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Abstract. The aim of the study is to provide interesting insights on
how efficient machine learning algorithms could be adapted to solve com-
binatorial optimization problems in conjunction with existing heuristic
procedures. More specifically, we extend the neural combinatorial opti-
mization framework to solve the traveling salesman problem (TSP). In
this framework, the city coordinates are used as inputs and the neural
network is trained using reinforcement learning to predict a distribution
over city permutations. Our proposed framework differs from the one in
[1] since we do not make use of the Long Short-Term Memory (LSTM)
architecture and we opted to design our own critic to compute a baseline
for the tour length which results in more efficient learning. More impor-
tantly, we further enhance the solution approach with the well-known
2-opt heuristic. The results show that the performance of the proposed
framework alone is generally as good as high performance heuristics (OR-
Tools). When the framework is equipped with a simple 2-opt procedure,
it could outperform such heuristics and achieve close to optimal results
on 2D Euclidean graphs. This demonstrates that our approach based
on machine learning techniques could learn good heuristics which, once
being enhanced with a simple local search, yield promising results.

Keywords: Combinatorial optimization - Traveling salesman
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1 Introduction

Combinatorial optimization is a topic that consists of finding an optimal object
from a finite set of objects. Sequencing problems are those where the best order
for performing a set of tasks must be determined, which in many cases leads to a
NP-hard problem. Specific variations include single machine scheduling and the

© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 170-181, 2018.
https://doi.org/10.1007/978-3-319-93031-2_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_12&domain=pdf

Learning Heuristics for the TSP by Policy Gradient 171

Traveling Salesman Problem (TSP). Sequencing problems are among the most
widely studied problems in Operations Research (OR). They are prevalent in
manufacturing and routing applications.

As in [2], our work is motivated by the fact that many real world problems
arising from the OR community are solved daily from scratch with hand-crafted
features and man-engineered heuristics. We propose a generic framework to learn
heuristics for combinatorial tasks where the output is an ordering of the input.
Our focus in this paper is a data-driven heuristic that can effectively solve the
TSP, the well-known combinatorial problem (due to limited space, the review
on optimization algorithms on TSP is provided in Appendix).

We first review some recent Reinforcement Learning (RL) approaches to
solve the TSP in Sect.2. We then present our proposed method in Sects. 3 and
4. Finally, we describe experiments and discuss results in Sect. 5.

2 Reinforcement Learning Perspective for the TSP

Reinforcement learning (RL) is a general-purpose framework for decision making
in a scenario where a learner actively interacts with an environment to achieve a
certain goal. In response to an action, the learner receives two types of informa-
tion: his new state in the environment, and a real-valued reward, which is spe-
cific to the task and its corresponding goal. Successful examples include playing
games at high level (Atari [8], Go [9,10]), navigating 3D worlds or labyrinths,
controlling physical systems and interacting with users.

Combinatorial problems such as the TSP are often solved sequentially. Typ-
ically, a state is a partial solution (a sequence of visited cities) and an action is
the next city to visit (among those not yet visited). In response to an action, the
new state is the updated solution and the reward signal could either come when
a tour is completed or be incremental. An RL agent builds on its own expe-
rience - sequences (state, action; reward, state) - to maximize future rewards.
In practice, one could either learn directly a (deterministic or stochastic) map-
ping from state to action, called a policy 7(als), or learn an auxiliary evaluation
function (Value or Q function) measuring the quality of a state and used to
discriminate among actions based on their usefulness. In both cases, the com-
binatorial structure of the state space S is intractable and calls for the use of
function approximators such as Deep Neural Networks. Deep Learning (DL) is
a general-purpose framework for representation learning. Given an objective, a
Neural Network learns the representation that is required to achieve the objec-
tive. Neural Networks compute hierarchical, abstract representations of the data
(through linear transformations and non-linear activation functions) and learn
features (at several levels of abstractions) by back-propagating gradients of the
loss w.r.t. the parameters, using the chain rule and Stochastic Gradient Descent.

