
Willem-Jan van Hoeve (Ed.)

 123

LN
CS

 1
08

48

15th International Conference, CPAIOR 2018
Delft, The Netherlands, June 26–29, 2018
Proceedings

Integration of Constraint Programming,
Artificial Intelligence,
and Operations Research

Lecture Notes in Computer Science 10848

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Willem-Jan van Hoeve (Ed.)

Integration of Constraint Programming,
Artificial Intelligence,
and Operations Research

15th International Conference, CPAIOR 2018
Delft, The Netherlands, June 26–29, 2018
Proceedings

123

Editor
Willem-Jan van Hoeve
Carnegie Mellon University
Pittsburgh, PA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-93030-5 ISBN 978-3-319-93031-2 (eBook)
https://doi.org/10.1007/978-3-319-93031-2

Library of Congress Control Number: 2018944423

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers that were presented at the 15th International Con-
ference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR 2018), held in Delft, The Netherlands, June 26–29,
2018. It was co-located with the 28th International Conference on Automated Planning
and Scheduling (ICAPS 2018).

The conference received a total of 111 submissions, including 96 regular paper and
15 extended abstract submissions. The regular papers reflect original unpublished
work, whereas the extended abstracts contain either original unpublished work or a
summary of work that was published elsewhere. Each regular paper was reviewed by at
least three Program Committee members, which was followed by an author response
period and a general discussion by the Program Committee. The extended abstracts
were reviewed for appropriateness for the conference. At the end of the reviewing
period, 47 regular papers were accepted for presentation during the conference and
publication in this volume, and nine abstracts were accepted for presentation at the
conference. Three papers were published directly in the journal Constraints via a
fast-track review process. The abstracts of these papers can be found in this volume.
The EasyChair system was used to handle the submissions, reviews, discussion, and
proceedings preparation.

In addition to the regular papers and extended abstracts, three invited talks were
given, by Michela Milano (University of Bologna; joint invited talk with ICAPS),
Thorsten Koch (Zuse Institute Berlin and Technische Universität Berlin), and Paul
Shaw (IBM). The abstracts of the invited talks can also be found in this volume.

The conference program included a Master Class on the topic “Data Science Meets
Combinatorial Optimization,” with the following invited talks:

• Siegfried Nijssen (Université catholique de Louvain): Introduction to Machine
Learning and Data Mining

• Tias Guns (Vrije Universiteit Brussel): Data Mining Using Constraint Programming
• Kate Smith-Miles (University of Melbourne): Instance Spaces for Objective

Assessment of Algorithms and Benchmark Test Suites
• Bistra Dilkina (University of Southern California): Machine Learning for Branch

and Bound
• Elias Khalil (Georgia Institute of Technology): Learning Combinatorial Opti-

mization Algorithms over Graphs
• Barry O’Sullivan (University College Cork): Recent Applications of Data Science

in Optimization and Constraint Programming

The organization of this conference would not have been possible without the help
of many individuals. First, I would like to thank the Program Committee members and
external reviewers for their hard work. Several Program Committee members deserve
additional thanks because of their help with timely reviewing of fast-track papers,

shepherding regular papers, or overseeing the discussion of papers for which I had a
conflict of interest. I am also particularly thankful to David Bergman (Master Class
Chair), Bistra Dilkina (Publicity Chair), and Joris Kinable (Sponsorship Chair) for their
help in organizing this conference. Special thanks is reserved for the conference chair,
Mathijs de Weerdt, who also acted as the liaison with Delft University and the orga-
nization of ICAPS. His support was instrumental in making this event a success.

Lastly, I want to thank all sponsors for their generous contributions. At the time of
writing, these include: the Artificial Intelligence journal, Decision Brain, SAS,
Springer, Delft University of Technology, the Association for Constraint Programming
(ACP), AIMMS, Gurobi, GAMS, Pipple, the European Association for Artificial
Intelligence (EurAI), and Cosling.

April 2018 Willem-Jan van Hoeve

VI Preface

Organization

Program Chair

Willem-Jan van Hoeve Carnegie Mellon University, USA

Conference Chairs

Mathijs de Weerdt Delft University of Technology, The Netherlands
Willem-Jan van Hoeve Carnegie Mellon University, USA

Master Class Chair

David Bergman University of Connecticut, USA

Publicity Chair

Bistra Dilkina University of Southern California, USA

Sponsorship Chair

Joris Kinable Eindhoven University of Technology, The Netherlands

Program Committee

Tobias Achterberg Gurobi, Germany
Chris Beck University of Toronto, Canada
Nicolas Beldiceanu IMT Atlantique, France
David Bergman University of Connecticut, USA
Timo Berthold Fair Isaac Germany GmbH, Germany
Natashia Boland Georgia Institute of Technology, USA
Andre Augusto Cire University of Toronto, Canada
Mathijs de Weerdt Delft University of Technology, The Netherlands
Bistra Dilkina University of Southern California, USA
Ambros Gleixner Zuse Institute Berlin, Germany
Carla Gomes Cornell University, USA
Tias Guns Vrije Universiteit Brussel, Belgium
Matti Järvisalo University of Helsinki, Finland
Serdar Kadioglu Oracle Corporation, USA
Joris Kinable Eindhoven University of Technology, The Netherlands
Philippe Laborie IBM, France
Jeff Linderoth University of Wisconsin-Madison, USA
Andrea Lodi Polytechnique Montréal, Canada

Michele Lombardi University of Bologna, Italy
Laurent Michel University of Connecticut, USA
Michela Milano University of Bologna, Italy
Nina Narodytska VMware Research, USA
Siegfried Nijssen Université catholique de Louvain, Belgium
Laurent Perron Google France, France
Gilles Pesant Polytechnique Montréal, Canada
Jean-Charles Régin Université Nice-Sophia Antipolis, France
Andrea Rendl University of Klagenfurt, Austria
Louis-Martin Rousseau Polytechnique Montréal, Canada
Ashish Sabharwal Allen Institute for Artificial Intelligence (AI2), USA
Domenico Salvagnin University of Padua, Italy
Pierre Schaus Université catholique de Louvain, Belgium
Andreas Schutt CSIRO and The University of Melbourne, Australia
Peter Stuckey CSIRO and The University of Melbourne, Australia
Michael Trick Carnegie Mellon University, USA
Charlotte Truchet Université de Nantes, France
Pascal Van Hentenryck University of Michigan, USA
Willem-Jan van Hoeve Carnegie Mellon University, USA
Alessandro Zanarini ABB Corporate Research, Switzerland

Additional Reviewers

Babaki, Behrouz
Bai, Junwen
Belov, Gleb
Björck, Johan
Bliem, Bernhard
Booth, Kyle E. C.
Bridi, Thomas
Cherkaoui, Rachid
Cohen, Eldan
Csizmadia, Zsolt
Davarnia, Danial
De Filippo, Allegra
de Una, Diego
Dey, Santanu
Duc Vu, Minh
Emadikhiav, Mohsen
Fages, Jean-Guillaume
Farias, Vivek
Fischetti, Matteo
Flener, Pierre
Gagnon, Samuel

Gavanelli, Marco
Gottwald, Robert Lion
Grenouilleau, Florian
Gualandi, Stefano
Hendel, Gregor
Hojny, Christopher
Huang, Teng
Khalil, Elias
Kimura, Ryo
Kiziltan, Zeynep
Legrain, Antoine
Lin, Qin
Lippi, Marco
Lo Bianco, Giovanni
Lozano Sanchez, Leonardo
Marinakis, Adamantios
McCreesh, Ciaran
Mehrani, Saharnaz
Miltenberger, Matthias
Müller, Benjamin
Nonato, Maddalena

VIII Organization

Olivier, Philippe
Pecin, Diego
Perez, Guillaume
Pralet, Cédric
Prouvost, Antoine
Raghunathan, Arvind
Rehfeldt, Daniel
Roli, Andrea
Römer, Michael
Serra, Thiago
Serrano, Felipe

Shi, Qinru
Tanneau, Mathieu
Tesch, Alexander
Tubertini, Paolo
Turner, Mark
Urli, Tommaso
Van Cauwelaert, Sascha
van den Bogaerdt, Pim
Vigerske, Stefan
Witzig, Jakob

Extended Abstracts

The following extended abstracts were accepted for presentation at the conference:

• Magnus Björk, Pawel Pietrzak and Andriy Svynaryov: Modelling Real-World Strict
Seniority Bidding Problems in Airline Crew Rostering

• Emir Demirović, Nicolas Schwind, Tenda Okimoto and Katsumi Inoue: Recover-
able Team Formation: Building Teams Resilient to Change

• Andreas Ernst, Dhananjay Thiruvady, Davaatseren Baatar, Angus Kenny, Mohan
Krishnamoorthy and Gaurav Singh: Mining, Matheuristics, and Merge-Search

• Alexandre Gondran and Laurent Moalic: Finding the Chromatic Number by
Counting k-Colorings with a Randomized Heuristic

• Elias Khalil and Bistra Dilkina: Training Binary Neural Networks with Combina-
torial Algorithms

• Varun Khandelwal: Solving Real-World Optimization Problems Using Artificial
Intelligence

• Shiang-Tai Liu: Objective Bounds of Quadratic Programming with Interval Coef-
ficients and Equality Constraints

• Günther Raidl, Elina Rönnberg, Matthias Horn and Johannes Maschler: An A*-
Based Algorithm to Derive Relaxed Decision Diagrams for a Prize-Collecting
Sequencing Problem

• Mark Wallace and Aldeida Aleti: Using CP to Prove Local Search Is Effective

Organization IX

Abstracts of Invited Talks

Same, Same, but Different: A Mostly Discrete
Tour Through Optimization

Thorsten Koch1,2

1 Zuse Institute Berlin, Takustr 7, 14195, Berlin, Germany
2 Technische Universität Berlin, Str. des 17. Juni 136, 10623, Berlin, Germany

koch@zib.de

http://www.zib.de/koch

Abstract. This talk will give a short tour through selected topics in mathe-
matical optimization. Though these topics are quite diverse, they also have a lot
in common.

The tour will start at mixed-integer non-linear optimization (MINLP), pro-
ceed to mixed-integer optimization (MILP), it will then make short detour to
linear programming (LP) and exact solutions, then proceed to algorithms,
software, modelling, and parallel computing, jumping to gas networks as an
application, from there visit Steiner tree problems, and finally arrive back at
MILP.

On route, we will take the opportunity to point out a few challenges and open
problems.

http://orcid.org/0000-0002-1967-0077

Empirical Model Learning: Boosting
Optimization Through Machine Learning

Michela Milano

DISI, University of Bologna, Bologna, Italy
michela.milano@unibo.it

Abstract. One of the biggest challenges in the design of decision support and
optimization tools for complex, real-world, systems is coming up with a good
combinatorial model. The traditional way to craft a combinatorial model is
through interaction with domain experts: this approach provides model com-
ponents (objective functions, constraints), but with limited accuracy guarantees.
Often enough, accurate predictive models (e.g. simulators) can be devised, but
they are too complex or too slow to be employed in combinatorial optimization.

In this talk, we propose a methodology called Empirical Model Learning
(EML) that relies on Machine Learning for obtaining decision model compo-
nents that link decision variables and observables, using data either extracted
from a predictive model or harvested from a real system. We show how to
ground EML on a case study of thermal-aware workload allocation and
scheduling. We show how to encapsulate different machine learning models in a
number of optimization techniques.

We demonstrate the effectiveness of the EML approach by comparing our
results with those obtained using expert-designed models.

Ten Years of CP Optimizer

Paul Shaw

IBM. 1681, route des Dolines, 06560 Valbonne, France
paul.shaw@fr.ibm.com

Abstract. CP Optimizer is the IBM constraint solving engine and part of
CPLEX Optimization Studio. This talk takes a look at both the motivation and
history of CP Optimizer, and the ten year journey from its beginnings until
today.

At selected points, I will delve into the operation of different features of the
engine, and the motivation behind them, together with how performance
improvements in the automatic search were achieved.

From more recent history, I will concentrate on important developments such
as the CP Optimizer file format, presolve, explanations for insolubility and
backtrack, and lower bounds on the objective function.

Abstracts of Fast-Track
Journal Papers

Online Over Time Processing
of Combinatorial Problems

Robinson Duque1, Alejandro Arbelaez2, and Juan Francisco Díaz1

1 Universidad del Valle, Cali, Colombia
{robinson.duque,juanfco.diazg}@correounivalle.edu.co

2 Cork Institute of Technology, Cork, Ireland
alejandro.arbelaez@cit.ie

In an online environment, jobs arrive over time and there is no information in advance
about how many jobs are going to be processed and what their processing times are
going to be. We study the online scheduling of Boolean Satisfiability (SAT) and Mixed
Integer Programming (MIP) instances that are well-known NP-complete problems.
Typical online machine scheduling approaches assume that jobs are completed at some
point to minimize functions related to completion time (e.g., makespan, minimum
lateness, total weighted tardiness, etc).

In this work, we formalize and present an online over time problem where arriving
instances are subject to waiting time constraints. To formalize our problem, we presented
an extension of the Graham notation (ajbjc) that allowed us to represent the necessary
constraints. We also proposed an approach for online scheduling of combinatorial
problems that consisted of three parts. Namely, training/testing models for processing
time estimations; implementation of a hybrid scheduling policy using SJF and MIP; and
usage of instance interruption heuristics to mitigate the impact of inaccurate predictions.

Unlike other approaches, we attempt to maximize the number of solved instances
using single and multiple machine configurations. Our empirical evaluation with
well-known SAT and MIP instances, suggest that our interruption heuristics can
improve generic ordering policies to solve up to 21.6x and 12.2x more SAT and MIP
instances. Additionally, our hybrid approach observed results that are close to a semi
clairvoyant policy (SCP) featuring perfect estimations. We observed that with very
limited data to train the models our approach reports scenarios with up to 90% of
solved instances with respect to the SCP.

Finally, we experimented using models that were trained with different feature
families and observed an interesting trade-off between the quality of the predictions and
the computational cost to calculate such features. For instance, Trivial features are
basically free to compute but they have impact on the quality of the models. On the
other hand, Cheap features offer an interesting trade-off between prediction quality and
computational cost. This abstract refers to the full paper [1].

Reference

1. Duque, R., Arbelaez, A., Díaz, J.F.: Online over time processing of combinatorial problems.
In: Constraints Journal Fast Track of CPAIOR (2018)

Deep Neural Networks as 0-1 Mixed Integer
Linear Programs: A Feasibility Study

Matteo Fischetti1 and Jason Jo2

1 Department of Information Engineering (DEI), University of Padova
matteo.fischetti@unipd.it

2 Montreal Institute for Learning Algorithms (MILA) and Institute
for Data Valorization (IVADO), Montreal
jason.jo.research@gmail.com

Abstract. Deep Neural Networks (DNNs) are very popular these days, and are
the subject of a very intense investigation. A DNN is made by layers of internal
units (or neurons), each of which computes an affine combination of the output
of the units in the previous layer, applies a nonlinear operator, and outputs the
corresponding value (also known as activation). A commonly-used nonlinear
operator is the so-called rectified linear unit (ReLU), whose output is just the
maximum between its input value and zero. In this (and other similar cases like
max pooling, where the max operation involves more than one input value), for
fixed parameters one can model the DNN as a 0-1 Mixed Integer Linear Pro-
gram (0-1 MILP) where the continuous variables correspond to the output
values of each unit, and a binary variable is associated with each ReLU to model
its yes/no nature. In this paper we discuss the peculiarity of this kind of 0-1
MILP models, and describe an effective bound-tightening technique intended to
ease its solution. We also present possible applications of the 0-1 MILP model
arising in feature visualization and in the construction of adversarial examples.
Computational results are reported, aimed at investigating (on small DNNs) the
computational performance of a state-of-the-art MILP solver when applied to a
known test case, namely, hand-written digit recognition.

Intruder Alert! Optimization Models
for Solving the Mobile Robot

Graph-Clear Problem

Michael Morin1,2, Margarita P. Castro1, Kyle E. C. Booth1,
Tony T. Tran1, Chang Liu1, and J. Christopher Beck1

1 Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, ON, Canada

{mmorin,mpcastro,kbooth,tran,cliu,jcb}@mie.utoronto.ca
2 Department of Operations and Decision Support Systems,

Université Laval, Québec, QC, Canada
michael.morin@osd.ulaval.ca

We investigate optimization-based approaches and heuristic methods for the
graph-clear problem (GCP), an NP-Hard variant of the pursuit-evasion problem. The
goal is to find a schedule that minimizes the total number of robots needed to “clear”
possible intruders from a facility, represented as a graph. The team of robots can use
sweep actions to remove intruders from contaminated nodes and block actions to prevent
intruders from traveling between nodes. A solution to the GCP is a schedule of sweep
and block actions that detects all potential intruders in the facility while minimizing the
number of robots required. Solutions such that cleared vertices at each time step form a
connected subgraph are termed contiguous, while those that prevent recontamination
and, therefore, the need to sweep a node more than once, are called progressive.

We prove, via a counter-example, that enforcing contiguity may remove all optimal
solutions and, conversely, that preventing two special forms of recontamination does
not remove all optimal solutions. However, the completeness for the general case of
progressive solutions remains open.

We then present mixed-integer linear programming (MILP) and constraint pro-
gramming (CP) approaches, as well as new heuristic variants for solving the GCP and
compare them to previously proposed heuristics. This is the first time that MILP and
CP have been applied to the problem. Our experimental results indicate that our
heuristic modifications improve upon the heuristics in the literature, that constraint
programming finds better solutions than the heuristics in run-times reasonable for the
application, and that mixed-integer linear programming is the superior approach for
proving optimality. Nonetheless, for larger problem instances, the optimality gap for
CP and MILP remains very large, indicating the need for future research and
improvement. Given the performance of CP and MILP compared to the heuristic
approaches, coupled with the appeal of the model-and-solve framework, we conclude
that they are currently the most suitable approaches for the graph-clear problem.

Margarita P. Castro, Kyle E. C. Booth— Equally contributing authors.

Contents

Time-Bounded Query Generator for Constraint Acquisition 1
Hajar Ait Addi, Christian Bessiere, Redouane Ezzahir,
and Nadjib Lazaar

Propagating LEX, FIND and REPLACE with Dashed Strings 18
Roberto Amadini, Graeme Gange, and Peter J. Stuckey

Designing Fair, Efficient, and Interpretable Policies for Prioritizing
Homeless Youth for Housing Resources . 35

Mohammad Javad Azizi, Phebe Vayanos, Bryan Wilder, Eric Rice,
and Milind Tambe

An Efficient Relaxed Projection Method for Constrained Non-negative
Matrix Factorization with Application to the Phase-Mapping Problem
in Materials Science . 52

Junwen Bai, Sebastian Ament, Guillaume Perez, John Gregoire,
and Carla Gomes

Dealing with Demand Uncertainty in Service Network and Load
Plan Design . 63

Ahmad Baubaid, Natashia Boland, and Martin Savelsbergh

Energy-Aware Production Scheduling with Power-Saving Modes 72
Ondřej Benedikt, Přemysl Šůcha, István Módos, Marek Vlk,
and Zdeněk Hanzálek

EpisodeSupport: A Global Constraint for Mining Frequent Patterns
in a Long Sequence of Events . 82

Quentin Cappart, John O. R. Aoga, and Pierre Schaus

Off-Line and On-Line Optimization Under Uncertainty: A Case Study
on Energy Management . 100

Allegra De Filippo, Michele Lombardi, and Michela Milano

Reasoning on Sequences in Constraint-Based Local Search Frameworks 117
Renaud De Landtsheer, Yoann Guyot, Gustavo Ospina,
Fabian Germeau, and Christophe Ponsard

Constraint Programming for High School Timetabling:
A Scheduling-Based Model with Hot Starts . 135

Emir Demirović and Peter J. Stuckey

Epiphytic Trees: Relational Consistency Applied to Global
Optimization Problems. 153

Guilherme Alex Derenievicz and Fabiano Silva

Learning Heuristics for the TSP by Policy Gradient. 170
Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak,
and Louis-Martin Rousseau

Three-Dimensional Matching Instances Are Rich in Stable Matchings 182
Guillaume Escamocher and Barry O’Sullivan

From Backdoor Key to Backdoor Completability: Improving a Known
Measure of Hardness for the Satisfiable CSP . 198

Guillaume Escamocher, Mohamed Siala, and Barry O’Sullivan

Constrained-Based Differential Privacy: Releasing Optimal Power
Flow Benchmarks Privately . 215

Ferdinando Fioretto and Pascal Van Hentenryck

Chasing First Queens by Integer Programming . 232
Matteo Fischetti and Domenico Salvagnin

Accelerating Counting-Based Search . 245
Samuel Gagnon and Gilles Pesant

Model Agnostic Solution of CSPs via Deep Learning: A Preliminary Study . . . 254
Andrea Galassi, Michele Lombardi, Paola Mello, and Michela Milano

Boosting Efficiency for Computing the Pareto Frontier on Tree
Structured Networks . 263

Jonathan M. Gomes-Selman, Qinru Shi, Yexiang Xue,
Roosevelt García-Villacorta, Alexander S. Flecker, and Carla P. Gomes

Bandits Help Simulated Annealing to Complete a Maximin Latin
Hypercube Design. 280

Christian Hamelain, Kaourintin Le Guiban, Arpad Rimmel,
and Joanna Tomasik

A Dynamic Discretization Discovery Algorithm for the Minimum Duration
Time-Dependent Shortest Path Problem . 289

Edward He, Natashia Boland, George Nemhauser,
and Martin Savelsbergh

Observations from Parallelising Three Maximum Common (Connected)
Subgraph Algorithms. 298

Ruth Hoffmann, Ciaran McCreesh, Samba Ndojh Ndiaye,
Patrick Prosser, Craig Reilly, Christine Solnon, and James Trimble

XXIV Contents

Horizontally Elastic Not-First/Not-Last Filtering Algorithm for Cumulative
Resource Constraint. 316

Roger Kameugne, Sévérine Betmbe Fetgo, Vincent Gingras,
Yanick Ouellet, and Claude-Guy Quimper

Soft-Regular with a Prefix-Size Violation Measure 333
Minh Thanh Khong, Christophe Lecoutre, Pierre Schaus,
and Yves Deville

Constraint and Mathematical Programming Models for Integrated Port
Container Terminal Operations . 344

Damla Kizilay, Deniz Türsel Eliiyi, and Pascal Van Hentenryck

Heuristic Variants of A� Search for 3D Flight Planning 361
Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen

Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia 377
Ole Kröger, Carleton Coffrin, Hassan Hijazi, and Harsha Nagarajan

Objective Landscapes for Constraint Programming 387
Philippe Laborie

An Update on the Comparison of MIP, CP and Hybrid Approaches
for Mixed Resource Allocation and Scheduling. 403

Philippe Laborie

Modelling and Solving the Senior Transportation Problem 412
Chang Liu, Dionne M. Aleman, and J. Christopher Beck

Solver Independent Rotating Workforce Scheduling 429
Nysret Musliu, Andreas Schutt, and Peter J. Stuckey

Greedy Randomized Search for Scalable Compilation of Quantum Circuits. . . . 446
Angelo Oddi and Riccardo Rasconi

A Comparison of Optimization Methods for Multi-objective Constrained
Bin Packing Problems . 462

Philippe Olivier, Andrea Lodi, and Gilles Pesant

A Oðn log2 nÞ Checker and Oðn2 log nÞ Filtering Algorithm for the
Energetic Reasoning . 477

Yanick Ouellet and Claude-Guy Quimper

The WEIGHTEDCIRCUITSLMAX Constraint . 495
Kim Rioux-Paradis and Claude-Guy Quimper

A Local Search Framework for Compiling Relaxed Decision Diagrams 512
Michael Römer, Andre A. Cire, and Louis-Martin Rousseau

Contents XXV

Symmetry Breaking Inequalities from the Schreier-Sims Table 521
Domenico Salvagnin

Frequency-Based Multi-agent Patrolling Model and Its Area Partitioning
Solution Method for Balanced Workload . 530

Vourchteang Sea, Ayumi Sugiyama, and Toshiharu Sugawara

Algorithms for Sparse k-Monotone Regression . 546
Sergei P. Sidorov, Alexey R. Faizliev, Alexander A. Gudkov,
and Sergei V. Mironov

Revisiting the Self-adaptive Large Neighborhood Search 557
Charles Thomas and Pierre Schaus

A Warning Propagation-Based Linear-Time-and-Space Algorithm
for the Minimum Vertex Cover Problem on Giant Graphs 567

Hong Xu, Kexuan Sun, Sven Koenig, and T. K. Satish Kumar

Symbolic Bucket Elimination for Piecewise Continuous
Constrained Optimization . 585

Zhijiang Ye, Buser Say, and Scott Sanner

Learning a Classification of Mixed-Integer Quadratic
Programming Problems . 595

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon

Fleet Scheduling in Underground Mines Using Constraint Programming 605
Max Åstrand, Mikael Johansson, and Alessandro Zanarini

Author Index . 615

XXVI Contents

Time-Bounded Query Generator
for Constraint Acquisition

Hajar Ait Addi1, Christian Bessiere2, Redouane Ezzahir1,
and Nadjib Lazaar2(B)

1 LISTI/ENSA, University of Ibn Zohr, Agadir, Morocco
{hajar.aitaddi,r.ezzahir}@uiz.ac.ma

2 LIRMM, University of Montpellier, CNRS, Montpellier, France
{bessiere,lazaar}@lirmm.fr

Abstract. QuAcq is a constraint acquisition algorithm that assists a
non-expert user to model her problem as a constraint network. QuAcq

generates queries as examples to be classified as positive or negative.
One of the drawbacks of QuAcq is that generating queries can be time-
consuming. In this paper we present Tq-gen, a time-bounded query
generator. Tq-gen is able to generate a query in a bounded amount
of time. We rewrite QuAcq to incorporate the Tq-gen generator. This
leads to a new algorithm called T-quacq. We propose several strategies
to make T-quacq efficient. Our experimental analysis shows that thanks
to the use of Tq-gen, T-quacq dramatically improves the basic QuAcq

in terms of time consumption, and sometimes also in terms of number
of queries.

1 Introduction

Constraint programming (CP) has made considerable progress over the last
forty years, becoming a powerful paradigm for modeling and solving combi-
natorial problems. However, modeling a problem as a constraint network still
remains a challenging task that requires some expertise in the field. Several
constraint acquisition systems have been introduced to support the uptake of
constraint technology by non-experts. Freuder and Wallace proposed the match-
maker agent [7]. This agent interacts with the user while solving her prob-
lem. The user explains why she considers a proposed solution as a wrong one.
Lallouet et al. proposed a system based on inductive logic programming with the
use of the structure of the problem as a background knowledge [10]. Beldiceanu
and Simonis have proposed ModelSeeker, a system devoted to problems with
regular structures and based on the global constraint catalog [2]. Bessiere et al.
proposed Conacq, which generates membership queries (i.e., complete exam-
ples) to be classified by the user [4,6]. Shchekotykhin and Friedrich have extended

This work was supported by Scholarship No. 7587 of the EU METALIC non redun-
dant program.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 1–17, 2018.
https://doi.org/10.1007/978-3-319-93031-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_1&domain=pdf

2 H. Ait Addi et al.

Conacq to allow the user to provide arguments as constraints to speed-up the
convergence [12].

Bessiere et al. proposed QuAcq (for Quick Acquisition), an active learn-
ing system that is able to ask the user to classify partial queries [3,5]. QuAcq

iteratively computes membership queries. If the user says yes, QuAcq reduces
the search space by discarding all constraints violated by the positive example.
When the answer is no, QuAcq finds the scope of one of the violated con-
straints of the target network in a number of queries logarithmic in the size of
the example. This key component of QuAcq allows it to always converge on
the target set of constraints in a polynomial number of queries. Arcangioli et al.
have proposed the MultiAcq system as an attempt to make QuAcq more effi-
cient in practice in terms of number of queries [1]. Instead of finding the scope
of one constraint, MultiAcq reports all the scopes of constraints of the target
network violated by the negative example. Despite the good theoretical bound
of QuAcq-like approaches in terms of number of queries, generating a member-
ship query is NP-hard. It can then be too time-consuming when interacting with
a human user. For instance, QuAcq can take more than 20 min to generate a
query during the acquisition process of the sudoku constraint network.

In this paper, we introduce Tq-gen, a time-bounded query generator.
Tq-gen generates queries in an amount of time not exceeding a waiting time
upper bound. We incorporate the Tq-gen generator into the QuAcq algorithm
to reduce the time complexity of generating queries. This leads to a new ver-
sion called T-quacq. Our theoretical and experimental analyses show that the
bounded waiting time between queries in T-quacq is at the risk of reaching a
premature convergence state and asking more queries. We then propose strate-
gies to make T-quacq efficient. We experimentally evaluate the benefit of these
strategies on several benchmark problems. The results show that T-quacq com-
bined with a good strategy dramatically improves QuAcq not only in terms of
time needed to generate queries but also in number of queries, while achieving
the convergence state in most cases.

The rest of this paper is organized as follows. Section 2 presents the necessary
background on constraint acquisition. Section 3 presents the algorithm Tq-gen

for time-bounded query generation. Section 4 describes how we use Tq-gen in
QuAcq to get the T-quacq algorithm. Section 5 analyzes the correctness of the
algorithm. Experimental results and strategies to make T-quacq efficient are
reported in Sect. 6. Section 7 concludes the paper.

2 Background

The constraint acquisition process can be seen as an interplay between the user
and the learner. User and learner need to share a vocabulary to communicate. We
suppose this vocabulary is a set of n variables X = {x1, . . . , xn} and a domain
D = {D(x1), . . . , D(xn)}, where D(xi) ⊂ Z is the finite set of values for xi. A
constraint cY is defined by a sequence Y of variables of X, called the constraint
scope, and the relation c over D of arity |Y |. An assignment eY on a set of

Time-Bounded Query Generator for Constraint Acquisition 3

variables Y ⊆ X violates a constraint cZ (or eY is rejected by cZ) if Z ⊆ Y and
the projection eZ of eY on the variables in Z is not in c. A constraint network is a
set C of constraints on the vocabulary (X,D). An assignment on X is a solution
of C if and only if it does not violate any constraint in C. sol(C) represents the
set of solutions of C.

In addition to the vocabulary, the learner owns a language Γ of relations,
from which it can build constraints on specified sets of variables. Adapting terms
from machine learning, the constraint bias, denoted by B, is a set of constraints
built from the constraint language Γ on the vocabulary (X,D), from which
the learner builds the constraint network. We denote by B[Y] the set of all
constraints cZ in B, where Z ⊆ Y . The target network is a network CT such
that for any example e ∈ DX = Πxi∈XD(xi), e is a solution of CT if and only
if e is a solution of the problem that the user has in mind.

A membership query Ask(e) is a classification question asked to the user,
where e is a complete assignment in DX . The answer to Ask(e) is yes if and only
if e ∈ sol(CT). A partial query Ask(eY), with Y ⊆ X, is a classification question
asked to the user, where eY is a partial assignment in DY = Πxi∈Y D(xi). The
answer to Ask(eY) is yes if and only if eY does not violate any constraint in CT .
A classified assignment eY is called a positive or negative example depending
on whether Ask(eY) is yes or no. For any assignment eY on Y , κB(eY) denotes
the set of all constraints in B rejecting eY .

We now define convergence, which is the constraint acquisition problem we
are interested in. We are given a set E of (complete/partial) examples labeled by
the user as positive or negative. We say that a constraint network C agrees with
E if examples labeled as positive in E do not violate any constraint in C, and
examples labeled as negative violate at least one constraint in C. The learning
process has converged on the learned network CL ⊆ B if:

1. CL agrees with E,
2. For any other network C ′ ⊆ B agreeing with E, we have sol(C ′) = sol(CL).

We say that the learning process reached a premature convergence if only (1)
is guaranteed. If there does not exist any CL ⊆ B such that CL agrees with E,
we say that we have collapsed. This can happen when CT �⊆ B.

We finally define the class of biases that are good for a given time limit, that
is, those biases on which bounding the query generation time does not hurt.

Definition 1 (τ-good). Given a bias B on a vocabulary (X,D), given the max-
imum arity k of a constraint in B, and given τ a time limit, B is τ -good on
(X,D) if and only if ∀Y ⊂ X such that |Y | = k, ∀Ci, Cj ⊂ B[Y], finding an
assignment e on Y such that e ∈ sol(Ci) \ sol(Cj), or proving that none exists,
takes less than τ .

3 Time-Bounded Query Generation

To be able to exhibit its nice complexity in number of queries, QuAcq must be
able to generate non redundant queries. A query is non redundant if, whatever

4 H. Ait Addi et al.

Algorithm 1. Tq-gen

1 In α, τ, time bound: parameters;
2 InOut �: parameter; B: bias; CL: learned network;
3 time ← 0 ;
4 while B �= ∅ and time < time bound do
5 τ ← min(τ, time bound − time) ;
6 � ← max(�, minArity(B)) ;
7 choose Y ⊆ X s.t. |Y | = � ∧ B[Y] �= ∅ ;
8 eY ← solve(CL[Y] ∧ ¬B[Y]) in t < τ ;
9 if eY �= nil then return eY ;

10 else
11 if t < τ then
12 CL ← CL ∪ B[Y]; B ← B \ B[Y] ;
13 else � ← �α · �	 ;
14 time ← time + t ;

15 return nil;

the user’s answer, it allows us to reduce the learner’s version space (i.e., the
subset of 2B currently agreeing with all already classified examples). In the
context of QuAcq, a query Ask(e) is non redundant if e does not violate any
constraint in the currently learned network CL, and it violates at least one
constraint of the current bias B in which we look for the missing constraints
(i.e., κB(e) �= ∅), We denote such an example e by e |= (CL ∧ ¬B). QuAcq has
to solve an NP-hard problem to generate a non redundant query. Therefore, the
user can be asked to wait a long time from a query to another.

We propose Tq-gen, a query generator able to generate a query in a bounded
amount of time (time bound). We will see later that this bounded time is at
the risk of reaching premature convergence and/or asking more queries than
necessary. The idea behind Tq-gen is that instead of looking for an assignment
e on X such that e |= (CL ∧ ¬B), we look for a partial assignment eY such that
eY |= (CL[Y] ∧ ¬B[Y]), for some set Y ⊆ X.

3.1 Description of Tq-gen

The algorithm Tq-gen (see Algorithm 1) takes as input the set of variables X,
a reduction factor α ∈]0, 1[, a solving timeout τ , a time limit to generate a
query time bound, an expected query size �, a current bias of constraints B,
and a current learned network CL. We start by initializing the counter time
of the time Tq-gen has already consumed in its main loop. In line 5, we set
τ so that the next execution of the main loop cannot exceed time bound. In
line 7, we choose a subset Y of size �. To be able to generate a non redundant
query on Y , it is required that B[Y] is not empty. To guarantee that such an
Y exists, we need � to never be smaller than the smallest arity in B (line 6). In
line 8, Tq-gen tries to generate a query on Y of size � in a time less than τ .
If such a query is found in less than τ , we return it in line 9. Otherwise, either

Time-Bounded Query Generator for Constraint Acquisition 5

CL[Y] ∧ ¬B[Y] is unsatisfiable and τ is sufficient to prove it, or CL[Y] ∧ ¬B[Y]
is too hard to be solved in τ . If CL[Y] ∧ ¬B[Y] is unsatisfiable, the constraints
in B[Y] are redundant to CL and they can be removed from B (line 12). These
constraints have to be put in CL to avoid generating later a query violating
one of these redundant constraints, but they are useless in terms of the set of
solutions represented by CL. They can safely be removed from CL at the end of
the learning process. If CL[Y]∧¬B[Y] is too hard, we reduce the expected query
size � with a factor α (line 13). In line 14, the time spent to try to generate a
query is recorded in order to ensure that Tq-gen will never exceed the allocated
time time bound (see line 4). The last attempt shall not exceed the remaining
time (i.e., time bound − time) (line 5).

4 Using the Tq-gen Algorithm in QuAcq

In this section, we present T-quacq (Algorithm 2), an integration of Tq-gen

into QuAcq. T-quacq differs from the basic version presented in [3] at the
shaded lines (i.e., lines 2, 4, 7, 10 and 15).1

T-quacq initializes the constraint network CL to the empty set (line 1).
In line 2, the parameters of Tq-gen are initialized such that α ∈]0..1[and
� ∈ [minArity(B), |X|]. In line 4, we call Tq-gen to generate a query in bounded
time. If no query exists (i.e., B = ∅), then the algorithm reaches a convergence
state (line 6). If a query exists and Tq-gen is not able to return it in the
allocated time, T-quacq reaches a premature convergence (line 7). Otherwise,
we propose the example e to the user, who will answer by yes or no (line 8).
If the answer is yes, we can remove from B the set κB(e) of all constraints in
B that reject e (line 9). We can also adjust the expected size of the next query
following a given strategy (line 10). This function is discussed later in Sect. 6.3. If
the answer is no, we are sure that e violates at least one constraint of the target
network CT . We then act exactly as QuAcq by calling the function FindScope
to discover the scope of one of these violated constraints and FindC to select
which constraint with the given scope is violated by e (line 12). If a constraint
c is returned, we know that it belongs to the target network CT , we then add it
to the learned network CL (line 13). If no constraint is returned (line 14), this
is a condition for collapsing as we could not find in B a constraint rejecting one
of the negative examples. Functions FindScope and FindC are used exactly as
they appear in [3]. When the answer is no, we can also adjust the expected size
of the next query following a given strategy (line 15).

5 Theoretical Analysis

In this section we analyze the correctness of Tq-gen and T-quacq. The role
of Tq-gen is to return a query that is non redundant with all queries already
asked to the user.
1
QuAcq also contains a line for returning “collapse” when detecting an inconsistent
learned network. This line has been dropped from T-quacq because we allow it to
learn a target network without solutions.

6 H. Ait Addi et al.

Algorithm 2. T-quacq

1 CL ← ∅ ;

2 initialize(α, τ, time bound, �) ;
3 while true do

4 e ← Tq-gen (α, τ, time bound, �, B, CL) ;
5 if e = nil then
6 if B = ∅ then return “convergence on CL” ;

7 return “premature convergence on CL” ;

8 if Ask(e) = yes then
9 B ← B \ κB(e) ;

10 adjust(�, yes) ;

11 else
12 c ← FindC(e, FindScope(e, ∅, X, false)) ;
13 if c �= nil then CL ← CL ∪ {c} ;
14 else return “collapse” ;

15 adjust(�,no);

Proposition 1 (Soundness). Tq-gen is sound.

Proof. The only place where Tq-gen returns a query is line 9. By construction,
eY is an assignment which is solution of CL[Y] and that violates at least one
constraint from B[Y] (line 8). Thus, κB(eY) �= ∅, and by definition eY is a non
redundant query. 	

Proposition 2 (Termination). Given a bias B on the vocabulary (X,D), if
time bound < ∞ or if B is τ -good on (X,D), then Tq-gen terminates.

Proof. If time bound < ∞, it is trivial. Suppose now that B is τ -good on (X,D),
time bound = ∞, and Tq-gen never goes through line 9 (which would terminate
Tq-gen). At each execution of its main loop, Tq-gen executes either line 12
or line 13. � decreases strictly at each execution of line 13. Hence, after a finite
number of times, � will be less than or equal to the maximum arity in B. As B is
τ -good, the cutoff τ will no longer be reached in line 8, and the next executions
of the loop will all go through line 12. Thanks to line 6, � cannot be less than
the smallest arity in B. Thus, the set Y chosen in line 7 is guaranteed to have
a non empty B[Y]. As a result, B strictly decreases in size at each execution of
line 12, B will eventually be empty, and Tq-gen will terminate. 	

We now show that under some conditions Tq-gen cannot miss a non redun-
dant query, if one exists.

Proposition 3 (Completeness). If the bias B is τ -good, and time bound >
(|B|+�logα(k

n)) ·τ , with n = |X| and k the maximum arity in B, then Tq-gen

is complete.

Time-Bounded Query Generator for Constraint Acquisition 7

Proof. Tq-gen finishes by either returning a query in line 9 or nil in line 15. If a
query is returned, we are done as Tq-gen is sound (Proposition 1). Suppose nil
is returned in line 15. According to the assumption on time bound and the fact
that each execution of the main loop of Tq-gen takes at most τ seconds, we
know that Tq-gen has enough time to execute |B| + �logα(k

n) times its main
loop before returning nil in line 15. In each of these executions, line 12 or line
13 is executed. Each time line 13 is executed, � is reduced by multiplying it by
the factor α ∈]0..1[. As � cannot be greater than n when entering Tq-gen, after
�logα(k

n) executions, we are guaranteed that � ≤ n ·α�logα(k
n)� ≤ n · k

n = k. As B
is τ -good, Tq-gen will be able to solve the formula CL[Y] ∧ ¬B[Y] in less than
τ seconds for all Y , as |Y | = � ≤ k. As a result, Tq-gen has enough time for
|B| executions of the loop before reaching the time bound limit. Thanks to line
7, we know that the set Y has a non empty B[Y]. Thus, line 12 removes at least
one constraint from B, and B will be emptied before the time limit. Therefore,
we have converged, and there does not exist any non redundant query. 	

Theorem 1. If CT ⊆ B, T-quacq is guaranteed to reach (premature) conver-
gence. If in addition B is τ -good and time bound > (|B| + �logα(k

n)) · τ , with
n = |X| and k the maximum arity in B, then T-quacq converges.

Proof (Sketch). We first prove premature convergence. Let E be the set of all
examples generated during the execution of T-quacq and CL be the returned
network. If CL does not agree with E this means that there exists eY ∈ E such
that eY is positive and eY �|= CL, or eY is negative and eY |= CL. As FindScope
and FindC are sound, we only consider examples classified in line 8 of T-quacq.
Suppose first that in line 8, eY is positive (e+Y). By construction, eY has been
generated by satisfying CL[Y] (line 4), that is, � ∃cZ ∈ CL[Y] | eY �|= cZ at the
time of generating eY . As line 9 removes from B all constraints rejecting eY , we
are guaranteed that CL agrees with {e+Y } at the end of T-quacq. Suppose now
that eY is negative (e−

Y). As CT ⊆ B, FindC returns a constraint c rejecting eY

(line 12) and c is added to CL in line 13. Thus, CL agrees with {e−
Y } at the end.

We now prove that T-quacq converges when B is τ -good and time bound >
(|B|+�logα(k

n)) ·τ . By Proposition 3 we know that under this assumption, Tq-

gen always returns a non redundant query if one exists. As a result, Tq-gen

returns nil only when B has been emptied of all its redundant constraints in
line 9, which means that T-quacq has converged on CL. 	

6 Experiments

In this section, we experimentally analyze our new algorithms. We first describe
the benchmark instances. Second, we evaluate the validity of the time-bounded
query generation by comparing a baseline version of T-quacq to the QuAcq

algorithm. This baseline version allows us to observe the fundamental character-
istics of the approach. Based on these observations, we discuss possible strategies
and parameter settings that may make our approach more efficient. The only
parameter we will keep fixed in all our experiments is time bound, that we set

8 H. Ait Addi et al.

to 1 s, as we consider it as an acceptable waiting time for a human user [9]. All
tests were performed using the Choco solver2 version 4.0.4 with a simulation run
time cutoff of 3 h, 2 Gb of Java VM allowed memory on an Intel(R) Xeon(R) @
3.40 GHz.

6.1 Benchmarks

We used four benchmarks from the original QuAcq paper [3] (Random, Sudoku,
Golomb ruler, and Zebra), and two additional ones (Latin square, Graceful
graphs).

Random. We generated binary random target networks with 50 variables,
domains of size 10, and m binary constraints. The binary constraints are selected
from the language Γ = {=, �=,�,�, <,>}. We have launched our experiments
with m = 12, and m = 122.

Sudoku. The sudoku logic puzzle with 9 × 9 grid must be filled with numbers
from 1 to 9 in such a way that all the rows, all the columns, and the 9 non
overlapping 3×3 squares contain the numbers 1 to 9. The target network has 81
variables with domains of size 9, and 810 binary �= constraints on rows, columns
and squares. We use a bias of 19,440 binary constraints taken from the language
Γ = {=, �=�,�, <,>}.

Golomb Ruler (prob006 in [8]). The problem is to find a ruler where the dis-
tance between any two marks is different from that between any other two marks.
Golomb ruler is encoded as a target network with n variables corresponding to
the n marks. For our experiments, we selected the 8, 12, 16 and 20 marks ruler
instances with bias of 660, 3,698, 12,552, and 32,150 constraints, respectively,
generated using the language Γ = {=0, �=0,�,�, <,>, �zt

xy, �
zt
xy} where =0 and

�=0 respectively denote the unary constraints “equal zero” and “not equal zero”,
and �

zt
xy and �

zt
xy respectively denote the distance constraints |x−y| = |z − t| and

|x − y| �= |z − t|.
Latin Square. A Latin square is an n × n array filled with n different Latin
letters, each occurring exactly once in each row and exactly once in each col-
umn. We have taken n = 10 and the target network is built with 900 binary �=
constraints on rows and columns. We use a bias of 29,700 constraints built from
the language Γ = {=, �=,�, �, <,>}.

Zebra. Lewis Carroll’s zebra problem has a single solution. The target network
has 25 variables of domain size 5 with 5 cliques of “�=” constraints and 14 addi-
tional constraints given in the description of the problem. We use a bias of 3,250
unary and binary constraints taken from a language with 20 basic arithmetic
and distance constraint.

Graceful Graphs (prob053 in [8]). A labeling f of the n nodes of a graph with
q edges is graceful if f assigns each node a unique label from 0, 1, . . . , q and when

2 www.choco-solver.org.

www.choco-solver.org

Time-Bounded Query Generator for Constraint Acquisition 9

each edge (x, y) is labeled with |f(x)−f(y)|, the edge labels are all different. The
target network has node-variables x1, x2, . . . xn, each with domain {0, 1, . . . , q},
and edge-variables e1, e2, . . . eq, with domain {1, 2, . . . , q}. The constraints are:
xi �= xj for all pairs of nodes, ei �= ej for all pairs of edges, and ek = |xi −
xj | if edge ek joins nodes i and j. The constraints of B were built from the
language Γ = {�=, =, �

z
xy, �

z
xy} where �

z
xy and �

z
xy denote respectively the

distance constraints z = |x − y| and z �= |x − y|. We used three instances that
accept a graceful labeling [11]: GG(K4 × P2), GG(K5 × P2), and GG(K4 × P3),
whose number of variables is 24, 35, and 38 respectively, and bias size is 12,696,
40,460, and 52,022 respectively.

For all our benchmarks, the bias contains all the constraints that can be
generated from the relations in the given language. That is, for a commutative
relation c (resp. non-commutative relation c′) of arity r, the bias contains all
possible constraints cY (resp. c′

Y), where Y is a subset (resp. an ordered subset)
of X of size r.

6.2 Baseline Version of T-quacq

The purpose of our first experiment is to validate the approach of time-bounded
query generation and to understand the basics of its behavior. We defined a
baseline version of T-quacq, called T-quacq.0, that we compare with QuAcq.
T-quacq, presented in Algorithm 2, is parameterized with time bound, α, τ and
� used by function initialize, and what function adjust does.

Once time bound has been fixed, as said above, to 1 s, there remains to specify
the other parameters and function adjust. In T-quacq.0, to remain as close as
possible to the original QuAcq, we set � to |X| and the function adjust at lines
10 and 15 of Algorithm 2 simply resets � to |X|. The impact of the parameters
α and τ will be discussed later. For this first comparison between T-quacq.0
and QuAcq, we use two CSP instances: sudoku and GG(K5 × P2). They are
good candidates for this analysis because QuAcq can be very time-consuming
to generate queries on them.

Table 1 reports the comparison of QuAcq and our baseline version
T-quacq.0 on the sudoku and GG(K5 × P2) instances. The performance of
T-quacq.0 is averaged over ten runs on each instance. In this first experiment,
we have arbitrarily set α to 0.5. #q denotes the total number of asked queries,
totT denotes the total time of the learning process, #Conv denotes the number
of runs of T-quacq.0 in which it reached convergence, and %Conv denotes the
average of the convergence rate over the ten runs. We estimated the convergence
rate by the formula 100. |CT |−#missingto(CL)

|CT | , where #missingto(CL) is the num-
ber of constraints that have to be added to the learned network CL to make it
equivalent to the target network CT .

From Table 1, we observe that when τ = 5ms, for both instances, T-quacq.0
is able to converge on the target network, as QuAcq (obviously) does. The inter-
esting information is that T-quacq.0 does this in a total cpu time for generating
all queries that is significantly lower than the time needed by QuAcq. QuAcq

10 H. Ait Addi et al.

Table 1. T-quacq.0 versus QuAcq (time bound = 1s)

CSP Algorithm (α, τ (in ms)) #q totT (in seconds) #Conv %Conv

Sudoku 9 × 9 QuAcq - 9, 053 2, 810 - 100%

T-quacq.0 (0.5, 0.001) 12 14 0 1%

(0.5, 0.024) 9, 132 37 10 100%

(0.5, 5) 9, 612 62 10 100%

(0.5, 900) 9, 557 41 5 94%

GG(K5 × P2) QuAcq - 4, 898 3, 144 - 100%

T-quacq.0 (0.5, 0.001) 11 62 0 1%

(0.5, 0.024) 7, 495 56 0 93%

(0.5, 5) 5, 610 43 10 100%

(0.5, 900) 1, 888 40 0 41%

needs 46 min to converge on the instance of sudoku and 52 min to converge on
the instance of graceful graphs, whereas T-quacq.0 converges in 1 min or less
on both instances.

Let us focus a bit more on how the two algorithms spend their time. Figure 1
reports the waiting time from one query to another needed by QuAcq and T-

quacq.0 to learn GG(K5 × P2). We selected a fragment of 100 queries near
to the end of the learning process for each algorithm. On the one hand, we
see that T-quacq.0 never exceeds the bound of time bound = 1 s between two
queries, thanks to its Tq-gen time bounded generator. On the other hand, we
observe that in these 100 queries close to convergence, generating a query in
QuAcq is time consuming because it requires solving a hard CSP. There are
three negative queries (that is, queries followed by small queries of FindScope
and FindC) requiring from 20 to 50 s to be generated, and many positive queries
(that is, not followed by small queries) requiring from 20 to 200 s to be generated.

Once the approach has been validated by this first experiment, we tried to
understand the behavior of T-quacq.0 when pushing τ to the limits of the
range 0..time bound. We instantiated τ to a very small value: 0.001 ms, and a
very large value, close to time bound: 900 ms. Results are reported in Table 1.

When τ takes the large value of 900 ms, T-quacq.0 fails to converge (the
convergence rate is 94% in sudoku, and 41% in GG(K5 × P2)). The explanation
is that τ is so close to time bound that if Tq-gen fails to produce a query of size
|X| in 900 ms, there remains only 100 ms to produce a query of size α·|X|. In case
Tq-gen cannot make it, T-quacq.0 returns premature convergence because the
time limit has been reached.

When τ takes its small value 0.001 ms, T-quacq.0 fails to converge (the
convergence rate is 1% on both instances). The explanation in this case is that τ
is so small that the bias is not τ -good. That is, the solver at line 8 of Tq-gen fails
to terminate even for the smallest sub-problems of two variables. Thus, Tq-gen

will spend time looping through lines 8, 13, and 6 until reaching time bound.

Time-Bounded Query Generator for Constraint Acquisition 11

tim
e

(s
ec

)

100 queries near the last

QUACQ T-QUACQ.0

Fig. 1. Time to generate queries on GG(K5 × P2) (T-quacq.0 versus QuAcq).

After having tried these extreme values for τ , let us now use Theorem 1 to
theoretically determine the values of τ that guarantee convergence. (Remember
that α is set to 0.5.) According to Theorem 1, τ must be less than 1/(19440 +
log0.5(2/81)) = 0.05ms on sudoku and less than 1/(40, 460 + log0.5(3/35)) =
0.0247ms on GG(K5 × P2). We launched an experiment with τ = 0.024 ms,
which meets the theoretical bound for both sudoku and GG(K5 × P2). The
results are reported in Table 1. T-quacq.0 converges on sudoku but returns
premature convergence on GG(K5 × P2) with a convergence rate equal to 93%.
On sudoku, the bias is τ -good when τ = 0.024 ms, so the two conditions for
convergence of Theorem 1 are met. On GG(K5 × P2), τ = 0.024 ms is too small
for ensuring τ -goodness because the bias contains ternary constraints. Thus, the
first condition for convergence of Theorem1 is violated and T-quacq.0 fails to
converge.

Our last observation on Table 1 is related to the number of queries. We
consider only the cases where the learning process has converged, that is,
sudoku with (α, τ) = (0.5, 0.024) and (α, τ) = (0.5, 5), and GG(K5 × P2) with
(α, τ) = (0.5, 5). We observe that T-quacq.0 respectively asks 1%, 4%, and 14%
more queries than QuAcq.

To understand why T-quacq.0 asks more queries than QuAcq on GG(K5×
P2), we launched T-quacq.0 with different values of α. (τ is kept fixed to 5 ms.)
Interestingly, we observed that the number of queries varies significantly with
α. For α taking values 0.2, 0.5, and 0.8, T-quacq.0 requires respectively, 6, 654,
5, 610, and 5000 queries to converge. We then measured the size of queries in T-

quacq.0 with these three values of α. Figure 2 reports the size of queries asked
by T-quacq.0 to learn GG(K5 ×P2) with α equal to 0.2, 0.5, and 0.8. We make
a zoom on the 400th to 450th iterations of T-quacq.0. We observe that the
larger α, the greater the size of the query returned by Tq-gen and the smaller
the number of queries. When α is small, this often leads to queries of very small
size. For α = 0.2, all queries have size �α · 35� = 7 (because GG(K5 × P2) has

12 H. Ait Addi et al.

 0

 5

 10

 15

 20

 25

 30

 400 410 420 430 440 450

Q
ue

ry
 s

iz
e

#Iterations

α α α

Fig. 2. Size of queries generated by Tq-gen on GG(K5 × P2) with τ = 5 ms.

35 variables). For α = 0.5, a few queries have size �α · 35� = 17 but almost all
have size �α2 · 35� = 8. Generating queries of small size can be beneficial at
the beginning of the learning process, when queries are often negative, because
function FindScope will quickly find the right scope of the missing constraint
inside a small subset Y . But at the end of the learning process, when most
queries are positive, a short query leads to very few constraints removed from
B in line 9 of Algorithm 2. Hence, convergence is slow in terms of number of
queries. This is what happened in Table 1 on GG(K5 × P2) with α = 0.5 and
τ = 5ms. These observations led us to propose more flexible ways to adjust the
query size during the learning process.

6.3 Strategies and Settings

Following our first observations on our baseline version T-quacq.0, we expect
that there is room for improvement by making the use of the query size � less
brute-force (reset to |X| after each query generation in T-quacq.0). We propose
here to adjust it in a more smooth way, to let T-quacq concentrate on the size
of query that is the most beneficial at a given point of the learning process.

We propose the following adjust function (see Algorithm 3). Given a query
generated by Tq-gen, if the answer is yes, adjust increases � by a factor α,
and if the answer is no, adjust decreases � by a factor α. The intuition behind
such adaptation of the query size is that when we are in a zone of many no
answers (early learning stage), short negative queries lead to less queries needed
by FindScope to find where the culprit constraint is, whereas in a zone of yes
answers (late learning stage), larger positive queries lead to the removal of more
constraints from B, and thus faster convergence. T-quacq using this version of
the function adjust is called T-quacq.1 in the following.

We expect that the efficiency of T-quacq.1 will depend on the initializa-
tion of the parameters α and τ in function initialize (line 2 of Algorithm 2).

Time-Bounded Query Generator for Constraint Acquisition 13

Algorithm 3. adjust function of T-quacq.1
1 In �, answer, InOut �
2 if answer = yes then
3 � ← min(
 �

α
�, |X|);

4 else
5 � ← �α · �	
6 return �

Concerning the parameter �, we observed that its initial value has negligible
impact as it is used only once at the start of the learning process. We thus set
function initialize to always initialize � to |X|.

Concerning α and τ , to find the most promising values of these parameters,
we made an experiment on graceful graphs. On these problems, our base version
T-quacq.0 performed worse than QuAcq. The results of T-quacq.1 are shown
in sub-figures (a), (b), and (c) of Fig. 3. The x-axis and the y-axis are respectively
labeled by α ranging from 0.1 to 0.9, and log10(τ) in µs (that is, each value
of y corresponds to 10y µs) ranging from 10µs to 1 s. Darker color indicates
higher number of queries. The number in each cell indicates the convergence
rate %Conv.

Let us first analyze the convergence rate of T-quacq.1. We observe the same
results as already seen with our baseline version, that is, premature convergence
when τ is too small (10µs) or very large (1 s), When τ does not take extreme
values, we observe convergence in many cases. The range of values of τ that
lead to frequent convergence (in fact convergence for all values of α except 0.9)
goes from [1ms, 100ms] on the small instance to [10ms, 100ms] on the larger.
Concerning α, we observe that its value does not have any impact on convergence
except the very large value 0.9, which leads T-quacq.1 to return premature
convergence on the harder instances even for values of τ that give convergence
with all other values of α. (See α = 0.9 in sub-figures (b) and (c) of Fig. 3.) This
is explained by the fact that with such a large α, finding the right size � of the
query to generate can require too many tries (when τ is reached) and lead to
exhaust the time bound.

Let us now study the impact of τ and α on the number of queries asked by T-

quacq.1. We restrict our analysis to the cases where T-quacq.1 has converged.
We observe that when T-quacq.1 converges, the larger τ , the lower number of
query (see sub-figures (a), (b), and (c) of Fig. 3). Concerning the impact of α on
the number of queries, we observe that, the greater α (except 0.9 which leads to
premature convergence), the lower the number of queries. The reason is that a
large α leads to a smooth adjustment of the size of the queries, depending on the
computing time allowed by τ and the positive/negative classification of previous
examples. This especially has the effect that T-quacq.1 generates large queries
at the end of the learning process, which lead to faster convergence, as seen with
T-quacq.0. In the following we choose 0.8 as a default value for α.

14 H. Ait Addi et al.

(a)GG(K4 × P2) (b) GG(K5 × P2)

(c)GG(K4 × P3)

Fig. 3. Number of queries and convergence rate performed by T-quacq.1 on graceful
graphs. Darker color in color bar indicates higher number of queries, and the number
in each cell of the map indicates the convergence rate. (Color figure online)

To validate the observations made on graceful graphs, and in order to select
the most promising value of τ , we extended our experimentation to Golomb
rulers. Golomb rulers have the nice property that the basic model does not only
contain binary constraints. It also contains ternary and quaternary constraints,
which makes query generation more difficult. We used four instances of Golomb
rulers of size n = 8, 12, 16, and 20. We set α to 0.8, and vary τ from 10µs to 1 s.
We added the value τ = 50ms (that is, log10 (50ms) = 4.7) inside the interval
[10ms, 100ms] as these values were looking the most promising for convergence
in our previous experiment. The results of T-quacq.1 on those problems are
shown in Fig. 4, where the x-axis and the y-axis are respectively labeled by
log10(τ) in μs, and the problem size n.

We first analyze the impact of τ on the convergence rate. The results in
Fig. 4 show us that the larger the problem size, the greater the value of τ for
convergence. We observe that T-quacq.1 converges for no instance at τ = 10µs,
1 instance at 100µs, 2 instances at 1 ms, and 3 instances from 50 ms to 1 s. For
n = 20, convergence is never reached, but τ = 10ms and τ = 50ms give the best
results. If we combine these results with those obtained on graceful graphs, it
leads us to the conclusion that the best value for τ is 50ms. Let us now analyze
the impact of τ on the number of queries when T-quacq.1 converges. We observe
that for all the instances, the number of queries required for convergence is almost
the same regardless of the value of τ . In the following we set τ to 50ms.

Time-Bounded Query Generator for Constraint Acquisition 15

Fig. 4. Number of queries and convergence rate performed by T-quacq.1 on Golomb
rulers.

Table 2. T-quacq.1 versus QuAcq, α = 0.8, τ = 50ms

Benchmark
(|X|, |D|, |C|)

Algorithm totT (in seconds) MT (q)(in seconds) #q

Zebra (25, 5, 64) QuAcq 1.29 0.13 706

T-quacq.1 1.34 0.11 547

rand-50-10-12 (50, 10,
12)

QuAcq 204 5.01 253

T-quacq.1 13 0.36 325

rand-50-10-122 (50, 10,
122)

QuAcq 88 1.68 1, 217

T-quacq.1 21 0.22 1, 222

GG(K4 × P2) (24, 16,
164)

QuAcq 976 13 1, 989

T-quacq.1 47 0.39 1, 273

GG(K5 × P2) (35, 25,
370)

QuAcq 3, 144 512 4, 898

T-quacq.1 110 0.65 2, 317

GG(K4 × P3) (38, 26,
417)

QuAcq 7, 206 367 5, 796

T-quacq.1 150 0.89 2, 883

Sudoku 9 × 9 (81, 9,
810)

QuAcq 2, 810 1, 355 9, 053

T-quacq.1 69 0.33 6, 873

Latin-Square (100, 10,
900)

QuAcq 7, 200 1, 234 12, 204

T-quacq.1 120 0.56 7, 711

Golomb-ruler-12 (12,
110, 2, 270)

QuAcq 11, 972 2, 808 2, 445

T-quacq.1 1, 184 0.94 916

16 H. Ait Addi et al.

We finally validate this optimized version of T-quacq.1 on other benchmark
problems. Table 2 reports the results of QuAcq and of T-quacq.1 with the
parameters α = 0.8 and τ = 50ms. totT is the total time of the learning process,
MT (q) the maximum waiting time between two queries, and #q the total number
of asked queries.

The first important observation is that T-quacq.1 has converged for all
instances presented in Table 2. Second, what we saw with the baseline version
T-quacq.0 remains true with T-quacq.1: Time to generate queries is short,
almost always orders of magnitude shorter than with QuAcq. Finally, the good
surprise comes from the number of queries. Compared to T-quacq.0, the number
of queries in T-quacq.1 drops significantly thanks to the smooth adjustment
of the size of the queries. The number of queries in T-quacq.1 is even smaller
than the number of queries in QuAcq on all but two instances, despite QuAcq

is free to use as much time as it needs to generate a query.

7 Conclusion

We have proposed Tq-gen, a query generator that is able to generate a query
in a bounded amount of time, and then to satisfy users tolerable waiting time.
Tq-gen is able to adjust the size of the query to generate so that the query
can be generated within the time bound. We have also described T-quacq, a
QuAcq-like algorithm that uses Tq-gen to generate queries. Our theoretical
analysis shows that the bounded waiting time between queries is at the risk of
reaching a premature convergence. We have then proposed strategies to better
adapt query size. Our experiments have shown that T-quacq combined with a
good strategy dramatically improves QuAcq in terms of time needed to generate
queries and also in number of queries, while still reaching convergence.

References

1. Arcangioli, R., Bessiere, C., Lazaar, N.: Multiple constraint acquisition. In: Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence, IJCAI 2016, New York, pp. 698–704 (2016)

2. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint mod-
els from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 13

3. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N.,
Quimper, C., Walsh, T.: Constraint acquisition via partial queries. In: Proceedings
of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013,
Beijing, China, pp. 475–481 (2013)

4. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acqui-
sition. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence, IJCAI 2007, Hyderabad, India, pp. 50–55 (2007)

5. Bessiere, C., et al.: New approaches to constraint acquisition. In: Bessiere, C., De
Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D. (eds.) Data Min-
ing and Constraint Programming. LNCS (LNAI), vol. 10101, pp. 51–76. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50137-6 3

https://doi.org/10.1007/978-3-642-33558-7_13
https://doi.org/10.1007/978-3-319-50137-6_3

Time-Bounded Query Generator for Constraint Acquisition 17

6. Bessiere, C., Lazaar, N., Koriche, F., O’Sullivan, B.: Constraint acquisition. In:
Artificial Intelligence (2017, in Press)

7. Freuder, E.C., Wallace, R.J.: Suggestion strategies for constraint-based match-
maker agents. Int. J. Artif. Intell. Tools 11(1), 3–18 (2002)

8. Jefferson, C., Akgun, O.: CSPLib: a problem library for constraints (1999). http://
www.csplib.org

9. Lallemand, C., Gronier, G.: Enhancing user experience during waiting time in HCI:
contributions of cognitive psychology. In: Proceedings of the Designing Interactive
Systems Conference, DIS 2012, pp. 751–760. ACM, New York (2012). https://doi.
org/10.1145/2317956.2318069

10. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems.
In: Proceedings of the 22nd IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2010, Arras, France, pp. 45–52 (2010)

11. Petrie, K.E., Smith, B.M.: Symmetry breaking in graceful graphs. In: Rossi, F. (ed.)
CP 2003. LNCS, vol. 2833, pp. 930–934. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45193-8 81

12. Shchekotykhin, K.M., Friedrich, G.: Argumentation based constraint acquisition.
In: Proceedings of the Ninth IEEE International Conference on Data Mining,
ICDM 2009, Miami, FL, pp. 476–482 (2009)

http://www.csplib.org
http://www.csplib.org
https://doi.org/10.1145/2317956.2318069
https://doi.org/10.1145/2317956.2318069
https://doi.org/10.1007/978-3-540-45193-8_81
https://doi.org/10.1007/978-3-540-45193-8_81

Propagating lex, find and replace
with Dashed Strings

Roberto Amadini(B), Graeme Gange, and Peter J. Stuckey

Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia

{roberto.amadini,gkgange,pstuckey}@unimelb.edu.au

Abstract. Dashed strings have been recently proposed in Constraint
Programming to represent the domain of string variables when solving
combinatorial problems over strings. This approach showed promising
performance on some classes of string problems, involving constraints like
string equality and concatenation. However, there are a number of string
constraints for which no propagator has yet been defined. In this paper,
we show how to propagate lexicographic ordering (lex), find and replace
with dashed strings. All of these are fundamental string operations: lex is
the natural total order over strings, while find and replace are frequently
used in string manipulation. We show that these propagators, that we
implemented in G-Strings solver, allows us to be competitive with state-
of-the-art approaches.

1 Introduction

Constraint solving over strings is an important field, given the ubiquity of strings
in different domains such as, e.g., software verification and testing [7,8], model
checking [11], and web security [6,21].

Various approaches to string constraint solving have been proposed, falling
in three rough families: automata-based [13,15,20], word-equation based [5,16]
and unfolding-based (using either bit-vector solvers [14,17] or constraint pro-
gramming (CP) [18]). Automaton and word-equation approaches allow reasoning
about unbounded strings, but are limited to constraints supported by the corre-
sponding calculus – they have particular problems combining string and integer
constraints. These approaches both have scalability problems: from automata
growth in the first case, and disjunctive case-splitting in the second. Unfolding
approaches first select a length bound k, then substitute each string variable
with a fixed-width vector (either by compiling down to integer/bit-vector con-
straints [2,14,17] or using dedicated propagators [18]). This adds flexibility but
sacrifices high-level relationships between strings, and can become very expensive
when the length bound is large – even if generated solutions are very short.

A recent CP approach [3,4] introduced the dashed-string representation for
string variables, together with efficient propagators for dashed-string equality
and related constraints (concatenation, reversal, substring). However, numer-
ous other string operations arise in programs and constraint systems involving
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 18–34, 2018.
https://doi.org/10.1007/978-3-319-93031-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_2&domain=pdf

Propagating lex, find and replace with Dashed Strings 19

strings. In this paper, we focus on two: lexicographic ordering and find. Lexi-
cographic ordering is the most common total ordering over strings, and is fre-
quently used to break variable symmetries in combinatorial problems. Find (or
indexOf) identifies the first occurrence of one query string in another. It appears
frequently in problems arising from verification or symbolic execution, and is a
convenient building-block for expressing other constraints (e.g., replacement and
non-occurrence).

The original contributions of this paper are: (i) new algorithms for propagat-
ing lexicographic order, find and replace with dashed strings; (ii) the implemen-
tation of these algorithms in the G-Strings solver, and a performance evaluation
against the state-of-the-art string solvers CVC4 [16] and Z3str3 [5]. Empirical
results show that our approach is highly competitive – it often outperforms these
solvers in terms of solving time and solution quality.

Paper Structure. In Sect. 2 we give background notions about dashed strings.
In Sect. 3 we show how we propagate lexicographic ordering. Section 4 explains
find and replace propagators. In Sect. 5 we validate our approach with different
experimental evaluations, before concluding in Sect. 6.

2 Preliminaries

Let us fix an alphabet Σ, a maximum string length � ∈ N, and the universe
S =

⋃�
i=0 Σi. A dashed string of length k is defined by a concatenation of

0 < k ≤ � blocks Sl1,u1
1 Sl2,u2

2 · · · Slk,uk

k , where Si ⊆ Σ and 0 ≤ li ≤ ui ≤ � for
i = 1, . . . , k, and Σk

i=1li ≤ �. For each block Sli,ui

i , we call Si the base and (li, ui)
the cardinality. For brevity we will sometimes write a block {a}l,u as al,u, and
{a}l,l as al. The i-th block of a dashed string X is denoted by X[i], and |X| is
the number of blocks of X. We do not distinguish blocks from dashed strings
of unary length and we consider only normalised dashed strings, where the null
element ∅0,0 occurs at most once and adjacent blocks have distinct bases. For
each pair C = (l, u), we define lb(C) = l and ub(C) = u. We indicate with < the
total order over characters of Σ, and with ≺ the lexicographic order over Σ∗.

Let γ(Sl,u) = {x ∈ S∗ | l ≤ |x| ≤ u} be the language denoted by block Sl,u.
We extend γ to dashed strings: γ(Sl1,u1

1 · · · Slk,uk

k) = (γ(Sl1,u1
1) · · · γ(Slk,uk

k))∩ S

(intersection with S excludes the strings with length greater than �). A dashed
string X is known if it denotes a single string: |γ(X)| = 1. A block of the form
S0,u is called nullable, i.e. ε ∈ γ(S0,u). There is no upper bound on the number
of blocks in a dashed string since an arbitrary number of nullable blocks may
occur. The size ‖Sl,u‖ of a block is the number of concrete strings it denotes,
i.e., ‖Sl,u‖ = |γ(Sl,u)|. The size of dashed string X = Sl1,u1

1 Sl2,u2
2 · · · Slk,uk

k is
instead an overestimate of |γ(X)|, given by ‖X‖ = Πk

i=1‖Sli,ui

i ‖.
Given two dashed strings X and Y we define the relation X 	 Y ⇐⇒

γ(X) ⊆ γ(Y). Intuitively, 	 models the relation “is more precise than” between
dashed strings. Unfortunately, the set of dashed strings does not form a lattice

20 R. Amadini et al.

according to 	. This implies that some workarounds have to be used to determine
a reasonable lower/upper bound of two dashed strings according to 	.

Intuitively, we can imagine each block Sli,ui

i of X = Sl1,u1
1 Sl2,u2

2 · · · Slk,uk

k as
a continuous segment of length li followed by a dashed segment of length ui − li.
The continuous segment indicates that exactly li characters of Si must occur
in each concrete string of γ(X); the dashed segment indicates that n characters
of Si, with 0 ≤ n ≤ ui − li, may occur. Consider, for example, dashed string
X = {B,b}1,1{o}2,4{m}1,1{!}0,3 illustrated in Fig. 1.

B, b o o o o m ! ! !

Fig. 1. Representation of X = {B,b}1,1{o}2,4{m}1,1{!}0,3. Each string of γ(X) starts
with B or b, followed by 2 to 4 os, one m, then 0 to 3 !s.

Given a dashed string X, we shall refer to offset positions (i, o), where i
refers to block X[i] and o is its offset, indicating how many characters from the
beginning of X[i] we are considering. Note that, while positions are 1-based,
offset are 0-based to better represent the beginning (or dually the end) of a
block. Positive offsets denote positions relative to the beginning of X[i], and
negative offsets are relative to the end of X[i]. For example, position (2, 3) of
X = a1,2b0,4c3 refers to 3 characters after the beginning of second block b0,4;
this position can be equivalently expressed as (2,−1).

The index into a string w ∈ Σ∗ indicates a character position in range
1 . . . |w|, assuming that character positions are 1-based. For example, the index
of the first occurrence of “abc” in “dfababcdeabc” is 5.

Converting between indices and positions is relatively straightforward (see
the pseudo-code below), though this conversion might lose precision when deal-
ing with blocks Sl,u having non-fixed cardinality, i.e., having l < u. Indeed, we
may have pos-to-min-ind(X, ind-to-min-pos(X, i)) < i. Consider for exam-
ple X = a0,1b0,2 and i = 3: we have ind-to-min-pos(X, i) = (2, 1) and
pos-to-min-ind(2, 1) = 2.
function ind-to-min-pos(X = Sl1,u1

1 · . . . · Sln,un
n , idx)

i ← 1
o ← idx − 1
while i ≤ n ∧ o ≥ ui do

(i, o) ← (i + 1, o − ui)
end while
return (i, o)

end function
function pos-to-min-ind(X, (i, o))

return 1 + o +
∑i−1

j=1 lj
end function

Propagating lex, find and replace with Dashed Strings 21

2.1 Sweep Algorithm

Equating dashed strings X and Y requires determining two dashed strings X ′

and Y ′ such that: (i) X ′ 	 X,Y ′ 	 Y ; and (ii) γ(X ′) ∩ γ(Y ′) = γ(X) ∩ γ(Y).
Informally, we can see this problem as a semantic unification where we want
to find a refinement of X and Y including all the strings of γ(X) ∩ γ(Y) and
removing the most values not belonging to γ(X) ∩ γ(Y) (note that there may
not exist a greatest lower bound for X,Y according to).

In [3] the authors propose Sweep, an algorithm for equating dashed strings.
Sweep works analogously to the sweep algorithm for timetable reasoning of
cumulative [1]: to equate X and Y , for each block X[i], we wish to find the
earliest and latest positions in Y where X[i] could be matched. Once these
positions are computed, they are used to refine the block: roughly, X[i] may
only contain content between its earliest start and latest end, and any content
between the latest start and earliest end must be included in X[i]. This process
is repeated symmetrically to refine each block Y [j].

2.2 G-Strings Solver

The Sweep algorithm is implemented in G-Strings,1 an extension of Gecode
solver [12]. It implements the domain of every string variable X with a dashed
string dom(X), and defines a propagator for each string constraint. Propagators
take advantage of Sweep for refining the representations of the involved vari-
ables. For example, string equality X = Y is simply propagated by equating
dom(X) and dom(Y) with Sweep; the propagator for Z = X · Y is imple-
mented by equating dom(Z) and dom(X) · dom(Y), where dom(X) · dom(Y) is
the concatenation of the blocks of dom(X) and dom(Y), taking care of properly
projecting the narrowing of dom(X) · dom(Y) to dom(X) and dom(Y).

G-Strings implements constraints like string (dis-)equality, (half-)reified
equality, (iterated) concatenation, string domain, length, reverse, substring selec-
tion. Since propagation is in general not complete, G-Strings also defines strate-
gies for branching on variables (e.g., the one with smallest domain size or having
the domain with the minimum number of blocks) and domain values (by heuris-
tically selecting first a block, and then a character of its base).

3 Lexicographic Ordering

The constraint lex�(X,Y) enforces a lexicographic ordering between X and
Y . Propagating lex on an unfolded sequence is largely straightforward: roughly
speaking, we walk pointwise along X and Y to find the first possible differ-
ence, and impose the ordering on that element. An extension of this procedure
which enforces domain consistency is given in [10]. Unfortunately, dashed strings
represent sequences where we do not know the exact cardinality of each block.

1 G-Strings is publicly available at https://bitbucket.org/robama/g-strings.

https://bitbucket.org/robama/g-strings

22 R. Amadini et al.

X min�(D(X)) max�(D(X))
c0,10 · a0,10 · d0,10 c0a0d0 c0a0d10

c0,10 · a1,10 · d0,10 c0a1d0 c10a1d10

c0,10 · a1,10 · d1,10 c0a10d1 c10a1d10

a1,10 · c0,10 · d1,10 a10c10d1 a1a0d10

c1,10 · d0,10 · a1,10 c1d0a1 c1d10a10

a0,10 · d0,10 · a1,10 · d0,10 a0d0a1d0 a0d10a1d10

a0,10 · d0,10 · a1,10 · d1,10 a10d0a10d1 a0d10a1d10

a0,10d0,10a1,10e1,10

min. succ [a+ a+ e− $]
lex. min. [a10 d0 a10 e1]
max. succ [d− a+ e− $]
lex. max. [a0 d10 a1 e10]

)b()a(

Fig. 2. (a) Lexicographic bounds for several dashed strings. (b) Least and greatest suc-
cessors for each block of a0,10 · d0,10 · a1,10 · e1,10. The notation d+ (resp. d−) indicates
the least/greatest successor of the block begins with a finite sequence of d ’s, followed
by some character x > d (resp. x < d).

3.1 Lexicographic Bounds on Dashed Strings

Propagation of lex�(X,Y) essentially reduces to propagating two unary con-
straints: X � max�(D(Y)), and min�(D(X)) � Y . However, the behaviour of
max and min under � is perhaps counterintuitive. In the lexicographic minimum
(resp. maximum), each block Sl,u takes its least (greatest) character, and either
its minimum cardinality l or its maximum cardinality u: but which cardinality
is chosen depends on the following blocks, i.e., the suffix of the string.

Consider the string an ·b ·X, for some characters a, b ∈ Σ and string X ∈ Σ∗.
If a < b, increasing the number n of a’s produces a smaller string under �. If
instead a > b, adding successive a’s can only result in bigger strings under �. If
a = b, then we must recursively consider the prefix of X.

But we do not need to perform this recursion explicitly. All we need to know
is (i) the first character of the suffix, and (ii) whether the sequence increases or
decreases afterwards. In essence, we need to know whether the suffix is above
or below the infinite sequence a∞. We use the notation a+ to denote a value
infinitesimally greater than a∞, but smaller than the successor succ≤(a) of a
in Σ under ≤; similarly, a− denotes a value infinitesimally smaller than a but
greater than (pred≤(a))∞, where pred≤(a) is the predecessor of a in Σ under ≤.

Example 1. Figure 2(a) shows the behaviour of the lexicographic min- and max-
for several dashed strings. The last two instances highlight a critical point: if the
minimum value of the base of a block matches the minimum immediate successor,
we must consult the character appearing after the contiguous run. Figure 2(b)
illustrates the computation of least and greatest successors for a dashed string.

The computation processes the blocks in reverse order, updating the current
suffix for each block. The suffix is initially $, a special terminal character such
that $ ≺ x for each x ∈ Σ∗. The final block is non-empty, so the suffix is updated;
and is greater than the current suffix, so becomes e−. The next block is again
non-empty, and below the current suffix, so it is updated to a+. The next block is
nullable, and its value d is greater than the current suffix. So, for computing the
lex-min we omit this block, carrying the suffix backwards. We then reach a0,10

Propagating lex, find and replace with Dashed Strings 23

Table 1. Calling lex-step({d, e}0,1, a, Ymax, (1, 0)).

Call Result X ′

lex-step({d, e}0,1, a, Ymax, (1, 0)) EQ((1, 0)) ε

lex-step({f, g}0,4, d, Ymax, (1, 0)) EQ((1, 0)) ε

lex-step({d, e, f}2,4, a, Ymax, (1, 0)) EQ((1, 2)) {d}2,2

lex-step({a, b, c}0,3, a, Ymax, (1, 2)) LT {d}2,2{a, b, c}0,3{f, g}1,4

with a successor of a+. This gives us successors [a+, a+, e−, $]. We can then
compute the lex-minimising value for each block by looking at its successor:
the first block a0,10 has successor a+. As a < a+, the block takes maximum
cardinality a10. The next block d0,10 again has successor a+. But this time, since
d > a+, the block takes its minimum cardinality 0. This process is repeated for
each block to obtain the lexicographically minimum string. The pseudo-code for
computing the minimum successor and the lex-min value is shown in Fig. 3. ��

function min-succ(X = Sl1,u1
1 · . . . Sln,un

n)
Msucc ← ∅
suff ← $
for i ∈ n . . . 1 do

Msucc[i] ← suff
c ← min(Si)
if c < suff then

suff ← c+

else if li > 0 then
suff ← c−

end if
end for
return Msucc

end function

function lex-min(Sl,u, csucc)
c ← min(S)
if c < csucc then

return cu

else
return cl

end if
end function

Fig. 3. Computing the minimum successor for each block of X, and the lex-min value
for block Sl,u given the computed successor.

The lex propagation for X � max�(D(Y)) is implemented by lex-X
shown in Fig. 4. Essentially it walks across the blocks of X, by comparing
them with max�(D(Y)). If it finds that the block must violate lex, then it
returns UNSAT. If the block may be strictly less than max�(D(Y)) we termi-
nate, the constraint can be satisfied. If the lower bound of the block equates to
max�(D(Y)) we force it to take its lower bound value, and continue processing
the next block.

The strict parameter of lex-X is a Boolean flag which is true if and only if we
are propagating the strict ordering ≺. The propagation of ≺ is exactly the same of

24 R. Amadini et al.

function lex-X(X, Y, strict)
Let X = X1 · . . . · Xn.
Xsucc := min-succ(X)
Ymax ← max�(Y)
pos ← 〈1, 0〉
X ′ ← []
for j ∈ 1 . . . n do

match lex-step(Xj , Xsucc[j], Ymax, pos) with
case UNSAT ⇒

return UNSAT
case LT ⇒

X ′ ← X ′ · Xj · . . . · Xn

break
case EQ(pos′) ⇒

X ′ ← X ′ · lex-min(Xj , Xsucc[j])
pos ← pos′

end
end for
if strict ∧ j = n then

return UNSAT
end if
post(X ← X ′)
return SAT

end function

Fig. 4. Algorithm for propagating X � max�(D(Y)).

�, with the only difference that if dashed string X is completely consumed after
the loop then we raise a failure (this means that min�(D(X)) ≥ max�(D(Y))).

Example 2. Let X be {d, e}0,1{f, g}0,4{d, e, f}2,4{a, b, c}0,3{f, g}1,4 and Y =
{a, b}0,3{c, d}0,3{a}1,3{d, e}1,3. For propagating X � Y , we first compute Xsucc

as [a, d, a, f, $]. Then, Ymax = max�(D(Y)) = dddaeee = {d}3,3{a}1,1{e}3,3.
The calls to lex-step, its returning values, and the progression of values for X ′

are shown in Table 1 (as a result of the propagation, X is replaced by X ′).

4 Find and Replace

Find and replace are important and widely used string operations, since much
string manipulation is achieved using them. Formally, find(Q,X) returns the
start index of the first occurrence of Q in X, or 0 if Q does not occur (assuming
1-based indexing). Similarly, replace(Q,R,X) returns X with the first occur-
rence of Q replaced by R (returning X if Q does not occur in X).

find is surprisingly difficult to express as a decomposition. An attempt might
start with encoding the occurrence as ∃a, b. X = a · Q · b ∧ |a| = idx − 1. This
ensures that Q occurs at index idx. However, it omits two important aspects:

Propagating lex, find and replace with Dashed Strings 25

function lex-step(Xj = Sl,u, succ, Y, 〈i, o〉)
Let Y = {aα1

1 · . . . · aαm
m }. � Greatest word in the domain of variable Y

cS ← min(S)
if succ > cS then � Better than our best successor, so saturate

cap ← u
else � Use only what we must.

cap ← l
end if
while cap > 0 do

if i > m then � No more Y to match.
return UNSAT

end if
cY ← ai

cardY ← αi − o
if cap > 0 ∧ cS > cY then � Greater than the next character in Y

return UNSAT
else if cap > 0 ∧ cS < cY then

return LT � Globally satisfied
else

if cardY ≤ cap then
cap ← cap − cardY

(i, o) ← (i + 1, 0)
else

return EQ(〈i, o + cap〉) � Bounds coincide so far.
end if

end if
end while
return EQ(〈i, o〉)

end function

Fig. 5. Processing a single block Xj of the left operand of lex≤.

(i) find(Q,X) identifies the first (rather than any) occurrence of Q; (ii) Q can
be absent from X. Both problems arise from the same cause: the difficulty of
encoding non-occurrence. To do so, we would essentially need to add a disequality
constraint between Q and every |Q|-length substring of X (this problem will
recur when we discuss encodings for unfolding-based solvers in Sect. 4.3). Thus,
developing a specialised propagator for find appears prudent. As we shall see
in Sect. 4.2, it also serves as useful primitive for implementing other constraints.

4.1 Find

The constraint I = find(X,Y) returns the index I of the character in Y where
the string X appears first, or 0 if X is not a substring of Y . Note the use of

26 R. Amadini et al.

function prop-find-min(I, [X1, . . . , Xn], [Y1, . . . , Ym])
start ←ind-to-min-pos([Y1, . . . , Ym],min(D(I) − {0}))
nochanges ← true
repeat

for i ∈ {1, . . . , n} do � Scanning forwards
if ¬ nochanges then

start ← est(Xi)
end if
start, end ← push+(Xi, Y, start)
est(Xi) ← start
start ← end

end for
if end > (m,+ub(Ym)) then

D(I) ← D(I) ∩ {0} � Prefix cannot fit
return D(I) �= ∅

end if
for i ∈ {n, n − 1, . . . , 1} do � Scanning backwards

end ← stretch−(Xi, Y, end)
if end > est(Xi) then

est(Xi) ← end
nochanges ← false

end if
end for
start ← end

until nochanges
D(I) ← D(I) ∩ ({0} ∪ {pos-to-min-ind([Y1, . . . , Ym], end).. + ∞})
return D(I) �= ∅

end function

Fig. 6. Algorithm for propagating the earliest possible start position I of string X in
the string Y .

1-based indexing, which is standard in maths (and mathematical programming
systems), but not so standard in computer science.2

The propagator for I = find(X,Y) is implemented using the push and
stretch algorithms used by the G-Strings solver to implement equality of
dashed strings. push+(B, Y, (i, o)) attempts to find the earliest possible match
of B after o characters into Y [i] (the ith block of Y), while stretch+(B, Y, (i, o))
finds the latest position B could finish, assuming B begins at most o characters
into Y [i]. There are analogous versions push− and stretch− which work back-
wards across the blocks.

The algorithm works by first converting the minimal index of the current
domain of I into a earliest possible starting position in X. This is achieved by
consuming characters from the upper bound of length of X blocks. We then use

2 We use this indexing to comply with MiniZinc indexing [2]. However, translating
between this and the corresponding 0-indexed operations (e.g., the Java indexOf
method or the C++ find method) is trivial.

Propagating lex, find and replace with Dashed Strings 27

push to find the earliest position in Y where Xi can occur, for each block Xi

in turn, recording this in est(Xi). If the earliest end position for this process is
after the end of Y we know that no match is possible, we update the domain of
I, and return false if it becomes empty.

The push procedure may have introduced gaps between blocks. Hence we
stretch backwards to pull blocks forward to their actual earliest start position
assuming all later blocks are matched. This may update the earliest start posi-
tions for each block Yi. If we found any earliest start positions changed during
the stretch operation, we repeat the whole push/stretch loop until there
are no changes. At the end of this, end holds the earliest match position for X
in Y . We convert end to an index and update the domain of I to reflect this.

Example 3. Consider the constraint I = find(X,Y) where X = {a}1,1{b}2,2 and
Y = {b, c}0,12{a}3,3{d}1,2{b, c}2,4{a}5,5{b}3,3{a, c}0,8, and D(I) = {0 . . . 38}.
The starting position start from index 1 is (1, 0). We begin by pushing the
block {a}1,1 to position (2, 0), we then push the block {b}2,2 to position (4, 0).
Starting from end = (4, 2) we stretch the block {b}2,2 to position (4, 0), but
stretching {a}1,1 we simply return end = (4, 0) because the previous block is
incompatible. We repeat the main loop by pushing the block {a}1,1 starting from
(4, 0) to position (5, 0), and push the block {b}2,2 to position (6, 0). Starting from
end = (6, 2) we stretch the block {b}2,2 to position (6, 0), and stretching
{a}1,1 to (5, 4). We repeat the main loop this time finding no change. The earliest
index for the match is hence pos-to-min-ind(Y, (5, 4)) = 0+3+1+2+5 = 11.
We thus set the domain of I to {0} ∪ {11 . . . 35}. ��

The algorithm for propagating the upper bound on the index value is similar.
It uses push− to find the latest start position for each block, then stretch+

to improve these. This process continues until fixpoint. Finally the index of the
latest start position of first block X1 is used to update D(I).

If we have determined 0 /∈ D(I), from either a definite match or propagation
on I, we know there is some occurrence of X in Y . In this case, we know that
Y = Σ lb(I)−1,ub(I)−1XΣ∗, and we propagate between X and Y accordingly.

We check for definite matches only if the string X is completely fixed. We
build the fixed components of Y by replacing blocks Sl,u having non-singleton
character sets (|S| > 1) by special character $ �∈ Σ, and singleton character
blocks where S = {a} by a string al$al, unless l = u in which case we use al.
We do this because if a block is singleton character but has unfixed cardinality
(e.g., a3,6), then the block may participate in matches to either side, but cannot
form matches across the block since its cardinality is not fixed. Thus it splits the
component string, contributing its lower bound to either side (e.g. a3$a3). We
then do a substring search for X in this string. If there is a match we convert
the resulting index of this string match into a position in Y , and then compute
the latest possible index in Y corresponding to this position. We propagate this
as an upper bound of I, and remove 0 from the domain of I.

Example 4. Consider the constraint I = find(X,Y) where X = {a}1,1{b}2,2

and Y = {b, c}0,12{a}3,4{d}1,2{b, c}2,4{a}5,5{b}2,3{a, c}0,8. X is fixed to string

28 R. Amadini et al.

“abb”, so we create the fixed components of Y as “aaaaaaddaaaaabbbb”
and search for X in this string. We find a match at the 17th character, which
corresponds to Y position (5, 4). The last possible index for this position is
27 = 12 + 4 + 2 + 4 + 5. We update the domain of I to {1 . . . 27}. ��

4.2 Replace

The constraint Y2 = replace(X1,X2, Y1) requires that Y2 is the string resulting
from replacing the first occurrence of X1 in Y1 by X2. If X1 does not occur in
Y1, then Y2 = Y1. We encode this constraint by using concatenation and find
as follows:

∃n,A1, A2.

⎛

⎜
⎜
⎜
⎜
⎝

n = find(X1, Y1)
∧ |A1| = max(0, n − 1)
∧ Y1 = A1 · X

(n>0)
1 · A2

∧ Y2 = A1 · X
(n>0)
2 · A2

∧ find(X1, A1) = (|X1| = 0)

⎞

⎟
⎟
⎟
⎟
⎠

The encoding ensures that Y2 is Y1 with some part Z1 ∈ {X1, ε} replaced by
Z2 ∈ {X2, ε}. Index n encodes the position where we find X1 in Y1. If it does
not occur we force Z1 = Z2 = ε which makes Y1 = Y2 = A1 · A2. If it does
occur we force X1 = Z1 and X2 = Z2, and the length of A1 to be n − 1. The
last constraint is redundant: it ensures X1 appears in A1 if and only if X1 = ε.
It is included to strengthen propagation (due to the loss of information when
converting between indices and positions).

The find constraint allows us to encode other sub-string like constraints,
e.g., startsWith(Q,X) ⇐⇒ (find(X,Q) = 1) and contains(Q,X) ⇐⇒
(find(X,Q) > 0). Note that because find is functional, these decompositions
can be used in any context (e.g., in negated form).

4.3 Encoding find and replace in Unfolding-Based Solvers

As discussed in Sect. 4.1, expressing the non-existence of target strings poses
difficulties. In unfolding-based solvers (e.g., Gecode+S, or bit-vector solvers),
this manifests in an encoding of find(Q,R) which is of size ub(|Q|) × ub(|R|):
essentially, we compute the set I of all the indices where Q and R align, then
we return min(I) if I �= ∅, otherwise we return 0:

findAt(Q,R, i) =

{
1 if ∀j = 1, . . . , |Q| : Q[j] = R[i + j − 1]
0 otherwise

find(Q,R) =

{
min(I) if I �= ∅
0 otherwise

where I = {i ∈ {1, . . . , |R|} | findAt(Q,R, i) = 1}.

Propagating lex, find and replace with Dashed Strings 29

5 Experimental Evaluation

We have extended the G-Strings solver with the proposed filtering algorithms.
We evaluated the propagators on three classes of problems and compared the
performance of G-Strings against CVC4 [16] and Z3str3 [5], two state-of-the-
art SMT solvers supporting the theory of strings.3

First, we consider the pisa suite, consisting of instances arising from web-
application analysis. However the pisa instances are rather small and, being
heavily used SMT benchmarks, CVC4 and Z3str3 are well tuned for these;
they are included here largely as a sanity check. We then evaluate scalability
with two sets of constructed combinatorial instances.

PISA. The pisa benchmark suite, described in [22], consists of a number of prob-
lems derived from web-application analysis. It contains find-related constraints
like indexOf, lastIndexOf, replace, contains, startsWith, endsWith.
We compare CVC4 and Z3str3 and G-Strings using different maximum string
lengths � ∈ {500, 1000, 5000, 10000}; results are given in Table 2.

Table 2. Comparison of solvers in the pisa instances. Times are given in seconds.
Satisfiable problems are marked � while unsatisfiable are marked ×.

Instance sat Z3str3 CVC4 G-Strings
500 1000 5000 10000

pisa-000 � 0.02 0.12 0.00 0.00 0.00 0.00
pisa-001 � 0.04 0.00 0.00 0.00 0.00 0.00
pisa-002 � 0.02 0.01 0.00 0.00 0.00 0.00
pisa-003 × 0.01 0.00 0.00 0.00 0.00 0.00
pisa-004 × 0.01 0.56 0.05 0.11 0.55 1.07
pisa-005 � 0.02 0.03 0.00 0.00 0.00 0.00
pisa-006 × 0.01 0.58 0.06 0.11 0.56 1.1
pisa-007 × 0.01 0.68 0.05 0.11 0.54 1.09
pisa-008 � 0.03 0.01 1.44 1.44 1.45 1.44
pisa-009 � 2.68 0.00 0.00 0.00 0.00 0.00
pisa-010 � 0.01 0.00 0.00 0.00 0.00 0.00
pisa-011 � 0.01 0.00 0.00 0.00 0.00 0.00
Total (sat) 2.83 0.17 1.44 1.44 1.45 1.44
Total (unsat) 0.04 1.82 0.16 0.33 1.65 3.26
Total 2.87 1.99 1.60 1.77 3.10 4.70

3 We used Ubuntu 15.10 machines with 16GB of RAM and 2.60 GHz IntelR© i7 CPU.
Experiments available at: https://bitbucket.org/robama/exp_cpaior_2018.

https://bitbucket.org/robama/exp_cpaior_2018

30 R. Amadini et al.

Table 3. Comparative results on the partial de Bruijn sequence problems.

Solver opt sat unk ttf Time score borda iborda

CVC4 0 20 0 14.2 600.0 10.0 9.6 11.5
Z3str3 0 6 14 484.2 600.0 1.5 0.0 0.0
G-Strings 6 20 0 0.0 446.0 15.0 22.4 20.5

Table 4. Comparative results on the substring selection problems.

Solver opt sat unk ttf Time score borda iborda

Z3str3 2 9 11 358.5 546.5 5.0 3.6 8.0
CVC4 2 18 2 60.1 564.4 8.0 4.6 9.0
G-Strings | · | ≤ | · | 15 20 0 0.1 189.8 18.4 31.3 31.0
G-Strings � 18 20 0 0.05 80.5 19.5 42.5 34.0

Unsurprisingly, the current versions of CVC4 and Z3str3 solve the pisa
instances near instantly. For G-Strings, performance on satisfiable instances is
very efficient, and independent of maximum string length. Results on the unsatis-
fiable instances highlight the importance of search strategy. Using a naive input-
order search strategy, several of these time out because the search branches first
on variables irrelevant to the infeasibility; but by specifying the first decision vari-
able, these instances terminate quickly. This suggests integrating dashed strings
into a learning solver may be worthwhile, as the limitation is in the enumeration
procedure, rather than the propagators themselves. It appears the unsatisfiable
instances scale linearly with maximum string length for G-Strings.

Partial de Bruijn Sequences. The de Bruijn sequence B(k, n) (see, e.g., [9]) is a
cyclic sequence containing exactly one occurrence of each string of length n in
an alphabet of size k. We consider instead the following variant: given a set S
of fixed strings in the ASCII alphabet, what is the shortest string X containing
at least one occurrence of each string in S:4

minimize
X

|X|
subject to contains(X, s), s ∈ S.

We generated sets of n random strings having total length l, for n ∈ {5, 10, 15, 20}
and l ∈ {100, 250, 500, 750, 1000} (one instance per pair of parameters). Results
are given for G-Strings, CVC4 and Z3str3. We also attempted an unfolding
approach, using a MiniZinc implementation [2] of the decomposition of Sect. 4.3
to compile down to integer constraints; however the conversion failed due to
memory exhaustion even for l = 100. The maximum string length for G-Strings
was set to l, being an upper bound on the minimum sequence length.
4 This model considers only non-cyclic sequences. For cyclic sequences, we need only

to replace each occurrence of find(X, s) with find(concat(X, X), s).

Propagating lex, find and replace with Dashed Strings 31

The results are shown in Table 3. It shows for each solver the number of
problems where an optimal solution is proven (opt), the number where a solution
was found (sat), and the number where no solution was found (unk). It then
gives the average time to first solution (ttf), and solve time (where 600 s is the
timeout). The last three columns are comparative scores across the solvers: score
gives 0 for finding no solution, 0.25 for finding the worst known solution, 0.75
for finding the best known solution, a linear scale value in (0.25, 0.75) for finding
other solutions, and 1 for proving the optimal solution. borda is the MiniZinc
Challenge score [19], which gives a Borda score where each pair of solvers is
compared on each instance, the better solver gets 1, the weaker 0, and if they
are tied the point is split inversely proportional to their solving time. iborda uses
a similar border score but the comparison is just on the objective value (proving
optimality is not considered better than finding the optimal solution – this is
actually the incomplete score of MiniZinc challenge, devised to evaluate local
search solvers).

Clearly the G-Strings solver significantly outperforms the other two solvers.
It instantly finds a solution to all problems, and is the only solver capable of
proving optimality. For these benchmarks Z3str3 is dominated by the other two
solvers (see the 0 score for Borda-based metrics).

(10
0,
5)

(10
0,
10
)

(10
0,
15
)

(10
0,
20
)

(25
0,
5)

(25
0,
10
)

(25
0,
15
)

(25
0,
20
)

(50
0,
5)

(50
0,
10
)

(50
0,
15
)

(50
0,
20
)

(75
0,
5)

(75
0,
10
)

(75
0,
15
)

(75
0,
20
)

(10
00
, 5
)

(10
00
, 1
0)

(10
00
, 1
5)

(10
00
, 2
0)

Instances

0

5

10

15

20

C
um

ul
at
iv
e
sc
or
es

Max. Score
G-STRINGS

CVC4
Z3STR3

Fig. 7. Cumulative score for partial de Bruijn sequence problem.

Substring Selection. To test a typical application of lex, we generated instances
of a substring selection problem: given a set S of n strings, find the k-longest
distinct substrings appearing in at least m original strings. lex is used to break
symmetries among selected substrings.

32 R. Amadini et al.

maximize
x1,...,xk

|x1| + . . . + |xk|

subject to
∑

s∈S

contains(s, xi) ≥ m, i ∈ 1, . . . , k

xi−1 � xi, i ∈ 2, . . . , k
|xi−1| > 0 → xi−1 ≺ xi, i ∈ 2, . . . , k.

As for the partial de Bruijn problem, we selected a set S of n random strings, with
n ∈ {5, 10, 15, 20}, and we tuned the total length l ∈ {100, 250, 500, 750, 1000}.
We then fixed k = |S|

2 , and selected uniformly in m ∈
[

|S|
2 , |S| − 1

]
. We give

results for G-Strings, CVC4 and Z3str3; for unfolding approaches, the con-
version again failed due to memory exhaustion.

As the SMT string theory lacks terms for lexicographic ordering, we replace
the lex symmetry breaking using � (the last two lines of the model) by
length symmetry breaking using |xi−1| ≤ |xi|. We used pair-wise inequalities∧

1≤i<j≤k xi �= xj to have distinct strings. For G-Strings, we report perfor-
mance with symmetry breaking either using lex, or just on string lengths.

The results shown in Table 4 clearly show that G-Strings is superior for these
problems, and that using lex for symmetry breaking is significantly better than
simply breaking on length, particularly for proving unsatisfiability.

(10
0,
5)

(10
0,
10
)

(10
0,
15
)

(10
0,
20
)

(25
0,
5)

(25
0,
10
)

(25
0,
15
)

(25
0,
20
)

(50
0,
5)

(50
0,
10
)

(50
0,
15
)

(50
0,
20
)

(75
0,
5)

(75
0,
10
)

(75
0,
15
)

(75
0,
20
)

(10
00
, 5
)

(10
00
, 1
0)

(10
00
, 1
5)

(10
00
, 2
0)

Instances

0

5

10

15

20

C
um

ul
at
iv
e
sc
or
es

Max. Score
G-STRINGS ≺
G-STRINGS | · | ≤ | · |
CVC4
Z3STR3

Fig. 8. Cumulative score for maximum substring selection problem.

Finally in Figs. 7 and 8 we show the cumulative score for each solver by
sorting the instances lexicographically over (l,m) parameters. We can see that
G-Strings is dominant, except for the larger de Bruijn sequence problems where
CVC4 is quite competitive. On the maximum substring selection problem, the
lex constraints make the G-Strings performance almost perfect.

Propagating lex, find and replace with Dashed Strings 33

6 Conclusions

In this paper we have the continued work on dashed-string representation for
string constraints, defining propagation algorithms for two constraints which
lack compact decompositions: lexicographic ordering and substring search. On
small verification instances, our approach is competitive with highly-tuned SMT
solvers. On constructed combinatorial instances, our dashed-string based prop-
agators substantially outperform current SMT-based string solvers. Results on
the verification instances also highlight the importance of autonomous search.
Future directions include therefore the study of suitable string search heuristics
and the development of learning string solvers.

Acknowledgments. This work is supported by the Australian Research Council
(ARC) through Linkage Project Grant LP140100437 and Discovery Early Career
Researcher Award DE160100568.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Math. Comput. Model. 17(7), 57–73 (1993)

2. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: Minizinc
with strings. In: Logic-Based Program Synthesis and Transformation - 25th Inter-
national Symposium, LOPSTR 2016 (2016). https://arxiv.org/abs/1608.03650

3. Amadini, R., Gange, G., Stuckey, P.J.: Sweep-based propagation for string cos-
ntraint solving. In: AAAI 2018 (2018, to appear)

4. Amadini, R., Gange, G., Stuckey, P.J., Tack, G.: A novel approach to string con-
straint solving. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 3–20. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_1

5. Berzish, M., Zheng, Y., Ganesh, V.: Z3str3: a string solver with theory-aware
branching. CoRR abs/1704.07935 (2017). http://arxiv.org/abs/1704.07935

6. Bisht, P., Hinrichs, T.L., Skrupsky, N., Venkatakrishnan, V.N.: WAPTEC: white-
box analysis of web applications for parameter tampering exploit construction. In:
Proceedings of ACM Conference on Computer and Communications Security, pp.
575–586. ACM (2011)

7. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2_27

8. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database
applications. In: Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), pp. 151–162. ACM (2007)

9. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Rev. 24(2), 195–221 (1982)

10. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artif. Intell. 170(10), 803–834 (2006)

11. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded
model-checking with interpolation for regular language constraints. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 277–291. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_20

https://arxiv.org/abs/1608.03650
https://doi.org/10.1007/978-3-319-66158-2_1
http://arxiv.org/abs/1704.07935
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-36742-7_20

34 R. Amadini et al.

12. Gecode Team: Gecode: generic constraint development environment (2016). http://
www.gecode.org

13. Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints lazily. Autom.
Softw. Eng. 19(4), 531–559 (2012)

14. Kiezun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
a solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Trans. Softw. Eng. Methodol. 21(4), Article No. 25 (2012)

15. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
15–31. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7_2

16. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9_43

17. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: S&P, pp. 513–528. IEEE Computer Society
(2010)

18. Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation
of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 51–67. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8_5

19. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The miniZinc challenge
2008–2013. AI Mag. 2, 55–60 (2014)

20. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Softw. Eng. Methodol. 22(4), 33
(2013)

21. Thomé, J., Shar, L.K., Bianculli, D., Briand, L.C.: Search-driven string constraint
solving for vulnerability detection. In: ICSE 2017, Buenos Aires, Argentina, 20–28
May 2017, pp. 198–208 (2017)

22. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang,
X.: Z3str2: an efficient solver for strings, regular expressions, and length constraints.
Formal Methods Syst. Des. 50(2–3), 249–288 (2017)

http://www.gecode.org
http://www.gecode.org
https://doi.org/10.1007/978-3-319-03077-7_2
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/978-3-319-59776-8_5

Designing Fair, Efficient,
and Interpretable Policies for Prioritizing
Homeless Youth for Housing Resources

Mohammad Javad Azizi, Phebe Vayanos(B), Bryan Wilder, Eric Rice,
and Milind Tambe

CAIS Center for Artificial Intelligence in Society,
University of Southern California, Los Angeles, CA 90007, USA

{azizim,phebe.vayanos,bwilder,ericr,tambe}@usc.edu

Abstract. We consider the problem of designing fair, efficient, and
interpretable policies for prioritizing heterogeneous homeless youth on
a waiting list for scarce housing resources of different types. We focus on
point-based policies that use features of the housing resources (e.g., per-
manent supportive housing, rapid rehousing) and the youth (e.g., age,
history of substance use) to maximize the probability that the youth
will have a safe and stable exit from the housing program. The policies
can be used to prioritize waitlisted youth each time a housing resource
is procured. Our framework provides the policy-maker the flexibility to
select both their desired structure for the policy and their desired fairness
requirements. Our approach can thus explicitly trade-off interpretabil-
ity and efficiency while ensuring that fairness constraints are met. We
propose a flexible data-driven mixed-integer optimization formulation
for designing the policy, along with an approximate formulation which
can be solved efficiently for broad classes of interpretable policies using
Bender’s decomposition. We evaluate our framework using real-world
data from the United States homeless youth housing system. We show
that our framework results in policies that are more fair than the cur-
rent policy in place and than classical interpretable machine learning
approaches while achieving a similar (or higher) level of overall efficiency.

1 Introduction

This paper addresses the problem of designing policies for prioritizing heteroge-
neous allocatees on a waiting list for scarce resources of different types so as to
maximize overall efficiency. The allocatees differ in their intrinsic characteristics
which, combined with the characteristics of their assigned resource, impact the
efficiency of the policy. We consider a policy-maker who is able to enforce adop-
tion of the computed policy. However, since the allocated resources are viewed as
common property, i.e., as belonging to all members of the community, the pol-
icy should satisfy certain fairness requirements while also being interpretable,
making it easy to explain why a particular assignment was made.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 35–51, 2018.
https://doi.org/10.1007/978-3-319-93031-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_3&domain=pdf

36 M. J. Azizi et al.

We are particularly motivated by the problem of allocating housing to home-
less youth. In the U.S., hundreds of thousands of homeless youth are forced
to live in emergency shelters or on the streets, where they run a high risk of
violence, substance abuse, and sexual exploitation [27]. To help support this
vulnerable population, the U.S. government directs federal resources towards
programs that assist homeless youth [21]. The Homeless Management Informa-
tion System (HMIS) database collects information on these services. Analysis of
the HMIS database has shown that providing housing to homeless individuals
produces large gains in long-term health and stability [5,22]. Unfortunately, the
number of homeless youth in the U.S. far exceeds the housing resources avail-
able [9]. Moreover, once a house is procured, there are potentially hundreds of
local homeless youth that are eligible for the resource.

Given the immense difference that housing programs can make for youth,
policy-makers and communities must allocate these precious resources efficiently.
Most communities employ a Coordinated Entry System (CES) in which organiza-
tions within the same community pool both their housing resources and youth.
When a housing resource becomes available, the waitlisted youth are ranked
based on a set of priority rules and the house is allocated to the highest ranking
individual [9].1 The current prioritization tool, the TAY Triage Tool,2 ranks the
youth based on a vulnerability score, the Next Step Tool (NST) score, that relies
on six key experiences that increase the risk of prolonged homelessness [23].
Thus, the current policy is not directly tied to outcomes (due mostly to lack
of outcome data at the time of design). Instead, it is purely based on factors
intrinsic to each youth that determine their ability to exit homelessness without
supportive housing. The increasing availability of outcome data, combined with
a strategic push to better coordinate housing resources [21], constitute a sig-
nificant opportunity to improve the current policy to better match supply and
demand for resources. We now summarize the main desiderata of such a policy:

(a) Maximize Efficiency. Given the scarcity of housing resources, it is critical
to design an efficient policy explicitly tied to outcomes for allocating houses
to the homeless youth. We thus seek to improve upon the efficiency of the
current policy (which is not tied to outcomes) as measured in terms of the
expected number of stably housed youth at the end of the intervention.

(b) Ensure Fairness. Housing resources constitute common property and can
prove invaluable for the homeless youth. It is thus natural to seek an alloca-
tion policy that is in some sense fair. Since there is no universally accepted
measure of fairness, the proposed framework should afford the policy-maker
the flexibility to select the fairness criteria that they wishes to enforce. For
example, one could require that the probability of a stable exit for a youth in

1 To date there is no regulation in place that enforces the current policy. However,
previous analysis has shown that communities follow this policy in practice [20].

2 Transition Age Youth (TAY) is a Service Prioritization Decision Assistance Tool
that can be accessed at http://orgcode.nationbuilder.com/tools you can use. It is
incorporated work from the TAY Triage Tool of Rice [23] which can be accessed at
http://www.csh.org/wp-content/uploads/2014/02/TAY TriageTool 2014.pdf.

http://orgcode.nationbuilder.com/tools_you_can_use
http://www.csh.org/wp-content/uploads/2014/02/TAY_TriageTool_2014.pdf

Designing Fair, Efficient, and Interpretable Policies 37

the system should be equal across different races, or independent of the vul-
nerability score of the youth so that, independently of their backgrounds
and past experiences, youth are equally likely to transition into stable
housing.

(c) Customize Interpretability. Currently, communities can decide to comply or
not with a recommended allocation. Hence, policies should be interpretable:
it should be easy to explain the structure of the policy and to justify a
particular matching. For example, a policy which assigns priority based on a
linear scoring rule may be viewed as interpretable. From our discussions with
communities across the country, it appears that much of the success of the
current policy can be attributed to its interpretability. Since interpretability
is subjective, we allow the policy-maker to customize the policy structure.

Given the above desiderata, a natural question is: how to design classes of
policies that conveniently trade-off between efficiency, fairness, and interpretabil-
ity? We note that this question arises in many other contexts, e.g., in the design
of policies for the U.S. Kidney Allocation System and the U.S. Public Housing
Program. In this paper, we propose a framework for designing such policies that
is applicable to all these contexts. We now summarize our main contributions:

(a) We introduce a data-driven framework for optimizing over interpretable poli-
cies, to which a policy-maker may add flexibly defined fairness constraints.
We give a mixed-integer program for computing optimal policies.

(b) To enhance scalability for complex policy classes, we give an approximate
solution approach which relaxes the problem to a form amenable to Bender’s
decomposition. This offers significant speedup and allows us to optimize over
much more sophisticated policies (e.g., multi-level decision trees, compared
to linear policies in previous work).

(c) We conduct an empirical evaluation using real-world data from homeless
youth across the U.S. We compare to both the status-quo TAY prioritization
as well an array of approaches from the literature. Our exact approach offers
significant improvements in fairness compared to previous approaches for
optimizing the same class of models, while our approximate approach allows
us to improve fairness in a complementary way, by using a more expressive
class. In both cases, we obtain efficiency comparable to the best (unfair)
alternatives, and better than the status-quo TAY.

Literature Review. Allocation problems have been studied extensively in com-
puter science and operations research. Much of this work considers incentives
issues, where agents may misreport their true preferences to obtain a better
match [1,8,13,26], and the focus is on satisfying axiomatic properties (e.g. Pareto
optimality or strategy-proofness). We do not consider strategic reporting since
information reported by the youth can generally be verified. Instead, we focus
on balancing efficiency, fairness, and interpretability. None of these goals are
considered in this previous work, and all are crucial features of our domain.
Another line of research considers nonstrategic online resource allocation, e.g.,
in the “Adwords” setting [4,7,19]. The focus here is on algorithms which prov-
ably approximate the optimal efficiency. By contrast, our goal is to find exactly

38 M. J. Azizi et al.

optimal policies out of a feasible set which is constrained by fairness and inter-
pretability. Lastly, much previous work considers organ (e.g., kidney) allocation
[2,11,24,25]. Our paper is most closely related to that of Bertsimas et al. [2],
who optimize the U.S. Kidney Allocation System over a class of linear policies.
We improve upon their approach in several ways: (i) we propose an exact for-
mulation of the allocation problem that enables us to guarantee fairness, while
Bertsimas et al. use a heuristic method that cannot guarantee fairness; (ii) our
model is exact, incorporating the order in which youth and housing resources
arrive, to provide accurate prioritization; (iii) we consider larger classes of inter-
pretable policies (e.g., based on decision trees). These contributions translate
into substantial empirical improvement.

Our work is also related to recent applications of mixed-integer programming
to machine learning [3,17,18]. Our approach uses a mixed-integer program (MIP)
to optimize over classes of policies (linear models, decision trees) also used in
the machine learning literature. Previous work has shown the promise of using
MIPs in machine learning; however, we are not aware of any work using such
techniques to construct policies for resource allocation.

Lastly, our work is related to interpretable machine learning. Many inter-
pretable models have been proposed, including decision rules [14,29], decision
sets [12] and generalized additive models [15,16]. In this work, motivated by the
policies currently used in the homeless youth housing system and U.S. Kidney
Allocation System, we build on decision trees, which have been used to cre-
ate interpretable models in many contexts [6,10,28]. We make two contributions
compared to this previous work. First, we introduce two new model classes which
generalize decision trees to respectively allow more flexible branching structures
and the use of a linear scoring policy at each node of the tree (Examples 3 and 4
of Sect. 2.3). Second, we use these models to parameterize the allocation policy
itself rather than the learning system. Thus, the final policies produced by our
system are interpretable, not just the predicted success probabilities.

Notation. We denote sets (resp. random variables) using uppercase blackboard
bold (resp. uppercase script) font. We denote the indicator function with I(·).

2 Model, Problem Statement, and Interpretable Policies

2.1 System Model

We model the homeless youth housing allocation system as an infinite stream
of housing resources indexed by h ∈ {1, . . . ,∞} that must be allocated to an
infinite stream of youth indexed by y ∈ {1, . . . ,∞}. Associated with each housing
resource h is a random feature vector Fh ∈ R

nh which includes, without loss
of generality, the (random) arrival time Ah ∈ R of the house in the system and
may also include e.g., the type of house (rapid rehousing, permanent supportive
housing, etc.). Accordingly, associated with each youth y is a random feature
vector Gy ∈ R

ny which includes the arrival time Ty ∈ R of the youth in the
system and may also include e.g., the intrinsic characteristics of the youth (age,

Designing Fair, Efficient, and Interpretable Policies 39

history of abuse, history of substance use, etc.). Not all youth are eligible for
all housing resources. Whether a youth is compatible with a particular house
can be determined based on the features of the house and the youth. We let
M(Fh) ∈ R

ny denote the set of all youth feature vectors that are compatible with
house h. For example, we may wish to enforce that M(Fh) := {Gy : Ah ≥ Ty}
so that a house must be allocated immediately upon arrival in the system. Thus,
youth y is eligible for house h if and only if Gy ∈ M(Fh). The probability of a
successful outcome (a safe and stable exit) when youth y is placed in house h is
denoted by p(Gy,Fh). The probability of a successful outcome if youth y is not
offered a house is denoted by p(Gy). We assume that both these quantities are
perfectly known (can be estimated from data). In our numerical experiments, see
Sect. 5, we will estimate these quantities using data from the HMIS database.

Our aim is to design interpretable parametric point-based policies that pri-
oritize the youth for housing resources so as to maximize overall welfare. In
particular, we consider parametric policies with parameter vector β ∈ R

n that
map the features of the youth and the house to a score, see Sect. 2.3 for examples
of such policies. We denote the score obtained for a youth y and house h for a
given parameter choice β by πβ(Gy,Fh). Then, youth y will have priority over
youth y′ if πβ(Gy,Fh) > πβ(Gy′ ,Fh). We assume that ties are broken using a
suitable tie-braking rule (e.g., at random). We thus let R be a permutation of
the set {1, . . . ,∞} where the quantity R(y) denotes the tie-breaking score of
youth y: when πβ(Gy,Fh) = πβ(Gy′ ,Fh), youth y will be given priority over
youth y′ if and only if R(y) > R(y′).

Given a parameter vector β we now formalize the allocation process. For
t ∈ [0,∞], we let Y(t) denote the set of youth that are available in the system at
time t. We omit the dependence of Y(t) on β to minimize notational overhead.
Thus, Y(0) denotes the initial state of the system. Suppose that a youth y arrives
in the system at time t. Then Y(t+) = Y(t) ∪ {y}. Suppose instead that house
h arrives in the system at time t. Then, the house will be allocated, among all
the compatible youth, to the one with the highest score (accounting for the tie
breaking rule). In particular, it will be assigned to the youth3

y� = argmax
y

{
R(y) : y ∈ argmaxy {πβ(Gy,Fh) : Gy ∈ M(Fh), y ∈ Y(t)}}

.

Subsequently, youth y� leaves the system, i.e., Y(t+) = Y(t)\{y�}. Thus, given β,
the allocation system generates: (i) an infinite random sequence {(Yi(β),Hi)}∞

i=1

of matches, where Hi ∈ {1, . . . ,∞} denotes the ith allocated house and Yi(β)
the youth to which the ith house is allocated under the policy with parameters β,
and (ii) a set limt→∞ Y(t) of youth that will never receive a house.

2.2 Problem Statement

Given the model described in Sect. 2.1, the expected probability of a safe and
stable exit across all youth is a complicated function of the parameters β and is
expressible as
3 By construction, there will be at most one youth in this set. Moreover, since there is

a severe shortage of houses, we can assume w.l.o.g. that this set will never be empty.

40 M. J. Azizi et al.

P(β) := E

⎡

⎣ lim
N→∞

1
N

N∑

i=1

p(GY i(β),FH i
) + lim

t→∞
1

|Y(t)|
∑

Y ∈Y(t)

p(GY)

⎤

⎦ ,

where the expectation is taken with respect to the distribution P of the ran-
dom features of the houses and the youth, which include their arrival times and
determine permissible matchings. The first (second) part in the expression above
corresponds to the probability that a randomly chosen youth that received (did
not receive) a house will have a safe and stable exit under the matching.

From the desiderata of the policy described in the Introduction, we wish to be
able to enforce flexible fairness requirements. These requirements take the form
of set-based constraints on the random sequence {(Yi(β),Hi)}∞

i=1 of matches.
For example, we may require that, almost surely, the proportion of all houses
that provide permanent support that go to individuals with high vulnerability
scores is greater than 40%. We denote by F the set in which the sequence of
matchings is required to lie. Then, choices of β are restricted to lie in the set

S := {β ∈ B : {(Yi(β),Hi)}∞
i=1 ∈ F, P-a.s.} ,

where B ⊆ R
n captures constraints that relate to interpretability of the policy

(e.g., constraints on the maximum number of features employed, see Sect. 3.2).
The problem faced by the policy-maker can then be expressed compactly as

maximize {P(β) : β ∈ S}. (1)

Unfortunately, Problem (1) is very challenging to solve since the relation
between β and the random sequence {(Yi(β),Hi)}∞

i=1 can be highly nonlinear,
while the distribution of the features of the youth and the houses is unknown. In
Sect. 3, we will propose a data-driven mixed-integer optimization approach for
learning the parameters β of the policy in Problem (1).

2.3 Interpretable Policies

In what follows, we describe several policies that can be employed in our frame-
work and that possess attractive interpretability properties.

Example 1 (Linear Scoring Policies). A natural choice of interpretable policy are
linear (or affine) in the features of the houses and the youth. These are express-
ible as πβ(G ,F) := β�(G ,F), where one uses one-hot encoding to encode cat-
egorical features. The feature vector can naturally be augmented by nonlinear
functions of the features available in the dataset as one would do in standard
linear regression. To reinforce interpretability, one may wish to limit the number
of permitted non-zero coefficients of β.

Example 2 (Decision-Tree-Based Scoring Policies). We refer to those policies
that take the form of a tree-like structure (in the spirit of decision-trees in
machine learning, see Introduction) as decision-tree-based scoring policies. In

Designing Fair, Efficient, and Interpretable Policies 41

each internal node of the decision-tree, a “test” is performed on a specific feature
(e.g., if the age of the youth is smaller than 18). Each branch represents the
outcome of the test, and each leaf node represents the score assigned to all
the youth that reach that leaf. Thus, each path from root to leaf represents a
classification rule that assigns a unique score to each youth. All youth that reach
the same leaf will have the same score. In these policies, the policy-maker selects
the depth K of the tree. The vector β collects the set of features to branch on at
each node and either the set of feature values that will be assigned to each branch
(for categorical features) or the cut-off values (for quantitative features). Thus,
these policies partition the space of features into 2K disjoint subsets. Letting S�

denote the set of all feature values that belong to the �th subset and z� the score
assigned to that subset, we have πβ(G ,F) :=

∑2K

�=1 z�I ((G ,F) ∈ S�). We note
that, while these policies are exponential in K, to maximize interpretability, K
should be kept as small as possible. To improve interpretability further, one may
require that each feature be branched on at most once.

Example 3 (Decision-Tree-Based Policies enhanced with Linear Branching). A
natural variant of the policies from Example 2 is one where policies take again
the form of a tree-like structure, but this time, each “test” involves a linear
function of several features (e.g., whether a vulnerability measure of the youth
is greater than 10). In this setting, the vector β collects the coefficients of the
linear function at each node and the cut-off values of the branching.

Example 4 (Decision-Tree-Based Policies enhanced with Linear Leafing).
Another variant of the policies from Example 2 is one where rather than having
a common score for all youth that reach a leaf, instead, a linear scoring rule is
employed on each leaf. Thus, πβ(G ,F) :=

∑2K

�=1[β
�
y,�G +β�

h,�F]I ((G ,F) ∈ S�),
and the parameters to be optimized are augmented with βy,� and βh,� for each �.

In addition to the examples above, one may naturally also consider decision-
tree-based policies enhanced with both linear branching and linear leafing.

3 Data-Driven Framework for Policy Calibration

In Sect. 2.1, we proposed a model for the homeless youth housing allocation
system and a mathematical formulation (Problem (1)) of the problem of design-
ing fair, efficient, and interpretable policies for allocating these scarce resources.
This problem is challenging to solve as it requires knowledge of the distribution
of the uncertain parameters. In this section, we propose a data-driven mixed-
integer optimization formulation for learning the parameters β of the policy, thus
approximating Problem (1).

3.1 A Data-Driven Mixed Integer Optimization Problem

We assume that we have at our disposal a dataset that consists of: (i) a (finite)
stream H of housing resources that became available in the past and their asso-
ciated feature vectors fh ∈ R

nh , h ∈ H; and (ii) a (finite) stream Y of youth

42 M. J. Azizi et al.

waitlisted for a house and their associated feature vectors gy ∈ R
ny . We let αh

(resp. τy) denote the arrival time of house h (resp. youth y) in the system. For
convenience, we define

C := {(y, h) ∈ Y × H : gy ∈ M(fh)} ,

and also let pyh := p(gy, fh), py := p(gy), and ρy := R(y). Using this data, the
problem of learning (estimating) the parameters β of the policy can be cast as a
mixed-integer optimization problem. The main decision variables of the problem
are the policy parameters β. Consider the MIP

maximize
∑

y∈Y

[
∑

h∈H

pyhxyh + py

(

1 −
∑

h∈H

xyh

)]

subject to πyh = πβ(gy, fh), ∀y ∈ Y, h ∈ H

∀y ∈ Y, h ∈ H,

xyh = 1 ⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(y, h) ∈ C,
∑

h′ �=h:αh′≤αh

xyh′ = 0, and

∀y′ : (y′, h) ∈ C and
∑

h′:αh′ ≤αh

xy′h′ = 0,

(πyh > πy′h) or (πyh = πy′h and ρy > ρy′)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

β ∈ B, x ∈ F, xyh ∈ {0, 1} ∀y ∈ Y, h ∈ H.

(2)

In addition to β, the decision variables of the problem are the assignment vari-
ables x and the scoring variables π. Thus, xyh indicates whether house h is
allocated to youth y under the policy with parameters β and πyh corresponds to
the score of youth y for house h under the policy. The first (second) part of the
objective function corresponds to the probability that youth y will be successful
if they do (do not) receive a house under the policy with parameters β. The first
constraint in the formulation defines the scoring variables in terms of the param-
eters β and the features of the youth and the house. The second constraint is
used to define the assignment variables in terms of the scores: it stipulates that
youth y will receive house h if and only if: (i) the two are compatible, (ii) youth
y is still on the waitlist, and (iii) youth y has higher priority over all youth that
have not yet been allocated a house in the sense that they score higher using the
scoring policy dictated by β (combined with the tie-breaking rule).

Next, we show that if F is polyhedral, Problem (2) can be solved as a mixed-
integer linear optimization problem provided one can define the scores π using
linear inequalities. The main decision variables of this problem are the policy
parameters β. Consider the MIP

maximize
∑

y∈Y

[
∑

h∈H

pyhxyh + py

(

1 −
∑

h∈H

xyh

)]

(3a)

subject to πyh = πβ(gy, fh) ∀y ∈ Y, h ∈ H (3b)

Designing Fair, Efficient, and Interpretable Policies 43

∑

h∈H

xyh ≤ 1 ∀y ∈ Y,
∑

y∈Y

xyh ≤ 1 ∀h ∈ H (3c)

zyh =
∑

h′∈H\{h}
I (αh′ ≤ αh) xyh′ ∀y ∈ Y, h ∈ H (3d)

πyh − πy′h = v+
yy′h − v−

yy′h ∀y, y′ ∈ Y, h ∈ H (3e)

v+
yy′h ≤ Muyy′h ∀y, y′ ∈ Y, h ∈ H (3f)

v−
yy′h ≤ M(1 − uyy′h) ∀y, y′ ∈ Y, h ∈ H (3g)

v+
yy′h + v−

yy′h ≥ ε(1 − uyy′h) ∀y, y′ ∈ Y, h ∈ H : ρy > ρy′ (3h)

v+
yy′h + v−

yy′h ≥ εuyy′h ∀y, y′ ∈ Y, h ∈ H : ρy′ > ρy (3i)

xyh ≤ uyy′h + zy′h ∀y, y′ ∈ Y, h ∈ H (3j)

1 − zyh ≤
∑

y′:(y′,h)∈C

xy′h ∀(y, h) ∈ C (3k)

xyh = 0 ∀y ∈ Y, h ∈ H : (y, h) /∈ C (3l)
x ∈ F (3m)

v+
yy′h, v−

yy′h ≥ 0, uyy′h ∈ {0, 1}, ∀y, y′ ∈ Y, h ∈ H (3n)

xyh, zyh ∈ {0, 1} ∀y ∈ Y, h ∈ H. (3o)

In addition to the policy parameters β, the score variables π and assignment
variables x, Problem (3) employs several auxiliary variables (z, v+, v−, and u)
that are used to uniquely define the assignment variables x based on the scores π.
The variables z indicate whether a youth is still waiting at the time a house
arrives: zyh = 1 if and only if youth y has been allocated a house on or before
time αh. The non-negative variables v+

yy′h and v−
yy′h denote the positive and

negative parts of πyh − πy′h. Finally, the variables u are prioritization variables:
uyy′h = 1 if and only if either youth y has a higher score than youth y′ for
house h (i.e., πyh > πy′h) or they have the same score but youth y has priority
due to tie-breaking (i.e., πyh = πy′h and ρy > ρy′).

Problems (2) and (3) share the same objective function. An interpretation of
the constraints in Problem (3) is as follows. Constraint (3b) is used to define
the variables πyh. Constraints (3c) are classical matching constraints. Con-
straint (3d) is used to define the variables z. Constraints (3e)–(3i) are used
to define the prioritization variables u in term of the scores π: constraint (3e)
defines v+

yh and v−
yh as the positive and negative parts of πyh −πy′h, respectively.

Constraints (3f) and (3g) stipulate that uyy′h must be 1 if πyh > πy′h and must
be 0 if πyh < πy′h. Constraints (3h) and (3i) ensure that if πyh and πy′h are
equal then uyy′h = 1 if and only if ρy > ρy′ . Constraint (3j) stipulates that
youth y cannot receive house h if there is another youth y′ that is still waiting
for a house and that has priority for house h over y. Constraint (3k) ensures
that if a youth that is compatible with a house has not been served at the time
a house arrives, then the house must be assigned to a compatible youth. Finally,
constraint (3l) ensures that youth are only assigned houses they are eligible for.

44 M. J. Azizi et al.

If the scoring variables π can be defined in terms of the policy parameters β
(constraint (3b)) using integer linear constraints, then Problem (3) is an MILP.

3.2 Expressing the Policy Values Using Integer Linear Constraints

We now show that for all the interpretable policies from Sect. 2.3, the scoring
variables π can be defined using finitely many integer linear constraints, implying
that Problem (3) reduces to a mixed-integer linear program if F is polyhedral.

Example 5 (Linear Scoring Policies). In the case of the linear policies (Exam-
ple 1), constraint (3b) is equivalent to

πyh = β�(gy, fh) ∀y ∈ Y, h ∈ H. (4)

To increase interpretability, one may impose a limit K on the number of features
employed in the policy by letting

B =

{

β ∈ R
n : ∃κ ∈ {0, 1}n with

n∑

i=1

κi ≤ K, |βi| ≤ κi, i = 1, . . . , n

}

,

where κi = 1 if and only if the ith feature is employed.

Example 6 (Decision-Tree-Based Scoring Policies). For decision-tree-based scor-
ing policies (Example 2), constraint (3b) is equivalent to

πyh =
∑

�∈L

z�xyh� ∀y ∈ Y, h ∈ H, (5)

where L denotes the set of all leafs in the tree, the variables x are leaf assignment
variables such that xyh� = 1 if and only if the feature vectors of youth y and
house h belong to leaf �, and z are score variables such that z� corresponds to the
score assigned to leaf �. The above constraint is bilinear but can be linearized
using standard techniques. Next, we illustrate that the leaf assignment variables
can be defined using a system of integer linear inequalities.

Let Ic and Iq denote the sets of all categorical and quantitative features (of
both the youth and the houses), respectively. Also, let I := Ic ∪ Iq. Denote with
dyhi the value attained by the ith feature of the pair (y, h) and for i ∈ Ic let Si

collect the possible levels attainable by feature i. Finally, let V denote the set of
all branching nodes in the tree and for ν ∈ V, let L

r(ν) (resp. Ll(ν)) denote all
the leaf nodes that lie to the right (resp. left) of node ν. Consider the system

∑

i∈I

pνi = 1 ∀ν ∈ V (6a)

qν −
∑

i∈Iq

pνidyhi = g+yhν − g−
yhν ∀ν ∈ V, y ∈ Y, h ∈ H (6b)

Designing Fair, Efficient, and Interpretable Policies 45

g+yhν ≤ Mwq
yhν ∀ν ∈ V, y ∈ Y, h ∈ H (6c)

g−
yhν ≤ M(1 − wq

yhν) ∀ν ∈ V, y ∈ Y, h ∈ H (6d)

g+yhν + g−
yhν ≥ ε(1 − wq

yhν) ∀ν ∈ V, y ∈ Y, h ∈ H (6e)

xyh� ≤ 1 − wq
yhν +

∑

i∈Ic

pνi ∀ν ∈ V, y ∈ Y, h ∈ H, � ∈ L
r(ν) (6f)

xyh� ≤ wq
yhν +

∑

i∈Ic

pνi ∀ν ∈ V, y ∈ Y, h ∈ H, � ∈ L
l(ν) (6g)

sνik ≤ pνi ∀ν ∈ V, i ∈ Ic, k ∈ Si (6h)

wc
yhν =

∑

i∈Ic

∑

k∈Si

sνikI (dyhi = k) ∀ν ∈ V, y ∈ Y, h ∈ H (6i)

xyh� ≤ wc
yhν +

∑

i∈Iq

pνi ∀ν ∈ V, y ∈ Y, h ∈ H, � ∈ L
r(ν) (6j)

xyh� ≤ 1 − wc
yhν +

∑

i∈Iq

pνi ∀ν ∈ V, y ∈ Y, h ∈ H, � ∈ L
l(ν) (6k)

∑

�∈L

xyh� = 1 ∀y ∈ Y, h ∈ H (6l)

in variables qν ∈ R, g+yhν , g−
yhν ∈ R+, and xyh�, pνi, wq

yhν , wc
yhν , sνik ∈ {0, 1}

for all y ∈ Y, h ∈ H, � ∈ L, ν ∈ V, i ∈ I, k ∈ Si.
An interpretation of the variables is as follows. The variables p indicate the

feature that we branch on at each node. Thus, pνi = 1 if and only if we branch
on feature i at node ν. The variables qν , g+yhν , g−

yhν , and wq
yhν are used to bound

xyh� based on the branching decisions at each node ν, whenever branching is
performed on a quantitative feature at that node. The variable qν corresponds
to the cut-off value at node ν. The variables g+yhν and g−

yhν represent the positive
and negative parts of qν−∑

i∈Iq
pνidyhi, respectively. Whenever branching occurs

on a quantitative feature, the variable wq
yhν will equal 1 if and only if qν ≥∑

i∈Iq
pνidyhi, in which case the data point (y, h) must go left in the branch. The

variables wc
yhν and sνik are used to bound xyh� based on the branching decisions

at each node ν, whenever branching is performed on a categorical feature at that
node. Whenever we branch on categorical feature i ∈ Ic at node ν, the variable
sνik equals 1 if and only if the points such that dyhi = k must go left in the
branch. If we do not branch on feature i, then the variable sνik will equal zero.
The variable wc

yhν will equal 1 if and only if we branch on a categorical feature
at node ν and data point (y, h) must go left at the node.

An interpretation of the constraints is as follows. Constraint (6a) ensures that
only one variable is branched on at each node. Constraints (6b)–(6g) are used to
bound xyh� based on the branching decisions at each node ν, whenever branching
is performed on a quantitative feature at that node. Constraints (6b)–(6e) are
used to define wq

yhν to equal 1 if and only if qν ≥ ∑
i∈Iq

pνidyhi. Constraint (6f)
stipulates that if we branch on a quantitative feature at node ν and data point
(y, h) goes left at the node (i.e., wq

yhν = 1), then the data point cannot reach any

46 M. J. Azizi et al.

leaf node that lies to the right of the node. Constraint (6g) is symmetric to (6f)
for the case when the data point goes right at the node. Constraints (6h)–(6k) are
used to bound xyh� based on the branching decisions at each node ν, whenever
branching is performed on a categorical feature at that node. Constraint (6h)
stipulates that if we do not branch on feature i at node ν, then sνik = 0.
Constraint (6i) is used to define wc

yhν such that it is equal to 1 if and only if
we branch on a particular feature i, the value attained for that feature by data
point (y, h) is k and data points with feature value k are assigned to the left
branch of the node. Constraints (6j) and (6k) mirror constraints (6f) and (6g),
respectively, for the case of categorical features.

Example 7 (Decision-Tree-Based Policies enhanced with Linear Branching). For
decision-tree-based policies enhanced with linear branching (Example 3), con-
straint (3b) can be expressed in terms of linear inequalities using a variant of
the formulation from Example 6. Specifically, one can convert the dataset to
have only quantitative features using one hot encoding and subsequently enforce
constraints (5) and (6b)–(6g) to achieve the desired model.

Example 8 (Decision-Tree-Based Policies enhanced with Linear Leafing). For
decision-tree-based policies enhanced with linear leafing (Example 4), constraint
(3b) can be expressed in terms of linear inequalities using a variant of the for-
mulation from Example 6 by replacing constraint (5) with

πyh =
∑

�∈L

[β�
y,�gy + β�

h,�fh]xyh� ∀y ∈ Y, h ∈ H. (7)

4 Approximate Solution Approach

Albeit exact, the data-driven MIP (3) scales with the number of youth and houses
in the system. In this section, we propose an approximate solution approach that
generalizes the one from [2] to decision-tree-based policies, see Examples 1–4.
Consider the following relaxation of Problem (3).

maximize
∑

y∈Y

[
∑

h∈H

pyhxyh + py

(

1 −
∑

h∈H

xyh

)]

subject to
∑

h∈H

xyh ≤ 1 ∀y ∈ Y,
∑

y∈Y

xyh ≤ 1 ∀h ∈ H

xyh = 0 ∀y ∈ Y, h ∈ H : (y, h) /∈ C

x ∈ F, xyh ≥ 0 ∀y ∈ Y, h ∈ H

(8)

Contrary to Problem (3) in which the matching is guided by the policy with
parameters β, this formulation allows for arbitrary matches and integrality con-
straints on x are relaxed so that xyh can be interpreted as the probability that
house h is offered to youth y. Thus, the optimal policy from (9) is anticipative and
not implementable in practice. Next, we propose a method that leverages formu-
lation (8) to design an implementable policy. For convenience, we assume that the

Designing Fair, Efficient, and Interpretable Policies 47

set of fair matchings is expressible as F := {x : Ax ≤ b} for some matrix A and
vector b. Moreover, we let λ denote the vector of optimal dual multipliers of the
fairness constraints in (8). We define the quantity Cyh := pyh − py − (λ�A)(y,h)

and propose to learn β to approximate Cyh using πyh, the score for this match.
This problem is expressible as

minimize

⎧
⎨

⎩

∑

y∈Y

∑

h∈H

|Cyh − πyh| : Constraint (3b)

⎫
⎬

⎭
. (9)

Problem (9) admits an intuitive interpretation. In the absence of fairness con-
straints, the policy should rank youth according to their probabilities of success.
In the presence of fairness constraints, the policy should rank youth to maximize
the probability of success while penalizing violations of the fairness constraints.
An estimate of the cost at which violating the fairness constraints is not bene-
ficial can be obtained by using the optimal dual multipliers λ. As discussed in
Sect. 3.2, for all interpretable policies proposed in Sect. 2.3, constraint (3b) is
equivalent to a finite set of linear inequality constraints involving binary vari-
ables. Thus, Problem (9) is equivalent to an MILP (an LP for the case of lin-
ear policies). Problem (9) is significantly more tractable than (3). While it can
still be challenging to solve for large datasets, in the case of tree-based policies
(Examples 2–4), it presents an attractive decomposable structure amenable to
Bender’s decomposition. Thus, x, z, and π are variables of the subproblem and
all other variables are decided in the master. Note that integrality constraints in
the subproblem may be relaxed to yield an equivalent problem.

5 Numerical Study

We showcase the performance of our approach to design policies for the U.S.
homeless youth. We build interpretable policies that maximize efficiency while
ensuring fairness across NST scores (see Introduction) and across races, in turn.
We use real-world data (10,922 homeless youth and 3474 housing resources)
from the HMIS database obtained from Ian De Jong as part of a working group
called “Youth Homelessness Data, Policy, Research.” The dataset includes 54
features for the youth and each house is of one of two types (rapid rehousing
(RRH) or permanent supportive housing (PSH)), see [5]. A youth is considered
to have a successful outcome if they are housed one year later. We use 80%
(20%) of data for training (testing). We use the training set to learn (using
CART) the success probabilities that are fed in our models and to identify the
five most significant features. We compare our proposed approach to several
baselines: (i) the status-quo policy TAY; (ii) random allocation (Random); (iii)
the (interpretable) machine learning approaches without fairness from [5] (Linear
and Logistic Regression and CART); (iv) the linear scoring policies with relaxed
fairness constraints originally proposed in [2] (Linear RF). To these baselines, we
add: (i) Decision-tree-based policies with relaxed fairness constraints (Decision-
Tree RF); (ii) Decision-tree-based policies with linear leafing (depth 1 and 2)

48 M. J. Azizi et al.

Fig. 1. Success probability across all youth (left) and by vulnerability level (right)
when fairness across vulnerability levels is desired.

Fig. 2. Housing resources allocated by vulnerability level when fairness across vulner-
ability levels is desired.

with relaxed fairness constraints (Decision-Tree LL RF); (iii) Linear scoring
policies with (exact) fairness constraints computed using MILP (3) (Linear EF).

Fairness Across NST Scores. Motivated by TAY which provides the most sup-
portive resources to the most vulnerable youth, we enforce fairness with respect
to NST score: independently of their score, youth should be equally likely to tran-
sition to a fair and stable exit. We enforce fairness across two groups which were
found to have very different chances to remain homeless in the long run: youth
with scores 4–7 and 8+, respectively. Youth with scores below 4 are excluded
since they have a higher estimated success probability when not offered housing.
Figure 1 shows the success probability of youth under each policy. The baselines
TAY, Random, Logistic Regression, and CART are all very unfair: the proba-
bility of success for youth with scores 8+ is uniformly below 30%, while lower

Designing Fair, Efficient, and Interpretable Policies 49

Table 1. Solver times for the proposed approaches for solving to optimality when
fairness across vulnerability levels is desired.

Fairness constraints Type of policy Decomposition used Solver time (seconds)

Relaxed Linear N/A 932.57

Relaxed Decision-Tree Yes (No) 3570.12 (7105.11)

Relaxed Decision-Tree LL Yes (No) 9031.32 (14045.45)

Exact Linear N/A 36400.98

Fig. 3. Success probability across all youth (left) and by race (right) when fairness
across races is desired.

risk youth with scores 4–7 have success probability higher than 60%. Linear
Regression performs considerably better and introducing relaxed fairness con-
straints (Linear RF) does not yield any improvement. Our proposed policies
outperform all benchmarks in terms of fairness and do so at marginal cost to
overall efficiency. Figure 2 shows the percentage of each type of house allocated
to each group under each policy. The current policy allocates the most resource-
intensive resources (PSH) to the highly vulnerable individuals and the RRH
resources to individuals scoring 4–7. Our analysis however shows that some high
risk individuals can improve their chances of a successful outcome by receiving
an RRH resource. Thus, our policies allocate some RRH (resp. PSH) houses to
high (resp. low) risk individuals, resulting in policies that benefit the most vul-
nerable youth, see Figs. 1 and 2. Lastly, Table 1 shows the runtime required to
solve each problem.4 Exact formulations require more runtime than approxima-
tions, and more sophisticated policies require greater runtime. Moreover, there
are significant benefits in employing our proposed decomposition approach.

4 These experiments were run on a 2.0 GHz Intel Core i7 processor machine with 4GB
RAM and all optimization problems were solved with Gurobi v7.0.

50 M. J. Azizi et al.

Fairness Across Races. Motivated by the desire to avoid racial discrimination,
we seek policies that are fair across races. The results are summarized in Fig. 3
which shows that the current policy and classical machine learning approaches
are unfair, with “Whites” having higher success probability than “Blacks” and
“Hispanics.” In contrast, our proposed policies, in particular Linear EF outper-
form significantly the state of the art at marginal cost to overall efficiency.

References

1. Adamczyk, M., Sankowski, P., Zhang, Q.: Efficiency of truthful and symmetric
mechanisms in one-sided matching. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol.
8768, pp. 13–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44803-8 2

2. Bertsimas, D., Farias, V.F., Trichakis, N.: Fairness, efficiency, and flexibility in
organ allocation for kidney transplantation. Oper. Res. 61(1), 73–87 (2013)

3. Bertsimas, D., King, A., Mazumder, R.: Best subset selection via a modern opti-
mization lens. Ann. Stat. 44(2), 813–852 (2016)

4. Buchbinder, N., Jain, K., Naor, J.S.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75520-3 24

5. Chan, H., Rice, E., Vayanos, P., Tambe, M., Morton, M.: Evidence from the past:
AI decision aids to improve housing systems for homeless youth. In: AAAI 2017.
Fall Symposium Series (2017)

6. Che, Z., Purushotham, S., Khemani, R., Liu, Y.: Interpretable deep models for
ICU outcome prediction. In: AMIA Annual Symposium Proceedings, vol. 2016, p.
371. American Medical Informatics Association (2016)

7. Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms
and fast approximation algorithms for resource allocation problems. In: Proceed-
ings of the 12th ACM Conference on Electronic Commerce, pp. 29–38. ACM (2011)

8. Dughmi, S., Ghosh, A.: Truthful assignment without money. In: Proceedings of
the 11th ACM Conference on Electronic Commerce, pp. 325–334. ACM (2010)

9. Housing and Urban Development (HUD): Coordinated Entry Policy Brief
(2015). https://www.hudexchange.info/resources/documents/Coordinated-Entry-
Policy-Brief.pdf

10. Huang, L.-T., Gromiha, M.M., Ho, S.-Y.: iPTREE-STAB: interpretable decision
tree based method for predicting protein stability changes upon mutations. Bioin-
formatics 23(10), 1292–1293 (2007)

11. Kong, N., Schaefer, A.J., Hunsaker, B., Roberts, M.S.: Maximizing the efficiency
of the U.S. liver allocation system through region design. Manag. Sci. 56(12),
2111–2122 (2010)

12. Lakkaraju, H., Bach, S.H., Jure, L.: Interpretable decision sets: a joint framework
for description and prediction. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1675–1684.
ACM (2016)

13. Leshno, J.D.: Dynamic matching in overloaded waiting lists (2017)
14. Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers

using rules and bayesian analysis: building a better stroke prediction model. Ann.
Appl. Stat. 9(3), 1350–1371 (2015)

https://doi.org/10.1007/978-3-662-44803-8_2
https://doi.org/10.1007/978-3-662-44803-8_2
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/978-3-540-75520-3_24
https://www.hudexchange.info/resources/documents/Coordinated-Entry-Policy-Brief.pdf
https://www.hudexchange.info/resources/documents/Coordinated-Entry-Policy-Brief.pdf

Designing Fair, Efficient, and Interpretable Policies 51

15. Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regres-
sion. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 150–158. ACM (2012)

16. Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with
pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 623–631. ACM (2013)

17. Mazumder, R., Radchenko, P.: The discrete dantzig selector: estimating sparse
linear models via mixed integer linear optimization. IEEE Trans. Inf. Theory 63(5),
3053–3075 (2017)

18. Mazumder, R., Radchenko, P., Dedieu, A.: Subset selection with shrinkage: sparse
linear modeling when the SNR is low. arXiv preprint arXiv:1708.03288 (2017)

19. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. J. ACM (JACM) 54(5), 22 (2007)

20. The U.S. Department of Housing: OFFICE OF COMMUNITY PLANNING Urban
Development, and DEVELOPMENT. The 2016 Annual Homeless Assessment
Report (AHAR) to Congress (2016)

21. United States Interagency Council on Homelessness. Opening doors: federal strate-
gic plan to prevent and end homelessness (2010)

22. Pearson, C.L.: The applicability of housing first models to homeless persons with
serious mental illness: final report. Technical report, U.S. Department of Housing
and Urban Development, Office of Policy Development and Research (2007)

23. Rice, E.: Assessment Tools for Prioritizing Housing Resources for Homeless
Youth (2017). https://static1.squarespace.com/static/56fb3022d210b891156b3948
/t/5887e0bc8419c20e9a7dfa81/1485299903906/Rice-Assessment-Tools-for-Youth-
2017.pdf

24. Su, X., Zenios, S.A.: Patient choice in kidney allocation: a sequential stochastic
assignment model. Oper. Res. 53(3), 443–455 (2005)

25. Su, X., Zenios, S.A.: Recipient choice can address the efficiency-equity trade-off in
kidney transplantation: a mechanism design model. Manag. Sci. 52(11), 1647–1660
(2006)

26. Thakral, N.: Matching with stochastic arrival. In: EC, p. 343 (2015)
27. Toro, P.A., Lesperance, T.M., Braciszewski, J.M.: The heterogeneity of homeless

youth in America: examining typologies. National Alliance to End Homelessness,
Washington, D.C. (2011)

28. Valdes, G., Marcio Luna, J., Eaton, E., Simone, C.B.: MediBoost: a patient strati-
fication tool for interpretable decision making in the era of precision medicine. Sci.
Rep. 6 (2016)

29. Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., MacNeille, P.: A
bayesian framework for learning rule sets for interpretable classification. J. Mach.
Learn. Res. 18(70), 1–37 (2017)

http://arxiv.org/abs/1708.03288
https://static1.squarespace.com/static/56fb3022d210b891156b3948/t/5887e0bc8419c20e9a7dfa81/1485299903906/Rice-Assessment-Tools-for-Youth-2017.pdf
https://static1.squarespace.com/static/56fb3022d210b891156b3948/t/5887e0bc8419c20e9a7dfa81/1485299903906/Rice-Assessment-Tools-for-Youth-2017.pdf
https://static1.squarespace.com/static/56fb3022d210b891156b3948/t/5887e0bc8419c20e9a7dfa81/1485299903906/Rice-Assessment-Tools-for-Youth-2017.pdf

An Efficient Relaxed Projection Method
for Constrained Non-negative Matrix
Factorization with Application to the
Phase-Mapping Problem in Materials

Science

Junwen Bai1(B), Sebastian Ament1, Guillaume Perez1, John Gregoire2,
and Carla Gomes1

1 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
jb2467@cornell.edu

2 Joint Center for Artificial Photosynthesis, California Institute of Technology,
Pasadena, CA 91125, USA

Abstract. In recent years, a number of methods for solving the con-
strained non-negative matrix factorization problem have been proposed.
In this paper, we propose an efficient method for tackling the ever
increasing size of real-world problems. To this end, we propose a general
relaxation and several algorithms for enforcing constraints in a challeng-
ing application: the phase-mapping problem in materials science. Using
experimental data we show that the proposed method significantly out-
performs previous methods in terms of �2-norm error and speed.

1 Introduction

Matrix factorization is a well-known method used for data compression and
information extraction. Given a matrix A, matrix factorization is the problem of
finding two matrices W and H such that A ≈ WH. As W and H are assumed
to be low-rank, the sum of their sizes is usually much smaller than the size of A.
Further, the columns of W can be interpreted as basis components, which are
linearly combined by columns of H to reconstruct A. The matrix factorization
problem occurs in numerous fields, for example topic modeling [1], audio signal
processing [2], and crystallography [3]. While successful algorithms for classical
matrix factorization have been found, some variants of this problem are challeng-
ing. For example, merely restricting W and H to be element-wise non-negative
is known to lead to an NP-Hard problem [4], called non-negative matrix factor-
ization (NMF) [1,4]. These variants are important for many practical problems.

Moreover, many real-world problems which can be modeled by NMF also
involve domain-specific constraints. A good example is the phase-mapping prob-
lem in the field of materials discovery [5]. This problem arises when materials
scientists generate potentially novel materials by applying a physical transfor-
mation to mixtures of known materials. Individual materials are commonly char-
acterized by a variety of spectrographic techniques, like x-ray diffraction [6] and
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 52–62, 2018.
https://doi.org/10.1007/978-3-319-93031-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_4&domain=pdf

An Efficient Relaxed Projection Method for Constrained NMF 53

Raman spectroscopy [7]. Each spectrogram produced by these experiments typ-
ically corresponds to a mixture of potentially novel materials or phases, whose
individual spectrograms are unkown. The phase-mapping problem is then to
uncover these unknown phases, from which materials scientists can understand
the phase behavior of the associated materials and its relationship to other mea-
sured properties. At a high level, the problem can be framed as an NMF problem,
where the columns of A are the measured spectrograms Importantly, the matri-
ces W and H of the resulting factorization problem have to respect hard physical
constraints for the solution to be meaningful to scientists. This makes the phase-
mapping problem particularly challenging from a computational perspective.

In order to incorporate these hard constraints, recent work used mixed-
integer programming (MIP) to project the matrices W and H onto the constraint
space, after an unconstrained optimization [8] of the NMF problem [9]. Subse-
quently, W and H were re-optimized without leaving the constraint space. While
the results of this work are promising, the method still requires solving time-
consuming, hard combinatorial problems for enforcing the constraints. Other
previous approaches to this problem were purely based on combinatorial search
algorithms applied to the constraint space [5,10,11]. However, these methods are
often intractable and deteriorate with the presence of noise in the data. The goal
of this paper is to obviate the need for combinatorial optimization techniques
for the solution of this problem.

In this paper, we propose a heuristic approach that uses a polynomial-time
algorithm Projected Interleaved Agile Factor Decomposition (PIAFD)
interleaving the enforcement of essential hard-constraints, combined with a relax-
ation which allows the algorithm to move the optimization variables into the
constraint space continuously while optimizing the objective function for the
phase-mapping problem. This projection-based algorithm is designed to enforce
the three constraints which are most essential in the phase-mapping problem:
the Gibbs, Alloying and connectivity constraints. This new algorithm works well
in practice, and allows to extract accurate, constraint-satisfying solutions in a
very short time. We study the impact of the application of these algorithms on
the solution quality, as measured by different objective functions.

This paper is organized as follows. The phase-mapping problem is first
described and modeled as an associated matrix factorization problem. After an
overview of the state-of-the-art methods for this problem, we present our new
method PIAFD for enforcing the relevant constraints. Finally, PIAFD is applied
to several real-world data sets of the phase-mapping problem to demonstrate its
performance.

2 Preliminaries

The phase-mapping problem has recently drawn attention because of its great
importance to the discovery of new materials [12,13]. In their search for new
materials, scientists try to characterize novel materials with spectrographic tech-
niques, like x-ray diffraction (XRD) spectroscopy. For each sample point on an

54 J. Bai et al.

Hm = Hm ◦
W ↓mT

(
A

R
)

W ↓mT
L×N

W = W ◦
∑

m

(
A↑m

R↑m)HmT

∑

m
L×KHmT

Fig. 1. (Left) the schematic on the left is known as a phase diagram. The sides of
the triangle correspond to proportions of the metals which are deposited on the wafer.
The corners correspond to regions where only one metal has been deposited, while
the center of the triangle corresponds to a location where all metals are deposited in
equal proportions. The legend indicates that four phases are present: α, β, γ, δ. Each
colors represents a region in which a unique phase or a unique combination of phases is
present. The graph on the right shows how the spectrograms can vary as the proportions
of the initial metals are changed. (Right) multiplicative gradient update rules. (Color
figure online)

experimental wafer, we denote by F (q) the vector of diffraction intensities as a
function of q, the scattering vector. That is, F (q) corresponds to the spectro-
gram observed at a location on the wafer, and we will refer to it as an XRD
pattern. Importantly, each location on the wafer is likely to contain mixtures
of new materials. Therefore, F (q) will be a combination of the spectrograms of
several unkown materials (i.e. phases), which are generally not observed directly.
This makes the phase-mapping problem non-trivial.

This problem is naturally formulated using a matrix A, each of whose columns
consists of a XRD pattern F (q) of length Q. If there are N sample points on the
wafer, A is of size Q×N . The algorithms of this paper are based on factorizing A
using two matrices W and H such that A ≈ WH. W stores the different phases,
while H contains the quantity of each basis pattern at each sample point.

While the non-negativity of the spectrograms puts one constraint on W and
H, several other constraints are also present. We briefly describe these additional
constraints, and current methods of enforcing them. The IAFD method [9] alter-
nates multiplicative gradient updates (Fig. 1) and constraint refinement. The
generalized Kullback-Leibler (KL) divergence between A and WH is taken to be
the objective function. The update rules above are proven to be non-decreasing,
but do not necessarily converge to a stationary point of the objective function.
Notably, [14] introduced modifications to these updates which do provably con-
verge to a stationary point.

Shifting . A common phenomenon that occurs in the XRD spectroscopy of cer-
tain materials is shifting. A basis pattern Fb(q) is shifting with a multiplicative
factor λ if the pattern Fb(λq) is present at a sample point, instead of Fb(q).
Crucially, a shifted pattern should still be recognized as the original pattern. In

An Efficient Relaxed Projection Method for Constrained NMF 55

Fig. 1, the signals on the bottom right show the shifting of phase β. In order to
model this behavior, one can resample the signal F (λq) on a logarithmic scale,
so that the multiplicative shifting becomes additive. Then, a convolutive NMF
framework can be readily applied to this problem [9]. This framework allows for
multiple shifted copies of the phases. In particular, the columns of W are allowed
to shift down with a certain shifting amount m, W ↓m. Then the factorization
problem can be defined as A ≈ ∑

m W ↓mHm where Hm is of size K×N consists
of the activation coefficients of corresponding shifted phases. The exact shifting
of phase k at sample j is defined by a weighted average of different shifting
amounts λkj =

∑
m mHm

kj/
∑

m Hm
kj .

Gibbs. The Gibbs phase rule puts a limit on the number of phases which can be
observed at a sample point in a thermodynamic equilibrium. In particular, the
maximum number of different phases at a single location is equal to the number
of elements, G, which were deposited on the wafer initially. For example, on
the wafer where three different elements were deposited, the maximum number
of phases at each sample point is three. This implies that the number of non-
zero elements in each column of H should not exceed G. The IAFD algorithm
projects solutions onto the constraint space by solving a MIP for each column of
H containing a bounded maximum number of non-zero entries and minimizing
the �1 distance between the reconstructed sample point and real sample point.
However, this method introduced a time-consuming combinatorial problem to
solve, and the �1 distance used in MIP is different from the KL divergence used
in the multiplicative gradient updates when factorizing A.

Alloying . The alloying rule states that if shifting is detected at a sample point,
the Gibbs phase rule loses a degree of freedom. The number of possible phases for
this sample point is then bounded by G−1. Furthermore, the shifting parameters
λ change continuously across the wafer in the presence of alloying. Similar to the
Gibbs constraint, the IAFD algorithm repairs solutions by solving a set of MIPs.
These MIPs embed the alloying constraint and minimize the absolute distance
between the current solution and the measurement data A. Once again, a hard
combinatorial problem has to be solved and the objective function is not the
same as the one used for optimizing W and H.

Connectivity . The last constraint of the phase-mapping problem is the con-
nectivity constraint. This constraint states that the sample locations where a
given phase is present are members of a connected region. For this constraint,
the IAFD algorithm first defines a graph, using the sample point locations, and
a Delaunay triangulation [15] of these points. The triangulation gives a graph
in which neighborhood relationships are defined. For a sample j, its neighbors
constitute a set ωj . Then a search is performed to find the connected compo-
nents for each phase. Only the largest component of every phase is kept, and
its complement is zeroed out. This procedure is only applied at the end of the
algorithm.

56 J. Bai et al.

3 Constraint Projection for the Phase-Mapping Problem

Multiplicative updates. PIAFD is based on the multiplicative update rules
for convolutive NMF [16]. These update rules are non-decreasing, though they
might not converge to a stationary point of the objective function. Future work
will be based on the modified update rules introduced in [14] to eliminate this
possibility. In addition, a �1-penalty term on elements of H is included, to sug-
gest a sparse solution. Note that the scaling indeterminacy between W and H,
as (αW)(1

αH) leads to the same reconstruction error for all non-zero α. If no
further adjustments were made, this property would lead the algorithm to make
the elements of H arbitrarily small to minimize the �1-penalty. In order to avoid
this behavior, a normalized version of W is used to derive the multiplicative
update rules. See [17] for details. PIAFD method alternates between multiplica-
tive update and projection onto the constraint space. The rest of this section
shows how to efficiently project onto the phase-mapping constraints.

Constraint Projection . The projection of a vector y onto a constraint space
C is often defined by the following equation:

PC(y) = arg min
x∈C

‖x − y‖2 (1)

Finding the projection of a given point onto a constraint space is often a
hard task, but there are some constraints for which efficient algorithms can
be defined [18–20]. In this section, we propose to define the projection of each
constraint.

Gibbs. First, the projection PGibbs(y) of the current solution y is the closest
point to y which satisfies the Gibbs constraint. This constraint states that no
more than G entries in each column of H can have a non-zero value. Each column
of H therefore can be projected independently. The closest point satisfying this
constraint is the closest point having less or equal to G non-zero values. This
point is composed of the G largest elements of the column. Note that the worst-
case complexity of finding the G largest component of a vector of size n can be
bounded by O(n+G log(n)). Let Sj

G be the vector containing the indexes of the
rows, of column j, larger or equal to the G-th largest element of the column. Let
α ∈ [0, 1] be a real value; let the matrix vp be defined by:

vpij=
{
1 if i ∈ Sj

G,
1 − α otherwise

(2)

Property 1. If α = 1, then the result of an element-wise multiplication of H
and vp respects the Gibbs constraint.

Property 2. If α ∈ [0, 1], then the result of an element-wise multiplication of
H and vp is closer to the solution space of the Gibbs constraint than H.

The parameter α is a relaxation parameter of the constraint. We can set
and modify it during the search for a solution. One advantage of having such a

An Efficient Relaxed Projection Method for Constrained NMF 57

parameter is to not drastically modify the current solution, while performing the
gradient-based optimization. As shown in the experimental solution, this gives
us a great flexibility in practice.

Alloying . The alloying constraint is a conditional constraint. That is, it has to
be enforced only when alloying occurs in the data. Alloying occurs if at least
one of the phases at a given sample point is shifting. The following equation
determines this:

Y j =
∑

k∈[1,K],n∈ωj

Hkj × max(0, |λkj − λkn′ | − ε) (3)

If the alloying variable Y j is bigger than 0, then the jth column loses a
degree of freedom regarding the Gibbs constraint. That is, instead of G entries,
only G − 1 are allowed to be non-zero. This behaviour can be incorporated into
the vp matrix, which was previously used for enforcing the Gibbs constraint, by
modifying it as follow:

vpij=

⎧
⎨

⎩

1 if Y j = 0 ∧ i ∈ Sj
G,

1 if Y j > 0 ∧ i ∈ Sj
G−1,

1 − α otherwise
(4)

The matrix vp can be used to enforce or relax both Gibbs and alloying
constraints.

Connectivity . The existing algorithm for enforcing the connectivity constraint
set entries of H that do not belong to the largest connected component to zero.
As for the two previous constraints, we can relax the connectivity constraint by
multiplying these values by 1−α instead of 0. When α = 1, the exact constraint
is enforced. But when α ∈ (0, 1), the new point is only closer to, but not equal
to the exact projection. Thus, the constraint is not enforced, but the solution is
moved closer to the constraint space.

Let Ck be the set of column indices indicating the largest connected com-
ponent of basis k. As for the two previous constraints, we can use a similar vp
matrix:

vpij=

⎧
⎨

⎩

1 if i ∈ Ci ∧ Y j = 0 ∧ i ∈ Sj
G,

1 if i ∈ Ci ∧ Y j > 0 ∧ i ∈ Sj
G−1,

1 − α otherwise
(5)

The matrix vp is finally used to enforce or relax the Gibbs, alloying, and con-
nectivity constraints. This leads to a simple two-step update for solving the con-
strained NMF problem. Figure 2 shows the projection method and a high-level
schematic of our method. PIAFD starts with unconstrained gradient updates
and then interleaves enforcing relaxed constraints and multiplicative updates
of the matrices. In each iteration, W and H are first alternatively updated till
convergence or for a certain amount of times, whichever happens, and then the
relaxed constraints are enforced subsequently. Hard constraints are enforced at
the end of the algorithm (Fig. 2).

58 J. Bai et al.

Fig. 2. (Upper left) gradient step (green arrow) followed by a projection (red arrow).
Solutions updated by the gradient step might leave the constraint space. They are
dragged back to the constraint space through a projection. (Lower left) workflow of
the PIAFD method. It interleaves gradient updates and interleaves projections. (Right)
the pseudocode of PIAFD. (Color figure online)

4 Experiments

In this section, we compare our method, PIAFD, against other methods for
solving the phase-mapping problem. Namely, we compare the proposed method
against IAFD [9], CombiFD [5], and AgileFD [16]. CombiFD is one of the early,
purely combinatorial methods for solving the phase-mapping problem. It uses
MIP to encode all constraints, and updates solutions in an iterative fashion.
However, it is not very efficient, especially compared to more recent methods.
AgileFD is based on a matrix factorization framework to acquire solutions more
efficiently, but it does not encode all the constraints. IAFD refines AgileFD by
alternating multiplicative updates of the matrices and constraint projections
using a MIP.

All experiments were run on a server containing 24 nodes, where each node
contained an Intel x5650 2.67 GHZ, 48 GB of memory, and was running CentOS
7. The data sets are from real-world experiments from materials science.

Runtime . All methods were tested on 8 different datasets [21] to compare their
runtime. In these instances, the inner dimension K of W and H is 6, and G = 3.
At the beginning of the optimization procedure, α is set to 0 and the optimization
is then run to convergence. Subsequently, α is increased to 0.15, a value heuris-
tically found to provide the best reconstruction error, and finally to 1 after a
preset number (1000) of iterations is reached. Once α is equal to 1, the algo-
rithm is run to convergence yielding a solution to the constrained optimization

An Efficient Relaxed Projection Method for Constrained NMF 59

Fig. 3. Runtime comparison of the different methods. The bar chart on the left shows
the runtime of CombiFD, AgileFD, IAFD, and PIAFD in seconds. The plot on the right
compares the runtime of IAFD, and PIAFD as a function of K, the inner dimension
of the matrices W and H.

problem. Figure 3 (left) shows that our new method improves on the runtime of
previous methods by at least an order of magnitude.

Fig. 4. Accuracy comparison of the different methods (CombiFD, AgileFD, IAFD, and
PIAFD). The left bar chart shows the minimal error attained for each method using
the KL-divergence as the objective function. The right bar chart is similar, just that
the �2-norm was used as the objective function.

Figure 3 (right) shows the runtime of IAFD and PIAFD as a function of K.
Since IAFD depends on MIP, it has a worst-case time complexity of O(

(
K
G

)
) for

each column of H. In other words, if G = 3, the worst-case runtime behavior
scales proportionally to K3. Therefore, IAFD does not scale well with K. In con-
trast, PIAFD scales linearly in K, as demonstrated by Fig. 3. This improvement
in the asymptotic scaling of the constraint projection is crucial for advancing
materials science, as the cutting edge of the field deals with datasets of ever
increasing size and complexity.

60 J. Bai et al.

Table 1. Constraint satisfaction comparison of the different methods for the alloying
and connectivity constraints. The system column denotes the particular dataset used
for each row. The entries in the alloying constraint column are percentages of the
columns of H which satisfy the constraint after the respective method has terminated.
The entries in the connectivity constraint column correspond the percentages of the
phases in W which satisfy the connectivity constraint.

System Alloying constraint Connectivity constraint

CombiFD AgileFD IAFD PIAFD CombiFD AgileFD IAFD PIAFD

(Fe-Bi-V)Ox(I) 0.44 0.90 1.00 1.00 1.00 0.17 1.00 1.00

(Fe-Bi-V)Ox(II) 0.47 0.76 1.00 1.00 1.00 0.17 1.00 1.00

(Fe-Bi-V)Ox(III) 0.87 0.98 1.00 1.00 0.83 0.00 1.00 1.00

(Zn-Sn-Si)Nx(I) 0.98 1.00 1.00 1.00 1.00 0.17 1.00 1.00

(Zn-Sn-Si)Nx(II) 0.95 0.98 1.00 1.00 1.00 0.00 1.00 1.00

(W-Bi-V)Ox 0.51 0.95 1.00 1.00 1.00 0.00 1.00 1.00

(Ag-Bi-V)Ox 0.19 0.90 1.00 1.00 0.67 0.00 1.00 1.00

(Mo-Bi-V)Ox 0.55 0.94 1.00 1.00 0.83 0.00 1.00 1.00

Accuracy . To compare the different methods in terms of accuracy, we bench-
marked all methods using two popular objective functions: the KL-divergence
and the �2-norm. Figure 4 (left) shows that PIAFD consistently finds solutions
with a KL-divergence comparable to the next best method (IAFD). If the �2-
norm is used, PIAFD significantly outperforms all other methods in terms of
accuracy, as evidenced by Fig. 4 (right).

Constraint Satisfaction . Our goal is to have solutions which satisfy the con-
straints of the phase-mapping problem. Table 1 demonstrates the ability of the
different methods to yield solutions in the constraint space. All the methods
respect the Gibbs constraint, so it is not shown in the table. Notably, both
IAFD and PIAFD satisfy all constraints. CombiFD encodes the constraints
using MIP. As the complexity of the constraints increases, it takes more time to
find a satisfactory solution. Within the maximum wall time of the server (4 h)
CombiFD fails to find a solution satisfying all the constraints but still respects
Gibbs and connectivity constraints. The solution generated by AgileFD neither
satisfy the alloying nor the connectivity constraint, due to the model’s limited
expressiveness.

5 Conclusion

This paper proposed PIAFD, a new method for solving the phase-mapping prob-
lem. using a novel algorithm for projecting solutions onto the constraint space.
Crucially, the method tends to continuously move the optimization variables
towards the constraint space, while minimizing the objective function with a
gradient-based optimization procedure. The experimental section shows that this

An Efficient Relaxed Projection Method for Constrained NMF 61

new method is orders of magnitude faster than existing methods and, depending
on the choice of objective function, gives comparable or more accurate solutions.
Because of this improvement in runtime, problems of previously intractable size
become feasible. Consequently, the method has the potential of contributing to
accelerating discoveries in materials science.

Acknowledgments. Work supported by an NSF Expedition award for Computa-
tional Sustainability (CCF-1522054), NSF Computing Research Infrastructure (CNS-
1059284), NSF Inspire (1344201), a MURI/AFOSR grant (FA9550), and a grant from
the Toyota Research Institute.

References

1. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788 (1999)

2. Smaragdis, P.: Non-negative matrix factor deconvolution; extraction of multiple
sound sources from monophonic inputs. In: Puntonet, C.G., Prieto, A. (eds.) ICA
2004. LNCS, vol. 3195, pp. 494–499. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30110-3 63

3. Suram, S.K., Newhouse, P.F., Zhou, L., Van Campen, D.G., Mehta, A., Gregoire,
J.M.: High throughput light absorber discovery, part 2: establishing structure-band
gap energy relationships. ACS Comb. Sci. 18(11), 682–688 (2016)

4. Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J.
Optim. 20(3), 1364–1377 (2009)

5. LeBras, R., Damoulas, T., Gregoire, J.M., Sabharwal, A., Gomes, C.P., van Dover,
R.B.: Constraint reasoning and kernel clustering for pattern decomposition with
scaling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 508–522. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-23786-7 39

6. Gregoire, J.M., Dale, D., Kazimirov, A., DiSalvo, F.J., van Dover, R.B.: High
energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput anal-
ysis of composition spread thin films. Rev. Sci. Instrum. 80(12), 123905 (2009)

7. Colthup, N.: Introduction to Infrared and Raman Spectroscopy. Elsevier, Amster-
dam (2012)

8. Mørup, M., Schmidt, M.N.: Sparse non-negative matrix factor 2-D deconvolution.
Technical report (2006)

9. Bai, J., Bjorck, J., Xue, Y., Suram, S.K., Gregoire, J., Gomes, C.: Relaxation
methods for constrained matrix factorization problems: solving the phase mapping
problem in materials discovery. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR
2017. LNCS, vol. 10335, pp. 104–112. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59776-8 9

10. Ermon, S., Le Bras, R., Suram, S.K., Gregoire, J.M., Gomes, C.P., Selman, B.,
van Dover, R.B.: Pattern decomposition with complex combinatorial constraints:
application to materials discovery. In: AAAI, pp. 636–643 (2015)

11. Ermon, S., Le Bras, R., Gomes, C.P., Selman, B., van Dover, R.B.: SMT-aided
combinatorial materials discovery. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 172–185. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8 14

12. Gregoire, J.M., Van Campen, D.G., Miller, C.E., Jones, R.J.R., Suram, S.K.,
Mehta, A.: High-throughput synchrotron X-ray diffraction for combinatorial phase
mapping. J. Synchrotron Radiat. 21, 1262–1268 (2014)

https://doi.org/10.1007/978-3-540-30110-3_63
https://doi.org/10.1007/978-3-540-30110-3_63
https://doi.org/10.1007/978-3-642-23786-7_39
https://doi.org/10.1007/978-3-319-59776-8_9
https://doi.org/10.1007/978-3-319-59776-8_9
https://doi.org/10.1007/978-3-642-31612-8_14
https://doi.org/10.1007/978-3-642-31612-8_14

62 J. Bai et al.

13. Hattrick-Simpers, J.R., Gregoire, J.M., Kusne, A.G.: Perspective: composition-
structure-property mapping in high-throughput experiments: turning data into
knowledge. APL Mater. 4, 053211 (2016)

14. Lin, C.-J.: On the convergence of multiplicative update algorithms for nonnegative
matrix factorization. IEEE Trans. Neural Netw. 18(6), 1589–1596 (2007)

15. Lee, D.-T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangu-
lation. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

16. Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Longpre, L.,
Suram, S.K., van Dover, R.B., Gregoire, J.M., et al.: Phase-Mapper: an AI platform
to accelerate high throughput materials discovery. In: AAAI, pp. 4635–4643 (2017)

17. Le Roux, J., Weninger, F.J., Hershey, J.R.: Sparse NMF-half-baked or well done?
Mitsubishi Electric Research Labs (MERL), Cambridge, MA, USA, Technical
report no. TR2015-023 (2015)

18. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto
the �1-ball for learning in high dimensions. In Proceedings of the 25th International
Conference on Machine Learning, pp. 272–279. ACM (2008)

19. Condat, L.: Fast projection onto the simplex and the l1 ball. Math. Program.
158(1–2), 575–585 (2016)

20. Perez, G., Barlaud, M., Fillatre, L., Régin, J.-C.: A filtered bucket-clustering
method for projection onto the simplex and the �1 ball. In: Colloque GRETSI,
Juan-les-Pins, France (2017)

21. Le Bras, R., Bernstein, R., Suram, S.K., Gregoire, J.M., Selman, B., Gomes, C.P.,
van Dover, R.B.: A computational challenge problem in materials discovery: syn-
thetic problem generator and real-world datasets (2014)

Dealing with Demand Uncertainty
in Service Network and Load Plan Design

Ahmad Baubaid1,2(B), Natashia Boland1, and Martin Savelsbergh1

1 Georgia Institute of Technology, Atlanta, USA
baubaid@gatech.edu, {natashia.boland,martin.savelsbergh}@isye.gatech.edu

2 King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Abstract. Less-than-Truckload (LTL) transportation carriers plan for
their next operating season by deciding: (1) a load plan, which specifies
how shipments are routed through the terminal network from origins to
destinations, and (2) how many trailers to operate between each pair of
terminals in the network. Most carriers also require that the load plan
is such that shipments at an intermediate terminal and having the same
ultimate destination are loaded onto trailers headed to a unique next ter-
minal regardless of their origins. In practice, daily variations in demand
are handled by relaxing this requirement and possibly loading shipments
to an alternative next terminal. We introduce the p-alt model, which
integrates routing and capacity decisions, and which allows p choices for
the next terminal for shipments with a particular ultimate destination.
We further introduce and computationally test three solution methods
for the stochastic p-alt model, which shows that much can be gained from
using the p-alt model and explicitly considering demand uncertainty.

1 Introduction and Motivation

To make their operations economically viable, Less-than-truckload (LTL) car-
riers consolidate freight from multiple shippers. This freight is routed through
a network of terminals before reaching its ultimate destination. At each termi-
nal, freight is sorted and consolidated with other freight before it is loaded onto
an outbound trailer to its next destination. An LTL carrier’s network typically
consists of two types of terminals: end-of-line (EOL) terminals which serve only
as origin and destination points for freight, and breakbulk (BB) terminals which
also act as consolidation hubs in the network.

In managing their networks, LTL carriers are faced with numerous tactical
decisions. Based on predicted origin-destination (OD) demand for the upcoming
operating period, carriers plan for how that demand is to be served. They decide
how many trailers to operate between each pair of terminals, and formulate a
load plan, which determines how freight with a given origin and destination will
be routed. This planning process is known in the literature as Service Network
Design (for reviews of this topic see [1,2]). To streamline sorting and loading
operations at the terminals, many carriers impose a directed in-tree structure in

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 63–71, 2018.
https://doi.org/10.1007/978-3-319-93031-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_5&domain=pdf

64 A. Baubaid et al.

their load plans for each destination d in the network as in [3–6]. That is, all
freight headed to destination d that is at an intermediate terminal – regardless
of its origin – is always directed to a unique next terminal (as in Fig. 1a).

In practice, carriers often permit an additional option for routing freight at
(some) terminals as part of the load plan to handle demand variations. This
load plan specifies a primary next destination, as well as an alternative (or an
“alt”) next destination, through which some freight might be rerouted if there
is not enough planned capacity available on the primary. If there is also not
enough capacity available on the alt, then additional capacity, for either the
primary or the alt, can be acquired at a higher cost (carriers negotiate deals
with independent owner-operators for such eventualities). In practice, these alts
are chosen heuristically after the primaries have been determined. Note that
throughout the remainder of this paper, for the sake of brevity, we will use the
term “alt” to refer to any next terminal option – primary or alternative – and
no distinction between the two will be made. Figure 1b shows an example of a
structure with at most two alts allowed at every terminal for destination d.

i

j

d

(a)

k

i

j

d

(b)

Fig. 1. Illustration of 1-alt (in-tree) and 2-alt structures for destination d in a load
plan (circles and squares represent EOL and BB terminals, respectively); (a) shows
the traditional in-tree (1-alt) structure in which at terminal i, all freight headed for d
is sent to j; and (b) shows a 2-alt structure in which at terminal i, all freight headed
for d can be sent to either j or k.

Some natural questions to explore are: (1) “What are the benefits of choosing
alts simultaneously as opposed to sequentially, as is done in practice?” and (2)
“What are the benefits of employing a 2-alt design rather than a 1-alt design in an
uncertain environment?”. In this paper, we address these questions by studying
a two-stage stochastic Capacitated Multi-commodity Network Design (CMND)
problem [7]. The model we present is different from other stochastic CMND
problems studied in the literature (e.g. [8–10]) in two key ways: (1) the recourse,
in response to changes in demand, is operating additional trailers acquired at a
higher cost, and (2) the load plan can have a pre-specified number of alts (which
generalizes the notion of a directed in-tree load plan). The use of more than
one alt and its effectiveness in dealing with demand variations has never been

Dealing with Demand Uncertainty in Service Network 65

studied; a small number of papers study 1-alt designs in a deterministic setting
(e.g. [3–6]). We are the first to investigate the use of p-alt designs in a rigorous
way, even though such designs are commonly used in practice. We will refer to
the deterministic version of our model as the p-alt model, where the parameter
p represents the number of alts allowed/desired in the load plan.

To solve the stochastic p-alt model, we use Sample Average Approximation
(SAA) [11] as our general framework. However, because the resulting extensive-
form problem in each SAA iteration is difficult to solve in reasonable time, we
consider and compare three approaches: (1) directly solving the extensive-form
with the so-called cut inequalities added a priori; (2) relaxing the integrality of
the second-stage variables, and applying cut inequalities added a priori, and (3)
relaxing the integrality of the second-stage variables and applying slope scaling
[12] on the relaxed second-stage variables.

The rest of the paper is structured as follows. Section 2 presents the stochas-
tic p-alt model formulation. Section 3 outlines the solution approaches we will
compare. This is followed by a computational study in Sect. 4.

2 Problem Description

Let G = (N ,A) be a digraph representing the transportation network of an
LTL carrier, where N = B ∪ E for B the set of Breakbulk (BB) terminals and E
the set of End-of-Line (EOL) terminals. Let δ+(i) denote the set of outbound
arcs and δ−(i) denote the set of inbound arcs at node i ∈ N . Define the set of
commodities K ⊆ {(o, d) : o, d ∈ E , o �= d} to be the set of all EOL OD pairs
for which there may be shipments. Let ok, dk ∈ N denote commodity k’s origin
and destination, respectively. Furthermore, define D as the set of all destination
EOLs, i.e. D = {dk : k ∈ K}, and K(d) to be the set of commodities in K with
destination d ∈ E . Let p be the number of alts allowed for each terminal in the
network and for each possible destination. We define cij as the cost of operating
a trailer and ĉij(>cij) as the cost of outsourcing a trailer to operate on the arc
(i, j), respectively, and Q to be the uniform trailer capacity. Let Ω represent the
set of random demands that may be observed, with ω ∈ Ω representing a partic-
ular realization of OD demands. Ω may be either discrete or continuous. Define
qω
k to be the demand of commodity k in realization ω. Our decision variables are

as follows:
rij = number of planned trailers to operate on arc (i, j),
zω
ij = number of outsourced trailers to operate on arc (i, j) in realization ω,

xω
ijk = flow on arc (i, j) for commodity k ∈ K in realization ω,

yijd =

{
1, if commodities with destination d may use arc (i, j) as an alt,
0, otherwise.

66 A. Baubaid et al.

2.1 The Mathematical Formulation

The stochastic p-alt model is

min
∑

(i,j)∈A
cijrij + Eω [Q(r, y, ω)] , (1a)

s.t.
∑

(i,j)∈δ+(i)

yijd = min{p,
∣∣δ+(i)

∣∣}, ∀d ∈ D, i ∈ N , (1b)

yijd ∈ {0, 1}, ∀d ∈ D, (i, j) ∈ A, (1c)
rij ∈ Z+, ∀(i, j) ∈ A, (1d)

where
Q(r, y, ω) = min{

∑
(i,j)∈A

ĉijz
ω
ij : (zω, xω) ∈ P(r, y, ω)} (1e)

and

P(r, y, ω) = {(zω, xω) :
∑
k∈K

xω
ijk ≤ Q(rij + zω

ij), ∀(i, j) ∈ A, (1f)

∑
(i,j)∈δ+(i)

xω
ijk−

∑
(j,i)∈δ−(i)

xω
jik =

⎧⎪⎨
⎪⎩

qω
k , if i = ok,

−qω
k , if i = dk,

0, otherwise,
∀i ∈ N , k ∈ K,

(1g)∑
k∈K(d)

xω
ijk ≤ qω

k yijd, ∀d ∈ D, (i, j) ∈ A, (1h)

xω
ijk ≥ 0, ∀(i, j) ∈ A, k ∈ K , (1i)

zω
ij ∈ Z+, ∀(i, j) ∈ A}. (1j)

The first stage determines the design of the network: installing capacity on
arcs while adhering to the desired p-alt freight flow structure. The objective
function (1a) minimizes the sum of the cost of operating trailers in the network
plus the expected cost of any additional trailers required once demand is realized.
Constraints (1b) specify the structure of the freight flow in the network. Note
that setting p = 1 gives the standard in-tree structure similar to the one depicted
in Fig. 1a, while setting p = 2 allows up to two next destination options for each
terminal and for all possible destinations. The right-hand side of (1b) ensures
feasibility if a node’s outdegree is less than p.

The second stage routes all realized demand and determines any additional
capacity that is required to do so, at minimum cost. Constraints (1g) are the
standard flow balance constraints, and also stipulate that all demand is to be
met. Constraints (1f) ensure that the capacity on each arc is not exceeded.
Constraints (1h) ensure that flows destined for a particular destination are only
allowed to use an arc when the corresponding alt is chosen.

Dealing with Demand Uncertainty in Service Network 67

3 Model Solution

The stochastic p-alt model is a two-stage mixed-integer stochastic program that
may have infinitely many scenarios. Given that even deterministic CMND prob-
lems are beyond the reach of modern commercial solvers [10], and can only be
solved for small-sized instances, having a two-stage stochastic model with gen-
eral integer variables in both stages and constraints on the freight flow structure
only makes the problem more difficult. Therefore, heuristics are needed, and we
thus employ a Sample Average Approximation (SAA) [11] framework.

