
includes therefore those results that improve the correlation to the target vec-
tor, it does not promote diversification of ensemble members. Thus the SelectV
results can be expected to be highly correlated to the Näıve ensemble results.
Overall, the Näıve ensemble results (and also the SelectV results) are of reason-
able quality, but not maximizing diversity between its ensemble members limits
the full power of an ensemble.

On the same datasets, we also compare each ensemble selection strategy
w.r.t. the distribution of results of the corresponding random ensembles (Näıve
is compared over the distribution of the individual results). This comparison
is depicted in Fig. 3. The z-score shows how many standard deviations each
ensemble selection strategy is deviating from the mean, given the distribution of
ROC AUC values of the corresponding random ensembles (or all results in case
of Näıve).

Even though the random ensembles for BoostSelect perform better in gen-
eral than the random ensembles corresponding to the other ensemble selection
strategies (see Fig. 1), on average (Fig. 3(a)) and in most cases BoostSelect per-
forms better than its corresponding random ensemble, in several cases by a
large margin, e.g., 5-14 standard deviations on Page Blocks and 8-11 standard
deviations on Waveform. However, there are also dataset families exhibiting the
reverse effect. On Wilt, BoostSelect shows again poorer performance in general
(Fig. 3(e)). On the Annthyroid dataset family we can observe again that choosing
small t leads to considerably better results (Fig. 3(b)).

Näıve and SelectV does not improve too much over the individual results and
the random ensembles, respectively. As discussed before, Näıve and SelectV can
be expected to have very similar results. This can also be observed in Fig. 3. The
Greedy ensemble performs worse than its random ensembles on most datasets
(again, Annthyroid and Wilt are exceptions).

5 Conclusion

We proposed a new ensemble selection strategy for unsupervised outlier detection
ensembles, using the unsupervised equivalent to a boosting strategy for ensemble
selection. Experiments show the favorable behavior of the new ensemble selection
strategy compared to existing methods (Greedy and SelectV) on a large set
of benchmark datasets. Main differences between our method BoostSelect, the
Greedy ensemble, and SelectV can be attributed to a different way of focusing
on diversity and accuracy of ensemble members. Greedy goes all out for diversity
and mostly disregards accuracy, while SelectV ignores diversity and maximizes
accuracy of the ensemble members. Our new method BoostSelect considers both,
diversity and accuracy, in a balanced manner and performs competitively on
average over a large selection of benchmark datasets with strong improvements
on many of the benchmark datasets.

The behavior of BoostSelect is robust to the parameters on many datasets
but depends strongly on the choice of parameters on some datasets. We have
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Fig. 3. The z-scores of the ROC AUC achieved by the ensemble techniques w.r.t. the
ROC AUC distribution of their corresponding random ensembles. The Näıve ensemble
is compared against the ROC AUC distribution of all individual results.
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to leave the exploration of this behavior and potential relation to properties of
the datasets for future work. Also, BoostSelect as well as other outlier detection
algorithms will be included in the Lemonade platform (http://www.lemonade.
org.br).
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Abstract. This paper presents a generic anomaly detection approach
for time-series data. Existing anomaly detection approaches have several
drawbacks such as a large number of false positives, parameters tuning
difficulties, the need for a labeled dataset for training, use-case restric-
tions, or difficulty of use. We propose DeepAD, an anomaly detection
framework that leverages a plethora of time-series forecasting models in
order to detect anomalies more accurately, irrespective of the underly-
ing complex patterns to be learnt. Our solution does not rely on the
labels of the anomalous class for training the model, nor for optimizing
the threshold based on highest detection given the labels in the training
data. We compare our framework against EGADS framework on real and
synthetic data with varying time-series characteristics. Results show sig-
nificant improvements on average of 25% and up to 40−50% in F1-score,
precision, and recall on the Yahoo Webscope Benchmark.

1 Introduction

A well-known characterization of an outlier is given by Hawkins as, “an obser-
vation which deviates so much from other observations as to arouse suspicion
that it was generated by a different mechanism” [10]. An anomaly represents a
non-conforming pattern that deviates from the expected behavior, and is often
referred to as an outlier or exception [5]. Detecting and mitigating these anoma-
lies is fundamental in various domains (e.g., health, performance, security), and
translates to potentially saving lives by detecting critical conditions, revenue and
reputation by avoiding downtime, or improvements in application performance.

A popular approach for anomaly detection is employing explicit general-
ization models [1], where a summarized model is created up front to capture
the normal behavior of the monitored instance, and further using the deviation
between the expected normal behavior and actual behavior as error metric for
anomaly detection. Typically the deviation is then monitored and fitted to a par-
ticular distribution (e.g., Gaussian [13]) and then a threshold is identified based
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on optimizing the precision and recall in the training data through the use of
past labelled anomalous instances. The use of the labels of the anomalous class,
also referred to as golden labels is a requirement for most of the anomaly detec-
tion techniques, either for identifying a threshold or for building a classifier to
detect anomalies based on anomalous patterns in the past. This however limits
the applicability of these techniques to datasets where these labels have been col-
lected and in addition, many times suffering from the class imbalance problem,
since the normal instances typically overweight the abnormal ones. Moreover,
besides the need for golden labels, existing anomaly detection approaches are
typically suitable for a particular type of data or anomaly to capture, which
makes their application more limited in practice [1,5].

This paper introduces a novel Deep learning-based Anomaly Detection frame-
work, named DeepAD. The DeepAD framework discovers anomalies without the
need of golden labels, while maintaining the highest levels of true anomaly detec-
tion, and reducing the number of false positives compared to the best available
technique. DeepAD employs various explicit generalization models to learn the
normal behaviour of the data and utilizes a dynamic sliding window for determin-
ing a dynamic threshold fitted for each time-series under analysis. The dynamic
window is adjusted for each point to contain past rescaled squared errors to
ensure the accuracy is highest. To the best of our knowledge, DeepAD repre-
sents the first framework of its kind that utilizes multiple advanced prediction
models allowing multivariate inputs without the specific use of golden labels.
The use of multiple models, combined with the dynamic threshold on rescaled
errors increases F1-score, precision and recall beyond the state of art. The key
characteristics of DeepAD are identified below:

1. This framework leverages state-of-the-art deep learning models such as long
short term memory (LSTM) neural networks, which are renown for their
ability to remember relevant information in temporal sequence data even
with large gaps in between using memory gates.

2. The model learns the normal behaviour of the monitored instance and devia-
tions from this normal behaviour are signalled as anomalous data points. The
framework does not use the ground truth of actual anomaly locations neither
for training the model nor for determining the dynamic thresholds.

3. The framework does not set hard thresholds which makes it more adaptable
to varying patterns in the dataset considering an online setting.

4. DeepAD supports multivariate analysis since it can receive as input more
than one feature if needed, e.g., through LSTM, and hence can surpass the
first limitation of approaches limited to univariate analysis.

5. The framework combines the predictions of multiple forecasting techniques,
including autoregressive models and triple exponential smoothing, in order
to offer a generic extensible approach for forecasting.

2 Related Work

Advanced anomaly detection techniques usually employ machine learning, which
can be divided into three classes: supervised, semi-supervised and unsupervised.
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Anomaly detection with supervised learning [9] requires a dataset where each
instance is labelled and typically it involves training a classifier on training set.
Semi-supervised algorithms such as [14] construct a model to represent the nor-
mal behaviour from an input training dataset; following the model is used to
calculate the likelihood of the testing dataset to be generated by the model.
Unsupervised models such as [3] do not require a labelled dataset and operate
under the assumption that the majority of the data points are normal (e.g.,
employing clustering techniques [15]) and return the remaining ones as outliers.

LSTMs have captured the attention of researchers recently in anomaly detec-
tion. For instance, [13] utilize LSTM for predicting time series and use the pre-
diction errors for anomaly detection. They assumed that the resulting prediction
errors have a Gaussian distribution, which were used then to assess the likeli-
hood of anomalous behavior. Then a threshold is learnt based on the validation
dataset to maximize the F-score, which was calculated based on the golden labels
within the validation dataset. The approach was validated on four time series.
Moreover, [6] follows a similar approach applied to ECG time series, where the
prediction errors are fit to a Gaussian distribution, and then the threshold is
determined based on optimizing the F-score on the validation set, which similarly
was calculated based on the given golden labels. Furthermore, [12] utilizes an
LSTM-based encoder-decoder for multi-sensor anomaly detection. When enough
anomalous sequences are available, a threshold is learnt by maximizing precision
and recall. The use of recurrent neural networks is also common for intrusion
detection, such as in [2], with the aim of detecting and classifying attacks. How-
ever, the approaches identified above utilize the golden labels for optimizing the
threshold against the prediction errors or building classifiers.

Two major limitations exist in current techniques: (1) Most approaches, such
as statistical and probabilistic models, are typically suitable only for univariate
datasets where a single metric is monitored at a time. This can be extended to
multiple metrics by building a model for each metric. However, this would not
consider any correlations between metrics. Hence these approaches cannot eas-
ily be extended to multivariate analysis where correlations among metrics can
be used to identify potential anomalous behaviour. This is avoided as DeepAD
can receive as input multiple features, since it can use a single LSTM model
that can capture anomalies across multiple features, which makes it multivari-
ate. (2) Existing approaches typically rely on datasets that contain the ground
truth labels, where the anomalies are specifically pin pointed to a data point.
This can be difficult to gather in real-life scenarios as labelled data is expensive
and requires expert knowledge which yet might be affected by human errors in
labelling the data. Moreover, the amount of data to be monitored and labelled
would be unrealistic. In addition, the initial model might not generalize to new
types of anomalies unless retrained and hence requiring expert knowledge for
the entire duration of the deployment of the anomaly detection model, making
these approaches unrealistic to be deployed in dynamic environments. This is
avoided with our dynamic threshold-based anomaly detection approach since no
labels are required for training or detecting the thresholds.
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3 DeepAD Framework

The DeepAD framework is illustrated in Fig. 1 and has three main phases,
detailed in the following subsections:

1. Time Series Forecasting (TSF): The first phase employs various differ-
ent explicit generalization models. We train the probabilistic and statistical
models and the LSTM models utilizing different architectures for learning
the normal behaviour of the monitored environment and then apply them
on incoming streaming data for scoring. Through this approach, our frame-
work supports plugging in different TSF models and can leverage multivariate
models for forecasting.

2. Merge Predictions (MP): The second phase combines the predictions of
the multiple models, since some techniques provide better results than others
depending on the dataset characteristics. This phase is crucial as it enables
DeepAD to be a generic framework in the sense that it does not depend on
a specific time series forecasting model.

3. Anomaly Detector (AD): The third phase employs extreme value analysis
for computing a dynamic threshold, as follows: it compares the actual values
and the predicted values and when the distance is above a certain threshold
the framework reports the current value as anomalous. The distance repre-
sents the squared error between the actual and predicted value, normalized
between 0 and 1, and the threshold is computed at each time step on the
past scaled squared error. Through this approach, our framework is indepen-
dent of the golden labels and hence can be applied to any time series data
irrespective of them containing anomalous labels in the past.

Fig. 1. DeepAD framework overview.
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(a) TSF+Single-step Merge. (b) TSF+Single-step Merge+AD.

Fig. 2. DeepADMerge: Time series forecasting with single-step merge and AD output
on a sample time series (#90) from A3 benchmark. (color figure online)

3.1 Time Series Forecasting (TSF)

Given a dataset D, the TSF phase aims to learn the normal behavior of the
system under analysis. The output of each TSF model is a one-step ahead pre-
diction which will contain what the value is expected to be at the next times-
tamp. For this purpose, DeepAD supports plugging in different models to enable
the prediction. Currently, DeepAD utilizes the following techniques: Long-short
term memory (LSTM), autoregressive integrated moving average (ARIMA) and
triple exponential smoothing, also commonly referred to in the literature as
Holt-Winters (HW), as the models can complement each other depending on
the dataset. For instance, deep neural networks such as LSTM may provide best
results given large training data, whereas given small datasets, ARIMA and HW
may provide better forecasts.

In the case of LSTM, the look back parameter needs to be specified, which
represents the number of previous time steps to use as input values to predict
the next time step value. DeepAD utilizes the following LSTM architectures:
(i) LSTM simple: 1 hidden layer with n neurons. The following three variations
of this architecture were plugged into DeepAD: n = {4, 10, 16}, (ii) LSTM wide: 3
hidden layers with 64, 256, and 100 neurons, respectively, and (iii) LSTM deep: 7
hidden layers with 16, 48, 48, 96, 96, 48, and 16 neurons, respectively. The
objective is to use simple, wide and deep architectures. For the each architecture
we have trained two models, one with a look back of 1 and another with a
look back of 3, respectively, and for all we have used rmsprop1 as optimizer, since
these resulted in the lowest RMSE. We also evaluated the following look back
variations: 1, 3, 12, 24, 60.
1 http://ruder.io/optimizing-gradient-descent/index.html#rmsprop.

http://ruder.io/optimizing-gradient-descent/index.html#rmsprop
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Furthermore, in the case of ARIMA and HW, DeepAD utilizes the past 24 ·5
values for forecasting, in case of hourly measurements, which leads to utilizing
the past 5 days of data for the next prediction. In particular for ARIMA we
utilize the following values for building the different models: p = {0,1}, d = {1},
and q = {1,2}, where p is the number of time lags of the autoregressive model,
d is the degree of differencing, and q is the order of the moving-average model.
Moreover, for HW we utilize: α = 1, β = 0, γ = 0.7 and α = 0.716, β = 0.029,
γ = 0.993, since these resulted in the lowest RMSE. For both ARIMA and HW,
more models can be plugged in with other parameters values combinations.

We illustrate the outputs of the TSF phase in Fig. 2a, where the Actual values
are highlighted with orange, and the Predicted with blue. In this phase, we can
observe that the predicted values typically follow the actual values, except for
most of the sudden spikes in the data.

3.2 Merging Predictions (MP)

Similarly to an ensemble, the second phase combines the predictions of the mul-
tiple models following two distinct approaches:

1. Single-step merge (DeepaADMerge): This strategy aims to combine the out-
puts of multiple models in order to get a more accurate forecast for a single
dataset. For this purpose, this strategy compares the predicted values pro-
duced by each individual model with the actual value and selects the predic-
tion with the lowest RMSE to forward to the AD phase at each timestamp.

2. Vote (DeepaADV ote): This strategy aims to select the use of a single model
for a given dataset. For this purpose, this strategy follows a voting approach,
keeping only the model that provided the most accurate predictions in terms
of RMSE for the training dataset to be utilized further for forecasting.

3.3 Anomaly Detector (AD)

Once the predictions are merged, a dynamic threshold is determined based on
the squared error as follows: for each predicted value, a queue representing the
sliding window of the previous squared errors is maintained. A scaler is applied
to fit and transform the past squared errors from the sliding window between 0
and 1. In order to ensure DeepAD is not bound to the underlying distribution
of the errors, we leverage Chebyshev’s inequality [7]. In contrast to the 68-95-99
rule, also referred to the empirical rule [8], which applies to normal distributions
only, the Chebyshev’s inequality guarantees that, for a wide class of probability
distributions, no more than a certain fraction of values can be more than a
certain distance from the mean. In order to allow our framework to work with
a variety of distributions, we utilize this inequality to determine the threshold.
We identify that 99%(i.e., 1 − 1

102 ) of the values must lie within 10 times the
standard deviation, and hence to identify the <1% that might lie outside, we
use 10 times the standard deviation of the errors as dynamic threshold. This
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Algorithm 1. isAnomaly(actualV alue, pastV alues, squaredErrors,
predictedV alue, look back, slidingWindow)
1 scaler ← MinMaxScaler(feature range = (0, 1)));
2 //Rescale errors from sliding window for dynamic threshold fitting;
3 scaledSErrors ← scaler.fitTransform(squaredErrors[−slidingWindow :]);
4 //Compute dynamic threshold as 10 times standard deviation;
5 dynamic thresh ← 10 · numpy.std(scaledErrors);
6 //Calculate squared error and apply transformation on current error

crtSError ← (actualV alue − predictedV alue) ∧ 2;
7 crtScaledSError ← scaler.transform(crtSError);
8 //If current error bigger than dynamic threshold signal return True;
9 if crtScaledSError ≥ dynamic thresh then return True // Otherwise add

non scaled squared error to the queue;
10 squaredErrors ← squaredErrors.put(crtSError);
11 return False

confirmed optimum results for detecting anomalies across the 367 time series
analysed in Sect. 4.

Following, if the squared error of the predicted value is higher than 10 times
the standard deviation of the previous squared scaled errors then the module
signals the instance as anomalous. Hence the squared errors and threshold are
dynamic and generally change at every prediction to adapt for the new values
and increase accuracy. The module is set to wait for a period of 50 timestamps
before calculating the standard deviation in order to make sure the standard
deviation calculated has sufficient values to derive it and also that there are
not too many false positives reported at the beginning runtime of AD. This
wait period is a tuneable parameter, however we observed that waiting for 50
timestamps was sufficient for the considered datasets. The step is described in
Algorithm 1. Moreover, we illustrate the output of the AD phase in Fig. 2b,
where the upper part of the diagram illustrates the TSF outputs (i.e., the actual
and predicted values), and the lower part of the diagram illustrates AD outputs,
i.e., the squared error (SError) and the anomaly label (AnomalyLabel), which
is 1 for detected anomalous data points and 0 for normal points. The dashed
vertical lines represent the actual anomalous instances from the ground truth. We
observe that the AnomalyLabel produced by DeepADMerge follows the dashed
lines either at the time of the anomaly or slightly after.

4 Evaluation

This section presents the evaluation of our proposed framework DeepAD. We
compare our framework to a recently published generic and scalable anomaly
detection framework called EGADS [11], since it follows similar steps to
DeepAD for detecting anomalies. The framework compares against the Anomaly
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Detection R library2 released by Twitter, change point methods, and outlier
detectors with static threshold, on the Yahoo Webscope Benchmark, claiming to
provide highest accuracy levels, irrespective of the dataset.

In addition, we compare DeepADMerge and DeepADV ote against the results
of three of the individual TSF models coupled with the AD based on dynamic
threshold. In this way, we illustrate the benefits of the MP phase of our frame-
work compared to each individual TSF model. Since ARIMA+AD and HW+AD
showed similar results across all evaluation metrics, we only illustrate the results
of ARIMA+AD, further denoted by DeepADARIMA. In addition, we illustrate
the results of the simple and deep LSTM architectures, denoted further by
DeepADLSTM−S and DeepADLSTM−D, as each was more suitable for a par-
ticular dataset, based on the evaluation metric.

Finally, we ranked the performances of the six compared approaches based
on the evaluation metrics. We chose modified competition ranking as ranking
methodology (also known as “1334” ranking). In this ranking methodology, a
model’s rank is equal to the lowest rank of the model(s) it has a tie with. The
modified competition ranking approach guarantees that: (a) The results of the
ranking would be deterministic, (b) The best model would be ranked 1st and the
worst model would be ranked 6th for all of the datasets, thus making it possible
to aggregate the results.

4.1 Dataset

We utilized the Yahoo Webscope Benchmark3 for our evaluation since this bench-
mark has been widely referenced in the community and consists of a wide set of
time-series with tagged anomaly points. The benchmark is suitable for testing
the detection accuracy of various anomaly-types including outliers and change-
points. The benchmark consists of a total of 367 time series, split into four main
benchmarks. The A1 Benchmark is based on the real production traffic to some
of the Yahoo properties. The other three benchmarks are based on synthetic
time-series. A2 and A3 Benchmarks include outliers, while the A4 Benchmark
includes change-point anomalies. The synthetic time-series generated have vary-
ing length, magnitude, number of anomalies, anomaly type, anomaly magnitude,
noise level, trend and seasonality. The real dataset is comprised of Yahoo Mem-
bership Login (YML) data and it tracks the aggregate status of user logins to the
Yahoo network. Both the synthetic and real time-series contain 3000 data-points
each, which for the YML data represents 3 months worth of data-points.

4.2 Evaluation Metrics

We evaluate the techniques based on the standard measures of precision, recall
and F1-score. Furthermore, we evaluate the early detection of a technique with

2 https://github.com/twitter/AnomalyDetection.
3 Yahoo! Webscope dataset ydata-labeled-time-series-anomalies-v1 0. http://

webscope.sandbox.yahoo.com.

https://github.com/twitter/AnomalyDetection
http://webscope.sandbox.yahoo.com
http://webscope.sandbox.yahoo.com
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the Ed-score defined in [4]. The Ed-score evaluates how early an anomaly was
detected relative to the anomaly window. The Ed-score is between 0 and 1,
where 1 represents that the anomaly was discovered at the beginning of the
interval and 0 at the end of the interval. In this way, the techniques are compared
against even if they discover the anomaly after it had occurred (i.e., Ed-score
less than 0.5). The Ed-score is relative to the time interval, i.e., a 10% increase in
Ed-score means that a technique detected an anomaly 10% of the time interval
earlier on average.

4.3 Results

Figure 3a, b, and c present the DeepAD results compared to EGADS for
F1-score, precision and recall, respectively. First, we observe that DeepAD
achieves an improvement on average across all datasets as follows by metric:
(i) F1-score: 26%, with a median improvement from 2% in A1 to 40% and 44%
in A3 and A4, respectively, (ii) precision: 25%, with a median improvement from
−13% in A1 to 50% in A4, and (iii) recall: 24%, with a median improvement
from 0 in A2 to 53% in A4. Note that only for A1 in the case of precision, EGADS

(a) F1-score. (b) Precision.

(c) Recall. (d) Ed-score.

Fig. 3. Evaluation results in terms of F1-score, precision, recall and early detection
score.
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achieves a higher median by 13% compared to DeepAD. This suggests that the
framework may be biased towards some datasets than others. However, it can
be observed from Fig. 3c that the higher median in precision resulted in a less
stable and lower median for recall for EGADS in A1. Second, we observe that the
performance of some individual TSF models is unstable across different datasets
for various evaluation metrics: e.g., for the A1 benchmark consisting of real time
series, DeepADLSTM−D provides better results than DeepADLSTM−S in terms
of recall in Fig. 3c, however it provides worse results for the other benchmarks.
DeepADMerge and DeepADV ote aim to address this commonly found challenge
of instability through their ensemble strategy by employing multiple prediction
models and results show a more stable performance across datasets and evalua-
tion metrics. Third, depending on the requirements, different MP strategy can
be followed: (i) DeepADMerge typically maintains a higher level of recall than
DeepADV ote for all datasets due to picking the closest prediction to the actual
value at each timestamp, since for the true anomalies typically the TSF predic-
tions are far from the actual value which is expected, and (ii) DeepADV ote typ-
ically maintains a higher level of precision than DeepADMerge for all datasets,
since it avoids the case of low RMSE TSF models that don’t quite learn the
underlying patterns but report close to actual values at each time stamp (e.g., a
model that learns that the next timestamp has a close value to the current one).

Furthermore, Fig. 3d illustrates the early detection score for all techniques.
We observe that for the A1 benchmark, the models powered by AD have reached
a median of 0.51, compared to 0.34 for EGADS, as the A1 corresponds to the
real dataset contain more dynamic realistic patterns. In A2, the performance
of the models was very close, with EGADS reaching an Ed-score higher with
0.04 than the rest of the models. However, for A3 and A4 none of the models
managed to reach a higher value than 0.5, with a median up to 0.44 in A3
and 0.42 in A4 for DeepAD and 0.3 in A3 and 0.17 in A4 for EGADS, leading
to the observation that most anomalies have been detected slightly after their
occurrence. We observe that in general DeepAD outperforms EGADS in terms
of early detection score across all benchmarks reaching the highest difference
of 0.24 in A4.

Figure 4 shows the distribution of ranks for the four performance measures
and for all datasets. The figure illustrates the number of datasets for which a
model scored a rank between 1 and 6, where rank 1 represents the best model
and rank 6 represents the worst model for a given dataset. It should be noted
that each model has one or more wins (i.e., rank 1) and one or more lowest rank
(i.e., rank 6) for all of the performance measures. This result shows that there
is no model that categorically perform best or worst. However, the distribution
illustrates the probability of lower and higher rankings. EGADS had the lowest
number of wins for and highest number of lowest ranks among the six models
based on F1-score, precision and recall. Surprisingly, for Ed-score, EGADS has
both the highest number of wins and highest number of lowest rank cases. This
suggests once again that EGADS may be biased towards certain datasets. For
all the performance measures, EGADS has the lowest median and mean rank
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Fig. 4. Modified competition ranking of the models for all datasets

overall. EGADS had a mean rank of 4.67 for F1-score, 3.30 for recall, 4.59 for
precision and 3.36 for Ed-score. EGADS had a median rank of 6 for F1-score
and precision, 3 for recall and 4 for Ed-score. Lastly, we found that the rank
distribution of EGADS is significantly lower than all the other models based on
DeepAD using Wilcoxon test (P < 0.001). This result shows that on the con-
sidered benchmark datasets, picking EGADS would not be the optimal choice.
Moreover, the median rankings for all the DeepAD models are 1 for precision,
recall and F1-score and 2 for Ed-score. The mean ranking difference between
the best and worst DeepAD model is less than 1, which shows similar ranking
across all DeepAD models.

5 Conclusion

This paper presented a generic anomaly detection framework based on deep-
learning (DeepAD) that does not utilize the prior knowledge of the anomalous
class neither for training the model nor for determining the threshold. We com-
pared our framework against a state-of-the-art anomaly detection framework
EGADS [11] on the Yahoo Webscope Benchmark. We observed that DeepAD
generally outperformed and outranked the EGADS framework in terms of early
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detection score, precision, recall and F1-score. As future work, we plan to plug
in other TSF models into the framework, such as convolutional neural networks
which can be leveraged in spatiotemporal datasets.
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Abstract. Existing anomaly detection methods are sensitive to units
and scales of measurement. Their performances vary significantly if fea-
ture values are measured in different units or scales. In many data mining
applications, units and scales of feature values may not be known. This
paper introduces a new anomaly detection technique using unsupervised
stochastic forest, called ‘usfAD’, which is robust to units and scales of
measurement. Empirical results show that it produces more consistent
results than five state-of-the-art anomaly detection techniques across a
wide range of synthetic and benchmark datasets.
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1 Introduction

The data mining task of anomaly detection is to detect unusual data instances
which do not conform to normal or expected data automatically. The unusual
data are called anomalies or outliers. Anomaly detection has many applications
such as detecting fraudulent transactions in banking and intrusion detection
in computer networks. The task of automatic detection of anomalies has been
solved using supervised, unsupervised or semi-supervised learning [1].

In supervised techniques, a classification model is learned to classify test
data as either anomaly or normal. They require labelled training data from both
normal and anomaly classes. Obtaining labelled training data from anomaly class
is challenging in many applications [1]. Unsupervised techniques do not require
labelled training data and rank test data based on their anomaly scores directly.
They assume that most of the test data are normal and anomalies are few. They
may perform poorly when the assumption does not hold [1]. Semi-supervised
techniques learn a model representing normal data from labelled normal training
data only and rank test data based on their compliance to the model. Majority
of data in anomaly detection problems are normal, and thus labelled normal
training data can be obtained easily in many applications [1]. This paper focuses
on the semi-supervised anomaly detection task.
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Most existing unsupervised and semi-supervised anomaly detection tech-
niques assume that anomalies are few and different, i.e., anomalies have fea-
ture values that are very different from those of normal instances and lie in low
density regions [1–6]. This assumption may not be always true in data mining
applications where the units and scales of measurement of feature values are
often not known. An anomalous instance may appear to be a normal instance
when feature values are measured in different scales. For example, the instance
represented by red dot in Fig. 1(a) is clearly an anomaly but it looks like a
normal point if the data are measured as x′ = 1/x (represented by red dot in
Fig. 1(b)). Many existing anomaly detection methods fail to detect the anomaly
in Fig. 1(b). In other words, their performances vary significantly if feature val-
ues are measured in different units or scales, i.e., they are sensitive to units and
scales of measurement.

