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Abstract. Nonconvex mixed-integer nonlinear programs (MINLPs)
represent a challenging class of optimization problems that often arise
in engineering and scientific applications. Because of nonconvexities,
these programs are typically solved with global optimization algorithms,
which have limited scalability. However, nonlinear branch-and-bound has
recently been shown to be an effective heuristic for quickly finding high-
quality solutions to large-scale nonconvex MINLPs, such as those arising
in infrastructure network optimization. This work proposes Juniper, a
Julia-based open-source solver for nonlinear branch-and-bound. Leverag-
ing the high-level Julia programming language makes it easy to modify
Juniper’s algorithm and explore extensions, such as branching heuris-
tics, feasibility pumps, and parallelization. Detailed numerical experi-
ments demonstrate that the initial release of Juniper is comparable with
other nonlinear branch-and-bound solvers, such as Bonmin, Minotaur,
and Knitro, illustrating that Juniper provides a strong foundation for
further exploration in utilizing nonlinear branch-and-bound algorithms
as heuristics for nonconvex MINLPs.

1 Introduction

Many of the optimization problems arising in engineering and scientific disci-
plines combine both nonlinear equations and discrete decision variables. Notable
examples include the blending/pooling problem [1,2] and the design and opera-
tion of power networks [3–5] and natural gas networks [6]. All of these problems
fall into the class of mixed-integer nonlinear programs (MINLPs), namely,

minimize: f(x, y)
s.t.
gc(x, y) ≤ 0 ∀c ∈ C
x ∈ R

m, y ∈ Z
n

(MINLP)

where f and g are twice continuously differentiable functions and x and y rep-
resent real and discrete valued decision variables, respectively [7]. Combining
nonlinear functions with discrete decision variables makes MINLPs a broad and
challenging class of mathematical programs to solve in practice. To address this
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378 O. Kröger et al.

challenge, algorithms have been designed for special subclasses of MINLPs, such
as when f and g are convex functions [8,9] or when f and g are nonconvex
quadratic functions [10,11]. For generic nonconvex functions, global optimiza-
tion algorithms [12–15] are required to solve MINLPs with a proof of optimality.
However, the scalability of such algorithms is limited and remains an active area
of research. Although global optimization algorithms have been widely successful
at solving industrial MINLPs with a few hundred variables, their limited scala-
bility precludes application to larger real-world problems featuring thousands of
variables and constraints, such as AC optimal transmission switching [16].

One approach to addressing the challenge of solving large-scale industrial
MINLPs is to develop heuristics that attempt to quickly find high-quality feasi-
ble solutions without guarantees of global optimality. To that end, it has been
recently observed that nonlinear branch-and-bound (NLBB) algorithms can be
effective heuristics for the nonconvex MINLPs arising in infrastructure systems
[4–6] and that they present a promising avenue for solving such problems on
real-world scales. To the best of our knowledge, Bonmin and Minotaur are
the only open-source solvers that implement NLBB for the most general case
of MINLP, which includes nonlinear expressions featuring transcendental func-
tions. Both Bonmin and Minotaur provide optimized high-performance C++
implementations of NLBB with a focus on convex MINLPs.

The core contribution of this work is Juniper, a minimalist implementa-
tion of NLBB that is designed for rapid exploration of novel NLBB algorithms.
Leveraging the high-level Julia programming language makes it easy to mod-
ify Juniper’s algorithm and explore extensions, such as branching heuristics,
feasibility pumps, and parallelization. Furthermore, the solver abstraction layer
provided by JuMP [17] makes it trivial to change the solvers used internally by
Juniper’s NLBB algorithm. Detailed numerical experiments on 300 challenging
MINLPs are conducted to validate Juniper’s implementation. The experiments
demonstrate that the initial release of Juniper has comparable performance
to other established NLBB solvers, such as Bonmin, Minotaur, and Knitro,
and that Juniper finds high-quality solutions to problems that are challenging
for global optimization solvers, such as Couenne and Scip. These results illus-
trate that Juniper’s minimalist implementation provides a strong foundation
for further exploration of NLBB algorithms for nonconvex MINLPs.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of the NLBB algorithms. Section 3 introduces the Juniper NLBB
solver. The experimental validation is conducted in Sect. 4, and Sect. 5 concludes
the paper.