3.1 Sample Average Approximation

In SAA, a small number of demand scenarios N << |Ω| is randomly sampled,
(with replacement), resulting in a sample problem, given by (1) with Ω replaced
by the sampled scenarios. This – usually relatively simpler – two-stage stochastic
program over N scenarios is solved, and the first-stage design, (r∗, y∗), is eval-
uated. Evaluation is performed by (independently) sampling a larger number
N ′ >> N of scenarios, and for each such scenario ω, calculating the recourse
cost, Q(r∗, y∗, ω), by solving (1e). The cost of design (r∗, y∗) is approximated as

∑
(i,j)∈A

cijr
∗
ij + Eω [Q(r, y, ω)] ≈

∑
(i,j)∈A

cijr
∗
ij +

1
N ′

N ′∑
n=1

Q(r∗, y∗, ωn), (2)

where ω1, . . . , ωN ′
are the N ′ sampled scenarios. This procedure is repeated M

times to get M designs, and the one with the lowest (approximate) cost is chosen
as the final solution. We refer the reader to [11] for details and convergence
properties of this approach.

3.2 Solving the Sample Problem

In each SAA iteration, the sample problem must be solved. Its extensive form,
for the sampled scenarios S = {ω1, . . . , ωN}, is the mixed-integer linear program

min
∑

(i,j)∈A
cijrij +

1
N

∑
ω∈S

∑
(i,j)∈A

ĉijz
ω
ij ,

s.t. (1b) − (1d), (zω, xω) ∈ P(r, y, ω), ∀ω ∈ S.

Although simpler than the original stochastic problem, this MIP is still dif-
ficult to solve in reasonable time, even for relatively small sample sizes, N .
Therefore, we propose two heuristics to solve this problem. Since the primary
goal is obtaining a feasible first-stage solution, these heuristics relax the second
stage integer variables in an attempt to make the problem easier to solve. Each
approach uses a different method to mitigate the effect of this relaxation on the
first stage decisions. One uses a slope scaling technique ([12]), which heuristically
adjusts the costs of the second stage variables. The other uses cuts that are valid

68 A. Baubaid et al.

for the problem with integrality in both stages. This gives us three approaches:
solving the problem exactly (Exact); relaxing the integrality of the second stage
variables and using slope scaling (SS-Heuristic); and relaxing the integrality
of the second stage variables but adding valid inequalities (Cut-Heuristic). In
all three methods, the evaluation subproblems (1e) in the SAA algorithm are
solved exactly, without relaxation.

The valid inequalities we use are the so-called cut inequalities [13]. Given a
cut in the network, these inequalities stipulate that the capacity crossing the cut
should be enough to serve the demand crossing that cut. We adapt these to the
stochastic p-alt problem, as follows. Let dω(V, V̄) be the total demand that has
to traverse the cut defined by V ⊂ N in scenario ω. Then the cut inequalities
for the stochastic p-alt problem, for a given scenario ω ∈ Ω, can be written as

∑
(i,j)∈δ+(V)

(rij + zω
ij) ≥

⌈
dω(V, V̄)

Q

⌉
, ∀V ⊂ N . (3)

Exact. The sample problem is solved using a MIP solver. The cuts (3) are added
for every ω ∈ S to the model upfront as lazy constraints. In our experiments,
adding these cuts significantly improved the solver performance.

SS-Heuristic. In this approach, we will relax the integrality of the second-
stage variables. To compensate for the cost under-approximation introduced by
the relaxation, we introduce cost multipliers that will be iteratively adjusted
using a slope scaling algorithm, as follows: let ρt

ij be the cost multiplier for arc
(i, j) in iteration t of the slope scaling algorithm and solve

min
∑

(i,j)∈A
cijrij +

1
N

∑
ω∈S

∑
(i,j)∈A

ρt
ij ĉijz

ω
ij (4)

s.t. (1b) − (1d), (zω, xω) ∈ PLP (r, y, ω),∀ω ∈ S

where PLP (r, y, ω) denotes the LP relaxation of P(r, y, ω).
Slope scaling is terminated when: (1) the true recourse cost estimate

(obtained via the evaluation subproblems) and the term 1
N

∑
ω∈S

∑
(i,j)∈A

ρt
ij ĉijz

ω
ij in the relaxed problem are relatively close, or (2) two successive itera-

tions yield designs with approximately the same costs. If neither of these stopping
criteria is met, the multipliers for the next iteration are adjusted as follows:

ρt+1
ij =

⎧⎪⎨
⎪⎩

∑
ω∈S

⌈
zωij

⌉
∑

ω∈S zωij
, if

∑
ω∈S zωij > 0,

ρt
ij , otherwise,

(5)

where zωij is the value of the continuous relaxation of the z variable for (i, j) in
scenario ω obtained from the solution of (4) in iteration t.

Cut-Heuristic. We again relax the integrality of the second-stage variables, but
add the inequalities (3) for each ω ∈ S, to the model, a priori. As there is a large

Dealing with Demand Uncertainty in Service Network 69

number of them, they are added as lazy constraints. These inequalities serve two
purposes in the heuristic: they strengthen the relaxed model with respect to the
integrality of the first stage variables and, since they are inferred from integrality
of the second stage variables, mitigate the effect of relaxing these.

4 Computational Study

In this section, we compare the three solution methods for the stochastic p-alt
problem and we assess the benefits of using this model. To be able to solve the
extensive-form problems to optimality, we restrict ourselves to small randomly-
generated instances (up to 15 terminals). Table 1 shows the characteristics of
the instances used. The characteristics are self-explanatory, except for “% of OD
Pairs”, which indicates the percentage of possible EOL pairs with demand. The
SAA parameters used are M = 10, N = 10, and N ′ = 1000. Algorithms were
implemented in Python, and experiments performed on a 2.9 GHz Intel Core i5
computer with 16 GB of RAM using Gurobi 7.5.2 as the IP solver.

Table 1. Instance characteristics

Instance Number
of EOLs

Number
of BBs

% of OD
Pairs

Demand
range

Q Demand Std.
Dev. range

1 8 4 10 [0, 1] 1 (0, 0.3)

2 7 3 25 [0, 1] 1 (0, 0.3)

3 7 3 20 [0, 10] 3 (0, 3)

4 7 3 20 [0, 10] 3 (0, 4.5)

5 10 5 10 [0, 1] 1 (0, 0.3)

Table 2 compares the performance of the three methods, and shows the first-
stage (design) cost, F, the approximated expected total (design + recourse) cost,
T, and the running time (in seconds), t. To reduce bias, each iteration of SAA
in the three approaches was performed using the same set of scenarios for the
sample problem, and the same set of scenarios for the evaluation subproblems.

We observe that although the methods find different first-stage solutions,
the total cost (point) estimates are fairly similar. The main difference is the
computational efficiency: Cut-Heuristic consistently outperforms the other two
approaches by obtaining solutions that are in a similar range as the other two
approaches but in much less time. While that is encouraging, we note that the
number of cut inequalities grows exponentially with the number of terminals
(and also grows with the number of scenarios), and that separation heuristics
will be required when solving larger instances as the separation problem is NP-
Hard. We also observe, as expected, that 2-alt designs perform better than their
1-alt counterparts by handling the uncertain demand at a lower cost.

70 A. Baubaid et al.

Table 2. Comparison of Exact, SS-Heuristic, and Cut-Heuristic

Exact SS-Heuristic Cut-Heuristic

F T t F T t F T t

1 1-alt 148.8 163.4 437.2 148.8 163.5 4053.2 148.8 163.4 52.2

2-alt 148.8 163.2 480.1 148.8 163.2 1257.8 148.8 163.2 225.4

2 1-alt 262.4 266.1 773.7 262.4 266.1 2347.3 262.4 266.3 148.6

2-alt 248.1 261.8 1085.8 248.1 261.8 2737.0 248.1 261.8 270.6

3 1-alt 595.8 700.0 1422.8 623.3 705.5 1119.1 571.6 703.1 469.4

2-alt 583.9 674.3 17273.3 580.8 683.4 2567.8 575.4 677.5 419.2

4 1-alt 595.8 732.6 2024.4 635.2 737.4 862.9 576.1 734.3 457.3

2-alt 588.4 706.6 56627.1 555.4 712.5 2614.6 575.4 703.7 505.3

5 1-alt 185.1 190.6 2505.2 185.1 190.3 30934.2 182.7 190.2 2437.1

2-alt 175.0 187.5 1013.2 175.0 187.3 3522.0 175.0 187.5 566.2

Table 3. Comparison of sequential vs. integrated optimization

Sequential Cut-Heuristic

F T F T

1 1-alt 148.8 163.9 148.8 163.4

2-alt 148.8 163.9 148.8 163.2

2 1-alt 262.4 266.8 262.4 266.3

2-alt 248.1 262.9 248.1 261.8

3 1-alt 693.7 775.3 571.6 703.1

2-alt 608.4 697.0 575.4 677.5

4 1-alt 693.6 803.6 576.1 734.3

2-alt 621.4 726.0 575.4 703.7

5 1-alt 196.1 215.7 182.7 190.2

2-alt 181.4 191.1 175.0 187.5

In Table 3, we compare the Cut-Heuristic results with the results obtained
from sequential optimization using expected demand. Sequential optimization
involves two steps: (1) solving an optimization problem to decide the number
of trailers operating between the terminals, (2) given these numbers, solving
an optimization problem to determine the alts – allowing additional trailers to
be added. The resulting design is evaluated using a set of 1,000 scenarios. We
observe a substantial reduction in the expected total cost when using designs
produced by the stochastic p-alt model. This is more pronounced in instances
3–5, which have a larger network and/or higher demand variability.

Overall, these results also demonstrate that there is much to be gained from
2-alt designs, especially in settings with high demand variability. Furthermore,

Dealing with Demand Uncertainty in Service Network 71

simultaneously choosing the alts and explicitly considering demand uncertainty
result in more robust designs, leading to lower expected total costs.

Acknowledgment. Ahmad Baubaid would like to acknowledge financial support from
the King Fahd University of Petroleum & Minerals.

References

1. Crainic, T.G.: Service network design in freight transportation. Eur. J. Oper. Res.
122(2), 272–288 (2000)

2. Wieberneit, N.: Service network design for freight transportation: a review. OR
Spectr. 30(1), 77–112 (2008)

3. Powell, W.B.: A local improvement heuristic for the design of less-than-truckload
motor carrier networks. Transp. Sci. 20(4), 246–257 (1986)

4. Powell, W.B., Koskosidis, I.A.: Shipment routing algorithms with tree constraints.
Transp. Sci. 26(3), 230–245 (1992)

5. Jarrah, A.I., Johnson, E., Neubert, L.C.: Large-scale, less-than-truckload service
network design. Oper. Res. 57(3), 609–625 (2009)

6. Lindsey, K., Erera, A., Savelsbergh, M.: Improved integer programming-based
neighborhood search for less-than-truckload load plan design. Transp. Sci. Decem-
ber 2017 (2016). https://doi.org/10.1287/trsc.2016.0700

7. Gendron, B., Crainic, T.G., Frangioni, A.: Multicommodity capacitated network
design. In: Sansò, B., Soriano, P. (eds.) Telecommunications Network Planning.
CRT, pp. 1–19. Springer, Boston, MA (1999). https://doi.org/10.1007/978-1-4615-
5087-7 1

8. Hoff, A., Lium, A.G., Løkketangen, A., Crainic, T.G.: A metaheuristic for stochas-
tic service network design. J. Heuristics 16(5), 653–679 (2010)

9. Lium, A.G., Crainic, T.G., Wallace, S.W.: A study of demand stochasticity in
service network design. Transp. Sci. 43(2), 144–157 (2009)

10. Crainic, T.G., Fu, X., Gendreau, M., Rei, W., Wallace, S.W.: Progressive hedging-
based metaheuristics for stochastic network design. Networks 58(2), 114–124
(2011)

11. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approxima-
tion method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502
(2002)

12. Kim, D., Pardalos, P.M.: A solution approach to the fixed charge network flow
problem using a dynamic slope scaling procedure. Oper. Res. Lett. 24(4), 195–203
(1999)

13. Bienstock, D., Chopra, S., Günlük, O., Tsai, C.Y.: Minimum cost capacity instal-
lation for multicommodity network flows. Math. Program. 81(2), 177–199 (1998)

https://doi.org/10.1287/trsc.2016.0700
https://doi.org/10.1007/978-1-4615-5087-7_1
https://doi.org/10.1007/978-1-4615-5087-7_1

Energy-Aware Production Scheduling
with Power-Saving Modes

Ondřej Benedikt1, Přemysl Š̊ucha1, István Módos1(B), Marek Vlk1,2,
and Zdeněk Hanzálek1

1 Czech Technical University in Prague, Prague, Czech Republic
benedond@fel.cvut.cz,

{premysl.sucha,istvan.modos,zdenek.hanzalek}@cvut.cz
2 Charles University, Prague, Czech Republic

vlk@ktiml.mff.cuni.cz

Abstract. This study addresses optimization of production processes
where machines have high energy consumption. One efficient way to
reduce the energy expenses in production is to turn a machine off when it
is not being used or switch it into an energy-saving mode. If the produc-
tion has several machines and production demand that varies in time,
the energy saving can be substantial; the cost reduction can be achieved
by an appropriate production schedule that could control the switching
between the energy modes with respect to the required production vol-
ume. Therefore, inspired by real production processes of glass tempering
and steel hardening, this paper addresses the scheduling of jobs with
release times and deadlines on parallel machines. The objective is to find
a schedule of the jobs and a switching between the power modes of the
machines so that the total energy consumption is minimized. Moreover,
to further generalize the scheduling problem to other production pro-
cesses, we assume that the processing time of the jobs is mode-dependent,
i.e., the processing time of a job depends on the mode in which a machine
is operating. The study provides an efficient Branch-and-Price algorithm
and compares two approaches (based on Integer Linear Programming
and Constraint Programming) for solving the subproblem.

Keywords: Production scheduling · Energy · Branch-and-Price
Integer Linear Programming · Constraint Programming

1 Introduction

This research is inspired by two existing energy-demanding production processes.
The first one is a glass tempering in ERTL Glas company and the second one
is steel hardening in ŠKODA AUTO company. In both processes, the mate-
rial is heated in one of the identical furnaces to a high temperature (hundreds
of ◦C) which consumes a substantial amount of energy. Typically, the furnaces
are turned on at the beginning of a scheduling horizon and then continuously

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 72–81, 2018.
https://doi.org/10.1007/978-3-319-93031-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_6&domain=pdf

Energy-Aware Production Scheduling with Power-Saving Modes 73

operate until its end when they are turned off. If the production demand varies
within the scheduling horizon, the furnaces remain in an energy-demanding mode
even if nothing is being produced and, therefore, wasting the energy.

As identified in [1], a significant energy cost savings could be achieved in man-
ufacturing facilities by switching machines to a power-saving mode when nothing
is being produced. Likewise, our preliminary feasibility study for ŠKODA AUTO
has shown that about 6% of the production line consumption can be saved using
the power-saving modes. However, in the above-mentioned processes, switching
to and from the power-saving mode is not immediate since the furnaces in the
power-saving mode operate in a lower temperature and re-heating them back
to the operational temperature can take dozens of minutes. Thus, the switching
has to be planned carefully. Moreover, in some production processes a machine
operating in a power-saving mode can still process a material, albeit slower. To
take into consideration such processes, we will assume that the processing time
is mode-dependent, i.e., the processing time depends on the mode in which a
machine is operating.

The problem of scheduling jobs on machines having different energy modes
has been already studied in the literature to some extent. The existing works
either study a single machine problem [1–3], do not take the transition costs and
times into account [4] or propose a time-indexed Integer Linear Programming
formulation [5,6] which can optimally solve only small instances. The scheduling
with mode-dependent processing times of the jobs is similar to a dynamic voltage
scaling [7] in embedded systems, where the processing times of the jobs depend on
the operating frequencies of the processors. Since the schedules in the embedded
systems are usually event-triggered and the transition times between different
operating frequencies is in the order of microseconds, the research results cannot
be directly applied to the production processes.

The contribution of this work-in-progress paper is both a formulation and
algorithm for solving a general multi-machine scheduling problem with energy
modes, where the objective is to minimize the total energy consumption. For
this problem, we propose an efficient Branch-and-Price algorithm with a clever
representation of the columns to break the symmetries arising due to the iden-
tical parallel machines. The algorithm also restricts the structure of transitions
between the modes to respect the technological requirements. For the experimen-
tal comparison, the subproblem in the Branch-and-Price algorithm is formulated
as both Integer Linear Programming (ILP) and Constraint Programming (CP)
problems.

2 Problem Statement

Let M = {1, . . . , m} be a set of identical, parallel machines. In every time instant,
every machine i ∈ M is operating in some mode ω ∈ Ω. While a machine
is operating in mode ω ∈ Ω, it demands a constant power Pω ∈ R≥0. The
mode of a machine can be switched from one mode to another, however, this
transition may take some time during which the machine is not operational,

74 O. Benedikt et al.

and it incurs a cost in the form of consumed energy. Therefore, for every pair of
modes ω, ω′ ∈ Ω we define transition time ttransω,ω′ ∈ Z≥0∪{∞} and transition cost
ctransω,ω′ ∈ R≥0∪{∞}. If ttransω,ω′ = ctransω,ω′ = ∞ for some pair of modes ω, ω′ ∈ Ω, then
a machine cannot be directly switched from ω to ω′. If a machine is operating
in some mode ω ∈ Ω for a total time of t, then the operating cost is computed
as Pω · t.

Let J = {1, . . . , n} be a set of jobs. The jobs have to be processed on some
machine within scheduling horizon H ∈ Z>0, each machine can process at most
one job at a time, and the jobs cannot be preempted. A processing time of job
j ∈ J depends on the mode ω ∈ Ω in which the assigned machine is operating
during processing of the job and is denoted as pj,ω ∈ R≥0 ∪ {∞}. If pj,ω = ∞,
then job j ∈ J cannot be processed while the assigned machine is operating in
mode ω ∈ Ω. A job cannot be processed on a machine during the transition
from one mode to another and once a machine starts processing a job, it cannot
change its mode until the job completes. Moreover, each job j ∈ J has release
time rj ∈ Z≥0 and deadline dj ∈ Z≥0. The release time and deadline of a job
define the time window within which it must be processed.

Due to technological restrictions, such as machine wear, the number of tran-
sitions to mode ω ∈ Ω on each machine can be at most Kω ∈ Z>0 within the
scheduling horizon.

A solution is a tuple (s,μ,π1, . . . ,πm, tmode
1 , . . . , tmode

m), where s ∈ Zn
≥0 is a

vector of jobs start times, μ ∈ Mn is a vector of jobs assignment to the machines,
πi ∈ ⋃

l∈Z>0
Ωl is a profile of machine i ∈ M and tmode

i ∈ ⋃
l∈Z>0

Z l
≥0 are the

operating times of machine i ∈ M . Profile πi is a finite sequence of modes
which are followed by machine i ∈ M in the solution. The profiles represent
the transition from one mode to another; they do not inform about the time
spent operating in a particular mode of a profile. Operating times tmode

i are a
finite sequence of non-negative integers such that tmode

i,k is the operating time of
machine i ∈ M in mode πi,k. It holds that (i) the length of a profile is the same
as the length of the corresponding operating times, i.e., |πi| = |tmode

i |, ∀i ∈ M
(operator | · | represents the length of a sequence) and (ii) the sum of the total
transition times plus the total operating times of a profile equals to the length of
the horizon, i.e.,

∑|πi|−1
k=1 ttransπi,k,πi,k+1

+
∑|πi|

k=1 tmode
i,k = H ,∀i ∈ M . Moreover, the

solutions must respect that the number of transitions to every mode is limited,
i.e., |{k ∈ {1, . . . , |πi|} | πi,k = ω}| ≤ Kω ,∀ω ∈ Ω, i ∈ M .

The goal of this scheduling problem is to find a solution which minimizes
the consumed energy, i.e., the sum of the total transition cost plus the total
operating cost

∑

i∈M

|πi|−1∑

k=1

ctransπi,k,πi,k+1
+

∑

i∈M

|πi|∑

k=1

Pπi,k
· tmode

i,k . (1)

This scheduling problem is strongly NP-hard due to the underlying strongly
NP-complete scheduling problem 1|rj , dj |− [8].

Energy-Aware Production Scheduling with Power-Saving Modes 75

3 Solution Approach

Although it is possible to model the scheduling problem introduced in Sect. 2
using either ILP or CP, the resulting model would be very large and could
solve only small instances. Moreover, due to the parallel identical machines,
the scheduling problem has symmetrical solutions, i.e., different solutions may
have the same objective value and one solution can be transformed to another
by simply re-indexing the machines. Symmetries significantly degrade the effi-
ciency of the models, thus, a specialized approach is necessary. Therefore, we
solve this scheduling problem using Branch-and-Price (BaP) methodology [9]
which is designed for solving such large-scale optimization problems. Symmetri-
cal solutions are avoided by a clever representation of the columns in the BaP
algorithm.

Algorithms based on BaP combine the Branch-and-Bound algorithm with
Column Generation (CG) [10]. The CG is a technique for solving Linear Pro-
gramming (LP) models with many variables. The variables (and the correspond-
ing columns of the constraint matrix) are added lazily until a solution with the
restricted set of the variables is optimal for the dual formulation of the model. If
the solution is an integer, the whole algorithm terminates. Otherwise, branching
on the fractional variables is performed.

The LP model used in the CG is based on a set covering model. Let A ⊆
{0, 1}n be a set of columns, where each column al ∈ A represents a particular
assignment of the jobs on a machine. For each al ∈ A we can compute its cost
ccoll , which corresponds to the optimal solution of the single machine scheduling
problem with jobs for which al,j = 1. The goal of the master problem is to select
a subset of columns from A such that every job is assigned to some machine and
the total cost of the selected columns is minimized. Since the number of columns
is exponential in the number of jobs, we use restricted column set A′ ⊆ A, which
is lazily expanded using the CG. The master problem restricted to A′ then can
be modeled as

min
∑

al∈A′
ccoll · xl (2)

s.t.
∑

al∈A′
al,j · xl ≥ 1, j ∈ J (3)

∑

al∈A′
xl ≤ m (4)

xl ≥ 0, al ∈ A′. (5)

Variable xl denotes, whether column al is selected in the solution. Notice
that the problematic machine symmetries are broken since an assignment of a
column to a specific machine is not important and, therefore, not modeled.

The CG operates on the dual formulation of the restricted master problem;
consequently, variables xl diminish. Instead, new variables λ ∈ R≤0 × Rn

≥0

arise in the dual formulation. If the optimal solution to the dual restricted

76 O. Benedikt et al.

master problem is feasible for the unrestricted one, the CG terminates, oth-
erwise, column al ∈ A\A′ with a negative reduced cost has to be found, i.e.,
0 > ccoll −∑

j∈J al,j ·λj −λ0. A new column for the restricted master problem is
found using another optimization model called a subproblem in which the dual
variables λ are fixed. Solving such a problem is very similar to solving a single
machine variant of the scheduling problem introduced in Sect. 2. The difference
is that the subproblem selects a subset of jobs, i.e., new column al, such that
the reduced cost is minimized.

However, such a subproblem has still a very large solution space, thus select-
ing the machine profiles is a hard combinatorial problem. If the maximum num-
ber of transitions Kω to the modes is not large (which is true for ŠKODA AUTO
and ERTL Glas), it is possible to enumerate all technologically feasible profiles
Π ⊂ ⋃

l∈Z>0
Ωl that do not violate the transition limits, solve the subproblem

for every π ∈ Π and select the one with the minimum objective value. For each
technologically feasible profile π ∈ Π, we solve the corresponding subproblem
using the following ILP model

min
∑

i∈M

|π |−1∑

k=1

ctransπk,πk+1
+

∑

i∈M

|π |∑

k=1

Pπk
· tmode

k −
∑

j∈J

|π |∑

k=1

yj,k · λj − λ0 (6)

|π |∑

k=1

yj,k ≤ 1, j ∈ J (7)

smode
1 = 0 (8)

smode
k = smode

k−1 + tmode
k−1 + ttransπk−1,πk

, k ∈ {2, . . . , |π|} (9)

smode
|π | + tmode

|π | = H (10)

rj ≤ sj , j ∈ J (11)

sj +
|π |∑

k=1

yj,k · pj,πk
≤ dj , j ∈ J (12)

smode
k ≤ sj + M · (1 − yj,k), j ∈ J, k ∈ {1, . . . , |π|} (13)

sj + pj,πk
≤ smode

k + tmode
k + M · (1 − yj,k),

j ∈ J, k ∈ {1, . . . , |π|} (14)
sj + pj,πk

≤ sj′ + M · (3 − yj,k − yj′,k − zj,j′),
j, j′ ∈ J, j < j′, k ∈ {1, . . . , |π|}

(15)

sj′ + pj′,πk
≤ sj + M · (2 − yj′,k − yj,k + zj,j′),

j, j′ ∈ J, j < j′, k ∈ {1, . . . , |π|}.
(16)

Energy-Aware Production Scheduling with Power-Saving Modes 77

The program uses the following variables: (i) yj,k ∈ {0, 1} denoting whether
j ∈ J is assigned to k-th mode of π, (ii) smode

k ∈ Z≥0 is the start time of the
time interval in which the machine is operating in k-th mode of profile π, (iii)
tmode
k ∈ Z≥0 is the operating time of k-th mode of profile π, (iv) sj ∈ Z≥0

is the start time of job j ∈ J and (v) zj,j′ ∈ {0, 1} denotes the relative order
between jobs j, j′ ∈ J . To see that this subproblem selects a column, notice that
al,j =

∑|π |
k=1 yj,k. Constraint (7) allows each job to be assigned to at most one

mode, constraints (8)–(10) set the start time and operating time of k-th mode,
constraints (11)–(12) assure that the jobs are processed in between its release
time and deadline, constraints (13)–(14) ensure that the jobs are fully contained
in the time period of k-th mode to which they are assigned, and constraints (15)–
(16) ensure that the jobs are not overlapping. To speed-up solving the model,
we generate constraints (15)–(16) using lazy constraints generation.

The initial set of columns is created using a simple heuristic based on Ear-
liest Deadline First strategy. Since even problem 1|rj , dj |− is strongly NP-
complete, there is no guarantee that any heuristic will find the initial A′ that
will represent a feasible solution (although the selected Earliest Deadline First
strategy is generally better aimed at satisfying the deadlines than cost-based
heuristics). Therefore, if the heuristic cannot find a feasible solution, it gen-
erates A′ such that it contains columns covering all the jobs. In such a situ-
ation, it may happen that the master model may not find a feasible solution
because of constraint (4). Therefore the master model has to assume this con-
straint in a slightly different form, i.e.,

∑
al∈A′ xl ≤ m + q, where q ≥ 0 is

a new decision variable indicating whether the solution of the master prob-
lem is feasible or not. Finally, the objective function of the master model is∑

al∈A′ ccoll · xl + q · C, such that C is much larger than the cost of any feasible
column, e.g., C = m · H · maxω∈Ω Pω + maxπ∈Π |π| · maxω,ω′∈Ω ctransω,ω′ .

If the optimal solution to the master problem is fractional at the end of the
CG, a branching is required. The used branching scheme selects a pair of jobs
(j, j′) that have not been selected before and have the largest overlap of inter-
vals [rj , dj] and [rj′ , dj′] (according to preliminary experiments, this branching
scheme performed better than random selection). Then the scheme creates two
branches, where: (i) jobs j and j′ are forbidden to be processed on the same
machine and (ii) the same two jobs are required to be processed on the same
machine. This scheme generates simple logical constraints that can be included
into the subproblem. For each new branch it is necessary to filter out columns
al ∈ A′ that violate the particular branching decision. However, this step may
result in a column set which is not covering all the jobs. Therefore, as in the
initialization phase, the algorithm has to add columns such that all jobs are
present in A′.

Alternatively, the subproblem can be easily modeled using CP, where efficient
filtering techniques for unary resources with optional jobs are employed [11]. Let
us introduce two types of interval variables Imode

k and Ij,k, where j ∈ J, k ∈
{1, . . . , |π|}. Variables Ij,k are optional, which means that the presence of Ij,k

in a schedule is to be decided. The length of Ij,k is fixed to pj,πk
, whereas

78 O. Benedikt et al.

the length of Imode
k is to be determined. Constraints (15)–(16) are substituted

by no-overlap constraints, i.e., for each k ∈ {1, . . . , |π|}, we add constraint
NoOverlap(

⋃
j∈J Ij,k). The other constraints are straightforward. Note that the

state function variable [12] for modeling the modes of a machine cannot be effi-
ciently used as the lengths of the modes are involved in the objective function
and the transition times between modes are fixed.

4 Preliminary Experiments

We evaluated the proposed BaP algorithm (with subproblem implemented as
both ILP and CP model) on a set of random problem instances that were
generated as follows. The scheduling horizon was fixed to H = 1000 and
the set of assumed machines modes was chosen as Ω = {OFF, IDLE,ON},
i.e., the machines have one power-saving mode IDLE and the jobs can be
processed only in mode ON. The set of technologically feasible profiles is
Π = {(OFF,ON,OFF), (OFF,ON, IDLE,ON,OFF)}. The processing time of
the jobs in mode ON was randomly sampled from discrete uniform distribution
U {1, 100}. The release times and deadlines were randomly generated in such a
way that the generated instances were feasible and the jobs had non-zero overlap.

For each pair n ∈ {15, 20, 25},m ∈ {1, 2, 3, 4}, 4 random instances were
generated using the scheme described above; each instance had time-limit of
3600 s. The experiments were carried out on an Intel R© CoreTMi5-3320M CPU
@ 2.6 GHz computer with 8 GB RAM. For solving the ILP and CP models, we
used Gurobi 7.5 and IBM CP Optimizer 12.7.1 solvers, respectively. The source
code of the algorithms with the generated instances are publicly available at
https://github.com/CTU-IIG/PSPSM.

The results shown in Table 1 clearly indicate that the BaP algorithm with
ILP subproblem (BaP+ILP) outperforms the CP subproblem (BaP+CP). Using
continuous variables for the start times of the jobs instead of integer variables
led to only a slight deterioration in the computational time, while the number
of nodes and the number of columns slightly decreased.

Although it could be possible to compare the proposed algorithm with the
time-indexed ILP formulation from the literature [2], the resulting model would
be huge for the scheduling granularity usually used in production scheduling
(1 min). For example, the time-indexed ILP formulation would require 4 · 25 ·
1000 = 100000 binary variables just to represent the start times of the jobs for
the largest problem instance from Table 1.

For the sake of comparison with the global approach, we also evaluated var-
ious global CP models. All the global models gave competitive results up to 2
machines, but for 3 or more machines, the global models are strongly suffering
from the symmetries caused by parallel identical machines (the best global model
time-outed for 9 instances having 4 machines).

https://github.com/CTU-IIG/PSPSM

Energy-Aware Production Scheduling with Power-Saving Modes 79

Table 1. Experimental results.

Instance Parameters BaP+ILP BaP+CP

m n Computational

time [s]

Nodes Columns Computational

time [s]

Nodes Columns

1 1 15 9.50 1 113 58.57 1 115

2 1 15 9.58 1 116 92.80 1 124

3 1 15 9.38 1 102 41.77 1 82

4 1 15 11.37 1 132 50.71 1 118

5 2 15 31.15 13 253 179.53 13 270

6 2 15 14.91 1 93 65.10 1 66

7 2 15 8.66 1 97 45.95 1 90

8 2 15 10.23 1 87 79.79 1 102

9 3 15 40.05 17 173 177.20 17 156

10 3 15 41.59 35 301 210.12 35 341

11 3 15 5.29 1 47 60.41 1 48

12 3 15 24.37 15 200 188.80 15 187

13 4 15 32.43 31 243 278.96 33 213

14 4 15 4.82 1 51 44.23 1 54

15 4 15 7.46 1 77 87.70 1 75

16 4 15 5.43 1 38 45.72 1 42

17 1 20 38.78 1 298 250.04 1 250

18 1 20 79.39 1 323 406.87 1 302

19 1 20 86.69 1 429 453.85 1 437

20 1 20 17.57 1 166 267.30 1 252

21 2 20 372.76 71 1,357 1,719.14 79 1,263

22 2 20 35.91 1 187 169.87 1 118

23 2 20 97.80 3 345 355.56 3 291

24 2 20 195.30 15 413 927.75 15 465

25 3 20 65.91 1 146 288.09 1 144

26 3 20 35.79 1 143 179.21 1 114

27 3 20 38.25 1 156 193.89 1 134

28 3 20 161.99 51 537 1,803.98 385 1,263

29 4 20 30.26 1 94 254.23 1 119

30 4 20 143.86 61 511 965.07 71 623

31 4 20 27.83 1 81 155.68 1 72

32 4 20 81.48 15 213 696.28 15 265

33 1 25 99.17 1 274 383.83 1 258

34 1 25 181.60 1 329 1,008.59 1 288

35 1 25 58.33 1 249 410.03 1 262

36 1 25 87.39 1 287 266.63 1 249

37 2 25 2,362.55 89 4,685 > 3,600.00 1 168

38 2 25 125.78 1 319 647.76 1 314

39 2 25 795.59 101 2,164 2,383.94 53 1,438

40 2 25 111.70 1 273 714.10 1 234

41 3 25 516.39 21 806 1,913.10 21 794

42 3 25 277.58 15 634 1,142.37 15 530

43 3 25 2,657.06 181 4,393 > 3,600.00 61 1,172

44 3 25 1,184.67 39 914 > 3,600.00 39 730

45 4 25 162.21 1 230 755.30 1 258

46 4 25 226.80 49 663 > 3,600.00 221 1,758

47 4 25 99.28 1 170 727.78 1 223

48 4 25 596.11 33 663 3,472.82 79 1,349

80 O. Benedikt et al.

5 Conclusion

Reducing energy consumption costs of manufacturing processes can be a signifi-
cant competitive advantage for producers. This work-in-progress paper provides
a Branch-and-Price algorithm for a multi-machine production scheduling prob-
lem minimizing energy consumption. The experimental results show that the
algorithm can solve instances with four machines and up to 25 jobs in a reason-
able time. To be able to solve real production instances, the algorithm can be
easily transformed into a heuristic, e.g., by reducing branching. Nevertheless, we
work on further improvements of the exact algorithm to make it applicable to
larger problem instances. For example, the computational time of the subprob-
lem could be decreased by an online machine learning algorithm [13] that reuses
the results of previously solved subproblems.

Acknowledgement. The work in this paper was supported by the Technology Agency
of the Czech Republic under the Centre for Applied Cybernetics TE01020197, and
partially by the Charles University, project GA UK No. 158216.

References

1. Mouzon, G., Yildirim, M.B., Twomey, J.: Operational methods for minimization
of energy consumption of manufacturing equipment. Int. J. Prod. Res. 45(18–19),
4247–4271 (2007)

2. Shrouf, F., Ordieres-Meré, J., Garćıa-Sánchez, A., Ortega-Mier, M.: Optimizing the
production scheduling of a single machine to minimize total energy consumption
costs. J. Cleaner Prod. 67(Suppl. C), 197–207 (2014)

3. Gong, X., der Wee, M.V., Pessemier, T.D., Verbrugge, S., Colle, D., Martens, L.,
Joseph, W.: Integrating labor awareness to energy-efficient production scheduling
under real-time electricity pricing: an empirical study. J. Cleaner Prod. 168(Suppl.
C), 239–253 (2017)

4. Ángel González, M., Oddi, A., Rasconi, R.: Multi-objective optimization in a job
shop with energy costs through hybrid evolutionary techniques (2017)

5. Selmair, M., Claus, T., Trost, M., Bley, A., Herrmann, F.: Job shop scheduling
with flexible energy prices. In: European Conference for Modelling and Simulation
(2016)

6. Mitra, S., Sun, L., Grossmann, I.E.: Optimal scheduling of industrial combined
heat and power plants under time-sensitive electricity prices. Energy 54(Suppl.
C), 194–211 (2013)

7. Kong, F., Wang, Y., Deng, Q., Yi, W.: Minimizing multi-resource energy for real-
time systems with discrete operation modes. In: 2010 22nd Euromicro Conference
on Real-Time Systems, pp. 113–122, July 2010

8. Lenstra, J., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems.
In: Hammer, P., Johnson, E., Korte, B., Nemhauser, G. (eds.) Studies in Integer
Programming. Annals of Discrete Mathematics, vol. 1, pp. 343–362. Elsevier (1977)

9. Feillet, D.: A tutorial on column generation and branch-and-price for vehicle rout-
ing problems. 4OR 8(4), 407–424 (2010)

10. Desrosiers, J., Lübbecke, M.E.: A primer in column generation. In: Desaulniers,
G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 1–32. Springer,
Boston (2005). https://doi.org/10.1007/0-387-25486-2 1

https://doi.org/10.1007/0-387-25486-2_1

Energy-Aware Production Scheduling with Power-Saving Modes 81

11. Viĺım, P., Barták, R., Čepek, O.: Extension of o (n log n) filtering algorithms for
the unary resource constraint to optional activities. Constraints 10(4), 403–425
(2005)

12. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: Reasoning with conditional time-
intervals. Part II: an algebraical model for resources. In: FLAIRS conference, pp.
201–206 (2009)

13. Václav́ık, R., Novák, A., Š̊ucha, P., Hanzálek, Z.: Accelerating the branch-and-price
algorithm using machine learning. Eur. J. Oper. Res. (2017). under review

EpisodeSupport: A Global Constraint
for Mining Frequent Patterns in a Long

Sequence of Events

Quentin Cappart(B), John O. R. Aoga, and Pierre Schaus

Université catholique de Louvain, Louvain-La-Neuve, Belgium
{quentin.cappart,john.aoga,pierre.schaus}@uclouvain.be

Abstract. The number of applications generating sequential data is
exploding. This work studies the discovering of frequent patterns in a
large sequence of events, possibly time-stamped. This problem is known
as the Frequent Episode Mining (FEM). Similarly to the mining problems
recently tackled by Constraint Programming (CP), FEM would also ben-
efit from the modularity offered by CP to accommodate easily additional
constraints on the patterns. These advantages do not offer a guarantee of
efficiency. Therefore, we introduce two global constraints for solving FEM
problems with or without time consideration. The time-stamped version
can accommodate gap and span constraints on the matched sequences.
Our experiments on real data sets of different levels of complexity show
that the introduced constraints is competitive with the state-of-the-art
methods in terms of execution time and memory consumption while offer-
ing the flexibility of adding constraints on the patterns.

1 Introduction

The trend in data science is to automate the data-analysis as much as possi-
ble. Examples are the Automating machine learning project [10], or the com-
mercial products www.automaticstatistician.com and www.datarobot.com. The
Auto-Weka [18] and Auto-sklearn [9] modules can automate the selection of a
machine learning algorithm and its parameters for solving standard classifica-
tion or regression tasks. Most of these automated tools target tabular datasets,
but not yet sequences and time-series data. Data-mining problems on sequences
and time series remain challenging [32] but are nevertheless of particular interest
[7,29]. We believe that Constraint Programming (CP), because of the flexibility
it offers, may play a role in the portfolio of techniques available for automating
data-science on sequential data. As an illustration of this flexibility, Negrevergne
and Guns [23] identified some constraints that could be stated on the patterns
to discover in a database of sequences: length, exclusion/inclusion on symbols,
membership to a regular language [25], etc. The idea of using CP for data-mining
is not new. It was already used for item-set mining [11,12,24,28], for Sequential
Pattern Mining (SPM) [2,3,16,23] or even for mobility profile mining [17].

J. O. R. Aoga—This author is supported by the FRIA-FNRS, Belgium.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 82–99, 2018.
https://doi.org/10.1007/978-3-319-93031-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_7&domain=pdf
www.automaticstatistician.com
www.datarobot.com

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 83

In this paper we address the Frequent Episode Mining (FEM), first intro-
duced with the apriori-like method WINEPI [22] and improved on MINEPI [21],
with a CP approach. Contrarily to the traditional SPM, FEM aims at discovering
frequent patterns in a single but very long sequence of symbols possibly time-
stamped. Assume for instance a non time-stamped sequence 〈a, b, a, c, b, a, c〉 and
we are looking for patterns of length three occurring at least two times. Such
a subsequence is 〈a, b, c〉 that occurs exactly two times. A first occurrence is
〈a,b, a, c, b, a, c〉 and a second one is 〈a, b,a, c,b, a, c〉. The attentive reader may
wonder why 〈a,b, a, c, b, a, c〉 is not counted. The reason is that the head/to-
tal frequency measure [15] avoids duplicate counting by restricting a counting
position to the first one. This measure has some interesting properties such as
the well known anti-monotonicity which states that if a sequence is frequent all
its subsequences are frequent too and reversely. This property makes it possi-
ble to design faster data-mining algorithm. Indeed, based on these properties,
Huang and Chang [14] proposed two algorithms, MINEPI+ and EMMA. While
the first one is only a small adaptation of MINEPI [21], the second uses memory
anchors in order to accelerate the mining task with the price of a greater memory
consumption. As variants of this problem, episodes can be closed [30,34], and
other (interestingness) measures [4,6,19] can be considered. When considering
time-stamped sequences such as 〈(a, 1), (b, 3), (a, 5), (c, 6), (b, 7), (a, 8), (c, 14)〉,
one may also want to impose time constraints on the time difference between
any two matched symbols or between the first and last matched ones. Such
constraints, called gap and span were also introduced for the SPM [3] with CP.

The problem of discovering frequent pattern in a very long sequence can be
reduced do the standard SPM problem [1]. The reduction consists in creating
a database of sequences composed of all the suffixes of the long sequence. For
our example, the sequence database would be: 〈a, b, a, c, b, a, c〉, 〈b, a, c, b, a, c〉,
〈a, c, b, a, c〉, 〈c, b, a, c〉, 〈b, a, c〉, 〈a, c〉, 〈c〉. A small adaptation of existing algo-
rithms is required though to match any sequence of the database on its first
position in accordance with the head/total frequency measure. This reduction
has one main drawback. The spatial complexity is O(n2) with n the length of
the sequence. Such a complexity will quickly exceed the available memory for
sequence lengths as small as a few thousands.

The contribution of this paper is a flexible and efficient approach for solving
the frequent episode mining problem. WINEPI, MINEPI and EMMA are special-
ized algorithms not able to accommodate additional constraints. We introduce
two global constraints for FEM, which use an implicit decomposition having a
O(n) spatial complexity. Our global constraints are inspired by the state-of-the-
art approaches [2,3,16] but keeping the reduction into a suffix database implicit
instead of explicit. We propose two versions: with and without considering gap
and span constraints. We are also able to take some algorithmic advantages in
the filtering algorithms using the property that the (implicit) database is com-
posed of sorted suffixes from a same sequence. To the best of our knowledge, this
work is the first CP-based approach proposed for solving efficiently this family
of problems with the benefit that several other constraints can be added.

84 Q. Cappart et al.

This paper is organized as follows. Section 2 introduces the technical back-
ground related to the FEM problem. It explains how the problem can be modeled
using CP and presents our first global constraint (episodeSupport). Section 3
shows how time can be integrated into the problem and describes the second
global constraint (episodeSupport with time). Finally, experiments are carried
out on synthetic and real-life datasets in Sect. 4.

2 Mining Episodes in a Non Timed Sequence

2.1 Technical Background

Let Σ = {1, . . . , L} be an alphabet representing a set of possible symbols. We
define a non timed sequence s =

〈
s1, . . . , sn

〉
over Σ as an ordered list of symbols

such that ∀i ∈ [1, n], si ∈ Σ. Let us consider the following definitions based on
the formalization of Aoga et al. [2] and Huang and Chang [14].

Definition 1 (Subsequence relation, Embedding). α = 〈α1, . . . , αm〉 is a
subsequence of s = 〈s1, . . . , sn〉, denoted by a � s, if m ≤ n and if there exists
a list of indexes (e1, . . . , em) with 1 ≤ e1 ≤ · · · ≤ em ≤ n such that sei

= αi.
Such a list is referred as an embedding of s. Sequence s is also referred as a
super-sequence of α.

Example 1. 〈a, b, c〉 is a subsequence of the sequence s = 〈a, b, a, c, b, a, c〉 with
embeddings (1, 2, 4) or (1, 2, 7) or (3, 5, 7).

Definition 2 (Episode-embedding). Let us consider α = 〈α1, . . . , αm〉 �
s. Embedding (e1, . . . , em) is an episode-embedding if it is an embedding of s
and if all the other embeddings (e1, e′

2, . . . , e
′
m) are such that (e2, . . . , em) �L

(e′
2, . . . , e

′
m) where �L represents a lexicographic ordering.

Example 2. 〈a, b, c〉 is a subsequence of s with (1, 2, 4) and (3, 5, 7) as episode-
embeddings. Besides, (1, 2, 7) is not an episode-embedding because (2, 7) is lex-
icographically greater than (2, 4).

Definition 3 (Support). The support σs(α) of a subsequence α in a sequence
s is the number of episode-embeddings of α in s.

Example 3. For s of Example 1, we have σs(〈a, b, c〉) = 2.

Frequent Episode Mining (FEM) problem can then be formalised. Let us
underline that this definition is related to the total frequency measure introduced
by Iwanuma et al. [15]. The goal is to count up occurrences without duplication.
To do so, we use the concept of prefix-projection introduced in PrefixSpan [13]
and used thereafter by Kemmar et al. [16] and Aoga et al. [2] for SPM.

Definition 4 (Frequent Episode Mining (FEM)). Given a set of symbols
Σ, a sequence s over Σ and a threshold θ, the goal is to find all the subsequences
α in s such that σs(α) ≥ θ. These subsequences are called episodes.

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 85

Definition 5 (Prefix, Projection, Suffix). Let α = 〈α1, . . . , αk〉 and s =
〈s1, . . . , sn〉 be two sequences. If α � s, then the prefix of s w.r.t. α is the small-
est prefix of s that remains a super-sequence of α. Formally, it is the sequence
〈s1, . . . , sj〉 such that α � 〈s1, . . . , sj〉 and such that there exists no j′ < j where
α � 〈s1, . . . , sj′〉. The sequence 〈sj+1, . . . , sn〉 is then called the suffix of s w.r.t.
α, or the α-projection, and is denoted by s|α. If α is not a subsequence of s, the
α-projection is empty.

Example 4. Given sequence s of Example 1 and α = 〈b〉, sequence 〈a, b〉 is a
prefix of s w.r.t. α and 〈a, c, b, a, c〉 is a suffix (s|α = 〈a, c, b, a, c〉).
Definition 6 (Initial Projection). An initial projection of a sequence s =
〈s1, . . . , sn〉 w.r.t. a symbol x, denoted by s|Ix , is the list of all the suffixes s′ =
〈si, . . . , sn〉 such that si−1 = x for all i ∈ (1, n].

Example 5. For s and a symbol a, we have s|Ia =
[〈b, a, c, b, a, c〉, 〈c, b, a, c〉, 〈c〉].

Definition 7 (Internal Projection). Given a list of sequences Ω, an internal
projection of Ω w.r.t. pattern α, denoted by Ω|α, is the list of the α-projection
of all sequences in Ω. All the empty sequences are removed from Ω|α.

Example 6. For α = 〈b〉 and Ω =
[〈b, a, c, b, a, c〉, 〈c, b, a, c〉, 〈c〉], we obtain Ω|α =[〈a, c, b, a, c〉, 〈a, c〉].

Definition 8 (Projected Frequency). Given the list of sequences Ω, and a
projection s|α for each sequence s ∈ Ω, the projected frequency of a symbol is the
number of α-projected sequences where the symbol appears.

Example 7. Given the internal projection Ω|α of Example 6, the projected fre-
quencies are a: 2, b: 1 and c: 2.

In practice, the initial projections and internal projections can be effi-
ciently stored as a list of pointers in the original sequence s. In our example
(s = 〈a, b, a, c, b, a, c〉), we have s|Ia = [2, 4, 7] and starting from Ω = s|Ia we can
represent Ω|〈b〉 =

[
3, 6

]
. This representation introduced in PrefixSpan [13] is

called the pseudo projection representation. The algorithm works as follows. It
starts from the empty pattern and successively extends it in a depth-first search.
At each step, a symbol is added to the pattern, and all the sequences of the
database are projected accordingly. A backtrack occurs when all the projected
frequencies are below the support threshold. When a backtracking is performed
during the search, the last appended symbol is removed. This procedure is known
as the pattern growth method [13]. A new projection is thus built and stored
at each step. An important consideration for the efficiency of this method is
that the projected sequences do not need to be computed from scratch at each
iteration. Instead, the pseudo-projection representation is used and maintained
incrementally at each symbol extension of the pattern. Starting from the previ-
ous pseudo-projection, when the next symbol is appended, one can start from
each position in the pseudo-projection representation and look, for each one, the

86 Q. Cappart et al.

next matching positions in s equal to this symbol. The new matching positions
constitute the new pseudo-projection representation. Since the search follows a
depth-first-search strategy, the pseudo projections can be stacked on a same vec-
tor allowing to reuse allocated entries on backtrack. This memory management
is known as a trailing in CP and was introduced for SPM by Aoga et al. [2,3].

2.2 Problem Modelling

Our first contribution is a global constraint, episodeSupport, dedicated to find
frequent patterns (or episodes [22]) in a sequence without considering time. Let
s = 〈s1, . . . , sn〉 be a sequence of n symbols over Σ, the set of distinct symbols
appearing in s, and θ, the minimum support threshold desired.

Decision Variables. Let P = 〈P1, . . . , Pn〉 be a sequence of variables repre-
senting a pattern. The domain of each variable is defined as Pi = Σ ∪ {ε} for
all i ∈ [1, n]. It indicates that each variable can take any symbol appearing in s
as value in addition to ε, which is defined as the empty symbol. An assignment
of Pi to ε means that Pi has matched no symbol. It is used to model patterns
having a length lower than n. A solution is an assignation of each variable in P .

EpisodeSupport Constraint. The episodeSupport(P , s, θ) constraint
enforces the three following constraints: (1) P1
= ε, (2) Pi = ε → Pi+1 = ε,
∀i ∈ [

2, n
)

and (3) σs(P) ≥ θ. The first constraint states that a pattern cannot
begin with the empty symbol. It indicates that a valid pattern must contain
at least one symbol. The second constraint ensures that ε can only appear at
the end of the pattern. It is used in order to prevent same patterns with ε in
different positions to be part of the same solution (such as 〈a, b, ε〉 and 〈a, ε, b〉).
Finally, the last constraint states that a pattern must occur at least θ times in
the sequence. The goal is then to find an assignment of each Pi satisfying the
three constraints. The episodeSupport constraint filters from the domains of
variables P the infrequent symbols in s at each step in order to find an assign-
ment representing a frequent pattern according to θ. All the inconsistent values
of the next uninstantiated variables in the pattern are then removed. Assuming
the pattern variables are labeled in static order from left to right, the search
is failure free when only this constraint must hold (i.e. all the leaf nodes are
solution). Besides, episodeSupport is domain consistent: the remaining values
in the domain of each variable are part of a solution because all of them have,
at least, one support. Additional constraints can also be integrated to the model
in order to define properties that the patterns must satisfy. For instance, we can
enforce patterns to have at most k symbols or to follow a regular expression.

2.3 Filtering Algorithm

Preprocessing. The index of the last position of each symbol in s is stored
into a map (lastPos). For instance, s = 〈a, b, a, c,b,a, c〉 gives

{
(c → 7), (a →

6), (b → 5)
}
. The map can be iterated in a decreasing order by the last positions.

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 87

Fig. 1. Sequence projection (✓ indicates a match, ✗ otherwise), its reversible vector
and frequency computation mechanism.

Sequence Projection and Pseudo Projection. The key idea is to succes-
sively compute a projection from the previous one each time a variable has been
assigned. The assignment of the first variable of the pattern (P1) involves an
initial projection. It splits s into a list of subsequences such that each one begins
with the projected symbol. The assignment of the other variables (P2 to Pn)
implies an internal projection. This behavior is illustrated in the upper part
of Fig. 1a for an arbitrary example. The steps leading to pattern 〈a, b, c, c〉 are
detailed. Three subsequences are obtained after an initial projection of symbol
a

(
(0) → (1)

)
. While there are non empty sequences, internal projections are

successively performed
(
(1) → (4)

)
and the pattern (P) is incrementally built.

In practice, only pointers to the position in each sequence where the prefix
has matched are stored. It is the mechanism of pseudo projection. As Aoga et al.
[2], we implement it with a reversible vector (posv) and a trail-based structure
(lower part of Fig. 1a). The idea is to use the same vector during all the search
inside the propagator, and to only maintain relevant start and stop positions. At
each propagator call, three steps are performed. First, the last recorded start and
stop positions are taken. Secondly, the propagator records the new information
in the vector after the previous stop position. Finally, the new positions are
updated in order to retrieve the information added. The reversible vector is then
built incrementally. For each projection, the corresponding start index (φ) in the
vector as well as the number of sequences inside the projection (ϕ) are stored.
In other words, information related to a projection are located between indexes
i ∈ [φ, φ+ϕ). Besides, the index of the variable Pi that has been assigned (ψ) is
also recorded after each projection step. Before the first assignation ψ is equal
to zero. The three variables are implemented as reversible integers. Initially, all
the indexes are present in the vector, but all along the pseudo-projections, only
the non empty sequences are considered.

Propagation. The goal is to compute a projection each time a variable has been
assigned to a symbol a. Assignments of variables are done successively from the
first variable to the last one. The propagator is then called after each assignment.
It is shown in Algorithm 1. Initialization of reversible structures is done when

88 Q. Cappart et al.

ψ = 0 (lines 8–9). If the last assigned variable (Pψ) has been bound to ε, the
algorithm enforces all the next variables to be also bound to ε (lines 10–12).
The pattern is then completed and the propagation is finished. Otherwise, after
each variable binding, the projected sequence and the projected frequencies are
computed (line 14). Finally, all the infrequent symbols are removed from the
domain of Pψ+1 (lines 15–17). Projected frequency of each symbol in the domain
of Pψ+1 (except ε) is compared to the threshold and removed if it is infrequent.

Sequence Projection. Let us now present how sequences are projected (Algo-
rithm 2). First, the projected frequency of each symbol for the current pseudo
projection is set to 0 (freq on line 8). The main loop (lines 10–23) iterates over
the previous projection thanks to the reversible integers φ and ϕ. At each iter-
ation a value in posv is considered. The next condition (line 12) is used to dis-
tinguish the initial from an internal projection. If a is the first projected symbol
and if it does not match with the first symbol of the sequence, then the sequence
is not included in the projection. Otherwise, an internal projection is applied.

The next expression (lines 13–14) is an optimization we introduced, called
early projection stopping. This optimization is based on one invariant of our
structure: it stores suffixes of s with a decreasing order by their size. Each suffix
in a projection is then strictly included in all the previous ones. When a no-match
has been detected in a sequence, all the next ones can be directly discarded
without being checked. It stops the internal projection as soon as possible. The
early projection stopping gains importance when the number of sequences is
large. Then, if a is not present in the current considered sequence, the loop can
be stopped and unnecessary computation is avoided.

At this step, we are sure that a appears at least once in the current sequence
in the projection. Lines 16 to 21 make the search for the match, either by position
caching, or by iteration on the positions. Position caching is a second optimiza-
tion we introduced. Once a match has been detected in a sequence, the position
of the match is recorded. Thanks to the aforementioned invariant, we are sure
that the match in the next sequence cannot occur before this position. If this
position is greater than the start position of the sequence (in posv), a match
is directly detected. The reversible vectors are then updated (line 23). Variable
sup is used to store the size of the new projection.

The last loop (lines 24–28) updates the projected frequency of each symbol.
The projected frequency of a symbol in a projection corresponds to the number of
sequences of the projection beginning at an index lower than the index of the last
position of the symbol. This idea was introduced in LAPIN [33] and exploited
by Aoga et al. [2]. It can be implemented efficiently thanks to the invariant and
lastPos map. It is illustrated in Fig. 1b (upper part) with lastPos = {(c →
7), (a → 6), (b → 5)}. The position just after each match is pushed in a LIFO
structure, posStack. The last matched position is located on the top of the stack.

Once the stack is obtained, the idea is to successively compare in a decreasing
order the last position of each symbol with the top of the stack. Illustration of
this behavior is presented in Fig. 1b (lower part). If the last position of a symbol
is greater than the top of the stack, it indicates that the symbol occurs at least

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 89

Algorithm 1. propagate(s, Σ, a, P)

1 � Internal State: posv, φ, ϕ and ψ.

2 � Pre: s is the initial long sequence of size n.

3 � Σ is the set of symbols and a is a symbol.

4 � If ψ > 0 then 〈P1, . . . , Pψ〉 ∈ P are bound and Pψ is assigned to a.

5 � θ is the support threshold.

6 � posv, φ, ϕ and ψ are the reversible structures as defined before.

7

8 if ψ = 0 then

9 φ := 1 ϕ := n ψ := 1 posv[i] := i i ∈ [
1, n

]

10 if Pψ = ε then

11 for j ∈ [ψ + 1, n] do

12 Pj .assign(ε)

13 else

14 freq := sequenceProjection(s, Σ, a) � Detailed in Alg. 2.

15 foreach b ∈ Domain(Pψ+1) do

16 if b �= ε ∧ freq[b] < θ then

17 Pψ+1.removeV alue(b)

Algorithm 2. sequenceProjection(s, Σ, a)

1 � Internal State: posv, φ, ϕ and ψ.

2 � Pre: s is the initial long sequence.

3 � Σ is the set of symbols.

4 � a is the current projected symbol (a = Pψ).

5 � posv, φ, ϕ and ψ are reversible structures as defined before.

6 � posv[i] with i ∈ [φ, φ + ϕ) is initialized.

7

8 j := ϕ sup := 0 prevPos := −1 freq[b] := 0 ∀b ∈ Σ

9 posStack := Stack()

10 for i ∈ [φ, φ + ϕ − 1] do

11 pos := posv[i]

12 if ψ > 1 ∨ a = s[pos] then

13 if pos > lastPos[a] then

14 break � Early projection stopping

15 else

16 if prevPos < pos then

17 while a �= s[pos] do

18 pos := pos + 1

19 prevPos := pos � Position caching

20 else

21 pos := prevPos

22 posStack.push(pos + 1)

23 posv[j] := pos + 1 j := j + 1 sup := sup + 1

24 foreach (x, posx) in lastPos do

25 while posStack.notEmpty ∧ posStack.top > posx do

26 posStack.pop

27 freq[x] := posStack.size � Projected frequency

28 if posStack.isEmpty then break

29 φ := φ + ϕ ϕ := sup ψ := ψ + 1

30 return freq

90 Q. Cappart et al.

once in the current sequence and consequently in all the previous ones in the
stack. The projected frequency of this symbol corresponds then to the remaining
size of the stack and the next symbol in lastPos can be processed. Otherwise, we
are sure that the symbol has no occurrence in the current sequence. Its position
is popped and the comparison is done with the new top. The resulting projected
frequencies are c = 3, a = 2 and b = 2. This mechanism has a time complexity
of O(n+ |Σ|). For comparison, projected frequencies are computed in O(n×|Σ|)
by Aoga et al. [2] (each subsequence is scanned at each projection). Finally, the
reversible integers are updated and the projected frequency map is returned.

Time and Spatial Complexity. Main loop of Algorithm 2 (lines 10–23) is
computed in O(n2) and the projected frequencies (lines 24–28) in O(n + |Σ|) =
O(n) (because the number of different symbols is bounded by the sequence
size). In Algorithm 1, lines 8–9 cost O(n) and the domain pruning (lines 15–17)
is performed in O(|Σ|). It gives O(n + (n2 + n) + |Σ|) = O(n2). For the spatial
complexity, we have O(n + n × d) = O(n × d) with d the maximum depth of the
search tree, which is the maximum size of the reversible vector. For comparison,
an explicit decomposition of the problem gives O(n2 + n × d) = O(n2).

3 Mining Episodes in a Timed Sequence

3.1 Technical Background

So far, episodeSupport can only deal with sequences of symbols where time is
not considered. In practice, sequences can also be time-stamped. Such sequences
are most often referred as sequences of events instead of sequences of symbols
and new constraints can then be expressed. For instance, we can be interested in
finding episodes such that the elapsed time between two events does not exceed
one hour. We define a sequence of events s =

〈
(s1, t1), . . . , (sn, tn)

〉
over Σ as

an ordered list of events (si) occurred at time ti such that for all i ∈ [1, n] we
have si ∈ Σ and t1 ≤ t2 ≤ . . . ≤ tn. The list containing only the events is
denoted by ss and the list of timestamps by st. All the principles defined in the
previous sections are reused. Besides, we are now able to enforce time restrictions.
Two of them are used in practice: gap and span. The former (gap) restricts the
time between two consecutive events while the latter (span) restricts the time
between the first and the last event. Considering such restrictions cannot be done
only by imposing additional constraints in the model [3]. It requires to adapt
the subsequence relations (Definition 9) and to design a dedicated propagator.
The concept of extension window is also defined. The extension window of an
embedding contains only events whose timing satisfies gap constraint.

Definition 9 (Subsequence under gap/span). α = 〈α1, . . . , αm〉 is a subse-
quence of s =

〈
(s1, t1), . . . , (sn, tn)

〉
under gap[M,N], denoted by α �gap[M,N] s,

if and only if ss is a subsequence of embedding (e1, . . . , ek) according to Defini-
tion 1, and if ∀i ∈ [2, k] we have M ≤ tei

−tei−1 ≤ N . The embedding (e1, . . . , ek)
under �gap[M,N] relation is called a gap[M,N]-embedding. (e1, . . . , ek) is an

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 91

episode-embedding of α according to Definition 2 where �gap[M,N] is considered
for the subsequence relation. The support of α, denoted by σ

gap[M,N]
s (e), is the

number of gap[M,N]-embeddings of α in s. Similarly, α is a subsequence of s
under span[W,Y], denoted by α �span[W,Y] s, if and only if ss is a subsequence
of embedding (e1, . . . , ek) according to Definition 1, and if W ≤ tek

− te1 ≤ Y .
Relation �span[W,Y] and σ

span[M,N]
s (e) are also defined similarly.

Example 8. Let us consider s =
〈
(a, 2), (b, 4), (a, 5), (c, 7), (b, 8), (a, 9), (c, 12)

〉
.

〈a, b, c〉 is a subsequence of s under gap[1, 3] with embedding (1, 2, 4). (3, 5, 7) is
not a gap[1, 3]-embedding because te3 − te2 = 12 − 8 > 3. Besides, 〈a, b, c〉 is a
subsequence of s under span[6, 10] with embedding (3, 5, 7). (1, 2, 4) is not valid
because te3 − te1 = 7 − 2 < 6.

Definition 10 (Extension window). Let e = (e1, e2, . . . , ek) be any
gap[M,N]-embedding of a subsequence α in a sequence s. The exten-
sion window of this embedding, denoted ewgap[M,N]

e (s), is the subsequence〈
(su, tu), . . . , (sv, tv)

〉
such that (tek

+ M ≤ tu) ∧ (tv ≤ tek
+ N) ∧ (tu−1 <

tek
+ M) ∧ (tv+1 > tek

+ N). Each embedding has a unique extension window,
which can be empty.

Example 9. Let (3, 4) be a gap[2, 6]-embedding of 〈a, c〉 in sequence s (Exam-
ple 8). We have ewgap[2,6]

e (s) =
〈
(a, 9), (c, 12)

〉
.

The goal is to find the all patterns having a support, possibly under gap
and span, greater than the threshold. Let P = 〈P1, . . . , Pn〉 be a sequence
of variables representing a pattern. the timed version of episodeSupport
(P, s, θ,M,N,W, Y) enforces the four following constraints: (1) P1
= ε, (2)
Pi = ε → Pi+1 = ε, ∀i ∈ [

1, n
)
, (3) σ

gap[M,N]
s (P) ≥ θ and (4) σ

span[M,N]
s (P) ≥ θ.

3.2 Filtering Algorithm

Precomputed Structures. The three structures are shown in Fig. 2a. First,
the lastPos map is adapted from the previous section in order to store the last
position of each event that can be matched while satisfying the maximum span
(Y). The last position of each event inside each range [t, t+Y] is recorded, where
t is the timestamp of the event. Maximum span is then implicitly handled by this
structure, which is not done by Aoga et al. [3]. Besides, for each position i in s,
the index of the first (u) and the last (v) positions after i such that tu ≥ ti + M
and tv ≥ ti + N are stored into a map (nextPosGap), where M and N are the
minimum and maximum gap. The nextPosGap is used after each projection in
order to directly access the next extension window. Finally, for each position i
in s, the number of times that each event has occurred inside the range [1, i]
in s is stored (freqMap). It is used in order to efficiently compute the projected
frequency of each symbol during a projection. We can be sure that an event a
appears at least once in a window of range [u, v] if the occurrence of a at the end
of the window is strictly greater than the occurence of a just before the window
(freqMap[v][a] > freqMap[u − 1][a]). It has not been used by Aoga et al. [3].

92 Q. Cappart et al.

Fig. 2. Data structures used for timed sequences with gap[2, 7] and span[1, 10].

Storing Several Embeddings. When a gap constraint is considered, the anti-
monotonicity property does not hold anymore [3]. The main consequence is that
all the possible embeddings must be considered, and not only the first one.
The projection mechanism (described in Fig. 1a) has then to be adapted. It
is illustrated in Fig. 2b. For instance, two embeddings are considered for the
projection from (1) to (2) of the first sequence. It is required to record all of
the corresponding extension windows in order to miss none supporting event.
To do so, a reversible vector (startv) recording the start index in s for each
sequence is used (Fig. 2c). Besides, other reversible vectors are added: esize,
which represents the number of embeddings related at each projected sequence
and embs, which records the start index of the different embeddings. It is a
simplified adaptation of the structure proposed by Aoga et al. [3].

Minimum Span. The minimum span is not anti-monotonic. Therefore, we do
not consider it during the projection but a posteriori : it is only checked when a
complete pattern is obtained and not before. It requires slight modifications in
the propagate method (Algorithm 1). A variable γs(P) representing the number
of supports satisfying the minimum span constraint for P is recorded and com-
puted during the projection. Once the projections are completely done for this
episode (after the line 12), γs(P) is compared with the support threshold and
an inconsistency is raised if it is below the threshold.

Sequence Projection. Projection mechanism is presented in Algorithm 3. Ini-
tially, the projected frequencies of each event is set to 0 (line 9). When ψ = 1, an
initial projection is performed (lines 10–20) and we are looking for events that
match with a (line 13). Once a match is detected, reversible vectors are updated
(line 14). Projected frequencies are computed using nextPosGap and freqMap
structures (lines 15–20). First, the window where the events must be consid-
ered is computed. Secondly, the projected frequency of each event appearing in
the window is incremented. When ψ > 1, we have an internal projection (lines
21–43). Each embedding is successively considered (line 26). For each one, the
sequence is iterated from the first next position satisfying the minimum gap to

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 93

the last one satisfying the maximum gap, or to the last symbol of the sequence
(line 28). Once a match has been detected, the number of possible embeddings
is incremented and its position is recorded (line 30). If the embedding of the
current pattern satisfies the minimum span constraint, γs is incremented (lines
31–32). It is used in the propagate method as explained before. Then, projected
frequencies are computed as in the initial projection (lines 33–39).

Time and Spatial Complexity. Let us assume k is the maximum length of
time window (often k n) and d the maximum depth of the tree search (d ≤ k).
Initial projection (lines 11–21) in Algorithm 3 is computed in O(n × |Σ|): the
sequence is completely processed and frequencies are computed at each match.
Internal projection (lines 22–44) is computed in O(n × |Σ| × k2). It gives O(n ×
|Σ| + n × |Σ| × k2) = O(n × |Σ| × k2). For the spatial complexity, vectors have
a maximum length of k × d and there are at most k embeddings, which gives
O(d × k2).

4 Experimental Results

This section evaluates the performance of episodeSupport on different datasets
with and without time consideration. Experiments have been realised on a com-
puter with a 2.7 GHz Intel Core i5 64 bits processor and with a RAM of 8
Go using a 64-Bit HotSpot(TM) JVM 1.8 running on Linux Mint 17.3. Exe-
cution time is limited to 1800 s unless otherwise stated. The algorithms have
been implemented in Scala with OscaR solver [31] and memory assessment has
been performed with java Runtime classes. For the reproducibility of results,
the implementation of both constraints is open source and available online.1

One synthetic and three real-data sets are considered: proteins from Uniprot
database [5], UCI Unix dataset [20] and UbiqLog [26,27].

Our approach is compared with the existing methods. We identified two ways
to mine frequent patterns in a sequence. On the one hand, we can resort to a
specialized algorithm. To the best of our knowledge, MINEPI+ and EMMA [14]
are the state-of-the-art methods for that. On the other hand, we can explicitly
split the sequence into a database and then reduce the problem into an SPM
problem. Once done, CP-based methods can be used [2,3,16,23]. Our compar-
isons are based on the approach of Aoga et al. [2,3] that turns out to be the most
efficient. We refer to it as the Decomposed Frequent Episode Mining (DFEM)
approach, or DFEMt when time is considered.

Memory Bound Analysis. We applied DFEM and episodeSupport on syn-
thetic sequences of different sizes with 100 distinct symbols uniformly dis-
tributed in order to define what are the largest sequences that can be pro-
cessed. We observed that with decomposed approaches, sequences greater than
30000 symbols cannot be processed when memory is limited to 8 GB. With
episodeSupport memory is not a bottleneck.

1 https://bitbucket.org/projetsJOHN/episodesupport (also available in [31]).

https://bitbucket.org/projetsJOHN/episodesupport

94 Q. Cappart et al.

Algorithm 3. sequenceProjectionT imed(ss, st, Σ, a, N, W)

1 � Internal State: startv, esize, embs, φ, ϕ, ψ, γs(P:ψ).

2 � Pre: ss and st are the event/timestamp list of the initial long sequence.

3 � Σ is the set of symbols.

4 � a is the current projected symbol (a = Pψ).

5 � startv[i], esize[i] and embs[i] with i ∈ [φ, φ + ϕ) are initialized.

6 � γs(P:ψ) = 0 with P:ψ the episode represented by 〈P1, . . . , Pψ〉.
7 � N and W are the gap max bound and of the span min bound.

8

9 freq[b] := 0 ∀b ∈ Σ

10 if ψ = 1 then

11 j := 1

12 for pos ∈ [
1, |ss|] do

13 if ss[pos] = a then

14 startv[j] := pos esize[j] := 1 embs[j][1] := pos j := j + 1

15 (u, v) := nextPosGap[pos] � Precomputed structure

16 if u ≤ |ss| then

17 for b ∈ Domain(Pψ+1) do

18 l := min
(
v, |ss|)

19 if freqMap[l][b] > freqMap[u − 1][b] then

20 freq[b] := freq[b] + 1 � Projected frequency

21 else

22 j := φ + ϕ

23 for i ∈ [φ, φ + ϕ − 1] do

24 id := startv[i] nEmb := 0 k := 1 v := −1 isIncremented := false

25 isV isited[b] := false ∀b ∈ Σ

26 while v < |ss| ∧ k ≤ esize[i] do

27 e := embs[i][k] (pos,) := nextPosGap[e] � 2nd element unused

28 while v < |ss| ∧ pos ≤ lastPosMap[id][a] ∧ st[pos] ≤ st[e] + N do

29 if ss[pos] = a then

30 nEmb := nEmb + 1 embs[j][nEmb] := pos

31 if not isIncremented ∧ st[pos] − st[id] ≥ W then

32 isIncremented := true γs(P:ψ) := γs(P:ψ) + 1

33 (u, v) := nextPosGap[pos] � Precomputed structure

34 if u ≤ |ss| then

35 for b ∈ Domain(Pψ+1) do

36 l := min
(
v, |ss|)

37 if
(
freqMap[l][b] > freqMap[u − 1][b]

)∧ not

isV isited
[
b
]
then

38 isV isited
[
b
]
:= true

39 freq[b] := freq[b] + 1 � Projected frequency

40 pos := pos + 1

41 k := k + 1

42 if nEmb > 0 then

43 startv[j] := id esize[j] := nEmb j := j + 1

44 φ := φ + ϕ ϕ := j − φ

45 return freq

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 95

Comparison with Decomposed Approaches. Experiments and results with
Uniprot and UbiqLog datasets are shown in Fig. 3 and Table 1. The latter
presents results for different settings while the former shows the performance
profiles [8] for both the memory consumption and the computation time.

We can observe that episodeSupport outperforms both decomposed
approaches in terms of execution time and memory consumption for most of
the instances. Both gains become more important when the sequence is large.

(a) Results for Uniprot (2452 instances, where n ∈ [100, 30000]).

(b) Results for Ubiqlog (21 instances, with gap[100, 3600] and span[1, 35000]).

Fig. 3. Performance profiles (θ = 5%, maximum size of 5, timeout of 600 s).

Table 1. Execution time and memory usage for several datasets and thresholds.

96 Q. Cappart et al.

Table 2. Comparison with MINEPI+ and EMMA (θ = 5% and W = 10).

Table 3. Additional constraints on Q08379 Protein (Uniprot).

Only episodeSupport + exclusion + atLeast + regular

nSol:
46221933

Time (s):
83.2

nSol:
33388768

Time (s):
62.6

nSol:
104536

Time (s):
0.642

nSol: 2 Time (s):
0.002

Besides, decomposed approaches cannot process the largest sequences regarding
the time limitation imposed.

Comparison with Specialized Approaches. Experiments on Unix dataset
with a threshold of 5% and a maximum span of 10 are provided in [14]2. Com-
parisons of these specialized approaches with ours are presented in Table 2. It
shows that episodeSupport seems competitive with MINEPI+ and EMMA.
For the largest sequences (USER8 and USER6), episodeSupport is the most
efficient. For some instances (USER5 and USER7) that are quickly solved, the
cost of initializing the data structures with our approach is higher than the
gain obtained. In general, the gain becomes more important when sequences are
larger or harder to solve. Finally, given that the implementation of MINEPI+ and
EMMA is missing, it is difficult to perform a fair comparison of the approaches.

Handling Additional Constraints. Additional constraints can be considered
in order to define properties that the patterns must satisfy. No modification of
episodeSupport is required. Results of experiments are presented in Table 3.
The goal was to find frequent episodes (θ ≥ 20) having a maximum length of 6,
containing at least three Q (atLeast constraint) but no D (exclusion), and sat-
isfying the regex M(A|T).∗F (regular). Two episodes (MTQQQF and MAQQQF) have
been discovered. As observed, the additional constraints reduce the execution
time as CP takes advantage of the stronger filtering to reduce the search space.
This reduction would not be observed with a generate and filter approach.

2 Results provided in [14] are directly used since the implementation is not available.

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 97

5 Conclusion and Perspective

There is a growing interest for solving data-mining challenges with CP. In addi-
tion to the flexibility it brings, recent works have shown that it can provide
similar performances, or even better, than specialized algorithms [2,3]. So far
CP has not been considered yet for mining frequent episodes. We introduced
two global constraints (episodeSupport) for solving this problem with or with-
out time-stamps. It relies on techniques used for SPM such as pattern growth,
pseudo projections and reversible vectors but also on new ideas specific to this
problem for improving the efficiency of the filtering algorithms (early projection
stopping, position caching and efficient frequency computation). Experimental
results have shown that our approach provides better performances in terms of
execution time and memory consumption than state-of-the-art methods, with
the additional benefits that it can accommodate additional constraints.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I., et al.: Fast dis-
covery of association rules. Adv. Knowl. Discov. Data Min. 12(1), 307–328 (1996)

2. Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent
sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco,
G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9852, pp. 315–330.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46227-1 20

3. Aoga, J.O.R., Guns, T., Schaus, P.: Mining time-constrained sequential patterns
with constraint programming. Constraints 22(4), 548–570 (2017)

4. Calders, T., Dexters, N., Goethals, B.: Mining frequent itemsets in a stream. In:
2007 Seventh IEEE International Conference on Data Mining, ICDM 2007, pp.
83–92. IEEE (2007)

5. UniProt Consortium: The universal protein resource (UniProt). Nucleic Acids Res.
36(Suppl. 1), D190–D195 (2008)

6. Cule, B., Goethals, B., Robardet, C.: A new constraint for mining sets in sequences.
In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp.
317–328. SIAM (2009)

7. Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from
time series. In: KDD, vol. 98, pp. 16–22 (1998)

8. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with perfor-
mance profiles. Math. Program. 91(2), 201–213 (2002). https://doi.org/10.1007/
s101070100263

9. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D.,
Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 28, pp. 2962–2970. Curran Associates, Inc. (2015). http://papers.
nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf

10. Ghahramani, Z.: Automating machine learning. In: Lecture Notes in Computer
Science, vol. 9852 (2016)

11. Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: MiningZinc: a modeling
language for constraint-based mining. In: Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence, pp. 1365–1372. AAAI Press
(2013)

https://doi.org/10.1007/978-3-319-46227-1_20
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf

98 Q. Cappart et al.

12. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming
perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

13. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Pre-
fixspan: mining sequential patterns efficiently by prefix-projected pattern growth.
In: Proceedings of the 17th International Conference on Data Engineering, pp.
215–224 (2001)

14. Huang, K.Y., Chang, C.H.: Efficient mining of frequent episodes from complex
sequences. Inf. Syst. 33(1), 96–114 (2008)

15. Iwanuma, K., Takano, Y., Nabeshima, H.: On anti-monotone frequency measures
for extracting sequential patterns from a single very-long data sequence. In: 2004
IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 213–217. IEEE
(2004)

16. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: A global con-
straint for mining sequential patterns with GAP constraint. In: Quimper, C.-
G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 198–215. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33954-2 15

17. Kotthoff, L., Nanni, M., Guidotti, R., O’Sullivan, B.: Find your way back: mobility
profile mining with constraints. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp.
638–653. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 44

18. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-
WEKA 2.0: automatic model selection and hyperparameter optimization in
WEKA. J. Mach. Learn. Res. 17, 1–5 (2017)

19. Laxman, S., Sastry, P., Unnikrishnan, K.: A fast algorithm for finding frequent
episodes in event streams. In: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 410–419. ACM (2007)

20. Lichman, M.: UCI machine learning repository (2013). https://archive.ics.uci.edu/
ml/datasets/UNIX+User+Data

21. Mannila, H., Toivonen, H.: Discovering generalized episodes using minimal occur-
rences. In: KDD, vol. 96, pp. 146–151 (1996)

22. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episodes in
sequences extended abstract. In: 1st Conference on Knowledge Discovery and Data
Mining (1995)

23. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint
programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 20

24. Nijssen, S., Guns, T.: Integrating constraint programming and itemset mining. In:
Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS
(LNAI), vol. 6322, pp. 467–482. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15883-4 30

25. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 36

26. Rawassizadeh, R., Momeni, E., Dobbins, C., Mirza-Babaei, P., Rahnamoun, R.:
Lesson learned from collecting quantified self information via mobile and wearable
devices. J. Sens. Actuator Netw. 4(4), 315–335 (2015)

27. Rawassizadeh, R., Tomitsch, M., Wac, K., Tjoa, A.M.: UbiqLog: a generic mobile
phone-based life-log framework. Pers. Ubiquit. Comput. 17(4), 621–637 (2013)

28. Schaus, P., Aoga, J.O.R., Guns, T.: CoverSize: a global constraint for frequency-
based itemset mining. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 529–546.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 34

https://doi.org/10.1007/978-3-319-33954-2_15
https://doi.org/10.1007/978-3-319-23219-5_44
https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data
https://archive.ics.uci.edu/ml/datasets/UNIX+User+Data
https://doi.org/10.1007/978-3-319-18008-3_20
https://doi.org/10.1007/978-3-642-15883-4_30
https://doi.org/10.1007/978-3-642-15883-4_30
https://doi.org/10.1007/978-3-540-30201-8_36
https://doi.org/10.1007/978-3-319-66158-2_34

EpisodeSupport: A Global Constraint for Mining Frequent Patterns 99

29. Shokoohi-Yekta, M., Chen, Y., Campana, B., Hu, B., Zakaria, J., Keogh, E.: Dis-
covery of meaningful rules in time series. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1085–
1094. ACM (2015)

30. Tatti, N., Cule, B.: Mining closed strict episodes. In: 2010 IEEE 10th International
Conference on Data Mining (ICDM), pp. 501–510. IEEE (2010)

31. Team, O.: OscaR: Scala in OR (2012)
32. Yang, Q., Wu, X.: 10 challenging problems in data mining research. Int. J. Inf.

Technol. Decis. Making 5(04), 597–604 (2006)
33. Yang, Z., Wang, Y., Kitsuregawa, M.: LAPIN: effective sequential pattern mining

algorithms by last position induction for dense databases. In: Kotagiri, R., Krishna,
P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443,
pp. 1020–1023. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71703-4 95

34. Zhou, W., Liu, H., Cheng, H.: Mining closed episodes from event sequences effi-
ciently. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010.
LNCS (LNAI), vol. 6118, pp. 310–318. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13657-3 34

https://doi.org/10.1007/978-3-540-71703-4_95
https://doi.org/10.1007/978-3-540-71703-4_95
https://doi.org/10.1007/978-3-642-13657-3_34
https://doi.org/10.1007/978-3-642-13657-3_34

Off-Line and On-Line Optimization Under
Uncertainty: A Case Study on Energy

Management

Allegra De Filippo(B), Michele Lombardi, and Michela Milano

DISI, University of Bologna, Bologna, Italy
{allegra.defilippo,michele.lombardi2,michela.milano}@unibo.it

Abstract. Optimization problems under uncertainty arise in many
application areas and their solution is very challenging. We propose here
methods that merge off-line and on-line decision stages: we start with a
two stage off-line approach coupled with an on-line heuristic. We improve
this baseline in two directions: (1) by replacing the on-line heuristics with
a simple anticipatory method; (2) by making the off-line component
aware of the on-line heuristic. Our approach is grounded on a virtual
power plant management system, where the load shifts can be planned
off-line and the energy balance should be maintained on-line. The overall
goal is to find the minimum cost energy flows at each point in time con-
sidering (partially shiftable) electric loads, renewable and non-renewable
energy generators, and electric storages. We compare our models with an
oracle operating under perfect information and we show that both our
improved models achieve a high solution quality, while striking different
trade-offs in terms of computation time and complexity of the off-line
and on-line optimization techniques.

Keywords: Optimization · Uncertainty · Energy management

1 Introduction

Optimization problems under uncertainty arise in many application areas, such
as project scheduling, transportation systems, and energy system management.
They are challenging to solve, in particular if high quality and robust solutions
are desirable. For this reason, they are traditionally solved via off-line methods.
There is however a growing interest in on-line algorithms to make decisions over
time (without complete knowledge of the future), so as to take advantage of the
information that is slowly revealed. In many practical cases, both approaches
make sense: “strategic” decisions can be taken off-line, while “tactical” decisions
are better left to an on-line approach.

We present methods to merge off-line and on-line decision stages: we start
with an off-line, two-stage, stochastic optimization approach, coupled with an
on-line heuristic. We improve this baseline in two directions: (1) by replacing the

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 100–116, 2018.
https://doi.org/10.1007/978-3-319-93031-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_8&domain=pdf

Off-Line and On-Line Optimization Under Uncertainty 101

on-line heuristic with a simple anticipatory method; (2) by making the off-line
component aware of the on-line heuristic.

As a case study, we consider a Virtual Power Plant management system,
where load shifts can be planned off-line (e.g. the day ahead) and the energy
balance should be maintained on-line (i.e. at each time point). The elements
of uncertainty stem from uncontrollable deviations from the planned shifts and
from the presence of renewable energy sources. The overall goal is to find the
minimum cost energy flows at each point in time considering the electric loads,
renewable and non-renewable energy generators and electric storages.

We compare our approaches with an oracle operating under perfect informa-
tion and we show that both our improved models achieve a high solution quality
while striking different trade-offs in terms of computation time and complexity
of the off-line and on-line optimization techniques.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of optimization under uncertainty. Section 3 introduces our methods.
Section 4 presents the case study. Section 5 discusses our methods in deeper
detail, grounded on the use case. Section 6 provides an analysis of experimental
results. Concluding remarks are in Sect. 7.

2 Optimization Under Uncertainty

Optimization under uncertainty is characterized by the need to make decisions
without complete knowledge about the problem data. This situation is extremely
common, but also very challenging: ideally, one should optimize for every possible
contingency, which is often impossible or impractical [17].

One extreme (and frequent) method to deal with such issues is to disregard
the uncertainty and assume that all parameters are deterministic [21]. When
the potential impact of uncertainty is not negligible, however, using stochastic
optimization becomes necessary (see [23] for an introduction or [3,12] for an
extensive discussion). In this case, a suitable representation for the uncertainty
must be found and (except in rare cases) some technique must be used to trade
estimation accuracy for a reduction of the computation time.

Data subject to uncertainty can be often represented via random variables
in a multi-stage decision system. After taking the decisions for a stage a random
event occurs, i.e. some of the random variables are instantiated, and the decisions
for the next stage must be taken, and so on.

It is common to use sampling to approximate the probability distribution
of the random variables [22]. Sampling yields a number of scenarios: then, a
single set of decisions is associated to the current stage, while separate sets of
decisions are associated to each scenario in the next stage. More scenarios result
in a better approximation, but a larger computation time. Looking more than
one stage ahead also improves the estimation quality, but it requires to repeat
the procedure recursively, with major impacts on the solution time.

There is a delicate trade-off between speculating vs. waiting for the uncer-
tainty to be resolved [13]. This leads to an informal (but practical) distinction

102 A. De Filippo et al.

between off-line and on-line problems. On-line algorithms require to make deci-
sions over time as the input is slowly revealed: delaying decisions can either
increase the costs or be impossible due to constrained resources.

Off-line problems are often solved via exact solution methods on approximate
models with limited look-ahead, e.g. via two-stage scenario-based approaches
where both the first-stage and second stage variables are instantiated, or via
decomposition based methods [14].

On-line problems are often tackled in practice via greedy heuristics, but more
rigorous and effective anticipatory algorithms are also available as long as the
temporal constraints are not too tight, e.g. the AMSAA algorithm from [9,15].
Similarly to off-line approaches, on-line anticipatory algorithms take decisions by
solving deterministic optimization problems that represent possible realizations
of the future. They address the time-critical nature of decisions by making efforts
to yield solutions of reasonable quality early on in the search process.

3 Improving Off-Line/On-Line Optimization

In this work, we are interested in optimization problems with both an off-line
and an on-line component. Formally, we focus on n-stage problems where the
first-stage decisions are “strategic” (and can be taken with relative leisure), while
the remaining n − 1 stages involve “tactical” decisions (with tighter temporal
constraints). We will also make the assumption that a greedy heuristic, based
on a convex optimization model, is available for the on-line part.

As a baseline, we deal with the off-line decisions by collapsing the n−1 on-line
stages into a single stage, and then obtaining via sampling a classical two-stage
model. The on-line part is tackled with the original heuristic. This results into
a relatively efficient approach, but yields solutions of limited quality.

We then investigate two complementary improvement directions: first, we
replace the greedy heuristic with an anticipative method, once again based on
collapsing at stage i the remaining n − i stages. We refer to this approach as
Boosted On-line OptimizatioN (BOON). Second, we make the off-line approach
aware of the limitations of the original on-line method, by: (1) injecting the
optimality conditions of the greedy heuristic in the off-line model, and then (2)
allowing the off-line model to change certain parameters of the greedy heuristic so
as to influence its behavior. We call this approach Master Off-line OptimizatioN
(MOON).

The rationale is that: simply collapsing the on-line stages is equivalent to
feed future scenario-based information to the greedy heuristic when solving the
off-line problem. The first improvement direction aims at making the on-line
method more similar to its off-line counterpart. The second direction preserves
the limitations of the greedy heuristic in the off-line model. The price to pay
is an increase on-line solution time in the former case, and an increased off-line
time in the latter.

Off-Line and On-Line Optimization Under Uncertainty 103

4 Case Study on Virtual Power Plants

The progressive shift towards decentralized generation in power distribution net-
works has made the problem of optimal Distributed Energy Resources (DERs)
operation increasingly constrained. This is due to the integration of flexible
(deterministic) energy systems with the strong penetration of (uncontrollable
and stochastic) Renewable Energy Sources (RES). The integration of these
resources into power system operation requires a major change in the current
network control structure. This challenge can be met by using the Virtual Power
Plant (VPP) concept, which is based on the idea of aggregating the capacity of
many DERs, (i.e. generation, storage, or demand) to create a single operating
profile and manage the uncertainty. A VPP is one of the main components of
future smart electrical grids, connecting and integrating several types of energy
sources, loads and storage devices. A typical VPP is a large plant with high
(partially shiftable) electric and thermal loads, renewable energy generators and
electric and thermal storages (see Fig. 1).

In a virtual power plant Energy Management System (EMS), the load shifts
can be planned off-line, while the energy balance should be maintained on-line
by managing energy flows among the grid, the renewable and traditional gen-
erators, and the storage systems. This makes VPP EMS a good candidate for
grounding our approach. Based on actual energy prices and on the availabil-
ity of DERs, the EMS decides: (1) how much energy should be produced; (2)
which generators should be used for the required energy; (3) whether the surplus
energy should be stored or sold to the energy market; (4) the load shifts planned
off-line. Optimizing the use of energy can lead to significant economic benefits,
and improve the efficiency and stability of the electric system (see e.g. [18]).

Fig. 1. A typical virtual power plant

Making decisions under uncertainty pervades the planning and operation of
energy systems [24]. Optimization techniques have a long tradition in supporting

104 A. De Filippo et al.

planning and operational decisions in the energy sector, but the recent literature
highlights the need for increasing both the scope and the granularity of the
decisions, including new factors like distributed generation by renewable sources
and smart grids [16].

Both the most popular methods to deal with uncertainty in mathematical
programming (i.e. robust optimization and stochastic programming) have been
widely applied in energy systems [11,19,26]. One of the most used assumption is
that the distribution of future uncertainty is available for sampling, e.g. thanks to
historical data and/or predictive models. In particular, the assumption that the
distribution of future uncertainty is independent of current decisions is present
in a variety of applications [9].

5 Grounding Our Method

In this section we present our methods to deal with mixed off-line/on-line deci-
sion making under uncertainty, grounded on the VPP use case. We will assume
that the distribution of the random variable is available for sampling, as it is
often the case when historical data or a predictive model is available. We also
assume that the distribution of the random variables is independent of current
decisions, i.e. to be dealing with exogenous uncertainty. This assumption holds
in a great variety of applications and has significant computational advantages.

We will first show our baseline solution, which couples a two-stage, off-
line, MILP model with a greedy on-line heuristic. We will then discuss the two
improvement directions.

5.1 The Baseline Approach

The overall management system is composed by two macro steps: the first (day-
ahead) step is a two-stage model designed to plan the load shifts and to minimize
the (estimated) cost, and models the prediction uncertainty using sampling and
scenarios. The second step is an on-line algorithm, implemented within a simula-
tor, that uses the optimized shifts from the previous step to minimize the (real)
operational cost, while fully covering the optimally shifted energy demand and
avoiding the loss of energy produced by RES generators. This overall approach
has been first presented in [6].

The Off-Line Model: The sources of uncertainty (at each time point, e.g. hour
in the day ahead) that we take into account are: (1) errors in predicted power
profile or renewable energy sources; (2) uncontrollable deviations from the load
demand. We deal with uncertainty via sampling, but we focus on a very small
number of “edge” scenarios, thus making our model somewhat close to robust
optimization.

Formally, we assume that the error for our generation forecast (resp. load
demand) can be considered an independent random variable: this is a reason-
able hypothesis, provided that the predictor is good enough. In particular, we
assume that the errors follow roughly a Normal distribution N(0, σ2), and that

Off-Line and On-Line Optimization Under Uncertainty 105

Fig. 2. The two macro steps of our model

the variance σ2 for each time point is such that the 95% confidence interval cor-
responds to 10% of the predicted power output (resp. 20% of the load demand
value), similarly to [8]. We then sample four scenarios, corresponding to the edge
cases where the RES generation and the load demand are both high (at the top
of the range), both low, or one high and the other low.

The off-line problem is modeled via Mixed Integer Programming (MILP) (see
[6]). In this first step, our goal is to minimize the expected cost of energy for the
VPP, estimated via the sample average over the scenarios:

min(z) =
1

|S|
∑

s∈S

∑

t∈T

cs(t) (1)

where t is a time point, s is a scenario, and cs(t) is the (decision-dependent) cost
for a scenario/time point pair. T is a set representing the whole horizon, and S
is the set of all considered and equally probable scenarios.

In our model, we consider a Combined Heat and Power (CHP) dispatchable
generator, with an associated fuel cost. Our approach should decide the amount
P s
CHP (t) of generated CHP power for each scenario s ∈ S and for each time point

t ∈ T . We assume physical bounds on P s
CHP (t) due to its Electrical Capability.

For simplicity, we assume that the time points represent periods long enough to
treat the corresponding CHP decisions as independent. Therefore, we can model
the generated CHP power with:

Pmin
CHP ≤ P s

CHP (t) ≤ Pmax
CHP ∀t ∈ T (2)

We assume that the VPP features a battery system, which is modeled by keeping
track of the level of energy stored at each timestamp t as a function of the amount
of power charged or discharged from the unit. P s

St(t) is the power exchanged
between the storage system and the VPP. We actually use two decision variables:
P s
StIn

(t) if the batteries inject power into the VPP (with efficiency ηd) and
P s
StOut

(t) for the batteries in charging mode (with efficiency ηc). We use a variable
charges(t) to define for each timestamp the current state of the battery system:

charges(t) = charges(t − 1) − ηdP
s
StIn(t) + ηcP

s
StOut

(t) ∀t ∈ T (3)

106 A. De Filippo et al.

More accurate models for storage systems exist in recent literature. For example,
[4] optimizes battery operation by modeling battery stress factors and analyzing
battery degradation. However, in our work, it is sufficient to take into account
the status of the charge for each timestamp since we assume that each timestamp
is long enough to avoid high stress and degradation levels. We assume there are
physical bounds for P s

StIn
(t) and P s

StOut
(t):

Pmin
St ≤ P s

StIn(t) ≤ Pmax
St ∀t ∈ T (4)

Pmin
St ≤ P s

StOut
(t) ≤ Pmax

St ∀t ∈ T (5)

The variable P s
Grid(t) represents the current power exchanged with the grid for

each scenario and for each timestamp. Similarly, the total power is defined as
the sum of two additional variables, namely P s

GridIn
(t) if energy is bought from

the Electricity Market and P s
GridOut

(t) if energy is sold to the Market.
The Demand Side Management (DSM) of our VPP model (see Fig. 2) aims to

modify the temporal consumption patterns, leaving the total amount of required
energy constant. Moreover, we assume that the consumption stays unchanged
also over multiple sub-periods of the horizon: this a possible way to state that
demand shifts can make only local alterations of the demand load. The degree
of modification is modeled by shifts and the shifted load is given by:

P̃Load(t) = SLoad(t) + PLoad(t) ∀t ∈ T (6)

where SLoad(t) represents the amount of shifted demand, and PLoad(t) is the
originally planned load for timestamp t (part of the model input). The amount
of shifted demand is bounded by two quantities Smin

Load(t) and Smax
Load(t). By

properly adjusting the two bounds, we can ensure that the consumption can
reduce/increase in each time step by (e.g.) a maximum of 10% of the original
expected load. We assume that the total energy consumption on the whole opti-
mization horizon is constant. More specifically, we assume that the consumption
stays unchanged also over multiple sub-periods of the horizon: this a possible
way to state that demand shifts can make only local alterations of the demand
load. Formally, let Tn be the set of timestamps for the n-th sub-period, then we
can formulate the constraint:

∑

t∈Tn

SLoad(t) = 0 (7)

Deciding the value of the P̃ s
Load(t) (i.e. the optimally shifted demand for each

timestamp) variables is the main goal of our off-line optimization step.
At any point in time, the overall shifted load must be covered by an energy

mix that includes the generation from the internal sources (we refer to RES
production as P s

Ren(t)), the storage system, and the power bought from the
energy market. Energy sold to the grid and routed to the battery system should
be subtracted from the power balance:

P̃ s
Load(t) = P s

CHP (t) + P s
Ren(t) + P s

GridIn
(t) − P s

GridOut
(t) + P s

StIn(t) − P s
StOut

(t)
(8)

Off-Line and On-Line Optimization Under Uncertainty 107

The objective of our EMS is to minimize a sum (over all scenarios and over
the horizon) of the operational costs cs(t) (see Eq. 1), which is given by:

cs(t) = cGrid(t)P s
GridIn

(t) + cCHPP s
CHP (t) − cGrid(t)P s

GridOut
(t) (9)

where cGrid(t) is the hourly price of electricity on the Market. cCHP is the fuel
price for the CHP system, assumed to be constant for each timestamp.

The On-Line Model: Our on-line algorithm runs within a simple simulator
that repeatedly: (1) obtains a realization of the random variables (RES genera-
tion error and deviation from the planned shift) (2) obtains the power flows via
the on-line algorithm; (3) Updates the cumulated costs and the charge level of
the storage system.

The algorithm itself is a greedy heuristic based on a simple LP model. At each
time point, based on the shifts produced by the off-line step of the on-line method
(and adjusted by the simulator to take into account the effect of uncertainty), the
algorithms minimizes the real operational cost while fully covering the energy
demand. The LP model is the following:

Pmin
CHP ≤ PCHP (t) ≤ Pmax

CHP ∀t ∈ T (10)
charge(t) = charge(t − 1) − ηdPStIn(t) + ηcPStOut

(t) ∀t ∈ T (11)

Pmin
St ≤ PStIn(t) ≤ Pmax

St ∀t ∈ T (12)

Pmin
St ≤ PStOut

(t) ≤ Pmax
St ∀t ∈ T (13)

P̃Load(t) = PCHP (t) + PRen(t) + PGridIn
(t) − PGridOut

(t) (14)
+ PStIn(t) − PStOut

(t) ∀t ∈ T

z =
∑

t∈T

cGrid(t)PGridIn
(t) + cCHPPCHP (t) − cGrid(t)PGridOut

(t) (15)

In practice, this is the sub-part of the off-line model that takes care of a single
time point, in a single scenario. As a consequence, the off-line model makes
implicitly the assumption that the on-line stages will be managed under future
information, as we have mentioned above. In practice, this will be far from the
case, and we will show how the result is a considerable loss of solution quality.

5.2 The BOON Method

Due to this lack of decisions taken in anticipation of future scenarios, we develop
a second and more computationally complex version of our on-line simulator.

In this section we investigate a first direction to improve the performance
of our off-line/on-line optimization. The main idea is that of making the on-
line algorithm behave more similarly to how the off-line model expects it to
behave. We achieve this result by making the on-line algorithm anticipatory,
and in particular by replacing the greedy heuristic with a two-stage LP model.
The new model has exact knowledge of the uncertain quantities for the current

108 A. De Filippo et al.

time point (say t), and deals with future time points by: (1) using scenarios and
(2) collapsing all the remaining n− t decision stages into a single one. The same
approach is repeated, yielding to the process described in Fig. 3:

Fig. 3. Online anticipatory simulator

The new two-stage approach is composed of multiple instantiation of the
greedy LP model. In detail: (1) for the current time point (say t), corresponding
to the fist stage decisions, all the input if fully realized (see Eqs. 10–15); and (2)
we deal with the remaining n − t time points (the second-stage decisions) with
the scenario-based approach (see Eqs. 1–8). The objective function for each time
point is:

z = cGrid(t)PGridIn
(t) + cCHPPCHP (t) − cGrid(t)PGridOut

(t)

+
∑

s∈S

n∑

i=t+1

cGrid(i)P s
GridIn

(i) + cCHPP s
CHP (i) − cGrid(i)P s

GridOut
(i) (16)

This second version of the on-line algorithm is placed in cascade with the
baseline off-line method and it also runs within the simulator.

The idea of using a repeated two-stage approach for on-line optimization is in
fact equivalent to the first pass of the AMSAA algorithm [15], assuming that the
underlying Markov Decision Process solver starts by making greedy decisions.
However, AMSAA itself is not immediately applicable to our case study, since
most of our decision variables are not discrete. Indeed, when the decision space
is not enumerable (e.g. for continuous variables, as in our case) and each on-line
stage requires to take multiple decisions, CONSENSUS [2], AMSAA and similar
algorithms cannot be applied directly.

This simple look-ahead approach makes it possible to take better decisions
based on knowledge of future uncertainty. The price to pay is a higher on-line
computation time, even if the improved model remains an LP program and
therefore solvable in polynomial time. Since on-line computations may be time
constrained, the whole approach may not be viable in some practical cases, thus
motivating our second improvement direction.

Off-Line and On-Line Optimization Under Uncertainty 109

5.3 The MOON Method

Our second improvement direction is complementary to the first one: rather than
trying to mitigate the limitations of the on-line approach, we make the off-line
model aware of them, and control them to some degree.

Formally, this is done by taking advantage of the Karush Kuhn Tucker opti-
mality conditions (see e.g. [25]). The KKT conditions are a generalized form of
the method of Lagrangian multipliers and, under a few assumptions, they char-
acterize necessary conditions for a solution to be a local optimum. Therefore,
if the problem is convex and one can find a solution and a set of Lagrangian
multipliers that satisfy the conditions, then solution is also a global optimum.

In our case, we add the KKT conditions for the greedy heuristic (which is
based on a Linear Program) as constraints in the off-line model. In fact, as a
consequence of collapsing the on-line stages into a single one, our baseline off-line
approach is free to exploit knowledge about the future to optimize the power
flow variables. Once the KKT conditions have been added, the power flows are
forced to take the values that the greedy heuristic would actually assign to them.

The optimality conditions are specified through the use of a Lagrangian Func-
tion by introducing a multiplier μi ≥ 0 for each inequality constraint and a
multiplier νj for each equality constraint. Then, if x∗ is an optimal solution,
there are corresponding values of the multipliers μ∗ = (μ∗

1, . . . , μ
∗
m) ≥ 0 and

ν∗ = (ν∗
1 , . . . , ν∗

p) that: (1) cancel out the gradient of the Lagrangian Function,
and additionally (2) satisfy the so-called complementary slackness conditions.
For the LP model corresponding to our greedy heuristic, the conditions boild
down to:

Equations (1)−(8)
cCHP − μs

1(t) + μs
2(t) − cGrid(t) = 0 ∀t ∈ T,∀s ∈ S (17)

αSt(t) + μs
3(t) − μs

4(t) − μs
5(t) + μs

6(t) − cGrid(t) = 0 ∀t ∈ T,∀s ∈ S (18)

μs
1(t)(P

min
CHP − P s

CHP (t)) = 0 ∀t ∈ T,∀s ∈ S (19)
μs
2(t)(P

s
CHP (t) + Pmax

CHP) = 0 ∀t ∈ T,∀s ∈ S (20)
μs
3(t)(P

s
StOut

(t) − P s
StIn(t) + charges(t − 1)) = 0 ∀t ∈ T,∀s ∈ S (21)

μs
4(t)(−P s

StOut
(t) + P s

StIn(t) − charges(t − 1)) = 0 ∀t ∈ T,∀s ∈ S (22)

μs
5(t)(P

min
St − P s

StOut
(t) + P s

StIn(t)) = 0 ∀t ∈ T,∀s ∈ S (23)
μs
6(t)(P

s
StOut

(t) − P s
StIn(t) − Pmax

St) = 0 ∀t ∈ T,∀s ∈ S (24)
μs
i (t) ≥ 0 ∀t ∈ T,∀s ∈ S, for i = 1, . . . , 6 (25)

where Eq. (17) requires that the gradient is cancelled out, and Eqs. (19)–(24)
correspond to the complementary slackness conditions.

As an additional step, we treat some of the parameters of the greedy model as
decision variables for the off-line problem. In particular, we introduce a virtual
cost αSt(t) for the storage system. We then introduce it by modifying the LP
greedy model:

110 A. De Filippo et al.

c(t) =cGrid(t)PGridIn
(t) + cCHPPCHP (t) (26)

− cGrid(t)PGridOut
(t) − αSt(t)PStOut

(t)

With this approach, the off-line solver can avoid producing solutions (i.e.
the optimized shifts) that the on-line optimizer may not handle efficiently. Even
more, by assigning values to αSt(t), the off-line solver can partially control the
on-line algorithm by handling energy flows in more efficient way for the on-line
heuristics, with no increase of computation time in the on-line stages. As a main
drawback, injecting the complementary slackness conditions makes the off-line
model non linear, potentially with severe adverse effects on the solution time.

6 Results and Discussion

For performing the experiments, we need to obtain realizations for the uncer-
tainties related to loads, PV and wind generation (if it is present). Since we
have assumed normally distributed prediction errors, we do this by randomly
sampling error values according to the distribution parameters. Specifically, we
consider a sample of 100 realizations (enough to ensure that sample average
values will follow approximately a Normal distribution [5]) for six different use
cases.

For each realization, we obtain a cost value by solving our different two-step
approaches (stochastic off-line optimization + on-line algorithm) using Gurobi1

as a MILP solver. For solving our off-line (non linear) model with KKT optimal-
ity conditions we used BARON via the GAMS modeling system2 on the Neos
server for optimization3, with a time limit of 100 seconds. We then used again
Gurobi solver for the second on-line part of our model.

We use data from two public datasets to test our models on a residential
plant [7] with only PV energy production for renewable sources and an indus-
trial plant4 with eolic and PV production. We modify these datasets to obtain
use cases for testing our models (see Table 1): (1) Use Case 1 (UC1) is the
baseline residential dataset; (2) UC2 is the residential dataset with an increase
of renewable (i.e. PV) production; (3) UC3 is dataset UC1 where the market
prices are different for the sale/purchase of energy from/to the grid; (4) UC4
is the industrial dataset with also eolic renewable production; (5) in UC5 we
increase the renewable production as in UC2; (6) in UC6 we consider UC4 with
different market prices as in UC3.

Methodologies for the estimation of hourly global solar radiation have been
proposed by many researchers and in this work, we consider as a prediction
the average hourly global solar radiation from [20] and we use assumption for
wind prediction from [10]. We then assume that the prediction errors in each

1 Available at http://www.gurobi.com.
2 Available at https://www.gams.com/latest/docs/S BARON.html.
3 Available at http://www.neos-server.org/neos/.
4 Available at https://data.lab.fiware.org/dataset/.

http://www.gurobi.com
https://www.gams.com/latest/docs/S_BARON.html
http://www.neos-server.org/neos/
https://data.lab.fiware.org/dataset/

Off-Line and On-Line Optimization Under Uncertainty 111

Table 1. Different use cases

Load
demand

Baseline
dataset

Renewable
peak

Different
market prices

Residential UC1 UC2 UC3

Industrial UC4 UC5 UC6

Table 2. Optimal costs value for different models in different use cases

Model UC1 µ (Ke) UC2 µ (Ke) UC3 µ (Ke) UC4 µ (Ke) UC5 µ (Ke) UC6 µ (Ke)

Oracle 331.362 247.213 393.818 798.388 565.607 856.955

Baseline 404.622 311.145 462.577 923.243 684.197 984.904

Diff. Oracle (%) 22.114 25.914 17.560 15.568 21.933 14.998

BOON 342.061 265.326 404.322 819.249 580.174 874.585

Diff. Oracle (%) 3.259 7.331 2.781 2.786 2.643 2.117

MOON 344.604 263.808 408.721 811.119 573.934 868.764

Diff. Oracle (%) 4.046 6.309 3.887 1.699 1.577 1.498

timestamp can be modeled again as random variables. Specifically, we assume
normally distributed variables with a variance such that the 95% confidence
interval corresponds to −+10% of the prediction value. We assume physical bounds
on P s

CHP (t) due to its Electrical Capability based on real generation data [1,7].
The initial battery states and the efficiency values are based on real generation
data [1,7] and we assume there are physical bounds for P s

StIn
(t) and P s

StOut
(t)

based on real data [1,7].
We compare our model results for each use case with an oracle operating

under perfect information. Figure 4 shows the average values of each hourly
optimized flow for the oracle and the baseline models over the 100 realizations.
We show the optimal flows for both models in UC2 and we can see, in Fig. 4
(baseline), the limits of using a non anticipatory algorithm since it is not possible
to acquire energy from the grid in advance (i.e. when the cost is lower) and/or
to sell energy to the grid in period of highest price on the market or when more
energy is available from renewable sources. Moreover the exchange of energy
with the storage system is almost never used, i.e. to store RES energy.

In Table 2 we show the average costs for each use case over the 100 input
realizations and for each developed model. From these results and from results
in Table 3, we can notice that the baseline model is a relatively efficient approach
in term of computation time, but yields solutions of limited quality in terms of
cost (i.e. increase of solution quality from 15% to 26%). We improve these results,
as explained in Sect. 2, first by replacing the greedy heuristic with the BOON
method; second, by making the off-line approach aware of the limitations of the
original on-line method by developing the MOON method.

As shown in Fig. 5, it is possible to see that, near the peak of renewable energy
production, the EMS of MOON model accumulates energy in the storage and
uses in a more balanced way the energy present in the storage system compared

112 A. De Filippo et al.

Fig. 4. Oracle optimized flows (at the top) and Baseline optimized flows (at the bot-
tom)

to the baseline model represented in Fig. 4. Furthermore, still looking at Fig. 5, it
can be seen that BOON has peaks of energy sold on the network near the increase
in electricity prices on the market. With this model we improve quality solutions
(in term of optimal costs) but we increase the computational complexity of the
on-line stage.

In Table 3 we show the computation time (seconds) for the different model
stages. The price to pay is a higher on-line computation time for BOON app-
roach, even if the improved model remains an LP program and therefore solvable
in polynomial time. Since on-line computations may be time constrained, the
whole approach may not be viable in some practical cases, thus motivating our
second improvement direction: the MOON method. In Fig. 5 (at the bottom) it
is possible to notice the more homogeneous use of the storage system. We can see
that, by optimizing the virtual storage cost in the off-line stage, we can improve
solution quality in term of cost (see Table 2) by using the storage system. Since

Off-Line and On-Line Optimization Under Uncertainty 113

Fig. 5. BOON optimized energy flows (at the top) and MOON optimized flows (at the
bottom)

Table 3. Computation time (seconds) for the different models

Model Residential Industrial

Off-line
(day-
ahead)

On-line
(daily
optimiz.)

Off-line
(day-
ahead)

On-line
(daily
optimiz.)

Baseline 0.184 0.777 0.346 0.839

BOON 0.184 5.011 0.346 5.429

Diff. Baseline 0.000 +4.233
(545%)

0.000 +4.590
(547%)

MOON 27.885 0.902 58.913 0.983

Diff. Baseline +27.701
(15k%)

+0.124
(16%)

+58.567
(16k%)

+0.143
(17%)

114 A. De Filippo et al.

the on-line solver has the ability to sell energy on the market, and storing energy
has no profit, it ends up in always selling unless the virtual cost is employed.

It is important also to notice that we improve on-line time optimization by
reducing it (see Table 3) but injecting the optimality conditions makes the off-line
model non linear with effects on the solution time.

7 Conclusion

This work proposes methods to merge off-line and on-line decision stages in
energy optimization problems: we start with a two stage off-line approach cou-
pled with an on-line heuristic. We improve this baseline in two directions: (1) by
replacing the on-line heuristic with an anticipative method; (2) by making the
off-line component aware of the on-line heuristic used.

Our approach is then grounded on a virtual power plant management system
where the load shifts can be planned off-line and the energy balance should be
maintained on-line. The overall goal is to find the minimum cost energy flows at
each point in time considering high (partially shiftable) electric loads, renewable
and non-renewable energy generators and electric storages.

We compare our models with an oracle operating under perfect information
and we show that both our improved models achieve a high solution quality
while striking different tradeoffs in terms of computation time and complexity
of the off-line and on-line optimization techniques.

In particular, we show that the BOON Anticipatory model increases the
computational complexity of the on-line stage, greatly improving the quality of
the baseline model solution. The increased computation time may force one to
solve the on-line problems with a reduced frequency.

Resolving the model with the MOON approach, we have a general improve-
ment in the quality of the solution, but the most important thing is that we
reduce (as in the baseline model) the time of on-line computational optimiza-
tion. MOON works more or less as well as BOON in terms of costs but the speed
of the on-line part makes MOON the dominant algorithm for this case study.

References

1. Bai, H., Miao, S., Ran, X., Ye, C.: Optimal dispatch strategy of a virtual power
plant containing battery switch stations in a unified electricity market. Energies
8(3), 2268–2289 (2015)

2. Bent, R.W., Van Hentenryck, P.: Scenario-based planning for partially dynamic
vehicle routing with stochastic customers. Oper. Res. 52(6), 977–987 (2004)

3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Series in Oper-
ations Research and Financial Engineering. Springer, New York (1997). https://
doi.org/10.1007/978-1-4614-0237-4

4. Bordin, C., Anuta, H.O., Crossland, A., Gutierrez, I.L., Dent, C.J., Vigo, D.: A
linear programming approach for battery degradation analysis and optimization in
offgrid power systems with solar energy integration. Renew. Energy 101, 417–430
(2017)

https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-1-4614-0237-4

Off-Line and On-Line Optimization Under Uncertainty 115

5. Bracewell, R.N.: The Fourier Transform and its Applications, vol. 31999. McGraw-
Hill, New York (1986)

6. De Filippo, A., Lombardi, M., Milano, M., Borghetti, A.: Robust optimization for
virtual power plants. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA
2017. LNCS, vol. 10640, pp. 17–30. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70169-1 2

7. Espinosa, A.N., Ochoa, L.N.: Dissemination document “low voltage networks mod-
els and low carbon technology profiles”. Technical report, University of Manchester,
June 2015

8. Gamou, S., Yokoyama, R., Ito, K.: Optimal unit sizing of cogeneration systems in
consideration of uncertain energy demands as continuous random variables. Energy
Convers. Manag. 43(9), 1349–1361 (2002)

9. Van Hentenryck, P., Bent, R.: Online Stochastic Combinatorial Optimization. The
MIT Press, Cambridge (2009)

10. Hodge, B.-M., Lew, D., Milligan, M., Holttinen, H., Sillanpää, S., Gómez-Lázaro,
E., Scharff, R., Söder, L., Larsén, X.G., Giebel, G., et al.: Wind power forecasting
error distributions: an international comparison. In: 11th Annual International
Workshop on Large-Scale Integration of Wind Power into Power Systems as well
as on Transmission Networks for Offshore Wind Power Plants Conference (2012)

11. Jurković, K., Pandšić, H., Kuzle, I.: Review on unit commitment under uncertainty
approaches. In: 2015 38th International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics (MIPRO), pP. 1093–1097.
IEEE (2015)

12. Kall, P., Wallace, S.W.: Stochastic Programming. Springer, Heidelberg (1994).
ISBN 9780471951087

13. Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for
stochastic programming. Humboldt-Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät II, Institut für Mathematik (2003)

14. Laporte, G., Louveaux, F.V.: The integer l-shaped method for stochastic integer
programs with complete recourse. Oper. Res. Lett. 13(3), 133–142 (1993)

15. Mercier, L., Van Hentenryck, P.: Amsaa: a multistep anticipatory algorithm for
online stochastic combinatorial optimization. In: Perron, L., Trick, M.A. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 173–187. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68155-7 15

16. Morales, J.M., Conejo, A.J., Madsen, H., Pinson, P., Zugno, M.: Integrating Renew-
ables in Electricity Markets: Operational Problems, vol. 205. Springer, Boston
(2013). https://doi.org/10.1007/978-1-4614-9411-9

17. Powell, W.B.: A unified framework for optimization under uncertainty. In: Opti-
mization Challenges in Complex, Networked and Risky Systems, pp. 45–83.
INFORMS (2016). https://doi.org/10.1287/educ.2016.0149

18. Palma-Behnke, R., Benavides, C., Aranda, E., Llanos, J., Sez, D.: Energy man-
agement system for a renewable based microgrid with a demand side management
mechanism. In: 2011 IEEE Symposium on Computational Intelligence Applications
in Smart Grid (CIASG), pp. 1–8, April 2011

19. Reddy, S.S., Sandeep, V., Jung, C.-M.: Review of stochastic optimization methods
for smart grid. Front. Energy 11(2), 197–209 (2017)

20. Kaplanis, S., Kaplani, E.: A model to predict expected mean and stochastic hourly
global solar radiation i(h; nj) values. Renew. Energy 32(8), 1414–1425 (2007)

21. Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportuni-
ties. Comput. Chem. Eng. 28(6), 971–983 (2004). FOCAPO 2003 Special issue

https://doi.org/10.1007/978-3-319-70169-1_2
https://doi.org/10.1007/978-3-319-70169-1_2
https://doi.org/10.1007/978-3-540-68155-7_15
https://doi.org/10.1007/978-3-540-68155-7_15
https://doi.org/10.1007/978-1-4614-9411-9
https://doi.org/10.1287/educ.2016.0149

116 A. De Filippo et al.

22. Shapiro, A.: Sample average approximation. In: Gass, S.I., Fu, M.C. (eds.) Encyclo-
pedia of Operations Research and Management Science, pp. 1350–1355. Springer,
Boston (2013). https://doi.org/10.1007/978-1-4419-1153-7

23. Shapiro, A., Philpott, A.: A tutorial on stochastic programming. Manuscript
(2007). www2.isye.gatech.edu/∼ashapiro/publications.html

24. Wallace, S.W., Fleten, S.-E.: Stochastic programming models in energy. In:
Stochastic Programming. Handbooks in Operations Research and Management
Science, vol. 10, pp. 637–677. Elsevier (2003)

25. Winston, W.L., Goldberg, J.B.: Operations Research: Applications and Algo-
rithms, vol. 3. Thomson Brooks/Cole, Belmont (2004)

26. Zhou, Z., Zhang, J., Liu, P., Li, Z., Georgiadis, M.C., Pistikopoulos, E.N.: A two-
stage stochastic programming model for the optimal design of distributed energy
systems. Appl. Energy 103, 135–144 (2013)

https://doi.org/10.1007/978-1-4419-1153-7
www2.isye.gatech.edu/~ashapiro/publications.html

Reasoning on Sequences
in Constraint-Based Local Search

Frameworks

Renaud De Landtsheer(B), Yoann Guyot, Gustavo Ospina, Fabian Germeau,
and Christophe Ponsard

CETIC Research Centre, Charleroi, Belgium
{rdl,yg,go,fg,cp}@cetic.be

Abstract. This paper explains why global constraints for routing can-
not be integrated into Constraint-Based Local Search (CBLS) frame-
works. A technical reason for this is identified and defined as the multi-
variable bottleneck. We solve this bottleneck by introducing a new type
of variables: “sequence of integers”. We identify key requirements and
defines a vocabulary for this variable type, through which it communi-
cates with global constraints. Dedicated data structures are designed for
efficiently representing sequences in this context. Benchmarks are pre-
sented to identify how to best parametrise those data structures and
to compare our approach with other state-of-the-art local search frame-
works: LocalSolver and GoogleCP. Our contribution is included in the
CBLS engine of the open source OscaR framework.

Keywords: Local search · CBLS · Global constraints · Sequences
OscaR.cbls

1 Introduction

A lot of algorithms have been proposed for checking routing-related global con-
straints in local search engines, see for instance [1–3]. A classic example is a
global constraint that incrementally computes (maintains) the length of the
route in routing optimization [1]. It inputs a distance matrix specifying the
distance between each pair of nodes of the routing problem and the current
route. When flipping a portion of route (that is a, b, c, d becomes d, c, b, a or
a, b, c, d, e, f, g, h, i becomes a, b, c,g, f , e,d, h, i), and if the distance matrix is
symmetric, smart algorithms are able to update the route length in O(1)-time
because the length of the flipped segment is the same in both directions.

Very often, these algorithms are implemented into custom-made solvers,
notably for benchmarking purposes, and using them on an industrial application
requires re-implementing them within a dedicated custom-made solver.

Constraint-Based Local Search (CBLS) is a modular approach that proposes
to embed constraints into a modular software framework, so that they can be

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 117–134, 2018.
https://doi.org/10.1007/978-3-319-93031-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_9&domain=pdf

118 R. De Landtsheer et al.

easily assembled to build a dedicated solver. Such models are made of variables
and invariants [4–8]. Invariants are directed mathematical operators that have
input and output variables and that maintain the value of their output variables
according to their specification and to the value of their input variables. Decision
variables cannot be the output of any invariant. Based on this model, a local
search procedure explores neighbourhoods by modifying the value of decision
variables and querying the value of a variable representing the objective function.
The CBLS framework efficiently updates the value of the variables in model to
reflect value changes on the decision variables.

Unfortunately, global constraints algorithms cannot be easily embedded into
CBLS frameworks. This is a pity because the CBLS approach can cut down the
cost of developing solvers for new optimization problems. This paper identifies a
major reason for this problem and proposes a solution to overcome it. We focus
on routing optimization since it is a major class of applications of local search.

The bottleneck that prevents global constraints from being embedded into
CBLS frameworks arises when a neighbourhood exploration requires repeatedly
modifying a large number of variables in a structured way. For instance, flipping
a portion of the route in routing optimization problems, which is known as the
2-opt neighbourhood. In a CBLS framework, the route is often modelled using
an array of integer variables, each of them is associated to a node, and specifies
the next node to be reached by the vehicle. For such models, flipping a portion
of the route requires modifying the value of the ‘next’ variable associated to
each node in the flipped portion, as well as the ‘next’ of the node before this
portion. Such move is therefore rasterized into a set of atomic assignment to
separated variables, so that the global, symbolic, structure of the move is lost.
Any invariant is then only aware of the many changes performed on its input
variables, and not about the symbolic nature of the move.

A simple approach to mitigate this bottleneck is to choose the order of explo-
ration of the neighbourhood in such a way that one never has to change a large
set of variables [1]. In the case of 2-opt neighbourhood, one can gradually widen
the flipped route segment. Each neighbour is then explored in turn, and going
from one neighbour to another one requires modifying a constant number of vari-
ables. We call this the circle mode, as opposed to the star mode where the value
of each decision variable is rolled back to the current value after each explored
neighbour. Circle mode is hard to combine with heuristics such as selecting nodes
among the k-nearest ones in vehicle routing, which is often used to reduce the
size of a neighbourhood.

This paper introduces a variable of type “sequence of integers” for CBLS
frameworks, with a tailored data-structure. Thanks to this type of variable,
complex moves such as flips are performed on the value of a single variable and
can be described in a symbolic way as an update performed on the previous
value of the variable. Global constraints are then aware of changes performed
to these variable in a more symbolic form than what was possible using the
array of integer approach. The goal is to embed the best global constraints,
potentially having O(1)-time complexity for evaluating neighbour solutions. The

Reasoning on Sequences in CBLS Frameworks 119

data structure used for representing sequences must exhibit similar complexity.
Therefore, adapted data structures for sequence values are also proposed.

The paper is structured as follows: Sect. 2 reviews various CBLS frame-
works and the way they support sequences. Section 3 lists the requirements
on our “sequence” variables. Section 4 describes our data-structure for repre-
senting sequences. Section 5 describes our sequence variable, how it uses the
sequence value and how it communicates its updates to global constraints.
Section 6 presents benchmarks of our data-structure. Section 7 presents com-
parative benchmarks. Section 8 sketches further work and concludes.

2 Background and Related Work

This section presents CBLS with more details, introduces a few CBLS frame-
works and some global constraints on sequences designed for local search. The
section focuses on the OscaR.cbls framework because our contribution was per-
formed in this framework.

2.1 Local Search Frameworks

There are a few local search frameworks including: Comet [4], Kangaroo [5],
OscaR.cbls [6,9], LocalSolver [7], InCELL [8], GoogleCP [10], and EasyLocal++
[11].

EasyLocal++ requires a dedicated model to be developed from scratch using
ad-hoc algorithms. It provides support for declaring the search procedure [11].
It is not a CBLS framework and hence does not suffer from the multi-variable
bottleneck.

Comet, Kangaroo, and OscaR.cbls are CBLS frameworks which support Inte-
gers and Sets of Integers. InCELL supports a notion of variable that is a sequence
of other variables but does not offer a unified data-structure for modifying the
sequence [8].

GoogleCP is a hybrid engine that can be used both as a constraint solver
and as a local search engine [10]. It supports a SequenceVar type representing
sequences of integer variables. Although it is called a variable, it is a view on
the underlying integer variables, that are automatically sorted by value.

LocalSolver supports variables of type List of Integers, where each value can
occur at most once [7]. Unfortunately, no detail is given about the underlying
data structure, nor about the moves that can be efficiently performed on them.
LocalSolver supports very few invariants and constraints related to this list vari-
able.

A sequence variable has already been developed for the OscaR.cbls framework
in the context of string solving where the length of the string is not known in
advance and is potentially very large [12]. The supported incremental update
operations are “inserts”, “delete” and “set a value to a given position”. Insert and
delete updates cannot be efficiently performed if the sequence is represented as
an array of integers, so that the proposed sequence provides a speed improvement

120 R. De Landtsheer et al.

for these updates and solves the multi-variable bottleneck in the context of string
solving. However, it does not provide support for large operations such as flipping
subsequence’s.

2.2 Three Representative Global Constraints on Sequences

A lot of research has been performed on the incremental evaluation of multiple
constraints and metrics in routing optimization. We therefore just present three
examples, with various properties regarding the information they need about the
route and how the route is modified by a search procedure.

The most classical example is the route length constraint that computes the
total length of a route, given a distance matrix that is symmetric, and that can
quickly update this length when a portion of this route is flipped [1]. The length
of the flipped route does not change, since the distance matrix is symmetric, so
that the total length of the route is only impacted by the hops that are located
at the extremities of the flipped segment. The total distance can therefore be
updated in O(1)-time.

Another example is the travelling delivery person problem that defines
some complex metrics over nodes and driven distance. Pre-computation can be
exploited to update this metric in O(1) time for a large proportion of classical
routing moves [2].

A third example is routing with time windows, where various algorithms
reasoning on the time slack have been proposed [3]. Given a route, the time
slack of a node is the amount of time that a vehicle can wait before entering
the node such that no deadline will be violated in the subsequent nodes. Before
any neighbour exploration, it is computed for each node. It is then exploited to
quickly evaluate if some modification of the route leads to a route violating the
constraint.

All these algorithms require a symbolic description of the move to perform
their update efficiently. Furthermore, they often rely on some pre-computation,
that is: there is a first algorithm that generates some intermediary values, and
that is executed before a neighbourhood exploration starts. Using these inter-
mediary values, a second algorithm can quickly update the output of the global
constraint for each explored neighbour. This second algorithm is also known
as a differentiation. An invariant might only provide efficient differentiation for
a subset of the possible moves; the time slack approach for the time window
constraint might be hard to generalize to flip moves for instance.

2.3 Constraint-Based Local Search

A local search algorithm relies on a model and a search procedure. CBLS frame-
works may offer support for both of these two aspects. This paper exclusively
focuses on the model and will not cover the search procedure.

In CBLS frameworks, the model is composed of variables (integers and set of
integers at this point), and invariants, which are directed constraints maintaining

Reasoning on Sequences in CBLS Frameworks 121

one or more output variables according to the specification they implement and
according to the value of one or more input variables. A classical invariant is
Sum. It has an array of integer variables as input, and a single integer variable
as output. The value of the output variable is maintained by the invariant to be
the sum of the values of all the input variables. “Maintained” means that the
invariant sets the value of the output variable, and adjust this value according to
the value changes of the input variables. This is generally implemented through
incremental algorithms. For instance, when the Sum invariant defined here is
notified that one of its input variables has changed its value, it computes the
delta on this variable between the new value and the old value, and updates
the value of its output variable by incrementing it by this delta. OscaR.cbls for
instance has a library of roughly 80 invariants.

The model is declared at start-up by some application-specific code that
instantiates the variables and invariants. The input and output variables of each
invariant are also specified at this stage. When declaring a model, the CBLS
framework builds a directed graph, called the propagation graph, which we can
assume here to be acyclic (DAG). The nodes are the variables and invariants.
The edges in the graph represent data flows from variables to listening invariants
and from invariants to output variables. The DAG starts with decision variables,
that are the output of no invariant, and typically ends at a variable representing
the objective function.

During the search, the model is active: if the value of some variable changes,
this change is propagated to the other variables through the invariants, and
following the propagation graph in some coordinated way called propagation.
Propagation algorithms require the DAG to be somehow sorted. This sort is
performed after the model is completed, by a close operation that is triggered
by the user code. From this point on, no variable or invariant can be added,
modified or removed. The value of all variables can of course change. The search
procedure modifies the input variables to explore the search space and query the
objective function, which is updated by the propagation.

Figure 1 illustrates a propagation graph for a Travelling Salesman Problem
(TSP) with four nodes using the näıve model based on an array of integer vari-
ables. Variables (resp. invariants) are represented by grey (resp. white) rounded
rectangles, and dependencies using arrows. The nexti variables represent, for
each node i, the node that is reached by the vehicle after leaving the node i.
They are grouped into an array, represented by the rectangle that encloses them,
on the left of the figure. The distance matrix is not represented in the picture.
Each element invariant accesses the line of the matrix related to the node it
is monitoring and maintains its output variable to the value at that line, and
on the column designated by the value of nexti. Each di variable represents the
distance that the vehicle drives when leaving the associated nodei.

Propagation is performed in such a way that a variable is updated at most
once, and only if it needs to be updated. The propagation is driven by the CBLS
framework and uses some sorting that is performed when the model is closed:
the nodes that needs to be propagated and that are the closest to the decision

122 R. De Landtsheer et al.

next3

next2

next1

next0

element

element

element

element

d3

d2

d1

d0

sum objective

Fig. 1. Propagation graph of a TSP with 4 nodes modelled using an array of integer
variables

variables are propagated first. Upon propagation of a node, additional nodes
might require to be propagated, and they are queued and prioritized through a
heap based again on some distance to the decision variables. The priority can be
either based on a topological sort, as implemented e.g. in Comet [4], or based on
the distance to the decision variables, as implemented in OscaR.cbls. OscaR.cbls
uses a specialized heap that aggregates nodes at the same distance into a list,
so that insert and pop operations can often be performed in O(1)-time.

CBLS variable notify their value change to its listening invariants, and they
cannot change value without notifying it. To implement this behaviour, they
internally store two values: the old value (vold), and the new value (vnew). When
an invariant queries a variable for its value, it gets vold. When a variable is
updated by a neighbourhood or controlling invariant, the updated value is stored
into vnew. When a variable is propagated, it notifies its value change to each
invariant that listen to it and then performs vold := vnew. Such a notification
carries a description of how the value has changed. For integer variables, it carries
a reference to the variable, vold and vnew. For set variables, it also carries the
set of integer values that have been added to, and removed from vold.

3 Requirements for a Sequence Variable

We consider standard neighbourhoods used in routing optimization: insert,
remove, 1-opt, 2-opt, 3-opt, and composites of these moves such as the Lin-
Kernighan, which is a composition of 2-opts, or two-point move neighbourhood
used in pick-up and delivery optimization [13,14]. We identify the following
requirements for our sequence variable:

immutable-value: The value representing a sequence of integers should be
non-mutable: once transmitted to an invariant, it should not be modified. All
methods that modify a sequence data-structure should yield a new sequence
data-structure, as done in functional programming. A variable can of course
change its value.

symbolic-delta: Sequence variables should communicate its incremental value
change in a symbolic way to global constraints for the moves specified above.
We define three atomic incremental updates of sequence values, that can be
combined:

Reasoning on Sequences in CBLS Frameworks 123

insert an int value at a given position and shift the tail of the sequence
accordingly

delete the int value at a given position and shift the tail of the sequence
accordingly

seq-move that moves a sub-sequence to another position in the sequence
and optionally flips this subsequence.

fast-exploration: Sequence variables should be updated very quickly in the
context of neighbourhood exploration to reflect the moves defined above.

pre-computation: Invariants should get to know around which sequence value
a neighbourhood exploration will take place so that they can perform pre-
computation based on this value and use differentiation algorithms.

fast-commit: Sequence variables should be updated quickly to reflect moves
that are committed, considering the same moves as in fast-exploration. This
requirement has a lower priority than fast-exploration since there are more
neighbours explored than moves committed.

4 Implementation of Our Sequence Value

This section presents our data-structure for representing sequence values. The
general object model of our sequence is shown in Fig. 2. There is a concrete
sequence and there are some updated sequences that can be instantiated in O(1)
time to reflect modified sequences in the context of neighbourhood exploration,
and comply with the requirement fast-exploration. The concrete sequence can
also be updated quickly to comply with the fast-commit requirement.

All sequences, concrete, updated, etc. are non-mutable, based on non-mutable
data structures, to comply with the requirement immutable-value. All methods
that modify sequence values generate a new sequence value, which usually share
a lot of its internal data-structure with the sequence it has been derived from.
We rely on a garbage collector for memory management, as usually done in
functional programming.

There are three methods declared in the sequence class for updating a
sequence: insert,remove and seq-move. These methods match the delta defined
in Sect. 3. They have an additional parameter, called fast that specifies if the
update should return a concrete sequence or if the update should be stacked by
instantiating an updated sequence.

originalSequence

Sequence

ConcreteSequence UpdatedSequence

InsertedSequence

RemovedSequence

MovedSequence

Fig. 2. Class diagram of the sequence value. Classes are in bold, abstract classes in
italic.

124 R. De Landtsheer et al.

4.1 Updated Sequences

Updated sequences behave according to the value they represent by translat-
ing and forwarding queries they receive to the original non-modified sequence.
For instance, considering a RemovedSequence obtained by removing the value
at position r from sequence s, the query that gets the value at a given posi-
tion p returns the value at position p in sequence s if p < r and at position
p + 1 otherwise. Performing queries on Updated Sequences is therefore slightly
more time-consuming than on Concrete Sequences. They should therefore not
be stacked too much.

4.2 Concrete Sequences

Concrete sequences are represented by a double mapping. The first one maps
positions to internal positions and the second one maps these internal positions
to the actual value. This double mapping is illustrated in Fig. 3.

The first mapping is a piecewise affine bijection with slope +1 or −1. Its
domain and co-domain are [0..n−1] where n is the size of the sequence. Basically,
its domain is segmented into a series of consecutive intervals. Within each of these
interval, the value of the bijection is defined by an affine function (ax+ b) where
a is either 1 or −1. Graphical examples of such bijection are given in Figs. 4, 5
and 6.

Concretely, the bijection is represented by the forward function and its recip-
rocal function. Each of them is defined by a set of pivots. Each pivot is defined
by a starting value, an offset, and a Boolean slope (±1). Pivots have no explicit
end value. The end value of a pivot is implicitly defined as the last value before
the start value of the next pivot. Pivots are stored in balanced binary search
trees, indexed by their starting values.

The second mapping is implemented by two red-black trees, one that maps
internal positions to values, and the other one is the reverse: it maps values to
the set of internal positions where they occur.

Let’s consider a concrete sequence, of length n, with k pivots in its bijection.
Finding the value at some position p requires translating p into the corresponding
internal position through the bijection, and finding the value at this internal
position, through the second mapping. The first step is performed in O(log k)
time, by searching the pivot with the biggest starting value that is ≤p and
applying the affine function associated to this pivot. The second step is performed
in O(log n) time.

Fig. 3. Data-flow diagram showing the mappings within concrete sequences

Reasoning on Sequences in CBLS Frameworks 125

externalPosition

in
te
rn
al
Po

si
tio

n

• 10

•

20

•

Fig. 4. Starting from the
identity bijection, after
flipping from position 10
to 19 (both included)

externalPosition

in
te
rn
al
Po

si
tio

n

• 10

•

20

•

30

•

Fig. 5. Starting from
the identity bijec-
tion, after seq-move
(from= 10, to = 19, after
= 29, flip= true)

externalPosition

in
te
rn
al
Po

si
tio

n

•

•

10

•

•

20

•

20

•

30

Fig. 6. Flipping subse-
quence from position 15
to 24 both included from
the bijection in Fig. 5

The first mapping can be efficiently updated to capture flipping of shifting of
subsequence’s, so it contributes to the requirement fast-commit. This is because
the number of segments in this bijection is much smaller than the length of the
sequence.

Let’s consider an initial sequence of 40 values, where the bijection is the iden-
tity function. Flipping the subsequence from position 10 to position 19 (both
included) can be performed by updating the bijection as shown in Fig. 4. The
range of external positions corresponding to the specified subsequence is high-
lighted in grey. Within the flipped zone, a pivot of slope −1 is introduced, and
a new pivot starts just after the flipped zone. The added pivots are drawn with
dotted lines. Considering the same initial sequence, Fig. 5 shows the bijection
after moving the subsequence located between position 10 and position 19 (both
included), inserting it after position 29, and flipping it. The range correspond-
ing to the moved subsequence has a pivot with a negative slope because it was
flipped.

To insert a value into a sequence, it is assigned the next available internal
position. The bijection is reworked to map the position of the insert to this
internal position and shift the tail of the sequence. To delete a value from a
sequence, we first swap its internal position with the highest internal position in
the sequence and remove it from the sequence. Deletions do not create holes in
the range of internal positions.

The algorithm for flipping a subsequence by modifying the forward function
is quite representative of all algorithms modifying the bijection and is sketched in
the function flipSubsequence of Fig. 7. This function only updates the forward
part of the bijection. The reverse function of the bijection is lazily recomputed
from scratch from the updated forward function. Providing incremental updates
for this reverse function is future work. Given the forward function forwardFn
of a sequence of length l, and an interval [fromPos; toPos] to flip, it returns an
updated function, updatedFn, such that:

126 R. De Landtsheer et al.

Fig. 7. Flipping a portion [from, to] of a concrete sequence by updating its bijection

updatedFn(toPos − x) = forwardFn(fromPos + x) for x ∈ [0; toPos − fromPos]
updatedFn(x) = forwardFn(x) for x ∈ [0; fromPos[∪]toPos; l[

On line 3, additional pivots are inserted at the limit of the flipped interval
defined by [fromPos, toPos], so the pivots within the interval can be reworked
without modifying the function out of the interval. This is where the num-
ber of pivots in the function increases. On line 5, the pivots with starting val-
ues in the updated interval are copied into a list pivotsToFlip. On line 7,
the selected pivots are flipped, and the result is flippedPivots. This is per-
formed by a greedy algorithm iterating over the pivots of pivotsToFlip shown
in function flipSubFunction. On line 8, the red black tree storing the for-
ward function is updated: all pivots in [fromPos, topos] are replaced by pivots
from flippedPivots. On line 11, it removes the pivots at fromPos and the first
pivots after toPos if they are redundant, that is: if their function is aligned
with the function of the pivot that precedes them, respectively. The function
flipSubfunction is a recursion on the list of pivots to flip and uses an accu-
mulator where the new pivots are stored, so that the generated pivots are in
reverse order compared to the list of pivots they originate from. The function

Reasoning on Sequences in CBLS Frameworks 127

mirrorPivot creates a new pivot mirroring the given one within the flipped
interval. We can see for instance that the slope of the function associated with
a pivot is a Boolean and that it is negated when a pivot is mirrored.

The update operations performed on a concrete sequence involve updating its
bijection and can be chained. Starting from Fig. 5, a flip of the subsequence from
position 15 to position 24 (both included) leads to the bijection in Fig. 6. This
figure also shows that performing updates can introduce additional pivots. For
instance, seq-moves add at most three pivots: a pivot at the start of the moved
zone, a pivot after the end of the moved zone, and a pivot after the position
where the zone is moved.

When the number of pivots gets too large, the efficiency of queries and update
operations is reduced. To avoid a significant increase in the number of pivots,
a regularization operation is performed to simplify the bijection to the identity
function, and re-factor the two balanced binary search trees mapping internal
positions and values. This operation has a complexity of O(n + k · log n) time,
where n is the size of the sequence, assuming that each value occurs at most once
in the sequence, like in routing optimization. The balanced binary search tree
that maps internal positions to value is elaborated as follows: first, we iterate
over the sequence and store its content into an array, then a new red-black tree
is built from this array in O(n) time. This is possible because the red-black tree
is built at once on data that is already sorted. Iterating from one element to the
next one is done in O(k·logn

n) time, amortized, as will be explained below.
The regularization is triggered when the ratio k/n gets larger than a maximal

authorized value set by default to 3%. It ensures that k is kept significantly
smaller than n to benefit from the symbolic nature of the operations performed
on the bijection, and avoids triggering regularization too often. The choice of
this maximal k/n value is investigated in more detail through some benchmarks
in Sect. 6.

4.3 Iterating on Sequences

Iterating through a sequence through a succession of position-to-value queries
would be quite slow, given our data structure; each step would require O(log n+
log k) time. To avoid this problem, our sequence supports a mechanism to speed-
up sequence exploration called explorers. Considering the balanced binary search
tree mapping internal positions to values, an explorer on a concrete sequence
stores the path from the root to its current position, so that the next/previous
position can be accessed in constant time. When the explorer reaches the end
of a segment in the linear bijection, which happens k times during the whole
sequence exploration, it must perform a O(log n) time query on the balanced
binary search tree mapping internal positions to values to rebuild the path to
its current position in the sequence.

Concrete and updated sequences can generate an explorer pointing to any
of their position. Each class of sequence has an explorer class that can access
internals of its originating sequence. Explorers can be instantiated from concrete
sequences for any position in O(log n + log k) time. It can be queried for its

128 R. De Landtsheer et al.

Table 1. Time complexity of queries on a sequence value

Value at
position

Positions of
value

Explorer Explorer.next

Concrete
sequence

O(log n+log k) O(#occ ·
log k + log n)

O(log n + log k) O(k·logn
n

) amortized

Added cost for
each stacked
update

O(1) O(#occ) O(1) O(1) amortized

Table 2. Time complexity of updates on a sequence value

Instantiating a
stacked
update

Concrete update
without
regularization

Concrete update
with amortized
regularization

Insert O(1) O(log n + k · log k) O(log n + k · log k +
n/k)

Delete O(1) O(log n + k · log k) O(log n + k · log k +
n/k)

Seq-move O(1) O(k · log k) O(k · log k + n/k +
logn)

position in the sequence and the value at this position in O(1) time. It can also
be queried for an explorer at the next or previous position in the sequence in
O(k·logn

n) time, amortized.

4.4 Time Complexity of Sequence Values

The time complexity of the main queries on our sequence values is summarized in
Table 1, where k is the maximal number of pivots in the bijection of the concrete
sequence before regularization must occur, n is the size of the sequence, and
#occ is the number of occurrences of the considered value in the sequence.

The complexity of the main update operations is summarized in Table 2.
The first column shows the complexity of stacked updates. The second column
represents the complexities of the concrete updates if no regularization occurs.
The third column is the complexity of the concrete updates, considering the
amortized complexity of regularization. The regularization operation has a com-
plexity of O(n + k · log n) time, takes place at most every Ω(k) updates, so it
adds O(n/k + log n) time complexity, amortized.

5 Implementation of Our Sequence Variable

This section presents the behaviour of our sequence variable. A sequence variable
replicates the three operations supported by the sequence value (insert, remove,

Reasoning on Sequences in CBLS Frameworks 129

previousUpdate

valueAfter
SeqUpdateSequence

IncrementalUpdate

Insert

DefineCheckpoint

Move

Remove

LatestNotified

Assign

RollBackToCheckpoint

Fig. 8. Class diagram of the notifications used by sequence variables

Fig. 9. An example of optimization script using our sequence variable

move) in a mutable form. A sequence variable can also be assigned a sequence
value. Incremental updates lead to stacked updates of sequence value, assignment
lead to concrete sequences, checkpoint definition lead to concrete sequence by
performing all the stacked updates on the underlying concrete sequence.

Sequence variables record the updates performed on them, and include a
description of these updates in their notification to listening invariants. The
recording and notification are both represented by SeqUpdate classes whose
inheritance is shown in Fig. 8. All SeqUpdate carry a reference to a sequence
value (stacked or concrete) that represents the value of the variable after the
SeqUpdate. A variable can also be assigned a sequence value. Assigns are notified
to the listening invariants as an Assign update.

Neighbourhoods are expected to perform their exploration in a star mode
around an initial sequence value, which is a concrete sequence. The neighbour-
hood first declares a checkpoint to the variable through a defineCheckpoint
method. It then performs its exploration by updating the value of the variable
through incremental insert, delete and move operations. Between each neigh-
bour, the neighbourhood is expected to perform a roll back to the checkpoint
it has defined, by calling a rollBackToCheckpoint method. This restores the
value of the sequence to its checkpoint by removing stacked updates, and the
roll back will be communicated to the listening invariant. When the exploration
is completed, the neighbourhood must call a releasecheckpoint method.

Upon propagation, sequence variables notify their listening invariants about
their value change by calling a notification method of the invariants with a
SeqUpdate parameter as defined in Fig. 8. At the start of a neighbourhood explo-
ration, listening invariants are notified about a DefineCheckpoint and an incre-
mental update representing the first neighbour. The data structure transmitted

130 R. De Landtsheer et al.

to the notification procedure is an IncrementalUpdate, with a previousUpdate
reference to a DefineCheckpoint with a previousUpdate reference to a
LatestNotified. LatestNotified mean that the incremental update starts
from the value that was transmitted at the previous notification. For each
neighbour, listening invariants are notified about an IncrementalUpdate with
a previousUpdate reference to a RollBackToCheckpoint. Invariants are not
notified about checkpoint releases because they are implicitly represented by a
new checkpoint definition that overrides the previous one.

6 Benchmarking the k/n Factor

This section presents a benchmark to illustrate the efficiency of sequence data
structure in this setting and the impact of the k/n factor presented in Sect. 4.2.
The benchmark is a symmetric vehicle routing problem with 100 vehicles no other
constraint. The total distance driven by all vehicles must be minimized. The
problem roughly declares as show in Fig. 9, using various bricks of OscaR.cbls.

The search procedure is build using neighbourhood combinators [15]. It starts
with no routed node, but the start points of the vehicles, and uses a mix of insert
point, one-point-move, 2-opt and 3-opt. There are two insertion neighbourhoods,
one iterates on insertion position first, and then on point to insert; the other
iterates on point to insert first. These neighbourhoods have w parameter: when
several nodes are considered simultaneously by a neighbourhood, it ensures that
the considered nodes are among the w closest nodes of one another. It ends
with a 3-opt neighbourhood with a larger w factor. The search strategy does not
have any mechanism to escape from local minima; it is exclusively designed to
benchmark the k/n factor.

We benchmark with the following values for the k/n factor: 0%, 1%, 2%, 3%,
4%, 5%, and 20% and for the size (n) of the problem: 1k, 3k, 5k, 7k, 9k, and
11k. For each pair (k/n factor,n) we solve 100 randomly generated instances. The
benchmarks were executed single-threaded on an isolated and dedicated machine
featuring 8 hyper-threaded cores of Intel Xeon R©E5620 @ 2.40 GHz and 32 Gb
of RAM. This setting was designed to provide stable computing power.

Figure 10 reports the average run time among the 100 instances for each
considered pair (k/n factor,n). We can see that a value of 0% for the k/n factor is
suboptimal; it disables the system of piecewise affine bijection, and regularization
is triggered every time a move is committed. Above 1%, the impact of this
factor on the run time reaches some plateau. The efficiency decreases again if
the k/n factor gets too large. A sample value of 20% is illustrated. Another
phenomenon is that the efficiency of this mechanism improves with the size of
the considered problem; this is probably due to the non-linear nature of the
complexities, presented in Sect. 4.4. A last phenomenon that is visible from the
table is that the curves seem to reach their minimum around 2 to 3% a bit larger
for smaller problems. The default value for the k/n factor is set to 3% and can
be changed by the user.

Reasoning on Sequences in CBLS Frameworks 131

0% 1% 2% 3% 4% 5% 20%
0

100

200

11k
9k
7k
5k
3k
1k

0% 1% 2% 3% 4% 5% 20%

11k 267 68.1 65.8 67.8 66.7 68.9 96.7

9k 174 52.2 50.4 50.9 52.6 52.7 70.8

7k 108 38.5 36.8 37.3 37.2 37.8 48.5

5k 56.9 24.4 24.2 23.2 24.4 24.8 29.8

3k 22.4 13.2 12.6 12.6 12.6 12.6 14.5

1k 3.52 2.87 2.83 2.69 2.84 2.8 2.93

Fig. 10. Average run time (in seconds) on 100 random instances for various values of
the k/n factor (0%, 1%, . . .) and various values of n (1k, 3k, . . .)

7 Comparing with GoogleCP and LocalSolver

The goal of this section is to illustrate the effectiveness for a CBLS framework of
having a sequence variable and its associated invariants. To do this, we compare
the efficiency of our implementation with a sequence variable with GoogleCP
6.4, LocalSolver 7.0, and an OscaR.cbls implementation that relies on an array
of integer variables as in Fig. 1. We use a symmetric TSP problem on a square
map with Euclidean distance and random instances of sizes 500 to 5000 by
steps of 500. This problem uses a limited set of constraints, so it only lightly
shows the effect of resolving the multi-variable bottleneck. Problems with more
constraints would feature more global constraints. Here we deliberately amplify
the difference of efficiency by exploring large instances.

GoogleCP was configured to use more or less the same neighbourhoods as
OscaR.cbls. We use the TSP script distributed with GoogleCP, and configured
it to use only 2-opt, one-point-move, and or-opt. or-opt is a variant of the 3-opt
that does not try to flip segments. The script uses an array of integer vari-
ables representing the next nodes, and uses a global invariant to maintain the
route length. This script encounters a multi-variable bottleneck for the 2-opt.
LocalSolver requires virtually no parameters, so that it can be considered as a
stable reference. We used the TSP script that is distributed with LocalSolver,
which uses the “list” variable discussed in Sect. 2. LocalSolver natively supports
multi-threading and some form of simulated annealing. These two features were
disabled for the benchmark, to be on the same level as other tools. We have no
information on the search procedure used by LocalSolver. The two implemen-
tations of OscaR.cbls use the search procedure presented in Sect. 6. The tree
engines were assigned a maximal search time of 200 seconds. The benchmarks
were executed on the same hardware as the one presented in Sect. 6. One hundred
runs were performed for each instance and each solver.

The benchmark must be considered with care because it compares complex
tools, whose efficiency are affected by their search procedure and their model,
while we only want to illustrate the gain on the efficiency of our model compared
to rasterized models. Notable differences are: GoogleCP uses a good heuristic to

132 R. De Landtsheer et al.

Table 3. Benchmark results reporting objective function (obj) and search time in
seconds (time) values as: median (standard deviation). A † indicates that all searches
were interrupted by the timeout (the min is 200). Min values for obj and time are in
bold font.

Size OscaR.cbls Array[IntVar] LocalSolver GoogleCP OscaR.cbls SeqVar

obj time obj time obj time obj time

500 17134 (128) 23 (7) 17602 (0) 200 †(0) 17429 (0) 4.4 (0.05) 17211 (72) 1.42 (0.38)

1000 24173 (127) 65 (14) 24662 (7) 200 †(0) 24230 (0) 34.8 (0.37) 24171 (137)3.75 (0.77)

1500 29279 (143) 139 (23) 30575 (13) 200 †(0) 29126 (0) 80.1 (0.57) 29140 (111) 6.03 (1.07)

2000 33712 (151) 198 (27) 42498 (242) 200 †(0) 33785 (0) 200.1 †(0.01) 33593 (193)9.19 (1.07)

2500 37882 (148) 211 †(21) 69276 (570) 200 †(0) 39006 (0) 200.1 †(0.01) 37772 (143)11.4 (1.56)

3000 40925 (147) 204 †(10) 141523 (1925)200 †(0) 42007 (2) 200.2 †(0.01) 40737 (131)14.8 (1.94)

3500 43563 (147) 202 †(3) 229540 (1378)200 †(0) 46287 (27)200.3 †(0.02) 43317 (158)17.8 (2.03)

4000 47122 (155) 202 †(5) 335925 (3885)200 †(0) 49864 (29)200.4 †(0.02) 46723 (137)20.5 (3.39)

4500 50184 (147) 202 †(5) 457996 (2680)200 †(0) 55936 (25)200.6 †(0.03) 49647 (148)23.9 (3.08)

5000 52940 (147) 204 †(7) 638130 (2467)200 †(0) 58779 (10)200.7 †(0.03) 52545 (153) 28 (3.02)

build a good initial solution. OscaR.cbls inserts node into the route throughout
the search, the w-nearest pruning used in its neighbourhoods might be different
from the one used by GoogleCP. GoogleCP and LocalSolver are implemented in
C++ and OscaR in Scala 2.11.7. We have no idea of the neighbourhoods used
by Localsolver, but they are probably not suited for routing.

The results are presented in Table 3. Our approach based on sequences is
faster than the approaches based on arrays of integers. Because of the time-out,
it can produce better result for larger problem. The quality on smaller problems
is like the one of the other tools. The variation in quality of the two OscaR
implementations appear because the search strategy is adaptive and favours
faster neighbourhoods, so the succession of explored neighbourhoods varies in
the two implementations and find different local minima. This could be improved
by using some meta-heuristics.

8 Conclusion

This paper presents an implementation of variables of type “sequence of inte-
gers” that is suited for CBLS frameworks. The goal is to embed state-of-the-art
global constraints into declarative CBLS frameworks. We also proposed some
specific data-structure, so that neighbour solutions can be represented quickly,
and queried efficiently.

Our approach was based on a set of requirements that were formulated in
the context of a generic CBLS framework. These notably specify that all data-
structures must be immutable. We did not consider mutable data-structure. An
approach based on mutable data-structure might be considered.

There are a few opportunities of improvement concerning the data structure
itself. For instance, some update operations performed on the bijection are not
entirely incremental (cfr. Sect. 4), and other data structures might be considered

Reasoning on Sequences in CBLS Frameworks 133

for the concrete sequences. We might consider replacing the large red-black trees
of the second mapping with non-mutable arrays.

Our next step is to extend our library of global constraints (including the ones
presented in Sect. 2.2) and generic neighbourhoods on sequences. We already
proposed a generic framework for defining global routing constraint based on
a mathematical structure called a group [16]. We also consider integrating the
scheduling constraints and neighbourhoods presented in [17], which are based
on sequences of tasks and might therefore fit into our sequence framework.

Our sequence variable features a checkpoint mechanism that makes it possi-
ble for global constraint to perform pre-computations and implement differenti-
ation. This mechanism is restricted to sequence variables and different variables
might declare checkpoints at different points in time in an uncoordinated fash-
ion. Checkpoints should be made pervasive in the model, so that invariants with
other types of variables or with multiple input sequence variables could also have
differentiation.

With this additional variable, OscaR.cbls will be even more appealing both
to users that benefit from highly efficient global constraints in a declarative
framework, and to researchers who develop new global constraints and will ben-
efit from the whole framework of OscaR.cbls, so that they can focus on their
own contribution. String solving is an active topic of research that might benefit
from our framework [18–21], say by integrating our results with those of [12].
Our framework can also offer a common benchmarking environment to compare
the efficiency of different algorithms of global constraints on sequences.

Acknowledgements. This research was conducted under the SAMOBI CWALITY
(grant nr. 1610019) and the PRIMa-Q CORNET (grant nr. 1610088) research projects
from the Walloon Region of Belgium. We thank YourKit profiler and LocalSolver for
making their software freely available to us for this research. We also warmly thank
Pierre Flener and the anonymous referees for their feedback on earlier versions of this
work.

References

1. Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics. International
Series in Operations Research & Management Science. Springer, New York (2003).
https://doi.org/10.1007/b101874

2. Mladenović, N., Urošević, D., Hanafi, S.: Variable neighborhood search for the
travelling deliveryman problem. 4OR 11(1), 57–73 (2013)

3. Savelsbergh, M.W.P.: The vehicle routing problem with time windows: minimizing
route duration. ORSA J. Comput. 4(2), 146–154 (1992)

4. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (2009)

5. Newton, M.A.H., Pham, D.N., Sattar, A., Maher, M.: Kangaroo: an efficient
constraint-based local search system using lazy propagation. In: Lee, J. (ed.) CP
2011. LNCS, vol. 6876, pp. 645–659. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23786-7 49

https://doi.org/10.1007/b101874
https://doi.org/10.1007/978-3-642-23786-7_49
https://doi.org/10.1007/978-3-642-23786-7_49

134 R. De Landtsheer et al.

6. De Landtsheer, R., Ponsard, C.: OscaR.cbls: an open source framework for
constraint-based local search. In: Proceedings of ORBEL’27, 2013

7. Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: LocalSolver 1.x: a
black-box local-search solver for 0-1 programming. 4OR 9(3), 299–316 (2011)

8. Pralet, C., Verfaillie, G.: Dynamic online planning and scheduling using a static
invariant-based evaluation model. In: Proceedings of the 23rd International Con-
ference on Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, 10-14
June 2013. AAAI (2013)

9. OscaR Team. OscaR: Operational research in Scala (2012). Available under the
LGPL licence from https://bitbucket.org/oscarlib/oscar

10. OR-Tools Team. OR-Tools: Google Optimization Tools. https://code.google.com/
p/or-tools/

11. Di Gaspero, L., Schaerf, A.: EASYLOCAL++: an object-oriented framework for
the flexible design of local-search algorithms. Softw.: Pract. Exp. 33(8), 733–765
(2003)

12. Björdal, G.: String variables for constraint-based local search. Master’s thesis,
Uppsala University (2016). https://uu.diva-portal.org/smash/get/diva2:954752/
FULLTEXT01.pdf

13. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21(2), 498–516 (1973)

14. Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Transp.
Sci. 29, 17–29 (1995)

15. De Landtsheer, R., Guyot, Y., Ospina, G., Ponsard, C.: Combining neighborhoods
into local search strategies. In: Amodeo, L., Talbi, E.-G., Yalaoui, F. (eds.) Recent
Developments in Metaheuristics. ORSIS, vol. 62, pp. 43–57. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-58253-5 3

16. Meurisse, Q., De Landtsheer, R.: Generic support for global routing constraint
in constraint-based local search frameworks. In: Proceedings of the 32th ORBEL
Annual Meeting, pp. 129–130, 1–2 February 2018

17. Pralet, C.: An incomplete constraint-based system for scheduling with renewable
resources. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 243–261. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 16

18. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P., Sten-
man, J.: Norn: an SMT solver for string constraints. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21690-4 29

19. Fu, X., Powell, M.C., Bantegui, M., Li, C.-C.: Simple linear string constraints.
Formal Aspects Comput. 25(6), 847–891 (2013)

20. Ganesh, V., Kieżun, A., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.: HAMPI: a
string solver for testing, analysis and vulnerability detection. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 1–19. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 1

21. Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation
of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 51–67. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8 5

https://bitbucket.org/oscarlib/oscar
https://code.google.com/p/or-tools/
https://code.google.com/p/or-tools/
https://uu.diva-portal.org/smash/get/diva2:954752/FULLTEXT01.pdf
https://uu.diva-portal.org/smash/get/diva2:954752/FULLTEXT01.pdf
https://doi.org/10.1007/978-3-319-58253-5_3
https://doi.org/10.1007/978-3-319-66158-2_16
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-642-22110-1_1
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/978-3-319-59776-8_5

Constraint Programming for High School
Timetabling: A Scheduling-Based Model

with Hot Starts

Emir Demirović(B) and Peter J. Stuckey(B)

School of Computing and Information Systems,
University of Melbourne, Melbourne, Australia

{edemirovic,pstuckey}@unimelb.edu.au

Abstract. High School Timetabling (HSTT) is a well-known and wide-
spread problem. It consists of coordinating resources (e.g. teachers,
rooms), times, and events (e.g. classes) with respect to a variety of con-
straints. In this paper, we study the applicability of constraint program-
ming (CP) for high school timetabling. We formulate a novel CP model
for HSTT using a scheduling-based point of view. We show that a drastic
improvement in performance over the baseline CP model can be achieved
by including solution-based phase saving, which directs the CP solver to
first search in close proximity to the best solution found, and our hot
start approach, where we use existing heuristic methods to produce a
starting point for the CP solver. The experiments demonstrate that our
approach outperforms the IP and maxSAT complete methods and pro-
vides competitive results when compared to dedicated heuristic solvers.

Keywords: Constraint programming · Timetabling · Scheduling
Modeling · Hot start · Warm start · Local search · Phase saving

1 Introduction

The problem of high school timetabling (HSTT) is to coordinate resources (e.g.
rooms, teachers, students) with times to fulfill certain goals (e.g. scheduling
classes). Every school requires some form of HSTT, making it a wide-spread
problem. In a more general sense, timetabling can be found in airports, trans-
portation, and the like. The quality of the timetables is an important issue,
since they have a direct impact on the educational system, satisfaction of stu-
dents and staff, and other matters. Every timetable affects hundreds of students
and teachers for prolonged periods of time, as each timetable is used for at least
a semester, making HSTT an extremely important and responsible task. How-
ever, constructing timetables by hand can be time consuming, difficult, error
prone, and in some cases practically impossible. Thus, developing algorithms to
produce the best timetables automatically is of utmost importance.

There has been significant research tackling HSTT. However, given that there
are many educational systems, each differing in their own ways, much of this
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 135–152, 2018.
https://doi.org/10.1007/978-3-319-93031-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_10&domain=pdf

136 E. Demirović and P. J. Stuckey

research was done in isolation targeting only a particular set of rules. It was
difficult to compare developed algorithms due to the differences, even though
the problems shared similarities. This motivated researchers to develop a general
high school timetabling formulation, named XHSTT [24,25], that allows a variety
of education system requirements to be expressed. With the new formulation,
researchers now have common ground for fair algorithmic comparison. In 2011,
the International Timetabling Competition was dedicated to HSTT and endorsed
the said formulation, encouraging further research in the direction of XHSTT.
We consider this formulation in our work.

Historically, incomplete algorithms were the most prominent for XHSTT (e.g.
[11,12,15]. Recently, complete methods based on integer programming [16] and
maximum Boolean satisfiability (maxSAT) [8] have proven to be effective. Their
development was essential for the emergence of large neighborhood search algo-
rithms, which combine domain-specific heuristics with complete solving [7,27].
These methods are currently among the most successful ones for XHSTT.

As complete methods play a vital role, it is natural to ask if unexplored
complete paradigms could bring more to XHSTT than those currently in use.
This is precisely what we study in this work: the applicability of constraint pro-
gramming for XHSTT. We provide a novel CP model that views XHSTT as a
scheduling problem, in contrast to the conventional Boolean formulations. Such a
model allows us to exploit high-level global constraints, providing an elegant and
possibly more efficient solution. However, to match the state-of-the-art, that is
not enough. Indeed, our experimentation demonstrates that a standard CP app-
roach is not competitive. Therefore, further development was required. The first
improvement came from employing solution-based phase saving [4], an existing
technique in maxSAT [1] but not well-known in CP, that directs the CP solver
to search in close proximity to the best solution found so far before expanding
further. The second was born out of the realization that the community has
built sophisticated heuristic algorithms, which can be communicated to the CP
solver (so called hot start). While usual hot starts in CP would only provide an
initial bound to the problem, when combined with the solution phase saving,
such an approach offers more: in addition to the bound, it suggests to the solver
a region in the search space that is likely to contain high quality solutions. The
end result is a complete algorithm that outperforms integer programming and
maxSAT methods, while being competitive with dedicated heuristic solvers.

The paper is organized as follows. In the next section we briefly describe
the general high school timetabling (XHSTT) problem. In Sect. 3, we provide an
overview of the state-of-the-art for XHSTT. The scheduling-based model is given
in Sect. 4. Our hot start approach is discussed in Sect. 5, along with solution-
based phase saving. Experiments are given in Sect. 6. We conclude in the last
section.

2 Problem Description

In our research we consider the general formulation of the High School
Timetabling problem (called XHSTT), as described in [25]. This formulation

Constraint Programming for High School Timetabling 137

is general enough to be able to model education systems from different countries
and was endorsed by the International Timetabling Competition 2011.

The general High School Timetabling formulation specifies three main enti-
ties: times, resources and events. Times refer to discrete time units which
are available, such as Monday 9:00–10:00, Monday 10:00–11:00, for example.
Resources correspond to available rooms, teachers, students, and others. The
main entities are the events, which in order to take place require certain times
and resources. An event could be a Mathematics class, which requires a math
teacher (which needs to be determined) and a specific student group (both the
teacher and the student group are considered resources) and two times. Events
are to be scheduled into one or more solution events or subevents. For exam-
ple, a Mathematics class with total duration of four hours can be split into two
subevents with duration two, but can be scheduled as one subevent with duration
four (constraints may impose further constraints on the durations of subevents).

The aim of XHSTT is to find a schedule by assigning times and resources
to events such that that all hard constraints are satisfied and the sum of soft
constraint violations is minimized.

Constraints impose limits on what kind of assignments are legal. These may
constrain that a teacher can teach no more than five classes per day, that younger
students should attend more demanding subjects (e.g. Mathematics) in the
morning, to name a few examples. It is important to differentiate between hard
constraints and soft constraints. The former are important constraints which
are given precedence over the latter, in the sense that any single violation of
any hard constraint is more important than all of the soft constraints combined.
Thus, one aims to satisfy as many hard constraints as possible, and then optimize
for the soft constraints. In this sense, “hard constraints” are not, in fact, hard as
in the usual meaning used in combinatorial optimisation. Each constraint has a
nonnegative cost function associated with it, which penalizes assignments that
violate it. The goal is to first minimize the hard constraint costs and then mini-
mize the soft constraint costs. In the general formulation, any constraint may be
declared hard or soft and no constraint is predefined as such, but rather left as
a modeling option based on the concrete timetabling needs. Each constraint has
several parameters, such as to which events or resources it applies and to what
extent (e.g. how many idles times are acceptable during the week), and other
features, allowing great flexibility.

We now give an informal overview of all the constraints in XHSTT (as given
in [25]). For more details regarding the problem formulation, see [24,25]. There
is a total of 16 constraints (plus preassignments of times or resources to events,
which are not listed).

Constraints related to events:

1. Assigned Time - assign the specified amount of times to specified events.
2. Preferred Times - when assigning times to events, specified times are preferred

over others.
3. Link Events - specified events must take place at the same time.
4. Spread Events - specified events must be spread out during the week.

138 E. Demirović and P. J. Stuckey

5. Distribute Split Events - limits the number of subevents that may take a
particular duration for a given event.

6. Split Events - limits the minimum and maximum durations and number of
subevents for a given event. Together with Distribute Split Events this gives
fine control on the subevents.

7. Order Events - specified events must be scheduled one after the other with
nonnegative time-lag in between them.

8. Avoid Split Assignments - for all subevents derived from an event, assign the
same resources.

Constraints related to resources:

1. Assigned Resource - assign specified resources to specified events.
2. Avoid Clashes - specified resources cannot be used by two or more subevents

at the same time.
3. Preferred Resources - when assigning resources to events, specified resources

are preferred over others.
4. Avoid Unavailable Times - specified resources cannot be used at specified

times.
5. Limit Workload - specified resources must have their workload lie between

given values.
6. Limit Busy Times - the amount of times when a resource is being used within

specified time groups should lie between given values.
7. Cluster Busy Times - specified resources’ activities must all take place within

a minimum and maximum amount of time groups.
8. Limit Idle Times - specified resources must have their number of idle times

lie between given values within specified time groups.

3 Related Work

For HSTT, both heuristic and complete methods have been proposed. Heuristic
methods were historically the dominating approach, as they are able to provide
good solutions in a reasonable amount of time even when dealing with large
instances, albeit not being able to obtain or prove optimality. Recently devel-
oped complete methods [5,26,30,31] are successful in obtaining good results and
proving bounds but require significantly more time (days or weeks).

The best algorithms from the International Timetabling Competition 2011
(ITC 2011) were incomplete algorithms. The winner was the group GOAL, fol-
lowed by Lectio and HySST. In GOAL, an initial solution is generated, which is
further improved by using Simulated Annealing and Iterated Local Search, using
seven different neighborhoods [12]. Lectio uses an Adaptive Large Neighborhood
Search [29] with nine insertion methods based on the greedy regret heuristics
[32] and fourteen removal methods. HySST uses a Hyper-Heuristic Search [14].

After the competition, the winning team of ITC 2011 developed several new
Variable Neighborhood Search (VNS) approaches [11]. All of the VNS approaches

Constraint Programming for High School Timetabling 139

have a common search pattern: from one of the available neighborhoods, a ran-
dom solution is chosen, after which a descent method is applied and the solution
is accepted if it is better than the previous best one. Each iteration starts from
the best solution. The Skewed Variable Neighborhood was the most successful
VSN approach, in which a relaxed rule is used to accept the new solution based
on its cost and its distance from the best solution.

Kingston [15] introduced an efficient heuristic algorithm which directly
focuses on repairing defects (violations of constraints). Defects are examined
individually and specialized procedures are developed for most constraints to
repair them. KHE14 provides high quality solutions in a low amount of time,
but does not necessarily outperform other methods with respect to quality of
solution.

Two complete methods have been studied: IP- [16] and maxSAT-based [8]
approaches. Neither method strictly dominates the other, as their relative perfor-
mance depends on the instance. Both models use Boolean variables to explicitly
encode if an event is taking place at a particular time, with the main differences
being in the expressiveness of the formalism to define the constraints. Overall,
the maxSAT approach provides better results but is limited to problems where
resources are preassigned to events. A Satisfiability Modulo Theories (SMT)
approach has also been investigated in [6] but cannot handle XHSTT instances
efficiently. The bitvector-SMT model rather serves as an efficient way of rep-
resenting XHSTT for local search algorithms, as all constraint costs can be
computed using simple bitvector operations.

The developed complete methods were used in large neighborhood search
algorithms: IP-based [30] and maxSAT-based [7]. These approaches offer
improvements over their complete counterparts when given limited time.

Additionally, several IP- [10,26,28,33] and CP-based [13,19,34] techniques
have been introduced for related HSTT problems. There are several notable dif-
ferences in our work compared to the other CP approaches [19,34]: our modelling
is more general as it applies to XHSTT and we demonstrate how to use generic
tools to solve XHSTT without intertwining other techniques other than an initial
solution procedure, which is clearly decoupled from the rest of our method.

4 Modeling

The key elements of XHSTT are a set of events E, a set of resources R and
a set of times T which we shall regard as integers T = {0, 1, 2, . . . |T | − 1}. We
considered the restricted form of the problem where resources used by each event
are predefined. The majority of the benchmarks from the repository of the Inter-
national Timetabling Competition fall into this category. Earlier models for the
general high school timetabling problem used explicit representations for each
pair of events and time slots, indicating whether the event is taking place at
that particular time. In contrast, we use a scheduling-based modeling approach,
where each subevent is linked to two variables: the starting time and duration
variable. As a result, we are able to exploit the disjunctive and regular global

140 E. Demirović and P. J. Stuckey

constraints in our model. We now describe the decision variables and then pro-
ceed with the modeling of each constraint.

4.1 Decision Variables

Each event e ∈ E has a maximum total duration D(e). For each event e, we
create D(e) subevents, numbered from 0..D(e)−1. Every subevent is associated
with two variables indicating its starting time and duration. We label these as
start(e, i) and dur(e, i). The special start time UN = |T | is use to denote that a
subevent is not used, in which case its corresponding duration is zero. Constraints
may impose restrictions on the amount and duration of the subevents.

Example 1. Let e be an event of duration 3. A total of six variables are allocated:
three pairs of starting time and duration variables. Let the assignments be as
shown in Table 1(a):

Table 1. Decision variable assignments for event e of total duration 3: (a) satisfyies
the symmetry breaking constraints, while (b) does not.

i start(e, i) dur(e, i)
0 5 2
1 10 1
2 UN 0

i start(e, i) dur(e, i)
0 5 2
1 UN 0
2 10 1

)b()a(

The assignments state that for event e, two subevents of durations 2 and 1
are scheduled at starting times 5 and 10, respectively. ��

The following constraints formally define the decision variables for each event
e and its subevent i:

start(e, i) ∈ T ∪ {UN},
dur(e, i) ∈ {0, 1, . . . ,D(e)},
start(e, i) + dur(e, i) ≤ |T |,
start(e, i) = UN ⇔ dur(e, i) = 0

(1)

Symmetry breaking constraints forbid equivalent solutions. These order the
subevents by decreasing duration as the primary criteria, and then by start time:

dur(e, i − 1) ≥ dur(e, i),
dur(e, i − 1) = dur(e, i) ⇒ start(e, i − 1) ≤ start(e, i) (2)

Example 2. Consider the same setting as in the previous example, but with the
following assignments shown in Table 1(b). The constraints in Eqs. 1 are satisfied,
but symmetry breaking constraints (Eqs. 2) require that subevents are ordered by
duration. Furthermore, if D(e) = 5 and the dur(e, 0) + dur(e, 1) + dur(e, 2) = 5,
and dur(e, 1) = 2 and start(e, 1) = 0 then the assignment would again be
invalid, as in case of ties in duration, subevents are to be sorted by increasing
time assignments.

Constraint Programming for High School Timetabling 141

Symmetry breaking constraints, apart from preventing equivalent solutions,
contribute towards simpler constraints (e.g. see Split Events constraint). We note
that non-overlapping of subevents is left to the Avoid Clashes constraints.

4.2 Additional Notation

Let EV (r) ⊆ E denote the set of events that require resource r. We intro-
duce auxiliary Boolean variables busy(r, t) to indicate that one of the events
e ∈ EV (r) that require r ∈ R are taking place at time t. This dual viewpoint
on the decisions is required for the Limit Busy Times and Cluster Busy Times
constraints. The mapping between the two viewpoints is managed by a straight-
forward decomposition.

busy(r, t) ⇔ ∃e∈EV (r),i∈{0..D(e)−1}start(e, i) ≤ t ∧ start(e, i) + dur(e, i) > t

A time group TG ⊆ T is a fixed set of times. An event group EG ⊆ R is a
fixed set of events.

4.3 Objectives and Constraints

In the problem formulation, constraints are not predefined as hard or soft, but
this option is left to the modelers as appropriate for the particular school under
consideration. For simplicity of the presentation, we present in the following
text the constraints as if they are given as hard constraints. Soft versions are
created by reifying the hard formulation. Note that this may mean that global
constraints in the soft versions make use of a decomposition instead, explicitly
encoding the global constraint using a set of smaller and simpler constraints.

We define the predicate within to ease further notation:

within(x, l, u) = (x ≥ l ∧ x ≤ u) (3)

Soft constraints are similar to their hard counterparts, but instead penalize
each constraint violation instead of forbidding it entirely. For example, soft con-
straints commonly state that a certain value has to be within given bounds. In
the soft case, the deviation is penalized based on the linear or quadratic distance
(specified by the constraint) of the said value from the imposed bounds. In the
linear case, the violation is calculated as

within viol(x, l, u) = max{0, x − u, l − x}. (4)

Hard constraints essentially have large weights compared to soft constraints.
In our model, the hard XHSTT constraints are posed as hard CP constraints,
meaning the infeasibility value is not tracked. This modelling choice allows us
to drastically simplify the modelling, which leads to an increase in performance
for CP but also allows advanced CP techniques to be exploited through global
constraints. We now proceed with the modeling of each constraint.

142 E. Demirović and P. J. Stuckey

Assigned Times: Events must be assigned their prescribed number of times.
∑

i∈{0,1,...,D(e)−1}
dur(e, i) = D(e) (5)

Preferred Times: Subevents of specified event e may start only within the
stated time group TGe. If an optional parameter d is given, the constraint only
applies to subevents of that particular duration.

∀i ∈ {0, 1, . . . ,D(e) − 1} start(e, i) �= UN ⇒ start(e, i) ∈ TGe (6)

Link Events: Certain events must simultaneously take place. Let EG be an
event group of linked events, all of which have the same total duration TD,
i.e. ∀e ∈ EG,D(e) = TD. We make use of the global constraint all equal [2],
which enforces that its input variables must be assigned the same values.

∀i ∈ {0, 1, . . . , TD − 1}
all equal(

[
start(e, i) | e ∈ EG

]
),

all equal(
[
dur(e, i) | e ∈ EG

]
)

(7)

Spread Events: Limits the number of starting times events from specified event
groups may have in given time groups. Event and time groups are sets of events
and contiguous times, respectively. Let EG and TG denote one such pair with
the limits mine..maxe.

z =
∑

e∈EG,i∈{0,..,D(e)−1} within(start(e, i),min(TG),max(TG)) ∧
within(z,mine,maxe)

(8)

Distribute Split Events: Limits the number of subevents of e a given duration
d to be in the range mindse..maxdse.

a =
∑

i∈{0,1,...,D(e)−1}(dur(e, i) = d) ∧ within(a,mindse,maxdse) (9)

Split Events: Regulates the number of subevents of e between minse..maxse
and the duration of subevents of e between minde..maxde

∀i ∈ {0, ..,minse − 1} : start(e, i) �= UN ∧ dur(e, i) �= 0 (10)

∀i ∈ {maxse, ..,D(e) − 1} : start(e, i) = UN ∧ dur(e, i) = 0 (11)

dur(e, i) ≤ maxde ∧ dur(e, i) �= 0 ⇒ dur(e, i) ≥ minde (12)

Constraint Programming for High School Timetabling 143

Order Events: For a given pair of events (e1, e2), the constraint imposes that
e1 must take place before e2. In addition, there must be a minimum minoep and
maximum maxoep units of time apart.

oe = min{start(e2, i) | i ∈ {0..D(e2) − 1}}
−max{start(e1, i) + dur(e1, i) | i ∈ {0..D(e1) − 1}} ∧

within(eo,minep,maxep)
(13)

Avoid Clashes: A resource can be used by at most one event at any given time.
Here we make use of the global constraint disjunctive [9,17], which takes two
arrays s and d of variables as input, where s[i] and d[i] represent the starting
time and duration of task i, and enforces no overlap between the tasks.

disjunctive([
start(e, i) | e ∈ EV (r), i ∈ {0..D(e) − 1}]

,[
dur(e, i) | e ∈ EV (r), i ∈ {0..D(e) − 1}]

))
(14)

Avoid Unavailable Times: Resources cannot be used at specified times. For
each resource r and forbidden time t, this is encoded by creating a dummy event
that requires r and is fixed at time t with duration 1. The newly created events
are added to events(r) and will be considered in the Avoid Clashes constraint
(above). For the soft version the duration of these dummy events is 0..1 and the
constraint is violated if the duration used in 0.

Limit Busy Times: If a resource r is busy in a time group TG, its number of
busy times within the time group is restricted to be in minbr..maxbr.

c =
∑

t∈TG(busy(r, t)) ∧
c �= 0 ⇒ within(c,minbr,maxbr)

(15)

Cluster Busy Times: A resource is busy in a time group TG if it is busy at
least one time int the time group. This constraint gives a set of time groups TG
and limits the total number of time groups TG ∈ TG that the resource may
be busy to the range mint..maxt. For example, a teacher must finish his or her
work within three days.

b =
∑

TG∈TG(∃t∈TGbusy(r, t)) ∧
within(b,mint,maxt) (16)

Limit Idle Times: Some resources must not have idle times in their schedule.
An idle time occurs at time t within contiguous time group TG if the resource is
busy at times from TG before and after t and not busy at time t. This is encoded
using the regular global constraint [22], which takes as input a sequence of
variables that must satisfy the automaton constraint, and a deterministic finite
automata A defined by a set of states Q, a set of values of the variable sequence
S, a transition function which given a state and value defines the next state to
reach, an initial state, and a set of final states. It constrains that the transition

144 E. Demirović and P. J. Stuckey

sequence defined by the sequence variables starting from the start state leads to
a valid final state.

The automata has four states Q = {q0, q1, q2, f} with the interpretation: q0
(initial) not yet been busy within the time group, q1 (busy), q2 (done) was busy
but is no longer busy, and f is the fail state. The transitions T of the automata
are defined as {(q0, 0) → q0, (q0, 1) → q1, (q1, 0) → q2, (q1, 1) → q1, (q2, 0) →
q2, (q2, 1) → f}, which enforce that once the resource is busy and then once
again idle, it cannot become busy otherwise it ends in a fail state. The final
states are F = {q0, q1, q2}.

regular(
[
busy(r, t)|t ∈ TG

]
, S, 0..1, T, s0, F) (17)

The soft constraint version is done by decomposition. The remaining con-
straints Avoid Split Assignments, Assigned Resources, Prefer Resources, Limit
Workload are meaningless for the class of problems we examine where all
resources are preassigned.

5 Solution-Based Phase Saving

During the search, the CP solver repeatedly makes decisions on which variable
and value to branch on. Variables are chosen based on their activity (VSIDS
scheme). Phase-saving [23] is almost universally used in SAT solvers, where the
choice of value for a decision used is always the value used the last time the
variable was seen in search. Solution-based phase saving [1,4] rather chooses
the value for the variable that was used in the last found solution. After a
branching variable is selected, the solver is instructed to assign the value that
the corresponding variable had in the best solution encountered so far. If that is
not possible, it resorts to its default strategy. As a result, the search is focused
near the space around the best solution, resembling a large neighbourhood search
algorithm, while still remaining complete.

5.1 Hot Starts

At the start of the algorithm, the solver is provided with an initial solution. Due
to solution-based phase saving technique, it will immediately focus the search
around the given solution. Hence, from the beginning, the search is directed
to an area where good solutions reside. As shown in the experimental section,
generating the initial solution uses only a small fraction of the total time allocate
but our hot start offers significant improvements.

Initial Solution Generation. The same procedure for the starting solution is
used as in the maxSAT-LNS approach [7]. We briefly outline it.

The main idea is to exploit existing fast heuristic algorithms. To this
end, KHE14, a publicly available state-of-the-art incomplete algorithm, is first
invoked. The method is designed to provide good solutions rapidly. Thus, it is

Constraint Programming for High School Timetabling 145

particularly well-suited for our purpose. In the event that KHE14 does not pro-
duce a feasible solution, a pure maxSAT approach that treats all split event con-
straints as hard and ignores soft constraints is called. Afterwards, a simple sim-
ulated annealing local search procedure is executed, which attempts to improve
the solution by performing two different moves: swaps (exchange the times of
two subevents) and block-swap (if a swap move would cause the subevents to
overlap, assign to the second one a time such that the two events appear one
after the other). During the course of the algorithm only feasible moves between
subevents that share at least one resource are considered. The aim is to use
inexpensive techniques to remove easy constraint violations, leaving the more
challenging ones to the CP solver. We note that initial solution generation takes
only a small faction of the total amount of time allocated.

6 Experimental Results

We provide detailed experimentation with the aim of assessing our proposed
approach. We have accordingly set the following goals:

– Evaluate the impact of solution-based phase saving and hot starts for high
school timetabling (Sect. 6.3).

– Test if restarting more frequently would lead to an increase in performance
(Sect. 6.4).

– Compare the developed approach with other complete methods, namely inte-
ger programming and maxSAT (Sect. 6.5).

– Position our method among dedicated heuristic algorithms (Sect. 6.6).

6.1 Benchmarks and Computing Environment

We considered XHSTT benchmarks from the repository of the International
Timetabling Competition 2011 (ITC 2011), limited to those where resources are
predefined for events. The majority of the benchmarks fall into this category.
Resource assignments would drastically increase the search space if done in a
straight-forward manner and further specialized techniques would need to be
developed. The maxSAT line of work [7,8] follows the same restrictions. These
datasets include real-world and artificial timetabling problems and an overview
is given in Table 2. For more details we refer the interested reader to [24,25].

We performed all the experiments on an i7-3612QM 2.10 GHz processor with
eight GB of RAM, with the exception of the Matheuristic solver (see next
section). Each run was given 1200 s and a single core, as during the second
phase of the competition, with no experiments running in parallel.

6.2 Solvers

Constraint Programming. We used MiniZinc [21] to model XHSTT and
Chuffed [3] as the CP solver, for which we implemented solution-based phase

146 E. Demirović and P. J. Stuckey

Table 2. Overview of the datasets used, displaying number of events (|E|), times (|T |),
resources (|R|), and sum of event durations (

∑
(dur)).

