
Observations from Parallelising Three
Maximum Common (Connected)

Subgraph Algorithms

Ruth Hoffmann1, Ciaran McCreesh2(B), Samba Ndojh Ndiaye3,
Patrick Prosser2, Craig Reilly2, Christine Solnon4, and James Trimble2

1 University of St Andrews, St Andrews, UK
2 University of Glasgow, Glasgow, Scotland

ciaran.mccreesh@glasgow.ac.uk
3 Université Lyon 1, LIRIS, UMR5205, 69621 Villeurbanne, France

4 INSA-Lyon, LIRIS, UMR5205, 69621 Villeurbanne, France

Abstract. We discuss our experiences adapting three recent algorithms
for maximum common (connected) subgraph problems to exploit multi-
core parallelism. These algorithms do not easily lend themselves to par-
allel search, as the search trees are extremely irregular, making balanced
work distribution hard, and runtimes are very sensitive to value-ordering
heuristic behaviour. Nonetheless, our results show that each algorithm
can be parallelised successfully, with the threaded algorithms we cre-
ate being clearly better than the sequential ones. We then look in more
detail at the results, and discuss how speedups should be measured for
this kind of algorithm. Because of the difficulty in quantifying an average
speedup when so-called anomalous speedups (superlinear and sublinear)
are common, we propose a new measure called aggregate speedup.

1 Introduction

Finding a maximum common subgraph is the key step in measuring the sim-
ilarity or difference between two graphs [3,12,19]. Because of this, maximum
common subgraph problems frequently arise in biology and chemistry [10,14,33]
where graphs represent molecules or reactions, and also in computer vision
[5,7], computer-aided manufacturing [23], the analysis of programs and malware
[13,31], crisis management [8], and social network analysis [11].

A subgraph isomorphism is an injective mapping from a pattern graph to
a target graph which preserves adjacency—that is, it maps adjacent vertices
to adjacent vertices. The isomorphism is induced if additionally it maps non-
adjacent vertices to non-adjacent vertices, preserving non-adjacency as well.

C. McCreesh, P. Prosser, C. Reilly and J. Trimble—This work was supported by the
Engineering and Physical Sciences Research Council [grant numbers EP/K503058/1,
EP/M508056, and EP/P026842/1].
S. N. Ndiaye and C. Solnon—This work was supported by the ANR project SoLStiCe
(ANR-13-BS02-0002-01).

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 298–315, 2018.
https://doi.org/10.1007/978-3-319-93031-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_22&domain=pdf

Observations from Parallelising Three Maximum Common Subgraph 299

When working with labelled graphs, a subgraph isomorphism must preserve
labels, and on directed graphs, it must preserve orientation. A common induced
subgraph of two graphs G and H is a pair of induced subgraph isomorphisms
from a pattern graph P , one to G and one to H. A maximum common induced
subgraph is one with as many vertices as possible. (The maximum common par-
tial subgraph problem is non-induced, with as many edges as possible; this paper
discusses only induced problems.) A common variant of the problem requires a
largest connected subgraph [10,23,33,36].

Although both the connected and non-connected variants are NP-hard,
recently progress has been made towards solving the problem in practice. This
paper looks at three branch and bound algorithms for maximum common (con-
nected) induced subgraph problems, each of which is the state of the art for
certain classes of instance. We discuss our experiences in adding parallel tree-
search to these three algorithms. In each case, our results show that the parallel
version of the algorithm is clearly better than the sequential version, although
a closer look at the results shows many nuances. Thus this paper focusses pri-
marily on presenting and interpreting the experimental data, rather than heavy
implementation details, in the hopes that the lessons we learned are helpful to
other practitioners—in particular, we introduce a new measure called aggregate
speedup which is suitable for determining speedups for decision problems or opti-
misation problems where anomalous speedups are common.

2 Sequential Algorithms

There are three competitive approaches for the maximum common subgraph
problem, each being the strongest on certain classes of instance. The first involves
a reduction to the maximum clique problem, whilst the other two approaches
are inspired by constraint programming.

2.1 Reduction to Maximum Clique

A clique in a graph is a subgraph where every vertex is adjacent to every other.
There is a well-known reduction from the maximum common subgraph problem
to the problem of finding a maximum clique in an association graph [21,25,33];
this reduction resembles the microstructure encoding [17] of the constraint pro-
gramming approach described below. When combined with a modern maximum
clique solver [35], this is the current best approach for solving the problem on
labelled graphs [25]. A modified clique-like algorithm can also be used to solve
the maximum common connected subgraph problem, by ensuring connectedness
during search [25]; again, this is the best known way of solving the problem on
labelled graphs. However, the association graph encoding is extremely memory-
intensive, limiting its practical use to pairs of graphs with no more than a few
hundred vertices.

