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Abstract. Deep learning-based computer-aided diagnosis (CAD) has
been gaining popularity for analyzing histopathological images. How-
ever, there has been limited work that addresses the problem of accu-
rately classifying breast biopsy tissue with hematoxylin and eosin stained
images into different histological grades. We propose a system which can
automatically classify breast cancer histology images into four classes,
namely normal tissues, benign lesion, in situ carcinoma and invasive
carcinoma. Our framework uses a Convolutional Neural Network (CNN)
with a hierarchical loss, where failing to distinguish between carcinoma
and non-carcinoma is penalized more than failing to distinguish between
normal and benign or between in situ and invasive carcinoma. The net-
work also includes a patch-wise design with global pooling directly on
input images. By incorporating the hierarchical and global information
of the input images, our framework can outperform the previous system
by a large margin.
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1 Introduction

Breast cancer is one of the leading causes of death by cancer in women, and
early detection can give patients more treatment options. Breast cancer can be
detected by microscopic analysis [1,2]. During a screening examination, breast
tissue biopsies can be obtained from suspected patients, which pathologists ana-
lyze for tumor progression and type [2,3]. The tumor type is evaluated in terms of
the extent of variation of structure from normal tissues, and how cancer spreads
during detection. Benign lesion, in situ carcinoma, and invasive carcinoma are
three types of tumors that can be determined from biopsy through histolog-
ical analysis. Benign lesions lack the ability to invade neighbors, so they are
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non-malignant. In situ and invasive carcinoma are malignant, hence spread to
other areas. Invasive tissues, unlike in situ, invade the surrounding normal tissues
beyond the mammary ductal-lobular system [2]. After the microscopic exami-
nation of biopsies at specific magnification levels, pathologists generate stained
images by applying Hematoxylin-Eosin (H&E) staining to enhance the nuclei
(purple) and cytoplasm (pinkish) for the purpose of diagnosis [3]. Stained images
are labeled using manual methods based on the experience of pathologists, which
is costly in terms of workload. Since the majority of biopsies are normal and
benign, most of the work is redundant. CAD approaches for automatic diagnosis
improve efficiency by allowing pathologists to focus on more difficult diagnosis
cases [3,4]. CAD can reduce the workload of classifying histopathological images,
using machine learning methods. Several existing machine learning approaches
perform classification for two-class (malignant/benign) and three-class (normal,
in situ, invasive) through extraction of nuclei-related information [3]. With the
rise in computing power, deep learning algorithms are widely adopted for analy-
sis of medical images [5]. In the Camelyon Grand Challenge 2016, several works
demonstrated high accuracy for a similar four-class classification task on TNM
breast cancer staging system [6]. These works follow a two-stage pipeline. In the
first stage, patches that constitute the whole slide image are classified as tumor
or normal. In the second stage, the tumor region features extracted from these
classified patches are input into a random forest classifier in order to classify the
cancer type [7]. That challenge provided pixel-wise annotation of tumors, which
is expensive to collect, and not frequently available. In [3], the authors propose
a CNN framework to solve the four-class classification problem (normal, benign,
in situ, invasive) on H&E stained microscopic images by retrieving nuclei and
tissue structure information. We believe there is scope for improving classifica-
tion performance by using better network design. In this paper, we design a loss
function that leverages hierarchical information of the histopathological classes.
We also incorporate embedded feature maps with information from the input
image to maximize grasp on the global context.

2 Data and Methods

2.1 Dataset

The dataset used in this paper is provided by Universidade do Porto, Instituto de
Engenharia de Sistemas e Computadores, Tecnologia e Ciência (INESC TEC)
and Instituto de Investigação and Inovação em Saúde (i3S), in TIF format.
The dataset consists of 400 high resolution (2048 × 1536) H&E stained breast
histology microscopic images with 200× magnification. Each pixel of an image
corresponds to 0.42µm × 0.42µm of the biopsy. These images are labeled with
four classes: normal, benign, in situ, and invasive, and each class consists of 100
images.