Name |E| |T | |R| ∑
(dur)

BrazilInstance1 21 25 11 75

BrazilInstance2 63 25 20 150

BrazilInstance3 69 25 24 200

BrazilInstance4 127 25 35 300

BrazilInstance5 119 25 44 325

BrazilInstance6 140 25 44 350

BrazilInstance7 205 25 53 500

FinlandCollege 387 40 111 854

FinlandElementarySchool 291 35 103 445

FinlandHighSchool 172 35 41 297

FinlandSecondarySchool 280 35 64 306

FinlandSecondarySchool2 469 40 79 566

GreeceThirdHighSchoolPatras2010 178 35 113 340

GreeceThirdHighSchoolPreveza2008 164 35 97 340

GreeceWesternUniversityInstance3 210 35 25 210

GreeceWesternUniversityInstance4 262 35 31 262

GreeceWesternUniversityInstance5 184 35 24 184

GreeceFirstHighSchoolAigio2010 283 35 245 532

ItalyInstance1 42 36 16 133

SouthAfricaLewitt2009 185 148 37 838

saving and the hot start approach. The Luby restart scheme [18] was used within
Chuffed.

Complete Methods. Integer programming [16] linked with Gurobi 6.5. as the
IP solver and the XHSTT-maxSAT formulation [8] with Open-WBO (linear
algorithm) [20] as the maxSAT solver.

Dedicated Heuristic Solvers. KHE14 [15], an ejection-chain-based solver. Vari-
able neighborhood search [11]. Matheuristic [27], an adaptive large neighborhood
search algorithm with integer programming. MaxSAT large neighborhood search
algorithm [7] (uses Open-WBO as its maxSAT solver). These results for these
methods were averaged over five runs. The Matheuristic solver was not available
and therefore the results shown are from the paper [27], which used a bench-
marking tool to set fair normalized computation times.

6.3 Phase Saving and Hot Start Impact

We compared three variants of our CP approach: standard (CP), with solution-
based phase saving (CP+PS), and with hot starts (CP+HS). Note that hot starts

Constraint Programming for High School Timetabling 147

include solution-based phase saving. The results are given in Table 3, showing
the soft constraint violations. In addition to the results, we include the value of
the hot started solution (“Initial” column in the table).

Table 3. Comparison of the three CP variants: CP - standard, CP+PS - with solution-
based phase saving, CP+HS - with hot starts, showing the number of soft constraint
violations in the best solution found within the time limit. The column “Initial” displays
the hot started solution value. Overall, PS+HS is the dominating approach on most
benchmarks. No solution generated within the time limit is indicated by ‘—’.

Name CP CP+PS CP+HS Initial

Brazil1 52 41 41 83

Brazil2 102 7 5 56

Brazil3 187 43 25 116

Brazil4 223 110 88 176

Brazil5 355 32 57 301

Brazil6 442 74 66 192

Brazil7 657 230 181 252

FinlandCollege — — 9 917

FinlandESchool — — 3 9

FinlandHSchool 314 13 4 23

FinlandSSchool — — 93 339

FinlandSSchool2 — — 1 7

GreecePatras — — 0 12

GreecePreveza — — 279 630

GreeceUni3 — — 5 10

GreeceUni4 — — 7 13

GreeceUni5 — — 0 2

GreeceAigio — — 597 689

Italy1 — — 12 1229

SAfricaLewitt — — 0 330

From the results it is clear that solution-based saving offers improvements
over the standard version. The hot start approach further increases the perfor-
mance. It is of interest to note that in a number of cases the CP solver (with or
without phase saving) struggled to find a good solution, but when it was pro-
vided with one as a hot start, it managed to provide notable improvements. The
additional guidance from phase saving and hot start aids the solver by direct-
ing it into fruitful parts of the search space. This approach resembles a local
search algorithm, where a better solution is sought for in the vicinity of the best
solution. However, unlike local search, the solution-based phase saving (with hot
starts) approach is complete.

148 E. Demirović and P. J. Stuckey

6.4 Rapid Restarts

Given the similarity between the hot start approach and local search, we decided
to experiment with an extreme version of the algorithm by increasing the restart
frequency. In our previous experiments, the solver used a Luby restart scheme
with the base restart value of 104. Now, we set the base restart value to only
100. The results are given in Table 4. The results indicate that rapid restarting
does have an impact for a few benchmarks but no conclusive observations can
be made. Therefore, it is not considered in further experimentation.

Table 4. Analysis of CP variants with rapid restarts (RR in columns). Each entry
shows the soft constraint violations. No solution generated is indicated by ‘—’.

Name CP+PS CP+PS+RR CP+HS CP+HS+RR

Brazil1 41 41 41 41

Brazil2 7 12 5 8

Brazil3 43 26 25 26

Brazil4 110 100 88 85

Brazil5 32 30 57 40

Brazil6 74 103 66 77

Brazil7 230 — 181 183

FinlandCollege — — 9 14

FinlandESchool — 3 3 3

FinlandHSchool 314 13 4 23

FinlandSSchool — 89 93 125

FinlandSSchool2 — — 1 0

GreecePatras — 394 0 0

GreecePreveza — — 279 140

GreeceUni3 — — 5 5

GreeceUni4 — — 7 7

GreeceUni5 — — 0 0

GreeceAigio — — bf597 684

Italy1 — — 12 12

SAfricaLewitt — — 0 0

6.5 Comparison of Complete Methods

We compare the hot start CP version with the integer programming and maxSAT
approaches in Table 5. The results indicate that the proposed method is indeed
effective for high school timetabling. We note that including solution-based phase
saving and/or hot starts for the competing methods was not done as it would
require modifying the XHSTT solvers to support it.

Constraint Programming for High School Timetabling 149

Table 5. Comparison of complete methods. No solution generated within the timeout
is indicated by ‘—’.

Name IP maxSAT CP+HS

Brazil1 41 39 41

Brazil2 76 57 5

Brazil3 93 75 25

Brazil4 234 214 88

Brazil5 135 224 57

Brazil6 582 352 66

Brazil7 1,045 603 181

FinlandCollege 1,731 1,309 9

FinlandESchool 3 3 3

FinlandHSchool 179 812 4

FinlandSSchool 165 504 93

FinlandSSchool2 3,505 3,523 1

GreecePatras 25 2,329 0

GreecePreveza 2,740 5,617 279

GreeceUni3 28 7 5

GreeceUni4 51 141 7

GreeceUni5 3 224 0

GreeceAigio 3,738 4,582 597

Italy1 15 12 12

SAfricaLewitt — 1,039 0

6.6 Comparison with Heuristic Solvers

As previously discussed, solution-based phase saving focuses its search around
the current best solution, relating to local search algorithms, while remaining a
complete method. Therefore, we decided the evaluate how the approach positions
against dedicated heuristic solvers. The results are given in Table 6. Solutions
for these randomized (incomplete) methods are averaged over five runs.

Our approach provides competitive results, even when compared against
heuristic solvers. Our approach outperforms the competition on most bench-
marks, with the exception of the maxLNS approach. When compared to
maxLNS, our algorithm outperforms it in two cases. We believe the success
of maxLNS is attributed to the fact that it is a dedicated algorithm that incor-
porates domain-specific knowledge in its search strategy, allowing it to target
good solutions quickly. Our approach does not exploit problem-specific details,
apart from the initial solution, which both approaches have in common. Never-
theless, it still provides reasonably good results, suggesting that the approach is
valuable.

150 E. Demirović and P. J. Stuckey

Table 6. Comparison with dedicated heuristic methods. No solution generated within
the time limit is indicated by ‘—’. Solver unavailable listed as ‘—u’. Insufficient mem-
ory noted as ‘—m’. Values given as pairs (a, b) show the number of hard and soft
constraint violations, respectively (for cases where hard constraints are satisfied, only
soft constraint violations are displayed). Results averaged over five runs

Name maxLNS [7] VNS [11] KHE14 [15] CP+HS Math. [27]

Brazil1 39 52.2 54 41 —u

Brazil2 5.4 (1, 44.4) 14 5 6

Brazil3 23 107.8 116 25 —u

Brazil4 61.4 (17.2, 94.8) —c 88 58

Brazil5 19.4 (4, 138.4) (1, 179) 57 —u

Brazil6 50.6 (4, 223.6) 124 66 57

Brazil7 136.2 (11.6, 234.6) 179 181 —u

FinlandCollege 54.6 (2.8, 25) 20 9 —u

FinlandESchool 3 3 4 3 3

FinlandHSchool 9.8 36.6 29 4 —u

FinlandSSchool 95.2 (0.4, 93) 90 93 —u

FinlandSSchool2 0.2 0.2 2 1 6

GreecePatras 0 0 0 0 —u

GreecePreveza 38.2 2 2 279 —u

GreeceUni3 7 5 7 5 6

GreeceUni4 5 6.2 8 7 12

GreeceUni5 0 0 0 0 0

GreeceAigio 368 (0.2, 6.2) 6 597 180

Italy1 12 21.2 31 12 —u

SAfricaLewitt —m 8 —c 0 —u

7 Conclusion

We provide a new CP scheduling-based model for the general high school
timetabling problem with preassigned resources. We show that significant
improvements over the standard CP approach can be obtained by including
solution-based phase saving. Further performance increase is achieved by pro-
viding the CP solver with a hot start. The resulting approach outperforms other
complete approaches and provides competitive results when compared to ded-
icated heuristic solvers. The techniques used in our approach and maxLNS [7]
do not overlap, indicating that a combination of the two approaches might be
worth investigating.

Constraint Programming for High School Timetabling 151

References

1. Ab́ıo Roig, I.: Solving hard industrial combinatorial problems with SAT (2013)
2. Global Constraint Catalog: all equal constraint. http://www.emn.fr/x-info/

sdemasse/gccat/Call equal.html
3. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, The University of

Melbourne (2011). http://hdl.handle.net/11343/36679
4. Chu, G., Stuckey, P.J.: LNS = restarts + dynamic search + phase saving. Technical

draft
5. Demirović, E., Musliu, N.: Modeling high school timetabling as partial weighted

maxSAT. In: The 4th Workshop on Logic and Search (LaSh 2014) (2014)
6. Demirović, E., Musliu, N.: Solving high school timetabling with satisfiability mod-

ulo theories. In: Proceedings of the International Conference of the Practice and
Theory of Automated Timetabling (PATAT 2014), pp. 142–166 (2014)

7. Demirović, E., Musliu, N.: MaxSAT based large neighborhood search for high
school timetabling. Comput. Oper. Res. 78, 172–180 (2017)

8. Demirović, E., Musliu, N.: Modeling high school timetabling as partial weighted
maxSAT. In: Technical Draft - Extended LaSh 2014 Workshop Paper (2017)

9. Global Constraint Catalog: disjunctive constraint. http://www.emn.fr/x-info/
sdemasse/gccat/Cdisjunctive.html

10. Dorneles, Á.P., de Araujo, O.C.B., Buriol, L.S.: A fix-and-optimize heuristic for
the high school timetabling problem. Comput. Oper. Res. 52, 29–38 (2014)

11. Fonseca, G.H.G., Santos, H.G.: Variable neighborhood search based algorithms for
high school timetabling. Comput. Oper. Res. 52, 203–208 (2014)

12. da Fonseca, G.H.G., Santos, H.G., Toffolo, T.Â.M., Brito, S.S., Souza, M.J.F.:
GOAL solver: a hybrid local search based solver for high school timetabling. Ann.
Oper. Res. 239(1), 77–97 (2016). https://doi.org/10.1007/s10479-014-1685-4

13. Jacobsen, F., Bortfeldt, A., Gehring, H.: Timetabling at German secondary schools:
tabu search versus constraint programming. In: Proceedings of the International
Conference of the Practice and Theory of Automated Timetabling (PATAT 2006)
(2006)

14. Kheiri, A., Ozcan, E., Parkes, A.J.: HySST: hyper-heuristic search strategies and
timetabling. In: Proceedings of the International Conference of the Practice and
Theory of Automated Timetabling (PATAT 2012), pp. 497–499 (2012)

15. Kingston, J.: KHE14: an algorithm for high school timetabling. In: Proceedings of
the International Conference of the Practice and Theory of Automated Timetabling
(PATAT 2014), pp. 498–501 (2014)

16. Kristiansen, S., Sørensen, M., Stidsen, T.R.: Integer programming for the general-
ized high school timetabling problem. J. Sched. 18(4), 377–392 (2015)

17. Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use in
cumulative problems. C. R. Acad. Sci. Paris 294, 209–211 (1982)

18. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

19. Marte, M.: Towards constraint-based school timetabling. Ann. Oper. Res. (ANOR)
155(1), 207–225 (2007)

20. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver’.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

http://www.emn.fr/x-info/sdemasse/gccat/Call_equal.html
http://www.emn.fr/x-info/sdemasse/gccat/Call_equal.html
http://hdl.handle.net/11343/36679
http://www.emn.fr/x-info/sdemasse/gccat/Cdisjunctive.html
http://www.emn.fr/x-info/sdemasse/gccat/Cdisjunctive.html
https://doi.org/10.1007/s10479-014-1685-4
https://doi.org/10.1007/978-3-319-09284-3_33

152 E. Demirović and P. J. Stuckey

21. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

22. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 36

23. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0 28

24. Post, G., Ahmadi, S., Daskalaki, S., Kingston, J., Kyngas, J., Nurmi, C., Ranson,
D.: An XML format for benchmarks in high school timetabling. Ann. Oper. Res.
194(1), 385–397 (2012)

25. Post, G., Kingston, J.H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngäs, J., Nurmi,
C., Musliu, N., Pillay, N., Santos, H., Schaerf, A.: XHSTT: an XML archive for
high school timetabling problems in different countries. Ann. Oper. Res. 218(1),
295–301 (2014)

26. Santos, H.G., Uchoa, E., Ochi, L.S., Maculan, N.: Strong bounds with cut and
column generation for class-teacher timetabling. Ann. Oper. Res. 194(1), 399–412
(2012)

27. Sørensen, M.: A matheuristic for high school timetabling. In: Timetabling at High
Schools, Ph.D. thesis, pp. 137–153. Department of Management Engineering, Tech-
nical University of Denmark (2013)

28. Sørensen, M., Dahms, F.H.: A two-stage decomposition of high school timetabling
applied to cases in Denmark. Comput. Oper. Res. 43, 36–49 (2014)

29. Sørensen, M., Kristiansen, S., Stidsen, T.R.: International timetabling competition
2011: an adaptive large neighborhood search algorithm. In: Proceedings of the
International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2012), pp. 489–492 (2012)

30. Sørensen, M., Stidsen, T.R.: Hybridizing integer programming and metaheuristics
for solving high school timetabling. In: Proceedings of the International Conference
of the Practice and Theory of Automated Timetabling (PATAT 2014), pp. 557–560
(2014)

31. Sørensen, M., Stidsen, T.R., Kristiansen, S.: Integer programming for the gen-
eralized (high) school timetabling problem. In: Proceedings of the International
Conference of the Practice and Theory of Automated Timetabling (PATAT 2014),
pp. 498–501 (2014)

32. Sørensen, M., Stidsen, T.R.: High school timetabling: modeling and solving a large
number of cases in Denmark. In: Proceedings of the International Conference of
the Practice and Theory of Automated Timetabling (PATAT 2012), pp. 359–364
(2012)

33. Sørensen, M., Stidsen, T.R.: Comparing solution approaches for a complete model
of high school timetabling. Technical report, DTU Management Engineering (2013)

34. Valouxis, C., Housos, E.: Constraint programming approach for school timetabling.
Comput. Oper. Res. 30(10), 1555–1572 (2003)

https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-30201-8_36
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28

Epiphytic Trees: Relational Consistency
Applied to Global Optimization Problems

Guilherme Alex Derenievicz(B) and Fabiano Silva

Federal University of Paraná, Curitiba, PR, Brazil
{gaderenievicz,fabiano}@inf.ufpr.br

Abstract. Much effort has been spent to identify classes of CSPs in
terms of the relationship between network structure and the amount of
consistency that guarantees a backtrack-free solution. In this paper, we
address Numerical Constrained global Optimization Problems (NCOPs)
encoded as ternary networks, characterizing a class of such problems for
which a combination of Generalized Arc-Consistency (GAC) and Rela-
tional Arc-Consistency (RAC) is sufficient to ensure a backtrack-free
solution, called Epiphytic Trees. While GAC is a domain filtering tech-
nique, enforcing RAC creates new constraints in the network. Alterna-
tively, we propose a branch and bound method to achieve a relaxed form
of RAC, thus finding an approximation of the solution of NCOPs. We
empirically show that Epiphytic Trees are relevant in practice. In addi-
tion, we extend this class to cover all ternary NCOPs, for which Strong
Directional Relational k-Consistency ensures a backtrack-free solution.

1 Introduction

A Constraint Satisfaction Problem (CSP) consists of finding an assignment of
values to a set of variables that satisfy a constraint network. Local consistency
techniques play a central role in solving CSP, pruning values that surely do not
constitute a solution of the problem. A wide range of local consistencies have
been proposed for finite-domain CSPs, e.g., k-consistency [20], generalized arc-
consistency (GAC) [32], hyper-consistency [26] and relational consistency [15].

Many efforts have been spent to identify classes of CSPs by linking the net-
work structure to the level of local consistency that guarantees a backtrack-free
solution, i.e., a search that solves the problem without encountering any conflict.
Freuder [21] stated that binary networks with width k are solved in a backtrack-
free manner if achieved strong k-consistency. Jégou [26] extended such results
to non-binary networks, showing the relation between hyper-k-consistency and
hypergraph width. Van Beek and Dechter [3] linked the tightness of a network
to the level of relational consistency that guarantees a backtrack-free solution.
Although CSP is generally NP-hard, such investigations may identify classes of
polynomial problems, like tree-structured CSPs and Horn formulas [14].

In the 1980s, Dechter and Pearl [16] proposed directional consistency as a
simpler way to enforce local consistency. In short, a variable ordering is used

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 153–169, 2018.
https://doi.org/10.1007/978-3-319-93031-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_11&domain=pdf
http://orcid.org/0000-0002-3970-1766

154 G. A. Derenievicz and F. Silva

to enforce consistency in a specific direction. Thus, only relations between a
variable and its predecessors must be analyzed. The classes of tractable CSPs
previously introduced are naturally extended to their directional versions.

Most methods for solving finite-domain CSPs are not efficiently applicable
to problems over continuous variables (Numerical CSPs). The well-known arc-
consistency [44], for the sake of example, is generally uncomputable on con-
tinuous case [10,13]. Many alternative methods have been proposed over the
last three decades by combining classical CSP concepts with interval analysis
[34]. In particular, due to the improvement of computer hardware and all the
advancement of constraint propagation, interval methods have been applied on
a wide range of Numerical Constrained global Optimization Problems (NCOPs)
[9,24,28,29,38,43]. Despite the great progress of interval techniques, optimiz-
ers from the mathematical programming community are generally more efficient
than interval solvers [2,36], although such optimizers are non-rigorous, i.e., they
cannot guarantee the global optimality of the solution.

In this paper, we address NCOPs encoded as ternary networks with an objec-
tive function (actually a single variable) to be minimized. We characterize an
important class of such problems for which directional relational arc-consistency
is sufficient to ensure a backtrack-free solution (Sect. 3). We call such a class of
Epiphytic Trees. In the spirit of Freuder [21] and Jégou [26], we define Epiphytic
Trees based on structural properties of the constraint network.

Enforcing relational consistency may create new constraints in the network
[14,15], as opposed to domain filtering techniques (e.g. GAC) that only prune
variables’ domain without changing the network structure. Relational consis-
tency has hardly been used in practice due to the high complexity to be achieved
[8,14]. For this reason, we implement an interval branch and bound method to
enforce a relaxed form of this consistency, thus finding an approximation for the
global minimum of NCOPs (Sect. 4). The goal of our method is to evaluate the
proposed class and not to be compared with state-of-art optimizers, since most
of advanced techniques of interval solvers are not considered in our implemen-
tation. Nonetheless, we are able to solve about 60% of a set of 130 instances
proposed in the COCONUT suite [40] with a close approximation (Sect. 5). To
our surprise, all tested instances have shown to be encoded as Epiphytic Trees.

To complete, in order to generalize Epiphytic Trees we extend this class to
cover all ternary encoded NCOPs, proposing the natural extension of the width
parameter [21] to ternary networks, namely epiphytic width, and proving that
networks with epiphytic width k can be solved in a backtrack-free manner if
achieved strong directional relational k-consistency (Sect. 6).

2 Background

A constraint network R is a triple (X,D, C) where X = {x1, . . . , xn} is a set of
variables with respective domains D = {D1, . . . , Dn} and C = {RC1 , . . . , RCm

}
is a set of constraints such that Ci = {xi1 , . . . , xik} ⊆ X is the scope of the
relation RCi

⊆ Di1 × · · · × Dik , which defines a set of legal assignments to

Epiphytic Trees 155

the variables of Ci. The arity of a constraint is the cardinality of its scope.
A constraint network R is said to be k-ary if all its constraints have arity k
or less. If the domains of the variables are continuous sets of real numbers, R
is said a numerical constraint network. The problem of finding an assignment
of values from domains of variables that satisfy the (numerical) constraint net-
work is abbreviated to (N)CSP. Given a numerical constraint network R and
an objective function f : IRn �→ IR, a Numerical Constrained global Optimiza-
tion Problem (NCOP) consists of finding a solution of R that minimizes f in
D1 × · · · × Dn.

A hypergraph is a structure H = (V,E) where V is a finite set of vertices and
E ⊆ {S ⊆ V |S �= ∅} is a set of edges. A Berge-cycle [7] is an alternating sequence
of edges and vertices (C1, x1, C2, x2, . . . , Cm, xm, Cm+1 = C1) such that m ≥ 2
and xi ∈ (Ci ∩ Ci+1), for all 1 ≤ i ≤ m. A hypergraph is said Berge-acyclic if
it has no Berge-cycles. The constraint hypergraph is a structural representation
of the network, where vertices represent variables and edges represent scopes
of constraints. For abuse of notation, we will often use the terms variable and
vertex as synonyms, as well as the terms constraint and edge. Furthermore, we
represent the constraint network R = (X,D, C) by the hypergraph H = (X,C),
where C = {Ci | RCi

∈ C}.
Many local consistencies have been defined for non-binary networks [15,20,

23,26,32]. These techniques prune values that surely do not constitute a solution
of the problem. However, as opposed to global consistency, in general they cannot
guarantee that a consistent instantiation of a subset of variables can be extended
to all remaining variables while satisfying the whole network. In this paper, we
focus on two main techniques: generalized arc-consistency [32] and relational
arc-consistency [15], both local as only one constraint is considered at once.

Definition 1 (Generalized Arc-Consistency (GAC)).

– A constraint RCi
is GAC relative to xk ∈ Ci iff for every value ak ∈ Dk there

exists an instantiation I of variables in Ci \ {xk} such that I ∪ 〈xk = ak〉
satisfies RCi

.
– A constraint RCi

is (full) GAC iff it is GAC relative to all xk ∈ Ci.
– A network R is (full) GAC iff every constraint of R is GAC.
– A network R is directional GAC, according to an ordering b = (x1, . . . , xn),

iff every constraint RCi
is GAC relative to its earliest variable in b.

Definition 2 (Relational Arc-Consistency (RAC)).

– A constraint RCi
is RAC relative to xk ∈ Ci iff any consistent assignment to

all variables of Ci \ {xk} has an extension to xk that satisfies RCi
.

– A constraint RCi
is (full) RAC iff it is RAC relative to all xk ∈ Ci.

– A network R is (full) RAC iff every constraint of R is RAC.
– A network R is directional RAC, according to an ordering b = (x1, . . . , xn),

iff every constraint RCi
is RAC relative to its latest variable in b.

Dechter and Pear proposed directional consistency motivated by the fact that
“full consistency is sometimes unnecessary if a solution is going to be generated

156 G. A. Derenievicz and F. Silva

by search along a fixed variable ordering” [14, p. 91]. In this work, we address
NCOPs by encoding the objective function x1 = f(x) and the constraint network
R as a ternary NCSP, and performing a search along a fixed variable ordering
starting by x1. The idea behind this strategy is that if a consistent instantiation of
the encoded network with initial (partial) assignment 〈x1 = min D1〉 is achieved
by the search, then such solution minimizes f in D1 × · · · × Dn.

2.1 Interval Arithmetic

A closed interval X = [x, x] is the set of real numbers X = {x ∈ R | x ≤ x ≤ x},
where x, x ∈ IR ∪ {−∞,∞} are the endpoints of X. This definition is naturally
extended for open and half-open intervals. We denote by I the set of all intervals
in IR. A box B ∈ I

n is a tuple of intervals. A box B = (X1, . . . , Xn) is a refinement
of the box D = (Y1, . . . , Yn), denoted by B ⊆ D, iff Xi ⊆ Yi, for all 1 ≤ i ≤ n.

Given two intervals X,Y ∈ I, the interval extension of any binary operator
◦ well defined in IR is defined by (1).

X ◦ Y = {x ◦ y | x ∈ X, y ∈ Y and x ◦ y is defined in IR}. (1)

The set (1) can be an interval, the empty set or a disconnected set of real
numbers (union of intervals or a multi-interval). It is possible to compute X ◦Y ,
for all algebraic and the most common transcendentals functions, only analyzing
the endpoints of X and Y [33], e.g., [x, x] + [y, y] = [x + y, x + y], [x, x] · [y, y] =
[min{xy, xy, xy, xy},max{xy, xy, xy, xy}], etc.

General factorable functions f : IRn �→ IR are also extended to intervals.
An interval function F : I

n �→ I is an interval extension of f : IRn �→ IR if
∀B ∈ I

n : f [B] ⊆ F(B), where f [B] denotes the image of f under B, i.e.
f [B] = {f(x1, . . . , xn) | (x1, . . . , xn) ∈ B}. Generally, if the interval extension F
is defined by the same expression of f , using the respective interval operators,
then F(B) is a good estimate of f [B]. More specifically, if each variable occurs
only once in the expression of f , then F(B) is exactly the image of this function
[4]. The reason that an interval extension may overestimate the image of a real
functional is that interval operators consider each occurrence of a variable as a
different variable.

Example 1. The images of x1
2−x2 and x1x1−x2, under box ([−2, 2], [−1, 1]) are

both [−1, 5]. However, the interval extensions X1
2−X2 and X1X1−X2 computes,

respectively, [−2, 2]2 − [−1, 1] = [−1, 5] and [−2, 2] · [−2, 2] − [−1, 1] = [−5, 5].

2.2 Interval Consistency

Since the late eighties, interval arithmetic has been used to deal with numeri-
cal constrained problems and several techniques have been extended to NCSP
[18,24,25,30,35,38,39,43]. For instance, GAC is easily achieved on ternary con-
straints of the form x1 = x2 ◦1 x3 by computing the intersection of each relevant
domain with the respective projection function:

Epiphytic Trees 157

GAC contractor(x1 = x2 ◦1 x3) :=

⎧
⎪⎨

⎪⎩

D1 ← D1 ∩ (D2 ◦1 D3)
D2 ← D2 ∩ (D1 ◦2 D3)
D3 ← D3 ∩ (D1 ◦3 D2)

(2)

where ◦2 and ◦3 maintain (x1 = x2 ◦1 x3) ⇔ (x2 = x1 ◦2 x3) ⇔ (x3 = x1 ◦3 x2).
Strictly, the box generated by (2) is not complete due to the finite precision

of machine numbers. Furthermore, domains may be disconnected sets of real
numbers (union of intervals). In general, there is no consensus in literature about
the performance of maintaining multi-interval representation [10,18,41]. Many
relaxed consistencies have been proposed to deal with these problems, e.g., hull
consistency [6] and box consistency [5], however, the strong property of GAC
(the existence of local instantiation given any assignment of a single variable)
is lost. Despite the efficiency of the GAC contractor, such procedure may never
terminate when applied to the whole network1 [10,13], unless the hypergraph
holds specific structural properties [11,18] or a maximum precision is imposed.

While the GAC contractor shrinks the domain of variables, an RAC contrac-
tor must tighten the constraint on Ci \ {xk} (if such constraint does not exist,
it must be added to the network). For example, the constraint x1 = x2 + x3 is
not RAC relative to x1 under the box ([1, 3], [0, 2], [0, 2]), as for x2 = x3 = 0 or
x2 = x3 = 2 there is no consistent assignment to x1. We may turn this constraint
RAC by adding the constraints x2 + x3 ≥ 1 and x2 + x3 ≤ 3 to the network.

For binary constraints, GAC and RAC are identical [14].

2.3 Decomposition of Constraint Networks

Generally, in order to apply the GAC contractor on k-ary numerical constraints
a procedure of decomposition that transforms the constraint into an equivalent
set of ternary constraints is used [19]. Such procedure is efficient and solves the
dependence problem (multiple occurrences of the same variable) and the isolation
problem (the projection functions of (2) are hard to obtain if the constraint is a
complex combination of many variables). However, the decomposition increases
the locality problem, as shown in Example 2.

Example 2. Let x1(x2 − x1) = 0 such that D1 = [0, 2] and D2 = [1, 2]. With an
auxiliary variable x3 this constraint is decomposed into a network of two new
constraints: x2−x1 = x3 and x1x3 = 0. Contractor (2) is then repeatedly applied
to both constraints until a fixed box is obtained, which is ([0, 2], [1, 2], [−1, 2]).
Although this box turns each decomposed constraint consistent, the original
constraint is not GAC (for x1 = 0.5, �x2 ∈ D2 such that x1(x2 − x1) = 0).

Due to the locality problem, interval methods are composed by three main
phases that are repeatedly applied until a solution is found: (i) prune: where

1 As occur with the network x1 = x2 and x1 = 0.5 · x2, where only the box B =
([0, 0], [0, 0]) turns both the constraints GAC but the contractor does an endless
bisection on any initial arbitrary box.

158 G. A. Derenievicz and F. Silva

contractors of interval consistency are applied; (ii) local search: where cheap
search methods are used to detect if the current box contains a solution of the
entire network (original problem), e.g., selecting the midpoint of the box or
applying the Newton method; and (iii) branch: where a variable x is chosen and
its domain is bisected to continue the search in a recursive fashion.

Likewise, a NCOP (f,R) can be decomposed into a ternary network by
adding a root variable x1 = f(x). For example, the instance (3) can be encoded
as (4), where x1 is the root variable that encodes the objective function.

min y2
1 − y2 s.t. {y1 ≤ 2y2} (3)

min x1 s.t. {x1 = x2 − y2, x2 = y2
1 , y1 ≤ 2y2} (4)

3 Backtrack-Free Solution of Ternary Encoded NCOPs

We consider the problem of finding a solution of decomposed NCOPs by per-
forming a backtrack-free search along a variable ordering starting by the root
variable. For this, we classify ternary networks in three primary groups, based
on the acyclic behavior of the hypergraph representation.

Let R1 be a network composed by constraints RC1 , RC2 and RC3 , whose
constraint hypergraph is represented in Fig. 1 by black edges, with root x1.

H : x1

C1 x4 C5

x2 x3 C2 C4 x6 x7

x5 C3

Fig. 1. Constraint hypergraph of networks R1 (composed by constraints RC1 , RC2 and
RC3), R2 (composed by constraints RC1 , . . . , RC4) and R3 (all constraints).

Considering the initial partial instantiation 〈x1 = min D1〉 we want to prop-
agate this value over all the network in a backtrack-free manner, which can be
achieved if R1 is GAC [11,18]. For instance, by constraint RC1 the values of x2

and x3 are settled, as GAC ensures that for all x1 ∈ D1 there are x2 ∈ D2 and
x3 ∈ D3 that satisfy RC1 (if multiple values of x2 and x3 satisfy the constraint
an instantiation can be chosen arbitrarily). This process continues for the entire
network, processing constraints with one, and only one, already instantiated
variable. A possible ordering of processed constraints for R1 is (RC1 , RC2 , RC3).
In general, such an ordering must have as its first constraint the one with the
scope containing the root variable and ensure property (5).

Epiphytic Trees 159

|Cpi
∩

i−1⋃

j=1

Cpj
| < 2, for all 1 < i ≤ m in the ordering (RCp1

, . . . , RCpm
). (5)

Actually, an ordering d with these properties exists iff the constraint hyper-
graph is Berge-acyclic, because each constraint in d connects with predecessors
in only one point (the common variable) [11]. Furthermore, given such a con-
straint ordering, directional GAC along d is sufficient to ensure this backtrack-
free instantiation, instead of full GAC.

Next, let R2 be the network obtained by adding to R1 the dashed constraint
RC4 in Fig. 1. In this case, there are no guarantees that the previous instantiation
is consistent with RC4 . More than that, for this network an ordering ensuring (5)
does not exist, which means GAC cannot guarantee the existence of a complete
instantiation extending 〈x1 = min Dx1〉.

We may consider another ordering d′ = (RC1 , RC2 , RC4 , RC3). Here, variables
x1, x2, x3, x4 and x5 can be safety instantiate under directional GAC. However,
the next constraint RC4 has two variables x4 and x5 already valued; in this
way there is no guarantee that there exists a6 ∈ D6 satisfying the constraint.
On the other hand, if RC4 is RAC relative to x6, instead of GAC, then the
existence of a6 ∈ D6 satisfying RC4 is guaranteed and the instantiation can
be extended. Similarly, this strategy can be applied to RC3 , instantiating the
remaining variable x7. The ordering d′ ensures property (6).

|Cpi
∩

i−1⋃

j=1

Cpj
| < 3, for all 1 < i ≤ m in the ordering (RCp1

, . . . , RCpm
). (6)

In general, a network can be ordered according to (6) if its constraint hypergraph
has a “partial acyclic” structure we call Epiphytic Tree (Sect. 3.1). Differently
from the first example, where a Berge-acyclic hypergraph rarely occurs in prac-
tice, a ternary constraint network2 seems to be usually represented by an Epi-
phytic Tree. In such an order, for a backtrack-free instantiation, constraints RCi

sharing only one variable with predecessor constraints must satisfy directional
GAC while those sharing two variables must satisfy directional RAC.

Finally, all possible orderings of constraints starting by RC1 of the network
R3 obtained by adding to R2 the constraint RC5 (Fig. 1) do not ensure (5) nor
(6), which means neither GAC nor RAC is sufficient to ensure a backtrack-free
instantiation of this network. In other words, for all ordering (RCp1

, . . . , RCpm
)

such that x1 ∈ Cp1 there will be some Cpi
such that |Cpi

∩ ⋃i−1
j=1 Cpj

| = 3.

3.1 Epiphytic Trees

Informally, an Epiphytic Tree (ET) is a hypergraph composed by an ordered
set of trees (w.r.t. Berge-cycles), where each tree “sprouts” from its predecessor
through a single edge or from the “ground”. The root of an ET is the root x1 of

2 Obtained by encoding NCOPs.

160 G. A. Derenievicz and F. Silva

the first tree. In this case, the ET is said to be according to x1. For instance, on
Fig. 2 the constraint hypergraph of the network R2 (Fig. 1) is properly drawn to
show that this network is represented by an ET according to x1 (directed edges
indicate the ordering of the trees).

Fig. 2. (a) Epiphytic Tree according to x1 composed by three trees and (b) an illus-
tration of the botanical inspired nomenclature.

Definition 3 (Epiphytic Tree). An Epiphytic Tree (ET) according to x1

is a triple (A, Ω, t), where A = (A1, . . . ,An) is an ordered set of disjointed
hypergraphs Ai = (Vi, Ei), Ω is a set of edges not in

⋃n
i=1 Ei, over the vertices

of
⋃n

i=1 Vi, and t : Ω �→ VΩ is a function that associates each edge Ci ∈ Ω with
one vertex t(Ci) ∈ Ci such that:

1. A1 is a rooted tree in x1 (i.e., connected and Berge-acyclic).
2. ∀Ai>1 ∈ A : there is at most one Ci ∈ Ω such that t(Ci) ∈ Vi and Ai is a

rooted tree in t(Ci) (or in any other vertex if such edge Ci does not exist);
3. if t(Ci) ∈ Vi, then Ci \ {t(Ci)} ⊆ ⋃i−1

j=1 Vj.

The epiphytic height of an ET is the cardinality of its Ω set.

Example 3. The network of Fig. 2 is represented by an ET according to x1 given
by ((A1,A2,A3), Ω, t), where A1 = ({x1, . . . , x5}, {C1, C2}),A2 = ({x6}, ∅) and
A3 = ({x7}, ∅) are disjointed, connected and Berge-acyclic hypergraphs, Ω =
{C3, C4} and t is a function ensuring the conditions of Definition 3 such that
t(C4) = x6 and t(C3) = x7. The epiphytic height of this ET is 2.

Given a network R and its ET (A, Ω, t), we can efficiently obtain a con-
straint ordering d of R that ensures (6), constructing it from first to last ele-
ment following the order (A1, . . . ,An): for each hypergraph Ai, put in d the
edges (constraints) following the topological order of Ai from its root, and then
the edge Ci+1 ∈ Ω (if it exists). On the other hand, given a constraint ordering
(RC1 , . . . , RCm

) ensuring (6), we can construct an ET by putting in Ω the edges
Ci such that |Ci∩

⋃i−1
j=1 Cj | = 2 and defining each hypergraph Ai by the maximal

connected component of the hypergraph induced by the remaining edges.

Epiphytic Trees 161

For any ET, the edges of Ω represent the constraints that must be RAC to
ensure a backtrack-free solution. In this way, the smaller the cardinality of Ω,
the “easier” to solve is the problem. A solution is found in polynomial time when
the constraint hypergraph is a single tree, i.e., Ω = ∅.

There are problems that cannot be represented by ETs. Given a network
R, if there exists a subset of constraints S such that all variables appearing
in this subset occur in more than one constraint, then R does not have such
representation. Theorem 1 formalizes this result by the equivalence between ETs
and constraint orderings ensuring (6). For this, H′ = (V ′, E′) is said a partial
hypergraph of H = (V,E) if E′ ⊆ E and V ′ =

⋃
Ci∈E′ Ci. We denote by H − Ci

the partial hypergraph with edges set E \ {Ci}.

Theorem 1. A constraint network R represented by a hypergraph H has a con-
straint ordering starting by C1 ensuring (6) iff all partial hypergraph H′ of H
with more than one edge have at least one vertex x′ /∈ C1 with degree 1.

Proof. (⇒) The proof is by contradiction. Let d be a constraint ordering of R
ensuring (6) and suppose that there is a partial hypergraph H′ of H with more
than one edge such that all vertices x′ /∈ C1 have degree greater than 1. Let Ck be
the latest edge of H′ in d (k > 1). Since all vertices x′ /∈ C1 have degree greater
than 1, then all x′ ∈ Ck also belong to another edge of H′. However, all other
edges of H′ have index less than k in d and, therefore, |Ck ∩⋃k−1

j=1 Cj | = 3. Hence
d is not an ordering ensuring (6). (⇐) Let R be a network such that all partial
hypergraphs H′ of H with more than one edge have at least one vertex x′ /∈ C1

with degree 1. Let (H1, . . . ,Hm = H) be a sequence of partial hypergraphs such
that H1 has only the edge C1 and, for all 1 ≤ i < m, the hypergraph Hi is
obtained by removing from Hi+1 the edge Ci+1 that contains a vertex x /∈ C1

with degree 1. The sequence of removed edges (C2, . . . , Cm) is such that all Ci

have at least one vertex x that does not belong to any Cj<i (x has degree 1
in Hi). That is, |Ci ∩ ⋃i−1

j=1 Cj | < 3, for all 1 < i ≤ m. Hence the ordering
(RC1 , . . . , RCm

) ensures (6). ��
The proof of Theorem1 motivates a method for finding an ordering according

to x1 of a network R, building a sequence d from last to first element, choosing in
each step an edge with a vertex of degree 1 in the partial constraint hypergraph
obtained by removing processed constraints. Actually, this algorithm is the nat-
ural hypergraph extension of the min-width method presented in [14] (originally
proposed by Freuder [21]), but restricted to always choose a vertex with degree
1. For ternary networks, this method is linear in the number of edges, since we
can update in time O(1) the degree of all vertices at each edge removal. Different
choices of the picked vertex with degree 1 may result in distinct ETs. Considering
the epiphytic height and the “meaning” of the edges in Ω are important tasks to
obtain an accurate representation of the original system. In our implementation
(Sect. 4), we choose edges in order to minimize the epiphytic height.

162 G. A. Derenievicz and F. Silva

4 Achieving Relational Consistency

Enforcing relational consistency generally requires exponential time and space.
Indeed, relational consistency can solve NP-Complete problems [14]. One of the
first algorithms to achieve such consistency, as observed by Dechter and Rish
[17], is the well-known Davis-Putnam procedure for CNF satisfiability. A first
practical algorithm for high levels of relational consistency is introduced in [27].
However, “local consistency techniques that only filter domains like GAC tend to
be more practical than those that alter the structure of the constraint hypergraph
or the constraints’ relations” [8, p. 1]. Enforcing directional RAC on ternary con-
straints adds new binary constraints to the network that changes the structure
of the hypergraph3. Furthermore, adding new constraints is useful only if these
constraints would be processed first, altering the given constraint ordering of the
network. Thus, we avoid adding new constraints by applying a domain filtering
algorithm that achieves a relaxed form of directional RAC.

4.1 Approximating Directional RAC

A constraint RCi
≡ (x1 = x2 ◦ x3) is RAC relative to x1 iff D1 ⊇ D2 ◦ D3, i.e.,

∀a2 ∈ D2, a3 ∈ D3,∃a1 ∈ D1 | a1 = a2 ◦ a3. Without loss of generalization, we
can assume that RCi

is GAC relative to x1 (D1 ⊆ D2 ◦ D3). Thus, the required
RAC condition is reduced to the equality D1 = D2 ◦ D3. If the constraint is not
RAC (i.e., D1 ⊂ D2 ◦ D3) an attempt to achieve such consistency, alternatively
to adding new constraints to the network, is narrowing the result set of D2 ◦D3.
We can do this by narrowing D2 or D3, assured by the inclusion isotonic4 of
interval arithmetic. However, any pruning on such domains may exclude feasible
instantiations, including the optimal one. We address this problem by using a
branch and bound schema with an interval bisection procedure, since there exist
infinite sub-boxes of D2 and D3 that are RAC under RCi

. However, a tolerance
ε must be considered in the equation D1 = D2 ◦ D3, as there is no guarantee
that a bisection procedure can find RAC domains in tractable CPU time. One
implication of this relaxation is that an instantiation of these variables may be
infeasible in RCi

by a factor of ε, what we call ε-feasible.
When applied to all constraints that must be RAC, this procedure is actu-

ally a variant of the usual interval branch and bound for NCOP. By combining
this method with the natural evaluation of the network described in Sect. 3
we obtain an approximation of the global minimum of encoded optimization
problems. Algorithm 1 describes such procedure. It follows a depth-first search
applying the GAC contractor as a local procedure for pruning inconsistent val-
ues. If no empty domain is generated, the instantiation of the network starting
by 〈x1 = min Dx1〉 is attempt, constructing an ordered set IΩ of non ε-feasible

3 The same problem occurs with the results of Freuder [21] and Jégou [26]: achieving
(hyper-)k-consistency creates new constraints of arity k −1 thus changing the width
of the (hyper)graph.

4 Given B, B′ ∈ I
n and an interval function F , if B′ ⊆ B, then F(B′) ⊆ F(B).

Epiphytic Trees 163

constraints. These constraints must be narrowed to achieve RAC, what is done
by the procedure select and bisect. Otherwise, the instantiation is a quasi-
solution of the problem and the search of this branch terminates. Branches that
surely have no solution better than the current optimal candidate are not pro-
cessed by the search, because we added a dynamic constraint x1 < z∗ to the
network. A parameter of complexity of this method is the epiphytic height, as it
bounds the size of IΩ and only variables of constraints in this set are bisected.

Algorithm 1. Relaxed Directional RAC In: (R = (X,D, C), x1, ε) Out: z∗

push(D, queue)
let d be a constraint ordering of R starting by x1 ensuring (6)
while queue �= ∅ do

D ← pop(queue)
D ← directional GAC(X, D, C ∪ {x1 < z∗}, d)
if ∀Di ∈ D : Di �= ∅ then

(z, IΩ) ← attempt instantiation(X, D, C, d, ε)
if IΩ = ∅ then z∗ ← z
else

(D′, D′′) ← select and bisect(X, D, C, d, IΩ)
push(D′, queue)
push(D′′, queue)

endif
end if

end while
return z∗

The procedure attempt instantiation(X,D, C, d, ε) tries to evaluate the
network along the ordering d. Constraints RCi

such that Ci /∈ Ω are instantiated
using the GAC contractor (2), as the network is directionally GAC along d.
Otherwise, let R′

Ci
≡ (x1 = x2 ◦x3) be the constraint equivalent to RCi

, Ci ∈ Ω,
such that t(Ci) = x1. Since x2 and x3 are already instantiated along d, the
procedure evaluates x1 with the value of D1 closest to x2 ◦ x3. If the absolute
error |x1 − (x2 ◦ x3)| is greater than ε, then this instantiation is not ε-feasible,
and RCi

is put in IΩ. The search continues for the next constraint of d whenever
the partial instantiation is ε-feasible or not.

The procedure select and bisect(X,D, C, d, IΩ) selects a constraint RCi
∈

IΩ and split the domain of its variables at the midpoint of D, returning two
sub-boxes D′ and D′′. We provide a heuristic for selecting the constraint RCi

by
choosing the one with the highest index in IΩ . Then, variables x ∈ Ci \ {t(Ci)}
are bisected and the sub-box that minimizes the required ε to turn RCi

RAC is
defined as the new box D′ (and its complement as D′′) to continue the search.

Although directional GAC would be enough if the constraints in Ω were
RAC, as we are approximating this consistency by a factor of ε then high lev-
els of consistency may be used to improve the branch and bound method. For

164 G. A. Derenievicz and F. Silva

instance, the procedure directional GAC can be replaced by a full GAC con-
tractor, narrowing the current box in a more effective way than using only the
directional approach. In our experiments (Sect. 5), we implemented both the
methods.

4.2 Comparison with the Usual Interval Branch and Bound

We compare our method with the usual interval branch and bound for NCOP.
For this, we consider the up-to-date survey given on [1]. First, the general form
of our procedure attempt instantiation is the called upper bounding, and
provides a feasible instantiation of each branched sub-box. Local search methods
are generally used to find such instantiations, e.g. applying the Newton method.
Our strategy simply tries the natural evaluation of the network, as in [37] and [2],
however, it minimizes the objective function by the initial instantiation 〈x1 =
min D1〉. The main difference is that our approach may not find a solution in this
branch, but if it does, then the solution minimizes the encoded objective function
in the current box and no further searches in sub-boxes of this branch are needed.
It is worth noting that others interval solvers [37,42] also relax constraints on
the evaluation phase.

Furthermore, both general interval branch and bound and our approach
present the select and bisect procedure. The choice of which variable and
slice of its domain will be the next branch of the search tree is crucial to the
effectiveness of backtrack searches. Several heuristic have been proposed to date,
e.g., choose the variable with the largest domain or use Smear-based schemas [12].
In this sense, our method provides a non-problem-specific heuristic for choice of
variables on branch phase: right-sided variable of non ε-feasible constraints in
Ω that maximizes the RAC approximation of the network. Such heuristic is an
important contribution of this work, as finding local minima is a great strategy
to reduce the search space in branch and bound algorithms.

To complete, on interval branch and bound methods an interval box may or
may not contain a real solution of the constraint network. There are some tech-
niques to assure the existence of such solution but, in general, the networks must
satisfy some conditions. In our approach, the solution is always an instantiation
of real numbers ε-feasible with the problem.

5 Experimental Results

In order to verify the codification of NCOPs as ETs, we executed Algorithm 1
over an experimental set of 130 instances from COCONUT benchmark [40],
which consists of academic and real life global optimization problems with indus-
trial relevance. We considered only instances with numerical variables and oper-
ators +,−, ∗, / and pow.

First, the experiments showed that Epiphytic Tree is a class of problems
relevant in practice, since all tested instances are represented by this structure.
Then, we considered a set of parameterized executions with ε varying from 10−4

Epiphytic Trees 165

to 101 and a timeout of 7200 s. The method found ε-feasible solutions for 103
instances (about 79%). Using a full GAC contractor5 instead of the directional
one (see Sect. 4.1) this number increased to 108 instances (83%). Of those, 82
instances were solved with a global minimum closest to the best known with an
absolute error less than 10 (74 instances using directional GAC). Figure 3 shows
these results. Some instances with absolute error above 40 presents a relative
error (the ratio of the absolute error to the global minimum) below 60%. The
cluster of points in the 100% line are instances for which our method found a
solution with value zero, while their global minimum are non-zero values.

Fig. 3. Absolute error vs. relative error between the solution found and the best known
of each instance, using (a) directional GAC and (b) full GAC. The circumference of
each point increases according to the number of instances with similar error values.

It is worth remarking that we have not implemented many well-known tech-
niques of current optimization solvers, such as look-ahead and look-back schemas,
high levels of local consistency and more sophisticated local search. Hence, we
cannot compare the CPU time of our method to that of state-of-art solvers.
Nevertheless, in practice, the proposed method is able to find an approximation
of the global minimum of encoded problems; thus, it can be used to improve
optimization solvers in means of pre-processing, local search or upper bounding.

6 Extending the Epiphytic Tree Class

We showed that directional RAC is sufficient to solve structures with property
(6). Now, we extend this study to hypergraphs that cannot be ordered ensuring
such property. For this, we introduce a structural parameter of hypergraphs
called epiphytic width, considering vertex orderings instead of edge orderings.
Many definitions of hypergraph width have been proposed to characterize classes
of CSPs. In particular, Gottlob [22] introduced the notion of hypertree width
5 Using an AC-3 [31] style algorithm with an iteration counter to avoid looping.

166 G. A. Derenievicz and F. Silva

defined over hypertree decompositions; such procedure is generally NP-hard.
Alternatively, epiphytic width is a simpler definition being the natural extension
of the graph width proposed by Freuder to binary CSPs [20].

Definition 4 (Epiphytic Width). The epiphytic width of the vertex xi in the
ordering b = (x1, . . . , xn) is the number of edges C1, . . . , Ck such that xi is the
latest variable of any C1, . . . , Ck (w.r.t. b). The epiphytic width of the ordering
b is the maximum epiphytic width over all xi. The epiphytic width of H is the
minimum epiphytic width over all vertex ordering starting by x1.

Definition 5 (k-Epiphytic Trees). A hypergraph with epiphytic width k is
said a k-Epiphytic Tree.

Theorem 2 shows that k-Epiphytic Tree is a generalization of Epiphytic Tree.

Theorem 2. Epiphytic Tree ≡ 1-Epiphytic Tree.

Proof. We proof this equivalence showing that it is possible to convert an edge
ordering d = (C1, . . . , Cm) ensuring (6) into a vertex ordering b = (x1, . . . , xn)
with epiphytic width 1 such that x1 ∈ C1, and vice versa. (⇒) for k = 1 to m
put in b the vertices of Ck not already in b, such that the last vertex placed is
the one with degree 1 in the partial hypergraph with edges {C1, . . . , Ck} (such
vertex exists as d satisfies (6)). The first two vertices, if placed, have epiphytic
width 0, because they are not the latest vertex of Ck; by the same reason, if they
are already in b, then their epiphytic width will not change. On the other hand,
the third vertex is being placed in b for the first time, because it has degree 1 in
this sub-order. Since it is the latest vertex of Ck in b, then its epiphytic width
is 1. (⇐) for k = 1 to n, mark xk. If this turns out that all vertices of an edge
Ci not in d are marked, put Ci in d. Each edge Ci placed in d have at least the
vertex xk of degree 1 in this sub-order, otherwise it should be already marked.
Hence |Ci ∩ ⋃i−1

j=1 Cj | < 3. ��
Definition 6 (Directional Relational k-Consistency). Given a variable
ordering b = (x1, . . . , xn), a network R is k-directionally relationally consistent
iff for every subset of constraints {RC1 , . . . , RCk

} where the latest variable in any
Ci is xl, and for every A ⊆ {x1, . . . , xl−1}, every consistent assignment to A can
be extended to xl while simultaneously satisfying all the relevant constraints in
{RC1 , . . . , RCk

}. A network is strongly directional relational k−consistent iff it
is directional relational j-consistent for every j ≤ k.

Theorem 3. A ternary constraint network R represented by a k-Epiphytic Tree
can be solved in a backtrack-free manner if R is strongly directional relational
k-consistent.

Proof. Let b = (x1, . . . , xn) be a variable ordering of R with epiphytic width k in
the constraint hypergraph. Thus, every variable xl is the latest variable of at most
k constraints C1, . . . , Ck′ , k′ ≤ k. A consistent instantiation of (x1, . . . , xl−1)
can be extended to xl iff every consistent instantiation of

⋃k′

j=1 Cj \ {xl} ⊆
{x1, . . . , xl−1} can be extended to xl, which is achieved by strong directional
relational k-consistency. ��

Epiphytic Trees 167

Algorithm 1 can be naturally extended to deal with k-Epiphytic Trees. In
general, instead of a single constraint in Ω for each tree of the structure there
will be k constraints and all of them must be satisfied under ε.

7 Conclusion

We characterized a class of ternary networks called k-Epiphytic Trees, for which
strong directional relational k-consistency is sufficient to ensure a backtrack-free
solution. We empirically showed that NCOPs seems to be usually represented by
1-Epiphytic Trees. Despite the importance of these theoretical results, enforc-
ing relational consistency is generally impractical. We proposed a branch and
bound algorithm to achieving a relaxed form of directional RAC and evaluated
such algorithm by executing it on a set of 130 instances from the COCONUT
benchmark, of which about 60% were solved with a close approximation.

Many works have linked the network structure to the level of local consis-
tency that guarantees a backtrack-free solution [21,26]. However, to the best of
our knowledge this is the first time that the relationship between optimization
problems and relational consistency is addressed. Previously, Sam-Haroud and
Faltings [39] found that (3, 2)-relational consistency6 on convex ternary networks
is a sufficient condition for global consistency. Besides the convexity restriction
(which our result does not impose), the main goal of their work was construct a
compact description of the complete solution space, instead of finding the opti-
mum solution. A structure similar to Epiphytic Trees is the cycle-cutset decompo-
sition used on finite-domain CSPs (see [14]), in which a consistent instantiation
of the variables that constitute a cycle (our Ω set) is first addressed by some enu-
meration method to then instantiate the remaining variables in a backtrack-free
manner. However, as the variable ordering initiates by the cycle-cutset variables,
instead of the one representing the objective function, there are no guarantees
that a solution found is optimal.

In future works, we want to deepen the relation between Epiphytic Trees
and other network structures, such as hypergraph’s width and the cycle-cutset
schema. Also, we wish to study which Epiphytic Tree representing the network is
better for the performance of the proposed algorithm. Furthermore, our method
provides a non-problem-specific heuristic for interval branch and bound methods;
thus, it can be used to improve optimization solvers in means of pre-processing,
local search or upper bounding.

Acknowledgments. This work was supported by CAPES - Brazilian Federal Agency
for Support and Evaluation of Graduate Education within the Ministry of Education
of Brazil.

6 A variant of 3-relational consistency where the consistency is considered with relation
to two variables instead of one (see [15]).

168 G. A. Derenievicz and F. Silva

References

1. Araya, I., Reyes, V.: Interval branch-and-bound algorithms for optimization and
constraint satisfaction: a survey and prospects. J. Glob. Optim. 65(4), 837–866
(2016)

2. Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper bounding in inner
regions for global optimization under inequality constraints. J. Glob. Optim. 60(2),
145–164 (2014)

3. van Beek, P., Dechter, R.: Constraint tightness and looseness versus local and
global consistency. J. ACM 44(4), 549–566 (1997)

4. Benhamou, F., Granvilliers, L.: Continuos and interval constraints. In: Rossi, F.,
van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming. Foundations
of Artificial Intelligence, pp. 569–601. Elsevier, New York (2006)

5. Benhamou, F., McAllester, D., van Hentenryck, P.: CLP (intervals) revisited. In:
International Symposium on Logic Programming, pp. 124–138. MIT Press, Cam-
bridge (1994)

6. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and
Boolean constraints. J. Logic Program. 32(1), 1–24 (1997)

7. Berge, C.: Graphs and Hypergraphs. Elsevier Science, Oxford (1985)
8. Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary

constraints. Artif. Intell. 172(6), 800–822 (2008)
9. Bhurjee, A.K., Panda, G.: Efficient solution of interval optimization problem.

Math. Methods Oper. Res. 76(3), 273–288 (2012)
10. Chabert, G., Trombettoni, G., Neveu, B.: New light on arc consistency over con-

tinuous domains. Technical report RR-5365, INRIA (2004)
11. Cohen, D.A., Jeavons, P.G.: The power of propagation: when GAC is enough.

Constraints 22(1), 3–23 (2017)
12. Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global

optimization. SIAM J. Numer. Anal. 34(3), 922–938 (1997)
13. Davis, E.: Constraint propagation with interval labels. Artif. Intell. 32(3), 281–331

(1987)
14. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)
15. Dechter, R., van Beek, P.: Local and global relational consistency. Theoret. Com-

put. Sci. 173(1), 283–308 (1997)
16. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction prob-

lems. Artif. Intell. 34(1), 1–38 (1987)
17. Dechter, R., Rish, I.: Directional resolution: the Davis-Putnam procedure, revis-

ited. In: 4th International Conference on Principles of Knowledge Representation
and Reasoning, pp. 134–145. Morgan Kaufmann, San Francisco (1994)

18. Faltings, B.: Arc-consistency for continuous variables. Artif. Intell. 65(2), 363–376
(1994)

19. Faltings, B., Gelle, E.M.: Local consistency for ternary numeric constraints. In:
15th International Joint Conference on Artificial Intelligence, pp. 392–397. Morgan
Kaufmann, San Francisco (1997)

20. Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21(11), 958–
966 (1978)

21. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–
32 (1982)

22. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

Epiphytic Trees 169

23. Gyssens, M.: On the complexity of join dependencies. ACM Trans. Database Syst.
11(1), 81–108 (1986)

24. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Mono-
graphs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New
York (2004)

25. van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using
a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

26. Jégou, P.: On the consistency of general constraint-satisfaction problems. In: 11th
National Conference on Artificial Intelligence, pp. 114–119. AAAI Press, Washing-
ton, D.C. (1993)

27. Karakashian, S., Woodward, R.J., Reeson, C., Choueiry, B.Y., Bessiere, C.: A
first practical algorithm for high levels of relational consistency. In: 24th AAAI
Conference on Artificial Intelligence, pp. 101–107. AAAI Press, California (2010)

28. Kearfott, R.B.: An interval branch and bound algorithm for bound constrained
optimization problems. J. Glob. Optim. 2(3), 259–280 (1992)

29. Lebbah, Y., Michel, C., Rueher, M.: An efficient and safe framework for solving
optimization problems. J. Comput. Appl. Math. 199(2), 372–377 (2007)

30. Lhomme, O.: Consistency techniques for numeric CSPS. In: 13th International
Joint Conference on Artificial Intelligence, pp. 232–238. Morgan Kaufmann, San
Francisco (1993)

31. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118
(1977)

32. Mackworth, A.K.: On reading sketch maps. In: 5th International Joint Conference
on Artificial Intelligence, pp. 598–606. Morgan Kaufmann, San Francisco (1977)

33. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Soci-
ety for Industrial and Applied Mathematics, Philadelphia (2009)

34. Moore, R.E.: Interval Analysis. Prentice-Hall, New Jersey (1966)
35. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Math-

ematics and Its Applications. Cambridge University Press, Cambridge (1991)
36. Neumaier, A., Shcherbina, O., Huyer, W., Vinkó, T.: A comparison of complete

global optimization solvers. Math. Program. 103(2), 335–356 (2005)
37. Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global

optimization. 4OR 13(3), 247–277 (2015)
38. Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Halsted

Press, New York (1988)
39. Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints.

Constraints 1(1), 85–118 (1996)
40. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Bench-

marking global optimization and constraint satisfaction codes. In: Bliek, C., Jer-
mann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39901-8 16

41. Sidebottom, G., Havens, W.S.: Hierarchical arc consistency for disjoint real inter-
vals in constraint logic programming. Comput. Intell. 8(4), 601–623 (1992)

42. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval lin-
earizations for global optimization. In: 25th AAAI Conference on Artificial Intelli-
gence, pp. 99–104. AAAI Press, California (2011)

43. Van Hentenryck, P.: Numerica: a modeling language for global optimization. In:
15th International Joint Conference on Artificial Intelligence, pp. 1642–1647. Mor-
gan Kaufmann, San Francisco (1997)

44. Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P.H.
(ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill, New York
(1975)

https://doi.org/10.1007/978-3-540-39901-8_16

Learning Heuristics for the TSP by Policy
Gradient

Michel Deudon1, Pierre Cournut1, Alexandre Lacoste2, Yossiri Adulyasak3(B),
and Louis-Martin Rousseau4

1 Polytechnique (France), Palaiseau, France
{michel.deudon,pierre.cournut}@polytechnique.edu

2 Element AI, Montreal, Canada
allac@elementai.ca

3 HEC Montréal, Montreal, Canada
yossiri.adulyasak@hec.ca

4 Polytechnique Montréal, Montreal, Canada
louis-martin.rousseau@cirrelt.ca

Abstract. The aim of the study is to provide interesting insights on
how efficient machine learning algorithms could be adapted to solve com-
binatorial optimization problems in conjunction with existing heuristic
procedures. More specifically, we extend the neural combinatorial opti-
mization framework to solve the traveling salesman problem (TSP). In
this framework, the city coordinates are used as inputs and the neural
network is trained using reinforcement learning to predict a distribution
over city permutations. Our proposed framework differs from the one in
[1] since we do not make use of the Long Short-Term Memory (LSTM)
architecture and we opted to design our own critic to compute a baseline
for the tour length which results in more efficient learning. More impor-
tantly, we further enhance the solution approach with the well-known
2-opt heuristic. The results show that the performance of the proposed
framework alone is generally as good as high performance heuristics (OR-
Tools). When the framework is equipped with a simple 2-opt procedure,
it could outperform such heuristics and achieve close to optimal results
on 2D Euclidean graphs. This demonstrates that our approach based
on machine learning techniques could learn good heuristics which, once
being enhanced with a simple local search, yield promising results.

Keywords: Combinatorial optimization · Traveling salesman
Policy gradient · Neural networks · Reinforcement learning

1 Introduction

Combinatorial optimization is a topic that consists of finding an optimal object
from a finite set of objects. Sequencing problems are those where the best order
for performing a set of tasks must be determined, which in many cases leads to a
NP-hard problem. Specific variations include single machine scheduling and the
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 170–181, 2018.
https://doi.org/10.1007/978-3-319-93031-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_12&domain=pdf

Learning Heuristics for the TSP by Policy Gradient 171

Traveling Salesman Problem (TSP). Sequencing problems are among the most
widely studied problems in Operations Research (OR). They are prevalent in
manufacturing and routing applications.

As in [2], our work is motivated by the fact that many real world problems
arising from the OR community are solved daily from scratch with hand-crafted
features and man-engineered heuristics. We propose a generic framework to learn
heuristics for combinatorial tasks where the output is an ordering of the input.
Our focus in this paper is a data-driven heuristic that can effectively solve the
TSP, the well-known combinatorial problem (due to limited space, the review
on optimization algorithms on TSP is provided in Appendix).

We first review some recent Reinforcement Learning (RL) approaches to
solve the TSP in Sect. 2. We then present our proposed method in Sects. 3 and
4. Finally, we describe experiments and discuss results in Sect. 5.

2 Reinforcement Learning Perspective for the TSP

Reinforcement learning (RL) is a general-purpose framework for decision making
in a scenario where a learner actively interacts with an environment to achieve a
certain goal. In response to an action, the learner receives two types of informa-
tion: his new state in the environment, and a real-valued reward, which is spe-
cific to the task and its corresponding goal. Successful examples include playing
games at high level (Atari [8], Go [9,10]), navigating 3D worlds or labyrinths,
controlling physical systems and interacting with users.

Combinatorial problems such as the TSP are often solved sequentially. Typ-
ically, a state is a partial solution (a sequence of visited cities) and an action is
the next city to visit (among those not yet visited). In response to an action, the
new state is the updated solution and the reward signal could either come when
a tour is completed or be incremental. An RL agent builds on its own expe-
rience - sequences (state, action; reward, state) - to maximize future rewards.
In practice, one could either learn directly a (deterministic or stochastic) map-
ping from state to action, called a policy π(a|s), or learn an auxiliary evaluation
function (Value or Q function) measuring the quality of a state and used to
discriminate among actions based on their usefulness. In both cases, the com-
binatorial structure of the state space S is intractable and calls for the use of
function approximators such as Deep Neural Networks. Deep Learning (DL) is
a general-purpose framework for representation learning. Given an objective, a
Neural Network learns the representation that is required to achieve the objec-
tive. Neural Networks compute hierarchical, abstract representations of the data
(through linear transformations and non-linear activation functions) and learn
features (at several levels of abstractions) by back-propagating gradients of the
loss w.r.t. the parameters, using the chain rule and Stochastic Gradient Descent.

Recurrent Neural Networks (RNN) with Long Short Term Memory (LSTM)
cells [11] have been successfully used for structured inputs and/or outputs
with long term dependencies. More recently, attention based Neural Networks
have significantly improved models in computer vision [12], image [13] or video

172 M. Deudon et al.

[14] captioning, machine translation [15], speech recognition [16] and question
answering [17]. Rather than processing a signal once, attention allows to process
step by step some regions or features of the signal at high resolution to acquire
information when and where needed. At each step, next location is chosen based
on past information and demands for the task. Google Brain’s Pointer Network
[18] is a neural architecture to learn the conditional probability of an output
sequence with elements that are discrete tokens corresponding to positions in
an input sequence. The neural network comprises a RNN encoder-decoder con-
nected with hard attention. At each decoding step, a “pointer” is used to sample
from the action space (in our case, a probability distribution over cities to visit).
It overall parametrizes a stochastic policy over city permutations pθ(π|s) and
can be used for problems such as sorting variable sized sequences, and various
combinatorial optimization problems. Google Brain’s Pointer Network trained
by Policy Gradient [1] could determine good quality solutions for 2D Euclidean
TSP with up to 100 nodes.

In [2], the authors use a graph embedding network called structure2vec (S2V)
to featurize nodes in the graph in the context of their neighbourhood. The
learned greedy algorithm constructs solutions sequentially and is trained by fit-
ted Q-learning to learn the policy together with the graph embedding network.
For the TSP task, Google Brain’s Pointer Network trained by Policy Gradient
performs on par with the S2V network trained by fitted Q-learning.

Based on the recent work [1], we further enhance the approach in several
ways. In particular, instead of relying on the LSTM architecture, our model is
based solely on attention mechanisms. This result in a more efficient learning.
The framework is further enhanced with a simple 2-opt procedure and the app-
roach shows promising results on the TSP. We believe that the outcome of this
study sheds light on a data-driven hybrid heuristic that makes use of ML and
local search techniques to tackle combinatorial optimization.

3 Neural Architecture for TSP

Given a set of n cities s, the Traveling Salesman Problem (TSP) consists in
finding a minimum cost tour visiting all n cities exactly once. The total cost of
a tour is the total distance traveled in the tour. Following [1], we aim to learn
the parameters θ of a stochastic policy over city permutations pθ(π|s), using
Neural Networks and Policy Gradient. Given an input set of points s, the key
idea is to assign higher probability to “good” tours π+ and lower probability to
“undesirable” tours π−.

We follow the general encoder-decoder perspective. The encoder maps an
input set I = (i1, ..., in) to a set of continuous representations Z = (z1, ..., zn).
Given Z, the decoder then generates an output sequence O = (o1, ..., on) of
symbols one element at a time. At each step the model is auto-regressive, using
the previously generated symbols as additional input when generating the next.

Learning Heuristics for the TSP by Policy Gradient 173

3.1 TSP Setting and Input Preprocessing

In this paper, we focus on the 2D Euclidean TSP. Each cityi is described by
its 2D coordinates (xi, yi) in a Euclidean space. We use Principal Component
Analysis (PCA) on the centered input coordinates to exploit spatial invariance
by rotation of all cities. This way, the learned heuristic does not depend on the
orientation of the input s = ((xi, yi))i∈[1,n].

3.2 Encoder

The purpose of our encoder is to obtain a representation for each action (city)
given its context. The output of our encoder is a set of action vectors A =
(a1, ..., an), each representing a city interacting with other cities. Our neural
encoder takes inspiration from recent advances in Neural Machine Translation.
Similarly to [19], our actor and our critic use neural attention mechanisms to
encode cities as a set (rather than a sequence as in [1]).

TSP Encoder. We use the encoder proposed in [19], which relies on atten-
tion mechanisms in place of the traditional convolutions or recurrences. Our self
attentive encoder takes as input an embedded and batch normalized [20] set of
n cities s = (cityi)i∈[1,n] (d-dimensional space). It overall consists in a stack
of N identical layers as shown in Fig. 1 in Appendix. Each layer has two sub-
layers. The first sublayer Multi-head Attention is detailed in the next paragraph.
The second sublayer Feed-Forward consists of two position-wise linear trans-
formations with a ReLU activation in between. The output of each sublayer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented
by the sublayer itself and LayerNorm() stands for layer normalization [20].

Multi Head Attention. Neural attention mechanisms allow queries to interact
with key-value pairs. For the TSP, queries and key-value pairs qi, ki, vi ∈ R

d are
obtained by linearly transforming each cityi ∈ R

d and applying a ReLu non
linearity. Following [19], our attention mechanism is defined as

Attention(Q;K;V) = softmax(
QKT

√
d

)V (1)

where Q = [q1, ..., qn], K = [k1, ..., kn], V = [v1, ..., vn]. Our Multi Head Atten-
tion sublayer outputs a new representation for each city, computed as a weighted
sum of city values, where the corresponding weights are defined by an affinity
function between cities’ queries and keys. As suggested in [19], queries, keys and
values are linearly projected on h different learned subspaces (hence the name
Multi Head). We then apply the attention mechanism on each of these new set
of representations to obtain h dh-dimensional output values for each city which
are concatenated into the final values.

174 M. Deudon et al.

3.3 Decoder

Following [1], our neural network architecture uses the chain rule to factorize
the probability of a tour as

pθ(π|s) =
n∏

t=1

pθ(π(t)|π(< t), s) (2)

Each term on the right hand side of Eq. (2) is computed sequentially with
softmax modules. As opposed to [1] which summarizes all previous actions in a
fixed-length vector, our model explicitly forgets after K = 3 steps, dispensing
with LSTM networks. At each output time t, we map the three last sampled
actions (visited cities) to the following query vector:

qt = ReLu(W1aπ(t−1) + W2aπ(t−2) + W3aπ(t−3)) ∈ R
d′

(3)

Similar to [1], our query vector qt interacts with a set of n vectors to define
a pointing distribution over the action space. Once the next city is sampled, the
trajectory qt+1 is updated with the selected action vector and the process ends
when the tour is completed. See Fig. 2 in Appendix.

Pointing Mechanism. We use the same pointing mechanism as in [1] to predict
a distribution over cities given encoded actions (cities) and a state representa-
tion (query vector). Pointing to a specific position in the input sequence allows
to adapt the same framework to variable length tours. As in [1], our pointing
mechanism is parameterized by two attention matrices Wref ∈ R

dd”,Wq ∈ R
d′d”

and an attention vector v ∈ R
d” as follows:

∀i ≤ n, ut
i =

{
vT tanh(Wrefai + Wqqt) if i �∈ {π(0), ..., π(t − 1)}
−∞ otherwise.

(4)

pθ(π(t)|π(< t), s) = softmax(C tanh(ut/T)) (5)

pθ(π(t)|π(< t), s) predicts a distribution over the set of n action vectors, given
a query qt. Following [1], we use a mask to set the logits (aka log-probabilities)
of cities that already appeared in the tour to −∞, as shown in Eq. (4). This
ensures that our model outputs valid permutations of the input. As suggested
in [1], clipping the logits in [−C,+C] is a way to control the entropy. T is
a temperature hyper-parameter used to control the certainty of the sampling.
T = 1 during training and T > 1 during inference.

4 Training the Model

Supervised learning for NP-hard problems such as the TSP and its variants
is undesirable because the performance of the model is tied to the quality of
the supervised labels and getting supervised labels is expensive (and may be

Learning Heuristics for the TSP by Policy Gradient 175

infeasible). By contrast, RL provides an appropriate and simple paradigm for
training a Neural Network. An RL agent explores different tours and observes
their corresponding rewards.

Following [1], we train our Neural Network by Policy Gradient using the
REINFORCE learning rule [21] with a critic to reduce the variance of the gra-
dients. For the TSP, we use the tour length as reward r(π|s) = L(π|s) (which
we seek to minimize).

Policy Gradient and REINFORCE: Our training objective is the expected
reward, which given an input graph s is defined as:

J(θ|s) = Eπ∼pθ(.|s)[r(π|s)] (6)

During training, our graphs are drawn from a distribution S and the total
training objective is defined as:

J(θ) = Es∼S [J(θ|s)] (7)

To circumvent non-differentiability of hard-attention, we resort to the well-
known REINFORCE learning rule [21] which provides an unbiased gradient of
(6) w.r.t. the model’s parameters θ:

∇θJ(θ|s) = Eπ∼pθ(.|s)[(r(π|s) − bφ(s))∇θlog(pθ(π|s))] (8)

where bφ(s) is a parametric baseline implemented by a critic network to reduce
the variance of the gradients while keeping them unbiased. With Monte-Carlo
sampling, the gradient of (7) is approximated by:

∇θJ(θ) ≈ 1
B

B∑

k=1

(r(πk|sk) − bφ(sk))∇θlog(pθ(πk|sk)) (9)

We learn the actor’s parameters θ by starting from a random policy and
iteratively optimizing them with the REINFORCE learning rule and Stochastic
Gradient Descent (SGD), on instances generated on the fly.

Critic: Our critic uses the same encoder as our actor. It uses once the pointing
mechanism with q = 0d′ . The critic’s pointing distribution over cities pφ(s)
defines a glimpse vector gls computed as a weighted sum of the action vectors
A = (a1, ..., an)

gls =
n∑

i=1

pφ(s)iai (10)

The glimpse vector gls is fed to a 2 fully connected layers with ReLu acti-
vations. The critic is trained by minimizing the Mean Square Error between its
predictions and the actor’s rewards.

176 M. Deudon et al.

5 Experiments and Results

We conduct experiments to investigate the behavior of the proposed method.
We consider a benchmarked test set of 1,000 Euclidean TSP20, TSP50 and
TSP100 graphs. Points are drawn uniformly at random in the 2D unit square.
Experiments are conducted using Tensorflow 1.3.0. We use mini-batches of 256
sequences of length n = 20, n = 50 and n = 100. The actor and critic embed
each city in a 128-dimensional space. Our self attentive encoder consists of 3
stacks with h = 16 parallel heads and d = 128 hidden dimensions. For each head
we use dh = d/h = 8. Our FFN sublayer has input and output dimension d and
its inner-layer has dimension 4d = 512. Queries for the pointing mechanisms
are 360-dimensional vectors (d′ = 360). The pointing mechanism is computed in
a 256-dimensional space (d” = 256). The critic’s feed forward layers consist in
256 and 1 hidden units. Parameters θ are initialized with xavier initializer [22]
to avoid saturating the non-linear activation functions and to keep the scale of
the gradients roughly the same in all layers. We clip our tanh logits to [−10,10]
for the pointing mechanism. Temperature is set to 2.4 for TSP20 and 1.2 for
TSP50 and TSP100 during inference. We use Adam [23] optimizer for SGD with
β1 = 0.9, β2 = 0.99 and ε = 10−9. Our initial learning rate of 10−3 is decayed
every 5000 steps by 0.96. Our model was trained for 20000 steps on two Tesla
K80 (approximately 2h).

Results are compared in terms of solution quality to Google OR tools, a
Vehicle Routing Problem (VRP) solver that combines local search algorithms
(cheapest insertion) and meta-heuristics, the heuristic of Christofides [24], the
well-known Lin-Kernighan heuristic (LK-H) [25] and Concorde exact TSP solver
(which yields an optimal solution). Note that, even though LK-H is a heuristic,
the average tour lengths of LK-H are very close to those of Concorde. Thus, the
LK-H results are omitted from the Table. We refer to Google Brain’s Pointer
Network trained with RL [1] as Ptr. For the TSP, we run the actor on a batch of
a single input graph. The more we sample, the more likely we will visit the opti-
mal tour. Table 1 compares the different sampling methods with a batch of size
128. 2-opt is used to improve the best tour found by our model (model+2opt).
For the instances TSP100, experiments were conducted with our model trained
on TSP50. In terms of computing time, all the instances were solved within
a fraction of second. For TSP50, the average computing time per instance are
0.05s for Concorde, 0.14s for LK-H and 0.02s for OR-Tools on a single CPU, as
well as 0.30s for the pointer network and 0.06s for our model on a single GPU.

The results clearly show that our model is competitive with existing heuristics
for the TSP both in terms of optimality and running time. We provide the
following insights based on the experimental results.

– LSTM vs. Explicitly forgetting: Our results suggest that keeping in mem-
ory the last three sampled actions during decoding performs on par with [1]
which uses a LSTM network. More generally, this raises the question of what
information is useful to take optimal decisions.

Learning Heuristics for the TSP by Policy Gradient 177

Table 1. Average tour length (lower is better)

Task Model Model Ptr Ptr Ptr Christofides OR Concorde

+ 2opt supervised greedy sample tools (optimal)

TSP20 3.84 3.82 3.88 3.89 - 4.30 3.85 3.82

TSP50 5.81 5.77 6.09 5.95 5.80 6.62 5.80 5.68

TSP100 8.85∗ 8.16∗ 10.81 8.30 8.05 9.18 7.99 7.77

*N.B.: Results for TSP100 were obtained with our model trained on TSP50

– Results for TSP100: For TSP100 solved by our model pre-trained on
TSP50 (see also Fig. 3 in Appendix), our approach performs relatively well
even though it was not directly trained on the same instance size as in [1].
This suggests that our model can generalize heuristics to unseen instances.

– AI-OR Hybridization: As opposed to [1] which builds an end-to-end deep
learning pipeline for the TSP, we combine heuristics learned by RL with local-
search (2-opt) to quickly improve solutions sampled from our policy without
increasing the running time during inference. Our actor together with this
hybridization achieves approximately 5x speedup compared to the framework
of [1].

6 Conclusion

Solving Combinatorial Optimization is difficult in general. Thanks to decades of
research, solvers for the Traveling Salesman Problem (TSP) are highly efficient,
able to solve large instances in a few computation time. With little engineering
and no labels, Neural Networks trained with Reinforcement Learning are able
to learn clever heuristics (or distribution over city permutations) for the TSP.
Our code is made available on Github1.

We plan to investigate how to extend our model to constrained variants of
the TSP, such as the TSP with time windows, an important and practical TSP
variant which is much more difficult to solve. We believe that Markov Decision
Processes (MDP) provide a sound framework to address feasibility in general.
One contribution we would like to emphasize here is that simple heuristics can be
used in conjunction with Deep Reinforcement Learning, shedding light on inter-
esting hybridization between Artificial Intelligence (AI) and Operations Research
(OR). We encourage more contributions of this type.

Acknowledgment. We would like to thank Polytechnique Montreal and CIRRELT
for financial and logistic support, Element AI for hosting weekly meetings as well as
Compute Canada, Calcul Quebec and Telecom Paris-Tech for computational resources.
We are also grateful to all the reviewers for their valuable and detailed feedback.

1 https://github.com/MichelDeudon/encode-attend-navigate.

https://github.com/MichelDeudon/encode-attend-navigate

178 M. Deudon et al.

Appendix: supplementary materials

Literature review on optimization algorithms for the TSP

The best known exact dynamic programming algorithm for the TSP has a com-
plexity of O(2nn2), making it infeasible to scale up to large instances (e.g., 40
nodes). Nevertheless, state of the art TSP solvers, thanks to handcrafted heuris-
tics that describe how to navigate the space of feasible solutions in an efficient
manner, can provably solve to optimality symmetric TSP instances with thou-
sands of nodes. Concorde [3], known as the best exact TSP solvers, makes use of
cutting plane algorithms, iteratively solving linear programming relaxations of
the TSP, in conjunction with a branch-and-bound approach that prunes parts
of the search space that provably will not contain an optimal solution.

The MIP formulation of the TSP allows for tree search with Branch & Bound
which partitions (Branch) and prunes (Bound) the search space by keeping track
of upper and lower bounds for the objective of the optimal solution. Search
strategies and selection of the variable to branch on influence the efficiency of
the tree search and heavily depend on the application and the physical meaning
of the variables. Machine Learning (ML) has been successfully used for variable
branching in MIP by learning a supervised ranking function that mimics Strong
Branching, a time-consuming strategy that produces small search trees [4]. The
use of ML in branching decisions in MIP has also been studied in [5].

Fig. 1. Our neural encoder. Figure modified from [19].

Learning Heuristics for the TSP by Policy Gradient 179

Fig. 2. Our neural decoder. Figure modified from [1].

Fig. 3. 2D TSP100 instances sampled with our model trained on TSP50 (left) followed
by a 2opt post processing (right)

For constrained based scheduling, filtering techniques from the OR commu-
nity aim to drastically reduce the search space based on constraints and the
objective. For instance, one could identify mandatory and undesirable edges
and force edges based on degree constraint as in [6]. Another approach consists
in building a relaxed Multivalued Decision Diagrams (MDD) that represents a
superset of feasible orderings as an acyclic graph. Through a cycle of filtering
and refinement, the relaxed MDD approximates an exact MDD, i.e., one that
exactly represents the feasible orderings [7].

180 M. Deudon et al.

References

1. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. In: International Conference on Learning
Representations (ICLR 2017) (2017)

2. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. In: Advances in Neural Information Processing
Systems, pp. 6351–6361 (2017)

3. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)
4. Khalil, E.B., Le Bodic, P., Song, L., Nemhauser, G.L., Dilkina, B.N.: Learning to

branch in mixed integer programming. In: AAAI, pp. 724–731, February 2016
5. Di Liberto, G., Kadioglu, S., Leo, K., Malitsky, Y.: Dash: dynamic approach for

switching heuristics. Eur. J. Oper. Res. 248(3), 943–953 (2016)
6. Benchimol, P., Van Hoeve, W.J., Régin, J.C., Rousseau, L.M., Rueher, M.:

Improved filtering for weighted circuit constraints. Constraints 17(3), 205–233
(2012)

7. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.: Sequencing and single-
machine scheduling. In: Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.
(eds.) Decision Diagrams For Optimization, pp. 205–234. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42849-9 11

8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Petersen, S.: Human-level control through deep reinforcement learning. Nature
518(7540), 529 (2015)

9. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S.: Mastering the game of Go with deep neural networks and tree search. Nature
529(7587), 484–489 (2016)

10. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Chen, Y.: Mastering the game of go without human knowledge. Nature 550(7676),
354 (2017)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Mnih, V., Heess, N., Graves, A.: Recurrent models of visual attention. In: Advances
in Neural Information Processing Systems, pp. 2204–2212 (2014)

13. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: neural image caption generation with visual
attention. In: International Conference on Machine Learning, pp. 2048–2057, June
2015

14. Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H.T.: Video captioning with attention-
based lstm and semantic consistency. IEEE Trans. Multimedia 19(9), 2045–2055
(2017)

15. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: ICLR 2015 (2015)

16. Chan, W., Jaitly, N., Le, Q., Vinyals, O.: Listen, attend and spell: a neural network
for large vocabulary conversational speech recognition. In: 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4960–4964.
IEEE, March 2016

17. Xu, H., Saenko, K.: Ask, attend and answer: exploring question-guided spatial
attention for visual question answering. In: Leibe, B., Matas, J., Sebe, N., Welling,
M. (eds.) European Conference On Computer Vision. LNCS, pp. 451–466. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46478-7 28

https://doi.org/10.1007/978-3-319-42849-9_11
https://doi.org/10.1007/978-3-319-46478-7_28

Learning Heuristics for the TSP by Policy Gradient 181

18. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, pp. 2692–2700 (2015)

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 6000–6010 (2017)

20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456, June 2015

21. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. In: Sutton, R.S. (ed.) Reinforcement Learning, pp. 5–32.
Springer, Boston (1992). https://doi.org/10.1007/978-1-4615-3618-5 2

22. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256, March 2010

23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015
(2015)

24. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem (No. RR-388). Carnegie-Mellon Univ Pittsburgh Pa Management Sciences
Research Group (1976)

25. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21(2), 498–516 (1973)

https://doi.org/10.1007/978-1-4615-3618-5_2

Three-Dimensional Matching Instances
Are Rich in Stable Matchings

Guillaume Escamocher(B) and Barry O’Sullivan

Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Cork, Ireland

guillaume.escamocher@insight-centre.org,
barry.osullivan@insight-centre.org

Abstract. Extensive studies have been carried out on the Stable Match-
ing problem, but they mostly consider cases where the agents to match
belong to either one or two sets. Little work has been done on the three-
set extension, despite the many applications in which three-dimensional
stable matching (3DSM) can be used. In this paper we study the Cyclic
3DSM problem, a variant of 3DSM where agents in each set only rank the
agents from one other set, in a cyclical manner. The question of whether
every Cyclic 3DSM instance admits a stable matching has remained open
for many years. We give the exact number of stable matchings for the
class of Cyclic 3DSM instances where all agents in the same set share
the same master preference list. This number is exponential in the size
of the instances. We also show through empirical experiments that this
particular class contains the most constrained Cyclic 3DSM instances,
the ones with the fewest stable matchings. This would suggest that not
only do all Cyclic 3DSM instances have at least one stable matching, but
they each have an exponential number of them.

1 Introduction

1.1 Different Kinds of Stable Matchings Problems

Stable matching is the problem of establishing groups of agents according to
their preferences, such that there is no incentive for the agents to change their
groups. It has a plethora of applications; the two most commonly mentioned are
the assignment of students to universities and of residents to hospitals [11].

Most of the research done on stable matching focuses on the cases where the
agents belong to either one set (the stable roommates problem) or two (the sta-
ble marriage problem). Far fewer studies have looked at the three-dimensional
version, where every agent in each set has a preference order over couples of
agents from the two other sets, even though it is naturally present in many situ-
ations. It can be used for example to build market strategies that link suppliers,
firms and buyers [15], or in computer networking systems to match data sources,
servers and end users [4]. Even some applications like kidney exchange, which

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 182–197, 2018.
https://doi.org/10.1007/978-3-319-93031-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_13&domain=pdf

Three-Dimensional Matching Instances Are Rich in Stable Matchings 183

is traditionally associated with the stable roommates problem, can be easily
represented in a three-dimensional form [2].

One of the possible reasons for this lack of interest is that, while it is well-
known that every two-dimensional matching instance admits at least one stable
matching [7], some three-dimensional matching instances do not [1]. In fact,
determining whether a given three-dimensional matching instance has a stable
matching is NP-Complete [12,16], even when each agent’s preference order is
required to be consistent, or when ties are allowed in the rankings [8].

Due to the hardness of the general problem, other restrictions on the prefer-
ences have been proposed. With lexicographically acyclic preferences, then there
is always a stable matching, which can easily be found in quadratic time [5]. If
the preferences are lexicographically cyclic, then the complexity of determining
whether a given instance admits a stable matching is still open. For the latter
kind of preferences, some instances with no stable matching have been found [3].

Most of the work in this paper is about the cyclic Three-Dimensional Stable
Matching Problem. In this version, agents from the first set only rank agents
from the second set, agents from the second set only rank agents from the third
set, and agents from the third set only rank agents from the first set. Hardness
results are also known for this variant: imposing a stronger form of stability [9],
or allowing incomplete preference lists [2] both make it NP-Complete to deter-
mine whether an instance admits a stable matching. However, the standard
problem with complete preference lists is still open. It has actually been around
for decades and is considered “hard and outstanding” [17]. Few results about
it have been found since its formulation. To date, it is only known that there
always exists a stable matching for instances with at most 3 agents in each set [3],
a result that has been subsequently improved to include instances with sets of
size 4 [6].

1.2 Master Preference Lists

Whatever the type of matching problem studied, it is generally assumed that
the preferences of each agent are independent from the preferences of the other
agents in the same set. However, this is often not the case in real-life settings.
Indeed, it is not hard to imagine that in many cases hospitals will have close, if
not identical, preferences over which residents they want to accept, or that firms
will often compete for the same top suppliers. Shared preference lists have also
been used to assign university students to dormitory rooms, where the students
were ranked according to a combination of academic record and socio-economic
characteristics [13].

Imposing a master preference list on all agents within a same set leads to
a much more constrained problem. In most cases, the only stable matching is
obtained by grouping the best ranked agent of each set together, the second
best ones together, and so on. This is true for the two-dimensional matching
problem [10]. As we explain in Sect. 3.4, this is also true for many versions of
the three-dimensional Stable Matching (3DSM) problem.

184 G. Escamocher and B. O’Sullivan

We will show in this paper that the cyclic 3DSM problem is singular with
regard to the number of stable matchings for instances with master preference
lists. Not only is this number more than one, but it is extremely large, exponential
in the size of the instances. We will also demonstrate through experiments that
cyclic 3DSM instances with master preference lists are the most constrained
cyclic 3DSM instances, the ones with the fewest stable matchings. Combining
these two results would indicate that it is the natural behavior of all cyclic
3DSM instances to have an exponential number of stable matchings, making
cyclic 3DSM an attractive problem when looking for tractable three-dimensional
matching classes.

We divide the paper in the following manner. In Sect. 2, we recall the stan-
dard definitions of stability for the cyclic 3DSM problem, as well as the notion
of master preference list. In Sect. 3, we give the exact number of stable match-
ings for instances with master preference lists. The bulk of Sect. 3 is about the
cyclic 3DSM problem, but we also take a look at instances from other matching
conventions to see how they compare. We empirically show in Sect. 4 that in
cyclic 3DSM, instances with more balanced preferences have more stable match-
ings, while instances with the most unanimous preferences (master lists) have
the fewest stable matchings. We also observe this behavior in other matching
problems. Finally, we reflect on these findings in the conclusion.

2 General Definitions

Definition 1. A cyclic three dimensional stable matching instance, or cyclic
3DSM instance comprises:

– Three agent sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C = {c1, c2,
. . . , cn} each containing n agents.

– For each agent a ∈ A, a strict preference order >a over the agents from the
set B. For each agent b ∈ B, a strict preference order >b over the agents
from the set C. For each agent c ∈ C, a strict preference order >c over the
agents from the set A.

The number n of agents in each agent set is the size of the instance.

Definition 2. A master list cyclic 3DSM instance is a cyclic 3DSM instance
where all agents within a same set have the same preference order.

All master list instances of a same size are isomorphic, so from now on we
will assume that every master list cyclic 3DSM instance of size n satisfies the
following condition: for all i and j such that 1 ≤ i < j ≤ n, for all agents a ∈ A,
b ∈ B and c ∈ C, we have bi >a bj , ci >b cj and ai >c aj . In other words, the
agents in each agent set are ranked according to the preferences of the previous
agent set.

Definition 3. Let I be a cyclic 3DSM instance of size n. A matching for I is
a set M = {t1, t2, . . . , tn} of n triples such that each triple contains exactly one
agent from each agent set of I, and each agent of I is represented exactly once
in M .

Three-Dimensional Matching Instances Are Rich in Stable Matchings 185

Definition 4. Let I be a cyclic 3DSM instance and let M be a matching for
I. Let t be a triple containing the three agents a ∈ A, b ∈ B and c ∈ C. Let
aM ∈ A, bM ∈ B and cM ∈ C be three agents such that a and bM are in the
same triple of M , b and cM are in the same triple of M , and c and aM are in
the same triple of M . Then we say that t is a blocking triple for M if b >a bM ,
c >b cM and a >c aM .

Note that, from the definition, no two agents in a blocking triple t can be in
the same triple ti in the matching M .

Definition 5. Let I be a cyclic 3DSM instance and let M be a matching for I.
We say that M is a stable matching for I if there is no blocking triple for M .

We present an example of a master list cyclic 3DSM instance and of a match-
ing in Fig. 1. The dots represent the agents and the lines represent the triples
in the matching M = {〈a1, b3, c2〉, 〈a2, b1, c1〉, 〈a3, b4, c4〉, 〈a4, b2, c3〉}. The triple
〈a1, b2, c1〉 is a blocking triple because a1 prefers b2 over the agent it got in M ,
b2 prefers c1 over the agent it got in M , and c1 prefers a1 over the agent it got
in M . Therefore M is not stable.

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

Fig. 1. A matching M for a master list cyclic 3DSM instance of size 4.

3 Stable Matchings for Master List Instances

3.1 Preliminary Notions

In this section we present the main theoretical result of the paper: a function f
such that f(n) is the exact number of stable matchings for a master list cyclic
3DSM instance of size n. In the proof, we will consider two kinds of matchings:
divisible and indivisible.

Definition 6. Let I be a master list cyclic 3DSM instance of size n with three
agent sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn},
and let M be a matching for I. We say that M is divisible if there exists some
p such that 0 < p < n and:

186 G. Escamocher and B. O’Sullivan

– for all i, j such that ai and bj are in the same triple of M , we have i ≤ p ⇔
j ≤ p.

– for all i, j such that ai and cj are in the same triple of M , we have i ≤ p ⇔
j ≤ p.

We also say that p is a divider of M .

We say that a matching that is not divisible is indivisible. Note that a same
divisible matching can have several dividers. To illustrate the notion of divisible
matching, we present in Fig. 2 two examples of divisible matchings for a master
list cyclic 3DSM instance of size 5. The first matching has two dividers, 1 and
4, while the second matching has one divider, 3. The matching from Fig. 1 was
an example of an indivisible matching.

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

Fig. 2. Two divisible matchings.

3.2 Indivisible Matchings

Before presenting the function f that counts the number of total matchings for
a given size n, we look at the function g that counts the number of indivisible
matchings. It turns out that this function is very simple: g(n) = 1 if n = 1 and
g(n) = 3 otherwise.

Proposition 1. Let n ≥ 2 be an integer and let I be a master list cyclic 3DSM
instance of size n. Then there are exactly 3 indivisible stable matchings for I.

To prove the proposition, we are going to define a matching IndMatn for each
size n, then show that IndMatn is stable, and finally show that any indivisible
stable matching for a master list cyclic 3DSM instance of size n is either IndMatn
or one of the two matchings that are isomorphic to IndMatn by rotation of the
agent sets.

Definition 7. Let I be a master list cyclic 3DSM instance with three agent sets
A = {a1, . . . , an}, B = {b1, . . . , bn} and C = {c1, . . . , cn} of size n > 0. We call
IndMatn the matching {t1, t2, . . . , tn} for I defined in the following way:

Three-Dimensional Matching Instances Are Rich in Stable Matchings 187

1. If n = 1, IndMatn = {〈a1, b1, c1〉}. If n = 2, IndMatn = {〈a1, b2, c1〉,
〈a2, b1, c2〉}.
If n = 3, IndMatn = {〈a1, b2, c1〉, 〈a2, b3, c3〉, 〈a3, b1, c2〉}.

2. If n > 3: t1 = 〈a1, b2, c1〉, t2 = 〈a2, b3, c4〉 and t3 = 〈a3, b1, c2〉.
3. If n > 3 and n ≡ 1 mod 3: tn = 〈an, bn, cn−1〉.
4. If n > 3 and n ≡ 2 mod 3: tn−1 = 〈an−1, bn, cn−2〉 and tn = 〈an, bn−1, cn〉.
5. If n > 3 and n ≡ 0 mod 3: tn−2 = 〈an−2, bn−1, cn−3〉, tn−1 = 〈an−1, bn, cn〉

and tn = 〈an, bn−2, cn−1〉.
6. If i ≡ 1 mod 3, i > 3 and i ≤ n − 3: ti = 〈ai, bi+1, ci−1〉, ti+1 =

〈ai+1, bi+2, ci+3〉 and ti+2 = 〈ai+2, bi, ci+1〉.

IndMat11:
a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a6 b6 c6

a7 b7 c7

a8 b8 c8

a9 b9 c9

a10 b10 c10

a11 b11 c11

IndMat12:
a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

a5 b5 c5

a6 b6 c6

a7 b7 c7

a8 b8 c8

a9 b9 c9

a10 b10 c10

a11 b11 c11

a12 b12 c12

Fig. 3. The matchings IndMat11 and IndMat12. (Color figure online)

IndMatn can be seen as a set of n/3 gadgets Gi, with each Gi composed of
the three triples ti, ti+1 and ti+2 for each i such that i ≡ 1 mod 3. All these

188 G. Escamocher and B. O’Sullivan

gadgets are isomorphic by translation, apart from the first one and the last one.
Figure 3 shows two examples of IndMatn matchings, one with n = 11 and the
other with n = 12. Both matchings are almost identical, but they each illustrate
a different type of final gadget. To help the reader clearly visualize the structure
of the matchings, we alternated the colors and line styles of the gadgets.

Lemma 1. Let I be a master list cyclic 3DSM instance of size n. Then
IndMatn is a stable matching for I.

Proof. For each i such that i ≡ 1 mod 3 and i ≤ n, let Gi be the gadget
composed of the three triples ti, ti+1 and ti+2. Let t = 〈a, b, c〉 be a blocking
triple for IndMatn.

Suppose first that a, b and c are from the same gadget Gi. From Definition 7,
we have ti = 〈ai, bi+1, cj〉 with either j = i − 1 or j = i, ti+1 = 〈ai+1, bi+2, ck〉
with either k = i + 2 or k = i + 3, and ti+2 = 〈ai+2, bi, ci+1〉. Two agents from
a same triple in a matching cannot be part of a same blocking triple for this
matching, and there are three triples in Gi, therefore at least one agent from
each triple is part of t. bi+1 cannot be part of t because it got assigned ci, which
is the best ranked agent among the agents of C that are in Gi. Likewise, cj
cannot be part of t because it got assigned aj , which is the best ranked agent
among the agents of A that are in Gi. So a = ai. bi+2 cannot be part of t,
because it is not as well ranked as bi+1, the agent from B that got assigned to
ai in IndMatn. So b = bi. So ci+1 cannot be part of t, because it shares a triple
in IndMatn with bi. So c = ck. So either c = ci+2 or c = ci+3. However, neither
ci+2 nor ci+3 is as well ranked as ci+1, the agent from B that got assigned to bi.
So it is not possible to have a blocking triple for IndMatn with all three agents
of the triple in the same gadget Gi.

Suppose now that a, b and c are not all in the same three-triple gadget. Then
there must be i and j with i < j such that a is in Gi and b is in Gj , or b is
in Gi and c is in Gj , or c is in Gi and a is in Gj . From Definition 7 and by
construction of the gadgets, if a is in Gi and b is in Gj then the agent from B
that got assigned to a in IndMatn is better ranked in the preference order of a
than b is, so t cannot be a blocking triple. Similarly, if c is in Gi and a is in Gj

then the agent from A that got assigned to c in IndMatn is better ranked in the
preference order of c than a is, so t cannot be a blocking triple. So b is in Gi and
c is in Gj . The only way for c to be better ranked in the preference order of b
than the agent from C that got assigned to b in IndMatn is if j = i+3, b = bi+2

and c = cj−1 = ci+2. Let r be such that a = ar and let s be such that bs got
assigned to ar in IndMatn. If r ≤ i + 2, then from Definition 7 we have bs ≥a b
and a prefers the agent of B it got assigned in IndMatn over b. If r ≥ i+3, then
from Definition 7 we have ai+1 ≥c a and c prefers the agent of A it got assigned
in IndMatn over a. Either way, t cannot be a blocking triple and we have the
result. 	

Lemma 2. Let I be a master list cyclic 3DSM instance of size n and let M be
a matching for I. If there are some ai (respectively bi, ci) and bj (respectively
cj, aj) in the same triple of M such that j ≥ i + 2, then M is not stable.

Three-Dimensional Matching Instances Are Rich in Stable Matchings 189

Proof. We only do the proof for ai and bj , as the other two cases are exactly the
same after rotation of the agent sets.

Suppose that we have a matching M = {t1, t2, . . . , tn} for I such that ti =
〈ai, bj , ck〉 with j ≥ i + 2. The triples ti′ = 〈ai′ , bj′ , ck′〉 and ti′′ = 〈ai′′ , bj′′ , ck′′〉
will be used in the proof. We distinguish the two cases k ≤ i and k > i.

– k ≤ i: from the pigeonhole principle we know that at least one of the i + 1
agents {c1, c2, . . . , ci+1} got assigned an agent ai′ ∈ A such that i < i′. Let
k′ ≤ i + 1 be such that ck′ is one such agent. There cannot be a bijection in
M among the sets {b1, b2, . . . , bi+1} and {c1, c2, . . . , ci+1} because bj is not
in the former but got assigned an agent from the latter. So we know that at
least one of the agents b1, b2, . . . , bi+1 got assigned an agent ck′′ ∈ C such
that k′′ > i + 1. Let j′′ ≤ i + 1 be such that bj′′ is such an agent. We have
bj′′ >ai

bj (because j ≥ i + 2), ck′ >bj′′ ck′′ (because k′ ≤ i + 1 < k′′) and
ai >ck′ ai′ (because i < i′), so 〈ai, bj′′ , ck′〉 is a blocking triple for M and M
is not stable.

– k > i: none of the i agents {c1, c2, . . . , ci} got assigned ai, so from the pigeon-
hole principle we know that at least one of them got assigned an agent ai′ ∈ A
such that i < i′. Let k′ ≤ i be such that ck′ is one such agent. Also from the
pigeonhole principle, we know that among the i + 1 agents {b1, b2, . . . , bi+1}
at least one of them got assigned an agent ck′′ ∈ C such that k′′ > i. Let
j′′ ≤ i + 1 be such that bj′′ is such an agent. We have bj′′ >ai

bj (because
j ≥ i+2), ck′ >bj′′ ck′′ (because k′ ≤ i < k′′) and ai >ck′ ai′ (because i < i′),
so 〈ai, bj′′ , ck′〉 is a blocking triple for M and M is not stable. 	

Lemma 3. Let I be a master list cyclic 3DSM instance of size n and let M be
an indivisible stable matching for I. Then either M is IndMatn, or M is one
of the two matchings that are isomorphic to IndMatn by rotation of the agent
sets.

Proof. Let M = {t1, t2, . . . , tn} be an indivisible matching for I. Without loss of
generality, assume that ai is in ti for every i. We are going to show by induction
that every ti is equal to the ith triple of IndMatn, modulo rotation of the agent
sets.

Case i = 1: if a1, b1 and c1 are in three different triples of M , then they
form a blocking triple for M because they each prefer each other over the agent
they got assigned in M . If they are in the same triple of M , then n = 1 because
M is indivisible; since IndMat1 = 〈a1, b1, c1〉 from Definition 7.1, we have the
Lemma. So we can assume from now on that n > 1 and that exactly two agents
among a1, b1 and c1 are in the same triple in M . We will assume that a1 and c1
are the ones in the same triple. All three cases are isomorphic by rotation of the
agent sets; the case we chose will lead to IndMatn, while the other two would
have led to one of the matchings that are isomorphic to IndMatn by rotation
of the agent sets.

We know that t1 = 〈a1, bj , c1〉 with j ≥ 2. From Lemma 2, we know that
j ≤ 2. So t1 = 〈a1, b2, c1〉.

190 G. Escamocher and B. O’Sullivan

Inductive step: suppose now that the triples t1, t2, . . . , tp are the same as the
first p triples of IndMatn for some p such that 1 ≤ p < n. We are going to prove
that tp+1 is the same triple as the (p + 1)th triple in IndMatn. With plast the
highest p < n such that p ≡ 1 mod 3, there are five possibilities to consider.

– p ≡ 1 mod 3 and p < plast: since plast is also congruent to 1 modulo 3, we
also have p ≤ n − 3. From Definition 7 we know that the agents that have
already been assigned are a1, a2, . . . , ap from A, b1, b2, . . . , bp−1 and bp+1 from
B, and c1, c2, . . . , cp from C. So bp and some ck are in the same triple, with
k ≥ p + 1. From Lemma 2, we know that k ≤ p + 1. So bp and cp+1 are in
the same triple of M . ap+1 cannot be in this triple, because otherwise either
n would be equal to p + 1 or p + 1 would be a divider of M . So some ai is
assigned to cp+1 with i ≥ p + 2. From Lemma 2, we know that i ≤ p + 2. So
ap+2 is assigned to cp+1 and tp+2 = 〈ap+2, bp, cp+1〉 (which proves the next
bullet point). So tp+1 = 〈ap+1, bj , ck〉 for some j ≥ p + 2 and k ≥ p + 2.
From Lemma 2, we have j ≤ p + 2 and therefore bj = bp+2. We cannot have
k = p+ 2, because otherwise either n would be equal to p+ 2 or p+ 2 would
be a divider of M . So k ≥ p + 3. From Lemma 2, k ≤ p + 3 and therefore
tp+1 = 〈ap+1, bp+2, cp+3〉, which from Definition 7.2 and 7.6 is the same triple
as the (p + 1)th triple of IndMatn.

– p ≡ 2 mod 3 and p < plast: let p′ = p − 1. So p′ ≡ 1 mod 3 and p′ <
plast. So from the proof of the previous bullet point we know that tp′+2 =
〈ap′+2, bp′ , cp′+1〉. So tp+1 = 〈ap+1, bp−1, cp〉, which from Definition 7.2 and
7.6 is the same triple as the (p + 1)th triple of IndMatn.

– p ≡ 0 mod 3 and p < plast: from Definition 7 we know that the agents that
have already been assigned are a1, a2, . . . , ap from A, b1, b2, . . . , bp from B,
and c1, c2, . . . , cp−1 and cp+1 from C. So cp is in the same triple as some
ai with i ≥ p + 1. From Lemma 2, we know that i ≤ p + 1. So i = p + 1
and tp+1 = 〈ap+1, bj , cp〉 for some j ≥ p + 1. From Lemma 2, we know that
j ≤ p + 2 so either bj = bp+1 or bj = bp+2. If n = p + 1, then we have
tp+1 = 〈ap+1, bp+1, cp〉 which from Definition 7.3 is equal to the (p + 1)th

triple of IndMatn. If n > p + 1, then bj = bp+2, because otherwise p + 1
would be a divider of M , and tp+1 = 〈ap+1, bp+2, cp〉. So from Definition 7.5
and 7.6, tp+1 is equal to the (p + 1)th triple of IndMatn.

– p = plast: since p < n, either n = p + 1 or n = p + 2. If n = p + 1, then
from Definition 7 only the agents ap+1 ∈ A, bp ∈ B and cp+1 ∈ C have not
been assigned. So tp+1 = 〈ap+1, bp, cp+1〉, which from Definition 7.4 is the
same as the (p + 1)th tuple of IndMatn. If on the other hand n = p + 2,
then from Definition 7 only the agents ap+1 and ap+2 in A, bp and bp+2 in B,
and cp+1 and cp+2 in C remain to be assigned. From Lemma 2, cp+2 cannot
be assigned to bp, so cp+1 is assigned to bp. ap+1 cannot be in the same
triple as these two agents, because otherwise p + 1 would be a divider of
M . So ap+2 is in the same triple as bp and cp+1 and tp+2 = 〈ap+2, bp, cp+1〉.
Consequently, the three other remaining agents are assigned together in the
triple tp+1 = 〈ap+1, bp+2, cp+2〉. This is from Definition 7.5 the same triple as
the (p + 1)th triple of IndMatn.

Three-Dimensional Matching Instances Are Rich in Stable Matchings 191

– p = plast + 1: since p < n, n = p + 1 and only one agent from each agent
set has not been assigned. From Definition 7, we know that these agents are
ap+1 ∈ A, bp−1 ∈ B and cp ∈ C. So tp+1 = 〈ap+1, bp−1, cp〉, which is from
Definition 7.5 the same triple as the (p + 1)th triple of IndMatn.

We did not consider the case where p = plast + 2, because it cannot happen if
p < n.

We have shown that t1 is equal to the first triple in IndMatn and that if
n > 1 and the first p triples of M are equal to the first triples of IndMatn for
1 ≤ p < n, then tp+1 is equal to the (p + 1)th triple of IndMatn. By induction,
this completes the proof. 	

Lemmas 1 and 3 together prove Proposition 1.

3.3 Main Theorem

Before introducing the Theorem, we need one last Lemma.

Lemma 4. Let I be a master list cyclic 3DSM instance of size n and let p be
an integer such that 1 ≤ p < n. Then the number of stable matchings for I that
admit p as their lowest divider is equal to f(n−p) times the number of indivisible
stable matchings for a master list cyclic 3DSM instance of size p.

Proof. Let M = {t1, t2, . . . , tn} be a matching for I such that p is the lowest
divider of M and ai ∈ ti for each i. Let M1 = {t1, t2, . . . , tp} and let M2 =
{tp+1, tp+2, . . . , tn}. Since p is the lowest divider of M , M1 is indivisible. We
show that a triple 〈ai, bj , ck〉 cannot be a blocking triple for M if it is across the
divider p, that is if it fulfills one of the three following conditions: i ≤ p and
j > p, j ≤ p and k > p, k ≤ p and i > p. Let t be such a triple. Without loss of
generality, assume that i ≤ p and j > p. Let bm be the agent of B assigned to ai
in M . Since p is a divider of M , we have m ≤ p < j. So bm >ai

bj . So t cannot be
a blocking triple for M . So any blocking triple for M is either a blocking triple
for M1 or a blocking triple for M2. So M is stable if and only if both M1 and
M2 are stable, and we have the result. 	

We now have all the tools we need to state and prove the Theorem:

Theorem 1. Let f be the function from N to N such that f(1) = 1, f(2) = 4
and for every n such that n > 2 we have f(n) = 2f(n−2)+2f(n−1). Let n > 0
be an integer and let I be a master list cyclic 3DSM instance of size n. Then
there are exactly f(n) stable matchings for I.

Proof. For n = 1 and n = 2 there are 1 and 4 matchings respectively, and they
are all trivially stable. Suppose now that n > 2. Let g be the function such that
for each integer q ≤ n, g(q) is the number of indivisible matchings for master
list cyclic 3DSM instances of size q. For each p such that 1 ≤ p < n, let fp be

192 G. Escamocher and B. O’Sullivan

the function such that fp(n) is the number of stable matchings for a master list
cyclic 3DSM instance of size n that have p as their lowest divider. We have:

f(n) = (
n−1∑

p=1

fp(n)) + g(n)

From Lemma 4 we have:

f(n) = (
n−1∑

p=1

g(p)f(n − p)) + g(n)

From Proposition 1, we know that g(1) = 1 and that g(p) = 3 for every p ≥ 2.
Therefore we have:

f(n) = f(n − 1) + 3f(n − 2) + (
n−1∑

p=3

3f(n − p)) + 3

= 2f(n − 2) + f(n − 1) + f(n − 2) + (
n−2∑

p=2

3f(n − 1 − p)) + 3

= 2f(n − 2) + f(n − 1) + (
n−2∑

p=1

g(p)f(n − 1 − p)) + g(n − 1)

= 2f(n − 2) + 2f(n − 1)

	

Note that f(n) > 2f(n − 1) for all n, so master list cyclic 3DSM instances

have a number of stable matchings which is exponential in their size.

3.4 Other Matching Problems

An obvious follow-up to our main theorem would be to determine how the num-
ber of stable matchings for master list cyclic 3DSM instances compares to the
number of stable matchings for master list instances of matching problems with
different rules. We first look at what happens when imposing a stronger form of
stability, which is based on the notion of weakly blocking triple [2].

Definition 8. Let I be a cyclic 3DSM instance and let M be a matching for I.
Let t be a triple containing the three agents a ∈ A, b ∈ B and c ∈ C such that
t does not belong to M . Let aM ∈ A, bM ∈ B and cM ∈ C be three agents such
that a and bM are in the same triple of M , b and cM are in the same triple of
M , and c and aM are in the same triple of M . Then we say that t is a weakly
blocking triple for M if b ≥a bM , c ≥b cM and a ≥c aM .

Three-Dimensional Matching Instances Are Rich in Stable Matchings 193

Informally, a triple t is weakly blocking for some matching M if each agent
of t either prefers t over the triple it got assigned to in M , or is indifferent. Note
that since we explicitly require t not to belong in M , at least one of the three
preferences will be strict.

Definition 9. Let I be a cyclic 3DSM instance and let M be a matching for I.
We say that M is a strongly stable matching for I if there is no weakly blocking
triple for M .

Strong stability is more restrictive than standard stability, therefore we can
expect a lower number of stable matchings. Indeed, the number of strongly stable
matchings is always equal to 1 for master list instances.

Proposition 2. Let I be a master list cyclic 3DSM instance of size n. Then the
number of strong stable matchings for I is equal to 1.

Proof. Let M be a strongly stable matching for I. Let p be the largest integer
such that 0 ≤ p ≤ n and for each 0 < q ≤ p the triple 〈aq, bq, cq〉 belongs to M .
Suppose that p < n. Therefore the triple t = 〈ap+1, bp+1, cp+1〉 does not belong
to M . Let i, j and k be such that ai is assigned to cp+1 in M , bj is assigned to
ap+1 in M and ck is assigned to bp+1 in M . We know that for each q such that
1 ≤ q ≤ p, aq, bq and cq have been assigned to each other in M . So i ≥ p + 1,
j ≥ p + 1 and k ≥ p + 1. So bp+1 ≥a bj , cp+1 ≥b ck and ap+1 ≥c ai. So from
Definition 8, t is a weakly blocking triple for M . Therefore p = n and the only
possible strongly stable matching is the matching M0 which contains the triple
〈ap, bp, cp〉 for each 1 ≤ p ≤ n.

It only remains to prove that M0 is strongly stable. Let t = 〈ai, bj , ck〉 be a
triple. If i > j, then bi <ai

bj and ai strictly prefers bi, the agent from B it got
assigned to in M0, over bj , the agent from B it got assigned to in t, which means
that t cannot be a weakly blocking triple for M0. So if t is weakly blocking for
M0, then i ≤ j. By the same reasoning, if t is weakly blocking for M0, then j ≤ k
and k ≤ i. So if t is weakly blocking for M0, then i = j = k. But in this case, t is
in M0 by construction and therefore cannot be a weakly blocking triple for M0.
So there is no weakly blocking triple for M0. Therefore M0 is strongly stable,
which completes the proof. 	

The same very simple proof can be used to show that for at least two
more matching problems, namely lexicographically cyclic 3DSM (defined in [3])
and lexicographically acyclic 3DSM (defined in [5]), master list instances
of size n have exactly one stable matching, which is also of the form
{〈a1, b1, c1〉, 〈a2, b2, c2〉, . . . , 〈an, bn, cn〉}. This result holds for the extensively
studied two-dimensional stable matching (2DSM) too [10]. This indicates that
master list cyclic 3DSM instances offer many more stable matchings than their
master list counterparts in some others of the most widely used matching
problems.

194 G. Escamocher and B. O’Sullivan

4 Stable Matchings for Instances Without Master
Preference Lists

If master list cyclic 3DSM instances have fewer stable matchings than other
instances from the same problem, then our main Theorem implies that all cyclic
3DSM instances have a number of stable matchings exponential in their size.
This is not a trivial assumption, so we need further study to determine what
happens to the number of stable matchings when considering other instances.

In this section, we empirically investigate the evolution of the number of
stable matchings when going from a master list cyclic 3DSM instance, which
can be seen as an instance with unanimous preferences, to its opposite: a cyclic
3DSM instance with evenly split preferences. We will need a few definitions to
formally describe our procedure.

Definition 10. Let I be a cyclic 3DSM instance of size n. Let g and g′ be two
agents of I, such that strictly more than n/2 agents prefer g over g′. Then we
call adding an ML-step to I the act of switching g and g′ in the preference list
of an agent that prefers g over g′.

Definition 11. We say that a cyclic 3DSM instance is perfectly split if it is
not possible to add an ML-step to I.

Our experiments consist in starting from a master list cyclic 3DSM instance
and randomly adding ML-steps until we reach a perfectly split instance. We
summarize our results in Figs. 4 and 5. In Fig. 4, we added ML-steps to 1000
starting master list cyclic 3DSM instances of size 8, until getting a perfectly
split instance. Note that the number of steps required to arrive to a perfectly
split instance is not the same in each of the runs, so the last few data points
represent fewer than 1000 instances. This explains why the “minimum” and
“maximum” plots seem to converge towards the “average” one at the end. The
exact number of instances represented by each data point can be found in Table 1.
The numbers of stable matchings were obtained using Cachet [14], an exact SAT
model counter.

The figure clearly confirms what we suspected: the cyclic 3DSM instances
with the fewest stable matchings are the ones with master preference lists, or
are at least very similar to these instances. More precisely, the number of stable
matchings seems to initially increase steadily when going away from master list
instances, before plateauing when a certain number of ML-steps has been added.

Table 1 contains the exact numbers for Cyclic 3DSM instances. The last
line, not represented in Fig. 4, describes the number of stable matchings for 1000
completely random cyclic 3DSM instances, whose construction was not related in
any way to master list instances or ML-steps. This serves as a control experiment,
to make it clear that our results are not dependent on the particular way that
we build our instances.

Figure 5 illustrates the results of the same experiments on two other stable
matching variants: 2DSM and cyclic 3DSM with strong stability, both of size 8.

Three-Dimensional Matching Instances Are Rich in Stable Matchings 195

Fig. 4. Number of stable matchings when adding ML-steps to cyclic 3DSM instances.

Fig. 5. Number of stable matchings for 2DSM instances and of strongly stable match-
ings for cyclic 3DSM instances.

Here again, we added ML-steps to 1000 starting master list instances of each
problem. The numbers of (strongly) stable matchings are much lower for these
two problems, yet we can observe the same behavior of a steady increase followed

196 G. Escamocher and B. O’Sullivan

Table 1. Number of stable matchings in 3DSM instances.

ML-steps # instances # SM (minimum) # SM (average) # SM (maximum)

0 1000 1552 1552 1552

1 1000 1552 2009 4544

2 1000 1508 2561 8917

4 1000 1552 3779 17242

8 1000 1552 6669 30831

16 1000 2681 13095 44766

32 1000 4529 20442 79129

64 1000 5201 20599 64234

128 1000 6615 20216 74233

256 1000 6615 21683 71376

512 1000 7716 21965 77204

1024 993 7515 21084 78257

2048 953 6989 21478 88481

4096 760 7085 21235 67604

8192 301 7515 21201 69996

16384 24 11904 20713 40688

Random 1000 4932 20521 105070

by a plateau. This empirically shows that instances with master preference lists
are linked with very high constrainedness in many stable matching problems.

5 Conclusion

We have given the exact number of stable matchings for cyclic 3DSM instances
with master preference lists. This number is 1 for many other stable matching
problems, but it is exponential in the case of the Cyclic 3DSM problem.

We have also shown through experiments that despite their high number
of stable matchings, cyclic 3DSM instances with master preference lists are the
most constrained instances of the cyclic 3DSM problem, the ones with the fewest
stable matchings, a behavior that mirrors what can be observed in other standard
matching problems.

Combining these two results, we propose the following conjecture: each cyclic
3DSM instance has a number of stable matchings exponential in its size. If true,
this would make the cyclic 3DSM problem a very interesting object of research
when looking for positive and/or tractable three-dimensional matching results.

Acknowledgements. This research has been funded by Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289.

Three-Dimensional Matching Instances Are Rich in Stable Matchings 197

References

1. Alkan, A.: Nonexistence of stable threesome matchings. Math. Soc. Sci. 16(2),
207–209 (1988)

2. Biró, P., McDermid, E.: Three-sided stable matchings with cyclic preferences. Algo-
rithmica 58(1), 5–18 (2010)

3. Boros, E., Gurvich, V., Jaslar, S., Krasner, D.: Stable matchings in three-sided
systems with cyclic preferences. Discrete Math. 289(1–3), 1–10 (2004)

4. Cui, L., Jia, W.: Cyclic stable matching for three-sided networking services. Com-
put. Netw. 57(1), 351–363 (2013)

5. Danilov, V.: Existence of stable matchings in some three-sided systems. Math. Soc.
Sci. 46(2), 145–148 (2003)

6. Eriksson, K., Sjöstrand, J., Strimling, P.: Three-dimensional stable matching with
cyclic preferences. Math. Soc. Sci. 52(1), 77–87 (2006)

7. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

8. Huang, C.-C.: Two’s company, three’s a crowd: stable family and threesome room-
mates problems. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 558–569. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75520-3 50

9. Huang, C.: Circular stable matching and 3-way kidney transplant. Algorithmica
58(1), 137–150 (2010)

10. Irving, R.W., Manlove, D., Scott, S.: The stable marriage problem with master
preference lists. Discrete Appl. Math. 156(15), 2959–2977 (2008)

11. Manlove, D.F.: Algorithmics of Matching Under Preferences, Series on Theoretical
Computer Science, vol. 2. WorldScientific, Singapore (2013)

12. Ng, C., Hirschberg, D.S.: Three-dimensional stable matching problems. SIAM J.
Discrete Math. 4(2), 245–252 (1991)

13. Perach, N., Polak, J., Rothblum, U.G.: A stable matching model with an entrance
criterion applied to the assignment of students to dormitories at the Technion. Int.
J. Game Theory 36(3–4), 519–535 (2008)

14. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: The Seventh Interna-
tional Conference on Theory and Applications of Satisfiability Testing, SAT 2004,
Vancouver, BC, Canada, 10–13 May 2004, Online Proceedings (2004)

15. Stuart Jr., H.W.: The supplier—firm—buyer game and its m-sided generalization.
Math. Soc. Sci. 34(1), 21–27 (1997)

16. Subramanian, A.: A new approach to stable matching problems. SIAM J. Comput.
23(4), 671–700 (1994)

17. Woeginger, G.J.: Core stability in hedonic coalition formation. In: van Emde Boas,
P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013.
LNCS, vol. 7741, pp. 33–50. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-35843-2 4

https://doi.org/10.1007/978-3-540-75520-3_50
https://doi.org/10.1007/978-3-540-75520-3_50
https://doi.org/10.1007/978-3-642-35843-2_4
https://doi.org/10.1007/978-3-642-35843-2_4

From Backdoor Key to Backdoor
Completability: Improving a Known

Measure of Hardness for the Satisfiable
CSP

Guillaume Escamocher, Mohamed Siala(B), and Barry O’Sullivan

Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Cork, Ireland

{guillaume.escamocher,mohamed.siala,barry.osullivan}@insight-centre.org

Abstract. Many studies have been conducted on the complexity of Con-
straint Satisfaction Problem (CSP) classes. However, there exists little
theoretical work on the hardness of individual CSP instances. In this
context, the backdoor key fraction (BKF) [17] was introduced as a quan-
tifier of problem hardness for individual satisfiable instances with regard
to backtracking search. In our paper, after highlighting the weaknesses
of the BKF, we propose a better characterization of the hardness of an
individual satisfiable CSP instance based on the ratio between the size of
the solution space and that of the search space. We formally show that
our measure is negatively correlated with instance hardness. We also
show through experiments that this measure evaluates more accurately
the hardness of individual instances than the BKF.

1 Introduction

Finding a solution to a CSP instance is well known to be NP-hard, even when
considering satisfiable instances [3]. The complexity of CSP instances has been
extensively cataloged in the framework of complexity theory. However, attempts
to formally define instance hardness, to find out what makes some CSP instances
difficult to solve have been scarcer. A number of studies have been proposed
based, in particular, on the notion of constrainedness [9,10], to predict the behav-
ior of large sets of instances. Constrainedness compares the expected number of
solutions of constraint instances to their average size. It is straightforward to
compute, and is well-suited for large classes of problems, but it does not establish
a distinction between individual instances that have the same average tightness
but different solution spaces. On the other hand, only considering the solution
space is not enough to accurately predict instance complexity [18].

The Backdoor Key Fraction was proposed in [17] to characterize the hardness
of a given satisfiable CSP instance with respect to backtracking search based on
the notion of backdoor. A backdoor is a set of variables that, when properly
assigned, allows us to decide the remainder of the problem in polynomial time

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 198–214, 2018.
https://doi.org/10.1007/978-3-319-93031-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_14&domain=pdf

From Backdoor Key to Backdoor Completability 199

using a given sub-solver [19]. The backdoor key fraction is based on the backdoor
key set. A variable is in the backdoor key set if its value is logically determined
by the settings of other backdoor variables. The key fraction is the ratio of the
backdoor key set size to the corresponding backdoor size. Unfortunately, as we
explain in Sect. 2, there are many classes of instances for which the backdoor
key fraction is ill-fitted. The main motivation behind our paper is to revisit this
measure by proposing a better characterization of instance hardness.

In this paper, we propose an improvement over the backdoor key fraction.
Intuitively, a solver finds an instance difficult if it contains many paths that do
not lead to a solution, where a path is a possible sequence of choices made by
the solver. Therefore, we define our completability measure as the number of
paths that are completable, meaning that they lead to a solution, divided by the
number of paths actually explored by the solver. This can be viewed as the ratio
between the solution space and the search space. If the ratio is close to 1, the
solver mostly branches on completable paths and can easily solve the instance.
If, however, the ratio is low, the solver explores a lot of dead-ends and finds the
instance hard. Completability can be seen as an improvement over the backdoor
key set. Indeed, as we explain in Sect. 2, both our metric and the backdoor key
fraction are composed of a ratio between a numerator that takes into account
the global interactions between the backdoor and the rest of the instance, and
a denominator that only relies on the internal structure of the backdoor.

The notion of completability has previously been used by [7], albeit in a com-
pletely different way. The author proposed to add constraints to CSP instances
to transform them into equivalent minimal instances, where an instance is min-
imal if any partial solution of size bounded by some predefined constant can be
extended to a solution [16]. On the other hand, we are computing a theoretical
measure and are not modifying any part of the observed instances. Nonetheless,
it is interesting to note how his intention was to make CSP instances easier by,
in essence, increasing the completability ratio of small subsets of variables. We
show that when some particular small subsets of variables, namely backdoors,
have a high completability ratio, then backtracking solvers have an easier time
finding a solution. His paper and ours are, therefore, consistent with each other
in their approach of completability. Another work closely related to the idea
of completable partial solutions can be found in [4]. The authors also consider
the ratio between the solution space and the search space within small sets of
variables (although not backdoors), but their measure is restricted to minimal
CSP instances, while our metric can measure any satisfiable CSP instance.

In the next section, we give the different notions used throughout the paper
and we highlight the limitations of the backdoor key fraction. In Sect. 3 we
adopt a theoretical approach to justify our measure. Finally, we present our
experimental study in Sect. 4.

200 G. Escamocher et al.

2 CSP, Backdoor Key Fraction, and Backdoor
Completability

A CSP instance is a triplet 〈X ,D, C〉 where X is a set of variables {v1, v2, . . . , vn},
D is a set of domains {Dv1 ,Dv2 , . . . , Dvn

}, and C is a set of constraints. A domain
Dv is a set of integers (values) associated with the variable v. A constraint C
of arity k ≥ 1 is a pair (X (C),R(C)), where X (C) is a sequence of k variables,
and R(C) ⊆ Z

k. The set of variables in X (C) is called the scope of C. The
constraint C is universal if every k-tuple of integers is in R(C). An assignment
is a pair 〈v, a〉 where v is a variable and a ∈ Dv. A value a is said to be assigned
to a variable v if Dv = {a}. An instantiation is a set of assignments where
each variable appears at most once. The scope of an instantiation S is the set
of variables {v | ∃〈v, a〉 ∈ S}. Let S be an instantiation and C be a constraint
such that X (C) = [vi1 , vi2 , . . . , vik]. We say that S violates C if ∀l ∈ [1, k], there
exists al such that 〈vil , al〉 ∈ S and 〈a1, a2, . . . ak〉 /∈ R(C). The instantiation
S is said to satisfy C if S does not violate C. An instantiation that does not
violate any constraint is called a partial solution. A solution to a CSP instance
〈X ,D, C〉 is a partial solution with a scope equal to X . Not every partial solution
can be extended to a solution. A CSP instance that admits a solution is called
satisfiable. The arity of a CSP instance is the greatest arity of its constraints.
When an instance is binary (i.e., of arity 2), two assignments 〈v, a〉 and 〈v′, a′〉
are incompatible if there exists a constraint C such that X (C) = [v, v′] such that
〈a, a′〉 /∈ R(C). Two assignments are compatible if they are not incompatible.

Definition 1. Let I be a CSP instance with n variables and let p be an integer
such that 1 ≤ p < n. We say that I is (p, 1)-consistent if for any partial solution
S of size p and for any variable v not in the scope of S, there is a value a ∈ Dv

such that S ∪ {〈v, a〉} is a partial solution. We also say that I is strongly (p, 1)-
consistent if it is (q, 1)-consistent for all q such that 1 ≤ q ≤ p.

A backdoor [19] is defined with regard to a particular sub-solver. We define
a sub-solver and the other notions the same way that [17] did.

Definition 2. An algorithm A that takes a CSP instance as input is a sub-
solver if:

1. For any CSP instance I, either A rejects I or A correctly recognizes I as
satisfiable or unsatisfiable. If I is recognized as satisfiable, then A also returns
a solution to I.

2. A runs in time polynomial in the size of I.

Now that we have explained the concept of sub-solvers, we can properly
define the notion of a backdoor to a CSP.

Definition 3. Let A be a sub-solver. Let I be a CSP instance. Let V be a subset
of the variables of I. We say that V is a backdoor for A of I if there exists a
partial solution Sp of scope V such that the instance I ′ obtained from I after
assigning the value a to the variable v for each assignment 〈v, a〉 ∈ Sp is recog-
nized as satisfiable by A.

From Backdoor Key to Backdoor Completability 201

Informally, a backdoor is a (small) set of variables that, when properly
assigned, makes the rest of the instance easy. When the sub-solver A is clear
from the context, we shall use “backdoor” instead of “backdoor for A”. Techni-
cally, the set of all variables in an instance is always a trivial backdoor. Therefore,
we mainly focus on backdoors of minimal size.

Definition 4. Let A be a sub-solver and let I be a satisfiable CSP instance. Let
B be a set of variables of I. We say that a backdoor B for A of I is a minimal
backdoor if ∀v ∈ B, B\{v} is not a backdoor for A of I.

Before presenting our backdoor completability measure, we describe the exist-
ing metric that is closest to our own. This is the backdoor key fraction, intro-
duced in [17]. Backdoor keys are sets of dependent variables, where a dependent
variable is defined as follows:

Definition 5. Let I be a satisfiable CSP instance, let B be a subset of variables
of I, and let v ∈ B be a variable. Let S be a solution to I, and let Sp ⊂ S be
a partial solution of scope B\{v}. We say that v is a dependent variable with
respect to Sp if there is exactly one value a in Dv such that Sp ∪ {〈v, a〉} can be
extended to a solution to I.

Definition 6. Let I be a satisfiable CSP instance, let B be a backdoor for I,
and let v ∈ B be a variable. Let S be a solution to I, and let SB ⊂ S be a partial
solution of scope B and let Sv be equal to SB restricted to B\{v}. We say that
v is in the backdoor key set of B with respect to SB if v is a dependent variable
with respect to Sv.

The backdoor key fraction can now be defined.

Definition 7. Let B be a backdoor for a satisfiable CSP instance I, and let SB

be a partial solution to B. The backdoor key fraction of B with respect to SB

is the ratio between the number of variables in the backdoor key set of B with
respect to SB and the total number of variables in B. If B is empty, we say that
the backdoor key fraction of B is 0.

The last sentence is our own addition to account for the cases when the
backdoor is empty. Note that this follows the intuition of their paper. Indeed,
empty backdoors are associated with very easy instances, and their intention
was for the backdoor key fraction to be positively correlated with the hardness.

There are many cases where the backdoor key fraction is not useful. The
authors of [17] mentioned the case where given any backdoor and its corre-
sponding solution, one can always flip the truth assignment of any variable in
the backdoor and still extend the backdoor to a solution. In such instances, the
backdoor key fraction is equal to 0 for any backdoor. Another issue arises when
a given CSP instance I only has one solution, the backdoor key fraction of any
non-empty backdoor of I is by Definition 7 always 1. More generally, any back-
door variable which is also part of the instance backbone (the set of variables

202 G. Escamocher et al.

that are assigned the same values in all solutions [15]) is a dependent variable,
and therefore is in the backdoor key.

In general, hard instances with regard to backtracking algorithms are the
ones that offer many potentially wrong choices and few potentially right ones
to solvers. Therefore, if we want to quantify hardness, it makes sense to build
a measure that keeps track of both the size of the search space (the choices
that the solver can make) and the size of the solution space (the right choices).
What we define as the search space is the set of partial, local solutions while the
solution space is simply the set of global solutions.

Definition 8. Let I be a CSP instance and let B be a non-empty set of variables
of I. We say that the completability ratio of B is the ratio #completable

#partial where:

– #partial is the number of partial solutions of scope B.
– #completable is the number of partial solutions of scope B that can be

extended to a solution to I.

We also say that the completability ratio of an empty set of variables is 1, and
that the completability ratio of a set of variables with no partial solution is 0.

From now on, we only apply the notion of completability ratio on minimal
backdoors within satisfiable CSP instances. However, this concept is general and
could be applied to any set of variables in any CSP instance (although the ratio
is trivially always 0 in unsatisfiable instances). In particular, the completability
ratio is not dependent on a particular sub-solver, and is unique for each set of
variables within a particular CSP instance. We define now our measure for a
whole instance.

Definition 9. Let A be a sub-solver and let I be a satisfiable CSP instance. The
backdoor completability for A of I is the average of the completability ratios of
all minimal backdoors for A of I.

Observe that backdoor completability can be used to study satisfiable CSP
instances of any arity. This is also the case for backdoor key fraction. Recall that
finding a solution to a satisfiable CSP instance is an NP-hard problem [3], so
such a restriction does not diminish the usefulness of either measure. It should
be noted also that we are not limited to binary instances. Indeed, in Sect. 4, we
present an experimental study on both binary and non-binary instances.

3 Theoretical Justification

In order to be a valid measure of hardness, backdoor completability needs to
correctly recognize both easy and hard classes. In the former case, this is done
by returning a high value for tractable classes. In the latter case, this is done
by returning a low value for a subset of decent size in each non-tractable class.
However, both tractability and backdoors are defined with regard to a specific

From Backdoor Key to Backdoor Completability 203

algorithm. So ideally backdoor completability should tag a class as tractable if
and only if the sub-solver used to define a backdoor solves the class.

In this section, we present an example to further explain what result we are
aiming for, then we state our main Theorem. We refer to (primal) constraint
graphs, tree decompositions and treewidth. We now recall the definitions of these
four concepts.

Definition 10. Let I be a CSP instance. The primal constraint graph of I is
the graph G such that:

– The vertices of G are the variables of I.
– There is a an edge between two vertices vi and vj of G if and only if there is

a non-universal constraint C of I such that X (C) contains both vi and vj.

In the case of binary instances, the primal constraint graph is called the
constraint graph. Part of the algorithms that we present is to build the tree
decomposition of some (primal) constraint graph.

Definition 11. Let G be a graph. Let T be a tree such that each vertex of T is
a set of vertices of G. We say that T is a tree decomposition of G if:

1. Each vertex of G belongs to at least one vertex of T .
2. If two vertices v1 and v2 are connected in G, then there is a vertex of T

containing both v1 and v2.
3. If two vertices t1 and t2 in T both contain some vertex v of G, then all the

vertices of T in the path between t1 and t2 also contain v.

Definition 12. Let G be a graph. The width of a given tree decomposition of
G is the number of vertices of G in the largest vertex of this tree decomposition,
minus one. The treewidth of G is the lowest width of all possible tree decompo-
sitions of G.

To illustrate the validity of our measure on one very specific example, consider
the class Ctree composed of the satisfiable binary CSP instances whose constraint
graph is a tree, the class Call composed of all satisfiable CSP instances of any
arity and with any (primal) constraint graph, and the sub-solver described by
Algorithm 1.

Algorithm 1 builds a solution to instances with a tree as a primal constraint
graph by starting from a random root after establishing (1, 1)-consistency and
then following along the branches of the tree. It correctly solves the class Ctree [5],
but not the class Call. Therefore, in order to be a valid measure of hardness for
these two classes and Algorithm 1, backdoor completability needs to be high
for all instances of Ctree and very low for at least some instances of Call. As we
show in a generalized version of this example in Theorem 1, this is what indeed
happens.

Note that we do not require backdoor completability to return a high value
for all instances of a given hard CSP class. A CSP class does not need to have

204 G. Escamocher et al.

Data: A satisfiable instance I with n variables v1, v2, . . . , vn.
Result: Either REJECT or SATISFIABLE.
Build primal constraint graph G of I;
if G is a tree then

Sort the n vertices of G to get an ordering v′
1, v

′
2, . . . , v

′
n such that for each i

there is at most one j such that j < i and v′
i is connected to v′

j ;

else
return REJECT;

end
Establish (1, 1)-consistency on I;
for i ← 1 to n do

Assign to the variable v′
i the lowest value ai left in Dv′

i
such that

{〈v′
1, a1〉, 〈v′

2, a2〉, . . . , 〈v′
i, ai〉} is a partial solution;

if no such value exists then
return REJECT;

end

end
return SATISFIABLE;

Algorithm 1. A simple sub-solver based on (1, 1)-consistency.

all of its instances hard to be considered hard. The general CSP is hard for all
solvers, even though most CSP instances are easy in practice.

Our Theorem covers the set of CSP classes {C1, C2, . . . }, such that each Cp

is the set of satisfiable CSP instances whose primal constraint graph treewidth
is upper bounded by p. These classes are hierarchically ordered by inclusion: for
each p, Cp ⊂ Cp+1. Therefore, any given sub-solver finds all classes up to some p
easy, meaning that it returns a solution to all instances from these classes, and
all larger classes hard, meaning that it rejects at least some instances from each
one of these subsequent classes. Note that the union of all the Cp is equal to the
NP-hard satisfiable CSP, so no sub-solver can find all the classes easy, unless
P = NP.

We are going to prove that for any sub-solver A belonging to a specific set
of algorithms based on local consistency, and for any aforementioned class Cp,
backdoor completability returns a very low value with regard to A for some of
the instances in Cp if and only if Cp is a hard class for A. We define “very low”
as exponentially inverse to the number of variables.

Theorem 1. Let p and p′ be such that p, p′ > 0. Let Ap,p′ be the sub-solver
described by Algorithm2 and let Cp′ be the set of satisfiable CSP instances whose
primal constraint graph treewidth is upper bounded by p′. Then exactly one of
the two following statements is true:

– p ≥ p′ and for every instance I ∈ Cp′ , the backdoor completability for Ap,p′ of
I is equal to 1.

– p < p′ and for every integer N there is an instance I in Cp′ with n variables
such that n > N and the backdoor completability for Ap,p′ of I is equal to
O(1

2n/p′).

From Backdoor Key to Backdoor Completability 205

Data: A satisfiable instance I with n variables v1, v2, . . . , vn.
Result: Either REJECT or SATISFIABLE.
Build primal constraint graph G of I;
if (treewidth of G)≤ p′ then

Build a p′-wide tree decomposition T of G;
else

return REJECT;
end
Sort the n′ vertices of T to get an ordering v′

1, v
′
2, . . . , v

′
n′ such that for each i

there is at most one j such that j < i and v′
i is connected to v′

j ;
Establish strong (p, 1)-consistency on all sets of variables that are entirely
contained within a single vertex vi;
for i ← 1 to n′ do

for each variable vj in the vertex v′
i of T do

Assign to vj the lowest value aj left in Dvj such that
{〈v1, a1〉, 〈v2, a2〉, . . . , 〈vj , aj〉} is a partial solution;
if no such value exists then

return REJECT;
end

end

end
return SATISFIABLE;

Algorithm 2. A sub-solver based on (p, 1)-consistency.

To prove the second point of the Theorem, we shall build instances with a low
enough backdoor completability for Ap,p′ . Using binary constraints is enough to
do so, however we emphasize that instances in the class Cp′ can be of any arity,
so the scope of our result is not restricted to binary instances.

Definition 13. Let N > 1 and p′ > 1 be two integers. Then we call IN,p′ the
binary CSP instance defined in the following way:

1. Variables: 1 + p′N variables v0, v1,1, v1,2, . . . , v1,p′ , v2,1, . . . , v2,p′ ,
v3,1, . . . , vN,p′ .

2. Domains: For each 1 ≤ i ≤ N and each 1 ≤ j ≤ p′, Dvi,j
= {1, 2, . . . , p′}.

Furthermore, Dv0 = {1, 2, 3, . . . , N + 1}.
3. Constraints: For each 1 ≤ i ≤ N , for all 1 ≤ i1, i2 ≤ p′ such that i1 �= i2, for

each 1 ≤ a < p′, the assignments 〈vi,i1 , a〉 and 〈vi,i2 , a〉 are incompatible.
4. Constraints: For each 1 ≤ a ≤ N , for each 1 ≤ i ≤ p′, the assignments 〈v0, a〉

and 〈va,i, p′〉 are incompatible.
5. Constraints: For each 1 ≤ i ≤ N , for each 1 ≤ j ≤ p′, for each 1 ≤ a < p′,

the assignments 〈v0, N + 1〉 and 〈vi,j , a〉 are incompatible.
6. Constraints: All pairs of assignments that have not been mentioned yet are

compatible.

In addition, for each 1 ≤ i ≤ N , we call Vi the set of variables {vi,1, vi,2, . . . , vi,p′}
and we call ti the set of variables {v0} ∪ Vi.

206 G. Escamocher et al.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

v2,1 v2,2 v2,3 v2,4

Fig. 1. The variables of V2 in I7,4, their domains and the related constraints.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

v2,1 v2,2 v2,3 v2,4

1 2 3 4 5 6 7 8
v0

Fig. 2. The constraints between the variable v0 and the set of variables V2 in I7,4.

Note that any non-universal constraint can only be between two variables
of a same set ti for some i. We give two figures to illustrate the constraints
within the variables of a set ti in an instance IN,p′ , in this case t2 in the instance
I7,4. Figure 1 illustrates points 3 and 6 from Definition 13, while Fig. 2 illus-
trates points 4, 5 and 6. In both figures, a circle represents the domains of a
variable, a dot represents a value in a domain and a dashed line connects two
incompatible assignments. In Fig. 1, a continuous line connects two compati-
ble assignments. In order to not clutter the figure, only the most representative
pairs of (in)compatible assignments are connected. For the same reason, in Fig. 2
pairs of compatible assignments are not shown, and only pairs of incompatible
assignments involving a value from the domain of v0 are connected.

To simplify the proof of the theorem, we first give some preliminary results
concerning the instances IN,p′ .

Lemma 1. Let N > 1 and p′ > 1 be two integers. Then the instance IN,p′

has exactly one solution, consisting of the assignment 〈v0, N + 1〉 and of the
assignments 〈vi,j , p′〉 for all 1 ≤ i ≤ N and 1 ≤ j ≤ p′.

Proof. It is easy to check that the set of assignments described in the statement
of the Lemma is indeed a solution. We prove that it is the only one. Let S be a
solution to I. let s0 be the value such that 〈v0, s〉 ∈ S and for all i and j such

From Backdoor Key to Backdoor Completability 207

that 1 ≤ i ≤ N and 1 ≤ j ≤ p′, let si,j be the value such that 〈vi,j , si,j〉 ∈ S.
For each 1 ≤ i ≤ N , we know from Definition 13.3. that at least one of the
si,1, si,2, . . . , si,p′ is equal to p′. So from Definition 13.4 we know that for each
1 ≤ i ≤ N , s0 �= i. So s0 = N +1. So from Definition 13.5 we know that si,j = p′

for all i and j such that 1 ≤ i ≤ N and 1 ≤ j ≤ p′. So we have shown that the
one and only solution to I is the one described in the Lemma. �
Lemma 2. Let N > 1 and p′ > 1 be two integers. Then the instance IN,p′

belongs to Cp′ .

Proof. Cp′ is the set of satisfiable CSP instances whose primal constraint graph
treewidth is upper bounded by p′. From Lemma 1, we know that IN,p′ is satis-
fiable, so it only remains to prove that the treewidth of its constraint graph is
upper bounded by p′.

Let T be a graph with N vertices t1, t2, . . . , tN and N − 1 edges, such that:

– Each vertex ti is as defined in Definition 13: the set of the p′ + 1 variables
{v0, vi,1, vi,2, . . . , vi,p′}.

– For each 1 ≤ i < N , the pair (ti, ti+1) is an edge of T .

From the second point, T is a tree. Each variable vi,j of IN,p′ is in the vertex ti of
T and v0 is in every vertex of T , so the first condition in the definition of a tree
decomposition (Definition 11) is fulfilled. Since each non-universal constraint of
IN,p′ either involves v0 or is between two variables of a same set Vi, each edge
in the constraint graph of IN,p′ is contained in a vertex of T and the second
condition of Definition 11 is fulfilled. Furthermore, the only variable of IN,p′

that appears in several vertices of T is v0, which appears in all vertices of T , so
the third condition in Definition 11 is fulfilled. So T is a tree decomposition of
the constraint graph of IN,p′ . Since each vertex of T contains p′ + 1 variables of
I, the treewidth of the constraint graph of IN,p′ is (at most) p′. �
Lemma 3. Let N , p and p′ be three integers such that N > 1 and 0 < p < p′. Let
B be a set of variables of IN,p′ such that v0 /∈ B. Then B is a backdoor for Ap,p′ of
IN,p′ if and only if B contains a variable from each set Vi = {vi,1, vi,2, . . . , vi,p′},
with at most one exception.

Proof. – B is a backdoor for Ap,p′ of IN,p′ ⇒ B contains a variable from each
set Vi, with at most one exception:
We first show that for each 1 ≤ i ≤ N , ti is strongly (p, 1)-consistent. Let i
be an integer such that 1 ≤ i ≤ N and let S be a partial solution of scope
W = {w1, w2, . . . , wq}, with q ≤ p and W ⊂ ti. Let v be a variable from
ti\W . We need to show that there is a value a ∈ Dv such that S ∪ {〈v, a〉} is
a partial solution. There are three cases to consider:

• v is v0: from Definition 13, 〈v0, j〉 is compatible with all assignments on
variables from Vi if i �= j. So S ∪ {〈v, 2〉} is a partial solution if i = 1 and
S ∪ {〈v, 1〉} is a partial solution otherwise.

208 G. Escamocher et al.

• One of the variables from W is v0: let s0 be such that 〈v0, s0〉 ∈ S. There
are three possibilities for the value of s0. First possibility, s0 = N + 1.
In this case, we know from Definition 13.5 that all the other assignments
in S are of the form 〈wj , p

′〉, so S ∪ {〈v, p′〉} is a partial solution. Second
possibility, s0 = i. In this case, we know from Definition 13.4 that none
of the other assignments in S is of the form 〈wj , p

′〉, and S ∪ {〈v, a〉} is
a partial solution, with a a value such that a �= p′ and a �= b for each
assignment 〈wj , b〉 ∈ S such that wj �= v0. There is always such a value a,
because W has at most p variables, so W\{v0} has at most p−1 ≤ p′ −2
variables. Third and last possibility, either s0 < i or i < s0 < N + 1. In
this case, S ∪ {〈v, p′〉} is a partial solution.

• Neither v nor any of the variables from W is v0: we know from Defini-
tion 13 that S ∪ {〈v, p′〉} is a partial solution.

So for each variable v ∈ ti\W , there is a value a ∈ Dv such that S ∪ {〈v, a〉}
is a partial solution. So ti is strongly (p, 1)-consistent.

Let B′ be a set of variables of IN,p′ such that v0 /∈ B′. Suppose that there are
some i and j with i �= j such that no variable from Vi ∪ Vj is in B′. We have
just shown that ti (which we recall is Vi ∪ {v0}) and tj (which is Vj ∪ {v0})
are strongly (p, 1)-consistent. So establishing strong (p, 1)-consistency after
assigning the value p′ to the variables in B′ leaves at least the three values
i, j (because 〈v0, i〉 and 〈v0, j〉 are compatible with all assignments 〈v, p′〉 for
all variables v not in ti nor tj) and N + 1 (because 〈v0, N + 1〉 is compatible
with all assignments 〈v, p′〉 for all variables v of IN,p′) in Dv0 . However, the
only assignments in the unique solution to I are of the form 〈v, a〉, with a
the highest value in Dv, and Ap,p′ picks the lowest available value in each
domain. So even after assigning the correct values to B′ and establishing
strong (p, 1)-consistency, and whatever the order in which the sub-solver sorts
the variables, Ap,p′ will pick a wrong value when making its first choice within
t1 ∪ t2, and will eventually reject I. So B′ is not a backdoor for Ap,p′ of IN,p′ .
So any backdoor B for Ap,p′ of IN,p′ not containing v0 contains at least one
variable in every set Vi, with at most one exception.

– B contains a variable from each set Vi, with at most one exception ⇒ B is a
backdoor for Ap,p′ of IN,p′ :
Let B be a set of N − 1 variables, each in a different set Vi, and none being
v0. Let i be the integer such that no variable from Vi is in B. Once we
have assigned the value p′ to all variables of B′ and established strong (p, 1)-
consistency, we know from Definition 13.4 that all the values 1, 2, 3, . . . , i −
1, i + 1, . . . , N − 1, N will be removed from Dv0 . Let a ∈ Dv and b ∈ Dw be
two values from the domains of two different variables v and w of ti\{v0},
such that a < p′ and b = p′. Since the only two remaining values in Dv0

are i and N + 1, we know from Definition 13.4 and 13.5 respectively that
neither 〈v0, i〉 nor 〈v0, N + 1〉 is compatible with both 〈v, a〉 and 〈w, b〉. So
establishing strong (p, 1)-consistency will make incompatible all such pairs of
assignments 〈v, a〉 and 〈w, b〉 with v and w in ti\{v0}. From Definition 13.3, we
know that there is no partial solution to Vi that contains an assignment 〈v, a〉

From Backdoor Key to Backdoor Completability 209

with a �= p′. So establishing strong (p, 1)-consistency will make incompatible
all pairs of assignments 〈v, a〉 and 〈w, b〉 with v and w from ti\{v0} and
either a �= p′ or b �= p′, and will eventually remove all values other than p′

from the domains of ti\{v0}. So from Definition 13.4, the value i will also be
removed from the domain of v0, leaving only the value N + 1 in this domain.
Lastly, from Definition 13.5, all values other than p′ will be removed from
all other domains, leaving only one value in each domain after establishing
strong (p, 1)-consistency. So B is a backdoor for Ap,p′ of IN,p′ .

�
Now that we have the results we need, we can prove the main theorem.

Proof of Theorem 1. Through the proof, we assume that “backdoor” and “back-
door completability” are implicitly “backdoor for Ap,p′” and “backdoor com-
pletability for Ap,p′” respectively.

– Suppose that p ≥ p′. Since p′ is a constant, building a tree decomposition of
width p′ is polynomial [2]. In general, it is well-known that using strong (p, 1)-
consistency alongside a p-wide tree decomposition solves the CSP restricted
to instances whose primal constraint graph has a treewidth bounded by p [6].
Therefore, the empty set is a minimal backdoor of I, and from Definition 9
the backdoor completability of I is 1.

– Suppose that p < p′. It is enough to show that for each integer N > 1, there
is an instance I ∈ Cp′ with n = p′N + 1 variables such that the backdoor
completability of I is equal to O(1

2n/p′). Let N > 0 be an integer and let I be
the instance IN,p′ defined in Definition 13.

• I is in Cp′ : from Lemma 2.
• I has n variables: from Definition 13.1.
• The backdoor completability of I is equal to O(1

2n/p′): let B be a minimal
backdoor of I. There are two possibilities for B:

* B contains v0. If we assign the correct value N + 1 to the backdoor
variable v0, then we know from Definition 13.5 that after Ap,p′ estab-
lishes strong (p, 1)-consistency, only one value will remain in every
other domain. So any set of variables containing v0 is a backdoor of
I, but among them only {v0} is a minimal backdoor of I. In this case,
there are N + 1 partial solutions of scope B (one for each value in
Dv0), and exactly one of them is a subset of a solution ({〈v0, N+1〉}).
Therefore the completability ratio of B is 1

N+1 .
* B does not contain v0. From Lemma 3, we know that B contains at

least one variable from each set Vi = {vi,1, vi,2, . . . , vi,p′}, with at most
one exception. From the same Lemma we also know that containing
one variable from each set Vi except one is a sufficient condition for
a backdoor. So, since B is minimal, B contains exactly one variable
from each set Vi except one. Note that all constraints between any
two variables of B are universal and that every domain of B contains
exactly p′ values, so there are p′N−1 possible partial solutions of scope
B. From Lemma 1, we know that there is only one solution to I, so

210 G. Escamocher et al.

only one partial solution of scope B can be extended to a solution
and therefore the completability ratio of B is 1

p′N−1 .
We have shown that either B = {v0} and has a completability ratio
of 1

N+1 or B is composed of N − 1 variables from N − 1 different sets
Vi and has a completability ratio of 1

p′N−1 . There are Np′N−1 possible
backdoors of the latter kind, so the backdoor completability of I is lower
than 2

p′N−1 . Recall than n = p′N + 1, so N = n−1
p′ and therefore 2

p′N−1 =
O(2

p′n/p′). Since p′ > p ≥ 1, O(2
p′n/p′) = O(1

2n/p′) and therefore the
backdoor completability of I is equal to O(1

2n/p′).
We have exhibited a satisfiable instance I ∈ Cp′ with n variables and a back-
door completability equal to O(1

2n/p′). �
We have formally proved that backdoor completability correctly measures hard-
ness for some precisely defined classes of instances and sub-solvers, namely sat-
isfiable CSP instances with bounded treewidth and sub-solvers based on local
consistency. Tractable classes relying on bounded treewidth are common [5,8],
while consistency is a ubiquitous tool in modern solvers [13], so our result shows
that at least for some widely known algorithms and instance classes, backdoor
completability is a valid measure.

4 Comparison with the Backdoor Key Fraction

We present an experimental comparison between the backdoor key fraction and
the backdoor completability. Our experiments cover two different sets of prob-
lems: Quasigroup Completion With Holes (QWH) [1,12], and random satisfiable
CSP. We used the Mistral [11] solver for both experiments with default settings.

For QWH, we generated 1100 instances of order 22, with a number of holes
equally spread over the range 192 to 222. This range was chosen to capture the
instances at hand around the observed peak of difficulty at 204 holes. Note that
[17] also used QWH instances to test the backdoor key fraction.

The inequality constraints are posted through the AllDifferent constraint
with the bound consistency algorithm of [14]. The sub-solver that we chose has
exactly the same configuration, however, with 500 failure limit. Note that the
sub-solver is guaranteed to run in polynomial time since constraint propagation is
polynomial as well. For each instance, we generated 100 minimal backdoors, using
the methodology described in [17]. For each backdoor, we randomly sampled 20
partial solutions.

Figure 3a represents the results of our experiments on QWH instances. The
x-axis represents the number of decisions required to find a solution, while the
left y-axis represents the backdoor key fraction and the right y-axis represents
backdoor completability. Each point represents an average of 50 instances, with
the 50 easiest instances in one group, the 50 next easiest ones in a second group,
and so on until the 50 hardest instances.

The correlation for the backdoor key fraction is good, with a Pearson coef-
ficient of .876. This is consistent with the results from [17]. The correlation for

From Backdoor Key to Backdoor Completability 211

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+06 1e+07
 0.0001

 0.001

 0.01

 0.1

K
ey

 F
ra

ct
io

n

C
om

pl
et

ab
ili

ty

Effort (#nodes)

key fraction
completability

(a) QWH

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

K
ey

 F
ra

ct
io

n

C
om

pl
et

ab
ili

ty

Effort (#nodes)

key fraction
completability

(b) Random CSP

Fig. 3. Experimental results for QWH instances (top) and random CSP (bottom)

backdoor completability is even better, with a coefficient of −.943; we recall that
the further away from 0 the coefficient is, the more correlated the values are.
This demonstrates that backdoor completability can prove a better quantifier of
instance difficulty than the backdoor key fraction, even in problems where the
latter has a good track record.

The second problem we studied is composed of random satisfiable CSP
instances with 60 variables and 1770 constraints. We generated 1200 such
instances, with an average tightness in each constraint equally spread over the
range 5% to 16%, with an observed peak of difficulty at 8%. The correlations for

212 G. Escamocher et al.

backdoor key fraction and backdoor completability are presented in Fig. 3b. As
in Fig. 3a, the instances are sorted by difficulty in groups of 50.

Table 1. Correlations between instance hardness and different measures.

QWH Random CSP

Pearson CC RMSE MAE Pearson CC RMSE MAE

Backdoor key fraction .876 .053 .032 .590 .186 .158

Backdoor completability −.943 .037 .029 −.975 .051 .044

We can see from these results that the backdoor key fraction is not adequate
for that type of instance. It grows with the hardness, as is expected, but does
not clearly distinguish between instances above a certain threshold of difficulty.
Indeed, we observed that most of the hardest instances in this set have only a
few variables that are not part of the backbone. In many cases all variables are
in the backbone and the instance has exactly one solution; as explained in the
remarks following Definition 7, the backdoor key fraction will always output 1
for instances with exactly one solution. This case (along with the other one men-
tioned in the last paragraph of Sect. 2) shows a limitation of the key fraction to
capture hardness in some instances. On the other hand, backdoor completability
does not study the variables separately, but examines the properties of the par-
tial solutions to a whole backdoor. It is therefore more refined than the backdoor
key fraction, in particular when looking at individual variables is not enough,
for example when comparing instances that have a backbone of similar (large)
size but different degrees of difficulty.

Table 1 contains the summary of our experiments. In addition to the Pearson
correlation coefficients (Pearson CC), the table also includes the normalized val-
ues for the root mean square error (RMSE) and mean absolute error (MAE), two
error measures for linear regression that [17] also reported. The results confirm
that backdoor completability is negatively correlated with instance hardness,
and that it measures the difficulty of instances in both sets more accurately
than the backdoor key fraction does.

5 Conclusion

We have introduced a new measure, backdoor completability, that characterizes
the hardness of an individual satisfiable CSP instance with regard to a given
solver. Backdoor completability can be viewed as an index of hardness; the lower
the value, the harder the instance. This measure is a crucial step towards the
understanding of what makes a particular instance difficult.

We provided a theoretical justification of our measure. We proved that
for some widespread classes of instances, namely CSP instances with bounded
treewidth, backdoor completability captures exactly the limits of tractability.

From Backdoor Key to Backdoor Completability 213

We also presented an empirical comparison between our metric and the exist-
ing backdoor key fraction, and showed that for some kinds of CSP instances,
backdoor completability is reliable even though the backdoor key fraction is not.

The main motivation of our work is to revisit and to improve the backdoor
key fraction measure. In the future, it would be interesting to study the practical
usefulness of completability as it provides insights for designing search strategies.
Moreover, we believe that completability could eventually be useful in generating
hard instances since hard instances are the ones with low completability.

Acknowledgements. This research has been funded by Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289.

References

1. Achlioptas, D., Gomes, C.P., Kautz, H.A., Selman, B.: Generating satisfiable prob-
lem instances. In: Proceedings of AAAI, IAAI, Austin, Texas, USA, 30 July–3
August 2000, pp. 256–261 (2000)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

3. Dechter, R.: Constraint Processing. Elsevier/Morgan Kaufmann, New York
City/Burlington (2003)

4. Escamocher, G., O’Sullivan, B.: On the minimal constraint satisfaction problem:
complexity and generation. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.)
COCOA 2015. LNCS, vol. 9486, pp. 731–745. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26626-8 54

5. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–
32 (1982)

6. Freuder, E.C.: Complexity of K-tree structured constraint satisfaction problems.
In: Proceedings of AAAI, Boston, Massachusetts, 29 July–3 August 1990, vol. 2,
pp. 4–9 (1990)

7. Freuder, E.C.: Completable representations of constraint satisfaction problems. In:
Proceedings of KR, Cambridge, MA, USA, 22–25 April 1991, pp. 186–195 (1991)

8. Ganian, R., Ramanujan, M.S., Szeider, S.: Combining treewidth and backdoors for
CSP. In: 34th Symposium on Theoretical Aspects of Computer Science, STACS
2017, Hannover, Germany, 8–11 March 2017, pp. 36:1–36:17 (2017)

9. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search.
In: Proceedings of AAAI, IAAI, Portland, Oregon, 4–8 August 1996, vol. 1, pp.
246–252 (1996)

10. Gomes, C.P., Fernández, C., Selman, B., Bessière, C.: Statistical regimes across
constrainedness regions. Constraints 10(4), 317–337 (2005)

11. Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the Third
International CSP Solver Competition, vol. 3, p. 3 (2008)

12. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.:
Balance and filtering in structured satisfiable problems. In: Proceedings of IJCAI,
Seattle, Washington, USA, 4–10 August 2001, pp. 351–358 (2001)

13. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif.
Intell. 159(1–2), 1–26 (2004)

https://doi.org/10.1007/978-3-319-26626-8_54
https://doi.org/10.1007/978-3-319-26626-8_54

214 G. Escamocher et al.

14. López-Ortiz, A., Quimper, C., Tromp, J., van Beek, P.: A fast and simple algorithm
for bounds consistency of the alldifferent constraint. In: Proceedings of IJCAI,
Acapulco, Mexico, 9–15 August 2003, pp. 245–250 (2003)

15. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic ‘phase transitions’. Nature
400(8), 133–137 (1999)

16. Montanari, U.: Networks of constraints: fundamental properties and applications
to picture processing. Inf. Sci. 7, 95–132 (1974)

17. Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: a path to understanding
problem hardness. In: Proceedings of AAAI, IAAI, San Jose, California, USA,
25–29 July 2004, pp. 124–130 (2004)

18. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theoret.
Comput. Sci. 47(3), 85–93 (1986). https://doi.org/10.1016/0304-3975(86)90135-0

19. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
Proceedings of IJCAI, Acapulco, Mexico, 9–15 August 2003, pp. 1173–1178 (2003)

https://doi.org/10.1016/0304-3975(86)90135-0

Constrained-Based Differential Privacy:
Releasing Optimal Power Flow

Benchmarks Privately

Ferdinando Fioretto(B) and Pascal Van Hentenryck

University of Michigan, Ann Arbor, MI, USA
{fioretto,pvanhent}@umich.edu

Abstract. This paper considers the problem of releasing optimal power
flow benchmarks that maintain the privacy of customers (loads) using
the notion of Differential Privacy . It is motivated by the observation that
traditional differential-privacy mechanisms are not accurate enough: The
added noise fundamentally changes the nature of the underlying opti-
mization and often leads to test cases with no solution. To remedy this
limitation, the paper introduces the framework of Constraint-Based Dif-
ferential Privacy (CBDP) that leverages the post- processing immunity
of differential privacy to improve the accuracy of traditional mechanisms.
More precisely, CBDP solves an optimization problem to satisfies the
problem-specific constraints by redistributing the noise. The paper shows
that CBDP enjoys desirable theoretical properties and produces orders
of magnitude improvements on the largest set of test cases available.

1 Introduction

In the last decades, scientific advances in artificial intelligence and oper-
ations research have been driven by competitions and collections of test
cases. The MIPLIB library for mixed-integer programming and the constraint-
programming, planning, and SAT competitions have significantly contributed to
advancing the theoretical and experimental branches of the field. Recent years
have also witnessed the emergence of powerful platforms (such as Kaggle [1])
to organize competitions between third-parties. Finally, the release of data sets
may become increasingly significant in procurement where third-parties com-
pete to demonstrate their capabilities. The desire to release data sets for sci-
entific research, competitions, and procurement decisions is likely to accelerate.
Indeed, with ubiquitous connectivity, many organizations are now collecting data
at an unprecedented scale, often on large socio-technical systems such as energy
networks. This data is often used as input to complex optimization problems.

The release of such rich data sets however raises some fundamental privacy
concerns. For instance, the electrical load of an industrial customer in the power
grid typically reflects its production and may reveal sensitive information on its
economic strategy.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 215–231, 2018.
https://doi.org/10.1007/978-3-319-93031-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_15&domain=pdf

216 F. Fioretto and P. Van Hentenryck

Differential Privacy (DP) [5,6] is a general framework that addresses the sen-
sitivity of such information and can be used to generate privacy-preserving data
sets. It introduces carefully calibrated noise to the entries of a data set to prevent
the disclosure of information related to those providing it. However, when these
private data sets are used as inputs to complex optimization algorithms, they
may produce results that are fundamentally different from those obtained on the
original data set. For instance, the noise added by differential privacy may make
the optimization problem infeasible or much easier to solve. As a result, despite
its strong theoretical foundations, adoptions of differential privacy in industry
and government have been rare. Large-scale practical deployments of differential
privacy have been limited to big-data owners such as Google [7] and Apple [10].
In their applications, however, only internal users can access the private data by
evaluating a pre-defined set of queries, e.g., the count of individuals satisfying
certain criteria. This is because constructing a private version of the database is
equivalent to simultaneously answering all possible queries and thus requires a
large amount of noise.

This paper is motivated by the desire of releasing Optimal Power Flow (OPF)
benchmarks that maintain the privacy of customers loads and the observation
that traditional differential-privacy mechanisms are not accurate enough: The
added noise fundamentally changes the nature of the underlying optimization
and often leads to test cases with no solution. The paper proposes the frame-
work of Constraint-Based Differential Privacy (CBDP) that leverages the post-
processing immunity of DP to redistribute the noise introduced by a standard
DP-mechanism, so that the private data set preserves the salient features of the
original data set. More precisely, CBDP solves an optimization problem that
minimizes the distance between the post-processed and original data, while sat-
isfying constraints that capture the essence of the optimization application.

The paper shows that the CBDP has strong theoretical properties: It achieves
ε-differential privacy, ensures that the released data set can produce feasible
solutions for the optimization problem of interest, and is a constant factor away
from optimality. Finally, experimental results show that the CBDP mechanism
can be adopted to generate private OPF test cases: On the largest collection
of OPF test cases available, it improves the accuracy of existing approaches of
at least one order of magnitude and results in solutions with similar optimality
gaps to those obtained on the original problems.

2 Differential Privacy

A data set D is a multi-set of elements in the data universe U . The set of every
possible data set is denoted D . Unless stated otherwise, U is a cross product
of multiple attributes U1, . . . , Un and has dimension n. For example, U = R

n is
the numeric data universe consisting of n-dimensional real-vectors. A numeric
query is a function that maps a data set to a result in R ⊆ R

r.
Two data sets D1,D2 ∈ D are called neighbors (written D1 ∼ D2) if D1 and

D2 differ by at most one element, i.e., |(D1 − D2) ∪ (D2 − D1)| = 1.

Constrained-Based Differential Privacy 217

Definition 1 (Differential Privacy [5]). A randomized mechanism M : D →
R with domain D and range R is ε-differentially private if, for any event S ⊆ R
and any pair D1,D2 ∈ D of neighboring data sets:

Pr[M(D1) ∈ S] ≤ exp(ε)Pr[M(D2) ∈ S], (1)

where the probability is calculated over the coin tosses of M.

A Differential Privacy (DP) mechanism maps a data set to distributions over
the output set. The released DP output is a single random sample drawn from
these distributions. The level of privacy is controlled by the parameter ε ≥ 0,
called the privacy budget, with values close to 0 denoting strong privacy.

DP satisfies several important properties. Composability ensures that a com-
bination of differentially private mechanisms preserve DP [6].

Theorem 1 (Composition). Let Mi : D → Ri be an εi-differentially pri-
vate mechanism for i = 1, . . . , k. Then, their composition, defined as M(D) =
(Mi(D), . . . ,Mk(D)), is (

∑k
i=1 εi)-differentially private.

Post-processing immunity ensures that privacy guarantees are preserved by arbi-
trary post-processing steps [6].

Theorem 2 (Post-processing Immunity). Let M : D → R be a mechanism
that is ε-differentially private and g : R → R′ be an (arbitrary) mapping. The
mechanism g ◦ M is ε-differentially private.

The Laplace Distribution with 0 mean and scale b has a probability density
function Lap(x|b) = 1

2be
− |x|

b . The sensitivity of a query Q, denoted by ΔQ, is
defined as ΔQ = maxD1∼D2 ‖Q(D1) − Q(D2)‖1. The following theorem gives a
differentially private mechanism for answering numeric queries [5].

Theorem 3 (Laplace Mechanism). Let Q : D → R be a numerical query.
The Laplace mechanism, defined as MLap(D;Q, ε) = Q(D) + z where z ∈ R is
a vector of i.i.d. samples drawn from Lap(ΔQ

ε) achieves ε-differential privacy.

The Laplace mechanism is a particularly useful building block for DP [6]. Koufo-
giannis et al. [16] proved its optimality by showing that it minimizes the mean-
squared error for both the L1 and L2 norms among all private mechanisms that
use additive and input-independent noise. In the following, Lap(λ)n denotes the
i.i.d. Laplace distribution over n dimensions with parameter λ.

Lipschitz Privacy. The concept of Lipschitz privacy is appropriate when a data
owner desire to protect individual quantities rather than individual participation
in a data set. Application domains where Lipschitz privacy has been successful
include location-based systems [3,20] and epigenetics [4].

Definition 2 (Lipschitz privacy [16]). Let (D , d) be a metric space and S be
the set of all possible responses. For ε > 0, a randomized mechanism M : D → R
is ε-Lipschitz differentially private if:

Pr[M(D1) ∈ S] ≤ exp(εd(D1,D2)Pr[M(D2) ∈ S],

for any S ⊆ R and any two inputs D1,D2 ∈ D .

218 F. Fioretto and P. Van Hentenryck

Table 1. Power network nomenclature.

N The set of nodes in the
network

θΔ Phase angle difference
limits

E The set of from edges
in the network

Sd = pd + iqd AC power demand

ER The set of to edges in
the network

Sg = pg + iqg AC power generation

i imaginary number
constant

c0, c1, c2 Generation cost
coefficients

I AC current �(·) Real component of a
complex number

S = p + iq AC power �(·) Imaginary component of a
complex number

V = v∠θ AC voltage (·)∗ Conjugate of a complex
number

Y = g + ib Line admittance | · | Magnitude of a complex
number

W = wR + iwI Product of two AC
voltages

∠ Angle of a complex
number

su Line apparent power
thermal limit

xl, xu Upper and lower bounds
of x

θij Phase angle difference
(i.e., θi − θj)

x A constant value

The Laplace mechanism with parameter ε achieve ε-Lipschitz DP.

3 Optimal Power Flow

Optimal Power Flow (OPF) is the problem of determining the best generator
dispatch to meet the demands in a power network. A power network is composed
of a variety of components such as buses, lines, generators, and loads. The net-
work can be viewed as a graph (N,E) where the set of buses N represent the
nodes and the set of lines E represent the edges. Note that E is a set of directed
arcs and ER is used to denote those arcs in E but in reverse direction. Table 1
reviews the symbols and notation adopted in this paper. Bold-faced symbols are
used to denote constant values.

The AC Model. The AC power flow equations are based on complex quan-
tities for current I, voltage V , admittance Y , and power S. The quanti-
ties are linked by constraints expressing Kirchhoff’s Current Law (KCL), i.e.,
Ig
i − Id

i =
∑

(i,j)∈E∪ER Iij , Ohm’s Law, i.e., Iij = Yij(Vi − Vj),, and the defini-
tion of AC power, i.e., Sij = ViI

∗
ij . Combining these three properties yields the

AC Power Flow equations, i.e.,

Constrained-Based Differential Privacy 219

Model 1. The AC Optimal Power Flow Problem (AC-OPF)

variables: Sg
i , Vi ∀i ∈ N, Sij ∀(i, j) ∈ E ∪ ER

minimize:
∑

i∈N

c2i(�(Sg
i))2 + c1i�(Sg

i) + c0i (2)

subject to: ∠Vr = 0, r ∈ N (3)

vl
i ≤ |Vi| ≤ vu

i ∀i ∈ N (4)

− θΔ
ij ≤ ∠(ViV

∗
j) ≤ θΔ

ij ∀(i, j) ∈ E (5)

Sgl
i ≤ Sg

i ≤ Sgu
i ∀i ∈ N (6)

|Sij | ≤ su
ij ∀(i, j) ∈ E ∪ ER (7)

Sg
i − Sd

i =
∑

(i,j)∈E∪ER Sij ∀i ∈ N (8)

Sij = Y ∗
ij |Vi|2 − Y ∗

ijViV
∗

j ∀(i, j) ∈ E ∪ ER (9)

Sg
i − Sd

i =
∑

(i,j)∈E∪ER

Sij ∀i ∈ N

Sij = Y ∗
ij |Vi|2 − Y ∗

ijViV
∗
j (i, j) ∈ E ∪ ER

These non-convex nonlinear equations are a core building block in many power
system applications. Practical applications typically include various operational
constraints on the flow of power, which are captured in the AC OPF formula-
tion in Model 1. The objective function (2) captures the cost of the generator
dispatch. Constraint (3) sets the reference angle for some arbitrary r ∈ N , to
eliminate numerical symmetries. Constraints (4) and (5) capture the voltage and
phase angle difference operational constraints. Constraints (6) and (7) enforce
the generator output and line flow limits. Finally, Constraints (8) capture KCL
and constraints (9) capture Ohm’s Law.

Notice that this is a non-convex nonlinear optimization problem and is NP-
Hard [17,23]. Therefore, significant attention has been devoted to finding convex
relaxations of Model 1.

The SOC Relaxation. The SOC relaxation [14] lifts the product of voltage
variables ViV

∗
j into a higher dimensional space (i.e., the W -space):

Wi = |Vi|2 i ∈ N (10a)
Wij = ViV

∗
j ∀(i, j) ∈ E (10b)

It takes the absolute square of each constraint (10b), refactors it, and relaxes
the equality into an inequality:

|Wij |2 ≤ WiWj ∀(i, j) ∈ E (11)

Constraint (11) is a second-order cone constraint, which is widely supported
by industrial strength convex optimization tools (e.g., Gurobi [11], CPlex [13],

220 F. Fioretto and P. Van Hentenryck

Model 2. The SOC Relaxation of AC-OPF (SOC-OPF)

variables: Sg
i , Wi ∀i ∈ N, Wij ∀(i, j) ∈ E, Sij ∀(i, j) ∈ E ∪ ER

minimize:(2)

subject to: (6), (7), (8)

(vl
i)

2 ≤ Wi ≤ (vu
i)2 ∀i ∈ N (12)

tan(−θΔ
ij)� (Wij) ≤ � (Wij) ≤ tan(θΔ

ij)� (Wij) ∀(i, j) ∈ E (13)
Sij = Y ∗

ijWi − Y ∗
ijWij (i, j) ∈ E (14)

Sji = Y ∗
ijWj − Y ∗

ijW
∗
ij (i, j) ∈ E (15)

|Wij |2 ≤ WiWj ∀(i, j) ∈ E (16)

Mosek [21]). The SOC relaxation of AC-OPF is presented in Model 2 SOC-
OPF. The constraints for the generator output limits (6), line flow limits (7),
and KCL (8), are identical to those in the AC-OPF model. Constraints (12)
and (13) capture the voltage and phase angle difference operational constraints.
Constraints (14) and (15) capture the line power flow in the W -space. Finally,
constraints (16) strengthen the relaxation with second-order cone constraints for
voltage products.

The Quadratic Convex (QC) Relaxation. The QC relaxation was intro-
duced to preserve stronger links between the voltage variables [12]. It represents
the voltages in polar form (i.e., V = v∠θ) and links these real variables to the
W variables using the following equations:

Wii = v2
i i ∈ N (17a)

�(Wij) = vivj cos(θi − θj) ∀(i, j) ∈ E (17b)
(Wij) = vivj sin(θi − θj) ∀(i, j) ∈ E (17c)

The QC relaxation relaxes these equations by taking tight convex envelopes of
their nonlinear terms, exploiting the operational limits for vi, vj , θi − θj . In par-
ticular, it uses the convex envelopes for the square 〈x2〉T and product 〈xy〉M of
variables, as defined in [19]. Under the assumption that the phase angle differ-
ence bound is within −π/2 ≤ θl

ij ≤ θu
ij ≤ π/2, relaxations for sine 〈sin(x)〉S and

cosine 〈cos(x)〉C are given in reference [12]. Convex envelopes for Eqs. (17a)–
(17c) can be obtained by composing the convex envelopes of the functions for
square, sine, cosine, and the product of two variables, i.e.,

Wii = 〈v2
i 〉T i ∈ N (21a)

�(Wij) = 〈〈vivj〉M 〈cos(θi − θj)〉C〉M ∀(i, j) ∈ E (21b)

(Wij) = 〈〈vivj〉M 〈sin(θi − θj)〉S〉M ∀(i, j) ∈ E (21c)

The QC relaxation also proposes to strengthen these convex envelopes with a
second-order cone constraint from the SOC relaxation ((10a), (10b), (11)). The
complete QC relaxation is presented in Model 3.

Constrained-Based Differential Privacy 221

Model 3. The QC Relaxation of AC-OPF (QC-OPF)

variables: Sg
i , Vi = vi∠θi, ∀i ∈ N, Wij ∀(i, j) ∈ E, Sij ∀(i, j) ∈ E ∪ ER

minimize: (2)

subject to: (3)−(8), (14)−(16)

Wii = 〈v2
i 〉T i ∈ N (18)

�(Wij) = 〈〈vivj〉M 〈cos(θi − θj)〉C〉M ∀(i, j) ∈ E (19)

�(Wij) = 〈〈vivj〉M 〈sin(θi − θj)〉S〉M ∀(i, j) ∈ E (20)

Model 4. The DC Relaxation of the AC OPF (DC-OPF)

variables: �(Sg
i), θi ∀i ∈ N, Sij ∀(i, j) ∈ E ∪ ER

minimize: (2)

subject to: (3)

|θi| ≤ θu
i ∀i ∈ N (22)

�(Sgl
i) ≤ �(Sg

i) ≤ �(Sgu
i) ∀i ∈ N (23)

�(|Sij |) ≤ �(su
ij) ∀(i, j) ∈ E ∪ ER (24)

�(Sij) = −bij(θi − θj) ∀(i, j) ∈ E ∪ ER (25)

�(Sg
i) − �(Sd

i) =
∑

(i,j)∈E∪ER Sij ∀i ∈ N (26)

The DC Model. The DC model is an extensively studied linear approximation
to the AC power flow [24]. The DC load flow relates real power to voltage
phase angle, ignores reactive power, and assumes voltages are close to their
nominal values (1.0 in per unit notation). The DC OPF is presented in Model 4.
Constraints (22) capture the phase angles operational constraints. Constraints
(23) and (24) enforce the generator output and line flow limits. Constraints (25)
captures the KCL and constraints (26) the Ohm’s Law.

4 The Differential Privacy Challenge for OPF

When releasing private OPF test cases, it is not critical to hide user participation:
The location of a load is public knowledge. However, the magnitude of a load
is sensitive: It is associated with the activity of a particular customer (or group
of customers) and may indirectly reveal production levels and hence strategic
investments, decreases in sales, and other similar information. Indirectly, it may
also reveal how transmission operators operate their networks, which should not
be public information. As a result, the concept of Lipschitz differential privacy
is particularly suited to the task.

222 F. Fioretto and P. Van Hentenryck

Fig. 1. Average L1 error
reported by the Laplace
Mechanism. The percent-
ages express the AC-OPF
instances with satisfiable
solution.

As mentioned in Sect. 2, the Laplace mecha-
nism can be used to achieve Lipschitz DP. However,
its application on load profile queries results in a
new output vector of loads which produces unde-
sirable outcomes when used as input to an OPF
problem. Indeed, Fig. 1 illustrates the average error
(measured as the L1 distance) between the origi-
nal load and the private load for a set of 44 net-
works.1 With a privacy budget of ε = 0.1, the aver-
age error is about 10–implying a significantly higher
load than the actual demand. The numbers reported
on each bar represent the percentage of feasible pri-
vate instances for the AC OPF problem: It reveals
severe feasibility issues with the private instances.

These results highlight the challenges that arise
when traditional differential privacy is applied to
inputs of complex optimization tasks. For instance,
the Laplacian mechanism is oblivious to the structure of the data set (e.g.,
the generation capabilities should be large enough to serve the load) and the
constraints and objectives of the optimization application (e.g., the transmis-
sion network should have the ability to transport electricity from generators to
loads). As a result, it produces private data sets that are typically not useful
and not representative of actual OPFs. What is needed is a differential-privacy
mechanism that preserves the structure of the optimization model and its com-
putational properties such as the optimality gap between the solutions produced
by MINLP solvers and convex relaxations.

5 Constrained-Based Differential Privacy

This section introduces Constraint-Based Differential Privacy (CBDP) to rem-
edy the limitations identified in the previous section. It considers an optimization
problem O(D):

minimizex∈Rn f(D,x)
subject to gi(D,x) ≤ 0, i = 1, . . . , p

where f : D ×R
n → R is the objective function to minimize over variables x and

gi(D,x) ≤ 0 (i = 1, . . . , p) are the problem constraints.
This paper studies the following setting. The data owner desires to release

a private data set D̂ such that the optimization problems O(D) and O(D̂) are
closely related. In particular, the optimal objective value of O(D̂) must be close
to the optimal value of the original problem f(D,x∗) (which is a public informa-
tion), where x∗ ∈ R

n is the optimal solution of the original optimization problem.

1 The experimental settings are reported in all details in Sect. 7.

Constrained-Based Differential Privacy 223

Hence the private data set must satisfy the following desiderata: (1) data pri-
vacy : The data set to be released must be private; (2) faithfulness: The private
data must be faithful to the objective function; (3) consistency : The private data
must satisfy the constraints arising from the data and/or from the problem of
interest. To address such challenges the following definition is introduced.

Definition 3 ((ε, β)-CBDP). Given ε > 0, β ≥ 0, a DP-data-release mecha-
nism M : D → D is (ε, β)-CBDP iff, for each private database D̂ = M(D),
there exists a solution x such that

1. ε-privacy: M satisfies ε-DP;
2. β-faithfulness: |f(D̂,x) − f(D,x∗)| ≤ β;
3. Consistency: Constraints gi(D̂,x) ≤ 0 (i = 1, . . . , p) are satisfied.

The Input. To balance between utility and privacy, the mechanism takes as
input the data set D, as well as two non-negative real numbers: ε which deter-
mines the privacy value of the private data and β which determines the required
faithfulness of the optimization problem over the private data. Additionally, the
data owner provides the optimization problem and the optimal objective value
f∗ = f(D,x∗), which are typically considered public information in competi-
tions. For simplicity, this section assumes that D = R

n.

Fig. 2. The CBDP post-processing step.

The Mechanism. The CBDP mechanism first injects Laplace noise with pri-
vacy parameter ε to each query on each dimension of the data set:

MLap(D,Q, ε) = D̃ = D + Lap(1/ε)n,

where D̃ = (c̃1, . . . , c̃n) is the vector of noisy values. These values are then post-
processed by the optimization algorithm specified in Fig. 2 to obtain a value
vector D̂ = (x̂1, . . . , x̂n) ∈ R

n. Finally, the CBDP mechanism outputs D̂.
The CBDP mechanism thus solves a constrained optimization problem whose

decision variables include vectors of the form D̂ = (x̂1, . . . , x̂n) that correspond
to the post-processed result of the private query on each dimension of the uni-
verse. In other words, each original data (that must remain private) is replaced
by a decision variable representing its post-processed private counterpart. The
objective (O1) minimizes the L2-norm between the private query result D̃ and
its post-processed version D̂. Constraint (O2) forces the post-processed values

224 F. Fioretto and P. Van Hentenryck

to be β-faithful with the respect to the objective value, and Constraints (O3)
enforce the optimization constraints of the original model.

Additional constraints capturing auxiliary public information about the data
can be integrated in this model. For instance, in the OPF problem, the total
power load is public. Thus, an additional constraint on the sum of values of the
variables (x̂1, . . . x̂n) can be enforced to be equal to this public information.

The CBDP post-processing can be thought as redistributing the noise of the
Laplace mechanism to obtain a data set which is consistent with the problem
constraints and objective. It searches for a feasible solution that satisfies the
problem constraints gi(D̂,x) ≤ 0 and the β-faithfulness constraint. A feasible
solution always exists, since the original values D trivially satisfy all constraints.

It is important to notice that the post-processing step of CBDP uses exclu-
sively the private data set D̃ and additional public information (i.e., the opti-
mization problem and its optimal solution value). Its privacy guarantees are
discussed below.