300 R. Hoffmann et al.

2.2 Constraint Programming

The maximum common induced subgraph problem may be reformulated as a
constraint optimisation problem, as follows. Observe that an equivalent defini-
tion of a common subgraph of graphs G and H is an injective partial mapping
from G to H which preserves both adjacency and non-adjacency. Hence we pick
whichever input graph has fewer vertices, and call it the pattern; the other graph
is called the target. The model then follows from this new definition: for each
vertex in the pattern, we create a variable, whose domain ranges over each ver-
tex in the target graph, plus an additional value ⊥ representing an unmapped
vertex. We then have three sets of constraints. The first set says that for each
pair of adjacent vertices in the pattern (that is, for each edge in the pattern), if
neither of these vertices are mapped to ⊥ then these vertices must be mapped
to an adjacent pair of target vertices. The second set is similar, but looks at
non-adjacent pairs (or non-edges). Finally, the third set ensures injectivity, by
enforcing that the variables must be all different except when using ⊥. This final
set of constraints may either be implemented using binary constraints between
all pairs of variables, or a special global “all different except ⊥” propagator [32].
The objective is simply to find an assignment of values to variables, maximising
the number of variables not set to ⊥. The state of the art for this technique is a
dedicated (non-toolkit) implementation of a forward-checking branch and bound
search over this model [25,30].

Two approaches exist for ensuring connectedness: either a conventional global
constraint and propagator can be used [25], or a special branching rule can
enforce connectedness during search [36]. The two techniques are broadly com-
parable performance-wise [25], but the branching rule is simpler to implement.

2.3 Domain Splitting (McSplit and McSplit↓)
McCreesh et al. [28] observe that due to the special structure of the maximum
common subgraph problem, the following property holds throughout the search
process using the constraint programming model: any two variables either have
domains with no values in common (with the possible exception of ⊥), or have
identical domains. The McSplit algorithm exploits this property. It explores
essentially the same search tree as the basic forward-checking constraint pro-
gramming approach, but using different supporting algorithms and data struc-
tures. Rather than storing a domain for each vertex in the pattern graph, equiva-
lence classes of vertices in both graphs are stored in a special data structure which
is modified in-place and restored upon backtracking. This enables fast propaga-
tion of the constraints and smaller memory requirements. In addition, this data
structure enables stronger branching heuristics to be calculated cheaply. The
McSplit algorithm effectively dominates conventional constraint programming
approaches, being consistently over an order of magnitude faster.

The McSplit↓ algorithm is a variant designed for instances where we expect
nearly all of the smaller graph to be found. It branches first on result size, from
largest possible result downwards.

Observations from Parallelising Three Maximum Common Subgraph 301

2.4 k-Less Subgraph Isomorphism

A different take on the constraint programming approach is presented by Hoff-
mann et al. [16]. They approach maximum common subgraph via the subgraph
isomorphism problem, asking the question “if a pattern graph cannot be found
in the target, how much of the pattern graph can be found?”. The k↓ algorithm
tries to solve the subgraph isomorphism problem first for k = 0 (asking whether
the whole pattern graph can be found in the target). Should that not be satisfi-
able, it tries to solve the problem for k = 1 (one vertex cannot be matched), and
should that also not be satisfiable, it iteratively increases k until the result is
satisfiable. This approach exploits strong invariants using paths and the degrees
of vertices to prune large portions of the search space.

This algorithm is aimed primarily at large instances, where the two graphs
are of different orders, and where it is expected that the solution will involve
most of the smaller graph (that is, k is expected to be low). The sequential
implementation we start with does not support labels or the connected variant.

3 Benchmark Instances

Most of the benchmark instances we will use come from a standard database for
maximum common subgraph problems [6,34]. This benchmark set can be used
in a number of ways, for different variants of the problem. Following other recent
work [16,25,28], we use it to create five families of instances, as follows:

Unlabelled undirected instances, by selecting the first ten members of each
parameter class where the graphs have up to 50 vertices each—this gives us
a total of 4,110 instances.

Vertex labelled undirected instances, by selecting the first ten members of
each parameter class (and so graphs have up to 100 vertices each), using the
33% labelling scheme [34] for vertices only. This gives 8,140 instances.