Recurrent Neural Networks (RNN) with Long Short Term Memory (LSTM)
cells [11] have been successfully used for structured inputs and/or outputs
with long term dependencies. More recently, attention based Neural Networks
have significantly improved models in computer vision [12], image [13] or video
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[14] captioning, machine translation [15], speech recognition [16] and question
answering [17]. Rather than processing a signal once, attention allows to process
step by step some regions or features of the signal at high resolution to acquire
information when and where needed. At each step, next location is chosen based
on past information and demands for the task. Google Brain’s Pointer Network
[18] is a neural architecture to learn the conditional probability of an output
sequence with elements that are discrete tokens corresponding to positions in
an input sequence. The neural network comprises a RNN encoder-decoder con-
nected with hard attention. At each decoding step, a “pointer” is used to sample
from the action space (in our case, a probability distribution over cities to visit).
It overall parametrizes a stochastic policy over city permutations pg(w|s) and
can be used for problems such as sorting variable sized sequences, and various
combinatorial optimization problems. Google Brain’s Pointer Network trained
by Policy Gradient [1] could determine good quality solutions for 2D Euclidean
TSP with up to 100 nodes.

In [2], the authors use a graph embedding network called structure2vec (S2V)
to featurize nodes in the graph in the context of their neighbourhood. The
learned greedy algorithm constructs solutions sequentially and is trained by fit-
ted Q-learning to learn the policy together with the graph embedding network.
For the TSP task, Google Brain’s Pointer Network trained by Policy Gradient
performs on par with the S2V network trained by fitted Q-learning.

Based on the recent work [1], we further enhance the approach in several
ways. In particular, instead of relying on the LSTM architecture, our model is
based solely on attention mechanisms. This result in a more efficient learning.
The framework is further enhanced with a simple 2-opt procedure and the app-
roach shows promising results on the TSP. We believe that the outcome of this
study sheds light on a data-driven hybrid heuristic that makes use of ML and
local search techniques to tackle combinatorial optimization.

3 Neural Architecture for TSP

Given a set of n cities s, the Traveling Salesman Problem (TSP) consists in
finding a minimum cost tour visiting all n cities exactly once. The total cost of
a tour is the total distance traveled in the tour. Following [1], we aim to learn
the parameters 6 of a stochastic policy over city permutations pg(7|s), using
Neural Networks and Policy Gradient. Given an input set of points s, the key
idea is to assign higher probability to “good” tours 7T and lower probability to
“undesirable” tours 7.

We follow the general encoder-decoder perspective. The encoder maps an
input set I = (iy,...,4,) to a set of continuous representations Z = (z1, ..., zp)-
Given Z, the decoder then generates an output sequence O = (oy,...,0,) of
symbols one element at a time. At each step the model is auto-regressive, using
the previously generated symbols as additional input when generating the next.
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3.1 TSP Setting and Input Preprocessing

In this paper, we focus on the 2D Euclidean TSP. Each city; is described by
its 2D coordinates (x;,y;) in a Euclidean space. We use Principal Component
Analysis (PCA) on the centered input coordinates to exploit spatial invariance
by rotation of all cities. This way, the learned heuristic does not depend on the
orientation of the input s = ((xi,¥:))ie[1,n]-

3.2 Encoder

The purpose of our encoder is to obtain a representation for each action (city)
given its context. The output of our encoder is a set of action vectors A =
(a1, ...,an), each representing a city interacting with other cities. Our neural
encoder takes inspiration from recent advances in Neural Machine Translation.
Similarly to [19], our actor and our critic use neural attention mechanisms to
encode cities as a set (rather than a sequence as in [1]).

TSP Encoder. We use the encoder proposed in [19], which relies on atten-
tion mechanisms in place of the traditional convolutions or recurrences. Our self
attentive encoder takes as input an embedded and batch normalized [20] set of
n cities s = (city;)ic[1,n) (d-dimensional space). It overall consists in a stack
of N identical layers as shown in Fig.1 in Appendix. Each layer has two sub-
layers. The first sublayer Multi-head Attention is detailed in the next paragraph.
The second sublayer Feed-Forward consists of two position-wise linear trans-
formations with a ReLU activation in between. The output of each sublayer is
LayerNorm(x 4+ Sublayer(zx)), where Sublayer(z) is the function implemented
by the sublayer itself and Layer Norm() stands for layer normalization [20].