5.1 Theoretical Properties

Theorem 4. The mechanism above is (ε, β)-CBDP.

Proof. Each c̃i obtained from the Laplace mechanism is ε-differentially-private
by Theorem 3. The combination of these results (c̃1, . . . , c̃n) is ε-differentially-
private by Theorem 1. The β-faithfulness and the consistency properties is sat-
isfied by constraint (O2) and (O3) respectively. The result follows from post-
processing immunity (Theorem 2).

As mentioned earlier, additional constraints can be enforced, e.g., to ensure
the consistency that the sums of individual quantities equals their associated
aggregated quantity. In this case, the aggregated quantities must return private
counts and a portion of the privacy budget must be used to answer such queries.

Theorem 5. The optimal solution 〈D̂+,x+〉 to the optimization model (O1–O3)
satisfies ‖D̂+ − D‖2 ≤ 2‖D̃ − D‖2.
Proof. We have

‖D̂+ − D‖2 ≤ ‖D̂+ − D̃‖2 + ‖D̃ − D‖2 (27)

≤ 2‖D̃ − D‖2. (28)

where the first inequality follows from the triangle inequality on norms and the
second inequality follows from

‖D̂+ − D̃‖2 ≤ ‖D̃ − D‖2
by optimality of 〈D̂+,x+〉 and the fact that 〈D,x∗〉 is a feasible solution to
constraints (O2) and (O3).

The following result follows from the optimality of the Laplace mechanism [16].

Corollary 1. The CBDP mechanism is at most a factor 2 away from optimal-
ity.

Constrained-Based Differential Privacy 225

Model 5. The CBDP mechanism for the AC-OPF
variables: Sg

i , Vi, Ṡ
l
i ∀i ∈ N, Sij ∀(i, j) ∈ E ∪ ER

minimize: ‖Ṡl − S̃l‖2
2 (sl

1)

subject to: (3)−(9)

|
∑

i∈N

c2i(�(Sg
i))2 + c1i�(Sg

i) + c0i − f∗| ≤ β (s2)

∑

i∈N

Ṡl
i = L (s3)

6 Application to the Optimal Power Flow

The CBDP optimization model for the AC-OPF is p resented in Model 5. In addi-
tion to the variables of Model 5, it takes as inputs the variables Ṡl

i representing
the post-processed values of the loads for each bus in i ∈ N . The optimization
model minimizes the L2-norm between the variables Ṡl ∈ R

n and the noisy
loads S̃l ∈ R

n resulting from the application of the Laplace mechanism to the
original load values. Model 5 is subject to the same constraint of Model 1, with
the addition of the β-faithfulness constraint (s2) and the constraint enforcing
consistency of the aggregated load values L ∈ R (s3), which is typically public
knowledge.

7 Experimental Results

This section presents an evaluation of the CBDP mechanism on the case study. It
first presents the experimental setup and then compares the CBDP mechanism
with the Laplace mechanism.

Data Sets and Experimental Setup. The experimental results concern the
NESTA power network test cases (https://gdg.engin.umich.edu). The test cases
comprise 44 networks whose number of buses ranges from 3 to 9241. This section
categorizes them in small (networks with up to 100 buses), medium (networks
with more than 100 buses and up to 2000 buses) and large (networks with more
than 2000 buses).

In the following, D denotes the original data set and D̃ its private version (i.e.,
the data set resulting through the application of a DP mechanism). Moreover,
cm(D) and cm(D̃) denote the cost of the dispatch obtained by an OPF given
model m (i.e., AC, QC, SOC, or DC) on the original data set D and on its
private version D̃, respectively.

The results obtained by the AC-OPF and its relaxations/approximations
(QC, SOC, and DC) are evaluated using both the original and the private
data sets, analyzing the dispatch cost (c) and the optimality gap, i.e., the ratio
GR(D) = |cR(D)−cAC(D)|

cAC(D) , where cAC(D) and cR(D) denote the best-known solu-
tion cost of the problem instance and of the relaxation R over data set D.

https://gdg.engin.umich.edu

226 F. Fioretto and P. Van Hentenryck

The baseline MLap is the Laplace mechanism applied to each load of the
network. To obtain a private version of the loads, MLap is first used to construct
a private value for the active loads pl

i = �(Sl
i) as p̃l

i = pl
i + Lap(100/ε), (∀i ∈

N) where 100 is the change in MWs protected by Lipschitz DP. The reactive
load ql

i = (Sl
i) is set as q̃l

i = p̃l
i ri, with ri = ql

i/pl
i is the power load factor

and is considered to be public knowledge, as is natural in power systems. The
CBDP mechanism MC uses the output of the Laplace mechanism and the post-
processing step to obtain the private loads Ṡl

i for all i ∈ N .
The mechanisms are evaluated for privacy budgets ε ∈ {0.1, 1.0, 10.0} and

faithfulness parameter β ∈ {0.01, 1.0, 100.0}. Smaller values for ε increase privacy
guarantees at the expense of more noise introduced by the Laplace mechanism.
All experimental results are reported as the average of 30 runs. This gives a total
of 47,520 experiments, which are analyzed below.

Error Analysis on the OPF Cost. The first experimental result measure
the error introduced by a mechanism as the average distance, in percentage,
between the exact and the private costs of the OPF dispatches. The reported
error is expressed as |cm(D)−cm(D̃)|

cm(D) · 100, for m = {AC,QC, SOC,DC}.
Figure 3 illustrates the error of the private mechanisms for varying privacy

budgets. Rows show the results for the different network sizes (small, medium,
and large), while columns show the results for the different faithfulness level
values (β = 0.01, 1.0, 100.0). The results are shown in log scale. Each sub-figure
also presents the results for three privacy budgets (10, 1, 0.1).

For all privacy budgets and all faithfulness-levels, the CBDC mechanism
outperforms the Laplace mechanism by one to two orders of magnitude. For
every OPF model, the Laplace mechanism produces OPF values which are, in
general, more than 10% away (and exceeding 100% in many instances) from the
values reported by the model ran on the original data, with the exception for the
largest privacy budget, whose results produces differences slightly below 10%. In
contrast, CBDP produces OPF values close (within 10%) to those produced on
the original data, with all the OPF models adopted.

The errors reported by the Laplace mechanism on small networks are larger
than those reported on medium and large networks. This is due to the fact that
the dispatch costs of larger networks are typically much higher than those of
small networks, and thus the relative distance of the error accumulated by the
DP mechanism is more pronounced for the smaller test cases. Despite this, the
CBDP mechanism produces solutions with small error costs, even for the small
network instances.

The CBDP mechanism preserves the objectives of the AC OPF problems
accurately (within 1%), demonstrating its benefits for small beta values. The
OPF value differences increase as the faithfulness parameter β increases.

Analysis of the Optimality Gap. In a competition setting, it is also critical
to preserve the computational difficulty of the original test case. The next set of
results show how well CBDP preserves the optimality gap of the instance and
its relationship to well-known approximations such as the DC model.

Constrained-Based Differential Privacy 227

Fig. 3. Average OPF objective differences for the CBDP mechanism (light colors) and
the Laplace mechanism (dark colors). (Color figure online)

Figure 4 shows the differences GR(D̃) − GR(D), for the AC OPF relax-
ation/approximation models R = {QC,SOC,DC}, where the private data set D̃
is produced by the CBDP mechanism. It compares four CBDP post-processing
models: M5, which solves the CBDP of Model 5; M5+g, which extends the
Model 5 by modifying the objective (sl

1) by adding the terms ‖Sg −Sg‖22 to min-
imize the distance from the generator setpoints; M5−β , which solves the Model 5
without the beta faithfulness constraint (s2); and M5+g,−β , which excludes con-
straint (s2) but includes the terms ‖Sg −Sg‖22 into its objective. Rows show the
results for the different privacy faithfulness levels (β = 0.01, 1.0, 100.0), while
columns show the results for the different privacy budgets (10, 1, 0.1). The results
are shown in log scale.

For all settings, M5 produces instances whose optimality gaps are close to
those of the original ones (their distance is <1 for ε = 10.0, and 1.0, and <3 for

228 F. Fioretto and P. Van Hentenryck

M5 M5+g M5−β M5+g,−β

Fig. 4. Optimality GAP error for the QC, SOC, and DC, relaxations of the AC-OPF,
on different CBDP post-processing models.

ε = 0.1). M5+g produces very similar optimality gaps, showing that the CBDP
mechanism does not need to take into account the generator setpoint values. For
the relaxations, both M5−β and M5+g,−β produce quite similar results to M5.
It is only for the DC-approximation that the faithfulness constraint is important.
Moreover, note that the faithfulness constraint must be relatively tight even for
M5 to preserve the result of the DC model. The DC model ignores many aspects
of the power systems and hence it is not a surprise that it is more brittle. These
results indicate that the CBDP mechanism is capable of preserving the optimality
gap of relaxations (and the quality of the DC approximation) with high fidelity.

Analysis of the Private Network Loads. The last set of results reports the
effect of the CBDP mechanism on the network load profiles. Figure 5 depicts
the percentage of load increase when applying the CBDP mechanism on three
example networks with 4-buses (left), 73 buses (center), and 300 buses (right)
for various privacy budgets. The results illustrate that load variation is often

Constrained-Based Differential Privacy 229

ε

10.0
1.0

0.1
ε

10.0
1.0

0.1
ε

10.0
1.0

0.1

Fig. 5. Percentage of load increase in the 4-bus (left) 73-bus (center), and 300-bus
(right) NESTA test cases.

significant for a portion of the loads, although the CBDP mechanism preserves
the problem structure accurately. Moreover, some of the loads exhibit a positive
or negative bias. A detailed examination of these test cases reveals that this is
due to the underlying network characteristics. For example, in the 4-bus test
case (Fig. 5(left)), the first load (load 1) tends to be higher than its original
value. This is explained by the fact that such load resides on the same bus as the
cheaper generator which also has a very high generation capacity [9] (pp. 337–
338). As a result, the CBDP mechanism has significant flexibility to increase this
load to redistribute the noise appropriately.

8 Related Work

There is rich literature on theoretical results of DP (see e.g., [6,22]). The liter-
ature on DP applied to energy systems includes considerably fewer efforts. Ács
and Castelluccia [2] exploited a direct application of the Laplace mechanism to
hide user participation in smart meter data sets, achieving ε-DP. Zhao et al. [25]
studied a DP schema that exploits the ability of households to charge/discharge
a battery to hide the real energy consumption of their appliances. Liao et al. [18]
introduce Di-PriDA, a privacy-preserving mechanism for appliance-level peak-
time load balancing control in the smart grid, aimed at masking the consumption
of the top-k appliances of a household.

Karapetyan et al. [15] conduct an empirical study on quantifying the trade-off
between privacy and utility in demand response systems. The authors analyze
the effects of a simple Laplace mechanism on the objective value of the demand
response optimization problem. Their experiments on a 4-bus micro-grid show
drastic results: the optimality gap approaches nearly 90% in some cases.

A DP schema that uses constrained post-processing was recently introduced
by Fioretto et al. [8] and adopted to release private mobility data. In contrast,
the proposed CBDP schema proposed in this work releases the private data set
through a mechanism that imposes constraints to ensure the problem solution
cost is close to the solution cost of the original problem, and that the underlying
optimal power flow constraints are satisfiable.

230 F. Fioretto and P. Van Hentenryck

9 Conclusions

This paper introduced the Constraint-Based Differential Privacy (CBDP) mech-
anism, an approach to Differential Privacy (DP) which aims at releasing optimal
power flow benchmarks that retain the privacy of the customers (loads). CBDP
leverages the post-processing immunity of DP to cast the production of a private
data set as an optimization problem that redistributes the noise introduced by
a randomized mechanism to satisfy problem-specific constraints.

The proposed mechanism enjoys desirable theoretical properties: It achieves
ε-DP, ensures that the released data set can produce feasible solutions for the
optimization problem of interest, and is a constant factor away from optimal-
ity. CBDP has been evaluated on the largest collection of OPF test cases avail-
able. Experimental results show that CBDP improves the accuracy of traditional
approaches (e.g., the Laplace mechanism) by orders of magnitude and preserves
some salient computational features of the test cases, such as the optimality
gap. These results are significant and indicate that CBDP has the potential to
become an important tool to release data sets for competition settings.

Although the paper focused on the applicability of CBDP to OPF problems,
the proposed mechanism is general and can be used for other applications where
a private data set is the input to a complex optimization problem.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments. This research is partly funded by the ARPA-E Grid Data
Program under Grant 1357-1530. The views and conclusions contained in this document
are those of the authors only.

References

1. Kaggle: Your home for data science. https://www.kaggle.com
2. Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Meter-

ing). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol.
6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24178-9 9

3. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-
indistinguishability: differential privacy for location-based systems. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
pp. 901–914. ACM (2013)

4. Backes, M., Berrang, P., Hecksteden, A., Humbert, M., Keller, A., Meyer, T.:
Privacy in epigenetics: temporal linkability of MicroRNA expression profiles. In:
USENIX Security Symposium, pp. 1223–1240 (2016)

5. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

6. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Theor.
Comput. Sci. 9(3–4), 211–407 (2013)

7. Fanti, G., Pihur, V., Erlingsson, Ú.: Building a rappor with the unknown: privacy-
preserving learning of associations and data dictionaries. Proc. Priv. Enhancing
Technol. 2016(3), 41–61 (2016)

https://www.kaggle.com
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/978-3-642-24178-9_9
https://doi.org/10.1007/11681878_14

Constrained-Based Differential Privacy 231

8. Fioretto, F., Lee, C., Van Hentenryck, P.: Constrained-based differential privacy
for private mobility. In: Proceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (2018)

9. Grainger, J.J.S., Grainger, W.D.J.J., Stevenson, W.D.: Power System Analysis.
McGraw-Hill Education, New York City (1994)

10. Greenberg, A.: Apple’s ‘differential privacy’ is about collecting your data—but
not your data, 13 June 2016. https://www.wired.com/2016/06/apples-differential-
privacy-collecting-data/. Accessed 21 Sept 2016

11. Gurobi. Gurobi software. http://www.gurobi.com/
12. Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations of nonlin-

ear programs in power systems. Math. Program. Comput. 32(5), 3549–3558 (2017)
13. IBM. ILOG CPLEX software. http://www.ibm.com/
14. Jabr, R.: Radial distribution load flow using conic programming. IEEE Trans.

Power Syst. 21(3), 1458–1459 (2006)
15. Karapetyan, A., Azman, S.K., Aung, Z.: Assessing the privacy cost in centralized

event-based demand response for microgrids. CoRR, abs/1703.02382 (2017)
16. Koufogiannis, F., Han, S., Pappas, G.J.: Optimality of the Laplace mechanism in

differential privacy. arXiv preprint arXiv:1504.00065 (2015)
17. Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-feasibility on tree networks is

NP-hard. IEEE Trans. Power Syst. 99, 1–4 (2015)
18. Liao, X., Srinivasan, P., Formby, D., Beyah, A.R.: Di-PriDA: differentially private

distributed load balancing control for the smart grid. IEEE Trans. Dependable
Secure Comput. (2017). https://doi.org/10.1109/TDSC.2017.2717826

19. McCormick, G.: Computability of global solutions to factorable nonconvex pro-
grams: part i - convex underestimating problems. Math. Program. 10, 146–175
(1976)

20. Mir, D.J., Isaacman, S., Cáceres, R., Martonosi, M., Wright, R.N.: DP-WHERE:
differentially private modeling of human mobility. In: 2013 IEEE International
Conference on Big Data, pp. 580–588. IEEE (2013)

21. MOSEK ApS. The MOSEK optimization toolbox (2015)
22. Vadhan, S.: The complexity of differential privacy. Tutorials on the Foundations of

Cryptography. ISC, pp. 347–450. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57048-8 7

23. Verma, A.: Power grid security analysis: an optimization approach. Ph.D. thesis,
Columbia University (2009)

24. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control. Wiley,
Hoboken (1996)

25. Zhao, J., Jung, T., Wang, Y., Li, X.: Achieving differential privacy of data dis-
closure in the smart grid. In: INFOCOM, 2014 Proceedings, pp. 504–512. IEEE
(2014)

https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
http://www.gurobi.com/
http://www.ibm.com/
http://arxiv.org/abs/1504.00065
https://doi.org/10.1109/TDSC.2017.2717826
https://doi.org/10.1007/978-3-319-57048-8_7
https://doi.org/10.1007/978-3-319-57048-8_7

Chasing First Queens by Integer
Programming

Matteo Fischetti and Domenico Salvagnin(B)

Department of Information Engineering (DEI), University of Padova, Padua, Italy
{matteo.fischetti,domenico.salvagnin}@unipd.it

Abstract. The n-queens puzzle is a well-known combinatorial problem
that requires to place n queens on an n × n chessboard so that no two
queens can attack each other. Since the 19th century, this problem was
studied by many mathematicians and computer scientists. While find-
ing any solution to the n-queens puzzle is rather straightforward, it is
very challenging to find the lexicographically first (or smallest) feasible
solution. Solutions for this type are known in the literature for n ≤ 55,
while for some larger chessboards only partial solutions are known. The
present paper was motivated by the question of whether Integer Linear
Programming (ILP) can be used to compute solutions for some open
instances. We describe alternative ILP-based solution approaches, and
show that they are indeed able to compute (sometimes in unexpectedly-
short computing times) many new lexicographically optimal solutions for
n ranging from 56 to 115.

Keywords: n-Queens problem · Mixed-integer programming
Lexicographic simplex

1 Introduction

The n-queens puzzle is a well-known combinatorial problem that requires to place
n queens on an n × n chessboard so that no two queens can attack each other,
i.e., no two queens are on the same row, column or diagonal of the chessboard.
Initially stated for the regular 8×8 chessboard in 1848 [5], it was soon generalized
to the n × n case [17], and has attracted the interest of many mathematicians
(including Carl Friedrich Gauss) and, more recently, by Edsger Dijkstra who
used it to illustrate a depth-first backtracking algorithm. As a decision problem,
the n-queens puzzle is rather trivial, as a solution exists for all n > 3, and there
are closed formulas to compute such solutions; see, e.g., the survey in [4]. On the
other hand, the counting version of the problem, i.e., to determine the number of
different ways to put n queens on a n × n chessboard turns out to be extremely
challenging. The sequence, labelled A000170 on the Online Encyclopedia of Inte-
ger Sequences (OEIS) [20], is currently known only up to n = 27. The related
problem of finding all solutions to the problem was shown in [14] to be beyond
the #P-class.
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 232–244, 2018.
https://doi.org/10.1007/978-3-319-93031-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_16&domain=pdf

Chasing First Queens by Integer Programming 233

Another variant of the problem, which is somewhat related to the one
addressed in this paper, is the n-queens completion problem, in which some
queens are already placed on the chessboard and the solver is required to place
the remaining ones, or show that it is not possible. The n-queens completion
problem is both NP-complete and #P-complete, as proved in [10].

Following a suggestion of Donald Knuth [16], in this paper we study
another very challenging version of the n-queens problem, namely, finding the
lexicographically-first (or smallest) feasible solution. This is sequence A141843
on OEIS. Solutions for this variant are known only for n ≤ 55 [19], while for
some larger chessboards only partial solutions are known.

It is worth noting that the lexicographically optimal solution is known for
the case of a chessboard of infinite size. Indeed, such a sequence can be easily
computed by a simple greedy algorithm that iterates over the anti-diagonals of
the chessboard and places a queen in each anti-diagonal in the first available
position (this is sequence A065188 on OEIS). Interestingly, as the size of the
chessboard increases, its lexicographically optimal solution overlaps more and
more with this greedy sequence.

The outline of the paper is as follows. In Sect. 2 we describe the basic Inte-
ger Linear Programming (ILP) formulation for the n-queens model, as well as
potential families of valid inequalities. In Sect. 3 we describe the different meth-
ods developed to solve the instances to lexicographic optimality, while computa-
tional results are given in Sect. 4. Conclusions and future directions of research
are drawn in Sect. 5. Finally, we list in Appendix all the new optimal solutions
we found for n ranging from 56 to 115.

2 An ILP Model

A basic ILP model for the n-queens problem can be obtained by introducing
the binary variables xij = 1 iff a queen is placed in row i and column j of the
chessboard, for each i, j = 1, . . . , n. Constraints in the basic model stipulate that
(i) there is exactly one xij = 1 in each row i; (ii) there is exactly one xij = 1
in each column j; and (iii) there is at most one xij = 1 in each diagonal of the
chessboard. Note that all such constraints are clique constraints.

In principle, it would be possible to encode the (row-wise) lexicographically
minimum requirement by just adding the objective function:

n∑

i=1

n∑

j=1

2ni+jxij (1)

and solve the problem with a black-box ILP solver. However, the size of the
coefficients makes such a method practical only for the smallest chessboards.
Still, this simple model, without the objective (1), is the basis of all the methods
that will be discussed in Sect. 3.

234 M. Fischetti and D. Salvagnin

A compact way to represent a feasible solution is to use a permutation π =
(π1, . . . , πn) of the integers 1, . . . , n defined as follows:

πi :=
n∑

j=1

j xij , i = 1, . . . , n. (2)

Among all permutations π that correspond to a feasible x, we then look for the
lexicographically smallest one. For example, the lex-optimal solution for n = 10,
depicted in Fig. 1, can be described as

(1, 3, 6, 8, 10, 5, 9, 2, 4, 7).

Fig. 1. Lexicographically optimal solution for n = 10.

The n-queens problem can also be easily reformulated as a maximum inde-
pendent set problem, as noted for example in [8]. Indeed, one just needs to
construct a graph in which there is a node for each square of the chessboard and
an edge for each pair of conflicting squares, i.e., for any two squares in the same
row, column or diagonal. Then any independent set of cardinality n is a solution
to the puzzle. The independent set reformulation immediately suggests classes
of valid inequalities for the n-queens problem, namely all that are valid for the
stable set polytope, such as clique and odd-cycle [13] inequalities.

Among clique inequalities, the following (polynomial in n) family is particu-
larly relevant for our problem:

xij + xi,j+h + xi+h,j + xi−h,j + xi,j−h ≤ 1 (3)
xij + xi+h,j+h + xi−h,j+h + xi−h,j−h + xi+h,j−h ≤ 1 (4)

xij + xi+h,j + xi+h,j+h + xi,j+h ≤ 1 (5)

Chasing First Queens by Integer Programming 235

Fig. 2. Three different families of clique cuts for n-queens.

where i, j, h ∈ {1, . . . , n}; of course, variables xuv corresponding to a position
(u, v) outside the n×n chessboard are removed from the summations. The three
different types of cliques in this family are depicted in Fig. 2.

Clique inequalities (3)–(5) can be trivially separated in time that is polyno-
mial in n. In addition, in preliminary experiments we implemented a general-
purpose exact clique separator based on the solution of an auxiliary ILP model,
and it never produced any additional violated clique inequality for the instances
in our testbed.

A second class of inequalities contains the so-called odd-cycle inequalities.
Given any odd cycle O in the graph, the following inequality:

∑

k∈O

xk ≤ |O| − 1
2

(6)

is valid for the stable set polytope. Odd-cycle inequalities can be easily sepa-
rated as {0, 1/2}-cuts with the combinatorial procedures described in [2,6,7].
An example of odd-cycle inequality occurring in the n-queens problem is illus-
trated in Fig. 3.

Fig. 3. Example of odd-cycle inequality for n-queens: no more than two of the five
positions can be occupied by a queen.

3 Solution Methods

We next describe the solution algorithms that we implemented.

236 M. Fischetti and D. Salvagnin

3.1 Using a Constraint Programming Solver

The n-queens puzzle can be easily modeled as a Constraint Programming (CP)
problem. Indeed, working directly on the variables πi, the puzzle can be formu-
lated by just three alldifferent [18,21] global constraints:

alldifferent(πi, i = 1, . . . , n) (7)
alldifferent(πi + i, i = 1, . . . , n) (8)
alldifferent(πi − i, i = 1, . . . , n). (9)

We implemented the model above with Gecode [9]. In order to enforce the model
to find the lexicographically-smallest solution, we use Depth-First Search (DFS)
as search strategy, always branching on the first unfixed variable πi and picking
values in increasing order—in Gecode terminology, that amounts to using a
brancher specified by INT VAR NONE() and INT VALUES MIN(). In the following,
we will refer to this solution method as CP.

3.2 Using an Exact ILP Solver

A simple algorithm to compute the lex-optimal solution by iteratively using a
black-box ILP solver is as follows: We scan all the chessboard positions (i, j) in
lexicographical order, i.e., row by row. For each (i, j), we are given the queens
already positioned in the previous iterations (i.e., we have a number of fixed x
variables), and our order of business is to decide whether a queen can be placed
in (i, j) or not. This in turn requires solving the basic ILP model with some
variables fixed in the previous iterations, by maximizing xij : if the final optimal
solution has value 1, we place a new queen in position (i, j) by fixing xij = 1,
otherwise we fix xij = 0 and proceed with the next chessboard position1. This
approach requires solving n2 ILPs.

In our actual implementation, a more effective scheme is used that exploits
representation (2). To be specific, we scan the rows i = 1, . . . , n, in sequence. For
each i, we have already fixed in the previous iterations the lex-optimal sequence
π1, · · · , πi−1 and the corresponding x variables, and we want to compute the
smallest feasible integer πi. To this end we solve the basic ILP model, with some
variables fixed in the previous iterations, by minimizing the objective function
(2), fix all the xij variables in row i accordingly, and proceed with the next row.
In this way, only n ILPs need to be solved. In the following, we will refer to this
solution method as ILP-ITER.

3.3 Using a Truncated ILP Solver

We also implemented an explicit depth-first backtracking algorithm to build the
lex-optimal permutation π, very much in the spirit of the CP approach described

1 Alternatively, one could fix xij = 1, check the resulting model for feasibility, and
then move to the next position.

Chasing First Queens by Integer Programming 237

in Subsect. 3.1. At each iteration (i.e., at each node of the branching tree) we have
tentatively fixed a lex-minimal, but possibly infeasible sequence, (π1, . . . , πi−1)
and the corresponding x variables, and we have to decide the next value in
position i. This is in turn obtained by solving a relaxation of the current ILP
with objective function (2), to be minimized, i.e., by applying the following three
steps:

(i) invoke the ILP solver (with its default cutting-plane generation and prepro-
cessing) for a limited number of nodes, say NN ;

(ii) define πi as the best lower bound available at the node limit (rounded up);
(iii) tentatively fix πi, along with the corresponding x variables, as the i-th value

in the sequence.

As a lower bound (instead of the true value) is used, it may happen that, at
a later iteration, the current ILP becomes infeasible, proving that the current
tentative subsequence (π1, · · · , πk) till position k (say) is infeasible as well. In
this case, a backtracking operation takes place, that consists in imposing that the
k-th position must hold a value strictly larger than πk. The latter requirement
can easily be enforced in the ILP model by setting xkj = 0 for j = 1, . . . , πk. The
algorithm ends as soon as the first feasible complete permutation (π1, . . . , πn) is
found.

After some preliminary tests, we decided to set NN = 0, i.e., to only solve
the root node of the ILP at hand. Note that this is not equivalent to solving the
LP relaxation of the ILP, as cutting planes and (most importantly) preprocessing
play a crucial role here. According to our computational experience, solving just
the LP relaxation is indeed mathematically correct and very fast, as the dual
simplex can be used to reoptimize each LP, but the number of backtrackings
becomes too large to have a competitive implementation. In the following, we
will refer to this solution method as ILP-TRUNC.

3.4 An Enumerative Method Based on Lexicographic Simplex

Finally, given the strong lexicographic nature of the problem at hand, we decided
to implement a custom enumerative algorithm based on the lexicographic sim-
plex method [11,12]. The lexicographic simplex method not only finds an optimal
solution to a given LP, but it guarantees to return the lexicographically smallest
(or greatest) one among all optimal solutions. The lexicographic variant of the
simplex method can be implemented quite easily on top of a black-box regular
simplex solver, as described for example in [3,22]. The idea is as follows. Given an
ordered sequence of objective functions fk to optimize lexicographically, at each
step we impose to stay on the optimal face of the current objective by fixing all
variables (including the artificial variables associated to inequality constraints)
with nonzero reduced cost, move to the next objective and reoptimize. Once all
objectives have been optimized, in sequence, the original bounds for all variables
are restored, which does not change the optimality status of the final basis, which
is the lex-optimal one.

238 M. Fischetti and D. Salvagnin

In our n-queens case, given our encoding of the permutation variables π as
xij , we are interested in the lexicographically maximal solution in the x space
or, equivalently, the sequence of objective functions to be minimized is −xij , for
all i, j = 1, . . . , n.

Using a lexicographic simplex method within an enumerative DFS scheme,
in which again we always branch on the first unfixed variable and explore the
1-branch first, provides the following advantages over using a “regular” simplex
method:

– Whenever the LP relaxation turns out to be integer, i.e., there are no frac-
tional variables, we are guaranteed that this is the lex-optimal integer solution
within the current subtree, hence we can prune the node. Given our branching
and exploration strategy, this also implies that we are done.

– If the first unfixed variable at the current node gets a value strictly less than
one, then we can fix the variable to zero. This is easily proved using the lex-
optimality of the LP solution as an argument. Being the first unfixed variable,
this is the first objective to be considered by the lexicographic simplex at
the current node, so a lex-optimal value <1 means that there is no feasible
solution (in the current subtree) in which this variable takes value 1. Note
that this reduction can be applied iteratively until the first unfixed variable
gets a value of 1. We call this process mini-cutloop.

The basic scheme above can be improved with some additional modifications.
First of all, we do not need to branch on single variables but we can branch
directly on rows, again always picking the first row that contains an unfixed
variable. For example, let the first unfixed variable be xij : instead of branching
on the binary dichotomy xij = 1 ∨ xij = 0, we use the n-way branching xi1 =
1∨xi2 = 1∨ . . .∨xin = 1. Of course, variables that are already fixed are removed
from the list. This basically mimics the branching that would have been done
by working directly with the π variables, as done by the CP solver.

Note that, because of our rigid branching strategy, there is no need for a full
lexicographic optimization at each node. Indeed, for the purpose of branching,
we can stop the lexicographic optimization at the first fractional variable, as
we will be forced to branch on its row, or on a previous one. For this very
reason, and because of the n-queens structure, we implemented a specialized
lexicographic simplex method, where instead of optimizing one variable at the
time, we optimize row by row, also integrating the mini-cutloop in the process.
In particular, we do the following:

1. Let i∗ be the first row with an unfixed variable. Set the objective function to∑n
j=1 jxi∗j and minimize it.

2. Apply the mini-cutloop, by iteratively fixing the first unfixed variable in the
row if its fractional value is <1 and by reoptimizing with the dual simplex.

3. If all variables in the current row are fixed this way, then we can move to the
next row and go to step (1). Otherwise stop.

Note that the method above does not need to temporarily fix variables as the
regular lexicographic simplex would. It is also important to note that, in the loop

Chasing First Queens by Integer Programming 239

above, if the current fractional solution is integer, we are no longer guaranteed
that this is the lexicographically optimal solution. In this (rare) case, we resort
to a full-blown lexicographic simplex method to tell whether we can prune the
node or need to branch.

The effectiveness of the node processing above greatly depends on the mini-
cutloop, which in turn relies on being able to recognize fixed variables, i.e., to
distinguish between a variable that happens to be zero or one in the current
fractional solution, and a variable that is actually fixed at that value in the
current node. For this purpose, we implemented a specialized propagator for the
clique constraints of the basic model—while there is no need to propagate the
clique constraints (3)–(5) as those can never lead to additional fixings.

Finally, separation of the clique inequalities (3)–(5) and odd-cycle inequali-
ties has also been implemented and added to the node processing code. In the
following, we will refer to this solution method as LEX-DFS.

4 Computational Comparisons

We implemented our ILP models with the MIP solver IBM ILOG CPLEX 12.7.1
[15], while we used Gecode 5.1.0 [9] as the CP solver for model (7)–(9). All
experiments were done on a cluster of 24 identical machines, each equipped with
an Intel Xeon E3-1220 V2 quad-core PC and 16 GB of RAM.

The testbed is made of all instances with n ranging from 21 to 60. A time
limit of 2 days was given for each instance to each method. Detailed results are
given in Table 1, where we report the running time, in seconds, for all of our
methods. The last two rows of the table report the shifted geometric mean [1]
of the computing time (with a shift of 10 s) and the number of solved instances.
According to the table, the CP model is able to solve models up to size 40
in a reasonable amount of time, after which it can no longer solve any model.
Comparing with the numbers reported in [19], this can be already considered a
good achievement, and a testament to how efficient Gecode’s implementation is.
On the other hand, all methods based on ILP, while initially slower, turn out
to be able to solve almost all models in the testbed. Among the ILP methods,
ILP-ITER, while being the easiest to implement, is also the slowest method,
while ILP-TRUNC and LEX-DFS are the fastest methods, with very similar average
running times.

As already noted in [19], the size of the chessboard is not a direct indicator of
instance difficulty, as some bigger chessboards can be solved significantly faster
than smaller ones. This is true in particular for ILP-based methods, where for
example n = 48 is unsolved while n = 49 can be cracked in a few seconds.
Interestingly, chessboards with even n seem to be consistently harder than the
ones with odd n.

As for the advanced techniques implemented in LEX-DFS, we have to admit
that for some of them the overall effect was rather disappointing. In particular,
the separation of clique and odd-cycle inequalities, while able to reduce the
number of enumerated nodes by more than a factor of 2, does not lead to a

240 M. Fischetti and D. Salvagnin

Table 1. Comparison of different methods for n = 21, . . . , 60, with a time limit of
172800 s (2 days).

n Methods

CP ILP-ITER ILP-TRUNC LEX-DFS

21 0.01 0.30 0.45 0.08

22 0.95 1.63 16.67 9.20

23 0.02 0.40 0.60 0.11

24 0.20 0.60 2.95 0.82

25 0.03 0.49 0.79 0.12

26 0.16 0.84 1.59 0.42

27 0.17 0.59 0.90 0.09

28 0.84 1.13 2.08 1.06

29 0.39 1.05 1.36 0.32

30 15.80 13.16 77.05 16.35

31 2.86 1.50 3.31 0.87

32 19.45 4.97 42.73 5.23

33 29.82 28.47 56.76 13.83

34 593.60 342.32 4558.02 228.07

35 33.70 11.21 30.46 4.67

36 5199.27 1882.10 20901.43 1196.59

37 185.37 2.06 7.49 0.54

38 2485.20 101.30 151.86 130.16

39 1642.30 143.02 184.50 44.79

40 t.l. 9604.18 117591.20 7068.84

41 1543.84 20.91 105.47 5.69

42 t.l. t.l. t.l. t.l.

43 23528.50 21.65 162.13 6.08

44 t.l. 1013.43 14838.95 2220.52

45 t.l. 3604.37 4560.69 1388.93

46 t.l. t.l. t.l. t.l.

47 t.l. 1602.10 5057.63 601.54

48 t.l. t.l. t.l. t.l.

49 t.l. 23.26 460.07 10.35

50 t.l. 28011.44 t.l. 61679.70

51 t.l. 4.63 874.16 0.88

52 t.l. 30306.67 27701.60 75659.40

53 t.l. 5.05 285.65 0.96

54 t.l. 64.09 19784.91 67031.40

55 t.l. 44.50 569.58 18.42

56 t.l. 28026.57 13386.85 101936.00

57 t.l. 10.03 3961.54 5.87

58 t.l. t.l. 129596.69 t.l.

59 t.l. 49647.30 t.l. 18795.70

60 t.l. t.l. 39143.49 t.l.

shmean 2945.76 780.20 251.85 263.79

#solved 21 35 35 35

Chasing First Queens by Integer Programming 241

faster algorithm overall. To the contrary, disabling cut separation leads to a
slightly faster method with an average runtime of 246 s. Note that this is not
due to the complexity of separating cuts, separation being extremely fast for
both classes of inequalities, but rather for the reduced node throughput.

5 Conclusions and Future Directions of Work

Finding a lexicographically minimal (also called “first”) solution of the n-queens
puzzle is a very difficult problem that attracted some research interest in recent
years. Following a suggestion by Donald E. Knuth, we have developed new solu-
tion methods based on Integer Linear Programming, and have been able to
provide the optimal solution for several open problems.

The two main outcomes of our research are as follows: (1) ILP has been
able to solve many previously unsolved models for this problem, sometimes in
unexpectedly-short computing times; (2) the yet-unsolved cases provide excel-
lent benchmark examples on which to base the next advances in ILP technology.
In addition, we think that improving our understanding on how to solve lexico-
graphic variants of combinatorial problems is an interesting topic on its own.

Future research should address the unsolved cases, and in particular should
try to better understand the reason why, in the ILP setting, the instances with
even n seem to be much more difficult to solve than those with n odd.

Acknowledgements. This research was partially supported by MiUR, Italy, through
project PRIN2015 “Nonlinear and Combinatorial Aspects of Complex Networks”. We
thank Donald E. Knuth for having pointed out the problem to us, and for inspiring dis-
cussions on the role of Integer Linear Programming in solving combinatorial problems
arising in digital tomography.

A New Solutions

Here are the solutions we found for some open problems from the literature:

n Solution

56 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 33 42 44 46 43 51 53 55 45 54 50
47 56 48 52 49 12 14 23 21 32 34 26 16 30 17 24 18 37 28 40 20 39 41 35 38 36

57 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 34 43 45 47 50 52 54 44 57 49
46 56 51 48 55 53 14 28 17 33 23 16 18 30 24 37 20 32 21 26 40 35 41 39 42 36 38

58 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 42 45 48 52 54 43 53 55 49 44
46 50 57 47 51 58 56 28 26 20 34 30 18 14 17 24 21 16 35 23 40 33 36 38 32 41
39 37

59 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 34 36 45 47 49 52 56 53 46 57
59 48 51 54 50 55 58 16 14 17 32 23 26 20 18 33 35 28 21 43 41 37 24 40 44 30
39 42 38

242 M. Fischetti and D. Salvagnin

n Solution

60 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 34 44 46 48 45 51 54 58 50 59
57 60 47 49 52 55 53 56 18 33 23 32 28 16 20 17 21 37 35 26 24 30 14 42 38 43
41 39 36 40

61 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 45 47 49 52 54 56 50 60
46 61 58 48 51 53 55 57 59 23 32 16 33 21 17 26 36 18 20 38 24 28 34 40 30 41
44 42 37 39 43

63 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 47 49 51 53 59 57 52
60 62 48 50 54 63 55 58 56 61 32 16 33 17 21 26 36 20 18 38 28 23 40 24 30 34
41 39 44 46 43 45 42

65 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 49 51 53 50 56 59
63 55 64 62 65 52 54 57 60 58 61 16 30 17 21 26 36 33 20 18 41 38 23 32 24 28
48 46 34 43 40 44 47 45 42

67 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 51 53 55 52 58
61 65 57 66 64 67 54 56 59 62 60 63 16 18 34 30 38 20 24 17 21 23 43 32 40 33
36 26 28 46 48 50 44 47 45 42 49

69 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 43 53 55 57 54
60 63 67 59 68 66 69 56 58 61 64 62 65 17 20 16 30 24 33 40 38 18 21 34 26 23
42 49 28 32 50 36 51 46 44 52 48 45 47

71 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 53 55 57 54
56 62 68 66 69 59 70 67 58 71 61 64 60 65 63 21 30 17 40 18 24 36 20 42 44 26
34 23 33 38 32 28 49 51 45 47 52 50 48 46 43

73 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 44 55 57 59
56 58 63 67 69 71 73 61 70 72 65 60 62 64 66 68 20 34 21 18 42 17 38 24 43 23
28 45 33 40 36 26 32 30 54 47 50 52 46 48 53 51 49

77 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 57 59
61 58 60 65 68 72 74 76 73 75 63 67 64 62 77 70 66 71 69 38 40 28 17 21 24 26
20 43 46 42 23 36 34 32 30 44 33 52 55 47 50 53 56 54 48 51 49

79 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 47 59
61 63 60 62 67 70 74 71 77 79 76 78 64 68 65 69 66 73 75 72 20 38 17 21 44 24
30 23 46 48 36 42 40 34 26 28 33 50 32 53 43 57 52 58 56 54 51 49 55

85 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 17 48
50 63 65 67 64 66 71 73 75 80 82 84 81 83 72 70 68 85 69 78 74 77 79 76 20 23
43 24 21 49 44 42 34 46 28 30 52 26 38 51 32 40 33 61 47 60 36 53 58 54 57 59
56 62 55

91 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 17 48
20 51 53 67 69 71 68 70 75 77 79 81 85 87 90 86 91 89 72 74 76 73 80 82 84 78
83 88 21 34 26 49 46 24 47 52 43 23 30 33 55 28 42 32 54 40 36 44 64 50 38 59
61 65 57 66 60 63 56 58 62

93 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 17 48
20 51 53 55 69 71 73 70 72 77 79 81 83 87 89 92 88 93 91 74 76 78 75 82 84 86
80 85 90 24 21 23 46 49 47 52 38 30 56 33 26 28 43 32 54 57 42 44 36 34 40 50
61 68 65 62 59 63 58 67 64 66 60

Chasing First Queens by Integer Programming 243

n Solution

97 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 17 48
20 51 53 21 56 71 73 75 72 74 79 81 83 85 87 89 93 95 97 94 96 76 80 77 86 78
82 84 91 88 90 92 46 24 28 52 23 49 47 34 30 26 57 50 33 61 42 44 36 32 55 43
38 54 60 66 40 70 68 63 58 69 62 65 67 64 59

101 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 17 48
20 51 53 21 56 58 60 75 77 79 76 78 83 85 87 89 91 93 97 99 101 98 100 80 84
81 90 82 86 88 95 92 94 96 23 26 28 40 43 54 57 24 32 47 50 42 59 33 30 34 52
62 68 46 38 36 44 55 66 71 74 70 49 73 63 72 67 61 64 69 65

103 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 17 48
20 51 53 21 56 58 60 62 77 79 81 78 80 85 87 89 91 93 95 99 101 103 100 102 82
86 83 92 84 88 90 97 94 96 98 23 26 24 30 28 36 46 55 59 52 54 44 61 34 66 33
42 32 47 49 40 38 57 73 71 63 72 43 64 70 75 50 69 67 76 74 68 65

109 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 17 48
20 51 53 21 56 58 60 23 63 65 81 83 85 82 84 89 91 93 95 86 100 104 106 101
109 107 105 108 88 92 87 96 90 97 102 94 98 103 99 26 24 32 28 36 55 57 40 64
61 54 50 30 66 34 42 38 33 49 43 67 59 62 77 52 44 47 75 71 46 76 80 73 70 79
69 78 72 74 68

115 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37 39 41 16 18 45 17 48
20 51 53 21 56 58 60 23 63 24 66 68 85 87 89 86 88 93 95 97 99 90 102 108 111
113 107 109 112 115 91 114 98 101 92 94 96 100 105 103 110 106 104 26 28 30
32 36 50 59 62 64 55 43 34 72 67 52 33 40 65 57 44 42 38 74 54 61 46 83 47 77
69 49 82 79 75 84 71 80 78 81 73 70 76

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Univer-
sität Berlin (2007)

2. Andreello, G., Caprara, A., Fischetti, M.: Embedding {0, 1/2}-cuts in a branch-
and-cut framework: a computational study. INFORMS J. Comput. 19(2), 229–238
(2007)

3. Balas, E., Fischetti, M., Zanette, A.: On the enumerative nature of Gomory’s dual
cutting plane method. Math. Program. 125, 325–351 (2010)

4. Bell, J., Stevens, B.: A survey of known results and research areas for n-Queens.
Discret. Math. 309(1), 1–31 (2009)

5. Bezzel, M.: Proposal of 8-Queens problem. Berl. Schachzeitung 3, 363 (1848)
6. Caprara, A., Fischetti, M.: {0, 1

2
}-Chvátal-Gomory cuts. Math. Program. 74, 221–

235 (1996)
7. Caprara, A., Fischetti, M.: Odd cut-sets, odd cycles, and 0–1/2 Chvatal-Gomory

cuts. Ricerca Operativa 26, 51–80 (1996)
8. Foulds, L.R., Johnston, D.G.: An application of graph theory and integer program-

ming: chessboard non-attacking puzzles. Math. Mag. 57, 95–104 (1984)
9. Gecode Team. Gecode: Generic constraint development environment (2017).

http://www.gecode.org
10. Gent, I.P., Jefferson, C., Nightingale, P.: Complexity of n-Queens completion. J.

Artif. Intell. Res. 59, 815–848 (2017)
11. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.

Bull. Am. Math. Soc. 64, 275–278 (1958)

http://www.gecode.org

244 M. Fischetti and D. Salvagnin

12. Gomory, R.E.: An algorithm for the mixed integer problem. Technical report RM-
2597, The RAND Cooperation (1960)

13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combina-
torial Optimization. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-
642-97881-4

14. Hsiang, J., Frank Hsu, D., Shieh, Y.-P.: On the hardness of counting problems of
complete mappings. Discret. Math. 277(1–3), 87–100 (2004)

15. IBM. ILOG CPLEX 12.7 User’s Manual (2017)
16. Knuth, D.E.: Private communication, November 2017
17. Lionnet, F.J.E.: Question 963. Nouvelles Annales de Mathématiques 8, 560 (1869)
18. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Artificial

Intelligence, vol. 1, pp. 362–367 (1994)
19. Schubert, W.: Wolfram Schubert’s N-Queens page. http://m29s20.vlinux.de/

∼wschub/nqueen.html. Accessed Dec 2017
20. Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2017)
21. van Hoeve, W.F.: The alldifferent constraint: a survey. CoRR (2001)
22. Zanette, A., Fischetti, M., Balas, E.: Lexicography and degeneracy: can a pure

cutting plane algorithm work? Math. Program. 130, 153–176 (2011)

https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1007/978-3-642-97881-4
http://m29s20.vlinux.de/~wschub/nqueen.html
http://m29s20.vlinux.de/~wschub/nqueen.html

Accelerating Counting-Based Search

Samuel Gagnon(B) and Gilles Pesant(B)

Polytechnique Montréal, Montreal, Canada
{samuel-2.gagnon,gilles.pesant}@polymtl.ca

Abstract. Counting-based search, a branching heuristic used in con-
straint programming, relies on computing the proportion of solutions to
a constraint in which a given variable-value assignment appears in order
to build an integrated variable- and value-selection heuristic to solve con-
straint satisfaction problems. The information it collects has led to very
effective search guidance in many contexts. However, depending on the
constraint, computing such information can carry a high computational
cost. This paper presents several contributions to accelerate counting-
based search, with supporting empirical evidence that solutions can thus
be obtained orders of magnitude faster.

1 Introduction

Constraint programming builds concise models from high-level constraints that
reveal much of the combinatorial structure of a problem. That structure is used to
prune the search space through domain filtering algorithms, to guide its explo-
ration through branching heuristics, and to learn from previous attempts at
finding a solution. Counting-based search [12] represents a family of branching
heuristics that guide the search for solutions by identifying likely variable-value
assignments in each constraint. Given a constraint c(x1, . . . , xn), its number of
solutions #c(x1, . . . , xn), respective finite domains Di 1≤ i ≤ n, a variable xi in
the scope of c, and a value v ∈ Di, we call

σ(xi, v, c) =
#c(x1, . . . , xi−1, v, xi+1, . . . , xn)

#c(x1, . . . , xn)
(1)

the solution density of pair (xi, v) in c, i.e. how often a certain assignment is part
of a solution to c. Though that concept was originally introduced for satisfaction
problems, it has been extended to optimization problems as well [9].

Solution densities from every constraint c ∈ C in a model can be combined
in many ways to produce a branching heuristic—one simple combination that
works well in practice, called maxSD [10], branches on x�

i = v� where

(x�
i , v

�, c�) = argmax
c(x1,...,xn)∈C, i∈{1,...,n}, v∈Di

σ(xi, v, c) (2)

and on x�
i �= v� upon backtracking. The computational cost of solution densities

depends on the constraint: for some it is only marginally more expensive than its
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 245–253, 2018.
https://doi.org/10.1007/978-3-319-93031-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_17&domain=pdf

246 S. Gagnon and G. Pesant

existing filtering algorithm (e.g. regular) while for others exact computation is
intractable (e.g. alldifferent). Given its effectiveness at guiding search, finding
more efficient ways to compute solution densities is desirable.

This paper presents several contributions to accelerate counting-based search.
We first discuss specific improvements for the alldifferent and spanningtree
counting algorithms in Sects. 2 and 3. Then a generic method for accelerating
search is presented in Sect. 4. All discussed algorithms are implemented using
Gecode [6] and available in [5].

2 Alldifferent Constraints

An instance of an alldifferent(x1, . . . , xn) constraint is equivalently repre-
sented by an incidence matrix A = (aiv) with aiv = 1 whenever v ∈ Di and
aiv = 0 otherwise. For notational convenience and without loss of generality, we
identify domain values with consecutive natural numbers. Because we will want
A to be square (with m = |⋃xi∈X Di| rows and columns), if there are fewer
variables than values we add enough rows, say p, filled with 1s. It is known that
counting the number of solutions to the alldifferent constraint is equivalent
to computing the permanent of that square matrix (dividing the result by p! to
account for the extra rows) [13]:

perm(A) =
m∑

v=1

a1v · perm(A1v) (3)

where Aij denotes the sub-matrix obtained from A by removing row i and col-
umn j.

Since computing the permanent is #P -complete [11], Zanarini and Pesant
proposed approximate counting algorithms for the alldifferent constraint
based on sampling [12] and upper bounds [10]. Algorithm 1 reproduces the lat-
ter using notation adapted for this article. As each assignment xi = v in the
alldifferent constraint induces a different incidence matrix, a naive approach
to compute solution densities is to recompute the permanent upper bound for
each assignment. However, our upper bounds are a product of factors F for
each variable xi which depend only on the size of its domain di = |Di| (line
1). Hence if we account for the domain reduction of the assigned variable (line
5) and of each variable which could have taken that value (line 6)—simulating
forward checking—we can compute the solution density of each assignment (line
10) by updating the upper bound UBA calculated for the whole constraint (line
1). Reusing UBA avoids recomputing upper bounds from scratch. Let cv denote
the number of 1s in column v of A. Given that we can precompute the factors,
the total computational effort is dominated by line 6 where we do a total of
Θ(

∑m
v=1 c2v) operations: for a given value v, uv is computed cv times by multi-

plying cv − 1 terms.

Accelerating Counting-Based Search 247

1 UBA =
∏

xi
F [di] � Constraint upper bound

2 foreach xi ∈ X do
3 total = 0 � Normalization factor
4 foreach v ∈ Di do
5 uxi = F [1]

F [di]
� Variable assignment update

6 uv =
∏

k �=i : v∈Dk

F [dk−1]
F [dk]

� Value assignment update

7 UBxi=v = UBA · uxi · uv � Assignment upper bound
8 total += UBxi=v

9 foreach v ∈ Di do
10 SD[i][v] = UBxi=v / total

11 return SD

Algorithm 1. Solution densities for alldifferent, adapted from [10]

1 UBv = 1, ∀v ∈ {1, 2, . . . , m}
2 foreach xi ∈ X do
3 foreach v ∈ Di do
4 UBv *= F [di−1]

F [di]

5 foreach xi ∈ X do
6 total = 0
7 foreach v ∈ Di do
8 UBxi=v = F [1]

F [di−1]
·UBv

9 total += UBxi=v

10 foreach v ∈ Di do
11 SD[i][v] = UBxi=v / total

12 return SD

Algorithm 2. Improved version of Algorithm 1

2.1 Improved Algorithm

The product at line 6 of Algorithm 1 can be rewritten to depend only on v:

uv = F [di]
F [di−1]

∏
k : v∈Dk

F [dk−1]
F [dk]

. (4)

This allows us, as shown in Algorithm 2, to precompute this product for every
value (line 1–4) as it does not depend on i anymore, leading to each UBxi=v being
computed in constant time (line 8). We also avoid computing UBA since that
factor cancels out during normalization. Algorithm2 runs in Θ(

∑m
v=1 cv) time,

which is asymptotically optimal if we need to compute every solution density
(since

∑m
v=1 cv =

∑n
i=1 di).

2.2 Computing Maximum Solution Densities Only

Some search heuristics, such as maxSD, only really need the highest solution
density from each constraint in order to make a branching decision. In such a

248 S. Gagnon and G. Pesant

case it may be possible to accelerate the counting algorithm further. We present
such an acceleration for the alldifferent constraint.

The factors F in our upper bounds are strictly increasing functions, meaning
that for a given value v, the highest solution density will occur for the vari-
able with the smallest domain. Algorithm3 identifies that peak for each value,
knowing that the highest one will be included in this subset. Note however that
because we don’t compute a solution density for each value in the domain of a
given variable, we cannot normalize them as before (though we at least adjust for
the p extra rows). So we may loose some accuracy but what we were computing
was already an estimate, not the exact density. The asymptotic complexity of
this algorithm remains the same as the previous one, but makes fewer computa-
tions: we iterate on each variable and value once instead of three times.

1 UBv = (F [n−1]
F [n]

)p, minv = 1, ∀v ∈ {1, 2, . . . , m}
2 foreach xi ∈ X do
3 foreach v ∈ Di do
4 UBv *= F [di−1]

F [di]

5 if di < dminv then
6 minv = i

7 maxSD = {var = 0, val = 0, dens = 0}
8 foreach v ∈ {1, 2, . . . , m} do
9 SD[minv][v] = F [1]

F [dminv −1]
·UBv

10 if SD[minv][v] > maxSD.dens then
11 maxSD = {minv, v, SD[minv][v]}
12 return maxSD

Algorithm 3. Maximum solution density for alldifferent

2.3 Experiments on the Quasigroup Completion Problem

The Quasigroup Completion Problem (#67 in CSPLib) can be described using
an alldifferent constraint on each row and column, making it ideal for testing
the above counting algorithms. Gecode’s distribution already includes a model
with branching heuristics afc (weighted degree) and size (smallest domain), both
with lexicographic value selection. We consider heuristic maxSD using Algo-
rithms 1, 2 and 3. We use 20 instances of size 90 to 110 with 25% of entries
filled, generated as in [7]. That ratio of filled entries may not yield the hardest
instances for that size but our goal here is to have a lot of shared values between
variables in order to emphasize the improvement of Algorithm2 over 1.

First we observe that maxSD guides search more effectively by solving all
instances in several orders of magnitude fewer failures than afc and size. As
expected Algorithm 3 is less accurate than the other two (which share the same
number of failures), but still about one order of magnitude faster (Fig. 1).

Accelerating Counting-Based Search 249

101 103 105

Number of failures

0

25

50

75

100

%
So

lv
ed

100 101 102 103

Time (s)

Algo. 1

Algo. 2

Algo. 3

afc

size

Fig. 1. Percentage of Quasigroup Completion instances solved w.r.t. time and number
of failures.

3 Spanning Tree Constraints

Brockbank et al. introduced an algorithm to compute solution densities for the
spanningTree constraint in [1]. The graph is represented as a Laplacian matrix
L (vertex degrees on the diagonal and edges indicated by −1 entries) and Kirch-
hoff’s Matrix-Tree Theorem [2] is used to compute solution densities for every
edge (u, v) using the following formula:

σ((u, v), 1, spanningTree(G,T)) = mu
v′v′ (5)

with Mu = (mu
ij) defined as the inverse of the sub-matrix Lu obtained by remov-

ing row and column u from L and v′ equal to v if v < u and to v − 1 otherwise.
Given a vertex cover of size γ on a graph over n nodes, computing all solution
densities takes O(γn3) time. Figure 2 shows an example graph and its Laplacian
matrix.

1

2 3

4

L =

⎛
⎜⎜⎝

3 -1 -1 -1
-1 2 -1 0
-1 -1 3 -1
-1 0 -1 2

⎞
⎟⎟⎠ M1 =

⎛
⎝ 5/8 2/8 1/8

2/8 4/8 2/8
1/8 2/8 5/8

⎞
⎠

Fig. 2. Graph and its Laplacian matrix with γ = 2, meaning we can get every edge
density by inverting two submatrices, e.g. L1 (with inverse M1 shown) and L3.

With this formula counting-based search heuristics can be used on problems
such as degree constrained spanning trees (and Hamiltonian paths in particular)
with very good results [1]. However, they become impractical for large instances
because of repeated matrix inversion. The following sections address this problem
by proposing two improvements. Note that these improvements remain valid for
the recent generalization to weighted spanning trees [4].

250 S. Gagnon and G. Pesant

3.1 Faster Specialized Matrix Inversion

By construction, the sub-matrix Lu we invert has a special form that enables
us to use a specialized algorithm. It is Hermitian (more precisely, integer sym-
metric). Since the row and column removed from L have the same index u, it
is diagonally dominant : |�u

ii| ≥ ∑
j �=i |�ij |,∀i. Its diagonal entries are positive.

Therefore it is positive semidefinite or, equivalently, has non-negative eigenval-
ues. The Matrix-Tree Theorem states that the number of spanning trees is equal
to the determinant of Lu, itself equal to the product of its eigenvalues. Therefore
each eigenvalue is strictly positive and Lu is positive definite.

A Hermitian positive definite matrix can be inverted via Cholesky factoriza-
tion instead of the standard LU factorization. Inverting a positive definite matrix
requires approximately 1

3n3 (Cholesky factorization) + 2
3n3 floating-point oper-

ations whereas inverting a general matrix requires approximately 2
3n3 (LU fac-

torization) + 4
3n3 floating-point operations [3]. We therefore expect a two-fold

improvement in runtime.

3.2 Inverting Smaller Matrices Through Graph Contraction

When branching, if an edge (u, v) is fixed, the Laplacian matrix must be updated
to reflect this change. The technique described by Brockbank, Pesant and
Rousseau is the following: if it is forbidden, we set luv = 0; if it is required,
we must contract it in the graph, meaning we transfer the edges of vertices u
and v to a representative vertex in the same connected component while keeping
a 1 on the diagonal of these vertices to keep the matrix invertible. Figure 3 shows
an example.

1

2 3

4

L =

⎛
⎜⎜⎜⎝

3
0 1

0 -3 0
0 0

-3 0 3 0
0 0 0 1

⎞
⎟⎟⎟⎠

Fig. 3. Contraction following assign-
ments e(1, 2) = 1 and e(1, 4) = 1, with
1 as the representative vertex in con-
nected component {1, 2, 4}.

124

3

L =

(
3 -3
-3 3

)

Fig. 4. Connected component {1, 2, 4}
as a single vertex.

This way of updating L works but still requires that we invert (n−1) × (n−1)
matrices to compute solution densities throughout the search. However, as shown
in Fig. 4, we can view each connected component as a single vertex, leading to
smaller Laplacian matrices, and thus smaller matrices to invert as we fix edges.

Accelerating Counting-Based Search 251

101 103 105

Number of failures

0

25

50

75

100

%
So

lv
ed

10−2 10−1 100 101 102

Time (s)

LU

cholesky

chol+contraction

afc

size

Fig. 5. Percentage of Hamiltonian Path instances solved w.r.t. time and number of
failures with a 5 min cutoff.

3.3 Experiments on the Hamiltonian Path Problem

To test our two improvements we designed a simple model to find Hamiltonian
paths with Gecode’s path constraint and a redundant spanningTree constraint
that computes solution densities according to our spanningTree counting algo-
rithm. The spanningTree constraint is expressed on binary edge variables as
opposed to vertex successor variables for the path constraint—the two variable
representations are channelled.

In Fig. 5 improvements to the spanningTree counting algorithm are tested
on this model with maxSD branching on binary edge variables—for comparison
we also tried heuristics afc and size branching on vertex successor variables (and
trying values in lexicographic order). We use 30 graphs over 60 to 234 vertices
taken from the FHCP Challenge Set [8]. Again we observe that maxSD (with
the curves of its three algorithms coinciding in the first graph) guides search
much more effectively by solving the instances in several orders of magnitude
fewer failures than afc and size. At one second of computation time, all three
heuristics solve about the same number; at ten seconds, maxSD solves almost
all of them whereas afc and size solve about half.

4 Avoiding Systematic Recomputation

The improvements we presented so far are specific to the alldifferent and
spanningTree constraints. In this section we present an additional technique
applicable to any constraint in order to avoid recomputation but at the expense
of accuracy. Usually at every node of the search tree, before branching, we sys-
tematically call the counting algorithm for each constraint. Suppose we have a
spanningTree constraint on a graph with hundreds of vertices and thousands of
edges: we may have fixed a single edge with very few changes propagated since
the last call to its counting algorithm but the whole computation, involving the
expensive inversion of large matrices, will be undertaken again even though the
resulting solution densities are likely to be very similar. To avoid this we propose
a simple dynamic technique: while the variable domains involved remain about

252 S. Gagnon and G. Pesant

101 103 105
0

25

50

75

100
%

So
lv
ed

100 101 102 103

ρ = 1.00

ρ = 0.95

ρ = 0.80

afc

size

101 103 105

Number of failures

0

25

50

75

100

%
So

lv
ed

10−2 10−1 100 101 102

Time (s)

ρ = 1.00

ρ = 0.95

ρ = 0.80

afc

size

Fig. 6. The effect of different recomputation ratios for the Quasigroup Completion (first
row) and Hamiltonian Path Problem (second row), using same instances as before.

the same, we do not recompute solution densities for a constraint but use the
latest ones as an estimate instead. For any given node k in the search tree and
constraint c, let Sk

c =
∑

xi∈c di. We recompute only if Sk
c ≤ ρSj

c , with 0 < ρ ≤ 1
some appropriate ratio and j the last node above k but on the same path from
the root for which we computed solution densities for c. Note that as opposed
to a static criterion such as calling the counting algorithm of every constraint at
fixed intervals of depth in the search tree, our approach adapts dynamically to
individual constraints and to how quickly the domains of the variables in their
scope shrink.

Figure 6 show the performance of different recomputation ratios with maxSD
for the previous experiments (ρ = 1 means always recompute). As expected,
with a lower ρ we loose accuracy as seen in the number of fails but overall we
gain speed.

5 Conclusion

To accelerate counting-based search we proposed various improvements to the
alldifferent and spanningtree counting algorithms and a simple generic
method to avoid systematic recomputation during search. In our experiments
these improvements brought 30- to 100-fold speed ups on Quasigroup Comple-
tion and Hamiltonian Path problems.

Financial support for this research was provided by an NSERC postgraduate
scholarship and NSERC Discovery Grant 218028/2017.

Accelerating Counting-Based Search 253

References

1. Brockbank, S., Pesant, G., Rousseau, L.-M.: Counting spanning trees to guide
search in constrained spanning tree problems. In: Schulte, C. (ed.) CP 2013. LNCS,
vol. 8124, pp. 175–183. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40627-0 16

2. Chaiken, S., Kleitman, D.J.: Matrix tree theorems. J. Comb. Theory Ser. A 24(3),
377–381 (1978)

3. Choi, J., Dongarra, J.J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley,
R.C.: Design and implementation of the ScaLAPACK LU, QR, and Cholesky fac-
torization routines. Sci. Program. 5(3), 173–184 (1996)

4. Delaite, A., Pesant, G.: Counting weighted spanning trees to solve constrained
minimum spanning tree problems. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR
2017. LNCS, vol. 10335, pp. 176–184. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59776-8 14

5. Gagnon, S.: Gecode extension for counting-based search (2017). https://github.
com/SaGagnon/gecode-5-extension

6. Gecode Team: Gecode: generic constraint development environment (2017). http://
www.gecode.org

7. Gomes, C., Shmoys, D.: Completing quasigroups or Latin squares: a structured
graph coloring problem. In: Computational Symposium on Graph Coloring and
Generalizations, January 2002

8. Haythorpe, M.: FHCP challenge set (2015). http://fhcp.edu.au/fhcpcs
9. Pesant, G.: Counting-based search for constraint optimization problems. In: Schu-

urmans, D., Wellman, M.P. (eds.) AAAI, pp. 3441–3448. AAAI Press (2016)
10. Pesant, G., Quimper, C.G., Zanarini, A.: Counting-based search: branching heuris-

tics for constraint satisfaction problems. J. Artif. Int. Res. 43(1), 173–210 (2012)
11. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.

8(2), 189–201 (1979)
12. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered

search heuristics. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 743–757.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7 52

13. Zanarini, A., Pesant, G.: More robust counting-based search heuristics with alldif-
ferent constraints. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS,
vol. 6140, pp. 354–368. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13520-0 38

https://doi.org/10.1007/978-3-642-40627-0_16
https://doi.org/10.1007/978-3-642-40627-0_16
https://doi.org/10.1007/978-3-319-59776-8_14
https://doi.org/10.1007/978-3-319-59776-8_14
https://github.com/SaGagnon/gecode-5-extension
https://github.com/SaGagnon/gecode-5-extension
http://www.gecode.org
http://www.gecode.org
http://fhcp.edu.au/fhcpcs
https://doi.org/10.1007/978-3-540-74970-7_52
https://doi.org/10.1007/978-3-642-13520-0_38
https://doi.org/10.1007/978-3-642-13520-0_38

Model Agnostic Solution of CSPs via
Deep Learning: A Preliminary Study

Andrea Galassi(B) , Michele Lombardi, Paola Mello, and Michela Milano

Department of Computer Science and Engineering (DISI),
University of Bologna, Bologna, Italy

{a.galassi,michele.lombardi2,paola.mello,michela.milano}@unibo.it

Abstract. Deep Neural Networks (DNNs) have been shaking the AI
scene, for their ability to excel at Machine Learning tasks without relying
on complex, hand-crafted, features. Here, we probe whether a DNN can
learn how to construct solutions of a CSP, without any explicit symbolic
information about the problem constraints. We train a DNN to extend a
feasible solution by making a single, globally consistent, variable assign-
ment. The training is done over intermediate steps of the construction
of feasible solutions. From a scientific standpoint, we are interested in
whether a DNN can learn the structure of a combinatorial problem, even
when trained on (arbitrarily chosen) construction sequences of feasible
solutions. In practice, the network could also be used to guide a search
process, e.g. to take into account (soft) constraints that are implicit in
past solutions or hard to capture in a traditional declarative model. This
research line is still at an early stage, and a number of complex issues
remain open. Nevertheless, we already have intriguing results on the
classical Partial Latin Square and N-Queen completion problems.

1 Introduction

Deep Neural Networks (DNNs) [12], are characterized by the ability to learn
high-level concepts without the need of symbolic features. In this paper, we
investigate the idea that DNNs could be capable of learning how to solve com-
binatorial problems, with no explicit information about the problem constraints.
This is partially motivated by the results achieved in a previous work regarding
the application of DNNs to a board game [3]. In particular, we train a DNN to
extend a feasible partial solution by making a single, globally consistent, variable
assignment.

In principle, such a network could be used to guide a search process: this may
be used to take into account constraints that are either implicit in the training
solutions, or too difficult to capture in a declarative model. In this sense, the
approach is complementary to Empirical Model Learning (EML) [14], where the
goal is instead to learn a constraint. The method presented here is applicable
even when only positive examples (i.e. feasible solutions) are available. More-
over, using the DNN to guide search may also provide a speed-up when solving
multiple instances of the same problem. Practical applications are not our only
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 254–262, 2018.
https://doi.org/10.1007/978-3-319-93031-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_18&domain=pdf
http://orcid.org/0000-0001-9711-7042

Model Agnostic Solution of CSPs via Deep Learning: A Preliminary Study 255

driver, however: there is a strong scientific interest in assessing to what extent
a sub-symbolic technique, trained on arbitrarily chosen solution construction
sequences, can learn something of the problem structure.

This line of research is at an early stage, and there are many complex issues
to be solved before reaching practical viability. So far, we have focused on two
classical Constraint Satisfaction Problems (CSPs), namely N-queen completion
and Partial Latin Square. For these benchmarks we have intriguing results, the
most striking being an impressive discrepancy between the (low) DNN accuracy
and its (very high) ability to generate feasible assignments: this suggest that the
network is indeed learning something about the problem structure, even if it has
been trained to “mimic” specific solution construction sequences.

This is not the first time that Neural Networks have been employed to solve
CSPs. For example, Guarded Discrete Stochastic networks [1] can solve generic
CSPs in an unsupervised way. They rely on a Hopfield network to find consistent
variable assignment, and on a “guard” network to force the assignment of all the
variables. The GENET [16] method can construct neural networks capable of
solving binary CSPs, and was later extended in EGENET [13] to support non-
binary CSPs. In [2], a CSP is first reformulated as a quadratic optimization
problem. Then, a heuristic is used to guide the evolution of a Hopfield network
from an initial state representing an infeasible solution to a final feasible state.
Crucially, all these methods rely on full knowledge of the problem constraints to
craft both the structure and the weights of the networks. What we are trying to
do is in fact radically different.

2 General Method and Grounding

General Approach. We train a DNN to extend a partial solution of a com-
binatorial problem, by making a single additional assignment that is globally
consistent, i.e. that can be extended to a full solution.

We use simple bit vectors for both the network input and output. We repre-
sent assignments using a one-hot encoding, i.e. for a variable with n values we
reserve n bits; raising the i-th bit corresponds to assigning the i-th domain value.
If no bit is raised, the variable is unassigned. Using such a simple format makes
our input encoding general (any set of finite domain variables can be encoded),
and truly agnostic to the problem constraints. As a major drawback, the method
is currently restricted to problems of a pre-determined size.

Our training examples are obtained by deconstructing a comparatively small
set of solutions. We considered two different strategies, referred to as random
and systematic deconstruction, as described in Algorithms 1 and 2. Both methods
operate by processing a partial solution s and populate a dataset T with pairs of
partial solutions and assignments. In the pseudo code, si refers to the value of the
i-th variable in s, and si = ⊥ if the variable is unassigned. The random strategy
generates in a backward fashion one arbitrary construction sequence for the
solution. The systematic strategy generates all possible construction sequences.
When all the original solutions have been deconstructed, we prune the dataset

256 A. Galassi et al.

by considering all groups of examples sharing the same partial solution, and
selecting a single representative at random.

Alg. 1 RandomDeconstruction(s)
Randomly choose a variable index i
s′ = s (copy the partial solution)
s′
i = ⊥ (undo one assignment)

Insert (s′, si) in T
RandomDeconstruction(s′)

Alg. 2 SystematicDeconstruction(s)
for all variable indices i do

s′ = s (copy the partial solution)
s′
i = ⊥ (undo one assignment)

Insert (s′, si) in T
SystematicDeconstruction(s′)

The DNN is trained for a classification task : for each example, the target
vector (i.e. the class label) contains a single raised bit, corresponding to the
assignment si in the dataset. The network yields a normalized score for each bit
in the output vector, which can be interpreted as a probability distribution. The
bit with the highest score corresponds to the suggested next assignment. We
take no special care to prevent the network from trying to re-assign an already
assigned variable. These choices have three important consequences: (1) the net-
work is agnostic to the problem structure; (2) the network is technically trained to
mimic specific construction sequences of arbitrarily chosen solutions; (3) assum-
ing that the DNN is used to guide a search process, it is easy to take into account
propagation by disregarding the scores for variable-value pairs that have been
pruned. As an adverse effect, we are forsaking possible performance advantages
that could come by including information about the problem structure.

Grounding (Benchmark Problems). So far, we have grounded our approach
on two classical CSPs, namely the N-queen completion and Partial Latin Square
(PLS, see [4]) problems. Classical problems let us work in a controlled setting
with well known properties [6–8], and simplifies drawing scientific conclusions.

The N-queen completion problem consist in placing n queens pieces on a
n × n chessboard, so that no queen threats another. The PLS problem consist
in filling an n × n square with numbers from 1 to n so that the same number
appears only once per row and column. In both cases, some variables may be
pre-assigned. We focus on N-queen problems of size 8 and PLSs of size 10. In
both cases, we model assignments using a one-hot encoding, leading to vector of
size 8 × 8 = 64 for the n-queens and 10 × 10 × 10 = 1, 000 for the PLS.

For the 8-queen problem, we have used 1/4 of the 12 non-symmetric solution
to seed the training set, and the remaining ones for the test set. Both the training
and the test set are then obtained by generating all the symmetric equivalents,
and then by applying systematic deconstruction to the resulting solutions.

For the PLS, we have used an unbiased random generation method to obtain
two “raw” datasets, respectively containing 10,000 and 20,000 solutions. The
numbers are considerably large in this case, but they are very small compared to
the number of size 10 PLS (∼1031). As comparison, it is a bit like making sense

Model Agnostic Solution of CSPs via Deep Learning: A Preliminary Study 257

of the layout of Manhattan from ∼0.75 square nanometers of surface scattered
all over the place. Each of the raw datasets is split into a training and test set,
containing respectively 1/4 and 3/4 of the solutions. The actual examples have
then been obtained by random deconstruction.

Grounding (Networks and Training). Due to the impressive results
obtained in computer vision tasks, we have chosen to use pre-activated Residual
Networks [5,9,10]. We have adapted the architecture to use fully-connected lay-
ers rather than convolutional ones, as the latter are not well suited to deal with
generic combinatorial problems.

We have trained the networks in a supervised fashion, using 10% of the
examples (chosen at random) as a validation set. The loss function is the negative
log-likelihood of the target class, with a 10−4 L1 regularization coefficient. The
choice of the network and training hyper-parameters has been made after an
informal tuning. We have eventually settled for using the Adam [11] optimizer,
with parameters β1 = 0.9 and β2 = 0.99. The initial learning rate α0, was
progressively annealed through epochs with decay proportional to training epoch
t, resulting in a learning rate α = α0

1+k×t with k = 10−3. Training was stopped
after there was no improvement on the validation accuracy for e epochs.

For the 8-queens problem we have used an initial layer of 200 neurons, than
100 residual blocks, each one composed by two layers of 500 and 200 neurons,
and finally an output layer of 64 neurons, for a total of more than 200 layers.
Batch optimization has been employed, using a initial learning rate of α0 = 0.1
and a patience of e = 200 epochs. Dropout [15] has been applied to each input
and hidden neuron with probability p = 0.1.

For the PLS problem, we have used a smaller network because of the big-
ger input/output vectors and the larger datasets would have required too much
training time. Therefore we have used an initial layer of 200 neurons, then 10
residual blocks, each one composed by two layers of 300 and 200 neurons, and a
final output layer of 1000 neurons, for a total of 22 layers. Mini-batch optimiza-
tion has been employed, using shuffling in each epoch, using a initial learning
rate of α0 = 0.03 and a patience of e = 50 epochs. Dropout has been applied
to hidden neuron with probability p = 0.1. The size of the mini batch has been
setted to 50,000 for the training on the 10k dataset and to 100,000 for the 20k
dataset.

3 Experimentation

We designed our experiments to address four main questions. First, we want
to assess how well the DDNs are actually learning their designated task, i.e.
to guess the “correct” assignment according to the employed deconstruction
method. Second, we are interested in whether the DNNs learn to generate feasible
assignments, no matter whether those are “correct” according to datasets. Third,
assuming that the networks are actually learning something about the problem
constraints, it makes sense to check whether some constraint types are learned

258 A. Galassi et al.

Fig. 1. Accuracy on the training and test sets

better than others. Finally, we want to investigate whether using the DNNs to
guide an actual tree search process leads to a reduction in the number of fails.

Network Accuracy. Here we are interested in assessing the performance of our
DNNs in their natural task, i.e. learning “correct” variable-value assignment, as
defined by our deconstruction procedure. Figure 1 shows the accuracy reached
by our DNNs on both the training and the test sets, grouped by the number of
pre-assigned variables in the example input. For comparison, random guessing
would reach an accuracy of 1/64 � 0.015 for the 8-queens and 1/1, 000 for the
PLS. There are three notable facts:

1. The accuracy is at least one order or magnitude larger than random guessing,
but still rather low, in particular for the PLS; this suggest that the networks
are not doing particularly well at the task they are being trained for.

2. Second, the accuracy on the test set if considerably lower than on the training
set ; normally this is symptomatic of overfitting, but in this case there is
also a structural reason. The pruning in the last phase of dataset generation
introduces a degree of ambiguity in our training: as an extreme case, for the
same partial assignment, the training and the test set may report different
“correct” assignments that cannot be both predicted correctly.

3. Third, the accuracy tends to increase with the number of filled cells. Having
many filled cells means having very few feasible completions, and therefore it
is more unlikely for the same instance to appear both in the test and train set
with a different target. In this situation it is intuitively easier for the network
to label a specific assignment as the “correct” one.

The third observation leaves an open question: while the small number of feasible
completions can explain why the accuracy raises, it fails to explain the magnitude
of the increase. The result would be much easier to explain by assuming that the
DNN has somehow learned something about the problem constraints.

Feasibility Ratio. It makes sense to evaluate the ability of the DNNs to yield
globally consistent assignments, even if those are not chosen as “correct”, since

Model Agnostic Solution of CSPs via Deep Learning: A Preliminary Study 259

Fig. 2. Feasibility ratios on the training and test sets

this is our primary goal. Figure 2 show the ratio of predictions of the DNNs
(both on the training and test set) that could be expanded to full solutions. For
comparison, the figures report also the results that can be obtained by guessing
at random on the test sets. There are three very relevant observations to make:

1. There is a striking difference between the accuracy values from Fig. 1 and the
feasibility ratios.

2. Such discrepancy may be due to the fact that the more a partial solution
is empty, the more are the feasible assignments that can be found even by
guessing. However, the reported feasibility ratio are also significantly higher
than the random baseline. This is hard to explain, unless we assume that the
DNNs have somehow learned the semantic of the problem constraints.

3. The feasibility ratios for the PLS networks have a dip between 50 and 60 pre-
assigned variables, and then tend to raise again. This is exactly the behavior
that one would expect thank to constraint propagation: when many variables
are bound many values are pruned and the number of available assignments
is reduced. However, the DNNs at this stage do not rely on propagation at all.
Even the higher accuracy from Fig. 1 is not enough to justify how much the
feasibility rations tend to increase for almost full solutions. Assuming that
the DNN has learned the problem constraints can explain the increase, but
not so easily the dip.

Constraints Preference. Next, we have designed an experiment to investigate
whether some constraints are handled better than others. We start by generating
a pool of (partial) solutions by using the DNN to guide a randomized constructive
heuristic. Given a partial solution, we use the DNN to obtain a probability
distribution over all possible assignment, one of which is chosen randomly and
performed. Starting from an empty solution, the process is repeated as many
times as there are variables, and relies on our low-level, bit vector, representation
of the partial solution. As a consequence, at the end of the process there may be
variables that have been “assigned multiple times”, and therefore also unassigned
variables. We have used this approach to generate 10,000 solutions for each DNN,
and for comparison we have done the same using a uniform distribution.

260 A. Galassi et al.

Fig. 3. Average violations on the two problems

Once we have such a pool of partial solution, we count the average degree of
violation of each abstract problem constraints, e.g. the number of rows with mul-
tiple queens. Each quantity is then normalized over the corresponding maximum
(i.e. the number of row/columns, or the number of variables). Looking at the
average violations for the random baseline intuitively tells the natural difficulty
of satisfying a constraint type. Comparing such values with those of the DNN
allows to evaluate how well the DNN is faring.

As reported in Fig. 3, for the N-queens problem the network gets much closer
to feasibility than the random baseline and all problem constraints are handled
equally well. For the PLS problem, the DNNs violates the row and column
constraints significantly more than the random baseline, but they also tend to
leave fewer variable unassigned. There is a logic correlation between these two
values, since assigning more variables increases the probability to violate a row
or a column constraint.

Guiding Tree Search. Finally, we have tried using our DNNs to guide a Depth
First Search process for the Partial Latin Square1. In particular, we always make
the assignment with the largest score, excluding bounded variables and values
pruned by propagation.

We employ a classic CP model for the PLS (one finite domain variable per
cell), and use the GAC AllDifferent propagator for the row and column
constraint. We compare the results of the two DNNs with those of heuristic that
pick uniformly at random both the variable and the value to be assigned. Given
that our research is at a early stage, we have opted for a simple (but inefficient)
implementation relying on the Google or-tools python API: for this reason we
focus our evaluation on the number of fails. As a benchmarks, we have sampled
4,000 partial solutions from the 20k training and test set, at the complexity
peak. All instances have been solved with a cap at 10,000 fails.

The results of this experimentation are reported in Fig. 4, using box plots.
Apparently, the DNN trained on the 10k dataset is more efficient than the

1 The 8-queens problem is too easy to provide meaningful measurements.

Model Agnostic Solution of CSPs via Deep Learning: A Preliminary Study 261

Fig. 4. Distribution of the number of fails on the train and test sets. At the top of each
box we report the number of times the fail cap was reached.

random baseline, but the opposite holds for the one trained in the 20k dataset.
This matches the results obtained in our analysis of violated constraints, but
not those obtained for the feasibility ratio. We suspect however that explain-
ing the performance (and obtaining practical speed-up) will require to take into
account the complex trade-off making choice that are likely feasible, and recov-
ering quickly from the inevitable mistakes. This is a well know open problem in
Constraint Programming, that we plan to tackle as part of future work.

4 Conclusions

We have performed a preliminary investigation to understand whether DNNs can
learn how to solve combinatorial problems. We have adopted a general setup,
totally agnostic to the problem structure, and we have trained the networks on
arbitrarily chosen solution construction sequences.

Our experimentation has provided evidence that, despite having low accu-
racy at training time, a DNN can become capable of generating globally con-
sistent variable-value assignments. This cannot be explained assuming that the
networks only mimic the assignment sequences in the training set, but it com-
patible with the hypothesis that the DNNs have learned something about the
problem structure. The networks do not seem to favor any abstract constraint
in particular, suggesting that what they are learning does not match our usual
understanding of CSPs. When used for guiding a search process, our DNNs have
provided mixed results, highlighting that achieving performance improvements
may require to deal more explicitly with the peculiarities of a specific solution
technique (e.g. constraint propagation).

This research line is still at an early stage: there are considerable overheads
that make practical applications still far, and the method is currently limited
to problems of fixed size, a problem that maybe could be solved using only
convolutional layers. However, we believe the approach to have enough potential
to deserve further investigation.

262 A. Galassi et al.

References

1. Adorf, H.M., Johnston, M.D.: A discrete stochastic neural network algorithm for
constraint satisfaction problems. In: 1990 IJCNN International Joint Conference
on Neural Networks, vol. 3, pp. 917–924, June 1990

2. Bouhouch, A., Chakir, L., Qadi, A.E.: Scheduling meeting solved by neural net-
work and min-conflict heuristic. In: 2016 4th IEEE International Colloquium on
Information Science and Technology (CiSt), pp. 773–778, October 2016

3. Chesani, F., Galassi, A., Lippi, M., Mello, P.: Can deep networks learn to play
by the rules? A case study on nine men’s morris. IEEE Trans. Games PP(99), 1
(2018). https://doi.org/10.1109/TG.2018.2804039

4. Colbourn, C.J.: The complexity of completing partial latin squares. Discret. Appl.
Math. 8(1), 25–30 (1984)

5. Ebrahimi, M.S., Abadi, H.K.: Study of residual networks for image recognition.
arXiv preprint arXiv:1805.00325 (2018)

6. Gent, I.P., Jefferson, C., Nightingale, P.: Complexity of n-Queens completion. J.
Artif. Intell. Res. 59, 815–848 (2017)

7. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0017434

8. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through
randomization. In: Proceedings of the Fifteenth National Conference on Artificial
Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference,
AAAI 1998, IAAI 1998, 26–30 July 1998, Madison, Wisconsin, USA, pp. 431–437
(1998). http://www.aaai.org/Library/AAAI/1998/aaai98-061.php

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

10. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

13. Lee, J.H.M., Leung, H.F., Won, H.W.: Extending GENET for non-binary CSP’s.
In: Proceedings of 7th IEEE International Conference on Tools with Artificial
Intelligence, pp. 338–343, November 1995

14. Lombardi, M., Milano, M., Bartolini, A.: Empirical decision model learning. Artif.
Intell. 244, 343–367 (2017). https://doi.org/10.1016/j.artint.2016.01.005

15. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

16. Wang, C.J., Tsang, E.P.K.: Solving constraint satisfaction problems using neural
networks. In: 1991 Second International Conference on Artificial Neural Networks,
pp. 295–299, November 1991

https://doi.org/10.1109/TG.2018.2804039
http://arxiv.org/abs/1805.00325
https://doi.org/10.1007/BFb0017434
http://www.aaai.org/Library/AAAI/1998/aaai98-061.php
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.artint.2016.01.005

Boosting Efficiency for Computing
the Pareto Frontier on Tree Structured

Networks

Jonathan M. Gomes-Selman1, Qinru Shi2, Yexiang Xue3,
Roosevelt Garćıa-Villacorta4, Alexander S. Flecker4, and Carla P. Gomes3(B)

1 Department of Computer Science, Stanford University, Stanford, USA
jgs8@stanford.edu

2 Center for Applied Mathematics, Cornell University, Ithaca, USA
qs63@cornell.edu

3 Department of Computer Science, Cornell University, Ithaca, USA
yx247@cornell.edu, gomes@cs.cornell.edu

4 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, USA
rg676@cornell.edu, asf3@cornell.edu

Abstract. Multi-objective optimization plays a key role in the study
of real-world problems, as they often involve multiple criteria. In multi-
objective optimization it is important to identify the so-called Pareto
frontier, which characterizes the trade-offs between the objectives of dif-
ferent solutions. We show how a divide-and-conquer approach, combined
with batched processing and pruning, significantly boosts the perfor-
mance of an exact and approximation dynamic programming (DP) algo-
rithm for computing the Pareto frontier on tree-structured networks, pro-
posed in [18]. We also show how exploiting restarts and a new instance
selection strategy boosts the performance and accuracy of a mixed inte-
ger programming (MIP) approach for approximating the Pareto fron-
tier. We provide empirical results demonstrating that our DP and MIP
approaches have complementary strengths and outperform previous algo-
rithms in efficiency and accuracy. Our work is motivated by a problem
in computational sustainability concerning the evaluation of trade-offs in
ecosystem services due to the proliferation of hydropower dams through-
out the Amazon basin. Our approaches are general and can be applied
to computing the Pareto frontier of a variety of multi-objective problems
on tree-structured networks.

Keywords: Multi-objective optimization · Pareto frontier
Approximation algorithms · Dynamic programming
Mixed-integer programming

J.M. Gomes-Selman and Q. Shi—These authors are contributed Equally.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 263–279, 2018.
https://doi.org/10.1007/978-3-319-93031-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_19&domain=pdf

264 J. M. Gomes-Selman et al.

1 Introduction

In recent years there has been a rapid proliferation of hydropower dams through-
out the Amazon basin, which dramatically affects a variety of ecosystem services
provided by the river network such as biodiversity, nutrient and sediment trans-
port, freshwater fisheries, navigation, and energy production [4,17,21,22] (see
Fig. 1). Hydropower dam placement is a good example of a challenging real-
world problem in computational sustainability [6], which often involves multiple
objective problems concerning the balancing of environmental, economic, and
societal needs. More concretely, hydropower dam placement is a multi-objective
optimization problem concerning the placement of dams throughout a river net-
work, which is naturally a tree-structured network, trading-off various ecological,
social, and economic goals. In multi-objective optimization, the so-called Pareto
frontier captures the trade-offs among multiple objectives. The Pareto frontier
is the set of all Pareto optimal solutions; a solution is considered Pareto optimal
if its vector of objective values is not dominated by any other feasible solution.
See Fig. 1 for an example of a 2-dimensional Pareto frontier.

Fig. 1. Left panel: Amazon basin: around 300 hydropower dams are proposed or
planned. Three objectives are depicted: (1) Energy (dot sizes denote dam capacity in
MW); (2) Longitudinal connectivity (continuous unobstructed river segments from the
root of the basins, which are marked with stars); and (3) Seismic risk (map background
colors). Right panel: The approximate DP (ε = 0.001) overlaps the exact DP. The new
MIP approach is substantially better than the previous MIP approach (ε = 0.1) and
its solutions are on the exact Pareto curve, slightly better than the DP approximation
for the same ε = 0.1. For a given ε, DP produces substantially more Pareto solutions
than MIP.

Recently there has been considerable interest in the study of multi-objective
optimization problems (see e.g., [2,3,8,10,11,13,14,16,20]). Existing approaches
are primarily heuristic, based on local search or evolutionary algorithms, with-
out theoretical guarantees, and do not exploit the tree structure. [5] provides a
constraint programming exact algorithm which is extended by [12] with large
neighborhood search. Both algorithms are designed for general problems. [1]
provides data structures to store Pareto optimal policies in an exact algorithm.

Boosting Efficiency for Computing the Pareto Frontier 265

This paper focuses on computing the Pareto frontier, both exact and with approx-
imation guarantees, on tree-structured networks. In [18] we proposed a dynamic
programming algorithm for trees which computes the exact Pareto frontier, as
well as a rounding technique applied to the exact dynamic programming algo-
rithm that provides a fully polynomial-time approximation scheme (FPTAS).
The FPTAS finds a solution set of polynomial size, which approximates the
Pareto frontier within an arbitrary small ε factor and runs in time that is poly-
nomial in the size of the instance and 1/ε. We also formulated the problem
of optimizing the placement of dams as a mixed integer programming problem
(MIP) and used it to approximate the Pareto frontier. While the results in [18]
are encouraging, there is room for improvement.

Our Contributions: (1) A key component of our DP algorithm is the prun-
ing of dominated solutions. We provide a divide-and-conquer approach that
significantly improves the efficiency of the pruning of dominated solu-
tions and outperforms the previous approach, leading to speed-ups of two
to three orders of magnitude, in practice; (2) To cope with the large mem-
ory requirements of a multi-objective Pareto frontier, we propose batching to
identify and prune dominated solutions incrementally, scaling up to
much larger problems; (3) We also propose a new MIP based approxima-
tion scheme that exploits restarts and a new instance selection strategy, which
boosts the performance and accuracy of the previous MIP approach for approx-
imating the Pareto frontier. (4) We design a visualization tool of our results
intended for decision makers. (5) We provide empirical results showing that our
proposed algorithms significantly outperform previous approaches.

Preview of Results: Our DP and MIP Pareto frontier algorithms are com-
plementary and scale up to much larger real-world instances than previous algo-
rithms: the DP can now approximate the Pareto frontier for the entire
Amazon basin, when optimizing for energy, connectivity (a proxy for e.g.,
unimpeded fish migrations and transportation), seismic risk, and sediment, in
around 5 days, with a coverage of 2, 193, 314 non-dominated solutions, with
the guarantee that the solutions are within at most 5% of the true optimum
(ε = 0.05); in less than 6 h, the DP provides a coverage of 491, 578 non-dominated
solutions (ε = 0.1); in around 6.5 min, the DP provides a coverage of 23, 019
non-dominated solutions (ε = 0.25); for the same ε = 0.25, the MIP approach
approximates the Pareto frontier in around 25 min, with a smaller coverage of
95 non-dominated solutions, but the MIP approach provides more flexibility
when considering additional constraints and, in practice, its solutions tend to
be closer to the exact Pareto frontier for a given ε. Our overall goal is to enable
more informed decisions concerning the trade-offs of multiple objectives of opti-
mization problems.

266 J. M. Gomes-Selman et al.

2 Problem Formulation

In this section, we first introduce the hydropower dam placement problem as an
example of a multi-objective optimization problem on a tree structured network.
Then, we show the general formulation of such problems.

(a) River Network (b) Directed Rooted
Tree

Fig. 2. Converting a river network (left) into a more compact directed rooted tree
(right: x is the root). Each contiguous region of the river network (represented by
different colors, and labeled x, u, v, w) is converted into a node, also referred to as a
hypernode (labeled with the corresponding letter, x, u, v, w) in the tree network. Each
potential dam site (represented by a red-yellow circle) is represented by an edge in the
directed rooted tree. (Color figure online)

2.1 Hydropower Dam Placement Problem

We are given a set of planned dams and need to decide the optimal subset
of dams to build. We refer to this problem as the hydropower dam placement
problem. We first point out that a river network is a directed tree-structure
network and that, for the purposes of our hydropower dam placement problem,
we don’t need to explicitly consider every river segment. So, we first abstract the
river network and potential dam locations into a more compact directed rooted
tree that captures the key problem information. Each contiguous section of the
river network uninterrupted by existing or potential dam locations is represented
by a node (we also call it hypernode to emphasize that it encapsulates a river sub
network). Each existing or potential dam location is represented by a directed
edge pointing from downstream to upstream. See Fig. 2 for an example of our
conversion of a river network into a more compact directed rooted tree.

A policy (or solution) π is a subset of potential dam sites to be built. We
can encode many environmental and economical objectives as a function of π.
In this paper, we focus on the following four objectives:

Energy (E): Given a solution π, the total hydropower produced by the selected
dams is E(π) =

∑
e∈π he, where he is the hydropower of the dam represented

by edge e. We want to maximize this objective.

Boosting Efficiency for Computing the Pareto Frontier 267

Longitudinal Connectivity (C): For a given solution π, the connectivity of
a river network is measured by the total length of the unobstructed stream
segments that one can travel starting from the root (river mouth) without passing
any dam site in π. We want to maximize this objective.

Sediment (Sd): For a given solution π, this objective represents the total
amount of sediment transported to the river mouth (the ocean in the case of the
entire Amazon basin). We assume that each node produces a fixed amount of sed-
iment and each dam traps a certain percentage of the sediment from upstreams.
We want to maximize this objective.

Seismic Risk (Se): Each dam is associated with a seismic risk factor computed
based on its location and its capacity. Given a solution π, this objective is just the
sum of seismic risk factors of all dams in π. We want to minimize this objective.

The goal of the hydropower dam placement problem is then to optimize the
objective function: (E(π), C(π), Sd(π), Se(π)). Here we are not just looking for
a single solution. For every possible solution, we say that the solution is optimal
as long as there does not exist another solution that is superior in every aspect.

2.2 General Formulation

In general, a multi-objective optimization problem is to optimize a given multi-
objective function: (z1(π), z2(π), . . . , zd(π)), where the value of each function
zi depends on a common solution π, also referred to as a policy. Without loss
of generality, we only consider the problem of maximizing objective functions.
Minimizing objective functions can be treated in a similar fashion.

Pareto Dominance: Given two policies π and π′, we say that π dominates π′

if the following two conditions hold: (1) for all i, zi(π) ≥ zi(π′); (2) at least one
strict inequality holds for some i.

Pareto Frontier: A Pareto optimal policy is the one that is not dominated by
any other policies. The Pareto frontier is the set containing all Pareto optimal
policies.

An Example: Consider a multi-objective function (z1, z2, z3) and policies π1,
π2, and π3, leading to: (z1(π1), z2(π1), z3(π1)) = (5, 7, 10), (z1(π2), z2(π2),
z3(π2)) = (4, 7, 9), and (z1(π3), z2(π3), z3(π3)) = (6, 6, 9). π1 dominates π2

because it has higher or equal values in all objectives, with some objectives with
higher values. π1 does not dominate π3 because of the first objective. π3 does not
dominate π1 because of the second and third objectives. π1 and π3 are Pareto
optimal and form the Pareto frontier.

Multi-objective Function on a Tree: We now give a formal definition of
the multi-objective optimization problem on a tree structured network: the
hydropower dam placement problem is a particular example. Given a tree struc-
tured network (such as a river network), the objective function zi is defined
recursively. Node rewards r1v, . . . , rd

v are associated with each node v in the tree.
The objective function defined on a leaf node v is its corresponding reward, i.e.,

268 J. M. Gomes-Selman et al.

zi
v(π) = ri

v. Each edge is associated with a transfer coefficient that is affected by
whether the corresponding dam is built or not. If the dam represented by (u, v) is
built, then (u, v) has a transfer coefficient of pi

uv; otherwise, qi
uv. Also associated

with each edge (u, v) is a reward si
uv and an indicator variable denoting whether

the corresponding edge is in π or not. The objective function on a non-leaf node
u is defined recursively:

zi
u(π) = riu +

∑

v∈ch(u)

I(uv ∈ π)siuv +
∑

v∈ch(u)

(
I(uv ∈ π)pi

uv + I(uv /∈ π)qiuv

)
zi
v(π). (1)

Here, I(·) is an indicator function. ch(u) is the child set of u. The objective
function for the entire tree network T is the function at the root node s, i.e.,
zi(π) = zi

s(π). Given a multi-objective function defined on a tree network T , our
multi-objective optimization problem on a tree structured network
is to find the Pareto frontier consisting of all non-dominated policies, which is
NP-hard even though it is defined on a tree. See [18] for further details.

Application to the Hydropower Dam Placement Problem: In the
hydropower dam placement problem, when modeling connectivity (i.e., i =
connectivity), we set ri

u to be the total lengths of all stream segments in the
region represented by node u. We set pi

uv = 0 and qi
uv = 1; that is, we either

acquire all upstream segments (when the dam corresponding to edge (u, v) is not
built) or lose all of them (when the dam is built). We set si

uv = 0. When model-
ing energy (i.e., i = energy), we set si

uv = huv, in which huv is the hydropower
produced by the dam site (u, v). ri

u is set to 0, pi
uv and qi

uv are both set to 1.

3 DP-Based Pareto Frontier

In [18] we proposed a dynamic programming (DP) algorithm (shown in Algo-
rithm1) that recursively computes the Pareto optimal partial solutions from leaf
nodes up to the root. The key insight is that at a given node u we only need to
keep the Pareto optimal partial solutions [18]. To increase incremental pruning,
we convert the original tree into an equivalent binary tree. Given a binary tree,
we first compute Pareto optimal solutions for the two children of u (line 6 and
7), enumerate the partial policies from the children and consider four different
combinations of whether to include each of the edges from the children, com-
puting the objective values based on Eq. 1, and adding them to the policy set
P (line 8). We then remove all dominated policies (line 9). So, the remaining
policies are Pareto optimal for the parent node.

In [18] we also proposed a rounding scheme applied to the exact DP algo-
rithm, which provides a fully polynomial-time approximation scheme (FPTAS)
that finds a polynomially succinct policy set, which approximates the Pareto
frontier within an arbitrary small ε factor and runs in time polynomial in the
size of the instance and 1/ε. The key idea is to project objective values that are
ε-close into one, which decreases the number of Pareto solutions.

Boosting Efficiency for Computing the Pareto Frontier 269

Algorithm 1. ParetoT (u): compute the Pareto frontier for the value func-
tion defined on the subtree of T rooted at node u.
1 if is leaf(u) then
2 return {(r1u, . . . , rmu)};
3 else
4 l ← u.left child;
5 r ← u.right child;
6 Pleft ← ParetoT (l);
7 Pright ← ParetoT (r);
8 Su ← the set of all possible partial solutions at u obtained by combining

solutions from Pleft and Pright and possible policies on (u, l) and (u, r);
9 return Non Dominated(Su);

10 end

3.1 Divide-and-Conquer for Identifying Dominated Solutions

The major runtime bottleneck of Algorithm1 is pruning the dominated solu-
tions (line 9). Let d be the number of objectives. Assume we generate n partial
solutions and get m non-dominated partial solutions, then the naive pruning
step takes O(mnd) time. Here we describe a strategy that significantly boost
the efficiency of the overall DP algorithms for computing the Pareto frontier,
which leverages the dimensionality of solutions to efficiently identify the subset
of non-dominated solutions from a set of candidate solutions. The new divide-
and-conquer based algorithm for finding the non-dominated solutions runs in
O(n(log n)d−1) if we use comparison-based sort or O(n(log n)d−2) if the data is
stored in the Lattice Latin Hypercube (LLH) form [19]. Here d is the number of
criteria we are considering. This algorithm is inspired by an approach proposed
in [19].

To simplify the description of our algorithms, we assume that the values
of each criterion never repeat. In practice, it is fairly trivial to consider the
corner case. Specifically, when splitting the set S based on the dth criterion, we
implemented a modified sorting routine that sorts the solutions in lexicographic
order, based on the dthcriterion. If two solutions have the same dth criterion, we
sort them based on the (d − 1)th criterion, etc. Note that if two solutions are
equal for all criteria then their ordering does not matter.

When the number of objectives is two, we use the method as shown in Algo-
rithm2. The idea is to sort the solutions based on the first criterion (good ones
first). The first solution must be Pareto optimal. Then, we go through the list of
solutions sequentially and look for solutions with better second objective than
the last non-dominated solution.

When the number of objectives d ≥ 3, we use our divide-and-conquer based
recursive algorithm shown in Algorithm 3. The first step is to split the set of
solutions S into two sets A and B of approximately the same size based on the
last criterion, so that solutions in A have better last criterion than solutions in B
(line 8). The splitting procedure is shown in Algorithm4. Then, we recursively

270 J. M. Gomes-Selman et al.

Algorithm 2. Non Dominated 2D(S): given a set S of 2-dimensional partial
solutions, find the set of non-dominated solutions in S.
1 Sort solutions in S by their first element, in descending order if we aim to

maximize the element, in ascending order otherwise;
2 P ← {S[1]};
3 foreach s ∈ S[2 :] do
4 if s is not dominated by the last element of P then
5 Append s to P ;
6 end

7 end
8 return P ;

Algorithm 3. Non Dominated(S): given a set S of d-dimensional partial
solutions (d ≥ 2), find the set of non-dominated solutions in S.
1 d ← dimensionality of solutions in S;
2 n ← number of solutions in S;
3 if n = 1 then
4 return S
5 else if d = 2 then
6 return Non Dominated 2D(S)
7 else
8 A, B ← Split(S, d);
9 A′ ← Non Dominated(A); // solutions in A’ are non-dominated in S.

10 B′ ← Non Dominated(B);
11 return A′ ∪ Marry(A′, B′, d − 1);

12 end

identify the non-dominated solutions from A and B (line 9 and 10). We know
that the non-dominated solutions from set A′ are also non-dominated in S,
but the same statement may not be true for non-dominated solutions from B′.
Thus, the last step is to find the solutions from set B′ that are not dominated
by solutions from A′ (line 11). Note that we already know that the dth objective
of solutions in A′ are better than the dth criterion of solutions in B′, so we
only need to consider the first d − 1 criteria. To find non-dominated solutions
in B′, we introduce a slightly modified divide-and-conquer procedure shown in
Algorithm 5.

The algorithm Marry(A,B, d′) shown in Algorithm5 returns the set of all
solutions in B that are not dominated by any solution in A considering only the
first d′ criteria. The inputs A and B must be disjoint and no two solutions from
the same set dominate one another. Let n be the total number of solutions in
A∪B. We split the set of solutions A∪B into two sets X and Y of approximately
the same size based the d′th criterion, so that solutions in X have better d′th
criterion than solutions in Y (line 7). Next, we consider the four disjoint subsets
X ∩ A, X ∩ B, Y ∩ A, Y ∩ B. Note that they cover all solutions in A ∪ B, and

Boosting Efficiency for Computing the Pareto Frontier 271

Algorithm 4. Split(S, d): given a set S of partial solutions, split S into
two disjoint sets of roughly the same size based on the dth criterion of each
solution.
1 Sort solutions in S by their dth criterion, in descending order if we aim to

maximize the criterion, in ascending order otherwise;
2 A ← S[1 : �n/2�];
3 B ← S − A ;
4 return A, B; // A and B are disjoint and solutions in A have better

dth criterion.

Algorithm 5. Marry(A,B, d′): consider only the first d′ elements in each
solution, return the set of all solutions in B that are not dominated by any
solutions in A. A and B must be disjoint and no two solutions from the
same set dominate one another.
1 n ← number of solutions in A ∪ B;
2 if d′ = 2 then
3 return B ∩ Non Dominated 2D(A ∪ B); // a base case of recursion

4 else if A = ∅ or B = ∅ then
5 return B ; // also a base case of recursion

6 else
7 X, Y ← Split(A ∪ B, d′);
8 Bx ← Marry(X ∩ A, X ∩ B, d′); // n reduce in half

9 By ← Marry(Y ∩ A, Y ∩ B, d′); // n reduce in half

10 B′
y ← Marry(X ∩ A, By, d′ − 1); // d’ reduce by 1

11 return Bx ∪ B′
y

12 end

|(X∩A)∪(X∩B)| ≈ n/2 ≈ |(Y ∩A)∪(Y ∩B)|. In line 8 and 9, we recursively call
Marry on half-sized problems. Similarly as before, we know that the solutions
in Bx are non-dominated in A ∪ B, but we need to figure out which solutions
in By are non-dominated in A ∪ B. Solutions in By can only be dominated by
solutions in X ∩ A since solutions inside B cannot dominate each other, so we
only need to recursive call Marry on X ∩A and By. Note that solutions in X ∩A
have better d′th criterion than solutions in By, so we only need to consider the
first d′ − 1 objectives. Finally, we return Bx ∪ B′

y.

3.2 Runtime Analysis

For the runtime analysis, we assume that we use a sorting algorithm based on
comparison, so the time complexity of Non Dominated(S) is O(n(log n)d−1).

Proposition 1. Given a set S of n 2-dimensional solutions, Non Dominated 2D
(S) runs in O(n log n) time.

272 J. M. Gomes-Selman et al.

This is because the sorting step takes O(n log n) time and the for-loop takes
O(n) time.

Proposition 2. Given a set S containing n solutions, Split(S, d) runs in
O(n log n) time.

This is also because the sorting step takes O(n log n) time.

Proposition 3. Given two disjoint sets A and B such that no two solutions
from the same set dominate one another and that A ∪ B contains n solutions,
Marry(A,B, d′) runs in O(n(log n)d′−1) time.

Proof: We denote the runtime of Marry(A,B, d′) as t(n, d′). For the base case
d′ = 2, the proposition obviously holds. For d′

0 ≥ 3, assume the proposition holds
for d′ < d′

0, which means that t(n, d′
0−1) = O(n(log n)d′

0−1−1) = O(n(log n)d′
0−2)

for any positive integer n. Now we consider cases where n = 2k for some posi-
tive integer k and d′ = d′

0. The major components of Marry are: a Split step
(O(n log n) time), two half sized Marry steps (2 t(n/2, d′

0) time), and a Marry
step with dimension reduced by one (t(n, d′

0−1) time). With induction, we know
that t(n, d′

0 − 1) = O(n(log n)d′
0−2). For any positive integer k and n = 2k, we

have

t(2k, d′
0) = O(2k log(2k)) + 2 · t((2k)/2, d′

0) + t(2k, d′
0 − 1)

= 2 · t(2k−1, d′
0) + O(2k · kd′

0−2).

Then, by induction on k, we can prove the following statement

t(2k, d′
0) = O(n(log n)d′

0−1).

Since the runtime of Marry increases monotonically with n, the proposition also
holds when n is not a power of 2. Hence, Marry(A,B, d′) runs in O(n(log n)d′−1)
time.

Proposition 4. Given a set S containing n d-dimensional solutions (d ≥ 3),
Non Dominated(S) runs in O(n(log n)d−1) time.

Proof: When d ≤ 2, the proposition clearly holds. For d ≥ 3, we denote the
runtime as T (n, d). Similarly as in the proof of Proposition 3, we have

T (2k, d) = 2 · T (2k−1, d) + O(2k · kd−2).

Then, by induction on k, we get

T (2k, d) = O(n(log n)d−1).

Since the runtime of Non Dominated(S) increases monotonically with n, the
proposition also holds when n is not a power of 2. Hence, Non Dominated(S)
runs in O(n(log n)d−1) time.

Boosting Efficiency for Computing the Pareto Frontier 273

3.3 Implementation Notes

Split: The split procedure shown in Algorithm 4 can also be implemented using
an O(n) find median algorithm. However, the numerous steps of copying arrays
and creating new arrays in the O(n) find median algorithm are hard to implement
and perform poorly in practice. Hence, we chose to use sorting to work “in-place”
on the sets of solutions. Each time we drop a dimension we must create a new
array sorted based on that dimension and then in the recursive process we simply
keep track of the location within the array that we are working on. We found
that in practice sorting and working in place give us much better performance.

Batching: Our new divide-and-conquer algorithm for pruning dominated solu-
tions considerably speeds up the DP algorithm and allow us to solve problems
on much larger networks, with higher precision, and with more objectives. How-
ever, the number of solutions to evaluate grows exponentially with the number
of objectives and memory soon becomes a problem. For example, for the entire
Amazon basin, for four criteria, with a precision of ε = 0.01, the algorithm has
to evaluate 144, 823, 974, 336 partial solutions at a single node of the tree, which
is way beyond the memory available. To circumvent this problem, we introduced
a batching process: at each tree node, instead of evaluating all possible solutions
at once, we feed them to Non Dominated in smaller batches of size K = 107.
Then, we run Non Dominated on the set of all non-dominated solutions from
each batch. In practice, this batching routine actually also speeds up the DP
algorithm. In the future we plan to consider different batching strategies and
also parallel batching, which can be done in a straightforward way.

4 MIP-Based Pareto Frontier

We also proposed a MIP formulation (see Fig. 3) and a scheme for ε-
approximating the Pareto-frontier of a multi-objective optimization problem
in [18]. The key idea is to divide the space of objectives into small hyper-
rectangles and query whether there exists a feasible solution in each hyper-
rectangle. Then, from each feasible hyper-rectangle, we find one solution and
form a set S of all the solutions we find. Under the condition that for each
dimension, the upper bound of each hyper-rectangle is (1 + ε) of the lower
bound, the set of non-dominated solutions from S forms an ε-approximate
Pareto-frontier [9].

In this paper we exploit restart strategy and introduce a new scheme to
reduce the number of MIPs to solve. We first optimize for one of the objectives.
We divide the space of the remaining objectives into small hyper-rectangles.
Specifically, the hyper-rectangles are designed to satisfy the condition that, for
each dimension, the upper bound is (1 + ε) of the lower bound (assuming the
objectives are always positive values). For each cell, we formulate a MIP to find
the solution in that cell that optimizes the target objective if a feasible solution
exists. We form a set S of all the solutions found by MIP. Under the assumption

274 J. M. Gomes-Selman et al.

Fig. 3. MIP formulation of the dam placement problem for four criteria. Ĉ, Ê, Ŝd, Ŝs:
bounds on the objectives. V : the set of all nodes; E: the set of all edges (dams); s: the
root of the tree; e = (u, v): u is downstream of v; cv, sv, re, and he: connectivity value,
sediment production, seismic risk, and hydropower associated with each hypernode or
dam, respectively; pe: percentage of sediment trapped by dam e; πe: indicator variable
of whether the dam will be built; nv: indicator variable of whether node v can be reached
from the river mouth without passing a dam; yv: continuous variable representing the
percentage of the sediment produced at the node v not trapped by dams.

that we solve the MIPs optimally, the set of non-dominated solutions from S
forms an ε-approximate Pareto-frontier. In practice, we repeat the above scheme
as many times as the number of criteria, cycling through every objective as target
objective to get better coverage and a more accurate approximation. See details
of the MIP formulation in [18]. A key difference in this new scheme is that we
always optimize for the target objective, instead of solving decision problems.

Theorem: Let P be the set of all solutions on the Pareto frontier. Let P̄ be the
set of non-dominated solutions from S. Then, P̄ ε-approximates P .

Proof: Assume that we are optimizing for k objectives O1, O2, O3, · · · , and
Ok where k is greater or equal to 2. Without loss of generality, assume we aim
to maximize O1. For any π ∈ P , assume (O2(π), O3(π), · · · , Ok(π)) lies in the
rectangular cell [Ô2, (1 + ε)Ô2] × [Ô3, (1 + ε)Ô3] × · · · × [Ôk, (1 + ε)Ôk]. Since
there is already a solution π in the rectangular cell, MIP can find a solution π′

in the same cell that optimizes O1, which means that O1(π′) ≥ O1(π) and π′

ε-dominates π. If π′ �∈ P̄ , then there exists a π′′ ∈ P̄ that dominates π′ and
consequently ε-dominates π. Hence, P̄ ε-approximates P .

Boosting Efficiency for Computing the Pareto Frontier 275

Table 1. Sample of runtimes and number of solutions for the different methods. A
(Amazon); WA (Western Amazon); and M (Marañon); (E energy; C connectivity;
Sd sediment; Se seismic risk). mem denotes memory limit. N/A denotes MIP cannot
produce the exact Pareto frontier. We bolded several entries to highlight performance
improvements.

B Criteria ε DP orig
(secs)

DP new
(secs)

MIP orig
(secs)

MIP new
(secs)

DP #Sols MIP #Sols

A E, C exact 18291 254 N/A N/A 39841 N/A

A E, C 0.001 72 14 6432 48 3020 894

M E, Sd exact 2077 64 N/A N/A 25732 N/A

M E, Sd 0.001 4 2 1day+ 1day+ 318 —

WA E, Sd exact 46291 924 N/A N/A 58808 N/A

WA E, Sd 0.001 30 13 1day+ 2187 2668 1671

A E, Sd exact mem 15153 N/A N/A 177490 N/A

A E, Sd 0.001 2368 226 1day+ 1day+ 7973 —

A E, Sd 0.1 0.1 0.1 297 3359 83 24

A E, Se exact 54581 335 N/A N/A 72591 N/A

A E, Se 0.001 2471 83 35050 31 8737 1558

M E, C, Sd exact 2day+ 526 N/A N/A 283898 N/A

M E, C, Sd 0.001 630 32 1day+ 1day+ 5563 —

WA E, C, Sd exact mem 90251 N/A N/A 3267859 N/A

WA E, C, Sd 0.001 mem 1120 1day+ 1day+ 88710 —

WA E, C, Sd 0.0025 1667 269 1day+ 1day+ 28804 —

WA E, C, Sd 0.005 254 69 1day+ 65638 12655 4129

A E, C, Sd 0.005 mem 32175 1day+ 1day+ 758462 —

A E, C, Sd 0.025 70348 607 1day+ 1day+ 48381 —

A E, C, Sd 0.05 1680 58 1day+ 1day+ 12866 —

A E, C, Sd 0.1 40 6 1day+ 4503 4724 62

A E, C, Sd 0.15 11 2 1day+ 6025 2493 43

A E, C, Se 0.005 mem 88246 1day+ 4809 2274168 40981

A E, C, Se 0.05 109910 2121 238 51 47978 581

M E, C, Sd, Se exact mem 763150 N/A N/A 23364120 N/A

M E, C, Sd, Se 0.001 mem 53620 1day+ 1day+ 1479660 —

M E, C, Sd, Se 0.02 278310 649 1day+ 1day+ 15961 —

M E, C, Sd, Se 0.1 886 28 1day+ 15484 1406 773

WA E, C, Sd, Se 0.01 mem 695153 1day+ 1day+ 3540829 —

WA E, C, Sd, Se 0.1 47704 1154 1day+ 1day+ 107087 —

WA E, C, Sd, Se 0.15 11712 424 1day+ 13692 69422 296

A E, C, Sd, Se 0.05 mem 437271 1day+ 1day+ 2193314 —

A E, C, Sd, Se 0.1 mem 19510 1day+ 1day+ 491578 —

A E, C, Sd, Se 0.15 mem 7471 1day+ 1day+ 198772 —

A E, C, Sd, Se 0.2 74940 1333 1day+ 1day+ 47059 —

A E, C, Sd, Se 0.25 11358 410 1day+ 1505 23019 95

276 J. M. Gomes-Selman et al.

We observed fat and heavy-tailed behavior in the MIP runtime distribu-
tions [7]. To improve performance, we run the MIP solver with a cutoff, using a
geometric restart strategy that doubles the cutoff time in every run [7,15]. Our
experiments show that the restart strategy significantly boosts performance.

5 Experimental Results

To test the performance of the new methods at different scales, we used three
datasets: the Marañon, Western Amazon, and Amazon basins, with 107, 219,
and 467 hypernodes, respectively (corresponding to 128801, 455156 and 4083059

Fig. 4. Top: The visualization of the 4-dimensional Amazon Pareto frontier (ε = 0.4).
X axis: energy; Y axis: connectivity; Marker size: sediment; Color: seismic risk. Middle:
The dam placement of a particular Pareto solution. Bottom: Parallel coordinate plot
for the Amazon Pareto frontier (ε = 0.4). The four axes are hydropower, connectivity,
sediment and seismic risk. The color of each solution is based on its hydropower output.
The plot displays only 1440 solutions due to the bounding of the objectives (pink lines
on the axes). (Color figure online)

Boosting Efficiency for Computing the Pareto Frontier 277

river segments, respectively). We compare the performance of the new DP and
MIP methods with the methods in [18] and see significant improvements in both
speed and accuracy. See Fig. 1 and Table 1 for a summary of results.

Specifically, in terms of accuracy, the new MIP approach is substantially
better than the previous MIP approach. As shown in Fig. 1, in the 2-dimensional
case, the solutions produced by the new MIP approach are on the exact Pareto
frontier, slightly better than the DP approximation for the same ε = 0.1.

The new DP approach has the same high level of accuracy as the previous
DP approach and still produces more solutions than the MIP approaches.

In terms of speed, our experiments show that the new DP approach is up to
three orders of magnitude faster than the original DP and scales to significantly
larger instances and more criteria. The batching technique also solves the issue
of hitting the memory limit when computing for three or more objectives. The
new MIP approach is faster and can now solve larger problems.

The DP and MIP methods are complementary since in practice our new
MIP scheme provides solutions closer to the exact Pareto frontier (for a given ε)
and it provides more flexibility for considering additional constraints for what-if
analyses, which is important to decision makers.

We are developing a web-based visualization tool for policy makers to explore
the Pareto frontier interactively. For example, Fig. 4 displays: (1) the Pareto
frontier for four criteria for the entire Amazon (ε = 0.4); (2) the placement of
the selected dams for a particular Pareto solution; and (3) a parallel coordinate
plots to visualize the solutions, in which each axis represents an objective, and
each line across the different axes represents a solution. We can bound each
objective (pink lines on the axes) and only show solutions that satisfy the bounds.
By bounding each objective appropriately, we notably decrease the number of
solutions to consider.

6 Conclusions

We introduced new DP and MIP approaches that significantly boost the effi-
ciency and accuracy of computing the exact Pareto frontier and its approxima-
tion with guarantees on tree-structured networks. Our DP and MIP approaches
show complementary strengths and are now able to scale up to much larger
real-world problems. We are developing interactive tools for what-if analyses
and visualizations for policy makers. The overall goal of this project is to assist
policy makers in making informed decisions when planning hydropower dams
in the Amazon Basin. Our methods are general and can be adapted to other
multi-objective optimization problems on tree-structured networks.

Acknowledgments. This work was supported by NSF Expedition awards for Com-
putational Sustainability (CCF-1522054 and CNS-0832782), NSF CRI (CNS-1059284)
and Cornell University’s Atkinson Center for a Sustainable Future.

278 J. M. Gomes-Selman et al.

References

1. Altwaijry, N., EI Bachir Menai, M.: Data structures in multi-objective evolutionary
algorithms. J. Comput. Sci. Technol. 27(6), 1197–1210 (2012)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

3. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR Spectrum 22(4), 425–460 (2000)

4. Finer, M., Jenkins, C.N.: Proliferation of hydroelectric dams in the Andean Ama-
zon and implications for Andes-Amazon connectivity. PLoS One 7(4), e35126
(2012)

5. Gavanelli, M.: An algorithm for multi-criteria optimization in CSPs. In: Proceed-
ings of the 15th European Conference on Artificial Intelligence, ECAI, pp. 136–140
(2002)

6. Gomes, C.P.: Computational sustainability: computational methods for a sustain-
able environment, economy, and society. Bridge 39(4), 5–13 (2009)

7. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in sat-
isfiability and constraint satisfaction problems. J. Auto. Reason. 24(1), 67–100
(2000)

8. Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-
objective minimum spanning tree problem. Eur. J. Oper. Res. 181(3), 1620–1629
(2007)

9. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000 (2000)

10. Qian, C., Tang, K., Zhou, Z.-H.: Selection hyper-heuristics can provably be helpful
in evolutionary multi-objective optimization. In: Handl, J., Hart, E., Lewis, P.R.,
López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp.
835–846. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 78

11. Qian, C., Yu, Y., Zhou, Z.-H.: Pareto ensemble pruning. In: Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2935–
2941 (2015)

12. Schaus, P., Hartert, R.: Multi-objective large neighborhood search. In: Schulte, C.
(ed.) CP 2013. LNCS, vol. 8124, pp. 611–627. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40627-0 46

13. Sheng, W., Liu, Y., Meng, X., Zhang, T.: An improved strength pareto evolution-
ary algorithm 2 with application to the optimization of distributed generations.
Comput. Math. Appl. 64(5), 944–955 (2012)

14. Terra-Neves, M., Lynce, I., Manquinho, V.: Introducing pareto minimal correction
subsets. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 195–211.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 13

15. Walsh, T.: Search in a small world. In: Proceedings of the 16th International Joint
Conference on Artificial Intelligence, IJCAI 1999, San Francisco, CA, USA, vol. 2,
pp. 1172–1177. Morgan Kaufmann Publishers Inc. (1999)

16. Wiecek, M.M., Ehrgott, M., Fadel, G., Figueira, J.R.: Multiple criteria decision
making for engineering (2008)

17. Winemiller, K.O., McIntyre, P.B., Castello, L., Fluet-Chouinard, E., Giarrizzo,
T., Nam, S., Baird, I.G., Darwall, W., Lujan, N.K., Harrison, I., et al.: Balanc-
ing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science
351(6269), 128–129 (2016)

https://doi.org/10.1007/978-3-319-45823-6_78
https://doi.org/10.1007/978-3-642-40627-0_46
https://doi.org/10.1007/978-3-642-40627-0_46
https://doi.org/10.1007/978-3-319-66263-3_13

Boosting Efficiency for Computing the Pareto Frontier 279

18. Wu, X., Gomes-Selman, J.M., Shi, Q., Xue, Y., Garcia-Villacorta, R., Sethi, S.,
Steinschneider, S., Flecker, A., Gomes, C.P.: Efficiently approximating the pareto
frontier: hydropower dam placement in the Amazon basin. In: AAAI (2018)

19. Yukish, M.: Algorithms to identify Pareto points in multi-dimensional data sets.
Ph.D. thesis (2004)

20. Yukish, M., Simpson, T.W.: Analysis of an algorithm for identifying pareto points
in multi-dimensional data sets. In: 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, p. 4324 (2004)

21. Zarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L., Tockner, K.: A global boom
in hydropower dam construction. Aquat. Sci. 77(1), 161–170 (2015)

22. Ziv, G., Baran, E., Nam, S., Rodŕıguez-Iturbe, I., Levin, S.A.: Trading-off fish
biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Nat.
Acad. Sci. 109(15), 5609–5614 (2012)

Bandits Help Simulated Annealing
to Complete a Maximin Latin Hypercube

Design

Christian Hamelain, Kaourintin Le Guiban(B), Arpad Rimmel,
and Joanna Tomasik

LRI, CentraleSupélec, Université Paris Saclay, 91405 Orsay Cedex, France
kaourintin.leguiban@lri.fr

Abstract. Simulated Annealing (SA) is commonly considered as an effi-
cient method to construct Maximin Latin Hypercube Designs (LHDs)
which are widely employed for Experimental Design. The Maximin LHD
construction problem may be generalized to the Maximin LHD comple-
tion problem in an instance of which the measurements have already
been taken at certain points.

As the Maximin LHD completion is NP-complete, the choice of SA to
treat it shows itself naturally. The SA performance varies greatly depend-
ing on the mutation used. The completion problem nature changes when
the number of given points varies. We thus provide SA with a mecha-
nism which selects an appropriate mutation. In our approach the choice
of a mutation is seen as a bandit problem. It copes with changes in the
environment, which evolves together with the thermal descent.

The results obtained prove that the bandit-driven SA adapts itself
on the fly to the completion problem nature. We believe that other
parametrized problems, where SA can be employed, may also benefit
from the use of a decision-making algorithm which selects the appropri-
ate mutation.

1 Introduction

Maximin Latin Hypercube Designs are widely used in the operations research
field to sample complex systems, where experiments are costly, in order to build
a model for the system. Each point of the design represents an experiment and
the coordinates of the points represent the parameters chosen for the experiment.
Two properties of the design are needed to obtain a good quality for the model:
the design should be non collapsing, which means that no parameter value can
be chosen more than once, and they should be space filling, which means that
the points of the designs should be evenly spread in space. The first property is
equivalent to the Latin constraint. To satisfy the second one, we build an LHD
with a separation distance Dmin, which signifies the minimal distance between
any pair of points, as high as possible.

The complexity of the Maximin LHD construction problem is still unknown.
The authors of [5] defined and studied its generalization: the completion of a
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 280–288, 2018.
https://doi.org/10.1007/978-3-319-93031-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_20&domain=pdf

Bandits Help Simulated Annealing to Complete a Maximin LHD 281

Maximin LHD. Instead of building up a Maximin LHD from scratch, certain
of its points are fixed beforehand. The problem consists in adding points with
respect to the constraints until the design is completed. This problem models
practical situations when certain experiments have already been concluded and
we want to choose the best settings for the following ones. The completion prob-
lem becomes a construction problem when there are no points fixed in advance.
The theoretical analysis of the problem of filling up a partial LHD [5] shows
that it is NP-complete and inapproximable with a constant factor. We there-
fore devise a heuristic algorithm taking as a base the Simulated Annealing (SA)
method. Section 2 gives its description together with the rules of its usage to
construct a Maximin LHD.

The contributions we made are twofold. First, we designed a mutation dedi-
cated to the completion problem for its instances with a relatively small number
of fixed points. This mutation, defined in Sect. 3 and called cmpl1D-move, allows
SA to avoid being trapped within a small set of configurations and to pursue
the descent towards a global optimum.

Second, we turned to our advantage the fact that completion instance changes
its nature in function of the number of preset points. In Sect. 4 we proposed a
method, called BDM and based upon the bandit principle, to make SA choose
itself a mutation for a given instance.

The experimental results (Sect. 5) confirm the capacity of SA, assisted by
BDM , to adapt the search space exploration on-the-fly, without any supple-
mentary numerical effort, to the aspect of an instance treated. We believe that
the decision-making algorithm we proposed may be used in other evolutionary
algorithms to solve problems the instances of which require mutation tailoring.

2 State of the Art for SA Solving Maximin LHDs

Simulated Annealing is used with success for the construction of Maximin LHDs
as reported in [7]. Its principal components are: a function E that evaluates con-
figurations, called energy, and a randomized operation on a configuration that
modifies it slightly, called a mutation. Each SA iteration consists in applying
the mutation on a current configuration ω to get a new configuration ω′. If the
mutation causes the energy descent, ω′ it is accepted, otherwise ω′ it is accepted
with the probability p given by the Metropolis-Hastings formula [4]:

p = exp
(

E(ω) − E(ω′)
kT

)
, (1)

where T is the temperature which is set at the beginning to a high value and
decreases as the system cools down with the increase of the number of iterations
and k is the Boltzmann constant (in practice k is typically set to one). Probability
p computed according to Eq. (1) ensures the iteration convergence.

The article [7] is the most recent survey of algorithms based upon the local
search which construct Maximin LHDs. All the mutations used in the construc-
tion, which it enumerates, need a notion of a critical point which is a point

282 C. Hamelain et al.

whose distance to another point is equal to the minimal distance. Put differently,
a critical point is responsible for establishing Dmin of the design. The mutations
we need for the purpose of this study are:

m1: select one critical point and any other point at random, exchange their
coordinates on a random number of dimensions,

m2: select one critical point and any other point at random, exchange their
coordinates on a single dimension randomly chosen,

m3: select one critical point and any other point at random, exchange the coor-
dinates on the dimension which ensures the greatest energy descent.

All these mutations may affect two critical points as “any other point” taken
as the second one can be critical. The most efficient mutation according to [3],
1D-move, targets the Latin constraint. It involves two points p(1), p(2) which are
neighbors. This means there is a dimension on which their coordinates differ
by one: there is j ∈ [|1; k|] such that

∣∣∣p(1)j − p
(2)
j

∣∣∣ = 1. 1D-move is specified as:

1. Select one critical point and any of its neighbors at random.
2. Determine the dimension which makes these points be neighbors.
3. Exchange their coordinates on this dimension.

This mutation is particularly efficient for a local search because it makes it
possible to follow a step-by-step path on the energy surface of an LHD without
jumping over possible minima. We also emphasize that both the points involved
in it may be critical.

The evaluation function designed to express the energy (corresponding to E
in Eq. (1)) of the Maximin LHD construction is φ described in [6]:

φ =
(∑

d∈D

1
|d|p

)1/p

,

where D is the set containing all distances between each pair of points in the
hypercube and p is a parameter (typically set to 10).

3 Mutation Targeting “Relatively Empty” Hypercubes

The mutations conceived for the construction problem may be reused in the
completion context. The single difference is that only the points which have not
been fixed in advance may be involved in them. In the remainder we use the
term authorized points to refer to points that can be modified.

The choice of an appropriate mutation is conditioned by the number of points
set a priori . When the design is entirely empty, the completion becomes a con-
struction and 1D-move is a natural choice as, according to [3], it is the best
mutation to this day.

The mutation cmpl1D-move, illustrated in Fig. 1, is a variant of 1D-move.
The major difference with the previous mutations is that it selects an oriented

Bandits Help Simulated Annealing to Complete a Maximin LHD 283

F

C

C+
2

C+
1C−

1

C−
2

A1A
′
1

A2

A
′
2

A4

A
′
4

A3 A
′
3

dmin F

C+
1

A
′
1

A2

A4

A3

dmin

Fig. 1. On the left, the points marked with solid black circles form the initial configu-
ration for this example. Authorized points are noted A1, A2, A3, A4, and C, the latter
being the only authorized critical point. The smallest distance between lines is equal
to one. Point F is a fixed point. Mutation cmpl1D-move selects an authorized critical
point. In this example, it can only select C. It then chooses one dimension (either the
first or second in this example) and one sign (either + or −). If the + sign and first
dimension have been selected, cmpl1D-move exchanges the first coordinate of C and
A1, resulting in points C+

1 and A
′
1. The other possibilities of cmpl1D-move result in

points either (C+
2 and A

′
2) or (C−

1 and A
′
3) or (C−

2 and A
′
4). The dashed lines repre-

sent all the coordinates that C can take after the mutation. The figure on the right
represents the configuration after the mutation, if the sign + and first dimension have
been selected.

dimension, which means that it takes into account a direction when looking
for another point to exchange coordinates. Once the direction has been fixed,
this mutation searches for the authorized point with the minimal distance on
the dimension and direction selected. Thus, considering the direction in which
we look for the authorized point beforehand ensures that, given a critical point
and a dimension, cmpl1D-move will have two outcomes (in the two opposite
directions, possibly not symmetrical one to another with reference to the critical
point on the dimension selected). This is necessary to avoid situations where the
mutation will only have one possible outcome in each dimension, leading to an
impasse where the algorithm is stuck with a current solution alternating between
a few solutions. cmpl1D-move in summary:

1. Select one critical point p(1), one dimension j and the sign +/− of the coor-
dinate difference at random.

2. Find the authorized p(2) such that p
(2)
j > p

(1)
j (if the + sign has been selected)

or p
(2)
j < p

(1)
j (if the − sign has been selected) the coordinate difference∣∣∣p(1)j − p

(2)
j

∣∣∣ is minimal.

3. Exchange the coordinates of p(1) and p(2) on the dimension j.

284 C. Hamelain et al.

4. If there is no authorized point on the dimension and direction chosen, perform
mutation m2 .

As the restriction of the search space, induced by the fixed points, gets stronger
when the number of these points increases, the mutation cmpl1D-move would
not look for a solution sufficiently far from a current configuration. Its interest
is therefore limited to instances in which a relatively small number of points is
fixed in advance.

4 Bandit-Driven Mutation

At this stage we hypothesize that among the considered mutations there is no
single mutation which could cope with the entire spectrum of incomplete hyper-
cubes, from almost empty to almost filled up. We know, however, that cmpl1D-
move works well for the first category of instances while m2 is well suited to
explore the search space of the second one. As we do not want to change the
mutation depending on the instance, we would like to create a decision-making
algorithm for choosing the mutation on-the-fly. In order to do this, we consider
that at each iteration of SA, we have at our disposal several mutations and that
choosing a mutation is a multi-armed bandit (MAB) problem as described in [1].

The MAB problem can be defined by several random variables Xi where i
is the index of a gambling machine. At each step, a machine j is chosen and a
reward which is the realization of Xj is given. The goal is to maximize the sum
of the rewards. In our case, the choice of the mutation would correspond to the
choice of the machine and the reward would correspond to the evaluation of the
new individual, i.e. the absolute energy variation in the SA context.

However, in our problem, the choice of a mutation changes the state of the
system. We make the hypothesis that this is equivalent to a small modification
of the random variables behind each machine. With this hypothesis, our problem
can be seen as a classical variant of the MAB problem: the non-stationary multi-
armed bandit (NSMAB) problem [2].

We propose the following algorithm to solve this problem in our context. It is
based on a classical compromise between exploration and exploitation. For the
exploitation part, we compute the average reward for each mutation. However,
this average is computed only on the last w results in order to take into account
the fact that the problem is non-stationary.

The exploration part of our algorithm is handled in two different ways. First,
the choice of a mutation is based on a draw according to a softmax distribution
of the exploitation terms, so each mutation has a chance to be selected. The
second aspect is based on a characteristic of our problem. As SA converges to a
local minimum, the rewards decrease over time on average. As the exploitation
is based only on the last w rewards, the exploitation term of a mutation will
decrease when a mutation is selected.

Here is a formal description of our algorithm. Let us note Wi the set of size w
of the last rewards xi for mutation i. At each step, we select the next mutation
according to the probability pi computed as:

Bandits Help Simulated Annealing to Complete a Maximin LHD 285

pi =
exp(Xi)∑
j

exp(Xj)
, where Xi =

1
w

∑
xi∈Wi

xi. (2)

In the following, we apply this algorithm to the mutations m2 and cmpl1D-
move and name the resulting mutation Bandit Driven Mutation (BDM). We
note that it can be applied to any number of mutations. BDM is as follows:

1. Compute the probability of m2 and cmpl1D-move according to Eq. (2).
2. Randomly select the mutation to be used based on these probabilities.
3. Apply the chosen mutation.

5 Numerical Experiments

Our experiments are conducted for the problem of dimension 4 and size 75 as
done in [7]. They are performed for the hypercube taken from spacefilling-
designs.nl, with the distance expressed by the Euclidean norm L2. According
to the site mentioned, this hypercube has Dmin of 867 (we obtained, however, a
hypercube with a score of 889 during our experiments).

Unless it is stated otherwise, the number of mutations of the annealing used
for the experiments is 105. We remark that for mutation m3, experiments are
realized with four times less mutations than for the others, because this mutation
evaluates the Dmin of the configuration once per dimension of the instance, thus
we limited the total number of mutations performed in order to fairly compare
the different types of mutations. Also, the temperature follows a linear cooling
scheme that decreases the temperature every 100 mutations, from an initial
acceptance probability of 0.4 down to 0.

Incomplete hypercube instances are obtained by removing points according
to a uniform distribution. The scores are averages over 200 incomplete instances
except for some points in Table 2 and Fig. 2 where a significant difference was

Table 1. The mean score in function of the number of deleted points, for an instance
of size 75, in four dimensions, with Dmin = 867

Deleted points Mutations

m1 m2 m3 1D-Move Cmpl1D-Move

5 846± 49 864±14 858± 32 331± 54 853± 32

15 810± 55 854±20 832± 42 173± 30 710± 57

25 745± 36 769± 28 791±35 137± 28 732± 32

35 735± 14 728± 14 752± 13 126± 25 767±15

45 735± 11 724± 10 745± 8 134± 24 780±9

55 740± 10 722± 10 747± 8 173± 31 799±7

65 747± 11 724± 10 753± 7 325± 53 818±6

75 751± 12 730± 10 761± 8 844±5 844±6

286 C. Hamelain et al.

Table 2. The mean score of BDM and its components: m2 and cmpl1D-move

Deleted points Mutations

m2 cmpl1D-move BDM

5 864±11 858± 18 863± 12

15 853±14 709± 41 830± 25

20 819±21 713± 31 811± 24

25 766± 19 736± 22 794±20

30 736± 11 750± 14 780±14

35 727± 8 763± 10 773±9

40 725± 7 774± 7 775±6

45 724± 6 782±6 779± 5

55 723± 6 798±4 791± 4

65 726± 6 818±3 807± 4

75 731± 6 843±3 830± 3

not observed and therefore the average over 2000 runs was used. The same set
of 200 (2000, respectively) instances of hypercubes with fixed points randomly
generated with 200 (2000, respectively) different seeds were used as starting
hypercubes across all algorithms.

We first compare, in Table 1, the performance of existing mutations with the
one we designed for the completion problem: cmpl1D-move (Sect. 3) in function
of the number of deleted points in the hypercube.

The results in bold type correspond to the best average for a given number
of deleted points. The last line (75 deleted points) of this table corresponds to
the construction problem.

We note that the mutation 1D-move which gives the best results for the
construction problem performs very poorly for the completion problem, which
was explained in Sect. 3. The mutation we proposed: cmpl1D-move is successful
as it obtains the best average for 35 to 75 deleted points. However, it is interesting
to observe that this is not the case for a smaller number of deleted points where
mutations m2 and m3 produce better scores. This confirms that the problem
behaves very differently depending on the number of deleted points.

We will now present in Table 2 and Fig. 2 the results of the comparison of
BDM with mutations m2 and cmpl1D-move of which BDM is composed. The
size of the sliding window w discussed in Sect. 4 is arbitrarily set for our experi-
ments to 100 (for a total of 105 mutation steps during an annealing process).

We see that for the extreme cases (a large or a small number of deleted
points), BDM obtains scores close to those produced by the best performing
mutation. Our goal of having a mutation that can handle both cases has therefore
been achieved. On top of that, for intermediate values of deleted points, BDM
reaches significantly better results than both other mutations. This shows that
a dynamic choice of a mutation during a single run based on a bandit formula

Bandits Help Simulated Annealing to Complete a Maximin LHD 287

Fig. 2. Mean Dmin with confidence interval for mutations: m2, cmpl1D-move, and BDM
in function of the number of deleted points

can not only perform as well as each individual mutation but also combine the
advantages of the different mutations to obtain even a better result. This seems
promising and we hope to generalize our approach to more mutations and to use
it to solve other problems.

6 Conclusion and Future Work

We proposed an algorithm based on SA that produces satisfying results for the
problem of completing Latin hypercubes. We showed that this problem behaves
differently when numerous points should be added to complete a design and when
there are only a few of them. For the former case, an existing mutation m2 can
be used, for the latter case we proposed cmpl1D-move adapted to the problem.
Finally, we proposed a method to dynamically chose the appropriate mutation
during the execution of the annealing process based upon a bandit algorithm.
This approach allows us to perform the mutation choice automatically and to
obtain even better results than each independent mutation for the most typical
instances.

There are two possible directions for future work. Firstly, we plan to further
improve the results of the algorithm on this problem by trying new mutations
and other evaluation functions. Secondly, we believe that the approach of using
a bandit algorithm to choose between several mutations can be generalized and
we will apply this principle to other problems where it may be relevant.

288 C. Hamelain et al.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed ban-
dit problem. Mach. Learn. 47(2–3), 235–256 (2002)

2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

3. Bergé, P., Guiban, K.L., Rimmel, A., Tomasik, J.: Search space exploration and
an optimization criterion for hard design problems. In: Proceedings of GECCO
(compagnon), pp. 43–44, July 2016

4. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57(1), 97–109 (1970)

5. Le Guiban, K., Rimmel, A., Weisser, M.A., Tomasik, J.: Completion of partial Latin
Hypercube Designs: NP-completeness and inapproximability. J. Theor. Comput. Sci.
Sect. A 715, 1–20 (2018)

6. Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments.
J. Stat. Plann. Infer. 43(3), 381–402 (1995)

7. Rimmel, A., Teytaud, F.: A survey of meta-heuristics used for computing maximin
Latin hypercube. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600,
pp. 25–36. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44320-
0 3

https://doi.org/10.1007/978-3-662-44320-0_3
https://doi.org/10.1007/978-3-662-44320-0_3

A Dynamic Discretization Discovery
Algorithm for the Minimum Duration

Time-Dependent Shortest Path Problem

Edward He(B), Natashia Boland(B), George Nemhauser,
and Martin Savelsbergh

H. Milton Steward School of Industrial and Systems Engineering,
Georgia Institute of Technology, 765 Ferst Dr, Atlanta, GA 30332, USA

edwardhe@gatech.edu,

{natashia.boland,george.nemhauser,martin.savelsbergh}@isye.gatech.edu

Abstract. We present an exact algorithm for the Minimum Duration
Time-Dependent Shortest Path Problem with piecewise linear arc travel
time functions. The algorithm iteratively refines a time-expanded net-
work model, which allows for the computation of a lower and an upper
bound, until - in a finite number of iterations - an optimal solution is
obtained.

1 Introduction

Finding a shortest path between two locations in a network is a critical compo-
nent of many algorithms for solving transportation problems. There is a growing
interest in the setting where the travel time along an arc in the network is a func-
tion of the time the arc is entered. Time-dependent travel times are typically
a result of congestion. We refer to these problems as Time-dependent Shortest
Path Problems (TDSPPs). It is commonly assumed that travel times on arcs
satisfy the First-In First-Out (FIFO) property, i.e., it is impossible to arrive at
the end of the arc earlier by entering the arc later. Given a departure time at
the source, the standard approach for finding a path that reaches the sink as
early as possible is detailed in [1]. For an overview of other methods, see [2]. In
this paper, we consider the problem of finding a path such that the difference
between the departure time at the source and the arrival time at the sink is
as small as possible. We call it the Minimum Duration Time-Dependent Short-
est Path Problem (MD-TDSPP), sometimes referred to as the least travel time
TDSPP or the minimum delay TDSPP. The MD-TDSPP arises in many con-
texts. It has been studied, for example, in the context of path planning in traffic
networks [3], and it has even arisen in the analysis of social networks [4].

We present an efficient dynamic discretization discovery algorithm for the
variant of MD-TDSPP in which travel times on the arcs are given by piecewise
linear functions. It was established only recently that an algorithm polynomial in
the number of travel time function breakpoints exists [5]. Our key contribution

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 289–297, 2018.
https://doi.org/10.1007/978-3-319-93031-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_21&domain=pdf

290 E. He et al.

is the development of an algorithm that, in practice, investigates only a small
fraction of the travel time function breakpoints in the search for an optimal path
and the proof of its optimality. In Sect. 2, we formally introduce MD-TDSPP and
briefly discuss the relevant literature. In Sect. 3, we describe our algorithm and
illustrate it on a small instance. In Sect. 4, we present the results of a small
computational study.

2 Problem Description

We are given a directed network D = (N,A) with N = {1, 2, . . . , n} and A ⊆
N ×N , a time interval [0, T], and piecewise linear travel times ci,j(t) for t ∈ [0, T]
satisfying the FIFO property for arcs (i, j) ∈ A. Without loss of generality, we
let 1 be the source and n be the sink. Satisfying the FIFO property, in this
case, is equivalent to having the slopes of the linear pieces being at least −1.
(Note the FIFO property implies that waiting anywhere except at the source is
sub-optimal, since it is always better to depart immediately.)

The MD-TDSPP is to find a starting time 0 ≤ τ ≤ T and a time-dependent
path P (τ) = (t1, a1, t2, a2, . . . , am−1, tm), which is a path P = (a1, a2, . . . , am−1)
from 1 to n in D and a set of associated departure times (t1 = τ, t2, . . . , tm−1) and
arrival time tm at node n, where the departure times satisfy tk + cak

(tk) = tk+1

for all k = 1, . . . ,m−1, meaning that the arrival time for one arc is the departure
time of the next arc. Among all possible paths and starting times, P (τ) minimizes
the duration, which is given by tm − t1. Furthermore, we require that tm ≤ T .
We characterize time-dependent paths (TDPs) by their starting times as the
problem of finding the minimum duration given a starting time is a TDSPP,
which can be solved easily.

The MD-TDSPP has attracted much attention since the early work of Orda
and Rom [6]. There are two classes of approaches: discrete and continuous. In the
discrete approaches, a time-expanded network (TEN) is formed and the prob-
lem can be solved using the same method as for TDSPP. The DOT algorithm
presented in [1] solves the TDSPP with complexity O(SSP +nM +mM), where
SSP is the cost of solving a static SP, n is the number of nodes, m is the num-
ber of arcs, and M is the size of the time discretization. Discrete approaches
are inexact and rely heavily on the quality of the discretization. A denser dis-
cretization leads to a better approximation, but an increase in computation time.
Continuous methods, such as the Dijkstra’s algorithm variants [7,8], and the A*
algorithm variant [9], create and update arrival time functions at each node and
are exact. The complexity analysis of these methods has relied on being able
to store and manipulate such functions efficiently and is given in terms of these
operations, which are hard to quantify. Even for continuous piecewise linear
functions, it was only recently that an algorithm that is polynomial in the total
number of breakpoints (in the piecewise linear functions) was proposed [5]. The
authors show that there is an optimal path that contains an arc (i, j) where
the departure time occurs exactly at a breakpoint. Their algorithm investigates

A Dynamic Discretization Discovery Algorithm for the MD-TDSPP 291

all arcs (i, j) and all its breakpoints t, solves the TDSPP from i to n starting
at time t and the TDSPP from 1 to i ending at time t. The latter is done by
pre-computing the inverse costs (given an arc (i, j) and an arrival time t, what
is the latest time to depart i so that we arrive at time t) so that we can solve
the TDSPP from 1 to i ending at time t. If we let K be the total number of
breakpoints in the network, then the complexity is O(K × SSP). Such an app-
roach performs many extraneous calculations due to its brute force nature. Our
algorithm very significantly reduces the number of breakpoints investigated.

3 Dynamic Discretization Discovery Algorithm

Our algorithm is inspired by [10] and dynamically updates the discretization of
a TEN. Any TEN allows the computation of lower and upper bounds on the
duration of an optimal path. The lower and upper bounds are used to determine
whether a minimum duration path has been found and, if not, for which parts
of the TEN the time discretization should be refined.

We illustrate our ideas using the network in Fig. 1 with travel time functions
as given in Table 1. The time interval is [0, 5], breakpoints for each arc are at
every integer point, with the exception of arc (3, 4) which only has breakpoints at
0, 1, 2, 5. These values have been chosen to increase the visibility of the algorithm
progression and to reduce the number of iterations.

1

2

3

4

c1,2

c1,3

c2,3

c2,4

c3,4

Fig. 1. Network D

Table 1. Arc travel times at each
breakpoint (BP)

BP
time

Arc travel times

(1, 2) (1, 3) (2, 3) (2, 4) (3, 4)

0 1.34 2.85 1.99 1.29 0.61

1 0.66 2.95 1.82 1.02 0.73

2 0.14 3.00 1.51 1.63 0.83

3 0.01 2.98 1.10 2.57 —

4 0.35 2.90 0.67 3.00 —

5 1.00 2.76 0.30 2.54 1.00

We maintain a set of Arc-completed Backwards Shortest Path Trees
(ABSPTs), each denoted by D(k,tk), where k ∈ N and tk ∈ [0, T], and is created
by the following procedure. First, find a TDSP from (k, tk) to n to obtain an
arrival time tn at n, see Fig. 2a. Then, compute a time-dependent backwards
shortest path tree (BSPT), giving node-time pairs (i, ti) for each node in N , see
Fig. 2b. Finally, “arc-complete” the tree by adding an arc ((i, ti), (j, tj)) for each
arc (i, j) ∈ A which is missing, see Fig. 2c. Note that D(k,tk) can also be identified
as D(i,ti), for any (i, ti) ∈ D(k,tk), since the procedure starting at either (k, tk)

292 E. He et al.

and (i, ti) generates the same ABSPT. In particular, it is convenient to identify
an ABSPT by its departure time at 1. By the FIFO property, the ABSPTs in a
TEN have a natural chronological order (the ABSPTs can be sorted in nonde-
creasing order of their departure time at 1). The benefit of working with ABSPTs
is that any possible path can be represented in an ABSPT and an ABSPT can
be used to compute a lower and upper bound on the duration of an optimal
path.

0 1 2 3

1

2

3

4

00

1.34

2.57

1.3
4

1.
23

Time

N
od

e

(a) TDSP from (1, 0)

0 1 2 3

1

2

3

4

00

1.34

1.76

2.57

1.3
4

0.
81

1.
23

Time

N
od

e

(b) BSPT from (4, 2.57)

0 1 2 3

1

2

3

4

00

1.34

1.76

2.57

1.3
4

1.7
6
2.8

5

1.
23

0.
42

1.
72

0.
81

Time

N
od

e

(c) Arc-completed BSPT (actual travel
times in red)

0 1 2 3

1

2

3

4

00

0.03 1.34

1.16 1.76

1.26 2.57

0.0
3

2.8
5

1.
23

1.
13

0.
81

Time

N
od

e

(d) Arc-completed BSPT with underes-
timated travel times (using D(4,5)) and
node times (actual node times in red)

Fig. 2. Procedure to generate the ABSPT corresponding to (1, 0) (departure times in
blue; travel times in black). (Color figure online)

Suppose we have at least two ABSPTs in a TEN. Let (i, t1i) be a node-time
pair in one ABSPT and (i, t2i) be the node-time pair for i in the (chronologically)
next ABSPT. Instead of actual travel times cij(t1i) on D(i,t1i), use the underes-
timated travel times (UTTs) given by cij(t

1
i) = mint′ {cij(t′) | t1i ≤ t′ ≤ t2i }, see

A Dynamic Discretization Discovery Algorithm for the MD-TDSPP 293

Fig. 2d. It is easy to see that a shortest path from (1, t11) to (n, t1n) using the
underestimated travel times gives a lower bound on a minimum duration path
departing in [t11, t

2
1), and that a shortest path from (1, t11) to (n, t1n) using the

actual travel times gives an upper bound. The last ABSPT, which will always
be D(n,T) in our algorithm, is treated separately. Let (1, t1) be the node-time
pair in D(n,T) for 1. By the construction of D(n,T), it is not possible to depart
later than t1 and arrive at n by time T , hence, we do not need to use underes-
timated travel times and instead keep the actual travel times for this particular
ABSPT.

Given an ordered set L of ABSPTs, L = (D(1,t11), . . . ,D(1,tp1)), as well as asso-
ciated lower and upper bounds, suppose that D(1,tk1) contains the smallest lower
bound. We choose to refine our time discretization by exploring the gap in the
TEN between ABSPTs D(1,tk1) and D(1,tk+1

1). Adding an ABSPT corresponding
to any node-time pair (i, t) such that tki < t < tk+1

i and updating the underesti-
mated travel times for D(1,tk1) (since the next ABSPT is no longer D(1,tk+1

1)) may
improve the lower bound, since the interval used to calculate the underestimated
travel times has shortened.

The concepts presented so far can be used to devise an algorithm that con-
verges to an optimal path, but not enough to ensure finite termination. Finite
termination can be achieved by exploiting the fact that there exists an optimal
path that contains a departure at a node i at time t for some arc (i, j) that has
a breakpoint at time t (see [5]). Therefore, we only create ABSPTs that con-
tain at least one node-time pair (i, t) corresponding to a breakpoint. Since there
are a finite number of breakpoints, this ensures finite termination. To achieve
efficiency, we exploit the fact that the arrival time function at n for departures
between t11 and t21 is concave if no shortest path that departs between t11 and
t21 contains a breakpoint (also shown in [5]). This situation occurs when there
are no more breakpoints remaining in the gap between two ABSPTs D(1,tk1) and
D(1,tk+1

1), and we know that the minimum duration path departing between tk1
and tk+1

1 departs at either tk1 or tk+1
1 , both of which have already been calculated

as an upper bound, hence the lower bound for D(1,tk1) can be updated to one
of these upper bounds and thus no longer needs to be considered. This gives us
an additional termination criterion: we can terminate when the smallest lower
bound among the ABSPTs still being under consideration is larger than the
best upper bound obtained so far. A high-level overview of our algorithm can be
found in Algorithm1.

The algorithm explores breakpoints. We choose to look for a breakpoint t in
the travel time function of arc (i, j) such that i is minimized, then j is minimized,
and t is the median among the breakpoints. The performance of the algorithm
depends greatly on being able to efficiently compute the minimum arc travel time
in a departure time interval. This is accomplished by (efficiently) pre-computing
a look-up table that gives the next local minimum for any breakpoint.

Next, we illustrate the algorithm on the example; see Fig. 3. The algorithm is
initialized with D(1,0),D(4,5), which are generated by the paths P = ((1, 2), (2, 4))
and P = ((1, 2), (2, 3), (3, 4)), respectively.

294 E. He et al.

Algorithm 1. Dynamic Discretization Discovery (DDD) Algorithm.

input : G = (N, A), ci,j(t), T
output: minimum duration shortest path
L ← (D(1,0), D(n,T));

UB ← min{computeUB(D(1,0)), computeUB(D(n,T))} ;

LB ← computeLB(D(1,0)) ;

D(1,tk1) ← D(1,0) ;
while (LB < UB) do

if there is a breakpoint (j, τ) between D(1,tk1) and D(1,tk+1
1) then

if computeUB(D(j,τ)) < UB then

UB ← UB(D(j,τ))
end

recomputeLB(D(1,tk1)) ;

computeLB(D(j,τ)) ; insert(L, D(j,τ)) ;

else

LB(D(1,tk1)) = UB(D(1,tk1)) ;
end
LB ← updateLB(L) ;

D(1,tk1) ← getBestLB(L) ;

end

In Iteration 1, since D(1,0) gives the lower bound, look at the section of the
TEN succeeding D(1,0), and observe that arc (1, 2) has a breakpoint at t = 1, so
we add D(1,1). It turns out that D(1,1) has UB= 2.0804 and LB= 1.4470. Since
LB < UB, we continue with the algorithm. We proceed to add D(1,2) and D(2,2).
In Iteration 4, D(1,1) contains the LB, however, since there are no breakpoints in
the succeeding section, we replace the LB of D(1,1) with its UB. The new LB is
contained in D(2,2). We proceed to replace the LB of D(2,2) and D(1,2) with their
UB due to the lack of breakpoints in the succeeding sections, at which stage
UB= 1.8886 is less than LB= 1.8888 and hence the algorithm terminates. The
optimal path is the one that corresponds to UB, which was found when D(1,2)

was created and is ((1, 2), (2, 4)) starting at time 2.

4 Computational Study

To analyze the performance of the DDD algorithm, we apply it to several ran-
domly generated instances. In particular, we solve 10 instances with n = 20 and
T = 200 and 10 instances with n = 30 and T = 200. The instances are gener-
ated as follows. The arc set A consists of all pairs of nodes (i, j) where i < j.
The travel time on arc (i, j) is the piecewise linear interpolant of the function
fi,j(t) = (j − i)+sin(bi,j × t) at each integer point from 0 to T , so that there are
T + 1 breakpoints, where bi,j is a random number between 0 and 1 generated
using a pre-specified random seed and the Matlab ‘twister’ RNG. The function

A Dynamic Discretization Discovery Algorithm for the MD-TDSPP 295

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

(g) Iteration 7 (h) Legend

Fig. 3. Time-expanded network in each iteration for the example in Fig. 1 (note that
a ABSPT may satisfy multiple criteria in the legend).

296 E. He et al.

f is designed so that ci,j satisfies the FIFO property (since the slope is always
greater than −1). In addition, due to the additional constant (j − i), the opti-
mal path is likely to use many arcs. Note that we choose T ≥ n to avoid the
possibility of having no feasible TDSP. To analyze the impact of the number of
breakpoints on the performance of the DDD algorithm, we stretch the horizon T
and the function fi,j(t); we multiply T by a factor S = 2.5 and = 5. In Table 2,
we report the minimum, the average, and the maximum number of breakpoints
investigated by our algorithm over the instances, the total number of break-
points in the instance (which is the number of breakpoints that the enumeration
algorithm investigates [5]), and the fraction of the total number of breakpoints
investigated by the DDD algorithm. Furthermore, we report the solve times
of the DDD algorithm and the enumeration algorithm and the ratio of these
solves times. Note that the total number of breakpoints is |N − 1| × (T + 1) not
|A| × (T + 1), as in [5], since for arcs with a common tail node and breakpoint,
we only need to investigate the breakpoint once.

Table 2. Computational results.

n S BP Total #BP %BP Avg. time
DDD

Avg. time
enum.

Ratio

Min. Avg. Max.

20 1 112 169.7 224 3800 4.47 103.4 55.8 1.86

2.5 127 175.2 229 9500 1.84 118.3 218.9 0.54

5 139 185.0 242 19000 0.97 136.2 690.0 0.20

30 1 182 229.4 268 5800 3.96 290.6 170.4 1.71

2.5 165 243.9 303 14500 1.68 376.7 774.9 0.49

5 179 261.8 328 29000 0.90 439.5 2493.0 0.18

The results show clearly that the DDD algorithm investigates only a small
fraction of the total number of breakpoints. In addition, the fraction decreases
when both n and T increase. For finer discretizations of time, the DDD algorithm
significantly outperforms the enumeration algorithm in terms of solve times as
well even though it has not been optimized for efficiency.

5 Concluding Remarks

We have shown that dynamic discretization discovery concepts can dramatically
reduce the number of breakpoints explored when solving MD-TDSPP instances.
Preliminary computational results show that our method scales well in both the
number of nodes and number of breakpoints. Next, we will explore extending
these ideas to other types of transportation problems, e.g., the Time-Dependent
Traveling Salesman Problem.

A Dynamic Discretization Discovery Algorithm for the MD-TDSPP 297

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant No. 1662848.

References

1. Chabini, I.: Discrete dynamic shortest path problems in transportation applica-
tions: complexity and algorithms with optimal run time. Transp. Res. Rec. 1645,
170–175 (1998)

2. Dean, B.C.: Shortest paths in FIFO time-dependent networks: theory and algo-
rithms. Rapport technique, Massachusetts Institute of Technology (2004)

3. Demiryurek, U., Banaei-Kashani, F., Shahabi, C., Ranganathan, A.: Online com-
putation of fastest path in time-dependent spatial networks. In: Pfoser, D., Tao,
Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.)
SSTD 2011. LNCS, vol. 6849, pp. 92–111. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22922-0 7

4. Gunturi, V.M., Joseph, K., Shekhar, S., Carley, K.M.: Information lifetime aware
analysis for dynamic social networks. Technical report, University of Minnesota
(2012)

5. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent short-
est paths. Algorithmica 68(4), 1075–1097 (2014)

6. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-length. J. ACM (JACM) 37(3), 607–625 (1990)

7. Nachtigall, K.: Time depending shortest-path problems with applications to rail-
way networks. Eur. J. Oper. Res. 83(1), 154–166 (1995)

8. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large
graphs. In: Proceedings of the 11th International Conference on Extending
Database Technology: Advances in Database Technology, pp. 205–216. ACM (2008)

9. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network
with speed patterns. In: Proceedings of the 22nd International Conference on Data
Engineering, ICDE 2006, p. 10. IEEE (2006)

10. Boland, N., Hewitt, M., Marshall, L., Savelsbergh, M.: The continuous-time service
network design problem. Oper. Res. 65(5), 1303–1321 (2017)

https://doi.org/10.1007/978-3-642-22922-0_7
https://doi.org/10.1007/978-3-642-22922-0_7

Observations from Parallelising Three
Maximum Common (Connected)

Subgraph Algorithms

Ruth Hoffmann1, Ciaran McCreesh2(B), Samba Ndojh Ndiaye3,
Patrick Prosser2, Craig Reilly2, Christine Solnon4, and James Trimble2

1 University of St Andrews, St Andrews, UK
2 University of Glasgow, Glasgow, Scotland

ciaran.mccreesh@glasgow.ac.uk
3 Université Lyon 1, LIRIS, UMR5205, 69621 Villeurbanne, France

4 INSA-Lyon, LIRIS, UMR5205, 69621 Villeurbanne, France

Abstract. We discuss our experiences adapting three recent algorithms
for maximum common (connected) subgraph problems to exploit multi-
core parallelism. These algorithms do not easily lend themselves to par-
allel search, as the search trees are extremely irregular, making balanced
work distribution hard, and runtimes are very sensitive to value-ordering
heuristic behaviour. Nonetheless, our results show that each algorithm
can be parallelised successfully, with the threaded algorithms we cre-
ate being clearly better than the sequential ones. We then look in more
detail at the results, and discuss how speedups should be measured for
this kind of algorithm. Because of the difficulty in quantifying an average
speedup when so-called anomalous speedups (superlinear and sublinear)
are common, we propose a new measure called aggregate speedup.

1 Introduction

Finding a maximum common subgraph is the key step in measuring the sim-
ilarity or difference between two graphs [3,12,19]. Because of this, maximum
common subgraph problems frequently arise in biology and chemistry [10,14,33]
where graphs represent molecules or reactions, and also in computer vision
[5,7], computer-aided manufacturing [23], the analysis of programs and malware
[13,31], crisis management [8], and social network analysis [11].

A subgraph isomorphism is an injective mapping from a pattern graph to
a target graph which preserves adjacency—that is, it maps adjacent vertices
to adjacent vertices. The isomorphism is induced if additionally it maps non-
adjacent vertices to non-adjacent vertices, preserving non-adjacency as well.

C. McCreesh, P. Prosser, C. Reilly and J. Trimble—This work was supported by the
Engineering and Physical Sciences Research Council [grant numbers EP/K503058/1,
EP/M508056, and EP/P026842/1].
S. N. Ndiaye and C. Solnon—This work was supported by the ANR project SoLStiCe
(ANR-13-BS02-0002-01).

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 298–315, 2018.
https://doi.org/10.1007/978-3-319-93031-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_22&domain=pdf

Observations from Parallelising Three Maximum Common Subgraph 299

When working with labelled graphs, a subgraph isomorphism must preserve
labels, and on directed graphs, it must preserve orientation. A common induced
subgraph of two graphs G and H is a pair of induced subgraph isomorphisms
from a pattern graph P , one to G and one to H. A maximum common induced
subgraph is one with as many vertices as possible. (The maximum common par-
tial subgraph problem is non-induced, with as many edges as possible; this paper
discusses only induced problems.) A common variant of the problem requires a
largest connected subgraph [10,23,33,36].

Although both the connected and non-connected variants are NP-hard,
recently progress has been made towards solving the problem in practice. This
paper looks at three branch and bound algorithms for maximum common (con-
nected) induced subgraph problems, each of which is the state of the art for
certain classes of instance. We discuss our experiences in adding parallel tree-
search to these three algorithms. In each case, our results show that the parallel
version of the algorithm is clearly better than the sequential version, although
a closer look at the results shows many nuances. Thus this paper focusses pri-
marily on presenting and interpreting the experimental data, rather than heavy
implementation details, in the hopes that the lessons we learned are helpful to
other practitioners—in particular, we introduce a new measure called aggregate
speedup which is suitable for determining speedups for decision problems or opti-
misation problems where anomalous speedups are common.

2 Sequential Algorithms

There are three competitive approaches for the maximum common subgraph
problem, each being the strongest on certain classes of instance. The first involves
a reduction to the maximum clique problem, whilst the other two approaches
are inspired by constraint programming.

2.1 Reduction to Maximum Clique

A clique in a graph is a subgraph where every vertex is adjacent to every other.
There is a well-known reduction from the maximum common subgraph problem
to the problem of finding a maximum clique in an association graph [21,25,33];
this reduction resembles the microstructure encoding [17] of the constraint pro-
gramming approach described below. When combined with a modern maximum
clique solver [35], this is the current best approach for solving the problem on
labelled graphs [25]. A modified clique-like algorithm can also be used to solve
the maximum common connected subgraph problem, by ensuring connectedness
during search [25]; again, this is the best known way of solving the problem on
labelled graphs. However, the association graph encoding is extremely memory-
intensive, limiting its practical use to pairs of graphs with no more than a few
hundred vertices.

300 R. Hoffmann et al.

2.2 Constraint Programming

The maximum common induced subgraph problem may be reformulated as a
constraint optimisation problem, as follows. Observe that an equivalent defini-
tion of a common subgraph of graphs G and H is an injective partial mapping
from G to H which preserves both adjacency and non-adjacency. Hence we pick
whichever input graph has fewer vertices, and call it the pattern; the other graph
is called the target. The model then follows from this new definition: for each
vertex in the pattern, we create a variable, whose domain ranges over each ver-
tex in the target graph, plus an additional value ⊥ representing an unmapped
vertex. We then have three sets of constraints. The first set says that for each
pair of adjacent vertices in the pattern (that is, for each edge in the pattern), if
neither of these vertices are mapped to ⊥ then these vertices must be mapped
to an adjacent pair of target vertices. The second set is similar, but looks at
non-adjacent pairs (or non-edges). Finally, the third set ensures injectivity, by
enforcing that the variables must be all different except when using ⊥. This final
set of constraints may either be implemented using binary constraints between
all pairs of variables, or a special global “all different except ⊥” propagator [32].
The objective is simply to find an assignment of values to variables, maximising
the number of variables not set to ⊥. The state of the art for this technique is a
dedicated (non-toolkit) implementation of a forward-checking branch and bound
search over this model [25,30].

Two approaches exist for ensuring connectedness: either a conventional global
constraint and propagator can be used [25], or a special branching rule can
enforce connectedness during search [36]. The two techniques are broadly com-
parable performance-wise [25], but the branching rule is simpler to implement.

2.3 Domain Splitting (McSplit and McSplit↓)
McCreesh et al. [28] observe that due to the special structure of the maximum
common subgraph problem, the following property holds throughout the search
process using the constraint programming model: any two variables either have
domains with no values in common (with the possible exception of ⊥), or have
identical domains. The McSplit algorithm exploits this property. It explores
essentially the same search tree as the basic forward-checking constraint pro-
gramming approach, but using different supporting algorithms and data struc-
tures. Rather than storing a domain for each vertex in the pattern graph, equiva-
lence classes of vertices in both graphs are stored in a special data structure which
is modified in-place and restored upon backtracking. This enables fast propaga-
tion of the constraints and smaller memory requirements. In addition, this data
structure enables stronger branching heuristics to be calculated cheaply. The
McSplit algorithm effectively dominates conventional constraint programming
approaches, being consistently over an order of magnitude faster.

The McSplit↓ algorithm is a variant designed for instances where we expect
nearly all of the smaller graph to be found. It branches first on result size, from
largest possible result downwards.

Observations from Parallelising Three Maximum Common Subgraph 301

2.4 k-Less Subgraph Isomorphism

A different take on the constraint programming approach is presented by Hoff-
mann et al. [16]. They approach maximum common subgraph via the subgraph
isomorphism problem, asking the question “if a pattern graph cannot be found
in the target, how much of the pattern graph can be found?”. The k↓ algorithm
tries to solve the subgraph isomorphism problem first for k = 0 (asking whether
the whole pattern graph can be found in the target). Should that not be satisfi-
able, it tries to solve the problem for k = 1 (one vertex cannot be matched), and
should that also not be satisfiable, it iteratively increases k until the result is
satisfiable. This approach exploits strong invariants using paths and the degrees
of vertices to prune large portions of the search space.

This algorithm is aimed primarily at large instances, where the two graphs
are of different orders, and where it is expected that the solution will involve
most of the smaller graph (that is, k is expected to be low). The sequential
implementation we start with does not support labels or the connected variant.

3 Benchmark Instances

Most of the benchmark instances we will use come from a standard database for
maximum common subgraph problems [6,34]. This benchmark set can be used
in a number of ways, for different variants of the problem. Following other recent
work [16,25,28], we use it to create five families of instances, as follows:

Unlabelled undirected instances, by selecting the first ten members of each
parameter class where the graphs have up to 50 vertices each—this gives us
a total of 4,110 instances.

Vertex labelled undirected instances, by selecting the first ten members of
each parameter class (and so graphs have up to 100 vertices each), using the
33% labelling scheme [34] for vertices only. This gives 8,140 instances.

Both labelled, directed instances, by selecting the first ten members of each
parameter class, and applying the 33% labelling scheme [34] to both vertices
and edges. Again, this gives 8,140 instances.

Unlabelled, connected instances, as per the unlabelled case.
Both labelled, connected instances, starting in the same way as the both

labelled, directed case. These are then converted to undirected graphs by
treating edges as undirected, picking the label of the lower-numbered edge.

Following Hoffmann et al. [16], we also work with the 5,725 Large instances
originally introduced for studying portfolios of subgraph isomorphism algorithms
[18]. These graphs are unlabelled and undirected, and can include up to 6,671
vertices. We do not use the clique encoding on these instances due to its memory
requirements.

302 R. Hoffmann et al.

4 Parallel Search

The clique and k↓ algorithms already make use of fine-granularity bit-parallelism.
To introduce coarse-grained thread parallelism, we will parallelise search: viewing
backtracking search as forming a tree, we can explore different portions of the
tree using different threads. We use a shared incumbent, so better solutions
found by one thread can be used by others immediately. In this paper we use
C++11 native threads, and so only support shared memory systems.

Parallel tree-search has a long history [1]. Of particular interest to us are
so-called anomalies [2,20,22]: because we are not performing a fixed amount of
work, we should have no expectation of a linear speedup, and instead we could
see a sublinear speedup (much less than n from n processors, if speculative work
turns out to be wasted) or a superlinear speedup (much more than n from n
processors, if a strong incumbent is found more quickly). An absolute slowdown
(a speedup much less than 1) is also possible when using some parallelisation
techniques.

We stress that these anomalies are due to changes in the amount of work done,
and are not due to work balance problems (although work balance is also unusu-
ally difficult for this problem). Anomalies can have a very strong effect on these
algorithms, and we will therefore try to mitigate them as far as possible. In the
evaluation of their “embarrassingly parallel search” technique, Malapert et al.
[24] “consider unsatisfiable, enumeration and optimization [problem] instances”,
and “ignore the problem of finding a first feasible solution because the parallel
speedup can be completely uncorrelated to the number of workers, making the
results hard to analyze”. They do “consider optimization problems for which the
same variability can be observed, but at a lesser extent because the optimality
proof is required”. Unfortunately, many of the instances we consider behave more
like decision problem instances than optimisation instances: due to the combi-
nation of a low solution density, good value-ordering heuristics, and a strong
bound function in cases where the optimal solution is relatively large, it is often
the case that the runtime is determined almost entirely by how long it takes
to find an optimal solution, with the proof of optimality being nearly trivial.
Indeed, attempts to parallelise the basic constraint programming approach by
static decomposition have had limited success [29].

4.1 Parallel Maximum Clique

Thread-parallel versions of state-of-the-art maximum clique algorithms already
exist. McCreesh et al. [27] compare several of these approaches, and make an
important observation: although work balance is a problem due to the irregu-
larity of the search tree, often the interaction between search order and parallel
work decomposition is the dominating factor in determining speedups. They
explain why anomalies are in fact common in practice: many clique problem
instances benefit immensely from having found a strong incumbent, but have
solutions which are either unique or rare, and are hard to find. They propose a
work splitting mechanism which offsets anomalies, guaranteeing reproducibility

Observations from Parallelising Three Maximum Common Subgraph 303

(two runs with the same instance on the same hardware will give similar run-
times), scalability (increasing the number of cores cannot make things worse),
and no absolute slowdowns. Additionally, this mechanism explicitly offsets the
commitment to early branching choices, where search ordering heuristics are
most likely to be inaccurate [4,15], making superlinear speedups common.

We will use this mechanism for our experiments. The clique-based maxi-
mum common subgraph algorithm effectively differs only in the preprocessing
stage, and the clique-inspired connected algorithm described by McCreesh et al.
[25] is sufficiently similar that it may be parallelised in exactly the same way.
Based upon preliminary experiments, we set the mechanism’s splitting depth
limit parameter to be five rather than the original three, since maximum com-
mon subgraph instances appear to give even more irregular search trees than
normal clique problem instances.

4.2 Parallel Constraint-Based Search

A similar approach may be used for the k↓ algorithm. Although it is not quite
a conventional branch and bound algorithm, each individual k pass is a tree-
search, and may be parallelised. For each pass, we use the same work splitting
mechanism as in the clique algorithm, starting by splitting only at the top level
of search to explicitly introduce diversity, and then iteratively increasing the
splitting depth as additional work is needed (up to a limit of five levels deep).
Because the k↓ algorithm uses a conventional constraint programming domain
store, there is no need to use recomputation; the state is naturally copied at each
branching point.

In principle the McSplit algorithm may be parallelised in exactly the same
way. However, this algorithm makes heavy use of an in-place, backtrackable
data structure, which is not copied for recursive calls. In order to introduce the
potential for parallelism, we must make copies of the state data structure. Imple-
mented näıvely, this can give an order of magnitude slowdown to the sequential
algorithm, which can be hard to recover using parallelism. To lessen the effects,
rather than copying state for each recursive call, we copy once before the main
branching loop, and then copy that copy in each “helper” thread, replaying the
branching loop without making duplicate recursive calls. (We believe a better
approach using partial recomputation may be possible, and intend to investigate
this further in the future.)

5 Empirical Evaluation

We perform our experiments on systems with dual Intel Xeon E5-2697A v4 pro-
cessors and 512 GBytes RAM, running Ubuntu 17.04, with GCC 6.3.0 as the
compiler. Each machine has a total of thirty-two cores. We run all our experi-
ments with a one thousand second timeout for each instance. All of our sequen-
tial runtimes are from optimised implementations by their original authors which
were not designed with parallelism in mind—that is, speedups from parallelism
are genuine improvements over the state of the art.

304 R. Hoffmann et al.

5.1 Parallel Search Is Better Overall

In Fig. 1 we plot empirical cumulative distribution functions showing the number
of instances solved over time, for both sequential (solid lines) and parallel (dotted
lines) versions of each algorithm. To read these plots, make a choice of timeout
along the x-axis (which uses a log scale). The y value at that point shows the
number of instances whose runtime (individually) is at most x, for a particular
algorithm. In other words, at any given x value, the highest line shows which
algorithm is able to solve the largest number of instances using a per-instance
timeout of that x value, bearing in mind that the actual sets of instances solved
by each algorithm may be completely different.

With one exception, each plot gives the same conclusion: if we are work-
ing with a solving time of at least 100 ms, then for any problem family and
any sequential algorithm, if given the option of switching to the corresponding
parallel algorithm, then we should do so. For the McSplit algorithm on both
labelled, connected instances, the parallel algorithm does not quite catch up to
the sequential algorithm.

Although good at showing general trends, cumulative plots can hide interest-
ing details. We therefore now take a closer look at each of the three algorithms
in turn.

5.2 Clique Results in Depth

In the first column of Fig. 2, we see scatter plots comparing the sequential and
parallel runtimes of the clique algorithm on an instance by instance basis, using
a log-log plot. Each point represents one instance, with the x-axis being the
sequential runtime and the y-axis the parallel runtime. Instances which timed
out using one algorithm but not the other are shown as points along the outer
borders. Points below the x−y diagonal line represent speedups. The colour of
the points indicates the relative size of the solution—darker points represent
instances where the solution uses most of the vertices of the input graphs. (We
use these conventions for scatter plots throughout this paper.)

Broadly speaking, the results are similar on each of the five families. For
runtimes below 100 ms, overheads and the preprocessing step dominate, and
we are usually only able to achieve a small speedup. At higher runtimes, most
speedups appear to be between ten and thirty, except on the final family of both
labelled connected instances, where they are mostly between five and ten. For
a few instances, the speedups are lower (but they are still clearly speedups),
whilst in the first four families, we also see evidence of superlinear speedups
being relatively common.

However, attempting to determine a speedup by staring at a scatter plot is
not particularly quantitative. We could attempt to find a best fit line through
these points, pretending that the superlinear speedups are outliners. We might
perhaps get away with this if outliers were rare enough, but in practice we are
not expecting linear speedups (and for the other two algorithms, we will see
that superlinear speedups are even more common). Alternatively, we could rig

Observations from Parallelising Three Maximum Common Subgraph 305

Fig. 1. The cumulative number of instances solved over time. Except in the bottom
left plot, the 32 threaded parallel versions (shown using dotted lines) are always better
in aggregate than the sequential versions (shown using solid lines).

306 R. Hoffmann et al.

Fig. 2. In the left column, per-instance speedups, using the clique algorithm. The
x-axis is sequential performance and the y-axis is 32 threaded performance. In the
centre, histograms plotting the distribution of speedups for instances whose sequential
runtime was at least 500 ms, and below the timeout. On the right, performance profiles.

Observations from Parallelising Three Maximum Common Subgraph 307

Fig. 3. Aggregate speedups from 32 threads, shown as a function of sequential runtime,
for each family supported by the clique algorithm.

our experiments to remove anomalies, by priming search with a known-optimal
solution; however, since the time to find an optimal solution (but not prove its
optimality) is so important, we do not consider this to be a fair measure of
algorithm performance [27].

A more principled approach is given in the second column of Fig. 2. For
instances where the sequential run both succeeded and took at least 500 ms,
we plot the distribution of speedups obtained. These histograms confirm our
informal observations. However, these plots are still not especially satisfactory: in
order to calculate a speedup, we can only consider instances where the sequential
algorithm succeeded, and so these plots underestimate superlinear speedups. The
choice of a 500 ms minimum sequential runtime is also rather arbitrary, and is
acceptable only if we expect the parallel algorithms will only be used on relatively
hard instances.

In the third column we show performance profiles [9]. A performance profile
is a cumulative plot of how many times worse the performance of an algorithm is
relative to the virtual best algorithm. Each plot shows three options as different
lines. The ‘all’ lines include easy instances whose sequential runtime is below
500 ms, whilst the other two lines exclude them. The ‘hard’ line treats sequential
timeouts as having been solved at the time limit, whilst the ‘PAR10’ line treats
timeouts as taking ten times longer than the timeout (this convention is common
in portfolios [37]). The solid lines show the sequential algorithms, whilst the
dotted lines show the parallel algorithms. (There are no dotted lines on the top
four plots for the ‘hard’ and ‘PAR10’ cases, since the parallel algorithm always
beats the sequential algorithm in these cases.) We have normalised the y-axis to
the number of counted instances in a given class.

Unfortunately, these three lines can paint very different pictures. For exam-
ple, for unlabelled instances on the top row, if we include easy instances, it
appears that the parallel algorithm can be up to ten times worse, whereas if we

308 R. Hoffmann et al.

exclude them, it is never worse. If we do not use the PAR10 scheme, the perfor-
mance profile also suggests that there are around twenty-five percent of the hard
instances where the speedup is below 10, whilst using PAR10 correctly shows
that such instances are rare. However, PAR10 is only effective in this regard
because the “typical” speedup is in the region of 10 (and this is a particular
inconvenience because we seek a way of characterising speedups which does not
rely upon us already knowing that 10 is a reasonable choice of penalty).

A further problem is that to deal with the large superlinear speedups some-
times observed, a log scale must be used on the x-axis; this makes speedups of
10 and 30 look very similar, whilst in practice the difference is important.

To avoid these weaknesses, we propose a new way of characterising speedups.
Refer back to the cumulative plots in Fig. 1. The usual way of comparing two
algorithms on these plots is by measuring the vertical difference between lines,
which would tell us how many more instances the parallel algorithm can solve
than the sequential algorithm can with a particular choice of timeout. However,
measuring the horizontal distance between lines also conveys information. Sup-
pose the sequential algorithm can solve y instances with a selected timeout of s.
By moving to the left on a cumulative plot, we can find the timeout p required
for the parallel algorithm to solve the same number of instances, bearing in mind
that the two sets of instances could have completely different members. We define
the aggregate speedup to be s/p; this can be expressed as a function of time (i.e.
s) or of the number of instances solved (y).

We plot aggregate speedups as a function of time in Fig. 3. For a sequen-
tial timeout of one thousand seconds, we get speedups of thirty to forty in the
unlabelled, vertex labelled, and both labelled, directed cases. In the unlabelled
cases, our aggregate speedup are over thirty-two, which is superlinear. With some
detailed knowledge of the underlying sequential algorithm, this should perhaps
not surprise us: for instances with a large solution, once we have found that solu-
tion, a proof of optimality is relatively easy. However, finding that solution can
be unusually hard, particularly since the branching strategy for the connected
constraint necessarily interferes with the tailored search order used by modern
clique algorithms. In contrast, for the both labelled connected case, our aggre-
gate speedup is barely larger than one. A closer inspection of the results shows
that the search tree is unusually narrow and deep for these instances, making
work balance harder and contention higher.

What about scalability and reproducibility? The first plot in Fig. 4 shows
the effects of going from sequential to threaded with two cores, and the next
four plots show the effects of doubling the number of threads each time. These
plots show that most of the superlinear effects occur with fairly small numbers
of threads, with nearly all of the benefits of increased diversity in search being
obtained once eight threads are used. As expected, in no case does increasing
the number of threads make things substantially worse. The final plot in Fig. 4
shows that runtimes are reproducible: running the same instance on the same
hardware twice takes almost exactly the same amount of time.

Observations from Parallelising Three Maximum Common Subgraph 309

Fig. 4. Per-instance speedups from the clique algorithm on vertex- and edge-labelled,
directed instances, when going from sequential to two threads in the first plot, then
increasing the number of threads in subsequent plots. The final plot shows 32 threads
versus a repeated run also with 32 threads.

Fig. 5. In the first two plots, per-instance speedups, using the k↓ algorithm. The x-axis
is sequential performance and the y-axis is 32 threaded performance. Next, scalability
and reproducibility, and finally, aggregate speedups for both families.

310 R. Hoffmann et al.

These results are comforting: they show that anomalies can be controlled,
and that switching to a parallel algorithm is not only better, but also safe from
a scientific reproducibility perspective.

5.3 k↓ Results in Depth

In Fig. 5 we show per-instance and aggregate speedups for the k↓ algorithm. On
unlabelled instances, we see a range of speedups between 0.9 and ten, with an
aggregate speedup of seven. These results are not as good as with the clique
algorithm. Profiling suggests memory allocation problems: although the amount
of work done would suggest good parallelism, the time taken to perform each
domain copy operation increases as the number of threads increases. Unlike the
clique algorithm, which has very small, cache-friendly data structures which are
modified in-place, the state for the k↓ algorithm is large and much of the runtime
is spent copying data structures. (Our hardware is a dual multi-core processor
configuration, and each core has its own low-level cache, but memory bandwidth
is shared. Interestingly, on older Xeon E5 v2 systems, this problem is much more
pronounced.)

For the large instances, our aggregate speedup is higher, at around twenty.
This has two causes: for larger graphs, the computational effort per recursive
call increases by more than the amount the memory copying does, reducing the
memory problem slightly, and additionally a much larger number of superlinear
speedups occurred with this family of instances. We could perhaps anticipate
this latter effect: in many of these instances the maximum common subgraph
covers all or nearly all of the smaller of the two graphs, and so once it is found,
the proof of optimality is trivial. However, finding a witness can be difficult. We
should also expect value-ordering heuristics in these algorithms to be weak at
the top of search (they are based upon degree, and many graphs do not have a
large degree spread), and so the benefits of high-up diversity can be extremely
large [4,15,27]. Indeed, similar results were seen with a parallel version of the
subgraph isomorphism algorithm upon which k↓ is based [26].

The third and fourth plots in Fig. 5 show that as with the clique algorithm,
this parallelism is reproducible, and that runtimes do not get worse when the
number of threads is increased. (Although not shown, we also tried to parallelise
k↓ using randomised work-stealing from Intel Cilk Plus. Doing so gives generally
reasonable results on average, as it does for the clique algorithm [27], but now
repeat runtimes can differ by more than an order of magnitude.)

5.4 McSplit Results in Depth

Finally, we look at our attempts to parallelise the McSplit algorithm. Recall
that doing so required heavy modifications to the implementation, introducing
significant amounts of speculative copying of a data structure that is usually
backtrackable and modified in-place.

For unlabelled, unlabelled connected, and large instances, Fig. 6 shows a par-
ticularly high proportion of strongly superlinear speedups. This is because the

Observations from Parallelising Three Maximum Common Subgraph 311

Fig. 6. On the first two rows, per-instance speedups, using McSplit. Below, aggregate
speedups on the left, and on the right, scalability and reproducibility.

312 R. Hoffmann et al.

McSplit algorithm is focussed upon exploring the search space very quickly,
and its branching heuristics do not have the advantage of the domain filtering
performed by k↓, or the rich inter-domain knowledge coming from the combi-
nation of the association graph encoding and the colour ordering used by clique
algorithms. Thus making a correct value-ordering choice at the top of search is
harder for McSplit than for other algorithms, and so increased diversity can be
particularly beneficial.