Both labelled, directed instances, by selecting the first ten members of each
parameter class, and applying the 33% labelling scheme [34] to both vertices
and edges. Again, this gives 8,140 instances.

Unlabelled, connected instances, as per the unlabelled case.
Both labelled, connected instances, starting in the same way as the both

labelled, directed case. These are then converted to undirected graphs by
treating edges as undirected, picking the label of the lower-numbered edge.

Following Hoffmann et al. [16], we also work with the 5,725 Large instances
originally introduced for studying portfolios of subgraph isomorphism algorithms
[18]. These graphs are unlabelled and undirected, and can include up to 6,671
vertices. We do not use the clique encoding on these instances due to its memory
requirements.

302 R. Hoffmann et al.

4 Parallel Search

The clique and k↓ algorithms already make use of fine-granularity bit-parallelism.
To introduce coarse-grained thread parallelism, we will parallelise search: viewing
backtracking search as forming a tree, we can explore different portions of the
tree using different threads. We use a shared incumbent, so better solutions
found by one thread can be used by others immediately. In this paper we use
C++11 native threads, and so only support shared memory systems.

Parallel tree-search has a long history [1]. Of particular interest to us are
so-called anomalies [2,20,22]: because we are not performing a fixed amount of
work, we should have no expectation of a linear speedup, and instead we could
see a sublinear speedup (much less than n from n processors, if speculative work
turns out to be wasted) or a superlinear speedup (much more than n from n
processors, if a strong incumbent is found more quickly). An absolute slowdown
(a speedup much less than 1) is also possible when using some parallelisation
techniques.

We stress that these anomalies are due to changes in the amount of work done,
and are not due to work balance problems (although work balance is also unusu-
ally difficult for this problem). Anomalies can have a very strong effect on these
algorithms, and we will therefore try to mitigate them as far as possible. In the
evaluation of their “embarrassingly parallel search” technique, Malapert et al.
[24] “consider unsatisfiable, enumeration and optimization [problem] instances”,
and “ignore the problem of finding a first feasible solution because the parallel
speedup can be completely uncorrelated to the number of workers, making the
results hard to analyze”. They do “consider optimization problems for which the
same variability can be observed, but at a lesser extent because the optimality
proof is required”. Unfortunately, many of the instances we consider behave more
like decision problem instances than optimisation instances: due to the combi-
nation of a low solution density, good value-ordering heuristics, and a strong
bound function in cases where the optimal solution is relatively large, it is often
the case that the runtime is determined almost entirely by how long it takes
to find an optimal solution, with the proof of optimality being nearly trivial.
Indeed, attempts to parallelise the basic constraint programming approach by
static decomposition have had limited success [29].

4.1 Parallel Maximum Clique

Thread-parallel versions of state-of-the-art maximum clique algorithms already
exist. McCreesh et al. [27] compare several of these approaches, and make an
important observation: although work balance is a problem due to the irregu-
larity of the search tree, often the interaction between search order and parallel
work decomposition is the dominating factor in determining speedups. They
explain why anomalies are in fact common in practice: many clique problem
instances benefit immensely from having found a strong incumbent, but have
solutions which are either unique or rare, and are hard to find. They propose a
work splitting mechanism which offsets anomalies, guaranteeing reproducibility

Observations from Parallelising Three Maximum Common Subgraph 303

(two runs with the same instance on the same hardware will give similar run-
times), scalability (increasing the number of cores cannot make things worse),
and no absolute slowdowns. Additionally, this mechanism explicitly offsets the
commitment to early branching choices, where search ordering heuristics are
most likely to be inaccurate [4,15], making superlinear speedups common.

We will use this mechanism for our experiments. The clique-based maxi-
mum common subgraph algorithm effectively differs only in the preprocessing
stage, and the clique-inspired connected algorithm described by McCreesh et al.
[25] is sufficiently similar that it may be parallelised in exactly the same way.
Based upon preliminary experiments, we set the mechanism’s splitting depth
limit parameter to be five rather than the original three, since maximum com-
mon subgraph instances appear to give even more irregular search trees than
normal clique problem instances.

4.2 Parallel Constraint-Based Search

A similar approach may be used for the k↓ algorithm. Although it is not quite
a conventional branch and bound algorithm, each individual k pass is a tree-
search, and may be parallelised. For each pass, we use the same work splitting
mechanism as in the clique algorithm, starting by splitting only at the top level
of search to explicitly introduce diversity, and then iteratively increasing the
splitting depth as additional work is needed (up to a limit of five levels deep).
Because the k↓ algorithm uses a conventional constraint programming domain
store, there is no need to use recomputation; the state is naturally copied at each
branching point.

