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Abstract. With the power of deep learning taking over image classifica-
tion and computer vision problems, it is no wonder that many algorithms
look to their architecture to leverage better results. With Shepard Inter-
polation Neural Networks (SINN), there is no need for this deep archi-
tecture, but rather a shallow and wide approach is taken. SINNs fall
short in the ability to take raw input information and extract mean-
ingful features from them. This task is excelled however by deep learn-
ing approaches, more specifically, a deep convolutional neural network
(CNN) which naturally learns important features from the raw input
data for better discrimination. For this paper, we look to collide the
power of deep learning features with the speed and efficiency of the
shallow learning framework into one cohesive architecture that produces
competitive results with a tenth of the computational cost. We start
by using different CNNs to extract features from three popular image
classification data sets (MNIST, CIFAR-10, and CIFAR-~100), and then
use those features to efficiently and effectively train a shallow SINN to
classify the images accordingly. This method has the ability to not only
produce competitive results to the state-of-the-art in image classification,
but also blow their computational cost of running an efficient network
out of the water by nearly ten times the speed.

1 Introduction

Although deep learning has changed many of the benchmark data sets’ “state-
of-the-art” accuracy, the overall concept of image classification hasn’t changed.
That is, to classify well on any data set you need a crucial component - features.
However, not just any feature will suffice. For instance, the pixel colors in the
RGB color space are indeed features, but with just those three numbers in a
feature vector the task ability is limited. This is where deep learning actually
shines, in its ability to naturally extract meaningful and useful features from any
image and then have those features be unique to certain aspects of the image
class it’s describing [5,6]. It is here where we look to utilize deep learning for its
ability to extract better features for image classification.
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The reason for not using stacked convolutional neural networks for the image
classification task is shown in the computational complexity. Though these algo-
rithms excel in classification tasks the computational costs are extremely high
and complex [4]. This leads to current state-of-the-art models having an extreme
training time due to the billions of tunable parameters. The network is then lim-
ited to only being trained on large massive computer servers or clusters in order
to get a network that can perform a classification task. Our proposed algorithm
looks to advance this computational complexity to a feasible amount that can
be achieved on a local CPU or laptop. Shepard Interpolation neural networks
(SINN) map the input feature vectors to a set of hypersurfaces which approxi-
mates the functions in the feature space to a certain amount of precision. SINN
make an impact in image classification tasks in the fact that they can compete
in accuracy, but at a huge reduction in the memory footprint and computational
cost of the network to be trained (to an order of ten). For images, the input
vector is the flattened RGB data of the image, and from there the information
is encoded in the relative position of the pixels [7]. This flattening does not help
the SINN because it fails to extract meaningful features from these RGB input
vectors. This is where CNNs come into play, using their feature extracting abil-
ity, meaning features can be utilized in the SINN architecture and achieve high
accuracy with efficient speeds [6].

In this paper, the issue of obtaining great performance results (both accu-
racy and computational) on image classification is addressed. We obtain features
from several small CNN architectures and then extract features from three pop-
ular image classification data sets: MNIST, CIFAR-10, and CIFAR-100. Then
these features are utilized in the SINN framework to classify the images into the
appropriate categories. Experiments show that at a tenth of the cost of large
bulky CNNs, our approach achieves competitive results in accuracy across all
data sets. The rest of the paper first looks at previous related works of Shep-
ard interpolation methods in machine learning and image classification. Second,
the CNN features are briefly explained while looking more into how a SINN is
formed. Next, experimental results are presented from the three data sets men-
tioned above. Finally, a brief conclusion looking back on the work done and
future outlook for our approach.

2 Related Works

The Shepard Interpolation Neural Network architecture is new, having just being
published within the last year. As a result, there are little to no advancements
made on this architecture or improvements to the classification results [3]. SINN
use a Shepard and metric node inside the hidden layer, which can be thought
of as one node essentially since the Shepard node can not activate without a
metric node’s output. By utilizing the interpolation technique of Shepard [9], this
network can design hyper-parameters which require very little tuning, resulting
in a decrease of the computational complexity of the network. As mentioned,
this network design is still fresh in the community, therefore looking deeply into
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Fig. 1. Illustration of a CNN (top) and SINN (bottom) Architecture.

SINN for literature is difficult; however, this method of Shepard interpolation
has been used for tasks outside of image classification.

Park and Sandberg [2] describe a Radial Basis Function Network that func-
tions in much the same manner as the Shepard Interpolation in that they are
both based off of exact interpolation and function using a single hidden layer. The
Shepard Interpolation Neural Network architecture departs from Radial Basis
Function Networks through implementation as well as a few characteristics of the
activation functions used. For example, Radial Basis Function Networks require
that the activation function be radially symmetric [2], while Shepard Interpola-
tion Neural Networks do not place such a constraint on the metric and Shepard
activation functions [3].

Ren et al. [8] outline the application of Shepard Interpolation to convolutional
neural networks. The proposed method is the addition of a Shepard Interpolation
layer as an augmentation on architectures used for low-level image processing
tasks such as inpainting and super resolution. This showed promise in the work,
but was never advanced from looking at more literature reviews.

