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Abstract. Finding shadows in images is useful for many applica-
tions, such as white balance, shadow removal, or obstacle detection
for autonomous vehicles. Shadow segmentation has been investigated
both by classical computer vision and machine learning methods. In this
paper, we propose a simple Convolutional-Neural-Net (CNN) running on
a PC-GPU to semantically segment shadowed regions in an image. To
this end, we generated a synthetic set of shadow objects, which we pro-
jected onto hundreds of shadow-less images in order to create a labeled
training set. Furthermore, we suggest a novel loss function that can be
tuned to balance runtime and accuracy. We argue that the combination of
a synthetic training set, a simple CNN model, and loss function designed
for semantic segmentation, are sufficient for semantic segmentation of
shadows, especially in outdoor scenes.
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1 Introduction

This paper presents a CNN to segment shadows in an image. To that end we
created a synthetic set of shadows and randomly added them to hundreds of
hand picked shadow-less images. We show that training a CNN on a synthetic
set of shadows with a novel loss function designed for semantic segmentation,
yields satisfactory segmentation results on real images.

Past [1,6,10,12] and contemporary work [2,7–9,11] on shadow segmentation
relied on manual or semi-automated labeling of shadowed pixels in an image in
order to create the training, validation and test sets. Hand labeling shadows is
very time consuming, and of course, not all-possible shadow shapes and intensi-
ties can be found and labeled for supervised learning. Using synthetic shadows
we can simulate an unbounded range of intensities and shapes.

Resizing or reshaping an image or synthetic shadow is possible since shadows
are often cast from an object not present in the image. Synthetic shadows from
the test set are shown in Fig. 1. Images on the left are with cast shadows, images
in the center are the ground truth shadow segmentation, and the images on the
right are the CNN predicted segmentations.
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Fig. 1. In each triplet, scene with cast shadows, ground truth shadow segmentation,
and the predicted segmentation

2 CNN Model Structure

In our dataset, shadows appear both in low frequencies varying slowly across
the scene or as very high frequency intensity changes. Thus, we should apply
different sized kernels in order to extract their features and segment them. As
large kernels are computationally expensive, we can replace such kernels with
cascaded smaller kernels or run them on a subsampled image. Convolving with
an n × n kernel on an image resized by 0.5, has the effect of running a 2n × 2n
kernel on the original image. As subsampled images may lose small artifacts or
high frequency features at subsampling, we ought to keep extracted features for
high and low frequencies of pre-subsampling layer. The U-Net architecture [3]
with multi-scaling tensors at several resolutions fulfills our requirements and we
based our model on it.

As we only semantically segment shadows we did not require the full
U-Net architecture. We removed the last subsampled layer and reduced the base
number of convolutional kernels from 64 to 24, Fig. 2 depicts our model.

3 Loss Function

The error, or loss, between the ground truth and the predicted image is
often taken to be the pixel-wise Root-Mean-Square-Error, LossRMSE . Using
LossRMSE the model converged fast. However, since shadows are often not
a dominant segment of the scene this resulted in a model that ignored small
shadow segments.

For semantic segmentation, it is often customary to set the loss function in
terms of IoU (intersection of union).

IoU =
Area of Overlap
Area of Union

(1)

With the loss function being:

LossIoU = 1 − IoU (2)
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Fig. 2. A U-Net based architecture for shadow segmentation.

LossIoU , is indifferent to the shadow-less part of the scene. This is especially
important in order not to miss small shadows segments which are often ignored
by a pixel-wise loss. However, minimization of LossIoU converges very slowly
compared to LossRMSE , as it gives an equal weight to small shadow segments
and to large ones in an image.

In order utilize both of their relative advantages - fast minimization,
LossRMSE , and accuracy, LossIoU , we set the loss function to a combination of
them. The simplest combination being linear:

Losstotal = αLossRMSE + (1 − α)LossIoU (3)

In Eq. 3, Losstotal is a plane. Gradients pointing to the most significant
change in the loss function are parallel (slope of the plane), so gradients have no
preference and do not converge to a single minimum at the origin. Therefore, con-
vergence might be slow and accurate in case gradients are close to the LossIoU
axis, or faster and less accurate in case gradients are closer to the LossRMSE

axis.
For a more stable form of a loss function we used a quadratic combination

of LossRMSE and LossIoU :

Losstotal = Loss2RMSE + Loss2IoU (4)

Unlike Eq. 3, it is impossible to minimize only one component of the loss
function without the other in training, since gradients have radial symmetry
and all point to a single minimum at the origin. Figure 3 shows contours and
gradients for the loss functions in Eqs. 3 and 4.

Nonetheless, while training on our sets, there was a “pull” of the gradients
towards the LossRMSE axis, since it was easier to minimize LossRMSE than
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Fig. 3. 3D contours of plane loss and parabolic loss of Eqs. 3 and 4. For plane loss,
projection of parallel gradients on the LossIoU -LossRMSE plane. For parabolic loss,
projection of radial gradients on the LossIoU -LossRMSE plane.