In principle the McSplit algorithm may be parallelised in exactly the same
way. However, this algorithm makes heavy use of an in-place, backtrackable
data structure, which is not copied for recursive calls. In order to introduce the
potential for parallelism, we must make copies of the state data structure. Imple-
mented näıvely, this can give an order of magnitude slowdown to the sequential
algorithm, which can be hard to recover using parallelism. To lessen the effects,
rather than copying state for each recursive call, we copy once before the main
branching loop, and then copy that copy in each “helper” thread, replaying the
branching loop without making duplicate recursive calls. (We believe a better
approach using partial recomputation may be possible, and intend to investigate
this further in the future.)

5 Empirical Evaluation

We perform our experiments on systems with dual Intel Xeon E5-2697A v4 pro-
cessors and 512 GBytes RAM, running Ubuntu 17.04, with GCC 6.3.0 as the
compiler. Each machine has a total of thirty-two cores. We run all our experi-
ments with a one thousand second timeout for each instance. All of our sequen-
tial runtimes are from optimised implementations by their original authors which
were not designed with parallelism in mind—that is, speedups from parallelism
are genuine improvements over the state of the art.

304 R. Hoffmann et al.

5.1 Parallel Search Is Better Overall

In Fig. 1 we plot empirical cumulative distribution functions showing the number
of instances solved over time, for both sequential (solid lines) and parallel (dotted
lines) versions of each algorithm. To read these plots, make a choice of timeout
along the x-axis (which uses a log scale). The y value at that point shows the
number of instances whose runtime (individually) is at most x, for a particular
algorithm. In other words, at any given x value, the highest line shows which
algorithm is able to solve the largest number of instances using a per-instance
timeout of that x value, bearing in mind that the actual sets of instances solved
by each algorithm may be completely different.

With one exception, each plot gives the same conclusion: if we are work-
ing with a solving time of at least 100 ms, then for any problem family and
any sequential algorithm, if given the option of switching to the corresponding
parallel algorithm, then we should do so. For the McSplit algorithm on both
labelled, connected instances, the parallel algorithm does not quite catch up to
the sequential algorithm.

Although good at showing general trends, cumulative plots can hide interest-
ing details. We therefore now take a closer look at each of the three algorithms
in turn.

5.2 Clique Results in Depth

In the first column of Fig. 2, we see scatter plots comparing the sequential and
parallel runtimes of the clique algorithm on an instance by instance basis, using
a log-log plot. Each point represents one instance, with the x-axis being the
sequential runtime and the y-axis the parallel runtime. Instances which timed
out using one algorithm but not the other are shown as points along the outer
borders. Points below the x−y diagonal line represent speedups. The colour of
the points indicates the relative size of the solution—darker points represent
instances where the solution uses most of the vertices of the input graphs. (We
use these conventions for scatter plots throughout this paper.)

Broadly speaking, the results are similar on each of the five families. For
runtimes below 100 ms, overheads and the preprocessing step dominate, and
we are usually only able to achieve a small speedup. At higher runtimes, most
speedups appear to be between ten and thirty, except on the final family of both
labelled connected instances, where they are mostly between five and ten. For
a few instances, the speedups are lower (but they are still clearly speedups),
whilst in the first four families, we also see evidence of superlinear speedups
being relatively common.

However, attempting to determine a speedup by staring at a scatter plot is
not particularly quantitative. We could attempt to find a best fit line through
these points, pretending that the superlinear speedups are outliners. We might
perhaps get away with this if outliers were rare enough, but in practice we are
not expecting linear speedups (and for the other two algorithms, we will see
that superlinear speedups are even more common). Alternatively, we could rig

Observations from Parallelising Three Maximum Common Subgraph 305

Fig. 1. The cumulative number of instances solved over time. Except in the bottom
left plot, the 32 threaded parallel versions (shown using dotted lines) are always better
in aggregate than the sequential versions (shown using solid lines).

306 R. Hoffmann et al.

Fig. 2. In the left column, per-instance speedups, using the clique algorithm. The
x-axis is sequential performance and the y-axis is 32 threaded performance. In the
centre, histograms plotting the distribution of speedups for instances whose sequential
runtime was at least 500 ms, and below the timeout. On the right, performance profiles.