Prior to the quantitative analysis, inconsistencies brought by the way of stain-
ing the histology slides should be minimized. We perform normalization on all
images using the method proposed in [8]. This method first converts RGB values
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to their corresponding optical density (OD) values through a logarithmic trans-
formation. Then singular value decomposition (SVD) is applied to find the two
directions with higher variances of the OD tuples. All the OD transformed pixels
are projected onto the plane created from the two SVD directions to find the
robust extremes. These extremes are converted to the OD space and then used
for deconvolving the original images to the H&E components. Concentrations
for each stain are scaled to have the same pseudo-maximum. Finally, all images
are recreated using normalized stain concentrations and the reference mixing
matrix [9].

Fig. 1. Illustration of our classification pipeline.

2.2 Image-Wise Classification Framework

Our cancer-type classification framework consists of a data augmentation stage,
a patch-wise classification stage, and an image-wise classification stage. After
normalizing for staining inconsistencies, we rescale and crop each image to small
patches with a size that can be fed as input to the CNN for patch-wise classi-
fication (See Fig. 1). The label of each patch is consistent with the label of the
image which the patch is cropped from. During the training phase, the cropped
patches are augmented to increase the robustness of the model as a method
of regularization. A VGG-16 network with a hierarchical loss and global image
pooling is trained for classifying these patches into four classes [10–12]. In the
inference phase, we generate patches from each test image and combine patch
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classification results to classify the image [3]. We implement three patch proba-
bility score fusion methods for assigning the class label, namely, majority voting,
maximum probability, and sum of probabilities [3]. In addition to these fusion
techniques, we also adopt dense evaluation over the test image to get a class
score map and select the class with the highest score [13]. This is detailed in
Sect. 3.

2.3 Data Augmentation

We obtain 280 normalized images in the training set of size 2048 × 1536. The
original images are too large to be fed into the network, so we crop images of
size 224 × 224. Cropping small patches from a 2048 × 1536 image at the high
magnification level of 200× can break the overall structural organization of the
image, and therefore leave out important tissue architecture information. While
training a CNN model, images are conventionally resized. However, for micro-
scopic images, resizing could decrease magnification level. There is no consensus
on the best magnification level, so we isotropically resize the whole image to
a relatively small size, specifically, 1024 × 768 and 512 × 384 [14]. Each scaled
image is then cropped to 224 × 224 patches with 50% overlap. In our exper-
iments, the final choice for isotropic image resizing is 512 × 384, which gen-
erates a total of 3360 different patches from the original 280 training images.
Contrast-limited adaptive histogram equalization (CLAHE) is then performed
on the Lightness component after converting the RGB image to LAB format,
and then the image is converted back to RGB, for enhancing the local contrast of
cropped images [15]. Mean subtraction is performed by subtracting the average
value from the R, G and B channels separately. The training set is augmented
by image rotation with kπ

2 , where k ∈ {0, 1, 2, 3}, and vertical reflections. The
patches after cropping and augmentation share the same label as the original
stained image.

2.4 CNN Architecture for Patch-Wise Classification

The VGG-16 network is chosen to classify the 224 × 224 histology image
patches, in order to explore the scale and organization features of nuclei and the
scale features of the overall structure, which do not have complicated semantic
information [10]. A 16-layer structure suffices for exploring these features. The
VGG-19 network is also used for the sake of comparison in our experiments.
To leverage the whole contextual information from the cropped images, we add
global context to the last convolutional layer of the VGG network. Similar to
ParseNet [12], the input images are passed to two independent branches, our
VGG network and a global average pooling layer [12]. With a B × H × W ×
C input (B is batch size; W and H is the width and height; C is the number
of channels), the output of the global pooling layer is B × 1 × 1 × C. One 1 ×
1 convolutional layer will transform the last dimension of output to the desired
number, which in our case is 512. The transformed output is unpooled to the
same shape as that of the feature maps after the last convolutional layer of VGG
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network and is then concatenated with it. These two feature maps are fused by
another 1× 1 convolutional layer and then passed through three fully-connected
(FC) layers for classification (See Fig. 1).

