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Abstract. The singular value decomposition (SVD) is an important and
very versatile tool for matrix computations with a variety of uses. The
contribution briefly introduces the concept of the SVD and basic facts
about it and then describes two classes of its applications in image pro-
cessing - image compression and blurred image restoration. Calculations
are implemented in MATLAB software. Our experiences and the results
are presented in the text.
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1 Introduction

The SVD is one of the most important and most versatile matrix computations
tools. Its application can be found both in mathematical theory and in various
practical areas. The SVD is related to many other concepts of linear algebra [3].
It is possible to use it for example to determine matrix rank, the Frobenius norm
or spectral norm of a matrix, the condition number of a matrix, an orthonormal
basis for the null space and the column space of a matrix, the approximation
of a matrix by a matrix of lower rank. Further large application domain is in
statistics in the context of principal component analysis and correspondence
analysis. Another major application of the SVD is the area of signal processing
including compression or data filtering [6], also it is used for data registration [1],
recognition [7], steganography watermarking [5], latent semantic indexing and
analysis [2] etc.

2 Basic Theoretical Facts About SVD

The following theorem states the existence of the SVD for any real matrix.

Theorem 1. Let A ∈ R
m×n and p = min{m,n}. Then there exist orthogonal

matrices U ∈ R
m×m, V ∈ R

n×n and a diagonal matrix Σ ∈ R
m×n with diagonal

elements σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 so that it holds

A = UΣVT . (1)
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Diagonal elements σjj = σj , j = 1, . . . , p, of the matrix Σ are called the
singular values of the matrix A. Let uj resp. v j denote the jth column of the
matrix U respectively matrix V . Vectors uj , j = 1, . . . ,m, are called the left
singular vectors and vectors v j , j = 1, . . . , n, are called the right singular vectors
of the matrix A.

The singular values are uniquely determined, and if we in addition to it
suppose that they are written in sorted order (σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0) then
the matrix Σ is uniquely determined too. On the other hand, the left singular
vectors and the right singular vectors and consequently the matrices U and V
are not uniquely determined.

The rank r of a matrix A is equal to the number of non-zero (positive)
singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σr+1 = σr+2 = . . . = σp = 0, p = min{m,n}.

However, the above-mentioned fact is correct only if we assume the SVD
calculated in the exact arithmetic. When we apply numerical calculations on
computer, it can be assumed that numbers σr+1, . . . , σp will not be exact zeros.
In this case it is not clear which of the singular values are really zero and which
are just almost zero. The concept of the numerical rank of a matrix is introduced
from this reason. A matrix has the numerical rank of k if k singular values are
greater than the chosen tolerance δ > 0, the other singular values are considered
to be zero.

3 Low-Rank Matrix Approximation and Data
Compression

The task of finding for a matrix A ∈ R
m×n of rank rank(A) = r another matrix

Ak ∈ R
m×n having rank rank(Ak) = k < r which is in some sense its best

approximation is useful in many applications. Here, the best approximation will
be considered in the sense of minimizing the spectral norm of error A−Ak, i.e.

‖A − Ak‖2 = min
X∈R

m×n

rank(X )=k

‖A − X ‖2. (2)

The following Theorem 2 indicates the way of using the SVD to solve this
problem. It is used the following form of the so-called economy-size SVD

A = U rΣrV
T
r =

r∑

j=1

σjujv
T
j , (3)

where U r = U •,1:r , Σr = Σ1:r,1:r and V r = V •,1:r.

Theorem 2 (Eckart, Young, Mirsky). Let us have a matrix A ∈ R
m×n of

rank r and let k be a natural number, k < r. Let us consider the SVD of the
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matrix A given by (3). Then the matrix

Ak =
k∑

j=1

σjujv
T
j

is the best rank k approximation of the matrix A in terms of (2).

A grayscale digital image can be represented by a matrix of type m×n whose
element at position ij corresponds to the intensity of the ijth pixel of the image.
Grayscale images will be taken for simplicity. The case of color image compres-
sion could be solved analogously by applying the further described procedure to
each of the RGB color channels separately.

A photograph of the Large Square in the city of Hradec Kralove (Czech
Republic) is used as a demonstration (see the leftmost image in Fig. 1). The image
can be represented by the matrixA of size 706× 670. In accordance with the The-
orem 2 the matrices A200 and A20 are constructed. Only the elements of uj , v j

and the numbers σj , j = 1, . . . , k, are stored in the memory for each of these
matrices when using the economy-size SVD, which represents the total amount of
(m + n + 1)k values. The amount of (m + n + 1)r values must be stored for the
initial matrixA of rank r. Thus, the compression ratio is given by fraction r

k .
Memory savings are 70.15 % for the approximation A200 and 97.01 % for

A20 compared to the original image. However, the quality of approximation is
getting worse with decreasing k. Figure 1 shows the obtained results.