We all know of the vast amount of literature relating to deep learning and
convolutional neural networks [1]. To summarize, the concept was brought to
light by Lecun in the 1990’s for a new way of classifying images [13]. It didn’t
gain extreme popularity until ImageNet was won by Krizhevsky in 2012 using a
deep CNN, blowing all other algorithms away in accuracy [16]. Since then, his
paper has been cited over eighteen thousand times and deep learning took off.

3 Deep Feature Based Shepard Interpolation Neural
Networks

For any image classification task, the SINN transforms a feature vector to a
space of classification vectors. If the Shepard Interpolation Neural Network is
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treated as a transform from the feature space to the output classification space,
a second transform is needed from the image space to the feature space. Prior
to the introduction of the feature-based input layers to the Shepard Interpo-
lation architecture, the mapping from the image space to the feature space is
simply flattening the image matrix to a vector; the key innovation proposed is
to replace the image flattening step with more sophisticated feature extraction
techniques from the deep CNN, resulting in a much better overall accuracy for
the model. An overview of a CNN architecture and a SINN architecture can be
seen in Fig. 1. Notice, the SINN shows an independent Metric and Shepard layer.
These activation functions work in unison and can be visualized as just one layer
in a higher level architecture. This leads to the idea of a shallow learning pro-
cess, which is much quicker, more efficient, and competitive in accuracy versus
standard deep methods.

Ri X J SR™ SR (1)
where R™*J R™, R™ are the image space, feature space and classification space
respectively.

3.1 Network Compression

In the Shepard Interpolation Neural Network architecture [3], the metric nodes
contain the vast majority of learnable parameters. Furthermore, it is possible to
reduce the total memory footprint of the metric layer by a third after training
while maintaining exactly the same behavior. The metric activation function is
as follows:

B(z) = |a(we + b)| (2)

By allowing all three free parameters (o, w and b) to be updated during
training, the network converges much more quickly and achieves superior vali-
dation accuracy once the training is completed. However, the activation can be
written under a slightly different form:

P(xz) = |awx + ab| (3)

This shows two input digits from MNIST before and after training. You can
see the difference in what the Metric node and Shepard node learns depending
on their input. In comparison, the features learned from a CNN can also be seen
in the same figure.

3.2 K-means Initialization

The performance of the model is directly related to the coverage of the nodes
across the areas of interest in the feature space. This concept leads to interesting
possibilities for the initiation of the metric nodes. Therefore, to achieve better
efficiency in training, the k-means clustering algorithm is used on the feature
vectors in the feature space to initialize the metric nodes for the approximation
needed to cover the complete feature space surface [10].
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4 Experiments

In order to validate that the our deep feature approaches show significant
improvements over existing methods, we explore our method on three popu-
lar data sets: MNIST data set [13] of 28 x 28 grayscale images of handwritten
numbers and the CIFAR-10 and CIFAR-100 [14] data sets of 32 x 32 RGB images
of various objects.

We pull features from three smaller CNNs to feed into our SINN of only 50
nodes in the hidden layer. These CNN networks are of the following sizes: CNN-1:
32x(3 % 3), 32x(5 x5), 32x(3 x 3) CNN-2: 32x(5 x 5), 64x(3 x 3), 32x(5 X 5)
and CNN-3: 64x(3 x 3), 64x(3 x 3), 64x(3 x 3), these names denote the archi-
tecture in the results tables. Each CNN is trained using a ReLU activation func-
tion and having a dropout of 0.3 between the convolutional layers; the output is
a fully connected layer going to a softmax activation function. These networks
were trained over 200 epochs and the middle convolutional layer features were
used in the SINN. The middle layer was used from comparison of the three layers,
showing a small increase in accuracy while using the middle layer. The training
parameters shown in the results below take into account the parameters needed
to train the CNN used for pulling features. This is to compare the parameters
needed for feature extraction and testing that a regular deep learning approach
takes. You can see a reduction in parameters from the original SINN using the
raw images to the SINN using deep features; the differences are larger in the
CIFAR data because of the third dimension of color given in the original data.

4.1 MNIST

For the MNIST data set, we see an average of 2% increase in performance using
the deep CNN features. This is good, considering our later model shows results
almost rivaling that of the state-of-the-art Deep Multi Column (DMC) network
which has roughly four times the amount of trainable parameters in the network
[11]. DMC tries to better mimic the complex human brain and have several
smaller deep neural networks that are trained on different preprocessed data.
These networks then combined in a multi column approach making the recogni-
tion of the DMC boosted compared to the individual networks. This is similar
to our approach since we use a smaller deep neural network for features, how-
ever, this is done once and several features from multiple trained networks are

Table 1. Classification accuracy on MNIST data set using various variants of feature
extraction architectures

Architecture | SINN | SINN-1 | SINN-2 | SINN-3 | DMC [11]
Accuracy 96.50% | 97.92% | 98.45% | 99.71% | 99.77%
Parameters | 189,065 | 123,811 | 216,210 | 242,180 | 839,650
Features None CNN-1 | CNN-2 | CNN-3 | Deep
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not combined into one. Further results for each network can be seen in Table 1.
To note, the best result obtained was a testing accuracy of 99.79%, while most
models attained a performance of 99.6% to 99.7%. It is also clear looking at the
results for MNIST that using a deep CNN to pull features is an improvement
over the original SINN with no feature extraction used.