(a) x

(b) x′ = 1/x

Fig. 1. An example of data represented in two scales. The data point represented by
red dot in case (a) is clearly appeared to be an anomaly whereas the corresponding
point in case (b) is more like a normal data.

In real-world applications, feature values can be measured in different units
and/or scales. For example, fuel efficiency of vehicles can be measured in km/litre
or litre/km and annual income of individuals can be measured in an integer scale
like x = 100000 or using a logarithmic scale of base 10 like x′ = 5. Unfortunately,
units and scales of feature values are often not provided when data are given for
anomaly detection where only magnitudes of feature values are available. Many
existing anomaly detection methods may perform poorly if feature values are
not measured in appropriate units or scales for the task.

Recently, the impact of units and scales of feature values in the context of
pairwise similarity measurement of data has been studied [7,8]. Fernando and
Webb (2017) introduced a scale invariant similarity measure using a variant of
unsupervised random forest called ‘Unsupervised Stochastic Forest’ (USF) [7].
Each tree in USF partitions the space into regions using a small subsamples of
data and the partition is robust to units and scales of feature values.

In this paper, we introduce an anomaly detection technique robust to units
and scales of measurement using USF, called ‘usfAD’. In each tree, the space is
partitioned using a small subsamples of labelled normal training data. Then in
each node of trees, normal and anomaly regions are defined based on the labelled
normal training data falling in the node. In the testing phase, anomaly score of
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a test instance is computed in each tree based on the depth of the first node
where the test instance lies in the anomaly region. The overall anomaly score is
computed by aggregating anomaly scores over a collection of trees. Our empirical
results over a wide range of synthetic and benchmark datasets show that it is
robust to units and scales of feature values and it produces more consistent
results in comparison to five state-of-the-art anomaly detection techniques.

The rest of the paper is organised as follows. Preliminaries and previous
work related to this paper are discussed in Sect. 2. The proposed semi-supervised
anomaly detection technique of ‘usfAD’ is discussed in Sect. 3 followed by the
empirical evaluation in Sect. 4 and concluding remarks in the last Section.

2 Preliminaries and Related Work

We assume that data are represented by vectors in an M -dimensional real domain
(RM ) where each dimension represents a feature of data. Each data instance x
is an M -dimensional vector 〈x1, x2, · · · , xM 〉 where each component xi ∈ R

represents its value of the ith feature. Let D be a collection of N training data
of normal instances and Q be a collection of n test instances which is a mixture
of normal and anomalous data. The task in semi-supervised anomaly detection
is to learn an anomaly detection model from D and rank instances in Q based
on their anomaly scores.

Popular nearest neighbour (NN) based methods [2,9,10] rank a test instance
x ∈ Q based on its kNNs in D. Being very different from normal data, anoma-
lies are expected to have larger distances to their kNNs than normal instances.
Local Outlier Factor (LOF) [2] is the most widely used kNN-based anomaly
detection method. It does not require any training. Test instances are ranked
based on the ratio of their local reachability distance (lrd) to the average lrd of
their kNNs in D. The lrd of an instance is estimated using the distance to its
kth NN. Euclidean distance is a common choice of distance measure.

Another distance or similarity based anomaly detection technique is One-
Class Support Vector Machine (SVM) [3]. It learns a model of normal
data based on pairwise similarities of training instances using kernel tricks [11]. It
requires a kernel function to compute pairwise similarities of instances. Gaussian
kernel is a common choice of kernel function that uses Euclidean distance. Test
instances are ranked based on their deviation from the model of normal data.

Both NN-based and SVM-based methods can be computationally expensive
when training data size N = |D| is large. Though the time complexity of NN
search can be reduced to O(log N) from O(NM) by using indexing schemes
such as k:d-trees [12], their effectiveness degrades as the number of dimensions
increases and become useless in high dimensional spaces. Recently, Sugiyama and
Borgwardt (2013) introduced a simpler and efficient NN-based anomaly detector
called Sp [5] where test instances are ranked based on their distances to their
nearest neighbours (1NN) in a small random subsamples of training data, D ⊂ D,
|D| = ψ � N . They have shown that Sp with ψ as small as 25 performs better
than or competitive to LOF but runs several orders of magnitude faster.
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Liu et al. (2008) introduced an efficient anomaly detector using unsuper-
vised random forest called Isolation Forest (iforest) [4] which does not use
distance measure. It constructs an ensemble of random trees where each tree
is constructed from a small subsamples of training data (D ⊂ D). It attempts
to isolate instances in D through recursive axis-parallel random split of feature
space in each tree. Because anomalies are few and different, they are expected
to have shorter average path lengths than those of normal instances over a col-
lection of trees.

Another efficient anomaly detection method which does not require distance
measure is based on histograms [6,13]. It discretises feature values in each dimen-
sion into a fixed number of equal-width bins and frequency of training data in
each bin is recorded. Being few and different, anomalies are expected to fall in
bins with small frequencies in many dimensions. Aryal et al. (2016) introduced a
simple histogram-based anomaly detection method called Simple Probabilis-
tic Anomaly Detector (SPAD) [6] which is more robust to skewed training
data because bin width in each dimension depends on the data variance in that
dimension.

All these existing methods discussed above rely on the assumption that
anomalies have feature values significantly different from normal instances. As
discussed in Sect. 1 (Fig. 1), this may not be always true because the distribu-
tion of feature values depends on the units and scales of measurement. Existing
methods may not perform well if feature values are not measured in appropriate
scales so that this assumption holds. Therefore, existing methods are sensitive
to units and scales of measurement.

Very recently, the impact of units and scales of measurement of feature val-
ues in distance-based pairwise similarity measurement of data has been studied
[7,8]. When feature values are measured in different units or scales, the ordering
of feature values is either preserved or reversed. Exploiting this characteristic,
Fernando and Webb (2017) introduced a non-distance based similarity mea-
sure which is robust to units and scales of measurement. The similarity of two
instances is defined as the number of shared leaves in a collection of t trees called
Unsupervised Stochastic Forest (USF) [7]. Each tree is constructed from
a small subsamples of data, D ⊂ D where |D| = 2h and h is a user-defined
parameter that determines the height of trees. At each internal node in a tree,
subsamples are partitioned into two equal subsets by splitting at the median of
values in a randomly chosen attribute. Because of the median split, the similarity
measure is robust to units and scales of measurement.

In the next section, we combine the ideas of USF and iforest to introduce a
new effective and efficient anomaly detection method which is robust to units
and scales of measurement.

3 New Method Robust to Units and Scales
of Measurement

iforest [4] attempts to isolate instances in data subsamples using random splits
resulting in unbalanced binary trees. Anomalies are expected to fall in leaves
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Algorithm 1. node(D)
Input: D - Subsamples of training data

1 if |D| = 1 then /* check if leaf node is reached */

2 return ; /* return */

3 self · a ← select(1, 2, · · · ,M) ; /* randomly select an attribute */

4 S ← sort(Dself ·a) ; /* sort values of the selected attribute */

5 self · s ← (S[|D|/2] + S[1 + |D|/2])/2 ; /* median split point */

6 DL ← F (Dself ·a ≤ self · s); DR ← F (Dself ·a > self · s) ; /* filter data */

7 self · lNode ← node(DL); self · rNode ← node(DR) ; /* build sub-trees */

8 return ; /* return */

with shorter pathlengths in many trees. However, the implementation of iforest
is sensitive to units and scales of feature values. At each internal node of a
tree, the space is partitioned by selecting a random split between the range of
sample values in a randomly selected dimension. The probability of having a
split between two consecutive points is proportional to their distance which is
sensitive to units and scales of measurement.

USF [7] isolates instances in data subsamples using median splits resulting
in balanced binary trees. The median split makes it robust to units and scales
of measurement. However, the concept of pathlength can not be used to detect
anomalies because all leaves are at the same height.

We propose the following extensions to USF so that pathlengths in trees can
be used as a measure to rank test instances to detect anomalies. Once a balanced
binary tree is constructed from D ⊂ D, the entire training data D are passed
through the tree to define normal and anomaly regions in each node. In each
internal node, the normal range is defined by the minimum and maximum of
feature values of the normal training data falling in the node in the dimension
j selected to partition the space. In each leaf node, the normal range is defined
by the bounding hyper-rectangle covered by the training data falling in the leaf
node i.e., minimum and maximum values of training data in all M dimensions.
Regions outside of the normal range is considered as anomaly regions in each
node. The number of training data falling in each leaf is also recorded.

While a test instance x is traversing ith tree during testing, first we check
whether it lies within the defined normal range at each node. We traverse further
down the tree only if it is within the range, otherwise we terminate and return
the pathlength of the node where it lies outside of the normal range as the
anomaly score of x in ith tree (let’s say pi(x)). If x traverses to a leaf and lies in
the normal region, the anomaly score is defined as the pathlength augmented by
the training data mass in the leaf (let’s say m) as pi(x) = h+log2 m. The second
term is the height of a binary search tree constructed from m data instances and
pi(x) will the be the total height if the leaf node was allowed to grow further
until all instances are isolated. This augmentation is important to differentiate
leaf nodes with high data mass from those with low data mass because their
anomaly scores should be different. Similar adjustment was done in iforest [4].
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Algorithm 2. update(D)
Input: D - Training data

1 if leafNode then /* if it is leaf node */

2 self · m ← |D| ; /* training data mass */

3 self · range ← rangeAll(D) ; /* min & max values in all M dims. */

4 return ; /* return */

5 self · range ← range(Dself.a) ; /* min & max values in dim. self.a */

6 DL ← F (Dself ·a ≤ self · s); DR ← F (Dself ·a > self · s) ; /* filter data */

7 self · lNode · update(DL); self · rNode · update(DR) ; /* do on sub-trees */

8 return ; /* return */

Algorithm 3. score(x, p)
Input: x - A test data, p - pathlength so far (p = 0 for the root)

1 if leafNode then /* if leaf, check range in all dimensions */

2 if inRange(x) then /* if within the range in all dimensions */

3 return p + log2(self · m) ; /* return augmented pathlength */

4 return p ; /* out of range, return pathlength */

5 if inRange(xself ·a) then /* if non-leaf, check range in dim. self.a */

6 p ← p + 1 ; /* increase pathlength */

7 if xself ·a ≤ self · s then /* go to respective child */

8 return self · lNoded · score(x, p)
9 else

10 return self · rNode · score(x, p)
11 return p ; /* out of range, return pathlength */

Algorithms to construct a tree from D (a random subsamples of D of size 2h),
updating ranges and data mass using D and computing score of a test instance
x are provided in Algorithms 1, 2 and 3, respectively.

The overall anomaly score of x is estimated by aggregating pathlengths over
t trees, score(x) = 1

t

∑t
i=1 pi(x). Anomalies will have smaller score than normal

instances. We call the proposed unsupervised stochastic forest based anomaly
detection method ‘usfAD’. It is based on the same idea of isolating anomaly
regions from normal regions as used in iforest [4] but using different mechanism
of isolation.

As distance is not involved and trees are construct using median splits, usfAD
is robust to units and scales of measurement. Even though the size of ranges can
be changed with the change in units or scales of measurement, the ordering of
values is either preserved (e.g., logarithmic scale) or reversed (e.g., inverse). If a
point u lies in the range [x, y] in one scale, the corresponding point u′ is expected
to lie in the corresponding range [x′, y′] in another scale. Because of the split at
the mid point of two values in the middle (median in the case of even data), there
will be small variations in the definition of regions in different scales resulting in
small differences in the anomaly detection accuracy.
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Figure 2 shows the contour plots of anomaly scores of every point in a two-
dimensional space using iforest (t = 100, ψ = 256) and usfAD (t = 100, h = 5) in
a dataset in two scales: x and x′ = 1/x. It shows that though iforest can detect
the anomaly in the original space (Fig. 2(b)), it fails to detect the same anomaly
after inverse transformation (Fig. 2(e)). But usfAD has no problem detecting the
anomaly in both scales (see Figs. 2(c) and (f)).

(a) x (b) iforest (c) usfAD

(d) x′ = 1/x (e) iforest (f) usfAD

Fig. 2. Anomaly contours of iforest and usfAD in a two-dimensional dataset in two
different scales. Note that data are normalised to be in the unit range of [0, 1] in each
dimension in all contour plots. The darker the colour, the higher the chances of being
anomaly. Note that the anomaly point represented by the red dot is not considered as
a part of training data D or D′ which includes only the normal instances represented
by blue asterisks. (Color figure online)

In the training phase, usfAD requires to create t trees and update normal data
range in each tree using the entire training data. It’s training runtime complexity
is O(Nth + ψM). Note that ψ = 2h. It needs O(tψM) space to store t trees and
normal range for all M dimensions in each leaf node. In the testing phase, the
runtime complexity of ranking n test instances is O(n(th+M)). Because testing
time is independent of training data size N , it runs faster than LOF and SVM in
datasets with large N . It runs slower than iforest due to the overhead to check
range in each node from the root to a leaf in each tree.

4 Empirical Evaluation

In this section, we present the results of experiments conducted to evaluate the
performance of usfAD against five state-of-the-art anomaly detectors: LOF, one-
class SVM, iforest, Sp and SPAD. We used synthetic and benchmark datasets
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in our experiments. All experiments were conducted in semi-supervised setting
where half of the normal instances in a dataset were used as labelled training
data and the remaining other half of normal data and anomalies are considered
as test data as done in [14]. Anomaly detection model was learned from the
training data and tested on the test data. Area under the ROC curve (AUC)
was used as the performance evaluation measure. For random methods: iforest,
Sp and usfAD, each experiment was repeated 10 times and reported the average
AUC. A significance test was conducted using the confidence interval based on
the two standard errors over 10 runs. The same training and test sets of a dataset
were used for all experiments with the dataset. Feature values are normalised to
be in the unit range of [0, 1] in each dimension.

(a) Gaussians (b) Ring (c) Waves

(d) Corners (e) Spiral (f) Curves

Fig. 3. Two-dimensional synthetic datasets. Each dataset contains 2000 normal
instances represented by blue asterisks and 12 anomalies represented by red dots. (Color
figure online)

We used the implementation of LOF and SVM included in the Scikit-learn
machine learning library [15]. Other methods and experimental setups were
also implemented in Python using the Scikit-learn library. All the experiments
were conducted in a Linux machine with 2.27 GHz processor and 8 GB memory.
Parameters in algorithms were set to suggested values by respective authors:
k = �√N	 in LOF; subsample size ψ = 25 in Sp; number of bins b = �log2 N	+1
in SPAD; and t = 100 and ψ = 256 in iforest. We used the default settings of
SVM. For usfAD, default values of h = 5 and t = 100 were used.
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4.1 Synthetic Datasets

We used six two-dimensional datasets as shown in Fig. 3 to evaluate the robust-
ness of anomaly detection algorithms with different scales of measurement. We
used four order preserving and order reversing transformations of data using
square, square root, logarithm and inverse, where each feature value x was
transformed as x2 and

√
x, log x and 1

x , respectively. Because 1
x and log x are

not defined for x = 0, all transformations were applied on x̂ = c(x + δ) where
δ = 0.0001 and c = 100. Note that the original feature values in both dimensions
were normalised to the unit range of [0, 1] before applying the transformations
to ensure the same effect of δ and c in both dimensions. Once the feature values
were transformed, they were renormalised to be in the unit range again. We used
exactly the same procedure of transformation as employed by [7].

(a) Gaussians (b) Ring (c) Waves

(d) Corners (e) Spiral (f) Curves

Fig. 4. AUC of contending methods in the six synthetic datasets with order preserving
and order reversing transformations of data.

AUC of all contending measures in six synthetic datasets with and without
transformations are presented in Fig. 4. It shows that usfAD produced best or
equivalent to the best results in all cases. It produces similar results in all datasets
with the original feature values and all four transformations. This results show
that it is robust to units and scales of measurement.

All five existing measures were sensitive to transformations of data. Among
them, LOF is the least sensitive. It could be because of the use of relative kthNN
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distance of x to its kNNs’ kthNN distances which captures the contrast in the
locality well even though overall variance of data is changed due to transforma-
tions. Its performance also dropped with inverse and logarithmic transformations
in Waves and Corners. Other four contenders failed to detect all anomalies cor-
rectly even in the original scale in four datasets. It is interesting to note that
some existing methods produced better results with a transformation than in the
original space, e.g., SVM produced best results with the inverse transformation
in Gaussians and Spiral.

Table 1. Benchmark datasets

ID. Name #dim (M) Training size (N) Test data

Total (n) #Anomalies

1. Arrhythmia 274 193 259 66

2. Covertype 10 141650 144398 2747

3. Ionosphere 32 112 239 126

4. Ism 6 5461 5722 260

5. Kddcup99 31 30296 34463 4166

6. Mammography 6 5461 5722 260

7. Miniboone 49 46554 53446 6892

8. Mnist 96 9884 10560 676

9. Mulcross 4 117965 144179 26214

10. Musk2 166 2790 3082 291

11. Pima 8 250 518 268

12. Satellite 36 2199 4236 2036

13. Shuttle 9 22793 26304 3511

14. Smtp 3 47563 47593 30

15. U2r 33 30296 30525 228

4.2 Benchmark Datasets

We used 15 benchmark datasets from UCI machine learning data repository
[16], many of which were used in the iforest and SPAD papers. The properties
of datasets are provided in Table 1. Data in each dimension were normalised to
be in the unit range of [0, 1]. To demonstrate the robustness of usfAD to scales
of measurement, we also evaluated the performance of contending measures in
benchmark datasets with the inverse transformation (x′ = 1/x) which was done
as discussed in Sect. 4.1.

The AUC of all contenders in the 15 benchmark datasets is provided in
Table 2. In the original scale, usfAD produced best or equivalent to the best
result in seven datasets followed by LOF in five, iforest in four, SPAD and SVM
in three each and Sp in one dataset only. usfAD produced significantly better
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AUC than the closest contender in Musk2 (ID 10) - AUC of 0.908 by usfAD
vs that of 0.700 by LOF. The average results in the last row show that usfAD
produced more consistent results than existing methods across different datasets.

Table 2. Anomaly detection performance (AUC) in benchmark datasets in the given
original scale (x) and inverse transformation (x′ = 1/x). First column is the dataset ID
from Table 1. The average AUC over the 15 datasets is provided in the last row. Best
or equivalent to the best results based on the two standard errors confidence interval
of random methods over 10 runs in each scale are underlined.

ID. Given original scale (x) Inverse transformation (x′ = 1/x)

LOF SVM SPAD Sp iforest usfAD LOF SVM SPAD Sp iforest usfAD

1. 0.800 0.810 0.823 0.807 0.826 0.812 0.714 0.751 0.841 0.746 0.816 0.811

2. 0.992 0.921 0.828 0.870 0.848 0.990 0.949 0.622 0.902 0.818 0.968 0.996

3. 0.958 0.816 0.721 0.949 0.896 0.969 0.922 0.834 0.898 0.901 0.929 0.969

4. 0.893 0.843 0.790 0.816 0.883 0.896 0.833 0.457 0.485 0.776 0.645 0.897

5. 0.895 0.997 0.978 0.996 0.995 0.994 0.870 0.986 0.988 0.968 0.993 0.996

6. 0.889 0.850 0.786 0.826 0.880 0.900 0.830 0.463 0.555 0.777 0.652 0.905

7. 0.700 0.685 0.702 0.599 0.750 0.717 0.727 0.548 0.741 0.746 0.745 0.708

8. 0.877 0.824 0.799 0.810 0.835 0.853 0.579 0.721 0.766 0.716 0.771 0.849

9. 1.000 1.000 0.998 1.000 0.999 1.000 1.000 0.973 0.928 0.983 0.973 1.000

10. 0.700 0.195 0.604 0.552 0.427 0.908 0.700 0.579 0.597 0.631 0.585 0.911

11. 0.704 0.706 0.743 0.741 0.754 0.667 0.409 0.579 0.436 0.405 0.454 0.653

12. 0.837 0.651 0.867 0.837 0.793 0.821 0.834 0.655 0.806 0.816 0.799 0.821

13. 0.991 0.987 0.999 0.989 0.997 1.000 0.991 0.979 0.998 0.987 0.996 1.000

14. 0.868 0.728 0.932 0.841 0.883 0.873 0.840 0.785 0.960 0.863 0.929 0.875

15. 0.886 0.987 0.977 0.982 0.986 0.926 0.860 0.976 0.988 0.976 0.987 0.923

Av. 0.866 0.800 0.836 0.841 0.850 0.889 0.804 0.727 0.793 0.807 0.816 0.888

With the inverse transformation, the performance of all existing methods
dropped in many cases. usfAD produced best or equivalent to the best result
in 10 datasets followed by SPAD in four, iforest and LOF in two each, and Sp
in one dataset only. SVM did not produce best or equivalent to the best result
in any dataset. It is interesting to note that some existing methods produced
better results with the inverse transformation than in the original space, e.g.,
LOF, SPAD and Sp in Miniboone (ID 7); iforest, Sp and SVM in Musk2 (ID 10)
etc.

In terms of runtime, usfAD was one order of magnitude faster than LOF and
SVM in large and/or high dimensional datasets. For example, to complete one
run of experiment in Miniboone, usfAD took 440 s whereas LOF and SVM took
2308 s and 1187 s, respectively. However, it was up to one order of magnitude
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slower than Sp, SPAD and iforest. In Miniboone, Sp took 22 s, SPAD took 43 s
and iforest took 83 s.

5 Concluding Remarks

Existing anomaly detection methods largely rely on spatial distances of data
to identify anomalous instances. They may fail to detect anomalies which are
masked due to the use of inappropriate units or scales of measurement. In many
data mining applications, units and scales of feature values are often not provided
where only magnitudes of feature values are given. Thus, an anomaly detection
method which is robust to units and scales of measurement is preferred. In this
paper, we introduce one such technique using unsupervised stochastic forest. Our
empirical results in synthetic and benchmark datasets suggest that the proposed
method is robust to units and scales of measurement and it’s performance is
either better or competitive to existing methods. It produces more consistent
and stable results across a wide rage of data with different order preserving and
order reversing transformations.
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Abstract. Recently, a deeper level of data exploration has emerged
enabling users to infer anomalies in their queries. This exploration level
strives to explain why a particular anomaly exists within a query result
by providing a set of explanations. These explanations are precisely a
set of alterations, such that when applied on the original query cause
anomalies to disappear. Trends are pattern changes in business applica-
tions generated based on SQL aggregated queries. Additionally, a user
expected trend is a particular pattern change in data was supposedly
happen based on businesses studies.

In this paper, we generalize this process to automatically produce
explanations for users expected trends. We propose User Trend Explana-
tions (UTE) framework which provides insightful explanations by taking
a set of user-specified points (called prospective trend), and finds a top
explanation that produce this trend. We develop a notion of uniformity
of a predicate on a given output, and implement a set of algorithms to
search the data space efficiently and effectively. The key idea is harness-
ing the linear search space rather than the exponential space to enable
accurate explanations that are possible with tuples. Our experiments on
real datasets show significant improvements UTE provides when com-
pared with state-of-the-art related algorithms.

1 Introduction

The explosion of big data drives users to use a diverse set of visualization tools to
efficiently discover trends and patterns while exploring data. Examples of these
tools are Tableau, ShowMe, Fusion Tables [6,9]. Although various visualization
tools effectively discover outliers but, most of them are unable to explain why a
given set of outputs are outliers or identifies reasons behind such outliers. Thus,
a deeper level of exploration that explains reasons behind a particular trend or
pattern found is needed.

To illustrate, a mobile applications company is interested in studying the
behavior of three new released apps: (Chat, Music, and Video). Figure 1b, shows
a bar chart visualizing the average downloads of these apps (blue-color bars).

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 602–614, 2018.
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However, the analyst team is expecting different averages as shown in the red-
color line. It is quite essential to explain why a specific pattern exists, or alterna-
tively describe the cause(s) which are responsible of the deviation in the query
outcome and user specified (expected) trend.

Fig. 1. Mobile Apps visualization example (Color figure online)

Example 1. Using the relation R in Fig. 1a, an analyst is interested in exploring
the performance of different mobile applications. Each tuple in R holds details
about an application such as: name, carrier, crash rate, loading time, session
time, and number of downloads. Assume she is interested in the average down-
loads per application, hence she formulates the following SQL query:

Q1: SELECTavg(downloads), App nameFROMRGROUPBYApp name; ��

Then, she visualises the result of the query using a bar chart, such as the
one in Fig. 1b. The analyst is expecting the average downloads for Chat App,
Music App, and Video App to be 1000, 1200, and 766.67 respectively. However,
the result of Q1 is far from her expectations. Hence, she wants to understand
why the result in the chart does not match her expectations, or alternatively,
what are the reasons of this deviation. Specifically, what are the predicates that
can be added to Q1 in order to achieve her expected trend (i.e., the red-colored
line)?

There are many reasons behind the results divergence from her expected
trend: it might be one of the carriers caused this divergence, due to a certain crash
rate of apps, or others. The predicate which explains the divergence Example 1
is: (Crash rate NOT BETWEEN 3 and 4) AND (session time NOT BETWEEN
20 and 25).

Applying this predicate to the original query Q1 will return the user’s
expected result.

This problem is non-trivial and challenging due to the following factors:
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– Exponential Search Space: Each single aggregate value needs to con-
sider various combinations of input tuples affecting the original results, which
depends on properties of the aggregate function itself. In the worst case, we
cannot predict how combinations of input tuples interact with each other,
and resolve to evaluating all possible predicates (exponential search space).

– CPU and I/O Intensive: An efficient and effective measure is to be
designed to determine which subset of input tuples cause the value to be
deviated. Such measures are challenging to design because it involves iter-
ating over all possible subsets of input tuples and applying the aggregate
operator from scratch. In addition, Executing this number of modified aggre-
gate queries (predicates) is expensive and costly.

– Specification of User Expected Values: Unlike previous work [11,12,16],
as users only specify how an outlier result looks wrong (i.e. the outcome is
too high/low compared to their expectations), however in reality, instead of
the binary choice of ‘too high’ or ‘too low’, users want to go further to specify
how much is an outlier far from their expectations which makes the problem
more complex.

The paramount challenge in this problem and the limitation of current
approaches is the exponential search space of the predicates. To illustrate, assume
in a relational table R with d categorical dimensions which are not involved with
the aggregate function nor the group by that are used to construct the explana-

tions. Then, there are
d∏

i=1

(2ni − 1) possible predicates, where ni is the number

of distinct values of a dimension di. To manage such expensive search space, we
propose to utilize a linear search space |R|, rather than an exponential one in
previous works [12,16]. According to mobile data in Fig. 1a, the size of the search
space based on predicate-level is (23−1)∗(27−1)∗(26−1)∗(26−1) = 3, 528, 441
possible explanations (predicates), while our proposed approach evaluates at
most only |R| = 9 possible explanations.

