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Abstract. Breast cancer is one of the main causes of cancer death
worldwide. Early diagnostics significantly increases the chances of cor-
rect treatment and survival, but this process is tedious and often leads
to disagreement between pathologists. Computer-aided diagnosis systems
show potential for improving the diagnostic accuracy. In this work, we
develop the computational approach based on deep convolution neural
networks for breast cancer histology image classification. Hematoxylin
and eosin stained breast histology microscopy image dataset is pro-
vided as a part of the ICIAR 2018 Grand Challenge on Breast Can-
cer Histology Images. Our approach utilizes several deep neural network
architectures and gradient boosted trees classifier. For 4-class classifica-
tion task, we report 87.2% accuracy. For 2-class classification task to
detect carcinomas we report 93.8% accuracy, AUC 97.3%, and sensitiv-
ity/specificity 96.5/88.0% at the high-sensitivity operating point. To our
knowledge, this approach outperforms other common methods in auto-
mated histopathological image classification. The source code for our
approach is made publicly available at https://github.com/alexander-
rakhlin/ICIAR2018.
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1 Introduction

Breast cancer is the most common cancer diagnosed among women in the United
States (excluding skin cancers) [23]. Breast tissue biopsies allow the pathologists
to histologically assess the microscopic structure the tissue. Histopathology aims
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to distinguish between normal tissue, non-malignant (benign) and malignant
lesions (carcinomas), and to perform a prognostic evaluation [7]. A combina-
tion of hematoxylin and eosin (H&E) is the principal stain of tissue specimens
for histopathological diagnostics. There are multiple types of breast carcinomas
that embody characteristic tissue morphology, see Fig. 1. Breast carcinomas arise
from the mammary epithelium and cause a pre-malignant epithelial prolifera-
tion within the ducts, called ductal carcinoma in situ. Invasive carcinoma is
characterized by the cancer cells gaining the capacity to break through the basal
membrane of the duct walls and infiltrate into surrounding tissues [20].

Morphology of tissue and cells is regulated by complex biological mecha-
nisms related to cell development and pathology [13]. Traditionally, morphologi-
cal assessment were visually performed by a pathologist. This process is tedious
and subjective, causing inter-observer variations even among senior pathologists
[6,16]. The subjectivity of morphological criteria in visual classification motivates
the use of computer-aided diagnosis (CAD) to improve the diagnosis accuracy,
reduce human error, increase inter-observer agreement and reproducibility [20].

There are many methods developed for the digital pathology image analysis,
from rule-based to applications of machine learning [20]. Recently, deep learn-
ing based approaches were shown to outperform conventional machine learn-
ing methods in many image analysis tasks, automating end-to-end processing
[4,10,12]. In the domain of medical imaging, convolutional neural networks
(CNN) have been successfully used for diabetic retinopathy screening [19], bone
disease prediction [26] and age assessment [11], and other problems [4,22]. Pre-
vious deep learning based applications in histological microscopic image analysis
have demonstrated their potential to provide utility in diagnosing breast cancer
[1,2,20,24].

In this paper, we present an approach for histology microscopy image analysis
for breast cancer type classification. Our approach utilizes deep CNNs for feature
extraction and gradient boosted trees for classification and, to our knowledge,
outperforms other similar solutions.

2 Methods

2.1 Dataset

The dataset is an extension of the dataset from [1] and consists of 400 H&E stain
images (2048 × 1536 pixels) of 4 classes. All the images are digitized with the
same acquisition conditions: a magnification of 200× and a 0.42µm × 0.42µm
pixel size. Each image is labeled with one of the four balanced classes: normal,
benign, in situ carcinoma, and invasive carcinoma, where class is defined as a
predominant cancer type in the image, see Fig. 1. The image-wise annotation was
performed by two medical experts [9]. The goal of the challenge is to provide an
automatic classification of each input image.
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Fig. 1. Examples of microscopic biopsy images in the dataset: (A) normal; (B) benign;
(C) in situ carcinoma; and (D) invasive carcinoma

