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Abstract. This paper describes a spatiotemporal saliency-based attention
model in applications for the rapid and robust detection of objects of interest in
video data. It is based on the analysis of feature-point areas, which correspond to
the object-relevant focus-of-attention (FoA) points extracted by the proposed
multi-scale spatiotemporal operator. The operator design is inspired by three
cognitive properties of the human visual system: detection of spatial saliency,
perceptual feature grouping, and motion detection. The model includes attentive
learning mechanisms for object representation in the form of feature-point
descriptor sets. The preliminary test results of attention focusing for the detec-
tion of feature-point areas have confirmed the advantage of the proposed
computational model in terms of its robustness and localization accuracy over
similar existing detectors.
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1 Introduction

The study of biologically-inspired vision systems can be considered as a two-way
street. On the one hand, biological systems can provide a source of inspiration for new
computationally-efficient and robust models while, on the other hand, computer vision
approaches reveal new insights for understanding biological sensing systems such as
the Human Visual System (HVS) [1]. This paper is dedicated to a saliency-based
multi-scale spatiotemporal attention in video data mostly for computer vision objec-
tives. We consider applications for object detection in video data of dynamic scenes,
which usually proceeds by initially extracting some object-relevant spatiotemporal
features [2]. Their extraction is based on the detection of spatiotemporal attention
points. The bio-inspired approach has certain advantages over the conventional
methods using the object-background segmentation, because video segmentation of
dynamic scenes is a computationally complex and error-prone process [3, 4].

Most of the existing computational attention models deal with still images [5–8] and
few actually tackle video data. One of such spatiotemporal detector models was proposed
in [9] as a generalization of the spatial saliency-based attention [6]. This method was
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further extended to detect objects in dynamic scenes by capitalizing on coherent motion
characteristics in video frames [10]. Another general spatiotemporal attention model was
described in [11]. A spatiotemporal isotropic attention (STIA) operator was proposed to
detect attention points, which explicitly combines spatial saliency and temporal change
[12]. It is a multi-scale area-based operator, in which the spatial saliency is defined as the
area isotropic spatial contrast relative to the homogeneity of an image area.

An entire class of attention models is represented by detectors of spatiotemporal
feature (interest) points in video data. Detection of feature points is based on various
local image properties such as area saliency, temporal change, motion, shape, local area
homogeneity, etc. [13]. The feature point extraction is a computationally simpler and
more reliable procedure than the spatiotemporal image segmentation. The first spa-
tiotemporal feature-point detector, called the Harris 3D detector, was proposed in [14]
as a space-time extension of the Harris detector [15]. It is based on the computation of a
spatiotemporal second-moment matrix at each video point using scale selection,
Gaussian smoothing functions, and space-time gradients. Another detector of feature
points is the generalization of the Laplacian-of-Gaussian (LoG) operator to the
space-time domain with the selection of spatial and temporal scales [16]. The Hessian
detector was proposed in [17] as a spatiotemporal version of the Hessian saliency
measure used in [18] for blob detection in images. The Cuboid detector of feature
points is mostly based on the spatiotemporal Gabor filters [19].

The main drawback of the abovementioned detectors is that simple extensions of
spatial detectors to the temporal domain, through the introduction of the time variable,
will result in poor detection of still and moving objects at the same time. Another
weakness of the existing models is their inability to computationally represent the
perceptional grouping of local low-level features to avoid getting distracted by irrel-
evant low-level features. This is an important element of the so-called gestalt model for
the HVS’s attention focusing [20]. Neural networks and the Deep Learning models are
biologically inspired approaches too that can be utilized for feature extraction and
object detection [21, 22]. They are not considered in our current study as they do not
provide attention focusing mechanisms.