In this paper, we introduce UTE framework which provides insightful expla-
nations based on the intervention of tuples not predicates. UTE doesn’t require
to evaluate all tuples and evaluates only tuples with distinct values in the aggre-
gated attribute. UTE shares the common philosophy in [12,16] of measuring
explanations using intervention or influence of tuples. However, it searches for
explanations based on the highest granularity using tuples, rather than predi-
cates. Finally, we summarize our contributions as follows:

– We formalize a notion of uniformity over predicates and develop a system
that searches for uniform predicates in a single relation and utilizes the linear
tuple-level search space rather than the exponential predicate-level.

– We provide a set of splitting algorithms: XTrend-Basic, XTrend-Advanced
and XTrend-Fast which split attribute domain linearly.

– We proposed merging algorithms which exploit geometric properties in the
distribution of predicates uniformity to group predicates in an efficient
manner.
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– We present XTrend Transformation process that generates meaningful expla-
nations (predicates) to the user.

– We run experiments on real datasets showing the efficiency and effectiveness
of our algorithms compared with state-of-the-art algorithms.

The paper is structured as follows: Sect. 2 illustrates related work and Sect. 3
describes the formal problem formulation, Sect. 4 presents UTE architecture and
several algorithms and Experiments are described in Sect. 5.

2 Related Work

Several projects from databases and data mining research communities were pro-
posed to provide explanations and to support interactive data exploration, e.g.,
user ratings on sites like Yelp and IMDB [4], access log and security permissions
[2]. Kanagal et al. [7] studied the problem of computing top-k influential vari-
ables and top-k explanations to answer “why a tuple is in the output”, or “why
the probability of an output tuple is greater than another one” in probabilistic
databases.

Explanations in Databases: Wu and Madden [16] proposed the Scorpion sys-
tem to provide explanations for user aggregated queries over a single relation.
Scorpion uses a set of user-specified outlier and hold-out points in a given aggre-
gate query result to output top-K predicates which make outliers disappear. Wu
and Madden [16] developed a notion of predicate influence based on sensitivity
analysis [13] in the context of data provenance [10] to define how the probability
of a result tuple is influenced by an input tuple. Although Scorpion provides
explanations in terms of predicates but, it fails to provide a concrete method of
how much high or low outliers should be bounded.

The optimization techniques used in Scorpion [1,3] are based on the incre-
mental properties of aggregate functions such as sum, avg, stddev. Though, multi-
ple performance limitations arise for user-specified aggregate functions or when
an aggregate function is considered as a black-box. Roy and Suciu [12] pro-
posed a formal framework for defining explanations to complex SQL queries over
database schemas involving multiple relations and foreign key constraints. How-
ever, their framework limits predicates to be conjunctive predicates of atomic
equality predicates on tables.

OLAP Data Cubes: Sarawagi et al. [14] proposed Diff operator to generate
summary tuples that explain why two subcubes values differ assist users to find
reasons for drops or increases observed at an aggregated level. It is based on an
information theoretic formulation for expressing the reasons of why subcubes’
values are different. RELAX [15] assists users to propagate from a specific prob-
lem case in multidimensional hierarchal data cubes (e.g. drop in sales of a store
in a specific region) and returns a wider context in which the problem occurs.
MRI [5] automatically provides a meaningful interpretation of ratings based on
the idea of data cube. This work uses randomized hill exploration algorithms to
discover interesting cuboid in OLAP rating cubes.
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PerfXplain [8] explains relative performances questions (i.e., why some jobs
have faster runtimes than others) of pairs of MapReduce jobs. PerfXplain pro-
vides a query language named PXQL for expressing performance queries and
produces explanations from past MapReduce executions logs.

3 Problem Formulation

UTE attempts to find a predicate over a dataset that achieves most uniformity
to a user specified trend. We start by defining some notations that are used
throughout the paper.

Let D be a flat relational table with a set of attributes A = {a1, a2, ..., am}.
A visualization query Q on D is an SPJ aggregate query which returns a result
set R = Q(D) grouped by attributes agby ∈ A and aggregated by a single
aggregation function F over aagg ∈ A, where agby �= aagg. The result set R
is a collection of t pairs: R = {(r1, v1), (r2, v2), .., (rt, vt)} where ri ∈ agby is
a distinct value in agby, and vi is the aggregated value associated with ri. Let
ARest = A − agby − aagg be the set of the remaining attributes which are not
involved in Q and used to construct explanations.

In Example 1, query Q1 contains a single group-by attribute, agby =
{App name}, and an aggregate attribute, Aagg = {downloads}. The user is
interested in combinations of Arest = {Carrier, Crash rate, Session time, Load-
ing time} values that are responsible for the anomalous average downloads.

3.1 Prospective Trend Problem

Informally, the prospective trend problem is a user question: why my query is
returning different values than the ones I’m expecting? Formally:

Definition 1. Prospective Trend Problem (PTP): Given a user prospec-
tive trend T containing a set of user expected values {(r1, e1), (r2, e2), .., (rt, et)}
where |R| = |T |.

A user question U is defined as {Q, T }, where Q is an SPJ aggregate query
with a group-by clause. The objective of PTP is to find a top explanation that
minimize the difference between T and R.

Definition 2. Explanation (e): An explanation is a set of conjunctive predi-
cates P = {p1, p2, ..., ph}, where pi ∈ P is either a range of a continuous attribute
or a set of containment clauses over a discrete attribute.

Our objective in PTP is to find the optimal explanation e∗ such that when
e∗ is applied to Q, the query will return exactly T . Though, e∗ in practice is
quite difficult to find hence, we relax this objective to look for the explanation
that minimizes the distance to T (referred as Predicate Uniformity). We use the
Euclidean distance to measure that distance. Let R′ be the result of Q after
adding e, then our objective is to minimize the following:

Uniformity(R′, T ) =

√√√√
t∑

i=1

(vi − ei)2 (1)
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Equation 1 ranges from zero to ∞, such that smaller values indicate better fit
to T . predicate uniformity is obtained by calculating the distance between two
vectors which is commonly used to find the deviation in various data exploration
approaches. UTE is independent of using any distance measures such as Earth
Mover distance, cosine distance, ... etc.

4 UTE Architecture

This section illustrates UTE system architecture we have developed to solve the
problem of finding prospective predicates defined in Sect. 4.2. It describes naive
implementations of the main system components then, discusses reasons of why
this implementations are not efficient. These implementations do not assume
anything about the aggregates so can be used on various user defined aggregates
to find the most uniform predicate. UTE system is implemented in Java as part
of an end-to-end data exploration tool1 Users can select databases and execute
aggregate queries whose results are visualised as charts in Fig. 1b. Users can
select arbitrary results and specify their expected values or plot expected trend.
Both expected trend values and the aggregate query are sent to the UTE backend
to construct explanations. UTE consists of two main processes: Splitting process
which is responsible for generating predicates which uses the Scorer module in
parallel to compute the objective function i.e. L2norm and returns a ranked
list of scored predicates. Highly scored predicates are greedily combined during
the Merging process as long as the uniformity of merged predicates improves.
Finally, the top predicate is returned to the user.

4.1 Naive Splitter

NAIVE algorithm defines all distinct single-attribute clauses, then enumerates
all conjunctions of up to one clause from each attribute. Clauses over a discrete
attribute, Ai are of the form, Aiin(Ax1, Ax2, ....., Axs) where Ax1, Ax2, ....., Axs

is replaced with all possible combinations of the attribute’s distinct values. In
Example 1, permuting all predicate for Carrier attribute such as Carrier in
(′V odafone′), Carrier in (′Telstra′), Carrier in (′V odafone′,′ Optus′), ..... etc.
Clauses over continuous attributes are constructed by splitting the attribute’s
domain into a fixed number of equisized ranges, and enumerating all combina-
tions of consecutive ranges. Then it computes the uniformity of each predicate
by sending it to the Scorer.

Naive Splitting Complexity. To discuss the complexity analysis of predicates
generation problem by naive. As denoted in Sect. 3, ARest is a set of remaining
attributes in the dataset D which used to construct the explanations We denote
AC as a set of all categorical attributes in ARest and similarly, AR is a set of all
numeric attributes in ARest, where AC

⋂
AR = φ and AC

⋃
AR = ARest. Firstly,

1 https://github.com/ibrahimDKE/UTE Xtrends.

https://github.com/ibrahimDKE/UTE_Xtrends
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the number of generated predicates Pcount(ai) for each categorical attribute ai ∈
AC is equivalent to number permutations of all distinct values dNi in ai.

Pcount(ai) = 2dNi − 1

The number of generated predicates in a set AC of categorical attributes is
increasing both linearly with number of categorical attributes |AC | and expo-
nentially with the number of distinct values in attributes. The time complexity
is O(|AC |) = |AC |dNMax where, dNMax is the maximum number of distinct val-
ues found in all attributes in |AC |. Secondly, To compute the number of gener-
ated predicates over numeric attribute aj ∈ AR, it requires to specify a splitting
ratio β over the attribute domain which used to identify the partition size. For
example, β = 0.5, this means that each partition size is 50% of domain range.
For any numeric attribute aj ∈ AR with a domain range [0 − 1] and splitting
ratio β, the number of generated predicates Pcount(aj) is:

Pcount(aj) =
| 1

β |∑

i=0

(
| 1
β

| − i

)

Naive algorithm is inefficient since the number of single-attribute clauses
increases exponentially for a discrete attribute as its cardinality increases. Addi-
tionally, the space of possible conjunctions is exponential with the number of
attributes [16], such issues make the problem indefensible and unacceptable for
even small datasets.

4.2 Basic Merger (BM)

BM takes as input a ranked list of predicates which is produced during splitting
process and merges subsets of the predicates. Two predicates are merged by
finding the minimum bounding box of the continuous attributes and the union
of all values for each discrete attribute. BM repeatedly extends the existing
predicates in ascending order of their scores. Each predicate is expanded by
greedily merging it with adjacent predicates until the resulting uniformity does
not improve.

For a list of splitted predicates L and a current number of merged predicate
so far X . Then, the complexity of BM is O(|L−X |). In the worst case, BM keeps
merging the top predicate (most uniform one) with all remaining predicates in
the list and its time complexity will be O(|L|). The merging behavior of BM
implies a trade off between efficiency and effectiveness, since some of predicates
combinations will be missed and not evaluated. However, if all combinations are
evaluated by BM , then it ends up with an exponential complexity of merging.

4.3 UTE Splitting Approaches

In this section, we describe our proposed algorithms to solve predicates genera-
tion problem linearly and present optimizations for both splitting and merging
processes.
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XTrend Basic Splitter. The first proposed splitting approach XTrend Basic
starts with reading meta-data information for all attributes in ARest and returns
attribute AMaxSplit that contains the maximum number of distinct values. Then,
it uses AMaxSplit to generate a set of splitted predicates SP (ri) for each result
id ri by retrieving all tuples in result id ri. For each predicate Pj in result id ri,
it calculate internal score that equals the difference between expected value ei
and the result Pj(v) of predicate Pj .

XTrend Basic utilizes the aggregate feature of query Q to limit evaluating
all tuples in the dataset. It evaluates only tuples which contain distinct values
in the aggregated attribute AAgg. Tuples that have similar AAgg value in each
result id are not evaluated and have same score. In Example 1, XTrend Basic uses
attribute id as AMaxSplit (since it contains 9 distinct values) to generate pred-
icates set SP (Chat App) for result id (Chat App). It contains three predicates
id = T1, id = T4, and id = T7, only two predicates are being evaluated since
T1 and T7 have same downloads value 1000. Removing tuple T1 or T7 changes
the average downloads to (1300+1000)

2 = 1150, and similarly for T4. Predicates
id = T1 and id=T7 have highest internal score to the target value of result
id Chat App=1000, |1000 − 1150| = 150. While removing id = T4 changes the
result to the exact target value |1000 − 1000| = 0.

In parallel, XTrend Basic generates a predicates set for each result id then,
each sorted set SP (ri) is passed to a basic Merger BM which merges top
predicates according to their internal score as discussed above in Sect. 4.2.
XTrend Basic is basically designed to evaluate predicates in tuple-level as it
sets AMaxSplit to ROW ID as the default splitting attribute. However, when the
number of distinct values in AMaxSplit < |D| and ignoring ROW ID. It modifies
predicate clause by adding one more condition Agby = ri. The total number of
splitted predicates sPred is calculated as follows: Let dni is number of distinct
values of aggregated attribute in result id ri. Then, total generated predicates
is sPred =

∑|r|
i=1 dni.

The time complexity of splitting process is linear O(|sPred|), while sPred �
|D|. In the worst case, when the aggregated attribute contains only unique val-
ues, the complexity will be O(|D|). XTrend Advanced is similar to XTrend Basic
except that the former applies transformation process during the Merging pro-
cess.

Xtrend Fast Splitter. This splitting approach works in tuple-level and com-
putes the result of splitted predicates in memory. It completely avoids both
executing queries of predicates on the database and calling Scorer when the
aggregate function F of query Q is incrementally removable (e.g., SUM, AVG,
and STDDEV). An incrementally removable aggregate can directly evaluates
predicate P from its tuple. If the updated result of removing a tuple t from the
inputs D, can be computed by only reading t. SUM is incrementally removable
because SUM(D - t) = SUM(D) - SUM(t),

Fast Splitter cashes all input tuples of AMaxSplit, Agby, and Aagg attributes,
and directly computes the internal score of applying each predicate. In Exam-
ple 1, computing the result of predicate Tuple id �=′ T7′ affects only on the its
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result id Chat App, it can be easily calculated 1300+1000−900
3−1 = 700 and directly

calculates its internal score |1300 − 700| = 600.

4.4 XTrend Transformation

The final output of Merging process is a set of ranked predicates contains only all
clauses generated from a single attribute. This because only AMaxSplit attribute
is used during both splitting and merging processes. Thus, such predicates are
usually meaningless and difficult to understand by the user. XTrend transfor-
mation process involves changing a merged predicate resulted from merging one
or more predicates to a meaningful and understandable predicate. The process
finds alternative predicates by exploring other attributes that are not involved
during splitting process. To illustrate, Let PMrg is a merged predicate with a set
of merged clause attributes PAtts and ARest is a set of remaining attributes in
database D where PAtts ⊆ ARest. The number of available transformed predi-
cate equals |ARest−PAtts|. Transforming predicate Pac for categorical attributes
is done by adding all distinct values of attribute ac of all tuples satisfy pred-
icate PMrg. For a numeric attribute ar, transformation is done by finding the
bounding box of all tuples satisfy predicate PMrg in attribute ar.

In Example 1, suppose predicate PMrg =Tuple id not in (T1,T5,T7) is high
scored merged predicate, to transform PMrg we look for remaining attributes
{Carrier, Crash rate, Loading time, Session time} as they haven’t used before.
Transformation of predicate PMrg is done by finding the bounding box for
Tuple id in (T1,T5,T7) over attribute Session time and outputs new predicate
(Session time) Not between 10 and 11. Each new predicate is evaluated by the
Scorer and add only predicates that improve the score or at least has similar
score with the original predicate.

Although, transformation process has extra merging cost but it drops rapidly
while increasing merged clause attributes |PAtts|. The time complexity for any
merged predicate PMrg is linear and equals O(|ARest|−|PAtts|). However, In the
worst case when only a single attribute in the predicate clause, the complexity
will be O(|ARest|).

4.5 Xtrend Merging

In this section we present Geo Merger optimizations that employs geometric fea-
tures of the predicates list generated by UTE splitters. As illustrated in Sect. 4.3,
UTE splitters produce a ranked list of predicates based on tuple-level and Geo
Merger takes the list as input then generates a histogram for all predicates’ scores
to measure the skewness of predicates. Computing skewness of predicates’ scores
helps Geo Merger to specify a threshold in order to limit merging predicates.
For instance, negative skew means the mass of predicates distribution are con-
centrated on the right of the histogram and this implies that most predicates’
scores are high and far from the target. Thus, Geo Merger doesn’t need to merge
inefficient predicates and it puts the mean as a threshold.
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Finally, Geo Merger keeps predicates merging as long as the uniformity of
predicates doesn’t improve and reaches the skewness threshold. This distinct
improvement of Geo Merger is specifying a threshold to limit merging to the half
of predicates list in the worst case, while Basic Merger keeps merging to the end
of the list. In contrast, Scorpion’s Merger [16], limits the number of predicates
that needed to be merged by only expanding the predicates whose scores within
the top quartile of the list. Scorpion Merger approximates predicate’s influence
by estimating the number of cached-tuples in each predicate. However, it assumes
that tuples are distributed uniformly within the partitions and such assumption
rarely exits in real world datasets.

5 Experiments

This section presents our experiments that compare UTE splitting algorithms
XTrend Basic, XTrend Advanced and Fast Splitter against Scorpion Decision
Tree (DT ) algorithm. The experiments provide a clear illustration to show how
these algorithms compare in terms of performance and quality of explanations.

5.1 Datasets

GoCard: A transportation dataset contains 4.4 million tuples with 12 dimen-
sions describing Brisbane city transportation from January to March 2013. Each
tuple represents a trip such as (route, journey length, no. passengers, boarding
and lighting stop, ..etc). GoCard contains both discrete and numeric attributes
varying cardinality from 2 to 170214. We study the average passengers per board-
ing stop for two buses namely 411 and 412. It shows a single stop Coldridge Street
recorded 20 times higher than average passengers in all boarding stops. It’s found
that 32630 passengers used these buses in one day. We defined the ground truth
all tuples where the operation date =06-Mar-13 and alighting stop in(’Adelaide
St’, ’George St’).

Expense: dataset contains all campaign expenses between July 2014 and August
2016 from the 2016 US Presidential Election2. The Expense dataset contains
219579 rows and 14 attributes mostly are categorical attributes (e.g., recipient
name, amount, state, and city), 12 attributes are used to create explanations.
The attributes are varying between 2 to 221490 (recipient names) distinct values.
The SQL query sums the total expenses per state of Hilary Clinton campaign.
It’s found that more than $4.2M spent for Media purchases in Washington DC
only. We defined the ground truth as tuples where desc =’MEDIA BUY’ and the
expense was greater than $1.2M. UTE generated the explanation state =’DC’
& recipient nm =’GMMB INC.’

Experiments evaluate both efficiency and effectiveness along different metrics
of precision, recall and F-score. The experiments run on a single threaded PC

2 http://www.fec.gov/disclosurep/PDownload.do.

http://www.fec.gov/disclosurep/PDownload.do
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Fig. 2. Cost of splitting process as dataset dimensionality increases

(Windows 7, 16 GB RAM). Scorpion splitters were configured to split each con-
tinuous attributes domain into 15 equi-sized ranges. We evaluate the efficiency of
UTE splitting algorithms along runtime and number of generated explanations
across different number of attributes.

5.2 Comparing Splitting Algorithms

The following experiments compare the runtime and number of generated expla-
nations using UTE splitters and Scorpion DT algorithms. Figure 2 shows the
number of generated explanations by XTR Basic, XTR Advanced, XTR Fast,
and Scorpion. As shown in Figs. 2a and b, XTR Basic, XTR Advanced, and
XTR Fast generate a fixed number of explanations as the dimensionality
increases of Gocard and expenses datasets. However, number of explanations
generated by Scorpion increase rapidly while data dimensionality increases grad-
ually. In Fig. 2a, Scorpion produced almost same number of explanations (142)
on the first 4 attributes as UTE splitters but, extending dimensionality to
6 attribute by adding a single discrete attribute makes this number jumping
around 500 times and Scorpion outputs 69766 explanations. This increase is
obviously affects on execution time as shown in Fig. 2c. Additionally, XTR Fast
shows the lowest execution time among all splitting algorithms since it evaluates
explanations in memory as discussed in Subsect. 4.3.

5.3 Comparing Merging Algorithms

The following experiments compare the runtime and number of merged expla-
nations using Geo Merger splitters and Scorpion Basic Merger. As shown in
Fig. 3, the number of merged predicates generated by XTR Basic and Scorpion
is stable along attributes for both GoCard and Expenses dataset in Figs. 3a and
b. The reason is Geo Merger merges predicates produced by XTR Basic using
only a single attribute AMaxSplit and don’t apply any transformation. Since
Basic Merger in Scorpion merges predicates whose scores within the top quar-
tile of the list, this makes the probability of merging predicates low. In Fig. 3c,
XTR Advanced and XTR Fast show higher merging execution time because both
of them apply transformation on merged predicates and it clearly shown in
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Fig. 3. Cost of merging process as dataset dimensionality increases

Fig. 4. Accuracy measures precision, recall, and F-score as dimensionality increases

Figs. 3a and b the linear increase of transformed predicates while the dimension-
ality increases.

Effectiveness Evaluation. We discuss the quality of results produced by pro-
posed algorithms according to different metrics: precision, recall, and F-score as
the dimensionality varies from 2 to 10 in Fig. 4. As the dimensionality increases,
the quality of explanations produced through XTR Basic remains fixed about
20% for all metrics since it uses only a single attribute for splitting and merg-
ing processes. Scorpion show a slight improvement in precision and F-score from
16% to 20% between attributes 6 to 10. XTR Advanced remains competitive with
XTR Basic and Scorpion since its accuracy is increasing rapidly in all metrics.
XTR Advanced scored 100% precision, recall, and F-score between attributes 6
to 10. Finally, UTE algorithms have linear execution times and achieved better
quality compared with Scorpion DT along different accuracy metrics and not
sensitive to the dimensionality of datasets same as Scorpion DT.

6 Conclusions

An efficient UTE framework has been presented to help users in understanding
origins of outliers and discovering reasons behind the deviation of their excep-
tions in aggregate results. UTE generates human readable predicates to help
explain outliers aggregate groups based on attributes of tuples that contribute
to the value of those groups. We introduced a notion of uniformity for computing
the impact of a tuple on an output value and a transformation process to output
meaningful explanations. Furthermore, proposed splitting approaches are based
on the (Tuple Level) has been described and show a linear complexity instead
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of exponential complexity. Experimental results have proven high efficiency and
effectiveness of the presented approaches according to different metrics.
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Abstract. Since the relation is the main data shape of social networks,
social spammer detection desperately needs a relation-dependent but
content-independent framework. Some recent detection method trans-
forms the social relations into a set of topological features, such as degree,
k-core, etc. However, the multiple heterogeneous relations and the direc-
tion within each relation have not been fully explored for identifying
social spammers. In this paper, we make an attempt to adopt the Multi-
Relational Embedding (MRE) approach for learning latent features of the
social network. The MRE model is able to fuse multiple kinds of differ-
ent relations and also learn two latent vectors for each relation indicating
both sending role and receiving role of every user, respectively. Exper-
imental results on a real-world multi-relational social network demon-
strate the latent features extracted by our MRE model can improve the
detection performance remarkably.

Keywords: Social spammer · Social networks
Heterogeneous relations · Graph embedding · Classification

1 Introduction

Social networks have played a huge role in information dissemination and com-
munication. While the social media is favoring both organizations and individ-
uals with great facilities, it has become an emerging and effective platform on
which malicious users overwhelm other users with unwanted content [8]. It has
been shown that around 83% of users have received more than one unwanted
friend requests or messages in social networking platforms and one in 200 social
messages contain spam [5,26]. These spammers and the misleading contents
released by them are seriously threatening the sustainable development of online
social networks.

In the literature, an extensive body of research has been devoted to identify
various kinds of spam, such as email spam [22], Web spam [4,31], review/reviewer
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 615–627, 2018.
https://doi.org/10.1007/978-3-319-93034-3_49
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spam on e-commerce sites [6,29], and consequently, social spam [5,14]. The main
research stream within spammer detection adopts the two-phase approach: con-
structing multifold features to indicate the abnormal behavior, and developing
supervised classifiers or unsupervised ranking algorithms. Finding right features
largely determines the detection performance, and it is both data-specific and
task-specific. That is, a right feature should be computable on the available data
and it should also be qualified for the specific detection task. Along this line, fea-
ture construction towards identifying spam from online reviews in e-commerce
has been widely studied. Researchers have designed a variety of features for
reviews, users, or even user groups, by fully exploiting the metadata of the review
such as rating, timestamps and review text [15,16,23,29]. Nevertheless, spam-
mer detection in social networks is much different from that in e-commerce. The
metadata in social networks, especially the contents, is relatively scarce, because
the whisper contents should not be exposed due to user privacy. By contrast,
the topological relation becomes the inherent attribute of social networks, but it
exhibits weakly in e-commerce platforms. Therefore, social spammer detection
calls for the relation-dependent but content-independent framework.

There is limited research on spammer detection framework solely on social
relations. Fakhraei et al. [5] make a useful attempt in this area: for each relation,
a topological graph is generated to describe the interactions among single rela-
tion in a topological way, with the underlying assumption that spammers are
more important in the graph. Moreover, for each user, they use the sequence of
relations based on the time it happened to partly disclose the relevance among
relations. Then a framework is combined with these two aspects. However, both
graph and sequence are extracted from single relation and individual user, the
inter-activities between two users cross different relations have been neglected.

Graph structured embedding method has been widely used in the area like
knowledge graph [18]. It excavates the latent information with the utilizing of
both edges and vertices, which can exactly make up for the shortcoming of
previous researches. Hence, we shall propose our Multi-Relational Embedding
(MRE ) model to trade on the preponderance of graph and remedy the limitation
of it with graph-embedding method. The main contributions of this work are
summarized as follows:

– To the best of our knowledge, this is the first attempt to model different types
of relations among all users in a single model for multi-relation spammer
detection.

– The MRE model is made scalable with the option to set the embedding space
size, thus, both small and large number of relation types can be accommo-
dated.

– We conducted empirical experiments on a large real-world social network
dataset and provided interesting findings and discussions.

The following sections will be organized as follows. In Sect. 2, we formulate
the problem and outline the previous methodologies along with its limitations.
We technically address details of our MRE model in Sect. 3. In Sect. 4, we exhibit
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experiment results, and present related work in Sect. 5. Finally, we conclude our
work and give future plan in Sect. 6.

2 Preliminaries

In this section, we define the problem of identifying spammers from the multi-
relational social network, and briefly summarize existing approaches as well as
their limitations that motivated our research.

2.1 Formulating Multi-Relational Spammer Detection

Let U = {u1, · · · , un} be the set of n users who are connected by m kinds of
relations denoted as R = {r1, · · · , rm}. In this multi-relational network, assume
the relation of type rk ∈ R exists between two users ui and uj is encoded as πijk,
where the first two subscripts indicate users and the third subscript tells the type
of relation. Examples of relations include “add friend” and “block user”. Note
that the relation has a direction, therefore πijk and πjik are different, where the
first one is relation rk from user ui to user uj and the second one is the same
relation but from user uj to user ui. The collection of all relations πijk is denoted
as Π.

