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Abstract. Recent studies have demonstrated that the Structural Simi-
larity Index Measure (SSIM) is the top choice for quantifying both visual
quality and image similarity. Although the SSIM is not convex, it has
been successfully employed in a wide range of imaging tasks over the
last years. In this paper, the authors propose a new method based on
the Alternate Direction Method of Multipliers (ADMM) for solving an
unconstrained SSIM-based optimization problem. We focus our analysis
on the case in which the regularizing term is convex. The paper also
includes numerical examples and experiments that showcase the effec-
tiveness of the proposed method.

1 Introduction

As is well known, it is customary to employ Euclidean-based metrics in a wide
variety of image processing tasks. These metrics are quite convenient to use
since they are mathematically tractable and easily computed. For instance, the
squared Euclidean distance is convex and differentiable, which makes it well
suited as, say, the objective function of an optimization problem. As such, it is
usually included as the fidelity term in imaging tasks that can be carried out by
optimizing a cost function. In general, such functions have the following form:

min 2| A(2) vl + Mh(a), 1)
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where A(-) is generally a linear operator (e.g., blurring kernel, subsampling oper-
ator, etc.), y is a given observation, h(x) is a regularizing term, and the constant
A is a regularization parameter.

The role of the fidelity term ||A(x) — y||3 is to maintain the solution to (1)
close to the observed data y. As for the regularization term h(x), this has two
main purposes: (i) It prevents over-fitting and (ii) ensures the solution will have
certain expected features which are based on prior information or assumptions.
For example, if the optimal solution is assumed to have bounded variation, a
typical regularization term is h(z) = ||z||pv, where || - |7y is the Total Variation
(TV) seminorm [6-8].

Despite the advantages that Euclidean-based metrics offer, it has been shown
that they are not appropriate for measuring similarity between images [19,20].
Given this, many measures of visual quality have been proposed in an attempt to
model the Human Visual System (HVS). In particular, the Structural Similarity
Index Measure (SSIM), originally proposed by Wang et al. [20], has become the
top choice for quantifying both visual quality and image similarity.

Although the SSIM is not convex and not as mathematically tractable as the
Euclidean-based metrics, it has been successfully employed in a wide range of
imaging tasks over the last years. For instance, in [3] the authors find the best
approximation coefficients in the SSIM sense when an orthogonal transforma-
tion is used (e.g., Discrete Cosine Transform (DCT), Fourier, etc.). Very briefly, a
contrast-enhanced version of the best ¢»-based approximation is obtained. Based
on this result, Rehman et al. [15] address the SSIM version of the image restora-
tion problem proposed by Elad et al. in [10], where the denoising of images is
performed using sparse and redundant representations over learned dictionaries.
Furthermore, in [15], the authors also introduce a super-resolution algorithm—
also based on the SSIM—to recover from a given low resolution image its high
resolution version.

Another interesting application for reconstruction and denoising was pro-
posed in [9]. Here, the authors define the statistical SSIM index (statSSIM), an
extension of the SSIM for wide-sense stationary random processes. By optimiz-
ing the statSSIM, an optimal filter in the SSIM sense is found. The non-convex
nature of the statSSIM is overcome by reformulating its maximization as a quasi-
convex optimization problem, which is solved using the bisection method [1,9].
Nevertheless, it is not mentioned that the SSIM—under certain conditions—is
a quasi-convex function (see [4]). As a result, it can be minimized using quasi-
convex programming techniques, which permits the consideration of a much
broader spectrum of SSIM-based optimization problems. Such techniques have
already been introduced in [11,13].

More recently, Brunet et al. proposed a systematic framework for the design
of SSIM-based restoration algorithms [5]. Applications such as optimal SSIM
image denoising and soft-thresholding are introduced in this work. Other imaging
techniques based on the SSIM can also be found in [16,18]. In these works,
optimization of rate distortion, video coding and image classification are explored
using the SSIM as a measure of performance.
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Also, in [12], the authors introduced a general framework for carrying out
unconstrained SSIM-based optimization. In particular, two algorithms are pro-
posed for solving optimization problems of the form

min T(P(z),y) + Ah(x), (2)
xr
where @ is usually a linear transformation, \ is a regularization parameter, h(zx)
is a convex regularizing term, and T'(-,-) is a dissimilarity measure, which is
given by
T(z,y) =1 — SSIM(z,y). (3)

In this paper, we propose a new method based on the Alternate Direction
Method of Multipliers (ADMM) for solving problem (2). In particular, we focus
our attention on the case in which the regularizing term h(x) is convex. Experi-
ments that showcase the effectiveness of the proposed method are also included.