Multi Head Attention. Neural attention mechanisms allow queries to interact
with key-value pairs. For the TSP, queries and key-value pairs ¢;, k;, v; € R¢ are
obtained by linearly transforming each city; € R? and applying a ReLu non
linearity. Following [19], our attention mechanism is defined as

QK"
Vd

where Q = [g1, ..., qn], K = [k1,....,kn], V = [v1,...,v,]. Our Multi Head Atten-
tion sublayer outputs a new representation for each city, computed as a weighted
sum of city values, where the corresponding weights are defined by an affinity
function between cities’ queries and keys. As suggested in [19], queries, keys and
values are linearly projected on h different learned subspaces (hence the name
Multi Head). We then apply the attention mechanism on each of these new set
of representations to obtain h dj,-dimensional output values for each city which
are concatenated into the final values.

Attention(Q; K; V) = softmax(

WV (1)
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3.3 Decoder

Following [1], our neural network architecture uses the chain rule to factorize
the probability of a tour as

po(nls) = [T po(m(t)lm(< 1), 5) (2)

Each term on the right hand side of Eq.(2) is computed sequentially with
softmax modules. As opposed to [1] which summarizes all previous actions in a
fixed-length vector, our model explicitly forgets after K = 3 steps, dispensing
with LSTM networks. At each output time t, we map the three last sampled
actions (visited cities) to the following query vector:

e = ReLu(Wia i1y + Waar(i_2) + Waar_s)) € RY (3)

Similar to [1], our query vector ¢; interacts with a set of n vectors to define
a pointing distribution over the action space. Once the next city is sampled, the
trajectory gy+1 is updated with the selected action vector and the process ends
when the tour is completed. See Fig. 2 in Appendix.

Pointing Mechanism. We use the same pointing mechanism as in [1] to predict
a distribution over cities given encoded actions (cities) and a state representa-
tion (query vector). Pointing to a specific position in the input sequence allows
to adapt the same framework to variable length tours. As in [1], our pointing
mechanism is parameterized by two attention matrices W,.; € R W, € R¥%
and an attention vector v € R?" as follows:

Vi<nu¢{thanh(Wrefai—i—qut) if g {m(0), . w(t — 1)} @

—oo  otherwise.

po(m(t)|m(< t),8) = softmax(C tanh(u'/T)) (5)

po(m(t)|m(< t),s) predicts a distribution over the set of n action vectors, given
a query ¢;. Following [1], we use a mask to set the logits (aka log-probabilities)
of cities that already appeared in the tour to —oo, as shown in Eq.(4). This
ensures that our model outputs valid permutations of the input. As suggested
in [1], clipping the logits in [-C,4+C] is a way to control the entropy. T is
a temperature hyper-parameter used to control the certainty of the sampling.
T =1 during training and T' > 1 during inference.

4 Training the Model

Supervised learning for NP-hard problems such as the TSP and its variants
is undesirable because the performance of the model is tied to the quality of
the supervised labels and getting supervised labels is expensive (and may be
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infeasible). By contrast, RL provides an appropriate and simple paradigm for
training a Neural Network. An RL agent explores different tours and observes
their corresponding rewards.

Following [1], we train our Neural Network by Policy Gradient using the
REINFORCE learning rule [21] with a critic to reduce the variance of the gra-
dients. For the TSP, we use the tour length as reward r(mw|s) = L(n|s) (which
we seek to minimize).