The goal is to learn from provided relations Π to predict the probability of
being spammer for each user u ∈ U . In practice, the probability is often unnor-
malized, thus the goal becomes ranking the users correctly instead of estimating
the exact probability, i.e., spammers are ranked higher than normal users but
the ordering among spammers does not matter. Let further divide the set of
users U into a set S of spammers and a set L of legitimate users, i.e., U = S ∪L.
The ultimate goal of the spammer detection is to learn an order function for all
users, denoted as O(U). Then, we can define an indicator variable Iij = 1 to
represent that ui ∈ S, uj ∈ L, O(ui) > O(uj), otherwise for Iij = 0. Hence, one
possible formulation of multi-relational spammer detection is:

argmax
O(U)

∑

ui∈S

∑

uj∈L
Iij . (1)

2.2 Feature Design from Multi-Relational Data

While many quality classifiers are available, the main challenge is how to design
effective features. Unlike traditional spammer detection models that make use
of textual data, the multi-relational social network focuses on topological infor-
mation. The main features design approaches to multi-relational data are graph-
based and sequence-based approaches.
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Graph-Based Features. Graph-based features are extracted by converting
relations into a directed graph G, where the vertices V represent the users and
the edges E represent interactions among users. When there exist multiple types
of relations, a graph is usually generated for each of them: {G1, . . . ,Gm} for m
types of relations. Each graph is then feed into a feature extraction function
Xgraph

m = ψ(Gm) to convert a directed graph into either numerical or categorical
feature matrix Xgraph

m for each type of relation. Existing literature has defined
many feature extraction functions ψ(·), and we list a few popular choices:

– Triangle Count [24] computes how many times each vertex involves in sub-
graphs with three vertices, i.e., a triangle structure.

– k-core [1] measures the centrality of each vertex by gradually removing the
least connected vertices. The earlier a vertex was removed the lower the cen-
trality.

– Graph Coloring [9] assigns a set of colors to vertices with no adjacent vertices
having the same colors, and the assigned colors are used as a categorical
feature.

– Page Rank [19] similar to measuring the importance of Web page by counting
the number of incoming links, the incoming edges are counted for each vertex.

– Weakly Connected Components [20] counts the number of subgraphs each
vertex involves without considering the direction of edges.

Despite of their effectiveness, existing graph feature extraction techniques
often assume a separated graph for each type of relation, or aggregation is per-
formed by simple addition. The interactions among relations have been largely
overlooked.

Sequence-Based Features. Sequence-based features are extracted by convert-
ing relations into a user-wise sequence Ti = {t1, · · · , tq} for each user ui, where
tj ∈ [1,m], 1 ≤ j ≤ q, is the relation type and the length q of the sequence
depends on the user. The sequence of each user is then fed into a feature extrac-
tion function xseq

i = ψ(Ti) to convert the sequence of user ui into a feature
vector xseq

i . Sequence-based feature extraction has also been used in spammer
detection:

– Sequential k-gram Features [5] considers the activity order of users by counting
the frequency of each length k sub-sequences for each user.

– Mixture of Markov Models [21] can be used to overcome the limitation of
small k in k-gram models by identifying a small set of important and long
sequence chains.

Unlike graph-based features, sequence-based feature can capture interactions
among different types of relations to some extent. Nevertheless, user interactions
are not captured properly as the sequence features are extracted independently
for each user.

In this work, we take the graph-based approach, however, all types of relations
are modeled simultaneously in a single graph instead of separated graphs for
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each type of relation. By embedding the users and relations at the same time,
the proposed model overcomes the limitations of traditional graph-based and
sequence-based feature extraction methods.

3 Methodology

In this section, we propose the MRE model to capture the interactions among
different types of relations. The rest of this section defines the multi-relation
learning problem, followed by a detailed description of the MRE model. In what
follows, we shall use u and r as identity of user and type of relation, and use the
bold-faced notation u and r to represent the latent vectors for user and relation
respectively.

3.1 Multi-Relational Embedding

The prediction problem itself has been well-studied in literature, and mature
classifiers are available in open source libraries. However, the main issue is that
off-the-shelf classification algorithms expect numerical variables as input and
do not accept input format such as relations defined in Sect. 2.1. Therefore,
the main challenge is to learn a vector representation u for each user u ∈ U
from relations such that the new representation is in numerical format while
discriminative information is preserved. Attempts [5] were made in literature to
learn such representations, but all of them learn the representations for each
type of relation independently. While informative interactions may exist among
relations, we propose to learn from all types of relations simultaneously.

message message

message

message

message

message

message

message

send gisend gi

block

blockblock

block

user i user j

Suspicious user who have sent many messages

Fig. 1. The suspicious user in the middle who have sent messages to too many users
looks like a spammer. However, he has received gifts from users i and j, which is a
strong indicator of good user. But we realized that the users who sent gifts are actually
low-credit users who have been blocked by others, thus the fact might be the spammer
is trying to fool the detection system.

Learning from all types of relations at the same time provides more insights
into user behaviors than looking at each individual relation type. For exam-
ple, the simplest method of encoding relations into numerical representation is
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counting, i.e., how many times a user has sent/received each type of relation.
Despite of its simplicity, this approach does encode important information such
as “users who have sent more messages are more likely to be spammers”. How-
ever, interactions among relations are ignored. A toy example of interactions
among relations is shown in Fig. 1 for three types of relations: “send message”,
“block user”, “send gift”. In multi-relational embedding, the interactions among
relations can be learned as latent factors.

To be specific, we model all users and all types of relations in a shared
embedding space. Given the set of all relations Π, we can construct a graph G
where users are the vertices and relations are the edges. Then each user ui ∈ U
is represented as a numerical vector ui ∈ Rz and each type of relation rk ∈ Rz

is represented as a numerical vector rk ∈ Rz. The shared embedding space has
a user-defined dimension z. Unlike traditional matrix factorization, the multi-
relational embedding has a graph structure, and representation of type of edges
(relations) must be learned. Formally, we aim to learn all u ∈ Rz and r ∈ Rz

such that
ui · rk + uj · rk ≈ πijk. (2)

The above model has not considered the direction of relations yet. For the
same type of relation, the sending node (src) and the receiving node (dest)
often delivery different semantic meanings. For instance, the spammer tends to
propagate the unwanted content to a large number of users, where the user
who usually acts as the sending node should be embedded as the spam user.
Therefore, it is a good idea to model them separately. To do so, we define two
vectors rsrck and rdestk for each type of relation rk ∈ R. Similarly, we define usrc

i

and udest
i for each user ui ∈ U . Then jointly, we aim to learn rsrc, rdest, usrc, and

udest for all types of relations and all users such that

usrc
i · rsrck + udest

j · rdestk ≈ πijk. (3)

Figure 2 illustrates the proposed MRE model considering both sending node
and receiving node with two relations. As can be seen, we have a source user
vector usrc

i and a destination user vector udest
j , which are mapped to the shared

Fig. 2. Illustration of the MRE model on two relations.



Social Spammer Detection: A Multi-Relational Embedding Approach 621

Algorithm 1. Multi-Relational Embedding Algorithm
Input: List of triples (source user, destination user, relation type).
Preparing:
Step 1: Draw pairwise user pair set S, each pair contains a relation sender
user and a relation receiver user.
Step 2: Collect all relation types as R.
Embedding Model Training:
Step 3: Repeat
for each user pair (ui, uj) ∈ U do

Draw relation frequency vector r for (ui, uj),
Each value of r counts the frequency of a type relation sent from ui to uj .
for each rk ∈ R do

Measure the real frequency value with the value predicted by user
embedding and transfer matrices with relation k.
error = ‖πijk − (usrc

i · rsrck + udest
j · rdestk )‖22

minimize the error between real value and predict value error by
updating the parameters usrc

i , rsrck ,udest
j , rdestk

Until stopping criteria met

embedding space of two types of relations rk and rl. The learning task is to
estimate the latent vectors of users and relations such that the prediction error
is minimized.

3.2 Parameter Estimation

In general, Multi-Relational Embedding models cannot be determined by convex
optimization, instead, approximation techniques are often used in practice. In
this work, we adopt the Adam [12] optimizer, the parameters are learned by
minimizing the loss function as follows:

argmin
(usrc,udest,rsrc,rdest)

∑

(ui,uj)∈U

∑

rk∈R
‖πijk − (usrc

i · rsrck + udest
j · rdestk )‖22, (4)

where || · ||22 is the L2 norm. The overall learning algorithm is summarized in
Algorithm 1. We follow common practice by setting the stopping criteria as
error ≤ 10−4.

Table 1. Statistics of dataset

Dataset #User #Spammer #Legitimate #Relations

Tagged.com 4, 111, 179 182, 939 3, 928, 240 85, 470, 637
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4 Experimental Results

To evaluate the effectiveness of the proposed Multi-Relational Embedding model,
experiments were conducted on a large real-world dataset from Tagged.com.
Comparisons were made against several graph-based and sequence-based meth-
ods. Our algorithm was implemented on TensorFlow and experiment was con-
ducted on a computer with 28 CPU cores and 256 GB of memory.

4.1 Experimental Setup

Dataset. The dataset used in this experiment was from Tagged.com, which is a
website for people to meet and socialize with new friends. The dataset contains
7 types of directed relations, including Message, Pet Game, Meet-Me Game Add
Friend, Give a Gift, Report Abuse, and View Profile However, the semantic
meaning of each relation is not utilized as multi-relational spammer detection
models should learn the importance of each relation from training data. The
ground truth label is provided by domain experts to mark each user as legitimate
or spam. The data is stored as quad-tuples: 〈timestamp, usrc

i , udest
j , rk〉, where

user usrc
i performs action (relation) rk on user udest

j . We extracted all relations
of a day, resulted in a dataset containing 85M interactions among 4M users. Out
of these users, 182 K of them are labeled as spammers, i.e., 4.45%. Statistics of
the dataset is shown in Table 1.

Test Data. Among the 7 types of relations, there exists a reporting relation
that is provided by the Report Abuse mechanism. In this reporting relation, the
user usrc

i reports user udest
j for violating the terms of conditions. However, a user

who has been reported may or may not be a spammer. The collective detection
framework [5] combines the classification results with the report relation using
the probabilistic soft logic (PSL) rule, in order to improve the security team’s
efficiency. Two important PSL rules proposed are:

Legitimate(usrc
i ) ∧ Report(usrc

i , udest
j ) → Spammer(usrc

j ),

Spammer(udest
j ) ∧ Report(usrc

i , udest
j ) → Legitimate(usrc

i ). (5)

The PSL rules limit the evaluation to users who appear in the reporting
relation. To be consistent with related research, we adopted the same testing
scheme by extracting users appeared in the reporting relation as our test data.

Evaluation Metrics. Since the ground-truth label of each user is provided by
the dataset, we adopt standard metrics (P-R-F), including precision (P), recall
(R) and F-measure (F) to do evaluate the effectiveness the models. Furthermore,
all metrics are computed on the class of spammers:

R =
TP

TP + FN
, P =

TP

TP + FP
, F =

2PR

P + R
, (6)
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where TP is the number of spammers that have been identified correctly, on con-
trast, FP is the number of spammers that have been identified mistakenly, and
FN is the number of spammers that have been missed by the model. Depend-
ing on the application scenario, a trade-off can be made on these metrics. High
precision represents for catching more spammers. Meanwhile, it will do harm to
legitimates, as it takes more users as spammers. While, high recall represents
for higher confidence on detected spammers, but may lead to more missing of
some spammers. F-measure balances between precision and recall, and is suit-
able for general scenarios. As the main focus is to evaluate the quality of features
extracted from multi-relational data instead of new classification algorithm, two
classic but simple supervised models are selected: Logistic Regression (LR) and
Gaussian Naive Bayes (GNB).

4.2 Performance Comparison

Several state-of-the-art graph-based and sequence-based features are chosen as
the baselines, including k-core [1], Graph Coloring [9], Page Rank [19], Weakly
Connected Components [20], Degree [5], and Sequential k-gram Features [5].

Graph-based features are computed using Graphlab Create1 on each type of
relation and resulted in a total of 56 graph-based features, i.e., 8 for each type of
relation. For sequence-based features, we compute them using bigram sequence.
With 7 relations in the dataset, we ended up with 49 bigram sequence-based
features. In our multi-relational embedding features, we generated 30 features
to do the overall comparison. Other scale of multi-relational embedding features
will discuss later in this section.

After getting the baseline features, we split train and test dataset with 10
different random seeds for evaluation on LR and GNB classifiers. First, we com-
pare our multi-relational embedding features with them separately. Then, we
combine the baseline methods together to show the effectiveness of our proposed
method.

Table 2. Comparison of two classifiers with different kinds of features

Features Logistic regression Gaussian Naive Bayes
Precision Recall F-measure Precision Recall F-measure

Graph 0.4537 0.6390 0.5308 0.5978 0.3840 0.4675
Sequential 0.4907 0.8620 0.6253 0.4168 0.9320 0.5759
Graph+Sequential 0.5316 0.8600 0.6570 0.4571 0.9260 0.6120
MRE (z = 30) 0.6138 0.7730 0.6844 0.6165 0.7020 0.6566

Table 2 shows the comparison performance of different kinds of features. As
can be seen, our multi-relational embedding features have shown a significant
1 https://turi.com/.

https://turi.com/
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performance advantage over other features on F-measure both with LR and
GNB, which means we can catch the spammer more accurately with the least
harm to legitimates. Encouragingly, the precisions of embedding features consis-
tently are the highest ones, giving the proof that the proposed features can reveal
the most of spammers with a little loss in recalls. In terms of recall, although
sequential features enjoy the highest position, they show the worst performance
on precision as the price, which means they treat more users as spammers and
greatly affect the legitimates.

To throughly examine the performance of the Multi-Relational Embedding
model, we analyze its performance by varying the size of embedding space from
10 to 40. Figure 3 shows the performance of each embedding features on preci-
sion, recall and F-measure separately. Obviously, the recall rate increases with
the raise of dimension, giving the sign that more spammers will be disclosed
when increasing the dimension of our MRE model. While, the precision and the
F-measure reach their peaks at the dimension of 30, followed by a decline. That
is to say, if the dimension keeps growing after reaching 30, the MRE model will
lose its preciseness by listing more users as spammers. In general, it shows that
the most effective performance has been achieved on 30 embedding features.
Nevertheless, the number of embedding features depends on the dataset. One
recommendation is that the number of embedding features should be increased
alongside the number of types of relations, because more type of relations implies
more complex interactions.
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Fig. 3. Impact of the number of dimensions (z) in our MRE model.

5 Related Work

In the literature, an extensive researches have been developed to extract abnor-
mal behavior as features in social media, including e-commerce sites [6,29]
and social networks sites [15,16]. The indicating features of spammers are
depending on the available metadata, e.g., timestamps, text content, ratings,
etc. Generally, it can be categorized into three parts: content-based, behavior-
based and topological features. In early studies of email spams and e-commence
spams, reviews/emails containing similar content have a high probability to be
spams [10,11]. Various of content-based features are designed to detect such
spams in e-commerce and emails, e.g. average length in number of words [17],
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ratio of objective words [13]. In addition, behavior-based features are mainly gen-
erated considering the timestamps, sequence of time, ranks, distributions, etc.
For instance, Fei et al. [7] suggest that the ratio of Amazon verified purchases
will somehow track spammers. Arjun et al. [15,16] proposed other behavior-based
features focusing on timestamps and ranks. Fakhraei et al. [5] raised a k-gram
sequential feature with the help of Mixture Markov Model. Beside of individual
spammers, groups of spammers also attract researchers’ attention [16,27,28,30],
with the assumption that spammers within a group are more likely to attack
legitimates together, which indicates that the relationships in social media might
be useful to detect spammers. Along such mentality, topological features have
been proposed in recent literature [5,6], which usually consists of degree, score
of Page Rank, k-core etc. However, the existing topological feature extraction
methods often assume the data to be homogeneous, i.e., different types of user
relations need to be modeled separately. This assumption limits the potential
of topological methods as the interactions among different types of relations are
not captured.

Graph structured embedding can help with the utilization of interactions
among different relations, as it leverages relational learning methods [18] to
extract the latent information of graph elements including both vertices and
edges. Depending on the assumptions, each relational learning method proposes
a different model to represent graph triple: two vertices and one edge. The models
can be categorized into three categories: direct vector space translating, vector
space translating with relation subspace, and tensor factorization. Considering
of graph is a multi-relational heterogeneous network, Bordes et al. [3] proposed a
bi-directed relation subspace mapping based model, which maps head vertex and
tail vertex by two different matrices of one relation. Bordes et al. [2] proposed
another model using direct vector space translating model, which ignore multi-
relation problem but make the model much more efficient in training speed.
Nickel et al. [18] and Socher et al. [25] proposed a new type of relational learn-
ing methods based on tensor factorization, which is efficient in both speed and
accuracy. In present work, we extended the graph structured embedding method
to our special case of a small number of relation types.

6 Conclusions

In this work we tacked the multi-relational spammer detection problem from
graph perspective of view by proposing the Multi-Relational Embedding model.
The MRE model takes advantages of both the representational power of graph
and the ease of modeling higher order interactions of embedding. Experiment
results on public dataset have demonstrated the effectiveness of the MRE model
by achieving improved spammer detection performance. For future work, the
computational efficiency of MRE can be further improved by parallelization.
This is feasible due to the fact that the full graph consists of many isolated
subgraphs, i.e., the graph is not fully connected.
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Abstract. Customer reviews and star ratings are widely used on
E-commerce and reviewing sites for the public to express their opinions.
To help the online public make decisions, items (e.g., products, services,
movies, books) are typically represented and ordered by an aggregated
star rating from all reviews. Existing approaches simply average star rat-
ings or use other statistical functions to aggregate star ratings. However,
these approaches rely on the existence of large numbers of reviews to
work effectively. On the other hand, many new items have few reviews.
In this paper, we argue that at the core of review aggregation is rank-
ing items, hence, we cast the problem of ranking a set of items as a
learning to rank (L2R) problem to address the issue of reviews scarcity.
We devise a rank-oriented loss function to directly optimize the rank-
ing of groups of items. Standard L2R models require ranking labels for
training, but item ranking ground-truth information is not always avail-
able. Therefore, we propose to aggregate star ratings for items with large
numbers of reviews to automatically generate weak supervision ranking
labels for training. We further propose to extract features from review
contents, rating distributions and helpfulness information to train the
ranking model. Extensive experiments on an Amazon dataset showed
that our model is very effective compared to state-of-the-art heuristic
aggregation approaches, regression and standard L2R approaches.

Keywords: Ranking · Learning to rank · Weak supervision

1 Introduction

Everyday millions of online users read reviews for different items to compare,
evaluate and to help make informed buying decisions. However, some item cate-
gories of interest, e.g., television, could have hundreds of items and each item can
have thousands of reviews, making it impractical for customers to read them all.

To help the online population make informed purchase decisions while not
needing to read too many reviews, items are typically represented and ordered
by an aggregated star rating that uses the ratings from all reviews. In fact, the
average of star ratings is the de facto standard approach to aggregate reviews.
Existing research focuses on devising more robust aggregate functions, including

c© Springer International Publishing AG, part of Springer Nature 2018
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different weighting schemes [1,5,9,13], or extracting sentiment polarity from
review contents [19,20]. Most importantly, they all require the ranked items to
have many reviews in-order to be accurate and avoid biases.

However, in a typical e-commerce website, there are many items that have
few reviews. This could be due to the item been new (cold-start problem), or
they have few sales hence few reviews (long tail problem). This leads to the need
to design new approaches for aggregating reviews of such items with few reviews.

In this paper, we argue that at the core of review aggregation is to rank
items based on reviews. Rather than just generating an aggregate rating score for
items, the ultimate goal for review aggregation is to rank items based on reviews.
This is because the scores on its own are not useful unless they are compared
to one another for preference reasons. We cast the problem of ranking a group
of items as a learning to rank (L2R) problem to address the issue of lacking
reviews. With the L2R approach, a model for ranking objects is constructed by
supervised learning [10]. L2R has been successfully used to rank documents in
information retrieval (IR) [3,8] and other ranking tasks [16]. In fact, structurally,
ranking a group of items is yet a very similar task -with few differences- which
suggests that L2R can be one possible solution.

To apply L2R for ranking items, we face several challenges: (1) Different
from ranking documents in IR where position in the list and level of relevance
is important for evaluation, the learning objective for our setting is to produce
an “optimal” ranked group of items based on customer reviews that truthfully
reflects the reputation for items with no relevancy to a specific query. (2) The
standard L2R approach requires ranking labels for training, but item ranking
ground-truth information is not always available. (3) Generic features -not spe-
cific to certain reviewing platforms- that can characterize various types of items
are needed to effectively train a ranking model.

We propose L2RI (Learning to Rank Items), a model to rank a set of items
based only on the reviews of the items. We make the following contributions:

– We devise a rank-oriented loss function to directly optimize the ranks for a
group of items.

– We propose to use a heuristic aggregation method that accounts for time and
quality of reviews for items with large numbers of reviews to automatically
generate weak supervision ranking labels for training.

– We further propose to extract features from reviews contents, rating distri-
butions and helpfulness information to train the ranking model.

Extensive experiments on an Amazon datasets showed that L2RI is consis-
tently more effective in ranking products than state-of-the-art heuristic aggre-
gation approaches, regression and standard L2R models.

2 Literature Review

Related work lies in three areas, aggregating reviews for items, learning to rank
and weak supervision.
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Several statistical models for quantifying a product’s quality based on an
aggregated star rating of its reviews were introduced in [13]. These models
include average rating, median rating, lower bound on normal and binomial con-
fidence. On the other hand, probability-based approaches are mostly focused on
removing the impact of outliers or partial information of reviews [9]. Heuristic-
based models obtain the aggregate score using different weighting heuristics,
including review influence [5], reviewer influence and review posting time [15],
and the distribution of ratings [1]. All of these approaches depend on the avail-
ability of many reviews per item to be effective.

There has also been research on mining opinions from reviews textual con-
tents and aggregating their polarities to rank products. These approaches are
based on the observation that the star rating may be biased and textual con-
tents are more reliable and detailed source for opinions. As an example, [20]
presented a feature-based product ranking technique that mine reviews’ text,
then a weighted directed graph model is used to evaluate items’ relative quality.

Another line of related work is learning to rank (L2R), originated from the
task of predicting document rankings for queries. It has also been applied to
other tasks [16]. L2R approaches can be categorized into three main categories.
The point-wise approach [4] which maps the ranking task to a regression task
and uses the predicted scores for ranking. The pairwise approach [3,8] which is
aimed at optimizing the relative ordering for document pairs so as to order a list
of documents. For the listwise approach [14,18] the learning objective directly
optimizes the ranking for lists of documents. The three approaches have their
strengths and weaknesses, and where they are effective is task dependent [10].

The difficulty of getting annotated data for supervised learning is behind
the emergence of weak supervision, also often called distant supervision, where
learning benefits from the huge amounts of data available, but unlabeled. It is
applied to various applications in NLP relation extraction [6], Twitter account
classification [2] and knowledge base completion [7].

3 L2RI: Learning to Rank Items with Weak Supervision

In this section, we outline our L2RI approach, including the ranking loss function,
weak supervision and the features used.

The problem of item ranking given a group of items and their reviews, is
to rank them based on a learnt model that takes into account the review-based
features and training rankings. We aim to learn a ranking model to effectively
rank items even if some items have scarce reviews.

3.1 Learning to Rank Items Model

To rank a group of items c from reviews, the L2R approach learns a scoring
function S(.) with parameters θ that produces a ranking πc that minimizes the
difference between it and the ground-truth ranking yc. Formally, given a loss
function L(Xc, πc, yc, θ) that measures the ranking differences in the ordered
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sequences of yc and πc and at the same time measures the predictability of πc

using the feature vectors for items Xc. The L2RI model aims at learning a scoring
function with parameters θ, S(θ), so that:

π̂c = argmin
πc

L(Xc, πc, yc, θ)

In the learning process, parameter θ is learned from the training data with
rankings scores so as to minimize the loss function, that is the difference between
the predicted rank πc from the ranking scores by the function S(.) and the labeled
rank yc.

Although the form of this loss function is the same as existing L2R
approaches, we note that the main difference – the loss function for existing
L2R models (such as NDCG and MAP) is defined in terms of both the rank and
relevance level of documents. In our setting, we do not have nor need relevance
levels, hence traditional loss functions are not appropriate for our problem. We
next present our loss function that only consider the ordering and not relevancy.

3.2 A Rank-Oriented Loss Function

The difference between the labeled ranking yc and candidate ranking πc can be
measured by a ranking loss function L(yc, πc). Then, the L2RI model essentially
learns a scoring function S(.) that produces candidate rankings which minimizes
the ordering difference between itself and the labeled orderings (L(.)). Therefore,
the choice of the measure for calculating the difference is an important factor
for an accurate scoring function.

Ranking correlation coefficients like Kendall’s τ or Spearman ρ measures the
pairwise rank consistencies between two ranked groups and hence are good candi-
dates for measuring the ordering difference. Generally, the Kendall’s τ correlation
is preferred to Spearman ρ correlation because of its small gross error sensitivity
(more robust) and its small asymptotic variance (more efficient). However, in
terms of computation, Kendall correlation has O(n2) computation complexity
comparing with O(nlogn) of Spearman correlation, where n is the sample size.

Kendall’s τ is calculated based on the predicted rank πc and the labeled rank
yc as follows:

τ(πc, yc) =
nc(πc, yc) − nd(πc, yc)

n ∗ (n − 1)/2

where nc(πc, yc) is the number of concordant pairs, nd(πc, yc) is the number of
dis-concordant pairs, n is the number of items in the group. Given two ranked
groups of the items, a pair of items (x, y) is said to be concordant if the rank for
both items agree in the two ranked groups, otherwise (greater or less than) it is
said to be dis-concordant.

Since the correlation functions measure similarities, we convert them to a
loss function via L(πc, yc) = 1.0 − τ(πc, yc), which is then transformed to:

Lτ(πc, yc) =
2 ∗ nd(πc, yc)
n ∗ (n − 1)/2
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Also, we can use Spearman ρ as a loss function for our ranking problem.
It measures the ranking correlation strength with no relevance score required
and computationally fast especially for long groups of items. It is calculated as
follows:

ρ(πc, yc) = 1 − 6 ∗ ∑n
i=1 d

n ∗ (n2 − 1)

where di = πc(i) − yc(i) is the difference between the two ranks. Similarly,
Spearman ρ can be converted to a loss function as follows:

Lρ(πc, yc) =
6 ∗ ∑n

1 d

n ∗ (n2 − 1)

Considering the typical user behavior where they tend to only focus on the
top few items in a ranked list [10,13], we can equally define a τ@k(.) and ρ@k(.),
where we only consider the top k items in the input ordering. Generally k can
be set by any size (for example, top 10) up to the length of the whole group. In
Sect. 4, we will examine all the subtle differences between these loss functions.

We next explain how to automatically generate ranking scores for weak super-
vision by aggregating similar items with large numbers of reviews.

3.3 Generating Ranking Scores for Weak Supervision

Our L2RI framework requires labels for items. But ranking labels are not readily
available. Using human annotation is not only costly but also not practical, as
research shows that human annotators have significant variance when ranking
items by reviews [20]. We propose to apply an unsupervised aggregate function to
aggregate the star ratings of reviews and then use the output to automatically
generate ranking labels for items within a given group and later use as weak
supervision signals to train our L2RI ranking model.

The average ratings for products can be used as weak supervision labels
for L2RI. The average star rating model is a widely used aggregate function of
star ratings. However, the average aggregated ratings tend to lead to all items
having very similar aggregated ratings known as “the all good reputation” phe-
nomenon [20]. Thus, the average ratings may be very noisy as weak supervision
labels. Our experiments indeed show that the model L2RI(AVG), L2RI with
average ratings as weak supervision, can not effectively rank items.