For the large instances, we see evidence of work balance problems. McSplit’s
use of a “smallest domain first” variable-ordering heuristic, combined with the
presence of ⊥ in domains, tends to produce narrow (nearly binary) and deep
search trees. These balance problems are even more evident in the labelled cases
(where following a guessed assignment, many domains are left with only two
values), and often lead to little to no speedup being obtained. Indeed, for the
labelled, connected case, we see a slight aggregate slowdown.

The scatter plots also show occasional large absolute slowdowns, sometimes
by over an order of magnitude. These are due to the changes which had to be
made to the sequential algorithm (and because we are benchmarking against
the sequential algorithm, not a parallel algorithm with one thread), rather than
search order effects. In cases where parallelism cannot be exploited, the cost of
speculatively copying domains at each level of search can dominate the runtimes.
Because of this, fixing work balance problems by increasing the splitting depth
typically makes matters much worse, not better.

What about scalability and reproducibility? Figure 6 presents a less ideal
picture than for the previous two algorithms—again, this is due to speculative
overheads that fail to pay off, rather than being anomalies in the classical sense.

6 Conclusion

We have parallelised three state-of-the-art maximum common (connected) sub-
graph algorithms with a reasonable degree of success by using dynamic work-
splitting. Despite having a branch and bound flavour, all three sequential algo-
rithms had their own difficulties and performance characteristics which prevented
them from cleanly fitting into common abstraction frameworks. Nonetheless, our
results show that the parallel algorithms are not just better in aggregate, but
also preserve the desirable reproducibility properties of sequential algorithms. A
large part of our success was down to using parallelism to explicitly introduce
diversity into the search process, offsetting weak early value-ordering branching
choices.

There is room for improvement, particularly with respect to work balance.
However, improvements to work balance must not come at the expense of the
search order properties, nor at the cost of increased overheads.

More generally, we introduced the idea of aggregate speedups, to deal with
measuring a speedup in the presence of anomalies. This measure gives sensible
answers even when working with instances which behave like decision problems.
Aggregate speedups informed part of our analysis, but our results highlight

Observations from Parallelising Three Maximum Common Subgraph 313

the importance of viewing results in multiple ways, and in using large fami-
lies of instances with different characteristics when evaluating parallel search
algorithms—had we looked only at unlabelled instances, or only at labelled con-
nected instances, our conclusion would be very different.

References

1. Bader, D.A., Hart, W.E., Phillips, C.A.: Parallel algorithm design for branch and
bound. In: Greenberg, H.J. (ed.) Tutorials on Emerging Methodologies and Appli-
cations in Operations Research. ISOR, vol. 76, pp. 1–44. Springer, New York
(2005). https://doi.org/10.1007/0-387-22827-6 5

2. de Bruin, A., Kindervater, G.A.P., Trienekens, H.W.J.M.: Asynchronous parallel
branch and bound and anomalies. In: Ferreira, A., Rolim, J. (eds.) IRREGULAR
1995. LNCS, vol. 980, pp. 363–377. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60321-2 29

3. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)

4. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel
constraint programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 226–
241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 20

5. Combier, C., Damiand, G., Solnon, C.: Map edit distance vs. graph edit distance
for matching images. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X.
(eds.) GbRPR 2013. LNCS, vol. 7877, pp. 152–161. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38221-5 16

6. Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common
subgraph detection algorithms: a performance analysis of three algorithms on a
wide database of graphs. J. Graph Algorithms Appl. 11(1), 99–143 (2007)

7. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length
and background knowledge. J. Artif. Intell. Res. 1, 231–255 (1994)

8. Delavallade, T., Fossier, S., Laudy, C., Lortal, G.: On the challenges of using social
media for crisis management. In: Rogova, G., Scott, P. (eds.) Fusion Methodologies
in Crisis Management, pp. 137–175. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-22527-2 8

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

10. Ehrlich, H.C., Rarey, M.: Maximum common subgraph isomorphism algorithms
and their applications in molecular science: a review. Wiley Interdisc. Rev.: Com-
put. Mol. Sci. 1(1), 68–79 (2011)

11. Fang, M., Yin, J., Zhu, X., Zhang, C.: Trgraph: cross-network transfer learning via
common signature subgraphs. IEEE Trans. Knowl. Data Eng. 27(9), 2536–2549
(2015)

12. Fernández, M., Valiente, G.: A graph distance metric combining maximum common
subgraph and minimum common supergraph. Pattern Recogn. Lett. 22(6/7), 753–
758 (2001)

13. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88625-9 16

https://doi.org/10.1007/0-387-22827-6_5
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1007/978-3-642-04244-7_20
https://doi.org/10.1007/978-3-642-38221-5_16
https://doi.org/10.1007/978-3-319-22527-2_8
https://doi.org/10.1007/978-3-319-22527-2_8
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-540-88625-9_16

314 R. Hoffmann et al.

14. Gay, S., Fages, F., Martinez, T., Soliman, S., Solnon, C.: On the subgraph epimor-
phism problem. Discret. Appl. Math. 162, 214–228 (2014)

15. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95,
Montréal Québec, Canada, 20–25 August 1995, vol. 2, pp. 607–615. Morgan Kauf-
mann (1995)

16. Hoffmann, R., McCreesh, C., Reilly, C.: Between subgraph isomorphism and max-
imum common subgraph. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 4–9 February 2017, San
Francisco, California, USA, pp. 3907–3914. AAAI Press (2017)

17. Jégou, P.: Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In: Fikes, R., Lehnert, W.G. (eds.) Proceedings
of the 11th National Conference on Artificial Intelligence, Washington, DC, USA,
11–15 July 1993, pp. 731–736. AAAI Press/The MIT Press (1993)

18. Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algo-
rithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol.
10079, pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50349-3 8

19. Kriege, N.: Comparing graphs. Ph.D. thesis, Technische Universität Dortmund
(2015)

20. Lai, T., Sahni, S.: Anomalies in parallel branch-and-bound algorithms. Commun.
ACM 27(6), 594–602 (1984)

21. Levi, G.: A note on the derivation of maximal common subgraphs of two directed
or undirected graphs. CALCOLO 9(4), 341–352 (1973)

22. Li, G., Wah, B.W.: Coping with anomalies in parallel branch-and-bound algo-
rithms. IEEE Trans. Comput. 35(6), 568–573 (1986)

23. Luo, C., Wang, X., Su, C., Ni, Z.: A fixture design retrieving method based on
constrained maximum common subgraph. IEEE Trans. Autom. Sci. Eng. PP(99),
1–13 (2017)

24. Malapert, A., Régin, J., Rezgui, M.: Embarrassingly parallel search in constraint
programming. J. Artif. Intell. Res. 57, 421–464 (2016)

25. McCreesh, C., Ndiaye, S.N., Prosser, P., Solnon, C.: Clique and constraint models
for maximum common (connected) subgraph problems. In: Rueher, M. (ed.) CP
2016. LNCS, vol. 9892, pp. 350–368. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-44953-1 23

26. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algo-
rithm using supplemental graphs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255,
pp. 295–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-
5 21

27. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem and the implications for parallel branch and bound. TOPC 2(1), 8:1–8:27
(2015)

28. McCreesh, C., Prosser, P., Trimble, J.: A partitioning algorithm for maximum
common subgraph problems. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–
25 August 2017 (2017, to appear)

29. Minot, M., Ndiaye, S.N., Solnon, C.: A comparison of decomposition methods for
the maximum common subgraph problem. In: 27th IEEE International Confer-
ence on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, 9–11
November 2015, pp. 461–468. IEEE Computer Society (2015)

https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-44953-1_23
https://doi.org/10.1007/978-3-319-44953-1_23
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1007/978-3-319-23219-5_21

Observations from Parallelising Three Maximum Common Subgraph 315

30. Ndiaye, S.N., Solnon, C.: CP models for maximum common subgraph problems. In:
Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 637–644. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23786-7 48

31. Park, Y.H., Reeves, D.S., Stamp, M.: Deriving common malware behavior through
graph clustering. Comput. Secur. 39, 419–430 (2013)

32. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-
constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7 31

33. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–
533 (2002)

34. Santo, M.D., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its
use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8),
1067–1079 (2003)

35. Segundo, P.S., Mat́ıa, F., Rodŕıguez-Losada, D., Hernando, M.: An improved bit
parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)

36. Vismara, P., Valery, B.: Finding maximum common connected subgraphs using
clique detection or constraint satisfaction algorithms. In: Le Thi, H.A., Bouvry, P.,
Pham Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 358–368. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87477-5 39

37. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms
for portfolio-based selection. In: Fox, M., Poole, D. (eds.) Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, 11–15 July 2010. AAAI Press (2010)

https://doi.org/10.1007/978-3-642-23786-7_48
https://doi.org/10.1007/3-540-45578-7_31
https://doi.org/10.1007/978-3-540-87477-5_39

Horizontally Elastic Not-First/Not-Last
Filtering Algorithm for Cumulative

Resource Constraint

Roger Kameugne1,2(B), Sévérine Betmbe Fetgo3, Vincent Gingras4,
Yanick Ouellet4, and Claude-Guy Quimper4

1 University of Maroua, Maroua, Cameroon
2 University of Bamenda, Bamenda, Cameroon

rkameugne@gmail.com
3 University of Dschang, Dschang, Cameroon

betmbe200@yahoo.fr
4 Université Laval, Québec, QC, Canada

{vincent.gingras.5,yanick.ouellet.2}@ulaval.ca,
Claude-Guy.Quimper@ift.ulaval.ca

Abstract. Fast and powerful propagators are the main key to the suc-
cess of constraint programming on scheduling problems. It is, for exam-
ple, the case with the cumulative constraint, which is used to model
tasks sharing a resource of discrete capacity. In this paper, we propose
a new not-first/not-last rule, which we call the horizontally elastic not-
first/not-last, based on strong relaxation of the earliest completion time
of a set of tasks. This computation is obtained when scheduling the
tasks in a horizontally elastic way. We prove that the new rule is sound
and is able to perform additional adjustments missed by the classic not-
first/not-last rule. We use the new data structure called Profile to pro-
pose a O(n3) filtering algorithm for a relaxed variant of the new rule
where n is the number of tasks sharing the resource. We prove that
the proposed algorithm still dominates the classic not-first/not-last algo-
rithm. Experimental results on highly cumulative instances of resource
constrained project scheduling problems (RCPSP) show that using this
new algorithm can substantially improve the solving process of instances
with an occasional and marginal increase of running time.

1 Introduction

Cumulative scheduling is the allocation of a scarce resource to tasks over time. It
appears in many real-world problems such as university timetable, ship loading,
employee scheduling, bridge or building constructions. The challenging part of
this problem comes from the resource constraint. To solve it efficiently with a
constraint programming solver, it is important to have fast and efficient propa-
gators for the cumulative [1] constraint. The cumulative constraint models

This work was partially supported by a grant from the Niels Henrik Abel board and
the University Laval.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 316–332, 2018.
https://doi.org/10.1007/978-3-319-93031-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_23&domain=pdf

Horizontally Elastic Not-First/Not-Last Filtering Algorithm 317

the problem where a limited number of tasks can be executed simultaneously.
In a cumulative scheduling problem (CuSP), a set of tasks T has to be executed
on a resource of capacity C. Each task i ∈ T is executed without interruption
during pi time units and uses ci ≤ C units of resource. For a task i ∈ T , the ear-
liest start time esti and the latest completion time lcti are specified. A solution
to a CuSP instance is an assignment of valid start time si to each task i ∈ T
such that the resource constraint is satisfied, i.e.,

∀i ∈ T, esti ≤ si ≤ si + pi ≤ lcti (1)
∀τ,

∑

i∈T, si≤τ<si+pi

ci ≤ C (2)

The inequalities in (1) ensure that each task is assigned a feasible start and end
time, while (2) enforces the resource constraint. Each task i ∈ T has an energy
ei = ci · pi, an earliest completion time ecti = esti + pi and a latest start time
lsti = lcti − pi. These notations can be extended to non-empty sets of tasks as
follows:

eΩ =
∑

j∈Ω

ej , estΩ = min
j∈Ω

estj , lctΩ = max
j∈Ω

lctj , ECTΩ = min
j∈Ω

ectj . (3)

By convention, for empty sets we have: e∅ = 0, est∅ = +∞, lct∅ = −∞
and ECT∅ = +∞. Throughout the paper, we assume that for any task i ∈ T ,
ecti ≤ lcti and ci ≤ C, otherwise the problem has no solution. We let n = |T |
denotes the number of tasks, k = |{ci, i ∈ T}| denotes the number of distinct
capacity requirements of tasks. H = {ecti, i ∈ T} denotes the set of distinct
earliest completion times of tasks with |H| = h. The global constraint cumu-

lative removes inconsistent values from the domain of starting time variable
si ∈ [esti, lsti]. Since the CuSP is a NP-Hard problem [2], it is NP-Hard to
remove all such values. Polynomial time algorithms only exist for relaxations of
the problem.

The global constraint cumulative integrates many filtering algorithms
which perform different pruning and are sometimes combined for more prun-
ing (depending on the characteristics of the instance) to reduce the search space
and thus the running time [3]. Each of these filtering algorithms can be called
thousands of times during the search. Therefore, it is important for them to be
fast, exact and efficient. Among these filtering algorithms, edge-finding [4,7] and
timetabling [5] are the most used, but there exists many other filtering algo-
rithms such as not-first/not-last [6,9,10], energetic reasoning [3,12], and more
recently, horizontally elastic edge-finder [8]. For the remainder of this paper we
focus solely on the algorithm for updating the earliest starting times, as the
latest completion time algorithm is both symmetric and easily derived.

In this paper, we propose a new formulation of the not-first/not-last rule
based on a strong relaxation of the earliest completion time of a set of tasks.
The novel formula, which we call horizontally elastic not-first/not-last subsumes
the classic not-first/not-last rule. With the data structure Profile from [8], we
propose a O(n3) relaxation of the new rule. Experimental results on highly cumu-
lative instances of resource constrained project scheduling problems (RCPSP)

318 R. Kameugne et al.

from suites benchmarks of libraries BL [11], Pack [13] and KSD15 D [14] high-
light that using this new algorithm reduces the number of backtracks for a large
majority of instances with an occasional and marginal increase of the running
time.

The rest of the paper is organized as follows. Section 2 presents the classic not-
first rule for cumulative resource constraint and Sect. 3 defines the novel function
for computing the earliest completion time of a set of tasks with its corresponding
algorithm as it is formulated and presented in [8]. In Sect. 4, we propose a new
formulation of the not-first rule based on the earliest completion time of a set of
tasks which subsumes the classic not-first/not-last rule. Section 5 focuses on the
presentation of a O(n3) not-first algorithm for the horizontally elastic not-first
rule where n is the number of tasks being scheduled on the resource, while Sect. 6
presents a relaxation of the above algorithm with the same complexity. Section 7
shows that the relaxed horizontally elastic not-first algorithm dominates the
classic not-first algorithm. Finally, in Sect. 8, the empirical evaluation of the
new algorithm on highly cumulative instances of the RCPSP is presented while
Sect. 9 concludes the paper.

2 Classic Not-First Rule

The not-first/not-last rule detects tasks that cannot run first/last relatively to
a set of tasks and prunes their time bounds. If a task i cannot be the first
to be executed in Ω ∪ {i} then the earliest start time of task i is updated to
the minimum earliest completion time of the set. The not-first filtering rule is
formalized as follows:
∀Ω ⊂ T, ∀i ∈ T \ Ω

{
esti < ECTΩ

eΩ + ci(min(ecti, lctΩ) − estΩ) > C(lctΩ − estΩ) ⇒ esti ≥ ECTΩ . (NF)

Recently, in [9] the authors proposed a quadratic not-first algorithm using the
Timeline data structure. Some O(n2 log n) algorithms proposed for this rule can
be found in [6,10].

3 Function of the Earliest Completion Time

We present a function to compute the earliest completion time of a set of tasks
as in [8]. We use the notation ectF

Ω to denote the fully-elastic earliest completion
time of a set of tasks Ω and it is computed by spending a maximum amount of
energy as early as possible without any regards to the resource required of the
tasks using the following formula [7].

ectF
Ω =

⌈
max{CestΩ′ + eΩ′ |Ω′ ⊆ Ω}

C

⌉

. (4)

Horizontally Elastic Not-First/Not-Last Filtering Algorithm 319

This value is a relaxation of the real earliest completion time ectΩ of the set
Ω. Note that ectΩ is NP-hard to compute [2]. A stronger relaxation for the
function ectΩ called horizontally elastic earliest completion time and noted ectH

Ω

is introduced in [8].
During the computation of this value, any task i consumes ei units of

resource within the interval [esti, lcti) and is allowed to consume at any time
t ∈ [esti, lcti), between 0 and ci units of resource. Given a set of tasks Ω, ectH

Ω

is computed using the following functions.

– cmax(t) the amount of resource that can be allocated to the tasks in Ω at
time t, i.e.,

cmax(t) = min

⎛

⎝
∑

i∈Ω|esti≤t<lcti

ci, C

⎞

⎠ (5)

– creq(t) the amount of resource required at time t by the tasks in Ω if they
were all starting at their earliest starting times, i.e.,

creq(t) =
∑

i∈Ω|esti≤t<ecti

ci (6)

– ov(t) called overflow is the energy from creq(t) that cannot be executed at
time t due to the limited capacity cmax(t).

– ccons(t) the amount of resource that is actually consumed at time t, i.e.,

ccons(t) = min(creq(t) + ov(t − 1), cmax(t)) (7)
ov(t) = ov(t − 1) + creq(t) − ccons(t) (8)

ov(estΩ) = 0 (9)

The horizontally elastic earliest completion time occurs when all tasks are com-
pleted, i.e.,

ectH
Ω = max{t|ccons(t) > 0} + 1. (10)

For a set of tasks, it is proven in [8] that the horizontally elastic earliest com-
pletion time is a relaxation of the earliest completion time and is stronger than
the fully-elastic one.

Theorem 1 [8]. For all Ω ⊆ T, ectFΩ ≤ ectHΩ ≤ ectΩ.

The computation of ectH is done with the Profile data structure [8] that stores
the resource utilization over time. The tuples 〈time, cap, δmax, δreq〉 (where time
is the start time, cap is the remaining capacity of the resource at the start time,
δmax and δreq are two quantities initialized to zero) are stored in a sorted linked
list whose nodes are called time points. The Profile is initialized with a time point
of capacity C for every distinct value of est, ect, and lct. A sufficiently large time
point is added to act as a sentinel. While initializing the data structure, pointers

320 R. Kameugne et al.

are kept so that testi , tecti and tlcti return the time point associated to esti, ecti,
and lcti. The algorithm ScheduleTasks computes the functions creq(t), cmax(t),
ccons(t) and ov(t) to schedule a set of tasks Θ on the profile P.

Algorithm 1. ScheduleTasks(Θ,C) [8]
Input: Θ a set of tasks and C the capacity of the resource
Output: A lower bound ectH

Θ of the set Θ
1 for all time point t do
2 t.δmax ← 0 and t.δreq ← 0

3 for i ∈ Θ do
4 Increment testi .δmax and testi .δreq by ci

5 Decrement tlcti .δmax and tecti .δreq by ci

6 t ← P.first, ov ← 0, ect ← −∞, S ← 0, creq ← 0
7 while t.time �= lctΘ do
8 t.ov ← ov, l ← t.next.time − t.time, S ← S + t.δmax

9 cmax ← max(S, C)
10 creq ← creq + t.δreq

11 ccons ← min(creq + ov, cmax)
12 if 0 < ov < (ccons − creq) · l then

13 l ← max
(
1,

⌊
ov

ccons−creq

⌋)

14 t.insertAfter(t.time + l, t.cap, 0, 0)

15 ov ← ov + (creq − ccons) · l
16 t.cap ← C − ccons

17 if t.cap < C then ect ← t.next.time
18 t ← t.next

19 return ect

The interesting properties of this data structure come from the number of
time points and the linear-time algorithm ScheduleTasks.

Proposition 1 ([8]). The Profile contains at most 4n + 1 time points and the
algorithm ScheduleTasks runs in O(n) time where n is the number of tasks.

4 New Formulation of the Not-First Rule

Before generalizing the not-first rule, let us state the classic not-first using the
earliest completion time of a set of tasks. Let Ω ⊂ T be a set of tasks and
i ∈ T \ Ω be a task. From task i and set of tasks Ω, a new task i′ can be
derived with the following attributes: esti′ = estΩ , lcti′ = min(ecti, lctΩ), pi′ =
min(ecti, lctΩ) − estΩ and ci′ = ci. Substituting this into rule (NF) leads to:

{
esti < ECTΩ

eΩ + ei′ > C(lctΩ − estΩ∪{i′})
⇒ esti ≥ ECTΩ (11)

Horizontally Elastic Not-First/Not-Last Filtering Algorithm 321

0 2 4 6

x

y

z

esty,z=0

estx=1

lcty,z=6

lctx=3

Fig. 1. A CuSP problem of 3 tasks
sharing a resource of capacity C = 3.

0 1 2 3 4 5 6 7
0

1

2

3

4

C = 3
0 0 1 1 1 1 1 0

Fig. 2. The resource utilization pro-
file of tasks {x, y, z′} where z′ is
derived from z and Ω = {x, y} and
whose parameters 〈estz′ , lctz′ , pz′ , cz′〉
are 〈0, 3, 3, 1〉.

The rule (11) is equivalent to
{

esti < ECTΩ

ectF
Ω∪{i′} > lctΩ

⇒ esti ≥ ECTΩ (12)

The horizontally elastic not-first rule is obtained from (12) by replacing ectF
Ω∪{i′}

by ectH
Ω∪{i′} and is given by the formula:

∀Ω ⊂ T, ∀i ∈ T \ Ω,
{

esti < ECTΩ

ectH
Ω∪{i′} > lctΩ

⇒ esti ≥ ECTΩ (HNF)

where i′ is a task derived from task i whose parameters 〈esti′ , lcti′ , pi′ , ci′〉 are
〈estΩ ,min(ecti, lctΩ),min(ecti, lctΩ) − estΩ , ci〉.
Theorem 2. The not-first rule (NF) is subsumed by the horizontally elastic
not-first rule (HNF).

Proof. Since ectF
Ω ≤ ectH

Ω for all Ω (Theorem 1) and from the equivalence of rules
(NF) and (12), it follows that condition eΩ+ci(min(ecti, lctΩ)−estΩ) > C(lctΩ−
estΩ) implies the condition ectH

Ω∪{i′} > lctΩ . Therefore, all the adjustments
performed by rule (NF) are also done by rule (HNF).

Consider the CuSP instance of Fig. 1 where three tasks share a resource of
capacity C = 3. The resource utilization profile of tasks {x, y, z′} is given in Fig. 2
where z′ is derived from z and Ω = {x, y} whose parameters 〈estz′ , lctz′ , pz′ , cz′〉
are 〈0, 3, 3, 1〉. The numbers above the bold line of capacity limit are overflow
units of energy remaining at each time point i.e., ov(0) = 0, ov(1) = 0, ov(2) = 1,
and so forth. The horizontally elastic earliest completion time of the tasks set
{x, y, z′} is 7 which is greater than lct{x,y,z′} = 6. When we apply the not-first
rule (NH) with Ω = {x, y} and i = z, it appears that 0 = estz < 2 = ECTΩ

but ectF
Ω∪{z′} = 3 ≤ lctΩ . Therefore, no detection is found and consequently no

adjustment follows. But the horizontally elastic not-first rule (HNF) applied to
the same instance gives ectH

Ω∪{z′} = 7 > lctΩ and the earliest start time of task
z is updated to 2. �

322 R. Kameugne et al.

5 Horizontally Elastic Not-First Algorithm

We present a O(n3) cumulative horizontally elastic not-first algorithm where n
is the number of tasks sharing the resource. The new algorithm is sound as in
[6,10] i.e., the algorithm may take additional iterations to perform maximum
adjustments and uses the concept of the left cut of the set of tasks T by a
task j as in [6]. We describe how the left cut can be used to check the not-first
conditions. We present some strategies to reduce the practical complexity of the
algorithm and to fully utilize the power of the the Profile data structure.

Definition 1 [6]. Let i and j be two different tasks. The left cut of T by task j
relatively to task i is the set of tasks LCut(T, j, i) defined as follows:

LCut(T, j, i) = {k | k ∈ T ∧ k �= i ∧ esti < ectk ∧ lctk ≤ lctj}. (13)

Using this set, we have the following new rule:
For all i, j ∈ T with i �= j,

ectH
LCut(T,j,i)∪{i′} > lctj ⇒ esti ≥ ECTLCut(T,j,i) (HNF′)

where i′ is a task derived from task i whose parameters 〈esti′ , lcti′ , pi′ , ci′〉 are
〈estLCut(T,j,i),min(ecti, lctj),min(ecti, lctj) − estLCut(T,j,i), ci〉.
Theorem 3. For a task i, at most h−1 iterative applications of the rule (HNF’)
achieve the same filtering as one application of the rule (HNF) where h is the
number of different earliest completion time of tasks.

Proof. Let Ω be the set which induces the maximum change of the value esti by
the rule (HNF). Let j ∈ Ω be a task with lctj = lctΩ . Until the same value of
esti is reached, in each iteration of the rule (HNF’) holds that Ω ⊆ LCut(T, j, i).
Indeed, because esti < ECTΩ and i /∈ Ω, it follows that for all k ∈ Ω, k �= i,
esti < ectk and lctk ≤ lctj . From the inclusion Ω ⊆ LCut(T, j, i), it follows that
ectH

LCut(T,j,i)∪{i′} ≥ ectH
Ω∪{i′} > lctj and the rule (HNF’) holds and propagates.

After each successful application of the rule (HNF’), the value esti is
increased. This removes all the tasks from the set LCut(T, j, i) having the ear-
liest completion time ECTLCut(T,j,i). Therefore the final value of esti must
be reached after at most h − 1 iterations and it is the same as for the
rule (HNF). �

Example 1 ([6]). Consider the CuSP instance of Fig. 3 where four tasks share
a resource of capacity C = 3. The not-first rule (14) holds for task d and the
set LCut(T, a, d) = {a, b, c}. Indeed, estd < ECT{a,b,c} and ectH

LCut(T,a,d)∪{d′} =
6 > lcta. Hence, estd = 3. After this adjustment, we have LCut(T, a, d) = {a},
estd < ECT{a}, and ectH

LCut(T,a,d)∪{d′} = 6 > lcta which leads to estd = 5. The
maximum adjustment holds.

To reduce the practical computational complexity of the algorithm, we
deduce from the properties of LCut(T, j, i) and the rigidity of task i′ some strate-
gies to learn from failures and successes and anticipate the detection of future
tasks.

Horizontally Elastic Not-First/Not-Last Filtering Algorithm 323

0 3 6 9 12

abc

d
estd=1

estb,c=2

esta=4

lctb,c=4

lcta=5 lctd=9

Fig. 3. A scheduling problem of 4 tasks sharing a resource of capacity C = 3.

5.1 Reducing the Number of Sets Θ = LCut(T, j, i) to Consider

To speed-up the algorithm without reducing its filtering power, we can know
whether or not the set of tasks Θ = LCut(T, j, i) is in conflict with the task i.
The detection of the not-first rule of task i with the set of tasks Θ is only possible
when Θ is conflicting with i. This happens when

∑
k∈Θ ck > C − ci since when

the sum of the capacity requirements of the tasks in Θ is less than C − ci, then
the set Θ is not conflicting with task i.

5.2 Deduction from Detection Failure of Tasks

Let i be a task such that the not-first detection rule (HNF’) fails for all set
of tasks LCut(T, j, i). Then for any other task u such that u �= i, lctu ≤ lcti,
estu = esti, cu ≤ ci and ectu ≤ ecti, we can deduce that, for all sets of tasks
LCut(T, j, i) the rule (HNF’) will also fail with task u. This assertion is formally
proven in the following proposition.

Proposition 2. Let i ∈ T be a task such that the not-first rule (HNF’) fails
for all sets of tasks LCut(T, j, i). Then for any task u ∈ T such that u �= i,
lctu ≤ lcti, estu = esti, cu ≤ ci and ectu ≤ ecti, the not-first rule (HNF’) also
fails with task u for all sets of tasks LCut(T, j, u).

Proof. By contradiction, let u ∈ T be a task with u �= i, lctu ≤ lcti,
estu = esti, cu ≤ ci and ectu ≤ ecti such that the not-first rule (HNF’)
detects and adjusts the earliest start time of task u, i.e., there exists a task
j ∈ T such that ectH

LCut(T,j,u)∪{u′} > lctj and the task u is updated such that
estu ≥ ECTLCut(T,j,u). We distinguish two cases: lctj < lcti and lcti ≤ lctj .

1. If lctj < lcti, then LCut(T, j, u) ⊆ LCut(T, j, i) and from the fact
that i′ is more constrained than u′ it follows that ectH

LCut(T,j,i)∪{i′} ≥
ectH

LCut(T,j,i)∪{u′} ≥ ectH
LCut(T,j,u)∪{u′} > lctj , which contradicts the non-

detection of the not-first rule (HNF’) with task i.
2. If lcti ≤ lctj , then LCut(T, j, u) ⊆ LCut(T, j, i) ∪ {i}. Since the set of tasks

LCut(T, j, i) ∪ {i′} is more constrained than LCut(T, j, u) ∪ {u′} it follows
that ectH

LCut(T,j,i)∪{i′} ≥ ectH
LCut(T,j,u)∪{u′} > lctj , which contradicts the non-

detection of the rule (HNF’) with task i. �

324 R. Kameugne et al.

5.3 Deduction from Success Detection of Tasks

Let i and j be two tasks such that i �= j, esti < ectj and the not-first rule
(HNF’) holds for i and LCut(T, j, i). Then for any other task u such that u �= i,
lctu ≤ lcti, estu ≤ esti, cu ≥ ci and ectu ≥ ecti, the tasks set LCut(T, j, u)
successfully detected the not-first rule (HNF’) with task u, u /∈ LCut(T, j, i).
This assertion is formally proven in the following proposition.

Proposition 3. Let i and j be two tasks such that i �= j, esti < ectj and the
not-first rule (HNF’) holds for i and LCut(T, j, i). Then for any other task u such
that u �= i, lctu ≤ lcti, estu ≤ esti, cu ≥ ci and ectu ≥ ecti, if u /∈ LCut(T, j, i)
then the not-first rule (HNF’) holds with u and LCut(T, j, u).

Proof. Let i and j be two tasks such that i �= j, esti < ectj and the rule (HNF’)
holds for i and LCut(T, j, i). Let u be a task such that u �= i, lctu ≤ lcti,
estu ≤ esti, cu ≥ ci, ectu ≥ ecti and u /∈ LCut(T, j, i). From estu ≤ esti and
u /∈ LCut(T, j, i), it is obvious that LCut(T, j, i) ⊆ LCut(T, j, u). Since the set of
tasks LCut(T, j, u) ∪ {u′} is more constrained than LCut(T, j, i) ∪ {i′} it follows
that ectH

LCut(T,j,u)∪{u′} ≥ ectH
LCut(T,j,i)∪{i′} > lctj . �

To apply these reductions, we start with a set Λ = T of tasks sorted by non-
decreasing order of lctj , by non-increasing order of estj , by non-decreasing order
of cj and by non-decreasing order of ectj to break ties. If a task i ∈ Λ fails
for detection of the rule (HNF’), then we are sure that the detection will fail
with all tasks u ∈ Λ such that u �= i, lctu ≤ lcti, estu = esti, cu ≤ ci and
ectu ≤ ecti. On the other hand, when the rule (HNF’) holds with a task i
and the set LCut(T, j, i), if the detection of the rule (HNF’) fails with the set
LCut(T, j, u) and the task u ∈ Λ such that u �= i, lctu ≤ lcti, estu ≤ esti, cu ≥ ci

and ectu ≥ ecti, then the task is postponed to the next iteration.

5.4 Horizontally Elastic Not-First Algorithm

In Algorithm 2, we iterate through the set of tasks sorted by non-decreasing
order of lct, by non-increasing order of est, by non-decreasing order of cj and
by non-decreasing order of ectj to break ties (line 5) and for each unscheduled
task (line 3), we iterate over the different set Θ = LCut(T, j, i) (line 7). For
each set Θ satisfying the reduction of Sect. 5.1, the minimum earliest completion
time is computed (line 9) during the initialization of the increment values of the
function ScheduleTasks. The horizontally-elastic earliest completion time of the
set of tasks Θ ∪ {i′} is computed at line 10 by the function ScheduleTasks and
if this value is greater than lctj (line 11), then the adjustment of esti occurs
(line 12). The boolean “detect” of line 4 allows breaking for the while loop of
line 5 when a detection is found. The loop of line 15 is used to avoid similar
set Θ = LCut(T, j, i) since LCut(T, j, i) = LCut(T, j′, i) if lctj = lctj′ . The
complexity of Algorithm2 is given in the following theorem.

Horizontally Elastic Not-First/Not-Last Filtering Algorithm 325

Algorithm 2. Horizontally elastic Not-First Algorithm in O(n3) time.
Input: Λ tasks sorted by non-decreasing lctj , by non-increasing estj , by

non-decreasing cj and by non-decreasing ectj to break ties.
Output: A lower bound est′

i for each task i
1 for i ∈ T do est′

i ← esti

2 for i = n to 1 do
3 if ecti < lcti then
4 detect ← false, j ← 1, t ← −1
5 while j ≤ n ∧ detect = false do
6 if j �= i ∧ esti < ectj then
7 Θ ← LCut(T, j, i)
8 if

∑
k∈Θ

ck > C − ci then

9 ECT ← ECTLCut(T,j,i)

10 ectH ← ScheduleTasks(Θ ∪ {i′}, C)

11 if ectH > lctj then
12 est′

i ← max(est′
i, ECT)

13 detect ← true
14 t ← j

15 while j + 1 ≤ n ∧ lctj = lctj+1 ∧ detect = false do
16 j ← j + 1

17 j ← j + 1

18 if detect = true then
19 for u = i − 1 to 1 do
20 if estu ≤ esti ∧ cu ≥ ci ∧ ectu ≥ ecti then
21 Θ ← LCut(T, t, u)
22 ECT ← ECTLCut(T,t,u)

23 ectH ← ScheduleTasks(Θ ∪ {u′}, C)

24 if ectH > lctj then
25 est′

u ← max(est′
u, ECT)

26 Λ ← Λ \ {u}

27 if detect = false then
28 for u = i − 1 to 1 do
29 if estu = esti ∧ cu ≤ ci ∧ ectu ≤ ecti then
30 Λ ← Λ \ {u}

31 for i ∈ T do esti ← est′
i

Theorem 4. Algorithm2 runs in O(n3) time.

Proof. The linear time algorithm ScheduleTasks is called O(n2) time for total
complexity of O(n3). �

We perform a preliminary comparison of this algorithm with the state of the
art algorithms on the resource constrained project scheduling problems (RCPSP)
instances of the BL set [3]. It appears that on many instances, when the proposed

326 R. Kameugne et al.

algorithm is used, the solver spends 1.5–2 more time than with the others not-
first/not-last algorithms for a reduction of the number of backtracks of less than
40%. We observe that for a task i, many set Θ = LCut(T, j, i) used to check the
not-first conditions are fruitless and should be avoided.

6 Relaxation of the Horizontally Elastic Not-First
Algorithm

We propose a relaxation of the previous algorithm based on a new criterion used
to reduce the number of subsets LCut(T, j, i) to consider. Without changing the
computational complexity, the relaxed horizontally elastic not-first algorithm
still dominates the classic not-first algorithm with a good trade-off between the
filtering power and the running time. To do so, it is important to have a criteria
to select the task j for which the set Θ = LCut(T, j, i) has more potential to
detect at least the classic not-first conditions.

Definition 2. Let i ∈ T be a task. The not-first set of tasks with task i denoted
NFSet(T, i) is given by

NFSet(T, i) = {j, j ∈ T ∧ j �= i ∧ esti < ectj}.

The set NFSet(T, i) is the set of tasks conflicting with task i. If a not-first con-
dition is detected with a set Ω i.e., ectΩ∪{i′} > lctΩ , then Ω ⊆ NFSet(T, i).
In this condition, the earliest start time of task i′ can be replaced by estmin =
min{estk, k ∈ T} since none of the tasks from NFSet(T, i) starts and ends before
esti. We schedule the tasks from NFSet(T, i) ∪ {i′} and compute the overflow
energy that cannot be executed at time t = tlctj for j ∈ NFSet(T, i). The algo-
rithm ScheduleNFConflictingTasks is a variant of the algorithm ScheduleTasks
which schedules the set NFSet(T, i) ∪ {i′} and returns the set Δ of task j such
that the overflow energy at time point tlctj is greater than 0.

We use the condition tlctj .ov > 0 to reduce the number of sets LCut(T, j, i)
to be considered during the detection of the not-first conditions with task i. The
above improvements are incorporated in Algorithm3. The complexity of the
resulting algorithm remains O(n3) but the condition tlctj .ov > 0 used to reduce
the number of sets LCut(T, j, i) during the detection considerably reduces the
running time, as shown from the experimental results section.

Example 2. Consider the CuSP instance of Fig. 1 with an additional task t where
attributes 〈estt, lctt, pt, ct〉 are 〈3, 7, 1, 1〉. The function ScheduleNFConflicting-
Tasks return an empty set when the set NFSet(T, z)∪ {z′} is scheduled because
the overflow energy will be consumed before the time point 6. Therefore, the
relaxed algorithm will miss the adjustment of estz to 2.

Horizontally Elastic Not-First/Not-Last Filtering Algorithm 327

The filtering power of the algorithm is reduced. We prove later that the relaxed
horizontally elastic not-first algorithm subsumes the classic not-first algorithm.

Algorithm 3. Relaxation of the horizontally elastic Not-First in O(n3).
Input: Λ tasks sorted by non-decreasing lctj , by non-increasing estj , by

non-decreasing cj and by non-decreasing ectj to break ties.
Output: A lower bound est′

i for each task i
1 for i ∈ T do est′

i ← esti

2 for i = n to 1 do
3 if ecti < lcti ∧ i ∈ Λ then
4 detect ← false, t ← −1
5 if detect = false then
6 Δ ← ScheduleNFConflictingTasks(i, C)
7 j ← |Δ|
8 while j ≥ 1 ∧ detect = false do
9 Θ ← LCut(T, j, i)

10 ECT ← ECTLCut(T,j,i)

11 ectH ← ScheduleTasks(Θ ∪ {i′}, C)

12 if ectH > lctj then
13 est′

i ← max(est′
i, ECT)

14 detect ← true
15 t ← j

16 j ← j − 1

17 if detect = true then
18 for u = i − 1 to 1 do
19 if estu ≤ esti ∧ cu ≥ ci ∧ ectu ≥ ecti then
20 Θ ← LCut(T, t, u)
21 ECT ← ECTLCut(T,t,u)

22 ectH ← ScheduleTasks(Θ ∪ {u′}, C)

23 if ectH > lctt then
24 est′

u ← max(est′
u, ECT)

25 Λ ← Λ \ {u}

26 if detect = false then
27 for u = i − 1 to 1 do
28 if estu = esti ∧ cu ≤ ci ∧ ectu ≤ ecti then
29 Λ ← Λ \ {u}

30 for i ∈ T do esti ← est′
i

7 Properties of the Relaxation of the Horizontally Elastic
Not-First Algorithm

In this section, we prove that the relaxation of the horizontally elastic not-first
algorithm (Algorithm3) subsumes the standard not-first algorithm.

328 R. Kameugne et al.

Lemma 1. Let i ∈ T be a task. If the not-first condition (NF) is detected
with the set of tasks Ω, then after a horizontally elastic scheduling of tasks
NFSet(T, i) ∪ {i′}, it appears that tlctj .ov > 0 where lctj = lctΩ.

Proof. Let j ∈ T be a task such that lctj = lctΩ . If the not-first conditions (4) are
detected with the set of tasks Ω, then ectF

Ω∪{i′} > lctj and Ω ⊆ LCut(T, j, i).
Therefore, in the fully elastic schedule of tasks from Ω ∪ {i′}, the resource is
fully used at any time points from estΩ to lctΩ with a surplus of energy not
executed. Then from ectH

LCut(T,j,i)∪{i′} ≥ ectF
LCut(T,j,i)∪{i′} ≥ ectF

Ω∪{i′} > lctj

and LCut(T, j, i) ⊆ NFSet(T, i) it follows that during the scheduling of tasks set
NFSet(T, i) ∪ {i′}, tlctj .ov > 0. �
Theorem 5. The relaxation of the horizontally elastic not-first algorithm (Algo-
rithm3) subsumes the classic not-first algorithm.

Proof. According to Lemma 1, any detection and adjustment performed by the
classic not-first algorithm are also detected and adjusted by the relaxed horizon-
tally elastic not-first algorithm. In the CuSP instance of Example 1, the classic
not-first algorithm fails to adjust estz while the relaxation of the horizontally
elastic not-first algorithm succeeds to update estz to 2. �

We know from [3] that the classic not-first/not-last rule is not subsumed
by the energetic reasoning rule and vice-versa. According to Theorem 5, we can
deduce that the relaxation of the horizontally elastic not-first/not-last rule is
not subsumed by the energetic reasoning and vice-versa.

8 Experimental Results

We carry out experimentations on resource-constrained project scheduling prob-
lems (RCPSP) to compare the new algorithm of not-first/not-last with the state-
of-the art algorithms. A RCPSP consists of a set of resources of finite capacities,
a set of tasks of given processing times, an acyclic network of precedence con-
straints between tasks, and a horizon (a deadline for all tasks). Each task requires
a fixed amount of each resource over its execution time. The problem is to find
a starting time assignment for all tasks satisfying the precedence and resource
capacity constraints, with the least makespan (i.e., the time at which all tasks
are completed) at most equals to the horizon.

Tests were performed on benchmark suites of RCPSP known to be highly
cumulative [3]. On highly cumulative scheduling instances, many tasks can be
scheduled simultaneously as contrary to the highly disjunctive ones. We use the
libraries BL [11], Pack [13] and KSD15 D [14]. The data set BL consists of 40
instances of 20 and 25 tasks sharing three resources, Pack consists of 55 instances
of 15–33 tasks sharing a resource of capacity 2–5 while the set KSD15 D consists
of 480 instances of 15 tasks sharing a resource of capacity 4.

Starting with the provided horizon as an upper bound, we modeled each prob-
lem as an instance of Constraint Satisfaction Problem (CSP); variables are start
times of tasks and they are constrained by the precedence graph (i.e., precedence

Horizontally Elastic Not-First/Not-Last Filtering Algorithm 329

relations between pairs of tasks were enforced with linear constraints) and
resource limitations (i.e., each resource was modeled with a single cumulative

constraint [1]). We used a branch and bound search to minimize the makespan.
We implemented three different propagators of the global constraint

cumulative in Java using Choco solver 4.0.1 [17].

1. The first cumulative propagator noted “TT-NF” (for not-first with Θ -tree)
is a sequence of two filtering algorithms: the O(n2 log n) not-first algorithm
from [6] and timetabling algorithm from [15].

2. The second propagator noted “CHE-NF” (for not-first with complete horizon-
tally elastic) is obtained when replacing in the first propagator the not-first
algorithm with Timeline by the complete horizontally elastic not-first algo-
rithm presented in Algorithm2.

3. The third propagator noted “RHE-NF” (for not-first with relaxed horizon-
tally elastic) is obtained when replacing in the first propagator the not-first
algorithm with Timeline by the relaxed horizontally elastic not-first algorithm
presented in Algorithm 3.

Branching scheme is another ingredient to accelerate the solving process. The
heuristics used to select tasks and values are directly linked to the type of
problems and the filtering algorithms considered in the solver. We combine the
conflict-ordering search heuristic [16] with the heuristic minDomLBSearch from
Choco. During the search, the solver records conflicting tasks and at the back-
track, the last one is selected in priority until they are all instantiated with-
out causing any failure. When no conflicting tasks is recorded, the heuristic
minDomLBSearch which consists of selecting the unscheduled tasks with the
smallest domain and assigning it to its lower bound is used. Tests were performed
on a data center equiped with Intel(R) Xeon X5560 Nehalem nodes, 2 CPUs per
node, 4 cores per CPU at 2.4 GHz, 24 GB of RAM per node. Any search taking
more than 10 min was counted as a failure.

In Table 1, the columns “solve” report the number of instances solved by each
propagator. Columns “time”, “backt”, and “speedup” denote the average CPU
time (in second) used to reach the optimal solution, the average number of back-
tracks, and the average speedup factor (TT-NF time over new algorithms time)
reported on instances solved by “TT-NF” vs. “CHE-NF” (sp1) and “TT-NF” vs.
“RHE-NF” (sp2) respectively. 527 instances were solved by the three propaga-
tors with one instance solved only by “CHE-NF” and “RHE-NF” (pack016) and
two instances solved only by “TT-NF” and “RHE-NF” (pack015 and j30 45 2).

The propagator “TT-NF” performs better in average on BL set while “RHE-
NF” is the best on Pack and KSD15 D with an average speedup factor of 124.4%
and 103.1% wrt. “TT-NF”. We observe a reduction of the average number of
backtracks from “RHE-NF” on Pack set while “CHE-NF” dominated on BL
and KSD15 D. Figure 4 compares the runtimes (a), the number of backtracks
(b) and the number of adjustments (propagations) (c) made at the fixed point of
the node of the search tree on the 527 instances solved by the three propagators.
It appears in (a) that the running time of “RHE-NF” is generally close to “TT-
NF” and sometimes less. In (b), the number of backtracks of “RHE-NF” is

330 R. Kameugne et al.

Table 1. We report the number of instances solved (solve), the average number of
backtracks (backts), the average time in second (time) and the average speedup fac-
tor (TT-NF time over new algorithms time) required to solve all instances that are
commonly solved by the three propagators on set BL, Pack and KSD15 D.

TT-NF CHE-NF RHE-NF Speedup (%)

Solve Time Backts Solve Time Backts Solve Time Backts sp1 sp2

BL 40 4.497 32789 40 6.952 23114 40 6.616 27193 64.7 68

Pack 19 30.524 161467 18 42.608 90663 18 24.543 66154 71.6 124.4

KSD15 D 471 0.766 2196 470 1.2 2008 471 0.743 2020 63.8 103.1

0 100 200 300
0

100

200

300

(a) New algorithm (sec)

TT vs. CHE

TT vs RHE

0 0.5 1

·106

0

0.5

1

·106

(b) New algorithm (backts)

TT vs. CHE

TT vs RHE

0 2 4

·105

0

2

4

·105

(c) TT & RHE (props)

CHE vs. TT

CHE vs RHE

Fig. 4. (a) Runtimes comparison of TT-NF vs. CHE-NF and TT-NF vs. RHE-NF, (b)
Comparison of the number of Backtracts TT-NF vs. CHE-NF and TT-NF vs. RHE-
NF, (c) Comparison of the number of adjustments (Propagations) CHE-NF vs. TT-NF
and CHE-NF vs. RHE-NF on instances of BL, Pack and KSD15 D where the three
propagators found the best solution.

always less than the number of backtracks of “TT-NF”. In (c), the average
number of propagations of “RHE-NF” are always less than the average number
of propagations of “CHE-NF” when on a few number of instances, the number of
propagations of “TT-NF” is less than the number of propagations of “CHE-NF”.

9 Conclusion

We proposed a generalization of the not-first/not-last rule for the cumulative
resource constraint based on a strong relaxation of the earliest completion time
of a set of tasks. A relaxation of the corresponding horizontally elastic not-
first/not-last algorithm running in O(n3) is also proposed, where n is the number
of tasks sharing the resource. The new algorithm is sound and can reach a better
fixed point than the state-of-the-art algorithms. The new algorithm is based on
the data structure Profile used to compute a strong lower bound on the earliest
completion time of a set of tasks. Experimental results demonstrate that the new
algorithm has more impact in terms of backtracks reduction and running time
on highly cumulative instances of RCPSPs. Future work will focus on finding
how to improve the complexity of this algorithm from O(n3) to O(n2 log n) and
to design a branching scheme more suitable for the new rule.

Horizontally Elastic Not-First/Not-Last Filtering Algorithm 331

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Math. Comput. Model. 17(7), 57–73 (1993)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman,
New York (2002)

3. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer, Boston (2001)

4. Kameugne, R., Fotso, L.P., Scott, J., Ngo-Kateu, Y.: A quadratic edge-finding
filtering algorithm for cumulative resource constraints. Constraints 19(3), 243–269
(2014)

5. Gay, S., Hartert, R., Schaus, P.: Simple and scalable time-table filtering for the
cumulative constraint. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 149–
157. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 11

6. Kameugne, R., Fotso, L.P.: A cumulative not-first/not-last filtering algorithm in
O(n2log(n)). Indian J. Pure Appl. Math. 44(1), 95–115 (2013)

7. Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in
O(kn log n). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 62

8. Gingras, V., Quimper, C.-G.: Generalizing the edge-finder rule for the cumulative
constraint. In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI 2016), pp. 3103–3109 (2016)

9. Fahimi, H., Ouellet, Y., Quimper, C.-G.: Linear-time filtering algorithms for
the disjunctive constraint and a quadratic filtering algorithm for the cumulative
not-first not-last. Constraints (2018). https://urldefense.proofpoint.com/v2/url?u=
https-3A doi.org 10.1007 s10601-2D018-2D9282-2D9&d=DwIGaQ&c=vh6FgFnd
uejNhPPD0fl yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1 569d50MjVlUSODJYRW2
epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=aL081BMc0-Mz9R6
8wFZEUyFJk8ey6WR yrftmQnZo5M&s=hgOsaJRlHR1tDxzWdCLdLc6yr4SUt5
P6x9Nz5aecTfQ&e

10. Schutt, A., Wolf, A.: A new O(n2 log n) not-first/not-last pruning algorithm for
cumulative resource constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp.
445–459. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-
9 36

11. Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques for
highly disjunctive and highly cumulative project scheduling problems. Constraints
5(1–2), 119–139 (2000)

12. Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic
reasoning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 289–297. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 22

13. Carlier, J., Néron, E.: On linear lower bounds for the resource constrained project
scheduling problem. Eur. J. Oper. Res. 149(2), 314–324 (2003)

14. Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Event-based milp models for
resource-constrained project scheduling problems. Comput. Oper. Res. 38(1), 3–
13 (2011)

15. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumu-
lative constraint. In: Milano, M. (ed.) CP 2012. LNCS, pp. 439–454. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 33

https://doi.org/10.1007/978-3-319-23219-5_11
https://doi.org/10.1007/978-3-642-04244-7_62
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1007_s10601-2D018-2D9282-2D9&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=aL081BMc0-Mz9R68wFZEUyFJk8ey6WR_yrftmQnZo5M&s=hgOsaJRlHR1tDxzWdCLdLc6yr4SUt5P6x9Nz5aecTfQ&e
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1007_s10601-2D018-2D9282-2D9&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=aL081BMc0-Mz9R68wFZEUyFJk8ey6WR_yrftmQnZo5M&s=hgOsaJRlHR1tDxzWdCLdLc6yr4SUt5P6x9Nz5aecTfQ&e
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1007_s10601-2D018-2D9282-2D9&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=aL081BMc0-Mz9R68wFZEUyFJk8ey6WR_yrftmQnZo5M&s=hgOsaJRlHR1tDxzWdCLdLc6yr4SUt5P6x9Nz5aecTfQ&e
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1007_s10601-2D018-2D9282-2D9&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=aL081BMc0-Mz9R68wFZEUyFJk8ey6WR_yrftmQnZo5M&s=hgOsaJRlHR1tDxzWdCLdLc6yr4SUt5P6x9Nz5aecTfQ&e
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1007_s10601-2D018-2D9282-2D9&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=aL081BMc0-Mz9R68wFZEUyFJk8ey6WR_yrftmQnZo5M&s=hgOsaJRlHR1tDxzWdCLdLc6yr4SUt5P6x9Nz5aecTfQ&e
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1007_s10601-2D018-2D9282-2D9&d=DwIGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=UyK1_569d50MjVlUSODJYRW2epEY0RveVNq0YCmePcDz4DQHW-CkWcttrwneZ0md&m=aL081BMc0-Mz9R68wFZEUyFJk8ey6WR_yrftmQnZo5M&s=hgOsaJRlHR1tDxzWdCLdLc6yr4SUt5P6x9Nz5aecTfQ&e
https://doi.org/10.1007/978-3-642-15396-9_36
https://doi.org/10.1007/978-3-642-15396-9_36
https://doi.org/10.1007/978-3-319-10428-7_22
https://doi.org/10.1007/978-3-642-33558-7_33

332 R. Kameugne et al.

16. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for schedul-
ing problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 10

17. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Solver Documentation, TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016). http://www.
choco-solver.org

https://doi.org/10.1007/978-3-319-23219-5_10
http://www.choco-solver.org
http://www.choco-solver.org

Soft-Regular with a Prefix-Size Violation
Measure

Minh Thanh Khong1(B), Christophe Lecoutre2(B), Pierre Schaus1(B),
and Yves Deville1(B)

1 ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium
{minh.khong,pierre.schaus,yves.deville}@uclouvain.be
2 CRIL-CNRS UMR 8188, Université d’Artois, Lens, France

lecoutre@cril.fr

Abstract. In this paper, we propose a variant of the global constraint
soft-regular by introducing a new violation measure that relates a
cost variable to the size of the longest prefix of the assigned variables,
which is consistent with the constraint automaton. This measure allows
us to guarantee that first decisions (assigned variables) respect the rules
imposed by the automaton. We present a simple algorithm, based on a
Multi-valued Decision Diagram (MDD), that enforces Generalized Arc
Consistency (GAC). We provide an illustrative case study on nurse ros-
tering, which shows the practical interest of our approach.

1 Introduction

Global constraints play an important role in Constraint Programming (CP) due
to their expressiveness and capability of efficiently filtering the search space.
Popular global constraints include, among others, allDifferent [1], count [2],
element [3], cardinality [4,5], cumulative [6] and regular [7]. The constraint
regular imposes a sequence of variables to take their values in order to form
a word recognized by a finite automaton. This constraint happens to be use-
ful when modeling various combinatorial problems such as rostering and car
sequencing problems.

In many time-oriented problems, such as planning, scheduling, and time-
tabling, one has to take decisions while paying attention to the future demands,
resources, etc. Those are generally obtained from a forecasting model. The stan-
dard approach is basically to define an horizon and to try having the problem
instances solved over that horizon. Unfortunately, many problem instances are
over-constrained [8,9]. Following the approach of [10], some hard-constraints can
then be relaxed and replaced by their soft versions. Although attractive, this
approach applied to time-oriented problems has a major drawback which is that
constraints are equally penalized, whether the violation is about the beginning
or the end of the horizon. We claim that the importance of completely satisfy-
ing the constraints must decrease with elapsed time. In other words, satisfying
the constraints in the near future must be considered as more important than
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 333–343, 2018.
https://doi.org/10.1007/978-3-319-93031-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_24&domain=pdf

334 M. T. Khong et al.

satisfying the constraints in the far future (in addition, forecasts may be more
or less accurate).

In this paper, we are interested in the relaxation of the global constraint
regular. Existing violation measures for soft-regular are based on the con-
cept of distances in term of variables or edit operations [11–13]. We propose an
alternative violation measure that is based on the size of the longest prefix that
is consistent with the underlying automaton of the constraint. This violation
measure can be useful when first variables of the sequence (scope) are critical.
We illustrate our approach on a rostering application.

2 Technical Background

A Constraint Satisfaction Problem (CSP) [14–16] is composed of a set of n
variables, X = {x1, . . . , xn}, and a set of e constraints, C = {c1, . . . , ce}. On
the one hand, each variable x has an associated domain, denoted by D(x), that
contains the set of values that can be assigned to x. Assuming that the domain
D(x) of a variable x is totally ordered, min(x) and max(x) will respectively
denote the smallest value and the greatest value in the domain of x. Note also
that d will denote the maximum domain size for the variables in a given CSP. On
the other hand, each constraint c involves an ordered set of variables, called the
scope of c and denoted by scp(c). Each constraint c is mathematically defined by
a relation, denoted by rel(c), which contains the allowed combinations of values
for scp(c). The arity of a constraint c is the size of scp(c), and will usually be
denoted by r.

Given a sequence 〈x1, . . . , xi, . . . , xr〉 of r variables, an r-tuple τ on this
sequence of variables is a sequence of values 〈a1, . . . , ai, . . . , ar〉, where the indi-
vidual value ai is also denoted by τ [xi] or, when there is no ambiguity, τ [i]. An
r-tuple τ is valid on an r-ary constraint c iff ∀x ∈ scp(c), τ [x] ∈ D(x). A tuple
τ is allowed by a constraint c iff τ ∈ rel(c); we also say that c accepts τ . A
support on c is a valid tuple on c that is also allowed by c. A literal is a pair
(x, a) where x is a variable and a a value, not necessarily in dom(x). A literal
(x, a) is Generalized Arc-Consistent (GAC) iff it admits a support on c, i.e., a
valid tuple τ on c such that τ is allowed by c and τ [x] = a. A constraint c is
GAC iff ∀x ∈ scp(c), ∀a ∈ D(x), (x, a) is GAC.

3 Constraint soft-regularprx

Definition 1 (DFA). A deterministic finite automaton (DFA) is defined by
a 5-tuple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is a finite set of
symbols called the alphabet, δ : Q × Σ → Q is a transition function, q0 ∈ Q is
the initial state, and F ⊆ Q is the set of final states.

Given an input string (a finite sequence of symbols taken from the alpha-
bet Σ), the automaton starts in the initial state q0, and for each symbol in
sequence of the string, applies the transition function to update the current

Soft-Regular with a Prefix-Size Violation Measure 335

state. If the last state reached is a final state then the input string is accepted
by the automaton. The set of strings that the automaton accepts constitutes a
language, denoted by L(M), which is technically a regular language.

In [7], a global constraint, called regular, is introduced: the sequence of
values taken by the successive variables in the scope of this constraint must
belong to a given regular language. For such constraints, a DFA can be used
to determine whether or not a given tuple is accepted. This can be an attrac-
tive approach when constraint relations can be naturally represented by regular
expressions in a known regular language. For example, in rostering problems,
regular expressions can represent valid patterns of activities.

q0 q1 q2 q3

q4

a

c

b

a

a

b a

c

Fig. 1. A DFA with initial state q0 and final states q3 and q4.

Definition 2 (regular). Let M be a DFA, and X = 〈x1, . . . , xr〉 be a sequence
of r variables. The constraint regular(X,M) accepts all tuples in {(v1, . . . , vr) |
v1 . . . vr ∈ L(M) ∧ vi ∈ D(xi),∀i ∈ 1..r}.
Example 1. Let us consider a sequence of 4 variables X = 〈x1, x2, x3, x4〉 with
D(xi) = {a, b, c},∀i ∈ 1..4 and the automaton M depicted in Fig. 1. The tuples
(c, c, c, c) and (a, a, b, a) are accepted by the constraint regular(X,M) whereas
(c, a, a, b) and (c, c, c, a) are not.

Working with constraints defined by a DFA, Pesant’s filtering algorithm [7]
enforces generalized arc consistency by means of a two-stage forward-backward
exploration. This two-stage process constructs a layered directed multi-graph
and collects the set of states that support each literal (x, a). The worst-case time
and space complexities of this incremental algorithm are both O(rd|Q|). In [17],
the authors proposed a filtering algorithm for extended finite automata (with
counters) by reformulating them as a conjunction of signature and transition
constraints; their method can also be applied to constraints regular when there
are no counters.

It is worth noting that there is a direct correspondence between MDDs
(Multi-valued Decision Diagrams) and DFAs. An acyclic and minimized deter-
ministic finite automaton is equivalent to a reduced (ordered) MDD [18]. This
is the reason why we can use an underlying MDD [19,20] as a basis for filtering
constraints regular.

When problems are over-constrained, it is sometimes relevant to relax some
hard constraints. More specifically, it is possible to soften global constraints
by adopting some known violation measures [10,11]. A violation measure μ is
simply a cost function that guarantees that cost 0 is associated with, and only

336 M. T. Khong et al.

with, any tuple that fully satisfies the constraint. The violation measure “var” is
general-purpose: it measures the smallest number of variables whose values must
be changed in order to satisfy the constraint (it basically expresses a Hamming
distance).

For the relaxed version of regular, we can use “var” as well as the viola-
tion measure “edit”, defined in [11] and revised in [12], which stands for the
smallest number of insertions, deletions and substitutions required to satisfy the
constraint. In a local search context, it was proposed [13] a violation measure by
dividing the sequence of variables into segments that are accepted by the under-
lying DFA. This measure overestimates the Hamming distance. In this paper, we
propose an original violation measure “prx” that is related to the size (length)
of the longest prefix of a tuple compatible with a DFA.

Definition 3 (Violation Measure “prx”). The violation measure μprx of an
r-tuple τ with respect to a DFA M is μprx(M, τ) = r − k, where k is the size of
the longest prefix of τ that can be extended to an r-tuple in L(M).

Definition 4 (soft-regularprx). Let M be a DFA, X = 〈x1, . . . , xr〉
be a sequence of r variables and z be a (cost) variable. The constraint
soft-regularprx(X,M, z) accepts all tuples in {(v1, . . . , vr, d) |
μprx(M, (v1, . . . , vr)) ≤ d ∧ vi ∈ D(xi),∀i ∈ 1..r ∧ d ∈ D(z)}.

Note that only the bounds of z are considered. We do not reason
about equality, because z is supposed to be minimized. The constraint
soft-regularprx(X,M, z) supports an r-tuple τ = (v1, . . . , vr) for X iff τ is
valid and μprx(M, τ) ≤ max(z), i.e., the first r − max(z) values of τ can be
extended to a tuple recognized by M . We also have that a value d ∈ D(z) is
a support of the constraint iff there exists a valid r-tuple τ for X such that
d ≥ μprx(M, τ).

Example 2. Let us consider the automaton M depicted in Fig. 1, a sequence of
4 variables X = 〈x1, x2, x3, x4〉 with D(xi) = {a, b, c},∀i ∈ 1..4 and a cost vari-
able z with D(z) = {0, 1, 2}. The constraint soft-regularprx(X,M, z) supports
(c, c, c, a) for X but not (c, a, a, b) because μprx(M, (c, c, c, a)) = 1 ≤ max(z)
while μprx(M, (c, a, a, b)) = 3 > max(z). Suppose now that x3 and x4 are
assigned to c and a, respectively. The r-tuple with the longest prefix consis-
tent with M is τ = (c, c, c, a) with violation cost μprx(M, τ) = 1. Hence, z = 0
can not satisfy the constraint and should be removed from D(z).

4 A GAC Algorithm

We now introduce a filtering algorithm to enforce generalized arc consistency
on a constraint soft-regularprx, i.e., a soft regular constraint, using “prx” as
violation measure. As presented in [7,11], the main data structure, the DFA, can
be traversed in order to identify the values that are supported by the constraint.
An MDD-based algorithm [19] can be applied for this step. Indeed, it is rather

Soft-Regular with a Prefix-Size Violation Measure 337

immediate to unfold the automaton on r levels, where each level corresponds to
a variable in the main sequence X of variables. Arcs labelled with values for the
first variable leave the root node (at level 0), whereas arcs labelled with values
for the last variable reach the terminal node (at level r). An illustration is given
by Fig. 2.

x1 x2 x3 x4

q00 q11

q14

q21

q22

q24

q32

q33

q34

�a

c

a

b

c

b

b

a

c

a

a

c

Fig. 2. MDD built for the constraint soft-regularprx in Example 2.

The principle of filtering is the following. The MDD is traversed first in
order to identify the deepest level for which a consistent prefix exists. With this
information, it is then possible to update the min bound, min(z), of the cost
variable z. This is exactly the same kind of filtering performed with respect to
the variable y in an inequality binary constraint x ≤ y when we apply: min(y) ←
max(min(y),min(x)).

The value of the max bound, max(z), is also useful for possibly pruning some
values for variables in X. More precisely, for the first r − max(z) variables in
X, we need to only keep the values that occur in any consistent prefix whose
size is at least equal to r − max(z). This is the reason why we use an array
collected that gives for each variable xi, such that i ≤ r − max(z), the set of
values collected[xi] that respect that condition. Roughly speaking, this is the
spirit of the filtering performed with respect to the variable x in an inequality
binary constraint x ≤ y when we apply: max(x) ← min(max(x),max(y)).

Algorithm 1 can be called to enforce GAC on a specified constraint
soft-regularprx(X,M, z). We introduce a map, called explored, that stores for
any processed node the size of the longest consistent prefix that can be reached
from it. As usual for a map, we use the operations (i) clear(), for reinitializing
the map, (ii) contains(), for determining if a specified node has already been
processed, (iii) get(), for getting the size of the longest consistent prefix that can
be reached from a specified node, (iv) put(), for putting an entry in the map.

Algorithm 1. soft-regularprx(X = 〈x1, . . . , xr〉, root, z)

1 explored.clear()
2 collected[x] ← ∅, ∀x ∈ X
3 maxSuccessLevel ← exploreTree(root)
4 min(z) ← max(min(z), r − maxSuccessLevel)
5 if D(z) = ∅ then
6 return Failure
7 else
8 foreach i ∈ 1..r − max(z) do
9 D(xi) ← collected[xi]

338 M. T. Khong et al.

Algorithm 1 works as follows. Data structures are initialized at lines 1 and
2. Then, the exploration of the MDD starts from the root, and the size of the
longest found consistent prefix is stored in the variable maxSuccessLevel. At
this point, it is possible to update both the domain of the cost variable z and
the domains of the first r − max(z) variables of X, as explained earlier in this
section. Note that if the domain of z becomes empty, a failure is returned. Also,
note that no domain wipe-out (failure) can happen when updating the domains
of variables in X.

Algorithm 2 makes an exploration of a (sub-)MDD and returns the size of the
longest prefix compatible with the DFA that can be reached from the specified
node. If this node corresponds to the terminal node (this is identified by a level
equal to r) or a node that has already been processed, the algorithm returns
the corresponding level. Otherwise, the algorithm explores each child (i.e., node
reached from an outgoing edge) such that the value labeling the linking arc is
still valid. Some values can then be collected, but note that we collect supported
values for only the first r−max(z) variables (lines 10–11). The level of a node is
equal to the maximum level reached by its children, which can be expressed by
the formula: maxLevel(node) = max(node.level,maxn:node.outsmaxLevel(n)).
Finally, Algorithm2 adds an entry to the map explored and returns the size of
the longest consistent prefix.

Algorithm 2. exploreTree(node) : Integer

1 if node.level = r then
2 return r

3 if explored.contains(node) then
4 return explored.get(node)

5 x ← node.var
6 maxLevel ← node.level
7 foreach arc ∈ node.outs do
8 if arc.value ∈ D(x) then
9 currMaxLevel ← exploreTree(arc.dest)

10 if node.level ≤ r − max(z) ≤ currMaxLevel then
11 collected[x] ← collected[x] ∪ {arc.value}
12 maxLevel ← max(maxLevel, currMaxLevel)

13 explored.put(node,maxLevel)
14 return maxLevel

Example 3. Let us consider the constraint soft-regularprx(X,M, z) from
Example 2. After the execution of Algorithm1, we have: collected[x1] = {a, c},
collected[x2] = {a, b, c}, collected[x3] = collected[x4] = {}. Since max(z) = 2,
only domains of x1 and x2 may be updated. Here, b is removed from D(x1).

Suppose now that x3 and x4 are respectively assigned to c and a, and 2
is removed from D(z), i.e., max(z) = 1. Since max(z) is now 1, we need
to collect values for the first 4 − 1 = 3 variables x1, x2, and x3. Any value
labeling an arc is collected iff this arc can reach at least the level 3. We have:
collected[x1] = collected[x2] = collected[x3] = {c}. Consequently, we now have

Soft-Regular with a Prefix-Size Violation Measure 339

D(x1) = D(x2) = D(x3) = {c}. Note that the deepest reachable consistent level
is 3, which implies that min(z) = 1.

Proposition 1. Algorithm1 enforces GAC on any specified constraint
soft-regularprx(X,M, z).

Proof. After the execution of Algorithm 2, ∀xi ∈ X, with i ∈ 1..r − max(z),
∀vi ∈ D(xi), the arc associated with (xi, vi) must reach a node with a level at
least equal to r−max(z), i.e., there must exist a path from the root to this node
whose size is at least r − max(z). Values collected on this path can represent
a support for (xi, vi). The maximum level reached from the root corresponds
to the size of the longest prefix of a tuple that is consistent with the DFA M .
Hence, the lower bound of D(z) must be updated using this value. ��

Since Algorithm 2 traverses at most one each arc in the corresponding graph,
the time complexity of Algorithm 1 is O(r|δ|) where |δ| is the number of transi-
tions in the DFA.

5 Possible Decomposition

The constraint soft-regularprx can be decomposed using cost MDD [21] con-
straints with the unfolded automaton described in Sect. 4 by adding the following
arcs: for each node at level i, add an escape arc to the terminal node with cost
r−i; each arc in the unfolded automaton has cost 0. The time complexity to filter
this constraint is also linear in the number of arcs but it is not straightforward
to implement if the cost MDD is not available.

The constraint soft-regularprx(X,M, z) can also be decomposed by using
reified table constraints [22] and (ordinary) table constraints as follows. First,
we introduce r + 1 new variables yi (i ∈ 0..r) such that D(y0) = {q0}, D(yi) =
Q,∀i ∈ 1..r − 1 and D(yr) = F . We also introduce r Boolean variables bi,
i ∈ 1..r, for reification purpose. Next, we introduce r reified table constraints
creifi : ci ⇔ bi where ci is a classical ternary positive table constraint such that
scp(ci) = {yi−1, xi, yi} and rel(ci) = δ for i = 1..r. These constraints reflect
the truth of a valid transition. We then introduce r functionality constraints
cfi (i = 1..r) where each constraint cfi is a ternary negative table constraint
such that scp(cfi) = {yi−1, xi, yi} and rel(cfi) = {(qk, v, �= ql)|(qk, v, ql) ∈ δ}.
Finally, we enforce the prefix restriction by adding the constraints: (z ≤ r−k) ⇒
(
∑

i=1..k bi = k). Note that when z ≤ r − k, a prefix of size at least equal to k
must be consistent with the underlying DFA, which implies that bi = 1, i = 1..k
and this is equivalent to

∑
i=1..k bi = k.

6 Experimental Results

We illustrate the practical interest of our approach on a variant of the Nurse
Rostering Problem (NRP). This problem has been extensively studied in both

340 M. T. Khong et al.

Table 1. Results obtained on NRP instances. Timeout set to 3,600 s.

Soft-regular

Instance #days #nurses #shifts LNS LNS (1 nurse)

Objective Objective violHoz

Instance1 14 8 1 607.0 512.0 5.9

Instance2 14 14 2 890.4 837.7 4.0

Instance3 14 20 3 1055.6 1006.2 3.6

Instance4 28 10 2 1732.4 1645.3 12.6

Instance4a 28 10 2 1694.2 1548.1 10.9

Instance4b 28 10 2 1722.4 1672.4 12.1

Instance5 28 16 2 1477.1 1261.9 11.5

Instance5a 28 16 2 1471.2 1390.0 11.7

Instance5b 28 16 2 1382.2 1303.0 11.1

Instance6 28 18 3 2629.1 2498.9 11.2

Instance6a 28 18 3 2539.6 2433.9 7.5

Instance6b 28 18 3 2706.7 2642.1 8.8

Instance7 28 20 3 1756.4 1555.1 9.1

Instance7a 28 20 3 1903.3 1810.6 8.3

Instance7b 28 20 3 1674.4 1485.8 9.4

domains of Operational Research and Artificial Intelligence for more than 40
years due to its importance in real-world hospital contexts [23,24].

The NRP consists of creating a roster by assigning nurses different shift types
satisfying some constraints [23]. They are divided in two groups: hard constraints
and soft constraints. Hard constraints must be satisfied in order to have a feasible
solution whereas soft constraints can be partially violated by introducing some
violation costs. The objective is to minimize the sum of these costs.

In real NRP situations, it may happen that one or even several nurses indicate
that in a near future (not precisely indicated) they will have to be absent. One
possible solution is to relax the hard regular constraints corresponding to the
regulation rules for these nurses while trying to find a roster satisfying as much
as possible the first steps (shifts) of the underlying automata. The constraint
soft-regularprx can be applied for that. In [8], Schaus proposed to relax the
demands instead using a soft-cardinality constraint. However, this relaxation
does not allow us to optimize the longest feasible prefix easily over a horizon.

We have conducted an experimentation under Linux (CPUs clocked at
2.5 GHz, with 5 GB of RAM). We have been interested in the NRP instances
recently proposed in [25]. We have also randomly generated some variants for
the last four instances by slightly modifying soft demands of nurses (we use sym-
bols a and b as suffix in their names). For our experiments, a nurse was randomly
chosen to be the person who can not totally follow the roster. So, we first min-

Soft-Regular with a Prefix-Size Violation Measure 341

imize the global violation cost (as initially computed for these instances), and
then we attempt to maximize the longest prefix satisfying the shift horizon of the
“relaxed” nurses. Note that we also force this staff’s roster to satisfy regulation
rules over at least the first half of the scheduling horizon.

We run our algorithm 10 times on each instance, with a timeout set to 3, 600 s,
and we report average results. We chose Large Neighborhood Search (LNS) [26]
as a method to solve NRP instances. The variable ordering heuristic selects
the variable that admits the highest violation cost over a day while the value
ordering heuristic selects the value that reduces the overall cost most. Concerning
relaxation, firstly, one nurse is selected randomly. If no solution is found after
10 executions, the number of nurses relaxed will increase by one. It will be set
back to one when a solution is found. For each restart, the number of failures is
limited to 100K.

Table 1 shows some representative results for only one relaxed nurse. The
first 4 columns gives some information about the instances. The 3 last columns
present solving results. The first column (out of these 3 last columns) shows the
violation cost obtained with LNS for the initial problem (i.e., without any relax-
ation). The last 2 columns present results for the relaxed problem: the obtained
objective cost, and the horizon violated by the roster of the relaxed nurse. Gen-
erally speaking, one can observe an improvement on the overall objective while
keeping a reasonable roster for the relaxed nurse.

Table 2. Execution time(s) for dedicated and decomposition approaches.

Instance1 Instance2 Instance3 Instance4 Instance5 Instance6 Instance7

Dedicated 71.7 40.4 58.4 38.0 64.5 98.5 98.6

Decomp 190.7 81.2 122.6 57.9 74.4 110.5 118.9

We also compared our soft constraint soft-regularprx with the decompo-
sition approach. For simplicity, a static branching was used, and the program
was stopped when the number of failures reached 500K. The execution times in
seconds are reported in Table 2. Clearly, the dedicated approach is more robust
than the decomposition one, as it can be twice as fast.

Acknowledgments. The first author is supported by the FRIA-FNRS. The second
author is supported by the project CPER Data from the “Hauts-de-France”.

References

1. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Pro-
ceedings of AAAI 1994, pp. 362–367 (1994)

2. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Math. Com-
put. Modell. 20(12), 97–123 (1994)

342 M. T. Khong et al.

3. Van Hentenryck, P., Carillon, J.-P.: Generality versus specificity: an experience
with AI and OR techniques. In: Proceedings of AAAI 1988, pp. 660–664 (1988)

4. Régin, J.-C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of AAAI 1996, pp. 209–215 (1996)

5. Hooker, J.N.: Integrated Methods for Optimization. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-1-4614-1900-6

6. Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling
and placement problems. Math. Comput. Modell. 17(7), 57–73 (1993)

7. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 36

8. Schaus, P.: Variable objective large neighborhood search: a practical approach to
solve over-constrained problems. In: 2013 IEEE 25th International Conference on
Tools with Artificial Intelligence (ICTAI), pp. 971–978. IEEE (2013)

9. van Hoeve, W.: Over-constrained problems. In: van Hentenryck, P., Milano, M.
(eds.) Hybrid Optimization, pp. 191–225. Springer, New York (2011). https://doi.
org/10.1007/978-1-4419-1644-0 6

10. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-
constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7 31

11. van Hoeve, W., Pesant, G., Rousseau, L.-M.: On global warming: flow-based soft
global constraints. J. Heuristics 12(4–5), 347–373 (2006)

12. He, J., Flener, P., Pearson, J.: Underestimating the cost of a soft constraint is
dangerous: revisiting the edit-distance based soft regular constraint. J. Heuristics
19(5), 729–756 (2013)

13. He, J., Flener, P., Pearson, J.: An automaton constraint for local search. Funda-
menta Informaticae 107(2–3), 223–248 (2011)

14. Montanari, U.: Network of constraints: fundamental properties and applications to
picture processing. Inf. Sci. 7, 95–132 (1974)

15. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)
16. Lecoutre, C.: Constraint Networks: Techniques and Algorithms. ISTE/Wiley,

Hoboken (2009)
17. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-

straint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 11

18. Hadzic, T., Hansen, E.R., O’Sullivan, B.: On automata, MDDs and BDDs in con-
straint satisfaction. In: Proceedings of ECAI 2008 Workshop on Inference methods
based on Graphical Structures of Knowledge (2008)

19. Cheng, K., Yap, R.: An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints
15(2), 265–304 (2010)

20. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 44

21. Perez, G., Régin, J.-C.: Soft and cost MDD propagators. In: Proceedings of AAAI
2017, pp. 3922–3928 (2017)

22. Khong, M.T., Deville, Y., Schaus, P., Lecoutre, C.: Efficient reification of table
constraints. In: 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI). IEEE (2017)

23. Burke, E., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of
the art of nurse rostering. J. Sched. 7(6), 441–499 (2004)

https://doi.org/10.1007/978-1-4614-1900-6
https://doi.org/10.1007/978-3-540-30201-8_36
https://doi.org/10.1007/978-1-4419-1644-0_6
https://doi.org/10.1007/978-1-4419-1644-0_6
https://doi.org/10.1007/3-540-45578-7_31
https://doi.org/10.1007/978-3-540-30201-8_11
https://doi.org/10.1007/978-3-319-10428-7_44

Soft-Regular with a Prefix-Size Violation Measure 343

24. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering:
a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27
(2004)

25. Curtois, T., Qu, R.: Computational results on new staff scheduling benchmark
instances. Technical report, ASAP Research Group, School of Computer Science,
University of Nottingham, 06 October 2014

26. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

https://doi.org/10.1007/3-540-49481-2_30

Constraint and Mathematical
Programming Models for Integrated Port

Container Terminal Operations

Damla Kizilay1,2(B), Deniz Türsel Eliiyi2, and Pascal Van Hentenryck1

1 University of Michigan, Ann Arbor, MI 48109, USA
dkizilay@umich.edu

2 Yasar University, 35100 Izmir, Turkey

Abstract. This paper considers the integrated problem of quay crane
assignment, quay crane scheduling, yard location assignment, and vehi-
cle dispatching operations at a container terminal. The main objective is
to minimize vessel turnover times and maximize the terminal through-
put, which are key economic drivers in terminal operations. Due to their
computational complexities, these problems are not optimized jointly in
existing work. This paper revisits this limitation and proposes Mixed
Integer Programming (MIP) and Constraint Programming (CP) models
for the integrated problem, under some realistic assumptions. Exper-
imental results show that the MIP formulation can only solve small
instances, while the CP model finds optimal solutions in reasonable times
for realistic instances derived from actual container terminal operations.

Keywords: Container terminal operations · MIP
Constraint programming

1 Introduction

Maritime transportation has significant benefits in terms of cost and capability
for carrying a higher number of cargos. Indeed, sea trade statistics indicate that
90% of global trade is performed by maritime transportation. This has led to
new investments in container terminals and a variety of initiatives to improve
the operational efficiency of existing terminals. Operations at a container ter-
minal can be classified as quay side and yard side. They handle materials using
quay cranes (QC), yard cranes (YC), and transportation vehicles such as yard
trucks (YT). QCs load and unload containers at the quay side, while YCs load
and discharge containers at the yard side. YTs provide transshipment of the
containers between the quay and the yard sides.

This study was supported by a Fulbright Program grant sponsored by the Bureau
of Educational and Cultural Affairs of the United States Department of State and
administered by the Institute of International Education.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 344–360, 2018.
https://doi.org/10.1007/978-3-319-93031-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_25&domain=pdf

Constraint and Mathematical Programming Models 345

In a typical container terminal, it is important to minimize the vessel berthing
time, i.e., the period between the arrival and the departure of a vessel. When
a vessel arrives at the terminal, the berth allocation problem selects when and
where in the port the vessel should berth. Once a vessel is berthed, its stowage
plan determines the containers to be loaded/discharged onto/from the vessel.
This provides an input to the QC assignment and scheduling, which determines
the sequence of the containers to be loaded or discharged from different parts
of the vessel by the QCs. In addition, the containers discharged by the QCs
are placed onto YTs and transported to the storage area, which corresponds to
a vehicle dispatching problem. Each discharged container is assigned a storage
location, giving rise to a yard location assignment problem. Finally, the containers
are taken from YTs by YCs and placed onto stacks in storage blocks, specifying
a YC assignment and scheduling problem.

A container terminal aims at completing the operations of each berthed ves-
sel as quickly as possible to minimize vessel waiting times at the port and thus to
maximize the turnover, i.e., the number of handled containers. Optimizing the
integrated operations within a container terminal is computationally challenging
[16]. Therefore, the optimization problems identified earlier are generally consid-
ered separately in the literature, and the number of studies considering integrated
operations is rather limited. However, although the optimization of individual
problems brings some operational improvements, the main opportunity lies in
optimizing terminal operations holistically. This is especially important since the
optimization sub-problems have conflicting objectives that can adversely affect
the overall performance of the system.

This paper considers the integrated optimization of container terminal oper-
ations and proposes MIP and CP formulations under some realistic assumptions.
To the best of our knowledge, the resulting optimization problem has not been
considered in the literature so far. Experimental results show that the MIP for-
mulation is not capable of solving instances of practical relevance, while the CP
model finds optimal solutions in reasonable times for realistic instances derived
from real container terminal operations.

The rest of the paper is organized as follows. Section 2 specifies the problem
and the assumptions considered in this work. Section 3 provides a detailed lit-
erature review for the integrated optimization of container terminal operations.
Section 4 presents the MIP model, while Sect. 5 presents the constraint pro-
gramming model for the same problem. Section 6 presents the data generation
procedure, the experimental results, and the comparison of the different models.
Finally, Sect. 7 presents concluding remarks and future research directions.

2 Problem Definition

This section specifies the Integrated Port Container Terminal Problem (IPCTP)
and its underlying assumptions. The IPCTP is motivated by the operations of
actual container terminals in Turkey.

In container terminals, berth allocation assigns a berth and a time interval
to each vessel. Literature surveys and interviews with port management officials

346 D. Kizilay et al.

reveal that significant factors in berth allocation include priorities between cus-
tomers, berthing privileges of certain vessels in specific ports, vessel sizes, and
depth of the water. Because of all these restrictions, the number of alternative
berth assignments is quite low, especially in small Turkish ports. As a result,
the berthing plan is often determined without the need of intelligent systems
and the berthing decisions can be considered as input data to the scheduling of
the material-handling equipment. The vessel stowage plan decides how to place
the outbound containers on the vessel and is prepared by the shipping company.
These two problems are thus separated from the IPCTP. In other words, the
paper assumes that vessels are already berthed and ready to be served.

The IPCTP is formulated by considering container groups, called shipments.
A single shipment represents a group of containers that travel together and
belong to the same customer. Therefore, the containers in a single shipment
must be stored in the same yard block and in the same vessel bay. In addition,
each shipment is handled as a single batch by QCs and YCs.

The IPCTP determines the storage location in the yard for inbound con-
tainers. The yard is assumed to be divided into a number of areas containing
the storage blocks. Each inbound shipment has a number of possible location
points in each area. Each YC is assumed to be dedicated to a specific area of
the yard. Note that outbound shipments are at specified yard locations at the
beginning of the planning period and hence their YCs are known in advance. In
contrast, for inbound shipments, the YC assignment is derived from the storage
block decisions. The IPCTP assumes that each yard location can store at most
one shipment but there is no difficulty in relaxing that assumption.

The inbound and outbound shipments and their vessel bays are specified in
the vessel stowage plan. The IPCTP assigns each shipment to a QC and schedules
each QC to process a sequence of shipments. The QC scheduling is constrained
by movement restrictions and safety distances between QCs. Two adjacent QCs
must be apart from each other by safety distance, so that they can perform their
tasks simultaneously without interference as described in [12].

The IPCTP assumes the existence of a sufficient number of YTs so that
cranes never wait. This assumption is motivated by observations in real termi-
nals where many YTs are dedicated to each QC in order to ensure a smooth
operation. This organization is justified by the fact that QCs are the most
critical handling equipment in the terminal. As a result, QCs are very rarely
blocked while discharging and almost never starve while loading. After solving
the IPCTP, the YT schedule can be found in a post-processing step. Indeed,
the YP scheduling problem can be reduced to the tactical fixed job scheduling
problem, which is polynomial-time solvable. Therefore, the assumption of having
a sufficient number of YTs is realistic and simplifies the IPCTP.

The IPCTP also assumes that the handling equipment (QC, YC, YT) is
homogeneous, and their processing times are deterministic and known. Since
the QCs cannot travel beyond the berthed vessel bays and must obey a safety
distance [14], each shipment can only be assigned to an eligible set of QCs that
respect safety distance and non-crossing constraints. These are illustrated in

Constraint and Mathematical Programming Models 347

Fig. 1. The vessel bays and their available QCs.

Fig. 2. An example of interference for shipments i, j and quay cranes v, w.

Fig. 1 where berthed vessel bays and QCs are indexed in increasing order and
the safety distance is assumed to be 1 bay. For instance, only QC-1 is eligible
to service bays 1–2. Similarly, only QC-3 can operate on vessel bays 8–9. In
contrast, bays 3–4 can be served by QC-1 and QC-2.

The main objective of a container terminal is to maximize total profit by
increasing productivity. Terminal operators try to lower vessel turn times and
decrease dwell times. To lower vessel turn times, the crane operations must be
well-coordinated and the storage location of the inbound shipments must be cho-
sen carefully, since they impact the distance traveled by the YTs. Therefore, the
IPCTP jointly considers the storage location assignment for the inbound ship-
ments from multiple berthed vessels and the crane assignment and scheduling
for both outbound and inbound containers. The objective of the problem is to
minimize the sum of weighted completion times of the vessels.

The input parameters of the IPCTP are given in Table 1. Most are self-
explanatory but some necessitate additional explanation. The smallest distance
δv,w between quay cranes v and w is given by δv,w = (δ + 1) |v − w| where δ is
the safety distance. The minimum time between the starting times of shipments
i and j when processed by cranes v and w is given by

Δv,w
i,j =

⎧
⎪⎨

⎪⎩

(bi − bj + δv,w) sQC if v < w and i �= j and bi > bj − δv,w

(bj − bi + δv,w) sQC if v > w and i �= j and bi < bj − δv,w

0 otherwise.

This captures the time needed for a quay crane to travel to a safe distance in case
of potential interference. This is illustrated in Fig. 2. If shipments i and j are
processed by cranes v and w, then their starting times must be separated by sQC

time units in order to respect the safety constraints (assuming that w = v + 1).

348 D. Kizilay et al.

Table 1. The parameters of the IPCTP.

S Set of berthed vessels

Cs
u Set of inbound shipments that belong to vessel s ∈ S

Cs
l Set of outbound shipments that belong to vessel s ∈ S

C Set of all shipments

Cu Set of inbound shipments

Cl Set of outbound shipments

Lu Set of available yard locations for inbound shipments

li Yard location of outbound shipment i ∈ Cl

L Set of all yard locations

QC Set of QCs

Y C Set of YCs

P Set of precedence relationships between containers on QCs

B Set of vessel bays

bi Vessel bay position of shipment i ∈ C

QC(i) Set of eligible QCs for shipment i ∈ C

Y C(k) The YC responsible for yard location k ∈ L

ws Weight (priority) of vessel s ∈ S

Qi QC handling time of shipment i ∈ C

Yi YT handling time of shipment i ∈ C

tyti YT handling time of outbound shipment i ∈ Cl

ttk YT transfer time of inbound shipment to yard location k ∈ Lu

tyck,l YC travel time between yard locations k and l

eqci,j QC travel time from shipment i ∈ C to shipment j ∈ C

eyci,j YC travel time from yard location i ∈ L to yard location j ∈ L

sQC Travel time for unit distance of equipment QC

δ Safety distance between two QCs

δv,w Smallest allowed difference between bay positions of quay cranes v and w

Δv,w
i,j Minimum time between the starting times of shipments i and j

when processed by cranes v and w

Θ Set of all combinations of shipments and QCs with potential interferences

0 Dummy initial shipment

N Dummy last shipment

C0 Set of all shipments including dummy initial shipment C ∪ {0}
CN Set of all shipments including dummy last shipment C ∪ {N}
M A sufficiently large constant integer

Qtimei QC handling time of a first container in inbound shipment i ∈ Cu

Y timei YC handling time of a first container in outbound shipment i ∈ Cl

For instance, if shipment i is processed first, crane v must move to bay 1 before
shipment j can be processed. Finally, the set of interferences can be defined by

Θ = {(i, j, v, w) ∈ C2 × QC2 | i < j & Δv,w
i,j > 0}.

The dummy (initial and last) shipments are only used in the MIP model.

Constraint and Mathematical Programming Models 349

3 Literature Review

Port container terminal operations have received significant attention and many
studies are dedicated to the sub-problems described earlier: See [1] for a clas-
sification of these subproblems. Recent work often consider the integration of
two or three problems but very few papers propose formulations covering all the
sub-problems jointly. Some papers give mathematical formulations of integrated
problems but only use heuristic approaches given the computational complexity
of solving the models. This section reviews recent publications addressing the
integrated problems and highlights their contributions.

Chen et al. [3] propose a hybrid flowshop scheduling problem (HFSP) to
schedule QCs, YTs, and YCs jointly. Both outbound and inbound operations are
considered, but outbound operations only start after all inbound operations are
complete. In their mathematical model, each stage of the flowshop has unrelated
multiple parallel machines and a tabu-search algorithm is used to address the
computational complexity. Zheng et al. [21] study the scheduling of QCs and
YCs, together with the yard storage and vessel stowage plans. They consider
an automated container handling system, in which twin 40’ QCs and a railed
container handling system is used. A rough yard allocation plan is maintained
to indicate which blocks are available for storing the outbound containers from
each bay. No mathematical model is provided, and the yard allocation, vessel
stowage, and equipment scheduling is performed using a rule-based heuristic.

Xue et al. [20] propose a mixed integer programming (MIP) model for inte-
grating the yard location assignment for inbound containers, quay crane schedul-
ing, and yard truck scheduling. Non-crossing constraints and safety distances
between QCs are ignored, and the assignment of QCs and YTs are predeter-
mined. The yard location assignment considers block assignments instead of
container slots. The resulting model cannot be solved for even medium-sized
problems. Instead, a two-stage heuristic algorithm is employed, combining an
ant colony optimization algorithm, a greedy algorithm, and local search.

Chen et al. [4] consider the integration of quay crane scheduling, yard crane
scheduling, and yard truck transportation. The problem is formulated as a
constraint-programming model that includes both equipment assignment and
scheduling. However, non-crossing constraints and safety margins are ignored.
The authors state that large-scale instances are computationally intractable
for constraint programming and that even small-scale instances are too time-
consuming. A three-stage heuristic algorithm is solved iteratively to obtain solu-
tions for large-scale problems with up to 500 containers.

Wu et al. [17] study the scheduling of different types of equipment together
with the storage strategy in order to optimize yard operations. Only loading
operations for outbound containers are considered, and the tasks assigned to
each QC and their processing sequence are assumed to be known. The authors
formulate models to schedule the YCs and automated guided vehicles (AGV),
and use a genetic algorithm to solve large-scale problems.

Homayouni et al. [5] study the integrated scheduling of cranes, vehicles, and
storage platforms at automated container terminals. A mathematical model of

350 D. Kizilay et al.

Model 1. The MIP model for the IPCTP: Decision variables

Variables

xi,k ∈ {0, 1} : inbound shipment i is assigned to yard location k

zqi,j ∈ {0, 1} : shipment j is handled immediately after shipment i by QC q

qzi,j ∈ {0, 1} : shipment j is handled after shipment i by QC

vci,j ∈ {0, 1} : shipment j is handled immediately after shipment i by YC c

sqci ≥ 0 : start time of shipment i by its QC

syci ≥ 0 : start time of shipment i by its YC

ti ≥ 0 : travel time of YT for inbound shipment i to assigned yard location k

syi,j ≥ 0 : travel time of YC from location i to location j

Cmaxs : time of the last handled container at vessel s

the same problem is proposed in [6]. In these studies, both outbound and inbound
operations are considered. The origin and destination points of the containers
are assumed to be predetermined and, in addition, empty for inbound containers.
The earlier study proposes a simulated annealing (SA) algorithm to solve the
problem, whereas the latter proposes a genetic algorithm (GA) outperforming
SA under the same assumptions.

Lu and Le [11] propose an integrated optimization of container terminal
scheduling, including YTs and YCs. The authors consider uncertainty factors
such as YT travel speed, YC speed, and unit time of the YC operations.
The assignment of YTs and YCs are not considered, and pre-assignments are
assumed. The objective is to minimize the operation time of YCs in coordina-
tion with the YTs and QCs. The authors use a simulation of the real terminal
operation environment to capture uncertainties. The authors also formulate a
mathematical model and propose a particle swarm optimization (PSO) algo-
rithm. As a future study, they indicate that the scheduling for simultaneous
outbound and inbound operations should be considered for terminals adopting
parallel operations.

Finally, a few additional studies [3,7–10,13,15,18,19] integrate different sub-
problems, highlighting the increasing attention given to integrated solutions.
They propose a wide range of heuristic or meta-heuristic algorithms, e.g., genetic
algorithm, tabu search, particle swarm optimization, and rule-based heuristics.

Although most papers in container port operations focus on individual prob-
lems, recent developments have emphasized the need and potential for coordi-
nating these interdependent operations. This paper pushes the state-of-the-art
further by optimizing all operations holistically and demonstrating that con-
straint programming is a strong vehicle to address this integrated problem.

Constraint and Mathematical Programming Models 351

4 The MIP Model

The MIP decision variables are presented in Model 1, while the objective func-
tion and the constraints are given in Model 2. They use the formulation of QC
interference constraints from [2]. The objective function (2-01) minimizes the
maximum weighted completion time of each vessel. Constraints (2-02–2-03) com-
pute the weighted completion time of each vessel. Inbound shipments start their
operations at a QC and finish at a YC, whereas outbound shipments follow the
reverse order. Constraint (2-04) expresses that each available storage block stores
at most one inbound shipment. Constraint (2-05) ensures that each inbound ship-
ment is assigned an available storage block. All the containers of a shipment are
assigned to the same block. Constraints (2-06–2-07) assigns the first (dummy)
shipments to each QC and YC and Constraints (2-08–2-09) do the same for
the last (dummy) shipments. Constraint (2-10) states that every shipment is
handled by exactly one eligible QC. Constraints (2-11–2-12) ensures that each
shipment is handled by a single YC. In Constraint (2-12), yard blocks are known
at the beginning of the planning horizon for outbound shipments: They are thus
directly assigned to the dedicated YCs. Constraints (2-13–2-14) guarantee that
the shipments are handled in well-defined sequences by each handling equip-
ment (QC and YC). Constraint (2-15) defines the YT transportation times for
the inbound shipments. Constraints (2-16–2-18) specify the empty travel times
of the YCs according to yard block assignments of the shipments. Constraints
(2-19–2-22) specify the relationship between the start times of two consecutive
shipments processed by the same handling equipment. Constraints (2-23–2-24)
are the precedence constraints for each shipment based on the handling time of
the first container, which again differ for inbound and outbound shipments. Con-
straint (2-25) ensures that, if shipment i precedes shipment j on a QC, shipment
j cannot start its operation on that QC until shipment i finishes. Constraint (2-
26) guarantees that shipments that potentially interfere are not allowed to be
processed at the same time on any QC. Constraint (2-27) imposes a minimum
temporal distance between the processing of such shipments, which corresponds
to the time taken by the QC to move to a safe location. Precedence constraints
(2-28) are used to express that shipment j is located under a shipment i and to
ensure vessel balance during operations.

There are nonlinear terms in constraint (2-17), which computes the empty
travel time of a YC, i.e., when it travels between the destinations of two inbound
shipments. These terms can be linearized by introducing new binary variables
of the form θi,k,j,l to denote whether inbound shipments i, j ∈ Cu are assigned
to yards locations k, l ∈ Lu. The constraints then become:

syi,j =
∑

k∈Lu

∑
l∈Lu

tyck,lθi,k,j,l ∀i, j ∈ Cu

θi,k,j,l ≥ xi,k + xj,l − 1,∀i, j ∈ Cu ∀k, l ∈ Lu, i �= j, k �= l

2 − (xi,k + xj,l) ≤ 2 (1 − θi,k,j,l) ∀i, j ∈ Cu,∀k, l ∈ Lu, i �= j, k �= l

352 D. Kizilay et al.

Model 2. The MIP model for the IPCTP: Objective and constraints

Objective

minimize
∑

s∈S Cmaxs (2-01)
Constraints

Cmaxs ≥ ws (sqci + Qi) ∀s ∈ S, ∀i ∈ Cs
l (2-02)

Cmaxs ≥ ws (syci + Yi) ∀s ∈ S, ∀i ∈ Cs
u (2-03)

∑
i∈Cu

xi,k ≤ 1 ∀k ∈ Lu (2-04)
∑

k∈Lu
xi,k = 1 ∀i ∈ Cu (2-05)

∑
j∈CN zq0,j = 1 ∀q ∈ QC (2-06)

∑
j∈CN vc

0,j = 1 ∀c ∈ Y C (2-07)
∑

j∈C0 zqi,N = 1 ∀q ∈ QC (2-08)
∑

j∈C0 vc
i,N = 1 ∀c ∈ Y C (2-09)

∑
q∈QC(i)

∑
j∈CN zqi,j = 1 ∀i ∈ C, i �= j (2-10)

∑
j∈CN v

Y C(k)
i,j = xi,k ∀k ∈ Lu, ∀i ∈ Cu, i �= j (2-11)

∑
j∈CN v

Y C(li)
i,j = 1 ∀i ∈ Cl, i �= j (2-12)

∑
j∈C0 zqj,i − ∑

j∈CN zqi,j = 0 ∀i ∈ C, ∀q ∈ QC (2-13)
∑

j∈C0 vc
j,i − ∑

j∈CN vc
i,j = 0 ∀i ∈ C, ∀c ∈ Y C (2-14)

ti =
∑

k∈Lu

(
ttk ∗ xi,k

) ∀i ∈ Cu (2-15)

syi,j =
∑

m∈Lu

(
tycm,lj ∗ xi,m

)
∀i ∈ Cu, ∀j ∈ Cl (2-16)

syi,j =
∑

m∈Lu

∑
l∈Lu

(
tycm,l ∗ xi,m ∗ xj,l

) ∀i, j ∈ Cu (2-17)
syi,j =

∑
m∈Lu

(
tycli,m ∗ xj,m

) ∀i ∈ Cl, ∀j ∈ Cu (2-18)

sqcj + M
(
1 − zqi,j

)
≥ sqci + Qi + eqci,j ∀i, j ∈ C, ∀q ∈ QC (2-19)

sycj + M
(
1 − vc

i,j

)
≥ syci + Yi + syi,j ∀i ∈ Cu, ∀j ∈ C, ∀c ∈ Y C (2-20)

sycj + M
(
1 − vc

i,j

)
≥ syci + Yi + syi,j ∀i ∈ Cl, ∀j ∈ Cu, ∀c ∈ Y C (2-21)

sycj + M
(
1 − vc

i,j

)
≥ syci + Yi + eyci,j ∀i, j ∈ Cl, ∀c ∈ Y C (2-22)

sqci ≥ syci + Y timei + tyti ∀i ∈ Cl (2-23)
syci ≥ sqci + Qtimei + ti ∀i ∈ Cu (2-24)
sqci + Qi − sqcj ≤ M (1 − qzi,j) ∀i, j ∈ C (2-25)
∑

u∈C0 zvu,i +
∑

u∈C0 zwu,j ≤ 1 + qzi,j + qzj,i ∀ (i, j, v, w) ∈ Θ (2-26)

sqci + Qi + Δv,w
i,j − sqcj ≤ M

(
3 − qzi,j − ∑

u∈C0 zvu,i − ∑
u∈C0 zwu,j

)
∀ (i, j, v, w) ∈ Θ

(2-27)
sqcj ≥ sqci ∀i, j ∈ P (2-28)

Constraint and Mathematical Programming Models 353

5 The Constraint Programming Model

The CP model is presented in Model 3 using the OPL API of CP Optimizer.
It uses interval variables for representing the QC handling of all shipments and
the YC handling of inbound shipments. In addition, optional interval variables
represent the handling of shipment i on QC j and the handling of shipment i at
yard location k. The model also declares a number of sequence variables associ-
ated with each QC and YC: Each sequence constraint collects all the optional
interval variables associated with a specific crane. Finally, the model declares a
number of sequences for optional interval variables that may interfere.1

Model 3. The CP model for the IPCTP

Variables

qci : Interval variable for the QC handling of shipment i

yti : Interval variable for the YT handling of inbound shipment i

aqci,j : Optional interval variable for shipment i on QC j with duration Qi

ayci,k : Optional interval variable for shipment i on YC at yard location k with duration Yi

qcsj : Sequence variable for QC j over {aqci,j | i ∈ C}
ycsj : Sequence variable for YC j over {ayci,k | i ∈ C ∧ Y C(k) = j}
interferei,v,j,w : Sequence variable over {aqci,v, aqcj,w}
Objective

minimize
∑

s∈S ws

(
max

(
maxi∈Cs

u
endOf (yti) , maxj∈Cs

l
endOf (qcj)

))
(3-01)

Constraints

alternative (qci, all (j in QC (i)) aqci,j) ∀i ∈ C (3-02)
alternative (yti, all (k in Lu) ayci,k) ∀i ∈ Cu (3-03)
∑

i∈Cu
presenceOf (ayci,k) ≤ 1 ∀k ∈ Lu (3-04)

presenceOf

(
ayci,li

)
= 1 ∀i ∈ Cl (3-05)

noOverlap (ycsm, eyci,j) ∀m ∈ Y C (3-06)
noOverlap (qcsm, eqci,j) ∀m ∈ QC (3-07)
StartBeforeStart (aqci,n, ayci,k, Qtimei + ttk) ∀i ∈ Cu, k ∈ Lu, n ∈ qci (3-08)
StartBeforeStart

(
ayci,li , aqci,n, Y timei + tyti

) ∀i ∈ Cl, n ∈ qci (3-09)
StartBeforeStart (aqci,m, aqcj,n) ∀i, j ∈ P, m ∈ qci, n ∈ qcj (3-10)
noOverlap

(
interferei,v,j,w, Δv,w

i,j

)
∀i, j ∈ C, v ∈ qci, w ∈ qcj : Δv,w

i,j > 0 (3-11)

The CP model minimizes the weighted completion time of each vessel by
computing the maximum end date of the yard cranes (inbound shipments) and
for the quay crane (outbound shipments). Alternative constraints (3-02) ensure

1 Not all such sequences are useful but we declare them for simplicity.

354 D. Kizilay et al.

that the QC processing of a shipment is performed by exactly one QC. Alter-
native constraints (3-03) enforce that each inbound shipment is allocated to
exactly one yard location, and hence one yard crane. Constraints (3-04) state
that at most one shipment can be allocated to each yard location. Constraints
(3-05) fix the yard location (and hence the yard crane) of outbound shipments.
Cranes are disjunctive resources and can execute only one task at a time, which is
expressed by the noOverlap constraints (3-06–3-07) over the sequence variables
associated with the cranes. These constraints also enforce the transition times
between successive operations, capturing the empty travel times between yard
locations (constraints 3-06) and bay locations (constraints 3-07). Constraints (3-
08) impose the precedence constraints between the QC and YC tasks of inbound
shipments, while adding the travel time to move the shipment from its bay to
its chosen yard location. Constraints (3-09) impose the precedence constraints
between the YC and QC operations of outbound shipments, adding the travel
time from the fixed yard location to the fixed bay of the shipment. Constraints
(3-10) impose the precedences between shipments. Interference constraints for
the QCs are imposed by constraints (3-11). These constraints state that, if there
is a conflict between two shipments and their QCs, then the two shipments can-
not overlap in time, and their executions must be separated by a minimum time.
This is expressed by noOverlap constraints over sequences consisting of the
pairs of optional variables associated with these tasks.

6 Experimental Results

The MIP and CP models were written in OPL and run on the IBM ILOG CPLEX
12.8 software suite. The results were obtained on an Intel Core i7-5500U CPU
2.40 GHz computer.

6.1 Data Generation

The test cases were generated in accordance with earlier work, while capturing
the operations of an actual container terminal. These are the first instances of
this type, since the IPCTP has not been considered before in the literature.
Travel and processing times in the test cases model those in the actual terminal.
Different instances have slightly different times, as will become clear.

Figure 3 depicts the layout of the yard side considered in the experiments,
which also models the actual terminal. The yard side is divided into 3 separate
fields denoted by A, B, and C. Each field has two location areas and a single
YC is responsible for each location area, giving a total of 6 yard cranes. In each
location area, there are 2 yard block groups, shown as the dotted region, and
traveling between them takes one unit of time. Field C is the nearest to the quay
side, and there is a hill from field C to field A. The transportation times for YTs
are generated according to these distances. YTs can enter and exit each field
from the entrance shown in the figure, so the transfer times between the vessels
and the yard blocks close to the entrance take less time. YT transfer times are

Constraint and Mathematical Programming Models 355

Fig. 3. Layout of the yard side.

generated between [5, 10] considering the position of the yard blocks. At the
quay side, the travel of a QC between consecutive vessel bay locations takes 3
units of time.

The processing times of the cranes for a single container are generated uni-
formly in [2, 5] for YCs and [2, 4] for QCs. The safety margin for the QCs is set
to 1 vessel bay. The IPCTP is expressed in terms of shipments and the number
of containers in each shipment is uniformly distributed between [4, 40].

The experiments evaluate the impact of the number of shipments, the number
of vessel bays, the inbound-outbound shipment ratio, and the number of available
yard locations for inbound shipments. The number of shipments varies between 5
and 25, by increments of 5. The instances can thus contain up to 1,000 containers.
The number of vessel bays are taken in {4, 6, 8}. The number of QCs depends
on the vessel bays due to the QC restrictions: There are half as many QCs as
there are vessel bays. The inbound-outbound shipment ratios are 20% and 50%,
representing the fraction of inbound shipments over the outbound shipments.
Finally, the number of available yard locations (U-L ratio) is computed from
the number of inbound shipments: There are 2 to 3 times more yard locations
than inbound shipments. For each configuration of the parameters, 5 random
instances were generated.

6.2 Computational Results and Analysis

The Results. The results are given in Tables 2 and 3 for each configuration, for
a total of 300 instances. Table 2 reports the results for 20% inbound-outbound
ratio, and Table 3 for 50%. In the tables, each configuration is specified in terms
of the U-L ratio, the number of bays and the number of shipments (Shp.). The
average number of containers (Cnt.) in each shipment is also presented. For each
such configuration, the tables report the average objective value and the average
CPU time for its five instances. The CPU time is limited to an hour (3,600 s).
The MIP solver did not always find feasible solutions within an hour for some
or all five instances of a configuration. Note that this may result in an average
objective value that is lower for the MIP model than the CP model, even when
CP solves all instances optimally, since the MIP model may not find a feasible

356 D. Kizilay et al.

Table 2. Results for import-export rate 20%

MIP CP

U-L Ratio # of Bays # of Shp. Avg. # of

Cont.

Obj. CPU (sec.) GAP% Obj. CPU (sec.) RPD%

2 4 5 126.2 292.80 0.40 0.00 292.80 0.05 0.00

10 224.4 541.600/5 3600.05 0.36 541.60 9.41 0.00

15 368.8 739.800/5 3601.68 0.69 739.801 734.91 0.00

20 459.8 822.400/5 3601.39 0.75 820.001 788.81 0.00

25 563.6 1018.002/3 3600.81 0.77 998.402 1791.34 0.00

6 5 83.0 179.20 0.16 0.00 179.20 0.14 0.00

10 223.8 359.800/1 1717.16 0.05 359.80 6.20 0.00

15 347.8 544.400/5 3600.50 0.58 541.00 36.47 0.00

20 400.0 660.751/4 3600.75 0.67 647.40 274.15 0.00

25 577.0 NA NA NA 752.20 479.15 0.00

8 5 127.2 427.00 0.16 0.00 426.80 0.40 0.00

10 190.0 507.20 98.30 0.00 506.90 10.26 0.00

15 315.0 843.600/5 3600.26 0.48 841.10 150.59 0.00

20 427.8 967.332/3 3600.13 0.57 1052.40 542.60 0.00

25 540.4 1466.004/1 3614.05 0.64 1320.30 1255.55 1.26

3 4 5 98.6 206.60 0.40 0.00 206.60 0.21 0.00

10 205.8 425.600/4 3297.84 0.31 425.60 6.80 0.00

15 336.0 642.600/5 3605.24 0.65 640.60 79.30 0.00

20 447.6 864.800/5 3600.71 0.75 859.801 897.30 0.00

25 506.8 824.003/2 3601.27 0.73 841.602 1895.17 0.00

6 5 125.0 247.80 0.16 0.00 247.80 0.15 0.55

10 237.8 401.400/1 1449.26 0.08 401.40 8.70 0.00

15 299.0 482.400/1 3600.39 0.50 482.00 539.06 0.00

20 476.6 625.501/4 3600.50 0.65 613.801 778.93 0.00

25 542.6 988.002/3 3600.22 0.74 855.604 2938.55 0.00

8 5 112.4 418.20 0.22 0.00 418.20 1.27 0.00

10 232.4 655.20 449.44 0.00 655.20 26.02 0.00

15 329.2 894.600/5 3600.45 0.47 881.50 160.79 0.00

20 422.0 1272.001/4 3611.86 0.63 1112.701 1524.57 0.38

25 NA NA NA 1381.903 2681.45 2.87

solution to an instance with a high optimal value. These cases are flagged by
superscripts of the form x/y, where x is the number of infeasible and y is the
number of suboptimal solutions in that average. The superscripts for CP indicate
the number of suboptimal solutions. An entry ‘NA’ in the table means that the
MIP cannot find a feasible solution to any of the five instances. For the MIP, the
tables also report the optimality gap on termination, i.e., the gap in percentage
between the best lower and upper bounds.

For CP, the experiments were also run with a CPU limit of 600 s. The relative
percentage deviations (RPD%) from the 1-h runs are listed to assess CP’s ability
to find high-quality solutions quickly. The RPD is computed as follows:

RPD% =
(Obj. in 600 s − Obj. in 3600 s) ∗ 100

(Obj. in 3600 s)
.

Constraint and Mathematical Programming Models 357

Table 3. Results for import-export rate 50%

MIP CP

U-L Ratio # of Bays # of Shp. # of Cont. Obj. CPU (sec.) GAP% Obj. CPU (sec.) RPD%

2 4 5 101.2 217.80 0.43 0.00 217.80 0.07 0.00

10 214.8 439.600/5 3600.16 0.51 439.60 5.35 0.00

15 349.0 711.400/5 3601.40 0.68 710.80 723.95 0.00

20 394.2 801.003/2 3600.28 0.75 743.602 1997.88 0.00

25 552.0 NA NA NA 1030.604 3368.38 0.00

6 5 103.8 236.00 0.40 0.00 236.00 0.20 0.00

10 228.4 364.000/5 3600.26 0.30 363.40 3.62 0.00

15 331.4 513.000/5 3600.72 0.58 512.40 143.53 0.00

20 428.2 684.672/3 3601.16 0.69 698.002 1554.96 0.00

25 523.8 1341.004/1 3600.61 0.82 762.404 2953.04 0.00

8 5 107.0 400.40 0.31 0.00 400.00 1.40 0.00

10 229.6 719.400/2 1702.43 0.08 719.10 21.13 0.00

15 318.0 870.751/4 3600.88 0.49 861.40 96.71 0.00

20 457.6 1315.503/2 3600.31 0.60 1125.10 384.26 0.00

25 570.2 4250.004/1 3601.03 0.91 1373.101 1692.20 2.51

3 4 5 110.8 255.00 0.36 0.00 255.00 0.42 0.00

10 218.8 390.200/5 3603.10 0.47 390.20 6.56 0.00

15 333.2 746.000/5 3600.78 0.76 743.60 123.28 0.00

20 462.0 1355.003/2 3600.50 0.83 836.601 1025.25 0.00

25 526.6 NA NA NA 857.204 3103.01 0.00

6 5 118.4 244.80 0.46 0.00 244.80 0.08 0.00

10 226.0 401.600/4 3491.75 0.34 401.00 6.73 0.00

15 303.2 481.600/5 3600.90 0.55 481.00 129.67 0.00

20 444.6 25557.003/2 3600.53 0.90 622.40 363.12 0.00

25 571.6 NA NA NA 798.404 3073.44 0.00

8 5 107.2 348.00 0.20 0.00 347.80 0.56 0.00

10 215.2 659.200/2 2262.06 0.09 659.20 33.83 0.00

15 329.4 771.001/4 3601.29 0.41 776.10 204.93 0.00

20 472.4 2430.672/3 3600.60 0.80 1184.801 1527.23 0.57

25 544.4 3798.004/1 3600.61 0.91 1315.201 2226.52 1683.57

MIP Versus CP. The experimental results indicate that CP is orders of magni-
tude more efficient than MIP on the IPCTP. This is especially remarkable since
this paper compares two black-box solvers. Overall, within the time limit, the
MIP model does not find feasible solutions for 71 out of 300 instances and cannot
prove optimality for 214 instances. On all but the smallest instances, the MIP
solver cannot prove optimality for all five instances of the same configuration.
In almost all configurations with 20 or more shipments, the MIP solver fails to
find feasible solutions on at least one of the instances. In contrast, the CP model
always find feasible solutions and proves optimality for 260 instances out of 300
instances. CP proves optimality on all but 16 instances in Table 3, and all but
24 in Table 2. On instances where both models find optimal solutions, the CP
model is almost always 1–3 orders of magnitude faster (except for the small-
est instances). Of course, the benefits are even more substantial when the MIP
fails to find feasible and/or optimal solutions. For instance, on instance 3/6/15,
CP proves optimality on all five instances in 2 min, while the MIP cannot find
the optimal solution to any of them in an hour. Finally, the CP model always
dominates the MIP model: It proves optimality every time the MIP does.

358 D. Kizilay et al.

Short Runs. On all configurations but one (3/8/15), the CP model finds optimal,
or near optimal, solutions within 10 min, which is significant in practice.

Sensitivity Analysis. The sensitivity analysis is restricted to the CP model for
obvious reasons. The sensitivity of each factor is analyzed by comparing their
respective run times and objective values. In general, the effect of the number
of bays on the solution values and on CPU times tend to be small. In contrast,
increasing the U-L ratio from 2 to 3 gives inbound shipments more alterna-
tives for yard locations, which typically increases CPU times. Increasing the
ratio of inbound-outbound containers also increases problem difficulty. This is
not a surprise, since inbound shipments are more challenging, as they require
a yard location assignment, while outbound shipments have both their yard
locations and vessel bays fixed. Nevertheless, the CP model scales reasonably
well when this ratio is increased. These analyses indicate that the number of
shipments/containers is by far the most important element in determining the
computing times in the IPCTP: The other factors have a significantly smaller
impact, which is an interesting result in its own right.

7 Conclusion

This paper introduced the Integrated Port Container Terminal Problem
(IPCTP) which, to the best of our knowledge, integrates for the first time, a
wealth of port operations, including the yard location assignment, the assign-
ment of quay and yard cranes, and the scheduling of these cranes under realistic
constraints. In particular, the IPCTP considers empty travel time of the equip-
ment and interference constraints between the quay cranes. The paper proposed
both an MIP and a CP model for the IPCTP of a configuration based on an
actual container terminal, which were evaluated on a variety of configurations
regarding the number of vessel bays, the number of yard locations, the ratio of
inbound-outbound shipments, and the number of shipments/containers. Exper-
imental results indicate that the MIP model can only be solved optimally for
small instances and often cannot find feasible solutions. The CP model finds
optimal solutions for 87% of the instances and, on instances where both mod-
els can be solved optimally, the CP model is typically 1–3 orders of magnitude
faster and proves optimality each time the MIP does. The CP model scales rea-
sonably well with the number of vessel bays and yard locations, and the ratio of
inbound-outbound shipments. It also solves large realistic instances with hun-
dreds of containers. These results contrast with the existing literature which
typically resort to heuristic or meta-heuristic algorithms, with no guarantee of
optimality.

Future work will be devoted to capturing a number of additional features,
including operator-based processing times, the stacking of inbound containers
using re-shuffling operations, the scheduling of the yard trucks, and larger con-
tainer operations.

Constraint and Mathematical Programming Models 359

References

1. Bierwirth, C., Meisel, F.: A follow-up survey of berth allocation and quay crane
scheduling problems in container terminals. Eur. J. Oper. Res. 244, 675–689 (2015)

2. Bierwirth, C., Meisel, F.: A fast heuristic for quay crane scheduling with interfer-
ence constraints. J. Sched. 12(4), 345–360 (2009)

3. Chen, L., Bostel, N., Dejax, P., Cai, J., Xi, L.: A tabu search algorithm for the inte-
grated scheduling problem of container handling systems in a maritime terminal.
Eur. J. Oper. Res. 181, 40–58 (2007)

4. Chen, L., Langevin, A., Lu, Z.: Integrated scheduling of crane handling and truck
transportation in a maritime container terminal. Eur. J. Oper. Res. 225(1), 142–
152 (2013)

5. Homayouni, S.M., Vasili, M.R., Kazemi, S.M., Tang, S.H.: Integrated scheduling
of SP-AS/RS and handling equipment in automated container terminals. In: Pro-
ceedings of International Conference on Computers and Industrial Engineering,
CIE, vol. 2 (2012)

6. Homayouni, S.M., Tang, S.H., Motlagh, O.: A genetic algorithm for optimization
of integrated scheduling of cranes, vehicles, and storage platforms at automated
container terminals. J. Comput. Appl. Math. 270(Supplement C), 545–556 (2014)

7. Homayouni, S., Tang, S.: Multi objective optimization of coordinated scheduling
of cranes and vehicles at container terminals (2013)

8. Kaveshgar, N., Huynh, N.: Integrated quay crane and yard truck scheduling for
unloading inbound containers. Int. J. Prod. Econ. 159(Supplement C), 168–177
(2015)

9. Lau, H.Y., Zhao, Y.: Integrated scheduling of handling equipment at automated
container terminals. Int. J. Prod. Econ. 112(2), 665–682 (2008)

10. Liang, L., Lu, Z.Q., Zhou, B.H.: A heuristic algorithm for integrated scheduling
problem of container handling system. In: 2009 International Conference on Com-
puters Industrial Engineering, pp. 40–45. IEEE (2009)

11. Lu, Y., Le, M.: The integrated optimization of container terminal scheduling with
uncertain factors. Comput. Ind. Eng. 75(Supplement C), 209–216 (2014)

12. Moccia, L., Cordeau, J.F., Gaudioso, M., Laporte, G.: A branch-and-cut algorithm
for the quay crane scheduling problem in a container terminal. Naval Res. Logist.
(NRL) 53(1), 45–59 (2006)

13. Niu, B., Xie, T., Tan, L., Bi, Y., Wang, Z.: Swarm intelligence algorithms
for yard truck scheduling and storage allocation problems. Neurocomputing
188(Supplement C), 284–293 (2016)

14. Sammarra, M., Cordeau, J.F., Laporte, G., Monaco, M.F.: A tabu search heuristic
for the quay crane scheduling problem. J. Sched. 10(4), 327–336 (2007)

15. Tang, L., Zhao, J., Liu, J.: Modeling and solution of the joint quay crane and truck
scheduling problem. Eur. J. Oper. Res. 236(3), 978–990 (2014)

16. Vis, I., de Koster, R.: Transshipment of containers at a container terminal: an
overview. Eur. J. Oper. Res. 147, 1–16 (2003)

17. Wu, Y., Luo, J., Zhang, D., Dong, M.: An integrated programming model for
storage management and vehicle scheduling at container terminals. Res. Transp.
Econ. 42(1), 13–27 (2013)

18. Xin, J., Negenborn, R.R., Corman, F., Lodewijks, G.: Control of interacting
machines in automated container terminals using a sequential planning approach
for collision avoidance. Transp. Res. Part C: Emerg. Technol. 60(Supplement C),
377–396 (2015)

360 D. Kizilay et al.

19. Xin, J., Negenborn, R.R., Lodewijks, G.: Energy-aware control for automated con-
tainer terminals using integrated flow shop scheduling and optimal control. Transp.
Res. Part C: Emerg. Technol. 44(Supplement C), 214–230 (2014)

20. Xue, Z., Zhang, C., Miao, L., Lin, W.H.: An ant colony algorithm for yard truck
scheduling and yard location assignment problems with precedence constraints. J.
Syst. Sci. Syst. Eng. 22(1), 21–37 (2013)

21. Zheng, K., Lu, Z., Sun, X.: An effective heuristic for the integrated scheduling
problem of automated container handling system using twin 40’ cranes. In: 2010
Second International Conference on Computer Modeling and Simulation, pp. 406–
410. IEEE (2010)

Heuristic Variants of A∗ Search for 3D
Flight Planning

Anders N. Knudsen, Marco Chiarandini, and Kim S. Larsen(B)

Department of Mathematics and Computer Science,
University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

{andersnk,marco,kslarsen}@imada.sdu.dk

Abstract. A crucial component of a flight plan to be submitted for
approval to a control authority in the pre-flight phase is the prescription
of a sequence of airways and airway points in the sky that an aircraft has
to follow to cover a given route. The generation of such a path in the 3D
network that models the airways must respect a number of constraints.
They generally state that if a set of points or airways is visited then
another set of points or airways must be avoided or visited. Paths are
then selected on the basis of cost considerations. The cost of traversing
an airway depends, directly, on fuel consumption and on traversing time,
and, indirectly, on weight and on weather conditions.

Path finding algorithms based on A∗ search are commonly used in
automatic planning. However, the constraints and the dependency struc-
ture of the costs invalidate the classic domination criterion in these algo-
rithms. A common approach to tackle the increased computational effort
is to decompose the problem heuristically into a sequence of horizontal
and vertical route optimizations. Using techniques recently designed for
the simplified 2D context, we address the 3D problem directly. We com-
pare the direct approach with the decomposition approach. We enhance
both approaches with ad hoc heuristics that exploit the expected appeal
of routes to speed-up the solution process. We show that, on data resem-
bling those arising in the context of European airspaces, the direct app-
roach is computationally practical and leads to results of better quality
than the decomposition approach.

1 Introduction

The Flight Planning Problem (FPP) aims at finding, for a given aircraft, a sky
trajectory and an initial fuel load, minimizing the total cost determined by fuel
consumption and travel time. The sky is subdivided into airspaces where airway
points and airways between them are predefined. Thus, a route, denoted by ori-
gin and destination airports, corresponds to a path in a network that models the
3D space. The path starts at the origin airport, climbs to a favorable altitude
and finally descends to the destination airport while satisfying different types

K. S. Larsen—Supported in part by the Independent Research Fund Denmark, Nat-
ural Sciences, grant DFF-7014-00041.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 361–376, 2018.
https://doi.org/10.1007/978-3-319-93031-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_26&domain=pdf

362 A. N. Knudsen et al.

of constraints. There are clear operational, financial, and environmental motiva-
tions for aiming at feasible and cost-optimal paths. However, the size of airway
networks, the nature of a large number of the constraints, and the dependencies
among different factors that affect costs make the problem substantially more
difficult to solve compared with classic shortest path problems in road networks.
In addition, some of the constraints from central control authorities (Eurocontrol
in Europe or FAA in USA) are issued to take rapidly changing traffic conditions
into account. Thus, they are updated frequently, and airlines, and to an even
larger extent small private airplanes, tend to determine the precise flight route
only a few hours before take-off, when more constraints are available. Although
the route can be adjusted during operation, doing so will lead to a suboptimal
route compared with a complete route determined offline. As take-off approaches,
available processing time will be on the order of a few seconds.

The cost of flying through an airway depends on the time when the traversal
occurs and the fuel consumed so far. There is a direct dependency between
the two, because airlines calculate the total cost as a weighted sum of total
travel time and total fuel consumption. There is also an indirect dependency,
because the time spent and amount of fuel consumed on an arc depend on the
performance of the aircraft, which is influenced by: (i) the weather conditions,
which in turn depend on the time when the arc is traversed, and (ii) the weight,
which in turn depends on the fuel consumed so far. A consequence of these
dependencies is that the cost of each arc of the airway network is not statically
given but becomes known only when the path to a node is determined. A further
complication is that while the departure time is fixed, the initial amount of fuel
is to be decided. This cost structure leads to issues similar to time dependencies
in shortest path on road networks [1].

The indirect cost dependencies together with the impossibility of waiting at
the nodes, even at the departure airport, mean that it might be a disadvantage
to arrive cheaply at a node (and hence earlier or lighter than other alterna-
tives) since it may preclude obtaining high savings on the remaining path, due
to favorable weather conditions developing somewhere at a later time. In other
words, the so-called First-In-First-Out (FIFO) property cannot be assumed to
hold. For labeling algorithms typically used to approach routing problems, Dijk-
stra [2] and A∗ [3], this means that a total ordering of the labels at the nodes is
not available, which has a tremendous impact on efficiency.

Further complexity is added by the quantity and type of constraints. The
most challenging ones are Route Availability Document (RAD) constraints. They
include local constraints affecting the availability of airways and airspaces at cer-
tain times, but most of them are conditional constraints. For example, if the route
comes from a given airway, then it must continue through another airway. Or
some airways can only be used if coming from, or arriving to, certain airspaces.
Or flights between some locations are not allowed to cross certain airspaces at
certain flight levels. Or short-haul and long-haul flights are segregated in con-
gested zones.

Heuristic Variants of A∗ Search for 3D Flight Planning 363

Due to increasing strain on the European airspace, the networks become
more heavily constrained to ensure safe flights. There are typically more than
16,000 constraints in the European network and they can be updated several
times a day. Some of the RAD constraints are generalizations of forbidden pairs,
which make the problem at least as hard as the path avoiding forbidden pairs
problem, shown to be NP-hard [4]. Additionally, RAD constraints invalidate the
FIFO assumption, with far-reaching effects in terms of complexity. Therefore,
a common approach in industry is to implement a first stage, where the algo-
rithms ignore some constraints that are difficult to formalize and check during
route construction, and enforce them later by somehow repairing the route. All
constraints are verified by the control authority when a route is submitted for
approval.

A common approach in industry is to solve the FPP in a decomposed form:
find a horizontal 2D route and then determine a vertical profile for it. While
this reduces the computation cost considerably, it does not guarantee optimal-
ity. However, due to the practical relevance, recent research has focused on these
two simplified problems. In [5], the authors address the horizontal 2D flight plan-
ning problem without constraints and study methods for calculating weather-
dependent estimates for the heuristic component of A∗ algorithms. They show
that with these estimates, A∗ achieves better experimental results in both prepro-
cessing and query time than contraction hierarchies [6], a technique from state-
of-the-art algorithms for shortest path on road networks. In [7], we proposed a
framework for handling the RAD constraints in the horizontal 2D problem. We
introduced a tree representation for constraints to maintain them during path
construction, and compared lazy techniques for efficiency. Experimental work
suggested that the best running times were obtained using an approach similar
to a logic-based Benders decomposition with no-good cuts, in which we ignore
constraints in the initial search and only add those that are violated in the
subsequent searches. In [8], we focused on the impact of the FIFO assumption
on the vertical route optimization problem, constrained to a given horizontal
route, but not considering constraints. We showed that wrt. cost considerations,
heuristically assuming the FIFO property in vertical routing is unlikely to lead
to suboptimal solutions.

We extend our work on constraint handling to the 3D context to show that an
A∗ approach can be practical in solving the FPP directly in a 3D network. With
respect to our 2D work [7], the networks we consider increase in size from 11,000
nodes and 1,000,000 arcs to 200,000 nodes and 124,000,000 arcs. We design
heuristics to improve the efficiency of the algorithms and empirically study the
quality loss that they imply. We focus on two types of heuristics: those affecting
the estimate of the remaining cost from a node to the goal in the A∗ framework
and those using the desired shape of the vertical profile to prune label expansion
in the A∗ algorithm. We present the comparison of the most relevant among
these heuristics and combinations. We include the comparison with the obvious
consequent outcome from our previous research, namely a two-phase approach
with constraints handled lazily by restart as in [7] and costs as in [8]. Our results

364 A. N. Knudsen et al.

demonstrate that a direct 3D approach leads to better results in terms of quality,
with computation times that remain suitable for practical needs.

There are elements from real-life problems we ignore: First, we do not con-
sider the initial fuel as a decision variable. We assume this value is given on
the basis of historical data. In practice, we would approach the problem using
a line-search method as in [8]. Second, we do not consider (possibly non-linear)
overflight costs associated with some airspaces. We refer to [9] for a treatment
of these issues; authors suggest a cost projection method to anticipate the cost
incurred by the overflight and then eliminate potential paths. Finally, not all
airspaces have predefined airway points; free route airspaces lead to algorithms
exploiting geometric properties, and they have been shown to be more efficient
than graph-based ones [10] in those scenarios. These algorithms could in princi-
ple be integrated with the framework presented here, calling them as subroutines
when an entry point to a free route airspace is expanded.

This work is in collaboration with an industrial partner. Many of its cus-
tomers are owners of private planes who plan their flights shortly before depar-
ture and expect almost immediate answers to the portable device. Thus, a query
should be answered in a few seconds.

2 The Flight Planning Problem

The 3D airspace is represented by waypoints that can be traversed at different
altitudes (flight levels). Waypoints are connected by airways. This gives rise to
a network in the form of a directed graph D = (V,A). The nodes in V represent
waypoints at different latitude, longitude, and altitude. The arcs in A connect all
nodes that can be traced back to two different waypoints connected by an airway
and whose implied difference in altitude can be operated by the aircraft. Each
arc has associated resource consumption and costs. The resource consumption
for flying via an arc a ∈ A is defined by a pair τ a = (τx

a , τ t
a) ∈ R

2
+, where the

superscripts x and t denote the fuel and time components, respectively. The cost
ca is a function of the resource consumption, i.e., ca = f(τ a).1 A 3D (flying)
route is an (s, g)-path in D, represented by n nodes, a departure node (source)
s, and an arrival node (goal) g, that is, P = (s, v1, . . . , vn, g), with s, vi, g ∈ V
for i = 1...n, vivi+1 ∈ A for i = 1...n−1, and sv1, vng ∈ A. The cost of the route
P is defined as cP = csv1 +

∑
i=1...n−1 cvivi+1 + cvng.

The route must satisfy a set C of constraints imposed on the path. These
constraints are of the following type: if a set of nodes or arcs A is visited, then
another set of nodes or arcs B must be avoided or visited. The visit or avoidance
of the sets A and B can be further specified by restrictions on the order of nodes
in the route, on the time window, and on the flight level range.

Definition 1 (Flight Planning Problem (FPP)). Given a network N =
(V,A, τ , c), a departure node s, an arrival node g, and a set of constraints C,
1 The total cost is calculated as a weighted sum of time and fuel consumed. In our

specific case, we have used 1.5$ per gallon of fuel and 1000$ per hour.

Heuristic Variants of A∗ Search for 3D Flight Planning 365

find an (s, g)-path P in D = (V,A) that satisfies all constraints in C and that
minimizes the total cost, cP .

All constraints can be categorized into two classes: forbidden and mandatory.
Constraints consist of an antecedent and a consequent expression, p and q. A
constraint of the mandatory type is satisfied when p → q and violated otherwise;
one of the forbidden type is satisfied when p → ¬q and violated otherwise. The
expressions p and q give Boolean values. They contain terms that express possible
path choices, such as passing through a node (representing a specific flight level at
an airway point), traversing an arc (possibly belonging to an airspace), departing
or arriving at a node, or visiting a set of nodes in a given order.

3 A∗ Search with Constraints

We use A∗ search as our base algorithm, and the following strategy, detailed and
shown effective in [7], to handle the numerous constraints: First, we find a path
using A∗, ignoring all constraints. Then, the path obtained is checked against all
constraints. If no constraint is violated, the path is feasible and the procedure
terminates. Otherwise, the violating constraints are added to the input and a new
search is initiated. The new path will not violate any of the included constraints
but it could violate others. Thus, the procedure is repeated until a feasible path
is found. In the iterations that follow the initial one, the search must handle
the constraints during the construction. A template for A∗ modified to handle
constraints is given in Algorithm 1.

In Algorithm 1, the function FindPath takes the initial conditions as input:
a network N = (V,A, τ , c) built using information from the airspace, aircraft
performance data, and weather conditions; the query from s to g; the initial
fuel load τx

s and the departure time τ t
s ; an array h of values h(v) for every

node v ∈ V , indicating the precomputed, static, estimated cost of flying from
that node v to the destination node g; the set of constraints (see below). The
time and fuel consumptions for each arc τ depend on: (i) the flight level, (ii) the
weight, (iii) international standard atmosphere deviation (temperature), (iv) the
wind component, and (v) the cost index.2 Inputs (ii), (iii), and (iv) depend on
the time of arrival at the arc and hence on the partial path. We can regard these
values as retrieved from data tables but we refer to Sect. 5 for more details.

We represent partial paths under construction in Algorithm 1 by labels. A
label � is associated with a node φ(�) = u ∈ V and contains information about a
partial path from the departure node s ∈ V to the node u, that is, P� = (s, ..., u).

Labels also have constraints associated. We represent constraints as trees,
where leaves are terms and internal nodes are logical operators (AND, OR,
NOT). Constraint trees are, potentially, associated with each label. Initially, all
constraint terms are in an unknown state and labels have no constraints associ-
ated. Then, if during the extension of a path of a label, a term of a constraint

2 The cost index is an efficiency ratio between the time-related cost and the fuel cost,
decided upon at a strategic level and unchangeable during the planning phase.

366 A. N. Knudsen et al.

1 Function FindPath(N = (V, A, τ , c), s, g, (τx
s , τ t

s), h, Γ)
2 initialize the open list Q by inserting �s = ((s), 0, {})
3 initialize �r = ((), ∞, {})
4 while Q is not empty do
5 � ← retrieve and remove the cheapest label from Q
6 if (c� + h(φ(�)) > c�r) then break � termination criterion
7 if (φ(�) = g) and (c� < c�r) then
8 �r ← �
9 continue

10 foreach node v such that uv in A do
11 �′ ← label at v expanded from �
12 evaluate constraint trees in Δ�′

13 if one or more constraints in Δ�′ are violated then
14 continue

15 Insert(�′,Q)

16 return P�r and c�r

17 Function Insert(�′, Q)
18 foreach label � ∈ Q with φ(�) = φ(�′) do
19 if (c� > c�′) then
20 if (Δ� is implied by Δ�′) then � � is dominated
21 remove � from Q
22 else if (c′

� > c�) then
23 if (Δ� is implied by Δ�′) then return � �′ is dominated

24 insert �′ in Q
25 return

Algorithm 1. An A∗ search template for solving FPP.

is resolved, the corresponding constraint becomes active for that label. After
resolution, the term is removed from the constraint tree and the truth value is
propagated upwards. The evaluation of the constraint terminates when the root
node is resolved. The constraint is satisfied if the root node evaluates to false.

In practice, we translate the set of constraints C into a dictionary of constraint
trees Γ with constraint identifiers as keys and the corresponding trees as values.
For a constraint γ ∈ Γ , we let ι(γ) denote the constraint identifier and T (γ)
the corresponding tree. Then, for each node, v ∈ V , and each arc, uv ∈ A, we
maintain a set of identifiers of the constraints that have those nodes or arcs,
respectively, as leaves in the corresponding tree. We denote these sets Ev and
Euv, with Ev = {ι(γ) | γ ∈ Γ, v appears in γ} and Euv defined similarly.

We denote by Δ� the set of constraint trees copied from Γ to a label � when
they became active for �. These constraint trees may be reduced immediately
after copying because some terms have been resolved. Let ρ(γ, P�) be the tree
T (γ) after propagation of the terms in P�. Then, we can formally define, Δ� =
{ρ(γ, P�) | ι(γ) ∈ Eu ∪ Euv, u, v ∈ P�}.

Heuristic Variants of A∗ Search for 3D Flight Planning 367

In Algorithm 1, each label � is thus the information record made of
(P�, c�,Δ�). We maintain all labels that are created in a structure Q, called
the open list. At each iteration of the while loop in Lines 5–15 of FindPath,
a label � is selected for extraction from the open list if its evaluation, given
by c(�) + h(φ(�)), is the smallest among the labels in Q. Successively, the
label � with φ(�) = u ∈ V is expanded along each arc uv ∈ A, and new
labels �′ = ((s, . . . , u, v), c� + cuv,Δ�′) are created (Lines 10–12).3 The new
set of constraint trees Δ�′ is obtained by copying the trees from Δ�, and the
trees from Γ identified by Ev and Euv. While performing these operations,
the trees are reduced based on the resolution of the terms u and/or uv. If
the root of a constraint tree in Δ�′ evaluates to true, then the label �′ is
deleted, because the corresponding path became infeasible (Lines 13–14). On
the other hand, if a root evaluates to false, then the corresponding constraint
tree is resolved but is kept in Δ�′ to prevent re-evaluating it if, at a later stage,
one of the terms that were logically deduced appears in the path. Formally,
Δ�′ = {ρ(γ, P�′) | γ ∈ Δ�} ∪ {ρ(γ, P�′) | ι(γ) ∈ Eφ(�′) ∪ Eφ(�)φ(�′)}.

If a new label �′ is not deleted, it is proposed for insertion in Q to the function
Insert. The function Insert takes care of checking the domination between the
proposed label �′ and the other labels in Q at the same node. The domination
criterion plays a crucial role in the efficiency of the overall algorithm.

The loop in the function FindPath terminates on Line 6 when the goal g
has been reached and the incumbent best path to g has total cost less than or
equal to the evaluation of all labels in Q. Under some well known conditions for
h that we describe in Sect. 4.1, the solution returned is optimal.

Label Domination: We motivate our specific choice for the definition of the
domination criterion using the following simple example taken from [7]. Let
C1 = ((a ∨ b) ∧ c) be the only constraint present. Let �1 = ((s, a, x), 3, {C1}),
�2 = ((s, d, x), 4, ∅) and �3 = ((s, b, x), 2, {C1}) be the only three labels at x.
Consider the labels �3 and �2. Although �3 is cheaper than �2, �2 has not activated
C1 and hence its path ahead is less constrained than �3. Indeed, �2 can use the
cheapest route to g, while �3 must avoid c. It is therefore good not to discard
�2, in spite of being more expensive. The labels �1 and �3 are identical with
regards to constraints. However, the cost of �1 is greater than the cost of �3.
Both labels will continue selecting the path through the arc with cost 5, and
�3 will end up being the cheapest. The only way for �1 to recover and become
the cheapest would be if the time it arrives at x is so different from the time of
�3 that a drastic change in the weather conditions could be experienced. This
seems unlikely, and the results of [8] seem to suggest that it is safe to assume
the FIFO property for costs and not to assume it for constraints.

Further, it is possible to define a partial order relation between the constraint
sets associated with labels. Intuitively, if �a has activated the same constraints as
�b but �b has activated fewer terms than �a, then we can say that the constraints

3 Although D contains cycles and although, theoretically, the cycles could be profitable
because of the time dependency of costs, we do not allow labels to expand to already
visited vertices because routes with cycles would be impractical.

368 A. N. Knudsen et al.

s

d

a

b

x c
g

3

2

1

1

1

1

1 1

5

φ(�)

g

h(φ(�))

dc(�)

dd(�)

Fig. 1. Left, a domination example. The labels are �1 = ((s, a, x), 3, {C1}), �2 =
((s, d, x), 4, ∅) and �3 = ((s, b, x), 2, {C1}). Right, the setup for the SingleDescent esti-
mate.

of the label �b are implied by those of �a. We refer to [7] for a precise definition
of constraint implication and for implementation details.

Finally, we can state the domination criterion implemented in Lines 19–23.
A label �a is dominated by another label �b if φ(�a) = φ(�b), c�a > c�b and Δ�b

is implied by Δ�a . A label that is dominated is removed from (Line 21) or not
inserted into (Line 23) the open list. If φ(�a) = φ(�b), c�a > c�b but Δ�b is not
implied by Δ�a , then we say that �a is only partially dominated by �b. Partially
dominated labels cannot be removed from the open list.

4 Heuristics

We present novel heuristics designed to cope with the large sizes of networks
representing the 3D problem. We distinguish between two kinds of heuristics:
those that implement the estimation of the remaining cost from a node to the
goal, a crucial component of A∗ algorithms, and those that use the desired shape
of the vertical profile to add constraints and prune the search space.

Further, we describe a two-phase approach, inspired by the current practice
in industry, and we will use that as a benchmark for the heuristic 3D algorithms.

4.1 Remaining Cost Estimation in A∗

The estimated cost h is said to be admissible if, for any node u ∈ V , the value
h(u) does not overestimate the final cost from u to the goal. Further, it is said
to be consistent if for every node u ∈ V , h(u) is at most the cost of getting to a
successor v ∈ V plus h(v). Consistency can be shown to be the stronger property
as it also implies admissibility. If both properties hold, then Algorithm 1 is opti-
mal. If a heuristic is admissible, but not consistent, an optimal solution can be
guaranteed if the algorithm allows for more than one label to be expanded from
the same node. In standard A∗ search algorithms, labels expanded from a node
are moved to a closed list, which is used to avoid expanding labels again from the
same node. Instead, our Algorithm 1 allows more than one label to be expanded
from a node in order to handle the constraint-induced lack of FIFO property.
The use of an inconsistent rather than a consistent estimate increases the risk
of re-expansions occurring and thus lessens the efficiency of the algorithm.

Heuristic Variants of A∗ Search for 3D Flight Planning 369

However, guaranteeing consistency, by ensuring that for all arcs uv ∈ A,
h(u) ≤ h(v)+cuv, can be challenging in the FPP setting. First, it is not possible
to compute a time-dependent estimate for each node of the network considering
all its three coordinates. This would require a full 3D backwards search, which
would be computationally heavy, quickly invalidated by the change of data, and
pose memory problems. Second, restricting to considering only the 2D positions
of the waypoints, say, the projection π(u) onto the Earth for any node u ∈ V ,
one could define an estimate based on the great circle distance from π(u) to the
goal. But choosing the additional weather conditions would be more challenging:
for example, assuming tailwind at cruise level everywhere would not only yield
quite optimistic (i.e., loose) estimates but also would not guarantee consistency
due to the ignored, possibility of cheaper descent of some levels. Other attempts
at defining the flying conditions might lead to violation of admissibility as well.

In this light, with the goal of allowing precomputation of the estimate when
a query is received and before the A∗ algorithm is started, we explore two direc-
tions: making the heuristic consistent in spite of worsening its tightness wrt. true
cost, and giving up consistency while trying to improve the tightness. In both
cases, we strive to maintain estimate admissibility, without which Algorithm 1
would not find the optimal solution. Both estimate procedures contain the fol-
lowing elements. They consider a 2D network obtained by the projection on the
ground of all points from V , they associate time and weight independent costs
with each arc, and they compute a cheapest path using a backwards Dijkstra
from the goal to each node of the 2D network. The estimate h(v) of each node
v ∈ V is then equal to the estimate of the projected node, i.e., h(v) = h(π(v)).
The two procedures differ in the way the resource independent cost is deter-
mined.

All Descents: We set the cost of an arc between any two projected nodes to
be equal to the cheapest possible cost of going between any pair of nodes that
project on those nodes. More formally, let x and y be two nodes in the 2D
network and let π−1(x) and π−1(y) be the set of nodes from V (D) that project
to x and y, respectively. We set the cost δxy between x and y in the 2D network
as follows: δxy = min{cuv | u ∈ π−1(x), v ∈ π−1(y), uv ∈ A}. Clearly, this is the
most conservative choice; it guarantees that the derived estimates are consistent
for all u, v ∈ V . Indeed, since h(x) − h(y) = δxy, for any pair of points u, v ∈ V
that project to x and y, respectively, the inequality h(u) − h(v) ≤ cuv will be
satisfied. We refer to this estimate as AllDescents. The algorithm described in
Sect. 3 with the AllDescents estimates is optimal, in the very likely case that the
FIFO assumption on costs holds.

Single Descent: While AllDescents is consistent and admissible, its estimates
are unrealistically cheaper than the real costs. Indeed, the cheapest arc between
any two connected waypoints is very likely a descent from the top-most allowed
flight level to the lowest flight level the aircraft can reach. The estimate asso-
ciated with a node at a given altitude then becomes the cost of the aircraft
descending between every two nodes in the shortest path to the destination.

370 A. N. Knudsen et al.

We design an estimate that is closer to the real cost by considering only
cruises between nodes. More specifically, between any pair of nodes x and y in
the projected network, we consider the cost δxy = min{cuv | u ∈ π−1(x), v ∈
π−1(y), uv ∈ A, uv is a cruise}. It is realistic in most scenarios as the cruising
phase is by far the most important and longest phase of a flight and thus the
estimated value will often be consistent. However, there are scenarios where it
is optimal for the aircraft to descend early on the route, which could lead to
inconsistent estimates. Unfortunately, the estimates could also be inadmissible
as the aircraft will have to descend at some point to reach the destination airport.
To decrease the chance of this occurring, we correct the estimate by including a
single direct descent to the goal when calculating the shortest path to the goal.
We achieve this by updating the estimate when it is needed. Thus, whenever
a label � at φ(�) needs to be evaluated, we subtract from its estimate h(φ(�))
the difference between the cost of a descent to the ground and a cruise of the
same length using the great circle distance of the potential descent. We retrieve
the cost of descending to the ground using the weather and weight conditions
of �. We denote this cost dc(�) and the distance required for the descent by
dd(�). From the tables, we then retrieve the cost of cruising for dd(�) under
the same weather and weight conditions of �. We denote this cost δdd(�). See
Fig. 1, right. Thus, formally, the updated estimate h′ for � at φ(�) becomes
h′(�) = h(π(φ(�)) − (δdd(�) − dc(�)). We refer to this estimate as SingleDescent.

4.2 Pruning Heuristics

Descent Disregard: Every aircraft has a flight level at which, under average
weather conditions, it is optimal for it to cruise. In industry, this flight level
is often enforced. We use the information on this desired flight level (DFL)
heuristically to avoid expanding unpromising labels at low flight levels, thus
reducing the search space of the A∗ search algorithm. We achieve this as follows.

Normally A∗ tries any possible climb, descent, and cruise along an arc when
expanding a label, but many labels created (especially descents and cruises at
low and inefficient flight levels) will not lead to optimal solutions. We aim for
the algorithm to reduce the number of irrelevant descent and cruise expansions.
Using the aircraft performance data we can determine the greatest descent dis-
tance (GDD), which is the greatest distance required to be able to reach the
ground level from any flight level under any weight and weather conditions. If
the distance to the destination airport is greater than the GDD, we do not need
to worry about being able to reach the ground in time and can focus on remain-
ing at an efficient flight level. We could therefore disallow descent and cruise
expansions for labels not yet at the DFL and outside of the GDD. We still need
to worry about constraints that could be blocking the DFL, so we must allow
some deviation. We therefore define a threshold for flight levels where, if the
aircraft is below this threshold and the distance to the destination is greater
than the GDD, descents and cruises are not allowed. The value of the threshold
determines a trade-off between missed optimality and speed-up. We have chosen
to set the threshold to 3/4 of the DFL, as experiments indicated that this value

Heuristic Variants of A∗ Search for 3D Flight Planning 371

yields a large decrease in run-time and only a small decrease in solution quality.
We refer to this heuristic as DD.

Climb Disregard: Flight routes generally consist of three phases: climb, cruise,
and descent. It is desirable for passengers’ comfort to have only one of each of
these phases. Our algorithm does not take this into account as it allows for unlim-
ited climbs and descents in order to avoid constraints or to find better weather
conditions. Limiting the number of times the aircraft can alternate between
climbing and descending will result in more comfortable routes and speed up
the algorithm. On the other hand, as the routes will be more constrained, it will
lead to an increase in the total cost of the path.

We implement the rule that allows switching only once from climbing to
descending, so once a descent has been initiated, no further climbs are allowed.
We still allow paths to have a staircase shape, having climbs and descents inter-
leaved with cruising arcs. This could be advantageous when further climbing
becomes appealing only after some weight has been lost by consuming fuel.

To monitor the switches we equip the labels with a binary information indi-
cating whether or not a descent has been performed. The label �a of a path that
has already made a descent will be more constrained than the label �b of a path
that has not. Thus, �a should not be allowed to dominate �b, even if �b is more
expensive. The decreased effect of domination implies an increase in run-time
that may outweigh the reduction of labels expanded due to the restriction. In
order to assess the effect of this lack of domination experimentally, we include
two configurations in our tests: one where we ignore the switch constraint in
domination (thus, �a would have dominated �b), and one in which we treat the
switch constraint as any other constraint (thus, �a would be only partially dom-
inating �b and hence �b is not discarded). We refer to the former version as CD
and to the latter as CDS.

4.3 Two-Phase Approach

In this approach to the FPP, we first find a path through airway points, solving
a horizontal 2D routing problem, and then decide the vertical profile of the route
by solving a vertical path finding problem.

Solving the horizontal 2D problem, considering only a given altitude at every
airway point, does not work well with the second phase, because for many of
the routes found, it is then impossible to find a feasible vertical profile. Instead,
we “simulate” a horizontal 2D path finding problem by only considering one
arc between two airway points when expanding a label, namely the feasible arc
whose arrival node is closest to the DFL for the aircraft. Thus, for example,
the label at the departure node only expands through arcs going from 0 to 200
nominal altitude; at the next node a label only expands on arcs going from 200 to
400 nominal altitude; and, from there, if 400 is the DFL, the label only expands
through arcs to nodes at the same flight level. We only consider descents if it is
the only option. Thus, we consider any node, whose projection is the destination
airport, as goal nodes.

372 A. N. Knudsen et al.

Climbing and descending decisions are handled in the vertical routing, where
we restrict ourselves to the path through the airway points found in the previous
phase but reintroduce freedom to determine the altitude. During the search, all
possible climbs and descents from each node are allowed.

In both phases, we make use of the same constraint framework as in the 3D
solution, iterating the search until a feasible path is found. However, limiting
the search in the first phase to only one arc per pairs of waypoints can lead to
a route that cannot be made feasible in the second phase, because, for example,
of missing links for the descent phase. Hence, when the second phase fails to
find a feasible vertical profile, we analyze which combination of arcs caused the
problem, introduce a forbidden constraint containing those arcs, and restart the
first phase. This can lead to many restarts and even unsolvable instances, as the
constraints we introduce may be more severe than they are in reality.

We also include versions of the two-phase approach that use the DD and
the CD heuristics. These heuristics address the vertical profile and hence only
apply in the vertical optimization phase. We do not vary the estimate heuristics
because the conditions here are different from the 3D case: in the first phase,
we use an estimate heuristic similar to SingleDescent but without update. In
the second phase we do not use any estimate and hence the search corresponds
to a Dijkstra search. We were not able to come up with an A∗ estimate that
could be helpful because, with the main focus in this phase being on altitude,
estimates tend to be loose and pose computational problems due to the need of
calculating these values on the 3D network (or recalculating them every time a
new horizontal route is found).

5 Experimental Results

We have conducted experiments on real-life data to compare combinations of
the elements presented here. All algorithms used the template of Algorithm 1.
In the instantiated versions, the algorithms use the AllDescents or the SingleDes-
cent estimate heuristics combined with reasonable pruning heuristics: DD, CD,
CDS, DD + CD, DD + CDS. We also include the versions where AllDescents and
SingleDescent are not combined with any pruning heuristic. Finally, we compare
with the two-phase approach, which is closest to methods used in practice.

The real-life data is provided by our industrial partner. This data consists of
aircraft performance data, weather forecast data in standardized GRIB2 format,
and a navigation database containing the information for the graph. The graph
consists of approximately 200,000 nodes and 124,000,000 arcs. The aircraft per-
formance data refers to one single aircraft. The data for the weather forecast is
given at intervals of three hours on specific grid points that may differ from the
airspace waypoints. When necessary, we interpolate both in space and time.

In the calculation of the AllDescents and SingleDescent estimates, we assume
piece-wise linearity of the consumptions τ on the arcs. Consequently, the cheap-
est cost of an arc can be determined by looking only at the points where measure-
ments are available (e.g., at time intervals of three hours). Under this assumption,

Heuristic Variants of A∗ Search for 3D Flight Planning 373

the AllDescents estimate is admissible. Note however that, as shown in [5], the
travel time function between data points is not piece-wise linear and so neither
is our cost function that includes fuel consumption. To get as close as possi-
ble to having an optimal algorithm as baseline for the comparison, we therefore
included an algorithm without pruning heuristics and with the AllDescents esti-
mate derived from costs on arcs given by a piece-wise linear function, whose
pieces in the time scale are reduced to five minutes intervals. This approach
would not be feasible in practice, as it took more than 40 h in our computational
environment (see below) to precompute the estimates.

A test instance is specified by a departure airport and time, and a destination
airport. A set of 13 major airports in Europe was selected uniformly at random
to explore a uniform coverage of the constraints in the network. Among the 156
possible pairings, 16 were discarded because of short distances, resulting in 140
pairs that were used as queries. The great circle distances of these instances
range from 317 to 1682 nautical miles. All algorithms were implemented in C#
and the tests were conducted on a Dell XPS 15 laptop with an Intel Core i7
6700HQ at 2.6 GHz with 16 GB of RAM. Each algorithm was run 3 times on
each instance and only the fastest run was recorded. All runs had a time limit
of one hour.

We visualize the results in Fig. 2. The plots are disposed such that column-
wise we distinguish the estimate heuristic and row-wise the performance measure
considered. The pruning heuristics are represented along the x-axis of each plot.
The quality of a route is its monetary cost. We show the percentage gap with
respect to the results found by the baseline algorithm (5 min pieces). The run-
time is the time spent for preprocessing (i.e., calculating the estimates) plus the
total time spent searching. The preprocessing times for any configuration (apart
from the baseline algorithm, which is not shown) are almost identical, so we do
not distinguish. Time is measured in seconds and a logarithmic transformation is
applied. We did not observe a clear dependency of the time on the mile distance
of the instances, hence this latter is not visualized. Points represent the results
of the selected runs. Points of results attained on the same instance are linked
by a gray line. The boxes show the first, second (median) and third quartile of
the distribution.

Comparison: The first observation is that the gap of AllDescents without prun-
ing heuristic is different from zero only in a couple of instances and only in one
making the gap worse than 1.5%. Hence, in practice assuming piece-wise linear-
ity of consumptions seldom deteriorates the results. However, this observation
might be dependent on our setting, as Blanco et al. [5] do show a relevant impact.
Comparing AllDescents with SingleDescent, we observe that the inadmissibility
of SingleDescent does not worsen the solution quality in any instance while wrt.
run-time, SingleDescent leads to a considerable save for most instances. Tighter
estimates allow for more restrictive search; a narrower area around the optimal
route. We give evidence of this in Fig. 3, where we show the search results for
one instance using the two estimate heuristics. The figure depicts the horizon-
tal section of the 3D network restricted to the arcs that were actually expanded

374 A. N. Knudsen et al.

Fig. 2. Solutions quality (top) and run-time (bottom) results on 140 queries.

during the search. SingleDescent is much better at narrowing the search compared
with AllDescents. However, the figure does not show the vertical dimension and
the several flight levels expanded from nodes nor the arcs that were expanded
more than once in SingleDescent. There are 14 instances where the extra expan-
sions to cope with the inconsistency outweigh the expansions saved from the
tighter estimate and make SingleDescent slower than AllDescents.

Considering pruning heuristics, DD leads to worse solution quality in only 5
instances for both estimate heuristics while improving the run-time for both. As
expected, solutions become more costly when including heuristics that restrict
the vertical profiles, CD and CDS. However, because these routes are more stable,
they are more comfortable, a quality component not included in the monetary
cost otherwise considered. If we include correct domination, as done in CDS,
the solution quality improves slightly over algorithm versions that use CD, but
considering the run-time, CDS is computationally more demanding than CD. In
general, profile-based heuristics have considerable impact on the run-time. The
CD and DD+CD heuristics contribute most to the speed-up. In a few instances,
however, they can perform worse than the variants with no pruning heuristic. In
these cases, finding a different solution (which might violate a constraint) can
cause the algorithm using CD to do extra passes. Finally, the configuration using
both DD and CD is the fastest. It has a median run-time slightly above 14 s and
a worst-case performance of 14 min.

Comparison with the Two-Phase Approach: The two-phase approach with
no pruning heuristics has a median quality gap of 1.9%, which is significantly
higher than any of the 3D algorithms. There are also a few heavy outliers with

Heuristic Variants of A∗ Search for 3D Flight Planning 375

Fig. 3. Comparison of arcs expanded by AllDescents (left) and SingleDescent (right)
with no heuristics on a route from Innsbruck to Nantes.

5 instances having a gap over 10%. In these instances, the two-phase approach
returns a path through arcs where flying at the desired flight level is forbidden by
some constraints and thus the vertical optimization will not be able to repair and
obtain a good quality solution. There are also two instances where the two-phase
approach fails to find any solution at all. As far as run-time is concerned, the two-
phase approach does entail faster run-times than any of the 3D algorithms with
a median of 10 s and a worst-case performance of 47 min. In general, there are
some outliers caused by instances where the vertical optimization has trouble
finding a feasible solution causing a large number of restarts. Using the DD
heuristic does not yield any relevant effect, while using the CD heuristic does
decrease run-time but also worsens the cost of the final path further. CD also
increases the number of unsolved instances to 10.

6 Concluding Remarks

We found the SingleDescent estimate together with the DD heuristic partic-
ularly interesting. With respect to the near optimal solution of the baseline
algorithm, this algorithm leads to deterioration of solution quality in only a
few instances while it provides a considerable decrease in run-time. If further
speed-up is needed, the CD heuristic could be added at the cost of only a slight
increase in deterioration. The routes attained adopting the CD heuristic might
be preferable in practice anyway due to the more stable vertical profile.

Perhaps our most important contribution is that we demonstrate the practi-
cability of a direct 3D flight planning approach. Our comparison against the two-
phase approach, more commonly used in practice, shows that although median
results for the latter are better in terms of run-time, the solution quality and
the outliers in run-time and unsolved instances are considerably worse than the
results attainable with direct 3D approaches. The 3D approach exhibits fewer
outliers, terminates on every instance, and is therefore more robust. If run-time is
really an issue, we have shown that by combining the SingleDescent, the DD, and
the CD heuristics, competitive time performance can be achieved, while retain-
ing superior robustness and smaller reduction in solution quality relative to the
two-phase approach. The ideas tested here will be included in future releases of
software from our industrial partner.

376 A. N. Knudsen et al.

References

1. Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent
travel times with contraction hierarchies. ACM J. Exp. Algorithmics 18(1), 1.4:1–
1.4:43 (2013). Article no. 1.4

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

3. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

4. Yinnone, H.: On paths avoiding forbidden pairs of vertices in a graph. Discrete
Appl. Math. 74(1), 85–92 (1997)

5. Blanco, M., Borndörfer, R., Hoang, N.-D., Kaier, A., Schienle, A., Schlechte, T.,
Schlobach, S.: Solving time dependent shortest path problems on airway net-
works using super-optimal wind. In: 16th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS). OpenAccess
Series in Informatics (OASIcs), vol. 54, pp. 12:1–12:15. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2016)

6. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders,
P., Wagner, D., Werneck, R.F.: Route planning in transportation networks (2015).
arXiv:1504.05140 [cs.DS]

7. Knudsen, A.N., Chiarandini, M., Larsen, K.S.: Constraint handling in flight plan-
ning. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 354–369. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66158-2 23

8. Knudsen, A.N., Chiarandini, M., Larsen, K.S.: Vertical optimization of resource
dependent flight paths. In: 22nd European Conference on Artificial Intelligence
(ECAI). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 639–
645. IOS Press (2016)

9. Blanco, M., Borndörfer, R., Dung Hoàng, N., Kaier, A., Casas, P.M., Schlechte,
T., Schlobach, S.: Cost projection methods for the shortest path problem with
crossing costs. In: D’Angelo, G., Dollevoet, T., (eds.) 17th Workshop on Algo-
rithmic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS). OpenAccess Series in Informatics (OASIcs), vol. 59, pp. 15:1–15:14.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2017)

10. Jensen, C.K., Chiarandini, M., Larsen, K.S.: Flight planning in free route airspaces.
In: D’Angelo, G., Dollevoet, T., (eds.) 17th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS). OpenAccess
Series in Informatics (OASIcs), vol. 59, pp. 14:1–14:14. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2017)

http://arxiv.org/abs/1504.05140
https://doi.org/10.1007/978-3-319-66158-2_23

Juniper: An Open-Source Nonlinear
Branch-and-Bound Solver in Julia

Ole Kröger(B), Carleton Coffrin, Hassan Hijazi, and Harsha Nagarajan

Los Alamos National Laboratory, Los Alamos, NM, USA
o.kroeger@wikunia.de

Abstract. Nonconvex mixed-integer nonlinear programs (MINLPs)
represent a challenging class of optimization problems that often arise
in engineering and scientific applications. Because of nonconvexities,
these programs are typically solved with global optimization algorithms,
which have limited scalability. However, nonlinear branch-and-bound has
recently been shown to be an effective heuristic for quickly finding high-
quality solutions to large-scale nonconvex MINLPs, such as those arising
in infrastructure network optimization. This work proposes Juniper, a
Julia-based open-source solver for nonlinear branch-and-bound. Leverag-
ing the high-level Julia programming language makes it easy to modify
Juniper’s algorithm and explore extensions, such as branching heuris-
tics, feasibility pumps, and parallelization. Detailed numerical experi-
ments demonstrate that the initial release of Juniper is comparable with
other nonlinear branch-and-bound solvers, such as Bonmin, Minotaur,
and Knitro, illustrating that Juniper provides a strong foundation for
further exploration in utilizing nonlinear branch-and-bound algorithms
as heuristics for nonconvex MINLPs.

1 Introduction

Many of the optimization problems arising in engineering and scientific disci-
plines combine both nonlinear equations and discrete decision variables. Notable
examples include the blending/pooling problem [1,2] and the design and opera-
tion of power networks [3–5] and natural gas networks [6]. All of these problems
fall into the class of mixed-integer nonlinear programs (MINLPs), namely,

minimize: f(x, y)
s.t.
gc(x, y) ≤ 0 ∀c ∈ C
x ∈ R

m, y ∈ Z
n

(MINLP)

where f and g are twice continuously differentiable functions and x and y rep-
resent real and discrete valued decision variables, respectively [7]. Combining
nonlinear functions with discrete decision variables makes MINLPs a broad and
challenging class of mathematical programs to solve in practice. To address this

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 377–386, 2018.
https://doi.org/10.1007/978-3-319-93031-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_27&domain=pdf

378 O. Kröger et al.

challenge, algorithms have been designed for special subclasses of MINLPs, such
as when f and g are convex functions [8,9] or when f and g are nonconvex
quadratic functions [10,11]. For generic nonconvex functions, global optimiza-
tion algorithms [12–15] are required to solve MINLPs with a proof of optimality.
However, the scalability of such algorithms is limited and remains an active area
of research. Although global optimization algorithms have been widely successful
at solving industrial MINLPs with a few hundred variables, their limited scala-
bility precludes application to larger real-world problems featuring thousands of
variables and constraints, such as AC optimal transmission switching [16].

One approach to addressing the challenge of solving large-scale industrial
MINLPs is to develop heuristics that attempt to quickly find high-quality feasi-
ble solutions without guarantees of global optimality. To that end, it has been
recently observed that nonlinear branch-and-bound (NLBB) algorithms can be
effective heuristics for the nonconvex MINLPs arising in infrastructure systems
[4–6] and that they present a promising avenue for solving such problems on
real-world scales. To the best of our knowledge, Bonmin and Minotaur are
the only open-source solvers that implement NLBB for the most general case
of MINLP, which includes nonlinear expressions featuring transcendental func-
tions. Both Bonmin and Minotaur provide optimized high-performance C++
implementations of NLBB with a focus on convex MINLPs.

The core contribution of this work is Juniper, a minimalist implementa-
tion of NLBB that is designed for rapid exploration of novel NLBB algorithms.
Leveraging the high-level Julia programming language makes it easy to mod-
ify Juniper’s algorithm and explore extensions, such as branching heuristics,
feasibility pumps, and parallelization. Furthermore, the solver abstraction layer
provided by JuMP [17] makes it trivial to change the solvers used internally by
Juniper’s NLBB algorithm. Detailed numerical experiments on 300 challenging
MINLPs are conducted to validate Juniper’s implementation. The experiments
demonstrate that the initial release of Juniper has comparable performance
to other established NLBB solvers, such as Bonmin, Minotaur, and Knitro,
and that Juniper finds high-quality solutions to problems that are challenging
for global optimization solvers, such as Couenne and Scip. These results illus-
trate that Juniper’s minimalist implementation provides a strong foundation
for further exploration of NLBB algorithms for nonconvex MINLPs.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of the NLBB algorithms. Section 3 introduces the Juniper NLBB
solver. The experimental validation is conducted in Sect. 4, and Sect. 5 concludes
the paper.

2 The Core Components of Nonlinear Branch-and-Bound

To provide context for Juniper’s implementation, we begin by reviewing the core
components of an NLBB algorithm. NLBB is a natural extension of the well-
known branch-and-bound algorithm for mixed-integer linear programs (MIPs)
to MINLPs. The algorithm implicitly represents all possible discrete variable

Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia 379

assignments in a MINLP by a decision tree that is exponential in size. The algo-
rithm then searches through this implicit tree (i.e., branching), looking for the
best assignment of the discrete variables and keeping track of the best feasi-
ble solution found thus far, the so-called incumbent solution. At each node in
the tree, the partial assignment of discrete variables is fixed and the remaining
discrete variables are relaxed to continuous variables, resulting in a nonlinear
program (NLP) that can be solved using an established solver, such as Ipopt

[18]. If the solution to this NLP is globally optimal, then it provides a lower
bound to the MINLP’s objective function, f(x, y). Furthermore, if this NLP
bound is worse than the best solution found thus far, then the NLP relaxation
proves that the children of the given node can be ignored. If this algorithm is
run to completion, it will provide the globally optimal solution to the MINLP.
However, if the MINLP includes nonconvex constraints, the NLP solver provides
only local optimality guarantees, and the NLBB algorithm will be only a heuris-
tic for solving the MINLP. The key to designing this kind of NLBB algorithm
is to develop generic strategies that find feasible solutions quickly and direct the
tree search toward higher-quality solutions. We now briefly review some of the
core approaches to achieve these goals.

Branching Strategy: In each node of the search tree, the branching strategy
defines the order in which the children (i.e., variable/value pairs) of that node
should be explored. The typical branching strategies are (1) most infeasible,
which branches on the variables that are farthest from an integer value in the
NLP relaxation; (2) pseudo cost, which tracks how each variable affects the
objective function during search and then prioritizes variables with the best
historical record of improving the objective value [19]; (3) strong, which tests
all branching options by brute-force enumeration and then takes the branch
with the most promising NLP relaxation [20]; and (4) reliability, which uses a
threshold parameter to limit strong branching to a specified amount of times for
each variable [21].

Traversal Strategy: At any point during the tree search there are a number of
open nodes that have branches that remain to be explored. The traversal strat-
egy determines how the next node will be selected for exploration. The typical
traversal strategies include (1) depth first, which explores the most recent open
node first; and (2) best first, which explores the open node with the best NLP
bound first. The advantage of depth first search is that it only requires a mem-
ory overhead that is linear in the number of discrete variables. In contrast, best
first search results in the smallest number of nodes explored but can consume
an exponential amount of memory.

Incumbent Heuristics: In some classes of MINLPs, finding an initial feasible
solution can be incredibly difficult, and the NLBB algorithm can spend a pro-
hibitive amount of time in unfruitful parts of the search tree. Running dedicated
feasiblity heuristics at the root of the search tree is often effective in mitigating
this issue. The most popular such heuristic is the feasibility pump, which is a

380 O. Kröger et al.

fixed-point algorithm that alternates between solving an NLP relaxation of the
MINLP for assigning the continuous variables and solving a MIP projection of
the NLP solution for assigning the discrete variables [22,23].

Code Block 1 Installing and Solving a MINLP with JuMP and Juniper
Pkg.add("JuMP"); Pkg.add("Ipopt"); Pkg.add("Cbc"); Pkg.add("Juniper")

using JuMP, Ipopt, Cbc, Juniper

ipopt = IpoptSolver(print_level=0); cbc = CbcSolver()

m = Model(solver=JuniperSolver(ipopt, mip_solver=cbc))

v = [10,20,12,23,42]; w = [12,45,12,22,21]

@variable(m, 0 <= x[1:5] <= 10, Int)

@objective(m, Max, dot(v,x))

@constraint(m, sum(x[i] for i=1:5) <= 6)

@NLconstraint(m, sum(w[i]*x[i]^2 for i=1:5) <= 300)

status = solve(m); getvalue(x)

Relaxation Restarts: In traditional branch-and-bound algorithms, the continuous
relaxation is convex and guaranteed to converge to the global optimum or prove
that the relaxation is infeasible. However, in the case of nonconvex MINLPs, a
local NLP solver provides no such guarantees. Thus, it can be advantageous to
restart the NLP solver from a variety of different starting points in the hopes of
improving the lower bound or finding a feasible solution [8,24].

3 The Juniper Solver

The motivation for developing Juniper [25] is to provide relatively simple and
compact implementation of NLBB so that a wide variety of algorithmic modi-
fications can be explored in the pursuit of developing novel heuristics for non-
convex MINLPs. To that end, Julia is a natural choice for the implementation
for two reasons: (1) Julia provides high-level programming, similar to Matlab
and Python, that is preferable for rapid prototyping; and (2) the mathematical
programming package JuMP [17] provides an AMPL-like modeling layer, which
makes it easy to state MINLP problems, and a solver abstraction layer, which
makes a wide range of NLP and MIP solvers available for use in Juniper. To
demonstrate these properties, Code Block 1 provides a simple Julia v0.6 exam-
ple illustrating the software installation, stating a JuMP v0.18 MINLP model,
and solving it with Juniper. In this example, the NLP solver Ipopt is used for
solving the continuous relaxation subproblems and the MIP solver Cbc is used
in the feasibility pump heuristic.

From Code Block 1, it is clear how Juniper can be reconfigured to use dif-
ferent NLP and MIP solvers at runtime. As is typical for solvers, Juniper also
features a wide variety of parameters for augmenting the NLBB algorithm. These

Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia 381

include options for selecting the branching strategy, tree traversal strategy, feasi-
bility pump, parallelized tree search, and numerical tolerances, among others. A
complete list of algorithm parameters is available in Juniper’s documentation.
After rigorous testing on hundreds of MINLP problems, the following default
settings were identified: Strong branching is performed at the root node, and
pseudo-cost branching is used afterward. Typically, complete strong branching
is conducted; however, if the NLP runtime combined with the number of branches
will require more than 100 s, the number of branches explored is reduced to meet
this time limit. If the NLP relaxation fails in the root node, it will be restarted
up to three times. Best first search is used for exploring the decision tree, and
the runtime of the feasibility pump is limited to 60 s.

4 Experimental Evaluation

This section conducts a detailed numerical study of Juniper’s performance
under a variety of configurations and compares its performance to established
MINLP solvers. Five points of comparison were considered for solving MINLPs.
Bonmin v1.8 [8], Minotaur v0.2 [26], and Knitro v10.3 [24] were included
as alternative NLBB implementations, whereas Couenne v0.5 [13] and Scip

v5.0 [10,27] were used for a global optimization reference. All of the open-source
solvers utilize Ipopt v3.12 [18] compiled with HSL [28] for solving NLP sub-
problems and their respective default LP and MIP solvers. All of the solvers,
except Juniper, were accessed through their AMPL NL file interface. All of
the computations were conducted on a cluster of HPE ProLiant XL170r servers
featuring two Intel 2.10 GHz 16 Core CPUs and 128 GB of memory. All solvers
were configured with an optimality gap of 0.01% and a runtime limit of 1 h. It
is important to note that Julia’s JIT takes around 3–10 s the first time Juniper

is run; this time is not reflected in the runtime results.

MINLP Problem Selection: The first step in performing this evaluation is to
select an appropriate collection of MINLP test problems. We began with 1500
MINLP problems from MINLPLIB2 [29], which are available in Julia via the
MINLPLibJuMP package [30]. Second, all of the problems with no discrete
variables or fewer than ten constraints were eliminated, resulting in about 700
problems that focus on the constrained mixed-integer problems that Juniper is
intended for. Through a preliminary study, it was observed that more than half
of these cases are solved to global optimality or are proven to be infeasible by
Scip or Couenne in less than 60 s, suggesting that these are relatively easy cases
for state-of-the-art global optimization methods and that they are not of interest
to this work. The final collection of test problems consists of 298 MINLPs that
are challenging for both NLBB and global optimization solvers.

Solver Comparison: The first and foremost goal is to demonstrate that
Juniper has comparable computational performance to Bonmin and Mino-

taur. Figure 1 (top) provides an overview of the runtime for each solver to

382 O. Kröger et al.

Fig. 1. Runtime profiles on 298 instances for all different solvers (top) using different
MIP solvers (bottom left) and parallelized tree search (bottom right).

complete its tree search procedure. This figure highlights two key points: (1)
Juniper is slower for small models that can be solved in less than 30 s; however,
it consistently solves more models after 30 s; and (2) the search completes in no
more than 50% of the cases considered, demonstrating that the selected MINLP
instances present challenging tree search problems for both the NLBB and global
optimization solvers.

Table 1 provides further details on the performance of each solver, including
problem sizes, objective gaps from the best-known solution, and runtime results.
The table begins with summary statistics. The first row shows the number of
feasible solutions found by each solver as well as the number of test cases where
the runtime limit was reached. The following three rows show the average opti-
mality gaps and runtime for each solver. The first average is for all instances
where the specific solver was able to find a feasible solution. The second average
is for instances where all six solvers were able to find feasible solutions. The third
average is for instances where all four NLBB solvers were able to find feasible
solutions. These summary results indicate two key points: (1) Juniper is one
of the most robust solvers (only Scip had a higher feasible solution count); and
(2) for cases where all NLBB algorithms have feasible solutions, Bonmin has the

Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia 383

T
a
b
le

1
.
Q

u
a
li
ty

a
n
d

ru
n
ti

m
e

re
su

lt
s

fo
r

va
ri

o
u
s

in
st

a
n
ce

s

384 O. Kröger et al.

highest solution quality, and Juniper, Minotaur, and Knitro have similar
quality, on average. The remaining rows in the table provide a representative
sample of the 298 problems considered. The first five columns describe each
problem by name, number of variables V , number of constraints C, number of
discrete variables I, and number of nonlinear constraints NC. The general trends
are summarized as follows: (1) there is a great diversity among which solver is the
best on the MINLP instances considered; and (2) in most cases, the solutions
found by the NLBB solvers tie or improve those found by the global solvers;
however, there are a few notable cases where global solvers find the best solu-
tions. Overall, these results indicate that Juniper in its default configuration is
comparable with the NLBB solvers considered here.

Subsolver Selection: One of the key features of Juniper is that it can use dif-
ferent solvers for the NLP relaxation and for the MIP aspect of the feasibility
pump heuristic. Figure 1 (bottom left) shows a performance profile for a number
of subsolver variants of Juniper, both with and without a MIP solver (i.e., Glpk

[31], Cbc [32], Gurobi [33]), as indicated by Juniper-ipopt. Juniper-Knitro-
Cbc shows the result of using Knitro as the NLP solver instead of Ipopt. The
runtime difference between using the feasibility pump and using no heuristic is
quite notable in some cases; however, given sufficient time, Juniper solves a
similar number of cases even without a feasibility pump. To our surprise, there
was little difference in using Cbc as the MIP solver compared to using Gurobi,
suggesting that Cbc is a suitable default solver. We also observed that Glpk is
not a suitable choice because it was typically unable to terminate in less than
60 s, which is the preferred feasibility pump time limit.

Parallel Tree Search: A key feature of Julia is native and easy-to-use support
for parallel processing. Juniper leverages this capability to implement a parallel
tree search algorithm. Figure 1 (bottom right) illustrates the benefits from this
simple parallelization of the algorithm, where the first thread orchestrates the
computation and all additional worker threads process open nodes in the search
tree. The figure indicates that having two worker threads (instead of using the
sequential algorithm) is about 1.7 times faster and having four worker threads is
about 3.3 times faster. The difference between eight and sixteen worker threads
is not that notable (both increase speed by around 5.8 times).

5 Conclusion

This work has highlighted the potential for leveraging NLBB algorithms as
heuristics for solving challenging nonconvex MINLPs. To assist in the design
of such algorithms, a new Julia-based solver, Juniper, is proposed as the base
implementation for future exploration in this area. A detailed experimental study
demonstrated that, despite its minimalist implementation, Juniper performs
comparably to established NLBB solvers on the class of MINLPs for which it
was designed. We hope that Juniper will provide the community with a valuable
reference implementation for collaborative open-source research on heuristics for
large-scale nonconvex MINLPs.

Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia 385

References

1. Audet, C., Brimberg, J., Hansen, P., Digabel, S.L., Mladenovic, N.: Pooling prob-
lem: alternate formulations and solution methods. Manage. Sci. 50(6), 761–776
(2004)

2. Trespalacios, F., Kolodziej, S.P., Furman, K.C., Sawaya, N.W.: Multiperiod blend
scheduling problem. Cyber Infrastructure for MINLP, June 2013. www.minlp.org/
library/problem/index.php?i=168

3. Jabr, R.A.: Optimization of AC transmission system planning. IEEE Trans. Power
Syst. 28(3), 2779–2787 (2013)

4. Coffrin, C., Hijazi, H.L., Lehmann, K., Hentenryck, P.V.: Primal and dual bounds
for optimal transmission switching. In: 2014 Power Systems Computation Confer-
ence, pp. 1–8, August 2014

5. Coffrin, C., Hijazi, H.L.: Heuristic MINLP for optimal power flow problems. In:
2014 IEEE Power & Energy Society General Meetings (PES) Application of Mod-
ern Heuristic Optimization Algorithms for Solving Optimal Power Flow Problems
Competition (2014)

6. Borraz-Sanchez, C., Bent, R., Backhaus, S., Hijazi, H., Hentenryck, P.V.: Convex
relaxations for gas expansion planning. INFORMS J. Comput. 28(4), 645–656
(2016)

7. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-
integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)

8. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird,
C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2),
186–204 (2008). In memory of George B. Dantzig

9. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended formulations in mixed-
integer convex programming. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016.
LNCS, vol. 9682, pp. 102–113. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33461-5 9

10. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009)

11. Bonami, P., Gunluk, O., Linderoth, J.: Solving box-constrained nonconvex
quadratic programs (2016). http://www.optimization-online.org/DB HTML/201
6/06/5488.html

12. Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization. J.
Global Optim. 8(2), 107–138 (1996)

13. Belotti, P.: Couenne: user manual (2009). https://projects.coin-or.org/Couenne/.
Accessed 04 Oct 2015

14. Nagarajan, H., Lu, M., Wang, S., Bent, R., Sundar, K.: An adaptive, multivari-
ate partitioning algorithm for global optimization of nonconvex programs. arXiv
preprint arXiv:1707.02514 (2017)

15. Nagarajan, H., Lu, M., Yamangil, E., Bent, R.: Tightening McCormick relaxations
for nonlinear programs via dynamic multivariate partitioning. In: Rueher, M. (ed.)
CP 2016. LNCS, vol. 9892, pp. 369–387. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44953-1 24

16. Sahraei-Ardakani, M., Korad, A., Hedman, K.W., Lipka, P., Oren, S.: Performance
of AC and DC based transmission switching heuristics on a large-scale polish sys-
tem. In: 2014 IEEE PES General Meeting—Conference Exposition, pp. 1–5, July
2014

www.minlp.org/library/problem/index.php?i=168
www.minlp.org/library/problem/index.php?i=168
https://doi.org/10.1007/978-3-319-33461-5_9
https://doi.org/10.1007/978-3-319-33461-5_9
http://www.optimization-online.org/DB_HTML/2016/06/5488.html
http://www.optimization-online.org/DB_HTML/2016/06/5488.html
https://projects.coin-or.org/Couenne/
http://arxiv.org/abs/1707.02514
https://doi.org/10.1007/978-3-319-44953-1_24
https://doi.org/10.1007/978-3-319-44953-1_24

386 O. Kröger et al.

17. Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical
optimization. SIAM Rev. 59(2), 295–320 (2017)

18. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Math. Program.
106(1), 25–57 (2006)

19. Benichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.:
Experiments in mixed-integer linear programming. Math. Program. 1(1), 76–94
(1971)

20. Applegate, D., Bixby, R., Chvatal, V., Cook, B.: Finding cuts in the TSP (a pre-
liminary report). Technical report (1995)

21. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett.
33(1), 42–54 (2005)

22. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1),
91–104 (2005)

23. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: A storm of feasibility pumps
for nonconvex MINLP. Math. Program. 136(2), 375–402 (2012)

24. Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: an integrated package for nonlin-
ear optimization. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimiza-
tion. Nonconvex Optimization and Its Applications, vol. 83, pp. 53–59. Springer,
Boston (2006). https://doi.org/10.1007/0-387-30065-1 4

25. Kröger, O., Coffrin, C., Hijazi, H., Nagarajan, H.: Juniper (2017). https://github.
com/lanl-ansi/Juniper.jl. Accessed 14 Dec 2017

26. Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: Minotaur: a
mixed-integer nonlinear optimization toolkit (2017)

27. Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R.L.,
Hendel, G., Hojny, C., Koch, T., Miltenberger, M., Müller, B., Pfetsch, M.E.,
Puchert, C., Rehfeldt, D., Schlösser, F., Serrano, F., Shinano, Y., Viernickel, J.M.,
Vigerske, S., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite
5.0. Technical report 17–61, ZIB, Takustr. 7, 14195 Berlin (2017)

28. Research Councils UK: The HSL mathematical software library. http://www.hsl.
rl.ac.uk/. Accessed 30 Oct 2017

29. Vigerske, S.: MINLP Library 2 (2017). http://www.gamsworld.org/minlp/minlpl
ib2/html/. Accessed 17 Dec 2017

30. Wang, S.: MINLPLibJuMP (2017). https://github.com/lanl-ansi/MINLPLibJu
MP.jl. Accessed 14 Dec 2017

31. Free Software Foundation Inc.: GNU linear programming kit (2017). https://www.
gnu.org/software/glpk/

32. The COIN-OR Foundation: COIN-OR CBC (2017). https://projects.coin-or.org/
Cbc

33. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2014). http://www.
gurobi.com

https://doi.org/10.1007/0-387-30065-1_4
https://github.com/lanl-ansi/Juniper.jl
https://github.com/lanl-ansi/Juniper.jl
http://www.hsl.rl.ac.uk/
http://www.hsl.rl.ac.uk/
http://www.gamsworld.org/minlp/minlplib2/html/
http://www.gamsworld.org/minlp/minlplib2/html/
https://github.com/lanl-ansi/MINLPLibJuMP.jl
https://github.com/lanl-ansi/MINLPLibJuMP.jl
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
http://www.gurobi.com
http://www.gurobi.com

Objective Landscapes for Constraint
Programming

Philippe Laborie(B)

IBM, 9 rue de Verdun, 94250 Gentilly, France
laborie@fr.ibm.com

Abstract. This paper presents the concept of objective landscape in the
context of Constraint Programming. An objective landscape is a light-
weight structure providing some information on the relation between
decision variables and objective values, that can be quickly computed
once and for all at the beginning of the resolution and is used to guide the
search. It is particularly useful on decision variables with large domains
and with a continuous semantics, which is typically the case for time or
resource quantity variables in scheduling problems. This concept was
recently implemented in the automatic search of CP Optimizer and
resulted in an average speed-up of about 50% on scheduling problems
with up to almost 2 orders of magnitude for some applications.