Policy Gradient and REINFORCE: Our training objective is the expected
reward, which given an input graph s is defined as:

J(0]s) = Ernpy (s [r(mls)] (6)

During training, our graphs are drawn from a distribution S and the total
training objective is defined as:

J(0) = Esus[J(0]5)] (7)

To circumvent non-differentiability of hard-attention, we resort to the well-
known REINFORCE learning rule [21] which provides an unbiased gradient of
(6) w.r.t. the model’s parameters 0:

VoI (0]3) = Ennpy(.1s)[(7(7]s) = by (5))Valog(pe(r|s))] (8)

where by(s) is a parametric baseline implemented by a critic network to reduce
the variance of the gradients while keeping them unbiased. With Monte-Carlo
sampling, the gradient of (7) is approximated by:

B

B
Vo J(0) ~ ! > (r(mklsk) — bs(sk)) Valog(pe(me|sk)) (9)
k=1

We learn the actor’s parameters 6 by starting from a random policy and
iteratively optimizing them with the REINFORCE learning rule and Stochastic
Gradient Descent (SGD), on instances generated on the fly.

Critic: Our critic uses the same encoder as our actor. It uses once the pointing
mechanism with ¢ = 0g. The critic’s pointing distribution over cities py(s)
defines a glimpse vector gls computed as a weighted sum of the action vectors
A= (alv (a3} an)

gls = szb(S)iai (10)

The glimpse vector gl is fed to a 2 fully connected layers with ReLu acti-
vations. The critic is trained by minimizing the Mean Square Error between its
predictions and the actor’s rewards.
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5 Experiments and Results

We conduct experiments to investigate the behavior of the proposed method.
We consider a benchmarked test set of 1,000 Euclidean TSP20, TSP50 and
TSP100 graphs. Points are drawn uniformly at random in the 2D unit square.
Experiments are conducted using Tensorflow 1.3.0. We use mini-batches of 256
sequences of length n = 20, n = 50 and n = 100. The actor and critic embed
each city in a 128-dimensional space. Our self attentive encoder consists of 3
stacks with h = 16 parallel heads and d = 128 hidden dimensions. For each head
we use dp, = d/h = 8. Our FFN sublayer has input and output dimension d and
its inner-layer has dimension 4d = 512. Queries for the pointing mechanisms
are 360-dimensional vectors (d' = 360). The pointing mechanism is computed in
a 256-dimensional space (d” = 256). The critic’s feed forward layers consist in
256 and 1 hidden units. Parameters ¢ are initialized with xavier_initializer [22]
to avoid saturating the non-linear activation functions and to keep the scale of
the gradients roughly the same in all layers. We clip our tanh logits to [—10,10]
for the pointing mechanism. Temperature is set to 2.4 for TSP20 and 1.2 for
TSP50 and TSP100 during inference. We use Adam [23] optimizer for SGD with
B1 = 0.9, B2 = 0.99 and ¢ = 10~?. Our initial learning rate of 1073 is decayed
every 5000 steps by 0.96. Our model was trained for 20000 steps on two Tesla
K80 (approximately 2h).

Results are compared in terms of solution quality to Google OR tools, a
Vehicle Routing Problem (VRP) solver that combines local search algorithms
(cheapest insertion) and meta-heuristics, the heuristic of Christofides [24], the
well-known Lin-Kernighan heuristic (LK-H) [25] and Concorde exact TSP solver
(which yields an optimal solution). Note that, even though LK-H is a heuristic,
the average tour lengths of LK-H are very close to those of Concorde. Thus, the
LK-H results are omitted from the Table. We refer to Google Brain’s Pointer
Network trained with RL [1] as Ptr. For the TSP, we run the actor on a batch of
a single input graph. The more we sample, the more likely we will visit the opti-
mal tour. Table 1 compares the different sampling methods with a batch of size
128. 2-opt is used to improve the best tour found by our model (model+2opt).
For the instances TSP100, experiments were conducted with our model trained
on TSP50. In terms of computing time, all the instances were solved within
a fraction of second. For TSP50, the average computing time per instance are
0.05s for Concorde, 0.14s for LK-H and 0.02s for OR-Tools on a single CPU, as
well as 0.30s for the pointer network and 0.06s for our model on a single GPU.

The results clearly show that our model is competitive with existing heuristics
for the TSP both in terms of optimality and running time. We provide the
following insights based on the experimental results.