We propose to use TQRank [15] as an aggregate function of star ratings,
which was proven to rank products better than probabilistic and other heuristic
approaches [9,19]. TQRank takes into account star rating, posting time and
review quality to generate ranking scores for items. The aggregated ranking
score for item p, is defined as:

Sp =
n∑

r=1

(Wr ∗ Sr)/n (1)
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where Sr ∈ [1..5] for review r, r = 1..n. Wr is defined in terms of posting time
t, item category g and reviewer u:

Wr = Wr(t, u, g) = eβ(Tt+Q(u,g)) (2)

where β is a decay factor ∈ [10..50] based on reviews scarcity. Tt is the elapsed
time from item release. Q(u, g) is an accumulated measure for opinion quality

Q(u, g) =
m∑

i=1

H(i, u, g)/
m∑

i=1

A(i, u, g) (3)

H(i, u, g) and A(i, u, g) are respectively the number of helpfulness votes and the
total number of votes, user u gets for his review i for an item under g category.
Sp values are transformed into a rank labels and later used for training L2RI.
This model that uses TQRank scores as weak supervision labels is denoted as
L2RI(TQRank).

3.4 The Features

Given a set of items partitioned into groups (categories), an item belongs to
a group and is characterized by a feature vector. The feature vectors for items
comprise item-level features as well as group-level to characterize items. We only
extract these features from reviews to be generally applicable to all categories.

Previous research [15,19] shows that the posting time of reviews is an impor-
tant factor when evaluating the quality of product and recent reviews carry more
weight. Therefore, we define the time factor for reviews when extracting item-
level features from reviews. For item p with reviews {r1, ..., rn} where the posting
time of ri is before that of ri+1 for i = 1..n. Let review r has a posting time Tr,
and let T1 and Tn respectively denote the posting time of the first and last review,
then we can define the time factor for review r as Wr = (Tr − T1)/(Tn − T1).

Item Level Features. We construct four types of item-level features: Aggre-
gated rating, Helpfulness level score, Review text polarity score, and Activeness
level score.

– Aggregated rating score (R): To capture the rating level of reviews and their
posting time, the aggregated rating score R is defined as the average of the
exponential function for the time weighted star rating for all reviews: R ≡∑n

r=1 (eWr∗Sr)/n, where Wr and Sr are the time factor and star rating level
for review r. Moreover, the number of reviews n is also included as a separate
feature to complement the aggregated rating.

– Helpfulness level score (H): It is well acknowledged that opinions expressed
in reviews are of varying qualities [11]. Moreover, research has shown that
helpfulness votes of reviews in online communities are strong indicators of
quality of reviews. The helpfulness level of reviews for an item is defined as
the average of the exponential function weighted by time and helpfulness votes
for each review: H ≡ ∑n

r=1 (eWr∗Hr∗Sr)/n where Hr denotes the portion of
helpfulness votes for review r.
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– Review text polarity score (P): In addition to star ratings, customers often
read reviews textual contents to get detailed opinion about items. It is shown
in [19,20] that the star ratings should not be considered as an overall aggre-
gate score, but aggregated sentiments expressed in the text. Thus, we define
the review polarity score as follows: P ≡ ∑n

r=1 (eWr∗(P−N)/(P+N))/n, where
P and N are respectively the positive and negative polarity scores of all
sentences in review r. We use SentiStrength [17] to compute polarity scores,
which estimates the strength of positive and negative sentiments by analyzing
the linguistic patterns.

– Activeness level score (A): Based on the observation that the lifespan for items
varies significantly, the activeness level is defined to capture this information.
The activeness level for an item is defined as the total number of reviews
normalized by the lifespan for an item A ≡ n/(Tn − T1).

Group Level Features. Group-level features are important for capturing dif-
ferences among item groups. By empirical analysis, we select six statistics that
show significant variance across different groups.

– The minimum and maximum number of reviews for items in the group.
– The minimum and maximum lifespans for items in the group.
– The minimum and maximum activeness level for items in the group.

As will be shown in Sect. 4, both the item-level and group-level features are
important for characterizing items and training an effective ranking model.

4 Experiments

In this section, we describe our dataset, evaluation measures, baselines and report
experiment results.

4.1 Experiment Setup

Experiments were performed on an Amazon dataset [12] of 143.7 million reviews
from May 1996 to July 2014. We performed preprocessing to remove corrupted
reviews, crawl missing ones, group reviews by items1 and group items by cate-
gories and sub-categories (groups). The final dataset used comprises 74k items
from 9 categories (Amazon subcategories) as shown in Table 1. Groups that have
items of few reviews are used for testing. The division of groups was based on
the median number of reviews as it is a good indicator of central tendency for
the number of reviews per item in this dataset. Our task is to rank groups of
products to demonstrate the effectiveness of our L2RI model.

Since there is no readily available ground-truth ranks for products based
only on reviews, we use Amazon Sales Rank2 as the proxy. In fact, Amazon
1 Technically for Amazon these are products, but we wish to maintain consistent

terminology and hence use items.
2 https://www.amazon.com/gp/help/customer/display.html?nodeId=525376.

https://www.amazon.com/gp/help/customer/display.html?nodeId=525376
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Table 1. Amazon dataset statistics of customer reviews

Categories #SubCategories # Products # Reviews Med#R #Votes #Helpful votes

Testing set

Arts & Crafts 99 3,107 179,117 35 521,073 449,087

Industrial 56 2,235 131,961 36 347,684 288,505

Jewelry 94 4,689 253,740 35 3,12234 2,60477

Training set

Toys 229 20,260 1,277219 38 2,887232 2,310573

Computers 15 941 85,428 45 233,488 176,889

Video Games 77 10,659 1,029574 49 4,555411 2,701881

Electronics 79 6,666 678,429 45 2,493038 1,943635

Software 52 2,271 237,709 56 1,224112 968,020

Cell Phones 69 23,355 2,557402 46 3,109081 2,385656

Sales Rank has been used for product ranking evaluation for similar Amazon
datasets in previous studies [15,19]. Sales Rank is a good indicator for products
popularity under a category, but can also reflect a product’s quality and how
customers perceive and rank it.

We compare our L2RI model against the baselines depicted in Table 2. L2RI
λτ@k is based on LamdaMart [18] and is our proposed approach. It uses gradi-
ent boosted decision trees to form model that is a weighted combination of an
ensemble of weak learners. We use it to optimize Kendall’s τ for top-k items using
TQRank as weak supervision signal. Coordinate Ascent (CA) [14] is another sim-
ilar model. It is a linear feature based model that directly optimizes evaluation
measures using the coordinate ascent optimization method.

4.2 Results

Ranking Performance: Table 3 shows the ranking correlation for ranking mod-
els against the ground-truth ranking in terms of Kendall’s τ and Spearman’s ρ,
for ranking a group and for ranking the top 10 items in a group. Large values
indicate higher correlation coefficients and better performance for the relevant
ranking model. When an item has a few reviews, the reviews are noisy and can
be easily biased, heuristic aggregation of ratings can be ineffective for ranking
items. This is evident by looking at the AVGRank ranking performance in the
table. This model performs the worst, as it only considers the aggregate score
of the star ratings. However, TQRank performs much better than AVGRank, as
its aggregated score takes into account time, helpfulness votes and star ratings.
The results show that it still suffers from the lack of reviews because it requires
a reasonable number of reviews to work accurately.

Point-wise models, SVMReg and Mart produce better ranking than
AVGRank, but still less accurate than TQRank. The main reason is that they
ignore the group structure of ranking problem and deal with it as a point predic-
tion. On the other hand, pair-wise models, show some progress over TQRank,
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Table 2. Baselines models to evaluate our model L2RI λτ@k

Model Description & parameters

Heuristic based Models

AvgRank Ranking products by their average ratings

TQRank [15] A time and quality heuristic aggregation model

L2R models

Point-wise L2R models

SVMReg [8] SVM regression model, @ Params: trade off error = 0.01

Mart [4] Multiple additive regression trees model, @ Params: #trees =
1000, #leaves = 10, learning rate = 0.1, max iter = 100

Pair-wise L2R models

SVMRank [8] SVM ranking model, @ Params: t error = 0.01

RankBoost [3] Boosting machine learning ensemble model, @ Params: rounds =
300, threshold = 10 candidates to search

List-wise L2R models

Coordinate
Ascent
(CA) [14]

Linear feature-based model, @ Params: random-restarts = 5,
search-iterations = 25, tolerance = 0.001, Optimization =
NDCG and τ

Table 3. Ranking performance of L2RI vs other approaches, means statistically
significant worse than L2RI, using a two-sided t-test with significance level p < 0.05

Model Arts & Crafts Jewelry Industrial

τ@all τ@10 ρ@all ρ@10 τ@all τ@10 ρ@all ρ@10 τ@all τ@10 ρ@all ρ@10

AVGRank 0.050 0.024 0.067 0.039 0.026 0.047 0.034 0.054 0.091 0.096 0.130 0.124

TQRank 0.333 0.275 0.451 0.347 0.425 0.312 0.574 0.380 0.363 0.367 0.473 0.459

SVMReg 0.234 0.217 0.321 0.277 0.407 0.347 0.547 0.428 0.282 0.317 0.369 0.406

Mart 0.215 0.106 0.303 0.155 0.378 0.187 0.507 0.254 0.339 0.331 0.446 0.422

RankBoost 0.327 0.299 0.445 0.391 0.438 0.342 0.596 0.461 0.363 0.399 0.468 0.509

SVMRank 0.367 0.333 0.492 0.410 0.456 0.403 0.606 0.475 0.348 0.378 0.455 0.493

CA(NDCG@n) 0.365 0.332 0.489 0.408 0.459 0.379 0.61 0.475 0.34 0.379 0.455 0.495

CA(τ@k) 0.369 0.338 0.491 0.410 0.470 0.391 0.630 0.490 0.383 0.398 0.495 0.515

L2RIλτ@k 0.371 0.342 0.492 0.414 0.473 0.403 0.633 0.495 0.399 0.431 0.519 0.543

Win\Draw\
Loss

4\4\0 5\3\0 5\3\0 5\3\0 7\1\0 5\3\0 7\1\0 7\1\0 5\3\0 7\0\0 8\0\0 8\0\0

specifically SVMRank. Employing a classifier for the ranking orders of pairs is
proven more effective than point-wise models.

Our model L2RIλτ@k optimizing only the top-k products, is shown to pro-
duce significant ranking correlation results compared to all other baselines. Also,
CA τ@k is highly performing against other learning models and comparable to
our model. The main reason is that we replaced its loss function with our pro-
posed Kendall’s τ correlation (in contrast to the default using NDCG). Moreover,
L2RI shows high significant correlation in terms of both τ and ρ in ranking of
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the top 10 products, which is the most practical case from user perspective to
best rank the top 10 products. Also, we see that ρ values are always higher value
than τ which is a good sign that there is no extreme ranking errors.

Weak Supervision: In this section, we investigate the effect of the weak super-
vision signal and how it can help improving the performance of L2RI. Table 4
shows the ranking performance of using two different weak supervision signals.
L2RI(AVG) model uses the average star rating as weak supervision signal. We
can see the high significant degradation in ranking performance when using
such model. Also, we can see in categories like Jewelry and Industrial the cor-
relation values are even with negative sign which indicates inverse correlation.
This demonstrates that a poor supervision signal can definitely lead to very
low ranking performance. Thus, the weak supervision signal should be selected
carefully.

Table 4. Ranking performance of L2RI using different weak supervision labels

Model Arts & Crafts Jewelry Industrial

τ@all τ@10 ρ@all ρ@10 τ@all τ@10 ρ@all ρ@10 τ@all τ@10 ρ@all ρ@10

L2RI(AVG) 0.016 0.011 0.04 0.032 –0.149 –0.132 –0.209 –0.195 –0.185 –0.162 –0.254 –0.219

L2RI(TQRank) 0.371 0.342 0.492 0.414 0.473 0.403 0.633 0.495 0.399 0.431 0.519 0.543

Table 5. Performance of L2RI using different optimization functions & depths

Model Arts & Crafts Jewelry Industrial

τ@all τ@10 ρ@all ρ@10 τ@all τ@10 ρ@all ρ@10 τ@all τ@10 ρ@all ρ@10

L2RIτ@all 0.368 0.332 0.492 0.409 0.472 0.399 0.634 0.493 0.398 0.424 0.52 0.542

L2RIτ@k 0.371 0.342 0.492 0.414 0.473 0.403 0.633 0.495 0.399 0.431 0.519 0.543

L2RIρ@all 0.370 0.338 0.492 0.414 0.471 0.397 0.632 0.494 0.399 0.430 0.519 0.544

L2RIρ@k 0.371 0.341 0.492 0.414 0.470 0.393 0.631 0.494 0.398 0.431 0.517 0.542

Ranking Loss Function: We show the effect of using different ranking loss
functions namely Kendall’s τ and Spearman ρ. We further show the effect of
limiting the optimization to a certain depth of the group. Table 5 shows the
ranking performance of four models, optimizing Kendall’s τ for the whole group
size, optimizing for the top-k items, and the other two for Spearman ρ. The aver-
age number of products per group in the 3 testing categories is 70, for training
is 125 products and for the whole dataset on average is 100 products per group.
First, we can see no significant difference between optimizing Kendall’s τ versus
Spearman ρ, which suggests that they both work equally well for product rank-
ing. Also, we can see optimizing Kendall’s τ for top k products is slightly better
than other models specially for τ@10, but not significantly better. The reason
is that the average number of products in our dataset is not very high. Thus,
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optimizing for only the top 10 from the whole group in this case is no different
from the whole group. However, with longer groups there might be evident per-
formance increments, which we leave to future work. In terms of computation
time, Kendall correlation has a O(n2) computation complexity comparing with
O(nlogn) of Spearman correlation (where n is the sample size). This suggests
that the average number of products per group is an important factor in selecting
the ranking optimization function.

Feature Importance: In this section, we show the effect of each feature cate-
gory on the learning performance as summarized in Table 6. We show the indi-
vidual contribution of using each feature category of the product level features.
We can see that the most important individual features are the star ratings
followed by activeness of reviews of a given product. However, the aggregate
sentiment polarity of reviews of an item has shown poor results. This may be
due to the inability of the sentiment extraction module to identify more than
one sentiment describing the whole sentence, which might not be correct. Also,
with a few reviews per product and 3 sentences on average per review, there is
not enough data. The Helpfulness feature performance is comparable to the sen-
timent feature in the Arts & Craft category and worse in the Industrial category
which is due to the low number of helpfulness votes for this category.

Table 6. Ranking performance of L2RI using different feature categories

Model Arts & Crafts Jewelry Industrial

Item level

features

τ@all τ@10 ρ@all ρ@10 τ@all τ@10 ρ@all ρ@10 τ@all τ@10 ρ@all ρ@10

Aggregated

Ratings (R)

0.333 0.270 0.450 0.343 0.425 0.314 0.574 0.383 0.360 0.365 0.472 0.460

Helpfulness (H) 0.088 0.021 0.117 0.025 0.092 0.025 0.125 0.015 0.054 0.046 0.072 0.051

Sentiment

Polarity (P)

0.082 0.088 0.118 0.131 0.124 0.135 0.169 0.165 0.115 0.094 0.156 0.133

Activeness (A) 0.287 0.271 0.389 0.357 0.371 0.316 0.502 0.396 0.294 0.328 0.384 0.423

H+R 0.331 0.269 0.449 0.34 0.423 0.308 0.572 0.377 0.363 0.369 0.471 0.457

P+H+R 0.364 0.326 0.484 0.402 0.466 0.394 0.623 0.487 0.377 0.402 0.493 0.515

A+P+H+R 0.365 0.328 0.487 0.401 0.472 0.399 0.632 0.495 0.375 0.407 0.487 0.52

Group+Item

features

0.371 0.342 0.492 0.414 0.473 0.403 0.633 0.495 0.399 0.431 0.519 0.543

Only after adding sentiments to the ratings and helpfulness (P+H+R) in
Table 6), we started to see a noticeable performance gain, especially for the top-
10 ranking. The same observation applies to the case of adding the activeness
features (A+P+H+R).

The group-level features (Group+Item features) added around 5% to
Kendall’s τ and 7% to Spearman’s ρ of ranking performance gain of the top-10
products. The Group-level features are very important, because they capture
the differences between groups of items, especially in terms of items activeness
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dynamics. Note that we did not evaluate using only group level features, as our
L2R models require item level features to differentiate items within groups.

5 Conclusion and Future Work

The substantial importance of item (e.g. product, service, movie, books, etc.)
reviews for customers making purchase decisions motivated our research. Most
studies on ranking items using reviews have focused on statistical and heuris-
tic approaches to aggregate star ratings, but they often fail on items with few
reviews. In this paper, we formulated the problem as a L2R problem – to rank a
group of items. A ranking model is trained on a repository of reviews grouped by
item groups. We overcame several technical challenges and proposed our L2RI
model. To bootstrap the L2R process from unlabeled reviews, we proposed to
aggregate star ratings and use as weak supervision labels for learning, taking
into account the posting time, textual contents sentiments and helpfulness votes
of reviews. We further proposed the use of a suitable loss function based on the
number of pairwise ranking errors to effectively rank a group of items. Exper-
iments on a real-world Amazon dataset showed that our model L2RI is more
effective than the state-of-the-art heuristic aggregation approaches, regression
and standard L2R models.

Regarding future work, we will further examine the textual contents of
reviews to extract fine-grained aspect level features to enhance the L2RI model.
Moreover, we will explore applying our L2RI framework to wider applications
without explicit or implicit ranking labels.
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Abstract. Knowing people’s personalities is useful in various real-world
applications, such as personnel selection. Traditionally, we have to rely
on qualitative methodologies, e.g. surveys or psychology tests to deter-
mine a person’s traits. However, recent advances in machine learning
have it possible to automate this process by inferring personalities from
textual data. Despite of its success, text-based method ignores the facial
expression and the way people speak, which can also carry important
information about human characteristics. In this work, a personality
mining framework is proposed to exploit all the information from videos,
including visual, auditory, and textual perspectives. Using a state-of-
art cascade network built on advanced gradient boosting algorithms,
the result produced by our proposed methodology can achieve lower the
prediction errors than most current machine learning algorithms. Our
multimodal mixture density boosting network especially perform well
with small sample size datasets, which is useful for learning problems in
psychology fields where big data is often not available.

Keywords: Personality mining · Mixture density boosting network
Deep learning

1 Introduction

Personalities denote the individual variances in characteristics patterns of think-
ing, feeling and behaving. People with different personalities tend to conduct
themselves in varied ways and have different cognitive processes. Knowing one’s
traits and understanding the differences in their preferences would help with
communicating and connecting to the person on a more individual level. One of
the most well-known measurements of personality traits is the Five-Factor Model
of Personality (Big Five) [12]. As shown in Fig. 1, the Big Five model contains
the five fundamental underlying personality dimensions: agreeableness, consci-
entiousness, extraversion, neuroticism, and openness to experience. These per-
sonality dimensions are stable across time, cross-culturally shared, and explain a
substantial proportion of behavior [7]. Therefore, the Big Five model has been the
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 644–655, 2018.
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standard measurement for personality mining in current literature. Personality
Mining is the process of identifying a person’s traits by mining the information in
different types of individual data. The main techniques to identify the Big Five
personalities of an individual have been the qualitative methods of surveys [13].
Recently, there have been some applications of machine learning in personality
mining, mostly through text mining [16] using standard algorithms, e.g. support
vector regression or decision tree [8].

Prac cal, Conven onal, Prefers rou ne

Impulsive, Careless, Disorganized

Quiet, Reserved, Withdrawn

Cri cal, Uncoopera ve, Suspicious

Calm, Even-tempered, Secure

Low Score
Curious, Interests, Independent

Hardworking, Dependable, Organized

Outgoing, Warm, Adventure

Helpful, Trus ng, Empathe c

Anxious, Unhappy, Nega ve Emo ons

High Score
Openness

Conscien ousness

Extroversion

Agreeableness

Neuro cism

Trait

Fig. 1. The Five-Factor Model of Personality

Though current methodologies have shown the feasibility of personality min-
ing, they have some critical limitations preventing for broader adoption. To be
specific, the qualitative approaches are not practical, time-consuming, costly and
might contain subjective errors. On the other hand, the standard machine learn-
ing algorithms can quickly mine the personalities of a large number of people at
once without conducting surveys [10]. However, the prediction accuracy of these
quantitative techniques suffers from small data size. Considering ethical reasons,
using up-sampling techniques to increase the number of observations will not be
acceptable.

In addition, most researchers have been approaching the personality min-
ing problem using textual data only [11,15]. However, human characteristics
are explicitly expressing not only in the spoken words but also in their facial
expression and the way they speak as well. More research has incorporated these
sensory information into their predictive models. Some research have showed
that sensory data would significantly improve the prediction accuracy of one’s
traits [1]. These motivates us to look for a deep learning method which can learn
from multimodal data.

Realizing these research gaps, we would like to propose here one of the
very first multimodal approaches in personality mining using information from
videos, audio and text data. Our Multimodal Mixture Density Boosting Net-
work (MMDB) combines advanced deep learning techniques to build a multi-
layer neural network. From small size of personality datasets. We will have an
initial feature fusion layer to avoid over-weighting of one type of input data.
Afterwards, we construct a combined neural network consisting of mixture den-
sity layers to avoid over-fitting and dynamic cascade gradient boosting layers to
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improve our prediction accuracy. In addition, our MMDB neural network has a
general structure which can be applied flexibly to other similar multimodal deep
learning problems.

There would be three main contributions of our paper in personality mining.

– To the best of our knowledge, this is the first research attempt to use deep
neural network to analyze multimodal data for personality prediction model.

– Our MMDB model was built to adapt both small and large dataset, which is
extremely useful in psychology research where data collecting is costly.

– The final contribution is the mixture density approach which makes it easy
to transfer learning cross-dataset with different input features.

The rest of this paper is organized as follows. Section 1 introduces the basic
concepts personality mining, current research limitations and our proposed solu-
tion. In Sect. 2, we review the literature on personality mining with focus
on recent methodologies as the motivation for our research work. Section 3 is
devoted to describe the technical details of our MMDB neural networks model.
In Sect. 4, the proposed MMDB model is applied to public datasets to perform
personality mining. Finally, conclusions are drawn in Sect. 5.

2 Preliminary

Personality mining has been mainly studied by psychologist for decades using
primarily descriptive and qualitative methodologies [19]. With the growth of data
analytics using machine learning algorithms, there are more quantitative efforts
to estimate one’s traits. However, due to the cost of collecting data, most person-
ality datasets are relatively small in sample size and contain only text data [17].
Therefore, most research in this fields are based on textual data only, which yield
a low accuracy on the results. Since the availability of multimedia data [2,21] on
personality mining in recent years, we can now apply advanced neural network
approach to build a better prediction model which utilizes multimodal features.

Current literatures on personality mining mainly focus on feature extraction
and selection using different analysis [22,25]. For textual features, most of cur-
rent papers use Linguistic Inquiry and Word Count (LIWC) [18], Bag of Words
and other text sentiment analysis techniques. Regarding audio visual features,
there are many different approaches using Python or MATLAB packages for
prosody cue, speaking activity, scenery and face recognition [4,20]. There is also
an application of a multimodal feature extraction technique called Doc2Vec [6].
The result shows improvement in prediction accuracy of some but not all Big
Five traits. The variety of extracted feature sets tend to have significantly differ-
ent correlation to the personality scores [24], which makes it difficult to compare
the methodologies and empirical results even with the same dataset.

There have been some applications of machine learning methodologies to
build prediction model [5]. Researchers have also looked predicting personality
scores both separately or together as a multivariate problems using support
vector machines and decision tree algorithms with different stacking models [8,9].
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According to their results, the differences between univariate and multivariate
model are not significant. Therefore, we will not approach personality mining
as a multi-label prediction problem and will compare our model with two single
stacking models from these papers. They also suggest that the cross-datasets
transfer learning would not help with prediction accuracy. We will test this
hypothesis again with our neural network using both two multimodal personality
datasets that are publicly available [2,21].

Personality prediction has been commonly approached as regression problem.
Even though we can convert the personality scores to binary labels for classi-
fication model using a certain threshold, many researchers have proven that it
is not a good practice to determine human characteristics. Most classification
models have also showed a pretty low prediction accuracy around 52% to 65%
only [10]. Moreover, the sample size might not be equally distributed in each of
binary classes. Therefore, we will only focus on building the regression model for
personality mining within the scope of this paper.

As far as we concern, there have been no application of neural network in
multimodal personality mining. Even though neural network still doesn’t signif-
icantly outperform machine learning algorithms regarding regression problems,
we believe neural network would have certain advantage in psychology fields such
as human thinking and behavior. Our proposed MMDB neural network would
be the first attempt to estimate one’s traits using this advanced approach. It
helps solve the challenge in personality mining with limitations in sample size
and multimodal data. The research would contribute to the current literature
with the shifting trend to use deep learning techniques.

3 Methodology

We propose here a multimodal neural network that can combine different type of
input data at different sizes with our Discriminant Correlation Analysis (DCA)
Feature Fusion layer. Then the fused features will be used as inputs and target
for layers in our Mixture Density Network to adjust for the information loss due
to feature fusion without over-fitting the model. Last but not least, the output
of Mixture Density Network layers will be the input for layers in our Dynamic
Cascade Boosting Network to regress the final prediction with high accuracy.

3.1 DCA Feature Fusion Layer

The standard DCA Feature Fusion algorithm [14] considers the class associations
in feature sets. It eliminates the between-class correlations and restricts the cor-
relations to be within classes. DCA maximizes the correlation of corresponding
features across the two feature sets and in addition, decorrelates features that
belong to different classes within each feature set. It also solves small sample size
(SSS) problem, where the number of samples is less than the number of features
which makes the covariance matrices singular and non-invertible. Within our
multimodal neural network, the DCA Feature Fusion Layer will first fuse the
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video, audio and text features pairwise, then it will aggregate to compute the
final fused feature of three modal inputs as

ffvst = ffvs + ffvt + ffst (1)

where ffvst, ffvs, ffvt, ffst are the DCA fused features of video-sound, video-
text, sound-text and video-sound-text features accordingly. We will use ffvst
as target scores and ffvs, ffvt, ffst as inputs in our Mixture Density Neural
Network.

3.2 Mixture Density Network

Mixture Density Networks (MDN) [3] predicts not a single output value but
an entire probability distribution for the output. This help us get the inference
between each fused feature and the aggregated ffvst, reduce the loss of infor-
mation from the DCA Feature Fusion Layer without over-fitting the model. The
MDN will predict Mixture Gaussian distributions, where the output value is
modeled as a sum of many Gaussian random values, each with different means
and standard deviations. So for each input x, we will predict a probability
weighted sum of smaller Gaussian probability distributions

P (Y = y|X = x) =
∑K−1

k=0
Πk(x)φ(y, μk(x), σk(x)) (2)

where φ(y, μk(x), σk(x)) is the probability distribution function (pdf) of Gaus-
sian distribution k with predicted mean μk(x) and predicted deviation σk(x).
Πk(x) is the predicted weight of Gaussian distribution k, and

∑K−1
k=0 Πk(x) = 1

to ensure that the pdf integrates to 1. Each of the parameters Πk(x), μk(x), σk(x)
will be determined by the neural network, as a function of the input x. We con-
struct our MDN leveraging TensorFlow Slim, with three fully-connected hidden
layers of 10 nodes each and Adam Optimizer for training. This feed-forward
neural network will parameter 1, 000 Gaussian mixture components as outputs
after 1, 000 iteration rounds.