2 The Structural Similarity Index Measure (SSIM)

Structural similarity (SSIM) [20] provides a measure of visual closeness of two
images (or local image patches) by quantifying similarities in three fundamental
characteristics: luminance, contrast and structure. Luminances are compared in
terms of a relative change in means. Contrasts are compared in terms of relative
variance. Finally, structures are compared in terms of the correlation coefficient
between the two images. The SSIM value is computed by simply taking the
product of these changes.

In what follows, we let z,y € R™ denote two n-dimensional signal/image
blocks. The SSIM between z and y is defined as [20],

Q/J,I,Uy + C1 > ( 2Um0y + Cs ) ( Ozy + C3 )
SSIM(z,y) = . 4
(@) <u%+u§+01 oz +op+C2) \oz0y+C3 @

Here, p1, and p,, denote the mean values of x and y, respectively, and o, denotes
the cross correlation between z and y, from which all other definitions follow.
The small positive constants, C7,Cy, C3 provide numerical stability and can be
adjusted to accommodate the HVS. Note that —1 < SSIM(z,y) < 1. Further-
more, SSIM(z,y) = 1 if and only if x = y. As such, z and y are considered to
be more similar the closer SSIM(z,y) is to 1.

Setting C3 = C3/2 leads to the following definition of the SSIM index found
in [20] and used in [3] and elsewhere,

2:“/9:My+cl>< 2Uzy+C2 )
p2 + p2 4 Ch 02+02+Cy)"

SSIM(z, y) = ( (5)

Since the statistics of images vary greatly spatially, the SSIM(z,y) is com-
puted using a sliding window of 8 x 8 pixels. The final result, i.e., the so-called
SSIM index, is basically an average of the individual SSIM measures.
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A further simplification results when = and y have zero mean, i.e., j1z = pty =
0. In this special case, we obtain the following expression

22Ty + C
2113 + [lylI3 + C”

SSIM (2, y) = (6)
where C' = (n — 1)Cs (see [11,12] for more details). For the remainder of this
paper, unless otherwise stated, we shall be working with zero mean vectors, so
that Eq. (6) will be employed in all computations of the SSTM.

The corresponding distance/dissimilarity function 7'(z,y) in Eq. (3) becomes

T(a,y) = 1 — $SIM(z, ) = — 12— I3 7
= S I el v

Note that 0 < T'(x,y) < 2. Furthermore, T'(z,y) = 0 if and only if z = y. As
mentioned earlier, since SSIM(z,y) is a measure of similarity, T'(z,y) can be
considered as a measure of dissimilarity between = and y.

3 Unconstrained SSIM-Based Optimization

We shall focus on unconstrained SSIM-based optimization problems of the form,
min T(Pz,y) + Ah(z), (8)

where A > 0 is a regularization parameter and h : R” — R is a regularization
functional, which is often defined to be convex. Notice that the first term in (8)
is not convex, thus the entire cost function is not convex either. This implies that
the existence of a unique global minimizer of (8) cannot be generally guaranteed.
Despite this, it is still possible to devise efficient numerical methods capable of
converging to either a locally or a globally optimal solution, as will be shown in
the following Section of the paper.

3.1 ADMM-Based Approach

In order to solve problem in (8) we follow an approach based on the Augmented
Lagrangian Method of Multipliers (ADMM). This methodology is convenient
since it allows us to solve a wide variety of unconstrained SSIM-based opti-
mization problems by splitting the cost function to be minimized into simpler
optimization problems that are easier to solve.

The problem in (8) can be solved efficiently by taking advantage of the fact
that the objective function is separable. Let us write Problem (8) in its equivalent
constrained form:

min T(®x,y) + Ah(z),

subject to x — z = 0, (9)
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where z € R™ [2]. Clearly, (9) is equivalent to problem (8), thus by solving it, we
automatically obtain a minimizer of the original optimization problem in (8).