Keywords: Constraint Programming · Scheduling · Search
Optimization

1 Introduction

Motivations. A recognized weakness of Constraint Programming (CP) for solv-
ing combinatorial optimization problems (when compared to Mixed Integer Lin-
ear Programming for instance) is the lack of a global vision of the problem and
in particular of the influence of decision variables on the objective function.

This paper presents the concept of objective landscape in the context of CP.
The purpose of objective landscapes is to capture some information on the rela-
tion between decision variables and objective values. They help answering ques-
tions like: How much does a given decision variable contribute to the cost? What
is the impact on the cost of modifying the value of a variable? What is the ideal
value of a variable with respect to the cost function? An objective landscape is
a light-weight structure that can be quickly computed once and for all at the
beginning of the resolution by exploiting constraint propagation and is used to
guide the search. It is particularly useful on decision variables with large domains
and with a continuous semantics, which is typically the case for time or resource
quantity variables in scheduling problems.

Although validated mostly on scheduling problems, the concept is generic and
in this paper we consider a general combinatorial optimization problem defined
as:
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 387–402, 2018.
https://doi.org/10.1007/978-3-319-93031-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_28&domain=pdf

388 P. Laborie

minimize f(x)
subject to c(x, y)

Variables x = [x1, ..., xn], y = [y1, ..., ym] are decision variables. The objec-
tive function f functionally depends on a subset of decision variables x that we
will call objective decision variables.1

Comparison with Existing Approaches. The idea of measuring the inter-
actions between variables and objective function is not new in CP. Impact-based
search (Ibs) [12] incrementally maintains during the search an impact measure-
ment for each possible variable assignment (xi = a) that estimates the impact
of the assignment on the other variables domain. In Activity-based search (Abs)
[8], the activity of an assignment (xi = a) estimates the number of affected vari-
ables when it is propagated. As we will see, objective landscapes share a common
feature with the above techniques in that they are computed by exploiting con-
straint propagation. But there is also a number of differences:

– In Ibs, impacts on cost are measured by modifying the domain of a variable xi

and measuring its impact on the cost whereas objective landscapes work the
other way round: it modifies the bounds of the cost function and measures
the impact on the variables xi.

– Impacts and activity measurements are mostly designed for discrete variables
with reasonably small domains whereas objective landscapes were initially
designed for continuous domains: their complexity does not depend on domain
size.

– Impacts are continuously updated during the search and are based on some
averaging assumption whereas objective landscapes are computed once and for
all at the beginning of the search and make some kind of optimistic assumption
about the values of variables.

Objective landscapes differ from the cost-based solution densities introduced
in [11] in that (1) they are parameter-free (no parameter ε related with the
optimality corridor), (2) they do not require specific (and potentially complex)
computation algorithms for each constraint, (3) they can scale to large domain
size with almost no computational overhead and (4) they estimate the impact
of a variable’s value on the cost rather than on the number of solutions.

Some approaches in CP use a linear relaxation of the problem to guide the
search with a more global view on the objective. In [1], a linear relaxation (Lr)
of a sub-problem using only objective decision variables is solved at each search
node and the solution of this relaxation is used to guide the search. In [9] the
Lr is computed with specific algorithms and integrated in a global constraint.
The automatic search of CP Optimizer also uses a Lr of the problem at the
root node of each Large Neighborhood Search move [7]. As we will see, objective
landscapes differ from Lr in several points:
1 The distinction between objective decision variables x and the other variables y

clearly depends on the formulation of the problem and may be considered as a bit
arbitrary. This will be discussed in Sect. 7.

Objective Landscapes for Constraint Programming 389

– Lr does not give the contribution of different values of a variable to the cost
whereas objective landscapes do (in a certain sense).

– Lr heavily exploits the constraints of the problem (their linearization) and is
usually computed several times during the search whereas objective landscapes
focus on the cost function only and are computed once and for all.

– Lr needs to convexify the objective function f(x) whereas objective landscapes
make less assumption about the convexity of objective terms and are related
to the more general notion of quasiconvexity.

– Lr needs building and solving a linear program or running specific algorithms
whereas objective landscapes are much lighter to compute and exploit.

Example. All along the paper we will use a flow-shop scheduling problem with
earliness-tardiness cost inspired from [10] for illustration. Using the scheduling
concepts of CP Optimizer, an instance of this problem for n jobs and m machines
can be formulated with a set of interval variables oi,j of fixed length (processing
time), one for each operation, as follows:

minimize
n∑

i=1

endEval(oi,m, ETi)

subject to endBeforeStart(oi,j , oi,j+1) ∀i ∈ [1, n],∀j ∈ [1,m − 1]
noOverlap({oi,j}i∈[1,n]) ∀j ∈ [1,m]

In the formulation above, ETi is a piecewise linear function representing the
earliness-tardiness cost for finishing job i at a date t as illustrated on Fig. 1. In
this example, objective decision variables are the end values of interval variables
oi,m representing the last operation of job i.

t
0
0 RDi DDi

ETi

Earliness

Tardinesscost

Fig. 1. Example of earliness-tardiness cost function

Paper Organization. Objective landscapes are formally defined in Sect. 2
whereas Sect. 3 presents some of their properties. From a more practical point of
view, Sects. 4 and 5 respectively describe how landscapes can be computed and
exploited to guide the search. Objective landscapes have been implemented in
CP Optimizer (in version 12.7.1). Section 6 presents an experimental study on a
large number of scheduling problems showing the practical interest of landscapes.

390 P. Laborie

2 Objective Landscape Definition

We consider a general combinatorial optimization problem defined as:

minimize z = f(x)
subject to c(x, y)

With x = [x1, ..., xn], y = [y1, ..., ym]. Let xi be a decision variable and S a
feasible solution to the problem, we denote:2

– Di the initial domain of variable xi

– D = D1 × ... × Dn

– XL
i a lower bound on the value of variable xi

– XU
i an upper bound on the value of variable xi

– XS
i the value of variable xi in solution S

– ZL a lower bound on the objective function f
– ZU an upper bound on the objective function f .

Let xi be an objective variable, we define function f∗
i : Di → R such that

f∗
i (v) denotes the optimal objective value one can obtain when xi = v if one

only considers the objective function f . That is:

f∗
i (v) = min

x∈D s.t. xi=v
f(x)

Value f∗
i (v) gives, in a certain sense, the contribution of the assignment

xi = v to the cost under the optimistic assumption that all the other variables
xj,j �=i are fixed to values minimizing their overall contribution to the cost.

The idea of objective landscapes is to build, for each decision variable xi, a
function that approximates f∗

i and that we will call the objective landscape of
variable xi.

We suppose the existence of a given propagation algorithm P that is able to
propagate constraints like f(x) ≤ z in order to reduce the domain of variables xi.
It is important to note that in the context of landscapes, propagation algorithm
P ignores the constraints of the problem c(x, y). We suppose that propagation
algorithm P is monotonous (if z′ < z, the propagation of f(x) ≤ z′ does not
lead to larger domains for variables xi than the propagation of f(x) ≤ z) and,
of course, that it is sound (it does not remove feasible values). Let xi be an
objective variable, we define:3

– ZL the smallest value of z ∈ R such that the propagation of objective cut
f(x) ≤ z does not fail

– XL
i (z) for z ≥ ZL as the lower bound on variable xi obtained after the

propagation of an objective cut f(x) ≤ z

2 Through the paper, we use lower cases for variables and upper cases for constants.
3 By abuse of notation, as P is supposed to be given, we do not use it in the notations

of these bounds although they clearly depend on the propagation algorithm.

Objective Landscapes for Constraint Programming 391

– XU
i (z) for z ≥ ZL as the upper bound on variable xi obtained after the

propagation of an objective cut f(x) ≤ z.

Clearly, by monotonicity of the propagation, for any z ≥ ZL, XL
i (z) (resp.

XU
i (z)) is a non-increasing (resp. non-decreasing) function of z and XL

i (z) ≤
XU

i (z). An example of these two functions is shown on the left part of Fig. 2.
Informally speaking, the objective landscape function of an objective variable

xi is a function Li whose graph is the 90◦ rotate of the union of the graphs of
the two functions XL

i (z) and XU
i (z), as illustrated on the right part of Fig. 2.

Objective landscapes can now be defined more formally.

ZL

XL
i (z)

XU
i (z)

Objective upper bound z

Range of variable xi

ZL

Landscape function
Li(xi)

Variable xi

Objective value

Fig. 2. Left: decision variable ranges as a function of objective upper-bound z. Right:
objective landscape function of an objective variable xi

Definition 1 (Objective landscape). Given a propagation algorithm P, the
objective landscape function of an objective variable xi is a function Li :
Di → [ZL,+∞) defined as follow:

– For v ∈ [XL
i (ZL),XU

i (ZL)] : Li(v) = ZL

– For v < XL
i (ZL) : Li(v) = min {z | XL

i (z) ≤ v}
– For v > XU

i (ZL) : Li(v) = min {z | XU
i (z) ≥ v}.

3 Objective Landscape Properties

We first recap the notion of a quasiconvex function [3].

Definition 2 (Quasiconvex function). A function f : S → R defined on a
convex subset S of a real vector space is quasiconvex if for all x, y ∈ S and
λ ∈ [0, 1] we have f(λx + (1 − λ)y) ≤ max

{
f(x), f(y)

}
.

Informally, along any stretch of the curve the highest point is one of the
endpoints. Examples of quasi convex and non-quasiconvex functions are shown
on Fig. 3.

We can now present some properties of objective landscapes.

392 P. Laborie

−10 −5 0 5 10

0

1

2

3
Function is quasiconvex

(but not convex)

−2 −1 0 1 2

−2

0

2

Function is not quasiconvex

Fig. 3. Examples of quasi convex and non-quasiconvex functions

Proposition 1 (Quasiconvexity of landscape functions). For any objec-
tive variable xi, landscape function Li is quasiconvex.

Proof. Proof is a direct consequence of the fact XL
i (z) (resp. XU

i (z)) is a non-
increasing (resp. non-decreasing) function of z and XL

i (z) ≤ XU
i (z). �	

Proposition 2 (Landscape functions as lower bounds). For any objective
variable xi, Li ≤ f∗

i .

Proof. Proof is a direct consequence of the soundness of propagation. �	
Definition 3 (Exact landscape function). A landscape function Li for an
objective variable xi is said to be exact if and only if Li = f∗

i .

The proposition below gives a sufficient condition for a landscape function
to be exact.

Proposition 3. If function f∗
i is quasiconvex and if the propagation of f(x) ≤ z

performs bound-consistency on variables x then Li is exact.

Proof. By Property 2, we know Li ≤ f∗
i . The proof that f∗

i ≤ Li exploits
bound-consistency (and quasiconvexity of f∗

i where bounding functions XL
i (z)

and XU
i (z) are discontinuous). See Appendix for details. �	

Proposition 3 is interesting because its condition holds in many practical
cases. In particular, it holds as soon as the objective function is an aggregation
Θn

i=1

(
fi(xi)

)
(where Θ is a sum, min, max, or product of non-negative terms) of

individual quasiconvex terms fi(xi) as it is easy for these expressions to provide
a bound-consistent propagation algorithm. The flow-shop scheduling problem
with earliness-tardiness cost presented in the introduction is clearly an example
as soon as the earliness-tardiness cost function is quasiconvex like the one on
Fig. 1. Note that on this example, as the minimal value of the cost functions ETi

is 0, the landscape function Li of a job i is exactly its earliness-tardiness cost
function ETi.

In fact we can also show that the condition of Proposition 3 is a necessary
condition leading to the following theorem that characterizes exact landscapes.

Objective Landscapes for Constraint Programming 393

Theorem 1 (Characterization of exact landscapes). A landscape function
Li is exact if and only if function f∗

i is quasiconvex and the propagation of
f(x) ≤ z performs bound-consistency on variables x.

Proof. Proof combines Propositions 1 and 3 and the fact that if propagation does
not perform bound-consistency, one can easily exhibit cases where Li(v) > f∗

i (v)
for a given v. �	

It is important to keep in mind that objective landscapes are used as a
heuristic to guide the search so in practice, even if the conditions of Theorem 1
are not met, the landscape functions can still convey some relevant information
and be useful. This is in particular the case when the same variable xi appears
several time in the formulation of objective function f so that the propagation
algorithm is not guaranteed to achieve bound consistency.

4 Objective Landscape Computation

Principles of the Computation. Given a range [ZL, ZU] for the objective
function, coming for instance from the propagation at the root node, a simple
way of computing landscape functions consists in discretizing the objective values
by selecting m values in the domain z1 = ZU > z2 > · · · > zj > · · · > zm−1 >
zm = ZL and recording the bounds XL

i (zj) and XU
i (zj) for each variable xi

as shown in Algorithm 1. Note that the objective bounds zj are traversed by
decreasing value so, by propagation monotony, the domains of variables xi will
only decrease and no reversibility/backtrack is needed.

Algorithm 1. Objective landscapes basic computation
1: for j in 1...m do
2: propagate(f(x) ≤ zj)
3: for i in 1...n do
4: XL

i (zj) ← current lower bound of xi

5: XU
i (zj) ← current upper bound of xi

The discretized values of the objective landscape functions computed in Algo-
rithm 1 can be interpolated by a linear approximation or by a lower bounding
step function that would preserve the lower bound property of Proposition 2.

It is of course important to select some objective values zj that are repre-
sentative of the values explored during the search. In a minimization problem,
we can expect that small objective values are more useful than large ones, this
is why in our implementation in CP Optimizer we decided to use a logarith-
mic scheme. More precisely, before the model is actually solved (see [6] for an
overview of the automatic search), the landscape computation step extracts only
the objective function f(x) and performs mLOG logarithmic steps of Algorithm 1
using zj = ZU−ZL

2j−1 +ZL. It records the first objective value Z = zj in the descent

394 P. Laborie

such that the next one (zj+1) has an impact on the bounds of some variable xi

and then performs a new run of Algorithm 1, this time with a linear sampling
with mLIN steps of interval [ZL, Z]. This process is illustrated on Fig. 4.

L
og

sa
m
pl
in
g

ZU

Z

ZL

L
in
ea
r

sa
m
pl
in
g

Fig. 4. Objective landscape computation

Complexity. In practice, just a few tens of points (value m in Algorithm 1) are
needed to represent a landscape function Li with sufficient precision. The land-
scape function structure can be as simple as an array of pairs [vj , Li(vj)]j∈[1...m]

and estimating its value Li(v) for a given v can be performed in O(log(m))
with a binary search. The algorithmic cost of computing the landscapes is in
O(m(n + p)) if n is the number of objective variables and p the cost of propa-
gating an objective upper bound f(x) ≤ z. This is negligible compared to the
typical resolution time of the optimization problem.

Examples. Some examples of computed objective landscapes using a linear
interpolation are illustrated on Figs. 5, 6, 7 and 8. On these figures, each function
describes the landscape of a decision variable of the problem. Note that in these
problems, objective decision variables are time variables (start/end of a time
interval or temporal delay on a precedence constraint).

– On Fig. 5 the problem is a one-machine problem with V-shape earliness-
tardiness costs and a common due date for all activities [2]. We see that
the common due date (actual value is 2171 on this instance) as well as the
different weights for the earliness-tardiness costs are effectively captured by
the landscapes.

– On Fig. 6 the problem is the flow-shop scheduling with earliness-tardiness cost
of our example with some particular V-shape costs, we observe in particular
the different due-dates of the jobs.

– Fig. 7 illustrates a semiconductor manufacturing scheduling problem
described in [4] whose objective function is the weighted sum of two types
of cost: some weighted completion times of jobs (the linear functions) and
some delays on precedence constraints between operations that incur a large
quadratic cost.

Objective Landscapes for Constraint Programming 395

– On Fig. 8 the problem is a resource-constrained project scheduling problem
with maximization of net present value [13]. The landscape functions clearly
distinguish between the tasks with positive cash flow (increasing landscape
function) and the ones with negative one (decreasing landscape function) and
reveal the exponential nature of the objective terms (e−αt).

Fig. 5. Objective landscapes for a problem with common due dates [2]

5 Objective Landscape Exploitation

Once available, the objective landscape functions could be used in several ways
during the search. In this article we focus on their use in the context of Large
Neighborhood Search (LNS) but they could be used in variable/value order-
ing heuristic in a classical CP search tree, and more generally in Constrained
Optimization Problems. In an LNS framework as the one used in the automatic
search of CP Optimizer [6], landscapes can be used:

– To prevent cost degradation for some variables in LNS moves
– To define new types of neighborhoods
– To select variables and values in LNS completion strategies.

At the root node of an LNS move, if we are trying to improve an incumbent
solution S of cost Z, once the selected fragment has been relaxed and given that
constraint f(x) ≤ Z has been propagated, there are three values of interest for
a given objective variable xi:

– XL
i the current lower bound of the variable

– XU
i the current upper bound of the variable

– XS
i the value of the variable in solution S.

396 P. Laborie

Fig. 6. Objective landscapes for a flow-shop with earliness-tardiness cost [10]

Fig. 7. Objective landscapes for a problem in semiconductor manufacturing [4]

We have of course XL
i ≤ XS

i ≤ XU
i as solution S is consistent with the current

bounds. Thanks to the landscape function Li of the variable, we can compute
some interesting indicators illustrated on Fig. 9:

– li = Li(XS
i) is the objective landscape value of variable xi at solution S.

– As function Li is quasiconvex, the set {v ∈ [XL
i ,XU

i]|Li(v) ≤ li} is a convex
interval denoted [XS−

i ,XS+
i], one of its endpoint (XS−

i or XS+
i) being equal

to XS
i . This interval represents the values v in the current domain of xi that

do not degrade the landscape function value compared to solution S.

Objective Landscapes for Constraint Programming 397

Fig. 8. Objective landscapes for an RCPSP with net present value [13]

– oi = li−minv∈[XL
i ,XU

i] Li(v) is an optimistic bound on how much the objective
landscape value of the variable could be improved by choosing the best value
in the current domain.

– pi = maxv∈[XL
i ,XU

i] Li(v) − li is a pessimistic bound on how much the objec-
tive landscape value of the variable could be degraded by choosing the worse
value in the current domain.

– ωi is the derivative of landscape function Li evaluated at value XS
i in direction

of the improvement of the landscape value. It measures how much a small
change from the solution value could improve the landscape function.

– πi is the derivative of landscape function Li evaluated at value XS
i in direction

of the degradation of the landscape value. It measures how much a small
change from the solution value could degrade the landscape function.

We are far from having investigated all the above indicators and, more gen-
erally, all the potentialities of landscapes during the search. In our initial imple-
mentation in CP Optimizer 12.7.1, landscapes are exploited as follows.

– At a given LNS move, the landscape strategy described below is used with a
certain probability that is learned online as described in [5]

– Landscape strategy:
• A certain number of objective variables are randomly selected. The ratio

of selected variables is learned online from a set of possible ratio values
in [0, 1].

• For each selected objective variable xi, a constraint v ∈ [XS−
i ,XS+

i] is
added to ensure that the landscape value of these variables is not degraded
during the LNS iteration.

This type of strategy focuses the search on the improvement of a subset of
the objective terms, it is particularly useful for objective expressions that are not

398 P. Laborie

XL
i XS

i XS+
i XU

i

Landscape function Li

li

oi

pi

πi

ωi

XL
i XS

i XS+
i XU

i

Landscape function Li

li

oi

pi

πi

ωi

Fig. 9. Some objective landscape indicators

well exploited by constraint propagation, typically like sum expressions which
are extremely common in scheduling problems.

In the flow-shop scheduling example, when the landscape strategy is used at
an LNS move, it will randomly select a subset of jobs and for each selected job i,
post the additional constraint on the job end time that it must not degrade its
earliness-tardiness cost ETi compared to what it was in the incumbent solution.

6 Results

In this section, we compare the performance of CP Optimizer V12.7.1 (contain-
ing the implementation of landscapes as described in Sects. 4 and 5) with the
same version that do not compute and use landscapes4. The comparison was
performed on the IBM scheduling benchmark which, as of today, consists of 135
different families of scheduling problems collected from different sources (clas-
sical instances for famous scheduling problems like job-shop or RCPSP, bench-
marks proposed in academic papers, industrial scheduling problems modeled by
our consultants, partners or end-users, problems submitted on our Optimiza-
tion forums, etc.). The performance comparison between the two versions of the
automatic search is measured in terms of resolution time speed-up. As the engine
is not able to solve all instances to optimality in reasonable time, the time speed-
up estimates how many times faster the default version of the automatic search
(using landscapes) is able to reach similar quality solutions to the version with-
out landscapes. Results are summarized on Fig. 10. The 135 different families
are sorted on the x-axis by increasing speed-up factor. Each point is the average
speed-up over the different instances of the family. The geometrical mean of the
speed-up over the 135 families is around 1.5. On Table 1, the families are classi-
fied by objective types, depending on the aggregation function (usually, a sum or
a max) and the nature of the aggregated terms. These objective types are also
4 A specific parameter can be used to switch off objective landscapes.

Objective Landscapes for Constraint Programming 399

shown with different marks on Fig. 10. As expected, the objective landscapes
have a strong added value in the case of sums of terms involving expressions
with large domains (like start/end of intervals with an average speed-up of 2.62,
interval lengths with a speed-up larger than 3 or resource capacities (height)).
As an illustration, for the flow-shop scheduling example with earliness-tardiness
cost described in the introduction, the average speed-up factor is larger than 18.
Note that for some families of scheduling problems the speed-up factor is close
to two orders of magnitude. The speed-up is much more modest for objectives
like makespan (max of ends) or total resource allocation costs (sum of presence
of intervals).

0 20 40 60 80 100 120

1

10

100

A
ve
ra
ge

sp
ee
d-
up

Fig. 10. Average speed-up when using objective landscapes measured on 135 different
families of scheduling problems.

Table 1. Average speed-up by objective type

Aggregation type Main variables
type

Number of
families

Average
speed-up

Mark on
Fig. 10

Max Start/end 55 1.05

Sum Start/end 40 2.62

Sum Presence 29 0.98

Sum Length 7 3.31

Sum Height 4 1.88

7 Conclusion and Discussion

This paper introduces the notion of objective landscapes in CP. Objective land-
scapes are light-weight structures that can be fast computed before the search
by exploiting constraint propagation on the objective function expression. We
show some formal properties of landscapes and give some results about their

400 P. Laborie

implementation in the automatic search of CP Optimizer: an average speed-up
of 50% on a large panel of scheduling problems, with up to almost 2 orders of
magnitude for some applications.

We have only explored a small part of the potentials of objective landscapes
and there are still many interesting open questions:

– Landscapes are currently defined by only considering the objective expression
f(x) and the objective variables x. The definition of objective variables clearly
depend on how the problem is formulated. There may be many different
subsets of decision variables x such that the objective functionally depends
on x. Some may be more interesting than others. There is here an evident
link with the notion of functional dependency heavily studied in relational
databases but much less in CP [14].

– In fact functional dependency is not strictly required. We could also compute
some landscapes on non-objective variables by considering the constraints
c(x, y) of the problem. But this messes up the theoretical framework about
exact landscape computations mostly because achieving bound-consistency is
in general impossible on the whole problem. It also results in a phenomenon
that tends to hide the lowest part of landscape functions Li as, because of
constraint propagation, the model including constraints c(x, y) will start to
fail for larger values of z resulting in a larger value for ZL.

– Objective landscapes can be extended without too much difficulty to han-
dle holes in the domains. The landscape structure would be slightly more
complex, looking like a tree describing how values or intervals of values are
removed from the domain of a variable xi when the objective z is decreasing.
This type of landscape could be useful for variables with a discrete semantics.

– As mentioned in Sect. 5, we only explored the tip of the iceberg as about how
to exploit objective landscapes to guide the search.

Appendix: Proof of Proposition 3

Let v ∈ Di, we want to prove that Li(v) = f∗
i (v). We distinguish 3 cases depend-

ing on the position of v with respect to XL
i (ZL) and XU

i (ZL).

Case 1: v ∈ [XL
i (ZL),XU

i (ZL)]
By definition of the landscape function we have Li(v) = ZL.
We first note that by definition of ZL, for every objective value z < ZL

as the propagation of f(x) ≤ z fails, it means that ZL is a lower bound on
Z∗ = minx∈D f(x).

As by definition of function f∗
i we have ∀v ∈ Di, Z

∗ ≤ f∗
i (v). We can deduce:

Li(v)(= ZL) ≤ f∗
i (v).

We will now use the bound-consistency property of propagation to show that
f∗

i (XL
i (ZL)) ≤ ZL and f∗

i (XU
i (ZL)) ≤ ZL. By definition XL

i (ZL) is the minimal
value in the domain of xi after propagation of f(x) ≤ ZL. Because propagation
is bound-consistency on xi, it means that there exist some x with xi = XL

i (ZL)
such that f(x) ≤ ZL (otherwise, this value would have been filtered from the

Objective Landscapes for Constraint Programming 401

domain). Furthermore, by definition of function f∗
i , we have f∗

i (XL
i (ZL)) ≤ f(x),

thus f∗
i (XL

i (ZL)) ≤ ZL. The proof that f∗
i (XU

i (ZL)) ≤ ZL is symmetrical.
Finally, the quasiconvexity of f∗

i implies that for all v ∈ [XL
i (ZL),XU

i (ZL)],
f∗

i (v) ≤ ZL(= Li(v)).

Case 2: v < XL
i (ZL)

By definition of the landscape we have Li(v) = min {z|XL
i (z) ≤ v}.

We first prove that f∗
i (v) ≥ Li(v). By contradiction, suppose that f∗

i (v) <
Li(v) and let z′ = f∗

i (v). This would mean that there exist x with xi = v such
that f(x) = z′. For such a z′ we would have XL

i (z′) ≤ v because x supports
objective value z′ and thus value v cannot be removed from the domain of xi.
Such a value z′ < Li(v) such that XL

i (z′) ≤ v contradict the fact Li(v) is the
smallest z satisfying XL

i (z) ≤ v. This proves f∗
i (v) ≥ Li(v).

For proving that f∗
i (v) ≤ Li(v), we distinguish 2 sub-cases depending on

whether or not there exist an objective value z such that XL
i (z) = v.

Case 2.1: There exist a value z such that XL
i (z) = v so that Li(v) = z.

By definition of XL
i , this means that v is the minimal value in the domain of

xi after propagating f(x) ≤ z. Because propagation is bound-consistent on xi,
it means that there exist some x with xi = v such that f(x) ≤ z (otherwise, this
value would have been filtered from the domain). Furthermore, by definition of
function f∗

i , we have f∗
i (v) ≤ f(x), thus f∗

i (v) ≤ z(= Li(v)).

Case 2.2: There does not exist any value z such that XL
i (z) = v.

This is the case of a discontinuity of function XL
i (z). Let v+ = XL

i (Li(v))
denote the value of XL

i at the discontinuity. By definition of Li, we have Li(v) =
Li(v+). Furthermore, as v+ satisfies case 2.1 above, we also know that f∗

i (v+) ≤
Li(v+). We have seen in case 1 that f∗

i (XL
i (ZL)) ≤ ZL and, of course, ZL ≤

Li(v+). To summarize: v ∈ [XL
i (ZL), v+], f∗

i (XL
i (ZL)) ≤ Li(v+) and f(v+) ≤

Li(v+). Thus, by quasiconvexity of f∗
i : f(v) ≤ Li(v+)(= Li(v)).

Case 3: v > XU
i (ZL)

This case is the symmetrical of Case 2. �	

References

1. Beck, J.C., Refalo, P.: A hybrid approach to scheduling with earliness and tardiness
costs. Ann. Oper. Res. 118(1–4), 49–71 (2003)

2. Biskup, D., Feldmann, M.: Benchmarks for scheduling on a single machine against
restrictive and unrestrictive common due dates. Comput. Oper. Res. 28(8), 787–
801 (2001)

3. Greenberg, H., Pierskalla, W.: A review of quasi-convex functions. Oper. Res.
19(7), 1553–1570 (1971)

4. Knopp, S., Dauzère-Pérès, S., Yugma, C.: Modeling maximum time lags in com-
plex job-shops with batching in semiconductor manufacturing. In: Proceedings of
the 15th International Conference on Project Management and Scheduling (PMS
2016), pp. 227–229 (2016)

402 P. Laborie

5. Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to
single-mode scheduling problems. In: Baptiste, P., Kendall, G., Munier-Kordon, A.,
Sourd, F. (eds.) Proceedings of the 3rd Multidisciplinary International Conference
on Scheduling: Theory and Applications (MISTA), Paris, France, pp. 276–284,
28–31 Aug 2007

6. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP optimizer for schedul-
ing. Constraints J. 23(2), 210–250 (2018)

7. Laborie, P., Rogerie, J.: Temporal linear relaxation in IBM ILOG CP optimizer.
J. Sched. 19(4), 391–400 (2016)

8. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29828-8 15

9. Monette, J., Deville, Y., Hentenryck, P.V.: Just-in-time scheduling with constraint
programming. In: Proceedibgs of the 19th International Conference on Automated
Planning and Scheduling (ICAPS 2009) (2009)

10. Morton, T., Pentico, D.: Heuristic Scheduling Systems. Wiley, New York (1993)
11. Pesant, G.: Counting-based search for constraint optimization problems. In: Pro-

ceedings of the 13th AAAI Conference on Artificial Intelligence (AAAI 2016), pp.
3441–3447 (2016)

12. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8 41

13. Vanhoucke, M.: A scatter search heuristic for maximising the net present value of
a resource-constrained project with fixed activity cash flows. Int. J. Prod. Res. 48,
1983–2001 (2010)

14. Vardi, M.Y.: Fundamentals of dependency theory. Technical report RJ4858, IBM
Research (1985)

https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-540-30201-8_41

An Update on the Comparison of MIP,
CP and Hybrid Approaches for Mixed
Resource Allocation and Scheduling

Philippe Laborie(B)

IBM, 9 rue de Verdun, 94250 Gentilly, France
laborie@fr.ibm.com

Abstract. We consider a well known resource allocation and scheduling
problem for which different approaches like mixed-integer programming
(MIP), constraint programming (CP), constraint integer programming
(CIP), logic-based Benders decompositions (LBBD) and SAT-modulo
theories (SMT) have been proposed and experimentally compared in the
last decade. Thanks to the recent improvements in CP Optimizer, a com-
mercial CP solver for solving generic scheduling problems, we show that
a standalone tiny CP model can out-perform all previous approaches and
close all the 335 instances of the benchmark. The article explains which
components of the automatic search of CP Optimizer are responsible for
this success. We finally propose an extension of the original benchmark
with larger and more challenging instances.

Keywords: Constraint programming · Resource allocation
Scheduling · CP Optimizer

1 Introduction

We consider the well known resource allocation and scheduling problem proposed
in [6]. After recapping the problem definition (Sect. 2) and giving an overview
of the state-of-the-art methods that have been proposed for solving it (Sect. 3),
we present a very concise formulation of the problem in CP Optimizer (Sect. 4).
Experimental results (Sect. 5) show that, using this model together with a param-
eter focusing the search on optimality proofs, CP Optimizer 12.7.1 outperforms
all existing approaches and closes all the 335 instances of the benchmark. We
finally propose an extension of the original benchmark (Sect. 6) with larger and
more challenging instances.

2 Problem Definition

The problem proposed in [6] is defined by a set of jobs J and a set of facilities I.
Each job j ∈ J must be assigned to a facility i ∈ I and scheduled to start after

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 403–411, 2018.
https://doi.org/10.1007/978-3-319-93031-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_29&domain=pdf

404 P. Laborie

its release date rj , end before its due date dj , and execute for pij consecutive time
units. Each job j has a facility assignment cost fij and a resource requirement
cij when allocated to facility i. Each facility i ∈ I has a capacity Ci and the
constraint that the resource capacity must not be exceeded at any time. The
problem is to minimize the total facility assignment cost.

A time-indexed MIP formulation of the problem where Boolean variable xijt

is one if job j starts at discrete time t on facility i is:

min
∑

i∈I

∑

j∈J

∑

t∈T
fijxijt

s.t.
∑

i∈I

∑

t∈T
xijt = 1, ∀j ∈ J

∑

j∈J

∑

t′∈Tijt

cijxijt′ ≤ Ci, ∀i ∈ I, t ∈ T

xijt = 0, ∀i ∈ I, j ∈ J , t ∈ T ,
t < rj or t > dj − pij

xijt ∈ {0, 1}, ∀i ∈ I, j ∈ J , t ∈ T .

In the above formulation, Tijt denotes the set of time values t′ such that if
job j is allocated to resource i and starts at t′ then it is executing at time t:

Tijt = {t′ ∈ T |t − pij < t′ ≤ t}

3 State of the Art

Although the problem can be considered as being simple compared to many
real-world scheduling problem, it is clearly of interest because it mixes resource
allocation and scheduling and it is NP-Hard in the strong sense. This problem
has received a lot of attention in the combinatorial optimization community and
several approaches have been studied and evaluated on the benchmark proposed
in [6,7]. We give a short review of these approaches below.

Mixed Integer Programming (MIP). The time-indexed formulation described in
Sect. 2 is often used as a baseline method to compare with [4,7]. As reported
in [1], other MIP formulations were tried (like the event based ones, see [13]
for a review) but on this particular problem, time-indexed formulations seem to
perform better. In [5], a time-indexed MIP model using some redundant formu-
lation was used and the reported results are, to the best of our knowledge, the
best MIP results on the benchmark.

Constraint Programming (CP). Results using an OPL model on top of ILOG
Scheduler were reported in [6,7]. In [4] the authors used an early version of IBM
ILOG CP Optimizer (V2.3). More recently [12] has been using IBM ILOG CP

An Update on the Comparison of MIP, CP and Hybrid Approaches 405

Optimizer 12.7 but the details of the model are not provided. All the experi-
ments so far suggested that standalone CP is not really competitive with hybrid
methods or even a standalone MIP.

Logic-Based Benders Decomposition (LBBD). An LBBD approach was origi-
nally proposed in [6,7] and shown to outperform both CP and MIP. In this
approach, the master problem consists of the facility allocation problem whereas
sub-problems consist in scheduling the jobs given a facility allocation provided
by the master problem. A relaxation of the scheduling problem inspired from
energetic reasoning [2] is also included in the master problem. In the original
work, the scheduling sub-problems were solved using ILOG Scheduler. These
results were updated in [1] by using IBM ILOG CP Optimizer (V12.4) for solving
the scheduling sub-problems. Other results with LBBD on top of CP (denoted
LBBD-CP in this paper) are also reported in [5].

Constraint Integer Programming (CIP). CIP is a resolution paradigm that
exploits both the constraint propagation traditionally used in CP and the linear
relaxations used in MIP in the same search tree. CIP models were studied in
[3–5] showing that they were competitive with LBBD.

Satisfiability Modulo Theories (SMT). More recently, an SMT approach combin-
ing SAT with the theory of real arithmetics has been studied in [12] for solving
the problem, together with a more efficient hybrid LBBD approach that uses
SMT for solving the sub-problems (denoted LBBD-SMT).

4 CP Optimizer Model

CP Optimizer extends classical CP on integer variables with a few mathematical
concepts (intervals, functions) that make it easier to model scheduling problems
while providing interesting problem structure for its automatic search algorithm
[10]. The complete CP Optimizer formulation of the resource allocation and
scheduling problem proposed in [6] is shown on Fig. 1 (using OPL).

Lines 2–8 read data using similar notations as the ones introduced in Sect. 2.
Line 10 creates one interval variable job[j] for each job j that is constrained
to start after rj and end before dj . For each possible allocation of a job j on
a facility i, line 11 creates an optional interval variable mode[i][j] of size pij .
This interval variable will be present if and only if job j is allocated to facility i.
The objective at line 13 is to minimize the weighted sum of the selected modes.
Constraints on line 15 state that a job j is allocated to one facility: only one
of the interval variables mode[i][j] is present and the start and end value of
interval job[j] are the same as the ones of the selected mode. Finally at line 16,
a cumul function expression on the left hand side represents the facility usage
over time and is constrained to be lower than the facility capacity Ci.

406 P. Laborie

1 using CP;
2 tuple ModeData { int p; int c; int f; }
3 tuple JobData { int r; int d; }
4 int n = ...; range J = 1..n;
5 int m = ...; range I = 1..m;
6 ModeData M[I,J] = ...;
7 JobData Job[J] = ...;
8 int C[I] = ...;
9

10 dvar interval job[j in J] in Job[j].r..Job[j].d;
11 dvar interval mode[i in I][j in J] optional size M[i][j].p;
12
13 minimize sum(i in I, j in J) (M[i][j].f * presenceOf(mode[i][j]));
14 subject to {
15 forall(j in J) { alternative(job[j], all(i in I) mode[i][j]); }
16 forall(i in I) { sum(j in J) pulse(mode[i][j],M[i][j].c) <= C[i]; }
17 }

Fig. 1. Complete CP Optimizer model

5 Results

5.1 Benchmark Description

The benchmark proposed in [7] is composed of 4 families of instances (c, e, de,
df) with slightly different characteristics resulting in a total of 335 instances. For
all instances the cost is such that faster facilities tend to be more expensive. In
each families there are 5 instances for every combination (n,m) where n is the
number of jobs and m the number of facilities.

Results in this section were obtained on an IBM blade with 20 GB RAM and
an Intel R© Xeon R© X5570 2.93 GHz running GNU/Linux with CP Optimizer
V12.7.1. Unless stated otherwise, we are using 4 parallel workers (Workers=4).

5.2 Experimental Evaluation of CP Optimizer Search Components

As explained in [10], the automatic search of CP Optimizer consists of two com-
ponents run in concurrence: (1) a Large Neighborhood Search (LNS) heuristic
that tries to improve the current solution by successively unfreezing and re-
optimizing a part of the solution [8] and (2) a Failure-directed Search (FDS)
that aims at proving optimality of the current solution [15].

CP Optimizer targets in priority industrial scheduling problems that are in
general much larger than the ones of the benchmark. This explains why, by
default, the automatic search spends more effort on LNS than on FDS but, as
explained in [15], this behavior can be changed thanks to a search parameter
FailureDirectedSearchEmphasis.

In a preliminary experimental study, using a 1 h time limit, we compare three
variants of the CP Optimizer search: the default version (default), a version

An Update on the Comparison of MIP, CP and Hybrid Approaches 407

with a strong focus on FDS with 3.5 out of the 4 workers dedicated to FDS1

(fds) and a version that do not use FDS2 (no fds). Results are shown on Table 1.

Table 1. Comparison of different CP Optimizer variants.

no fds default fds

Number of feasible solutions found 335/335 335/335 335/335

Maximal time for finding a feasible solution 0.33 s 0.33 s 0.33 s

Number of optimal solutions found 305/335 320/335 334/335

Maximal gap of best solution found 1.18% 0.92% 0.16%

Number of optimality proofs 143/335 309/335 330/335

First, it is to be noted that, whatever variant is used, CP Optimizer finds an
initial feasible solution or prove infeasibility3 for all 335 instances of the bench-
mark in less than 0.5 s. This is to be compared with LBBD approaches that, by
construction, do not provide any feasible solution before the optimal solution
is eventually found. For 309 instances, the default version finds the optimal
solution and proves optimality, for the remaining 26 instances, the gap with
respect to the optimal solution is less than 1%. The main difference between the
3 variants concerns the capability to prove optimality: as expected, the more
FDS is used and the more optimality proofs we get. Within the 1 h time limit,
the variant with a strong focus on FDS closes all but 5 instances of the bench-
mark. In next section, we compare the results of this variant with state-of-the-art
approaches.

5.3 Comparison with Previous Results

Table 2 compares the results of CP Optimizer 12.7.1 (with a focus on optimality
proofs through FDS) on the most challenging instances of the ‘c’ family using
a time limit of 1 h with the best known results compiled for the main four
approaches (MIP, LBBD-CP, LBBD-SMT, CIP-CP). For MIP and LBBD-CP,
we compare with the results of [5] that are on average better than the ones
reported in [1,7,12]. For LBBD-SMT we compare with the results of [12]4 and
for CIP-CP with the ones of [5]. As in [5], the columns geom denote the shifted
geometrical mean with a shift of 10 s over the 5 instances, taking any time lower
than 1 s as being equal to 1s. Experiments in [5] were run using a single thread
with a 2 h time-limit on a slightly slower machine (2.50 GHz v.s. 2.93GHz) so
for a more fair comparison we also provide results of our model using one worker
but still using a 1 h time-limit. CP Optimizer easily solves all the instances of
the other families.
1 Using FailureDirectedSearchEmphasis=3.5.
2 Using FailureDirectedSearch=Off.
3 All instances of the benchmark are feasible except for 5 instances of the de family.
4 Computed from the detailed results the authors gratefully sent us.

408 P. Laborie

Table 2. Comparison with state-of-the-art approaches.

#I #J MIP LBBD-CP LBBD-SMT CIP-CP CPO (fds) 1W CPO (fds) 4W

opt geom opt geom opt geom opt geom opt geom opt geom

2 16 5 8.0 5 1.0 5 2.82 5 4.7 5 1.05 5 1.00

18 5 16.9 5 1.3 5 1.64 5 1.7 5 2.72 5 1.60

20 5 29.0 5 3.7 5 1.47 5 1.5 5 2.01 5 1.62

22 4 812.4 5 51.4 5 72.06 3 382.5 5 7.37 5 4.06

24 3 883.0 4 214.8 5 196.72 2 573.4 5 10.17 5 6.54

26 4 1069.2 5 209.0 3 554.03 4 464.9 5 22.33 5 11.28

28 4 378.9 5 536.5 4 38.58 4 42.0 5 48.39 5 17.00

30 3 861.2 3 401.2 1 1147.84 2 587.6 5 122.21 5 92.30

32 3 792.1 0 - 3 332.85 2 1140.5 5 235.81 5 120.14

34 3 879.7 2 1745.1 3 509.45 1 1995.3 3 419.24 3 253.09

36 2 1534.1 1 4770.2 2 450.68 3 548.4 3 1199.91 3 491.11

38 2 4980.2 1 5848.7 4 428.51 2 1334.0 4 390.86 4 127.07

3 18 5 46.0 5 5.8 5 2.43 5 4.8 5 2.08 5 1.56

20 4 98.5 5 1.5 5 1.33 5 6.9 5 2.21 5 1.75

22 4 554.6 5 2.3 5 2.17 5 6.6 5 4.55 5 2.90

24 5 304.5 5 6.7 5 9.41 5 78.6 5 11.05 5 6.24

26 3 1652.8 5 19.8 5 44.50 5 40.2 5 21.71 5 10.28

28 3 987.6 5 35.4 5 70.54 3 194.9 5 34.14 5 15.13

30 3 3100.2 4 178.3 3 540.18 4 520.9 5 158.48 5 54.17

32 2 3601.3 4 1951.8 2 665.42 3 559.0 5 220.02 5 117.26

4 20 5 25.3 5 1.8 5 1.15 5 4.3 5 1.65 5 1.09

22 5 60.0 5 3.7 5 2.48 5 15.0 5 3.22 5 2.29

24 4 1399.0 5 12.1 5 19.22 5 42.9 5 9.58 5 4.95

26 3 2787.8 5 14.9 5 17.12 5 112.7 5 20.56 5 12.44

28 3 2124.2 5 9.6 5 29.15 5 200.0 5 17.30 5 10.32

30 2 3253.6 5 31.7 5 110.23 5 581.1 5 153.54 5 53.10

32 1 4691.0 5 118.3 5 450.84 5 1519.1 5 93.22 5 44.09

As we see, CP Optimizer generally outperforms existing approaches, both in
terms of number of instances solved to optimality and in terms of solve time.
With 130 instances solved out of 135, it is better than the virtual best solver of
the 4 approaches studied in [5] (127 solved instances). In fact, the 5 remaining
open problems could be closed with the same model by using a larger time limit
(up to 160 h for the hardest one). Detailed list of optimal costs can be found at
http://ibm.biz/AllocSched.

We think that an important ingredient of the success of Failure-Directed
Search on these instances is its capability to opportunistically mix allocation
and scheduling decisions in the same decision tree based on its decision rating
system. In the CP Optimizer model, both allocation decisions (presence status
of interval variables) and scheduling decisions (interval variables start and end
values) hold on the same decision variables that are efficiently pruned by con-
straint propagation on optional intervals. The search space explored by the FDS
is reduced by using strong pruning (like timetable edge finding [14]) and efficient
propagation of conditional bounds on alternative constraints [11].

http://ibm.biz/AllocSched

An Update on the Comparison of MIP, CP and Hybrid Approaches 409

6 Benchmark Extension

Given the progress achieved until now on the original benchmark, we propose
an extension with more challenging instances. In particular we want to address
the following limitations:

– The current instances are small (up to 50 jobs and 10 facilities) and not really
representative of the typical size of actual scheduling problems. We propose
to generate new problems with a size up to 1000 jobs and 20 facilities.

– The time granularity is coarse, as the maximal duration of jobs is less than a
few tens of units. We propose a grain 100 times finer.

– On a similar line, the granularity of facilities capacity (maximal capacity is
10) is also made 100 times finer.

– In the current benchmark, a given job j always requires the same quantity
cij of the different facilities i. In our extension they can use different capac-
ity. Instead of being roughly inversely proportional to the job duration, the
facility cost is roughly inversely proportional to the job energy (product of
the duration by the demanded quantity).

– As in the original version of the benchmark, we generated some precedence
constraints between jobs. These precedences can be used optionally. Prece-
dence constraints are ubiquitous in real-life scheduling but, as highlighted in
[5], they destroy the independent sub-problem structure that LBBD and, to
a lesser extend, the other approaches (CP Optimizer apart) exploit.

In the new instances, the capacity of each facility is 1000. As in the existing
instances, we suppose that the facilities get in average slower as their index
i increases. The duration pij is drawn uniformly from [100

√
i, 1000

√
i]. The

required capacity cij is drawn uniformly from [1, 1000]. The cost fij for exe-
cuting job j on machine i is roughly proportional to the inverse of the energy
eij = pijcij with a variability αj that depends on the job j and is drawn
uniformly from [0.5, 1]. More precisely, the cost fij is drawn from [αjFij , Fij]
where Fij = 107

√
m/eij . As for the original instances of the ‘c’ family, the

release dates are all 0 and the deadlines are all equal to αL where α = 1/3 and
L =

∑
ij pij/m2 is the average total processing time per facility. A set of prece-

dence constraints can also optionally be considered: we generated n/2 precedence
constraints between random pairs of predecessor/successor jobs while ensuring
the resulting precedence graph is acyclic. We selected 20 different combinations
(n,m) ∈ [20, 1000] × [2, 20]. As in the original benchmark, 5 instances are gen-
erated for each different combinations (n,m) they are denoted fnjmmk.dat for
k ∈ [1, 5], so the benchmark extension consists of 100 new instances. In this paper
we only report results without precedence constraints. The new benchmark is
available at http://ibm.biz/AllocSched together with the detailed results dis-
cussed in this section as well as results with precedence constraints.

We experimented with 3 variants of the CP Optimizer search with a time limit
of 1 h: the one with a focus on FDS (col. fds), the default search without any
parameter change (col. default) and a version not using the temporal linear

http://ibm.biz/AllocSched

410 P. Laborie

relaxation5 [9] (col. no tlr). The results are summarized on Table 3. We see
that the first feasible solutions are produced, even for the largest instances, in
less than 1 s (column fst). Some optimality proofs could be provided only for
the smallest instances with 20 or 30 jobs and 2 facilities. The s gap columns
(for ‘scheduling gap’) measure the average gap of the produced solutions with
respect to the lower bound of a MIP formulation of the allocation part of the
problem with energetic resource relaxation (this is basically the MIP of the initial
iteration of the master problem in LBBD approaches). As we see for problems
with 20 jobs and 2 facilities for which CP Optimizer proves optimality of the
global problem, this gap is significant (21.8%) meaning that the allocation part
of the problem does not dominate the scheduling part6. As expected, when the
size of the problem grows, the FDS becomes less useful and the performance is
better when not using it7. Interestingly, for these problems, the temporal linear
relaxation does not seem to be very helpful and, for the largest instances, it
is penalized by the cost of running the LP relaxation at the root node of LNS
moves. This would deserve a more detailed analysis.

Table 3. Comparison of CP Optimizer variants on the new instances.

#J #I fst fds default no tlr #J #I fst fds default no tlr

(s) opt s gap s gap s gap (s) opt s gap s gap s gap

20 2 0.0 5 21.8% 21.8% 21.8% 200 10 0.1 0 20.4% 18.2% 16.8%

30 2 0.0 1 10.6% 11.0% 11.3% 200 20 0.2 0 25.2% 23.3% 20.2%

40 2 0.0 0 10.7% 8.9% 8.7% 500 2 0.1 0 12.8% 13.2% 14.1%

50 2 0.0 0 11.3% 9.8% 9.0% 500 5 0.1 0 19.8% 22.6% 20.3%

50 5 0.1 0 15.8% 14.4% 14.5% 500 10 0.2 0 27.0% 26.3% 23.7%

100 2 0.1 0 10.9% 8.5% 8.1% 500 20 0.4 0 33.2% 35.0% 24.4%

100 5 0.1 0 14.7% 13.1% 13.0% 1000 2 0.2 0 18.8% 19.2% 17.8%

100 10 0.1 0 18.5% 16.3% 15.3% 1000 5 0.3 0 30.6% 28.1% 22.8%

200 2 0.1 0 14.5% 9.8% 9.3% 1000 10 0.5 0 35.4% 36.2% 33.4%

200 5 0.1 0 17.2% 14.4% 13.5% 1000 20 1.0 0 35.7% 35.1% 35.0%

7 Conclusion

This paper provides an update on the comparison of different approaches for
solving a well known allocation and scheduling problem. We show that with the
recent advances in the automatic search algorithm of CP Optimizer, a standalone
simple CP model outperforms all existing approaches. This simple declarative
5 Using TemporalRelaxation=Off.
6 As a comparison, this scheduling gap is only 0.77% in average for the instances of

the ‘c’ family with 20 jobs and 2 facilities.
7 Note that FDS is automatically switched off for large problems. Here, it is not being

used for problems with 500 and 1000 jobs.

An Update on the Comparison of MIP, CP and Hybrid Approaches 411

model allows to close the benchmark. We proposed an extension of the origi-
nal benchmark with larger and more challenging instances for future research
and provide a preliminary analysis of the results of CP Optimizer on the new
instances.

References

1. Ciré, A., Çoban, E., Hooker, J.N.: Logic-based benders decomposition for planning
and scheduling: a computational analysis. Knowl. Eng. Rev. 31(5), 440–451 (2016)

2. Erschler, J., Lopez, P.: Energy-based approach for task scheduling under time
and resources constraints. In: Proceedings of the 2nd International Workshop on
Project Management and Scheduling, pp. 115–121 (1990)

3. Heinz, S., Beck, J.C.: Solving resource allocation/scheduling problems with con-
straint integer programming. In: Proceedings of the Workshop on Constraint Sat-
isfaction Techniques for Planning and Scheduling Problems (COPLAS 2011), pp.
23–30 (2011)

4. Heinz, S., Beck, J.C.: Reconsidering mixed integer programming and MIP-based
hybrids for scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 211–227. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29828-8 14

5. Heinz, S., Ku, W.-Y., Beck, J.C.: Recent improvements using constraint integer
programming for resource allocation and scheduling. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 12–27. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38171-3 2

6. Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30201-8 24

7. Hooker, J.N.: Planning and scheduling by logic-based benders decomposition.
Oper. Res. 55(3), 588–602 (2007)

8. Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to
single-mode scheduling problems. In: Baptiste, P., Kendall, G., Munier-Kordon, A.,
Sourd, F. (eds.) Proceedings of the 3rd Multidisciplinary International Conference
on Scheduling: Theory and Applications (MISTA 2007), pp. 276–284. Paris, France,
28–31 Aug 2007

9. Laborie, P., Rogerie, J.: Temporal linear relaxation in IBM ILOG CP optimizer.
J. Sched. 19(4), 391–400 (2016)

10. Laborie, P., Rogerie, J., Shaw, P., Viĺım, P.: IBM ILOG CP optimizer for schedul-
ing. Constraints J. 23(2), 210–250 (2018)

11. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Proceedings
of the 21th International Florida Artificial Intelligence Research Society Conference
(FLAIRS 2008), pp. 555–560 (2008)

12. Mistry, M., D’Iddio, A.C., Huth, M., Misener, R.: Satisfiability modulo theories
for process systems engineering. Optimization Online (2017)

13. Tesch, A.: Compact MIP models for the resource-constrained project scheduling
problem. Master’s thesis, Technische Universität Berlin (2015)

14. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative
resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp.
230–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-
3 22

15. Viĺım, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based
scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 30

https://doi.org/10.1007/978-3-642-29828-8_14
https://doi.org/10.1007/978-3-642-29828-8_14
https://doi.org/10.1007/978-3-642-38171-3_2
https://doi.org/10.1007/978-3-540-30201-8_24
https://doi.org/10.1007/978-3-540-30201-8_24
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-319-18008-3_30

Modelling and Solving the Senior
Transportation Problem

Chang Liu(B), Dionne M. Aleman, and J. Christopher Beck(B)

Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, ON M5S 3G8, Canada

{cliu,aleman,jcb}@mie.utoronto.ca

Abstract. This paper defines a novel transportation problem, the
Senior Transportation Problem (STP), which is inspired by the elderly
door-to-door transportation services provided by non-profit organiza-
tions. Building on the vehicle routing literature, we develop solution
approaches including mixed integer programming (MIP), constraint pro-
gramming (CP), two logic-based Benders decompositions (LBBD), and
a construction heuristic. Empirical analyses on both randomly generated
datasets and large real-life datasets are performed. CP achieved the best
results, solving to optimality 89% of our real-life instances of up to 270
vehicles with 385 requests in under 600 s. The best LBBD model can
only solve 17% of those instances to optimality. Further investigation of
this somewhat surprising result indicates that, compared to the LBBD
approaches, the pure CP model is able to find better solutions faster
and then is able to use the bounds from these sub-optimal solutions to
reduce the search space slightly more effectively than the decomposition
models.

1 Introduction

As the world population ages, there is an increasing demand for transit options
for elderly people who have difficulties accessing the regular public transit sys-
tem but yet do not have disabilities that qualify them for specialized transit
services. As a consequence, there are non-profit organizations that provide such
“senior transportation” services in many communities. However, the resources
for these services are often limited and many elders are put on waiting lists.
Furthermore, due to lack of expertise and decision support tools, the schedules
assigned to the drivers are often sub-optimal as many vehicles do not operate at
full capacity. Therefore, finding optimal schedules is crucial for organizations to
meet increasing demands.

The Senior Transportation Problem (STP) is a static optimization problem in
which a fixed fleet of heterogeneous vehicles from multiple depots must satisfy
as many door-to-door transportation requests as possible within a fixed time
horizon. Due to the limited resources, not all requests can be met within the given
time and, therefore, the problem is to select a subset of requests such that the
total weight of all served requests is maximized. As some of the drivers operate on
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 412–428, 2018.
https://doi.org/10.1007/978-3-319-93031-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_30&domain=pdf

Modelling and Solving the Senior Transportation Problem 413

a volunteer basis, the problem includes characteristics such as multiple depots,
heterogeneous vehicles, and time windows on both locations and vehicles.

Our primary contributions are to formally define the STP and to provide
solution techniques for the STP. Four exact methods based on mixed integer pro-
gramming (MIP), constraint programming (CP), and two logic-based Benders
decomposition (LBBD) models plus a construction heuristic are developed. We
define and present detailed experimental results and analyses for each approach.
On real-world data from a non-profit organization, CP performs substantially
better than the other approaches, solving over 89% of the problems to optimality.

2 Problem Definition

Let G = (V,A) be a directed complete graph with vertex set V = D ∪ N ,
where D represents the depot vertices and N represents the client vertices. Each
vertex i ∈ V is associated with a time window [Ei, Li] and a service duration Si

corresponding to the time to be spent at location i. Each arc (i, j) ∈ A has a
non-negative routing time Ti,j satisfying the triangular inequality.

Let K = {1, . . . , |K|} represent the set of vehicles. Each vehicle k ∈ K is
associated with a starting and ending depot ik+ , ik− ∈ D where the vehicle must
start and end, respectively. Multiple vehicles can share a depot but relocation of
vehicles between depots is not allowed. Each vehicle also specifies its availability
via time windows: [Eik+ , Lik+] and [Eik− , Lik−]. If the vehicle is used, it must
leave its starting depot during the first interval, perform all pickup and delivery
requests assigned to it, and arrive at its ending depot during the second interval.
Furthermore, vehicles differ in capacity, with each vehicle k ∈ K associated with
a maximum capacity Ck.

Let R = {1, . . . , |R|} represent the set of requests. Each request r is paired
with a positive weight, Wr, denoting its importance. The total weight of served
requests is the basis of the objective function. A request r ∈ R has an associated
pickup location i+ ∈ N and a delivery location i− ∈ N . In addition, each client
is restricted to a maximum ride time, F , on any vehicle. The time horizon is
denoted by Z. The load size is positive for a pickup location vertex and negative
for a delivery vertex, Qi = −Q|R|+i,∀i ∈ R+.

A route for vehicle k is a sequence of vertices, [ik+ , . . . , ik−] and a request is
served when it is part of a route. The set of routes must satisfy the following
constraints:

1. The pickup and delivery vertices of any request must be on the same route;
2. The pickup vertex must precede the delivery vertex;
3. A vertex is visited by at most one vehicle;
4. The load of a vehicle k cannot exceed its maximum capacity Ck at any point;
5. A route must start and end within the vehicle’s availability window;
6. No sub-tours are allowed in any route;
7. The ride time of a client cannot exceed the maximum ride time F ;
8. All pickups and deliveries must be served within their time windows.

414 C. Liu et al.

3 Related Work

There are three levels of decisions in the STP: the selection of requests, the
assignment of vehicles to requests, and the routing of vehicles. Each decision
problem is a well-studied problem on its own.

The selectivity and routing aspects of STP can be viewed as a Team Ori-
enteering Problem (TOP) [10]. Alternatively, the routing and assignment of
requests can be seen as a Pickup and Delivery Problem with Time Windows
(PDPTW) [5,6] or a Dial-a-Ride Problem (DARP) [2]. In addition to minimizing
total travel cost in the classical DARP, Cordeau and Laporte [2] noted that there
can be other objectives, such as maximizing the number of fulfilled demands or
overall quality of service, but did not provide any formulation or references.
The PDPTW has been solved to optimality for loosely constrained instances of
sizes up to 100 requests [9] while the DARP has only been solved to optimality
for problems with 24 requests [2]. The most common solution approaches are
heuristic.

The combination of the three decisions has only been looked at by two groups.
Baklagis et al. [1] proposed a branch-and-price framework to tackle this problem
and Qiu et al. [7] investigated a graph search and a maximum set packing formu-
lation specially tailored for homogeneous fleets. These works however are missing
three components that are critical to the STP: multiple depots, maximum ride
times for clients, and heterogeneous fleets.

4 Models for the Senior Transportation Problem

We present four exact methods (MIP, CP, and two LBBD approaches) and one
heuristic to solve the STP. Both LBBD approaches employ a CP sub-problem
while they use MIP and CP for the master problem, respectively.

4.1 Mixed Integer Programming

In Fig. 1, we present a MIP formulation adapted from the PDPTW formulation of
Ropke and Cordeau [9]. The formulation uses three variables: a binary variable
xk,i,j and two continuous variables uk,i and vk,i. xk,i,j = 1 if vehicle k visits
location j immediately after visiting location i and 0 otherwise. uk,i indicates
the time when vehicle k leaves location i ∈ V. It is non-negative and less than or
equal to the maximum time horizon Z. Variables vk,i indicate the load of vehicle
k after visiting location i ∈ V. They are non-negative and less than or equal to
the vehicle capacity Ck.

The objective function (1) maximizes the sum of the weights of served
requests. Constraints (2) and (3) ensure that each vehicle leaves from its starting
depot and ends at its ending depot. Constraint (4) allows for the selectivity of
requests. Constant flow is enforced with Constraint (5). Constraint (6) speci-
fies that the pickup and delivery locations of a request must be visited by the

Modelling and Solving the Senior Transportation Problem 415

max
∑

k∈K

∑

r∈R

∑

j∈V

(
Wr × xk,i

r+ ,j

)
(1)

s.t.
∑

j∈N+

xk,i
k+ ,j + xk,i

k+ ,i
k− = 1 ∀k ∈ K (2)

∑

i∈N−
xk,i,j

k− + xk,i
k+ ,i

k− = 1 ∀k ∈ K (3)

∑

k∈K

∑

j∈V
xk,i

r+ ,j ≤ 1 ∀r ∈ R (4)

∑

j∈V
(xk,i,j − xk,j,i) = 0 ∀k ∈ K, i ∈ N (5)

∑

j∈V

(
xk,i

r+ ,j − xk,j,i
r−

)
= 0 ∀k ∈ K, r ∈ R (6)

uk,j ≥ (uk,i + Ti,j + Sj) − M × (1 − xk,i,j) ∀k ∈ K, i, j ∈ V (7)

uk,i ≥ Ei − M ×
(
1 −

∑

j∈V
xk,i,j

)
∀k ∈ K, i ∈ V (8)

uk,i ≤ Li − Si + M ×
(
1 −

∑

j∈V
xk,i,j

)
∀k ∈ K, i ∈ V (9)

uk,i
r+

≤ uk,i
r− ∀k ∈ K, r ∈ R (10)

(
uk,i

r− − uk,i
r+

)
≤ F ∀k ∈ K, r ∈ R (11)

vk,j ≥ (vk,i + Qi) − M × (1 − xk,i,j) ∀k ∈ K, i, j ∈ V (12)

xk,i,j ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A (13)

0 ≤ uk,i ≤ Z ∀k ∈ K, i ∈ V (14)

0 ≤ vk,i ≤ Ck ∀k ∈ K, i ∈ V (15)

Fig. 1. MIP model for the Senior Transportation Problem.

same vehicle. In Constraint (7), the travel time and service time of visited loca-
tions are enforced. Constraints (8) and (9) make sure that each location that
is visited must be visited within its time window. Constraint (10) imposes that
pickup locations must precede delivery locations. Constraint (11) enforces that
each ride does not exceed the maximum ride time. Constraint (12) keeps track
of the load of each vehicle after visiting the location.

4.2 Constraint Programming

The CP formulation (Fig. 2) employs optional interval variables [4] that are
linked using cumulative functions and sequence expressions. Each location i ∈ N
is an optional interval variable xi that is bounded by its time windows and the
length of its service time. We assume that each vehicle visits its depot locations

416 C. Liu et al.

max
∑

r∈R
Wr × PresenceOf(xi

r+
)
)

(16)

s.t. Alternative(xi, Xi) ∀i ∈ N (17)

Before(X̄k,i
r+

, X̄k,i
r−) ∀k ∈ K, ∀r ∈ R (18)

PresenceOf(X̄k,i
r+

) = PresenceOf(X̄k,i
r−) ∀k ∈ K, ∀r ∈ R (19)

StartOf(xi
r−) − EndOf(xi

r+
) ≤ F ∀r ∈ R (20)

vk,i = StepAtStart(X̄k,i, Qi) ∀k ∈ K, ∀i ∈ N (21)
∑

i∈N
vk,i ≤ Ck ∀k ∈ K (22)

First(uk, xi
k+) ∀k ∈ K (23)

Last(uk, xi
k−) ∀k ∈ K (24)

NoOverlap(uk, T) ∀k ∈ K (25)

Fig. 2. CP model for the Senior Transportation Problem.

regardless of whether it is assigned requests or not. The presence of xi in the
final solution implies that the location is visited by a vehicle. Auxiliary interval
variables Xi,k and X̄k,i are transpositions of each other (i.e., Xi,k = X̄k,i), and
link the xi variables to vehicles through the use of the Alternative constraint.
The presence of Xi,k and X̄k,i indicates that location i is visited by vehicle k.
Cumulative functions vk,i are expressions that model the load of vehicle k after
visiting location i. Finally, each route is modelled by a sequence variable uk

whose value is a permutation of locations visited by vehicle k.
The objective function (16) maximizes the total weight of fulfilled requests.

The Alternative constraint in Constraint (17) indicates that if a variable (xi) is
present, then exactly one variable in the set of variables Xi (a vector of variables
Xi,k) can be present, ensuring that at most one vehicle can visit location i.
In Constraint (18), the Before constraint ensures that each pickup location is
visited before its corresponding delivery location. Constraint (19) enforces that
if the pickup location is served by vehicle k, then its associated delivery location
must also be served by the same vehicle k. The difference between the end time of
a delivery location variable and the start time of the respective pickup location
variable must be less than the maximum ride time and is enforced through
Constraint (20). In Constraint (21), the cumul function vk,i is defined such that
for each vehicle k, the variable changes by the load size of location i, Qi, at
the start of the location variable of vehicle k (X̄k,i) where the size is positive
for a pickup and negative for a delivery. Constraint (22) enforces that the sum
of the load variables does not exceed the capacity of the vehicle. Constraints
(23) and (24) indicate that each route must start at its associated start depot
and end at its associated end depot. The CP model uses the NoOverlap global
constraint (25) to prevent sub-tours on each route; it specifies that all present

Modelling and Solving the Senior Transportation Problem 417

max
∑

r∈R

∑

k∈K
(Wr × ϕk,r)62()

s.t.
∑

k∈K
yk,i ≤ 1 ∀i ∈ N (27)

ζr = Si
r+

+ Ti
r+ ,j

r− + Si
r− ∀r ∈ R (28)

Qr × ϕk,r ≤ Pk ∀k ∈ K, r ∈ R (29)

(Ei
r+

+ ζr) × ϕk,r ≤ Li
k− ∀k ∈ K, r ∈ R (30)

(Ei
k+ + ζr) × ϕk,r ≤ Li

r− ∀k ∈ K, r ∈ R (31)
∑

i∈N
(yk,i i + Si) + i

k+ + Si
k+

≤ Li
k− − Ei

k+ ∀k ∈ K (32)

yk,r = yk,r+|R| = ϕk,r ∀k ∈ K, r ∈ R (33)

yk,i, ϕk,r ∈ {0, 1} ∀k ∈ K, i ∈ N , r ∈ R (34)

Benders Cuts

Fig. 3. A MIP model for the LBBD master problem of the STP.

interval variables on the sequence variable uk must not overlap in operation times
while considering the transition time between all locations defined through the
transition distance matrix T .

4.3 Logic-Based Benders Decompositions

For the LBBD approaches [3], we decompose the STP into a relaxed master
problem and a number of sub-problems. The master problem finds the optimal
relaxed assignment of requests to vehicles. Each sub-problem is, then, an opti-
mization problem to find the optimal route given the assigned requests. If the
optimal route for each sub-problem satisfies all requests assigned to it, then the
global optimal solution has been found, otherwise, a Benders cut is produced.
The LBBD models find a feasible global solution at every iteration since the
route found in each sub-problem is feasible when the master objective value is
ignored. We present one MIP and one CP formulation of the master problem
and a single CP model for the sub-problem.

MIP Master Problem. The master problem assigns each request into a vehicle
using integer decision variables ϕk,r which equal 1 if request r is assigned to
vehicle k and 0 otherwise, and yk,i which equal 1 if location i is visited by
vehicle k and 0 otherwise. Instead of modelling the exact travel distance between
consecutive locations, we compute the minimum travel time from each location
i to any other, denoted with Ti. The sum of minimum travel time of all locations
assigned to a vehicle must be less than or equal to the time availability of the
vehicle. All other routing constraints are ignored in the master problem.

418 C. Liu et al.

max Objective (16)

s.t. Constraints (17), (19)

EndBeforeStart(xi
k+ , Xi,k) ∀k ∈ K, i ∈ N (35)

EndBeforeStart(Xi,k, xi
k−) ∀k ∈ K, i ∈ N (36)

EndBeforeStart(xi
k+ , xi

k−) ∀k ∈ K (37)
∑

i∈N
(PresenceOf(Xi,k) × i + Si)

+ i
k+ + Si

k+ ≤ Li
k− − Ei

k+ ∀k ∈ K (38)

Benders Cuts

Fig. 4. A CP model for the LBBD master problem of the STP.

Figure 3 presents the model. The objective function (26) maximizes the total
weight of all the requests served. Constraint (27) ensures all locations are visited
at most once. The approximate length of a request, ζr is modelled in Constraint
(28) and Constraints (29)–(31) remove all infeasible requests from a specific
vehicle. The relaxed total travel time for a vehicle is restricted to the time
availability of the vehicle through Constraint (32). The relationship between the
yk,i and ϕk,r variables is established in Constraint (33) which also specifies that
a corresponding pickup and delivery must be served by the same vehicle.

CP Master Problem. The CP formulation presented in Fig. 4 uses signifi-
cantly fewer of variables than the full STP model in Fig. 2. Since we are relaxing
all the temporal constraints in the master problem, there is no need for sequence
variables. In this CP formulation of the LBBD master problem, we only employ
interval variables xi and Xi,k as defined in Sect. 4.2.

The objective and a number of constraints remain the same as in the full STP
model (Fig. 2). Since sequences are relaxed, no sequence variables are modelled
but Constraints (35)–(37) ensure that each vehicle visits its starting depot and
ending depot first and last, respectively. Finally, the distance relaxation is the
same as in the MIP master problem represented by Constraint (38).

CP Sub-problem. After the master problem allocates the requests, a sub-
problem is created for each vehicle with at least two assigned requests.1 Each sub-
problem is a single vehicle STP maximizing the total weight of served requests of
those assigned by the master problem. If the sub-problem is able to schedule all
the requests given to it, then the vehicle has a feasible assignment. Otherwise,
the requests assigned to the vehicle are not feasible and the solution of the sub-
problem is the optimal assignment for a proper subset of the assigned requests.
The objective value of the sub-problem is then used in a Benders cut. With

1 The master problem guarantees a solution for a vehicle with only one request.

Modelling and Solving the Senior Transportation Problem 419

max
∑

r∈R∗
Wr × PresenceOf(xi

r+
)
)

(39)

s.t.

Before(u, xi+ , xi−) ∀i ∈ R∗ (40)

StartOf(xi−) − EndOf(xi+) ≤ F ∀i ∈ R∗ (41)

vi = StepAtStart(vi, Qi) ∀i ∈ N ∗ (42)

0 ≤
∑

i∈N∗
vi ≤ Ck∗ (43)

First(u, xik∗+) (44)

Last(u, xik∗−) (45)

NoOverlap(u) (46)

Fig. 5. A CP model for the LBBD sub-problem of the STP.

optimization sub-problems, at each iteration of the LBBD, the algorithm finds
a globally feasible solution.

Let k∗ represent the vehicle and R∗ the subset of requests assigned to k∗ by
the master problem. The CP formulation of the sub-problem uses three decision
variables. For each location i ∈ V∗, the optional interval variable xi represents
the time interval in which location i is served and is not present if it is not
visited. This variable is bounded by the time window of the specific location.
Cumulative functions yi represent the load of the vehicle after visiting location
i. Finally, a sequence variable u represents the sequence of visits of the vehicle.

Figure 5 presents the CP model for the subproblems. The objective function
(39) maximizes the sum of weights of served requests. Constraint (40) makes sure
that the pickup location is visited before the delivery location. The maximum
ride time is enforced through Constraint (41). Constraints (42) and (43) keep
track of the load of the vehicle after visiting each location and make sure that
the load does not exceed the capacity of the vehicle at any location. Constraints
(44) and (45) force the start and end of the sequence to be at the starting and
ending depot, respectively. Finally, Constraint (46) takes into account the travel
distances between locations for the sequence and eliminates sub-tours.

Benders Cut. If a sub-problem schedules all the requests assigned to it, then
it is feasible. Otherwise, an optimality cut is returned to the master problem.
The cut specifies that, given the subset of requests R∗ to vehicle k∗ in iteration
h, denoted by Jh,k, the objective value cannot be larger than the sub-problem’s
optimal value denoted by z∗. This cut is modelled in a MIP formulation as in
Inequality (47) and in a CP formulation as in Inequality (48).

420 C. Liu et al.

∑

r∈Jh,k

(ϕk,r × Wr) ≤ z∗ ∀k ∈ K, h ∈ {1, ...,H − 1} (47)

∑

r∈Jh,k

(
PresenceOf(Xir+ ,k × Wr)

)
≤ z∗ ∀k ∈ K, h ∈ {1, . . . , H − 1} (48)

4.4 A Construction Heuristic

We designed a simple heuristic for the STP. It is used both as a basis of com-
parison with and as a warm-start solution for the exact techniques.

Since the objective function is to maximize the weight of served requests, it is
reasonable to first schedule the requests that have the highest ratio of weight to
length (i.e., Wr/ζr with ζr as defined in Constraint (28)). Furthermore, vehicles
are sorted in ascending order of the size of their interval of availability so that
requests are spread out amongst all vehicles and not concentrated on a single
vehicle with a large time window. The algorithm schedules the highest weight
ratio request to the first vehicle that can perform the request. If no currently
available vehicle can satisfy a request, then the request is not scheduled. The
algorithm is outlined in Algorithm1.

Algorithm 1. Construction Heuristic for the STP
Data: Set of requests R and set of vehicles K
Result: A set of scheduled routes

1 Sort R based on descending order of Wr
ζr

;

2 Sort K based on ascending time window size;
3 for all requests r in R do
4 for all vehicles v in K do
5 if r can be served by v then
6 assign r to v and set start time of r as earliest start time on r that

is after the earliest pickup time of r;
7 split v into 2 vehicle pieces, v1 and v2;
8 set start and end locations and start and end times for v1 and v2;
9 insert v1 and v2 into K based on the new time window sizes;

10 break;

11 end

12 end

13 end
14 Regroup all pieces of the same vehicle to make scheduled routes;

5 Experimental Results

In this section, we discuss the datasets used in our experiments and present the
performance of the five approaches proposed above, including using the con-
struction heuristic to provide a starting solution for the exact techniques. All

Modelling and Solving the Senior Transportation Problem 421

approaches are coded using IBM’s CPLEX Studio 12.7 in C++. The experi-
ments are run on a computer with Intel Xeon E3-1226 v3 @ 3.30 GHz, 16 GB
RAM using a single thread and a 600 s runtime limit. The CP Optimizer solver
is set to use its default search.

5.1 Datasets

We generated 75 random datasets and extracted 280 problem instances from
real world data provided by a partnering organization. In the generated problem
instances, we varied the number of requests and vehicles, and the sizes of the
time window (TW) of each request and vehicle. We also experimented with three
different time window sizes: big, normal and small. All other characteristics are
generated randomly following normal distributions. Table 1 outlines the lower
and upper bounds of each characteristic.

Table 1. Bounds on problem characteristics for generated datasets.

Characteristic Lower bound Upper bound

Vehicle Number of vehicles 2 20

Capacity 2 6

Start and end depot
service time

2 16

Request Number of requests 6 50

Size 1 3

Weight 1 5

Pickup and delivery
location service time

2 16

Travel time 1 60

Time windows Small 80 180

Normal 180 360

Big 600 900

From the historical records of our partnering organization, we extracted
72,883 requests and 54,494 vehicle records over 280 operating days from Jan-
uary 2015 to January 2016. A total of 280 datasets were created. On average,
there are 260 requests per day and the maximum number of requests per day is
554. There are on average 187 vehicles available each day.

5.2 Results

Table 2 summarizes the results of all approaches on the generated datasets. CP
solved all 75 (100%) instances to optimality in an average of 1.02 s, MIP/CP
LBBD solved 71 (95%) instances with an average runtime of 21.78 s, CP/CP

422 C. Liu et al.

LBBD solved 49 (65%) instances with an average runtime of 110.14 s, and MIP
solved 35 (48%) instances with an average of 90.00 s. The heuristic was able to
find, but of course not prove, the optimal solution for 45 (60%) of the instances.
In terms of relative solution quality compared to the optimal solutions, CP is
again the best performer with the heuristic finding, on average, better solutions
than both the MIP and CP/CP LBBD models.

Each of the four exact methods were then run with the heuristic solution as
a warm start. Both MIP and CP/CP LBBD have a substantial improvement
with the heuristic start. However, the only additional instances that they were
able to solve to optimality were those for which the heuristic found an optimal
solution. The heuristic start only improves MIP/CP LBBD a little while it has
very minimal effects on CP. CP/CP LBBD exhibits lower solution quality than
the heuristic, even when warm-started. Recall that the relaxed master problem
often has better (but globally infeasible) solutions and so the warm start solution
is replaced by a better master problem incumbent before the subproblems are
solved.

Table 2. Number of instances solved to optimality, average runtime, and average
optimality gap for generated datasets. The ‘*’ indicates the heuristic found but did not
prove optimal solutions.

Approach # instances solved
to optimality

% solved to
optimality

Average
runtime

Average
optimality gap

Heuristic 45∗ 60.00%∗ 0.01 4.13%

MIP 35 46.67% 90.00 30.68%

MIP H 52 69.33% 22.36 1.80%

CP 75 100.00% 1.02 0.00%

CP H 75 100.00% 2.38 0.00%

MIP/CP LBBD 71 94.67% 21.78 0.15%

MIP/CP LBBD H 73 97.33% 2.54 0.09%

CP/CP LBBD 49 65.33% 110.14 18.95%

CP/CP LBBD H 61 81.33% 42.58 10.85%

Given the good performance of CP and MIP/CP LBBD, we apply them to
the real world datasets. As shown in Table 3, out of 280 instances, 250 instances
are solved to optimality with an average of 126.74 s using the pure CP model
while the MIP/CP LBBD could only solve 47 instances in 331.31 s.

The evolution of runtime of the CP model as the problem sizes of the real
instances increase is shown in Fig. 6. It can be observed that there is an approx-
imately linear increase in runtime up to about 400 nodes (with some outliers)
but with larger problems, the runtime substantially increases.

We also ran CP with an 8-h time limit. An additional 21 instances were
solved to optimality but nine instances are still open. Thus Table 4 reports the

Modelling and Solving the Senior Transportation Problem 423

Table 3. Number of instances solved to optimality, average runtime, and average
optimality gap for real world datasets.

Approach # instances solved
to optimality

% solved to
optimality

Average
runtime

Average
optimality gap

CP 250 89.29% 126.74 3.03%

MIP/CP LBBD 47 16.79% 331.31 18.38%

Table 4. Average optimality gap summary for CP and MIP/CP LBBD on CHATS
instances.

Instances CP avg. gap MIP/CP LBBD
avg. gap

All 280 instances 5.25% 11.84%

233 instances not solved by
MIP/CP LBBD

6.31% 14.23%

30 instances not solved by CP 49.02% 18.38%

Fig. 6. CP runtime of real world instances over number of vertices.

solution quality relative to the best known solution for the real world datasets.
The overall mean optimality gap for CP is 5.25% and 11.84% for MIP/CP LBBD.

6 Analysis

The strong results for CP compared to the LBBD approaches differ from much
of the literature. Here, we explore three, non-mutually exclusive, hypotheses.

1. The default search of CP Optimizer is particularly suited to our problems.

424 C. Liu et al.

2. The first feasible solutions found by the CP model are better and found more
quickly than those found by the LBBD approaches.

3. Good solutions result in strong back-propagation from the lower-bound on
the objective function, creating greater impact of search space reduction [8].

6.1 CP and Depth First Search

CP Optimizer’s default search employs a combination of Large Neighbourhood
Search (LNS) and Failure-directed Search (FDS) [11]. To observe its impact, we
ran CP on the generated dataset using depth-first search (DFS). All instances
were solved to optimality by DFS with an increase in the average runtime from
1.016 s to 1.873 s, a decrease in the average optimality gap of the first feasible
solution from 29.14% to 24.14%, and an increase on the mean time to find the
first solution from 0.163 s to 0.207 s.

The difference when using DFS appears marginal, perhaps due to using a sin-
gle thread in all experiments. However, it does not appear that we can attribute
the strong performance of our CP model, relative to the LBBD approaches, to
the sophisticated default search of CP Optimizer.

6.2 First Solution Quality and Time

We recorded the time to find the first feasible solution and its quality for the
CP model and both LBBD approaches on the generated dataset. The objective
value, z′, is compared to the known optimal solution, z∗ via the optimality gap
computed as (z∗ − z′)/z∗. Figures 7 and 8, respectively, compare the MIP/CP
LBBD approach and the CP/CP LBBD approach to the CP model.

Fig. 7. First solution quality of MIP/CP LBBD compared to CP.

For the LBBD approaches, the first feasible solution is often the actual opti-
mal solution and therefore is usually better than the CP model. However, the
time to find these solutions for the LBBD approaches is much longer.

Modelling and Solving the Senior Transportation Problem 425

Fig. 8. First solution quality of MIP/CP LBBD compared to CP.

To further analyze the effect of the first solution, we used the first solution
found in CP as a starting solution for the better performing LBBD approach,
MIP/CP LBBD. We then let the algorithm run and report the change of run-
time with and without the warm start. The warm start solution consists of an
assignment of requests to vehicles which is a solution to the master problem of
the MIP/CP LBBD but it does not contain any temporal information. For this
experiment, the runtime does not include the time to compute the warm start
solution. The results are shown in Fig. 9.

For big time windows, some instances are solved more quickly with the warm
start solution. However, on average, the run-times with or without the warm-
start are the same. As with the CP/CP LBBD H results in Table 2, in many
cases, the warm start solution provided by the CP model is not as good as the
first master problem solution and thus is discarded.

We conducted the inverse experiment, inserting the MIP/CP LBBD first
solution into the CP model as a warm start with the results shown in Fig. 10.
In most cases, given the assignment of the warm start solution, the CP model
performs slightly slower. Examination of the vehicle assignments of the first
solutions showed that MIP/CP LBBD’s assignment often clusters requests onto
few vehicles. When CP is warm-started with such solutions, it needs to backtrack
and reassign many requests to different vehicles in order improve the solution
and/or prove optimality.

6.3 Search Space Reduction

The next set of experiments measures the impact of search space reduction of
artificial lower bounds. If we denote the set of possible values that a variable xi

can take as Dxi
, then the logarithm of the size of the search space log(|P |) is

computed as in Eq. (49) [8].

log(|P |) = log(|Dxi
|) + . . . + log(|Dxn

|) (49)

For interval variables, the domain size is simply the size of the interval minus
the duration of the variable, or |Dxi

| = Li − Ei − Si + 1. For optional interval

426 C. Liu et al.

Fig. 9. Runtime difference of pure
MIP/CP LBBD minus MIP/CP LBBD
with CP starting solution.

Fig. 10. Runtime difference of pure CP
minus CP with MIP/CP LBBD start-
ing solution.

variables, there is an additional boolean value to represent the presence of the
variable, thus the domain size is multiplied by 2. We focus on the CP/CP LBBD
model so as to not conflate the comparison with fundamentally different problem
solving bases (e.g., back-propagation is less important for MIP solving).

From the known optimal solutions, we compute five different lower bounds
for each dataset that are 100%, 80%, 60%, 40%, and 20% of the optimal solution.
Note that since we are maximizing, a lower bound on the objective function still
results in a feasible solution. We then add this lower bound as a constraint on
the objective function for both the CP model and the CP/CP LBBD approach.
The search space is calculated before and after propagation of the root node.
Table 5 presents how many instances show search space reduction and the aver-
age percentage reduction over those instance which showed non-zero reduction,
given the different lower bounds for both CP and CP/CP LBBD.

Table 5. Number of instances (out of 25 in each row) that show a reduction in search
space and the average percentage reduction after applying the artificial lower bound.
The average only includes instances with non-zero reduction.

TW Type
Lower Bound Percentage

100% 80% 60% 40% 20%

CP

small 8 (9.53%) 3 (23.56%) 2 (34.55%) 0 (-) 0 (-)
normal 3 (1.50%) 1 (0.30%) 0 (-) 0 (-) 0 (-)
big 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

CP/CP LBBD

small 1 (5.61%) 1 (5.61%) 0 (-) 0 (-) 0 (-)
normal 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
big 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)

Modelling and Solving the Senior Transportation Problem 427

There are several instances that show a search space reduction for CP, after
applying a lower bound, indicating back-propagation. Only one instance demon-
strated search space reduction for the CP/CP LBBD showing a poor propagation
of the first solution quality to the entire search space.

The average percentage reduction should be interpreted carefully. Since we
are taking the mean the over instances with non-zero reduction, it may increase
even when the lower bound decreases due to fewer problems showing any reduc-
tion (i.e., a smaller denominator).

7 Conclusion

Inspired by a real-world problem, we define the Senior Transportation Problem
(STP), a problem encountered by organizations responsible for providing elder
transportation. We show that it is a challenging combination of Pickup-and-
Delivery with Time Windows, the Dial-a-Ride Problem, and the Team Orien-
teering Problem. In this paper, a formal problem definition for the STP was
proposed, illustrating multiple constraints in real life problems.

Five different approaches using mixed integer programming, constraint pro-
gramming, logic-based Benders decomposition, and a construction heuristic are
developed to solve the STP. Each method is tested on 75 instances from a gener-
ated dataset and 280 real-world instances from our industrial partner. Constraint
programming proves to be the best performing approach on both problem sets
in terms of the number of instances solved to proven optimality, faster runtime,
and solution quality. An LBBD approach combining mixed integer programming
and constraint programming achieves the second best performance, though sub-
stantially worse than the pure constraint programming model. Our subsequent
analysis lends support to the hypotheses that the strong performance of the CP
model stems from the ability to quickly find feasible solutions and then to use
the bounds on those solutions to reduce the search space.

While our conclusion is that the current CP model is superior, we plan to
try to improve the logic-based Benders models in order to further challenge the
pure CP approach and, more importantly, develop at a deeper understanding of
the problem characteristics that favor CP or decomposition approaches.

References

1. Baklagis, D., Dikas, G., Minis, I.: The team orienteering pick-up and delivery
problem with time windows and its applications in fleet sizing. RAIRO-Oper. Res.
50(3), 503–517 (2016)

2. Cordeau, J.F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann.
Oper. Res. 153(1), 29 (2007)

3. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Math. Program.
96(1), 33–60 (2003)

4. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: FLAIRS
Conference, pp. 555–560 (2008)

428 C. Liu et al.

5. Parragh, S.N., Doerner, K., Hartl, R.F.: A survey on pickup and delivery mod-
els: part I: transportation between customers and depot. J. für Betriebswirtschaft
58(1), 21–51 (2008)

6. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery prob-
lems: part II: transportation between pickup and delivery locations. J. für Betrieb-
swirtschaft 58, 81–117 (2008)

7. Qiu, X., Feuerriegel, S., Neumann, D.: Making the most of fleets: a profit-
maximizing multi-vehicle pickup and delivery selection problem. Eur. J. Oper.
Res. 259(1), 155–168 (2017)

8. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8 41

9. Ropke, S., Cordeau, J.F.: Branch and cut and price for the pickup and delivery
problem with time windows. Transp. Sci. 43(3), 267–286 (2009)

10. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

11. Viĺım, P., Laborie, P., Shaw, P.: Failure-Directed Search for Constraint-Based
Scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 30

https://doi.org/10.1007/978-3-540-30201-8_41
https://doi.org/10.1007/978-3-319-18008-3_30

Solver Independent Rotating Workforce
Scheduling

Nysret Musliu1(B), Andreas Schutt2,3(B), and Peter J. Stuckey2,3(B)

1 TU Wien, Vienna, Austria
2 Data61, CSIRO, Docklands, VIC, Australia

andreas.schutt@data61.csiro.au
3 University of Melbourne, Parkville, VIC, Australia

Abstract. The rotating workforce scheduling problem aims to schedule
workers satisfying shift sequence constraints and ensuring enough shifts
are covered on each day, where every worker completes the same sched-
ule, just starting at different days in the schedule. We give two solver
independent models for the rotating workforce scheduling problem and
compare them using different solving technology, both constraint pro-
gramming and mixed integer programming. We show that the best of
these models outperforms the state-of-the-art for the rotating workforce
scheduling problem, and that solver independent modeling allows us to
use different solvers to achieve different aims: e.g., speed to solution or
robustness of solving (particular for unsatisfiable problems). We give the
first complete method able to solve all of the standard benchmarks for
this problem.

1 Introduction

Rotating workforce scheduling is a specific personnel scheduling problem arising
in many spheres of life such as, e.g., industrial plants, hospitals, public institu-
tions, and airline companies. Table 1 shows a workforce schedule for 7 employees
during one week, in which a row represents the weekly schedule of one employee.
There are three shifts: day shift (D), afternoon shift (A), and night shift (N).
The first employee works from Monday till Thursday in the afternoon shift and
has days-off in the remaining week. The second employee has a day-off on Thurs-
day and Friday and works in the day shift in the other days. The last employee
starts the week with 3 night shifts, then rests for two days, and ends the week
with 2 day shifts. A schedule must meet many constraints such as workforce
requirements for shifts and days, minimal and maximal length of shifts, and
shift transition constraints, which are described in detail in the next section. For
rotating workforce scheduling, the schedule is rotating (or cyclic), i.e., the ith

employee has the schedule of the (((i − 1 + k) mod n) + 1)th employee after the
kth week, where n is the number of employees. Due to that, no personal prefer-
ences of employees can be considered. The aim is to find a schedule satisfying
all the constraints. Rotating workforce scheduling problems are NP-complete [7].

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 429–445, 2018.
https://doi.org/10.1007/978-3-319-93031-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_31&domain=pdf

430 N. Musliu et al.

Table 1. A typical week schedule for 7 employees.

Employee Mon Tue Wed Thu Fri Sat Sun

1 A A A A - - -

2 D D D - - D D

3 D - - N N N N

4 - - - - A A A

5 D D D D D - -

6 N N N N N - -

7 N N N - - D D

According to [1,26], the problem studied can be characterized as a single-activity
tour scheduling problem with non-overlapping shifts and rotation constraints.

Many practical real-life rotating workforce scheduling problems have been
solved by complete techniques [2,12,19,22,28] and heuristic algorithms [20,21],
but solving large problems is still a challenging task. Balakrishnan and Wong [2]
formulate the problem as a network flow problem. Laporte [18] proposes a Inte-
ger Linear Programming approach. Methods based on Constraint Programming
(CP) techniques are studied in [19,22,28]. Recently, Erkinger and Musliu [12]
propose a Satisfiability Modulo Theory (SMT) approach, which—to our best
knowledge—defines the state of the art complete method. All methods have
been evaluated on the benchmark set with 20 instances [20,21], which are based
on real life problems from different business areas, or on a sub-set of them. The
state of the art complete method [12] was able to solve 18 of them, whereas the
state-of-the-art heuristic approach [20,21] based on min-conflicts heuristic and
tabu search (MC-T) found a solution for all of them. Other research studies focus
at the creation of efficient rotation schedules by hand [17], and the design and
the analysis of rotating schedules with an algebraic computational approach [13].

There are various variants of personnel scheduling (see, e.g., the surveys [4,
5]), one group of them is the (multi-activity) shift scheduling problem, which is
generally concerned about a finer schedule of the shifts over a planning horizon of
one day considering, e.g., meal breaks and more workforce regulations. Because of
the finer nature, there has been a great deal of work in formalizing languages and
their automata or network flows for capturing most of the regulations (see, e.g.,
[9,11,16,25,27]). Beside the technologies mentioned in the previous paragraph,
researchers has been investigating in Column Generation based methods (see,
e.g., [15,26]) to tackle large personnel scheduling problems.

We define two solver-independent models for rotating workforce scheduling,
and compare them using a CP and a Mixed-Integer Programming (MIP) solver.
The first model is rather direct, where each constraint is separately stated.
The second model attempts to model as much as possible of the regulations
using a single regular constraint [24], which models the regulations as a deter-
ministic finite automaton. We consider redundant constraints, and symmetry
breaking constraints that can be added to the model to possibly improve them.

Solver Independent Rotating Workforce Scheduling 431

We compare the variations of the models experimentally using the two solvers,
and explore good search strategies to be used with the CP solver. Moreover,
we generated 1980 additional instances and show that our two best methods
outperform the state of the art approaches [12,20,21], on both the standard 20
benchmark instances and the extended 2000 instances.

2 The Rotating Workforce Scheduling Problem

We focus on a specific variant of a general workforce scheduling problem, which
we formally define in this section. The following definition is from Musliu et
al. [22] and proved to be able to satisfactorily handle a broad range of real-
life scheduling instances in commercial settings. A rotating workforce scheduling
problem as discussed in this paper consists of:

– n: Number of employees.
– A: Set of m shifts (activities). There is also a “day-off” activity denoted O.

We let A+ = A ∪ {O}.
– w: Length of the schedule. A typical value is w = 7, to assign one shift type

for each day of the week to each employee. The total length of a planning
period is n × w due to the schedule’s cyclicity as discussed below.

– R: Temporal requirements matrix, an m×w-matrix where each element Ri,j

shows the required number of employees that need to be assigned shift type
i ∈ A during day j. The number oj of day-off “shifts” for a specific day j is
implicit in the requirements and can be computed as oj = n − ∑m

i=1 Ri,j . In
an abuse of notation we let RO,j = oj .

– Sequences of shifts not permitted to be assigned to employees. We consider
two kinds of forbidden sequences: length 2 sequences, e.g., ND (Night Day):
after working in the night shift, it is not allowed to work the next day in the
day shift; and length 3 sequences, e.g., DON (Day Off Night): after working
a day shift and then having a day off, it is not allowed to work the next day
in the night shift. In length 3 sequences the middle shift is always O (Off). A
typical rotating workforce instance forbids several shift sequences, often due
to legal reasons and safety concerns. These two kinds are sufficient for all the
cases we have met in practice. We represent the forbidden sequence as two
sets of pairs (sh1, sh2) ∈ F2 if it is forbidden to take shift sh2 directly after
sh1; and (sh1, sh2) ∈ F3 if it is forbidden to take shift sh2 directly after a
single O shift after sh1.

– ls and us: Each element of these vectors shows, respectively, the required
minimal and permitted maximal length of periods of consecutive shifts s ∈
A+ of the same type.

– lw and uw: Minimal and maximal length of blocks of consecutive work shifts.
This constraint limits the number of consecutive days on which the employees
can work without having a day off.

The task in rotating workforce scheduling is to construct a cyclic schedule,
which we represent as an n × w matrix Si,j ∈ A+, 1 ≤ i ≤ n, 1 ≤ j ≤ w. Each

432 N. Musliu et al.

element Si,j denotes the shift that employee i is assigned during day j in the
first period of the cycle, or whether the employee has time off on that day. In a
cyclic schedule, the schedule for one employee consists of a sequence of all rows
of the matrix S.

The task is called rotating or cyclic scheduling because the last element of
each row is adjacent to the first element of the next row, and the last element of
the matrix is adjacent to its first element. Intuitively, this means that employee
i (i < n) assumes the place (and thus the schedule) of employee i+ 1 after each
week, and employee n assumes the place of employee 1. This cyclicity must be
taken into account for the last three constraints above.

In the present paper, we consider the satisfaction problem satisfying all con-
straints given in the problem definition, which is usually sufficient in practice.
This means the generation of one schedule is sufficient. The commercial software
FCS [14,22] uses the same constraints for generating rotating workforce sched-
ules. This system has been used since 2000 in practice by many companies in
Europe and the scheduling variant we discuss in this paper proved to be sufficient
for a broad range of uses.

3 Direct Model

The direct model of the problem asserts each of the constraints individually. To
make it easy to handle the cyclic nature of the schedule we define a new view on
the schedule Tk = Sk÷w+1,k mod w+1, 0 ≤ k ≤ n×w − 1 which simply maps the
days of the schedule to a list of length n×w indexed from TT = {0, . . . , n×w−1}.
Let t(x) = x mod (n × w) be a map from days to indexes of the list. We can
then assert the constraints individually

∑uw

k∈0
(Tt(j+k) = O) > 0, j ∈ TT (1)

∑lw

k∈1
(Tt(j+k) = O) = 0, j ∈ TT, Tj = O ∧ Tt(j+1) �= O (2)

∑uO

k∈0
(Tt(j+k) �= O) > 0, j ∈ TT (3)

∑lO

k∈1
(Tt(j+k) �= O) = 0, j ∈ TT, Tj �= O ∧ Tt(j+1) = O (4)

∑ush

k∈0
(Tt(j+k) �= sh) > 0, j ∈ TT, sh ∈ A (5)

∑lsh

k∈1
(Tt(j+k) �= sh) = 0, j ∈ TT, sh ∈ A, Tj �= sh ∧ Tt(j+1) = sh (6)

Tj = sh1 → Tt(j+1) �= sh2, j ∈ TT, (sh1, sh2) ∈ F2 (7)
Tj = sh1 ∧ Tt(j+1) = O → Tt(j+2) �= sh2, j ∈ TT, (sh1, sh2) ∈ F3 (8)

Constraint (1) enforces there are no sequences of length uw + 1 with no O
shift, i.e., the maximum length of a work block. Constraint (2) enforces there are
no sequences of length less than lw of work shifts, i.e., the minimum length of a
work block. Constraint (3) enforces there are no sequences of length uO+1 of just

Solver Independent Rotating Workforce Scheduling 433

O shifts, i.e., the maximum length of an off block. Constraint (4) enforces there
are no sequences of length less than lO of off shifts, i.e., the minimum length of
an off block. Constraint (5) enforces there are no sequences of length ush + 1 of
just sh shifts, i.e., the maximum length of an sh block. Constraint (6) enforces
there are no sequences of length less than lsh of sh shifts, i.e., the minimum
length of an sh block. Constraint (7) enforces no forbidden sequences of length
2. Constraint (8) enforces no forbidden sequences of length 3.

To complete the model, we enforce that each day has the correct number of
each type of shift.

∑

i∈1..n
(Si,j = sh) = Rsh,j , j ∈ 1..w, sh ∈ A (9)

We can do the same for the off shifts as follows. Note that it is a redundant
constraint. ∑

i∈1..n
(Si,j = O) = oj , j ∈ 1..w (10)

Note that this model appears to consist entirely of linear constraints (at
least once we use 01 variables to model the decisions Si,j = sh, sh ∈ A+).
This is misleading, since Eqs. (2), (4) and (6) are all contingent on variable
conditions. The entire model can be easily expressed with linear constraints,
and (half-)reified linear constraints.

4 Alternative Model Choices

The direct model (1–10) described in the previous section simply uses linear-
styled constraints. However, there are alternative ways to model the shift tran-
sitions and the temporal requirements using global constraints. In addition, we
can add more redundant constraints and symmetry breaking constraints to the
model. In this section, we look at these choices except for the shift transition,
for which we devote a separate section after this one.

4.1 Temporal Requirements

Instead of using the linear constraints in (9) and (10), we can respectively use
these global cardinality constraints for each week day j ∈ 1..w.

gcc low up([Si,j |i ∈ 1..n],A, [Rsh,j |sh ∈ A], [Rsh,j |sh ∈ A]) (11)

gcc low up([Si,j |i ∈ 1..n],A+, [Rsh,j |sh ∈ A+], [Rsh,j |sh ∈ A+]) (12)

They state that the number of shifts of each type in sh ∈ A (or sh ∈ A+)
occurring in each day j must exactly equal the requirement Rsh,j .

4.2 Redundant Constraints

In a cyclic schedule, we know that there are equal numbers of work blocks and
off blocks. We exploit this knowledge to create redundant constraints for each

434 N. Musliu et al.

week by ensuring the lower bounds and upper bounds of these blocks do not
cross.

Let twl =
∑

sh∈A

∑n
j=1 Rsh,j be the total workload over the planning period.

Then we can define the number of days-off owi at the end of the week i from
the beginning of the schedule as

owi =

⎧
⎨

⎩

0 i = 0
owi−1 +

∑
j∈1..w(Si,j = O) i ∈ 1..n − 1

n × w − twl i = n

Define roi to be the number of days-off remaining after the end of week i, and
similarly rwi to be the number of work days remaining after the end of week i

roi = n × w − twl − owi, rwi = twl − w × i + roi.

We can determine a lower bound loi for the number of remaining off blocks
starting from week i, and similarly an upper bound uoi for the number of remain-
ing off blocks as:

loi = �roi/uO	 − (S1,1 �= O ∧ Si+1,1 = O)
uoi =
roi/lO� + (S1,1 = O ∧ Si,w = O)

Note that the potential additional minus and plus one from the evaluation of
the conjunction accounts for the fact that the number of work and off blocks can
differ by one in the remaining schedule. For the lower bound, when the schedule
starts with a work day and the week after the week i with a day-off then there
might be one off block more in the remaining schedule than the number of
remaining work blocks. For the upper bound, if the schedule starts with an off
day and the week i ends with a day-off then there might be one off block less in
the remaining schedule than the number of remaining work blocks.

Similarly, we can compute a lower bound lwi for the number of the remaining
work blocks after the end of week i, and similarly an upper bound uwi for the
number of remaining work blocks as:

lwi = �rwi/uw	 − (S1,1 = O ∧ Si+1,1 �= O)
uwi =
rwi/lw� + (S1,1 �= O ∧ Si,w �= O)

Finally, we constrain these bounds to agree.

loi ≤ uwi ∧ lwi ≤ uoi, i ∈ 1..n (13)

4.3 Symmetry Breaking Constraints

Given a schedule S a symmetric solution can easily be obtained by shifting the
schedule by any number of weeks. If there must be at least one off day at the
end of the week then we impose that the last day in the schedule is an off day.
Note that it happens for all instances used.

ow > 0 → Sn,w = O (14)

Solver Independent Rotating Workforce Scheduling 435

Note that we could have chosen any day and possible shift for breaking this
symmetry, but we choose this one because it aligns with our other model choice
for the shift transitions described in the next section.

Another symmetry occurs when all temporal requirements are the same for
each day and each shift. In this case, a symmetric schedule can be obtained by
shifting the schedule by any number of days. Thus, we can enforce that the work
block starts at the first day in the schedule. The same constraint can be enforced
if the number of working days in the first day is greater than in the last day of
the week, because there must be at least one work block starting at the first day.

(
∀sh ∈ A,∀j ∈ 1..w − 1 : Rsh,j = Rsh,j+1 ∨

∑

sh∈A
Rsh,1 >

∑

sh∈A
Rsh,w

)

→ S1,1 �= O ∧ Sn,w = O (15)

In comparison to (14), (15) also enforces an off day on the last day and thus it
is stronger symmetry breaking constraint, but less often applicable. Note that
there might be further symmetries, especially instance specific ones, but here we
focus on more common symmetries.

5 Automata Based Model

The automata-based model attempts to capture as much of the problem as
possible in a single regular [24] constraint.

In order to enforce the forbidden sequences constraints we need to keep track
of the last shift taken, and if the last shift was an O shift then the previous shift
before that. In order to track the lower and upper bounds for each shift type, we
need to track the number of consecutive shifts of a single type (including O). In
order to track the lower and upper bounds for consecutive work shifts, we need
to track the number of consecutive work shifts.

We define an automata M with Q = m + uo +
∑

sh∈A(uw × ush) states.
We bracket state names to avoid ambiguity with shift types. They represent in
sequence: an artificial start state [start]; states for the first O shift in a sequence,
recording the type of the previous work shift [sO]; states for 2 or more O shifts in
sequence (2 ≤ i ≤ uo) [Oi], states encoding that the last 1 ≤ j ≤ us consecutive
shifts are type s ∈ A directly after a sequence of 0 ≤ j < uw consecutive work
shifts (not O) [wisj]. Note each state effectively records a sequence of previous
shifts. Note that some of the states may be useless, since, e.g., a state encoding
3 consecutive D shifts after a sequence of 4 other works shifts with ow = 6 is not
possible (it represents 7 consecutive work shifts).

The transition function d for the states is defined as follows (missing transi-
tions go to an error state):

– [start]: on sh ∈ A goto [sh], on O goto [OO]. Note that transitions assume
that the previous shift was O.

– [sO]: on O goto [OO] (assuming uO ≥ 2), on sh ∈ A goto [sh] unless s O sh
is forbidden ((s, sh) ∈ F3) or lO > 1.

436 N. Musliu et al.

– [Oi], 2 ≤ i ≤ uO: on O goto [Oi+1] unless i = uO, on sh ∈ A goto [sh] unless
i < lO.

– [wisj], 0 ≤ i ≤ uw − 1, 1 ≤ j ≤ us: on O goto [sO] unless j < ls, on s goto
[wisj+1] unless j = us or i + j ≥ uw, on sh ∈ A − {s} goto [wi+jsh] unless
s sh is forbidden ((s, sh) ∈ F2) or i + j ≥ uw or j < ls.

Each state is accepting in this automata.
An example automata with two shifts D (Day) and N (Night) with forbidden

sequences ND and DON and limits lD = 2, uD = 3, lN = 1, uN = 2, lO = 1,
uO = 3 and lw = 2, uw = 4 is shown in Fig. 1. Unreachable states are shown
dotted, and edges from them are usually omitted, except horizontal edges which
do not break the total work limit. Edges for D shifts are full, N are dashed and
O are dotted.

Fig. 1. The automaton capturing correct shift sequences for a problem with work shifts
D and N , and forbidden sequences ND and DON . D shifts are indicated by full arrows,
N shifts by dashed arrows, and O shifts by dotted arrows.

In order to define a cyclic schedule the regular constraint is applied on a
sequence that duplicates the first w shifts at the end. This is safe assuming that
uw < w, which occurs in all our examples.

Solver Independent Rotating Workforce Scheduling 437

Fig. 2. A two week sequence DDNOONNODDDOOD with the first week repeated
illustrating how the regular constraint can be in different states in the two copies of
the first week.

The remaining constraints simply enforce the correct number of each shift
type on each day. In summary the total model consists of either Eqs. (11) or (12)
together with

regular([S1,1, . . . , Sn,w, S1,1, . . . , S1,w], Q,m + 1, d, [start], 1..Q) (16)

that is a regular constraint over the n + 1 week extended shift list, using an
automata defined by Q states, m + 1 shift possibilities, transition function d,
start state [start] will all states being final states.

Note that the states in the first week, and the copy need not be the same. For
example, given the automaton of Fig. 1, Fig. 2 shows a two week schedule, with
the first week repeated, giving the state of the automata across the schedule. The
two bold subsequences show where the states are different for the two copies of
the first week. The sequence is accepted.

A simpler model would be possible if we had a regular constraint that
included start and end states as variable arguments. We could then simply con-
strain the original array of shifts (with no duplication of the first week) and
constrain the start and end states to be identical. Current solvers do not sup-
port such a regular constraint.

Note that while the start state ambiguity means that we make assumptions
about the previous state when evaluating the automata on the states until we
reach a first O shift, because the constraints are applied twice on the first week of
shifts the proper constraints are satisfied. Note also that the regular constraint
may actually remove solutions, since the first shift is assumed to be the first
after an off, for the problems we tackle this simply removes symmetric solutions.
This can be incorrect for corner cases, e.g., when

∑
s∈A Rs,w = n (so there can

be no O shift in the last day of the week). In these cases we can rotate the shift
requirements for the days (effectively starting the cycle on a different day) to
overcome the problem (it does not occur in any of the benchmarks).

We tried an alternate automata M ′ which ignores constraints until it can
be sure of which state it is in, i.e., a work shift followed by an O shift, or
two consecutive O shifts. This proved to be terrible since it allowed erroneous
schedules in the first week which then only detected as unsatisfiable when we
finish labeling the last week.

6 Search Strategies

Beside the solver’s default search strategy, we tested several others for the CP
solver used, which are briefly described in this section.

438 N. Musliu et al.

The strategies studied consist of a variable and value selection part, which
can be combined freely.

6.1 Variable Selection

Variable selection is critical for reducing the search space for any combinatorial
problem. We need to balance the criteria of driving quickly towards failure, with
getting the most possible inference from the solver. The key decisions of the
model are the schedule variables Si,j . We define our variable selection over these
variables unless stated otherwise. Ties are broken by input order.

default: Solver’s default selection.
random: Randomly select a variable.
worker: Select the variables in the chronological order over the planning horizon,

i.e., S1,1, . . . , S1,w, S2,1, . . . , S2,w, . . . , Sn,1, . . . , Sn,w.
day: Select the variables in the following order the first day of the week from

the first to the last week in the planning horizon and then the next day and
so on, i.e., S1,1, . . . , Sn,1, S1,2, . . . , Sn,2, . . . , S1,w, . . . , Sn,w.

wd: Select the variables of the first day in the weeks in the chronological order,
i.e., S1,1, . . . , Sn,1, and then use the variable selection worker.

ff: Select the variable with the smallest domain (first fail).
first: Create new Boolean variables bk ↔ Tt(k−1) �= Tt(k), k ∈ TT . These rep-

resent where a change of shift type occurs. Select the Boolean variables in
chronological order and assign the value true at first. Then use the variable
selection worker.

s1: Create new Boolean variables bk ↔ (Tk = O), k ∈ TT . These represent
where an off shift occurs. Select the Boolean variables in chronological order
and assign the value true at first. Then use the variable selection worker.

6.2 Value Selection

All instances in the benchmark set have these shift types (D) day, (A) afternoon,
and (N) night, as well as the day-off (O) shift. Hence we could consider any of
the 24 different static value ordering amongst these four. We consider 4 static
orderings: DANO, default ordering of the model indomain min; ODAN , off shifts
first; ONAD, reversed default ordering indomain max; NADO, reversed ordering
of shifts.

We also consider static orderings that are computed from features of the
instance to be solved. Let maxb be the maximal number of work or off blocks,
calculated as

maxb = max(�(
∑

sh∈A,j∈1..n
Rsh,j)/lw	, �(

∑

j∈1..n
RO,j)/lO).

We consider two variants of ordering shift types in terms of the tightness of
the number of shifts required compared to the minimum number required to be
scheduled. Both variants are in ascending order.

Solver Independent Rotating Workforce Scheduling 439

slack1: For each shift in A+, we compute the slack between maximal available
space, i.e., number of shift blocks times the maximal shift length, and the
required workload or “days-off-load”, i.e., sl1O = uO × maxb − ∑w

j=1 oj , and
sl1sh = min(maxb,

∑w
j=1 Rsh,j/lsh) × ush − ∑w

j=1 Rsh,j , sh ∈ A.
slack2: This variant refines slack1 for the work shifts. In addition, it considers

when the maximal space is restricted by the high block requirement of the
other work shifts, i.e., sl2O = sl1O, and sl2sh = min(sl1sh, tish), sh ∈ A where
tish = uw × (maxb − ∑

z∈A\{sh}�
∑w

j=1 Rz,j/uz) − ∑w
j=1 Rsh,j .

7 Experiments

To evaluate our methods, we took all 20 instances from a standard benchmark
set1 and further 30 hard instances from 1980 additional generated instances, for
which the heuristic MC-T [20,21] either did not find a solution or required a
long time for it. The instances generated consist of 9 to 51 employees, 2 to 3
shift types, 3 to 4 minimal and 5 to 7 maximal length of work blocks, 1 to 2
minimal and 2 to 4 maximal length of days-off blocks, and minimal and maximal
length of periods of consecutive shifts (D: 2 to 3 and 5 to 7, A: 2 to 3 and 4 to
6, N : 2 to 3 and 4 to 5). The same forbidden sequences as for real-life examples
are used. Initially the temporal requirements for shifts are distributed randomly
between shifts based on the total number of working days and days-off (the
number of days-off is set to
n×w×0.2857�). With probability 0.3 the temporal
requirements during weekend are changed (half of these duties are distributed
to the temporal requirements of the weekdays).

Experiments were run on Dell PowerEdge M630 machines having Intel Xeon
E5-2660 V3 processors running at 2.6 GHz with 25 MB cache, unless otherwise
stated. We imposed a runtime limit of one hour and a memory limit of 16 GB,
unless otherwise stated. We tested Gurobi as a MIP solver and Chuffed [6] as a
CP solver.2 The development version of MiniZinc was used for modeling.

Table 2 compares the impact of the different model combinations for the
temporal requirement and shift transition constraints for Gurobi and Chuffed
using the solvers’ default search strategy. The columns show in this order the
solver, the constraints used (model), the total number of solved instances (#tot),
the average number of nodes (avg. nd), the average runtime (avg. rt) (includ-
ing time-outs for unsolved instances), the number of instances for which the
solver found a solution (#sat), the average runtime of feasible instances (avg.
rt), the number of instances for which the solver proved infeasibility (#uns),
and the average runtime of infeasible instances (avg. rt). The results for Gurobi
are clear. The shift transition constraints are the key constraints for its perfor-
mance. Using the regular constraint (16), it solves all 50 instances regardless
of the constraints for the temporal requirements. Its superiority over the direct
representation results because MiniZinc transforms the regular constraint into

1 Available at http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/.
2 We also tried Gecode as a constraint programming solver, but it was not competitive.

http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/

440 N. Musliu et al.

Table 2. Results on different constraint choices.

Solver Model #tot avg. nd avg. rt #sat avg. rt #uns avg. rt

Gurobi (1–8), (9) 46 3.2 k 780.6 s 40 587.5 s 6 1794.2 s

Gurobi (1–8), (9, 10) 44 2.4 k 789.2 s 39 533.5 s 5 2131.6 s

Gurobi (1–8), (11) 42 3.3 k 891.8 s 38 629.7 s 4 2268.0 s

Gurobi (1–8), (12) 43 3.5 k 841.0 s 38 639.7 s 5 1897.7 s

Gurobi (16), (9) 50 177 50.1 s 42 53.6 s 8 32.0 s

Gurobi (16), (9, 10) 50 471 92.7 s 42 105.9 s 8 23.2 s

Gurobi (16), (11) 50 177 49.5 s 42 52.8 s 8 32.1 s

Gurobi (16), (12) 50 113 45.0 s 42 48.6 s 8 26.3 s

Chuffed (1–8), (9) 33 9.1 m 1323.8 s 33 890.1 s 0 3600.6 s

Chuffed (1–8), (9,10) 44 2.8 m 505.3 s 39 342.5 s 5 1360.3 s

Chuffed (1–8), (11) 37 9.9 m 1070.6 s 36 644.2 s 1 3308.9 s

Chuffed (1–8), (12) 44 4.9 m 482.8 s 39 315.5 s 5 1361.2 s

Chuffed (16), (9) 30 5.7 m 1539.2 s 30 1146.5 s 0 3600.8 s

Chuffed (16), (9,10) 44 1.6 m 521.1 s 39 303.2 s 5 1665.6 s

Chuffed (16), (11) 34 4.3 m 1304.5 s 34 867.2 s 0 3600.4 s

Chuffed (16), (12) 42 1.8 m 615.5 s 37 469.2 s 5 1383.7 s

a network flow for mixed-integer solvers [3,10] and hence almost the entire model
is totally unimodular. The overall best combination is achieved with the global
cardinality constraint (12).

By contrast, Chuffed is not able to solve all instances in any combination
and there are two important model choices. As opposed to Gurobi, Chuffed
performs better when using the direct constraints (1–8) for the shift transition
constraints, even though weaker propagation is achieved. The average number of
nodes indicate that a stronger propagation of the regular does not convert into
runtime savings. This probably results from the fact that the direct constraints
introduce intermediate variables which are valuable for learning, whereas the
regular constraint introduces no intermediate variables. For Chuffed, it is also
important to choose temporal constraints covering the days-off. The overall best
combination are the direct constraints (1–8) for the shift transition constraints
and the global cardinality constraint (12).

Table 3 shows the impact on the performance of Gurobi and Chuffed when
adding the redundant and symmetry breaking constraints to the best model com-
bination. Gurobi’s performance drastically deteriorate when using the redundant
constraints. This is unsurprising since these are mainly linear combinations of
constraints the solver already has. Its performance significantly improves when
using the symmetry breaking constraints, but only for infeasible instances, which
is expected because it makes the search space smaller. For feasible instances, it
does not have any impact. For Chuffed, both set of constraints are important

Solver Independent Rotating Workforce Scheduling 441

Table 3. Results with redundant (13) and symmetry breaking (14, 15) constraints.

Solver Model (13) (14, 15) #tot avg. nd avg. rt #sat avg. rt #uns avg. rt

Gurobi (16), (12) 50 113 45.0 s 42 48.6 s 8 26.3 s

Gurobi (16), (12) × 50 84 41.4 s 42 48.4 s 8 4.5 s

Gurobi (16), (12) × 50 271 93.5 s 42 108.2 s 8 16.0 s

Gurobi (16), (12) × × 49 374 107.6 s 41 127.3 s 8 4.5 s

Chuffed (1–8), (12) 44 4.9 m 482.8 s 39 315.5 s 5 1361.2 s

Chuffed (1–8), (12) × 44 5.1 m 489.1 s 39 323.9 s 5 1356.2 s

Chuffed (1–8), (12) × 48 1.6 m 190.1 s 42 51.9 s 6 915.4 s

Chuffed (1–8), (12) × × 48 1.8 m 172.5 s 42 32.2 s 6 909.2 s

Table 4. Results on best value and variable selections for the search strategies.

Solver Search #tot avg. nd avg. rt #sat avg. rt #uns avg. rt

Chuffed default+DANO 48 1.8 m 172.5 s 42 32.2 s 6 909.2 s

Chuffed worker+NADO 48 1.4 m 169.7 s 42 28.4 s 6 911.1 s

Chuffed ff+NADO 48 1.4 m 166.7 s 42 25.1 s 6 909.8 s

Chuffed s1+DANO 47 1.3 m 236.4 s 41 109.0 s 6 905.2 s

to increase its performance. Still it cannot solve all instances in the given run-
time limit, but could find a solution for all feasible instances. Interestingly, the
average runtime over all feasible instances is lower than Gurobi’s best time.

Table 4 shows the best pairing of value and variable selections for the search
strategies for Chuffed.3 Chuffed alternates between the given search strategy and
its default one on each restart. This is important since it allows the powerful
default activity based search to be utilized.

Using a search strategy was beneficial for the performance, but either for
feasible or infeasible instances, and not both together. For feasible instances,
the variable selections ff and worker were the best two in combination with
a value ordering NADO, because first fail makes the search space small and
worker explores it in chronological order of the schedule allowing removal of
impossible values for the next decision. The value ordering NADO works best,
because of the structure of the instances. The night shift is the most restricted
one for the shift transitions and then the afternoon. In addition, the temporal
requirements tends to be the least for the night shift and then the afternoon
shift. For infeasible instances, deciding work and days-off at first and then which
work shift is performed using the value ordering DANO performed best.

Because the instances all have very similar relations between the different
types of shifts, we took the 50 instances and reversed the order of the forbidden
sequences to check that the value ordering NADO is not necessarily the best one.

3 We ran preliminary experiments on all possible combinations with a five minutes
runtime limit.

442 N. Musliu et al.

Table 5. Results on instances with reversed forbidden sequences (runtime limit 300 s).

Solver Search #tot avg. nd avg. rt #sat avg. rt #uns avg. rt

Chuffed ff+ODAN 45 304 k 49.2 s 34 33.7 s 11 85.4 s

Chuffed ff+DANO 45 303 k 40.5 s 34 21.0 s 11 86.1 s

Chuffed ff+ONAD 44 277 k 45.1 s 33 27.5 s 11 86.1 s

Chuffed ff+NADO 45 260 k 40.1 s 34 20.6 s 11 85.6 s

Chuffed ff+slack1 45 244 k 40.1 s 34 20.4 s 11 85.8 s

Chuffed ff+slack2 45 235 k 37.9 s 34 17.0 s 11 86.9 s

Fig. 3. Runtime comparison between Chuffed (y-axis) and Gurobi (x-axis).

Table 6. Comparison to the state of the art methods on all 2000 instances (runtime
limit 200 s).

Solver #fastest #tot avg. rt #sat avg. rt #uns avg. rt

Gurobi 31 1988 10.3 s 1320 13.0 s 668 4.9 s

Chuffed 513 1845 19.4 s 1322 5.0 s 523 47.8 s

MathSAT - BV 3 1470 63.8 s 1198 32.1 s 272 126.7 s

MC-T 781 1212 82.7 s 1212 23.3 s 0 200 s

We set a runtime limit to 300 s for this experiment. Table 5 clearly shows that
the dynamic criteria slack2 performs the best, which looks at the tightness of
the temporal requirements for each shift including the days-off. In comparison
to slack2, Chuffed is about 20% slower when using NADO, which confirms
our previous observation that this order is well-suited for the instances in the
benchmark library, due to the fact that the night shifts and then the afternoon
shifts are normally the most-restrictive ones.

Figure 3 shows the runtime comparison between Chuffed and Gurobi on the
50 instances. Runtimes are given in seconds and the axis use a logarithmic scale.
Points below the diagonal line express that Chuffed solved the instance quicker

Solver Independent Rotating Workforce Scheduling 443

than Gurobi, and vice-versa for points above the line. Except for 5 feasible and
3 infeasible instances, Chuffed solved the instances in a similar speed or faster,
even by order of a magnitude for many instances. However, Gurobi is more
robust, especially for infeasible instances, which were solved within 10 s.

Table 6 compares the best Chuffed and Gurobi outcome on all 2000 instances
to the state-of-the-art heuristic approach based on min-conflicts heuristic and
tabu search (MC-T) [20,21] and the state-of-the-art complete SMT approach [12]
using bit vectors for modeling and the SMT solver MathSAT 5.5.1 [8] for solving.
Note that the results of MC-T reported in this paper were obtained on a Lenovo
T440s machine having Intel(R) Core(TM) i5-4200U CPU @ 1.60 GHz 2.30 GHz
with 8 GB RAM. To be conservative, we consider that these machines are twice
as slow as the machines on which Gurobi, Chuffed and MathSAT were executed.
For this comparison we set the runtime limit to 200 s and recorded the number of
instances (#fastest), for that each method was the fastest, we halved the runtime
of MC-T for computing #fastest. Chuffed and Gurobi significantly outperform
the state-of-the-art complete methods in all aspects. The heuristic solver per-
forms better than the SMT method on feasible instances, even though it runs on
a slower machine. It is the fastest solver on almost 59% of the feasible instances
followed by Chuffed with 39%. However, it cannot compete with Chuffed and
Gurobi in term of the number of solved feasible instances. Chuffed and Gurobi
were respectively able to solve more feasible instances within 10 s and 30 s than
MC-T within 200 s. On top of that, our methods are able to detect infeasibility.
Thus, both our methods are more robust than MC-T, whereas Gurobi is the
most robust one. Together, both our methods could solve all instances within
200 s, except two instances.

8 Conclusion

We investigated different solver-independent models for solving the rotating
workforce scheduling problem using MiniZinc [23]. Surprisingly the best model
combination resulted when using regular constraints with Gurobi, even though
the regular constraint is native to constraint programming. This shows the
advantages of solver-independent modeling, where we do not commit to a sin-
gle solver. While regular and network-flow models have been used previously
for this problem, they made use of multiple regular constraints instead of one
large regular. The advantage of using a high level modeling language was that
we could generate a complex automata fully automatically that encoded almost
all of the problem. Indeed a simple first version of the automata based model
was constructed in under an hour. We tested our approaches on the standard
benchmark set and created more challenging instances for our evaluation. Inter-
estingly, Gurobi and Chuffed excelled on different model combinations. On the
majority of instances Chuffed is the quickest solver, but Gurobi the most robust
one, because of its superiority in proving infeasibility.

444 N. Musliu et al.

Acknowledgments. This work was partially supported by the Asian Office of
Aerospace Research and Development grant 15-4016 and by the Austrian Science Fund
(FWF): P24814-N23.

References

1. Baker, K.R.: Workforce allocation in cyclical scheduling problems: a survey. J.
Oper. Res. Soc. 27(1), 155–167 (1976)

2. Balakrishnan, N., Wong, R.T.: A network model for the rotating workforce schedul-
ing problem. Networks 20(1), 25–42 (1990)

3. Belov, G., Stuckey, P.J., Tack, G., Wallace, M.G.: Improved linearization of con-
straint programming models. In: Rueher, M. (ed.) Principles and Practice of Con-
straint Programming - CP 2016, pp. 49–65. Springer International Publishing,
Cham (2016)

4. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck,
L.: Personnel scheduling: a literature review. Eur. J. Oper. Res. 226(3), 367–385
(2013)

5. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of
the art of nurse rostering. J. Sched. 7(6), 441–499 (2004)

6. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, The University of
Melbourne (2011). http://hdl.handle.net/11343/36679

7. Chuin Lau, H.: On the complexity of manpower shift scheduling. Comput. Oper.
Res. 23(1), 93–102 (1996)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach
to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013.
LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39071-5 12

9. Côté, M.C., Gendron, B., Quimper, C.G., Rousseau, L.M.: Formal languages for
integer programming modeling of shift scheduling problems. Constraints 16(1),
54–76 (2011)

10. Côté, M.-C., Gendron, B., Rousseau, L.-M.: Modeling the regular constraint with
integer programming. In: Van Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007.
LNCS, vol. 4510, pp. 29–43. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72397-4 3

11. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming
models for multiactivity shift scheduling. Manag. Sci. 57(1), 151–163 (2011)

12. Erkinger, C., Musliu, N.: Personnel scheduling as satisfiability modulo theories. In:
International Joint Conference on Artificial Intelligence - IJCAI 2017, Melbourne,
Australia, 19–25 August 2017, pp. 614–621 (2017)

13. Falcón, R., Barrena, E., Canca, D., Laporte, G.: Counting and enumerating feasible
rotating schedules by means of Gröbner bases. Math. Comput. Simul. 125, 139–151
(2016)

14. Gärtner, J., Musliu, N., Slany, W.: Rota: a research project on algorithms for
workforce scheduling and shift design optimization. AI Commun. 14(2), 83–92
(2001)

15. Hashemi Doulabi, S.H., Rousseau, L.M., Pesant, G.: A constraint-programming-
based branch-and-price-and-cut approach for operating room planning and
scheduling. INFORMS J. Comput. 28(3), 432–448 (2016)

16. Kadioglu, S., Sellmann, M.: Efficient context-free grammar constraints. In: AAAI,
pp. 310–316 (2008)

http://hdl.handle.net/11343/36679
https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1007/978-3-540-72397-4_3
https://doi.org/10.1007/978-3-540-72397-4_3

Solver Independent Rotating Workforce Scheduling 445

17. Laporte, G.: The art and science of designing rotating schedules. J. Oper. Res.
Soc. 50, 1011–1017 (1999)

18. Laporte, G., Nobert, Y., Biron, J.: Rotating schedules. Eur. J. Oper. Res. 4(1),
24–30 (1980)

19. Laporte, G., Pesant, G.: A general multi-shift scheduling system. J. Oper. Res.
Soc. 55(11), 1208–1217 (2004)

20. Musliu, N.: Combination of local search strategies for rotating workforce scheduling
problem. In: International Joint Conference on Artificial Intelligence - IJCAI 2005,
Edinburgh, Scotland, UK, 30 July - 5 August 2005, pp. 1529–1530 (2005). http://
ijcai.org/Proceedings/05/Papers/post-0448.pdf

21. Musliu, N.: Heuristic methods for automatic rotating workforce scheduling. Int. J.
Comput. Intell. Res. 2(4), 309–326 (2006)

22. Musliu, N., Gärtner, J., Slany, W.: Efficient generation of rotating workforce sched-
ules. Discrete Appl. Math. 118(1–2), 85–98 (2002)

23. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

24. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 36

25. Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the
multi-activity shift scheduling problem. J. Heuristics 16(3), 373–392 (2010)

26. Restrepo, M.I., Gendron, B., Rousseau, L.M.: Branch-and-price for personalized
multiactivity tour scheduling. INFORMS J. Comput. 28(2), 334–350 (2016)

27. Salvagnin, D., Walsh, T.: A hybrid MIP/CP approach for multi-activity shift
scheduling. In: Milano, M. (ed.) CP 2012. LNCS, pp. 633–646. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 46

28. Triska, M., Musliu, N.: A constraint programming application for rotating work-
force scheduling. In: Mehrotra, K.G., Mohan, C., Oh, J.C., Varshney, P.K., Ali,
M. (eds.) Developing Concepts in Applied Intelligence. SCI, vol. 363, pp. 83–88.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21332-8 12

http://ijcai.org/Proceedings/05/Papers/post-0448.pdf
http://ijcai.org/Proceedings/05/Papers/post-0448.pdf
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-30201-8_36
https://doi.org/10.1007/978-3-642-33558-7_46
https://doi.org/10.1007/978-3-642-21332-8_12

Greedy Randomized Search for Scalable
Compilation of Quantum Circuits

Angelo Oddi(B) and Riccardo Rasconi

Institute of Cognitive Sciences and Technologies (ISTC-CNR),
Via S. Martino della Battaglia, 44, 00185 Rome, Italy

{angelo.oddi,riccardo.rasconi}@istc.cnr.it
http://www.istc.cnr.it

Abstract. This paper investigates the performances of a greedy ran-
domized algorithm to optimize the realization of nearest-neighbor com-
pliant quantum circuits. Current technological limitations (decoherence
effect) impose that the overall duration (makespan) of the quantum cir-
cuit realization be minimized. One core contribution of this paper is
a lexicographic two-key ranking function for quantum gate selection:
the first key acts as a global closure metric to minimize the solution
makespan; the second one is a local metric acting as “tie-breaker” for
avoiding cycling. Our algorithm has been tested on a set of quantum
circuit benchmark instances of increasing sizes available from the recent
literature. We demonstrate that our heuristic approach outperforms the
solutions obtained in previous research against the same benchmark,
both from the CPU efficiency and from the solution quality standpoint.

Keywords: Quantum computing · Optimization · Scheduling
Planning · Greedy heuristics · Random algorithms

1 Introduction

In this work, we investigate the performances of greedy randomized search (GRS)
techniques [1–3] to the problem of compiling quantum circuits to emerging
quantum hardware. Quantum Computing represents the next big step towards
power consumption minimization and CPU speed boost in the future of com-
puting machines. The impact of quantum computing technology on theoreti-
cal/applicative aspects of computation as well as on the society in the next
decades is considered to be immensely beneficial [4].

While classical computing revolves around the execution of logical gates
based on two-valued bits, quantum computing uses quantum gates that manipu-
late multi-valued bits (qubits) that can represent as many logical states (qstates)
as are the obtainable linear combinations of a set of basis states (state superpo-
sitions). A quantum circuit is composed of a number of qubits and by a series of
quantum gates that operate on those qubits, and whose execution realizes a spe-
cific quantum algorithm. Executing a quantum circuit entails the chronological
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 446–461, 2018.
https://doi.org/10.1007/978-3-319-93031-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_32&domain=pdf

Greedy Randomized Search for Scalable Compilation of Quantum Circuits 447

evaluation of each gate and the modification of the involved qstates according
to the gate logic.

Current quantum computing technologies like ion-traps, quantum dots,
super-conducting qubits, etc. limit the qubit interaction distance to the extent of
allowing the execution of gates between adjacent (i.e., nearest-neighbor) qubits
only [5–7]. This has opened the way to the exploration of possible techniques
and/or heuristics aimed at guaranteeing nearest-neighbor (NN) compliance in
any quantum circuit through the addition of a number of so-called swap gates
between adjacent qubits. The effect of a swap gate is to mutually exchange the
qstates of the involved qubits, thus allowing the execution of the gates that
require those qstates to rest on adjacent qubits. However, according to [8],
adding swap gates also introduces a time overhead in the circuit execution,
which depends on the quantum chip’s topology (see Fig. 2 for an example of
three different 2D topologies). In addition, the Achilles’ heel of quantum compu-
tational hardware is the problem of decoherence, which degrades the performance
of quantum programs over time. In order to minimize the negative effects of deco-
herence and guarantee more stability to the computation, it is therefore essential
to produce circuits whose overall duration (i.e., makespan) is minimal.

In this work, we present a GRS procedure that synthesizes NN-compliant
quantum circuits realizations, starting from a set of benchmark instances of
different size belonging to the Quantum Approximate Optimization Algorithm
(QAOA) class [9,10] tailored for the MaxCut problem, to be executed on top of a
hardware architecture proposed by Rigetti Computing Inc. [11]. We demonstrate
that the meta-heuristic we present outperforms the approach used in previous
research against the same benchmark, both from the CPU efficiency and from
the solution quality standpoint.

The paper is organized as follows. Section 2 provides some background infor-
mation. Section 3 proposes a formal statement of the solved problem, whereas
subsequent Sects. 4 and 5 describe the proposed heuristic solving algorithm and
the Greedy Randomized Search approach, respectively. Finally, an empirical val-
idation based on the results proposed in [12] and some conclusions close the
paper.

2 Background

Quantum computing is based on the manipulation of qubits rather than conven-
tional bits; a quantum computation is performed by executing a set of quantum
operations (called gates) on the qubits. A gate whose execution involves k qubits
is called k-qubit quantum gate. In this work we will focus on 1-qubit and 2-qubit
quantum gates. In order to be executed, a quantum circuit must be mapped on a
quantum chip which determines the circuit’s hardware architecture specification
[13]. The chip can be generally seen as an undirected weighted multigraph whose
nodes represent the qubits (quantum physical memory locations) and whose
edges represent the types of gates that can be physically implemented between
adjacent qubits of the physical hardware (see Fig. 1 as an example of three chip

448 A. Oddi and R. Rasconi

Fig. 1. Three quantum chip designs characterized by an increasing number of qubits
(N = 8, 21, 40) inspired by Rigetti Computing Inc. Every qubit is located at a different
location (node), and the integers at each node represent the qubit’s identifier. Two
qubits connected by an edge are adjacent, and each edge represents a 2-qubit gate (p-s
or swap) that can be executed between those qubits (see Sect. 3.1). p-s gates executed
on continuous edges have duration τp-s = 3, while p-s gates executed on dashed edges
have duration τp-s = 4. Swap gates have duration τswap = 2.

topologies of increasing size). Since a 2-qubit gate requiring two specific qstates
can only be executed on a pair of adjacent (NN) qubits, the required qstates must
be conveyed on such qubit pair prior to gate execution. NN-compliance can be
obtained by adding a number of swap gates so that every pair of qstates involved
in the quantum gates can be eventually made adjacent, allowing all gates to be
correctly executed. Figure 2 shows an example of quantum circuit that only uses
the first three qubits of the chip (N = 8) of Fig. 1, which assumes that qstates
q1, q2 and q3 are initially allocated to qubits n1, n2 and n3. The circuit is com-
posed of four generic 2-qubit gates and one generic 1-qubit gate. Note that the
circuit is not NN-compliant as the last gate involves two qstates belonging to
two non-adjacent qbits (n1 and n3). The right side of Fig. 2(b) shows the same
circuit made NN-compliant through the insertion of a swap gate.

According to the authors of [12], the problem of finding a sequence of gates
that efficiently realizes an NN-compliant quantum circuit fits perfectly into a
temporal planning problem, and their solution consists in modelling quantum
gates as PDDL2.1 durative actions [14], enabling domain independent temporal
planners [15] to find a quantum circuit realization in terms of a parallel sequence
of conflict-free operators (i.e., the gates), characterized by minimum comple-
tion time (makespan). In this work, we tackle the same problem following a
scheduling-oriented formulation, as described in the next sections. In particular,
our approach is related to a body of heuristic efforts available in the current liter-
ature, see [16,17] for two recent and representative works. Despite these papers

Greedy Randomized Search for Scalable Compilation of Quantum Circuits 449

1

2

3

1

2

3

(a) (b)

Fig. 2. Example of quantum circuit: (a) not NN-compliant; (b) NN-compliant through
the insertion of a swap gate between qbits 1 and 3 just before the last gate, which
exchanges their respective qstates. It is implicitly supposed that at the beginning, the
i-th qubit is characterized by the i-th qstate.

pursue the same objective, i.e., optimizing the realization of nearest-neighbor
compliant quantum circuits, they focus on quantum circuits characterized by
pre-ordered non-commutative gates. On the contrary, our approach leverages the
parallel nature of the considered planning/scheduling problem, and proposes a
greedy randomized algorithm that exploits an original lexicographic double-key
ranking function for quantum gate selection.

3 Problem Definition

The problem tackled in this work consists in compiling a given quantum circuit
on a specific quantum hardware architecture. To this aim, we focus on the same
framework used in [12]: (i) the class of Quantum Approximate Optimization Algo-
rithm (QAOA) circuits [9,10] to represent an algorithm for solving the MaxCut
problem (see below); (ii) a specific hardware architecture inspired by the one
proposed by Rigetti Computing Inc. [11]. The QAOA-based benchmark prob-
lems are characterized by a high number of commuting quantum gates (i.e., gates
among which no particular order is superimposed) that allow for great flexibil-
ity and parallelism in the solution, which makes the corresponding optimization
problem very interesting and guarantees greater makepan minimization poten-
tial for decoherence minimization [12]. Moreover, the Rigetti hardware architec-
ture (see Fig. 1) allows for two types of nearest-neighbor relations characterized
by different durations, making the temporal planning/scheduling problem even
more challenging. The rest of this section is devoted to: (i) describing the Max-
Cut problem and (ii) providing a formulation of the Quantum Gate Compilation
Problem (QGCP).

3.1 The MaxCut Problem

Given a graph G(V,E) with n = |V | nodes and m = |E| edges, the objective is to
partition the node set V in two subsets V1 and V2 such that the number of edges

450 A. Oddi and R. Rasconi

that connect every node pair 〈ni, nj〉 with ni ∈ V1 and nj ∈ V2 is maximized.
The following formula: U = 1

2

∑
(i,j)∈E(1 − sisj) describes a quadratic objective

function U for the MaxCut problem, where si is a binary variable corresponding
to the i-th node vi of the graph G, that takes the value +1 if vi ∈ V1 or −1 if
vi ∈ V2 at the end of the partition operated by the algorithm.

The compilation process of the MaxCut problem on QAOA circuits is rather
simple, and is composed of a phase separation (P-S) step and a mixing step
(MIX), which entails the execution of a set of identical 2-qubit gates (one 2-qubit
gate for each quadratic term in the above objective function U) called p-s gates,
followed by the execution of a set of 1-qubit gate for each node of the graph G,
called mix gates [9]. Figure 3 (left side) shows an example of the graph G upon
which the MaxCut problem is to be executed, corresponding to the problem
instance #1 of the N8 u0.9 P2 benchmark set analyzed in the experimental
section of this paper (Sect. 6). The list of p-s and mix quantum gates that must
be executed during the compilation procedure is shown on the right side of the
figure. The compilation problem depicted in the figure requires the execution
of two phase (p = 2) separation steps (P-S 1 and P-S 2), interleaved by two
mixing steps (MIX 1 and MIX 2).

q1

q2 q5

q3

q7

q4

q6

P-S 1

p-s(q1,q5)
p-s(q2,q3)
p-s(q2,q5)
p-s(q2,q7)
p-s(q3,q7)
p-s(q4,q5)
p-s(q4,q6)
p-s(q5,q6)

MIX 1

mix(q1)
mix(q2)
mix(q3)
mix(q4)
mix(q5)
mix(q6)
mix(q7)

P-S 2

p-s(q1,q5)
p-s(q2,q3)
p-s(q2,q5)
p-s(q2,q7)
p-s(q3,q7)
p-s(q4,q5)
p-s(q4,q6)
p-s(q5,q6)

MIX 2

mix(q1)
mix(q2)
mix(q3)
mix(q4)
mix(q5)
mix(q6)
mix(q7)

Fig. 3. MaxCut problem instance on a graph with 7 nodes. Each node is associated
with a particular qstate qi and such associations define the compilation objectives as a
set of p-s and mix gates to be planned for and executed (note that the qstate q8 does
not appear in this instance, and therefore it will not participate to any gate). On the
right side, the list of p-s gates under the P-S 1 and P-S 2 labels correspond to the
phase separation steps, while the list of mix gates under the MIX 1 and MIX 2 labels
correspond to the mixing steps.

3.2 Quantum Gate Compilation Problem

Formally, the Quantum Gate Compilation Problem (QGCP) is a tuple P =
〈C0, L0, QM〉, where C0 is the input quantum circuit, representing the execution
of the MaxCut algorithm, L0 is the initial assignment of the i-th qstate qi to

Greedy Randomized Search for Scalable Compilation of Quantum Circuits 451

the i-th qubit ni, and QM is a representation of the quantum hardware as a
multigraph.

– The input quantum circuit is a tuple C0 = 〈Q,P-S,MIX, {gstart, gend}, TC0〉,
where Q = {q1, q2, . . . , qN} is the set of qstates which, from a plan-
ning & scheduling perspective (see for example [15], Chap. 15) represent the
resources necessary for each gate’s execution. P-S and MIX are, respec-
tively, the set of p-s and mix gate operations such that: (i) every p-s(qi, qj)
gate requires two qstates for execution; (ii) every mix(qi) gate requires one
qstate only. gstart and gend are two fictitious reference gate operations requir-
ing no qstates. The execution of every quantum gate requires the unin-
terrupted use of the involved qstates during its processing time, and each
qstate qi can process at most one quantum gate at a time. Finally, TC0

is a set of simple precedence constraints imposed on the P-S, MIX and
{gstart, gend} sets, such that: (i) each gate in the two sets P-S, MIX occurs
after gstart and before gend; (ii) according to the total order imposed among
the steps P-S1,MIX1,P-S2,MIX2, . . . ,P-Sp,MIXp (see the example in Fig. 3
with p = 2), all the gates belonging to the step P-Sk (MIXk) involving a
specific qstate qi must be executed before all the gates belonging to the next
step MIXk (P-Sk+1) involving the same qstate qi, for k = 1, 2, . . . , p (for
k = 1, 2, . . . , (p − 1)).

– L0 is the initial assignment at the time origin t = 0 of qstates qi to qubits ni.
– QM is a representation of the quantum hardware as an undirected

multi-graph QM = 〈VN , Ep-s, Eswap, τmix, τp-s, τswap〉, where VN =
{n1, n2, . . . , nN} is the set of qubits (nodes), Ep-s (Eswap) is a set of undi-
rected edges (ni, nj) representing the set of adjacent locations the qstates qi
and qj of the gates p-s(qi, qj) (swap(qi, qj)) can potentially be allocated to.
In addition, the labelling functions τp-s : Ep-s → Z

+ and τswap : Eswap → Z
+

respectively represent the durations of the gate operations p-s(qi, qj) and
swap(qi, qj) when the qstates qi and qj are assigned to the corresponding
adjacent locations. Similarly, the labelling function τmix : V → Z

+ repre-
sents the durations of the mix gate (which can be executed at any node ni).
Figure 1 shows an example of quantum hardware with gate durations.

A feasible solution is a tuple S = 〈SWAP, TC〉, which extends the initial
circuit C0 with: (i) a set SWAP of additional swap(qi, qj) gates added to guar-
antee the adjacency constraints for the set of P-S gates, and (ii) a set TC of
additional simple precedence constraints such that:

– for each qstate qi, a total order �i is imposed among the set Qi of operations
requiring qi, with Qi = {op ∈ P-S ∪ MIX ∪ SWAP : op requires qi}.

– all the p-s(qi, qj) and swap(qi, qj) gate operations are allocated on adjacent
qubits in QM .

Given a solution S, the makespan mk(S) corresponds to the maximum com-
pletion time of the gate operations in S. A path between the two fictitious
gates gstart and gend is a sequence of gates gstart, op1, op2, . . . , opk, gend, with

452 A. Oddi and R. Rasconi

Algorithm 1. Find Feasible Plan
Require: A problem P = 〈C0, L0, QM〉

S ← InitSolution(P);
while not all the P-S and MIX operations are inserted in S do

op ← SelectExecutableOperation(P , S);
S ← InsertOperation(op, S);

end while
return S

opj ∈ P-S ∪ MIX ∪ SWAP, such that gstart � op1, op1 � op2, . . . , opk � gend ∈
(TC0 ∪TC). The length of the path is the sum of the durations of all the path’s
gates and mk(S) is the length of the longest path from gstart to gend. An optimal
solution S∗ is a feasible solution characterized by the minimum makespan.

4 A Greedy Procedure

Algorithm 1 takes in input a QGCP problem P = 〈C0, L0, QM〉, and proceeds
by chronologically inserting in the partial solution S one gate operation at a time
until all the gates in the set P-S ∪ MIX are in S.

As stated earlier, let op ∈ Qi be a general gate operation that involves qstate
qi, and let us define n(op) as the QM node at which gate op terminates its
execution. Let us also define a chain chi = {op ∈ Qi : op ∈ S} as the set of
gates involving qi and currently present in the partial solution S, among which
a total order is imposed (see Fig. 4 for a graphical representation of a complete
solution composed of a set of chains, one for each qstate qi). Let us now define
last(chi) as the last operation in the chain chi according to the imposed total
order. Finally, let us define the current state LS of a partial solution S as the
tuple LS = 〈n(last(ch1)), n(last(ch2)), . . . , n(last(chN))〉 containing the N last
gate operations according to each chain chi ordering.

As a first step, Algorithm 1 initialises the partial solution S; in particular,
it sets the current state LS to the init value L0 by initializing the locations of
every qstate qi (i.e., for every chain chi) at the time origin t = 01. The core of
the algorithm is the function SelectExecutableOperation(), which returns
at each iteration either one of the gates in the set P-S ∪ MIX or a swap(qi, qj)
gate necessary to guarantee NN-compliance as described in the previous Sect. 3.
It should be noted that p-s(qi, qj) and mix(qi) gates leave unchanged the loca-
tions of the qstates qi and qj , whereas swap(qi, qj) gate swaps their locations.
We remark that the duration of the p-s(qi, qj) gates change depending on the
particular quantum chip edge they are executed on (see Fig. 1).

Then, the algorithm proceeds as follows: starting form the current state LS =
L0, Algorithm 1 ranks the set of potentially executable gates according to a
determined evaluation function (described below). The gate op with the lowest

1 It is implicitly supposed that at the beginning, the i-th qstate is initialized at the
i-th location.

Greedy Randomized Search for Scalable Compilation of Quantum Circuits 453

(minimal) evaluation is selected and inserted in the partial solution S as the last
operation of the chains2 relative to the qstates involved in op: last(chi) ← op;
subsequently, the state LS of the partial solution is updated accordingly. The
process continues iteratively until all the P-S and MIX gates are inserted in S.
At the end, the produced solution will contain a set of additional swap(qi, qj)
gates necessary to satisfy the NN-constraints.

Given the multi-graph QM introduced in Sect. 3.2, we consider the dis-
tance graph Gd(V,Ep-s), so as to contain an undirected edge (ni, nj) ∈ Ep-s

when QM can execute a p-s gate on the pair (ni, nj). In the graph Gd, an
undirected path pij between a node ni and a node nj is the list of edges
pij = ((ni, nj1), (nj1, nj2), . . . , (njk, nj)) connecting the two nodes ni and nj

and its lenght lij is the number of edges in the path pij . Let dij represent the
minimal length among the set of all the paths between ni and nj . The distance
dij between all nodes is computed only once at the beginning, by means of all-
pairs shortest path algorithm, whose complexity is O(|V |3) in the worst case [18].
The distance dLS associated to a given p-s(qi, qj) gate that requires two qstates
qi and qj w.r.t. the state LS of the partial solution S is defined as:

dLS (p-s(qi, qj)) = d(n(last(chi)), n(last(chj))) (1)

Two qstates qi and qj are in adjacent locations in the state LS if dLS (p-s
(qi, qj)) = 1. Intuitively, given a p-s(qi, qj) gate and a partial solution S, the
value dLS (p-s(qi, qj)) yields the minimal number of swaps (in excess of 1) for
moving the two qstates qi and qj to adjacent locations on the machine QM .
The concept of distance defined on a single gate operation p-s(qi, qj) can be
extended to a set of gate operations. In particular, let S be a partial solution
and P-S

S
the set of p-s(qi, qj) gates that are not yet scheduled in S and such

that all predecessors according to the temporal order imposed by the set TC0

have already been scheduled. We propose two different functions to measure the
distance separating the set P-S

S
from the adjacent state. The first sums the set

of the distances dLS (p-s(qi, qj)):

DS
sum(P-S

S
) =

∑

p-s∈P-S
S

dLS (p-s(qi, qj)) (2)

The second returns the minimal value of the distance dLS (p-s(qi, qj)) in the set
P-S

S
:

DS
min(P-S

S
) = MIN

p-s∈P-S
SdLS (p-s(qi, qj)) (3)

Given the functions (2) and (3), we can now evaluate the impact of the selection
of a gate operation op on the whole solution S by means of the following ranking
function that aggregates them lexicographically:

Δ(S, op,P-S
S
) =

⎧
⎪⎪⎨

⎪⎪⎩

(DS′
sum(P-S

S \ {op}), 1) op is a p-s;

(DS′
sum(P-S

S′
), 1) op is a mix;

(DS′
sum(P-S

S′
),DS′

min(P-S
S′

)) op is a swap.

(4)

2 Note that in general, a k-qubit gate occupies k chains.

454 A. Oddi and R. Rasconi

where S′ is the new partial solution after the addition of the selected gate oper-
ation op. In particular, the function SelectExecutableOperation() returns
one gate operation op (p-s, mix or swap) that minimises the Δ(S, op,P-S

S
)

value, using the resource (i.e., the qstates) lowest indexes as a tie-break cri-
terium. When all the P-S and MIX operations are inserted in S a full solution
is returned.

We observe that the two-dimension distance function used for the gate selec-
tion ranking has a twofold role. The Dsum component acts as a global closure
metric; by evaluating the overall distance left to be covered by all the qstates
still involved in gates yet to be executed, it guides the selection towards the gate
that best favours the efficient execution of the remaining gates. Conversely, the
Dmin component acts as a local closure metric, in that it favours the mutual
approach of the closest qstates pairs. In more details, the role played by the
Dmin component is essential as a “tie-breaker”, to avoid the selection of swap
gates that may induce deadlock situations (cycles), which are possible in case
we based our ranking solely on the Dsum component.

The overall time complexity of Algorithm 1 is polynomial. In fact, we can
always generate a solution by incrementally inserting each gate operation P-S∪
MIX according to any total ordering consistent with the input quantum circuit
C0 constraints, after making each p-s(qi, qj) gate NN-compliant through the
insertion of the necessary swap gates. If dmax is the maximal shortest path
length in the distance graph Gd(V,Ep-s), the number of added swap gates is
clearly bounded by the value dmax − 1; if ng is the total size of the two sets
P-S ∪ MIX, it can be proved that the overall time complexity is O(n3

g).

5 A Randomized Approach

To provide a capability for expanding the search cases without incurring the
combinatorial overhead of a conventional backtracking search, we now define a
random counterpart of our conflict selection heuristic (in the style of [1–3]), and
embed the result within an iterative random sampling search framework. Note
that randomization is also beneficial in systematic and complete approaches, see
for instance [19] where randomized restart in backtracking is used. In order to
make FindFeasiblePlan() suitable to random greedy restart, the SelectEx-

ecutableOperation() function is modified according to the following ratio-
nale: (1) at each solution step, a set of “equivalent” gate operations (p-s, mix
or swap) are first identified, and then (2) one of these is randomly selected.
As in the deterministic variant, the selected gate operation op is then inserted
in the current partial solution. The set of equivalent operations is created by
identifying one operation op∗ associated with the minimal lexicographic value
Δ(S, op∗,P-S

S
) = (D∗

sum,D∗
min) and by considering equivalent to op∗ all the

operations op such that Δ(S, op,P-S
S
) = (Dsum,Dmin) with Dsum = D∗

sum and
Dmin = D∗

min. Subsequently, the operation to be inserted in the partial solution
is randomly selected from this set, allowing a non-deterministic yet heuristically-
biased choice. Successive calls to FindFeasiblePlan() are intended to explore

Greedy Randomized Search for Scalable Compilation of Quantum Circuits 455

Algorithm 2. Greedy Random Sampling
Require: An proplem P , stop criterion

Sbest ← FindFeasiblePlan(P);
while (stopping criterion not satisfied) do

S ← FindFeasiblePlan(P)

if (makespan(S) < makespan(Sbest)) then
Sbest ← S;

end if
end while
return (Sbest)

Table 1. Aggregated results obtained from the N8 u∗ P2, N21 u∗ P2, and
N40 u∗ P1 sets

Benchmark Planner # Imprvd % Avg.
Δ (MK)

Unchgd # Unprvd % Avg.
Δ (MK)

CPU (mins)

N8 u0.9 P2 TFD 37/50 9.76 10/50 3/50 −3.43 1 Vs. 10

N8 u1.0 P2 TFD 41/50 9.95 7/50 2/50 −4.95 1 Vs. 10

N21 u0.9 P2 TFD 46/50 10.83 1/50 3/50 −1.87 15 Vs. 60

N21 u1.0 P2 TFD 40/50 13.82 3/50 7/50 −7.13 15 Vs. 60

N40 u0.9 P1 SGPlan 50/50 38.56 0/50 0/50 0.0 1 Vs. 60

LPG 10/10 18.88 0/50 0/50 0.0

N40 u1.0 P1 SGPlan 50/50 35.42 0/50 0/50 0.0 1 Vs. 60

LPG 14/14 16.7 0/50 0/50 0.0

heuristically equivalent paths through the search space. Algorithm2 depicts the
complete iterative sampling algorithm for generating an optimized solution,
which is designed to invoke the FindFeasiblePlan() procedure until a stop
criterion is satisfied.

6 Experiments

In this section, we present the results obtained with our GRS procedure against
the same quantum circuit benchmark set utilized in [12]. The benchmark is
composed of instances of three different sizes, based on quantum chips with
N = 8, 21 and 40 qubits, respectively (see Fig. 1). In [12], the authors base their
experimentation on two problem classes for each chip size, depending on the
number of passes (p = 1 or p = 2) to be performed during circuit execution.
In this work, we will mostly focus on the p = 2 problem class because it is the
most computationally challenging; we will analyze the p = 1 case for the N = 40
qubit size only, exclusively for comparison purposes with the results obtained
in [12].

456 A. Oddi and R. Rasconi

The utilized benchmark3 contains 100 different problem instances for each
chip size, where each instance is representative of a graph G to be partitioned by
the MaxCut procedure to be realized (an example of graph is given in Fig. 3). The
benchmark instances are divided in two subsets composed of 50 instances each,
depending on the “utilization level” (u) of the available qstates over the circuit.
In particular, the 50 instances characterized by u = 0.9 are built randomly
choosing 90% of the available qstates to allocate over the N edges of the instance
graph G, while the other 50 instances (u = 1.0) are built by possibly allocating
all the qstates over the N edges of the graph G. Larger sizes and higher p values
will lead to more complex problem instances.

Our experimental campaign is organized as follows. As anticipated earlier,
we will mainly focus on the complete benchmark instances, i.e., those charac-
terized by two compilation passes (p = 2), as they represent the hardest com-
putational challenge. In particular, in our analysis we tackle 8 instance sets
labelled Nx uy Pz , each composed of 50 instances, where N marks the number
of qubits, u marks the occupation level, and P marks the number of compilation
passes. The first 6 sets are characterized by x ∈ [8, 21, 40], y ∈ [0.9, 1.0], and
z ∈ [2], while the remaining 2 sets are characterized by x ∈ [40], y ∈ [0.9, 1.0]
and z ∈ [1].

Given that the previous sets are characterized by problem instances of
increasing size, we have allotted different CPU time limits for each set, as fol-
lows. All runs relatively to the N8* and N40 u ∗ P1 sets are limited to max 60 s
each; all runs relatively to the remaining N21 and N40 sets are limited to max
900 s each. All experiments have been performed on a 64-bit Windows10 O.S.
running on Intel(R) Core(TM)2 Duo CPU E8600 @3.33 GHz with 8GB RAM.

6.1 Results

Table 1 exhibits the performances obtained with our GRS procedure. The results
are presented in aggregated form for reasons of space; however, the complete set
of makespan values, together with the complete set of solutions are available at
http://pst.istc.cnr.it/∼angelo/qc/. In the table, each row compares the results
returned by the GRS procedure using the benchmark set highlighted in the
Benchmark column, with the results returned by the planner(s) that achieved
best performance among those reported in [12] (Planner column). The # Imprvd
column shows the number of improved solutions obtained by our GRS w.r.t.
the set of solutions solved in [12]. Similarly, the # Unchgd column shows the
number of unmodified solutions, while the # Unprvd column shows the number
of solutions that GRS was not able to improve. The % Avg.Δ(MK) columns show
the percentage of the average makespan difference computed over the solution set
of interest (i.e., the improved and the unimproved set). Note that such percentage
is negative when computed on the unimproved solutions set. Lastly, the CPU
(mins) column reports the maximum CPU time (in minutes) allotted to our
GRS procedure Vs. the competitor procedure, for each run.
3 The benchmark is available at: https://ti.arc.nasa.gov/m/groups/asr/planning-and-

scheduling/VentCirComp17 data.zip.

http://pst.istc.cnr.it/~angelo/qc/
https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/VentCirComp17_data.zip
https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/VentCirComp17_data.zip

Greedy Randomized Search for Scalable Compilation of Quantum Circuits 457

F
ig
.
4
.
G

a
n
tt

re
p
re

se
n
ta

ti
o
n

o
f
th

e
so

lu
ti

o
n

re
la

ti
v
e

to
th

e
p
ro

b
le

m
in

st
a
n
ce

n
o
.1

b
el

o
n
g
in

g
to

th
e

N
8

u
0
.9

P
2

b
en

ch
m

a
rk

se
t.

E
a
ch

q i
ro

w
re

p
re

se
n
ts

a
ch
a
in

,
i.
e.

,
th

e
se

t
o
f

a
ct

iv
it

ie
s

ex
ec

u
te

d
b
y

th
e

i-
th

q
st

a
te

.
A

t
th

e
b
eg

in
n
in

g
o
f

th
e

ex
ec

u
ti

o
n
,
it

is
a
ss

u
m

ed
th

a
t

th
e

i-
th

q
st

a
te

st
a
rt

s
fr

o
m

th
e

i-
th

lo
ca

ti
o
n
.
T

h
e
sw

a
p

g
a
te

s
co

n
v
ey

th
e

in
fo

rm
a
ti

o
n

re
la

ti
v
e

to
th

e
d
es

ti
n
a
ti

o
n

lo
ca

ti
o
n
s

o
n
ly

,
b
ei

n
g

th
e

st
a
rt

lo
ca

ti
o
n
s

a
lr

ea
d
y

k
n
ow

n
.
N

o
te

th
a
t

th
e
sw

a
p

g
a
te

s
a
re

a
lw

ay
s

ex
ec

u
te

d
in

p
a
ir

s,
ex

a
ct

ly
a
s

th
e
p
-s

g
a
te

s.
N

o
te

a
ls

o
th

a
t

th
e
p
-s

g
a
te

s
a
re

ch
a
ra

ct
er

iz
ed

b
y

tw
o

d
iff

er
en

t
d
u
ra

ti
o
n
s

(τ
p
-s

=
3

o
r

τ p
-s

=
4
)

d
ep

en
d
in

g
o
n

th
e

lo
ca

ti
o
n

p
a
ir

o
n

w
h
ic

h
th

ey
a
re

ex
ec

u
te

d
.
F
o
r

in
st

a
n
ce

,
th

e
g
a
te

s
p
-s

(2
,5

)
in

v
o
lv

in
g

q
st

a
te

s
q 2

a
n
d

q 5
h
av

e
d
u
ra

ti
o
n

eq
u
a
l
to

4
in

th
e

fi
rs

t
p
a
ss

(t
h
e

g
a
te

s
a
re

ex
ec

u
te

d
o
n

lo
ca

ti
o
n
s

n
3

a
n
d

n
2
),

a
n
d

d
u
ra

ti
o
n

eq
u
a
l

to
3

in
th

e
se

co
n
d

p
a
ss

(t
h
e

g
a
te

s
a
re

ex
ec

u
te

d
o
n

lo
ca

ti
o
n
s

n
2

a
n
d

n
1
).

A
ll
m
ix

g
a
te

s
h
av

e
d
u
ra

ti
o
n

eq
u
a
l

to
1
.

L
a
st

ly
,
n
o
te

th
a
t

th
e

d
ep

ic
te

d
so

lu
ti

o
n

is
co
m
p
le
te

in
th

e
se

n
se

th
a
t

it
co

n
ta

in
s

a
ls

o
th

e
m
ix

g
a
te

s
p
er

ta
in

in
g

to
th

e
se

co
n
d

p
a
ss

(p
=

2
).

458 A. Oddi and R. Rasconi

The results clearly show a marked superiority of our procedure w.r.t. the
counterparts, for all benchmark sets. In the N8 u0.9 P2 case, the GRS proce-
dure improved 37/50 solutions (74%), left 10/50 (20%) unchanged, and was out-
performed on 3/50 (6%) solutions, against the Temporal FastDownward (TFD)
planner (see [20]) i.e., the planner that returned the best results among those
reported in [12]. The average makespan difference computed over the improved
solutions (average makespan improvement) is 9.86%, while the average makespan
difference over the unimproved solutions is −3.43% only, demonstrating that the
quality of the few unimproved solutions is indeed not too distant from the best
results. By inspecting the subsequent row in the table, it is clear that equally
strong results have also been obtained in the N8 u1.0 P2 case.

The same kind of analysis has been carried out for the N21 u0.9 P2 and the
N21 u1.0 P2 benchmark sets, respectively. As a summary of the performances,
in the u = 0.9 case the GRS procedure improved 46/50 solutions (92%), left 1/50
(2%) unchanged, and was outperformed on 3/50 (6%) solutions. The average
makespan difference computed over the improved solutions (average makespan
improvement) is 10.83%, while the average makespan difference over the unim-
proved solutions is −1.87%, again demonstrating that the quality of the unim-
proved solutions is not too distant from the best results. Equally convincing
results can also be easily appreciated in the u = 1.0 case.

In order to test the performances of our GRS procedure against the results
obtained in [12] for the N40 instances, the last two rows of Table 1 show the
results for the N40 u0.9 P1 and the N40 u1.0 P1 benchmark sets respectively
(i.e., relative to the p = 1 case only). In particular, the table compares our results
with those obtained with the SGPlan planner [21,22] and the LPG planner
[23], respectively. Note that the LPG planner achieves better results over the
SGPlan planner, even though it succeeds in solving only a strict minority of
the instances (see # Imprvd column). However, as a remarkable result, all the
50 instances have been improved by the GRS procedure, in both the u = 0.9
and the u = 1.0 case. To summarize the performances, the average makespan
improvement obtained by GRS over SGPlan is 38.56% and 35.42% for u = 0.9
and u = 1.0 respectively, while the average makespan improvement obtained by
GRS over LPG (computed on the subset of instances solved by LPG) is 18.88%
and 16.7% for u = 0.9 and u = 1.0 respectively.

As opposed to the previous experiments, no comparative analysis is possible
in the N40 u0.9 P2 and N40 u1.0 P2 benchmark case, as no planner in [12]
succeded in solving any instance within the max allotted time of 60 min. How-
ever, our GRS procedure solved all such instances within a max allowed time
of 15 min. In order to provide a numerical assessment of the efficacy of GRS’s
random optimization procedure, we compared the makespan values of the initial
solutions found against the makespan values at the end of the optimization pro-
cess, acknowledging an average makespan improvement of 21.15% and 19.25%,
in the u = 0.9 and u = 1.0 case, respectively.

Before concluding, we present an example of solution in Fig. 4. In particular,
the figure shows a Gantt representation of the solution relative to the prob-
lem instance no.1 belonging to the N8 u0.9 P2 benchmark set. Each qi row

Greedy Randomized Search for Scalable Compilation of Quantum Circuits 459

represents the set of activities executed by the i-th qstate (i.e., the chain chi).
At the beginning of the execution, it is assumed that the i-th qstate starts from
the i-th location. The swap gates convey the information relative to the desti-
nation locations only (i.e., → i is to be intended as “towards location ni”), since
the start locations are implicitly known as those in which the previous activity
on the same chain has terminated. Note that the both the swap gates and the p-s
gates are always executed in pairs. Note also that the p-s gates are characterized
by two different durations (τp-s = 3 or τp-s = 4) depending on the location pair
on which they are executed. For instance, the gates p-s(2, 5) involving qstates
q2 and q5 have τp-s = 4 in the first pass (the gates are executed on locations n3

and n2), and τp-s = 3 in the second pass (the gates are executed on locations n2

and n1). The previous durations can be checked by visual inspection of Fig. 1.
All mix gates have duration equal to 1. Lastly, note that the depicted solution
is complete in the sense that it contains also the mix gates pertaining to the
second pass (p = 2).

7 Conclusions

In this work we propose a greedy random search heuristic to solve the quantum
circuit compilation problem, where the objective is essentially to synthesize a
quantum gate execution plan characterized by a minimum makespan. We test
our procedure against a number of instances from a benchmark repository pub-
licly available, and compare our results with those obtained in a recent work
where the same problem is solved by means of PDDL-based planning technol-
ogy, showing that our procedure is more performing in the vast majority of
cases. Despite the very good results, we consider our present contribution to the
quantum compilation problem complementary to the PDDL approach. The take-
home message from this comparison can in fact be wrapped up as follows. On the
one hand, it is confirmed that tackling a problem with a general technique such
as PDDL can be less rewarding in terms of overall solution quality than employ-
ing heuristics more tailored on the problem; such heuristics, though very simple,
can remain extremely efficient when the problem size scales up significantly. On
the other hand, it remains true that in more complex domains, a general app-
roach such as PDDL-based planning could still represent a winning factor, also
considering that some of the solutions we compared against have demonstrated
to be of very high quality. Our conclusion is that an integration between the
two techniques might be beneficial in order to appreciate the representational
generality of PDDL planning, without renouncing the exploration/exploitation
power of state-of-the-art constraint-based metaheuristics.

References

1. Hart, J., Shogan, A.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett.
6, 107–114 (1987)

2. Resende, M.G., Werneck, R.F.: A hybrid heuristic for the p-median problem. J.
Heuristics 10(1), 59–88 (2004)

460 A. Oddi and R. Rasconi

3. Oddi, A., Smith, S.: Stochastic procedures for generating feasible schedules. In:
Proceedings 14th National Conference on AI (AAAI-1997), pp. 308–314 (1997)

4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

5. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev.
Lett. 74, 4091–4094 (1995)

6. Herrera-Mart́ı, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic imple-
mentation for the topological cluster-state quantum computer. Phys. Rev. A 82,
032332 (2010)

7. Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D.,
Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys.
Rev. A 87, 022306 (2013)

8. Brierley, S.: Efficient implementation of quantum circuits with limited qubit inter-
actions. arXiv preprint arXiv:1507.04263, September 2016

9. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028, November 2014

10. Guerreschi, G.G., Park, J.: Gate scheduling for quantum algorithms. arXiv preprint
arXiv:1708.00023, July 2017

11. Sete, E.A., Zeng, W.J., Rigetti, C.T.: A functional architecture for scalable quan-
tum computing. In: 2016 IEEE International Conference on Rebooting Computing
(ICRC), pp. 1–6, October 2016

12. Venturelli, D., Do, M., Rieffel, E., Frank, J.: Temporal planning for compilation of
quantum approximate optimization circuits. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-2017, pp. 4440–
4446 (2017)

13. Maslov, D., Falconer, S.M., Mosca, M.: Quantum circuit placement: optimizing
qubit-to-qubit interactions through mapping quantum circuits into a physical
experiment. In: Proceedings of the 44th Annual Design Automation Conference,
DAC 2007, pp. 962–965. ACM, New York (2007)

14. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal
planning domains. J. Artif. Int. Res. 20(1), 61–124 (2003)

15. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc., San Francisco (2004)

16. Kole, A., Datta, K., Sengupta, I.: A heuristic for linear nearest neighbor realization
of quantum circuits by swap gate insertion using n-gate lookahead. IEEE J. Emerg.
Sel. Top. Circ. Syst. 6(1), 62–72 (2016)

17. Kole, A., Datta, K., Sengupta, I.: A new heuristic for n -dimensional nearest neigh-
bor realization of a quantum circuit. IEEE Trans. Comput.-Aided Des. Integr. Circ.
Syst. 37(1), 182–192 (2018)

18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

19. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through
randomization. In: Proceedings of the Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence. AAAI
1998/IAAI 1998, pp. 431–437. American Association for Artificial Intelligence,
Menlo Park (1998)

20. Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuris-
tic for temporal and numeric planning. In: Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, 19–23 September 2009 (2009)

http://arxiv.org/abs/1507.04263
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1708.00023

Greedy Randomized Search for Scalable Compilation of Quantum Circuits 461

21. Wah, B.W., Chen, Y.: Subgoal partitioning and global search for solving temporal
planning problems in mixed space. Int. J. Artif. Intell. Tools 13(04), 767–790 (2004)

22. Chen, Y., Wah, B.W., Hsu, C.W.: Temporal planning using subgoal partitioning
and resolution in SGPlan. J. Artif. Int. Res. 26(1), 323–369 (2006)

23. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and
temporal action graphs in LPG. J. Artif. Int. Res. 20(1), 239–290 (2003)

A Comparison of Optimization Methods
for Multi-objective Constrained Bin

Packing Problems

Philippe Olivier1,2(B), Andrea Lodi1,2, and Gilles Pesant1

1 École Polytechnique de Montréal, Montreal, Canada
{philippe.olivier,andrea.lodi,gilles.pesant}@polymtl.ca

2 CERC, Montreal, Canada

Abstract. Despite the existence of efficient solution methods for bin
packing problems, in practice these seldom occur in such a pure form
but feature instead various considerations such as pairwise conflicts or
profits between items, or aiming for balanced loads amongst the bins.
The Wedding Seating Problem is a combinatorial optimization prob-
lem incorporating elements of bin packing with conflicts, bin packing
with profits, and load balancing. We use this representative problem to
present and compare constraint programming, integer programming, and
metaheuristic approaches.

1 Introduction

In the optimization version of the classical bin packing problem, a set of items of
various weights must be packed into as few bins of limited capacities as possible.
Despite the existence of efficient solution methods for bin packing problems, in
practice these seldom occur in such a pure form. They instead feature various
considerations such as pairwise conflicts or profits between items, or aiming for
balanced loads amongst the bins. The objective then becomes to minimize some
scoring function by selecting an optimal distribution of items in the available
bins.

In our representative problem, the Wedding Seating Problem (WSP) [1],
groups of guests of different sizes must be seated at tables of limited capacities.
Some of these groups may or may not like each other, thus some relation is
defined over each pair of them. Pairs of groups whose relation is definitely apart
can never be seated at the same table. While not strictly necessary, pairs of
groups whose relation is either rather together or rather apart should, if possible,
be seated together or apart, respectively. Pairs which have no specific relation are
indifferent. Note that an implicit relation, definitively together, is baked into the
problem as groups of guests, the smallest indivisible entity that can be assigned
to a table.

Section 2 gives a formal definition of our problem, and Sect. 3 reviews cur-
rent methods of solving the WSP and similar problems. Sections 4, 5 and 6
introduce, respectively, our constraint programming (CP) model as well as our
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 462–476, 2018.
https://doi.org/10.1007/978-3-319-93031-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_33&domain=pdf

A Comparison of Optimization Methods 463

two integer programming (IP) models. Sections 7 and 8 present the results of
our experiments.

2 Description of the Problem

Let

– I = {1, . . . , n} be the index set of items,
– B = {1, . . . , m} be the index set of bins,
– � and u be, respectively, the lower and upper bounds on the load of a bin,
– wi denote the weight of item i with w =

∑
i∈I wi representing the combined

weight of all the items,
– cij the cost incurred if items i and j are packed into the same bin.

Entries in the cost matrix C can take any integer value. Namely,

cij

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

= ∞, if i and j are in conflict and must be packed into separate bins,
= 0, if i and j have no cost,
< 0, if i and j should rather be packed into the same bin,
> 0, if i and j should rather be packed into separate bins.

Since a conflict is expressed as being a prohibitive cost, the initial cost matrix
can be enhanced by adding this prohibitive cost for each pair of items whose
combined weights is greater than u, since they can never be packed together.

The problem consists of packing all items into the available bins such that
conflicting items are packed into separate bins, while optimizing cost and balance
objectives. The cost objective f is to minimize the combined cost of all available
bins. The balancing objective is to maximize the balance of loads amongst the
bins, which is somewhat abstract as balancing loads with different norms will
yield incomparable results. The L0-norm will minimize the number of values
different from the mean bin load (which is not useful unless the mean is an
integer). The L∞-norm will minimize the maximum deviation from the mean.
In this paper, we will focus on the L1- and L2-norms which will, respectively,
minimize the sum of deviations and the sum of squared deviations from the
mean.

The correct way to compare solutions with one another is debatable. Both
objectives use different units, so at the very least they should be weighted in order
to obtain some sort of solution ranking. In this paper, we have instead opted
to construct a Pareto set using the ε-constraint method [2]: We bounded the
cumulative deviation at successively higher values, each time solving the problem
by minimizing objective f . The correspondence between multiple objectives is
often not directly proportional in practice. As such, presenting the balancing
objective with a Pareto set has the advantage of offering decision-makers multiple
optimal solutions to choose from depending on their perception of the trade-offs
amongst them.

464 P. Olivier et al.

The problem of packing items into bins is the same as that of seating groups
of guests at tables, as described by Lewis and Carroll. It has been shown to be
NP-hard as it generalizes two other NP-hard problems: the k-partition problem
and the graph k-coloring problem [3].

3 Related Work and Existing Methods

The problem of constructing seating plans was originally introduced by Bellows
and Peterson [4]. The authors used an IP model to solve various instances of this
problem for their own wedding. They were able to solve small instances of 17
guests in a few seconds. For a larger instance of 107 guests, however, no optimal
solution could be found in reasonable time.

This seating assignment problem was later formally described as the Wedding
Seating Problem by Lewis [1]. The author solved the problem with a metaheuris-
tic model based on a two-stage tabu search. In a further paper [3], Lewis and
Carroll devised their own quadratic IP model (of which our close variant is dis-
cussed in Sect. 5) to be compared with the metaheuristic approach. This latter
approach outperformed their IP model both in solution quality and in running
time in most cases. The authors also reimplemented the IP model of Bellows
and Peterson, which they found performed poorly.

A fairly recent survey of CP work on bin packing and load balancing can be
found in [5]. Most research on bin packing with conflicts, such as [6], focuses on
minimizing the number of bins used as in the classical problem (albeit with the
added conflict dimension). In contrast, the WSP uses a fixed number of bins of
dynamic capacities, the objective being to optimize a scoring function subject
to additional balancing constraints. The notion of pairwise costs between items
used in the WSP is somewhat unconventional, but a similar idea can be found
in some bin packing games where selfish agents (items) strive to maximize their
payoffs by packing themselves into the most profitable bin, which is determined
by its item composition [7].

4 CP Model

For each item i we define a decision variable bi whose value is the bin in which
the item will be packed. For each bin k we define an auxiliary variable ok whose
value is the load of the bin. To pack the items into the bins, the model uses a
binpacking constraint [8]. The balancing objective represented by variable σ is
taken care of by a balance constraint [9], which can handle L1- and L2-norms.

binpacking (〈bi〉, 〈wi〉, 〈ok〉) (1)
balance ({ok}, w/m, σ) (2)
� ≤ ok ≤ u (3)
bi ∈ B, i ∈ I (4)
�, u, ok ∈ N, k ∈ B (5)

A Comparison of Optimization Methods 465

The model uses a conflict graph to infer alldifferent constraints, similar
to what has been used by Gualandi and Lombardi in their decomposition of the
multibin packing constraint [10]. In a conflict graph, each item is represented
by a vertex, and an edge joins two vertices if they are conflicting. By extracting all
the maximal cliques of this graph, it is possible to add alldifferent constraints
to the model for each one of those cliques. Furthermore, the maximum clique of
an instance (the largest of all the maximal cliques) determines a lower bound
on the number of bins necessary to find a feasible solution to that instance. The
Bron-Kerbosch algorithm is an exact method which can be used to find all the
maximal cliques of the conflict graph [11]. Let M be the set of all maximal
cliques (maximal clique x being, for example, Mx = {bx1 , . . . , bxk}):

alldifferent ({Mx}) , ∀x ∈ {1, . . . , |M|} (6)

While we have not explored all specific edge cases in this paper, if we were
to solve highly constrained instances of the problem (i.e., with a dense conflict
graph) these could be intractable for the Bron-Kerbosch algorithm. A heuristic
for finding cliques could instead be applied, or simple binary disequality con-
straints could be used in lieu of the conflict graph.

Some symmetry is broken by fixing items of weights strictly greater than
u/2 to separate bins. In theory, better symmetry breaking could be achieved
first by fixing each item in the maximum clique of the conflict graph to a sep-
arate bin, and then by forcing an order on the loads of the remaining bins. In
practice, however, symmetry breaking for the CP model is tricky as it interferes
with the branching heuristic, whose strength lies in finding very good solutions
very quickly. While the overall time needed to solve an instance to optimality
decreases with the use of symmetry breaking, the downside is that early solutions
will be worse with it than without. Without symmetry breaking, the branching
heuristic basically packs the heaviest items at the bottom of the bins (i.e., they
are assigned to a bin near the top of the tree). The top items of the bins are thus
of lighter weights, and it is naturally less constraining to swap them around and
pack them more profitably. Symmetry breaking forces some packings of lighter
items at the bottom of the bins, constraining the swapping of items at the top
of the bins.

Finally the objective is to minimize f subject to a constraint bounding the
value of the cumulative deviation of the bins. Considering disjoint intervals of
deviation ensures that the trees explored in each step of the construction of the
Pareto set are nonoverlapping, preventing identical solutions from being found in
different steps. Let dmin and dmax be, respectively, the lower and upper bounds
on the cumulative deviation of a solution:

dmin < σ ≤ dmax (7)

min
n∑

i=1

n∑

j=1

(bi = bj) cij (8)

The model branches on the decision variables according to a heuristic which
was inspired by the standard best fit decreasing strategy used to solve the bin

466 P. Olivier et al.

packing problem. It first chooses the item of the greatest weight yet unassigned
and will pack it into an empty bin, if one is available. Otherwise, the heuristic
will pack the item into the bin which would most increase the f value. This
heuristic tends to find a good first solution very early in the search.

We have also further tested the CP model by including a large neighborhood
search (LNS) strategy [12]. The model finds a good initial solution, after which
the LNS strategy takes over. The LNS will iteratively freeze different parts of the
solution and search afresh from there for a set amount of time. About a third
of the bins are frozen as such, with the most profitable bins having the most
chance of being frozen.

5 IP Model A

The first IP model (IPA) is a generalization of the natural quadratic IP model
proposed by Lewis and Carroll [3]. A n × m matrix of decision variables x rep-
resents packing assignments of items into bins (9)

xik :=

{
1, if item i is packed in bin k,

0, otherwise.
(9)

min
∑

k∈B

n−1∑

i=1

n∑

j=i+1

xikxjkcij (10)

s.t.
∑

k∈B
xik = 1 ∀i ∈ I (11)

xik + xjk ≤ 1 ∀i, j ∈ I : cij = ∞, ∀k ∈ B (12)
∑

i∈I
xikwi ≥ � ∀k ∈ B (13)

∑

i∈I
xikwi ≤ u ∀k ∈ B (14)

∑

i∈I
xikwik − w/m ≤ ok ∀k ∈ B (15)

∑

i∈I
xikwik − w/m ≥ −ok ∀k ∈ B (16)

∑

k∈B
ok ≥ dmin (17)

∑

k∈B
ok ≤ dmax (18)

xik = 0 ∀i ∈ I, ∀k ∈ {i + 1, . . . , m} (19)
xik ∈ {0, 1} ∀i ∈ I, ∀k ∈ B (20)
ok ∈ {�, . . . , u} ∀k ∈ B (21)

A Comparison of Optimization Methods 467

This model minimizes the sum of all pairwise costs between items in each
bin (10). The items are required to be packed into one and only one bin (11),
and conflicting items may not be packed into the same bin (12). Constraints (13)
and (14) require that the load of every bin be within bounds � and u. This
model computes the deviation according to an L1-norm; Constraints (15)−(16)
emulate an absolute value function and constraints (17)−(18) stipulate that the
cumulative deviation of the solution must be bounded by dmin and dmax (since
we are constructing a Pareto set). Some symmetry breaking is achieved with
constraints (19).

This model has been constructed to handle deviation according to an L1-
norm. Integrating convex relaxation with McCormick envelopes [13] to the model
would allow the use of the L2-norm.

6 IP Model B

Our second IP model (IPB) is based on the definition of an exponential-size
collection of possible bin compositions as for the classical bin packing problem.
Indeed, as for bin packing, the resulting formulation can be solved by column
generation with either a set covering (SC) or set partitioning (SP) model. Let S
be the collection of all subsets of items that can be packed into the same bin

S :=

{

S ⊆ {1, . . . , n} : � ≤
∑

i∈S

wi ≤ u, ∀i, j ∈ S : cij
= ∞
}

.

We can observe that it may not be possible to only construct maximal sets
with regards to the bin capacity due to conflicts between items and the con-
straints enforcing them. There is a binary variable for each subset S ∈ S repre-
senting a combination of items, or pattern, to be packed into the same bin

xS :=

{
1, if pattern S is selected,
0, otherwise.

(22)

The sum of all pairwise costs for the items of a pattern and the deviation of
the weight of that pattern from the mean bin load are represented by α and β,
respectively. In regards to the balancing objective, using a fixed number of bins
has two major advantages over using a variable number of bins. First, the values
of α and β need to be computed only once per pattern (when it is generated) and
remain constant throughout the process. Second and more importantly, since β
is computed outside of the program, the norm according to which it is computed
does not complexify the problem (i.e., the program remains linear even when
balance is computed according to an L2-norm).

While the solution of a SP model is always directly feasible, that of a SC
model must be transformed in order to be feasible for our problem (i.e., we must
remove all duplicate items from the bins). This has the unfortunate effect of
potentially worsening the objective funtion. Example 1 illustrates the underlying
issue of using a SC model to solve our problem.

468 P. Olivier et al.

Example 1. Assume an instance of the problem with 2 bins and 4 items A, B,
C, and D. The pairwise costs of AB, BC, CD, and DA are 0, while the pairwise
cost of AC is 1 and that of BD is −2. We also have � = 2 and u = 3. The
two most profitable maximal subsets are ABD and BCD which both have a
value of −2 and cover all the items. The initial solution of the SC model would
be (−2) + (−2) = −4, which must be rendered feasible for our problem by
removing B from one bin and D from the other. This modified solution would
have a value of (0) + (0) = 0, while the solution of a SP model would be to
pack AC and BD in separate bins, for a value of (1) + (−2) = −1.

The master problem (MP) is thus based on a SP model.

min
∑

S∈S

αSxS (23)

s.t.
∑

S∈S:i∈S

xS = 1 ∀i ∈ I (24)

∑

S∈S

xS = m (25)

∑

S∈S

βSxS ≥ dmin (26)

∑

S∈S

βSxS ≤ dmax (27)

xS ∈ {0, 1} ∀S ∈ S (28)

The MP minimizes the combined costs of all bins (23), under the conditions
that each item be packed into one and only one bin (24), that a total of m
bins be used (25), and that the cumulative deviation of a solution be within
bounds dmin and dmax (26)−(27). In order to begin solving the problem, the
column generation algorithm needs m columns making up an initial feasible
solution of the problem and of the continuous relaxation obtained by replacing
constraints (28) with xS ≥ 0,∀S ∈ S. These columns are generated by a compact
CP model defined by (1)−(5), (7), and

bi
= bj , bi, bj ∈ B, ∀i, j ∈ I : cij = ∞ (29)

which searches for the first feasible solution safisfying these constraints. The m
columns found by this CP model make up the initial restricted master prob-
lem (RMP). The dual of the MP is

max
n∑

i=1

yi + mζ + dminγ + dmaxδ (30)

s.t.
∑

i∈S

yi + ζ + βS(γ + δ) ≤ αS ∀S ∈ S (31)

A Comparison of Optimization Methods 469

yi free ∀i ∈ S (32)
ζ free (33)
γ ≥ 0 (34)
δ ≤ 0 (35)

which is all that is needed for the column generation algorithm to take over:

1. Solve the continuous relaxation of the RMP to get the dual values.
2. Solve the subproblem, or pricing problem (PP), to generate S∗ ⊆ {1, . . . , n}

(the most promising new column). Let

zi :=

{
1, if item i is packed into the new bin/pattern,
0, otherwise.