3.3 Dynamic Cascade Boosting Network

Boosting algorithms have been one of the most effective machine learning
methodologies for regression problems. Therefore, we believe the incorporation
of boosting algorithms into our multimodal neural network would help increase
the prediction accuracy for personality mining. In this model, we use gradient
boosting regression from Scikit-Learn with 100 estimators as our base learner
algorithm. For testing purpose, we only use two variants of hyperparameters in
our model set up, where learning rates are 0.001 and 0.01 respectively. Other
parameters are the same for all models, where max depth is 1 and loss function
is least absolute deviations (LAD). To avoid over-fitting, we did not perform any
specific form of parameter tuning either manually or automatically.
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Our dynamic boosting network, inspired by gcForest [26], is built with a cas-
cade structure, where each layer is embedded with multiple boosting algorithms.
These algorithms will estimate the personality scores separately, then the aver-
age scores will be evaluated using mean accuracy (MA) before constructing the
next cascade layer.

MA = 1 − 1/N
∑N

i=1
|ypred − ytrue| (3)

After feeding the output of previous cascade layer to a new layer, the network
will automatically assess the prediction accuracy of the model, and the training
procedure will stop if there is no significant increase in performance. For our
experiment, we set the tolerance rate to zero, which means new cascade layer
will be constructed even with the smallest increase in MA values. The number
of layers in this dynamic cascade boosting network will be implicitly constructed
depending upon how fast the model learn (see Fig. 2). During our experiment, the
number of cascade layers constructed is ranging from 2 layers to 8 layers. Since
our dynamic boosting network can reactively chooses the number of cascade
layer and decides on early stopping, it can efficiently handle different dataset
sizes without wasting computing power.

Fig. 2. The complete architecture of our MMDB Neural Network

4 Experiment

To study the performance of the MMDB model, experiments were conducted on
two public datasets: First Impressions dataset and YouTube Personality dataset.
Comparisons were made against several baselines.
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4.1 Datasets

First Impressions dataset (FI) [21]. This dataset comprises 10, 000 clips with
an average duration of 15 s. Each clip is a video of people facing and speaking
English to the camera. The gender, age, nationality, and ethnicity information
can be observed from clips. Beside sensory data, the dataset also contains the
text transcription of the speakers’ words. In total, 435, 984 words were tran-
scribed (183, 861 non-stopwords), which corresponds to 43 words per clip on
average. Each clip is labeled with Big Five personality traits scores from [0, 1].

YouTube Personality dataset (YT) [2]. This dataset consists of 404
YouTube clips when Video bloggers explicitly show themselves in front of the a
webcam talking about a variety of topics. The text transcriptions are provided
in raw text and contain 10 K unique words and 240 K word tokens. The person-
ality impressions consist of Big Five scores that were collected using Amazon
Mechanical Turk (AMT) and the Ten-Item Personality Inventory (TIPI) [13].
The scores are rescaled into range [0, 1].

4.2 Features Extraction

As the feature set of the two datasets are different, feature importances would be
varied. Therefore, we will not perform any correlation analysis and feature selec-
tion. All extracted features will directly be inputs for our multimodal network
and baseline models.

Video Features. Videos in FI dataset are showing one person speaking directly
to the camera, therefore we are more interested in their facial movements
and gestures than other general scenic data. To extract video features, we use
OpenCV [4] to extract the landmarks data with face detection, alignment and
tracker for every single frame of each clip. From these image-base data points, we
then extract major facial features such as Yaw, Roll, Eyes and Lip movements,
etc. Finally, we average these facial features across all frames of each clip.

Audio Features. Several speech features are extracted from audio, such as
pitch and energy. These features are extracted at the interval of 5000 Hz each
by using the Hidden Markov Models. Similar to video features, we compute the
average of speech features for each audio file, which resulted 21 audio features
in total.

Text Features. The LIWC 2015 [18] dictionary is used to extract text fea-
tures from the transcription of each video clips. Even though there are many
text analysis tools available such as Bag of Words, Word Sentiment, etc., these
approaches might not suitable for our corpus with short text and variety of top-
ics. Therefore, we will use only LIWC as the standard approach, which covers
many topic-related features (e.g. work, family, friend, money), sentiment (e.g.
possemo, negemo) and even speech related features (non-fluent). A total 93 text
features were extracted.
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4.3 Evaluation

Evaluation Metrics. Similar to related works, the Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) as our evaluation metrics:

MAE = 1/N
∑N

i=1 |ypred − ytrue|, RMSE =
√

1/N
∑N

i=1(ypred − ytrue)2 where
N is the size of data, and ypred and ytrue are the predicted and true personality
scores, respectively. We also perform rank evaluation by ranking data instances
for each type of personality and comparing against the true ranking using Spear-
man Rank Correlation Coefficient (Spearman’s rho) [23].

Baselines. We will also build prediction models using some models in current
literature to compare the performances of our MMDB neural network. Specifi-
cally, we will build the baseline models using the Gaussian Process from [11] and
two single stacking models with base learner support vector regression and deci-
sion tree from [8,9], which will be denoted as GP, SVR and DT respectively. We
also build a simple neural network (NN) for comparison with our MMDB neural
network, using TensorFlow framework to construct three fully-connected ReLU
layers with 10 nodes each. The deep neural network regressors will use Adam
Optimizer as solver and will train for 10, 000 iterations. The input features for
these baseline models would include all text, auditory and visual features as in
our MMDB model. We will also not perform any specific parameter tuning on
these baseline models.

4.4 Results

For individual dataset evaluation, we perform 10-fold cross validation and com-
pare the results with baseline models using the extracted features as input. For
cross-datasets evaluation and component testing, we split each dataset into train
set and test at ratio 8 : 2. For FI dataset, there are 8, 000 and 2, 000 instances in
train and test set. For YT dataset, there are 323 and 81 instances in train and
test set. The 10-fold cross validation results are shown in Table 1, with agree-
ableness as AGR, conscientiousness as CON, extraversion as EXT, neuroticism
as NEU and openness as OPN. On the MAE, our MMDB neural network per-
forms better or on the same level of accuracy to some current methods on both
datasets. On rank evaluation, our model performs significantly better in most
personality dimensions for both tested datasets. It has the highest Spearman’s
rho together with NN model for EXT on YT dataset. It performs slightly worse
than SVR and NN for EXT and NEU on FI dataset. In general, our model has
better prediction accuracy than other personality mining models. Especially in
dealing with small data size case in psychology field like the YT dataset, our
MMDB neural network helps improve prediction accuracy significantly compared
to other mentioned models.

We also want to test whether we can perform transfer learning the personality
mining models using cross datasets. Unlike most machine learning models where
we need the same number of input features from different dataset to perform
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Table 1. 10-fold cross-validation on YouTube and first impression datasets

Model MAE rho

AGR CON EXT NEU OPN AGR CON EXT NEU OPN

YouTube

Dataset

MMDB .1070 .0980 .1285 .0973 .0957 .4352 .3030 .3233 .3398 .0949

NN 2.19 3.68 2.22 1.55 1.08 .1423 .0838 .2156 −.0627 .0253

GP .6138 .5829 .6042 .6277 .6108 .0338 −.1029 .0021 −.0223 .0488

SVR .1211 .1008 .1354 .1040 .0960 .1218 .1739 .0799 .0943 .0397

DT .1363 .1291 .1669 .1295 .1338 .2972 .2481 .1578 .1861 .0962

First

Impression

Dataset

MMDB .1042 .1228 .1184 .1186 .1136 .2616 .3025 .3356 .3643 .3118

NN .1254 .1646 .1380 .1314 .1254 .1191 .1793 .1457 .2000 .0846

GP .5495 .5243 .4767 .5209 .5667 .0626 .0493 .0836 .0847 .0759

SVR .1070 .1261 .1226 .1235 .1171 .0590 .0833 .0650 .0739 .0478

DT .1441 .1612 .1552 .1585 .1522 .1117 .1587 .1864 .1762 .1562

cross-data learning, our model use DCA and mixture density to fuse features and
compute the inference with Gaussian distribution to create an equal input nodes
for cascade boosting network. This allows our model to transfer learning easily
between datasets with multimodal features. The reported results in Table 2 are
in line with current literature that transfer learning does not improve prediction
accuracy. This is explainable as the trait dimensions’ scores were denoted by dif-
ferent author using various techniques and scales. However, when comparing the
MAE between Tables 1 and 2, the transfer learning from the FI to YT dataset
still performs better than some baseline models trained on YT dataset for differ-
ent personality dimensions. This positive result of transfer learning could help
in specific case where one dataset is much smaller than the other dataset, then
transfer learning would have better result than in the vice versa case.

Last but not least, we believe the integration of gradient boosting algorithms
into neural network would significantly improve the prediction accuracy, espe-
cially in the case of small sample size. We test this hypothesis using the YouTube
Personality dataset by running two separated prediction models. The first one
is our proposed MMDB neural network with the full layers. The second one
contains only the DCA fusion layer and the mixture density neural network
(MMD). The results in Table 3 show that the performance of MMD is quite
satisfactory, which can still outperform other baseline models. As observed in

Table 2. Transfer learning.

Direction MAE RMSE

AGR CON EXT NEU OPN AGR CON EXT NEU OPN

YT→FI .1348 .1291 .1457 .1640 .1250 .1706 .1599 .1805 .2042 .1568

FI→YT .1258 .1219 .1782 .1344 .0972 .1486 .1539 .1893 .1579 .1155
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Fig. 3. Sample distribution predictions for Openness from MMD neural network (where
the black vertical line is the ground truth personality scores)

Table 3. MMDB and MMD evaluation with YouTube Personality dataset

Model MAE RMSE

AGR CON EXT NEU OPN AGR CON EXT NEU OPN

MMDB .10940 .10286 .15039 .09190 .09449 .13455 .13386 .16981 .12121 .11699

MMD .11244 .11589 .15276 .13414 .11643 .14369 .14530 .18018 .17003 .14822

Fig. 3), the predicted means of the Gaussian distributions are very close to the
ground truth personality scores, which give us a lower MAE and RSME with
MMD model only. However, the dynamic cascade boosting network reduces the
MAE and RMSE further. This proves our hypothesis on the effectiveness of gra-
dient boosting algorithms in these regression problems. Our proposed MMDB
neural network and its component layers together can solve better the challenges
in personality mining.

5 Conclusions

Within the scope of this paper, we have identified the current research gap in
personality mining, which was dominantly using costly qualitative methods e.g.
surveys. Most quantitative research only use text mining techniques to predict
personality, while we believe sensory data can contain useful information about
one’s traits. The recent approaches using machine learning algorithms have lim-
itations when it comes to small sample size, which have low prediction accuracy.
Our proposed MMDB neural network has been proven to be an effective model
in solving personality mining challenges.

The MMDB neural network is a quantitative methodology, which is the first
research work to use deep learning approach in personality mining. It consists of
three main components. The first one is a DCA feature fusion layer to fuse mul-
timodal features from visual, auditory and textual data. The second component
is a mixture density neural network to predict the full distribution of personal-
ity scores. This solves the common problem of over-fitting due to small sample
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size. Finally, a dynamic cascade boosting network will significantly improve the
accuracy of finally prediction.

Our MMDB neural network has outperformed other baseline models from
current literature. The experiments with cross-datasets have showed the transfer
learning for personality mining is not effective in general, but can still help in case
of predicting on small sample size using our model from bigger dataset. Last but
not least we test the components of our MMDB neural network individually. The
results confirm our hypothesis of integrating the dynamic cascade boosting will
improve prediction accuracy of the mixture density network. In conclusion, our
MMDB neural network has great performances, especially with small datasets
in personality and psychology fields.

In future work, we would like to explore more options to improve the predic-
tion model for personality mining using particularly deep learning techniques.
We would work on a more intuitive neural networks that can perform person-
ality prediction using the videos as raw input data without the intermediate
step of features extraction and feature fusion. With the current progress in com-
puter vision and multimodal neural networks, we believe it will bring further
breakthroughs in personality mining research.
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Abstract. Opinion spam is a well-recognized threat to the credibility of
online reviews. Existing approaches to detecting spam reviews or spam-
mers examine review content, reviewer behavior and reviewer-product
network, and often operate on the assumption that spammers write
at least several if not many fake reviews. On the other hand, spam-
mers setup multiple sockpuppet IDs and write one-time, singleton spam
reviews to avoid detection. It is reported that for most review sites, a
large portion, sometimes over 90%, of reviewers are singletons (identi-
fied by the reviewer ID). Singleton spammers are difficult to catch due
to the scarcity of behavioral clues. In this paper, we argue that the
key to detect singleton spammers (and their fake reviews) is to detect
group spam attacks by inferring the hidden collusiveness among them. To
address the challenge of lack of explicit behavioral signals for singleton
reviewers, we propose to infer the hidden reviewer-product associations
by completing the review-product matrix by leveraging the product and
review metadata and text. Experiments on three real-life Yelp datasets
established that our approach can effectively detect singleton spammers
via group detection, which are often missed by existing approaches.

Keywords: Opinion spam · Singleton spammers · Sockpuppet IDs
Inductive matrix completion

1 Introduction

Online shoppers are ever increasing and the product reviews influence their buy-
ing decisions to a great extent. According to the Local Consumer Review Survey
2016 by BrightLocal1, 84% of the online shoppers trust product reviews as much
as personal recommendations. Positive reviews and higher star ratings results in
substantial financial gains for the businesses, while negative reviews can cause
reputation damage and financial losses. As a result of such financial incentives,
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opinion spam (fake reviews which deliberately mislead readers) is prevalent.
There is an estimate from 2012 that one-third of consumer reviews on the Inter-
net were fake2. Similarly, the number of fake reviews on yelp.com rose from 5%
in 2006 to 20% in 2013 [8].

Opinion spam detection has attracted significant research [1,5–7,11,13–
15,17]. Existing approaches to detecting spam reviews and spammers focus on
extracting spam signals from review texts [5,11,14], reviewer behaviour [7,15], or
the reviewer-product networks [1,13]. Many approaches assume spammers write
at least several if not many fake reviews for multiple products. It is reported,
however, that the majority of reviewers in most of the opinion websites are sin-
gletons, i.e. writes only one review. According to [17], over 90% of the reviewers
of resellerratings.com write only one review. Indeed, our analysis showed that
a majority, in the range of 65% to 70%, of the reviewers of Yelp datasets [13]
are singletons (See Table 1 for details). Detecting singleton spam reviews and
singleton spammers is challenging due to the lack of obvious spamming signals.
Existing approaches based on reviewer behavior and reviewer-product networks
are not effective for detecting singleton spammer reviewers [14,17]. Sandulescu
and Ester [14] argued that the key to catch singleton spammers can only be
found in the review texts. A drawback of their text-based approach is that the
collusiveness among reviewers is overlooked and therefore may not be effective.

To address the challenge of scarcity of spam signals for singleton reviewers,
we argue that the key to effective detection of singleton spammers is via identi-
fying spammer groups. A spammer group is “a group of reviewers writing fake
reviews together to promote or to demote some target products” [9]. Here review-
ers are defined by the reviewer ID. The actual person behind different IDs could
be a single person, multiple persons, or a combination of both. There is a great
incentive for opinion spammers to create multiple sockpuppet IDs to write sin-
gleton reviews since it helps them avoid detection and provide higher revenues
by writing many fake reviews. However, existing approaches to detecting spam-
mer groups [9,18–20] are not directly applicable for singleton spammers since
they assume that participants of spammer groups frequently write reviews for
multiple products together (hence, non-singleton).

In this paper, we propose SSGD (singleton spammer group detection), a
novel approach to detecting singleton spammers via spammer group detection.
The intuition behind SSGD is that given the purpose of group spamming is
to promote or demote the reputation of products within a short time window,
a burst of changes in signals such as rating and number of reviews can indi-
cate the occurrence of spam attacks. From the likely spam attacks, the candi-
date singleton spammers and their targeted products are identified. We further
examine the review textual content, rating and time to infer latent reviewer-
product associations and uncover the collusiveness among singleton reviewers.
We formulate the problem of inferring (hidden) reviewer-product association as a
review-product matrix completion problem. The sparse review-product associa-

2 http://www.nytimes.com/2012/08/26/business/book-reviewers-for-hire-meet-a-
demand-for-online-raves.html.
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tion matrix is completed using the additional information such as review text and
metadata (star rating and date), the product description text and the product
“also bought” and “also viewed” network. Lastly, the inferred reviewer-product
associations are clustered to detect spammer groups consisting of (mostly) sin-
gleton spammers.

We conducted experiments on three real-world opinion spam datasets on
yelp.com (YelpChi, YelpNYC, and YelpZIP) [13] to evaluate the effectiveness of
SSGD for detecting singleton spammers by detecting them in groups. We bench-
marked SSGD against five approaches in the literature for detecting spammer
groups and individual spammers based on reviewer behavior, reviewer-product
network and review text. SSGD outperformed all these approaches in terms of
both recall and precision for singleton spammer detection. To the best of our
knowledge, this paper is the first attempt at identifying singleton spammers via
detecting hidden collusiveness among them for group spam attacks.

2 Related Work

Existing studies in the literature on detecting spam reviews and spam reviewers
can be broadly classified as reviewer behaviour based [7,15], reviewer-product
network based [1,13], and review text based [5,11,14]. A detailed survey of these
techniques can be found in [4]. Reviewer behavior-based and reviewer-product
network-based approaches are not effective for detecting singleton spammers,
as they focus on reviewers with multiple reviews. Text-based approaches [11,
14] can address the challenge of lacking behavioral clues for one-time singleton
reviewers by examining the psycholinguistic features in review contents [11] or
by examining the pairwise content similarity between reviews [14]. However, the
text-based approaches totally ignore the collusiveness among reviewer IDs and
other review metadata, and our experiments show that they are not very effective
in detecting singleton reviewers.

There are some recent studies on detecting singleton spam reviews [14,17].
Xie et al. [17] constructed a multidimensional time series consisting of the aver-
age rating, number of all and singleton reviews for time windows of fixed dura-
tion. It then detects spam attacks by finding abnormal sections in each time
series. Though not specifically for singleton reviews, [21] monitors a list of care-
fully selected indicative signals of opinion spam over time and design efficient
techniques to both detect and characterize abnormal events in real-time. The
indicative features used for temporal spam detection in [21] are a superset of
the time series used in [17]. One thing to note is that the approaches presented
in [17,21] does not label individual singleton reviews as spam or genuine, but
predict the time when a product is most likely to be a victim of a spam attack.

Our research is also related to studies concerning spammer group detection [9,
18–20]. Mukherjee et al. [9] first proposed an approach to detect spammer groups
using frequent itemset mining (FIM) to find a set of candidate groups. It then
uses several behavioral models derived from the collusion phenomenon among
suspected fake reviewers to detect fake reviewer groups. The approach proposed

http://yelp.com
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in [20] uses only the network footprint information (user-product graph) to detect
spammer groups. The approaches proposed in [18,19] uses pairwise features of
reviewers to detect spammer groups which are defined for only those reviewer
pairs who have adequate reviewing histories. Recently, Li et al. [6] proposed
an HMM-based approach to detect spammers’ co-bursting behavior to detect
spammer groups. For all these approaches, the assumption about the spammer
groups is that reviewers in a group write fake reviews for multiple products
together and detection is based on the explicit reviewer-product associations,
hence all of these approaches would miss the singleton spammers.

More generally, our research is related to spam detection on social media [16],
where, most studies focus on finding clusters of linked nodes and the singleton
spammers are likely ignored. In addition, our approach of inferring hidden asso-
ciations is related to inferring network structures from data [2], which is an
important data mining task in many domains.

3 The Proposed Approach: SSGD

We propose a novel approach to catch singleton spammers by discovering hid-
den collusiveness among them and detecting spammer groups. Detecting single-
ton spammer group is challenging as singleton reviewers write only one review
and there is little information available about each individual singleton spam-
mer. However, there are still (hidden) signals available for detection of singleton
spammer groups. Such spammer groups aim to influence average ratings and
impressions of target products by using following two tactics [14,15]:

– Inject enough fake reviews to affect the average ratings;
– Flood the most recent review pages with fake reviews as most buyers read

only top several reviews before forming an opinion about a business.

Both these approaches require a (singleton) spammer group to generate a rel-
atively abnormal number of positive or negative reviews over a short period of
time, depending on what influences they wish to exert. Figure 1 shows the frame-
work of our proposed approach SSGD. We first apply the spam attack detection
approach [21] to identify the target products and the attack time in the multi-
variate time series for a set of indicative signals: average rating, number of pos-
itive/negative reviews, rating entropy, the ratio of singletons and first-timers,
youth score, and temporal gap entropy to detect abnormal changes/bursts as
potential spam attacks. The magnitude of abrupt change is used to assign an
anomaly score for each detected attack. Further details about this step are well
documented in [21] and are not reproduced here for brevity.

The spam attacks produce a review-product subgraph of target products and
(potentially) spam reviews. The matrix representing the review-product network
is very sparse without meaningful review-product associations. This data sparsity
problem is similar to the one encountered in the recommendation systems, where
matrix completion has shown great success in dealing with such sparsity. A
detailed survey of the novel techniques to infer hidden network structure from
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Fig. 1. Schematics of the proposed approach (SSGD)

the data for matrix completion is given in [2]. For the problem of inferring
hidden collusiveness among reviewers, we use the inductive matrix completion
(IMC) algorithm [10], which uses additional information such as review text and
metadata (star rating and date) and product metadata such as its description
text. Once the “completed”, enriched review-product matrix is obtained from
IMC, we cluster the reviews (using the inferred associations among reviews as
the feature vector) to discover groups of similar reviews (reviewers) targeting
the attacked products. We next describe these steps in details.

3.1 Inferring Hidden Reviewer-Product Associations

The spam attacks define a review-product bipartite graph of Nr suspicious
reviews and Np target products as nodes. An edge is present between review
i, 1 ≤ i ≤ Nr and product j, 1 ≤ j ≤ Np if review i belongs to the prod-
uct j. This bipartite review-product graph is represented as a review-product
associations matrix P ∈ R

Nr×Np , where Pij = 1 if review i belongs to prod-
uct j, otherwise, Pij = 0. The sparse review-product association matrix P is
then “completed” using the IMC algorithm (described next) to learn hidden
reviewer-product associations.

The IMC algorithm was used in [10] to predict gene-disease associations by
combining multiple types of evidence (features) for diseases and genes to learn
latent factors that explain the observed gene-disease associations. The spammer
group detection is similar to this problem since we have a (sparse) review-product
association matrix and based on the features of reviews and products, the aim is
to discover groups of users who are most likely to write fake reviews for a group of
products. IMC can be interpreted as a generalization of the transductive multi-
label learning formulation: low rank empirical risk minimization for multi-label
learning (LMEL) [22] and assumes that the associations matrix is generated by
applying feature vectors associated with its rows as well as columns to a low-rank
matrix Z (representing actual person behind various sockpuppet IDs). The goal
is to recover Z using observations from P . Let xi ∈ R

fr , and yj ∈ R
fp denotes

the feature vector for review i, and product j respectively. Let X ∈ R
Nr×fr
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denote the training feature matrix of Nr reviews, where the ith row is the review
feature vector xi, and let Y ∈ R

Np×fp denote the training feature matrix of
Np products, where the jth row is the product feature vector yj . The inductive
matrix completion problem is to recover a low-rank matrix Z ∈ R

fr×fp using
the observed entries from P . Denote the set of observed entries (i.e., training
review-product associations) by Ω. The entry Pij of the matrix is modeled as
Pij = xT

i Zyj and the goal is to learn Z using the observed entries Ω. Z is of the
form Z = WHT , where W ∈ R

fr×k and H ∈ R
fp×k, and k is small. The low-

rank constraint on Z is NP-hard to solve. The standard relaxation of the rank
constraint is the trace norm, i.e., sum of singular values. Minimizing the trace-
norm of Z = WHT is equivalent to minimizing 1

2 (||W ||2F + ||H||2F ). The factors
W and H are obtained as solutions to the following optimization problem:

min
W∈R

fr×k;

H∈R
fp×k

∑

(i,j)∈Ω

�(Pij , x
T
i WHT yj) +

1
2
λ(||W ||2F + ||H||2F ), (1)

The loss function � penalizes the deviation of estimated entries from the
observations. A common choice for loss function is the squared loss function
(�sq(a, b) = (a − b)2). The regularization parameter λ trades off accrued losses
on observed entries and the trace-norm constraint. IMC adapt the LEML solver
[22] for solving (1). The solver uses alternating minimization (fix W and solve
for H and vice versa) to optimize (1). The resulting optimization problem in one
variable (W or H) is solved using the conjugate gradient iterative procedure.
The features used to learn hidden reviewer-product association using IMC are
described next.

We use the term frequency - inverse document frequency (TF-IDF) as the text
feature for review/product description. TF-IDF formally measures how concen-
trated the occurrences of a given word is into relatively few documents [12].
The terms with the highest TF-IDF scores are often the terms that best charac-
terize the topic of the document. Before extracting the TF-IDF feature for the
review texts and product descriptions, we filter out the stop words as they are
extremely common words which would appear to be of little value in deciding
review text similarity. We project the review and product TF-IDF features to
a lower dimensional space. In particular, we use principal component analysis
(PCA) that performs a linear mapping of the data onto the lower dimensional
space by maximizing the variance of the data in the new representation. We
choose the leading 200 eigenvectors of the covariance matrix as the text features
for reviews and product description. Another set of features for reviews consists
of the date and the star rating associated with each review. For product feature,
apart from the TF-IDF features obtained from the review content and product
description, the product “also bought” and “also viewed” network is useful in
identifying similar products which could be the common target of a group of
spammers. In case this information is not available, identity matrix (I) is used
as the product features representing each product as independent of others.
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3.2 Finding and Ranking Spammer Groups

The output of the IMC algorithm is a completed review-product association
matrix called as score matrix (S ∈ R

Nr×Np). Higher values of Sij indicate a
greater likelihood of review i being written for product j. The learned product
association for each review is used as the review feature vector to cluster them
to detect spammer groups. We consider the Nr rows of the score matrix S as
the Np− dimensional feature vector for each review. To detect spammer groups,
we need to find the set of reviews which are most likely being written by a
group of a few spammers (sockpuppet IDs). These reviews would form a dense
cluster in the Np− dimensional feature representation given by score matrix S.
The genuine reviews are expected to be at a large distance from other genuine
reviews and spammer groups.

We choose the popular density-based clustering algorithm DBSCAN [3] to
cluster spammer groups since it does not require the number of clusters to seek
as an input, which is not known for our problem. Also, the reachability distance
(ε) parameter of DBSCAN provides an easily tunable parameter for detecting a
dense cluster of spammers, leaving out noise points (genuine reviews which may
not belong to any spammer group). Most of the reviews in the detected groups
are singleton reviews, hence review group is similar to reviewer group, however,
in some cases, multiple reviews belonging to the same user can be a classified in
different spammer groups (some spammers write a few genuine looking reviews
to camouflage their campaign or may be part of multiple spam campaigns). The
candidate spammer groups are then ranked based on the average intra-cluster
distance between the reviews belonging to a group in the feature vector space
representation. The groups whose members are close to each other are given high
ranking as compared with the groups whose members are sparse.

4 Experiment Setup

We performed experiments on three publicly available online review datasets
that are widely used in the opinion spam literature: YelpChi, YelpNYC, and
YelpZIP [13]. These datasets contain reviews for restaurants in Chicago and
NYC and in areas defined by a zip code in the NY state. All datasets contain
review metadata such as star rating and date as well as review text. Their basic
statistics is given in Table 1. It can be seen that all datasets contain a high
percentage of singleton reviews, ranging from 65.35% to 70.55%.