2.2 Approach Overview

The limited size of the dataset poses a significant challenge for the training of a
deep CNN [4]. Very deep architectures (ResNet, Inception) that contain millions
of parameters have achieved state-of-the-art results in many computer vision
tasks [25]. However, training these models from scratch requires a large number
of images, as training on a small dataset leads to overfitting. A typical remedy
in these circumstances is fine-tuning, when only a part of the pre-trained neural
network is being fitted to a new dataset. Since fine-tuning did not demonstrate
good performance on this task, we employed a different approach known as deep
convolutional feature representation [8]. It uses deep CNNs, trained on large
datasets like ImageNet (10M images, 20K classes) [5] for unsupervised feature
representation extraction. In this study, images are encoded with state-of-the-
art general-purpose networks to obtain sparse descriptors of low dimensionality
(1408 or 2048). This unsupervised dimensionality reduction step significantly
reduces the risk of overfitting on the next stage of supervised learning.

We use LightGBM, the fast, distributed, high performance implementation
of gradient boosted trees, for supervised classification [14]. Gradient boosting
models are widely used in machine learning due to their speed, accuracy, and
robustness against overfitting [17].

2.3 Data Pre-processing and Augmentation

To bring the microscopy images into a common space to enable improved quan-
titative analysis, we normalize the amount of H&E stained on the tissue as
described in [15]. For each image, we perform 50 random color augmentations.
Following [21] the amount of H&E is adjusted by decomposing the RGB color
of the tissue into H&E color space, followed by multiplying the magnitude of
H&E of every pixel by two random uniform variables from the range [0.7, 1.3].
Furthermore, we downscale images in half to 1024 × 768 pixels. From the down-
scaled images we extract crops of 400×400 pixels and 650×650 pixels. Thereby,
each image was represented by 20 crops that are encoded into 20 descriptors.
Then, the set of 20 descriptors is combined through 3-norm pooling [3] into a
single descriptor:
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dpool =

(
1
N

N∑
i=1

(di)p
) 1

p

, (1)

where the hyperparameter p = 3 as suggested in [3,27], N is the number of
crops, di is descriptor of a crop and dpool is pooled descriptor of the image. The
p-norm of a vector gives the average for p = 1 and the max for p → ∞. As a
result, for each original image, we obtain 50 (number of color augmentations)
×2 (crop sizes) ×3 (CNN encoders) = 300 descriptors.

Fig. 2. An overview of the pre-processing pipeline.

2.4 Feature Extraction

Overall pre-processing pipeline is depicted in Fig. 2. For features extraction, we
use pre-trained ResNet-50, InceptionV3 and VGG-16 networks. We remove fully
connected layers from each model to allow the networks to consume images
of an arbitrary size. In ResNet-50 and InceptionV3, we convert the last con-
volutional layer consisting of 2048 channels via GlobalAveragePooling into a
one-dimensional feature vector with a length of 2048. With VGG-16 we apply
the GlobalAveragePooling operation to the four internal convolutional layers:
block2, block3, block4, block5 with 128, 256, 512, 512 channels respectively.
We concatenate them into one vector with a length of 1408, see Fig. 3.
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Fig. 3. Schematic overview of the network architecture for deep feature extraction.

2.5 Training

We split the data into 10 stratified folds to preserve class distribution, while all
descriptors of the same image are contained in the same fold to prevent infor-
mation leakage. Augmentations increase the size of the dataset ×300 (2 patch
sizes x 3 encoders x 50 color/affine augmentations). For each combination of the
encoder, crop size and scale we train 10 gradient boosting models per fold. This
allows us to increase the diversity of the models with limited data (bagging).
Furthermore, we recycle each dataset 5 times with different random seeds in
LightGBM adding augmentation on the model level. As a result, we train 10
(number of folds) ×5 (seeds) ×4 (scale and crop) ×3 (CNN encoders) = 600
gradient boosting models. At the cross-validation stage, we predict every fold
only with the models not trained on this fold. For the test data, we similarly
extract 300 descriptors for each image and use them with all models trained for
particular patch size and encoder. The predictions are averaged over all aug-
mentations and models. Finally, the predicted class is defined by the maximum
probability score.