The computational model of visual attention proposed in this paper is primarily
aimed at eliminating or diminishing shortcomings of the existing models in computer
vision applications. It is achieved through the introduction of a new spatiotemporal
attention operator, which combines basic cognitive hypothesises of the HVS such as
the multi-scale attention through spatial saliency, temporal change detection and per-
ceptual feature grouping. Another contribution is the tuneable attention operator via
machine learning algorithms to make it relevant to the objects of interest. In the
literature, except for the deep learning approach, no attention focusing models related
to learning processes are considered.

The rest of this paper is concentrated on the extraction of spatiotemporal attention
points based on the proposed computational model. Section 2 gives an overview of the
adopted approach in the context of object detection tasks. The cornerstone of the model
is our proposed spatiotemporal attention operator (Sect. 3). The model’s application
capability for object detection is shortly discussed in Sect. 4 since the detailed handling
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is out of scope of the current paper. The experimental results (Sect. 5) and the algo-
rithm’s advantageous characteristics (Sect. 6) for the attention-point detection confirm
the viability of this approach.

2 Spatiotemporal Visual Attention

The computational model of spatiotemporal visual attention consists in
attention-guided image sequence analysis by first extracting multi-scale spatiotemporal
attention regions called feature-point areas (FPAs) and sequentially analyzing in detail
the neighborhoods of the FPAs for object detection and classification. The
attention-point area, which is currently analyzed in detail, is called the
focus-of-attention (FoA) area. The FoA points are determined by the local maxima
locations of the proposed multi-scale spatiotemporal attention operator. It considers
three spatiotemporal image area characteristics for the determination of FPAs: spatial
saliency, area properties’ coherence (e.g., area homogeneity by an image local prop-
erty) and temporal change (e.g., motion).

The flowchart of the proposed computational model is shown in Fig. 1. In the latter,
all the attention points are first determined at a single spatiotemporal resolution of the
video data. Initially, some simple image properties are time-efficiently extracted in a
dense mode, i.e., pixel-by-pixel. The current FoA point is determined as the new local
maximum of the attention operator excluding previously analyzed FoA-point areas.
Object detection, tracking and classification is based on spatiotemporal descriptor sets
estimated in the corresponding FPAs. No image pre-segmentation into object and
background regions is required. Figure 1 describes a single-stage spatiotemporal
attention model for multi-scale image analysis; however, a multi-stage hierarchical
computational model is a straightforward generalization [2]. During the first stage,
attention focusing at a single largest scale or narrow scale range is performed, while in
subsequent stages, the FoA areas are analyzed at lower scale ranges (or higher image
resolutions) by the same computational model in Fig. 1.

The proposed model is a multi-scale approach to image sequence analysis, which
involves the concept of local spatial scale [12]. It is the diameter of a circular area,
which is homogeneous according to one or more image properties. A local temporal
scale can also be introduced in the video data analysis similarly to the definition
proposed in [23]. It characterizes how fast the temporal change or motion occurs at a
given location and for the determined local spatial scale. The model in Fig. 1 includes a
machine learning stage powered by the attentive learning mechanisms. The goal is to
effectively store objects’ spatiotemporal descriptors in the form of reference sets of
video descriptors to perform matching of descriptor sets. Another objective of the
attentive learning is to automatically tune the parameter values of the computational
attention model such as the saliency coefficients in the attention operator (Sect. 3). The
attentive machine learning uses FPA extraction to obtain reference sets of FPA
descriptors from the training samples of short-duration videos as the centers of
descriptor-set clusters [24].
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3 Multicomponent Spatiotemporal Attention Operator

The cornerstone of the proposed model is the multi-scale spatiotemporal attention
operator designed to fulfil the extraction of attention points in spatiotemporally salient
(i.e., detectable), locally unique (i.e., unambiguous), and object-relevant (i.e.,
object-positioning) locations of video data. To achieve that, the operator is applied to
multiple components of the input video data and contains three response factors for
each component: spatial saliency, temporal change, and area homogeneity as a measure
of coherence. The proposed multi-scale spatiotemporal attention operator F½fg i;ð
j; tÞg; q� as applied to the intensity image sequence fg i; j; tð Þg is composed of three