The Yelp datasets have “near” ground truth labels for spam reviews based
on the fake/suspicious filtering algorithm used at Yelp.com. The author of a
spam review is labeled a spammer. Although the Yelp anti-fraud filter is not
perfect, it was found to produce accurate results, and the spam reviews and
spammers thus labeled were used as ground truth for evaluating opinion spam
detection algorithms [13]. Table 2 also shows the portion of singleton spammers
in the ground truth spammers in the three Yelp datasets. It can be seen that a
significant portion of spammers on the Yelp datasets are singleton spammers.

http://Yelp.com
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Table 1. Basic statistics of the three datasets (In the parlance of customer reviews,
restaurants are the products.)

# Reviewers # Products #Reviews per
reviewer

#Reviews
per product

#Singleton
reviewers (%)

YelpChi 38,063 201 1.77 335.30 70.55%

YelpNYC 160,225 923 2.25 389.00 66.15%

YelpZIP 260,277 5,044 2.34 120.66 65.35%

Table 2. Singleton spammers in the Yelp datasets

# Spammers Singleton spammers
(% of # Spammers)

YelpChi 8,919 76.03%

YelpNYC 36,885 63.91%

YelpZiP 80,466 62.97%

We compare SSGD against five state-of-the-art baseline approaches for
detecting spammer groups and individual spammers – two are spammer group
detection approaches, one is a spam review detection algorithm utilizing network
as well as metadata and two are text-based approaches, one being specialized
for detecting singleton spammers, as described below:

1. Spammer group detection baselines:
(a) FIM (Frequent Itemset Mining) [9]: This approach assumes that spammer

groups are groups where reviewers (identified by reviewer IDs) frequently
write reviews together. The candidate groups are then ranked based on
the group spam features described in [9], which are found effective in
distinguishing spammer and non-spammer groups.

(b) NFS-GroupStrainer [20]: This approach detects spammer groups based
on the footprint of reviewers on the reviewer-product network. It first
finds targeted products using a graph-based measure Network Footprint
Score (NFS) which quantifies the statistical distortion caused by spam-
ming activities in the reviewer-product graph. A hierarchical clustering
algorithm called GroupStrainer is then applied on the two-hop subnet-
work of the targeted products to find spammer groups.

2. Spam review detection utilizing network as well as metadata baseline:
(a) SpEagle: The SpEagle algorithm [13] utilizes clues from all review meta-

data (text, timestamp, rating) as well as the reviewer-review-product net-
work to find suspicious users and reviews and the targeted products.

3. Review text-based baselines: The text-based approaches use only the textual
review contents to detect spam reviews and accordingly singleton reviewers.
(a) Ott: Ott et al. [11] built a supervised classification model based on a

comprehensive set of psycholinguistic features extracted from review text.
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(b) DSR [14]: This approach detects singleton spam reviews by computing
the semantic similarity among pairs of reviews.

5 Results and Discussion

We next report the results of SSGD for detecting spammers and spammer groups
on the three Yelp datasets.

5.1 Recall and Precision for Singleton Spammer Detection

We evaluated the average precision and recall of the singleton spammers (a
majority among all the spammers in all of the three datasets) detected by each
approach as a measure of its effectiveness. The results are given in Table 3 where
the maximum value of achieved average precision/recall is shown in bold.

Table 3. Average precision and recall (%) of singleton spammers detected by each
approach

SSGD FIM [9] NFS - Group-
Strainer [20]

SpEagle [13] Ott [11] DSR [14]

YelpChi Precision 23.50 7.23 18.24 20.14 16.20 1.03

Recall 87.57 22.21 63.60 50.00 49.80 10.20

YelpNYC Precision 21.15 5.21 16.87 18.28 16.24 5.12

Recall 74.25 21.17 60.42 55.89 72.81 28.15

YelpZip Precision 24.39 6.25 18.69 17.57 22.63 5.08

Recall 88.79 25.78 66.15 59.37 71.61 13.24

SSGD achieves the highest average precision and recall compared to other
approaches across all datasets. The results in Table 3 show that the groups
detected by SSGD contain more ground-truth singleton spammers. Spammer
group detection approaches FIM and NFS-GroupStrainer obtain poor precision
and recall as they cannot capture singleton spammers effectively. SpEagle, like
SSGD, which is also based on the review-product network and review and prod-
uct metadata, is not that effective in detecting singleton spammers as indicated
by its low average precision/recall scores. A possible reason may be that SpEagle
infers the spam probability for reviewers based on the possible targeted restau-
rants, rather than on the spam attacks as in SSGD, due to which many genuine
reviews are also labeled as spammers resulting in higher false negatives and hence
lower value of recall. The text-based approaches: Ott [11] and DSR [14] show
very different performance for detecting spammers. The Ott [11] approach shows
much better performance than DSR, which confirms that supervised learning
based on psycholinguistic features from review contents is effective for detect-
ing spam reviews. Still, the Ott approach does not perform as well as SSGD
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in terms of recall or precision for detecting singleton spammers. This indicates
that the collusiveness among singleton reviewers during spam attacks embed
strong signals complementary to the linguistic features for detecting singleton
spammers.

Table 4. Singleton reviewers in spam attacks

#products #reviewers #Singleton reviewers (%)

YelpChi 48 5,026 93.12%

YelpNYC 45 18,243 91.84%

YelpZIP 48 26,926 92.57%

We next investigate the fraction of singleton spammers in the spammer
groups detected by SSGD. Table 4 lists number of restaurants (products), num-
ber of unique reviewers and percentage of singleton reviewers in the top 50 spam
attacks detected by SSGD. Comparing the percentage of singleton reviewers
in Tables 1 and 4, it clearly shows the sharp increase in the number of single-
ton reviewers during spam attacks. This result reaffirms that spammers tend to
write singleton reviews from multiple IDs (sockpuppets) to avoid being caught.
This also shows the effectiveness of the first step of SSGD for identifying spam
attacks. Our approach to identifying candidate spam activities via examining the
temporal dynamics of multiple signals at the review level as well as the review
meta-data is effective for detecting spam activities from singleton reviewers.

5.2 Qualitative Analysis of Detected Spammer Groups

The spammer groups detected by SSGD (under default settings of DBSCAN of
reachability distance parameter ε = 0.01 and a minimum of 3 reviewers in a
cluster) mostly consist of singleton reviewers who either gave all high (4–5) or
all low (1–2) star ratings and wrote nearly identical reviews for a set of restau-
rants within a short time duration. Table 5 lists statistics for the top 5 groups
detected by SSGD on the Yelp datasets. Among the top 5 spammer groups, the
group consists of 20–90 reviewers (many are singletons) targeting 4–9 products.
The timestamps and rating distribution of most groups are concentrated for
maximum impact. The group spam targeted restaurants exhibit some common
characteristics such as of the same cuisine, located in the same locality, etc.

6 Conclusions

Opinion spam is a prevalent problem hampering the credibility of online reviews.
Existing methods often focus on reviewers who have written multiple reviews
and spammer are detected by their abnormal behaviors. However, majority of
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Table 5. Summary of the statistics of the top 5 SSGD detected groups in the Yelp
datasets (#P: number of products, #U: number of users, Time & Rating distribution
(s: scattered, c: concentrated))

ID #P #U Time Rating (near) Duplicate Restaurant Description

Y
el
pC

hi

1 4 24 s c 10/30 #2 (same cuisine)
2 5 25 c c 12/29 In same area
3 4 21 c s 7/25 Hot dog
4 6 55 s c 32/64 Two attacks 2 month apart
5 5 40 c c 21/48 #3 (same cuisine)

Y
el
pN

Y
C

1 6 48 c c 28/53 5 in same area
2 5 39 s c 22/43 #3 (same cuisine)
3 6 37 s c 28/47 breakfast
4 7 52 c c 45/59 -
5 8 60 s s 38/71 3 in same area

Y
el
pZ

IP

1 8 63 c s 42/74 4 in same area
2 7 54 c c 36/67 Fine dining
3 9 87 s s 47/109 Pizza
4 7 41 c c 13/52 #4 (same cuisine)
5 6 42 c c 28/49 -

reviewers are singleton reviewers, and are often overlooked by existing opin-
ion spam detection approaches. In this paper we proposed a novel approach to
detecting spammer groups consisting of singleton reviewers. Our approach com-
prises several strategies to address the challenge of scarcity of explicit signals for
singleton reviewers. Especially we focus on identifying the collusiveness among
singleton reviewers via detecting coordinated spam attacks. We experimented
on three real-life Yelp datasets to evaluate our approach. Our results showed
that the problem of singleton spam is widespread – many online review sites
have mostly singleton spammers, and many group spam attacks involve single-
ton reviewers. Experiments show that our approach can more accurately capture
singleton spammers than existing approaches and can detect spammer groups
of singleton spammers overlooked by existing approaches. For future work, we
will investigate approaches that make use of more hidden signals for accurate
singleton spam detection.
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Abstract. Document-level sentiment classification is an important NLP
task. The state of the art shows that attention mechanism is particu-
larly effective on document-level sentiment classification. Despite the suc-
cess of previous attention mechanism, it neglects the correlations among
inputs (e.g., words in a sentence), which can be useful for improving the
classification result. In this paper, we propose a novel Adaptive Atten-
tion Network (AAN) to explicitly model the correlations among inputs.
Our AAN has a two-layer attention hierarchy. It first learns an atten-
tion score for each input. Given each input’s embedding and attention
score, it then computes a weighted sum over all the words’ embeddings.
This weighted sum is seen as a “context” embedding, aggregating all
the inputs. Finally, to model the correlations among inputs, it computes
another attention score for each input, based on the input embedding and
the context embedding. These new attention scores are our final output
of AAN. In document-level sentiment classification, we apply AAN to
model words in a sentence and sentences in a review. We evaluate AAN
on three public data sets, and show that it outperforms state-of-the-art
baselines.

1 Introduction

Sentiment classification [12] is an important task in NLP. Document-level sen-
timent classification attracts a lot of research interests. In general, review senti-
ment classification task is modeled as either a binary (i.e., “positive” or “nega-
tive”), or multi-class classification (e.g., ratings from “one star” to “five stars”)
problem.

Earlier work on sentiment classification relies on engineering useful features
from the data to build the classification models. Some may also consider user
features and product features [2]. With the development of neural networks,
recent study starts to explore using automatic feature learning for the review
sentiment classification. For example, the state of the art uses various hierarchical
neural networks to model the words and the sentences in a review [1,17]. In
particular, Chen et al.propose to model the representation of a review through
c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 668–680, 2018.
https://doi.org/10.1007/978-3-319-93034-3_53
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a word-sentence-review hierarchy. To differentiate the importance of each word
and each sentence in generating the whole review’s representation, they introduce
the attention mechanism [21] to model a weight for each word. Then they sum up
the word embeddings in a sentence with the resulting weights as the sentence’s
embedding. Similarly, they apply attention for a weighted sum of the sentences
as the review’s representation.

Although the attention mechanism has shown to significantly improve the
classification results [1], we notice that it assumes each input (word or sentence)
as independent. Thus it overlooks the input correlations, which can be useful
for the classification. Take Fig. 1(a) as an example. The review consists of one
sentence. It shows the word attention scores for some salient words in a review.
As we can see, “high” has a relatively large word attention score, indicating its
high importance in representing the whole review. However, as “high” in the
shop reviews is often associated with price, it usually holds a negative polarity.
Therefore, given a large attention score for “high”, we tend to assign a negative
polarity to the whole review. This results in a conflict between the predicted
rating of “two stars”, and the ground truth rating of “four stars”. The funda-
mental reason of having such a conflict is that the attention mechanism treats
each word’s attention independently. This overlooks the context in this specific
review, i.e., what this review is mainly about and what the leading polarity is.
From a human’s perspective, we can easily tell that this review is mainly about
an endorsement of this dessert shop’s yogurt, and the leading polarity is highly
positive (i.e., “happy”, “amazing”) despite the “high” price.

always happy (0.074) here great yogurt and toppings 
brownies are amazing (0.076), the price is kinda high
(0.193) or I would be here more often.

NSC+LA (predicted rating: 2; gold rating: 4):

(a) Results from NSC+LA (state of the art) [1]

always happy (0.109) here great yogurt and toppings 
brownies are amazing (0.123), the price is kinda high
(0.112) or I would be here more often.

AAN (no U, no P) (predicted rating: 4; gold rating: 4):

(b) Results from AAN (ours)

Fig. 1. Salient words (in boldface) with highest word attention scores in a sample
review.

Is it possible for us to take the context of a specific review into account,
and adaptively assign the attention for each salient word (e.g., discount the
weight of “high”)? Our answer is yes! In this paper, we propose a novel Adaptive
Attention Network (AAN) to explicitly model the correlation between the inputs
(e.g., words and sentences in the review domain) in the attention definition. Our
AAN has a deeper two-layer attention hierarchy. Take the word attention in a
sentence as an example. AAN first computes an attention score for each word
in the sentence, by employing the outstanding attention mechanism of Chen
et al. [1]. Then it introduces a context embedding, which aggregates all the words’
embedding vectors with the attention scores by a weighted sum. To model the
correlation, it computes another attention score for each word, based on how
much the word matches the context embedding. These new attention scores
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are the final outputs of AAN for the words in a sentence. Similarly, we also
apply AAN to model the sentence attention in the review. By utilizing the input
correlations among words and sentences, AAN is able to improve the review
comprehension and thus the classification results. As shown in Fig. 1(b), under
our AAN mechanism, the word attention scores of salient words “happy” and
“amazing” all significantly increase, whereas that of “high” decreases, which
eventually helps us generate a perfect rating prediction of “four stars”. Note
that in this sample review we only have one sentence, thus the sentence attention
score from AAN is one.

We summarize our contributions as follows.

• We identify an important limitation of the existing attention mechanism,
and develop an adaptive attention network to model the input correlations
in attention modeling.

• We evaluate AAN with three public, real-world review sentiment datasets.
We show that AAN outperforms state-of-the-art baselines.

2 Related Work

Sentiment classification is usually seen as a special case of text classification. As
the performance of text classifiers heavily relies on the extracted features, early
work on sentiment classification mostly focuses on designing useful features from
text content [12], sentiment lexicons [4], social network [2] and so on. With the
development of neural networks, some recent studies start to explore the appli-
cation of deep learning in sentiment classification to avoid engineering the fea-
tures. For example, to model the text’s syntactic structure, Socher et al. explored
a set of recursive neural networks models such as Recursive Auto-Encoder [13]
and Recursive Neural Tensor Networks [14]. To leverage the dependency pars-
ing information, Tai et al.proposed a tree-structured Long Short-Term Memory
(LSTM) [16] in learning the representation of a document. To model the n-gram
patterns, Lai et al. [8] and Kalchbrenner et al. [6] both explored using Convo-
lutional Neural Networks (CNN) over the words in a sentence. To model the
word-sentence-document hierarchy, Tang et al.proposed to first use CNN over
the words to embed each sentence, then aggregate all the sentences by either
simple pooling or Gated Recurrent Neural Network to embed the whole docu-
ment [18]. Compared with our AAN model, these above neural network methods
do not study the attention mechanism.

To incorporate the different importances of the words in each sentence, as
well as the sentences in each document, attention mechanism [21] was introduced
into text representation learning. For example, Yang et al. [22] proposed a hier-
archical attention mechanism, which leverages the local semantic information
in both word and sentence levels. In document-level sentiment classification,
Chen et al. further extended the hierarchical attention mechanism to incorpo-
rate the user and product information with the attention design for words and
sentences [1]. Tang et al. explored modeling attentions for different types of sig-
nals, including text content and text location [19]. Compared with AAN, these
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above attention methods often assume the inputs as independent. As a result,
their attention definitions only have one single layer, which is from the inputs
directly to the attention score output. Unlike these works, our AAN exploits the
correlations among the inputs (to our knowledge this is the first work).

3 Adaptive Attention Network

We first formulate the problem of review sentiment classification. As inputs,
we have a set of training documents D = {(d1, y1), ..., (dn, yn)}, where each di
is a document and yi ∈ Y is the sentiment class (e.g., Y = {1, ..., 5} indicat-
ing the ratings from “one star” to “five stars”). As output, we want to build
a model M, which can take a test document d as inputs and predict a rating
class in Y. Inspired by the pioneer work [1,17], we choose to model each doc-
ument as a sequence of sentences and each sentence as a sequence of words.
Formally, we denote a document as di = {si,1, ..., si,mi

}, where each si,j is a
sentence and mi is the number of sentences in di. We denote each sentence
si,j = {wi,j,1, ..., wi,j,m′

ij
}, where wi,j,k ∈ V is a word from the vocabulary V and

m′
ij is the number of words in si,j .

3.1 Two-Layer AAN Architecture

Next we develop the AAN model. We begin with reviewing existing attention
mechanism in [1]. As shown in Fig. 2(a), the existing attention mechanism gen-
erally takes a set of vectors {h1, ...,hm} as inputs, and tries to compute an
attention score αi for each vector hi ∈ R

K1 by

fi = v� tanh(Whi + b), (1)

αi =
exp(fi)∑m
j=1 exp(fj)

, (2)

where v ∈ R
K1 , W ∈ R

K1×K1 and b ∈ R
K1 are learnable parameters. Based on

the attention scores, the output z ∈ R
K1 is

z =
∑m

i=1 αihi. (3)

As we can see, the above attention definition treats each input hi independently.
In practice, the correlation between the inputs can be useful. For example, in
Fig. 1(a), we can see the necessity to consider the correlation between the salient
word “high” with the other words, so as to ensure its attention score to be fully
aware of the context in this specific review.

In order to take the input correlation into account, we develop a two-layer
attention hierarchy as shown in Fig. 2(b). Let us use the example in Fig. 1(a)
again to illustrate how we design such a hierarchy. For word attention, we denote
each input hi as an embedding for the i-th word in a sentence. To assign an
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(a) Existing one-layer attention architecture (b) Our two-layer AAN attention architecture

Fig. 2. Comparing our two-layer AAN with the existing one-layer attention
architecture.

appropriate attention score to the salient word “high”, we first need to under-
stand its context in the sentence. We represent such a sentence context by a
context embedding, and we compute it by Eq. 3 as

c =
∑m

i=1 αihi, (4)

where αi is estimated by Eq. 2 and c ∈ R
K1 . This context embedding estima-

tion corresponds to our first layer of AAN in Fig. 2(b), where the αi’s are the
first-layer attention scores. Ideally, we want to prompt those salient words that
“match” the context. Therefore, we introduce a second layer of attention in
Fig. 2(b), which measures how well hi matches the context embedding c by a
score bi and then outputs a final attention score βi:

bi = h�
i c, (5)

βi =
exp(bi)∑m
j=1 exp(bj)

. (6)

The βi’s are the second-layer, and the final, attention scores for AAN. Once
having the final attention scores of AAN, we compute the representation of the
whole sentence as

z =
∑m

i=1 βihi. (7)

Remark: to help understand why mathematically Eq. 7 models the correlation
among the inputs, we can do some simple expansion:

z 1=
∑m

i=1

exp(bi)∑m
j=1 exp(bj)

hi,

2=
∑m

i=1

exp(h�
i c)∑m

j=1 exp(h�
j c)

hi,
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3=
∑m

i=1

exp
(∑m

k=1 αkh�
i hk

)

∑m
j=1 exp

(∑m
k=1 αkh�

j hk

)hi, (8)

where at step 1, we plug in Eq. 6; at step 2, we plug in Eq. 5; at step 3, we plug in
Eq. 4. As we can see in Eq. 8, the attention score for each input hi now becomes
aware of the correlation between hi and the other hk’s.

3.2 AAN for Review Modeling

We customize AAN for document-level sentiment classification. As suggested by
[1,17], we model each review as a hierarchy from words to sentences and finally a
document. Therefore, we can assign attention to both the words in the sentence
level and the sentences in the document level. Next, we illustrate how to take
a review’s content, as well as its user (who publishes this review) and product
(which this review is about), as inputs, and finally predict a sentiment class
as output. We summarize our deep neural network architecture of using AAN
for document-level sentiment classification in Fig. 3. The architecture consists of
three parts, as we shall introduce one by one next.

Fig. 3. Using AAN for both words and sentences in document-level sentiment classifi-
cation.

• Embedding from word to sentence. For each sentence, we aim to generate
a sentence embedding vector, from its words. First of all, for each word wj,k (k =
1, ...,mj) in sentence sj , we assign an embedding vector wj,k ∈ R

K0 . We pre-train
these word embedding vectors by word2vec [11]. Secondly, in order to incorpo-
rate the user and product information, we also introduce an embedding vector
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u ∈ R
K3 for each user u and an embedding vector1 p ∈ R

K3 for each product
p. We choose to concatenate each word embedding wj,k with the user embed-
ding u and the product embedding p as the inputs for sentence embedding. It
is worth noting that, such a concatenation design is significantly different from
the previous designs. For example, in [17], each user (product) is represented
with a matrix, which is multiplied with each wj,k to get the input for sentence
embedding. This matrix representation is likely to suffer from the data insuffi-
ciency for those users (products) with limited reviews. In [1], neither user nor
product is used as input for sentence embedding, thus missing the opportunity
of enriching the sentence semantics with user and product information. Thirdly,
given the embedding concatenation for each word in the sentence, we employ an
LSTM [15] to generate a hidden output hj,k ∈ R

K1 for each word.
Finally, we apply AAN to assign an attention score to each word. To incor-

porate the user and product information, we start with extending the first layer
attention score definition as

f
(w)
j,k = v� tanh(W (w)

1 hj,k + b1) + g
(w)
j,k ,

g
(w)
j,k = hj,kW

(u)
1 u + hj,kW

(p)
1 p,

αj,k =
exp(f

(w)
j,k )

∑m
l=1 exp(f

(w)
j,l )

, (9)

where g
(w)
j,k is an extra term we introduce to indicate the interactions between

word and user, as well as word and product. W
(w)
1 ∈ R

K1×K1 , W
(u)
1 ∈ R

K1×K3 ,
W

(p)
1 ∈ R

K1×K3 and b1 ∈ R
K1 are parameters. Then, we compute the second

layer attention score βj,k for each word in the same way as Eq. 6. In the end,
we aggregate all the words with their embedding vectors and the second-layer
attentions to output a sentence embedding z(s)j ∈ R

K1 by Eq. 7.

• Embedding from sentence to review. Given the embedding of each sen-
tence, we take a similar procedure as embedding from word to sentence. Specif-
ically, we take all the sentence embeddings as input, and employ an LSTM to
generate a hidden output hj ∈ R

K2 for each sentence sj (for j = 1, ..., L). Then,
we apply AAN to assign an attention score to each sentence embedding vector.
We use the similar extension in Eq. 9 to the first layer attention score definition
for sentence. Denote W

(s)
2 ∈ R

K2×K2 , W
(u)
2 ∈ R

K2×K3 , W
(p)
2 ∈ R

K2×K3 and
b2 ∈ R

K2 as parameters. Thus we compute the first-layer attention score for
each sentence as

f
(s)
j = v� tanh(W (s)

2 hj + b2) + g
(s)
j ,

g
(s)
j = hjW

(u)
2 u + hjW

(p)
2 p.

αj =
exp(f

(s)
j )

∑L
l=1 exp(f

(s)
l )

. (10)

1 Generally, user and product can have different dimensions, but we set them as the
same to control the number of hyperparameters.
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Then, we compute the second-layer attention score βj for each sentence in the
same way as Eq. 6. Finally, we aggregate all the sentences with their embedding
vectors and the second-layer attentions in Eq. 7 to output a review embedding
z(r)j ∈ R

K2 .

• Sentiment class prediction. Given the review embedding, we aim to gener-
ate a prediction of the review’s sentiment class. In our design, we feed the review
embedding z(r)j into a multi-layer perceptron (MLP) with one hidden layer, which
outputs the probabilities of this review belonging to each class in Y:

y∗ = softmax(W ′z(r)j + b′), (11)

where W ′ ∈ R
|Y|×K2 are bc ∈ R

Y are parameters. We can link y∗ with the
ground truth label of this review, so as to supervise the model training. Denote
Θ as the set of parameters, including the AAN parameters on words and on
sentences, the LSTM parameters on words and on sentences, the sentiment class
prediction MLP parameters. For the training data set D, we design the objective
function as

L = −∑n
i=1 log P (yi|D) + λΩ(Θ), (12)

where P (yi|D) is the probability of predicting review di as class yi, and it can
be computed by Eq. 11. Ω(·) is a regularization function, e.g., it sums up the
�2-norm of each parameter in Θ. λ > 0 is a trade-off parameter.

4 Experiments

We evaluate AAN on three public benchmark data sets, including IMDB, Yelp
2013 and Yelp 2014 which are review texts including user/product information
developed by [17]. Each record in the data sets is composed of a user ID, a
product ID, a review and a rating. Table 1 list the statistics of the datasets.

Table 1. Statistics of three public data sets. doc/user denotes the average number of
documents per user, sen/doc denotes the number of sentences (average per document).

Data User Product Class Doc Doc/User Doc/Product Sen/Doc Word/Sen Voc

IMDB 1,310 1,635 10 84,919 64.82 51.94 16.08 24.54 105,373

Yelp 2013 1,631 1,633 5 78,966 48.42 48.36 10.89 17.38 48957

Yelp 2014 4,818 4,194 5 231,163 47.97 55.11 11.41 17.26 93197

We follow [17] to employ two evaluation metrics: (1) accuracy Acc = T
N ,

where T is the number of ratings predicted correctly and N is the size of the

testing set; (2) root mean square error RMSE =
√∑

i(gdi−pri)2

N , where gdi and
pri are the gold rating and the predicted rating for document i, respectively.

We learn the word embedding by word2vec [10] and set the embedding dimen-
sion as K0 = 200. We set the dimensions of hidden states and cell memory states
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in LSTM, sentence embedding and review embedding, user and product embed-
dings as K1 = 100, K2 = 100, K3 = 50 respectively, which fit well to our GPU
memory. We organize the reviews into batches for training. For varying length
of sentences and reviews in each batch, we do zero padding in using LSTM. We
set the batch size as 32. We set the regularization weight as λ = 1E−5. We
use the data splits provided by [17], which separate each data set into training,
development and testing sets with a 80/10/10 split. We use adadelta [23] for
stochastic gradient descent.

4.1 Comparison with Baselines

We compare AAN with the state-of-the-art baselines, as listed below. Majority:
it assigns the majority sentiment category in the training set to each test review.
Trigram: it uses trigrams as features to train a Support Vector Machine (SVM)
[12] for review classification. TextFeature: it extracts several text features, such
as word and character n-grams, sentiment lexicons to train a SVM [7]. UPF:
it was introduced by [17]. It extracts user and product features like [5], and
concatenates them with the features in Trigram and TextFeature for SVM.
AvgWordvec: it learns 200-dimensional word embeddings by word2vec [11] and
uses the average word embeddings of each review for SVM training. SSWE: it
learns sentiment-specific word embeddings and thus the review embedding for
SVM classification [20]. RNTN + Recurrent: its learns an RNTN [14] for sen-
tence embedding, and a recurrent neural network (RNN) for review embedding.
Paragraph Vector: it uses the paragraph structure to learn the embedding
for varying-length sentences and documents [9]. JMARS: it combines user and
review aspects by collaborative filtering and topic modeling for review sentiment
classification [3]. UPNN: it takes user-text and product-text consistency matri-
ces as additional inputs, to assist the embedding for words, sentences and reviews
[17]. NSC & NSC + LA & NSC + UPA: these three neural network models
all explore the word-sentence-review hierarchy [1]. NSC uses a mean pooling in
sentence and review embedding. NSC + LA improves NSC with a local semantic
attention (LA) [22]. NSC + UPA improves NSC by considering user and product
in the attention definitions.