Observations from Parallelising Three Maximum Common Subgraph 307

Fig. 3. Aggregate speedups from 32 threads, shown as a function of sequential runtime,
for each family supported by the clique algorithm.

our experiments to remove anomalies, by priming search with a known-optimal
solution; however, since the time to find an optimal solution (but not prove its
optimality) is so important, we do not consider this to be a fair measure of
algorithm performance [27].

A more principled approach is given in the second column of Fig. 2. For
instances where the sequential run both succeeded and took at least 500 ms,
we plot the distribution of speedups obtained. These histograms confirm our
informal observations. However, these plots are still not especially satisfactory: in
order to calculate a speedup, we can only consider instances where the sequential
algorithm succeeded, and so these plots underestimate superlinear speedups. The
choice of a 500 ms minimum sequential runtime is also rather arbitrary, and is
acceptable only if we expect the parallel algorithms will only be used on relatively
hard instances.

In the third column we show performance profiles [9]. A performance profile
is a cumulative plot of how many times worse the performance of an algorithm is
relative to the virtual best algorithm. Each plot shows three options as different
lines. The ‘all’ lines include easy instances whose sequential runtime is below
500 ms, whilst the other two lines exclude them. The ‘hard’ line treats sequential
timeouts as having been solved at the time limit, whilst the ‘PAR10’ line treats
timeouts as taking ten times longer than the timeout (this convention is common
in portfolios [37]). The solid lines show the sequential algorithms, whilst the
dotted lines show the parallel algorithms. (There are no dotted lines on the top
four plots for the ‘hard’ and ‘PAR10’ cases, since the parallel algorithm always
beats the sequential algorithm in these cases.) We have normalised the y-axis to
the number of counted instances in a given class.

Unfortunately, these three lines can paint very different pictures. For exam-
ple, for unlabelled instances on the top row, if we include easy instances, it
appears that the parallel algorithm can be up to ten times worse, whereas if we

308 R. Hoffmann et al.

exclude them, it is never worse. If we do not use the PAR10 scheme, the perfor-
mance profile also suggests that there are around twenty-five percent of the hard
instances where the speedup is below 10, whilst using PAR10 correctly shows
that such instances are rare. However, PAR10 is only effective in this regard
because the “typical” speedup is in the region of 10 (and this is a particular
inconvenience because we seek a way of characterising speedups which does not
rely upon us already knowing that 10 is a reasonable choice of penalty).

A further problem is that to deal with the large superlinear speedups some-
times observed, a log scale must be used on the x-axis; this makes speedups of
10 and 30 look very similar, whilst in practice the difference is important.

To avoid these weaknesses, we propose a new way of characterising speedups.
Refer back to the cumulative plots in Fig. 1. The usual way of comparing two
algorithms on these plots is by measuring the vertical difference between lines,
which would tell us how many more instances the parallel algorithm can solve
than the sequential algorithm can with a particular choice of timeout. However,
measuring the horizontal distance between lines also conveys information. Sup-
pose the sequential algorithm can solve y instances with a selected timeout of s.
By moving to the left on a cumulative plot, we can find the timeout p required
for the parallel algorithm to solve the same number of instances, bearing in mind
that the two sets of instances could have completely different members. We define
the aggregate speedup to be s/p; this can be expressed as a function of time (i.e.
s) or of the number of instances solved (y).

We plot aggregate speedups as a function of time in Fig. 3. For a sequen-
tial timeout of one thousand seconds, we get speedups of thirty to forty in the
unlabelled, vertex labelled, and both labelled, directed cases. In the unlabelled
cases, our aggregate speedup are over thirty-two, which is superlinear. With some
detailed knowledge of the underlying sequential algorithm, this should perhaps
not surprise us: for instances with a large solution, once we have found that solu-
tion, a proof of optimality is relatively easy. However, finding that solution can
be unusually hard, particularly since the branching strategy for the connected
constraint necessarily interferes with the tailored search order used by modern
clique algorithms. In contrast, for the both labelled connected case, our aggre-
gate speedup is barely larger than one. A closer inspection of the results shows
that the search tree is unusually narrow and deep for these instances, making
work balance harder and contention higher.

What about scalability and reproducibility? The first plot in Fig. 4 shows
the effects of going from sequential to threaded with two cores, and the next
four plots show the effects of doubling the number of threads each time. These
plots show that most of the superlinear effects occur with fairly small numbers
of threads, with nearly all of the benefits of increased diversity in search being
obtained once eight threads are used. As expected, in no case does increasing
the number of threads make things substantially worse. The final plot in Fig. 4
shows that runtimes are reproducible: running the same instance on the same
hardware twice takes almost exactly the same amount of time.