— LSTM vs. Explicitly forgetting: Our results suggest that keeping in mem-
ory the last three sampled actions during decoding performs on par with [1]
which uses a LSTM network. More generally, this raises the question of what
information is useful to take optimal decisions.
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Table 1. Average tour length (lower is better)

Task Model | Model | Ptr Ptr Ptr Christofides | OR | Concorde
+ 2opt | supervised | greedy | sample tools | (optimal)
TSP20 |3.84 |3.82 3.88 3.89 - 4.30 3.85 | 3.82
TSP50 |5.81 |5.77 6.09 5.95 5.80 6.62 5.80 |5.68
TSP100 | 8.85* |8.16" |10.81 8.30 8.05 9.18 7.99 | 7.77

*N.B.: Results for TSP100 were obtained with our model trained on TSP50

— Results for TSP100: For TSP100 solved by our model pre-trained on
TSP50 (see also Fig.3 in Appendix), our approach performs relatively well
even though it was not directly trained on the same instance size as in [1].
This suggests that our model can generalize heuristics to unseen instances.

— AI-OR Hybridization: As opposed to [1] which builds an end-to-end deep
learning pipeline for the TSP, we combine heuristics learned by RL with local-
search (2-opt) to quickly improve solutions sampled from our policy without
increasing the running time during inference. Our actor together with this
hybridization achieves approximately 5x speedup compared to the framework
of [1].

6 Conclusion

Solving Combinatorial Optimization is difficult in general. Thanks to decades of
research, solvers for the Traveling Salesman Problem (TSP) are highly efficient,
able to solve large instances in a few computation time. With little engineering
and no labels, Neural Networks trained with Reinforcement Learning are able
to learn clever heuristics (or distribution over city permutations) for the TSP.
Our code is made available on Github!.

We plan to investigate how to extend our model to constrained variants of
the TSP, such as the TSP with time windows, an important and practical TSP
variant which is much more difficult to solve. We believe that Markov Decision
Processes (MDP) provide a sound framework to address feasibility in general.
One contribution we would like to emphasize here is that simple heuristics can be
used in conjunction with Deep Reinforcement Learning, shedding light on inter-
esting hybridization between Artificial Intelligence (AI) and Operations Research
(OR). We encourage more contributions of this type.
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! https://github.com/MichelDeudon/encode-attend-navigate.
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Appendix: supplementary materials

Literature review on optimization algorithms for the TSP

The best known exact dynamic programming algorithm for the TSP has a com-
plexity of O(2"n?), making it infeasible to scale up to large instances (e.g., 40
nodes). Nevertheless, state of the art TSP solvers, thanks to handcrafted heuris-
tics that describe how to navigate the space of feasible solutions in an efficient
manner, can provably solve to optimality symmetric TSP instances with thou-
sands of nodes. Concorde [3], known as the best exact TSP solvers, makes use of
cutting plane algorithms, iteratively solving linear programming relaxations of
the TSP, in conjunction with a branch-and-bound approach that prunes parts
of the search space that provably will not contain an optimal solution.

The MIP formulation of the TSP allows for tree search with Branch & Bound
which partitions (Branch) and prunes (Bound) the search space by keeping track
of upper and lower bounds for the objective of the optimal solution. Search
strategies and selection of the variable to branch on influence the efficiency of
the tree search and heavily depend on the application and the physical meaning
of the variables. Machine Learning (ML) has been successfully used for variable
branching in MIP by learning a supervised ranking function that mimics Strong
Branching, a time-consuming strategy that produces small search trees [4]. The
use of ML in branching decisions in MIP has also been studied in [5].
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Fig. 1. Our neural encoder. Figure modified from [19].
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Fig. 3. 2D TSP100 instances sampled with our model trained on TSP50 (left) followed
by a 20pt post processing (right)

For constrained based scheduling, filtering techniques from the OR commu-
nity aim to drastically reduce the search space based on constraints and the
objective. For instance, one could identify mandatory and undesirable edges
and force edges based on degree constraint as in [6]. Another approach consists
in building a relaxed Multivalued Decision Diagrams (MDD) that represents a
superset of feasible orderings as an acyclic graph. Through a cycle of filtering
and refinement, the relaxed MDD approximates an exact MDD, i.e., one that
exactly represents the feasible orderings [7].
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