2 The Core Components of Nonlinear Branch-and-Bound

To provide context for Juniper’s implementation, we begin by reviewing the core
components of an NLBB algorithm. NLBB is a natural extension of the well-
known branch-and-bound algorithm for mixed-integer linear programs (MIPs)
to MINLPs. The algorithm implicitly represents all possible discrete variable
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assignments in a MINLP by a decision tree that is exponential in size. The algo-
rithm then searches through this implicit tree (i.e., branching), looking for the
best assignment of the discrete variables and keeping track of the best feasi-
ble solution found thus far, the so-called incumbent solution. At each node in
the tree, the partial assignment of discrete variables is fixed and the remaining
discrete variables are relaxed to continuous variables, resulting in a nonlinear
program (NLP) that can be solved using an established solver, such as Ipopt
[18]. If the solution to this NLP is globally optimal, then it provides a lower
bound to the MINLP’s objective function, f(x, y). Furthermore, if this NLP
bound is worse than the best solution found thus far, then the NLP relaxation
proves that the children of the given node can be ignored. If this algorithm is
run to completion, it will provide the globally optimal solution to the MINLP.
However, if the MINLP includes nonconvex constraints, the NLP solver provides
only local optimality guarantees, and the NLBB algorithm will be only a heuris-
tic for solving the MINLP. The key to designing this kind of NLBB algorithm
is to develop generic strategies that find feasible solutions quickly and direct the
tree search toward higher-quality solutions. We now briefly review some of the
core approaches to achieve these goals.

Branching Strategy: In each node of the search tree, the branching strategy
defines the order in which the children (i.e., variable/value pairs) of that node
should be explored. The typical branching strategies are (1) most infeasible,
which branches on the variables that are farthest from an integer value in the
NLP relaxation; (2) pseudo cost, which tracks how each variable affects the
objective function during search and then prioritizes variables with the best
historical record of improving the objective value [19]; (3) strong, which tests
all branching options by brute-force enumeration and then takes the branch
with the most promising NLP relaxation [20]; and (4) reliability, which uses a
threshold parameter to limit strong branching to a specified amount of times for
each variable [21].

Traversal Strategy: At any point during the tree search there are a number of
open nodes that have branches that remain to be explored. The traversal strat-
egy determines how the next node will be selected for exploration. The typical
traversal strategies include (1) depth first, which explores the most recent open
node first; and (2) best first, which explores the open node with the best NLP
bound first. The advantage of depth first search is that it only requires a mem-
ory overhead that is linear in the number of discrete variables. In contrast, best
first search results in the smallest number of nodes explored but can consume
an exponential amount of memory.

Incumbent Heuristics: In some classes of MINLPs, finding an initial feasible
solution can be incredibly difficult, and the NLBB algorithm can spend a pro-
hibitive amount of time in unfruitful parts of the search tree. Running dedicated
feasiblity heuristics at the root of the search tree is often effective in mitigating
this issue. The most popular such heuristic is the feasibility pump, which is a
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fixed-point algorithm that alternates between solving an NLP relaxation of the
MINLP for assigning the continuous variables and solving a MIP projection of
the NLP solution for assigning the discrete variables [22,23].

Code Block 1 Installing and Solving a MINLP with JuMP and Juniper
Pkg.add("JuMP"); Pkg.add("Ipopt"); Pkg.add("Cbc"); Pkg.add("Juniper")

using JuMP, Ipopt, Cbc, Juniper

ipopt = IpoptSolver(print_level=0); cbc = CbcSolver()

m = Model(solver=JuniperSolver(ipopt, mip_solver=cbc))

v = [10,20,12,23,42]; w = [12,45,12,22,21]

@variable(m, 0 <= x[1:5] <= 10, Int)

@objective(m, Max, dot(v,x))

@constraint(m, sum(x[i] for i=1:5) <= 6)

@NLconstraint(m, sum(w[i]*x[i]^2 for i=1:5) <= 300)

status = solve(m); getvalue(x)

Relaxation Restarts: In traditional branch-and-bound algorithms, the continuous
relaxation is convex and guaranteed to converge to the global optimum or prove
that the relaxation is infeasible. However, in the case of nonconvex MINLPs, a
local NLP solver provides no such guarantees. Thus, it can be advantageous to
restart the NLP solver from a variety of different starting points in the hopes of
improving the lower bound or finding a feasible solution [8,24].