Fig. 1. Initial image and compression of the image corresponding to the approximation
matrices for k = 200, 20

4 Ill-Posed Problems and Regularization

The further described application of the SVD will concern blurred image restora-
tion. A grayscale image represented by a matrix X ∈ R

m×n will be assumed.
This matrix will represent the ideal sharp image and consequently at the same
time the solution to be sought as the result of reconstruction (Fig. 2a). But in
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practice, we only have at our disposal an image given by a matrix B ∈ R
m×n

that is degraded by blurring, for example due to the motion or poorly focused
optical system of the camera (Fig. 2b). If the blurring is linear and the blurring of
the columns in the image is independent of the blurring of the rows, the blurring
process can be represented by the following matrix equation

ACXAT
R = B . (4)

The matrix AC ∈ R
m×m represents the blurring of the columns and AR ∈ R

n×n

the blurring of the rows.
Equation (4) can be rewritten to common form of a system of linear algebraic

equations
Ax = b, (5)

where A = AR ⊗AC ∈ R
mn×mn is a Kronecker product of the matrices AR and

AC. The vectors x and b represent vectorization of the matrices X and B , i.e.
x = vec(X ) = (X T

•1, . . . ,X
T
•n)

T ∈ R
mn and b = vec(B) = (BT

•1, . . . ,B
T
•n)

T ∈
R

mn.
When working with real data, it often happens that the vector b contains

noise (measurement inaccuracies, rounding errors, discretization errors, etc.). So
it holds

b = bEXACT + bNOISE,

where bEXACT is the exact right-hand side of the system of equations and bNOISE

is the noise vector. It will be assumed that ‖bEXACT‖2 � ‖bNOISE‖2.
If rank(AC) = m and rank(AR) = n then the matrix A is nonsingular and

the solution of the system of equations (5), usually referred to as naive, can
simply be written as xNAIVE = A−1b. This solution would correspond to the
desired solution xEXACT = A−1bEXACT if the vector b did not contain noise.
In case the vector b contains noise, for xNAIVE holds

xNAIVE = A−1b = xEXACT +A−1bNOISE. (6)

Reconstruction of a blurred image is a typical example of ill-posed prob-
lems. Figure 2c shows that the naive solution (6) is dominated by the inverse
noise A−1bNOISE, and this noise completely overlaps the solution xEXACT. The
solution xNAIVE can be written using the SVD of the matrix A as

xNAIVE =
mn∑

j=1

uT
j bEXACT

σj
v j +

mn∑

j=1

uT
j bNOISE

σj
v j . (7)

Furthermore, it is assumed that the vector bEXACT meets the discrete
Picard condition. This condition can be formulated like this: Magnitude of the
uT

j bEXACT components is with increasing j dropping to zero on average faster
than the absolute value of the corresponding singular values σj . The noise vector
bNOISE does not have to meet this condition. Values uT

j bNOISE do not usually
decrease to zero, and their influence will increase as a result of division by small
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Fig. 2. Blurred image restoration: (a) initial sharp image (exact solution), (b) blurred
image with additive noise, (c) naive solution, (d) solution for the appropriate choice of
the truncation parameter (k = 12693), (e) undersmoothed solution with influence from
high-frequency components of noise (k = 15351), (f) oversmoothed solution missing
high-frequency information (noise, but also image details) (k = 3602)

singular values. The second sum dominates in the naive solution (7), which
explains the result in Fig. 2c.

The way in which ill-posed problems can be solved is regularization. The goal
is to find an approximation of the exact solution xEXACT in order to suppress
the impact of noise. One of the classic regularization methods is Truncated SVD
(TSVD). TSVD regularization is based on the replacement of the matrix A by
its best approximation of lower rank according to the Theorem 2

Ak =
k∑

j=1

σjujv
T
j , k < mn.

The corresponding solution of the problem (5) (in the least squares sense) has
the form

xREG(k) = A†
kb =

k∑

j=1

uT
j b

σj
v j .
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The components mostly dominated by noise, corresponding to division by small
singular values σj , j = k + 1, . . . , mn, are simply removed.

Figure 2d – f shows solutions corresponding to various values of the truncation
parameter k, for more details see [4].

5 Conclusion

The SVD has a variety of uses, some have been known for many years and have
been developed by various authors over the course of time, while other applica-
tions are related to relatively new domains associated with the development of
computing. The article briefly presents our experience with the SVD in the field
of image compression and blurred image restoration. Additional outputs could
not be included due to the limited scope of the text.

Acknowledgments. This work and the contribution were supported by a project of
Students Grant Agency – FIM, University of Hradec Kralove, Czech Republic. Katerina
Fronckova is a student member of the research team.

References

1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets.
IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987). https://doi.org/10.
1109/TPAMI.1987.4767965

2. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990). https://
doi.org/10.1002/(SICI)1097-4571(199009)41:6〈391::AID-ASI1〉3.0.CO;2-9

3. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins
University Press, Baltimore (2013)

4. Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring images: Matrices, Spectra, and
Filtering, 1st edn. Society for Industrial and Applied Mathematics, Philadelphia
(2006)

5. Liu, R., Tan, T.: An SVD-based watermarking scheme for protecting rightful own-
ership. IEEE Trans. Multimed. 4(1), 121–128 (2002). https://doi.org/10.1109/6046.
985560

6. Sadek, R.A.: SVD based image processing applications: state of the art, contribu-
tions and research challenges. Int. J. Adv. Comput. Sci. Appl. 3(7), 26–34 (2012).
arXiv:1211.7102

7. Turk, M.A., Pentland, A.P.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1),
71–86 (1991). https://doi.org/10.1162/jocn.1991.3.1.71

https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1109/6046.985560
https://doi.org/10.1109/6046.985560
http://arxiv.org/abs/1211.7102
https://doi.org/10.1162/jocn.1991.3.1.71

	Singular Value Decomposition in Image Compression and Blurred Image Restoration
	1 Introduction
	2 Basic Theoretical Facts About SVD
	3 Low-Rank Matrix Approximation and Data Compression
	4 Ill-Posed Problems and Regularization
	5 Conclusion
	References