As is customary in the ADMM methodology, let us first form the correspond-
ing augmented Lagrangian of (9),

Ly(w,20) = T(@2,y) + Mh(2) + Lz — 2+ ul}3, (10)

where u = v/p is a scaled dual variable [2]. As expected, the iterations of the
proposed algorithm for solving (9) will be the minimization of Eq. (10) with
respect to variables z and z in an alternate fashion, and the update of the dual
variable u, which accounts for the maximization of the dual function g(u):

g(u) = iﬂvI’l?pr(I‘,Z,u). (11)

Thus, we define the following iteration for minimizing the cost function of the
equivalent counterpart of problem (8):

2F 1 .= argmin (T(@x, y) + g”x —2F 4 UkH%) ) (12)
ZF*1 .= argmin (h(z) + %kaﬂ —z+ UkH%) ) (13)
T N L (14)

Observe that the z-update can be computed using the algorithm introduced in
[12] for differentiable regularizing terms. Furthermore, when h is convex, the z-
update is equal to the prozimal operator of (A/p)h [14]. Recall that for a convex
function f: R"™ — R its proximal operator prox; : R" — R" is defined as

prox;(v) := arggrﬂnin (f(x) + %Hx - v||§> . (15)

It then follows that
= proxa, (o8 + ). (16)
)

Given the latter, we introduce the following algorithm for solving Problem (8).

Algorithm I: ADMM-BASED METHOD FOR UNCONSTRAINED
SSIM-BASED OPTIMIZATION

initialize x = z = 2, u = 0;

data preprocessing y =y — %lTy;

repeat
@ := argmin, (T(Pz,y) + 5|z — z + ul]3);
z:= argmin, (h(z) + K llz — 2z + ul]3);
U:=u+x— 2z

until stopping criterion is satisfied.

return z.
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4 Applications

As anticipated, by choosing different types regularization terms and linear oper-
ators, a wide variety of SSIM-based imaging tasks can be performed. In this
section, due to space limitations, we review just one application that has been
barely studied, namely, SSIM-TV denoising. For the interested reader, more
applications and experimental results can be found in [11-13].

4.1 SSIM-TV Denoising

Until now we have worked with vectors, nevertheless, the proposed algorithm can
be easily adapted for dealing with matrices, which are the digital counterparts
of images. In the particular case of denoising, images can be denoised in the
following fashion. Let Y € R™*" be a noisy image. Also, let V : Rm*" — R™»x1
be a linear transformation that converts matrices into column vectors, that is,

V<A) = VeC(A) = [alh a21; -+ A(m—1)n> amn]T7 (17)

where A € R™*™,

As mentioned before, it is more convenient to employ an average of local
SSIMs as a fidelity term. Let {Y;}}¥, be a partition of the given image Y such
that UY.,Y; = Y. Further, let {X;, Z;}Y ; also be partitions of the variables X
and Z such that UY | X; = X and UY , Z; = Z. Also, let MT : R™*" x R™X" —
R be given by

N
1
MT(X,)Y)=— T(V(X;),V(Y;)). 18
(7)N;(()()) (18)
Then, the optimization problem that is to be solved is
min MT(X,Y) + A|X|rv, (19)

where the regularizing term is a discretization of the isotropic TV seminorm for
real-valued images [6].

If {Y;, X; Z;} ) | are partitions of non-overlapping blocks, the problem in (19)
can be solved by carrying out the following iterations,

N
XEH i argain (T(V 00, V) + L - 2 O ) (20

Xi
Sl argmin (HZHTV T %Hz kL U’“ll%) 7 (21)
Uk‘Jrl — Uk 4 Xk?+1 _ Zk+1, (22)

where ||-||r is the Frobenius norm and Uj is an element of the partition of the dual
variable U. As expected, UN U; = U, and U; NU; = @ for all i # j. Notice that
the Z-update may be computed efficiently by using the algorithm introduced by
Chambolle in [6]. The extension of this algorithm when a weighted average of
local SSIMs is used as a measure of similarity between images is straightforward.
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We close this section by mentioning that to the best of our knowledge, the
contributions reported in [11,13,17] along with the applications presented above
are the only approaches in the literature that combine TV and the SSIM.