LossIoU neglecting many small shadows segments. Therefore, we chose a new loss
function that forces the gradients towards the LossIoU axis to increase accuracy.
We required the loss function to have a basin shape with a single minimum
and a basin line through which we could force the gradients to minimize the
function to a preferred axis. In Eq. 4, if we divide the term Loss2RMSE by LossIoU
and divide the term Loss2IoU by LossRMSE , we penalize Losstotal if one of the
terms becomes dominant, as Losstotal increases. The penalty is minimized when
LossRMSE ≈ LossIoU . The following equation achieves just that:

Losstotal =
αLoss2RMSE

LossIoU
+

Loss2IoU
αLossRMSE

(5)

The hyper-parameter α, tunes the slope of the basin line of the loss function,
Losstotal, which roughly represents the line y = αx. We denote Eq. 5 as “basin-
loss”, illustrated in Fig. 4. Note that since LossRMSE and LossIoU are differen-
tiable [4,5], Eq. 5 is also differentiable and can be used for back-propagation.

4 Training and Results

For our dataset [13], we chose 580 shadow-less images from the web, and with
Photoshop created 100 shadow objects. As we used a PC-GPU, to make the most
of the GPU memory we ran our model on mini-batches of size 5 for 30 iterations
per epoch. We resized input images to 512×512×3. For each image we randomly
chose a shadow object, randomly blurred it to soften its edges, randomly set its
intensity, and randomly chose an affine transformation to resize, skew, and rotate
it. Finally, we added the shadow object to the image, see Fig. 1.

Our sets of images were divided 80% − 10% − 10% for training, validation,
and test, (α = 1.1). There are two measures of accuracy; first – pixel accuracy,
or percentage of pixels that are equal to 1 or 0, when comparing predicted
shadow with ground truth, second – percentage of intersection over union, or
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Fig. 4. Contours of basin-loss of Eq. 5, in log scale. Left: basin-loss with α = 0.3,
with a projection of the gradients on the LossIoU -LossRMSE plane. The “pull” of
the gradients is towards minimizing IoU loss. Right: basin-loss function with α = 3,
with projection of the gradients on the LossIoU -LossRMSE . The “pull” of gradients is
towards minimizing RMSE loss.

IoU accuracy, of predicted shadow with ground truth. The training set converged
to 96% pixel-accuracy and validation converged to 95%. For IoU accuracy, the
training set converged to 82% and validation to 80%.

There is a trade-off in time-to-converge and IoU accuracy based on α. Train-
ing with α ≤ 1 caused the model to converge too slowly. If the basin-line is such
that the model is forced to compensate for LossIoU more than for LossRMSE ,
model convergence becomes very slow. Figure 5 shows model training results for
different values of α in LossIoU and LossRMSE .

Note in Fig. 5, that the difference in loss between the axes increased as α
grows. Also setting α too large, say α = 3, degrades IoU performance.

We used the ‘Adadelta’ optimization algorithm with a learning rate reduction
of 90% when there is no progress. The effect of improvement in accuracy by
learning rate reduction is visible in Fig. 5 (top two images), at epoch 530.

Figure 6 shows examples with real shadows we tested the shadow segmenta-
tion on and Fig. 7 shows how the CNN finds small shadows.

5 Comparison with Previous Work

We found our work to be a little better than [1] in terms of shadow segmentation.
We ran our model on the test set and ground truth of test set of [1]. To improve
test accuracy, we performed Otsu thresholding on our outputs and achieved
90% pixel accuracy which is 1% improvement compared to [1], and with 72%
IoU accuracy - no such parameter to compare to. We could not run the code
of [1] to test our samples. It is also important to note that ground truth given
for these images is often incorrect both in marking non-shadows as shadows
and in missing parts of the shadow. This results in a significant accuracy loss,
especially in areas where our model had segmented a shadow correctly and the
ground truth did not. Figure 8 shows examples.
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Fig. 5. Comparing training and total loss between Eqs. 4 and 5. Top left:
Train/validation pixel-accuracy/IoU-accuracy for Eq. 5 with α = 1.1. Top right: losses
for basin-function with α = 1.1. Center left: losses for basin-function with α = 2. Cen-
ter right: losses for basin-function with α = 3. Bottom left: losses for Eq. 4, LossRMSE ,
with LossIoU only measured. Bottom right: Losstotal values illustrated on basin defined
by Eq. 5 with α = 1.1. Loss defined by Eq. 5 (basin loss) performs better for LossIoU .



342 E. Kaminsky and M. Werman

Fig. 6. Top, outdoor images with shadows. Bottom, shadow segment.

Fig. 7. Top, images with small shadows. Bottom, shadow segment.

We were unsuccessful in applying the code of [2] due to major compilation
problems. However, we present samples of our model on some of their images.
Images we downloaded from [2] were mostly of indoor with lots of soft shadows
and no clear edges, nevertheless, shadow segmentations were successful, as shown
in Fig. 9.
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Fig. 8. Left: input images, center: our shadow segmentations and right the ground
truth given in [1]. Misclassified ground truth is marked with red ellipses. Note that the
given ground truth is not always reliable. (Color figure online)

Fig. 9. Samples from [2]. Left, inputs, center our segmentation, and right are hand-
marked shadows.
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6 Conclusion

We showed that a small CNN trained on a small synthetic set of shadows, a small
set of shadow-less images, and a loss function designed to minimize runtime and
loss of both Root-Mean-Square-Error and Intersection-over-Union-Loss can give
good shadow segmentations.

More generally, our work illustrates the importance of choosing a proper loss
function for semantic segmentation. Since even if with an abundance of data a
network can only be trained as well as its loss function allows and that designing
the gradients’ path can improve the overall accuracy of a network.
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