Spatiotemporal Attention Operator

area
property 

coherence

area 
temporal 
change 

area
spatial 

saliency 

Determination of current 
FoA point

Analysis of FoA-point
neighbourhood

Computation of descriptor sets 

obtained by 
attentive 
learning

mechanisms

Input Image Sequence

Computation of property maps

cycle of FoA analysis

Object reference 
descriptor sets

Descriptor set matching

Fig. 1. The proposed visual attention model.
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terms, which are aggregated into a single attention function of pixel coordinates ði; jÞ,
time t, and scale q,

F i; j; t; q½ � ¼ c i; j; t; qð Þþ a � e i; j; t; qð Þ � c � h i; j; t; qð Þ; ð1Þ

where cði; j; t; qÞ is the area spatial saliency, eði; j; t; qÞ is the area temporal change,
hði; j; t; qÞ is the area inhomogeneity measure, and a > 0 and c > 0 are the change and
coherence coefficients, respectively. The values of a and c can be determined by the
maximum likelihood rule using a representative training sample of FoA areas to deter-
mine the conditional distribution parameters, which provide the coefficients’ optimal
values. It is based on the probabilistic formulation of the attention-focusing mechanisms
and derivation of the attention function in Eq. (1) by the maximum likelihood rule [25].
The spatial saliency cði; j; t;qÞ is defined as an area isotropic contrast [12], which is the
mean value of squared intensity deviations in the background ringQq i; jð Þwith respect to
the mean intensity in the disk Sq i; jð Þ for the feature area Wq ¼ Sq [Qq (Fig. 2). The
area inhomogeneity hði; j; t; qÞ is the intensity mean deviation inside the disk Sq i; jð Þ [12].
The computational scheme for the temporal change eði; j; t; qÞ in Eq. (1) consists of the
accumulated temporal differentiation using consecutive video frames and the isotropic
contrast computation over the accumulated differentiation result.

The operator in Eq. (1) is generalized as acting on multiple video (image) property
maps. The property maps include sensors’ raw components such as the three-color
components, infrared and multispectral components if available. Additionally, com-
putationally simple property maps such as the spatial and temporal derivatives of
different orders, smoothing filters as well as other local object-relevant functions can be
included as the property maps. The multi-component spatiotemporal isotropic attention
(MSIA) function F½i; j; t; q� becomes:

F½i; j; t; q� ¼
XN

n¼1

bn�snði; j; t; qÞ; ð2Þ
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Fig. 2. Attention point detection and estimation of area direction: example of a corner area.
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where snði; j; t; qÞ is the nth spatiotemporal saliency component corresponding to nth
property map and bn is the nth saliency coefficient. The derivation of the optimized
values for {bn} in the MSIA operator is based on the Fisher’s Linear Discriminant
Analysis (LDA) method [25]. The LDA-based transformation of N saliency components
onto a single axis of F½i; j; t; q� values is aimed at maximizing the difference between the
F½i; j; t;q� values for object and background points respectively while minimizing dif-
ferences between F½i; j; t; q� values corresponding to the object points only.

The sequential detection and analysis of the FoA points ðu; v; sÞk
� �

and their
associated local scale values {rk} as the FPAs’ diameters proceeds as follows:

u; v; s; rð Þk¼ argmax
i;j;tð Þ2A;q2X

fF i; j; t; q½ �; ði; j; tÞ �2Zk�1g; ð3Þ

where Zk-1 is the set of previously detected FoA points, X is the scale range of the
attention operator, and A is a subset of video data under current analysis.
A fast-recursive implementation of the MSIA operator alike the recursive STIA
algorithm described in [12] makes the computation independent of the window size and
becomes O(N) per pixel and per scale value, where N is the total number of property
maps (Eq. 2). It is based on the recursive implementation of 2D filters with the square
window shape, which approximate the circular (isotropic) window Wq ¼ Sq [Qq.