Observations from Parallelising Three Maximum Common Subgraph 309

Fig. 4. Per-instance speedups from the clique algorithm on vertex- and edge-labelled,
directed instances, when going from sequential to two threads in the first plot, then
increasing the number of threads in subsequent plots. The final plot shows 32 threads
versus a repeated run also with 32 threads.

Fig. 5. In the first two plots, per-instance speedups, using the k↓ algorithm. The x-axis
is sequential performance and the y-axis is 32 threaded performance. Next, scalability
and reproducibility, and finally, aggregate speedups for both families.

310 R. Hoffmann et al.

These results are comforting: they show that anomalies can be controlled,
and that switching to a parallel algorithm is not only better, but also safe from
a scientific reproducibility perspective.

5.3 k↓ Results in Depth

In Fig. 5 we show per-instance and aggregate speedups for the k↓ algorithm. On
unlabelled instances, we see a range of speedups between 0.9 and ten, with an
aggregate speedup of seven. These results are not as good as with the clique
algorithm. Profiling suggests memory allocation problems: although the amount
of work done would suggest good parallelism, the time taken to perform each
domain copy operation increases as the number of threads increases. Unlike the
clique algorithm, which has very small, cache-friendly data structures which are
modified in-place, the state for the k↓ algorithm is large and much of the runtime
is spent copying data structures. (Our hardware is a dual multi-core processor
configuration, and each core has its own low-level cache, but memory bandwidth
is shared. Interestingly, on older Xeon E5 v2 systems, this problem is much more
pronounced.)

For the large instances, our aggregate speedup is higher, at around twenty.
This has two causes: for larger graphs, the computational effort per recursive
call increases by more than the amount the memory copying does, reducing the
memory problem slightly, and additionally a much larger number of superlinear
speedups occurred with this family of instances. We could perhaps anticipate
this latter effect: in many of these instances the maximum common subgraph
covers all or nearly all of the smaller of the two graphs, and so once it is found,
the proof of optimality is trivial. However, finding a witness can be difficult. We
should also expect value-ordering heuristics in these algorithms to be weak at
the top of search (they are based upon degree, and many graphs do not have a
large degree spread), and so the benefits of high-up diversity can be extremely
large [4,15,27]. Indeed, similar results were seen with a parallel version of the
subgraph isomorphism algorithm upon which k↓ is based [26].

The third and fourth plots in Fig. 5 show that as with the clique algorithm,
this parallelism is reproducible, and that runtimes do not get worse when the
number of threads is increased. (Although not shown, we also tried to parallelise
k↓ using randomised work-stealing from Intel Cilk Plus. Doing so gives generally
reasonable results on average, as it does for the clique algorithm [27], but now
repeat runtimes can differ by more than an order of magnitude.)

5.4 McSplit Results in Depth

Finally, we look at our attempts to parallelise the McSplit algorithm. Recall
that doing so required heavy modifications to the implementation, introducing
significant amounts of speculative copying of a data structure that is usually
backtrackable and modified in-place.

For unlabelled, unlabelled connected, and large instances, Fig. 6 shows a par-
ticularly high proportion of strongly superlinear speedups. This is because the

Observations from Parallelising Three Maximum Common Subgraph 311

Fig. 6. On the first two rows, per-instance speedups, using McSplit. Below, aggregate
speedups on the left, and on the right, scalability and reproducibility.

312 R. Hoffmann et al.

McSplit algorithm is focussed upon exploring the search space very quickly,
and its branching heuristics do not have the advantage of the domain filtering
performed by k↓, or the rich inter-domain knowledge coming from the combi-
nation of the association graph encoding and the colour ordering used by clique
algorithms. Thus making a correct value-ordering choice at the top of search is
harder for McSplit than for other algorithms, and so increased diversity can be
particularly beneficial.

For the large instances, we see evidence of work balance problems. McSplit’s
use of a “smallest domain first” variable-ordering heuristic, combined with the
presence of ⊥ in domains, tends to produce narrow (nearly binary) and deep
search trees. These balance problems are even more evident in the labelled cases
(where following a guessed assignment, many domains are left with only two
values), and often lead to little to no speedup being obtained. Indeed, for the
labelled, connected case, we see a slight aggregate slowdown.