2.5 Hierarchical Loss

Hierarchical loss is a novel addition to this classification work. As men-
tioned before, we can further group normal/benign into non-carcinoma, and
in situ/invasive into carcinoma. The classes have a tree organization, where nor-
mal/benign can be considered as leaves from the node non-carcinoma, and in
situ/invasive as leaves from the node carcinoma. From the root, we have two
nodes for carcinoma and non-carcinoma, respectively connected to two leaves
normal/benign and in situ/invasive. This structure motivates us to apply a
hierarchical loss for classification instead of the vanilla cross entropy loss. The
hierarchical loss uses an ultrametric tree to calculate the amount of metric “win-
nings” [11]. Hence, failing to distinguish between carcinoma and non-carcinoma
is penalized more than failing to distinguish between normal and benign or
between in situ and invasive, which follows intuition. The amount of the “win-
nings” is calculated from the weighted sum of the estimated probability score of
each node along the path from the first non-root node to the correct leaf. The
probability score of each node is obtained by summing up the scores from its
child nodes. The weights are given in Fig. 2. Finally, the loss (the negative of
“winnings”) uses the negative logarithm as in computing cross entropy loss.

L(ŷ, y) = −
N∑

i=1

C∑

c=1

yc
i log {1

2
ŷc

i +
1
2
(ŷc

i +
∑
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ŷc′
i )} (1)

For class hierarchy with a height equal 2, the loss function is defined as shown in
Eq. 1, where yc

i is the binary label of sample i belonging to class c, ŷc
i is softmax

output for the labeled class channel c, C the number of channels, N the number
of samples, and siblings(·) denotes the sibling set of classes for a specified class
node.
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Fig. 2. Tree representation of “winnings” in the hierarchical loss.
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3 Experiments

In this section, we present our evaluation results in terms of accuracy for patch-
wise and image-wise classification as per [3]. We demonstrate the performance
of our proposed framework through a series of ablation studies.

3.1 Experimental Setup

We first randomly split all images to 280 images for training, 60 images for
validation and 60 images for testing. All four classes are distributed equally
between splits. The objective of the model is to minimize the hierarchical loss
using a momentum optimizer with momentum 0.9 and batch size 32 [16]. The
weights of the network are initialized with the pre-trained weights of the VGG-16
model on ImageNet [17]. The learning rate is initialized to 0.0002 and decreases
exponentially every 1000 mini-batch iterations with a decay factor of 0.9. The
weights are regularized with weight decay with L2 penalty multiplier of 0.003.
Dropout with ratio 0.5 is applied to the first two fully-connected layers. Training
usually converges very quickly (after around 5 epochs). At test time, we first
pre-process and resize test images, and then classify each test image using the
aforementioned fusion methods. In the dense evaluation, we convert the last three
FC layers in VGG networks to convolutional layers, and then densely apply the
converted networks over the rescaled test image to get a class score map. The
class with the highest score is selected [13]. Our final results are shown below in
Table 1. For each performance reported, the patch-wise classification accuracy is
calculated with the same model used in image-wise classification.

Table 1. Image-wise classification accuracy (%) of best model setting with different
post-processing methods (patch-wise accuracy (%) given in the bracket).

Majority vote Sum probability Maximum probability Dense evaluation

Validation set 0.92 (0.87) 0.92 (0.87) 0.92 (0.87) 0.92 (0.87)

Test set 0.93 (0.85) 0.90 (0.85) 0.92 (0.85) 0.92 (0.85)

Average 0.93 0.91 0.92 0.92

3.2 VGG-19 vs. VGG-16

As described previously, a shallow CNN model is preferred by virtue of the
content of semantic information in a histopathological image. To support this
heuristic choice, we compare with the performance of the deeper VGG-19 (See
Table 2 compared with Table 1) to demonstrate that a network with an appro-
priate depth is able to perform better.
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Table 2. Image-wise classification accuracy (%) of using VGG-19 with different post-
processing methods (patch-wise accuracy (%) given in the bracket).