(36)

max
n∑

i=1

y∗
i zi + ζ∗ + β(γ∗ + δ∗) −

n−1∑

i=1

n∑

j=i+1

cijzizj if γ∗ + δ∗ < 0 (37)

max
n∑

i=1

y∗
i zi + ζ∗ − β(γ∗ + δ∗) −

n−1∑

i=1

n∑

j=i+1

cijzizj if γ∗ + δ∗ > 0 (38)

s.t.
zi + zj ≤ 1 ∀i, j ∈ I : cij = ∞ (39)
n∑

i=1

wizi ≥ � (40)

n∑

i=1

wizi ≤ u (41)

n∑

i=1

wizi − w/m ≤ β (42)

n∑

i=1

wizi − w/m ≥ −β (43)

zi ∈ {0, 1} ∀i ∈ I (44)

The PP minimizes the value of a bin (37)/(38) under the conditions that no
conflicting items be packed into it (39), and that its load be within bounds
� and u (40)−(41). Constraints (42)−(43) work in the same manner as con-
straints (15)−(16) and ensure that deviation β is always positive.

3. Determine if S∗ should be added to the RMP. If the inequality
∑

k∈S∗ y∗
k +

ζ∗ + β(γ∗ + δ∗) >
∑

i∈S∗
∑

j∈S∗ cij (or
∑

k∈S∗ y∗
k + ζ∗ − β(γ∗ + δ∗) >∑

i∈S∗
∑

j∈S∗ cij , alternatively) is true, compute αS∗ and βS∗ , and add col-
umn S∗ to the RMP before going back to step 1. Otherwise, the current
solution of the continuous relaxation of the RMP is the lower bound of the
initial problem.

470 P. Olivier et al.

The optimal solution of the continuous relaxation of the RMP provides a
lower bound to the problem. We subsequently enforce constraints (28) and solve
the RMP with the columns which were previously generated by the algorithm
in order to find an integral solution. We know such an integral solution exists
since we started off with one with our initial columns. While this final integral
solution offers no proof of optimality, it is most often relatively close to the lower
bound.

Depending on the norm used to balance the bins and on the value of
bound dmax, we can make arithmetic deductions to determine the optimal �
and u bounds which should help prematurely prune nodes leading to infeasible
solutions, without eliminating any feasible solution:

� ≥ max{0, �w/m − dmax/2�} (45)
u ≤ w/m + dmax/2� (46)

� ≥ max{0,
⌈
w/m −

√
dmax × (m − 1)/m

⌉
} (47)

u ≤
⌊
w/m +

√
dmax × (m − 1)/m

⌋
(48)

For the L1-norm, in the worst case a single bin can account for at most half
of the deviation, since the cumulative weight in excess of the mean bin load will
always be equal to the cumulative weight short of the mean bin load (45)−(46).
For the L2-norm we must also take the number of bins into account in order
to tightly bound the most deviative bin (47)−(48). This offline optimization of
bin load bounds makes a noticeable difference for both IP models, cutting the
execution time by half on average. This optimization is of no use for the CP
model, as the balancing constraint already ensures that bin loads be consistent
with dmax.

7 Benchmark Results

Our testbed includes instances of 25 and 50 items, of weights chosen uniformly
at random from 1 to 8 (in a similar fashion as Lewis [1]). Costs and conflicts are
introduced according to probability p of a pairwise negative cost, probability q
of a pairwise positive cost, and probability r of a conflict (i.e., p+q+r ≤ 1, with
the remainder being the probability that the pair incurs no cost). Costs range
from −5 to 5, and the number of bins has been chosen so that the mean load is
closest to 10.

The experiments were performed on dual core AMD 2.2 GHz processors with
8 GB of RAM running CentOS 7, and all models were constructed with IBM
ILOG CPLEX Optimization Studio v12.5. Pareto sets are constructed for the
smallest integral ranges of deviations (i.e., min/max deviations of 0/1, 1/2, . . .,
19/20). Time limits cover only one range of deviations, meaning that the results
for one method, for one figure, involve solving 20 independent problems. This
also means that construction of the Pareto sets is easily parallelizable and can be
scaled to limited resources by modifying its resolution (e.g., if 4 instances can be

A Comparison of Optimization Methods 471

solved in parallel, a lower-resolution Pareto set can be constructed with min/max
deviations of 0/5, 6/10, 11/15, 16/20). Each data point shows the average results
of 5 different cost matrices applied to the same set of items. All figures show the
results for instances of 25 or 50 items with the deviations computed according
to an L1-norm. For Figs. 1, 2 and 3 the cost probabilities are p = 0.25, q = 0.25,
and r = 0.25.

Fig. 1. Instances of 25 items with a time limit of 600 s.

Fig. 2. Instances of 50 items with a time limit of 6 s.

We can observe in Fig. 2 that the CP model finds the best early solutions
of all methods. However it quickly reaches a plateau from which it is hard to
further improve (notice the similarity between the CP solutions of Fig. 2 with a
time limit of 6 s, and those of Fig. 3 with a time limit of 600 s). The introduction

472 P. Olivier et al.

Fig. 3. Instances of 50 items with a time limit of 600 s.

of LNS for the CP model always improves the solution quality. For the small
instances of Fig. 1, the CP model with LNS does better than IPB since the
latter only solves the relaxation of the RMP to optimality and tries to get the
best integral solution from these limited columns, with no proof of optimality.
IPA does particularly poorly compared with the other models. The results of
IPB are usually off to a slow start, but given enough time this model does better
than both previous ones. Similar to the CP model, this model reaches a plateau
of its own before the 600 s mark. Further improvements could be achieved via
branch and price. Average computation times are shown in Table 1 (owing to
details in the implementation of the models, the execution time may be slightly
higher than the time limit in some cases).

Table 1. Average computation times for Figs. 1, 2 and 3

25 items 50 items

600 s 6 s 600 s

CP 510.00 3.90 390.00

CP+ LNS 508.49 3.90 379.02

IPA 589.06 6.96 602.04

IPB 8.35 8.32 178.46

For the CP and IPA models, infeasibility or optimality can sometimes be
proven when the maximum cumulative deviation is low enough. IPB does well
especially when the time limit is high, although its solutions cannot be proven
optimal without a branch-and-price scheme (but the CP model generating its
initial columns can determine if an instance is infeasible). We have further tried
solving instances with conflicts only (p = 0, q = 0, r = 0.25) and every method

A Comparison of Optimization Methods 473

could find a solution within the time limit. In Fig. 4 we show the results of
instances without conflicts and only with costs (p = 0.25, q = 0.25, r = 0).
Table 2 shows the computation times for instances with either only conflicts or
only costs.

Fig. 4. Instances of 50 items with a time limit of 600 s. (costs only)

Table 2. Average computation times

50 items

Conflicts only Costs only

CP 0.03 420.00

CP+ LNS 0.03 390.78

IPA 601.11 600.62

IPB 4.64 28.65

It is interesting to notice that with only conflicts, the CP model very easily
proves optimality for all instances in a fraction of a second, whereas both IP
models are orders of magnitude behind it. The weakness of the CP model lies
in the optimization of objective f , even with LNS. IPA appears to generally do
better without conflicts, while the performance and results of IPB are largely
unaffected by the parameters of the instances.

A CP/IPB hybrid could be constructed: The CP part would generate the
initial columns, those columns being the current CP solution once the model
reaches its plateau; From there, the IP part would take over and improve this
solution by bringing it to near-optimality. Experimentation would be necessary
to see if such a model would be an improvement over current methods. We
have not integrated the CP and IPB models into a hybrid in this paper, as our
objective was to compare individual methods to each other. Furthermore, our

474 P. Olivier et al.

simple approach to the generation of the Pareto sets for both IP models could
be improved [14].

8 Practical Applications

The metaheuristic approach developed by Lewis [1] is used on the commercial
website www.weddingseatplanner.com as a tool to generate seating plans. The
problem is similar to ours which is described in Sect. 2 of this paper, with a few
exceptions: Bin loads are unbounded, negative costs are always equal to −1 and
positive costs are always equal to 1, and the deviation is computed according to
an L1-norm and directly added to the objective (i.e., the objective is to minimize
f plus the deviation). The objective functions of our models have been adapted
for these tests.

One of the design goals of the website was to solve the problem quickly since
their clients could easily grow impatient after waiting just a few seconds in front
of a seemingly unresponsive browser window. As such, their tool usually solves
the problem in less than 5 s, a time limit which cannot be specified by the user.
Because of this short time limit, we have bounded the maximum deviation of our
models at 20 in order to find better results. For the CP model, since the balancing
constraint and the branching heuristic are very effective, we have further decided
to solve the instances two more times by bounding the maximum deviation at
10 and 5, respectively (since we are solving thrice as many problems, we have
also divided the time limit by three). We will be considering only the best of
those three solutions.

Due to an error in the website’s implementation of the algorithm, all negative
costs are considered to be conflicts. In order to provide a fair comparison, the
instances we have generated for these tests do not include negative costs. The
cost probabilities are thus p = 0, q = 0.3̄, and r = 0.3̄ (which implies that the
probability of a cost of 0 is also 0.3̄). Since the website always solves the instances

0

10

20

30

40

Fig. 5. All methods compared with a time limit of 5 s.

www.weddingseatplanner.com

A Comparison of Optimization Methods 475

in under 5 s, this is what we have chosen as our time limit. Tests have been run
with 10, 20, 30, 40, and 50 items, and are again averaged for five cost matrices.
The histograms shown in Fig. 5 represent the distance in score of a solution from
the lower bound.

When solving small instances, exact methods have a distinct advantage over
metaheuristics, often proving optimality. Both IP models scale poorly with an
increasing number of items as they usually require some time to find decent
solutions. While it can find the best solutions given enough time, IPB does
particularly badly with a short time limit as the quality of its solutions improves
relatively slowly. The metaheuristic model scales very well, with its solution
quality being constant with a varying number of items. The CP model does
well all-around, proving optimality for small instances as well as having good
solutions for all instances.

9 Conclusion

In this paper we have compared how various methods can be used to solve multi-
objective constrained bin packing problems with an aspect of load balancing. A
metaheuristic model can find good solutions in a short time and scales well to an
increasing number of items but will most likely not find optimal solutions. A CP
model can also find good solutions quickly, but for large instances it will not reach
the best solutions in reasonable time even with the help of LNS. A natural IP
model is probably not the best choice, as it scales poorly while its strenghts can
also be found in other models. An IP model using column generation does very
well given enough time but is not a good contender to solving instances quickly.
It would be interesting to see if a CP/IP hybrid using column generation and
branch and price could prove optimality in reasonable time for larger instances
of the problem.

Acknowledgements. Financial support for this research was provided by NSERC
Discovery Grant 218028/2017 and CERC, École Polytechnique de Montréal.

References

1. Lewis, R.: Constructing wedding seating plans: a tabu subject. In: CSREA Press,
pp. 24–32 (2013)

2. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Heidelberg
(1998). https://doi.org/10.1007/978-1-4615-5563-6

3. Lewis, R., Carroll, F.: Creating seating plans: a practical application. J. Oper. Res.
Soc. 67(11), 1353–1362 (2016)

4. Bellows, M.L., Peterson, J.D.L.: Finding an optimal seating chart for a
wedding. https://www.improbable.com/2012/02/12/finding-an-optimal-seating-
chart-for-a-wedding. Accessed 23 May 2018

5. Schaus, P.: Solving balancing and bin-packing problems with constraint program-
ming. Ph.D thesis, Université catholique de Louvain (2009)

https://doi.org/10.1007/978-1-4615-5563-6
https://www.improbable.com/2012/02/12/finding-an-optimal-seating-chart-for-a-wedding
https://www.improbable.com/2012/02/12/finding-an-optimal-seating-chart-for-a-wedding

476 P. Olivier et al.

6. Sadykov, R., Vanderbeck, F.: Bin packing with conflicts: a generic branch-and-price
algorithm. INFORMS J. Comput. 25(2), 244–255 (2013)

7. Wang, Z., Han, X., Dósa, G., Tuza, Z.: Bin packing game with an interest matrix.
In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 57–69.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21398-9 5

8. Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 648–662. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30201-8 47

9. Pesant, G.: Achieving domain consistency and counting solutions for dispersion
constraints. INFORMS J. Comput. 27(4), 690–703 (2015)

10. Gualandi, S., Lombardi, M.: A simple and effective decomposition for the mul-
tidimensional binpacking constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol.
8124, pp. 356–364. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40627-0 29

11. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

12. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

13. Mitsos, A., Chachuat, B., Barton, P.I.: Mccormick-based relaxations of algorithms.
SIAM J. Optim. 20(2), 573–601 (2009)

14. Boland, N., Charkhgard, H., Savelsbergh, M.: A criterion space search algorithm for
biobjective integer programming: the balanced box method. INFORMS J. Comput.
27(4), 735–754 (2015)

https://doi.org/10.1007/978-3-319-21398-9_5
https://doi.org/10.1007/978-3-540-30201-8_47
https://doi.org/10.1007/978-3-540-30201-8_47
https://doi.org/10.1007/978-3-642-40627-0_29
https://doi.org/10.1007/978-3-642-40627-0_29
https://doi.org/10.1007/3-540-49481-2_30

A O(n log2 n) Checker and O(n2 logn)
Filtering Algorithm for the Energetic

Reasoning

Yanick Ouellet and Claude-Guy Quimper(B)

Université Laval, Québec City, Canada
yanick.ouellet.2@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

Abstract. Energetic reasoning is a strong filtering technique for the
Cumulative constraint. However, the best algorithms process O(n2)
time intervals to perform the satisfiability check which makes it too
costly to use in practice. We present how to apply the energetic rea-
soning by processing only O(n logn) intervals. We show how to compute
the energy in an interval in O(log n) time. This allows us to propose a
O(n log2 n) checker and a filtering algorithm for the energetic reasoning
with O(n2 logn) average time complexity. Experiments show that these
two algorithms outperform their state of the art counterparts.

1 Introduction

There exist many filtering rules for the Cumulative constraint. Among them,
the energetic reasoning rule [3,7,14] dominates the overload check [8,23], the
time-tabling [4], the edge-finder [15], and the time-tabling-edge-finder [22]. To
apply the energetic reasoning, one needs to process O(n2) time intervals, which
might be too slow in practice.

We introduce a technique based on Monge matrices to explicitly process only
O(n log n) of the O(n2) intervals. The remaining intervals are processed implic-
itly. This allows us to propose the first subquadratic checker for the energetic
reasoning, with a O(n log2 n) running time. We also propose a new filtering algo-
rithm that filters allsks with an average running time complexity of O(n2 log n)
and a worst case running time complexity of O(n2 log2 n). However, we do not
know whether the bound O(n2 log2 n) is tight as we did not succeed in finding
an instance requiring that much time to filter.

The next section formally presents the Cumulative constraint and the ener-
getic reasoning rule. Section 3 presents some algorithmic background, including
the Monge matrices that we use to design our algorithms. Section 4 introduces
an adaptation of the range trees that is used in Sect. 5 to compute the energy
in a time interval. Section 6 presents the subquadratic checker, and Sect. 7, the
O(n2 log n) filtering algorithm. Section 8 shows the performance of these algo-
rithms on classic benchmarks.

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 477–494, 2018.
https://doi.org/10.1007/978-3-319-93031-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_34&domain=pdf

478 Y. Ouellet and C.-G. Quimper

2 Scheduling Background

Let I = {1, . . . , n} be the set of task indices. Each task i is defined with four
integer parameters: the earliest starting time esti, the latest completion time
lcti, the processing time pi, and the resource consumption rate hi. From these
parameters, one can compute the earliest completion time ecti = esti +pi, the
latest starting time lsti = lcti −pi, and the energy ei = pihi of the task. The
horizon spans from time estmin = mini∈I esti to time lctmax = maxi∈I lcti. A
task i starts executing at time Si and executes for pi units of time without
interruption. The starting time Si is unknown but must belong to the time
interval dom(Si) = [esti, lsti]. The task is necessarily executing during the time
interval [lsti, ecti) if lsti < ecti. This time interval is called the compulsory part.
A cumulative resource can simultaneously execute multiple tasks as long as the
total resource consumption rate of the tasks executing at any time t does not
exceed the capacity C of the resource. The constraint Cumulative [1] ensures
that the starting times of the tasks do not overload the capacity of the resource.

Cumulative([S1, . . . , Sn], [p1, . . . , pn], [h1, . . . , hn], C) ⇐⇒ ∀t
∑

i:Si≤t<Si+pi

hi ≤ C

Deciding whether the constraint Cumulative is satisfiable is NP-Complete.
For that reason, there are no polynomial time filtering algorithms that can
achieve bounds consistency for this constraint. However, there exist multiple
filtering rules that partially remove the inconsistent values from the domains of
the starting variables. The overload check [8,23], the time-tabling [4], the edge-
finder [15], the time-table-edge-finder [22], and the not-first not-last [10,17,18]
are popular filtering rules. With the exception of not-first not-last, all these rules
are dominated by the energetic reasoning that detects more inconsistencies and
filters more values [3]. The energetic reasoning is incomparable to the not-first
not-last.

A task i that starts at its earliest starting time spends, during the time inter-
val [l, u), an amount of energy equal to LS(i, l, u) = hi max(min(ecti −l, pi, u −
l), 0). This energy is called the left-shift. If task i starts at its latest completion
time, it spends, during the time interval [l, u), an amount of energy equal to
RS(i, l, u) = hi max(min(u − lsti, pi, u − l), 0). This energy is called the right-
shift. Finally, regardless of its starting time, a task i must spend during the
time interval [l, u) an amount of energy called left-shift/right-shift and denoted
LSRS(i, l, u).

LSRS(i, l, u) = min(LS(i, l, u), RS(i, l, u)) (1)
= hi max(min(ecti −l, u − lsti, pi, u − l), 0) (2)

By abuse of notation, we define the left-shift/right-shift for a set of tasks
Θ: LSRS(Θ, l, u) =

∑
i∈Θ LSRS(i, l, u). The slack S(Θ, l, u) is the amount of

remaining energy, for a cumulative resource of capacity C over an interval [l, u),
after spending the left-shift/right-shift of a set of tasks Θ.

S(Θ, l, u) = C · (u − l) − LSRS(Θ, l, u) (3)

A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm 479

The energetic reasoning tests [3], for every time interval [l, u), whether the slack
is non-negative: S(I, l, u) ≥ 0.

Baptiste et al. [3] showed that not all time intervals [l, u) need to be tested.
Let O1, O2, and O(t) be such that

O1 = {esti | i ∈ I} ∪ {ecti | i ∈ I} ∪ {lsti | i ∈ I}
O2 = {lcti | i ∈ I} ∪ {ecti | i ∈ I} ∪ {lsti | i ∈ I}

O(t) = {esti + lcti −t | i ∈ I}
Only the time intervals [l, u) that fall into one of these three situations are
considered of interest: (1) l ∈ O1 and u ∈ O2; (2) l ∈ O1 and u ∈ O(l); (3)
l ∈ O(u) and u ∈ O2.

The energetic reasoning filtering consists in increasing esti and decreasing
lcti to ensure that the energetic reasoning check would pass if the tasks was
executed at its earliest starting time or latest starting time. The filtering rule
for the est states that if the left-shift of the task i is greater than the slack of the
remaining tasks in an interval [l, u), esti must be adjusted to

⌈
u − S(I\{i},l,u)

hi

⌉
.

S(I \ {i}, l, u) < LS(i, l, u) =⇒ est′i =
⌈

u − S(I \ {i}, l, u)
hi

⌉

(4)

Derrien and Petit [7] show that it is sufficient to test a subset of the intervals
of Baptiste et al. to reach the fix point. To filter the est of a task i, one has to
apply the filtering rule on all intervals in OC ∪ Li. The set OC contains at most
two intervals for each pair of tasks and thus has a cardinality in O(n2). The
set Li contains 2n + 1 intervals. Similarly, to filter the lct of a task, one has to
apply the filtering rules on intervals in OC ∪ Ri, where Ri is symmetric to Li.
The definitions of OC , Li, and Ri are based on a long enumeration of cases, but
are straightforward to compute. By lack of space, we refer the reader to [7] for
a complete definition of these sets.

While the energetic reasoning achieves a strong level of filtering, it is not
commonly used in practice due to its slow computation time. Baptiste et al. [3]
proposed a checker with a running time complexity of O(n2). Their algorithm
asymptotically remains the fastest checker in the literature. Nevertheless, Der-
rien and Petit [7] reduced the number of intervals to check by a constant. This
improvement led to a checker with equivalent running time complexity, but faster
in practice.

Baptiste et al. [3] also present an algorithm in O(n3) to filter the constraint.
Bonifas [5] introduced an algorithm that filters at least one task in O(n2 log n)
time. Tesch [21] presents an algorithm that achieves a weaker level of filtering
in O(n2 log n) time which is later improved to perform an exact filtering in
O(n2 log2 n) time [20].

3 Algorithmic Background

We present algorithms and data structures that will be used to design a sub-
quadratic checker for the Energetic Reasoning.

480 Y. Ouellet and C.-G. Quimper

3.1 Partial Sums

Let A[1..n] be an array of n integers. A partial sum query is defined such as

Partial-Sum(A, i, j) =
j∑

k=i

A[k] (5)

To efficiently answer such a query, one preprocesses in O(n) time the array
A by creating an array B[0..n] such that B[0] = 0 and B[i] = B[i − 1] + A[i].
Partial-Sum(A, i, j) returns B[j] − B[i − 1] in constant computation time.

3.2 Range Trees

Consider a set of n weighted points P in a two-dimensional Cartesian plan.
Each point i has two coordinates, xi and yi, and a weight wi. A sum query
Qpoints(χ, γ, P) computes the weighted sum of all points delimited by the quater-
plane χ ≤ x and y ≤ γ.

Qpoints(χ, γ, P) =
∑

{i∈P |χ≤xi∧yi≤γ}
wi (6)

Such queries can be answered by two-dimensional range-trees [6]. If the
fractional cascading technique is used, each query can be answered online in
O(log |P |) time after a O(|P | log |P |) pre-processing time of P is completed.

Each node of a range tree is associated to a set of points that serves as its
label. The root P of a range tree contains all the points in P . The set of points
of a node v is partitioned into two subsets left(v) and right(v), one for the left
subtree and one for the right subtree. For each node v, the points contained in
the left child have an abscissa smaller than or equal to the abscissa of the points
contained in the right child: i ∈ left(v) ∧ j ∈ right(v) ⇒ xi ≤ xj . Each node v
of a range-tree has an attribute xmid

v such xmid
v = maxi∈left(v) xi is the largest

abscissa of a point in the left subtree.
Each node v of the range-tree has a vector Yv of dimension |v| which contains

the ordinates yi of the points i ∈ v sorted in non-decreasing order. Three other
vectors characterize the nodes. The vector Wv is a partial sum such that Wv[i] is
the sum of the weights of the i points in v with the smallest ordinates. The vector
Lv and Rv link the points in v with the points in the left and right subtrees.
There are Lv[i] points in left(v) whose ordinate is no greater than Yv[i]. Similarly,
there are Rv[i] points in right(v) whose ordinate is no greater than Yv[i].

If v is a leaf, v contains a single point i. Thus, the vectors Yv,Wv, Lv, and
Rv have length 1. The vectors Yv = [yi] and Wv = [wi] contain the ordinate and
the weight of that point. The vectors Lv = Rv = [0] are the null vectors. The
value xmid

v is undefined.
Range-trees are built using a bottom-up approach similar to the merge sort.

By definition, the leaves of range-tree are sorted in non-decreasing order of
abscissa xi. Therefore, one sorts the points in P by abscissa which gives the

A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm 481

leaves of the tree. Then the upper level is computed by merging the vectors
Yv,Wv, Lv, and Rv from the lower level. Since creating the node v can be done
in O(|v|) time, building the range-tree is done in O(|P | log |P |) times.

The query Qpoints(χ, γ, P) can be answered by traversing the tree from the
root to a leaf. Let v be the current node initialized to the root. Let i be an index
such that Yv[i] ≤ γ < Yv[i+1]. This index is initialized by doing a binary search
over the vector YP . If χ > xmid

v , then Qpoints(χ, γ, v) = Qpoints(χ, γ, right(v)).
The current node v becomes right(v) and the index i becomes Rv[i]. If χ ≤ xmid

v ,
Qpoints(χ, γ, v) = Qpoints(χ, γ, left(v)) + Wright(v)[Rv[i]]. The current node v

becomes left(v) and the index i becomes Lv[i]. When the current node v = {j}
is a leaf, we return wj if xj ≥ χ and yj ≤ γ and zero otherwise. This computation
is done in O(log |P |) time.

3.3 Monge Matrices

A Monge matrix M is an n × m matrix such that for any pair of rows 1 ≤ i1 <
i2 ≤ n and any pair of columns 1 ≤ j1 < j2 ≤ m, the inequality (7) holds.

M [i2, j2] − M [i2, j1] ≤ M [i1, j2] − M [i1, j1] (7)

An inverse Monge matrix satisfies the opposite inequality: M [i2, j2]−M [i2, j1] ≥
M [i1, j2] − M [i1, j1].

Consider the functions: fi(x) = M [i, x]. Inequality (7) imposes the slopes of
these functions to be monotonic. By choosing i1 = i, i2 = i + 1, j1 = x, and
j2 = x + 1 and substituting in (7), one can observe the monotonic behavior of
the slopes.

fi+1(x + 1) − fi+1(x)
(x + 1) − x

≤ fi(x + 1) − fi(x)
(x + 1) − x

. (8)

It follows that the functions of two distinct rows of a Monge matrix cross each
other at most once. Monge matrices satisfy many more properties [19].

Property 1. The submatrix obtained from a subset of rows and columns of a
Monge matrix is a Monge matrix.

Property 2. The transpose of a Monge matrix is a Monge matrix.

Property 3. If M is a Monge matrix, v and w are two vectors, then M ′[i, j] =
M [i, j] + v[i] + w[j] is a Monge matrix.

Properties 1 to 3 also hold for inverse Monge matrices.

Property 4. M is a Monge matrix if and only if −M is an inverse Monge matrix.

Sethumadhavan [19] presents a survey about Monge matrices.
The envelope of a Monge matrix M is a function l∗(j) = arg miniM [i, j]

that returns the row i on which appears the smallest element on column j. The
envelope l∗(j) of a (inverse) Monge matrix is non-increasing (non-decreasing).

482 Y. Ouellet and C.-G. Quimper

A partial Monge matrix is a Monge matrix with empty entries. Empty entries
are not subject to the inequality (7) and are ignored when computing the enve-
lope. In this paper, we only consider partial (inverse) Monge matrices where
M [i, j] is empty if and only if i > j. The envelope of such an n × m partial
(inverse) Monge matrix is non-increasing (non-decreasing) on the interval [1, i]
and non-decreasing (non-increasing) on the interval [i,m] where M [i, l∗(i) − 1]
is empty. Kaplan et al. [11] compute the envelope of a n × m partial (inverse)
Monge matrix in O(n log m) time. Their algorithm uses binary searches over the
columns to find the intersection of the row functions fi(x).

4 Adapting the Range-Trees

We adapt the range-tree data structure to perform a query on a set of weighted
segments S instead of a set of points. Such an adaptation is required for the
algorithms we present in the next sections. A segment i of weight wi, noted
〈xi, x

′
i, yi, wi〉, spans from coordinates xi to x′

i on the abscissa, at yi on the
ordinate. The query Qsegments(χ, γ,S) computes the weighted sum of all segment
parts inside the quater-plane of the query. A segment accounts for its weight
times the length of the sub-segment that is within the query range.

Qsegments(χ, γ,S) =
∑

〈xix
′
i
,yi,wi〉∈S
yi≤γ

wi(max(x′
i − χ, 0) − max(xi − χ, 0))

We can simplify the problem by replacing each segment by two rays i′ and
i′′: 〈−∞, x′

i, yi, wi〉 and 〈−∞, xi, yi,−wi〉. Since ray i′′ cancels ray i′ when i
begins, the result of the query is unchanged.

We adapt the range-tree data structure to answer queries on weighted rays
instead of weighted points. We add an attribute xv to each node v of the tree that
represents the smallest abscissa of a ray 〈−∞, xi, yi, wi〉 in v. In other words,
each ray in v ends at x or after. We also add a vector Σv to each node v such
that Σv[i] = Qsegments(xv, Yv[i], v) is a precomputed result of a query. If rays in
v are sorted by ordinates, we have Σv[i] = Σv[i − 1] + wi(xi − xv).

Similar to the original range-tree, the query Qsegments(χ, γ,S) is computed
by traversing the tree from the root S to a leaf. Let v be the current node ini-
tialized to the root. Let i be an index such that Yv[i] ≤ γ < Yv[i + 1]. This
index is initialized by doing a binary search over the vector YS . If χ > xmid

v ,
then Qsegments(χ, γ, v) = Qsegments(χ, γ, right(v)). The current node v becomes
right(v) and the index i becomes Rv[i]. If χ ≤ xmid

v , Qsegments(χ, γ, v) =
Qsegments(χ, γ, left(v)) + Σv[Rv[i]] + (x − χ) · Wv[Rv[i]]. The current node v
becomes left(v) and the index i becomes Lv[i]. When the current node v = {j}
is a leaf, we return (xj − χ) · wj if yi ≤ γ and 0 otherwise. This computation is
done in O(log |S|) time.

A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm 483

5 Computing the Left-Shift Right-Shift in O(logn) Time

We want to preprocess n tasks in O(n log n) time in order to compute the
left-shift/right-shift LSRS(I, l, u) of any time interval [l, u), upon request, in
O(log n) time. We decompose the problem as follows. For every task i, we let
ci = max(0, ecti − lsti) be the length of the task’s compulsory part. For every
task i, we define pi weighted semi-open intervals partitioned into two sets: the
ci compulsory intervals CIi that lie within the compulsory part [lsti, ecti) of the
task and the pi − ci free intervals FIi that embed the compulsory part. The
weight of all intervals is hi.

CIi = {〈[lsti +k, lsti +k + 1), hi〉 | 0 ≤ k < ci} (9)

FIi = {〈[esti +k, lcti −k), hi〉 | 0 ≤ k < pi − ci} (10)

For a set of tasks, we have: CIΩ =
⋃

i∈Ω CIi and FIΩ =
⋃

i∈Ω FIi. Computing
LSRS(I, l, u) consists of counting the weight of the intervals nested in [l, u).

LSRS(I, l, u) =
∑

〈[a,b),w〉∈CII
[a,b)⊆[l,u)

w +
∑

〈[a,b),w〉∈FII
[a,b)⊆[l,u)

w (11)

Figure 1a shows two tasks and their intervals as well as a request interval
[l, u) shown in gray. The number of intervals nested in [l, u) gives the amount
of processing time the tasks must spend executing in [l, u). When the number
of intervals is weighted by the task heights, we obtain the left-shift/right-shift.
Compulsory intervals have length 1 since the time at which compulsory energy
is spent is known. Free intervals are longer and nested into [l, u) only if the unit
of processing time it corresponds to belongs both to the left-shift and the right-
shift of the task. Equation (11) counts all intervals nested in [l, u) and weighted
by the task heights.

0 1 2 3 4 5 6 7 8 9

CIB
FIB

FCA

CIA

(a)

3
4
5
6
7
8
9

0 1 2 3 4 5
(b)

0 1 2 3

5
6
7
8
9
10
11

(c)
-10 -9 -8 -7 -6 -5 -4

-11
-10
-9
-8
-7
-6
-5
-4

(d)

Fig. 1. (a) The intervals of two tasks: task A in gray with estA = 0, lctA = 5, pA = 3,
hA = 1 and task B in black with estB = 1, lctB = 9, pB = 5, hB = 1. (b) The
representation of the intervals on a Cartesian plan with lower bounds on the abscissa
and upper bounds on the ordinate. (c) First transformation. (d) Second transformation.
In all figures, the gray rectangle represents the query [l, u) = [1, 5) that contains exactly
3 intervals of weight 1, hence LSRS({A,B}, 1, 5) = 3.

484 Y. Ouellet and C.-G. Quimper

Figure 1b represents an interval [a, b) by a point (a, b) on the Cartesian plane
with the corresponding weight. The sums in (11) can be computed with the
queries Qpoints(l, u, CII) and Qpoints(l, u, FII) as explained in Sect. 3.2. These
queries are represented as gray rectangles on Figs. 1a and 1b. Since the points
associated to the intervals in FIi form segments with a slope of -1 and that points
in CIi form a segment on the line y = x+1, we can design efficient algorithms to
compute these queries with O(n log n) processing time and O(log n) query time.
Section 5.1 shows how to achieve these time bounds when computing the first
summation in (11) that we call the compulsory energy while Sect. 5.2 shows how
to compute the second summation that we call the free energy.

5.1 Computing the Compulsory Energy

We compute the compulsory energy that lies within an interval [l, u) as follows.
Let T = {ecti | i ∈ I} ∪ {lsti | i ∈ I} be the sorted time points where the
compulsory energy can increase or decrease over time. Let Yt be the amount
of compulsory energy spent at time Tt. We compute Yt using an intermediate
vector Y ′

t initialized to zero. For each task i, we increase by hi the component Y ′
t

such that Tt = lsti and decrement by hi the component Y ′
t such that Tt = ectt.

We obtain these relations:

Y ′
t =

∑

i∈I|lsti=Tt

hi −
∑

i∈I|ecti=Tt

hi, Y0 = Y ′
0 , Yt = Yt−1 + Y ′

t .

Let Zt be the amount of compulsory energy in the time interval [Tt, Tt+1), i.e.
Zt = Yt(Tt+1 − Tt). Let t1 and t2 be such that Tt1−1 < l ≤ Tt1 and Tt2 ≤ u <
Tt2+1. The amount of compulsory energy within the time interval [l, u) is given
below.

Qpoints(l, u, CII) =
∑

〈[a,b),w〉∈CII
[a,b)⊆[l,u)

w = Yt1−1(Tt1 − l) +
t2∑

t=t1

Zt + Yt2(u − Tt2) (12)

Once the tasks are sorted, in O(n log n) time, by ect and lst, the vector Y ′

can be computed in linear time. The vectors Y , and Z can also be computed
in linear time. The vector Z is preprocessed as a partial sum in linear time (see
Sect. 3.1). Overall, the preprocess time is O(n log n).

To answer a query Qpoints(l, u, CII), a binary search finds the indices t1 and
t2 in O(log n) time. Equation (12) is computed in constant time since the vector
Z was preprocessed as a partial sum. Overall, the query time is O(log n).

5.2 Computing the Free Energy

We use our adaptation of range trees to answer the query Qpoints(l, u, FII). Since
range trees process segments that are parallel to the x-axis, we use a geometric
transformation to align the points in a set FCi with the x-axis.

A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm 485

We transform an interval [a, b) ∈ FII into an interval [a, a + b). The weights
of the intervals remain unchanged. The intervals in FII , when transformed, form
the following weighted segments.

T 1
I = {〈esti, esti +pi − ci, esti + lcti, hi〉 | i ∈ I}

We proceed to a second transformation where each interval [a, b) ∈ FII is trans-
formed into [−b,−a− b). The intervals from FII become the following weighted
segment.

T 2
I = {〈− lcti,− lcti +pi − ci,− esti − lcti, hi〉 | i ∈ I}

Figures 1c and d show the first and second transformations.

Lemma 1. Qpoints(l, u, FII) = Qsegments(l, l+u, T 1
I)+Qsegments(−u,−l−u−

1, T 2
I).

Proof. Sketch: Qsegments(l, l + u, T 1
I) computes the weights of the points inside

the gray box and under the dotted line in Fig. 1b or inside the gray box in
Fig. 1c. The query Qsegments(−u,−l −u− 1, T 2

I) computes weights of the points
inside the gray box and above the dotted line in Fig. 1b or inside the gray box
in Fig. 1d.

From Lemma 1, it follows that two range trees can be constructed in
O(n log n) time with the segments in T 1

I and T 2
I . Computing the free energy

within the interval [l, u) is performed online in O(log n) time.

6 A Checker that Analyzes O(n logn) Time Intervals

We show that even though the energetic reasoning can fail in any of the O(n2)
time intervals mentioned in Sect. 2, this number of intervals can be reduced to
O(n log n) during the online computation. After analyzing a subset of O(n log n)
intervals, it is safe to conclude whether the check passes for all O(n2) intervals.

We define the matrix E such that E[l, u] is the left-shift/right-shift energy
contained in the interval [l, u) for estmin ≤ l < u ≤ lctmax. If the interval [l, u) is
reversed (l > u), the left-shift/right-shift is null. The matrix S[l, u] contains the
slack for the interval [l, u), i.e. the remaining amount of energy in that interval.

E[l, u] =
∑

i∈I
LSRS(i, l, u) S[l, u] = C · (u − l) − E[l, u]

Theorem 1. The matrix E is a Monge matrix.

Proof. Let estmin ≤ l1 < l2 ≤ lctmax and estmin ≤ u1 < u2 ≤ lctmax. The quan-
tity E[l2, u2]−E[l2, u1] is the amount of left-shift/right-shift energy that we gain
by enlarging the interval [l2, u1) to [l2, u2). By analyzing (2), we deduce that the
quantities u − lsti and u − l increase at the same rate when enlarging [l2, u1) to
[l2, u2) than when enlarging [l1, u1) to [l1, u2). However, the terms ecti −l and pi

486 Y. Ouellet and C.-G. Quimper

might prevent the left-shift/right-shift to increase when the interval is enlarged.
It turns out that ecti −l increases and pi remains constant as l decreases. Con-
sequently, the increase of energy from [l1, u1) to [l1, u2) is less limited than when
enlarging [l2, u1) to [l2, u2). Hence E[l2, u2] − E[l2, u1] ≤ E[l1, u2] − E[l1, u1]. ��
Corollary 1. The matrix S is an inverse Monge matrix.

Proof. Follows from S[l, u] = v[u] − v[l] − E[l, u] where v[i] = iC, Theorem 1,
Property 4, and Property 3. ��

The energetic reasoning test fails if and only if there exists a non-empty
interval [l, u) such that S[l, u] < 0. Inspired from [11], we design an algorithm
that finds the smallest entry S[l, u] for any l < u by checking only O(n log n)
entries in S. The algorithm assumes that the matrix S is not precomputed, but
that any entry can be computed upon request. Since in Sect. 5, we show how to
compute S[l, u] for any interval [l, u) in O(log n) time, we obtain an algorithm
with a running time complexity of O(n log2 n). Moreover, we do not need to
process the whole matrix S but submatrices containing a subset of rows and
columns from S. These submatrices contain all intervals of interest described in
Sect. 2 and by Property 1, are inverse Monge matrices.

We need to execute Algorithm 1 twice to correctly apply the energetic rea-
soning rule. The first execution processes all intervals of the form O1 × O2 ∪⋃

l∈O1
O(l). To do so, we call Algorithm 1 with the parameters O1, O2, and

O′ := O(0) = {esti + lcti | i ∈ I}. Moreover, we pass the function S := (l, u) →
S(I, l, u) that returns the slack in the interval [l, u). The sets O1, O2, and O′

contain O(n) elements (see Sect. 2) and are computed in linear time. For the
second execution, we execute the checker on the reversed problem, process-
ing intervals of the form O1 ∪ O′ × O2. Thus, the algorithm is called with
S := (l, u) → S(I,−u,−l), O1 := {−u | u ∈ O2}, O2 := {−l | l ∈ O1},
and O′ := {−(esti + lcti) | i ∈ I}. If neither execution leads to a failure, the
constraint is consistent according to the energetic reasoning rule.

Algorithm 1 is built around the data structure P that encodes the envelope
of the inverse Monge matrix S[l, u]. The algorithm proceeds in two phases. The
first phase initializes the data structure P while the second phase uses it to
perform the check.

Let P be a set of tuples such that 〈[u, u], l〉 ∈ P indicates that the smallest
element on any column u ∈ [u, u] occurs on row l (we ignore rows greater than
or equal to u as they correspond to empty time intervals). The intervals [u, u] in
P are sorted, disjoint, and contiguous. Upon the insertion of a tuple 〈[u, u], l〉,
the intervals in P must be altered in order to be disjoint from [u, u]. Intervals
in P that are nested in [u, u] must be deleted from P . Intervals that partially
overlap with [u, u] must be shrunk. An interval that embeds [u, u] needs to be
split.

Consider the sequence of tuples 〈[u, u], l′〉 ∈ P sorted by intervals. By prop-
erty of the envelope of an inverse Monge matrix, the rows l′ in the sequence
increase up to a maximum and then decrease. We store in a stack P1 the first
tuples of the sequence up to the tuple with the largest row (exclusively). We

A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm 487

Algorithm 1. MongeChecker(S,O1, O2, O
′)

P1 ← ∅, P2 ← {〈[minO2,maxO2],minO1〉}, F ← ∅;
for l ∈ O1 \ {minO1} in increasing order do

〈[u1, u2], l
∗〉 ← Top(P2);

1 while S(l, u2) ≤ S(l∗, u2) do
2 Pop(P2);

〈[u1, u2], l
∗〉 ← Top(P2);

3 b ← max({u | u1 ≤ u ≤ u2 ∧ u ∈ O2 ∧ S(l, u) < S(l∗, u)} ∪ {−∞});
4 c ← max({u | b ≤ u ≤ min(u2, succ(b,O2)) ∧ u+ l ∈ O′ ∧ S(l, u) <

S(l∗, u)} ∪ {−∞});
u ← max(b, c);
ul ← min(succ(u,O2), succ(u+ l, O′) − l);
ul∗ ← min(succ(u,O2), succ(u+ l∗, O′) − l∗);

5 d ←⌊
(ul−u)(S(l∗,u)·(ul∗ −u)−u(S(l,ul∗)−S(l∗,u)))−(ul∗ −u)(S(l,u)(ul−u)−u(S(l,ul)−S(l,u)))

(ul∗ −u)(S(l,ul)−S(l,u))−(ul−u)(S(l∗,ul∗)−S(l∗,u))

⌋
;

if d > min(ul, ul∗) then d ← max(b, c) ;
if d > l + 1 then PushInterval(P1, P2, l, d) ;

for 〈[u, u], l〉 ∈ P1 ∪ P2 in increasing order do
u1 ← u;
if S(l, u1) < 0 then F ← F ∪ {[l, u1)};
u3 ← min{u ∈ O2 | u > u1};
while u3 ≤ u do

if S(l, u3) < 0 then F ← F ∪ {[l, u3)};
6 Find u2 such that u2 + l ∈ O′, u1 < u2 < u3, and

S(l, u2 − 1) ≥ S(l, u2) < S(l, u2 + 1);
if such a u2 exists and S(l, u2) < 0 then F ← F ∪ {[l, u2)};
u1 ← u3;
u3 ← min{u ∈ O2 | u > u1};

if F = ∅ then return (Success, ∅) else return (Fail, F) ;

store in a stack P2 the remaining tuple, i.e. the decreasing slice of the sequence.
The ends of the sequence are at the bottom of the stacks, the tuple with the
largest row l′ is at the top of P2 and the tuple before is at the top of P1. Algo-
rithm2 details the process of inserting an interval in the data structure while
maintaining the invariant. Lines 1–2 move intervals smaller than the current row
l from P2 to P1. Lines 3–4 remove overlapping intervals in P2. The remainder of
the algorithm splits the top interval of P2 and insert the new interval between it.
A tuple is always pushed onto P2 before being moved to P1 and is never moved
once in P1. Since Algorithm 2 pushes two tuples onto P2, it has a constant time
amortized complexity.

The intervals inserted into P are computed as follows. First, all columns
of S are associated to the first row min O1. Therefore, P is initialized to
{〈[estmin, lctmax],min O1〉}. We process the next rows in increasing order in

488 Y. Ouellet and C.-G. Quimper

the first for loop. Each time we process a row, we update the envelope func-
tion l∗ encoded with the data structure P . Let fl(x) = S(I, l, x) and fl∗(x) =
S(I, l∗(x), x) be two functions. Because S is an inverse Monge matrix, we know
that these two functions intersect at most once. We search for the greatest value
d where fl(d) < fl∗(d). Once the value d is computed for a row l, if d > l + 1,
we insert the tuple 〈[l + 1, d], l〉 in P . If d ≤ l + 1, the functions do not intersect
or intersect on an empty interval [l, d) which is not of interest.

We compute d by proceeding in four steps. The while loop on line 1 searches
the tuple 〈[u, u], l∗〉 in P2 such that fl(x) and fl∗(x) intersect in [u, u]. This tuple
can not be in P1 because l is greater than all intervals in P1 and we want d to
be greater than l. The intervals in which fl(x) is smaller than the functions of
the previous rows are removed from P on line 2. On line 3, we perform a binary
search over the elements of O2 within [u, u] to find the greatest column b ∈ O2

for which fl(b) < fl∗(b). Let succ(a,A) = min{a′ ∈ A | a′ > a) be the successor
of a ∈ A when A is sorted in increasing order. Once b is found, we narrow
the search for the intersection of the functions fl(x) and fl∗(x) to the interval
[b,min(u2, succ(b,O2))]. On line 4 we find the greatest column c ∈ O(l) that lies
in [b,min(u2, succ(b,O2))] where fl(c) < fl∗(c). In order not to compute O(l) for
each row l, we perform the search in O′ = O(0). We have that c ∈ O(l) if and
only if c + l ∈ O′. Therefore, rather than searching for the greatest c ∈ O(l),
line 4 searches for the greatest c + l ∈ O′.

Using the values b and c, we find the value d where fl(x) and fl∗(x) intersect.
The function fl(x) is piecewise linear with inflection points in O2 ∪ O(l). The
function fl∗(x) is piecewise linear with inflections points in O2 ∪ O(l∗). Let
d̄l = succ(max(b, c), O2 ∪ O(l)) and d̄l∗ = succ(max(b, c), O2 ∪ O(l∗(max(b, c))).
We know that max(b, c) ≤ d ≤ min(d̄l, d̄l∗), that fl(x) is linear over the interval
[max(b, c), d̄l), and that fl∗(x) is linear over [max(b, c), d̄l∗). We let d be the
intersection point of these segments, or let d = max(b, c) if that intersection
point does not satisfy max(b, c) ≤ d ≤ min(d̄l, d̄l∗). Once d is computed, we
insert 〈[l + 1, d], l〉 into P .

In the second part of the algorithm, we iterate on each tuple 〈[a, d], l〉 ∈ P
found in the first part. The while loop processes the columns in O2 that are
within the current interval. After checking that the slack of two consecutive
columns in O2, u1 and u3, does not yield a negative slack, we try to find a
column u2 ∈ O(l) such that u2 is between u1 and u3 and has a negative slack.

Derrien and Petit [7] showed that the slope of the slack increases at elements
in O(l). Therefore, there is a global minimum between u1 and u3 that can be
found using a binary search. If S[l, t] < S[l, t+1], the global minimum is before t.
Otherwise, it is at t or after t. Hence, the binary search finds the element in O(l)
between u1 and u3 where the slope of the slack shift from negative to positive.
If all columns in each interval are processed without causing a failure, we return
success.

Lines 3, 4, and 6 are executed O(n) times and perform binary searches over
O(n) columns of the matrix leading to O(n log n) comparisons. Each comparison
requires the computation of two entries of the matrix S which is done in O(log n)

A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm 489

Algorithm 2. PushInterval(P1, P2, l, d)
〈[u, u], l∗〉 ← Top(P2);

1 while l + 1 > u do
Push(P1,Pop(P2));

2 〈[u, u], l∗〉 ← Top(P2);

if d > u then
3 u′ ← u;

l′ ← l∗;
while d > u do

Pop(P2);
4 〈[u, u], l∗〉 ← Top(P2);

Push(P1, 〈[u′, l], l′〉);
else

〈[u, u], l∗〉 ← Pop(P2);
Push(P1, 〈[u, l], l∗〉);

Push(P2, 〈[d+ 1, u], l∗〉);
Push(P2, 〈[l + 1, d], l〉);

times (see Sect. 5). This leads in an O(n log2 n) running time complexity. The
space complexity of the algorithm is dominated by the complexity of the range-
trees, which is O(n log n).

7 Filtering Algorithm

We present a filtering algorithm for the energetic reasoning with average com-
plexity of O(n2 log n) based on the checker we presented in Sect. 6 and inspired
by Derrien and Petit’s filtering algorithm [7]. We only show how to filter the est
of the tasks. To filter the lct, one can create the reversed problem by multiplying
by −1 the values in the domains. Filtering the est in the reversed problem filters
the lct in the original problem. We define the function S1

i (l, u) to be the amount
of slack in the interval [l, u) if i was assigned to its earliest starting time, i.e.
S1

i (l, u) = S(I, l, u)+LSRS(i, l, u)−LS(i, l, u). Similarly, S2
i (l, u) = S1

i (−u,−l)
represents the same concept on the reversed problem.

Algorithm 3 filters each task i by running the checker presented in Sect. 6
with S1

i and S2
i rather than S. We execute Algorithm 1 twice for each task. The

first execution handles intervals of the form O1×O2∪⋃
l∈O1

O(l) and the second,
intervals of the form O1 ∪ ⋃

u∈O2
O(u) × O2. On line 1, for each interval [l, u)

whose slack is negative when i starts at its earliest starting time, we filter esti

using the energetic reasoning rule.
Algorithm 3 reaches the same fix point as [7]. A task i needs to be filtered if

S(I \{i}, l, u)−LS(i, l, u) is negative on an interval [l, u). If such intervals exist,
our algorithm finds at least one since it necessarily processes the interval with the
minimum value. If not all negative intervals are found or if the filtering creates
new negative intervals, our algorithm processes them at the next iteration.

490 Y. Ouellet and C.-G. Quimper

Algorithm 3. MongeFilter(I)
est′i ← esti ∀i ∈ I;
for i ∈ I do

S1
i ← (l, u) �→ S(I, l, u) + LSRS(i, l, u) − LS(i, l, u);

S2
i ← (l, u) �→ S(I,−u,−l) + LSRS(i,−u,−l) − LS(i,−u,−l);

(r1, F1) ← MongeChecker(S1
i , O1, O2, {esti + lcti | i ∈ I});

(r2, F2) ← MongeChecker(S2
i , {−u | u ∈ O2}, {−l | l ∈ O1}, {−(esti + lcti) |

i ∈ I});
1 for [l, u) ∈ F1 ∪ {[l, u) | [−u,−l) ∈ F2} do

est′i ← min(est′i, �u − S(I,l,u)+LSRS(i,l,u)
hi

�)

7.1 Running Time Analysis

Algorithm 3 makes 2n calls to the checker that each makes O(n log n) slack
queries answered in O(log n) time, hence a running time in O(n2 log2 n). How-
ever, we use a memorization based on virtual initialization [13] with a space
complexity of O(maxi lct2i). A hash table could also work with O(n log n) space.
When S(I, l, u) is computed, we store its value so that further identical queries
get answered in O(1). There are O(n2) intervals of interest. On line 5 of Algo-
rithm1, the slack for intervals that are not of interest is computed O(n) times
in the checker, hence O(n2) in the filtering algorithm. For these O(n2) intervals,
a total of O(n2 log n) time is spent thanks to memorization.

Line 4 performs a binary search over the elements u ∈ O(l) ∩ [b, succ(b,O2)]
and computes the slack S(l∗, u) which might not be an interval of interest. The
binary search could perform up to O(log n) slack evaluations and therefore lead
to O(n2 log n) distinct evaluations in the filtering algorithm. However, having n
elements in O(l) that occurs between two consecutive elements in O2 (namely b
and succ(b,O2)) seldomly happens. Suppose that |O2| = 3n and |O(l)| = n and
that the time points in these sets are evenly spread. We obtain an average of
1
3 elements in O(l) between two consecutive elements in O2. This number can
vary depending on the cardinalities of O2 and O(t), but in practice, we rather
observe an average of 0.141 elements when n = 16 and this number decreases as
n increases. To reach the worst time bound of O(n2 log2 n), one would need to
construct an instance that triggers O(n2) binary searches on line 4, each time
over O(n) elements. We did not succeed to construct such an instance. Assuming
that the number of elements in the search is bounded, in average, by a constant,
we obtain an average running time of O(n2 log n). Under these assumptions, the
binary search might as well be substituted by a linear search.

7.2 Optimization

As Derrien and Petit in [7], we improve the practical performance of Algorithm 3
by processing, for each task i, only intervals in OC and Li. We partition OC into
two sets: O1

C contains the intervals in OC with lower bound in O1 and O2
C

A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm 491

contains the intervals in OC with lower bound in
⋃

u∈O2
O(u). Let lbs(A) =

{s ·a | [a, b) ∈ A} and ubs(A) = {s · b | [a, b) ∈ A} be the lower bound and upper
bounds of the intervals in A, multiplied by s. We execute Algorithm 3 as usual,
but the first call to the checker is done with parameters O1 := lb1(O1

C) and
O2 := up1(O1

C) while the second call is made with parameters O1 := ub−1(O2
C)

and O2 := lb−1(O2
C). The set O′ is empty and S is unchanged. Since we do not

process all elements in O2, we can’t use a binary search at line 6 of Algorithm 1
anymore and we must search linearly leading to a worse case complexity of
O(n3 log n) when there are O(n2) upper bounds in OC . However, this seldom
happens and the reduced constant outweighs the increased complexity.

To process intervals in Li for i ∈ I, we do as Derrien and Petit [7] by applying
the filtering rule on each of the O(n) intervals in Li. Since we compute the slack
in O(log n), we obtain a running time of O(n2 log n) for all tasks.

8 Experiments

We implemented the algorithms in the solver Choco 4 [16] with Java 8. We
ran the experiments on an Intel Core i7-2600 3.40 GHz. We used both BL [2]
and PSPLIB [12] benchmarks of the Resources Constrained Project Scheduling
Problems (RCPSP). An instance consists of tasks, subject to precedences, that
need to be simultaneously executed on renewable resources of different capac-
ities. We model this problem using one starting time variable Si for each task
i and a makespan variable. We add a constraint of the form Si + pi ≤ Si to
model a precedence and use one Cumulative constraint per resource. For these
constraints, we do not use other filtering algorithms than the algorithms being
tested. We minimize the makespan. All experiments are performed using the
Conflict Ordering Search [9] search strategy with a time limit of 20 min.

Figure 2 shows the time to optimally solve instances of benchmark BL using
the checker from Sect. 6 (on the y axis) and Derrien and Petit’s checker [7] (on

Table 1. Percentage of the time taken by
Monge Filter to optimally solve instances of n
tasks, compared to Derrien and Petit’s filtering
algorithm.

Benchmark n Instances solved % time

BL 20 20 0.92

BL 25 20 0.89

PSPLIB 30 445 0.94

PSPLIB 60 371 0.57

PSPLIB 90 369 0.44

PSPLIB 120 197 0.48 Fig. 2. Comparison of the time
to optimally solve instances of the
benchmark BL. Derrien et al.’s
checker vs the Monge Checker.

492 Y. Ouellet and C.-G. Quimper

Fig. 3. Comparison of the time to solve to optimality instances of BL (left) and PSPLIB
(right) benchmarks for Derrien and Petit’s filtering algorithm and Monge Filter.

the x axis). The Monge Checker is faster for most instances and takes, in average,
77% of the time required by Derrien and Petit’s checker to solve an instance to
optimality.

Figure 3 shows the time to optimally solve instances using the filtering algo-
rithm from Sect. 7 and Derrien and Petit’s filtering algorithm [7], for BL (left)
and PSPLIB (right) benchmarks. While our algorithm is only marginally faster
on BL instances, where the number of tasks is small (between 20 and 25), the
difference significantly increases as the number of tasks increases, as shown in
Table 1. This shows the impact of decreasing the complexity of the energetic
reasoning from O(n3) to O(n2 log n).

9 Conclusion

We introduced a new method to explicitly process only O(n log n) intervals for
the energetic reasoning using Monge matrices. We showed how to compute the
energy in an interval in O(log n). We proposed a checker in O(n log2 n) and
a filtering algorithm in O(n2 log n). Experiments showed that these algorithms
are faster in theory and in practice. Future work will focus on extending these
algorithms to produce explanations.

Acknowledgment. In memory of Alejandro López-Ortiz (1967–2017) who introduced
me to research, algorithm design, and even Monge matrices. – C.-G. Q

References

1. Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling
and placement problems. Math. Comput. Model. 17(7), 57–73 (1993)

2. Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques for
highly disjunctive and highly cumulative project scheduling problems. Constraints
5(1–2), 119–139 (2000)

A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm 493

3. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. Kluwer Aca-
demic Publishers, Dordrecht (2001)

4. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with
negative heights. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
63–79. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3 5

5. Bonifas, N.: A O(n2 log(n)) propagation for the energy reasoning. In: ROADEF
2016 (2016)

6. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational
Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77974-2

7. Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic
reasoning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 289–297. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 22

8. Fahimi, H., Quimper, C.G.: Linear-time filtering algorithms for the disjunctive
constraint. In: AAAI, pp. 2637–2643 (2014)

9. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for schedul-
ing problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 10

10. Kameugne, R., Fotso, L.P.: A cumulative not-first/not-last filtering algorithm in
O(n2log(n)). Indian J. Pure Appl. Math. 44(1), 95–115 (2013)

11. Kaplan, H., Mozes, S., Nussbaum, Y., Sharir, M.: Submatrix maximum queries in
Monge matrices and partial Monge matrices, and their applications. ACM Trans.
Algorithms (TALG) 13(2), 338–355 (2017)

12. Kolisch, R., Sprecher, A.: PSPLIB-a project scheduling problem library: OR
software-orsep operations research software exchange program. Eur. J. Oper. Res.
96(1), 205–216 (1997)

13. Levitin, A.: Introduction to the Design & Analysis of Algorithms, 3rd edn. Pearson
Education Inc., Boston (2012)

14. Lopez, P., Esquirol, P.: Consistency enforcing in scheduling: a general formulation
based on energetic reasoning. In: 5th International Workshop on Project Manage-
ment and Scheduling (PMS 1996) (1996)

15. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling.
INFORMS J. Comput. 20(1), 143–153 (2008)

16. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC, LS2N,
CNRS UMR 6241 and COSLING S.A.S. (2017)

17. Schutt, A., Wolf, A.: A new O(n2 logn) not-first/not-last pruning algorithm for
cumulative resource constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp.
445–459. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-
9 36

18. Schutt, A., Wolf, A., Schrader, G.: Not-first and not-last detection for cumulative
scheduling in O(n3 logn). In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U.,
Seipel, D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 66–80.
Springer, Heidelberg (2006). https://doi.org/10.1007/11963578 6

19. Sethumadhavan, S.: A survey of Monge properties. Master’s thesis, Cochin Uni-
versity of Science and Technology (2009)

20. Tesch, A.: Exact energetic reasoning in O(n2 log2 n). Technical report, Zuse Insti-
tute Berlin (2016)

21. Tesch, A.: A nearly exact propagation algorithm for energetic reasoning in
O(n2 log n). In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 493–519. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 32

https://doi.org/10.1007/3-540-46135-3_5
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-319-10428-7_22
https://doi.org/10.1007/978-3-319-23219-5_10
https://doi.org/10.1007/978-3-642-15396-9_36
https://doi.org/10.1007/978-3-642-15396-9_36
https://doi.org/10.1007/11963578_6
https://doi.org/10.1007/978-3-319-44953-1_32

494 Y. Ouellet and C.-G. Quimper

22. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative
resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp.
230–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-
3 22

23. Wolf, A., Schrader, G.: O(n logn) overload checking for the cumulative constraint
and its application. In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel,
D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 88–101. Springer,
Heidelberg (2006). https://doi.org/10.1007/11963578 8

https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/11963578_8

The WeightedCircuitsLmax Constraint

Kim Rioux-Paradis and Claude-Guy Quimper(B)

Université Laval, Québec City, Canada
kim.rioux-paradis.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

Abstract. The travelling salesman problem is a well-known problem
that can be generalized to the m-travelling salesmen problem with min-
max objective. In this problem, each city must be visited by exactly
one salesman, among m travelling salesmen. We want to minimize the
longest circuit travelled by a salesman. This paper generalizes the Cir-
cuit and WeightedCircuit constraints and presents a new constraint
that encodes m cycles all starting from the same city and whose lengths
are bounded by a variable Lmax. We propose two filtering algorithms,
each based on a relaxation of the problem that uses the structure of the
graph and the distances between each city. We show that this new con-
straint improves the solving time for the m travelling salesmen problem.

1 Introduction

Constraint programming offers a large number of constraints to model and to
solve combinatorial problems [1]. These constraints serve two purposes: they
facilitate the modelling of a problem and they offer strong filtering algorithms
that reduce the search space. When solving an optimization problem with a
Branch & Bound approach, computing a tight bound on the objective function
is crucial to limit the size of the search tree. Global constraints can help compute
the bound by filtering the objective variable with respect to a large number of
variables in the problem.

We propose a new global constraint that helps to model and solve the m-
travelling salesman problem with a min-max objective. This problem consists in
planning the routes of m salesmen that start at the depot D, visit n − 1 cities
exactly once, and return to the depot. We want to minimize the longest route.
While there exist several global constraints that can be used to encode this prob-
lem, few include an optimization criterion, and none minimize the length of the
longest cycle. With the new global constraint WeightedCircuitsLmax, one
can easily model the m-travelling salesman problem and compute tight bounds
on the objective function.

The filtering algorithm we propose uses two relaxations both inspired by the
1-tree relaxation [2] used for the WeightedCircuit constraint. We name these
relaxations the 1-forest relaxation and the cluster relaxation. For each relaxation,
we develop a filtering algorithm that takes into account the minimization of the
longest cycle. We compare a model that uses this new constraint against a model
that does not use it and we show its efficiency.
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 495–511, 2018.
https://doi.org/10.1007/978-3-319-93031-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_35&domain=pdf

496 K. Rioux-Paradis and C.-G. Quimper

Section 2 describes the problem and the data structures used to design new
filtering algorithms. Section 3 presents the new constraint WeightedCircuit-
sLmax. Sections 4 and 5 each present a relaxation and a filtering algorithm.
Section 6 explains how to detect situations where the constraint is consistent
and filtering algorithms do not need to be executed. Finally, Sect. 7 presents the
experimental results.

2 Background

We present the m-travelling salesman problem. We follow with the presentation
of data structures, graph theory, and algorithms that we later use as tools to
design our filtering algorithms. We also present global constraints useful to model
the travelling salesman problem and its variants.

2.1 m-TSP

The m-travelling salesmen problem, denoted m-TPS, is a well-known general-
ization of the travelling salesman problem (TSP) [3]. The problem’s input is a
graph G = (V,E, d) where V is a set of vertices (or cities), E a set of edges, and
d(i, j) = d(j, i) is a symmetric function that returns the distance between the
vertices i and j. The city n − 1 is called the depot D = n − 1. The goal is to
find m disjoint routes for the m salesmen leaving and returning to the depot.
All cities have to be visited exactly once by only one salesman. The objective is
to minimize the total distance. The min-max m-TSP [4–7] is the same problem
but the objective is to minimize the longest route. Lz is the sum of the distance
travelled by the zth salesman and Lmax the maximum of the Lz. Minimizing the
longest circuit is often sufficient to balance the workload between each salesman.

There are different ways to solve a m-TSP exactly. Exact methods based
on branch and bound [8,9] and integer programming are often used [10]. One
can also reduce the m-TSP to a TSP problem with one salesman and use exact
methods for this problem [11,12]. There are many heuristics that have been
developed to efficiently obtain good solutions for the m-TSP problem, without
providing guaranties about the optimality of the solution. We recommend a
survey by Bektas [13] for an overview of these techniques.

2.2 The Constraints Circuit and Cycles

Laurière [14] introduces the Circuit([X1, . . . , Xn]) constraint. This constraint
is satisfied if the directed graph composed of the vertices V = {1, . . . , n} and
the arcs E = {(i,Xi) | i ∈ V } contains exactly one cycle. The variable Xi is the
node that follows i on the cycle. This constraint models the Hamiltonian cycle
problem. Let G = 〈V,E〉 be an undirected graph. For every node i, one defines
a variable Xi with a domain containing the nodes adjacent to i. The constraint
Circuit([X1, . . . , Xn]) is satisfiable if and only if G contains a cycle visiting each
node exactly once, i.e. a Hamiltonian cycle. Therefore, it is NP-Hard to perform a

The WeightedCircuitsLmax Constraint 497

complete filtering on this constraint. However, many algorithms [15–17] perform
a partial filtering in polynomial time.

Beldiceanu and Contejean [18] generalize the Circuit constraint into the
Cycles([N1, . . . , Nn],m) constraint to impose exactly m cycles rather than
one. The cycles must be disjoint, the salesmen do not leave from the same
depot. They generalize Cycles further by proposing Cycles([X1, . . . , Xn],
m, [W1, . . . , Wn],min,max) where Wi is a weight assigned to node i, not to an
edge. The variables min and max are weights of the smallest and largest cycles.
Further generalization can force nodes to belong to different cycles and control
the length of individual cycles. These constraints are primilarly introduced as
powerful modelling tools.

Benchimol et al. [19] present several filtering algorithms for the
WeightedCircuit([X1, . . . , Xn], d, L) constraint. Focacci et al. [20,21] also
study this constraint that is satisfied when the constraint Circuit([X1, . . . , Xn])
is satisfied and when the total weight of the selected edges is no more than L,
i.e.

∑n
i=1 w(Xi, i) ≤ L. They use different relaxations and reduced-cost based

filtering algorithms to filter the constraint, including the 1-tree relaxation that
we describe in Sect. 2.6.

Without introducing a new constraint, Pesant et al. [22] show how to combine
constraint programming and heuristics to solve the travelling salesman problem
with and without time windows.

2.3 Disjoints Sets

The algorithms presented in the next sections use the disjoint sets data structure.
This data structure maintains a partition of the set {0, . . . , n−1} such that each
subset is labelled with one of its elements called the representative. The function
Find(i) returns the representative of the subset that contains i. The function
Union(i, j) unites the subsets whose representatives are i and j and returns the
representative of the united subset. Find(i) runs in Θ(α(n)) amortized time,
where α(n) is Ackermann’s inverse function. Union(i, j) executes in constant
time [23].

2.4 Minimum Spanning Tree

A weighted tree T = (V,E,w) is an undirected connected acyclic graph. Each
pair of vertices is connected by exactly one path. The weight of a tree w(T) =∑

e∈E w(e) is the sum of the weight of its edges. A spanning tree of a graph
G = 〈V,G〉 is a subset of edges from E that forms a tree covering all vertices
in V . A minimum spanning tree T (G) is a spanning tree of G whose weight
w(T (G)) is minimal [24].

Kruskal’s algorithm [25] finds such a tree in Θ(|E| log |V |) time. It starts with
an empty set of edges S. The algorithm goes through all edges in non-decreasing
order. An edge is added to S if it does not create a cycle among the selected
edges in S. The disjoint sets are used to verify this condition. The algorithm
maintains an invariant where the nodes of each tree form disjoint sets. The

498 K. Rioux-Paradis and C.-G. Quimper

nodes that belong to the same sets are connected by a path of edges selected
by Kruskal’s algorithm. To test whether the addition of an edge (i, j) creates
a cycle, the algorithm checks whether the nodes i and j belong to the same
disjoint set. If not, the edge is selected and the disjoint sets that contain i and
j are united.

Let T (G) be the minimum spanning tree of the graph G = 〈V,E〉. Let Te(G)
be the minimum spanning tree of G for which the presence of the edge e is
imposed. The reduced cost of the edge e, denoted w̃(e), is the cost of using e
in the spanning tree: w̃(e) = w(Te(G)) − w(T (G)). The reduced cost w̃(e) of
an edge e = (i, j) ∈ E can be computed by finding the edge s with the largest
weight lying on the unique path between nodes i and j in T (G). We obtain
w̃(e) = w(e) − w(s) [26].

A spanning forest of a graph G = 〈V,E〉 is a collection of trees whose edges
belong to E and whose nodes span V . The weight of a forest is the sum of the
weights of its trees. A minimum spanning forest of m trees is a spanning forest of
m trees whose weight is minimum. Kruskal’s algorithm can be adapted to find
a spanning forest. One simply needs to prematurely stop the algorithm after
finding m trees, i.e. after |V | − m unions.

2.5 Cartesian Tree

The Path Maximum Query problem is defined as follows: Given a weighted tree
T = (V,E,w) and two nodes u, v ∈ V , find the edge with the largest weight that
lies on the unique path connecting u to v in T . This problem can be solved with
a simple traversal of the tree in O(|E|) time. The offline version of the problem
is defined as follows. Given a weighted tree T = 〈V,E,w〉 and a set of queries
Q = {(u1, v1), . . . , (u|Q|, v|Q|)}, find for each query (ui, vi) ∈ Q the edge with
the largest weight that lies on the unique path connecting ui to vi in T . This
problem can be solved in O(|E|+ |Q|) time using a Cartesian tree as we explain
below.

A Cartesian tree TC of a tree T = 〈V,E,w〉 is a rooted binary, and possi-
bly unbalanced, tree with |V | leaves and |E| inner nodes. It can be recursively
constructed following Demaine et al. [27]. The Cartesian tree of a tree contain-
ing a single node and no edge (|V | = 1 and |E| = 0) is a node correspond-
ing to the unique node in V . If the tree T has more than one node, the root
of its Cartesian tree corresponds to the edge with the largest weight denoted
emax = argmaxe∈E w(e). The left and right children correspond to the Carte-
sian trees of each of the two trees in E \ {emax}. Finding the largest edge on a
path between ui and vi in T is equivalent to finding the lowest common ances-
tor of u and v in the Cartesian tree TC . The Cartesian tree can be created in
O(|V |) time after sorting the edges in preprocessing [27]. Tarjan’s off-line lowest
common ancestor algorithm [23] takes as input the Cartesian tree TC and the
queries Q and returns the lowest common ancestor of each query in Q, i.e. the
edge with largest weight lying on the path from ui to vi in T for each i. When
implemented with the disjoint set data structure by Gabow and Tarjan [28], the
algorithm has a complexity of O(|V | + |Q|).

The WeightedCircuitsLmax Constraint 499

2.6 1-Tree Relaxation

Held and Karp [2] introduce the 1-tree relaxation to solve the travelling sales-
man problem that Benchimol et al. [19] use to filter the WeightedCircuit con-
straint. The relaxation partitions the edges E into two disjoint subsets: the subset
of edges connected to the depot D, denoted ED = {(i, j) ∈ E | i = D ∨ j = D},
and the other edges denoted EO = E \ED. A solution to the travelling salesman
problem is a cycle and therefore has two edges in ED and the remaining edges in
EO form a simple path. In order to obtain a lower bound on the weight of this
cycle, Held and Karp [2] select the two edges in ED that have the smallest weights
and compute the minimum spanning tree of the graph G′ = 〈V \ {D}, EO〉. The
weight of the two selected edges in ED plus the weight of the minimum spanning
tree gives a lower bound on the distance travelled by the salesman. This relax-
ation is valid since a simple path is a tree and therefore, the minimum spanning
tree’s weight is no more than the simple path’s weight.

3 Introducing WeightedCircuitsLmax

We introduce the constraint WeightedCircuitsLmax that encodes the m cir-
cuits of the salesman that start from the depot D, visit all cities once, and return
to the depot. All circuits have a length bounded by Lmax.

WeightedCircuitsLmax([S0, . . . , Sm−1],
[N0, . . . , Nn−2], d[0, . . . , n − 1][0, . . . , n − 1], Lmax)

(1)

The variable Sk is the first city visited by the salesman k. The variable Ni

is the next city visited after city i. The symmetric matrix parameter d provides
the distances between all pairs of cities. The variable Lmax is an upper bound on
the lengths of all circuits. The constraint WeightedCircuitsLmax is designed
to be compatible with the Circuit constraint in order to take advantage of
its filtering algorithms. For that reason, the value associated to the depot is
duplicated m times. Each salesman returns to a different copy of the depot. The
integers from 0 to n − 2 represent the n − 1 cities and the integers from n − 1 to
n+m−2 represent the depot. If Ni ≤ n−2, the salesman visit city Ni after city i.
If n−1 ≤ Ni, the salesman returns to the depot after visiting city i. Consequently,
we have dom(Sk) ⊆ {0, . . . , n − 2} and dom(Ni) ⊆ {0, . . . , n + m − 2}.

While using the constraint WeightedCircuitsLmaxone can post the con-
straint Circuit([N0, . . . , Nn−2, S0, . . . , Sm−1]) to complement the filtering of the
WeightedCircuitsLmax constraint. The filtering algorithms we present in
Sects. 4 and 5 for the WeightedCircuitsLmax constraint are based on the
cost Lmax. On the other hand, the filtering algorithms of Circuit constraints
are based on the structure of the graph. The filtering algorithms are complemen-
tary.

Circuit is a special case of WeightedCircuitsLmax where m = 1 and
Lmax = ∞. Enforcing domain consistency on circuit is NP-Hard [14]. Therefore,
enforcing domain consistency on WeightedCircuitsLmax is NP-Hard.

500 K. Rioux-Paradis and C.-G. Quimper

4 1-Forest Relaxation

We now describe a relaxation of the WeightedCircuitsLmax constraint. We
introduce two relaxations to the WeightedCircuitsLmax constraint. These
relaxations are used to compute a bound on the length of the longest cycle
and to filter the starting variables Si and the next variables Ni. As seen in the
previous section, it is possible to use the WeightedCircuitsLmax constraint
in conjunction with the Circuit constraint. The filtering algorithm that we
present is added to the filtering that is already done by the Circuit constraint.

4.1 Relaxation

The domains of the variables Si and Ni encode the following graph that we
denote G. Let the vertices be V = {0, . . . , n−1} where the depot is the node D =
n− 1. Let the edges E = ED ∪EO be partitioned into two sets. The set of edges
adjacent to the depot ED = {(D, i) | max(dom(Ni)) ≥ n − 1} ∪ ⋃m−1

k=0 dom(Sk)
and the edges that are not adjacent to the depot EO = {(i, j) | i < j ∧ (i ∈
dom(Nj)∨j ∈ dom(Ni))}. The weight of an edge is given by the distance matrix
w(i, j) = d[i][j].

We generalize the 1-tree relaxation to handle multiple cycles passing by a
unique depot D. We call this generalization the 1-forest. Rather than choosing
2 edges in ED, we choose the m shortest edges a0, . . . , am−1 ∈ ED. We do
not choose the 2m shortest edges because there could be a salesman that goes
back and forth to a node v using twice the edge ev,D. Choosing 2m different
edges is therefore not a valid lower bound. Rather than computing the minimum
spanning tree with the edges in EO, we compute the minimum spanning forest
of m trees T0, . . . , Tm−1 using the edges in EO. Then, Lmax has to be greater
than or equal to the average cost of the trees. The lower bound on Lmax is given
by c([a0, . . . , am−1], [T0, . . . , Tm−1]).

c([a0, . . . , am−1], [T0, . . . , Tm−1]) =
1
m

(

2
m−1∑

i=0

w(ai) +
m−1∑

i=0

w(Ti)

)

(2)

We show the validity of this relaxation.

Theorem 1. c([a0, . . . , am−1], [T0, . . . , Tm−1]) is a lower bound on Lmax for the
constraint WeightedCircuitsLmax([S0, . . . , Sm−1], [N1, . . . , Nn−1], d[0, . . . ,
n − 1][0, . . . , n − 1], Lmax).

Proof. Consider a solution to the constraint where the length of the longest
circuit is minimized. Let ES

D ⊆ ED be the edges of the circuits connected to the
depot and let ES

O ⊆ EO be the other edges.
There are 2 edges by circuit going or returning to the depot (with the possi-

bility of duplicates for salesmen visiting a single city). Therefore, there are 2m
edges in ES

D, counting duplicates. A lower bound for the cost of the edges in ES
D

is twice the cost of the m shortest edges in ED.

The WeightedCircuitsLmax Constraint 501

The edges in ES
O form a forest of m trees. Hence, a lower bound of the cost

of the edges in ES
O is the cost of a minimum forest of m trees Ti.

c([a0, . . . , am−1], [T0, . . . , Tm−1]) =
1
m

(

2
m−1∑

i=0

w(ai) +
m−1∑

i=0

w(Ti)

)

≤ 1
m

⎛

⎝
∑

eD,i∈ES
D

w(eD,i) +
∑

ei,j∈ES
O

w(ei,j)

⎞

⎠

Since the average cost per salesman is smaller than or equal to the maximum
cost, we obtain: c([a0, . . . , am−1], [T0, . . . , Tm−1]) ≤ Lmax. �

The algorithm to compute c([a0, . . . , am−1], [T0, . . . , Tm−1]) works as follows.
First, we pick the m smallest edges in ED. Then, we compute a forest of m trees
with Kruskal’s algorithm in O(|E| log |V |) time.

4.2 Filtering the Edges in ED

We want to filter the edges e = (D, i) in ED that are not selected by the relax-
ation. We want to know whether c([a0, . . . , am−2, e], [T0, . . . , Tm−1]) is greater
than Lmax. If it is the case, then e cannot be in the solution because the cost of
using this edge is too large. The filtering rule (3) removes i+m from the domain
of all starting time variable Sk and removes all values associated to the depot
from the domain of Ni.

c([a0, . . . , am−1,],[T0, . . . , Tm−1]) +
1
m
(w(e) − w(am−1)) > max(dom(Lmax))

=⇒ Sk �= i ∧ Ni < n − 1 ∀ k ∈ {0, . . . , m − 1}
(3)

4.3 Filtering the Edges in EO

We want to decide whether there exists a support for the edge e = (i, j) in EO.
In other words, we want to find a forest of m trees T ′

0, . . . , T
′
m−1 that contains e

such that c([a0, . . . , am−1,], [T ′
0, . . . , T

′
m−1]) is no greater than max(dom(Lmax)).

If e belongs to the trees T0, . . . , Tm−1 computed in Sect. 4.1, e has as support
and should not be filtered. Otherwise, there are two possible scenarios: the nodes
i and j belong to the same tree in T0, . . . , Tm−1 or they do not.

Same Tree Tβ. Given the edge e = (i, j), if nodes i and j belong to a tree Tβ ,
the cost of adding the edge e is equal to its reduced cost w̃(e) (see Sect. 2.4),
i.e. the weight w(e) minus the largest weight of an edge lying on the unique
path in Tβ between i and j. If c([a0, . . . , am−1,], [T0, . . . , Tm−1])+ w̃(e) is greater
than max(dom(Lmax)), then edge e must be filtered out from the graph, i.e. i is
removed from the domain of Nj and j is removed from the domain of Ni.

To efficiently compute the reduced costs, we construct a Cartesian tree (see
Sect. 2.5) for each tree in T0, . . . , Tm−1 in O(|V |) time. For each edge e = (i, j)

502 K. Rioux-Paradis and C.-G. Quimper

such that i and j belong to the same tree, we create a query to find the edge with
the largest weight between i and j in the tree. Tarjan’s off-line lowest common
ancestor algorithm [23] answers, in batches, all queries in time O(|V |+Q) where
Q is the number of queries. For each edge, we compute the reduced cost and
check whether filtering is needed.

Different Trees Tε, Tδ. If the nodes i and j of the edge e = (i, j) do not belong
to the same tree, adding the edge e to the trees T0, . . . , Tm−1 connects two trees
together. In order, to maintain the number of trees to m, one needs to remove an
edge from any tree. To minimize the weight of the trees, the edge e′ we remove
must be the one with the largest weight, i.e. the last edge selected by Kruskal’s
algorithm. We obtain the reduced cost w̃(e) = w(e) − w(e′). Using this reduced
cost, we filter the variables Ni as we did when the nodes i and j belong to the
same tree.

5 Clusters Relaxation

The 1-forest relaxation is fast to compute, but its bound is not always tight.
Counting twice the m shortest edges is less effective than counting the 2m edges
that could be in the circuits. Moreover, for m = 2 salesmen, if the solution has
a long and a short circuit, the bound lies between the length of both circuits.
In that case, the lower bound for the longest circuit is not tight. We refine the
1-forest relaxation to better capture the structure of the graph and to obtain a
tight bound on the longest cycle when all variables are assigned.

5.1 Relaxation

We consider the m trees {T0, . . . , Tm−1} as computed in the 1-forest relaxation.
Let C1, . . . , Cr be a partition of the trees into clusters such that the trees that
belong to the same cluster are connected with each other with edges in EO and
are not connected to the trees from the other clusters. Figure 1 shows an example
of three trees partitioned into two clusters. Note that the number of clusters r is
between 1 and m. In a solution, cities visited by a salesman necessarily belong
to the same cluster. We compute a lower bound on Lmax for each cluster and
keep the tightest bound.

We choose two edges eCα
1 and eCα

2 in ED for each cluster Cα. If the cluster
contains a single node v, we choose twice the edge ev,D, i.e. eCα

1 = eCα
2 = ev,D. If

the cluster contains more than one node, we choose the two shortest edges that
connect the depot to a node in the cluster. The weight of a cluster Cα, denoted
w(Cα), is the weight of the two chosen edges eCα

1 and eCα
2 and the weight of the

trees in the cluster.

w(Cα) =
∑

Tβ∈Cα

w(Tβ) + w(eCα
1) + w(eCα

2)

The WeightedCircuitsLmax Constraint 503

D

1

2

3

4

5 6

7

8

Fig. 1. Three trees grouped into two clusters. Edges that belong to a tree are in bold.

The nodes that belong to a cluster can be visited by a maximum of λ = m−r+1
salesmen. In such a case, the average length of a circuit is given by the weight
of the cluster divided by λ and it constitutes a valid lower bound of Lmax.

μ({C1, . . . , Cr}) = 1
λ
max
Cα

w(Cα) (4)

Theorem 2. μ({C1, . . . , Cr}) is a lower bound for Lmax.

Proof. Consider a solution to the constraint where the length of the longest
circuit is minimized. Let ES

D ⊆ ED be the edges of the circuits connected to the
depot and let ES

O ⊆ EO be the other edges.

μ({C1, . . . , Cr}) = 1
λ
max
Cα

⎛

⎝
∑

Tβ∈Cα

w(Tβ) + w(eCα
1) + w(eCα

2)

⎞

⎠ (5)

≤ max
Cα

1
λ

⎛

⎜
⎜
⎝

∑

ei,j∈ES
O

i∈Cα

w(ei,j) +
∑

ei,D∈ES
D

i∈Cα

w(ei,D)

⎞

⎟
⎟
⎠ (6)

Let c denote the longest circuit. Since the longest circuit is longer than or equal
to the average length circuit, we obtain:

≤
∑

ei,j∈ES
O

i∈c

w(ei,j) +
∑

ei,D∈ES
D

i∈c

w(ei,D) (7)

≤ Lmax (8)

�
To compute the lower bound μ({C1, . . . , Cr}), we need to compute the clus-

ters and select edges from EO. To do so, we adapt Kruskal’s algorithm as shown

504 K. Rioux-Paradis and C.-G. Quimper

Algorithm 1. ComputeClusters(G,m)
Data: G = (V,E), m, the number of salesmen
Result: num_nodes_Eo, the number of nodes by clusters, max_edge_Eo, the

longest edge of each cluster, weight_Eothe weight of each cluster
begin

trees ← DisjointsSets(|V |)
clusters ← DisjointsSets(|V |)
num_clusters ← |V |
for i = 0..|V | − 1 do

weight_Eo[i] ← 0
max_edge_Eo[i] ← 0
num_nodes_Eo[i] ← 1

for e = (i, j) ∈ E in non-decreasing order of weight do
vi ← clusters.Find(i)
vj ← clusters.Find(j)
if vi �= vj then

if num_clusters < |V | − m then
vf ← trees.Union(vi, vj)

vf ← clusters.Union(v1, v2)
num_clusters ← num_clusters − 1

1 weight_Eo[vf] ← weight_Eo[v1] + weight_Eo[v2]
2 max_edge_Eo[vf] ← w(e)

num_nodes_Eo[vf] ← num_nodes_Eo[v1] + num_nodes_Eo[v2]

return weight_Eo,max_edge_Eo, num_nodes_Eo

in Algorithm1. Kruskal already uses a disjoint set data structure where the
nodes of a tree are grouped into a set. We add another disjoint set data struc-
ture where the nodes of a cluster are grouped in a set. We process the edges in
non-decreasing order of weight. When processing the edge (i, j), if i and j belong
to two distinct clusters, we unite these clusters to form only one. The algorithm
also merges the tree that contains i with the tree that contains j, but only if
there are more than |V |−m trees in the current forest. While we create each set,
we keep three vectors that keep track of: the longest edge of each cluster, the
weight of each cluster, and the number of nodes in each cluster. As for Kruskal’s
algorithm, the running time complexity is dominated by sorting the edges by
weight which is done in O(|E| log |V |).

Using the clusters computed by Algorithm 1, Algorithm2 selects the edges
from ED by processing the edges in non-decreasing order of weight. When pro-
cessing the edge (i,D), the algorithm finds the cluster that contains the node i.
It selects the edge (i,D) only if fewer than two edges were selected for the cluster
that contains i. Lines 1 and 2 update the sum of the weights of the selected edges
for that cluster and the largest edge selected for the cluster. This information
will be used later in the filtering algorithm. The second for loop checks whether
there are clusters linked to the depot with a single edge. If it is the case and

The WeightedCircuitsLmax Constraint 505

Algorithm 2. ComputeEdgesFromED(ED,num_nodes_Eo)
Data: ED, num_nodes_Eo
Result: max_weight_Ed, weight_Ed, num_edges_Ed
for i = 1..n − 1 do

max_weight_Ed[i] ← 0
weight_Ed[i] ← 0
num_edges_Ed[i] ← 0

for (i,D) ∈ ED in non-decreasing order of weight do
vi ← clusters.Find(i)
if num_edges_Ed[vi] < 2 then

weight_Ed[vi] ← weight_Ed[vi] + w(e)
num_edges_Ed[vi] ← num_edges_Ed[vi] + 1
max_weight_Ed[vi] ← w(e)

for i = 0..n − 1 do
rep ←clusters.Find(i)
if rep = i then

if num_edges_Ed[i] = 1 ∧ num_nodes_Eo[i] > 1 then
weight_Ed[i] ← 2 × weight_Ed[i]

else if num_edges_Ed[i] < 2 then Fail
return max_weight_Ed, weight_Ed

the cluster contains only one node, we make that edge count for double. If the
cluster has more than one node, the constraint is unsatisfiable.

To compute a lower bound on Lmax, we go through each cluster C. In (4), the
summation is given by the entry of the vector weight_Eo corresponding to the
cluster Cα as computed by Algorithm1. The weight of the edges w(eCα

1)+w(eCα
2)

is given by the entry in the vector weight_Ed corresponding to the cluster Cα.
Overall, the cluster relaxation complements the 1-forest relaxation as follows.

At the top of the search tree, when variable domains contain many values, this
cluster relaxation is not as tight as the 1-forest relaxation. There are very few
clusters and the cluster relaxation only selects two edges per cluster in the set
ED while the 1-forest relaxation selects m edges no matter how many clusters
there are. However, as the search progresses down the search tree, there are
fewer values in the domains and more clusters. Computing the maximum cycle
per cluster becomes more advantageous than computing the average tree of the
1-forest relaxation. The cluster relaxation provides an exact bound when all
variables are instantiated, which is not the case for the 1-forest relaxation.

5.2 Filtering the Edges in ED

We filter the edges in ED based on the cluster relaxation as follows. Let Cα(i)

be the cluster that contains the node i. For each edge e = (D, i) ∈ ED, we check
whether 1

λ

(
w(Cα) − e

Cα(i)
2 + w(e)

)
≤ Lmax. In other words, we check whether

506 K. Rioux-Paradis and C.-G. Quimper

substituting the edge e
Cα(i)
2 by e induces a cost that is still below the desired

threshold. If not, we remove i from the domain of Sk for all k ∈ {0, . . . , m − 1}
and we remove D from the domain of Ni.

5.3 Filtering the Edges in EO

As for the 1-forest relaxation, we filter edges in EO differently depending they
connect two nodes of the same tree or from different trees.

Same Tree: Consider an edge e = (i, j) such that i and j belong to the same
tree and the same cluster that we denote Cα(i). We compute the reduced cost
w̃(e), using a Cartesian tree, exactly as we do for the 1-forest relaxation in
Sect. 4.3. If the inequality w(Cα(i)) + w̃(e) ≤ max(dom(Lmax)) does not hold,
we remove i from the domain of Nj and remove j from the domain of Ni.

Different Trees: Consider an edge e = (i, j) such that i and j do not belong
to the same tree. However, by definition of a cluster, i and j belong to the same
cluster that we denote Cα(i). Let e′ be the edge with the largest weight in a tree
of the cluster Cα(i), i.e. the last edge selected by Algorithm 1. We can substitute
e′ by e without changing the number of trees. The reduced cost of edge e is
w̃(e) = w(e) − w(e′). If w(Cα(i)) + w̃(e) > max(dom(Lmax)), we remove i from
the domain of Nj and remove j from the domain of Ni.

6 Special Filtering Cases

There exist conditions when the filtering algorithm, whether it is based on the 1-
forest or the cluster relaxation, does not do any pruning. Some of these conditions
are easy to detect and can prevent useless executions of the filtering algorithms.

We consider two consecutive executions of the filtering algorithm. The second
execution is either triggered by the instantiation of a variable or by constraint
propagation. We check which values are removed from the domains between
both executions. The removal of these values can trigger further filtering in two
situations:

1. The upper bound of dom(Lmax) is filtered;
2. An edge selected by the 1-forest or the cluster relaxation is filtered;

In situation 1, the edges selected by the 1-forest and cluster relaxations
remain unchanged. However, it is possible that the reduced cost of some edges
are too large for the new bound on Lmax and that these edges need to be filtered.
In such a case, we do not need to recompute the relaxation nor the Cartesian
trees, but we need to check whether the reduced cost of each edge is too high.

In situation 2, the trees and the clusters must be recomputed and the filtering
algorithm needs to be executed entirely. If neither situation 1 nor 2 occurs, for
instance if only an edge in EO that does not belong to a tree is filtered, no
filtering needs to be done and the algorithm does not need to be executed.

The WeightedCircuitsLmax Constraint 507

Fig. 2. Model 1 for the m-TSP.

7 Experiments

We solve the m-TSP problem as defined in Sect. 2.1. We compare two differ-
ent models in our experimentation. The model 1 is presented in Fig. 2. The
variable Sv indicates the starting address for the salesman v. The variable Nv

indicates the address visited after address v. The integers between 0 and n − 2
represent the addresses while the integers from n − 1 to n + m − 2 represent
the arrival at the depot. The variable D[v] encodes the remaining distance
that a salesman needs to travel to reach the depot from address v. The con-
straint element connects the distance variables D[v] with the next variables
Nv. The model 2 is based on model 1 that we augment with the constraint
WeightedCircuitsLmax(S0, . . . , Sm−1, N1, . . . , Nn, d′, Lmax). In the model,
we make sure that the distance matrix can report the distances with the dupli-
cates of the depot. We define the matrix d′[i][j] = d[min(i, n− 1)][min(j, n− 1)].

Both models use the circuit constraint to exploit the graph’s structure and
to achieve a strong strucural filtering. In addition, Model 2 uses the Weighted-
CircuitsLmax constraint to perform an optimality filtering that is based on the
bound of the objective function. Our experiments aim at showing the advantage
the new algorithms offer by performing optimality filtering.

We use instances from the m-TSP benchmark developed by Necula et al. [29].
We also generate instances of {10, 20, 50} addresses in Quebec City with uni-
formly distributed longitude in [−71.20, −71.51] and latitude in [46.74, 46.95]
with the shortest driving time as the distance between the addresses. Experi-
ments are run on a MacBook Pro with a 2.7GHz Intel Core i5 processor and
8Gb of memory with the solver Choco 4.0.6 compiled with Java 8. We select
the variable Ni and assign it to value j such that the distance d(i, j) is minimal.
However, other heuristics could have been used [30]. We report the best solution
found after a 10-min timeout.

508 K. Rioux-Paradis and C.-G. Quimper

7.1 Result and Discussion

The first experiment aims to determine which relaxation should be used: the
1-forest relaxation, the cluster relaxation, or both. We solved random instances
with 10 addresses with 1, 2, and 3 salesmen using model 2. Figure 3a shows that
the cluster relaxation is better than the 1-forest relaxation. However, all instances
except one were solved faster when combining both relaxations. For this reason,
for model 2, we combine both relaxations for the rest of the experiments.

0

50

100

150

200

250

0 100 200 300
One relaxation

Bo
th

 re
la

xa
tio

ns

Relaxation
1−Forest
Clusters

Salesmen
1
2
3

Time (s) to prove optimality (10 addresses)

4000

8000

12000

16000

6000 9000 12000 15000 18000
Model 1

M
od

el
 2

Salesmen
1
2
3
5
7

Lmax with 20 addresses

10000
15000
20000
25000
30000

20000 40000 60000
Model 1

M
od

el
 2

Salesmen
1
2
3
5
7

Lmax with 50 addresses

0
10
20
30
40
50

0 100 200 300 400 500
Model 1

M
od

el
 2

Salesmen
5
7

Addresses
20
50

Time (s) to find the best solution (20−50 addresses)

0

50

100

150

0 200 400 600
Model 1

M
od

el
 2 Salesmen

1
2
3

Time (s) to prove optimality (10 addresses)

0

40

80

120

0 200 400 600
Model 1

M
od

el
 2

Salesmen
1
2
3
5
7

Time (s) to find the best solution (10 addresses)

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Comparison of model 1 (without the WeightedCircuitsLmax) and model 2
(with WeightedCircuitsLmax) for instances with random addresses in Quebec City.

We compare model 1 against model 2. Figure 3b and c present the objective
function obtained by both models after 10min with instances of 20 and 50 ran-
dom addresses. Since we minimize, a point under the identity function indicates
that model 2 finds a better solution. No solutions were proved optimal. However,
we clearly see that model 2 finds better solutions and the gap increases as the
number of salesmen increase. As shown on Fig. 3d, for instances where solutions
of equivalent quality are returned by both models, model 2 finds the solution
faster in most of the cases.

The WeightedCircuitsLmax Constraint 509

Some instances with 10 addresses are solved to optimality. Figure 3e reports
the solving times for these instances and model 2 is clearly faster. For unsolved
instances, both models return the same solutions (without proving their opti-
mality). Figure 3f shows that model 2 returns the solution instantaneously.

Table 1 compares models 1 and 2 using a standard benchmark from [29].
Model 2 either finds a better solution or finds an equivalent solution faster for
all instances.

Table 1. Result for TSPLIB instances

Model 1 Model 2
Instances n m Lmax Time last

solution
Lmax Time last

solution

Eil51 51 1 2307 6.0 2307 1.5
51 2 1183 13.9 1183 1.4
51 3 1906 0.5 1183 0.1
51 5 638 0.1 631 211.2
51 7 486 591.2 457 130

Berlin52 52 1 41534 3.1 41276 175.3
52 2 32316 599.6 20979 164.4
52 3 14629 599.3 14457 40.6
52 5 14543 599.4 13986 42.5
52 7 9668 347.4 9668 0.5

Eil76 76 1 3459 497.1 3458 307.0
76 2 3284 1.8 3278 466.7
76 3 2989 561.4 2988 375.2
76 5 847 585.7 730 578.9
76 7 651 34.9 651 0.3

Rat99 99 1 12093 68.8 12084 213.9
99 2 11946 69.1 11937 343.4
99 3 11881 78.2 11872 298.6
99 5 11863 64.9 11854 372.9
99 7 11813 108.4 11804 325.9

8 Conclusion

We presented a constraint that models the m-travelling salesmen problem. We
proposed two complementary filtering algorithms based on two relaxations.
Experiments show that these filtering algorithms improve the solving times and
the quality of the solutions. In future work, inspired from [19], we would like to
use additive bounding to reinforce the relaxations. We also want to consider the
number of salesman m as a variable instead of a parameter.

510 K. Rioux-Paradis and C.-G. Quimper

References

1. Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog, 2nd edn (revi-
sion a). Technical report 03, SICS (2012)

2. Held, M., Karp, R.: The traveling-salesman problem and minimum spanning trees.
Oper. Res. 18(6), 1138–1162 (1970)

3. Laporte, G., Nobert, Y.: A cutting planes algorithm for the m-salesmen problem.
J. Oper. Res. Soc. 31, 1017–1023 (1980)

4. França, P.M., Gendreau, M., Laportt, G., Müller, F.M.: The m-traveling salesman
problem with minmax objective. Transp. Sci. 29(3), 267–275 (1995)

5. Necula, R., Breaban, M., Raschip, M.: Tackling the bi-criteria facet of multiple
traveling salesman problem with ant colony systems. In: 2015 IEEE 27th Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), pp. 873–880. IEEE
(2015)

6. Narasimha, K.V., Kivelevitch, E., Sharma, B., Kumar, M.: An ant colony optimiza-
tion technique for solving min–max multi-depot vehicle routing problem. Swarm
Evol. Comput. 13, 63–73 (2013)

7. Somhom, S., Modares, A., Enkawa, T.: Competition-based neural network for the
multiple travelling salesmen problem with minmax objective. Comput. Oper. Res.
26(4), 395–407 (1999)

8. Ali, A.I., Kennington, J.L.: The asymmetricm-travelling salesmen problem: a dual-
ity based branch-and-bound algorithm. Discret. Appl. Math. 13(2–3), 259–276
(1986)

9. Gromicho, J., Paixão, J., Bronco, I.: Exact solution of multiple traveling salesman
problems. In: Akgül, M., Hamacher, H.W., Tüfekçi, S. (eds.) Combinatorial Opti-
mization, pp. 291–292. Springer, Heidelberg (1992). https://doi.org/10.1007/978-
3-642-77489-8_27

10. Kara, I., Bektas, T.: Integer linear programming formulations of multiple salesman
problems and its variations. Eur. J. Oper. Res. 174(3), 1449–1458 (2006)

11. Rao, M.R.: A note on the multiple traveling salesmen problem. Oper. Res. 28(3-
part-i), 628–632 (1980)

12. Jonker, R., Volgenant, T.: An improved transformation of the symmetric multiple
traveling salesman problem. Oper. Res. 36(1), 163–167 (1988)

13. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

14. Lauriere, J.L.: A language and a program for stating and solving combinatorial
problems. Artif. Intell. 10(1), 29–127 (1978)

15. Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: Proceedings of
the 14th International Conference on Logic Programming (ICLP 1997), pp. 316–
330 (1997)

16. Kaya, L.G., Hooker, J.N.: A filter for the circuit constraint. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 706–710. Springer, Heidelberg (2006). https://doi.
org/10.1007/11889205_55

17. Fages, J., Lorca, X.: Improving the asymmetric TSP by considering graph struc-
ture. Technical report 1206.3437, arxiv (2012)

18. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Com-
put. Modell. 20(12), 97–123 (1994)

19. Benchimol, P., Hoeve, W.J.V., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved
filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

https://doi.org/10.1007/978-3-642-77489-8_27
https://doi.org/10.1007/978-3-642-77489-8_27
https://doi.org/10.1007/11889205_55
https://doi.org/10.1007/11889205_55

The WeightedCircuitsLmax Constraint 511

20. Focacci, F., Lodi, A., Milano, M.: Embedding relaxations in global constraints for
solving TSP and TSPTW. Ann. Math. Artif. Intell. 34(4), 291–311 (2002)

21. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW.
INFORMS J. Comput. 14(4), 403–417 (2002)

22. Pesant, G., Gendreaul, M., Rousseau, J.-M.: GENIUS-CP: a generic single-vehicle
routing algorithm. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 420–434.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0017457

23. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM (JACM)
26(4), 690–715 (1979)

24. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.
Ann. Hist. Comput. 7(1), 43–57 (1985)

25. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

26. Chin, F., Houck, D.: Algorithms for updating minimal spanning trees. J. Comput.
Syst. Sci. 16(3), 333–344 (1978)

27. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range min-
imum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 341–353. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02927-1_29

28. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. In: Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, pp. 246–251 (1983)

29. Necula, R., Breaban, M., Raschip, M.: Performance evaluation of ant colony sys-
tems for the single-depot multiple traveling salesman problem. In: Onieva, E., San-
tos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI),
vol. 9121, pp. 257–268. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19644-2_22

30. Fages, J.G., Prud’Homme, C.: Making the first solution good! In: ICTAI 2017 29th
IEEE International Conference on Tools with Artificial Intelligence (2017)

https://doi.org/10.1007/BFb0017457
https://doi.org/10.1007/978-3-642-02927-1_29
https://doi.org/10.1007/978-3-319-19644-2_22
https://doi.org/10.1007/978-3-319-19644-2_22

A Local Search Framework for Compiling
Relaxed Decision Diagrams

Michael Römer1,2,3(B), Andre A. Cire2, and Louis-Martin Rousseau3

1 Institute of Information Systems and OR,
Martin Luther University Halle-Wittenberg, Halle, Germany

michael.roemer@wiwi.uni-halle.de
2 Department of Management, University of Toronto Scarborough, Toronto, Canada

acire@utsc.utoronto.ca
3 CIRRELT, École Polytechnique de Montréal, Montreal, Canada

louis-martin-rousseau@polymtl.ca

Abstract. This paper presents a local search framework for construct-
ing and improving relaxed decision diagrams (DDs). The framework con-
sists of a set of elementary DD manipulation operations including a redi-
rect operation introduced in this paper and a general algorithmic scheme.
We show that the framework can be used to reproduce several standard
DD compilation schemes and to create new compilation and improvement
strategies. In computational experiments for the 0–1 knapsack problem,
the multidimensional knapsack problem and the set covering problem we
compare different compilation methods. It turns out that a new strategy
based on the local search framework consistently yields better bounds,
in many cases far better bounds, for limited-width DDs than previously
published heuristic strategies.

1 Introduction

Relaxed decision diagrams are pivotal components in the use of decision diagrams
for optimization [6]. In particular, they provide an adjustable approximation of
the solution space of a discrete optimization problem, supplying optimization
bounds for combinatorial problems [4,5,8] as well as serving as a constraint store
in constraint programming approaches [2,9]. The strength of these bounds, and
the speed at which they can be generated, are critical for the success of this area.

Previous methods for compiling relaxed decision diagrams, such as incre-
mental refinement [9] and top-down-merging [8], can be viewed as construction
heuristics that stop when a given limit on the size of the diagram is reached.
Typically these approaches emphasize the quality of the resulting optimization
bound by either (i) determining a good variable ordering [4]; (ii) by heuristically
selecting nodes to split [9]; or (iii) by heuristically selecting nodes to merge [8].
Recently, however, Bergman and Cire [7] proposed to consider the problem of
compiling a relaxed decision diagram as an optimization problem, specifically
by considering a mixed-integer linear programming formulation. While this app-
roach may be useful for benchmarking heuristic compilation methods, its com-
putational costs are too high for any practical application.
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 512–520, 2018.
https://doi.org/10.1007/978-3-319-93031-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_36&domain=pdf

A Local Search Framework for Compiling Relaxed Decision Diagrams 513

Contributions. We present a local search framework that serves as a general
scheme for the design of relaxed decision diagram compilation strategies. In par-
ticular, we focus on obtaining strong bounds within an acceptable computation
time. As in local search methods for combinatorial optimization (see, e.g., [1]),
the key ingredients of the framework are a set of “local” operations for obtain-
ing new diagrams from modifications of other diagrams (similar to the concept
of neighborhood), as well as strategies for guiding the local search. We identify
three elementary local operations, from which two (node splitting and merging)
have been used in previous works, and one (arc redirection) is introduced in
this paper. We demonstrate that several published compilation methods can be
cast in our local search framework, and demonstrate how it allows the design of
new compilation strategies for relaxed diagrams. In this context, we propose a
novel compilation strategy and provide a set of computational experiments with
instances of the 0–1 knapsack problem, the multidimensional knapsack problem,
and the set covering problem. The new compilation strategy can lead to consid-
erably stronger relaxations than those obtained with standard techniques in the
literature, often with faster computational times.

The remainder of the paper is organized as follows. In Sect. 2 we introduce
decision diagrams and the notation used in this paper. Section 3 describes a set
of local operations, and Sect. 4 presents the generic algorithmic scheme along
with a new compilation strategy. Section 5 discusses a preliminary experimental
evaluation, and a conclusion is provided in Sect. 6.

2 Preliminaries

A decision diagram (DD) M = (N ,A) is a layered acyclic arc-weighted digraph
with node set N and arc set A. The paths in M encode solutions to a dis-
crete optimization problem associated with a maximization objective and an n-
dimensional vector of decision variables x1, . . . , xn ∈ Z. To this end, the node set
N is partitioned into n+1 layers L1, . . . , Ln+1, where L1 = {r} and Ln+1 = {t}
for a root node r and a terminal node t. Each node u ∈ N belongs to the layer
�(u) ∈ {1, . . . , n + 1}, i.e., Li = {u | �(u) = i}. An arc a = (us(a), ut(a)) has a
source us(a) and a target ut(a) with � (ut(a)) − � (us(a)) = 1, i.e., arcs connect
nodes in adjacent layers. Each arc a is associated with a value d(a) which repre-
sents the assignment xus(a) = d(a). Thus, an arc-specified path p = (a1, . . . , an)
starting from r and ending at t encodes the solution x(p) = (d(a1), . . . , d(an)).
Moreover, each arc a has length v(a);

∑n
i=1 v(ai) provides the length of path p.

A DD M is relaxed with respect to a discrete maximization problem if (i)
every feasible solution to the problem is associated with some path in M; and
(ii) the length of a path p is an upper bound to the objective function value of
x(p). The longest path in M therefore provides an upper bound to the optimal
solution value of the discrete optimization problem.

We consider the framework proposed by Bergman et al. [5] for manipulating
relaxed DDs. Namely, the discrete problem is formulated as a dynamic program,
where each node u ∈ N refers to a state s(u), an arc a represents a transition

514 M. Römer et al.

from a source state ss(a) := s(us(a)) to a target state st(a) := s(ut(a)) according
to the action d(a), and an arc length v(a) represents the transition reward of a. If
during construction the DD exceeds a maximum number of nodes per layer (i.e.,
its maximum width), nodes are merged and their states according to a problem-
specific merge operator ⊕. Such an operator must ensure that the resulting M
is a valid relaxation (we refer to examples of operators in [5]).

Example 1. The DDs in Fig. 1 are examples of relaxed DD for the knapsack
problem max{4x1 + 3x2 + 2x3 : 3x1 + 2x2 + 2x3 ≤ 5, x ∈ {0, 1}3}. The dashed
and solid arcs represent arc values 0 and 1, respectively. Arc lengths are depicted
by the number above the arcs; the dashed arcs always have the length 0. The
longest paths of the diagrams are represented by the quantity “LP” below each
figure. We also depict the state of each node within the circles, in this case the
current weight of the knapsack; the merge operator applied in the example is
the minimum operator.

Fig. 1. Example DDs for knapsack problem illustrating operation RedirectArc.

3 Local Operations on Decision Diagrams

The standard compilation procedures for relaxed decision diagrams can be alter-
natively viewed as a sequence of elementary local operations applied to a given
DD M. For the purposes of our framework, we define three of such operations
below. The first two can be found in the literature, while the third operation is
proposed in this paper.

SplitNode. The operation SplitNode is key in the incremental refinement algo-
rithm for compiling relaxed DDs proposed in [9]. Such an algorithm starts with a
trivial relaxed DD with one node per layer. It then splits nodes one by one so as
to improve the approximation, observing that the maximum width is satisfied.

Formally, the operation splits a node u ∈ N according to a given partition
{E1, . . . , Em} of the incoming arcs at u. First, m − 1 new nodes are created on

A Local Search Framework for Compiling Relaxed Decision Diagrams 515

layer �(u) of M. Then, the arcs in each of the sets E2 to Em are redirected to
one of the new nodes; the arcs in E1 remain pointing to u. Finally, the outgoing
arcs of node u are copied to the new nodes, that is, for each out-arc a of u, an
out-arc a′ is added to each new node u′ with ut(a′) = ut(a) and v(a′) = v(a).
This operation increases the width of a layer by m − 1.

MergeNodes. The operation MergeNodes is key to the top-down compilation
algorithm proposed in [8]. Such an algorithm constructs a DD M one layer at
a time, starting at L1 and expanding layer i before starting layer i + 1, for
i = 2, . . . , n. If layer i exceeds the maximum width, nodes are merged and their
states are replaced according to the operator ⊕ as described previously.

Formally, the operation merges a set of nodes U = {u1, . . . , um} on the same
layer l by first redirecting all incoming arcs from the nodes U \ u1 to node u1,
and by then deleting the nodes in U \ {u1} along with their outgoing arcs. The
operation MergeNodes reduces the width of a layer by m − 1.

RedirectArc. The operation RedirectArc changes the target ut(a) of a given
arc a to an existing node u on the same layer, that is, �(u) = �(ut(a)). The
number of nodes in a decision diagram remains unchanged.

Intuitively, redirecting an arc a may strengthen the information at its ini-
tial target node since it reduces the number of states that are relaxed in that
node. Nonetheless, it may further relax its new target since it adds an incoming
arc to u, thereby forcing an additional application of ⊕. In general, carefully
selecting the target node u for the redirection is crucial for the efficiency of this
operation. Given that u is selected from w nodes in the target layer, the com-
plexity of RedirectArc is O(w) ∗ CompStates where CompStates is a state
comparison operation.

Example 2. Figure 1 depicts an example of arc redirection and its impact on the
quality of the bound. In particular, the dashed arc on the right-most node of
layer L2 is redirected, which changes the state of the node and the underlying
cost of the longest path.

Some notes concerning the operations above are in order. Applying a local
manipulation to a DD induces changes to the states of the involved nodes, as
well as on the nodes of subsequent layers. On the one hand, the new target
states may become infeasible with respect to the underlying dynamic program,
in which case the corresponding arcs are removed from the DD (i.e., filtered).
On the other hand, the converse is also true: After a RedirectArc, arcs that
were filtered before may be added back due to the new state of the target node,
so as to ensure that the modified DD is still a relaxation. These updating oper-
ations may be computationally expensive, thereby implying a trade-off between
the frequency of the updates and the quality of the relaxation one obtains.

4 Generic Local Search Scheme

We propose a local search framework for constructing relaxed DDs which alter-
nates local operations with node state updates. Namely, any valid compilation

516 M. Römer et al.

method is defined as a strategy that combines the operations described in Sect. 3
in a systematic way. This is typically written as an iterative procedure that can
be repeated until a stopping criterion is reached. To provide concrete examples,
we now show how three DD compilation methods from the literature can be
reproduced within this perspective. In addition, we present a new compilation
strategy using the operation RedirectArc that may improve the bound of a
given DD without affecting its maximum width.

As a first example, the incremental refinement algorithm presented in [9] is
an iterative sequence of SplitNodes, where the incoming arcs of a node are
partitioned according to a state distance threshold that decreases in each main
iteration. A filtering procedure is called after each sequence of modifications.

As a second example, consider the top-down merging algorithm proposed in
[8]. The local search framework can be employed to reproduce its behavior as
follows. Starting with a trivial one-width relaxed DD, the algorithm proceeds one
layer at a time beginning at L1. The single node on each layer is first completely
split by consecutive applications of the operation SplitNode. If the resulting
number of nodes exceeds the maximum width, the operation MergeNodes is
applied by selecting nodes heuristically. Since this algorithm proceeds top-down,
no filtering is needed – a fact contributing to its time efficiency.

As a third example, the longest path trimming algorithm presented in [3] can
also be expressed in terms of the local search framework. The procedure starts
with a one-width DD. The SplitNode operation is then applied on the longest
path of the diagram in a top-down order. That is, the procedure partitions the
incoming arcs of each node into two sets: The first set contains the incoming arcs
that belongs to a longest path, and the second set contains all remaining arcs.
Finally, the algorithm removes the last arc on the (possibly infeasible) longest
path pointing to the terminal node; if otherwise the longest path is feasible, the
associated solution is optimal. No state updates are performed.

An important characteristic of all three algorithms above is that they are
constructive heuristics, i.e., they are performed until a certain limit on the DD
size is reached. In order to obtain an improvement heuristic, one needs to design
a local search strategy in which the size of the DD does not increase. Given
the local operations described above, we present a new compilation strategy in
Algorithm 1 that employs all three operations SplitNode, MergeNode, and
RedirectArc for this purpose.

Algorithm 1 first computes a set U of nodes on the longest path that may
be subject to a split operation. A node is u is a candidate for a split operation
if splitting results in at least one new node u′ for which s(u′) �= s(u). If the
longest path does not contain any such node, it defines an optimal solution to the
optimization problem. Otherwise, three steps are considered: The application of
local operations on the nodes on the longest path, the state updates, and the re-
computation of the longest path. In particular, the sequence of local operations
can be summarized in terms of the combined operations SplitAndRedirect

and MergeSplitAndRedirect, described below.

A Local Search Framework for Compiling Relaxed Decision Diagrams 517

Algorithm 1. Longest Path Splitting and Redirecting
Data: Decision Diagram M
Result: Manipulated Decision Diagram M

1 Compute the set U of nodes on the longest path to be split
2 while U is not empty and time limit not reached do
3 for u ∈ U ordered by layer do
4 if width(�(u)) < maximum width then
5 SplitAndRedirect(u, M)
6 else
7 MergeSplitAndRedirect(u, M)

8 Update M
9 Compute the set U of nodes on the longest path to be split

SplitAndRedirect. This combined operation first applies SplitNode to a given
node u. Namely, the incoming arcs of u are partitioned into two subsets: One
subset defined by the single arc that belongs to the longest path to u, and
another subset containing the remaining arcs. For each outgoing arc of the new
node u′ with the longest-path incoming arc, the operation RedirectArc is
executed. Different strategies for selecting the new target node of such arc can
be applied. For instance, we can consider all nodes for which the addition of the
new incoming arc does not modify the associated state. Alternatively, one could
also select a node that results in the smallest state change.

The rationale behind this redirection is that, after the split operation, the new
node u′ traversed by the longest path is likely to have a considerably different
state than the original node u. In such a case the target nodes of the outgoing
arcs of the original node u may not reflect the states resulting from applying
the transitions associated with the outgoing arcs of u′, and thus, it is effective
to find a target node that “better reflects” those target states.

MergeSplitAndRedirect. The operation MergeSplitAndRedirect is applied
when the limit on the width w in layer �(u) of a node u has already been reached.
In such a case, the procedure searches for a pair of nodes in layer �(u) which can
be merged without increasing the value of the longest path. If such a pair has
been found, these nodes are merged and the operation SplitAndRedirect is
applied to node u; otherwise neither the merge nor the split is performed.

Finally, we note that the strategies above can be changed in a straightforward
way to consider a maximum number of nodes in M instead of a maximum width
as a stopping criterion.

5 Experimental Results

In this section, we evaluate of our new local search strategy in instances of the 0–1
knapsack problem, multidimensional knapsack, and set covering. All experiments
were run on an Intel Core i5 with 12 GB RAM, single core, implemented in C++.

518 M. Römer et al.

For the 0–1 knapsack problem (KP), we apply it to the same 180 instances
used in [7], consisting of 15 and 20 items and varying ratios between the knap-
sack right-hand side and the sum of item weights. Figure 2 depicts the aver-
age percentage optimality gap (i.e., (upper bound - lower bound)/lower bound)
obtained with different DD construction approaches for a maximum width of 8.
The x-axis indicates the knapsack ratio parameter. We compared the IP-based
approach (IP) by [7], the proposed local search heuristic (LS), the top-down
merging (MinLP) from [8] based on longest paths, and the best bound from 50
random DD constructions (MinRANDOM). The figure suggests that LS yields
much stronger bounds than the standard approaches and, in almost all cases, it
even results in better bounds than the exact IP approach after 1,800 s. In about
50% of the instances for which the IP was solved to optimality, LS also found an
optimal solution. The local search takes less than half a second to be performed.

Fig. 2. Percentage gap × Scaled ratio (r × 10) for |I| = 15 (left) and |I| = 20 (right)
for a maximum width of 8

We now report results from additional experiments with KP, the multi-
dimensional knapsack problem (MKP), and the set covering problem (SCP). For
each problem class, the results depicted in Fig. 3 are averages over 15 instances
obtained as follows: For the KP, we generated 15 instances uniformly at random
with 1,000 items and with three different ratios (0.25, 0.5, 0.75). For the MKP,
we used 15 ORlib instances with 100 items, 5 dimensions and with three different
ratios (0.25, 0.5, 0.75). For the SCP, we generated 15 instances uniformly at ran-
dom with 2,000 variables, 150 constraints, and with three different bandwidths.
In the experiments, we compare four different compilation strategies using a time
limit of two minutes: The top-down merging (TD-M) from [8], a variant of the
longest-path-trimming strategy (LP-Trim) proposed in [3], and two variants of
the longest-path-splitting-and-redirecting strategy proposed in this paper: The
first variant (LP-SR) does not try to improve a DD having reached the maximum
width, while the second (LP-MSR) does.

The left-hand side of Fig. 3 shows the percentage optimality gap obtained
for different maximum DD widths. For both the KP and the MKP instances,
the figure suggests that the bound obtained with the new local search strategies
are far superior to the bounds obtained with the existing algorithms, while this
difference is much smaller for the SCP instances. The right-hand side shows
the development of the bounds over time. The plot illustrates that for the local

A Local Search Framework for Compiling Relaxed Decision Diagrams 519

search strategies, the rate of bound improvement decreases over time, but a
significant improvement can be obtained in a short amount of time. In addition,
the top-down merging (single blue dot) is fast compared to the strategies based
on the longest path, possibly since this strategy does not require any filtering or
state update mechanism.

Fig. 3. Bound vs width and time averaged over instance sets for three problem classes
(Color figure online)

6 Conclusions and Future Work

This paper presents the first generic framework for designing local search strate-
gies for compiling relaxed DDs. We describe a set of local operations that can
be performed within a DD, showing that several strategies from the literature
can be perceived as a combination of these different operations. We leverage this
new framework to present a new strategy based on an arc redirection operation,
also novel to the area. Computational results with three different problem classes
show that the new strategy often yields much superior bounds than previously
published strategies.

520 M. Römer et al.

This paper provides the basis for several future research opportunities. Since
relaxed DDs are an important component of several constraint programming and
optimization approaches, providing better bounds may make these approaches
more efficient. Furthermore, the new search strategy proposed in this paper is
relatively simple in terms of how the local operations are combined. More sophis-
ticated strategies, e.g., based on meta-heuristics such as variable neighborhood
search, are promising research directions.

References

1. Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization, 1st
edn. Wiley, New York (1997)

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74970-7 11

3. Bergman, D., Cire, A.A.: Theoretical insights and algorithmic tools for decision
diagram-based optimization. Constraints 21, 533–556 (2016)

4. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: Beldiceanu, N.,
Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8 3

5. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with
decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

6. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.: Decision Diagrams for Opti-
mization. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

7. Bergman, D., Cire, A.A.: On finding the optimal BDD relaxation. In: Salvagnin, D.,
Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 41–50. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59776-8 4

8. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21311-3 5

9. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation
of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85958-1 30

https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-540-74970-7_11
https://doi.org/10.1007/978-3-642-29828-8_3
https://doi.org/10.1007/978-3-319-42849-9
https://doi.org/10.1007/978-3-319-59776-8_4
https://doi.org/10.1007/978-3-642-21311-3_5
https://doi.org/10.1007/978-3-642-21311-3_5
https://doi.org/10.1007/978-3-540-85958-1_30
https://doi.org/10.1007/978-3-540-85958-1_30

Symmetry Breaking Inequalities
from the Schreier-Sims Table

Domenico Salvagnin(B)

Department of Information Engineering (DEI), University of Padova, Padua, Italy
domenico.salvagnin@unipd.it

Abstract. We propose a way to derive symmetry breaking inequalities
for a mixed-integer programming (MIP) model from the Schreier-Sims
table of its formulation group. We then show how to consider only the
action of the formulation group onto a subset of the variables. Computa-
tional results show that this can lead to considerable speedups on some
classes of models.

1 Motivation

An optimization problem is symmetric if its variables can be permuted without
changing the structure of the problem. Even for relatively small cases, symmetric
optimization problems can be difficult to solve to proven optimality by tradi-
tional enumerative algorithms, as many subproblems in the enumeration tree
are isomorphic, forcing a wasteful duplication of effort. Symmetry has long been
recognized as a challenge for exact methods in constraint and integer program-
ming, and many different methods have been proposed in the literature, see for
example the surveys in [6,14].

A common source of symmetry in a model is the underlying presence of
identical objects. Let’s consider a MIP model in which a subset of variables,
say x1, . . . , xk, corresponds to k identical objects, e.g., the k colors in a classical
graph coloring model [8]. A natural way to get rid of the symmetry implied by
those objects, which is well known and widely used by modelers, is to add to the
formulation the following chain of static symmetry breaking inequalities:

x1 ≥ x2 ≥ . . . ≥ xk (1)

The validity of (4) can be easily proved as follows. If the k objects are iden-
tical, then G acts on x1, . . . , xk as the full symmetric group Sk, and thus all
those variables are in the same orbit. As such, we can always permute the vari-
ables such that the first is not less than the others, which means adding the
inequalities x1 ≥ xi for all i > 1. This effectively singles out variable x1. Still,
what is left is the full symmetric group Sk−1 on the k − 1 variables x2, . . . , xk.
We can apply the very same reasoning and add the inequalities x2 ≥ xi for all
i > 2. Repeating the same argument till the bitter end we get that we added all
inequalities of the form xi ≥ xj for all i > j, which is equivalent to the chain
above after removing the redundant ones.
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 521–529, 2018.
https://doi.org/10.1007/978-3-319-93031-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_37&domain=pdf

522 D. Salvagnin

The effectiveness of such a simple symmetry handling technique can vary
significantly. In particular, it depends on the distribution of the feasible solutions
of the model: if many symmetric solutions lie on the hyperplanes xi = xi+1,
then the method is usually rather ineffective, and not competitive with other
more elaborate symmetry handling techniques, like isomorphism pruning [12,13]
and orbital branching [15]. On the other hand, if there are no solutions with
xi = xi+1, e.g. because the variables are linked by some all-different constraint,
then (4) is equivalent to a chain of strict inequalities, and all symmetry in the
model is effectively broken [17].

Example 1. Let’s consider a simple 2D packing model1, in which we have k
squares of size 10 × 10 and a container of size 10(k − 1) + 1 × 11. As no two
squares can fit vertically in the container, clearly only k − 1 squares can be put
into the container. A typical MIP model for this problem has a pair of continuous
variables (xi, yi) for each square, encoding the coordinates of, say, the lower-left
corner of the squares, plus Θ(k2) binary variables to encode the non-overlapping
constraints among squares. Now, because of the shape of the container, we can
assume that w.l.o.g. yi = 0 for all squares in any feasible solution, while clearly
xi �= xj for any two squares in any feasible solution. So adding the symmetry
breaking inequalities x1 ≥ x2 ≥ . . . ≥ xk effectively removes all the symmetries
from the formulation—and indeed works very well in practice with most solvers—
while adding the chain y1 ≥ y2 ≥ . . . ≥ yk is totally ineffective, and actually
harms the solution process as it still destroys the symmetry in the formulation,
preventing other symmetry handling methods to kick in. ��

The example above confirms that inequalities (4) might or might not be an
effective way to deal with symmetry in MIP. Still, there are cases in which they
outperform all other symmetry handling techniques, so the question is: can we
derive those static symmetry breaking inequalities from the model automati-
cally? The answer is positive, as it turns out that inequalities (4) are a special
case of a wider class of symmetry breaking inequalities that can be derived from
the so-called Schreier-Sims table [19], a basic tool in computational group theory.

The outline of the paper is as follows. In Sect. 2 we review the basic concepts
of group theory needed for our discussion, and define the Schreier-Sims represen-
tation of a group. In Sect. 3 we show how to use the Schreier-Sims table to derive
symmetry breaking inequalities, and present some extensions/improvements over
the basic method in Sect. 4. In Sect. 5 we outline an algorithm to actually com-
pute the table. Computational results are given in Sect. 6, with conclusions and
future directions of research drawn in Sect. 7.

2 The Schreier-Sims Table

We follow the description of the Schreier-Sims [18,19] representation given
in [12]. Let G be a permutation group on the ground set N = {1, . . . , n}. A

1 This is a much simplified version of the pigeon models [2] in MIPLIB 2010 [9].

Symmetry Breaking Inequalities from the Schreier-Sims Table 523

permutation g ∈ G is represented by an n-vector, with g[i] being the image of i
under g. Consider the following chain of (nested) subgroups of G:

G0 = G

G1 = {g ∈ G0| g[1] = 1}
G2 = {g ∈ G1| g[2] = 2}
. . .

Gn = {g ∈ Gn−1| g[n] = n} (2)

In other words, Gi is the stabilizer of i in Gi−1. Note that no such subgroup
is empty, as the identity permutation is always contained in all Gi. For each
i = 1, . . . , n, let orb(i, Gi−1) = {j1, . . . , jp} be the orbit of i under Gi−1, i.e.,
the set of elements onto which i can be mapped according to Gi−1. Note that
the orbit is never empty, as it always contains at least i. By definition, for each
element jk of the orbit there exists a permutation in Gi−1 mapping i to jk, and
let hi,jk be any such permutation. Let Ui = {hi,j1 , . . . , hi,jp} be the set of these
permutations, called coset representatives. Again, Ui is never empty. We can
arrange the permutations in the sets Ui in an n × n table T , with:

Ti,j =

{
hi,j if j ∈ orb(i, Gi−1)
∅ otherwise

(3)

The table T is called the Schreier-Sims representation of G. The most basic
property of the table is that the set of permutations stored in the table form a
set of strong generators for the group G, i.e., any permutation of g ∈ G can be
expressed as a product of at most n permutations in the set. It is also worth
noting that the Schreier-Sims table not only provides a set of strong generators
for G but also for all the nested subgroups Gi: indeed, a set of strong generators
for Gi is obtained by taking all permutations in the table with row index k ≥ i.

Example 2. Let’s consider the simple permutation group G of the symmetries of
the 2×2 square, with cells numbered top to bottom and left to right. G contains
8 permutations. The corresponding Schreier-Sims table is depicted below, where
each permutation is written in cycle notation, and i is the identity. Note that
G is not equal to S4 because, e.g., no permutation exists maps cell 2 to cell 4
without affecting cell 1 as well.

1 2 3 4
1 i (1 2)(3 4) (1 3)(2 4) (1 4)(3 2)
2 i (2 3)
3 i
4 i ��

Note that the Schreier-Sims table is always upper triangular, and it is fully
dense iff G = Sn, so constructing the table is sufficient to detect whether a group
G is the full symmetric group Sn. Given an arbitrary set of generators for G,
the Schreier-Sims table can be constructed in polynomial time (more details are
given in Sect. 5).

524 D. Salvagnin

3 Deriving Symmetry Breaking Inequalities

Consider a MIP model P with n variables and let G = 〈g1, . . . , gr〉 be its for-
mulation symmetry group, i.e., the group of permutations of the variables that
lead to an equivalent formulation, see [11,12] for a formal definition. Let T be
the Schreier-Sims representation of G. Then it follows that:

Theorem 1. The set of symmetry breaking inequalities xi ≥ xj for all Tij �= ∅
is valid for P .

Proof. The proof is a simple generalization of the argument used to prove the
validity of chain (4). Let us consider the orbit O1 of variable x1 according to G.
By definition we can always permute the variables such that x1 takes a value
which is no less than the values taken by the other variables in the orbit, so the
set of inequalities corresponding to the first row of T , namely x1 ≥ xj ∀xj ∈ O1

is valid for P . Now, let’s add those inequalities to the model. The formulation
group of the resulting model contains G1, i.e., the stabilizer of x1 in G, so we
can proceed to the second row of the table, which gives exactly the orbit of x2 in
G1. Thus we can reiterate the argument and conclude that the set of inequalities
corresponding to the second row of T is valid for P . By induction we can continue
until the very last row of T , which proves the theorem. ��

It is worth noting that the addition of symmetry breaking inequalities can in
principle result in new symmetries in the formulation, as shown by the following
example:

Example 3. Consider the LP:

min{x1 + x2 + x3 + x4 : x3 − x4 ≥ 0} (4)

The corresponding formulation group has only one symmetry, namely (x1 x2).
However, adding x1 − x2 ≥ 0 we get the additional symmetry (x1 x3)(x2 x4),
while the stabilizer of x1 according to G would contain the identity permutation
only. ��

Note that Theorem 1 only proves that we can derive a valid set of symmetry
breaking inequalities from the Schreier-Sims table T , but not that the inequalities
above are in general sufficient to break all the symmetries in the model. Indeed,
the latter statement would be false in general. What we can state however is that
(i) adding those inequalities breaks all symmetries in the original formulation,
and (ii) all solution symmetries of the original formulation are broken if the
variables of the model are linked by an all-different constraint, a result already
proved in [17]. The fact that in any case formulation symmetries are broken is
a double-edged sword: if solution symmetries are also broken then everything is
fine, otherwise the addition of those inequalities is not only ineffective but also
prevents other methods from being applied, as they would find no (or very little,
see Example 3) symmetries to exploit, as shown in Example 1.

Symmetry Breaking Inequalities from the Schreier-Sims Table 525

4 Improvements

Suppose we are interested in how the formulation group G acts on a subset T
of variables of the model. For example, we might want to check whether G acts
as S|T | on T , despite G possibly not being Sn. This can easily be achieved by a
small extension of the Schreier-Sims construction, in which we do not consider
the variables in order from x1 to xn when constructing the table, but in a different
order, say β, such that the variables in T are considered first. Such order β is
called the base of the table, and the construction can easily be extended to deal
with an arbitrary base. Once the table is constructed, then we can conclude
that G acts as S|T | on T iff the upper left |T | × |T | submatrix of T is (upper
triangular) fully dense.

Constructing the complete Schreier-Sims table of order n when we are actu-
ally interested only in its upper left corner of size |T | × |T | can potentially be
a big waste of computing resources. For example, in Example 1, the model has
size Θ(k2), while the continuous variables that encode the placing of each object
are only O(k). In general the full computation is needed if the set T has no
structure. However, if we assume that T is an orbit according to the original
group G, then we have a much better alternative: intuitively, we can project the
generators of G and work with a new group GT whose ground set is just T . Then
we can construct the Schreier-Sims table of GT which is exactly of size |T |× |T |.
Let us formalize this argument.

Any generator g of G (as any permutation for that matter), can be written in
cycle notation. Because of our choice of T , by construction all cycles in g either
move only variables in T or only variables in N \ T , as there is no permutation
in G moving an element from T into N \ T , otherwise T would not be an orbit.

Define the operator ϕ : Sn ↔ S|T | as the operator that drops from a per-
mutation written in cycle notation all the cycles not in T . For example, if
g = (13)(25)(789) and T = {1, 2, 3, 4, 5}, then ϕ(g) = (13)(25).

Let t1, . . . , tr be the permutations obtained by applying ϕ to the generators of
G and let GT = 〈t1, . . . , tr〉. It is not difficult to prove that ϕ is a homomorphism
from G to GT : let a = γ1 · · · γkδ1 . . . δp and b = σ1 · · · σlω1 . . . ωq, where we used
γ and σ to indicate the cycles moving variables in T and δ and ω to indicate
the cycles moving variables in N \ T (and we can always write a and b into this
form as the cycles can be written down in any order). Then:

ϕ(ab) = ϕ(γ1 · · · γkδ1 . . . δpσ1 · · · σlω1 . . . ωq) (5)
= ϕ(γ1 · · · γkσ1 · · · σlδ1 . . . δpω1 . . . ωq) (6)
= γ1 · · · γkσ1 · · · σl (7)
= ϕ(a)ϕ(b) (8)

where the first rearrangement of the cycles is allowed because they are disjoint.
In addition, as a homomorphism from G to GT , ϕ is surjective. Indeed, let π

be a permutation in GT . By definition it can be obtained by the generators of
GT and their inverses. But for each generator ti of GT we know a permutation

526 D. Salvagnin

h of G such that ϕ(h) = ti, namely h = gi and the same is true for the inverses,
because ϕ(g−

i) = t−i . Thus we can always construct a permutation g ∈ G such
that ϕ(g) = π. For example, let π = t1t

−
2 t5. Then g = g1g

−
2 g5.

Thus, by working directly with the group GT we are not introducing (nor
removing) any symmetry among the variables in T that was not already in G,
hence we can use GT to study how G acts on T . The results still holds if T is
not just a single orbit but a union of orbits of G.

5 Constructing the Schreier-Sims Table

A recursive algorithm to compute the Schreier-Sims table is described in [10],
and used in [12,13]. However, in our computational experience, we found a dif-
ferent iterative algorithm to perform better in practice. The iterative algorithm
constructs the Schreier-Sims table one row at the time, and works as follows. At
any given iteration i, the algorithm assumes that a set of generators for Gi−1 is
readily available (this condition is trivially satisfied for the first row, where we
can just use the generators of G). Then, it computes the orbit Oi and the set of
coset representatives Ui for element i. This is a basic algorithm in computational
group theory, called Schreier vector construction [3]. Note that this is enough to
fill row i of the table. Then we need to compute the generators for Gi, in order
to be ready for the next iteration. This is achieved in two steps:

1. Compute a set of generators for Gi applying the Schreier’s lemma. In details,
given Gi−1 = 〈g1, . . . , gr〉 and the coset representatives Ui = {r1, . . . , rk}, we
can obtain a set of generators for Gi as 〈r−1

s gr〉, with g ∈ Gi, r ∈ Ui, and rs
chosen such that (r−1

s gr)[i] = i.
2. Reduce the set of generators for Gi applying the Sims’ filter. This leaves at

most O(n2) generators for Gi. This is needed in order to obtain a polynomial
algorithm for the Schreier-Sims table construction. Note that other filters
are known, such as for example Jerrum’s filter [4]. However, those are more
complicated to implement.

The overall complexity of the construction is O(n6). As noted already in [12],
an algorithm with a worst-case complexity of O(n6) might seem impractical
even for reasonable values of n. However, we confirm that those bounds are very
pessimistic and that the actual runtime of the algorithm was always negligible
w.r.t. to the overall solution process. Still, care must be taken in the implemen-
tation, allowing the construction to be interrupted in case it becomes too time
consuming.

6 Computational Results

We implemented the separation of the static symmetry breaking inequalities
described in Theorem 1 during the development cycle between IBM ILOG
CPLEX 12.7.0 and 12.7.1 [7]. In particular, at the end of presolve, we use the

Symmetry Breaking Inequalities from the Schreier-Sims Table 527

generators of the formulation group, freshly computed with AUTOM [16], to con-
struct the Schreier-Sims table on the orbit of continuous variables with largest
domain. While the approach can in principle be applied to binary and general
integer variables as well, we decided to apply the method very conservatively.
The choice of continuous variables with large domains is intuitively justified by
the fact that it is “less likely” to have solutions lying on the xi = xi+1 in this
case. If the table is sufficiently dense, we add the symmetry breaking inequalities
and erase the generators (they are no longer valid), otherwise we forget about
the table and continue.

We tested the method on the CPLEX internal testbed, which consists of
approximately 3270 models, coming from a mix of publicly available and com-
mercial sources. Tests were executed on a cluster of identical machines, each
equipped with two Intel Xeon E5-2667v4 CPUs (for a total of 16 cores) run-
ning at 3.2 GHz, and 64 GB of RAM. Each run was given a time limit of 10.000
seconds. To limit the effect of performance variability [5,9], we compared the
two methods, namely CPLEX defaults with (symbreak) and without (cpx) the
addition of the symmetry breaking inequalities derived from the Schreier-Sims
table, with 5 different random seeds. Aggregated results over the 5 seeds are
given in Table 1.

The structure of the table is as follows. Instances are divided in different
subsets, based on the difficulty of the models. To avoid any bias in the analysis,
the level of difficulty is defined by taking into account both methods under
comparison. The subclasses “[n, 10k}” (n = 1, 10, 100, 1k), contain the subset of
models for which at least one of the methods took at least n seconds to solve
and that were solved to optimality within the time limit by at least one of the
methods. Finally, the subclasses “[n, 10k)” (n = 1, 10, 100, 1k) contain all models
in “[n, 10k}” but considering only the models that were solved to optimality
by both methods. The first column of the table identifies the class of models.
Then the first group of 5 columns, under the heading “all models”, reports
results on all instances in the class, while the second group of columns, under
the heading “affected”, repeats the same information for the subset of models
in each class where the two methods took a different solution path. Within each
group, column “# models” reports the number of models in the class, columns
“#tl” the number of time limits for each method, and columns “time” and
“nodes” report the shifted geometric means [1] of the ratios of solution times
and number of branch-and-bound nodes, respectively. Ratios t < 1 indicate a
speedup factor of 1/t.

According to Table 1, the symmetry breaking inequalities affect only around
2% of the models, which is not unexpected given the conservative criteria that
trigger their generation. Still, they are so effective that they produce a non
negligible speedup also on the whole testbed, with speedups ranging from 1%
to 7% (for the subset of hard models in the “[100, 10k)” bracket). Also the
number of time limits is significantly reduced. Aggregated results seed by seed
(not reported) also confirm that the improvement is consistent across seeds.

528 D. Salvagnin

Table 1. Aggregated results.

all models affected

cpx symbreak cpx symbreak

class # models # tl # tl time nodes # models time nodes

[0, 10K} 16185 127 111 0.99 0.98 317 0.52 0.32
[1, 10K} 9475 82 66 0.98 0.96 303 0.50 0.30
[100, 10K} 2645 79 63 0.93 0.87 159 0.27 0.10

[0, 1) 6665 0 0 1.00 1.00 14 1.36 1.94
[1, 10) 3905 0 0 1.00 1.00 48 0.97 1.00
[10, 100) 2920 0 0 1.00 1.00 96 1.05 1.09
[100, 1K) 1765 0 0 0.99 0.97 86 0.73 0.51
[1K, 10K) 680 0 0 0.94 0.89 40 0.35 0.14

7 Conclusions

In this paper we investigated computationally the effectiveness of generating
static symmetry breaking inequalities from the Schreier-Sims table of the for-
mulation symmetry group. Computational results show that the approach can be
extremely effective on some models. The technique is implemented and activated
by default in the release 12.7.1 of the commercial solver IBM ILOG CPLEX.
Future direction of research include extending the classes of models on which
the method is tried, e.g., on pure binary models.

Acknowledgements. The author would like to thank Jean-François Puget for an
inspiring discussion about the Schreier-Sims table, and three anonymous reviewers for
their careful reading and constructive comments.

References

1. Achterberg, T.: Constraint integer programming. Ph.D thesis. Technische Univer-
sität Berlin (2007)

2. Allen, S.D., Burke, E.K., Marecek, J.: A space-indexed formulation of packing
boxes into a larger box. Oper. Res. Lett. 40, 20–24 (2012)

3. Butler, G., Cannon, J.J.: Computing in permutation and matrix groups I: normal
closure, commutator subgroups, series. Math. Comput. 39, 663–670 (1982)

4. Cameron, P.J.: Permutation Groups. London Mathematical Society St. Cambridge
University Press, Cambridge (1999)

5. Danna, E.: Performance variability in mixed integer programming. In: MIP 2008
Workshop in New Work (2008). http://coral.ie.lehigh.edu/∼jeff/mip-2008/talks/
danna.pdf

6. Gent, I.P., Petrie, K.E., Puget, J.-F.: Symmetry in constraint programming. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
pp. 329–376. Elsevier (2006)

http://coral.ie.lehigh.edu/~jeff/mip-2008/talks/danna.pdf
http://coral.ie.lehigh.edu/~jeff/mip-2008/talks/danna.pdf

Symmetry Breaking Inequalities from the Schreier-Sims Table 529

7. IBM: ILOG CPLEX 12.7.1 User’s Manual (2017)
8. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114,

1–36 (2008)
9. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E.,

Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H.,
Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010 - mixed integer
programming library version 5. Math. Program. Comput. 3, 103–163 (2011)

10. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration,
and Search. CRC Press, Boca Raton (1999)

11. Liberti, L.: Reformulations in mathematical programming: automatic symmetry
detection and exploitation. Math. Program. 131, 273–304 (2012)

12. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94(1),
71–90 (2002)

13. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1), 3–21 (2003)
14. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.) 50

Years of Integer Programming, pp. 647–686. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-68279-0 17

15. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Pro-
gram. 126(1), 147–178 (2011)

16. Puget, J.-F.: Automatic detection of variable and value symmetries. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 475–489. Springer, Heidelberg (2005).
https://doi.org/10.1007/11564751 36

17. Puget, J.-F.: Breaking symmetries in all different problems. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI, pp. 272–277 (2005)

18. Seress, Á.: Permutation Group Algorithms. Cambridge University Press, Cam-
bridge (2003)

19. Sims, C.C.: Computational methods in the study of permutation groups. In: Com-
putational problems in abstract algebra (Oxford 1967), pp. 169–183. Pergamon
Press, Oxford (1970)

https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1007/11564751_36

Frequency-Based Multi-agent Patrolling
Model and Its Area Partitioning Solution

Method for Balanced Workload

Vourchteang Sea(B), Ayumi Sugiyama, and Toshiharu Sugawara

Department of Computer Science and Communications Engineering,
Waseda University, Tokyo 169-8555, Japan

vourchteang@asagi.waseda.jp,

sugi.ayumi@ruri.waseda.jp, sugawara@waseda.jp

Abstract. Multi-agent patrolling problem has received growing atten-
tion from many researchers due to its wide range of potential applica-
tions. In realistic environment, e.g., security patrolling, each location has
different visitation requirement according to the required security level.
Therefore, a patrolling system with non-uniform visiting frequency is
preferable. The difference in visiting frequency generally causes imbal-
anced workload amongst agents leading to inefficiency. This paper, thus,
aims at partitioning a given area to balance agents’ workload by consid-
ering that different visiting frequency and then generating route inside
each sub-area. We formulate the problem of frequency-based multi-agent
patrolling and propose its semi-optimal solution method, whose over-
all process consists of two steps – graph partitioning and sub-graph
patrolling. Our work improve traditional k-means clustering algorithm
by formulating a new objective function and combine it with simulated
annealing – a useful tool for operations research. Experimental results
illustrated the effectiveness and reasonable computational efficiency of
our approach.

Keywords: Frequency-based patrolling · Graph partitioning
Balanced workload · Multi-agent systems · Linear programming
k-means based · Simulated annealing

1 Introduction

Recent advances on autonomous mobile robots have been evident in the last
couple of decades. The patrolling problem with a team of agents, in particular,
has received much focus. Patrolling refers to the act of continuously walking
around and visiting the relevant area or important point of an environment, with
some regularity/at regular intervals, in order to protect, navigate, monitor or
supervise it. A group of agents is usually required to perform this task efficiently
as multi-robot systems are generally believed to hold several advantages over
single-robot systems. The most common motivation for developing multi-robot
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 530–545, 2018.
https://doi.org/10.1007/978-3-319-93031-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_38&domain=pdf

Frequency-Based Multi-agent Patrolling Model 531

system solutions in the real-world applications is that a single robot cannot
adequately deal with task complexities [9].

Multi-agent (multi-robot) patrolling, however, is not limited to patrolling
real-world areas, but they can be found in applications on several domains, such
as continuous sweeping, security patrolling, surveillance systems, network secu-
rity systems and games. In other word, patrolling can be useful in any domain
characterized by the need of systematically visiting a set of predefined points [17].
For instance, in many cases of real police works, there are services with human
such as electronic security services [22]. The benefits of those systems are the
cost-effectiveness against labor costs, and because it is monitored by sensors,
visual overlook and human error are less likely to occur [20]. However, most of
current studies assume that the frequency of visit to each node/location is uni-
form, yet in the realistic applications, the frequencies of visit differ; for example,
in security patrolling, each location has different visitation requirement or risk
status according to the required security level.

We divide multi-agent patrolling task into three steps: how to partition the
work into a number of sub-works, how to allocate the individual sub-task to one
of the agents and how to select the visiting sequence for each agent. We call
this the partition, allocation and sequencing problem respectively. In this paper,
we assume homogeneous agents that have the same capability and use the same
algorithms. This assumption makes the allocation problem trivial, and thus, we
only consider the algorithms for partitioning and sequencing. The combination
of the partition algorithm and the sequencing algorithm is referred as a strategy.

In this paper, we will model the problem of patrolling as a problem of visit-
ing vertices in a graph with visitation requirement by dividing it into a number
of clusters. Then, after clustering nodes in this graph, each agent is responsi-
ble for patrolling the allocated cluster, and its nodes must be visited to meet
the visitation requirement, that is, frequency of visit. In the partitioning step,
we applied k-means based algorithm as a clustering algorithm by modifying its
objective function and the initialization of centroids so as to make it fit to our
problem. Our goal in this step is to cluster a given graph so that the potential
workloads of individual clusters are balanced, which means trying to balance the
workload amongst all agents. Moreover, the sequencing step addressed how to
select the route (sequence of nodes) for each agent in its allocated cluster with a
minimized cost. We used the simulated annealing (SA) here as a sequencing algo-
rithm because our problem is similar to the multiple traveling salesman problem
(mTSP), which is a generalization of the well-known traveling salesman problem
(TSP) as mentioned in [2], and SA is often used to find the acceptable solutions
due to the fact that SA is considered to be a flexible meta-heuristic method for
solving a variety of combinatorial optimization problems. The difference between
our problem and mTSP is that in mTSP, a number of cities have to be visited by
m-salesman whose objective is to find m tours with minimum total travel, where
all the cities must be visited exactly once, while in our problem, all the locations
in a patrolled area must be visited to meet the required frequency of visit. We

532 V. Sea et al.

believe that our model of partitioning and sequencing with the frequency of visit
to each node is more fit to realistic environment.

The contributions of our paper are three folds. First, we introduced the model
of a frequency-based balanced patrolling problem for multi-agent systems to clar-
ify our problem and requirement. Then, we developed an effective and scalable
clustering algorithm based on the visitation requirement of each location by for-
mulating a new k-means based approach for multi-agent patrolling systems; our
main objective is to balance the workload amongst all patroller agents. Finally,
we generated the route for each agent to patrol in its allocated region, in which
the cost of visiting all nodes is minimized by taking into account the differ-
ence in each node’s frequency of visit. We also demonstrated the computational
efficiency of our proposed method that could be run in a short amount of time.

The remainder of this paper is organized as follows. We describe related work
in the next section and introduce our problem formulation in Sect. 3. Section 4
explains our proposed method where agents firstly cluster a given graph/area
by taking into account the non-uniform visitation requirement, and then find
a route for patrolling with a minimized cost. We then show our experimental
results in Sect. 5 indicating that agents with the proposed method achieves a
computationally efficient and effective clustering in term of balancing the work-
load for multi-agent patrolling systems, and thus state our conclusion in Sect. 6.

2 Related Work

Multi-agent patrolling problem has been investigated and studied by many
researchers. Initial researches [1,18,19] presented a theoretical analysis of vari-
ous strategies for multi-agent patrolling systems and an overview of the recent
advances in patrolling problems. Portugal and Rocha [10] proposed a multi-robot
patrolling algorithm based on balanced graph partition, yet this paper did not
consider when the required frequency of visit is not uniform. The same author,
then, addressed a theoretical analysis of how two classical types of strategies,
graph partition and cyclic-based techniques, perform in generic graphs [11]. A
survey of multi-agent patrolling strategies can be found in [12], where strate-
gies are evaluated based on robot perception, communication, coordination and
decision-making capabilities.

I-Ming et al. [5] presented a heuristic for the team orienteering problem in
which a competitor starts at a specified control point trying to visit as many
other control points as possible within a fixed amount of time, and returns to a
specified control point. The goal of orienteering is to maximize the total score
of each control point, while in our patrolling problem, the main goal is to min-
imize the difference in workload amongst all patroller agents. Sak et al. [17]
proposed a centralized solution for multi-agent patrolling systems by present-
ing three new metrics to evaluate the patrolling problem. Mihai-Ioan et al. [7]
addressed the problem of multi-agent patrolling in wireless sensor networks by
defining and formalizing the problem of vertex covering with bounded simple
cycles (CBSC). This approach consequently considered polynomial-time algo-
rithms to offer solutions for CBSC. Tao and Laura [16] investigated multi-agent

Frequency-Based Multi-agent Patrolling Model 533

frequency based patrolling in undirected circle graphs where graph nodes have
non-uniform visitation requirements, and agents have limited communication.

Elor and Bruckstein [3] introduced a novel graph patrolling algorithm by inte-
grating the ant pheromone and balloon models, where the region is segmented
into sub-regions that are individually assigned to a certain agent. However, this
method partitioned the region into equal-size sub-regions. As the characteristic
of the area is not always uniform, equal-size sub-areas are inappropriate. Yehuda
et al. [21] proposed a centralized algorithm which guarantees optimal uniform
frequency, i.e., all cells are visited with maximal and uniform frequency in a
non-uniform, grid environment. However, grid-based representation has a limi-
tation in handling partially occluded cells or cover areas close to the boundaries
in continuous spaces.

Sea et al. [13,14] proposed a decentralized coordinated area partitioning
method by autonomous agents for continuous cooperative tasks. Agents in this
approach could learn the locations of obstacles and the probabilities of dirt
accumulation and could divide the area in a balanced manner. However, these
papers considered the grid environment and mainly focused on specific appli-
cation in cleaning/sweeping domain. Sugiyama et al. [15] also introduced an
effective autonomous task allocation method that can achieve efficient cooper-
ative work by enhancing divisional cooperation in multi-agent patrolling tasks.
This paper addressed the continuous cooperative patrolling problem (CCPP), in
which agents move around a given area and visit locations with the required and
different frequencies for given purposes. However, this paper did not consider
area partitioning and was implemented in a 2-dimensional grid space.

The most relevant work to ours is the work of Jeyhun and Murat [6], which
introduced a new hybrid clustering model for k-means clustering, namely HE-
kmeans, to improve the quality of clustering. This proposed model integrated
particle swarm optimization, scatter search and simulated annealing to find good
initial centroids for k-means. Another relevant work is from Elth et al. [4], which
proposed a decentralized clustering method by extending the traditional k-means
in a grid pattern. These two approaches could produce a good quality of cluster-
ing. However, they did not consider when the frequencies of visit to each location
are different. As the frequencies of visit in the real-world environment are not
always uniform which makes the clustering imbalanced, a clustering method
that can take into account the non-uniform frequency of visit and at the same
time tries to balance the workload amongst all patroller agents is preferable for
realistic applications. Our proposed method, thus, aims at dealing with these
requirements.

3 Problem Formulation

This paper aims at proposing solutions for multi-agent patrolling under fre-
quency constraints, while trying to balance the workload amongst all patroller
agents and then minimize the cost for patrolling. First, we formulate our problem
in this section.

534 V. Sea et al.

Let G = (V,E) be a complete graph that can be embedded in R
2, where

V = {v1, v2, . . . , vn} is a set of nodes, and E = {(vi, vj) : vi, vj ∈ V, i �= j} is
a set of edges. The patrolled area is described as a graph G, where a location
vi ∈ V is represented by its (x, y) coordinates in the 2D plane, and E contains
n×(n−1)

2 edges. In our patrolling problem, a node represents a location to be
patrolled/visited, and an edge represents a path between nodes along which
agents move. Let A = {1, 2, . . . ,m} be a set of agents, and m = |A| denotes the
number of agents patrolling graph G, where m < |V |.

Each edge in G has its associated cost which is a traveling distance. Because G
is embedded in R

2, the distance between a pair of nodes is the Euclidean distance
between two spatial coordinates vi ∈ V and vj ∈ V denoted by ‖vi − vj‖ =√

(xi − xj)2 + (yi − yj)2, where (xi, yi) and (xj , yj) are the coordinates of nodes
vi and vj respectively.

In the general multi-agent patrolling problem, a team of m agents patrols
an area represented by a complete graph G = (V,E). Thus, there are n nodes
to be patrolled and |E| possible paths for m agents to move. Our multi-agent
frequency-based patrolling problem, however, consists of two main steps: graph
partitioning and sub-graph patrolling. Each node in graph G has its associated
visitation requirement, simply called frequency of visit. Let f(vi) ∈ Z

+ be the
frequency of visit to each location in G.

Firstly, we partition a patrolled area represented by a graph G into k disjoint
clusters, C = {C1, . . . , Cm}, and then allocate cluster Ci to agent i. The main
goal is to cluster G by taking into account the required frequency of visit to each
node in a balanced manner, such that the expected workload of each cluster is
not much different from one another.

Let WCs
be an expected workload of each agent in its allocated cluster,

denoted by:

WCs
=

∑

vi,vj∈Cs

f(vi)‖vi − vj‖
|Cs| − 1

, (1)

where |Cs| is the number of nodes in each cluster. The expected workload here
refers to an estimated amount of work a patroller agent has to do if they generate
the shortest (or near-shortest) path, which is the estimated total cost/length
agent i has to patrol in its allocated cluster/region, not the actual cost. We used
this as a metric to evaluate the clustering performance of our proposed method
in Sect. 4. If the value of WCs

for all patroller agents are not much different from
one another, we can conclude that the overall workload amongst all agents is
considered to be balanced.

After obtaining clusters from the first step, the next goal is to generate a route
for each agent to patrol in its allocated cluster based on the required frequency
of visit to each node. Let route s = 〈v1, v2, . . . , v�〉, ∀vi ∈ V be a sequence of
nodes agent j has to visit in Cj . In patrolling process, an agent tries to find a
route with a minimum cost. The route is defined as the selected path in which
an agent patrols in its allocated region. Then, the length of route s is denoted
by:

Frequency-Based Multi-agent Patrolling Model 535

�en(s) =
�−1∑

i=1

‖vi − vi+1‖ (2)

For all agents in A, let O(s, vi) be the number of occurence of node vi in
route s, where O(s, vi) is the number of nodes vi appear/exist in route s. Thus,
the following condition is satisfied.

{
O(s, vi) > 0, if vi ∈ s

O(s, vi) = 0, otherwise
(3)

Then, the route s must satisfy, ∀vi ∈ Ci, the following conditions:

O(s, vi) ≥ f(vi) (4)
minvi∈V f(vi) = 1, (5)

because clusters (C1, . . . , Cm) are disjoint.
Let S = {s1, . . . , sm} be a set of routes, and thus m routes must be generated

for all m agents to patrol G. Then, the multi-agent patrolling problem is to find
m routes, such that each node is visited at least f(vi) times and that the length
of total routes is the shortest. Thus, the objective function, R, is to minimize
the sum of all routes, denoted by:

R(s1, . . . , sm) = min

m∑

i=1

�en(si)

subject to:
m∑

i=1

O(si, vj) ≥ f(vj),∀vj ∈ V

(6)

Because Ci is disjoint and independent, and the shortest route in Ci is generated
independently so that it meets the requirement of frequency of visit, the cost
R(s1, . . . , sm) in Eq. 6 is identical to the sum of the cost of routes, (s1, . . . , sm).
Therefore, our goal is to minimize:

R(s1, . . . , sm) =
m∑

i=1

min �en(si)

subject to:
m∑

i=1

O(si, vj) ≥ f(vj),∀vj ∈ V

(7)

4 Proposed Method

Our proposed method is divided into two main steps: graph partitioning and
sub-graph patrolling. Because we improved the well-known unsupervised tradi-
tional k-means clustering algorithm by introducing a new k-means based app-
roach for clustering a given graph by taking into account the non-uniform visita-
tion requirement for each location, we called our proposed method an improved
frequency-based k-means, namely IF-k-means.

536 V. Sea et al.

4.1 Graph Partitioning

Clustering refers to the process of partitioning or grouping a given set of pat-
terns into disjoint clusters, P = {P1, P2, . . . , P|P |}. This step describes how agent
could cluster a given graph, G, by taking into account the different frequency of
visit to each node as well as balancing the workload of each cluster. We imple-
mented k-means based clustering algorithm by modifying its objective function
and centroids initialization so as to make it suit our problem. Each data point is
interpreted as a node in a complete graph G, where V = {v1, v2, . . . , vn} is a set
of nodes as mentioned in Sect. 3. The main goal is to partition V into k disjoint
clusters by taking into account the required frequency of visit to each node. We
denote C = {C1, C2, . . . , Ck} as its set of clusters, and c = {c1, c2, . . . , ck} as a
set of corresponding centroids.

Simply speaking, k-means clustering is an algorithm to classify or to group
the objects based on attributes/features into k number of group, where k is a
positive integer number. The grouping is done by minimizing the sum of square
of distances between data points and the corresponding cluster centroids [8].

The traditional k-means clustering algorithm aims at minimizing the follow-
ing objective function, which is a squared error function denoted by:

J = min

n∑

i=1

k∑

s=1

∑

vi∈Cs

‖vi − cs‖2

subject to: C1 ∪ . . . ∪ Cm = C

Ci ∩ Cj = ∅,∀ 1 ≤ i, j ≤ m, i �= j,

where cs =
1

|Cs|
∑

vi∈Cs

vi,

k is the number of clusters, and cs is the corresponding cluster centroid.
We modified the objective function of the above traditional k-means so as

to apply our problem framework with frequency of visit. This method is called
IF-k-means, and its objective function is denoted by:

Q = min

n∑

i=1

k∑

s=1

∑

vi∈Cs

f(vi)‖vi − cs‖2

subject to: C1 ∪ . . . ∪ Cm = C

Ci ∩ Cj = ∅,∀ 1 ≤ i, j ≤ m, i �= j,
(8)

where cs =

∑
vi∈Cs

vi · f(vi)∑
vi∈Cs

f(vi)
,

Frequency-Based Multi-agent Patrolling Model 537

f(vi) is the frequency of visit to node vi, and ‖vi − cs‖ is the Euclidean distance
between vi and cs.

Algorithm 1. Improved frequency-based k-means (IF-k-means)

Input : G = (V,E) and f(vi)
k (number of clusters), where k = |A|

Output: C = {C1, C2, . . . , Ck}
1: Sort |V | with f(vi) in descending order
2: Add them into a list N
3: time = 1
4: Select first k nodes from N [k(time − 1) + 1] to N [time ∗ k]
5: Place k initial centroids on selected k nodes in G
6: repeat
7: Assign each node to the cluster having the closest centroid
8: Recalculate(centroids)
9: until centroids no longer move

10: foreach cluster do
11: Calculate expected workload, WCs

12: Calculate difference in workload, Tdiff

13: if Tdiff satisfies condition (10) then
14: Accept(clusters)
15: else
16: Go to step(4)
17: time + +
18: end
19: end

The traditional k-means method has been shown to be effective in producing
good clustering results for many practical applications. Although it is one of the
most well-known clustering algorithm and is widely used in various applications,
one of its drawbacks is the highly sensitive to the selection of the initial centroids,
which means the result of clustering highly depends on the selection of initial
centroids. Therefore, proper selection of initial centroids is necessary for a bet-
ter clustering. Thus, instead of placing the initial centroids randomly as in the
traditional k-means, we place them on the nodes with the highest frequency of
visit, f(vi), because a node with higher frequency of visit should have a shorter
distance from its corresponding centroid than the node with lower frequency of
visit to make the cluster balanced.

The difference between our IF-k-means and the classical k-means is that we
incorporate f(vi) to both objective function and its constraint of the classical k-
means in order to make the cluster balanced. Adding f(vi) to the objective func-
tion of the classical k-means makes the distance between node vi and centroid
cs change causing the different size of clusters based on the visiting frequency
to each node. It is also important to incorporate f(vi) into the calculation of

538 V. Sea et al.

the centroids to generate the weighted centroids function for producing a better
centroids location for each cluster. By implementing our IF-k-means, the clus-
ters having more nodes with high frequency of visit tend to have smaller size
comparing to those with lower frequency of visit. At each step of the clustering,
the centroids move close to high-frequency nodes after the repeated calculation
using our modified centroids function. Thus, without incorporating f(vi) to both
objective function and its constraint, the inefficient clustering would happen due
to the inefficient centroids placement.

Let Tdiff be the difference in workload amongst all agents, where we define
Tdiff as follows:

Tdiff =
1

k(k − 1)

k∑

i=1

k∑

j=1

|WCi
− WCj

|, i �= j (9)

The workload amongst all agents is considered to be balanced if it satisfies
the following condition:

Tdiff ≤ M, (10)

where M ∈ Z
+ is not so large positive integer.

Algorithm 2. Pseudocode for constructing initial solution for SA

Input : V = {vk1 , vk2 , . . . , vkL
} for cluster Ck and f(vi)

Output: s0 = {vk1 , vk2 , . . . , vkL
} based on conditions (4) and (5), such

that ki �= ki+1

* function distMatrix return Euclidean distance between two nodes.
* ki is the index of node vi in cluster Ck.

1: s0 = ∅
2: Select a current node, curNode, randomly from V
3: Add curNode into s0

4: while (s0 is not filled up) and (V �= ∅) do
5: Find the shortest distance from curNode to another node in V :

shortestDist = min(distMatrix[curNode][j] for j in V)
6: curNode = distMatrix[curNode].index(shortestDist)

if ki �= ki+1 is not satisfied then
Regenerate new curNode

7: end
8: Let O(s0, curNode) be an occurence of new curNode in s0

9: if O(s0, curNode) < f(vi) then
10: Keep new curNode in V
11: else if O(s0, curNode) ≥ f(vi) and O(s0, curNode) ≤ 2.f(vi) then
12: Remove new curNode from V
13: end
14: Add new curNode to s0

15: end
16: return s0

Frequency-Based Multi-agent Patrolling Model 539

In this partitioning process of our proposed work, we calculated the expected
workload of each cluster, WCs

, by using Eq. 1. Then, we computed the difference
in each workload, Tdiff , by implementing the formula in Eq. 9. The process of
our proposed IF-k-means algorithm is described in Algorithm 1.

4.2 Sub-graph Patrolling

This step presents how agent selected the best route for patrolling in its allocated
sub-region with the shortest length by taking into account the required frequency
of visit to each location. The goal of this step aims at finding the shortest route
for each patroller agent in its allocated cluster with a semi-optimal solution.
Because our multi-agent frequency-based patrolling problem is considered to
be one of the combinatorial optimization problems and our main purpose is
to partition a given area so as to balance the workload amongst all patroller
agents, the optimal solution for the cost of visiting all nodes with their required
frequency of visit is difficult due to a trade-off between balancing the workload
and optimizing the cost of route, and thus, a semi-optimal solution is accepted
in our work as a reasonable solution.

Algorithm 3. Pseudocode for route generation using SA

Input : Initial temperature, T0 = 1e + 10
Final temperature, Tf = 0.0001
Cooling parameter, α = 0.95

Output: sbest

1: Obtain initial solution s0 = {vk1 , vk2 , . . . , vkL
} from Algorithm 2

2: Set initial temperature: T = T0

3: Cost function C(s) is defined as �en(s) in Eq. 2, where C(s) = �en(s)
4: Let current solution scur = s0 whose cost is C(scur), and the best

solution sbest = s0 whose cost is C(sbest)
5: repeat
6: Generate new solution snew by randomly swapping two nodes in s0

and get its cost C(snew)
if ki �= ki+1 is not satisfied then

Regenerate snew and C(snew)
7: end
8: Compute relative change in cost: δ = C(snew) − C(scur)
9: Acceptance probability: P (δ, T) = exp(−δ/T), where T > 0

10: if δ < 0 or P (δ, T) > rand(0, 1) then
11: scur = snew and C(scur) = C(snew)
12: else if C(snew) < C(sbest) then
13: sbest = snew and C(sbest) = C(snew)
14: end
15: Compute new temperature: T = α × T

16: until T < Tf

540 V. Sea et al.

We use a simulated annealing here as a sequencing algorithm to find the
shortest route, si, for patrolling. As our problem is a multi-agent patrolling
problem, m routes will be generated in this step where m = |A|. However, in the
multiple traveling salesman problem, in order to solve it in an easier and simpler
way, a heuristic is formed to transform mTSP to TSP and then optimize the
tour of each individual salesman. Because our problem is similar to the mTSP
as mentioned in Sect. 1, we did the same by applying SA to each cluster to find
the best route for each patroller agent in order to make the problem simpler.

Although the SA algorithm has been widely used in mTSP, we have modified
and adapted it to our model with non-uniform frequency of visit to each node.
The classical SA algorithm in mTSP generates the best solution/route such
that each node must be visited exactly once, while our modified SA algorithm
constructs the best route for each patroller agent based on the required frequency
of visit, where each node is visited at least f(vi) times by taking into account the
conditions from Eqs. 4 and 5. Furthermore, we have also modified the process
of computing an initial solution in the SA by implementing a greedy approach
instead of random approach to find an initial feasible solution. The process of
how we applied SA to our model with non-uniform frequency of visit to find
the shortest route is described in Algorithm 3, and the computation of an initial
feasible solution with the implementation of greedy strategy is also described in
Algorithm 2.

Fig. 1. Clustering by proposed method with n = 400, m = 6

Frequency-Based Multi-agent Patrolling Model 541

Table 1. Numerical results with n = 400 and m = {6, 10}

400 nodes

No. of agent (m) Agent (A) Exp.
workload
(WCs)

Cost of
route
(�en(si))

Difference (Tdiff)

6 1 11635 11640 4.80

2 11630 11638

3 11632 11641

4 11640 11647

5 11634 11642

6 11629 11635

10 1 7136 7142 5.31

2 7130 7140

3 7135 7139

4 7125 7134

5 7137 7145

6 7136 7147

7 7127 7138

8 7132 7141

9 7139 7146

10 7134 7143

5 Experimental Evaluation

The proposed algorithms have been implemented in Python 3.5. All computa-
tional results are the averages of 20 trials, and are obtained on a personal com-
puter with Intel(R) Core(TM) i5-6200U CPU @2.30 GHz processor and 8 GB
RAM running on Windows 10 64-bit. To run experiments, we generated the
coordinates of all nodes and their corresponding frequencies of visit f(vi), which
are randomly distributed in the Euclidean space. We have tested our proposed
method with different number of nodes and number of agents to see how well our
algorithms can work when the number of nodes and agents increase respectively.
In this work, we had run our experiments with 5 different number of nodes,
n = |V | is 200, 400, 600, 800 and 1000. We had also tried these with different
number of agents, m = |A| is 4, 6, 8 and 10. Moreover, we set M = 10 in our
experiments. From the best of our knowledge, if M is too small, the solution may
not exist, and if it is too large, the solution is not acceptable because agents’
works are imbalanced. Therefore, we have to define M according to the problem
setting.

542 V. Sea et al.

Table 2. Numerical results with n = 600 and m = {6, 10}

600 nodes

No. of agent (m) Agent (A) Exp. workload

(WCs)

Cost of route

(�en(si))

Difference (Tdiff)

6 1 18825 18834 5.86

2 18823 18832

3 18827 18838

4 18829 18839

5 18838 18845

6 18826 18835

10 1 14326 14330 7.02

2 14328 14337

3 14333 14340

4 14336 14342

5 14324 14335

6 14338 14348

7 14323 14332

8 14329 14336

9 14321 14329

10 14334 14345

Table 3. Numerical results with n = 1000 and m = {6, 10}

1000 nodes

No. of agent (m) Agent (A) Exp. workload

(WCs)

Cost of route

(�en(si))

Difference (Tdiff)

6 1 30824 30834 7.40

2 30835 30840

3 30841 30849

4 30837 30848

5 30840 30851

6 30842 30853

10 1 26265 26273 8.02

2 26273 26278

3 26268 26276

4 26255 26266

5 26260 26269

6 26256 26264

7 26254 26262

8 26268 26275

9 26264 26273

10 26270 26281

After running 20 experiments, we randomly plot the result of one experiment
as shown in Fig. 1. Figure 1 presents the result of that plot amongst 20 plots
obtained from graph clustering using our proposed IF-k-means with n = 400
and m = 6, where the number on each node represents its required frequency of

Frequency-Based Multi-agent Patrolling Model 543

Fig. 2. Computation time of proposed method

visit. According to Fig. 1, we could see that the sizes of all clusters are varied
in accordance with the values of f(vi) in each cluster. Some clusters tend to
have small size due to the existence of many values of high visiting frequency in
their clusters, while others seem to have bigger size because there are less high
frequency of visit in their clusters comparing to those with smaller size. This
kind of phenomenon happened because we tried to balance the workload of each
cluster. We, thus, say that our proposed clustering algorithm could effectively
partition a given graph in a balanced manner.

To evaluate the effectiveness and performance of our proposed work, the
expected workload (WCs

), the cost of route (�en(si)) in each cluster and the
difference in workload (Tdiff) are listed in Tables 1, 2 and 3. These tables show
the numerical results with the number of agents, m = 6 and m = 10 for 400, 600
and 1000 nodes respectively. All these tables demonstrate that the difference in
workload always satisfied the condition in Eq. 10, where Tdiff ≤ M and M = 10.
Thus, if IF-k-means cannot find the route whose Tdiff is less than 10, no solution
is generated.

Furthermore, the results from all the tables also clarified that the cost of
patrolling in each cluster, �en(si), has the value which is not much different
from its corresponding expected workload, WCs

. This means that the sequencing
algorithm in Sect. 4.2 produced a good result in term of generating the route for
patrolling and minimizing the cost of each route. Therefore, we conclude that our
proposed algorithms not only could balance the workload amongst all agents,
but also could generate the patrolling route with a reasonable cost. We only
show the results in Tables 1, 2 and 3 when m = 6 and 10 because other results
exhibit the similar features.

544 V. Sea et al.

Besides the effectiveness of performing area partition and sub-area patrolling,
we also considered the computation time as a significant factor to demonstrate
the efficiency of our proposed work. Figure 2 indicates the computation time of
our proposed method in second. According to Fig. 2, we could observe that the
computation time increased linearly in accordance with the number of nodes
and the number of agents. This shows that the proposed algorithms could be
computed in a short amount of time, and thus, we conclude that our proposed
method is computational efficiency.

6 Conclusion and Future Work

We have presented a new frequency-based area partitioning method for balanced
workload in multi-agent patrolling systems. This proposed work considered the
non-uniform visitation requirement for each location, where its frequency of visit
is high or low depending on the level of importance of that location. Because
non-uniform visiting frequencies of all locations could affect the quality of clus-
tering, the main goal of this paper, thus, aims at balancing the workload of each
cluster/agent so as to improve the workers morale. Besides the balance in work-
load, we also believe that computational cost plays a significant role in proving
the effectiveness and computational efficiency of the proposed work. Experimen-
tal results demonstrated that our proposed method could effectively generate
clusters of a given area regarding the non-uniform visitation requirements in a
balanced manner and in a satisfied short amount of time.

The study of this problem in a more realistic environment will be considered
in our future work. Moreover, we attempt to further extend our work in the
future by taking into account the corresponding minimum time interval between
the visits to a node that needs frequent patrolling. Also, we intend to incorporate
the penalty function into our method in order to prevent the patroller agent from
visiting nodes too often or too seldom.

Acknowledgments. This work is partly supported by JSPS KAKENHI grant number
17KT0044.

References

1. Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V.,
Chevaleyre, Y.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C.,
Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 474–483. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28645-5 48

2. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. Omega 34(3), 209–219 (2006)

3. Elor, Y., Bruckstein, A.M.: Multi-a(ge)nt graph patrolling and partitioning. In:
2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology - Workshops, pp. 52–57 (2009)

4. Elth, O., Benno, O., Maarten van, S., Frances, B.: A method for decentralized
clustering in large multi-agent systems. In: AAMAS 2003, pp. 789–796 (2003)

https://doi.org/10.1007/978-3-540-28645-5_48

Frequency-Based Multi-agent Patrolling Model 545

5. I-Ming, C., Bruce, L.G., Edward, A.W.: The team orienteering problem. Eur. J.
Oper. Res. 88(3), 464–474 (1996)

6. Jeyhun, K., Murat, O.: Clustering quality improvement of k-means using a hybrid
evolutionary model. Procedia Comput. Sci. 61, 38–45 (2015)

7. Mihai-Ioan, P., Hervé, R., Olivier, S.: Multi-robot patrolling in wireless sensor net-
works using bounded cycle coverage. In: 2016 IEEE 28th International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 169–176 (2016)

8. Nallusamy, R., Duraiswamy, K., Dhanalaksmi, R., Parthiban, P.: Optimization of
non-linear mutiple traveling salesman problem using k-means clustering, shrink
wrap algorithm and meta-heuristics. Int. J. Non Linear Sci. 9(2), 171–177 (2010)

9. Fazli, P., Alireza, D., Alan, K.M.: Multi-robot repeated area coverage. Auton.
Robot 34, 251–276 (2013)

10. Portugal, D., Rocha, R.: MSP algorithm: muti-robot patrolling based on territory
allocation using balanced graph partitioning. In: SAC 2010, pp. 1271–1276 (2010)

11. Portugal, D., Pippin, C., Rocha, R.P., Christensen, H.: Finding optimal routes for
multi-robot patrolling in generic graphs. In: 2014 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 363–369 (2014)

12. Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In:
Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IAICT, vol. 349, pp. 139–146.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19170-1 15

13. Sea, V., Sugawara, T.: Area partitioning method with learning of dirty areas
and obstacles in environments for cooperative sweeping robots. In: 2015 IIAI 4th
International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 523–529
(2015)

14. Sea, V., Kato, C., Sugawara, T.: Coordinated area partitioning method by
autonomous agents for continuous cooperative tasks. J. Inf. Process. (JIP) 25,
75–87 (2017)

15. Sugiyama, A., Sea, V., Sugawara, T.: Effective task allocation by enhancing divi-
sional cooperation in multi-agent continuous patrolling tasks. In: 2016 IEEE 28th
International Conference on Tools with Artificial Intelligence (ICTAI), pp. 33–40
(2016)

16. Tao, M., Laura, E.R.: Frequency-based patrolling with heterogeneous agents and
limited communication. arXiv preprint arXiv: 1402.1757 (2014)

17. Sak, T., Wainer, J., Goldenstein, S.K.: Probabilistic multiagent patrolling. In:
Zaverucha, G., da Costa, A.L. (eds.) SBIA 2008. LNCS (LNAI), vol. 5249, pp.
124–133. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88190-
2 18

18. Yann, C., Francois, S., Geber, R.: A theoretical analysis of multi-agent patrolling
strategies. In: Third International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1524–1525 (2004)

19. Yann, C.: Theoretical analysis of the multi-agent patrolling problem. In:
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT), pp. 302–308 (2004)

20. Yasuyuki, S., Hirofumi, O., Tadashi, M., Maya, H.: Cooperative capture by multi-
agent using reinforcement learning application for security patrol systems. In: 2015
10th Asian Control Conference (ASCC), pp. 1–6 (2015)

21. Yehuda, E., Noa, A., Gal, A.K.: Multi-robot area patrol under frequency con-
straints. In: 2007 IEEE International Conference on Robotics and Automation,
pp. 385–390 (2007)

22. Definition of Facilities Security Work. https://www.security-law.com/security-
services-act/kikai.html

https://doi.org/10.1007/978-3-642-19170-1_15
http://arxiv.org/abs/1402.1757
https://doi.org/10.1007/978-3-540-88190-2_18
https://doi.org/10.1007/978-3-540-88190-2_18
https://www.security-law.com/security-services-act/kikai.html
https://www.security-law.com/security-services-act/kikai.html

Algorithms for Sparse k-Monotone
Regression

Sergei P. Sidorov(B), Alexey R. Faizliev, Alexander A. Gudkov,
and Sergei V. Mironov

Saratov State University, Saratov, Russian Federation
sidorovsp@info.sgu.ru

Abstract. The problem of constructing k-monotone regression is to find
a vector z ∈ R

n with the lowest square error of approximation to a
given vector y ∈ R

n (not necessary k-monotone) under condition of
k-monotonicity of z. The problem can be rewritten in the form of a
convex programming problem with linear constraints. The paper pro-
poses two different approaches for finding a sparse k-monotone regres-
sion (Frank-Wolfe-type algorithm and k-monotone pool adjacent viola-
tors algorithm). A software package for this problem is developed and
implemented in R. The proposed algorithms are compared using simu-
lated data.

Keywords: Greedy algorithms · Pool-adjacent-violators algorithm
Isotonic regression · Monotone regression · Frank-Wolfe type algorithm

1 Introduction

Let z = (z1, . . . , zn)T be a vector from R
n, n ∈ N, and let Δk be the finite

difference operator of order k, k ∈ N ∪ {0}, defined by

Δkzi = Δk−1zi+1 − Δk−1zi, Δ0zi = zi, 1 ≤ i ≤ n − k.

A vector z = (z1, . . . , zn)T ∈ R
n is said to be k-monotone if and only if Δkzi ≥ 0

for each 1 ≤ i ≤ n − k. A vector z = (z1, . . . , zn)T ∈ R
n is called 1-monotone

(or monotone) if zi+1 − zi ≥ 0, i = 1, . . . , n− 1, and 2-monotone vectors are just
convex (see Fig. 1).

The recent years have seen an increasing interest in shape-constrained esti-
mation in statistics [4,11,13,16,30,37]. One of such problems is the problem
of constructing k-monotone regression which is to find best fitted k-monotone
vector to a given vector. The review of results on 1-monotone regression can
be found in the book by Robertson and Dykstra [42]. The papers of Barlow
and Brunk [5], Dykstra [20], Best and Chakravarti [6], Best [7] consider the

The work was supported by RFBR (grant 18-37-00060).

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 546–556, 2018.
https://doi.org/10.1007/978-3-319-93031-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_39&domain=pdf

Algorithms for Sparse K-Monotone Regression 547

problem of finding monotone regression in quadratic and convex programming
frameworks. Using mathematical programming approach, the works [1,28,49]
have recently provided some new results on the topic. The papers [12,21] extend
the problem to particular orders defined by the variables of a multiple regres-
sion. The recent paper [13] proposes and analyzes a dual active-set algorithm for
regularized monotonic regression.

k-monotone regression (and 1-monotone regression in particular) found its
applicability in many different areas: in non-parametric mathematical statis-
tics [3,16], in smoothing of empirical data [2,19,25,26,29,36,38,48], in shape-
preserving dynamic programming [14,15,32], in shape-preserving approximation
[10,18,24,43,46]. Moreover, k-monotone sequences and vectors have broad appli-
cations in solving different problems in many mathematical areas [8,9,33,35,39–
41,47,51].

Denote Δn
k the set of all vectors from R

n, which are k-monotone. The prob-
lem of constructing k-monotone regression is to find a vector z ∈ R

n with the
lowest square error of approximation to the given vector y ∈ R

n (not necessary
k-monotone) under condition of k-monotonicity of z:

(z − y)T (z − y) =
n∑

i=1

(zi − yi)2 → min
z∈Δn

k

. (1)

In this paper we present two different approaches for finding sparse
k-monotone regression. First, following [22,27] in Sect. 2.2 we propose a simple
greedy algorithm which employs the well-known Frank-Wolfe type approach. We
show that the algorithm should carry out O(n2k) iterations to find a solution
with error O(n−1/2). Finally, extending the ideas of [34] in Sect. 2.3 we pro-
pose the k-monotone pool-adjusted-violators algorithm. A software package was
developed and implemented in R. The proposed methods are compared using
simulated data. To the best of our knowledge, both of proposed algorithms are
the first algorithms for the construction of k-monotone regression in case k > 1.

2 Algorithms for Monotone Regression

2.1 Preliminary Analysis

The problem (1) can be rewritten in the form of a convex programming problem
with linear constraints as follows

F (z) =
1
2
zT z − yT z → min, (2)

where minima is taken over all z ∈ R
n such that

gi(z) := −Δkzi ≤ 0, 1 ≤ i ≤ n − k. (3)

The problem (2)–(3) is a quadratic programming problem and is strictly convex,
and therefore it has a unique solution.

548 S. P. Sidorov et al.

Let ẑ be a (unique) global solution of (2)–(3), then there is a Lagrange
multiplier λ′ = (λ′

1, . . . , λ
′
n−k)T ∈ R

n−k such that

∇F (ẑ) +
n−k∑

i=1

λ′
i∇gi(ẑ) = 0, (4)

gi(ẑ) ≤ 0, λ′
i ≥ 0, 1 ≤ i ≤ n − k, (5)

λ′
igi(ẑ) = 0, 1 ≤ i ≤ n − k, (6)

where ∇gi denotes the gradient of gi. The equations (4)–(6) are Karush–Kuhn–
Tucker optimality conditions which can be reduced to

ẑ − y =
n−k∑

i=1

λi

k∑

j=0

(
k

j

)
(−1)k+j+1ei+j , (7)

gi(ẑ) ≤ 0, λi ≤ 0, 1 ≤ i ≤ n − k. (8)

λi(Δk−1ẑi+1 − Δk−1ẑi) = 0, 1 ≤ i ≤ n − k, (9)

where es, 1 ≤ s ≤ n, are unit standard basis vectors of the Euclidean space R
n,

and λ = −λ′.
Preliminary analysis of (7)–(9) shows that the (k − 1)-th differences of the

optimal solution ẑ should be sparse, i.e. the sequence Δk−1ẑi, 1 ≤ i ≤ n − k,
should have many zeroes. For example, if k = 1 then the optimal solution should
be on a piecewise constant function, and if k = 2 then optimal points should lie
on a piecewise linear function (see Fig. 1).

2.2 Frank-Wolfe Type Greedy Algorithm

For computational convenience of the problem (1), we moved from points zi to
increments xk+i = Δk−1zi+1 − Δk−1zi, i = 1, . . . , n − k. It was shown in [50]
that z ∈ Δn

k if and only if there exists a vector x = (x1, . . . , xn)T ∈ R
n such that

zi, 1 ≤ i ≤ n − k, can be represented as

zi =
i∑

j1=1

j1∑

j2=1

. . .

jk−2∑

jk−1=1

jk−1∑

jk=1

xjk , (10)

where xj ≥ 0 for all k + 1 ≤ j ≤ n. It was proved in [50] by induction from
the simple observation that if z ∈ R

n is k-monotone then there is a vector
x = (x1, . . . , xn)T ∈ R

n with the property that x = (x2, . . . , xn)T ∈ R
n−1 is

(k − 1)-monotone and such that zi =
∑i

j=1 xj .
Then the problem (1) can be rewritten as follows:

E(x) :=
n∑

i=1

⎛

⎝
i∑

j1=1

j1∑

j2=1

. . .

jk−2∑

jk−1=1

jk−1∑

jk=1

xjk − yi

⎞

⎠
2

→ min
x∈S

, (11)

Algorithms for Sparse K-Monotone Regression 549

where S denotes the set of all x = (x1, x2, . . . , xn) ∈ R
n such that x1, . . . , xk ∈ R,

(xk+1, . . . , xn) ∈ R
n−k
+ and

∑n
j=k+1 xj ≤ max Δk−1yi − min Δk−1yi.

Let ∇E(x) =
(

∂E
∂x1

, ∂E
∂x2

, . . . , ∂E
∂xn

)T

be the gradient of function E at a point

x. It was shown in [50] that if z ∈ Δn
k then there is a vector x = (x1, . . . , xn)T ,

xj ≥ 0 for j = k + 1, . . . , n, such that zi =
∑i

j=1 cik(j)xj , 1 ≤ i ≤ n, where
cik(j) are defined by

cik(j) :=

⎧
⎪⎨

⎪⎩

(
i−1
j−1

)
, if 1 ≤ i ≤ k − 1,(

k−1
j−1

)
, if k ≤ i ≤ n and 1 ≤ j ≤ k − 1,(

i+k−j−1
k−1

)
, if k ≤ i ≤ n and k ≤ j ≤ i.