3 The Juniper Solver

The motivation for developing Juniper [25] is to provide relatively simple and
compact implementation of NLBB so that a wide variety of algorithmic modi-
fications can be explored in the pursuit of developing novel heuristics for non-
convex MINLPs. To that end, Julia is a natural choice for the implementation
for two reasons: (1) Julia provides high-level programming, similar to Matlab
and Python, that is preferable for rapid prototyping; and (2) the mathematical
programming package JuMP [17] provides an AMPL-like modeling layer, which
makes it easy to state MINLP problems, and a solver abstraction layer, which
makes a wide range of NLP and MIP solvers available for use in Juniper. To
demonstrate these properties, Code Block 1 provides a simple Julia v0.6 exam-
ple illustrating the software installation, stating a JuMP v0.18 MINLP model,
and solving it with Juniper. In this example, the NLP solver Ipopt is used for
solving the continuous relaxation subproblems and the MIP solver Cbc is used
in the feasibility pump heuristic.

From Code Block 1, it is clear how Juniper can be reconfigured to use dif-
ferent NLP and MIP solvers at runtime. As is typical for solvers, Juniper also
features a wide variety of parameters for augmenting the NLBB algorithm. These
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include options for selecting the branching strategy, tree traversal strategy, feasi-
bility pump, parallelized tree search, and numerical tolerances, among others. A
complete list of algorithm parameters is available in Juniper’s documentation.
After rigorous testing on hundreds of MINLP problems, the following default
settings were identified: Strong branching is performed at the root node, and
pseudo-cost branching is used afterward. Typically, complete strong branching
is conducted; however, if the NLP runtime combined with the number of branches
will require more than 100 s, the number of branches explored is reduced to meet
this time limit. If the NLP relaxation fails in the root node, it will be restarted
up to three times. Best first search is used for exploring the decision tree, and
the runtime of the feasibility pump is limited to 60 s.

4 Experimental Evaluation

This section conducts a detailed numerical study of Juniper’s performance
under a variety of configurations and compares its performance to established
MINLP solvers. Five points of comparison were considered for solving MINLPs.
Bonmin v1.8 [8], Minotaur v0.2 [26], and Knitro v10.3 [24] were included
as alternative NLBB implementations, whereas Couenne v0.5 [13] and Scip
v5.0 [10,27] were used for a global optimization reference. All of the open-source
solvers utilize Ipopt v3.12 [18] compiled with HSL [28] for solving NLP sub-
problems and their respective default LP and MIP solvers. All of the solvers,
except Juniper, were accessed through their AMPL NL file interface. All of
the computations were conducted on a cluster of HPE ProLiant XL170r servers
featuring two Intel 2.10 GHz 16 Core CPUs and 128 GB of memory. All solvers
were configured with an optimality gap of 0.01% and a runtime limit of 1 h. It
is important to note that Julia’s JIT takes around 3–10 s the first time Juniper
is run; this time is not reflected in the runtime results.

MINLP Problem Selection: The first step in performing this evaluation is to
select an appropriate collection of MINLP test problems. We began with 1500
MINLP problems from MINLPLIB2 [29], which are available in Julia via the
MINLPLibJuMP package [30]. Second, all of the problems with no discrete
variables or fewer than ten constraints were eliminated, resulting in about 700
problems that focus on the constrained mixed-integer problems that Juniper is
intended for. Through a preliminary study, it was observed that more than half
of these cases are solved to global optimality or are proven to be infeasible by
Scip or Couenne in less than 60 s, suggesting that these are relatively easy cases
for state-of-the-art global optimization methods and that they are not of interest
to this work. The final collection of test problems consists of 298 MINLPs that
are challenging for both NLBB and global optimization solvers.