Table 2 shows the performance. We test all the methods in two settings: (1)
with user and product information, denoted by “with U and P”; (2) without
them, denoted by “no U, no P”. Note that, because we use exactly the same
data set splits and experimental settings with [17], we can directly borrow some
of their results in the “no U, no P” setting, including “Majority”, “Trigram”,
“TextFeature”, “AvgWordvec + SVM”, “SSWE + SVM”, “Paragraph Vector”,
“RNTN + Recurrent” and “UPNN (no U, no P)”.

In the setting of “no U, no P”, AAN outperforms AvgWordvec + SVM,
SSWE + SVM, Paragraph Vector and RNTN + Recurrent, which shows the
necessity to differentiate the words and sentences in the review representations
for sentiment classification. Besides, AAN outperforms both NSC and NSC
+ LA, which justifies our motivation to capture correlations among words or



Adaptive Attention Network for Review Sentiment Classification 677

Table 2. Results of all the approaches on IMDB, Yelp2013 and Yelp2014 datasets. Acc
(the higher, the better) and RMSE (the lower, the better) are two evaluation criteria.
The best performances in each group are in boldface.

Settings Models IMDB Yelp13 Yelp14

Acc RMSE Acc RMSE Acc RMSE

no U, no P Majority 0.196 2.495 0.411 1.060 0.392 1.097

Trigram [12] 0.399 1.783 0.569 0.814 0.577 0.804

TextFeature [12] 0.402 1.793 0.556 0.845 0.572 0.800

AvgWordvec + SVM [11] 0.304 1.985 0.526 0.898 0.530 0.893

SSWE + SVM [20] 0.312 1.973 0.549 0.849 0.557 0.851

Paragraph Vector [9] 0.341 1.814 0.554 0.832 0.564 0.802

RNTN + Recurrent [14] 0.400 1.764 0.574 0.804 0.582 0.821

UPNN (no U, no P) [17] 0.405 1.629 0.577 0.812 0.585 0.808

NSC [1] 0.438 1.495 0.628 0.703 0.635 0.687

NSC + LA [1] 0.474 1.391 0.631 0.708 0.641 0.683

AAN (no U, no P) 0.483 1.385 0.636 0.694 0.643 0.681

with U and P Trigram + UPF [17] 0.404 1.764 0.570 0.803 0.576 0.789

TextFeature + UPF [17] 0.402 1.774 0.561 1.822 0.579 0.791

JMARS [3] N/A 1.773 N/A 0.985 N/A 0.999

UPNN (U + P) [17] 0.435 1.602 0.596 0.784 0.608 0.764

NSC + UPA [1] 0.513 1.299 0.645 0.689 0.666 0.655

AAN (U + P) 0.538 1.243 0.662 0.663 0.670 0.646

sentences, since NSC and NSC + LA both only model the words and sentences
individually in the attention estimation.

In the setting of “with U and P”, AAN still outperforms all the baselines
in all of the three datasets. This confirms the superiority of our AAN model in
exploring the attention mechanism, as well as the user and product information.
It is worth noting that the improvement of our AAN (U + P) model over NSC
+ UPA is larger than those of AAN (no U, no P) over UPNN (U + P) and
NSC + LA. This means, in addition to the benefit we obtained from our novel
two-layer attention mechanism, our new design of incorporating the user and
product information (i.e., concatenating each word embedding with the user and
product embeddings) can indeed help improve the classification results. Such
an observation justifies our conjecture of how to model the user and product
information in Sect. 3.2.

4.2 Impact of User and Product Embeddings

We further study the impacts of using user and product embeddings in our AAN
model. We perform AAN in four different settings, depending on whether we
use the user or product embedding or not. We summarize the results in Table 3.
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As we can see, AAN (P + U) outperforms the other three models, which sug-
gests both user and product information can help improve the sentiment classi-
fication results. This is consistent with our intuition that, the more information
we exploit, the better result we will generally have. We also observe that, AAN
(only U) outperforms AAN (only P), which implies that user preferences seems
to be more important than the product properties in sentiment classification. We
may understand it as that the reviews are subjective, thus the user preferences
play a more important role in sentiment classification. Finally, we also see that
both AAN (only U) and AAN (only P) outperform AAN (no U, no P), which
suggests both user and product are useful for sentiment classification.

Table 3. Impacts of using user and product information in AAN.

Models IMDB Yelp13 Yelp14

Acc RMSE Acc RMSE Acc RMSE

AAN (P + U) 0.538 1.243 0.662 0.663 0.670 0.646

AAN (only U) 0.527 1.264 0.653 0.674 0.666 0.652

AAN (only P) 0.485 1.373 0.632 0.695 0.641 0.670

AAN (no U, no P) 0.483 1.385 0.636 0.694 0.643 0.681

4.3 Impact of Adaptive Attention Mechanism

We also study the impacts of using AAN in both word and sentence levels. In
Table 4, “AA” indicates AAN, and “MP” indicates simple mean pooling. From
Table 4, we can see that employing our attention mechanism in both word and
sentence levels (i.e., “AA + AA” in the third row of Table 4) outperforms all
the other settings. This means: (1) it is important to use adaptive attention
in both the word and sentence level; (2) adaptive attention is more effective
than the simple mean pooling, since it tries to differentiate the importances of
different words and sentences. We also make another interesting observation, by
comparing “AA + MP” and “MP + AA”. The results show that, “AA + MP”
seems to slightly outperform “MP + AA”; i.e., using AAN in the word level
seems to be better than in the sentence level. The possible reason is that the
number of words is much larger than that of sentences, thus the noise is bigger in

Table 4. Impacts of using AAN in both word and sentence levels.

Attention mechanisms IMDB Yelp13 Yelp14

Word-level Sentence-level Acc RMSE Acc RMSE Acc RMSE

AA AA 0.538 1.243 0.662 0.663 0.670 0.646

AA MP 0.519 1.276 0.650 0.682 0.664 0.650

MP AA 0.513 1.281 0.648 0.690 0.665 0.656

MP MP 0.496 1.339 0.643 0.685 0.661 0.659
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the word level. Besides, since there are more words than sentences, we may have
more data to better learn the attentions in the word level than in the sentence
level.

5 Conclusion

In this paper, we identify that the existing attention mechanisms often suffer
from a significant limitation, which assumes the inputs as independent. There-
fore, we propose a novel Adaptive Attention Network to model the correlation
among the words and the sentences in their attention definitions. We also cus-
tomize AAN for document-level sentiment classification, especially incorporating
the user and product information. We evaluate AAN on three public benchmark
data sets and show that it outperforms the state-of-the-art baselines. In the
future, we plan to extend AAN with syntactic structure of the text, such as
dependency trees, so as to further improve the classification.
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Abstract. Sentiment classification plays a vital role in current online
commercial transactions because it is critical to understand users’
opinions and feedbacks in businesses or products. Cross-domain senti-
ment classification can adopt a well-trained classifier from one source
domain to other target domains, which reduces the time and efforts of
training new classifiers in these domains. Existing cross-domain senti-
ment classification methods require data or other information in target
domains in order to train their models. However, collecting and pro-
cessing new corpora require very heavy workload. Besides, the data in
target domains may be private and not always available for training.
To address these issues, motivated by multi-task learning, we design
a Bifurcated-LSTM which takes advantages of attention-based LSTM
classifiers along with augmented dataset and orthogonal constraints.
This Bifurcated-LSTM can extract domain-invariant sentiment features
from the source domain to perform sentiment analysis in different tar-
get domains. We conduct extensive experiments on seven classic types
of product reviews, and results show that our system leads to significant
performance improvement.

1 Introduction

Sentiment classification plays a vital role in current online commercial trans-
actions because it is essential to understand users’ opinions and feedbacks in
businesses or products. It identifies the overall sentiment polarity (e.g., positive
or negative) of a text. In 2002, Bo et al. [22] were the first pioneers to utilize
machine learning techniques to tackle the sentiment classification problem. Since
then, many researchers have shown their interests in this field [9,21]. Noticeably,
most of them try to obtain sentiment classifiers by assuming there are sufficient
training data in a specified domain. In practice, consumers are usually interested
in a number of different types of product, and sentiment is expressed differently
in various domains. When we apply previous sentiment classification techniques,
large amounts of labeled data are required each time when we need to conduct
sentiment analysis for a new product. To alleviate this issue, cross-domain sen-
timent classification [4], which utilizes labeled data from related domains, has
attracted people’s attention. It is to adapt a well-designed sentiment classifier,

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 681–693, 2018.
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which is trained on the data in one domain, to classify the sentiment of data in
other domains.

Although in the literature, several cross-domain sentiment classification
schemes have been proposed [11,13], all of them need target domain data, which
is not always available. Specifically, when a new domain emerges, it costs a lot of
efforts to collect and process its data, especially for supervised methods where
the labels have to be added manually. Besides, there may be sensitive informa-
tion in the new domain data, such as reviews for beta version products, which
cannot be leaked or made public.

To address these problems, we design a novel Bifurcated-LSTM for cross-
domain sentiment classification. Particularly, we notice that there are two cru-
cial points a user’s review tries to convey: topic and sentiment. Topic, which
is different from one domain to another, describes the product or service that
the customer comments on. Sentiment is the opinion of the customer about the
topic, which is common in all the domains, such as “positive” or “negative”. By
eliminating the topic-related features, we can decrease the topic-conglutination
influence from the source domain to the target domain. Motivated by the idea of
multi-task learning, which can detach each task’s private feature space from the
shared space among several tasks [16], the proposed Bifurcated-LSTM divides
the review representation feature space into topic subspace and sentiment sub-
space. After that, the extracted domain-invariant sentiment features from the
source domain can be utilized to perform sentiment analysis in different target
domains. To better capture domain-dependent topic features from the source
domain training dataset, we apply the dataset augmentation method to improve
the performance. Besides, to prevent the topic and sentiment feature spaces
interfering with each other, we introduce orthogonal constraints strategies. The
experiment results show that our approach can improve sentiment classification
in each target domain.

The main contributions of this paper are four-folds:

– We design a novel Bifurcated-LSTM that divides a sentence feature space
into domain-dependent topic feature space and domain-independent senti-
ment feature space.

– We use dataset augmentation to better extract domain-dependent topic fea-
tures from the source domain, which can help separate these features from
sentiment features.

– We employ orthogonal constraint technique to avoid interference between
topic and sentiment features.

– Different from other cross-domain sentiment classification models, our system
no longer needs any target domain data or other related information.

2 Related Works

2.1 Cross-Domain Sentiment Classification

Cross-domain sentiment classification, a subclass of domain adaptation, is to first
learn a sentiment classifier for a source domain by training on this domain’s data
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and then apply the learned classifier into other domains (i.e., target domains) for
sentiment classification. To achieve high accuracy, one main challenge is how to
analyze data from the source domain and identify its feature space that happens
to be related to the feature space of a target domain.

Previous works have studied the problem of feature space mapping from a
source domain to target domains [3,4]. However, those works require the data
from target domains and need a lot of efforts to label data manually.

2.2 Multi-task Learning

Multi-task learning is to learn multiple related tasks in parallel so as to improve
the learning performance. In particular, the representations of all tasks are effec-
tively combined by neural-based models. The architecture of multi-task learning
is shown in Fig. 1. Specifically, multiple tasks have several shared layers that are
used to detach common feature space. Then, the output of the shared layers is
split into multiple branches that are utilized to capture private features for each
task [16].

Fig. 1. The architecture of multi-task
learning.

Fig. 2. The structure of RNN with
LSTM units.

3 Recurrent Neural Network Models for Text
Classification

So far, deep learning comes into play in many area, and achieves high perfor-
mance [5,6,8,14]. Many researchers have developed many neural network based
sentence models [18,21], which can be applied to conduct sentiment classification.
In this paper, we adopt a recurrent neural network (RNN) with long short-term
memory (LSTM) units [12] due to its great performance in handling multiple
natural language processing (NLP) tasks [15].
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3.1 Long Short-Term Memory

LSTM is very effective in learning long-term dependencies. It has been proposed
to address the issue that standard RNN suffers from severe gradients vanishing or
exploding when dealing with long sequential data. The mathematical description
of the LSTM structure is as follows:

⎡
⎢⎢⎣
c̃t
ot

it
ft

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝

tanh
σ
σ
σ

⎞
⎟⎟⎠

(
Wp

[
xt

ht−1

]
+ bp

)
(1)

ct = c̃t � it + ct−1 � ft (2)
ht = ot � tanh (ct) (3)

where xt ∈ R
e is the input at the current time step, d denotes the number of

the LSTM units, Wp ∈ R
4d×(d+e) and bp ∈ R

4d are parameters of affine trans-
formation, σ denotes the logistic sigmoid function and � denotes elementwise
multiplication.

The update of each LSTM unit can be briefly summarized as follows:

ht = LSTM(ht−1,xt, θ).

Function LSTM is a combination of Eqs. (1)–(3), and θ represents all the param-
eters in the LSTM network. The structure of RNN with LSTM units is shown
in Fig. 2.

3.2 Text Classification with LSTM

Basically, for a given text sequence xt = {x1, x2, . . . , xT }, the embedding layers
[17,20] are used to find the representation vectors xt for all words. Then, the
representation vectors are input into the LSTM layers to output a representa-
tion vector hT . Finally, hT is input into a fully connected layer to generate a
probability distribution over all classes.

ŷ = softmax (WhT + b)

where ŷ = {ŷ1, ŷ2, . . . , ŷC} represents the prediction probabilities for each class
j ∈ [1, C], W is the learned weights, and b is the bias.

For a given classic classification task, the loss function is defined as the cross-
entropy between predicted and ground-truth distribution.

L (ŷ,y) = −
N∑
i=1

C∑
j=1

yj
i log

(
ŷj
i

)
(4)

where yj
i is the ground-truth label for sample i regrading class j, N is the number

of samples in the dataset, and C is the number of classes.



Cross-Domain Sentiment Classification via a Bifurcated-LSTM 685

4 Bifurcated-LSTM for Cross-Domain Sentiment
Classification

Motivated by multi-task learning, we design a Bifurcated-LSTM for cross-domain
sentiment classification, which can divide some domain’s reviews’ feature space
into domain-independent sentiment space and domain-dependent topic space.

Fig. 3. The structure of Bifurcated-LSTM

The structure of a Bifurcated-LSTM is shown in Fig. 3. First, a sentence
passes through the embedding layer and LSTM layers to obtain the representa-
tion vector hT , which is the entire feature space of the text. Then, we simultane-
ously input hT into two LSTM classifier branches, which have the same structure
but for different objectives. One is for topic classification and the other is for
sentiment classification. Topic features are needed to help the system distinguish
source domain reviews from texts in other domains. To better achieve this, we
augment the original dataset to obtain a more complete dataset for the sys-
tem. Moreover, to accurately capture the features, we integrate the attention
mechanism to the standard LSTM-based classifier for improving the catego-
rization performance. In addition, to further enhance the performance of our
model, we use orthogonal constraints strategy to separate the sentiment and
topic features thoroughly. In the following, we describe dataset augmentation,
Bifurcated-LSTM, and orthogonality constraints, respectively.
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4.1 Dataset Augmentation

Our model aims at extracting topic-related and sentiment-related features from
sentence representations. It is obvious that topic feature space varies in different
domains. As a result, a model needs to be capable of obtaining distinct topic
features from multiple domains.

Therefore, we reconstruct our training dataset by applying the dataset aug-
mentation technique [8]. Specifically, we add some “noisy” data into the training
dataset during the step of data collecting and preprocessing. These “noisy” data
are text sequences picked from other domains, which have different topics from
the ones in original dataset. After dataset augmentation, each data instance has
two labels, and is denoted by (x, ySe, yTo), where x is the text sequence, and ySe

is the sentiment label. yTo ∈ {0, 1} is a binary label, where 1 indicates that the
instance is from the current domain, and 0 means that the instance is a “noisy”
sample.

4.2 Bifurcated-LSTM

As shown in Fig. 3, the Bifurcated-LSTM is composed of the sentiment classifier,
the topic classifier and the feature bifurcation. We describe them respectively in
the following.

Attention-Based LSTM Sentiment Classifier. We integrate word embed-
dings and attention mechanism into the standard LSTM model to improve the
performance of capturing the representative features from text sentences. Partic-
ularly, for a word xt, we employ word embedding, like GloVe [20] and Word2Vec
[17], to transform it into a representation vector xt. In addition, we adopt a word-
level attention mechanism [1], which can identify the crucial part of a sentence,
to improve the performance of our sentiment classifier.

Fig. 4. Attention-based LSTM sentiment classifier.

As shown in Fig. 4, in upper branch of the sentiment classifier, we apply
attention mechanism at the common LSTM layers that are shared with the
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topic classifier, so that the information from the original training data can be
further extracted and still exploited at the sentiment classifier. Let Ha ∈ R

d×T

denote a matrix consisting of hidden vectors [h1, . . . ,hT ] produced by the LSTM,
where d is the number of hidden layers and T is the length of a given sentence.
The attention mechanism produces an attention weight vector a and a hidden
representation s which is a weighted representation of a sentence with the given
word. Both of them can be calculated as follows:

a = softmax
(
wT tanh(WhHa)

)

s = HaT

where we have a ∈ R
T , s ∈ R

d. Wh ∈ R
d×d, and w ∈ R

d are projection
parameters.

In the lower branch of the sentiment classifier, particularly following common
LSTM layers, we add several LSTM layers to extract sentiment features from
the whole sentence feature space. The output of these LSTM layers is as follows:

houtput = LSTM(hT ,xt, θ)

The final sentiment representation vector of the sentence, denotes by is
given by:

h∗ = tanh (WAttentions + Woutputhoutput)

where WAttention and Woutput are projection parameters on the two branches
of the sentiment classifier to be learned during the training process. Then, a
softmax layer is followed to transform h∗ to the conditional probability distri-
bution, i.e.,

ŷ = softmax (Wsoftmaxh∗ + bsoftmax)

where Wsoftmax and bsoftmax are the parameters for softmax layer.
Based on Eq. (4), the loss of sentiment classification can be computed as

follows:

LSe

(
ŷSe,ySe

)
= −

N∑
i=1

C∑
j=1

yjSe
i log

(
ŷjSe
i

)
(5)

where ŷSe = [ŷ1Se, ŷ2Se, . . . , ŷjSe] represents the predicted probabilities for each
sentiment classification class j ∈ [1, C], and ySe = [y1Se,y2Se, . . . ,yjSe] repre-
sents the ground-truth labels, and N is the number of samples.

Attention-Based LSTM Topic Classifier. Note that both classifiers for
topic and sentiment analysis share the same structure, and slightly difference
lies in the objective function. Therefore, we simply show the loss function of the
topic classifier as follows:

LTo

(
ŷTo,yTo

)
= −

N ′∑
i=1

C′∑
j=1

yjTo
i log

(
ŷjTo
i

)
(6)
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where, similarly, ŷTo = [ŷ1To, ŷ2To, . . . , ŷjTo] represents the predicted probabili-
ties for each topic classification class j ∈ [1, C ′], and yTo = [y1To,y2To, . . . ,yjTo]
represents the ground-truth labels, and N ′ is the number of samples.

Feature Bifurcation. The feature representation bifurcation is constructed by
merging the sentiment classifier and the topic classifier. The shared attention-
based LSTM layers condense an input sentence into a representation vector,
which includes all features of the sentence. Each classifier only extracts the fea-
tures that it is interested in according to the considered loss function.

4.3 Orthogonality Constraints

We notice that it is possible that the domain-dependent topic features and
domain-independent sentiment features may interfere with each other. Inspired
by recent work on multi-task learning [16] and shared-private latent space analy-
sis [5], we employ the orthogonality constraint technique in our proposed feature
divider. Specifically, it enables the divider to penalize commonly shared features
in sentiment feature space and topic feature space and encourage to extract the
independent sentiment topic features as purely as possible. To achieve this goal,
we define the optimal loss function as follows:

Lorth =
N∑
i=1

∥∥∥HSe
i

T
HTo

k

∥∥∥
2

F
(7)

where ‖·‖2F is the squared Frobenius norm, HSe and HTo are two matrices whose
rows are parameters from the private LSTM layers of sentiment classifier and
topic classifier, respectively.

4.4 Training and Testing

Combining Eqs. (5)–(7), the final loss function of our features divider model can
be summarized as follows:

L = LSe + LTo + γLorth (8)

where γ is a hyperparameter.
In the training process, we feed the augmented dataset to the whole neural-

based model to train the classifier. After training, we can obtain a Bifurcated-
LSTM. For cross-domain sentiment classification task, we only focus on the
sentiment classifier branch of the Bifurcated-LSTM. Therefore, in the testing
process, we mainly transfer the well-trained sentiment classifier to other domains.



Cross-Domain Sentiment Classification via a Bifurcated-LSTM 689

Table 1. Statistical knowledge of the 7 datasets. The columns 2–4 denote the number
of samples in training, development and testing sets. The columns 5 and 6 represent
the average length and vocabulary size of corresponding dataset.

Dataset Train Dev. Test Avg.L Vocab.

Books 1400 200 400 159 62K

Electronics 1400 200 400 103 30K

DVD 1400 200 400 172 69K

Kitchen 1400 200 400 88 28K

Baby 1300 200 400 105 26K

Magazine 1300 200 400 113 30K

Software 1400 200 400 130 26K

5 Experiments Setting

5.1 Dataset

We collect product reviews of 7 different domains from Amazon [2]. First, we
extract the comment sentences and corresponding labels from raw data, and then
use keras [7] to perform the tokenization. After text preprocessing, we randomly
partition all the datasets into a training set, a development set, and a testing set
with the proportion of 70%, 10%, 20%, respectively. Table 1 shows the statistical
information of all considered datasets.

5.2 Dataset Augmentation

In experiments, we randomly choose reviews from domains other than the con-
sidered source and target domains as “noisy” datase to conduct dataset aug-
mentation. Meanwhile, we control the size of “noisy” dataset to be half size of
the original training dataset. After combining the original and “noisy” training
datasets, we have the augmented dataset.

5.3 Hyperparameters

We apply 200d GloVe vectors [20] to initialize the input sentence sequences, and
γ = 0.03 in Eq. (8). Other parameters in the neural networks are initialized by
randomly generated from a uniform distribution in [−0.1, 0.1]. We employ Adam
to optimize our loss function shown in Eq. (8) with mini-batch size 24.

6 Performance Evaluation of Bifurcated-LSTM

6.1 Performance Evaluation

Table 2 shows the average error rate achieved by the proposed model, and com-
pares it with that achieved by the one without domain adaptations. The LSTM
networks in Bifurcated-LSTM are vanilla LSTM networks.
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Table 2. Error rates of Bifurcated-LSTM for cross-domain classification. In
“Bifurcated-LSTM” columns, the numbers in brackets represent the improvements rel-
ative to same domain classification results without domain adaptation.

Source domain Transferring to target domains without domain adaptation Avg.

Book Elec. DVD Kitc. Baby Maga. Soft.

Book 20.8 21.3 22.7 23.2 23.0 23.3 21.7 22.29

Elec. 24.6 19.8 23.5 22.7 22.0 22.5 25.7 22.97

DVD 24.0 25.1 17.9 23.0 25.7 20.0 24.3 22.86

Kitc. 22.9 25.6 22.5 22.0 25.2 24.1 24.9 23.89

Baby 24.9 25.5 20.7 25.8 15.8 18.9 19.4 21.57

Maga. 24.4 23.0 24.6 21.3 21.6 11.2 18.1 20.60

Soft. 22.6 22.4 23.5 23.1 19.7 19.0 16.3 20.94

Source domain Transferring to target domains with bifurcated-LSTM Avg.

Book Elec. DVD Kitc. Baby Maga. Soft.

Book 17.6(−3.2) 18.3 19.1 19.4 19.2 18.1 19.0 18.67(−3.62)

Elec. 19.8 15.4(−4.4) 18.2 19.5 17.4 16.9 16.1 17.61(−5.36)

DVD 21.2 19.7 14.3(−3.6) 18.1 16.4 18.1 17.5 17.90(−4.96)

Kitc. 19.8 18.6 17.3 15.7(−6.3) 17.6 16.5 16.9 17.48(−6.41)

Baby 19.7 17.3 16.7 17.4 11.6(−4.2) 13.9 18.0 16.37(−5.20)

Maga. 20.1 16.2 16.9 18.1 14.3 6.9(−4.3) 17.1 15.65(−4.95)

Soft. 18.9 19.8 17.5 18.5 17.9 17.0 12.1(−4.2) 17.38(−3.56)

From this table, we can find that our proposed model can reduce the average
error rate. Compared with the one without domain adaptation, our proposed
model can reduce the error rate by 6.41%. Moreover, Table 2 also illustrates that
our developed model can improve the performance of the classifier trained in its
own domains, and the value can be up to 6.3%.

6.2 Performance Comparison

The baseline methods in the comparison include:

– SCL: Blitzer et al. proposed Structural Correspondence Learning (SCL)
to learn a low-dimensional feature representation for source and target
domains [2].

– SFA: Pan et al. proposed Spectral Feature Alignment (SFA) to build a bridge
between source and target domains by aligning pivots with non-pivots [19].

– DANN: Ganin et al. applied the shallow version of Domain Adversarial Neu-
ral Networks (DANN) to the cross-domain sentiment classification [10].

We perform twelve domain adaptation tasks, and the results are in Table 3.
We can find that our proposed model can achieve best performance on most
tasks. For specific source domain, our proposed Bifurcated-LSTM always achieve
the best average performance.
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Table 3. Error rates of SCL, SFA, DANN, and Bifurcated-LSTM for cross-domain
sentiment classification.

Source Target SCL SFA DANN Bifurcated-LSTM

Kitc. Book 33.9 25.2 29.1 19.8

Kitc. Elec 16.3 14.9 15.7 18.6

Kitc. DVD 24.6 23.0 26.0 17.3

Avg. 24.93 21.03 23.60 18.57

Book Kitc. 21.3 21.2 22.1 19.4

Book Elec. 22.5 27.5 26.7 18.3

Book DVD 26.0 18.6 21.6 19.1

Avg. 23.27 22.43 23.47 18.93

Elec. Kitc. 15.6 13.3 14.6 19.5

Elec. Book 24.6 24.3 28.7 19.8

Elec. DVD 25.7 22.8 26.2 18.2

Avg. 21.97 20.13 23.17 19.17

DVD Kitc. 20.6 19.2 21.7 18.1

DVD Book 23.2 22.5 27.7 21.2

DVD Elec. 25.9 23.3 24.6 19.7

Avg. 23.23 21.67 24.67 19.67

7 Conclusion and Future Work

In this paper, we propose a Bifurcated-LSTM for cross-domain sentiment classi-
fication. In particular, this Bifurcated-LSTM can separate reviews’ feature space
into sentiment and topic feature subspaces. To enhance the performance of the
Bifurcated-LSTM, we employ an attention mechanism to extract sentiment and
topic features. Moreover, we also apply data augmentation and orthogonal con-
straints techniques to further improve the performance. We conduct extensive
experiments to evaluate the performance of the proposed system.
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