3 Results

To validate the approach we use 10-fold stratified cross-validation.
For 2-class non-carcinomas (normal and benign) vs. carcinomas (in situ and

invasive) classification accuracy was 93.8 ± 2.3%, the area under the ROC curve
was 0.973, see Fig. 4a. At high sensitivity setpoint 0.33 the sensitivity of the
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Fig. 4. (a) Non-carcinoma vs. carcinoma classification, ROC. High sensitivity set-
point = 0.33 (green): 96.5% sensitivity and 88.0% specificity to detect carcinomas. Set-
point = 0.50 (blue): 93.0% sensitivity and 94.5% specificity (b) Confusion matrix, with-
out normalization. Vertical axis - ground truth, horizontal - predictions. (Color figure
online)

Table 1. Accuracy (%) and standard deviation for 4-class classification evaluated over
10 folds via cross-validation. Results for the blended model is in the bottom. Model
name represented as 〈CNN〉-〈crop size〉, thereby VGG-650 denotes LightGBM trained
on deep features extracted from 650 × 650 crops with VGG-16 encoder. Each column
in the table corresponds to the fold number.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 mean std

ResNet-400 92.0 77.5 86.5 87.5 79.5 84.0 85.0 83.0 84.0 82.5 84.2 4.2

ResNet-650 91.0 77.5 86.0 89.5 81.0 74.0 85.5 83.0 84.5 82.5 83.5 5.2

VGG-400 87.5 83.0 81.5 84.0 84.0 82.5 80.5 82.0 87.5 83.0 83.6 2.9

VGG-650 89.5 85.5 78.5 85.0 81.0 78.0 81.5 85.5 89.0 80.5 83.4 4.4

Inception-400 93.0 86.0 71.5 92.0 85.0 84.5 82.5 79.0 79.5 76.5 83.0 6.5

Inception-650 91.0 84.5 73.5 90.0 84.0 81.0 82.0 84.5 78.0 77.0 82.5 5.5

std 1.8 3.5 5.7 2.8 2.0 3.7 1.8 2.1 3.9 2.7 3.0 -

Model fusion 92.5 82.5 87.5 87.5 87.5 90.0 85.0 87.5 87.5 85.0 87.2 2.6

model to detect carcinomas was 96.5% and specificity 88.0%. At the setpoint
0.50 the sensitivity of the model was 93.0% and specificity 94.5%, Fig. 4a. Out
of 200 carcinomas cases only 9 in situ and 5 invasive were missed, Fig. 4b.

Table 1 shows classification accuracy for 4-class classification. Accuracy aver-
aged across all folds is 87.2 ± 2.6%. Data augmentation and model fusion are
particularly evident. The fused model accuracy is by 4–5% higher than any
of its individual constituents. The standard deviation of the ensemble across 10
folds is as twice as low than the average standard deviation of individual models.
Moreover, all results are slightly improved by averaging across 5 seeded models.
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4 Conclusions

In this paper, we propose a simple and effective method for the classification
of H&E stained histological breast cancer images in the situation of very small
training data (few hundred samples). To increase the robustness of the classifier
we use strong data augmentation and deep convolutional features extracted at
different scales with publicly available CNNs pretrained on ImageNet. On top
of it, we apply accurate and prone to overfitting implementation of the gradient
boosting algorithm. Unlike some previous works, we purposely avoid training
neural networks on this amount of data to prevent suboptimal generalization.

To our knowledge, the reported results are superior to the automated analysis
of breast cancer images reported in literature.

Acknowledgments. The authors thank the Open Data Science community [18] for
useful suggestions and other help aiding the development of this work.
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