Then
∂E

∂xs
= 2

n∑

i=s

cik(s)

⎛

⎝
i∑

j=1

cik(j)xj − yi

⎞

⎠ . (12)

For larger-scale problems obtaining the solution of the problem (11) could be
computationally quite challenging. In this regard, the present study proposes
to use the following Frank-Wolfe type greedy algorithm (k-FWA, Algorithm 1)
for finding an approximate sparse solution to the problem (11). The rate of
convergence for Algorithm 1 is estimated in Theorem 1.

Denote regm(ξ) the best fitted polynomial regression of order m to the values
ξ = (ξs1 , . . . , ξs2) at integer points s1, . . . , s2, and we will write

z = regm(ξ), (13)

where z = (zs1 , . . . , zs2) are the values predicted by the regression at the same
points s1, . . . , s2.

Algorithm 1. k-FWA
· Let y = (y1, . . . , yn)T be the input vector and N be the number of iteration;
begin

· Let z0 = regk−1(y);

· Let x0 = (x0
1, . . . , x

0
n)T be the start point obtained by (10) from z0;

· Let the counter t = 0;
· while t < N do

· Calculate the gradient ∇E(xt) at the current point xt, using (12);
· Let x̃t be the solution of the linear optimization problem
〈∇E(xt)T , x〉 → min

x∈S
, where 〈·, ·〉 is a scalar product of two vectors;

· Let xt+1 = xt + αt(x̃
t − xt), αt = 2

t+2
, t := t + 1;

· Recover the k-monotone sequence z = (z1, . . . , zn) from the vector xN ;

end

550 S. P. Sidorov et al.

Theorem 1. Let {xt} be generated according to Algorithm1. Then there is a
positive c(k, y) not depending on n such that for all t ≥ 2

E(xt) − E∗ ≤ c(k, y)n2k− 1
2

t + 2
, (14)

where E∗ is the optimal solution of (11).

Proof. It is know [23] that for all t ≥ 2

E(xt) − E∗ ≤ 2L(Diam(S))2

t + 2
,

where L is the Lipschitz constant of E and Diam(S) is the diameter of S. It is easy

to prove that Diam(S) is bounded. Let ∇2E(x) :=
(

∂2E
∂x2

1
, ∂2E

∂x2
2
, . . . , ∂2E

∂x2
n

)T

. It is
well known that if ∇E is differentiable, then its Lipschitz constant L satisfies the
inequality L ≤ supx ‖∇2E(x)‖2. It follows from (12) that ∂2E

∂x2
s

= 2
∑n

i=s c2ik(s).
Then

L ≤ sup
x

√√√√
n∑

s=1

(
∂2E

∂x2
s

)2

= 2

√√√√
n∑

s=1

(
n∑

i=s

c2ik(s)

)2

≤ 2

√√√√
n∑

s=1

(
n∑

i=s

(
i + k − s − 1

k − 1

)2
)2

= 2

√√√√
n∑

s=1

(
n−s+1∑

i=1

(
i + k − 2

k − 1

)2
)2

≤ 2

√√√√
n∑

s=1

(
n−s+k−1∑

i=1

(
ik−1

(k − 1)!

)2
)2

=
2

(k − 1)!2

√√√√
n∑

s=1

(
n−s+k−1∑

i=1

i2(k−1)

)2

.

(15)

It follows from the inequality
∑n

i=1 il ≤ 1
l n

l+1 that

L ≤ 2
(k − 1)!2

√√√√
n∑

s=1

(n − s + k − 1)4k−2 ≤ 2
(k − 1)!2

√√√√
n+k−2∑

s=1

s4k−2

≤ 2
(k − 1)!2

√
(n + k − 2)4k−1 (16)

The disadvantages of k-FWA are the slow convergence and the dependence
of the theoretical degree of convergence on the dimensionality of the problem.
Theorem 1 shows that we need O(n2k) iterations of Algorithm1 to obtain a
solution with error O(n−1/2). Another drawback of Algorithm 1 is that we do
not know the exact number of iterations that is necessary to achieve a desirable
accuracy. It may be helpful to follow the ideas of papers [31,44,45] and use the
values of duality gap as the stopping criterion for k-FWA.

Algorithms for Sparse K-Monotone Regression 551

2.3 k-Monotone Pool-Adjusted-Violators Algorithm

Simple iterative algorithm for solving the problem (1) with k = 1 is called
Pool-Adjacent-Violators Algorithm (PAVA) [17,34]. The work [6] examined the
generalization of this algorithm. The paper [52] studied this problem as the
problem of identifying the active set and proposed a direct algorithm of the
same complexity as the PAVA (the dual algorithm). PAVA computes a non-
decreasing sequence of values z1, . . . , zn such that the problem (1) with k = 1 is
optimized.

In this section we propose the extension of PAVA for finding k-monotone
regression which we called k-monotone pool-adjacent-violators algorithm
(k-PAVA). Note that 1-PAVA (k-PAVA with k = 1) coincides with the PAVA.

Let y = (y1, . . . , yn)T be the input vector. At the zero iteration (t = 0) we
assign z[0] := y. The algorithm we propose is a simple iterative algorithm, where
at each step of the iteration t we bypass the points z[t] from left to right. The
result of each iteration t is a vector z[t] = (z[t]1 , . . . , z

[t]
n)T . The algorithm finishes

its work on the iteration t∗ in which z[t
∗] ∈ Δn

k .
Let t = 1 (the iteration counter), l = 1 (the point counter), j = 0 (the index

of a point at a block).
We calculate Δkz

[t−1]
l , the finite difference of order k at current point z

[t−1]
l .

If Δkz
[t−1]
l ≥ 0 then we let z

[t]
l := z

[t−1]
l , and move on to the next point z

[t−1]
l+1 .

If Δkz
[t−1]
l < 0 then using the procedure (13) we get Z

[t]
l,l+k := regk−1(

Z
[t−1]
l,l+k

)
, where Z

[t]
l,l+k :=

{
z
[t]
l , . . . , z

[t]
l+k

}
denotes the block of points. Then we

calculate Δkz′
l+1, where z′

l+1 = (z[t]l+1, . . . , z
[t]
l+k, z

[t−1]
l+k+1)

T , and if Δkz′
l+1 ≥ 0 then

we assign z
[t]
l+1 := z

[t−1]
l+1 , j := 0, l := l+1, and return to the first step of the algo-

rithm. If Δkz′
l+1 < 0 then we let j := j+1 and add the point z

[t−1]
l+k+j to the block

Z
[t]
l,l+k+j−1, and then we calculate Z

[t]
l,l+k+j := regk−1

(
Z

[t]
l,l+k+j−1 ∪ z

[t−1]
l+k+j

)
.

Having passed all the points z
[t−1]
l , l = 1, . . . , n − k, it may be turn out

that all the points are from the block Z
[1]
1,n. In this case the resulting vector

z[t] = (z[t]1 , . . . , z
[t]
n)T is our k-monotone solution. Otherwise, we obtain separate

blocks Z
[t]
l1,l1+k+j1

, Z
[t]
l2,l2+k+j2

, . . ., each of which is k-monotone.
Then we set t := t + 1 and we repeat the process described above until

Δkz
[t]
l ≥ 0 for all l = 1, . . . , n − k. When all the finite differences become non-

negative, we get the desired k-monotone sequence.
The proposed Pool-Adjacent-Violators Algorithm for finding k-monotone

solution of the problem (1) (k-PAVA) is described below (Algorithm 2). The
resulting vector z[t] of length n will be k-monotone.

3 Empirical Result

The algorithms have been implemented in R. We compared the performance of
the Frank-Wolfe type algorithm (k-FWA, Algorithm 1) with the performance of

552 S. P. Sidorov et al.

Algorithm 2. k-PAVA
begin

· Let y = (y1, . . . , yn)T ∈ R
n be the input vector and let z[0] := y;

· Let t := 1 and let k be the desirable order of monotonicity;
repeat

· Let j := 0, l := 1;
· while l ≤ n − k do

· if Δkz
[t−1]
l < 0 then

· Z
[t]
l,l+k := regk−1

(

Z
[t−1]
l,l+k

)

;

· if Δk(z
[t]
l+1, . . . , z

[t]
l+k, z

[t−1]
l+k+1)

T ≥ 0 then

z
[t]
l+1 := z

[t−1]
l+1 , j := 0 and l := l + 1;

· else j := j + 1 and Z
[t]
l,l+k+j := regk−1

(

Z
[t]
l,l+k+j−1 ∪ z

[t−1]
l+k+j

)

;

· else z
[t]
l := z

[t−1]
l , l := l + 1 ;

· t := t + 1;

until Δkz
[t]
l ≥ 0 for all l = 1, . . . , n − k;

return z[t] = (z
[t]
1 , . . . , z

[t]
n)

end

the pool-adjacent-violators algorithm for finding k-monotone solution (k-PAVA,
Algorithm 2) using simulated data sets.

Results show that the speed of convergence for k-PAVA is higher than for
k-FWA. Table 1 presents empirical results for k-PAVA and k-FWA for simulated
sets of points. In the case k = 1 the simulated points were obtained as the values
of logarithmic function with added normally distributed noise: yi = ln(1+i)+ϕi,
ϕi ∼ N (0, 1), i = 1, . . . , 10000. If k = 2 then the simulated points were taken
as yi = 0.001(i − 500)2 + ϕi, ϕi ∼ N (0, 1), i = 1, . . . , 1000. The table contains
mean errors 1

n

∑n
i=1(zi −yi)2, the cardinality (the number of nonzero increments

xk+i = Δk−1zi+1 − Δk−1zi, i = 1, . . . , n − k), the number of iteration and CPU
time (in seconds).

The results show that errors of k-FWA are getting closer to the errors of k-
PAVA with increased number of iterations for k-FWA. While k-PAVA is better
than greedy algorithm in terms of errors, the solutions of k-FWA have a better
sparsity for k = 1. Both algorithms obtain sparse solutions, but we can control
the cardinality in k-FWA as opposed to k-PAVA. Generally, k-FWA’s cardinality
increases by one at each iteration. Consequently, we should limit the number of
iterations to obtain sparser solutions.

Figure 1 (k = 1) shows simulated points (N = 100) with logarithm struc-
ture and isotonic regressions, obtained by 1-FWA (green line) and 1-PAVA (red
line). 1-FWA gives a solution with 14 jumps, and 1-PAVA with 16 jumps. Since
the solutions of the 1-FWA are sparser, the Frank-Wolfe type algorithm error
is slightly higher than the 1-PAVA. Figure 1 (k = 2) shows simulated points
(N = 100) drowned from a quadratic function by adding normally distributed

Algorithms for Sparse K-Monotone Regression 553

noise and two 2-monotone regressions, obtained by 2-FWA (green line) and
2-PAVA (red line). The solution obtained by 2-FWA after 152 iterations has
the cardinality 11 and the value of mean error 1.295. The solution obtained by
2-PAVA after 23 iterations has the cardinality 7 and the value of mean error
1.241.

(k ()1= k = 2)

20 40 60 80 100

0

2

4

6

20 40 60 80 100

0

2

4

6 yi
k-PAVA
k-FWA

Fig. 1. Solutions obtained by k-PAVA and k-FWA (Color figure online)

Table 1. Comparison of algorithms k-PAVA and k-FWA on the simulated data

Algorithm k = 1 k = 2

of
iterations

Error Card. CPU
time

of
iterations

Error Card. CPU
time

k-PAVA 0.994 82 0.73 98 0.928 32 4.9

k-FWA 100 0.999 41 0.71 100 2.514 14 22.1

k-FWA 200 0.996 57 1.48 150 1.252 23 44.2

k-FWA 500 0.995 76 3.49 250 1.092 31 88.4

k-FWA 1000 0.994 79 6.99 450 1.009 62 176

k-FWA 2000 0.994 82 14.9 650 0.963 88 353

4 Conclusion

Our research proposes two algorithms (k-FWA and k-PAVA) for solving the
problem of constructing the best fitted k-monotone regression. One of the main
contributions of the paper is Theorem1, which provides a theoretical conver-
gence result for the Frank-Wolfe type algorithm. We compared the performance
of k-FWA with the performance of k-PAVA using simulated data sets. The soft-
ware was implemented in R. While k-PAVA gives smaller errors than k-FWA,

554 S. P. Sidorov et al.

the Frank-Wolfe type algorithm obtains sparser solutions. One of the advantages
of the Frank-Wolfe type algorithm is the potential for controlling cardinality of
the solution. On the other hand, the drawbacks of k-FWA are the slow con-
vergence and the dependence of the theoretical degree of convergence on the
dimensionality of the problem.

References

1. Ahuja, R., Orlin, J.: A fast scaling algorithm for minimizing separable convex
functions subject to chain constraints. Oper. Res. 49(1), 784–789 (2001)

2. Altmann, D., Grycko, E., Hochstättler, W., Klützke, G.: Monotone smooth-
ing of noisy data. Diskrete Mathematik und Optimierung. Technical report feu-
dmo034.15. Fern Universität in Hagen, Fakultät für Mathematik und Informatik
(2014)

3. Bach, F.: Efficient algorithms for non-convex isotonic regression through submod-
ular optimization (2017), Working paper or preprint

4. Balabdaoui, F., Rufibach, K., Santambrogio, F.: Least-squares estimation of two-
ordered monotone regression curves. J. Nonparametr. Stat. 22(8), 1019–1037
(2010)

5. Barlow, R., Brunk, H.: The isotonic regression problem and its dual. J. Am. Stat.
Assoc. 67(337), 140–147 (1972)

6. Best, M.J., Chakravarti, N.: Active set algorithms for isotonic regression: a unifying
framework. Math. Progr.: Ser. A B 47(3), 425–439 (1990)

7. Best, M., Chakravarti, N., Ubhaya, V.: Minimizing separable convex functions
subject to simple chain constraints. SIAM J. Optim. 10(3), 658–672 (2000)

8. Bor, H.: A study on local properties of Fourier series. Nonlinear Anal.: Theory
Methods Appl. 57(2), 191–197 (2004)

9. Bor, H.: A note on local property of factored Fourier series. Nonlinear Anal.: Theory
Methods Appl. 64(3), 513–517 (2006)

10. Boytsov, D.I., Sidorov, S.P.: Linear approximation method preserving
k-monotonicity. Sib. Electron. Math. Rep. 12, 21–27 (2015)

11. Brezger, A., Steiner, W.J.: Monotonic regression based on bayesian P-splines. J.
Bus. Econ. Stat. 26(1), 90–104 (2008)

12. Burdakov, O., Grimvall, A., Hussian, M.: A generalised PAV algorithm for mono-
tonic regression in several variables. In: Antoch, J. (ed.) Proceedings of the 16th
Symposium in Computational Statistics, COMPSTAT, vol. 10, no. 1, pp. 761–767
(2004)

13. Burdakov, O., Sysoev, O.: A dual active-set algorithm for regularized monotonic
regression. J. Optim. Theory Appl. 172(3), 929–949 (2017)

14. Cai, Y., Judd, K.L.: Shape-preserving dynamic programming. Math. Methods
Oper. Res. 77, 407–421 (2013)

15. Cai, Y., Judd, K.L.: Advances in numerical dynamic programming and new appli-
cations. In: Handbook of Computational Economics, vol. 3, pp. 479–516. Elsevier
(2014)

16. Chen, Y.: Aspects of shape-constrained estimation in statistics. Ph.D. thesis. Uni-
versity of Cambridge (2013)

17. Chepoi, V., Cogneau, D., Fichet, B.: Polynomial algorithms for isotonic regression.
Lect. Notes-Monogr. Ser. 31(1), 147–160 (1997)

Algorithms for Sparse K-Monotone Regression 555

18. Cullinan, M.P.: Piecewise convex-concave approximation in the minimax norm. In:
Demetriou, I., Pardalos, P. (eds.) Abstracts of Conference on Approximation and
Optimization: Algorithms, Complexity, and Applications, Athens, Greece, 29–30
June 2017, p. 4. National and Kapodistrian University of Athens (2017)

19. Diggle Peter, M.S., Tony, M.J.: Case-control isotonic regression for investigation
of elevation in risk around a point source. Stat. Med. 18(1), 1605–1613 (1999)

20. Dykstra, R.: An isotonic regression algorithm. J. Stat. Plan. Inference 5(1), 355–
363 (1981)

21. Dykstra, R., Robertson, T.: An algorithm for isotonic regression for two or more
independent variables. Ann. Stat. 10(1), 708–719 (1982)

22. Faizliev, A.R., Gudkov, A.A., Mironov, S.V., Levshunov, M.A.: Greedy algorithm
for sparse monotone regression. In: CEUR Workshop Proceedings, vol. 2018, pp.
23–31 (2017)

23. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist.
Q. 3(1–2), 95–110 (1956)

24. Gal, S.G.: Shape-Preserving Approximation by Real and Complex Polynomials.
Birkhäuser, Boston (2008)

25. Gorinevsky, D.: Monotonic regression filters for trending deterioration faults. In:
Proceedings of the American Control Conference, vol. 6, pp. 5394–5399 (2004)

26. Gorinevsky, D.: Efficient filtering using monotonic walk model. In: Proceedings of
the American Control Conference, pp. 2816–2821. IEEE (2008)

27. Gudkov, A.A., Mironov, S.V., Faizliev, A.R.: On the convergence of a greedy algo-
rithm for the solution of the problem for the construction of monotone regression.
Izv. Sarat. Univ. (N. S.) Ser. Math. Mech. Inform. 17(4), 431–440 (2017)

28. Hansohm, J.: Algorithms and error estimations for monotone regression on par-
tially preordered sets. J. Multivar. Anal. 98(5), 1043–1050 (2007)

29. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity.
Chapman and Hall/CRC, New York (2015)

30. Hazelton, M., Turlach, B.: Semiparametric regression with shape-constrained
penalized splines. Comput. Stat. Data Anal. 55(10), 2871–2879 (2011)

31. Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In:
Proceedings of the 30th International Conference on Machine Learning, ICML
2013, pp. 427–435 (2013)

32. Judd, K.: Numerical Methods in Economics. The MIT Press, Cambridge (1998)
33. Latreuch, Z., Beläıdi, B.: New inequalities for convex sequences with applications.

Int. J. Open Probl. Comput. Math. 5(3), 15–27 (2012)
34. Leeuw, J., Hornik, K., Mair, P.: Isotone optimization in R: pool-adjacent-violators

algorithm (PAVA) and active set methods. J. Stat. Softw. 32(5), 1–24 (2009)
35. Leindler, L.: A new extension of monotone sequences and its applications.

J. Inequal. Pure Appl. Math. 7(1), 7 (2006). Paper No. 39 electronic only.
http://eudml.org/doc/128520

36. Leitenstorfer, F., Tutz, G.: Generalized monotonic regression based on B-splines
with an application to air pollution data. Biostatistics 8(3), 654–673 (2007)

37. Lu, M.: Spline estimation of generalised monotonic regression. J. Nonparametr.
Stat. 27(1), 19–39 (2014)

38. Gorinevsky, D., Kim, S.J., Beard, S., Boyd, S., Gordon, G.: Optimal estimation of
deterioration from diagnostic image sequence. IEEE Trans. Signal Process. 57(3),
1030–1043 (2009)

39. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and
Its Applications. Springer, New York (2011). https://doi.org/10.1007/978-0-387-
68276-1

http://eudml.org/doc/128520
https://doi.org/10.1007/978-0-387-68276-1
https://doi.org/10.1007/978-0-387-68276-1

556 S. P. Sidorov et al.

40. Milovanović, I.Z., Milovanović, E.I.: Some properties of lkp-convex sequences. Bull.
Int. Math. Virtual Inst. 5(1), 33–36 (2015)

41. Niezgoda, M.: Inequalities for convex sequences and nondecreasing convex func-
tions. Aequ. Math. 91(1), 1–20 (2017)

42. Robertson, T., Wright, F., Dykstra, R.: Order Restricted Statistical Inference.
Wiley, New York (1988)

43. Shevaldin, V.T.: Local approximation by splines. UrO RAN, Ekaterinburg (2014)
44. Sidorov, S.P., Mironov, S.V.: Duality gap analysis of weak relaxed greedy algo-

rithms. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) LION 2017. LNCS,
vol. 10556, pp. 251–262. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69404-7 18

45. Sidorov, S.P., Mironov, S.V., Pleshakov, M.G.: Dual convergence estimates for a
family of greedy algorithms in Banach spaces. In: Nicosia, G., Pardalos, P., Giuf-
frida, G., Umeton, R. (eds.) MOD 2017. LNCS, vol. 10710, pp. 109–120. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-72926-8 10

46. Sidorov, S.: On the saturation effect for linear shape-preserving approximation in
Sobolev spaces. Miskolc Math. Notes 16(2), 1191–1197 (2015)

47. Sidorov, S.P.: Linear k -monotonicity preserving algorithms and their approxima-
tion properties. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015.
LNCS, vol. 9582, pp. 93–106. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32859-1 7

48. Siem, A.Y.D., den Hertog, D., Hoffmann, A.L.: Multivariate convex approximation
and least-norm convex data-smoothing. In: Gavrilova, M., Gervasi, O., Kumar,
V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006.
LNCS, vol. 3982, pp. 812–821. Springer, Heidelberg (2006). https://doi.org/10.
1007/11751595 86

49. Stromberg, U.: An algorithm for isotonic regression with arbitrary convex distance
function. Comput. Stat. Data Anal. 11(1), 205–219 (1991)

50. Toader, G.: The representation of n-convex sequences. L’Anal. Numér. et la Théorie
de L’Approx. 10(1), 113–118 (1981)

51. Wu, S., Debnath, L.: Inequalities for convex sequences and their applications. Com-
put. Math. Appl. 54(4), 525–534 (2007)

52. Wu, W.B., Woodroofe, M., Mentz, G.: Isotonic regression: another look at the
changepoint problem. Biometrika 88(3), 793–804 (2001)

https://doi.org/10.1007/978-3-319-69404-7_18
https://doi.org/10.1007/978-3-319-69404-7_18
https://doi.org/10.1007/978-3-319-72926-8_10
https://doi.org/10.1007/978-3-319-32859-1_7
https://doi.org/10.1007/978-3-319-32859-1_7
https://doi.org/10.1007/11751595_86
https://doi.org/10.1007/11751595_86

Revisiting the Self-adaptive Large
Neighborhood Search

Charles Thomas(B) and Pierre Schaus

ICTEAM institute, Universite catholique de Louvain, Louvain-la-Neuve, Belgium
{charles.thomas,pierre.schaus}@uclouvain.be

Abstract. This paper revisits the Self-Adaptive Large Neighborhood
Search introduced by Laborie and Godard. We propose a variation in
the weight-update mechanism especially useful when the LNS operators
available in the portfolio exhibit unequal running times. We also propose
some generic relaxations working for a large family of problems in a
black-box fashion. We evaluate our method on various problem types
demonstrating that our approach converges faster toward a selection of
efficient operators.

1 Introduction

Back in 2004, Puget [1] said that CP technology was too complex to use and more
research efforts should be devoted to make it accessible to a broader audience. A
lot of research effort has been invested to make this vision become true. Efficient
black-box complete search methods have been designed [2–8] and techniques
such as the embarrassingly parallel search are able to select the best search
strategy with almost no overhead [9]. For CP, Puget argued that the model-and-
run approach should become the target to reach. The improvements went even
beyond that vision since for some applications, the model can be automatically
derived from the data [10,11].

This work aims at automating the CP technology in the context of Large
Neighborhood Search (LNS) [12]. This technique consists in iteratively applying
a partial relaxation followed by a reconstruction in order to gradually improve
the solution to the problem. The relaxation determines constraints to impose to
restrict the problem based on the current best solution. Then, the reconstruction
(or search) heuristic guides the search in the resulting search space by assigning
values to the remaining variables in order to find one or more new solution(s).

Example 1. For example, a random relaxation heuristic selects randomly a per-
centage of the variables to relax and fix the other ones to their assignment in the
current best solution. This heuristic can be parametrized by choosing the per-
centage to relax in a set of values such as {10%, 20%, 50%}. A first fail heuristic
with a fixed limit on the number of backtracks can be used as a reconstruction
heuristic which can also be parametrized by choosing a limit on the number of
backtracks in a set of values such as {50 bkts, 500 bkts, 5000 bkts}.
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 557–566, 2018.
https://doi.org/10.1007/978-3-319-93031-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_40&domain=pdf

558 C. Thomas and P. Schaus

The relaxation and reconstruction process continues until some limit in terms
of iterations or time is reached. From a local search point of view, CP is thus used
as a slave technology for exploring a (large) neighborhood around the current
best solution. LNS has been successfully used on various types of problems: bin-
packing [13,14], vehicle-routing [15,16], scheduling [17–19], etc. Designing good
relaxation and reconstruction heuristics with the right parameters is crucial for
the efficiency of LNS. Unfortunately this task requires some experience and
intuition on the problem to solve.

In order to design an automated LNS, two approaches can be envisioned. A
first one would be to recognize the structure of the model in order to select the
most suited heuristic from a taxonomy of heuristics described in the literature.
This approach, which is used in [20] for scheduling problems, has two disadvan-
tages: (1) some problems are hybrids and thus difficult to classify or recognize,
(2) it requires a lot of effort and engineering to develop the problem inspec-
tor and to maintain the taxonomy of operators. Therefore, we follow a different
approach called Adaptive LNS (ALNS) introduced in [21] which uses a portfolio
of heuristics and dynamically learns on the instance which ones are the most
suitable. At each iteration, a pair of relaxation and reconstruction heuristics is
selected and applied on the current best solution. The challenge is to select the
pair having the greatest gradient of the objective function over time (evaluated
on the current best solution) based solely on the past executions.

We expand the usage of the Self Adaptive LNS (SA-LNS) framework pro-
posed in [22] on different optimization problems by considering the model as
a black-box. Our solver uses a set of generic preconfigured methods (opera-
tors) that hypothesize specificities in the problem and leverage them in order
to efficiently perform LNS iterations. Given that the operators available in the
portfolio are well diversified, we hope to provide a simple to use yet efficient
framework able to solve a broad range of discrete optimization problems.

Our contributions to the ALNS framework are: (1) An adaptation of the
weight update mechanism able to better cope with unequal running times of the
operators. (2) A portfolio of operators easy to integrate and implement in any
solver for solving a broad range of problems.

We first explain in Sect. 2 the principles of the ALNS framework. Then, in
Sect. 3 we present the heuristics implemented as part of our ALNS portfolio. We
present the experiments that we conducted and their results in Sect. 4. Finally,
we provide a few concluding remarks and evoke our further research prospects
in Sect. 5.

2 Adaptive Large Neighbourhood Search

Each ALNS operator as well as its possible parameters is associated to a weight.
These weights allow to dynamically reward or penalize the operators and their
parameters along the iterations to bias the operator selection strategy. Algo-
rithm 1 describes the pseudo-code for an ALNS search. Δc ≥ 0 is the objective
improvement and Δt is the time taken by the operator.

Revisiting the Self-adaptive Large Neighborhood Search 559

Algorithm 1. Adaptive Large Neighborhood Search For a minimization problem
s∗ ← feasible solution
repeat

relax ← select relaxation operator
search ← select search operator
(s′, Δt) ← search(relax(s∗))
Δc ← cost(s∗) − cost(s′)
weightrelax ← updateWeight(relax)
weightsearch ← updateWeight(search)
if Δc > 0 then

s∗ ← s′

end if
until stop criterion met
return s∗

Roulette Wheel Selection. We use the Roulette Wheel selection mechanism as in
[22,23]. It consists in selecting the operators with probabilities proportional to
their weight. The probability P (i) of selecting the i-th operator oi with a weight
wi among the set of all operators O is P (i) = wi∑|O|

k=1 wk

Weight Evaluation. In [22], the authors evaluate the operators ran at each iter-
ation using an efficiency ratio r defined as: r = Δc

Δt . This ratio is then balanced
with the previous weight of the operator wo,p using a reaction factor α ∈ [0, 1]:
wo = (1−α) ·wo,p +α ·r. While the reaction factor is important to accommodate
the evolving efficiency of the operators during the search, this method does not
cope well with operators having different running times. Indeed, operators with
a small execution time will evolve faster as they will be evaluated more often.
This can lead less efficient operators to be temporally considered better as their
weight will decrease slower.

Example 2. Let us consider two operators A and B with running times of respec-
tively 2 and 4 s. Both operators start with an efficiency ratio of 10 but after some
time in the search, A has an efficiency of 1

2 and B of (14). If each operator is
separately run for 4 s, under a reaction factor of α = 0.9; as A will be evaluated
twice, its weight will decrease to 0.595 (0.1 · (0.1 · 10+0.9 · 1

2)+0.9 · 1
2). Over the

same duration B would be evaluated once and its weight would become 1.225
(0.1 · 10 + 0.9 · 1

4). While both operators will eventually converge towards their
respective efficiency, for a short amount of time, B will have a higher score than
A and thus a higher probability to be selected.

This induces a lack of reactivity in the operator selection. In the following,
we propose a variation of the weight update rule, more aligned with the expected
behavior in case of different runtimes among the operators.

Evaluation Window. We evaluate the operator based on its performances
obtained in a sliding evaluation window [t∗ − w, now] where t∗ is the time at

560 C. Thomas and P. Schaus

which the last best solution was found and w is the window size meta-parameter.
The window thus adapts itself in case of stagnation to always include a fixed part
of the search before the last solution was found. This ensures that the operator(s)
responsible for finding the last solution(s) will not have their score evaluated to
0 after a while in case of stagnation.

For each LNS iteration i, we record the operator used oi, the time ti at which
it was executed, the difference Δci of the objective and the duration of execution
Δti. We define the local/total efficiency ratio L(o)/T (o) of an operator and the
local/total efficiency L/T of all the operators as:

L(o) =

∑
i|oi=o∧ti∈[t∗−w,now] Δci

∑
i|oi=o∧ti∈[t∗−w,now] Δti

T (o) =

∑
i|oi=o∧ti∈[0,now] Δci

∑
i|oi=o∧ti∈[0,now] Δti

(1)

L =

∑
i|ti∈[t∗−w,now] Δci

∑
i|ti∈[t∗−w,now] Δti

T =

∑
i|ti∈[0,now] Δci

∑
i|ti∈[0,now] Δti

(2)

Intuitively, the local efficiency corresponds to estimating the gradient of the
objective function with respect to the operator inside the evaluation window. If
the operator was not selected during the window, its local efficiency is 0 which
might be a pessimistic estimate. Therefore we propose to smooth the estimate
by taking into account T (o) normalized by the current context ratio L/T . The
evaluation of an operator o is computed as:

weight(o) = (1 − λ) · L(o) + λ · L

T
· T (o) (3)

with λ ∈ [0, 1] a balance factor between the two terms. As we desire to evaluate
the operator mainly based on its local efficiency, we recommend that λ < 0.5.

3 Operator Portfolio

In this section, we present the relaxation and search operators that we propose to
be part of the portfolio. All of them operate on a vector of integer decision vari-
ables. This list is based on our experience and the features available in the solver
used for our experiments. Therefore it should not be considered as exhaustive.

Relaxation Heuristics

– Random: Relaxes randomly k variables by fixing the other ones to their value
in the current best solution. This heuristic brings a good diversification and
was demonstrated to be good despite its simplicity [24].

– Sequential: Relaxes randomly n sequences of k consecutive variables in the
vector of decision variables. This heuristic should be efficient on problems
where successive decision variables are related to each other, for instance in
Lot sizing problems [25,26].

Revisiting the Self-adaptive Large Neighborhood Search 561

– Propagation Guided and Reversed Propagation Guided: Those heuristics
are described in [27]. They consist of exploiting the amount of propagation
induced when fixing a variable to freeze together sets of variables whose values
are strongly dependent on each other.

– Value Guided: This heuristic uses the values assigned to the variables. We
have five different variants: (1) Random Groups: Relaxing together groups of
variables having the same value. This variant should be efficient on problems
where values represent resources shared between variable such as bin-packing
problems. (2) Max Groups: This variant relaxes the largest groups of vari-
ables having the same values. It can be useful for problems such as BACP
or Assembly line balancing [28,29]. (3) Min Groups: This method relaxes
the smallest groups of variables having the same value (which can be sin-
gle variables). (4) Max Values: It consists in relaxing the k variables having
the maximum values. We expect this heuristic to be efficient with problems
involving a makespan minimization. (5) Min Values: This heuristic relaxes
the k variables having the minimum values. It should be efficient in case of
maximization problems.

– K Opt: This heuristic makes the hypothesis that the decision variables form
a predecessor/successor model (where variable values indicate the next or
previous element in a circuit). It is inspired by the k-opt moves used in local
search methods for routing problems. The principle is to relax k edges in the
circuit by selecting k variables randomly. The remaining variables have their
domain restricted to only their successor and their predecessor in the current
best solution in order to allow inversions of the circuit fragments.

– Precedency Based: This relaxation is useful for scheduling problems and
hypothesizes that the decision variables corresponds to starting times of activ-
ities. It imposes a partial random order schedule as introduced in [17].

– Cost Impact: This operator was described in [24]. The heuristic consists in
relaxing the variables that impact most the objective function when fixed.

Search Heuristics. A search heuristic explores the search space of the remaining
unbounded variables by iteratively selecting a variable and one of its values to
branch on. They can be separated into two components: a variable heuristic and
a value heuristic. Here are the variable heuristics used:

– FirstFail tries first variables that have the most chances to lead to failures in
order to maximize propagation during the search.

– Conflict Ordering proposed in [4] reorders dynamically the variables to select
first the ones having led to the most recent conflicts.

– Weighted Degree introduced in [30] associates a weight to each variable. This
weight is increased each time a constraint involving that variable fails.

In combination with these variable heuristics, we used different value heuris-
tics which select the minimum/maximum/median/random value in the domain
plus the value sticking [31] which remembers the last successful assigned values.
We also permit a binary split of the domain into ≤, > branching decisions.

562 C. Thomas and P. Schaus

4 Experiments

As in [9] we use an oracle baseline to compare with ALNS. Our baseline consists
of a standard LNS with for each instance the best combination of operators
(the one that reached the best objective value in the allocated time), chosen a
posteriori. Notice that this baseline oracle is not the best theoretical strategy
since it sticks with the same operator for all the iterations.

We implemented our framework in the OscaR constraint programming solver
[32] where it is available in open-source. We tested our framework on 10 differ-
ent constraint optimization problems with two arbitrarily chosen medium-sized
instances per problem. We compare: (1) The original implementation from [22]
(denoted Laborie here after) with a reaction factor α of 0.9. (2) The variant
of [22] proposed in this article (denoted Eval window) with a sliding window
w = 10 seconds and a balance factor λ of 0.05. (3) The oracle baseline.

Each approach was tested from the same initial solution (found for each
instance using a first-fail, min-dom heuristic) with the same set of operators.
We used relaxation sizes of {10%, 30%, 70%} and backtracks limits of {50 bkts,
500 bkts, 5000 bkts}. We generated a different operator for each parameter(s)
value(s) combination but kept the relaxation and reconstruction operators sep-
arated. We have 30 relaxation and 36 reconstruction operators, which yields a
total of 1080 possible combinations to test for the baseline. Each ALNS vari-
ant was run 20 times with different random seeds on each instance for 240 s.
We report our results in terms of cost values of the objective function for each
instance. In order to compare the anytime behavior of the approaches, we define
the relative distance of an approach at a time t as the current distance from
the best known objective (BKO) divided by the distance of the initial solution:
(objective(t)−BKO)/(objective(0)−BKO). A relative distance of 0 thus indi-
cates that the optimum has been reached.

We report the final results in Table 1. For each instance, we indicate the
best known objective (BKO) and the results of the evaluated approaches after
240 s of LNS. For each approach, we report the average objective value (obj),
the standard deviation (std) if applicable and the relative distance to the best
known solution (rdist). The best results between the two evaluated approaches
are displayed in bold. Figure 2 plots the average relative distance to the best
known solution in function of the search time.

The results seem to indicate (at least on the tested instances) that the weight
estimation based on an evaluation window tends to improve the performances
of the original ALNS as described in [22]. The average relative distance to the
best known solution is of 0.12 at the end of the search using the evaluation
window, while it is of 0.18 using our implementation of [22]. None of the ALNS
approaches is able to compete with the baseline (except on a few instances), but
they obtain reasonably good solutions in a short amount of time. Furthermore,
their any-time behavior is good when compared to the baseline and tends to get
closer towards the end of the search.

Figure 1 shows a heat map of the relative selection frequency of the relaxation
operators for each problem in the Eval window approach. The darker an entry,

Revisiting the Self-adaptive Large Neighborhood Search 563

Table 1. Experimental results

Instance Problem BKO
Baseline Eval window Laborie

obj rdist obj std rdist obj std rdist
la13 JobShop 1150.00 1150.00 0.00 1157.65 12.06 0.00 1195.65 156.4 0.01
la17 (Lawrence-84) 784.00 784.00 0.00 784.05 0.22 0.00 784.00 0.00 0.00
chr22b QAP 6194.00 6292.00 0.01 6517.80 115.16 0.04 6626.60 135.71 0.06
chr25a (Christofides-89) 3796.00 3874.00 0.00 4682.00 393.52 0.04 4982.30 342.88 0.06
j120 11 3 RCPSP 188.00 228.00 0.08 420.75 129.61 0.48 399.55 62.88 0.43
j120 7 10 (Kolisch-95) 111.00 374.00 0.49 160.60 113.23 0.09 127.70 1.42 0.03
bench 7 1 Steel 1.00 6.00 0.03 30.65 11.69 0.18 49.75 8.92 0.29
bench 7 4 (CSPLib) 1.00 9.00 0.04 24.30 5.83 0.12 42.05 8.05 0.21
kroA200 TSP 29368.00 31466.00 0.01 50022.35 11159.91 0.06 156239.10 12097.24 0.37
kroB150 (Krolak-72) 26130.00 26141.00 0.00 28596.20 872.77 0.01 61658.70 6051.92 0.14
C103 VRPTW 82811.00 82814.00 0.00 105876.10 5553.99 0.07 137749.30 17371.97 0.17
R105 (Solomon-87) 137711.00 137261.00 0.00 140162.30 1593.46 0.02 144273.05 2051.77 0.05
t09-4 Cutstock 73.00 73.00 0.00 76.65 3.38 0.10 77.10 1.73 0.11
t09-7 (XCSP) 161.00 161.00 0.00 161.00 0.00 0.00 161.00 0.00 0.00
qwhopt-o18-h120-1 Graph colouring 17.00 17.00 0.00 17.00 0.00 0.00 17.00 0.00 0.00
qwhopt-o30-h320-1 (XCSP) 30.00 30.00 0.00 541.40 51.90 0.59 653.20 32.46 0.72
PSP 100 4 Lot sizing 8999.00 9502.00 0.03 11796.85 1204.18 0.18 14682.45 847.30 0.36
PSP 150 3 (Houndji-2014) 14457.00 16275.00 0.23 18236.15 569.80 0.48 19482.20 339.11 0.63
cap101 Warehouse 804126.00 804126.00 0.00 804599.55 428.34 0.00 804556.50 430.50 0.00
cap131 (XCSP) 910553.00 910553.00 0.00 913147.60 2701.98 0.00 913240.40 3197.29 0.00
Average 0.05 1246.05 0.12 2156.88 0.18

Fig. 1. Heat map of the relaxation operators selection for the eval window approach

the more frequently this operator was selected for the problem instance. Two
interesting observations can be made. First, a subset of operators emerges more
frequently for most of the problems. Second, this set varies between problems
of different types, but is correlated between instances of the same problem. For
some problems this set of operators is more uniform than others. For example,

564 C. Thomas and P. Schaus

0 30 60 90 120 150 180 210 240

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

rd
is

t

Baseline
Eval window
Laborie

Fig. 2. Average relative distance to BKO during the search

on the warehouse location and the cutting stock problems the operators are
selected rather uniformly. The job shop has a strong preference for the max-val
and precedency operators. On the contrary, cost-impact is almost useless for
the makespan objective of the job shop. Not surprisingly the RCPSP, also a
scheduling problem, selects the same two operators as the job shop. The random
operator is generally good except for scheduling problems. Due to space limita-
tions, the heat map for Laborie is not given. The selection frequency obtained by
the approach of [22] is more uniform, except for scheduling problems for which
the same two operators emerge.

The results highlighted by the heat map confirm our intuition and a priori
experience, of which operator would be the most successful on each problem.
This comforts us that self-adaptive LNS could reach the performances of an
expert that would select the operators manually for each problem.

5 Conclusion and Future Work

The weight update mechanism based on an evaluation window seems a promis-
ing adaptation for the original ALNS. In the future we would like to continue
researching new relaxation operators for other types of problems (time-tabling,
planing, etc) and experiment on a broader set of problems and instances. Par-
allelizing ALNS would also be an interesting challenge. We believe that ALNS
would perform well in solver competitions such as [33,34] where the set of prob-
lems is very broad.

Acknowledgements. We thank the reviewers for their feedback. This work was
funded by the Walloon Region (Belgium) as part of the PRESupply project.

Revisiting the Self-adaptive Large Neighborhood Search 565

References

1. Puget, J.-F.: Constraint programming next challenge: simplicity of use. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 5–8. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30201-8 2

2. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8 41

3. Hebrard, E., Siala, M.: Explanation-based weighted degree. In: Salvagnin, D., Lom-
bardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 167–175. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59776-8 13

4. Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for schedul-
ing problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 10

5. Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In:
Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 108–123. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-18008-3 8

6. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29828-8 15

7. Pesant, G., Quimper, C.G., Zanarini, A.: Counting-based search: branching heuris-
tics for constraint satisfaction problems. J. Artif. Intell. Res. 43, 173–210 (2012)

8. Viĺım, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based
scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 30

9. Palmieri, A., Régin, J.-C., Schaus, P.: Parallel strategies selection. In: Rueher, M.
(ed.) CP 2016. LNCS, vol. 9892, pp. 388–404. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44953-1 25

10. Picard-Cantin, É., Bouchard, M., Quimper, C.-G., Sweeney, J.: Learning the
parameters of global constraints using branch-and-bound. In: Beck, J.C. (ed.) CP
2017. LNCS, vol. 10416, pp. 512–528. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66158-2 33

11. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint mod-
els from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 13

12. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

13. Malitsky, Y., Mehta, D., O’Sullivan, B., Simonis, H.: Tuning parameters of large
neighborhood search for the machine reassignment problem. In: Gomes, C., Sell-
mann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 176–192. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38171-3 12

14. Schaus, P., Van Hentenryck, P., Monette, J.N., Coffrin, C., Michel, L., Deville, Y.:
Solving steel mill slab problems with constraint-based techniques: CP, LNS, and
CBLS. Constraints 16(2), 125–147 (2011)

15. Jain, S., Van Hentenryck, P.: Large neighborhood search for dial-a-ride problems.
In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 400–413. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23786-7 31

https://doi.org/10.1007/978-3-540-30201-8_2
https://doi.org/10.1007/978-3-540-30201-8_2
https://doi.org/10.1007/978-3-540-30201-8_41
https://doi.org/10.1007/978-3-319-59776-8_13
https://doi.org/10.1007/978-3-319-23219-5_10
https://doi.org/10.1007/978-3-319-18008-3_8
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-319-18008-3_30
https://doi.org/10.1007/978-3-319-44953-1_25
https://doi.org/10.1007/978-3-319-44953-1_25
https://doi.org/10.1007/978-3-319-66158-2_33
https://doi.org/10.1007/978-3-319-66158-2_33
https://doi.org/10.1007/978-3-642-33558-7_13
https://doi.org/10.1007/3-540-49481-2_30
https://doi.org/10.1007/978-3-642-38171-3_12
https://doi.org/10.1007/978-3-642-23786-7_31

566 C. Thomas and P. Schaus

16. Bent, R., Van Hentenryck, P.: A two-stage hybrid local search for the vehicle
routing problem with time windows. Transp. Sci. 38(4), 515–530 (2004)

17. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for
cumulative scheduling. In: Biundo, S., et al. (eds.) Proceedings of the International
Conference on Automated Planning and Scheduling ICAPS-05, pp. 81–89. Citeseer
(2005)

18. Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search. J.
Math. Model. Algorithms 8(3), 245–270 (2009)

19. Gay, S., Schaus, P., De Smedt, V.: Continuous Casting Scheduling with Constraint
Programming. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 831–845.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 59

20. Monette, J.N., Deville, Y., Van Hentenryck, P.: Aeon: synthesizing scheduling algo-
rithms from high-level models. In: Chinneck, J.W., Kristjansson, B., Saltzman,
M.J. (eds.) Operations Research and Cyber-Infrastructure. Research/Computer
Science Interfaces, vol. 47, pp. 43–59. Springer, Boston (2009). https://doi.org/10.
1007/978-0-387-88843-9 3

21. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. sci. 40(4), 455–472 (2006)

22. Laborie, P., Godard, D.: Self-adapting large neighborhood search: application to
single-mode scheduling problems. Proceedings MISTA-07, Paris, vol. 8 (2007)

23. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput.
Oper. Res. 34(8), 2403–2435 (2007)

24. Lombardi, M., Schaus, P.: Cost impact guided LNS. In: Simonis, H. (ed.) CPAIOR
2014. LNCS, vol. 8451, pp. 293–300. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07046-9 21

25. Fleischmann, B.: The discrete lot-sizing and scheduling problem. Eur. J. Oper.
Res. 44(3), 337–348 (1990)

26. Houndji, V.R., Schaus, P., Wolsey, L., Deville, Y.: The stockingcost constraint.
In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 382–397. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 29

27. Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468–481. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30201-8 35

28. Monette, J.N., Schaus, P., Zampelli, S., Deville, Y., Dupont, P., et al.: A CP
approach to the balanced academic curriculum problem. In: Seventh International
Workshop on Symmetry and Constraint Satisfaction Problems, vol. 7 (2007)

29. Schaus, P., Deville, Y., et al.: A global constraint for bin-packing with precedences:
application to the assembly line balancing problem. In: AAAI (2008)

30. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: Proceedings of the 16th European Conference on
Artificial Intelligence, pp. 146–150. IOS Press (2004)

31. Frost, D., Dechter, R.: In search of the best constraint satisfaction search (1994)
32. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar
33. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The minizinc challenge

2008–2013. AI Mag. 35, 55–60 (2014)
34. Boussemart, F., Lecoutre, C., Piette, C.: Xcsp3: an integrated format for bench-

marking combinatorial constrained problems. arXiv preprint arXiv:1611.03398
(2016)

https://doi.org/10.1007/978-3-319-10428-7_59
https://doi.org/10.1007/978-0-387-88843-9_3
https://doi.org/10.1007/978-0-387-88843-9_3
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-319-07046-9_21
https://doi.org/10.1007/978-3-319-10428-7_29
https://doi.org/10.1007/978-3-540-30201-8_35
https://bitbucket.org/oscarlib/oscar
http://arxiv.org/abs/1611.03398

A Warning Propagation-Based
Linear-Time-and-Space Algorithm

for the Minimum Vertex Cover Problem
on Giant Graphs

Hong Xu(B) , Kexuan Sun , Sven Koenig, and T. K. Satish Kumar

University of Southern California, Los Angeles, CA 90089, USA
{hongx,kexuansu,skoenig}@usc.edu, tkskwork@gmail.com

Abstract. A vertex cover (VC) of a graph G is a subset of vertices in
G such that at least one endpoint vertex of each edge in G is in this
subset. The minimum VC (MVC) problem is to identify a VC of min-
imum size (cardinality) and is known to be NP-hard. Although many
local search algorithms have been developed to solve the MVC problem
close-to-optimally, their applicability on giant graphs (with no less than
100,000 vertices) is limited. For such graphs, there are two reasons why
it would be beneficial to have linear-time-and-space algorithms that pro-
duce small VCs. Such algorithms can: (a) serve as preprocessing steps
to produce good starting states for local search algorithms and (b) also
be useful for many applications that require finding small VCs quickly.
In this paper, we develop a new linear-time-and-space algorithm, called
MVC-WP, for solving the MVC problem on giant graphs based on the
idea of warning propagation, which has so far only been used as a theoret-
ical tool for studying properties of MVCs on infinite random graphs. We
empirically show that it outperforms other known linear-time-and-space
algorithms in terms of sizes of produced VCs.

1 Introduction

Thanks to the advancement of technologies such as the Internet and database
management systems, datasets have been growing tremendously over the past
decade. Many of the resulting datasets can be modeled as graphs, such as
social networks, brain networks, and street networks. Therefore, it is essential
to develop algorithms to solve classical combinatorial problems on giant graphs
(with no less than 100,000 vertices).

A vertex cover (VC) on an undirected graph G = 〈V,E〉 is defined as a set of
vertices S ⊆ V such that every edge in E has at least one of its endpoint vertices
in S. A minimum VC (MVC) is a VC on G of minimum size (cardinality), i.e.,
there exists no VC whose size is smaller than that of an MVC. The MVC problem
is to find an MVC on a given graph G. Its decision version is known to be NP-
complete [18]. An independent set (IS) on G is a set of vertices T ⊆ V such that
no two vertices in T are adjacent to each other. The complement of a (maximum)
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 567–584, 2018.
https://doi.org/10.1007/978-3-319-93031-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_41&domain=pdf
http://orcid.org/0000-0001-7874-4518
http://orcid.org/0000-0003-3261-7358

568 H. Xu et al.

IS is a (minimum) VC and vice versa, i.e., for any (maximum) IS T , V \ T is
always a (minimum) VC.

The MVC problem has been widely used to study various real-world and theo-
retical problems. For example, in practice, it has been used in computer network
security [11], in crew scheduling [24], and in the construction of phylogenetic
trees [1]. In theoretical research, it has been used to prove the NP-completeness
of various other well-known problems, such as the set cover problem and the
dominating set problem [19]. It is also a fundamental problem studied in the
theory of fixed-parameter tractability [13].

Various researchers have developed exact solvers [10,21,27,29] for the MVC
problem and its equivalents. However, none of these solvers work well for large
problem instances of the MVC problem due to its NP-hardness. Furthermore,
solving the MVC problem within any approximation factor smaller than 1.3606
is also NP-hard [8].

To overcome the poor efficiency of exact algorithms and the high approx-
imation factor of polynomial-time approximation algorithms, researchers have
focused on developing non-exact local search algorithms [2,5,6,22] for solving
the MVC problem and its equivalents. These algorithms often require a prepro-
cessing step to construct a VC (usually the smaller the better) before starting
the local search. While polynomial-time procedures work well for the prepro-
cessing step on regular-sized graphs, they are prohibitively expensive on giant
graphs. On giant graphs, this preprocessing step needs to terminate fast and
should use only a moderate amount of memory. Therefore, it is important to
develop a linear-time-and-space algorithm to find a small VC.

In addition, many real-world applications on giant graphs require the identifi-
cation of small VCs but not necessarily MVCs. One example of such applications
is the influence-maximization problem in social networks [14]. Here, too, linear-
time-and-space algorithms for finding small VCs are important.

In this paper, we develop a new linear-time-and-space algorithm, called MVC-
WP, for solving the MVC problem on giant graphs based on the idea of warning
propagation, which has so far only been used as a theoretical tool for studying
properties of MVCs on infinite random graphs. We then empirically show that
MVC-WP has several advantages over other linear-time-and-space algorithms.
We also experiment with variants of MVC-WP to empirically demonstrate the
usefulness of various steps in it.

2 Background

In this section, we introduce relevant background on random graph models,
warning propagation, and existing linear-time-and-space MVC algorithms known
to the authors.

2.1 Random Graph Models

The Erdős-Rényi Model. An Erdős-Rényi model (ER model) [9] is charac-
terized by two parameters n and p. It generates random graphs with n vertices

A Warning Propagation-Based Linear-Time-and-Space Algorithm 569

u v
1

0

0

0

(a) u sends a message of 1 to v since all
other incoming messages from its other
neighbors are 0.

u v
0

1

0

0

(b) u sends a message of 0 to v since at
least one of its incoming messages from its
other neighbors is 1.

Fig. 1. Illustrates the update of a message from u ∈ V to v ∈ V in the warning
propagation algorithm for the MVC problem on graph G = 〈V, E〉. Only relevant parts
of G are shown, i.e., u, v, and all edges incident to u.

and connects every pair of vertices with probability p. We call a graph generated
by an ER model an ER graph. The degrees of the vertices of an ER graph follow
a Poisson distribution. The average degree of vertices is c = np.

The Scale-Free Model. A scale-free model (SF model) [4] is characterized by
two parameters n and λ > 2. It generates random graphs whose vertex degree
distribution follows a power law, i.e., P (d) ∼ d−λ. The average degree of vertices
is therefore

c =
+∞∑

d=1

P (d)d =
ζ(λ − 1)

ζ(λ)
, (1)

where ζ(x) =
∑∞

k=1
1

kx is the Riemann zeta function. For notational convenience,
we define Z(λ) = ζ(λ−1)

ζ(λ) . We call a graph generated by an SF model an SF graph.

2.2 Warning Propagation

The warning propagation algorithm is a specialized message passing algorithm
where information is processed locally and exchanged between relevant vari-
ables [20]. In the warning propagation algorithm, messages can only take one of
two values, namely 0 or 1. To analyze properties of MVCs on infinite random
graphs, [26] proposed an algorithm that uses warning propagation for solving
the MVC problem to help with their theoretical analysis. In their algorithm,
messages are passed between adjacent vertices. A message of 1 from u ∈ V to
v ∈ V indicates that u is not in the MVC and thus it “warns” v to be included in
the MVC. Otherwise, if u is in the MVC, this message would be 0. Based on this
intuition, the warning propagation algorithm updates messages according to the
following rules: A message from u to v is updated to 1 iff all incoming messages
to u from its other neighbors equal 0, i.e., no other adjacent vertices of u require
u to be in the VC. Otherwise, this message would be 0. Figure 1 illustrates these
rules. Upon convergence, vertices with at least one incoming messages equal to
1 are included in the VC, and other vertices are excluded from the VC. The
theoretical analysis in [26] mainly focuses on ER graphs. It shows that, on an

570 H. Xu et al.

infinitely large ER graph, a message is 1 with probability W (c)/c, where W (·)
is the Lambert-W function, i.e., the inverse function of f(x) = xex.

2.3 Known Linear-Time-and-Space MVC Algorithms

MVC-2. This well-known linear-time-and-space factor-2 approximation algo-
rithm for the MVC problem works as follows [25]: In each iteration, MVC-2 first
arbitrarily selects an uncovered edge, then marks it as well as the edges inci-
dent to its two endpoint vertices as being covered, and finally adds its endpoint
vertices to the VC. It terminates when all edges are marked as covered.

ConstructVC. Serving as a preprocessing step, this algorithm is a greedy
linear-time-and-space subroutine in the FastVC solver [5], that constructs a min-
imal VC1. It works as follows: In each iteration, ConstructVC first arbitrarily
selects an uncovered edge, then adds its endpoint vertex v with the larger degree
to the VC, and finally marks all edges incident to v as being covered. When all
edges are marked as covered, it removes all redundant vertices in the VC to
construct a minimal VC.

R. This algorithm is used as the preprocessing step to produce a maximal IS
(complement of a minimal VC) in the local search algorithm for solving the
maximum IS problem developed by [2]. R can be easily adjusted to produce a
minimal VC, and the adapted algorithm works as follows: R first adds all vertices
into the VC. In each iteration, R randomly removes a vertex v from the VC if it
continues to be a VC after the removal. It terminates when the VC is minimal.

MVC-MPL and MVC-L. MVC-MPL is a linear-time-and-space MVC algo-
rithm based on some theoretical results of warning propagation on ER graphs.
It works as follows [28]: In each iteration, MVC-MPL first arbitrarily selects a
vertex v, then adds it to the IS with probability (1 − W (c)/c)κ(v), where κ(v) is
the degree of v, and otherwise to the VC. It terminates when every vertex has
been added to either the VC or the IS. MVC-L is a variant of MVC-MPL with
the probability of adding a vertex v to the IS replaced by 1/(κ(v) + 1) [28].

3 Warning Propagation on Scale-Free Graphs

Assuming that the warning propagation algorithm is applied on an SF graph,
we derive the approximate message distribution upon convergence by following
a method similar to that in [26, Sect. IV.B]. We use p0 and p1 to denote the
fractions of all messages with values 0 and 1 upon convergence, respectively.
Clearly, we have

p0 + p1 = 1. (2)

1 A minimal VC is a VC such that no proper subset thereof is also a VC.

A Warning Propagation-Based Linear-Time-and-Space Algorithm 571

A message mu→v from vertex u to vertex v is equal to 1 iff all incoming messages
to u from its other neighbors are equal to 0, i.e., ∀w ∈ ∂u\ v : mw→u = 0, where
∂u is the set of vertices adjacent to u. Assuming that all messages incoming to
u are independent and using the fact that the probability distribution of the
number of such messages follows a power law on an SF graph, we have

1 − p0 = p1 =
∞∑

d=1

d−λ

ζ(λ)
pd−1
0 =

Liλ(p0)
p0ζ(λ)

, (3)

where Liλ(x) =
∑∞

k=1
xk

kλ is the polylogarithm function. After making the

approximation Liλ(p0) ≈ p0 + p2
0

2λ , we solve Eq. (3) for p0 and have

p0 =
ζ(λ) − 1
ζ(λ) + 1

2λ

, (4)

where ∀λ > 2 : 0 ≤ p0 ≤ 1. Therefore, for any λ > 2, Eq. (4) is always a valid
solution for p0.

4 The Algorithm

Our algorithm MVC-WP (Algorithm1) is based on the analytical results that
govern the warning propagation algorithm for the MVC problem [26]. MVC-WP
first uses Algorithm 2, an algorithm that prunes leaves, to identify those vertices
that are necessarily in some MVC and modifies the input graph accordingly. It
then treats this modified graph as if it were an ER or SF graph and computes
p0 using Algorithm 3. (Although MVC-WP treats the graph as if it were an ER
or SF graph, it does not impose any restrictions on the graph.) MVC-WP then
assigns each message from vertex u to vertex v to be 1 with probability p

κ(u)−1
0 ,

where κ(u) denotes the degree of u. This is done under the assumption that
all incoming messages of u have independent probabilities to be 0 or 1. Then,
MVC-WP performs warning propagation for M iterations, where M is a given
parameter. After M iterations, v is marked as being included in V C if it receives
at least one message of 1; otherwise, v is marked as being excluded in V C. If v
is excluded, MVC-WP marks all its adjacent vertices as being included in V C.
Finally, MVC-WP uses Algorithm4 to remove redundant vertices from V C to
make it a minimal VC. This step is adapted from Lines 6 to 14 of Algorithm2
in [5].

We note that, a warning propagation iteration in the warning propagation
algorithm proposed in [26] is not linear-time due to the requirement of traversing
incoming messages of vertex u when updating the message from vertex u to ver-
tex v. To avoid this traversal and thus make each warning propagation iteration
linear-time, for each vertex v, MVC-WP keeps track the number of messages
incoming to v that are equal to 1 in an array counter. This and the value of the
message from u to v provide enough information for updating the message.

We also note that, while MVC-WP is based on the analytical results from [26],
it differs significantly from the warning propagation algorithm proposed in [26].

572 H. Xu et al.

Algorithm 1. MVC-WP.
1 Function MVC-WP(G = 〈V, E〉, model, M)

Input: G: The graph to find an MVC for.
Input: model: The random graph model to use (ER or SF).
Input: M : Number of iterations of the warning propagation algorithm.
Output: A minimal VC of G.

2 V C, IS :=Prune-Leaves(G);
3 p0 := Compute-p0(G, model);

4 Convert G to a directed graph G′ = 〈V, E′〉 by introducing 〈u, v〉 and 〈v, u〉 in E′ for
each (u, v) ∈ E;

5 Build an associative array m for the edges of G′ to represent messages;

6 Build an associative array counter for the vertices of G′ to record the number of
incoming messages that are equal to 1;

7 Initialize counter to zeros;
8 • Initialize messages:
9 for each 〈u, v〉 ∈ E′ do

10 Draw a random number r ∈ [0, 1];

11 if r ≤ p
κ(u)−1
0 then

12 mu→v := 1;
13 counter(v) := counter(v) + 1;

14 else
15 mu→v := 0;

16 • Run M iterations of the warning propagation algorithm:
17 for t := 1, . . . , M do
18 for each 〈u, v〉 ∈ E′ do
19 if counter(u) − mv→u = 0 then
20 if mu→v = 0 then
21 mu→v := 1;
22 counter(v) := counter(v) + 1;

23 else
24 if mu→v = 1 then
25 mu→v := 0;
26 counter(v) := counter(v) − 1;

27 • Construct a VC:
28 while ∃v ∈ V \ (V C ∪ IS) do
29 v := any vertex in V \ (V C ∪ IS);
30 if counter(v) = 0 then
31 Add v to IS and all u in ∂v to V C;
32 else
33 Add v to V C;

34 return Remove-Redundancy(G, V C);

MVC-WP introduces preprocessing and postprocessing steps before and after
warning propagation iterations. It also initializes messages intelligently. In addi-
tion, MVC-WP reduces the time complexity of a warning propagation iteration
to linear by using a counter array. Most importantly, MVC-WP is specifically
designed for being practically run, while the warning propagation algorithm pro-
posed in [26] lacks many algorithmic details, since [26] only uses it as a theoretical
tool to study properties of MVCs on ER graphs.

We now formally prove the correctness and time and space complexities of
MVC-WP.

Theorem 1. MVC-WP produces a minimal VC.

A Warning Propagation-Based Linear-Time-and-Space Algorithm 573

Algorithm 2. Prune leaves.
1 Function Prune-Leaves(G = 〈V, E〉)

Modified: G: The input graph.
2 Initialize vertex sets V C and IS to the empty set;
3 for each v ∈ V do
4 Prune-A-Leaf(G, V C, IS, v);

5 return V C, IS;

6 Function Prune-A-Leaf(G = 〈V, E〉, V C, IS, v)
Modified: G: The input graph.
Modified: V C: The current VC.
Modified: IS: The current IS.
Input: v: A vertex in V .

7 if κ(v) = 1 then
8 u := the only vertex adjacent to v;
9 V C := V C ∪ {u};

10 IS := IS ∪ {v};
11 U := ∂u \ {v};
12 Remove v and (u, v) from G;
13 for each w ∈ U do
14 Remove (u, w) from G;
15 Prune-A-Leaf (G, V C, IS, w);

16 Remove u from G;

Algorithm 3. Compute p0 for different random graph models.
1 Function Compute-p0(G, model)

Input: G: The input graph.
Input: model: The random graph model to use (ER or SF).

2 c := average degree of vertices in G;
3 if model is ER then
4 p0 := 1 − W (c)/c;
5 else if model is SF then
6 λ := Z−1(c);
7 Compute p0 according to Eq. (4);

8 return p0;

Proof. Since [5] has proved that Remove-Redundancy produces a minimal VC
provided that variable V C in Algorithm 1 is a VC, it is sufficient to prove that,
right before Line 34 in Algorithm 1, variable IS is an IS, V C ∪ IS = V , and
V C ∩ IS = ∅.

In Algorithm 2, Lines 12 and 14 are the only steps that remove edges. How-
ever, these edges are covered by V C as shown on Line 9. In addition, V C ∪ IS
is the set of all removed vertices and V C ∩ IS = ∅, since each removed vertex is
added to either V C or IS. Therefore, IS is an independent set.

In Algorithm 1, message initialization and the M iterations of warning prop-
agation do not change the values of IS and V C.

In Lines 27 and 33 in Algorithm1, since Line 31 guarantees that no two
adjacent vertices are added to IS, IS must be an IS of G. In addition, Line 28
guarantees IS ∪ V C = V and Lines 28, 31 and 33 guarantee IS ∩ V C = ∅.

Therefore, this theorem is true.

Theorem 2. The time complexity of MVC-WP is O(|V | + |E|).

574 H. Xu et al.

Algorithm 4. Remove redundant vertices from a given VC [5].
1 Function Remove-Redundancy(G = 〈V, E〉, V C)

Input: G: The input graph.
Input: V C: A VC of G.

2 Build an associative array loss for vertices in V C to record whether they can be
removed from V C;

3 Initialize loss to zeros;
4 foreach e ∈ E do
5 if only one endpoint vertex v of e is in V C then
6 loss(v) := 1;

7 foreach v ∈ V C do
8 if loss(v) = 0 then
9 V C := V C \ {v};

10 foreach v′ ∈ ∂v ∩ V C do
11 loss(v′) := 1;

12 return V C;

Proof. We first prove that Prune-Leaves terminates in O(|V | + |E|) time by
counting the number of times that Prune-A-Leaf is called, since the only loop
in Prune-A-Leaf makes only one recursive call in each iteration. Line 4 in Algo-
rithm2 calls Prune-A-Leaf at most |V | times. Line 15 calls Prune-A-Leaf iff
edge (u,w) is removed from G. Therefore, Line 15 calls Prune-A-Leaf at most
|E| times.

Obviously, Compute-p0 terminates in constant time.
In Algorithm 1, Lines 8 to 15 iterate over each edge in G′ exactly once, and

therefore terminate in O(|E|) time; Lines 16 to 26 iterate over each edge in G′

exactly M times, and therefore terminate in O(|E|) time; Lines 27 to 33 consider
each vertex v in G′ at least once and at most κ(v) times, and therefore terminate
in O(|V | + |E|) time.

[5] has proved that Remove-Redundancy terminates in O(|V | + |E|) time.
Combining the results above, MVC-WP terminates in O(|V | + |E|) time.

Theorem 3. The space complexity of MVC-WP is O(|V | + |E|).
Proof. [5] has proved that Remove-Redundancy uses O(|V | + |E|) space. The
recursive calls of Prune-A-Leaf initiated in Prune-Leaves use O(|E|) stack
space. The remaining steps in MVC-WP require O(|E|) space to store messages
and O(|V |) space to store counter as well as the status of each vertex v, i.e.,
whether v is in V C, IS or undetermined yet. Therefore, MVC-MP uses O(|V |+
|E|) space.

4.1 Computing Special Functions

In Algorithm 3, we are required to compute a few special functions, namely
the Lambert-W function W (·), the Riemann zeta function ζ(·) and the inverse
function of Z(·). For some of these functions, researchers in the mathematics

A Warning Propagation-Based Linear-Time-and-Space Algorithm 575

Table 1. Shows the values of ζ(k) and Z(k) = ζ(k−1)
ζ(k)

for k ∈ {1, 2, . . . , 9}. The values

of ζ(k) are taken from [15, Table 23.3], and the values of Z(k) are computed from the
values of ζ(k).

k 1 2 3 4 5 6 7 8 9

ζ(k) +∞ 1.645 1.202 1.082 1.037 1.017 1.008 1.004 1.002

Z(k) - +∞ 1.369 1.111 1.043 1.020 1.009 1.004 1.002

community have already developed various numerical methods [7,16]. However,
they are too slow for MVC-WP, which does not critically need this high accuracy.
We now present a few new approaches to quickly compute them sufficiently
accurately.

4.2 The Lambert-W Function W (·)
We approximate W (·) via the first 3 terms of Eq. (4.19) in [7], i.e.,

W (c) = L1 − L2 + L2/L1 + O
(
(L2/L1)

2
)

, (5)

where L1 = log c and L2 = log L1.

4.3 The Riemann Zeta Function ζ(·)
For the SF model, we need to compute ζ(λ) in Eq. 4 for a given λ. To compute
ζ(λ), we approximate ζ(λ) via its first 20 terms, i.e., ζ(λ) =

∑20
k=1

1
kλ +O(1

21λ).
This is sufficient, because λ > 2 always holds in MVC-WP due to Line 6 in
Algorithm 3 since ∀c ≥ 1 : Z−1(c) > 2. In this case, the sum of the remaining
terms is sufficiently small and can thus be neglected, because

∑∞
k=21

1
kλ∑∞

k=1
1

kλ

≤
∑∞

k=21
1

kλ∑∞
k=1

1
k2

≈ 0.030. (6)

4.4 The Inverse Function of Z(·)
– For any x < 1.002, we approximate Z−1(x) to be equal to +∞ (and thus

approximate p0 to be equal to 0 in Algorithm 3).
– For any 1.002 ≤ x ≤ 1.369, we approximate Z−1(x) via linear interpolation

according to Table 1, i.e., we assume Z−1(x) changes linearly between two
consecutive entries given in Table 1.

– For any x > 1.369, we have 2 < k = Z−1(x) < 3. In this case, we approximate
ζ(k) via linear interpolation, i.e.,

ζ(k) ≈ 1.645 − 0.443 · (k − 2). (7)

576 H. Xu et al.

Table 2. Compares sizes of VCs produced by MVC-WP-ER and MVC-WP-SF,
respectively, with those of alternative algorithms. The three numbers in the 3rd to
6th columns represent the numbers of benchmark instances on which MVC-WP-
ER and MVC-WP-SF produce smaller/equal/larger VC sizes, respectively. The num-
bers in parentheses indicate the number of benchmark instances in each benchmark
instance set.

Our
algorithm

Alternative
algorithm

Misc
(397)

Web
(18)

Street
(8)

Brain
(26)

MVC-WP-ER ConstructVC 211/39/147 12/1/5 8/0/0 0/0/26

MVC-2 241/46/110 16/1/1 8/0/0 26/0/0

R 376/16/5 17/1/0 8/0/0 26/0/0

MVC-L 364/19/14 17/1/0 8/0/0 26/0/0

MVC-MPL 317/18/62 17/1/0 1/0/7 26/0/0

MVC-WP-SF ConstructVC 209/38/150 11/1/6 8/0/0 0/0/26

MVC-2 249/45/103 15/1/2 8/0/0 26/0/0

R 377/15/5 17/1/0 8/0/0 26/0/0

MVC-L 363/21/13 17/1/0 8/0/0 26/0/0

MVC-MPL 316/18/63 17/1/0 1/0/7 26/0/0

We approximate ζ(k − 1) via the first three terms of the Laurent series of
ζ(k − 1) at k = 2, i.e.,

ζ(k − 1) =
1

k − 2
+ γ − γ1(k − 2) + O

(
(k − 2)2

)
, (8)

where γ ≈ 0.577 is the Euler-Mascheroni constant and γ1 ≈ −0.0728 is the
first Stieltjes constant [12, p. 166]. By plugging these two equations into the
definition of Z(k) (i.e., Z(k) = ζ(k−1)

ζ(k) = x) and solving for k, we have the
approximation

Z−1(x) ≈
1.645x − γ −

√
(1.645x − γ)2 − 4(0.443x − γ1)

2 · (0.443x − γ1)
+ 2. (9)

5 Experimental Evaluation

In this section, we experimentally evaluate MVC-WP. In our experiments, all
algorithms were implemented in C++, compiled by GCC 6.3.0 with the “-O3”
option, and run on a GNU/Linux workstation with an Intel Xeon Processor E3-
1240 v3 (8 MB Cache, 3.4 GHz) and 16 GB RAM. Throughout this section, we
refer to MVC-WP using an ER model and an SF model as MVC-WP-ER and
MVC-WP-SF, respectively.

A Warning Propagation-Based Linear-Time-and-Space Algorithm 577

(a) MVC-WP-ER versus ConstructVC/MVC-2/R/MVC-L/MVC-MPL on the
misc networks benchmark instance set.

(b) MVC-WP-SF versus ConstructVC/MVC-2/R/MVC-L/MVC-MPL on the
misc networks benchmark instance set.

Fig. 2. Compares sizes of VCs produced by MVC-WP-ER, MVC-WP-SF, and alter-
native algorithms on the misc networks benchmark instance set. The x-axes show the
relative suboptimality of MVC-WP-ER and MVC-WP-SF, respectively, compared with
alternative algorithms. The y-axes show the number of benchmark instances for a range
of relative suboptimality divided into bins of 1% (ranges beyond −10% and 10% are
treated as single bins). Bars of different colors indicate different algorithms. Higher
bars in the left half indicate that MVC-WP-ER and MVC-WP-SF, respectively, pro-
duce VCs of sizes smaller than the alternative algorithms. (Color figure online)

We used 4 sets of benchmark instances2. The first 3 sets of benchmark
instances were selected from the “misc networks”, “web networks”, and “brain
networks” categories in Network Repository3 [23]. All instances with no less
than 100,000 vertices as of July 8, 2017 were used. The fourth set of benchmark
instances consists of the benchmark instances in the “street networks” category
in the 10th DIMACS Implementation Challenge4 [3], in which 7 out of 8 bench-
mark instances have more than 1 million vertices. To obviate the influence of the
orders in which the edges are specified in the input files, we shuffled the edges
for each benchmark instance before applying the algorithms.

2 We compiled these benchmark instances in the DIMACS format and made them
available online at http://files.hong.me/papers/xu2018b-data.

3 http://networkrepository.com/.
4 http://www.cc.gatech.edu/dimacs10/archive/streets.shtml.

http://files.hong.me/papers/xu2018b-data
http://networkrepository.com/
http://www.cc.gatech.edu/dimacs10/archive/streets.shtml

578 H. Xu et al.

Table 3. Shows the number of vertices and edges of benchmark instances in the web
networks, street networks, and brain networks benchmark instance sets.

Instance |V | |E|

W
e
b

N
e
tw

o
rk

s

web-wikipedia-link-it 1,051,219 25,199,339
web-wikipedia-growth 898,367 4,468,005

web-BerkStan 5,121 8,345
web-italycnr-2000 176,055 2,336,551

web-uk-2005 127,716 11,643,622
web-Stanford 226,733 1,612,323

web-BerkStan-dir 552,353 5,674,493
web-google-dir 451,765 2,434,390

web-wikipedia2009 154,344 302,990
web-it-2004 424,893 6,440,816

web-wikipedia-link-fr 1,098,517 12,683,034
web-hudong 53,799 286,998

web-arabic-2005 102,515 1,560,020
web-baidu-baike 56,346 104,037
web-NotreDame 99,557 631,931

web-sk-2005 42,237 225,932
web-wiki-ch-internal 21,101 47,480

web-baidu-baike-related 126,607 710,562

S
tr

e
e
t

N
e
tw

o
rk

s asia 2,642,989 3,032,404
germany 2,455,500 2,673,629

great-britain 1,284,868 1,383,591
luxembourg 23,196 24,710

belgium 460,536 503,521
netherlands 726,730 815,305

italy 1,783,377 1,942,410
europe 12,512,346 13,711,218

Instance |V | |E|

B
ra

in
N
e
tw

o
rk

s

0025871-session-1-bg 738,598 168,617,323
0025872-session-2-bg 759,626 147,761,328
0025869-session-1-bg 679,760 134,979,814
0025876-session-1-bg 778,074 140,293,764
0025865-session-2-bg 705,588 155,118,679
0025868-session-1-bg 717,428 150,383,991
0025872-session-1-bg 746,316 166,528,410
0025864-session-2-bg 682,197 133,656,879
0025912-session-2 771,224 147,496,369

0025868-session-2-bg 717,420 158,562,090
0025869-session-2-bg 705,280 151,476,861
0025873-session-1-bg 636,430 149,483,247
0025870-session-2-bg 799,455 166,724,734
0025865-session-1-bg 725,412 165,845,120
0025889-session-2 731,931 131,860,075

0025876-session-2-bg 766,763 139,801,374
0025867-session-1-bg 735,513 145,208,968
0025874-session-2-bg 758,757 163,448,904
0025873-session-2-bg 682,580 140,044,477
0025889-session-1 694,544 144,411,722

0025870-session-1-bg 785,719 148,684,011
0025871-session-2-bg 724,848 170,944,764
0025864-session-1-bg 685,987 143,091,223
0025867-session-2-bg 724,276 154,604,919
0025878-session-1-bg 690,012 127,838,275
0025886-session-1 769,878 158,111,887

Fig. 3. Compares sizes of VCs produced by MVC-WP-ER and MVC-WP-SF with those
produced by MVC-WP-1. The x-axis shows the relative suboptimality of MVC-WP
compared with MVC-WP-1. The y-axis shows the number of benchmark instances.
In the left half, for each point on the curve, its y coordinate shows the number of
benchmark instances with relative suboptimality smaller than its x coordinate. In the
right half, for each point on the curve, its y coordinate shows the number of benchmark
instances with relative suboptimality larger than its x coordinate. Larger areas under
the curves in the left half and smaller areas under the curves in the right half indicate
that MVC-WP-ER and MVC-WP-SF, respectively, produce VCs of sizes smaller than
MVC-WP-1.

To evaluate those algorithms that use random number generators, i.e., MVC-
WP-ER, MVC-WP-SF, R, MVC-L and MVC-MPL, we ran them 10 times on
each benchmark instance using different seeds. We recorded the average of the
VC sizes produced by these 10 runs. For all algorithms compared in this section,
we applied Prune-Leaves and Remove-Redundancy as preprocessing and post-
processing steps, respectively, since they are universally useful.

A Warning Propagation-Based Linear-Time-and-Space Algorithm 579

Table 4. Compares sizes of VCs produced by MVC-WP-ER, MVC-WP-SF, and alter-
native algorithms on the web networks, street networks, and brain networks bench-
mark instance sets. The numbers of vertex and edge of each benchmark instance are
shown in Table 3. The smallest sizes of VCs produced for each benchmark instance are
highlighted.

Instance ConstructVC MVC-2 R MVC-L MVC-MPL MVC-WP-ER MVC-WP-SF

web-wikipedia-link-it 991,272 987,621 1,039,011 1,018,672 1,020,827 972,275 972,670
web-wikipedia-growth 914,746 926,530 966,410 950,741 940,302 909,910 909,989

web-BerkStan 5,542 5,469 5,605 5,567 5,726 5,463 5,469
web-italycnr-2000 99,645 99,609 110,559 104,272 103,153 97,844 97,932

web-uk-2005 127,774 127,774 127,774 127,774 127,774 127,774 127,774
web-Stanford 126,603 126,960 136,048 130,248 128,296 123,540 123,890

web-BerkStan-dir 290,206 291,277 320,384 310,483 304,623 285,593 285,934
web-google-dir 350,676 355,930 387,462 379,508 365,427 351,241 351,343

web-wikipedia2009 650,888 654,152 657,343 656,131 655,813 652,241 652,363
web-it-2004 415,408 415,083 415,915 415,533 415,042 414,835 414,972

web-wikipedia-link-fr 1,574,973 1,558,998 1,626,052 1,598,021 1,597,887 1,538,658 1,538,960
web-hudong 503,373 504,025 506,598 505,903 504,839 503,335 503,359

web-arabic-2005 114,504 114,743 115,161 114,999 115,004 114,721 114,727
web-baidu-baike 637,805 638,538 640,537 639,811 639,935 637,796 637,815
web-NotreDame 76,468 76,257 80,341 79,013 77,893 75,735 75,953

web-sk-2005 58,238 58,300 58,669 58,443 58,370 58,347 58,349
web-wiki-ch-internal 260,354 260,476 261,571 261,244 260,927 260,213 260,231

web-baidu-baike-related 144,388 146,588 151,689 149,957 148,749 145,272 145,249

asia 6,087,218 6,099,227 6,130,265 6,104,699 6,018,875 6,053,077 6,049,489
germany 5,822,566 5,834,966 5,864,005 5,841,507 5,768,621 5,792,165 5,789,947

great-britain 3,837,647 3,843,980 3,857,098 3,844,972 3,804,317 3,821,741 3,820,618
luxembourg 58,168 58,267 58,456 58,230 57,417 57,823 57,810

belgium 739,185 741,647 747,374 742,968 729,190 733,264 732,877
netherlands 1,133,606 1,141,977 1,147,202 1,141,786 1,131,859 1,127,358 1,125,978

italy 3,425,723 3,434,538 3,452,907 3,434,830 3,374,512 3,401,824 3,400,005
europe 25,903,178 25,968,573 26,104,371 25,983,279 25,589,132 25,743,670 25,730,398

0025871-session-1-bg 688,391 695,636 701,228 698,818 699,234 694,616 694,625
0025872-session-2-bg 706,691 714,407 720,128 717,692 718,017 713,557 713,599
0025869-session-1-bg 629,715 637,159 642,647 640,327 641,147 636,057 636,050
0025876-session-1-bg 712,322 721,476 728,763 725,679 726,560 720,332 720,404
0025865-session-2-bg 656,483 663,359 669,205 666,846 666,996 662,446 662,564
0025868-session-1-bg 662,749 670,415 676,703 674,029 674,729 669,473 669,452
0025872-session-1-bg 692,476 700,076 705,979 703,495 704,039 699,263 699,284
0025864-session-2-bg 631,361 638,668 644,392 641,875 642,737 637,833 637,831
0025912-session-2 716,154 724,000 730,201 727,577 727,982 723,070 723,165

0025868-session-2-bg 662,025 669,661 676,133 673,415 673,972 668,845 668,784
0025869-session-2-bg 651,656 659,116 665,348 662,796 662,931 658,201 658,171
0025873-session-1-bg 595,166 601,378 605,916 604,042 604,270 600,488 600,467
0025870-session-2-bg 735,348 744,205 751,736 748,478 749,706 743,052 743,103
0025865-session-1-bg 676,416 683,459 689,108 686,788 687,193 682,528 682,526
0025889-session-2 674,887 683,034 689,378 686,679 687,462 682,117 682,056

0025876-session-2-bg 701,544 710,627 717,965 714,784 715,793 709,579 709,604
0025867-session-1-bg 682,118 689,846 695,806 693,294 693,749 688,861 688,829
0025874-session-2-bg 701,559 709,752 716,330 713,553 714,320 708,796 708,786
0025873-session-2-bg 635,363 641,971 647,566 645,325 645,449 641,349 641,441
0025889-session-1 644,858 651,812 657,483 655,226 655,525 651,102 651,113

0025870-session-1-bg 721,906 730,773 738,123 734,922 736,193 729,761 729,805
0025871-session-2-bg 674,478 681,551 687,309 684,955 685,328 680,690 680,686
0025864-session-1-bg 634,702 642,146 647,884 645,431 646,130 641,119 641,058
0025867-session-2-bg 673,075 680,577 686,239 683,853 684,641 679,654 679,647
0025878-session-1-bg 636,617 644,044 650,351 647,661 648,109 643,237 643,190
0025886-session-1 713,597 721,617 728,101 725,332 726,009 720,641 720,638

We evaluated MVC-WP-ER and MVC-WP-SF by comparing them with var-
ious other algorithms, namely ConstructVC, MVC-2, R, MVC-MPL, and MVC-
L. We set M = 3 for both MVC-WP-ER and MVC-WP-SF, noting that M = 3
is a very small number of iterations of warning propagation.

Tables 2 and 4 and Fig. 2 compare these algorithms. In the misc networks
and web networks benchmark instance sets, both MVC-WP-ER and MVC-WP-
SF outperformed all other algorithms in terms of sizes of produced VCs. In the
brain networks benchmark instance set, both MVC-WP-ER and MVC-WP-SF
outperformed all other algorithms except ConstructVC. In the street networks
benchmark instance set, both MVC-WP-ER and MVC-WP-SF outperformed

580 H. Xu et al.

Fig. 4. Compares sizes of VCs produced by MVC-WP-ER and MVC-WP-SF for dif-
ferent values of M on the misc networks benchmark instance set.

all other algorithms except for MVC-MPL. The reason may be that street net-
works are always planar and thus in general cannot be well modeled as ER or
SF graphs. Overall, MVC-WP-ER and MVC-WP-SF conclusively outperformed
their competitors. We also conducted further experiments to demonstrate the
usefulness of various individual steps of MVC-WP-ER and MVC-WP-SF.

To demonstrate the effectiveness of the message initialization step in MVC-
WP-ER and MVC-WP-SF, i.e., assigning messages to be zero with probability
p0 computed from random graph models, we compared MVC-WP-ER and MVC-
WP-SF with variants thereof in which p0 is always set to 1 in order to mimic
the message initialization in the standard warning propagation algorithm [20].
We refer to this variant as MVC-WP-1.

Figure 3 compares MVC-WP-ER and MVC-WP-SF with MVC-WP-1 on the
misc networks benchmark instance set. Both MVC-WP-ER and MVC-WP-SF
significantly outperformed MVC-WP-1 in terms of sizes of produced VCs. These
results demonstrate the importance of our message initialization step.

To study the effect of M on MVC-WP-ER and MVC-WP-SF, we ran
them for different values of M . For both MVC-WP-ER and MVC-WP-SF with
M ∈ {0, 1, . . . , 5}, Fig. 4 shows the sizes of the VC averaged over all benchmark
instances in the misc networks benchmark instance set. The average VC size
decreases with increasing M . The results demonstrate the usefulness of warning
propagation iterations in MVC-WP-ER and MVC-WP-SF.

To demonstrate the effectiveness of Algorithm 2, we compared MVC-WP-ER
and MVC-WP-SF with and without the use of it on the web networks benchmark
instance set. MVC-WP-ER and MVC-WP-SF produced VCs of sizes that are
on average 0.51% and 1.0% smaller than their counterparts without the use of
Algorithm 2. These results demonstrate the importance of Algorithm 2.

Due to the fact that all algorithms are linear-time, all of them terminated
very quickly. Despite that MVC-WP-ER and MWVC-WP-SF are slower than
alternative algorithms, over 80% of their runs terminated within 300ms, which
makes it difficult to measure the algorithms’ running times on a single benchmark
instance. In addition, it took much longer time (a few hundred times longer)
to read input files from the hard disk than running these algorithms, which

A Warning Propagation-Based Linear-Time-and-Space Algorithm 581

Table 5. Compares sizes of MVCs and produced VCs by ConstructVC, MVC-2, MVC-
R, MVC-L, MVC-MPL, MVC-WP-ER, and MVC-WP-SF, respectively, on benchmark
instances with solutions from the Second DIMACS Implementation Challenge.

Graph Algorithm

Instance |V | MVC ConstructVC MVC-2 R MVC-L MVC-MPL MVC-ER MVC-SF

c-fat200-1 200 188 188 188 189 189 189 188 190

c-fat200-2 200 176 176 176 177 177 177 177 177

c-fat200-5 200 142 142 142 143 142 143 142 142

c-fat500-10 500 374 374 374 374 375 375 374 374

c-fat500-1 500 486 486 486 487 487 487 487 488

c-fat500-2 500 474 474 474 474 475 474 474 474

c-fat500-5 500 436 436 436 437 437 437 437 436

hamming10-2 1024 512 760 674 787 741 738 593 651

hamming6-2 64 32 45 40 44 40 39 34 41

hamming6-4 64 60 60 60 60 60 60 60 60

hamming8-2 256 128 155 185 188 182 178 141 160

hamming8-4 256 240 250 248 248 246 246 245 248

johnson16-2-4 120 112 112 112 112 112 112 112 112

johnson8-2-4 28 24 24 24 24 24 24 24 24

johnson8-4-4 70 56 56 60 61 60 60 58 56

keller4 171 160 162 164 163 163 163 163 161

p-hat300-1 300 292 295 294 295 294 294 295 295

p-hat300-2 300 275 279 285 286 286 284 280 282

p-hat300-3 300 264 270 273 278 278 277 273 271

p-hat500-1 500 491 494 494 494 494 494 493 495

p-hat500-2 500 464 470 479 482 480 481 472 473

san200-0 200 170 184 185 185 185 185 185 185

san200-0 200 130 155 155 159 156 154 154 155

san200-0 200 140 163 163 168 167 166 164 165

san200-0 200 156 169 169 173 172 171 171 172

sanr200-0 200 182 187 188 187 188 187 187 188

makes it difficult to reliably count the numbers of benchmark instances solved
within a certain amount of time. For these reasons, it is difficult to have reliable
comparisons of running times of all algorithms. Therefore, we skip the detailed
comparison here, while this may be an interesting future work.

It is also interesting to compare the VCs produced by these linear-time-and-
space algorithms with the sizes of MVCs. Since the MVC problem is NP-hard,
it is elusive to find MVCs on the giant graphs in our previous used benchmark
instances. Therefore, we ran all algorithms on the benchmark instances with
provided solutions from the Second DIMACS Implementation Challenge5 [17].
Since the given solutions are for the maximum clique problem, we ran all algo-
rithms on the complements of the graphs in these benchmark instances, since the
maximum clique problem on a graph is equivalent to the MVC problem on the

5 http://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/.

http://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique/

582 H. Xu et al.

complement of the graph. The solutions are shown in Table 5. From the table,
we see that all linear-time-and-space algorithms produced VCs of similar results.
We also see that, the produced VCs have sizes very close to the sizes of MVCs
on all benchmark instances except hamming6-2 and hamming10-2.

6 Conclusions and Future Work

We developed MVC-WP, a warning propagation-based linear-time-and-space
algorithm that finds small minimal VCs for giant graphs. We empirically showed
that MVC-WP outperforms several other linear-time-and-space algorithms in
terms of sizes of produced VCs. We also empirically showed that the theoretical
underpinnings of MVC-WP significantly contribute to its success. These include
both the way in which MVC-WP performs message initialization by computing
p0 and the iterations of warning propagation. We also made secondary contribu-
tions in computing various special functions efficiently with numerical accuracy
sufficient for many AI applications. Future directions include applying similar
techniques to solving other fundamental combinatorial problems on giant graphs.

Acknowledgment. The research at the University of Southern California was sup-
ported by the National Science Foundation (NSF) under grant numbers 1724392,
1409987, and 1319966. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the sponsoring organizations, agencies or the U.S. government.

References

1. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H.,
Symons, C.T.: Kernelization algorithms for the vertex cover problem: theory and
experiments. In: The Workshop on Algorithm Engineering and Experiments (2004)

2. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the max-
imum independent set problem. J. Heuristics 18(4), 525–547 (2012). https://doi.
org/10.1007/s10732-012-9196-4

3. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning
and Graph Clustering. Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society and Center, Providence (2013)

4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

5. Cai, S.: Balance between complexity and quality: local search for minimum ver-
tex cover in massive graphs. In: The International Joint Conference on Artificial
Intelligence, pp. 747–753 (2015)

6. Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: an efficient local search algorithm
for minimum vertex cover. J. Artif. Intell. Res. 46(1), 687–716 (2013). https://doi.
org/10.1613/jair.3907

7. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the
LambertW function. Adv. Comput. Math. 5(1), 329–359 (1996). https://doi.org/
10.1007/BF02124750

https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1613/jair.3907
https://doi.org/10.1613/jair.3907
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750

A Warning Propagation-Based Linear-Time-and-Space Algorithm 583

8. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162(1), 439–485 (2005). https://doi.org/10.4007/annals.2005.162.439

9. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297
(1959)

10. Fang, Z., Li, C.M., Xu, K.: An exact algorithm based on MaxSAT reasoning for the
maximum weight clique problem. J. Artif. Intell. Res. 55, 799–833 (2016). https://
doi.org/10.1613/jair.4953

11. Filiol, E., Franc, E., Gubbioli, A., Moquet, B., Roblot, G.: Combinatorial opti-
misation of worm propagation on an unknown network. Int. J. Comput. Electr.
Autom. Control Inf. Eng. 1(10), 2931–2937 (2007)

12. Finch, S.R.: Mathematical Constants, Encyclopedia of Mathematics and Its Appli-
cations, vol. 94. Cambridge University Press, Cambridge (2003)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-29953-X

14. Goyal, A., Lu, W., Lakshmanan, L.V.S.: SIMPATH: an efficient algorithm for influ-
ence maximization under the linear threshold model. In: The IEEE International
Conference on Data Mining, pp. 211–220 (2011). https://doi.org/10.1109/ICDM.
2011.132

15. Haynsworth, E.V., Goldberg, K.: Bernoulli and Euler polynomials-Riemann zeta
function. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Func-
tions: With Formulas, Graphs, and Mathematical Tables, pp. 803–819. Dover Pub-
lications, Inc., Mineola (1965)

16. Hiary, G.A.: Fast methods to compute the Riemann zeta function. Ann. Math.
174(2), 891–946 (2011). https://doi.org/10.4007/annals.2011.174.2.4

17. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge. American Mathematical Society, Providence
(1996)

18. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

19. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 5th
edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24488-9

20. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford Uni-
versity Press, Oxford (2009)

21. Niskanen, S., Österg̊ard, P.R.J.: Cliquer user’s guide, version 1.0. Technical report
T48, Communications Laboratory, Helsinki University of Technology, Espoo, Fin-
land (2003)

22. Pullan, W.: Optimisation of unweighted/weighted maximum independent sets and
minimum vertex covers. Discret. Optim. 6(2), 214–219 (2009). https://doi.org/10.
1016/j.disopt.2008.12.001

23. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: the AAAI Conference on Artificial Intelligence, pp.
4292–4293 (2015). http://networkrepository.com

24. Sherali, H.D., Rios, M.: An air force crew allocation and scheduling problem. J.
Oper. Res. Soc. 35(2), 91–103 (1984)

25. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-662-04565-7

26. Weigt, M., Zhou, H.: Message passing for vertex covers. Phys. Rev. E 74(4), 046110
(2006). https://doi.org/10.1103/PhysRevE.74.046110

27. Xu, H., Kumar, T.K.S., Koenig, S.: A new solver for the minimum weighted vertex
cover problem. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 392–
405. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33954-2 28

https://doi.org/10.4007/annals.2005.162.439
https://doi.org/10.1613/jair.4953
https://doi.org/10.1613/jair.4953
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1109/ICDM.2011.132
https://doi.org/10.1109/ICDM.2011.132
https://doi.org/10.4007/annals.2011.174.2.4
https://doi.org/10.1007/978-3-642-24488-9
https://doi.org/10.1016/j.disopt.2008.12.001
https://doi.org/10.1016/j.disopt.2008.12.001
http://networkrepository.com
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1103/PhysRevE.74.046110
https://doi.org/10.1007/978-3-319-33954-2_28

584 H. Xu et al.

28. Xu, H., Kumar, T.K.S., Koenig, S.: A linear-time and linear-space algorithm for the
minimum vertex cover problem on giant graphs. In: The International Symposium
on Combinatorial Search, pp. 173–174 (2017)

29. Yamaguchi, K., Masuda, S.: A new exact algorithm for the maximum weight clique
problem. In: The International Technical Conference on Circuits/Systems, Com-
puters and Communications. pp. 317–320 (2008)

Symbolic Bucket Elimination
for Piecewise Continuous Constrained

Optimization

Zhijiang Ye(B), Buser Say, and Scott Sanner

University of Toronto, Toronto, Canada
tonyyezj@gmail.com, {bsay,ssanner}@mie.utoronto.ca

Abstract. Bucket elimination and its approximation extensions have
proved to be effective techniques for discrete optimization. This paper
addresses the extension of bucket elimination to continuous constrained
optimization by leveraging the recent innovation of the extended alge-
braic decision diagram (XADD). XADDs support symbolic arithmetic
and optimization operations on piecewise linear or univariate quadratic
functions that permit the solution of continuous constrained optimiza-
tion problems with a symbolic form of bucket elimination. The proposed
framework is an efficient alternative for solving optimization problems
with low tree-width constraint graphs without using a big-M formulation
for piecewise, indicator, or conditional constraints. We apply this frame-
work to difficult constrained optimization problems including XOR’s of
linear constraints and temporal constraint satisfaction problems with
“repulsive” preferences, and show that this new approach significantly
outperforms Gurobi. Our framework also enables symbolic parametric
optimization where closed-form solutions cannot be computed with tools
like Gurobi, where we demonstrate a final novel application to parametric
optimization of learned Relu-based deep neural networks.

Keywords: Bucket elimination · Decision diagram
Constrained optimization · Symbolic dynamic programming

1 Introduction

Bucket elimination [2,7] is a generalized dynamic programming framework that
has been widely applied to probabilistic reasoning problems on graphical mod-
els [8], including cost networks, constraint satisfaction [6], and propositional
satisfiability [5]. The application of this framework to combinatorial optimiza-
tion problems has been shown to be highly competitive against alternative tech-
niques [14,16]. In this paper, we propose symbolic bucket elimination (SBE) as
a novel method of solving mixed discrete and continuous constrained optimiza-
tion problems (i.e., covering MILPs and a subclass of MIQPs). SBE critically
leverages recent innovations in the extended algebraic decision diagram (XADD)
that enable the exact representation and manipulation of piecewise linear and
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 585–594, 2018.
https://doi.org/10.1007/978-3-319-93031-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_42&domain=pdf

586 Z. Ye et al.

univariate quadratic functions [17]. We show that SBE can outperform Gurobi
on low tree-width constrained optimization problems and that SBE can also
perform symbolic parameteric optimization of learned Relu-based deep neural
networks [15]—something tools like Gurobi cannot do exactly in closed-form.

2 Background

2.1 Case Representation and Operations

The case statement constitutes the foundational symbolic mathematical repre-
sentation that is used throughout this paper and is presented below.

Case Statement. The case statement takes the following form:

f =

⎧
⎪⎪⎨

⎪⎪⎩

φ1 : f1
...

...
φk : fk

where φi is a logical formula over domain (b,x) with discrete1 b ∈ B
m and

continuous variables x ∈ R
n, and is defined by arbitrary logical combinations

(∧,∨,¬) of (1) boolean variables in b and (2) linear inequality relations (≥ , >
,≤ , <) over continuous variables in x. Each φi is disjoint from other φj (j �= i)
and exhaustively covers the entire domain such that f is well defined. Each fi
is a linear or univariate quadratic function (LUQF) of x, e.g. f1 = x1 + 3x2

or f2 = 5x2
3 − 2x3 + 1. Only one variable can be quadratic in a case statement

and wherever it occurs it must be univariate, hence given the previous examples
f3 = x2

1 + 2x3 would be disallowed with f1 and f2 in the same case statement.

Binary Operations. For binary operations, the cross-product of logical parti-
tions of each case is taken. For example, the “cross-sum” ⊕ is defined as:

{
φ1 : f1

φ2 : f2
⊕

{
ψ1 : g1

ψ2 : g2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ1 ∧ ψ1 : f1 + g1

φ1 ∧ ψ2 : f1 + g2

φ2 ∧ ψ1 : f2 + g1

φ2 ∧ ψ2 : f2 + g2

Note that the case representation is closed under general conditions for ⊕.

Case Maximization. Maximization of two case statements is a piecewise oper-
ator that can be defined easily (e.g., consider the maximum of two hyperplanes):

casemax

({
φ1 : f1

φ2 : f2
,

{
ψ1 : g1

ψ2 : g2

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ1 ∧ ψ1 ∧ f1 > g1 : f1

φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1

φ1 ∧ ψ2 ∧ f1 > g2 : f1

φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2
...

...

1 For simplicity of exposition, we presume that non-binary discrete variables of cardi-
nality k are encoded in binary with �log2(k)� boolean variables.

Symbolic Bucket Elimination for Continuous Constrained Optimization 587

The casemin operator is defined analogously. We remark that the case repre-
sentation is closed for casemax and casemin for linear φi, ψj , fi, and gj . These
operators are not necessarily closed for LUQF operands since the newly intro-
duced constraints fi > gj may become non-LUQF. However, we can often order
eliminations to avoid application of casemax or casemin on LUQF statements.

Case Substitution. The case substitution operator defined as σ = (y/g) trig-
gers the substitution of a variable y with a case statement g. Similar to the ⊕
operation, fσ results in a case with conditions as cross-products of case condi-
tions between f and g, and value expressions in f with variable y replaced by
the value corresponding to the case condition in g. As an illustrative example:

fσ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z ≤ 0 ∧ x ≤ v : x + v

z ≤ 0 ∧ x > v : z + v

z > 0 ∧ x ≤ −2w : x − 2w

z > 0 ∧ x > −2w : z − 2w

, f =

{
x ≤ y : x + y

x > y : z + y
, g =

{
z ≤ 0 : v

z > 0 : −2w

Maximization/Minimization over a Variable. In symbolic optimization
we will want to maximize over both boolean and continuous variables. For a
boolean max over bi, we simply take the casemax over both instantiations {0, 1}
of bi:2 f(b\i,x) = maxbi g(b,x) = casemax(g(bi = 0, b\i,x), g(bi = 1, b\i,x)).
Symbolic maximization over a continuous variable xi is a much more involved
operation written as f(b,x\i) = maxxi

g(b,x) and discussed in detail in [20].
This operation is closed-form for LUQF g(b,x) and results in a purely symbolic
case statement for f(b,x\i). Minimization operators are defined analogously.

2.2 Extended Algebraic Decision Diagrams (XADDs)

b

2*x + z <= 10 2*x + z <= 10

y - x >= -2x + z

y - x <= 3

0

y >= -6

0.1

y <= 4

y*y

Fig. 1. Example XADD.
The true branch is solid, the
false branch is dashed.

Due to cross-product operations, a data structure
such as decision diagrams are required to maintain
a tractable case representation. Bryant [4] intro-
duced the reduced ordered binary decision diagram
(BDD) representing boolean functions; algebraic
decision diagrams (ADD) [1] extended BDDs to
non-boolean functions. The extended algebraic deci-
sion diagram (XADD) [18] shown in Fig. 1 extends
the ADD to allow continuous variables with inequal-
ities for decisions and LUQF expressions for leaves.
As for ADDs, XADDs have a fixed order of decisions
from root to leaf. The standard ADD operations to
build a canonical ADD (Reduce) and to perform a
binary operation on two ADDs (Apply) also apply

2 We use b\i to denote the set b with the variable bi excluded. Similarly x\i denotes
exclusion of xi from x.

588 Z. Ye et al.

for XADDs. The XADD can be exponentially smaller than the case represen-
tation (each path from root to leaf is a case partition) and all previous case
operations can be implemented to exploit the DAG structure of XADDs [20].

3 Symbolic Bucket Elimination

In this section, we introduce our novel framework: symbolic bucket elimination
for continuous constrained optimization. Problems can be specified as follows:

max
b,x

n∑

i=1

Ri(b,x) subject to Cj , ∀j ∈ {1, · · · , k} (1)

In our case, the Ri can be LUQF expressions and the Cj are linear constraints.
We translate problems of this form into their symbolic equivalent:

max
b,x

m⊕

i=1

Fi(b,x), where Fi =

{
Ci : 0
¬Ci : −∞ ,∀i ∈ {1, . . . , k}, (2)

where m = k + n and for each linear constraint Cj , there is a corresponding linear
case statement Fi(b,x). A maximum value of −∞ for the problem would indicate
that the problem is overconstrained and infeasible. We also note that while a case
representation would require a big-M formulation to handle piecewise, indicator,
and conditional constraints possible in cases, this framework represents all of
these logical constraints natively in the symbolic case form and thus as XADDs.

3.1 Symbolic Bucket Elimination Algorithm (SBE)

We can solve the general optimization problem of (2) by using a fully symbolic
variant of bucket elimination [8] leveraging the case (XADD) representation and
its efficient operations. In bucket elimination, each function Fi is placed into
ordered, variable-specific buckets. Variable ordering is determined by heuristics
that aim to minimize the induced tree-width of the underlying graph [8], with the
restriction that variables appearing on the left hand side of equality constraints
will be ordered such that their representative buckets will be eliminated first.
The rule for bucket assignment is to identify the variable in each function that
appears the latest in the ordering, and place the function in the bucket of the
respective variable. The buckets are then eliminated sequentially in the forward
step. In backtracking, optimal assignments are obtained with an arg max [20]
on the summed function for each bucket. The SBE algorithm is presented in
Algorithm 1. If the objective is minimization, (arg)max replaces (arg)min.

Computational Complexity. For bucket elimination over discrete domains,
complexity is bounded by an exponential function of the tree-width of the con-
straint graph [8]. When we extend bucket elimination to continuous domains

Symbolic Bucket Elimination for Continuous Constrained Optimization 589

Algorithm 1. Symbolic Bucket-Elimination (SBE)
Input: Input XADD functions {F1, . . . , Fm}, a variable ordering d
Output: The optimal objective value and variable assignments

1: Initialization: bucket assignment
2: Assign each input function to an ordered set of buckets: bucket1, . . . , bucketn. Let

fj,p denote a function residing in bucketp that is either an input function, or a
resultant function from a bucket already eliminated

3: Forward Elimination: eliminate each bucket sequentially
4: for p ← n down to 1 in ordering d do
5: gp ← ⊕

j fj,p
6: if xp is on left hand side of equality constraint: xp = cons then
7: hp ← gpσ, where σ = (xp/cons) // substitute variable for constraint
8: else hp ← maxxp gp

9: if p > 1 then assign hp to a bucket according to rule (bucket1 if constant)

10: Backtracking : recover optimal variable assignments, x∗

11: for p ← 1 up to n in ordering d do
12: x∗

p ← arg maxxp
gp(x1 = x∗

1, . . . , xp−1 = x∗
p−1), x

∗ ← x∗ ∪ {x∗
p}

13: return h1, x
∗

using XADD, the complexity is not explicitly tree-width dependent. While a con-
straint with many decision variables may be represented compactly as a piecewise
expression, one can generally only upper bound the number of pieces needed in
a case statement as an exponential function of the number of primitive binary
operations (⊕, casemax) used by bucket elimination. Nevertheless, the XADD
does maintain compact representations much smaller than the worst-case upper
bound and proves to be particularly advantageous when the underlying con-
straint graph has low tree-width, as we show in the experimental results section.

4 Experimental Results

In this section, we demonstrate the computational efficiency and the expressive-
ness of symbolic bucket elimination framework on three distinct problems. First,
we present two problems in which the symbolic bucket elimination framework
outperformed the state of art solver AMPL-Gurobi (7.5.0) with default settings
on a 2.20 GHz processor [10]. Second, we present a novel application of symbolic
parametric optimization to Relu-based deep neural networks.

4.1 Problems with XOR Conditional Constraints

Following is a synthetic problem involving constraints combined with XOR (�):

590 Z. Ye et al.

max
n∑

i=1

ri

where ri = if (xi ≥ xi+1 � xi+1 ≥ xi+2) then max(xi+1, xi+2) − min(xi+1, xi+2)
else min(xi, xi+1) − max(xi, xi+1),

subject to − 10 ≤ xi ≤ 10,∀i ∈ {1, . . . , n + 2},−20 ≤ rj ≤ 20,∀j ∈ {1, . . . , n}

In this problem, the reward term in the objective ri is determined by an XOR
conditional expression involving the respective decision variables xi, xi+1, xi+2.

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

2.5

5.0

7.5

10.0

12.5

1 2 3 4 5 6 7
n

Lo
g(

R
un

tim
e

in
 m

s)

Method
●

●

Gurobi
Bucket Elimination

●
●●●

●
●
●●

●
●

●
●●

●●
●●●●

●
●
●●●

●
●
●●

●
●●●

●
●●

●
●●●●

●
●
●
●●

●●●●
●
●●

●●
●

●●●

●

●

●

●

●●●
●●

●
●
●
●
●
●
●●

●●●

●
●
●

●●
●●●

●
●
●●

●

●

●●
●
●

●
●●●

0

1000

2000

3000

4000

5000

6000

0 25 50 75 100
n

R
un

tim
e

(m
s)

r4

x4

x5

x6

r1

x1

x2

x3r2

r5

x7

r3

)c()b()a(

Fig. 2. (a) Comparison of log runtime of SBE vs. Gurobi, with SBE outperforming
Gurobi for n > 4. (b) Non-log runtime for 1 ≤ n ≤ 100 showing SBE is linear in n. (c)
Constraint graph for n = 5, showing the low tree-width nature of this problem.

This problem structure is particularly advantageous for the proposed frame-
work due to the small size of the decision diagram for each constraint term, as
well as the sparsity of the constraints. This is illustrated through evaluations of
its runtime performance, with comparisons to that of Gurobi in Fig. 2. Symbolic
bucket elimination outperforms Gurobi, even at a very small n. The performance
gap becomes significant as n increases—while the runtime for Gurobi scales expo-
nentially in n, the bucket elimination framework scales linearly in n as evidenced
in the non-log plot Fig. 2(b).

4.2 Temporal Constraint Satisfaction with Preferences

Temporal constraint problems with preferences deal with finding optimal assign-
ments to time events based on preferences [12]. The objective is to optimize the
total preference value, subject to a set of constraints such as ordering of certain
time events, or time delays between events. This class of problems is a combina-
tion of Temporal Constraint Satisfaction Problems [9] with soft constraints [3].

Symbolic Bucket Elimination for Continuous Constrained Optimization 591

●●

●●●●

●

●
●

●●
●

●●

●●

●

●
●

●
●

●●
●●

●●
●●

●●
●●●

●
●

●●
●●●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●
●

●
●

●●
●●

●●
●●

●●
●●

●
●●●●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●●●●●●●●●

●
●

2.5

5.0

7.5

10.0

12.5

0 5 10 15 20 25 30 35 40 45 50 55 60
n

Lo
g(

R
un

tim
e

in
 m

s)

Method
●

●

Gurobi
Bucket Elimination

●●●

●●●●
●●●

●●●●
●●

●●
●●

●
●

●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●●●
●●

●●

●
●●●

●●
●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0

2000

4000

6000

8000

10000

12000

0 25 50 75 100
n

R
un

tim
e

(m
s)

t4

Disjunctive 1
t1

Gap 3

t3

p4

Disjunctive 4

Gap 1

t2

p3

Disjunctive 3

Gap 2

Min. Time: +t1

Min. Time: +t2

Min. Time: +t3

Min. Time: +t4

p2

Disjunctive 2

p1

)b()a((c)

Fig. 3. (a) Comparison of log runtime of SBE vs. Gurobi, with SBE outperforming
Gurobi for n > 40. (b) Non-log runtime for 1 ≤ n ≤ 100 showing SBE is linear in n.
(c) Constraint graph for n = 4, demonstrating the low tree-width structure.

The problem considered is:

min
n∑

i=1

ti + pi

where pi = if (ti ≤ 10(i + 1)) then ti
2 else (ti − 10n)2,∀i ∈ {1, . . . , n}

subject to 10i ≤ ti ≤ 10(i + 1) ∨ 10(i + 2) ≤ ti ≤ 10(i + 3),∀i ∈ {1, . . . , n}
ti + 10 ≤ ti+1,∀i ∈ {1, . . . , n − 1}, {ti, pi} ∈ R,∀i ∈ {1, . . . , n}

The definition of pi is analogous to the mid-value preference constraint presented
in [12]. The preference value pi is dictated by whether the condition ti ≤ 10(i+1)
is true. If so, then it is preferred for time event ti to occur as close to time 0
as possible, otherwise ti should occur close to time 10n (i.e., the preferences
are “repulsive” and prefer opposite ends of the timeline). The objective is to
minimize the sum of time events ti and preference values pi. The first constraint
is a disjunctive type constraint on time event ti. The second constraint imposes
a gap requirement between time events. We note that although quadratic terms
appear in the leaves of the representative constraint XADD, decisions will remain
linear throughout SBE as there are no explicit discrete variables to maximize and
therefore no casemax operations to “promote” quadratic terms into decisions.
The runtime evaluations and problem structure are visualized in Fig. 3. As in
the previous example, the runtime for Gurobi scales exponentially in problem
size while SBE scales linearly. SBE outperforms Gurobi for n > 40.

4.3 Symbolic Parametric Optimization of Deep Neural Networks

We demonstrate a novel application of SBE to perform symbolic parametric
optimization of deep neural networks with rectified linear units (Relu) that
are piecewise linear. Previous work has shown Relu-based deep neural networks
can be compiled into linear constraint optimization programs and solved non-
parametrically with applications in automated planning [19] and verification [11].

592 Z. Ye et al.

In this section, we show promising results for symbolic parametric optimization
on the learned output units, yj(x) of a Relu-based deep network trained on
h(x) by first compiling the constraints and then maximizing yj(x) w.r.t. a sub-
set of the input variables xs using SBE. This results in new symbolic piecewise
functions that represent the maximal deep network output values that can be
achieved for the best xs as a function of the remaining inputs. Such symbolic
parametric (partial) optimization is not possible with Gurobi. The Relu-based
deep network is represented by the following objective, piecewise linear case
statements and constraints implementing the connections and Relu functions:

max
xs ⊂{x1,...,xn}

yj ,∀j ∈ {1, . . . , m}

yj =
∑

i∈{1,...,p}
wi,j,lri,l + bj,l+1,∀j ∈ {1, . . . , m}

rj,k = max(
∑

i∈{1,...,p}
(wi,j,k−1ri,k−1) + bj,k, 0),∀j ∈ {1, . . . , p}, k ∈ {2, . . . , l}

rj,1 = max(
∑

i∈{1,...,n}
(wi,j,0xi) + bj,1, 0),∀j ∈ {1, . . . , p}

−10 ≤ xi ≤ 10,∀i ∈ {1, . . . , n}, yj ∈ R,∀j ∈ {1, . . . , m}
0 ≤ ri,k ∈ R,∀i ∈ {1, . . . , p}, k ∈ {1, . . . , l}

0

500

1000

4 5 6 7
Depth

R
un

tim
e

in
 m

s

Width
2
3
4

Fig. 4. Top: runtime for SBE for
network widths 2–4, depths 4–7.
Bottom: deep neural network struc-
ture with 2 input units, 1 output
unit, width of 3, hidden layer depth
of 2 (n = 2, m = 1, p = 3, l = 2).

where parameters n, m, p and l denote the
number of input units, number of output
units, width (units in a hidden layer) and
depth (hidden layers) of the network, wi,j,k

denotes the weight between unit i at layer k
and unit j, and bj,k denotes the bias of unit
j at layer k.

In Fig. 4, we show an example neural net-
work structure and the runtime results of
using SBE to parametrically optimize a net-
work trained to learn h(x) = x2

1 + x2
2 with

n = 2, m = 1 for various width p and depth l.
Runtimes are heavily width-dependent since
tree-width grows with the width of a deep
net, but not depth. The SBE eliminates the
nodes in the hidden layers in a backward
manner until it reaches the input layer, where
the variable xs = (x1) is maximized out. We
note that for networks with more than one
output, it is possible with SBE to parametri-
cally optimize on different sets of xs for the
different outputs. Other types of activation
functions (i.e., linear or step) are also possi-
ble, as long as each unit can be represented

Symbolic Bucket Elimination for Continuous Constrained Optimization 593

as piecewise functions. SBE applied to deep nets as done here has potential
applications in planning and verification: i.e., what is achievable as a function
of an input?

5 Conclusion and Future Work

We introduced a novel symbolic bucket elimination (SBE) framework for repre-
senting and solving constrained optimization problems symbolically (and even
parametrically), that can exponentially outperform Gurobi when the underly-
ing constraint graph has low tree-width. In terms of future work, we remark
that previous investigations in the discrete domain using mini-buckets [7] and
heuristic search have demonstrated excellent improvement over exact bucket
elimination [13,16]. Hence, a promising direction for future work is mini-bucket
extensions of SBE to allow it to scale to higher tree-width constrained optimiza-
tion problems, vastly extending the scope of applicability of SBE.

References

1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. In: Proceed-
ings of the 1993 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 1993, pp. 188–191. IEEE Computer Society Press, Los Alamitos (1993).
http://dl.acm.org/citation.cfm?id=259794.259826

2. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press Inc.,
Orlando (1972)

3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction
and optimization. J. ACM 44(2), 201–236 (1997). https://doi.org/10.1145/256303.
256306

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

5. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

6. Dechter, R., Pearl, J.: Network-based heuristics for constraint satisfaction prob-
lems. In: Kanal, L., Kumar, V. (eds.) Search in Artificial Intelligence. SYMBOLIC,
pp. 370–425. Springer, London (1988). https://doi.org/10.1007/978-1-4613-8788-
6 11. http://dl.acm.org/citation.cfm?id=60727.60738

7. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell.
113(1), 41–85 (1999). http://www.sciencedirect.com/science/article/pii/S0004370
299000594

8. Dechter, R.: Reasoning with Probabilistic and Deterministic Graphical Models:
Exact Algorithms. Morgan & Claypool Publishers, San Rafael (2013)

9. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49
(1–3), 61–95 (1991). https://doi.org/10.1016/0004-3702(91)90006-6

10. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2016). http://www.
gurobi.com

http://dl.acm.org/citation.cfm?id=259794.259826
https://doi.org/10.1145/256303.256306
https://doi.org/10.1145/256303.256306
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/978-1-4613-8788-6_11
https://doi.org/10.1007/978-1-4613-8788-6_11
http://dl.acm.org/citation.cfm?id=60727.60738
http://www.sciencedirect.com/science/article/pii/S0004370299000594
http://www.sciencedirect.com/science/article/pii/S0004370299000594
https://doi.org/10.1016/0004-3702(91)90006-6
http://www.gurobi.com
http://www.gurobi.com

594 Z. Ye et al.

11. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

12. Khatib, L., Morris, P., Morris, R., Rossi, F.: Temporal constraint reasoning with
preferences. In: Proceedings of the 17th International Joint Conference on Artificial
Intelligence, IJCAI 2001, vol. 1, pp. 322–327. Morgan Kaufmann Publishers Inc.,
San Francisco (2001). http://dl.acm.org/citation.cfm?id=1642090.1642135

13. Larrosa, J., Dechter, R.: Boosting search with variable elimination in constraint
optimization and constraint satisfaction problems. Constraints 8, 303–326 (2003)

14. Larrosa, J., Morancho, E., Niso, D.: On the practical use of variable elimination
in constraint optimization problems: ‘still-life’ as a case study. J. Artif. Intell. Res.
23, 421–440 (2005)

15. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: ICML, pp. 807–814 (2010). http://www.icml2010.org/papers/432.
pdf

16. Rollón, E., Larrosa, J.: Bucket elimination for multiobjective optimization prob-
lems. J. Heuristics 12(4), 307–328 (2006). https://doi.org/10.1007/s10732-006-
6726-y

17. Sanner, S., Abbasnejad, E.: Symbolic variable elimination for discrete and contin-
uous graphical models. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2012, pp. 1954–1960. AAAI Press (2012). http://dl.
acm.org/citation.cfm?id=2900929.2901004

18. Sanner, S., Delgado, K., Barros, L.: Symbolic dynamic programming for discrete
and continuous state MDPs. In: UAI, pp. 643–652, January 2011

19. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with deep net
learned transition models and mixed-integer linear programming. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, pp. 750–756 (2017). https://doi.org/10.24963/ijcai.2017/104

20. Zamani, Z., Sanner, S., Fang, C.: Symbolic dynamic programming for continuous
state and action MDPs. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2012, pp. 1839–1845. AAAI Press (2012). http://dl.
acm.org/citation.cfm?id=2900929.2900988

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://dl.acm.org/citation.cfm?id=1642090.1642135
http://www.icml2010.org/papers/432.pdf
http://www.icml2010.org/papers/432.pdf
https://doi.org/10.1007/s10732-006-6726-y
https://doi.org/10.1007/s10732-006-6726-y
http://dl.acm.org/citation.cfm?id=2900929.2901004
http://dl.acm.org/citation.cfm?id=2900929.2901004
https://doi.org/10.24963/ijcai.2017/104
http://dl.acm.org/citation.cfm?id=2900929.2900988
http://dl.acm.org/citation.cfm?id=2900929.2900988

Learning a Classification of Mixed-Integer
Quadratic Programming Problems

Pierre Bonami1, Andrea Lodi2, and Giulia Zarpellon2(B)

1 CPLEX Optimization, IBM Spain, Madrid, Spain
pierre.bonami@es.ibm.com

2 CERC, École Polytechnique Montréal, Montreal, Canada
{andrea.lodi, giulia.zarpellon}@polymtl.ca

Abstract. Within state-of-the-art solvers such as IBM-CPLEX, the
ability to solve both convex and nonconvex Mixed-Integer Quadratic Pro-
gramming (MIQP) problems to proven optimality goes back few years,
yet presents unclear aspects. We are interested in understanding whether
for solving an MIQP it is favorable to linearize its quadratic part or not.
Our approach exploits machine learning techniques to learn a classifier
that predicts, for a given instance, the most suitable resolution method
within CPLEX’s framework. We aim as well at gaining first methodolog-
ical insights about the instances’ features leading this discrimination.
We examine a new dataset and discuss different scenarios to integrate
learning and optimization. By defining novel measures, we interpret and
evaluate learning results from the optimization point of view.

1 Introduction

The tight integration of discrete optimization and machine learning (ML) is a
recent but already fruitful research theme: while ML algorithms could profit of
choices of discrete type, until now disregarded, various are the discrete opti-
mization settings and situations that could benefit from a ML-based heuris-
tic approach. Although a number of fresh applications is recently appearing in
this latter direction, that one could call “learning for optimization” (e.g., [1,2]),
two main topics in this thread of research involve ML-based approaches for the
branch-and-bound scheme in Mixed-Integer Linear Programming (MILP) prob-
lems (see [3] for a survey on the theme) and the usage of predictions to deal
with the solvers’ computational aspects and configuration (see, e.g., [4,5]). We
shift from those two main ideas and position ourselves somehow in between,
to tackle a new application of ML in discrete optimization. We consider Mixed-
Integer Quadratic Programming (MIQP) problems, which prove to be interesting
for modeling diverse practical applications (e.g., [6,7]) as well as a theoretical
ground for a first extension of MILP algorithms into nonlinear ones.

Within state-of-the-art solvers such as IBM-CPLEX [8], the ability to solve
both convex and nonconvex MIQPs to proven optimality goes back few years
(see, e.g., [9]), but theoretical and computational implications of the employed

c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 595–604, 2018.
https://doi.org/10.1007/978-3-319-93031-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_43&domain=pdf

596 P. Bonami et al.

resolution methods do not seem fully understood yet. We are interested in learn-
ing whether it is favorable to linearize the quadratic part of an MIQP or not.
As was firstly suggested in [10], we believe that MIQPs should be solved in an
intelligent and adapted way in order to improve their resolution process; cur-
rently, the decision linearize vs. not linearize can be specified by CPLEX users
via the linearization switch parameter. We interpret the question linearize vs.
not linearize as a classification one: we learn a classifier predicting, for a given
MIQP, the most suited resolution method within CPLEX, possibly gaining first
methodological insights about the problems features leading to such prediction.

After a quick dive into the MIQPs algorithmic framework (Sect. 2), we
motivate and state our research question (Sect. 3). Methodological details and
learning-related aspects are presented in Sect. 4, while Sect. 5 is devoted to dis-
cuss results, new evaluation measures and different scenarios to integrate the
learning and the optimization processes.

2 Solving MIQPs with CPLEX

We consider general MIQP problems of the form

min
{

1
2
xTQx + cTx : Ax = b, l ≤ x ≤ u, xj ∈ {0, 1} ∀ j ∈ I

}
(1)

where Q = {qij}i,j=1,...,n ∈ R
n×n is a symmetric matrix, c ∈ R

n, A ∈ R
m×n and

b ∈ R
m. Variables x ∈ R

n are bounded, and I ⊆ N = {1, . . . , n} is the set of
indices of variables that are required to be binary. We say that a problem is pure
(binary) when I = N , and mixed otherwise; we do not consider the continuous
case of I = ∅. We refer to an MIQP relaxation as to the continuous version of
(1), where integrality requirements are dropped.

Depending on its relaxation being convex or nonconvex, and on the types of
variables involved, an MIQP can be tackled in different ways by CPLEX.

Convex Problems. A relaxed MIQP is convex if and only if the matrix Q is
positive semi-definite (Q � 0). In this setting, both pure and mixed MIQPs can
be solved by the nonlinear programming-based branch and bound [11] (NLP
B&B) (see also [12]), a natural extension of the integer linear B&B scheme [13]
in which a QP is solved at each node of the tree. Another common resolution
approach for convex problems is that of Outer Approximation algorithms [14],
which are however not implemented in CPLEX for MIQPs.

Nonconvex Problems. When the relaxed MIQP is not convex (Q � 0), variable
types play an import role. A binary nonconvex MIQP can be transformed into
a convex one by means of augmenting the main diagonal of Q: using xj = x2

j for
xj ∈ {0, 1}, xTQx can be replaced by xT (Q + ρIn)x − ρeTx, where Q + ρIn � 0
for some suitable ρ > 0, In denotes the n × n identity matrix, and e the vector
with all ones. Alternatively, a binary nonconvex MIQP can be linearized and
transformed into a MILP. Without performing diagonal augmentation, nonzero

Learning a Classification of Mixed-Integer Quadratic Programming Problems 597

terms qiix
2
i are rewritten as qiixi, while bilinear terms qijxixj are handled by the

so-called McCormick inequalities [15]: a variable yij ≥ 0 is added to represent
xixj , together with linear constraints

xi + xj − 1 ≤ yij if qij > 0, or yij ≤ xi, yij ≤ xj if qij < 0. (2)

In this way, the problem formulation grows in size, but the resulting model can
be solved with standard MILP techniques.

For mixed nonconvex MIQPs, there is no straightforward way to convexify
or linearize an instance, and CPLEX relies on the so-called Spatial B&B (see,
e.g., [16]) to solve these problems to global optimality.

Although a number of possibilities can be explored to perform linearization
and convexification, their discussion is not within the scope of the present paper.
For more details, we refer the reader to [9] and the references therein.

3 Linearize vs. Not Linearize

One could assume that the linearization approach discussed for pure noncon-
vex MIQPs could be beneficial for the convex case as well: a binary problem
would turn into a MILP, while in the mixed case one could linearize all bilinear
products between a binary and a bounded continuous variable with general-
ized McCormick inequalities. However, nonzero products between two continu-
ous variables would remain in the formulation, so that a mixed convex MIQP
could still be quadratic after linearization, and hence solved with a NLP B&B.

We restrict our focus to pure convex, mixed convex and pure nonconvex prob-
lems; the mixed nonconvex case should be treated separately, due to the very
different setup of Spatial B&B. Currently, in our three cases of interest, the
solver provides the user the possibility to switch the linearization on or off by
means of the preprocessing parameter qtolin, and the default strategy employed
by CPLEX is to always perform linearization, although this approach does not
dominate in theory the non-linearization one [9].

We aim at learning an offline classifier predicting the most suited resolution
approach in a flexible and instance-specific way. We summarize in what follows
the main steps undertaken in the development of our method, leaving the details
for the next section.

1. Dataset generation: we implement a generator of MIQP instances, span-
ning across various combinations of structural and optimization parameters.

2. Features design: we identify a set of features describing an MIQP in its
mathematical formulation and computational behavior.

3. Labels definition: we define rigorous procedures to discard troublesome
instances, and assess a label depending on running times.

4. Learning experiments: we train and test traditional classifiers and inter-
pretable algorithms such as ensemble methods based on Decision Trees.

598 P. Bonami et al.

4 Methodological Details

We now go through the development steps sketched above more in details, dis-
cussing how the dataset is generated, and features and labels defined.

4.1 Dataset Generation

To build complete MIQP instances, data generation is made of two separate
steps. First, symmetric matrices Q are generated by the MATLAB function
sprandsym [17], to which desired size n, density d and eigenvalues λi, i = 1, . . . , n
are specified; (in)definiteness of Q is controlled by the spectrum. The second step
is implemented with CPLEX Python API: quadratic data can be complemented
with a linear vector c, uniform with density d; binary and continuous variables
are added in various proportions; finally, a constraints set is defined. We monitor
the addition of the following types of constraints, in different combinations:

– a single cardinality constraint 0 ≤ ∑
j∈I xj ≤ r, with r < |I| varying;

– a standard simplex constraint
∑

j /∈I xj = 1, xj ≥ 0;
– a set of η multi-dimensional knapsack constraints

∑
j∈I wijxj ≤ fi, for i =

1, . . . , η. We follow the procedure described in [18] to generate coefficients wij

and fi, without correlating them to the objective function.

4.2 Features Design

A (raw) formulation like (1) cannot be fed directly as input to a learning algo-
rithm. We depict an MIQP by means of a set of 21 hand-crafted features,
summarized in Table 1. Static features describe the instance in terms of vari-
ables, constraints and objective function, and are extracted before any solving
(pre)process. Few dynamic features collect information on the early optimization
stages, after the preprocessing and the resolution of the root node relaxation.

4.3 Labels Definition

To each MIQP we assign a label among L (linearize, i.e., qtolin on), NL (not
linearize, i.e., qtolin off) and T, the latter to account for tie cases between L
and NL. To deal with performance variability [19], each instance is run in both
qtolin modes with 5 different random seeds; we enforce a timelimit of 1 h for
each run. To monitor troublesome instances, we implement:

– solvability check: instances that cannot be solved within timelimit by any
method (neither L nor NL) for any seed are discarded;

– seed consistency check: for each seed, unstable instances with respect to lower
and upper bounds of L and NL are discarded;

– global consistency check: a global check on the best upper and lower bounds
for the two methods is performed to discard further unstable instances.

Learning a Classification of Mixed-Integer Quadratic Programming Problems 599

Table 1. Overview and brief description of the complete features set.

Group name Features general description

Static features

2 Generic problem type Size of the problem, variables proportions
per type

2 Constraints matrix composition Density w.r.t. different types of variables,
magnitudes of nonzero (nnz) coefficients

5 Quadratic matrix composition Magnitudes of coefficients, nnz diagonal and
bilinear (continuous · continuous) and
(binary · continuous)

7 Spectrum description Shares of positive/negative eigenvalues,
magnitude and value of the smallest one,
trace and spectral norm

3 Other properties of Q Density, rank, a measure of “diagonal
dominance”

Dynamic features

2 Root node information Difference of lower bounds and resolution
times at the root node, between linearize
and not linearize

If an MIQP passes all these checks, we assign a label. When one mode is never
able to solve an instance, the other wins. If both L and NL could solve the
instance at least once, running times on each seed are compared and a “seed
win” is assigned to one mode if at least 10% better. We assign L or NL only if
their seed wins are consistent through the 5 runs, opting for a tie T otherwise.

5 Data, Experiments and Results

The generation procedure is run with MATLAB 9.1.0, Python 2.7 and CPLEX
12.6.3 on a Linux machine, Intel Xeon E5-2637 v4, 3.50 GHz, 16 threads and
128 GB. To label the dataset, we used a grid of 26 machines Intel Xeon X5675,
3.07 GHz (12 threads each) and 96 GB; each problem is restricted to one thread.

We generate 2640 different MIQPs, with size n ∈ {25, 50, . . . , 200} and den-
sity of Q d ∈ {0.2, 0.4, . . . , 1}. For mixed convex MIQPs, the percentage of con-
tinuous variables is chosen from {0, 20, . . . , 80}. We discard 340 instances due to
solvability or consistency failures, ending up with a dataset D of 2300 problems.

We report in Table 2 the composition of dataset D with respect to problem
types and assigned labels. The dataset is highly unbalanced: the majority of
instances is tagged as NL, with a very small share of T. Also, the NL answer is
strongly predominant for mixed convex instances, suggesting that there could
be a clear winner method depending on the type of problem itself.

600 P. Bonami et al.

Table 2. Composition of dataset D. For each type and label we report the total number
of instances and their percentage.

L NL T Total (%)

0–1 convex 195 600 35 830 (0.36)

0–1 nonconvex 392 312 39 743 (0.32)

Mixed convex 11 701 15 727 (0.32)

Total (%) 598 (0.26) 1613 (0.70) 89 (0.04) 2300

Table 3. Classification measures for different learning settings. The best performing
classifiers are boldfaced.

(a) Multiclass - All features

SVM RF EXT GB

Accuracy 85.22 88.87 84.00 87.65
Precision 81.91 85.51 81.26 84.79
Recall 85.22 88.87 84.00 87.65
F1-score 83.16 87.11 82.52 86.19

(b) Binary - Static features

SVM RF EXT GB

Accuracy 86.80 86.08 85.53 86.62
Precision 86.48 85.69 85.20 86.32
Recall 86.80 86.08 85.53 86.62
F1-score 86.28 85.53 85.30 86.03

5.1 Learning Experiments and Results

Learning experiments are implemented in Python with Scikit-learn [20], and run
on a personal computer with Intel Core i5, 2.3 GHz and 8 GB of memory. We
randomly split D into Dtrain and Dtest, a training and a test sets of, respectively,
1725 (75%) and 575 (25%) instances; data is normalized in [−1, 1]. We perform
training with 5-fold cross validation to grid-search hyper-parameters, and test on
the neutral Dtest. We try Support Vector Machine (SVM) with RBF kernel [21],
together with Random Forests (RF) [22], Extremely Randomized Trees (EXT)
[23] and Gradient Tree Boosting (GB) [24].

Our first experiment involves a multiclass scheme with labels {L,NL,T}, and
exploits all features. Table 3a reports the standard measures for classification
in this setting: for all classifiers we compare accuracy, precision, recall, f1-score
(weighted by classes’ supports, to account for unbalance). In this setting, RF is
best performing in all measures. Features importance scores among RF, EXT and
GB show that the subset of features that are more influential for the prediction
comprises both dynamic features (difference of lower bounds and times at root
node) and information on the convexity of the problem (e.g., value of the smallest
nonzero eigenvalue and spectral norm of Q).

Examining the classifiers’ confusion matrices, a major difficulty seems to be
posed by the T class, which is (almost) always misclassified. Ultimately, we aim
at providing a reliable classification of those “extreme” cases for which a change
in the resolution approach produces a change in the instance being solved or
not. Thus, we carry out further experiments in a binary setting: we remove all

Learning a Classification of Mixed-Integer Quadratic Programming Problems 601

tie cases and rescale the data accordingly. All measures are overall improved for
the new binary classifiers, and again RF performs as the best algorithm.

We also try classifiers trained without dynamic features: albeit this may
sound in conflict with the features importance scores mentioned above, from
the optimization solver’s point of view is it useful to test a scenario in which
a prediction is cast without the need of solving twice the root MIQP. All mea-
sures slightly deteriorate without dynamic features, and SVM becomes the best
performing algorithm; nonetheless, “static” predictors and their original coun-
terparts are coherent in their (mis)classifications on Dtest.

Results in a setting simplified in terms of both labels and features are reported
in Table 3b: performance is balanced in the improvement brought by the removal
of ties, and the degradation due to the absence of dynamic features, and again
SVM performs better.

5.2 Complementary Optimization Measures

To determine the effectiveness of our learned approach with respect to the
solver’s strategy, we define “optimization measures” scoring and evaluating the
classifiers in terms of resolution runtimes.

We run each instance i of Dtest for three qtolin values - CPLEX default
(DEF), L and NL. Each problem is run only once, with timelimit of 1h; we focus
on the Multiclass and All features setting. We remove never-solved instances, to
remain with 529 problems in Dtest. For each classifier clf, we associate to the
vector of its predicted labels yclf a vector of predicted times tclf by selecting
tiL or tiNL depending on yi

clf for i ∈ Dtest (we choose their average if a tie was
predicted). We also build tbest (tworst) selecting runtimes of the correct (wrong)
labels for the samples. Note that tDEF is directly available, without labels’ vector.

Sum of Predicted Runtimes. We compare σclf :=
∑

i∈Dtest
ticlf for clf ∈

{SVM, RF, EXT, GB} with σbest, σworst and σDEF. Results are in Table 4a: RF
is the closest to best and the farthest from worst ; also, DEF could take up to
4x more time to run MIQPs in Dtest compared to a trained classifier. Note that
the real gain in time could be even bigger than this, given the fact that we set
a timelimit of 1 h.

Normalized Time Score. We then consider the shifted geometric mean of tclf
over Dtest, normalized between best and worst cases to get a score Nσclf ∈ [0, 1]:

sgmclf := |Dtest|

√ ∏
i∈Dtest

(ticlf + 0.01) − 0.01, Nσclf :=
sgmworst − sgmclf

sgmworst − sgmbest
. (3)

The measure is reported in Table 4a: all predictors are very close to 1 (this
score highly reflects classification performance), while DEF is almost halfway
between best and worst.

602 P. Bonami et al.

Table 4. Complementary optimization measures. Best classifiers are boldfaced.

(a) Multiclass - All features

SVM RF EXT GB DEF

σclf/σbest 1.49 1.31 1.43 1.35 5.77
σworst/σclf 7.48 8.49 7.81 8.23 1.93
σDEF/σclf 3.88 4.40 4.04 4.26 -

Nσclf 0.98 0.99 0.98 0.99 0.42

(b) Binary - Static features

SVM RF EXT GB DEF

σclf/σbest 1.80 2.04 2.01 1.82 5.81
σworst/σclf 6.23 5.50 5.59 6.19 1.93
σDEF/σclf 3.22 2.85 2.89 3.20 -

Nσclf 0.98 0.98 0.98 0.98 0.43

The presence of timelimiting cases in the test runs is also well reflected in
σclf and Nσclf , which are better for classifiers hitting timelimits less frequently
(3 times only for RF, 39 for DEF). Note that both L and NL do reach the
limit without finding a solution (38 and 55 times, respectively), and that due to
variability even best hits the timelimit once. We compute σclf and Nσclf in the
Binary - Static features setting as well. Results in Table 4b are in line with what
previously discussed for this setup.

6 Conclusions and Ongoing Research

We propose a learning framework to investigate the question linearize vs. not
linearize for MIQP problems. Results on a generated dataset are satisfactory
in terms of classification performance and promising for their interpretability.
Novel scoring measures positively evaluate the classifiers’ performance from the
optimization point of view, showing significant improvements with respect to
CPLEX default strategy in terms of running times.

In ongoing and future research, we plan to focus on four main directions.

– Analyze other benchmark datasets: the analysis of public libraries containing
MIQPs (e.g., [25]) is crucial to understand how representative the synthetic
D is of commonly used instances, which can then be used to form a more
meaningful and comprehensive final dataset.
So far, we analyzed a share of CPLEX internal MIQP testbed Ctest of 175
instances: the data is very different from D in features’ distribution (Ctest is
dominated by the presence of very structured combinatorial MIQPs, like Max-
Cut and Quadratic Assignment Problems). The majority class is that of ties,
followed by L and with very few NL cases. Preliminary experiments on Ctest

used as a test set for classifiers trained on Dtrain produce very poor classifica-
tion results, as most often misclassification happens in form of a T predicted
as NL. In fact, complementary optimization measures are not discouraging:
given that Ctest contains mostly ties, albeit the high misclassification rate, the
loss in terms of solver’s performance is not dramatic.

– Deepen features importance analysis, to get and interpret methodological
insights on the reasons behind the decision linearize vs. not linearize. As

Learning a Classification of Mixed-Integer Quadratic Programming Problems 603

we mentioned in Sect. 5, the problem type itself might draw an important
line in establishing the winning method, which seems strongly linked to the
information collected at the root node.

– Identify the best learning scenario, in order to successfully integrate the learn-
ing framework with the solver. We already considered the simplified Binary -
Static features one; it could be interesting to perform static features selection
based on their correlation with dynamic ones.

– Define a custom loss function: the complementary optimization measures that
we propose showed effective in capturing the optimization performance as well
as the classification one. We plan to use these and other intuitions to craft
a custom loss/scoring function to train/validate the learning algorithm, in a
way tailored to the solver’s performance on MIQPs.

References

1. Kruber, M., Lübbecke, M.E., Parmentier, A.: Learning when to use a decomposi-
tion. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp.
202–210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8 16

2. Khalil, E.B., Dilkina, B., Nemhauser, G., Ahmed, S., Shao, Y.: Learning to run
heuristics in tree search. In: 26th International Joint Conference on Artificial Intel-
ligence (IJCAI) (2017)

3. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236
(2017)

4. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13520-0 23

5. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
methods and evaluation. Artif. Intell. 206, 79–111 (2014)

6. Bienstock, D.: Computational study of a family of mixed-integer quadratic pro-
gramming problems. Math. Program. 74(2), 121–140 (1996)

7. Bonami, P., Lejeune, M.A.: An exact solution approach for portfolio optimiza-
tion problems under stochastic and integer constraints. Oper. Res. 57(3), 650–670
(2009)

8. CPLEX (2017). http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/index.html

9. Bliek, C., Bonami, P., Lodi, A.: Solving mixed-integer quadratic programming
problems with IBM-CPLEX: a progress report. In: Proceedings of the Twenty-
Sixth RAMP Symposium, pp. 16–17 (2014)

10. Fourer, R.: Quadratic optimization mysteries, part 1: two versions (2015). http://
bob4er.blogspot.ca/2015/03/quadratic-optimization-mysteries-part-1.html

11. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear
integer programming. Manag. Sci. 31(12), 1533–1546 (1985)

12. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird,
C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., et al.: An algorithmic framework
for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008)

13. Land, A., Doig, A.: An automatic method of solving discrete programming prob-
lems. Econometrica 28, 497–520 (1960)

https://doi.org/10.1007/978-3-319-59776-8_16
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-13520-0_23
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html
http://bob4er.blogspot.ca/2015/03/quadratic-optimization-mysteries-part-1.html
http://bob4er.blogspot.ca/2015/03/quadratic-optimization-mysteries-part-1.html

604 P. Bonami et al.

14. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of
mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

15. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part I—convex underestimating problems. Math. Program. 10(1), 147–175
(1976)

16. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-
integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)

17. MATLAB: Version 9.1.0 (2016). The MathWorks Inc., Natick, Massachusetts
18. Puchinger, J., Raidl, G.R., Pferschy, U.: The multidimensional Knapsack problem:

structure and algorithms. INFORMS J. Comput. 22(2), 250–265 (2010)
19. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming.

In: Theory Driven by Influential Applications, INFORMS, pp. 1–12 (2013)
20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

21. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

22. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
23. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.

63(1), 3–42 (2006)
24. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),

367–378 (2002)
25. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti,

L., Lodi, A., Misener, R., Mittelmann, H., Sahinidis, N., Vigerske, S., Wiegele, A.:
QPLIB: a library of quadratic programming instances. Technical report (2017).
Available at Optimization Online

Fleet Scheduling in Underground Mines
Using Constraint Programming

Max Åstrand1,2(B), Mikael Johansson2, and Alessandro Zanarini3

1 ABB Corporate Research Center, Väster̊as, Sweden
max.astrand@se.abb.com

2 KTH Royal Institute of Technology, Stockholm, Sweden
mikaelj@kth.se

3 ABB Corporate Research Center, Baden-Dättwil, Switzerland
alessandro.zanarini@ch.abb.com

Abstract. The profitability of an underground mine is greatly affected
by the scheduling of the mobile production fleet. Today, most mine oper-
ations are scheduled manually, which is a tedious and error-prone activ-
ity. In this contribution, we present and formalize the underground mine
scheduling problem, and propose a CP-based model for solving it. The
model is evaluated on instances generated from real data. The results
are promising and show a potential for further extensions.

1 Introduction

Mining is the process of extracting minerals from the earth, commonly done
either in open pit or underground mines. Underground mining is a cost-intensive
industry, where the margins decrease as production goes deeper. The opera-
tional performance, and thus the profitability, of an underground mine is greatly
affected by how the mobile machinery is coordinated. In most mines, the machine
fleet is scheduled manually with methods and tools on the brim of what they
can handle. In a survey [1] of more than 200 high level executives from mining
companies all around the world, maximizing production effectiveness was identi-
fied as the top challenge for modern mines, even more than improving reliability
of individual equipment. This fact highlights that system level coordination is
critical for mines to remain profitable in the future.

Underground mining operation is planned on different levels with different
horizons and task granularities. The longest planning horizon is in the life-of-
mine plan, which contains a rough strategy for which year to extract what parts
of the ore-body. The life-of-mine plan is further decomposed into extraction
plans of various granularity that have time horizons of years or months. The
extraction plans include more details about the amount of ore that is expected
to be excavated under different parts of the plan. Lastly, the extraction plans
are implemented as short-term schedules by allocating and time-tabling machines
and personnel to the activities, producing a detailed schedule for roughly one
week.
c© Springer International Publishing AG, part of Springer Nature 2018
W.-J. van Hoeve (Ed.): CPAIOR 2018, LNCS 10848, pp. 605–613, 2018.
https://doi.org/10.1007/978-3-319-93031-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93031-2_44&domain=pdf

606 M. Åstrand et al.

To the best of the authors’ knowledge, there is no previous work on using CP
to schedule the mobile production fleet in underground mining. The most similar
problem can be found in [2], where they study scheduling mobile machines in
an underground potash mine using MIP-models and construction procedures.
Another underground mine scheduling problem is described in [3] where sched-
ules are created by enumerating all sequence permutations, and select the one
with the shortest makespan. To limit the search space of all possible sequences
(at worst factorial) the authors cluster the faces based on geographical distance.
The authors in [4] study how to transport ore in an underground mine, via inter-
mediate storages, to the mine hoist. They use a MIP-model to allocate machines
to different work areas on a shift basis over a period of 2 months. The authors
refine their work in [5] and propose several simplifications which decrease com-
putation time.

A study of underground machine routing is introduced in [6], where they
study the effect of using different heuristic dispatch strategies for routing
machines in a diamond mine. The authors conclude that strategies that sep-
arate the machines geographically seem beneficial. This is due to the confined
environment, in which avoiding deadlocks (e.g. machines meeting each other in a
one-way tunnel) is crucial. More research on underground routing can be found
in [7], where the authors continue on previous work in [8] by using dynamic
programming.

In [9] the authors study scheduling open pit mines (a related but distinct
problem) with MIP. Using a multiobjective approach, they study over 40 objec-
tives, including maximizing the utilization of trucks and minimizing deviations
from targeted production. Continuing on the topic of scheduling open pit mines,
the authors in [10] develop a model for scheduling numerous autonomous drill
rigs in an open pit mine. The problem naturally decomposes into subproblems,
where a high-level CSP, linking the subproblems, is solved to find a solution in
the joint search space.

Our contribution is the first study of production scheduling in underground
mining using CP. Further, the problem introduced generalizes similar problems
studied by other authors (using other methods). Most notably, we impose and
exploit the presence of blast windows, allow for a mix of interruptible and unin-
terruptible tasks, and support tasks that have an after-lag.

The paper is organized as follows: Sect. 2 describes the problem and intro-
duces the necessary notation. A CP-based model for solving the problem is devel-
oped in Sect. 3. Next, Sect. 4 reports experimental results on instances generated
by data coming from a real mine. Conclusions are drawn in Sect. 5.

2 Problem Description

The mine operations that we consider are located at underground sites called
faces, which denote the end of an underground tunnel. From here-on, the faces
are labeled F = {1, . . . , n}. In order to extract ore from the mountain, a periodic
sequence of activities takes place at each face: C=(drilling, charging, blasting,

Fleet Scheduling in Underground Mines Using Constraint Programming 607

ventilating, washing, loading, scaling, cleaning, shotcreting, bolting, face scaling,
face cleaning). We refer to a full period of activities as a cycle. All the activi-
ties except blasting and ventilation require a specific (today) human-operated
machine to be used, and we denote with Ĉ this subset of activity types. Specifi-
cally, drilling requires a drill rig in order to drill holes in the face processed; when
charging, the holes are filled with explosives typically using a wheel loader with
a platform; after blasting, the rock that has been separated from the mountain
is sprayed with water to reduce the amount of airborne particles. The rock is
then removed (loaded) from the face with an LHD (load, haul, dump machine);
smaller rocks loosely attached to the mountain are later mechanically removed
with a scale rig (scaling), and removed from the drift with an LHD (cleaning);
the two successive steps are for ensuring safety, namely to secure the rock to the
insides of the tunnel (bolting), and spraying the insides of the tunnel with con-
crete (shotcreting). Finally, the face is prepared for the next cycle by a scaling
rig (face scaling), and the separated rock is removed by an LHD (face cleaning).
For each activity type c ∈ Ĉ, a non-empty set of machines Mc is available in
the mine to perform that specific operation. In the general case we are studying,
some machines can be employed to perform different activity types.

Blasting is a key activity in underground mine operations and it sets the
overall pace of production for the entire mine. It is common that blasts occur
in predetermined time windows during the day (typically twice or thrice); for
safety reasons, no human operator is allowed in the mine during the blasting
time window and subsequent ventilation of toxic blast fumes, independently of
whether blasting occurs, and on which faces; in other words, no other activity
can take place at any face across the whole mine.

As blasting and ventilation have the same properties, happen one after the
other, and affect the scheduling in the same manner, in the following, whenever
we refer to blasts we denote an activity that spans over the duration of the blast
and the subsequent ventilation. We refer to the candidate blast time windows as
B = {(sb1 , eb1), (sb2 , eb2), (sb3 , eb3), . . . } where the pair (sbi , ebi) defines the start
and end of the time window; for simplicity, and without loss of generality, we
assume that each time window has equal duration db = eb· − sb· and that the
blasting (and ventilation) can fit inside the time window (the problem would be
trivially infeasible otherwise).

Most activity types are interruptible, i.e. they can start prior to a blast
window, then be suspended during the blast, and resumed after the blast win-
dow. Shotcreting is however not interruptible; furthermore the subsequent bolt-
ing activity can only happen after a delay required for the concrete to cure; this
delay, also referred to as after-lag, has a duration of dal.

An instance of a problem is composed of a set of activities afi indicating the
i’th activity at face f ∈ F ; the sequence of activities in each face is defined by
Af = (af1 , . . . , a

f
mf

), which consists of a fixed number of production cycles that
follow the sequence defined in C. We define by d(afi) the nominal duration of
activity afi , i.e. the duration in case no interruption takes place. Note that all
the activity durations are in practice shorter than the time between two blasts,

608 M. Åstrand et al.

i.e. d(afi) < db. Furthermore, let c(afi) ∈ C be a function indicating the activity
type of activity afi and let I·(Af) = {i | c(afi) = ·} be the set of indices of
the activities at face Af of a given type; in this way, Ibolting(Af), for example,
indicates the indices of all the bolting activities at face Af .

Since the schedules are deployed in a rolling-horizon approach, where each
face has a predefined number of cycles to be performed during the life of the
mine, it makes sense to use an objective function that accounts for the state of
all faces. Therefore, the scheduling problem consist of allocating the available
mining machinery to the activities, and schedule them in order to minimize the
sum of the makespans of all faces.

3 Model

The problem resembles a rich variant of the flow shop problem, with additional
aspects such as unavailabilities due to blasts, after-lags, and a mix of inter-
ruptible and uninterruptible activities [11,12]. For each activity afi , we employ
|Mc(af

i)
| conditional interval variables [13] representing the potential execution of

that activity on the candidate machines1. Specifically, each conditional interval
variable consists of a tuple of four integer variables: sfir, d

f
ir, e

f
ir, o

f
ir indicating

the start time, the duration, the end time (sfir + dfir = efir) and the execution
status of activity afi on machine r ∈ Mc(af

i)
, respectively. This model allows for

machine-dependent duration in case machines have different processing times.
The execution status takes value 0 if the activity is not executed with machine

r, or 1 if it is executed with machine r. As each activity is executed using exactly
one machine: ∑

r∈M
c(af

i
)

ofir = 1 ∀f ∈ F ∀i ∈ 1, . . . , |Af | (1)

The start times for blasts must be aligned with the blast time windows, therefore:

sfir ∈ {sb1 , sb2 , sb3 , . . . } ∀f ∈ F ∀i ∈ Iblasting(Af) ∀r ∈ Mblasting (2)

Uninterruptible tasks (namely shotcreting) also must not overlap the blast time
windows, independently of whether or not a blast occurs in that specific face:

sfir ∈ Sshotcreting ∀f ∈ F ∀i ∈ Ishotcreting(Af) ∀r ∈ Mshotcreting (3)

where Sshotcreting = {0, . . . , sb1 − d(afi), eb1 , . . . , sb2 − d(afi), . . . }.
Both blast and shotcreting activities are uninterruptible therefore their

respective durations are set to the nominal activity durations:

dfir = d(afi) ∀f ∈ F ∀i ∈ Iblasting(Af) ∀r ∈ Mblasting (4)

dfir = d(afi) ∀f ∈ F ∀i ∈ Ishotcreting(Af) ∀r ∈ Mshotcreting (5)

1 In order to simplify the notation, we assume that for blasting activities we have a
single machine r ∈ Mblasting with infinite capacity.

Fleet Scheduling in Underground Mines Using Constraint Programming 609

Further, all activities, except blasting, cannot start during a blast window:

sfir ∈ Sc ∀f ∈ F ∀c ∈ C̃ ∀i ∈ Ic(Af) ∀r ∈ Mc (6)

where Sc = {0, . . . , sb1 , eb1 , . . . , sb2 , . . . } and C̃ = Ĉ \ {blasting}.
In order to model the interruptible activities, their associated intervals have

variable durations. We introduce a variable pfir indicating whether the interval
of face f , index i, resource r has been interrupted. We use a sum of reified
constraints to go over all the possible blast time windows, and verify if there
is one that overlaps with the interval; if an interval starts before a blast time
window and ends after the start of the blast time window then pfir = 1. Note
that the durations of the activities are such that no activity can span two blast
time windows. Finally, whenever the interval gets interrupted, its duration needs
to be extended by the duration of the blast time window.

pfir =
∑

k

(sfir < sbk) ∗ (sfir + d(afi) > sbk) (7)

dfir = d(afi) + pfir ∗ db ∀f ∈ F ∀c ∈ C̃ ∀i ∈ Ic(Af) ∀r ∈ Mc

The full order of the cyclic activities is enforced by:

sfir + dfir < sfi+1r′ ∀f ∈ F ∀i ∈ 1, . . . , |Af | − 1 ∀r, r′ ∈ Mc(af
i)

(8)

and the after-lag of shotcreting as:

sfir + dfir + dal < sfi+1r′ ∀f ∈ F ∀i ∈ Ishotcreting(Af) ∀r, r′ ∈ Mc(af
i)

(9)

Unary constraints are used for all the faces and machines to enforce disjunctive
execution:

unary({[sfir, d
f
ir, o

f
ir] | i = 1, . . . , |Af |, r ∈ Mc(af

i)
}) ∀f ∈ F (10)

unary({[sfir, d
f
ir, o

f
ir] | f = 1, . . . , n, i ∈ Ĩfr }) ∀c ∈ C ∀r ∈ Mc (11)

in which Ĩfr = {i | i ∈ Af ∧ r ∈ Mc(af
i)

} indicates the indices of all the activities
of face f that can be performed by machine r. If all machines have identical
processing times the machines can be modeled as a cumulative resource, which
can provide significant speed-ups. However, in reality, the processing times are
seldom identical due to the usage of a heterogeneous machine park, and due to
different operator skills. Further, notice that the unary constraint for the faces
is redundant, since a total ordering is enforced by constraints 8 and 9. However,
adding a unary constraint for the faces enables scheduling auxiliary tasks that
are not part of the production cycle.

Finally, the model minimizes the sum of the makespans across all faces by
(recall that mf is the index of the last activity of face f):

∑

f

∑

r∈M
c(af

mf
)

ofmfr
∗ efmfr

(12)

610 M. Åstrand et al.

3.1 Search Strategy

Different generic and ad-hoc heuristics have been tested; for brevity, we present
in the following what has been experimentally deemed the most effective one.

The search proceeds in two phases: the first phase considers machine allo-
cation, the second is about scheduling the start times. In the former, tasks are
ordered by their nominal durations, and for each task the least loaded machine is
chosen among the compatible ones. As for the task scheduling, tasks are chosen
based on an action-based heuristic and the value selection schedules the task
as early as possible. Action-based heuristic learns during the search to branch
on the variables that are likely to trigger the most propagation (also known as
activity-based heuristic [14]).

Randomized Restarts. By systematically restarting the search procedure, a
restart-based search samples a wider part of the search space. In order to not
to end up on the same solution after each restart, some randomness needs to
be included in the search heuristics. Therefore, the machine allocation chooses
a random variable to branch on with probability p, otherwise it follows the
heuristic described above. Similarly, the value selection is chosen at random
with probability p, otherwise the least loaded heuristic is employed. Note that
action-based branching tend to work well with restart-based search, since the
restarts provide a lot of information of propagation.

4 Experimental Results

An underground mine scheduling scenario based on real data is here studied.
All problems are solved using the model introduced in Sect. 3, where a baseline
method without restarts is compared to a restart-based approach using the ran-
domized search heuristics of Sect. 3.1. All problems are solved using Gecode 5.1
with 4 threads on a laptop with an i7-7500U 2.7 GHz processor.

The size of a problem is determined by (i) the number of faces, (ii) the
number of cycles, and (iii) the number of machines of each type. In this work,
we experimented with instances with 5 and 10 faces, with 1 or 2 cycles at each
face, which results in a minimum of 55 tasks and a maximum of 220 tasks to
be scheduled. The considered machine parks consist of 1, or 2 machines of each
type, together with a non-uniform machine park inspired a real underground
mine. The complex machine park consists of 4 drill rigs, 3 chargers, 1 water
vehicle, 6 LHDs, 4 scaling rigs, 2 shotcreters and 3 bolters. The problem sizes
are encoded as (# faces)F(# cycles per face)C(# machines of each type)M.
For example, 5F2C2M corresponds to a problem with 5 faces where each face
has 2 cycles each, and the machine park consists of 2 machines of each type.
The machine classification CM is used to encode the complex non-homogeneous
machine park. In total, 8 different problem sizes are studied, where each problem
size is studied in 5 instances where the task duration is varied. In each instance
the task duration is based on nominal durations from an operational mine,
however they are perturbed randomly by a factor between −25% and +25%.

Fleet Scheduling in Underground Mines Using Constraint Programming 611

Fig. 1. The largest problem instance using 10 faces with 2 cycles at each face, together
with a machine park that is based on a real underground mine.

A timeout of 12.5 min is used for the instances with 5 faces, and 25 min for the
instances with 10 faces.

A solution to the largest problem studied, 10F2CCM, using the restart-based
search can be seen in Fig. 1. The blast windows are indicated by vertically aligned
grey areas. In this solution we can see some features of the problem such as
shotcreting tasks which are not split over blast windows whereas other activi-
ties are correctly interrupted and resumed after blast time windows. Evidently,
manual scheduling quickly becomes a tedious and error-prone activity as the
problem size increases.

In Table 1, we have aggregated the statistics of solving 40 instances using both
the baseline and the restart-based method. The second to the fourth columns
represent, respectively, the average, minimum and maximum objective across
the instance set. The fifth to the seventh columns indicate, respectively, the

Table 1. Average, minimum, and maximum objective value after solving 5 instances of
each problem size. The left column corresponds to the objective value using the search
without restarts, while the right column corresponds to the reduction gained by using
restart-based search.

avg OBL minOBL maxOBL avg O%
RES minO%

RES maxO%
RES

5F1C1M 2082 1911 2214 0% 0% 1%

5F1C2M 1892 1751 1990 0% 0% 1%

5F2C1M 4200 3583 4575 −1% −7% 1%

5F2C2M 4048 3560 4360 −7% −11% −3%

10F1C2M 4410 3973 4601 0% −5 % 3 %

10F1CCM 3797 3606 4097 2 % 4% 1%

10F2C2M 11019 9803 12562 −15% −11 % −21%

10F2CCM 8222 7548 8825 −1% −4% 2%

612 M. Åstrand et al.

Fig. 2. The objective value using restart-based search on 5 samples of 10F2CCM and
5 samples of 5F2C2M. The plot shows the current objective divided by the value of
the first found solution.

average, minimum, maximum reduction of the objective value obtained with
randomized restarts w.r.t. the deterministic baseline. It is evident that using
restart-based search can be advantageous, particularly for the larger instances.
Note furthermore that, as shown in Fig. 1, the complex machine park problem
is not very constrained, i.e. machines are not highly utilized, and the problem
is therefore simpler than the instances with only 2 machines per face. This can
also be seen in Table 1, where randomized restarts for 10F2CCM does not bring
significant improvements, whereas restarts seem beneficial for 10F2C2M.

Finally, we are only able to solve the smallest instances, 5F1C1M and
5F1C2M, to optimality. Figure 2 shows how the objective function evolves with
solution time for larger problem instances, and it motivates the timeouts cho-
sen. No significant improvements were seen when extending the timeout up to
an hour.

5 Concluding Remarks

In this paper, we presented, to the best of the authors’ knowledge, the first
CP-based model for underground mine scheduling with promising preliminary
results. The model resembles a flow shop problem with the addition of peri-
odic unavailabilities, after-lags, and a mix of interruptible and uninterruptible
activities. Ongoing and future work includes: the integration of travel times for
the machine park, replanning based on previous solutions using Large Neighbor-
hood Search to minimize schedule disruptions, as well as personnel assignment
and rostering. We would also like to explore decomposition approaches where the
machine allocation and the scheduling are solved in a Logical Benders decom-
position framework.

Fleet Scheduling in Underground Mines Using Constraint Programming 613

Acknowledgements. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP).

References

1. Mincom: Annual Study: Mining Executive Insights 2011, Denver, CO (2011)
2. Schulze, M., Rieck, J., Seifi, C., Zimmermann, J.: Machine scheduling in under-

ground mining: an application in the potash industry. OR Spectr. 38(2), 365–403
(2016)

3. Song, Z., Schunnesson, H., Rinne, M., Sturgul, J.: Intelligent scheduling for under-
ground mobile mining equipment. PloS One 10(6), e0131003 (2015)

4. Nehring, M., Topal, E., Knights, P.: Dynamic short term production scheduling
and machine allocation in underground mining using mathematical programming.
Min. Technol. 119(4), 212–220 (2010)

5. Nehring, M., Topal, E., Little, J.: A new mathematical programming model for
production schedule optimization in underground mining operations. J. South.
Afr. Inst. Min. Metall. 110(8), 437–446 (2010)

6. Saayman, P., Craig, I.K., Camisani-Calzolari, F.R.: Optimization of an
autonomous vehicle dispatch system in an underground mine. J. South. Afr. Inst.
Min. Metall. 106(2), 77 (2006)

7. Beaulieu, M., Gamache, M.: An enumeration algorithm for solving the fleet man-
agement problem in underground mines. Comput. Oper. Res. 33(6), 1606–1624
(2006)

8. Gamache, M., Grimard, R., Cohen, P.: A shortest-path algorithm for solving the
fleet management problem in underground mines. Eur. J. Oper. Res. 166(2), 497–
506 (2005)

9. Blom, M., Pearce, A.R., Stuckey, P.J.: Short-term scheduling of an open-pit mine
with multiple objectives. Eng. Optim. 49(5), 777–795 (2017)

10. Mansouri, M., Andreasson, H., Pecora, F.: Hybrid reasoning for multi-robot drill
planning in open-pit mines. Acta Polytechnica 56(1), 47–56 (2016)

11. Pinedo, M.: Scheduling. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-319-26580-3

12. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems, vol. 39. Springer Science & Busi-
ness Media, Heidelberg (2012). https://doi.org/10.1007/978-1-4615-1479-4

13. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: FLAIRS
Conference, pp. 555–560 (2008)

14. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29828-8 15

https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-1-4615-1479-4
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15

Author Index

Adulyasak, Yossiri 170
Ait Addi, Hajar 1
Aleman, Dionne M. 412
Amadini, Roberto 18
Ament, Sebastian 52
Aoga, John O. R. 82
Åstrand, Max 605
Azizi, Mohammad Javad 35

Bai, Junwen 52
Baubaid, Ahmad 63
Beck, J. Christopher 412
Benedikt, Ondřej 72
Bessiere, Christian 1
Betmbe Fetgo, Sévérine 316
Boland, Natashia 63, 289
Bonami, Pierre 595

Cappart, Quentin 82
Chiarandini, Marco 361
Cire, Andre A. 512
Coffrin, Carleton 377
Cournut, Pierre 170

De Filippo, Allegra 100
De Landtsheer, Renaud 117
Demirović, Emir 135
Derenievicz, Guilherme Alex 153
Deudon, Michel 170
Deville, Yves 333

Eliiyi, Deniz Türsel 344
Escamocher, Guillaume 182, 198
Ezzahir, Redouane 1

Faizliev, Alexey R. 546
Fioretto, Ferdinando 215
Fischetti, Matteo 232
Flecker, Alexander S. 263

Gagnon, Samuel 245
Galassi, Andrea 254
Gange, Graeme 18

García-Villacorta, Roosevelt 263
Germeau, Fabian 117
Gingras, Vincent 316
Gomes, Carla P. 263
Gomes, Carla 52
Gomes-Selman, Jonathan M. 263
Gregoire, John 52
Gudkov, Alexander A. 546
Guyot, Yoann 117

Hamelain, Christian 280
Hanzálek, Zdeněk 72
He, Edward 289
Hijazi, Hassan 377
Hoffmann, Ruth 298

Johansson, Mikael 605

Kameugne, Roger 316
Khong, Minh Thanh 333
Kizilay, Damla 344
Knudsen, Anders N. 361
Koenig, Sven 567
Kröger, Ole 377
Kumar, T. K. Satish 567

Laborie, Philippe 387, 403
Lacoste, Alexandre 170
Larsen, Kim S. 361
Lazaar, Nadjib 1
Le Guiban, Kaourintin 280
Lecoutre, Christophe 333
Liu, Chang 412
Lodi, Andrea 462, 595
Lombardi, Michele 100, 254

McCreesh, Ciaran 298
Mello, Paola 254
Milano, Michela 100, 254
Mironov, Sergei V. 546
Módos, István 72
Musliu, Nysret 429

Nagarajan, Harsha 377
Ndiaye, Samba Ndojh 298
Nemhauser, George 289

O’Sullivan, Barry 182, 198
Oddi, Angelo 446
Olivier, Philippe 462
Ospina, Gustavo 117
Ouellet, Yanick 316, 477

Perez, Guillaume 52
Pesant, Gilles 245, 462
Ponsard, Christophe 117
Prosser, Patrick 298

Quimper, Claude-Guy 316, 477, 495

Rasconi, Riccardo 446
Reilly, Craig 298
Rice, Eric 35
Rimmel, Arpad 280
Rioux-Paradis, Kim 495
Römer, Michael 512
Rousseau, Louis-Martin 170, 512

Salvagnin, Domenico 232, 521
Sanner, Scott 585
Savelsbergh, Martin 63, 289
Say, Buser 585
Schaus, Pierre 82, 333, 557
Schutt, Andreas 429

Sea, Vourchteang 530
Shi, Qinru 263
Siala, Mohamed 198
Sidorov, Sergei P. 546
Silva, Fabiano 153
Solnon, Christine 298
Stuckey, Peter J. 18, 135, 429
Šůcha, Přemysl 72
Sugawara, Toshiharu 530
Sugiyama, Ayumi 530
Sun, Kexuan 567

Tambe, Milind 35
Thomas, Charles 557
Tomasik, Joanna 280
Trimble, James 298

Van Hentenryck, Pascal 215, 344
Vayanos, Phebe 35
Vlk, Marek 72

Wilder, Bryan 35

Xu, Hong 567
Xue, Yexiang 263

Ye, Zhijiang 585

Zanarini, Alessandro 605
Zarpellon, Giulia 595

616 Author Index

	Preface
	Organization
	Abstracts of Invited Talks
	Same, Same, but Different: A Mostly Discrete Tour Through Optimization
	Empirical Model Learning: Boosting Optimization Through Machine Learning
	Ten Years of CP Optimizer
	Abstracts of Fast-Track Journal Papers
	Online Over Time Processing of Combinatorial Problems
	Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasibility Study
	Intruder Alert! Optimization Models for Solving the Mobile Robot Graph-Clear Problem
	Contents
	Time-Bounded Query Generator for Constraint Acquisition
	1 Introduction
	2 Background
	3 Time-Bounded Query Generation
	3.1 Description of Tq-gen

	4 Using the Tq-gen Algorithm in QuAcq
	5 Theoretical Analysis
	6 Experiments
	6.1 Benchmarks
	6.2 Baseline Version of T-quacq
	6.3 Strategies and Settings

	7 Conclusion
	References

	Propagating lex, find and replace with Dashed Strings
	1 Introduction
	2 Preliminaries
	2.1 Sweep Algorithm
	2.2 G-Strings Solver

	3 Lexicographic Ordering
	3.1 Lexicographic Bounds on Dashed Strings

	4 Find and Replace
	4.1 Find
	4.2 Replace
	4.3 Encoding find and replace in Unfolding-Based Solvers

	5 Experimental Evaluation
	6 Conclusions
	References

	Designing Fair, Efficient, and Interpretable Policies for Prioritizing Homeless Youth for Housing Resources
	1 Introduction
	2 Model, Problem Statement, and Interpretable Policies
	2.1 System Model
	2.2 Problem Statement
	2.3 Interpretable Policies

	3 Data-Driven Framework for Policy Calibration
	3.1 A Data-Driven Mixed Integer Optimization Problem
	3.2 Expressing the Policy Values Using Integer Linear Constraints

	4 Approximate Solution Approach
	5 Numerical Study
	References

	An Efficient Relaxed Projection Method for Constrained Non-negative Matrix Factorization with Application to the Phase-Mapping Problem in Materials Science
	1 Introduction
	2 Preliminaries
	3 Constraint Projection for the Phase-Mapping Problem
	4 Experiments
	5 Conclusion
	References

	Dealing with Demand Uncertainty in Service Network and Load Plan Design
	1 Introduction and Motivation
	2 Problem Description
	2.1 The Mathematical Formulation

	3 Model Solution
	3.1 Sample Average Approximation
	3.2 Solving the Sample Problem

	4 Computational Study
	References

	Energy-Aware Production Scheduling with Power-Saving Modes
	1 Introduction
	2 Problem Statement
	3 Solution Approach
	4 Preliminary Experiments
	5 Conclusion
	References

	EpisodeSupport: A Global Constraint for Mining Frequent Patterns in a Long Sequence of Events
	1 Introduction
	2 Mining Episodes in a Non Timed Sequence
	2.1 Technical Background
	2.2 Problem Modelling
	2.3 Filtering Algorithm

	3 Mining Episodes in a Timed Sequence
	3.1 Technical Background
	3.2 Filtering Algorithm

	4 Experimental Results
	5 Conclusion and Perspective
	References

	Off-Line and On-Line Optimization Under Uncertainty: A Case Study on Energy Management
	1 Introduction
	2 Optimization Under Uncertainty
	3 Improving Off-Line/On-Line Optimization
	4 Case Study on Virtual Power Plants
	5 Grounding Our Method
	5.1 The Baseline Approach
	5.2 The BOON Method
	5.3 The MOON Method

	6 Results and Discussion
	7 Conclusion
	References

	Reasoning on Sequences in Constraint-Based Local Search Frameworks
	1 Introduction
	2 Background and Related Work
	2.1 Local Search Frameworks
	2.2 Three Representative Global Constraints on Sequences
	2.3 Constraint-Based Local Search

	3 Requirements for a Sequence Variable
	4 Implementation of Our Sequence Value
	4.1 Updated Sequences
	4.2 Concrete Sequences
	4.3 Iterating on Sequences
	4.4 Time Complexity of Sequence Values

	5 Implementation of Our Sequence Variable
	6 Benchmarking the k/n Factor
	7 Comparing with GoogleCP and LocalSolver
	8 Conclusion
	References

	Constraint Programming for High School Timetabling: A Scheduling-Based Model with Hot Starts
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Modeling
	4.1 Decision Variables
	4.2 Additional Notation
	4.3 Objectives and Constraints

	5 Solution-Based Phase Saving
	5.1 Hot Starts

	6 Experimental Results
	6.1 Benchmarks and Computing Environment
	6.2 Solvers
	6.3 Phase Saving and Hot Start Impact
	6.4 Rapid Restarts
	6.5 Comparison of Complete Methods
	6.6 Comparison with Heuristic Solvers

	7 Conclusion
	References

	Epiphytic Trees: Relational Consistency Applied to Global Optimization Problems
	1 Introduction
	2 Background
	2.1 Interval Arithmetic
	2.2 Interval Consistency
	2.3 Decomposition of Constraint Networks

	3 Backtrack-Free Solution of Ternary Encoded NCOPs
	3.1 Epiphytic Trees

	4 Achieving Relational Consistency
	4.1 Approximating Directional RAC
	4.2 Comparison with the Usual Interval Branch and Bound

	5 Experimental Results
	6 Extending the Epiphytic Tree Class
	7 Conclusion
	References

	Learning Heuristics for the TSP by Policy Gradient
	1 Introduction
	2 Reinforcement Learning Perspective for the TSP
	3 Neural Architecture for TSP
	3.1 TSP Setting and Input Preprocessing
	3.2 Encoder
	3.3 Decoder

	4 Training the Model
	5 Experiments and Results
	6 Conclusion
	References

	Three-Dimensional Matching Instances Are Rich in Stable Matchings
	1 Introduction
	1.1 Different Kinds of Stable Matchings Problems
	1.2 Master Preference Lists

	2 General Definitions
	3 Stable Matchings for Master List Instances
	3.1 Preliminary Notions
	3.2 Indivisible Matchings
	3.3 Main Theorem
	3.4 Other Matching Problems

	4 Stable Matchings for Instances Without Master Preference Lists
	5 Conclusion
	References

	From Backdoor Key to Backdoor Completability: Improving a Known Measure of Hardness for the Satisfiable CSP
	1 Introduction
	2 CSP, Backdoor Key Fraction, and Backdoor Completability
	3 Theoretical Justification
	4 Comparison with the Backdoor Key Fraction
	5 Conclusion
	References

	Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately
	1 Introduction
	2 Differential Privacy
	3 Optimal Power Flow
	4 The Differential Privacy Challenge for OPF
	5 Constrained-Based Differential Privacy
	5.1 Theoretical Properties

	6 Application to the Optimal Power Flow
	7 Experimental Results
	8 Related Work
	9 Conclusions
	References

	Chasing First Queens by Integer Programming
	1 Introduction
	2 An ILP Model
	3 Solution Methods
	3.1 Using a Constraint Programming Solver
	3.2 Using an Exact ILP Solver
	3.3 Using a Truncated ILP Solver
	3.4 An Enumerative Method Based on Lexicographic Simplex

	4 Computational Comparisons
	5 Conclusions and Future Directions of Work
	A New Solutions
	References

	Accelerating Counting-Based Search
	1 Introduction
	2 Alldifferent Constraints
	2.1 Improved Algorithm
	2.2 Computing Maximum Solution Densities Only
	2.3 Experiments on the Quasigroup Completion Problem

	3 Spanning Tree Constraints
	3.1 Faster Specialized Matrix Inversion
	3.2 Inverting Smaller Matrices Through Graph Contraction
	3.3 Experiments on the Hamiltonian Path Problem

	4 Avoiding Systematic Recomputation
	5 Conclusion
	References

	Model Agnostic Solution of CSPs via Deep Learning: A Preliminary Study
	1 Introduction
	2 General Method and Grounding
	3 Experimentation
	4 Conclusions
	References

	Boosting Efficiency for Computing the Pareto Frontier on Tree Structured Networks
	1 Introduction
	2 Problem Formulation
	2.1 Hydropower Dam Placement Problem
	2.2 General Formulation

	3 DP-Based Pareto Frontier
	3.1 Divide-and-Conquer for Identifying Dominated Solutions
	3.2 Runtime Analysis
	3.3 Implementation Notes

	4 MIP-Based Pareto Frontier
	5 Experimental Results
	6 Conclusions
	References

	Bandits Help Simulated Annealing to Complete a Maximin Latin Hypercube Design
	1 Introduction
	2 State of the Art for SA Solving Maximin LHDs
	3 Mutation Targeting ``Relatively Empty'' Hypercubes
	4 Bandit-Driven Mutation
	5 Numerical Experiments
	6 Conclusion and Future Work
	References

	A Dynamic Discretization Discovery Algorithm for the Minimum Duration Time-Dependent Shortest Path Problem
	1 Introduction
	2 Problem Description
	3 Dynamic Discretization Discovery Algorithm
	4 Computational Study
	5 Concluding Remarks
	References

	Observations from Parallelising Three Maximum Common (Connected) Subgraph Algorithms
	1 Introduction
	2 Sequential Algorithms
	2.1 Reduction to Maximum Clique
	2.2 Constraint Programming
	2.3 Domain Splitting (McSplit and McSplit"3223379)
	2.4 k-Less Subgraph Isomorphism

	3 Benchmark Instances
	4 Parallel Search
	4.1 Parallel Maximum Clique
	4.2 Parallel Constraint-Based Search

	5 Empirical Evaluation
	5.1 Parallel Search Is Better Overall
	5.2 Clique Results in Depth
	5.3 k"3223379 Results in Depth
	5.4 McSplit Results in Depth

	6 Conclusion
	References

	Horizontally Elastic Not-First/Not-Last Filtering Algorithm for Cumulative Resource Constraint
	1 Introduction
	2 Classic Not-First Rule
	3 Function of the Earliest Completion Time
	4 New Formulation of the Not-First Rule
	5 Horizontally Elastic Not-First Algorithm
	5.1 Reducing the Number of Sets =LCut(T,j,i) to Consider
	5.2 Deduction from Detection Failure of Tasks
	5.3 Deduction from Success Detection of Tasks
	5.4 Horizontally Elastic Not-First Algorithm

	6 Relaxation of the Horizontally Elastic Not-First Algorithm
	7 Properties of the Relaxation of the Horizontally Elastic Not-First Algorithm
	8 Experimental Results
	9 Conclusion
	References

	Soft-Regular with a Prefix-Size Violation Measure
	1 Introduction
	2 Technical Background
	3 Constraint soft-regularprx
	4 A GAC Algorithm
	5 Possible Decomposition
	6 Experimental Results
	References

	Constraint and Mathematical Programming Models for Integrated Port Container Terminal Operations
	1 Introduction
	2 Problem Definition
	3 Literature Review
	4 The MIP Model
	5 The Constraint Programming Model
	6 Experimental Results
	6.1 Data Generation
	6.2 Computational Results and Analysis

	7 Conclusion
	References

	Heuristic Variants of A* Search for 3D Flight Planning
	1 Introduction
	2 The Flight Planning Problem
	3 A* Search with Constraints
	4 Heuristics
	4.1 Remaining Cost Estimation in A*
	4.2 Pruning Heuristics
	4.3 Two-Phase Approach

	5 Experimental Results
	6 Concluding Remarks
	References

	Juniper: An Open-Source Nonlinear Branch-and-Bound Solver in Julia
	1 Introduction
	2 The Core Components of Nonlinear Branch-and-Bound
	3 The Juniper Solver
	4 Experimental Evaluation
	5 Conclusion
	References

	Objective Landscapes for Constraint Programming
	1 Introduction
	2 Objective Landscape Definition
	3 Objective Landscape Properties
	4 Objective Landscape Computation
	5 Objective Landscape Exploitation
	6 Results
	7 Conclusion and Discussion
	References

	An Update on the Comparison of MIP, CP and Hybrid Approaches for Mixed Resource Allocation and Scheduling
	1 Introduction
	2 Problem Definition
	3 State of the Art
	4 CP Optimizer Model
	5 Results
	5.1 Benchmark Description
	5.2 Experimental Evaluation of CP Optimizer Search Components
	5.3 Comparison with Previous Results

	6 Benchmark Extension
	7 Conclusion
	References

	Modelling and Solving the Senior Transportation Problem
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Models for the Senior Transportation Problem
	4.1 Mixed Integer Programming
	4.2 Constraint Programming
	4.3 Logic-Based Benders Decompositions
	4.4 A Construction Heuristic

	5 Experimental Results
	5.1 Datasets
	5.2 Results

	6 Analysis
	6.1 CP and Depth First Search
	6.2 First Solution Quality and Time
	6.3 Search Space Reduction

	7 Conclusion
	References

	Solver Independent Rotating Workforce Scheduling
	1 Introduction
	2 The Rotating Workforce Scheduling Problem
	3 Direct Model
	4 Alternative Model Choices
	4.1 Temporal Requirements
	4.2 Redundant Constraints
	4.3 Symmetry Breaking Constraints

	5 Automata Based Model
	6 Search Strategies
	6.1 Variable Selection
	6.2 Value Selection

	7 Experiments
	8 Conclusion
	References

	Greedy Randomized Search for Scalable Compilation of Quantum Circuits
	1 Introduction
	2 Background
	3 Problem Definition
	3.1 The MaxCut Problem
	3.2 Quantum Gate Compilation Problem

	4 A Greedy Procedure
	5 A Randomized Approach
	6 Experiments
	6.1 Results

	7 Conclusions
	References

	A Comparison of Optimization Methods for Multi-objective Constrained Bin Packing Problems
	1 Introduction
	2 Description of the Problem
	3 Related Work and Existing Methods
	4 CP Model
	5 IP Model A
	6 IP Model B
	7 Benchmark Results
	8 Practical Applications
	9 Conclusion
	References

	A O(n log2 n) Checker and O(n2 logn) Filtering Algorithm for the Energetic Reasoning
	1 Introduction
	2 Scheduling Background
	3 Algorithmic Background
	3.1 Partial Sums
	3.2 Range Trees
	3.3 Monge Matrices

	4 Adapting the Range-Trees
	5 Computing the Left-Shift Right-Shift in O(logn) Time
	5.1 Computing the Compulsory Energy
	5.2 Computing the Free Energy

	6 A Checker that Analyzes O(n logn) Time Intervals
	7 Filtering Algorithm
	7.1 Running Time Analysis
	7.2 Optimization

	8 Experiments
	9 Conclusion
	References

	The WeightedCircuitsLmax Constraint
	1 Introduction
	2 Background
	2.1 m-TSP
	2.2 The Constraints Circuit and Cycles
	2.3 Disjoints Sets
	2.4 Minimum Spanning Tree
	2.5 Cartesian Tree
	2.6 1-Tree Relaxation

	3 Introducing WeightedCircuitsLmax
	4 1-Forest Relaxation
	4.1 Relaxation
	4.2 Filtering the Edges in ED
	4.3 Filtering the Edges in EO

	5 Clusters Relaxation
	5.1 Relaxation
	5.2 Filtering the Edges in ED
	5.3 Filtering the Edges in EO

	6 Special Filtering Cases
	7 Experiments
	7.1 Result and Discussion

	8 Conclusion
	References

	A Local Search Framework for Compiling Relaxed Decision Diagrams
	1 Introduction
	2 Preliminaries
	3 Local Operations on Decision Diagrams
	4 Generic Local Search Scheme
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Symmetry Breaking Inequalities from the Schreier-Sims Table
	1 Motivation
	2 The Schreier-Sims Table
	3 Deriving Symmetry Breaking Inequalities
	4 Improvements
	5 Constructing the Schreier-Sims Table
	6 Computational Results
	7 Conclusions
	References

	Frequency-Based Multi-agent Patrolling Model and Its Area Partitioning Solution Method for Balanced Workload
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Proposed Method
	4.1 Graph Partitioning
	4.2 Sub-graph Patrolling

	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	Algorithms for Sparse k-Monotone Regression
	1 Introduction
	2 Algorithms for Monotone Regression
	2.1 Preliminary Analysis
	2.2 Frank-Wolfe Type Greedy Algorithm
	2.3 k-Monotone Pool-Adjusted-Violators Algorithm

	3 Empirical Result
	4 Conclusion
	References

	Revisiting the Self-adaptive Large Neighborhood Search
	1 Introduction
	2 Adaptive Large Neighbourhood Search
	3 Operator Portfolio
	4 Experiments
	5 Conclusion and Future Work
	References

	A Warning Propagation-Based Linear-Time-and-Space Algorithm for the Minimum Vertex Cover Problem on Giant Graphs
	1 Introduction
	2 Background
	2.1 Random Graph Models
	2.2 Warning Propagation
	2.3 Known Linear-Time-and-Space MVC Algorithms

	3 Warning Propagation on Scale-Free Graphs
	4 The Algorithm
	4.1 Computing Special Functions
	4.2 The Lambert-W Function W()
	4.3 The Riemann Zeta Function ()
	4.4 The Inverse Function of Z()

	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

	Symbolic Bucket Elimination for Piecewise Continuous Constrained Optimization
	1 Introduction
	2 Background
	2.1 Case Representation and Operations
	2.2 Extended Algebraic Decision Diagrams (XADDs)

	3 Symbolic Bucket Elimination
	3.1 Symbolic Bucket Elimination Algorithm (SBE)

	4 Experimental Results
	4.1 Problems with XOR Conditional Constraints
	4.2 Temporal Constraint Satisfaction with Preferences
	4.3 Symbolic Parametric Optimization of Deep Neural Networks

	5 Conclusion and Future Work
	References

	Learning a Classification of Mixed-Integer Quadratic Programming Problems
	1 Introduction
	2 Solving MIQPs with CPLEX
	3 Linearize vs. Not Linearize
	4 Methodological Details
	4.1 Dataset Generation
	4.2 Features Design
	4.3 Labels Definition

	5 Data, Experiments and Results
	5.1 Learning Experiments and Results
	5.2 Complementary Optimization Measures

	6 Conclusions and Ongoing Research
	References

	Fleet Scheduling in Underground Mines Using Constraint Programming
	1 Introduction
	2 Problem Description
	3 Model
	3.1 Search Strategy

	4 Experimental Results
	5 Concluding Remarks
	References

	Author Index