Solver Comparison: The first and foremost goal is to demonstrate that
Juniper has comparable computational performance to Bonmin and Mino-
taur. Figure 1 (top) provides an overview of the runtime for each solver to
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Fig. 1. Runtime profiles on 298 instances for all different solvers (top) using different
MIP solvers (bottom left) and parallelized tree search (bottom right).

complete its tree search procedure. This figure highlights two key points: (1)
Juniper is slower for small models that can be solved in less than 30 s; however,
it consistently solves more models after 30 s; and (2) the search completes in no
more than 50% of the cases considered, demonstrating that the selected MINLP
instances present challenging tree search problems for both the NLBB and global
optimization solvers.

Table 1 provides further details on the performance of each solver, including
problem sizes, objective gaps from the best-known solution, and runtime results.
The table begins with summary statistics. The first row shows the number of
feasible solutions found by each solver as well as the number of test cases where
the runtime limit was reached. The following three rows show the average opti-
mality gaps and runtime for each solver. The first average is for all instances
where the specific solver was able to find a feasible solution. The second average
is for instances where all six solvers were able to find feasible solutions. The third
average is for instances where all four NLBB solvers were able to find feasible
solutions. These summary results indicate two key points: (1) Juniper is one
of the most robust solvers (only Scip had a higher feasible solution count); and
(2) for cases where all NLBB algorithms have feasible solutions, Bonmin has the
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highest solution quality, and Juniper, Minotaur, and Knitro have similar
quality, on average. The remaining rows in the table provide a representative
sample of the 298 problems considered. The first five columns describe each
problem by name, number of variables V , number of constraints C, number of
discrete variables I, and number of nonlinear constraints NC. The general trends
are summarized as follows: (1) there is a great diversity among which solver is the
best on the MINLP instances considered; and (2) in most cases, the solutions
found by the NLBB solvers tie or improve those found by the global solvers;
however, there are a few notable cases where global solvers find the best solu-
tions. Overall, these results indicate that Juniper in its default configuration is
comparable with the NLBB solvers considered here.

Subsolver Selection: One of the key features of Juniper is that it can use dif-
ferent solvers for the NLP relaxation and for the MIP aspect of the feasibility
pump heuristic. Figure 1 (bottom left) shows a performance profile for a number
of subsolver variants of Juniper, both with and without a MIP solver (i.e., Glpk
[31], Cbc [32], Gurobi [33]), as indicated by Juniper-ipopt. Juniper-Knitro-
Cbc shows the result of using Knitro as the NLP solver instead of Ipopt. The
runtime difference between using the feasibility pump and using no heuristic is
quite notable in some cases; however, given sufficient time, Juniper solves a
similar number of cases even without a feasibility pump. To our surprise, there
was little difference in using Cbc as the MIP solver compared to using Gurobi,
suggesting that Cbc is a suitable default solver. We also observed that Glpk is
not a suitable choice because it was typically unable to terminate in less than
60 s, which is the preferred feasibility pump time limit.

Parallel Tree Search: A key feature of Julia is native and easy-to-use support
for parallel processing. Juniper leverages this capability to implement a parallel
tree search algorithm. Figure 1 (bottom right) illustrates the benefits from this
simple parallelization of the algorithm, where the first thread orchestrates the
computation and all additional worker threads process open nodes in the search
tree. The figure indicates that having two worker threads (instead of using the
sequential algorithm) is about 1.7 times faster and having four worker threads is
about 3.3 times faster. The difference between eight and sixteen worker threads
is not that notable (both increase speed by around 5.8 times).

5 Conclusion

This work has highlighted the potential for leveraging NLBB algorithms as
heuristics for solving challenging nonconvex MINLPs. To assist in the design
of such algorithms, a new Julia-based solver, Juniper, is proposed as the base
implementation for future exploration in this area. A detailed experimental study
demonstrated that, despite its minimalist implementation, Juniper performs
comparably to established NLBB solvers on the class of MINLPs for which it
was designed. We hope that Juniper will provide the community with a valuable
reference implementation for collaborative open-source research on heuristics for
large-scale nonconvex MINLPs.
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