Majority vote Sum probability Maximum probability Dense evaluation

Validation set 0.85 (0.76) 0.83 (0.76) 0.80 (0.74) 0.82 (0.76)

Test set 0.80 (0.72) 0.80 (0.73) 0.80 (0.71) 0.80 (0.74)

Average 0.83 0.82 0.80 0.81

Table 3. Image-wise classification accuracy (%) of removing hierarchical loss with
different post-processing methods (patch-wise accuracy (%) given in the bracket).

Majority vote Sum probability Maximum probability Dense evaluation

Validation set 0.88 (0.82) 0.87 (0.82) 0.88 (0.82) 0.87 (0.81)

Test set 0.88 (0.83) 0.87 (0.81) 0.85 (0.81) 0.87 (0.83)

Average 0.88 0.87 0.87 0.87

3.3 Hierarchical Loss vs. No Hierarchical Loss

To emphasize the importance of using hierarchical loss, we include a compari-
son experiment that just uses the vanilla cross entropy loss. The results of the
experiment are shown below in Table 3 (compared with Table 1).

3.4 Global Image Pooling vs. No Global Image Pooling

Global image pooling is another important feature we integrate into our network
architecture. This structure, which is often used for global information extrac-
tion from high resolution feature maps, can pass global context from the input
image to the last convolution layer in deep networks, thus improving the final
performance. We also include an experiment without image pooling layers with
its results (see Table 4 compared with Table 1), to demonstrate its improvement
of model performance.

Table 4. Image-wise classification accuracy (%) of removing global average pooling
with different post-processing methods (patch-wise accuracy (%) given in the bracket).

Majority vote Sum probability Maximum probability Dense evaluation

Validation set 0.93 (0.90) 0.93 (0.90) 0.93 (0.90) 0.93 (0.90)

Test set 0.87 (0.84) 0.87 (0.84) 0.90 (0.84) 0.87 (0.84)

Average 0.90 0.90 0.92 0.90

3.5 Different Scales

The microscopic images are obtained with a high magnification level of 200×, for
capturing the nuclei-scale feature. We pre-process the large image into different
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224 × 224 patches that can be fed into the VGG networks. However, this crop-
ping could result in a loss of most of the structural information. Thus, we first
isotropically resize the 2048 × 1536 image into a smaller scale before cropping.
In our presented performance, the width and height are both down-scaled 4×
to 512 × 384 respectively. This scale is used because it can maintain most of
the nuclei structural information from the original whole image, while keeping
most information of tissue structural organization for the cropped patches. We
include a larger scale 1024 × 768 for comparison with results shown in Table 5
(compared with Table 1).

Table 5. Image-wise classification accuracy (%) of resizing images to 1024× 768 with
different post-processing methods (patch-wise accuracy (%) given in the bracket).

Majority vote Sum probability Maximum probability Dense evaluation

Validation set 0.82 (0.72) 0.82 (0.72) 0.83 (0.72) 0.83 (0.72)

Test set 0.75 (0.68) 0.75 (0.68) 0.78 (0.68) 0.78 (0.68)

Average 0.79 0.79 0.81 0.81

4 Discussion

In this work, we present a CNN-based approach with preprocessing and post-
processing methods to classify of H&E stained histopathological images for
breast cancer tissue classification. We propose to resize and crop images after
considering the trade-off between capturing nuclei associated scale information
and the overall structural organization. We utilize the VGG-16 network, which
has been successful in general image recognition tasks [10,17]. Additionally, we
apply a hierarchical loss based on the biological nature of the problem, and
use global average pooling to incorporate the global information in an image.
Our approach succeeds in classification of cancer types and shows competitive
performance on the given dataset.
Magnification is an important factor for analyzing microscopic images for diag-
nosis. The most informative magnification is still debatable, so we compare two
possible scales in our work. In future work, we will study the influence of other
scales on the performance.
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