5 Experiments

In the following experiments, the denoising of some images corrupted with Addi-
tive White Gaussian Noise (AWGN) was performed. Although from a maximum
a posteriori (MAP) perspective the ADMM-SSIM approach is not optimal, it is
worthwhile to see how denoising is carried out when the SSIM-based metric is
employed as a fidelity term.

It is important to mention that in order to reduce blockiness in the recon-
structions the mean of each non-overlapping pixel block is not subtracted prior
to processing. This implies that the fidelity term defined in (18) is not equivalent,
but is based on the dissimilarity measure introduced in Sect. 2. Despite this, the
experiments presented below suggest that this fidelity measure may be used as
a substitute of the SSIM.

In all experiments, we employed non-overlapping pixel blocks. Performance
of the ¢5- and SSIM-based approaches is assessed by computing the MSSIM of
the original images and their corresponding reconstructions. Here, the MSSIM
is simply the average of the SSIM values of all non-overlapping blocks.

As expected, the noiseless approximation is obtained by solving Problem
(19). To evaluate the performance of the proposed ADMM-SSIM method, we
compare it with its £ counterpart, namely,

min || X = Y3 + A X]lzv (23)

Naturally, Chambolle’s algorithm can be employed for solving this optimization
problem [6]. In order to compare the effectiveness of the proposed approach and
Chambolle’s method (TV), regularization was carried out in such a way that the
TV seminorms of the reconstructions yielded by both methods are the same.

In Fig. 1, some visual results are shown. We employed the test image Lena.
The noisy image, as well as the SSIM map, can be observed in the first row.
The reconstructed and original images are presented in the second row. The TV
seminorm of the reconstruction is 2500 for Lena. The Peak Signal-to-Noise Ratio
(PSNR) prior to denoising was 18.067 dB in all experiments.

It is evident that the proposed method performs significantly better than
its f5 counterpart. Notice that some features of the original Lena are better
reconstructed (e.g., the eyes in Lena), whereas in the {2 reconstruction these
features are considerably blurred. This is mainly due to the fact that the noise
does not completely hide some of the more important attributes of the original
image. Since the fidelity term enforces the minimizer of problem (19) to be
visually as similar as possible as the given noisy observation, while denoising
is still accomplished, the reconstruction yielded by the ADMM-SSIM approach
is visually more similar to the noiseless image. As for MSSIM values, these are
0.4386 and 0.6468 for the £ and ADMM-SSIM reconstructions, respectively.
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Fig. 1. Some visual results for the denoising of the test image Lena. The TV semi-
norm of both reconstructed images is 2500. Top row: Noisy image along with SSIM
maps between each reconstructed image and the original. Bottom row: Original and
ADMM-SSIM- and #-based denoised images, with MSSIM values 0.6468 and 0.4386,
respectively.
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Fig. 2. The behaviour of the average SSIM of reconstructed images obtained from
the proposed SSIM-based method and the classical £2 method as a function of the TV
seminorm of the reconstruction. Left: The Lena image. Right: The Mandrill image. In
the case of the Lena image, the SSIM-based approach clearly outperforms the classical
{2 method. For the Mandrill image, however, the performance of both methods is, in
general, very similar.

In order to have a general idea of the effectiveness of the SSIM-based method-
ology when regularization varies, in Fig. 2, we show the behaviour of the MSSIM
as a function of the TV seminorm of the reconstructions obtained by both the
ADMM-SSIM and the ¢5 approaches. The plot on the left shows the behaviour
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of the MSSIM for a noisy image patch of Lena whereas the plot on the right
shows the results for a corrupted image patch of Mandrill. As expected, the
plot on the right hand side shows that for images with low regularity—such as
Mandrill—the ADMM-SSIM and ¢5 methods exhibit similar effectiveness over a
wide range of regularization values. On the other hand, for the image Lena, one
observes a significant difference between the performances of the two methods.
This suggests that when strong regularization is required, it is more advanta-
geous to employ SSIM-based techniques over £5 methods if certain visual features
need to be recovered, provided that the reconstruction possesses some degree of
regularity.
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