4.2 CIFAR-10 and CIFAR-100

Deep features are then learned and fed into the SINN for training on the CIFAR
data sets. The resulting accuracy of CIFAR-10 can be seen in Table 2 while the
accuracy of CIFAR-100 can be seen in Table3. As seen in Tables2 and 3, the
deep features are a drastic improvement from the original image being flattened
and trained in the SINN. Even with such a small CNN to extract features, these
improvements are almost two times that of the original in both data set cases.
This solidifies our approach of the SINN being better at separating the feature
space to become a more efficient classifier than a feature extractor. Though it
did not reach state-of-the-art accuracy on either data set, it is good to note
the size difference in trainable parameters having a decrease of a large order
of magnitudes. The state-of-the-art method for CIFAR-10, Aggregated Residual
Transformation for Deep Neural Networks (ART), looks to improve the residual
network design by being able to have multiple transformation in a block but
having the same complexity as the original ResNet [12]. This network contains
parameters in the millions which they needed 8 GPUs with only 300 epochs
to perform their training. While SINN contains significantly less parameters to
achieve decent accuracy, the network can be trained to several thousand epochs
with only a single GPU in epoch times less than one second per. Wide Residual
Networks (WRN) hold the leading accuracy for the CIFAR-100 data set and
once again look to better the implementation architecture of residual networks
[15]. This method looks to widen each block of the residual network for better
accuracy instead of cascading multitudes of layers on top of one another. Even
with this improvement on stacked layers in large deep residual networks, WRN
boasts nearly fifty-six million parameters for training. They also are restricted
to convolutions of size (3 x 3) due to the computational performance of large
convolutions. These issues do not occur in our SINN architecture, due to its
widening of the hidden layer (similar to ART and WRN) we are able to use
meaningful features from any convolution size in the CNN to be extracted to
the SINN with limited computation loss. It is also interesting to note the size
changes of our model depending on the data set. In CIFAR-10, the SINN is a
smaller model since there are only ten classes; this means each Shepard node
only contains ten metric nodes. This causes the overall width of the network
to stay the same, but the internal node difference to be rather easy to tune.
Since CIFAR-100 is just ten times the amount of classes per metric node, it
fits that the parameters are of an order ten higher than CIFAR-10. Now to
mention again, the total number of parameters in the SINN models do include
those which were needed to find the features in the CNN. This is the only fair
way to assess the feature extraction to classification that these deep models do in
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Table 2. Classification accuracy on CIFAR-10 data set using various variants of feature
extraction architectures

Architecture | SINN | SINN-1 | SINN-2 | SINN-3 | ART [12]
Accuracy 48.50% | 84.84% |89.35% | 90.50% |96.44%
Parameters | 729,541 | 254,103 | 285,230 | 295,852 | 68,000,000
Features None CNN-1 | CNN-2 | CNN-3 | Deep

comparison to our shallow model. These parameter reductions show a promise in
application, having an efficient algorithm which holds high classification accuracy
while maintaining low computational cost. It achieves near top performance and
translates to training speed having some of our experiments training and testing
in under an hour.

Table 3. Classification accuracy on CIFAR-100 data set using various variants of
feature extraction architectures

Architecture | SINN SINN-1 |SINN-2 |SINN-3 | WRNJ[15]
Accuracy 36.50% |68.52% |70.25% | 72.86% |81.7%
Parameters | 7,436,967 | 2,652,052 | 2,978,502 | 3,143,025 | 56,000,000
Features None CNN-1 CNN-2 CNN-3 Deep

5 Conclusion

In this paper, we look at utilizing and harnessing the power of deep learning
for feature extraction using a CNN. These features were then used in our SINN
architecture to show high accuracy on the data sets tested. Though the SINN
is still rather new, the results show promising accuracy in image classification
against the state-of-the-art. What shows even more promise of SINN is that of
lowering the computational cost for this caliber of accuracy, by thirty - three
hundred times less than that of the leading deep learning frameworks. This
shows it is not always necessary to scale a deep framework to immense extents
when smaller frameworks with a SINN work in comparison. Possible future work
could be to expand the architecture of the SINN to see if accuracy performance
can increase (while of course decreasing computational performance) with more
nodes. There could be some use to see SINN in other machine learning tasks, such
as natural language processing, time series analysis and forecasting, or medical
image analysis. Since the approach is still new, there are many open areas for
research interest. Also to note, a stacked method could be possible, however, this
would neglect our rebuttal that deep isn’t always the best way, and our shallow
approach is fast and efficient.
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