The scatter plots also show occasional large absolute slowdowns, sometimes
by over an order of magnitude. These are due to the changes which had to be
made to the sequential algorithm (and because we are benchmarking against
the sequential algorithm, not a parallel algorithm with one thread), rather than
search order effects. In cases where parallelism cannot be exploited, the cost of
speculatively copying domains at each level of search can dominate the runtimes.
Because of this, fixing work balance problems by increasing the splitting depth
typically makes matters much worse, not better.

What about scalability and reproducibility? Figure 6 presents a less ideal
picture than for the previous two algorithms—again, this is due to speculative
overheads that fail to pay off, rather than being anomalies in the classical sense.

6 Conclusion

We have parallelised three state-of-the-art maximum common (connected) sub-
graph algorithms with a reasonable degree of success by using dynamic work-
splitting. Despite having a branch and bound flavour, all three sequential algo-
rithms had their own difficulties and performance characteristics which prevented
them from cleanly fitting into common abstraction frameworks. Nonetheless, our
results show that the parallel algorithms are not just better in aggregate, but
also preserve the desirable reproducibility properties of sequential algorithms. A
large part of our success was down to using parallelism to explicitly introduce
diversity into the search process, offsetting weak early value-ordering branching
choices.

There is room for improvement, particularly with respect to work balance.
However, improvements to work balance must not come at the expense of the
search order properties, nor at the cost of increased overheads.

More generally, we introduced the idea of aggregate speedups, to deal with
measuring a speedup in the presence of anomalies. This measure gives sensible
answers even when working with instances which behave like decision problems.
Aggregate speedups informed part of our analysis, but our results highlight

Observations from Parallelising Three Maximum Common Subgraph 313

the importance of viewing results in multiple ways, and in using large fami-
lies of instances with different characteristics when evaluating parallel search
algorithms—had we looked only at unlabelled instances, or only at labelled con-
nected instances, our conclusion would be very different.

References

1. Bader, D.A., Hart, W.E., Phillips, C.A.: Parallel algorithm design for branch and
bound. In: Greenberg, H.J. (ed.) Tutorials on Emerging Methodologies and Appli-
cations in Operations Research. ISOR, vol. 76, pp. 1–44. Springer, New York
(2005). https://doi.org/10.1007/0-387-22827-6 5

2. de Bruin, A., Kindervater, G.A.P., Trienekens, H.W.J.M.: Asynchronous parallel
branch and bound and anomalies. In: Ferreira, A., Rolim, J. (eds.) IRREGULAR
1995. LNCS, vol. 980, pp. 363–377. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60321-2 29

3. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)

4. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel
constraint programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 226–
241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 20

5. Combier, C., Damiand, G., Solnon, C.: Map edit distance vs. graph edit distance
for matching images. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X.
(eds.) GbRPR 2013. LNCS, vol. 7877, pp. 152–161. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38221-5 16

6. Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common
subgraph detection algorithms: a performance analysis of three algorithms on a
wide database of graphs. J. Graph Algorithms Appl. 11(1), 99–143 (2007)

7. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length
and background knowledge. J. Artif. Intell. Res. 1, 231–255 (1994)

8. Delavallade, T., Fossier, S., Laudy, C., Lortal, G.: On the challenges of using social
media for crisis management. In: Rogova, G., Scott, P. (eds.) Fusion Methodologies
in Crisis Management, pp. 137–175. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-22527-2 8

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

10. Ehrlich, H.C., Rarey, M.: Maximum common subgraph isomorphism algorithms
and their applications in molecular science: a review. Wiley Interdisc. Rev.: Com-
put. Mol. Sci. 1(1), 68–79 (2011)

11. Fang, M., Yin, J., Zhu, X., Zhang, C.: Trgraph: cross-network transfer learning via
common signature subgraphs. IEEE Trans. Knowl. Data Eng. 27(9), 2536–2549
(2015)

12. Fernández, M., Valiente, G.: A graph distance metric combining maximum common
subgraph and minimum common supergraph. Pattern Recogn. Lett. 22(6/7), 753–
758 (2001)

13. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88625-9 16

https://doi.org/10.1007/0-387-22827-6_5
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1007/978-3-642-04244-7_20
https://doi.org/10.1007/978-3-642-38221-5_16
https://doi.org/10.1007/978-3-319-22527-2_8
https://doi.org/10.1007/978-3-319-22527-2_8
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-540-88625-9_16

314 R. Hoffmann et al.

14. Gay, S., Fages, F., Martinez, T., Soliman, S., Solnon, C.: On the subgraph epimor-
phism problem. Discret. Appl. Math. 162, 214–228 (2014)

15. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95,
Montréal Québec, Canada, 20–25 August 1995, vol. 2, pp. 607–615. Morgan Kauf-
mann (1995)

16. Hoffmann, R., McCreesh, C., Reilly, C.: Between subgraph isomorphism and max-
imum common subgraph. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San
Francisco, California, USA, pp. 3907–3914. AAAI Press (2017)

17. Jégou, P.: Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In: Fikes, R., Lehnert, W.G. (eds.) Proceedings
of the 11th National Conference on Artificial Intelligence, Washington, DC, USA,
11–15 July 1993, pp. 731–736. AAAI Press/The MIT Press (1993)

18. Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algo-
rithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol.
10079, pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50349-3 8

19. Kriege, N.: Comparing graphs. Ph.D. thesis, Technische Universität Dortmund
(2015)

20. Lai, T., Sahni, S.: Anomalies in parallel branch-and-bound algorithms. Commun.
ACM 27(6), 594–602 (1984)

21. Levi, G.: A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. CALCOLO 9(4), 341–352 (1973)

22. Li, G., Wah, B.W.: Coping with anomalies in parallel branch-and-bound algo-
rithms. IEEE Trans. Comput. 35(6), 568–573 (1986)

23. Luo, C., Wang, X., Su, C., Ni, Z.: A fixture design retrieving method based on
constrained maximum common subgraph. IEEE Trans. Autom. Sci. Eng. PP(99),
1–13 (2017)

24. Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search in constraint
programming. J. Artif. Intell. Res. 57, 421–464 (2016)

25. McCreesh, C., Ndiaye, S.N., Prosser, P., Solnon, C.: Clique and constraint models
for maximum common (connected) subgraph problems. In: Rueher, M. (ed.) CP
2016. LNCS, vol. 9892, pp. 350–368. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-44953-1 23

26. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algo-
rithm using supplemental graphs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 295–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5 21

27. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound. TOPC 2(1), 8:1–8:27
(2015)

28. McCreesh, C., Prosser, P., Trimble, J.: A partitioning algorithm for maximum
common subgraph problems. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–
25 August 2017 (2017, to appear)

29. Minot, M., Ndiaye, S.N., Solnon, C.: A comparison of decomposition methods for
the maximum common subgraph problem. In: 27th IEEE International Confer-
ence on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, 9–11
November 2015, pp. 461–468. IEEE Computer Society (2015)

https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-44953-1_23
https://doi.org/10.1007/978-3-319-44953-1_23
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1007/978-3-319-23219-5_21

Observations from Parallelising Three Maximum Common Subgraph 315

30. Ndiaye, S.N., Solnon, C.: CP models for maximum common subgraph problems. In:
Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 637–644. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23786-7 48

31. Park, Y.H., Reeves, D.S., Stamp, M.: Deriving common malware behavior through
graph clustering. Comput. Secur. 39, 419–430 (2013)

32. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-
constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7 31

33. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–
533 (2002)

34. Santo, M.D., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its
use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8),
1067–1079 (2003)

35. Segundo, P.S., Mat́ıa, F., Rodŕıguez-Losada, D., Hernando, M.: An improved bit
parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)

36. Vismara, P., Valery, B.: Finding maximum common connected subgraphs using
clique detection or constraint satisfaction algorithms. In: Le Thi, H.A., Bouvry, P.,
Pham Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 358–368. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87477-5 39

37. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms
for portfolio-based selection. In: Fox, M., Poole, D. (eds.) Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, 11–15 July 2010. AAAI Press (2010)

https://doi.org/10.1007/978-3-642-23786-7_48
https://doi.org/10.1007/3-540-45578-7_31
https://doi.org/10.1007/978-3-540-87477-5_39

	Observations from Parallelising Three Maximum Common (Connected) Subgraph Algorithms
	1 Introduction
	2 Sequential Algorithms
	2.1 Reduction to Maximum Clique
	2.2 Constraint Programming
	2.3 Domain Splitting (McSplit and McSplit"3223379)
	2.4 k-Less Subgraph Isomorphism

	3 Benchmark Instances
	4 Parallel Search
	4.1 Parallel Maximum Clique
	4.2 Parallel Constraint-Based Search

	5 Empirical Evaluation
	5.1 Parallel Search Is Better Overall
	5.2 Clique Results in Depth
	5.3 k"3223379 Results in Depth
	5.4 McSplit Results in Depth

	6 Conclusion
	References