4 Application to Object Detection in Video Data

One of the applications of the proposed attention model is the fast and robust detection
of objects of interest in video data. Multiple-object detection proceeds by sequentially
detecting object-relevant subsets of FPAs in the input image sequence. This is
implemented through the clustering of feature-point areas around the current
FoA-point. A descriptor set is extracted for each subset of FPAs. Three different types
of descriptors are extracted to form a single descriptor set: (1) area pose; (2) local
appearance; and (3) temporal change. To achieve rotation invariance, local appearance
descriptors are extracted through the generalization of the Radial Descriptor Pattern
(RDP) algorithm, which was originally used to rotation-invariantly extract planar shape
descriptors [26]. The RDP algorithm consists of two basic steps: (a) determination of a
dominant direction; and (b) estimation of angular-radial descriptor components
(Fig. 2). The dominant direction is the local direction angle h included in the pose
descriptors [26]. The second step is the angular-radial sub-sampling of image intensity
within the window Wq ¼ Sq [Qq, for M angle values and L radial points per angular
position (Fig. 2). The values of L and M are determined by considering a tradeoff
between the accuracy of description and computational costs. To detect and classify
objects of interest, the computational model in Fig. 1 proceeds by matching the
observed FPA descriptors with the reference ones obtained during the machine learning
stage. The Euclidian distance between descriptor sets can be used as the dissimilarity
measure of matching.
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5 Experimental Results

We conducted numerous experiments to investigate several basic performance char-
acteristics of the proposed attention model. The latter was tested on the operator
adequate response (detection capability) to high-contrast areas, high property-
coherence areas, and areas with object rigid motion. Another type of experiments
was the accuracy of the FoA point localization and spatial scale determination. We
used the Singapore maritime datasets (https://sites.google.com/site/dilipprasad/home/
singapore-maritime-dataset). The application is vessel detection in maritime scenes.

The testing was comparative with respect to existing computational models. We
compared the model’s performance with the following algorithms: attention
model-based STIA algorithm [12] and feature-point detector in the HSIP method
(Harris’ Spatiotemporal Interest Points) [14]. Figure 3 illustrates the computation of the
MSIA operator and the process of attention-point extraction for the color maritime
videos. The MSIA operator uses 8 spatial scales and 5 spatiotemporal saliency com-
ponents in Eq. (2): three normalized RGB components, mean intensity component, and
temporal change. Coefficients {b1 = 0.15, b2 = 0.08, b3 = 0.05, b4 = 0.19, b5 = 0.35}
in Eq. (2) were learned by the LDA approach (Sect. 3).

The performance of attention focusing in terms of correct response to such video
stimuli as spatial saliency, coherence and motion presence is reported in Table 1 as the
F-measure, which combines the standard precision and recall rates [24]. Table 1 pro-
vides the comparative performance of attention-point detection in general. The MSIA
operator provides adequate detection of FoA points due to the effective combination of
saliency components in Eq. (2) and the introduction of a new temporal change filter.
Many false attention points were detected by the HSIP method in water ripples,
specular reflections and ship wakes. A drawback of the HSIP detector as well as other
feature-point detectors is the instability of feature point extraction due to their sensi-
tivity to irrelevant spatiotemporal changes (Fig. 3f). The MSIA operator locates the
FPAs with the priority to be inscribed into object regions (Fig. 3e). Estimated errors for
the FoA-point localization and local scale estimation are given in Table 2. The nor-
malized root mean-squares error (RMSE) was used to characterize the localization
accuracy.

The normalized run-time for the proposed MSIA operator is summarized in
Table 3. The normalization consists in dividing the current run-time by that of the
minimal window size (3 � 3 pixels) to get rid of a particular CPU speed figure. For
comparison purposes, we estimated the run-time of direct (non-recursive) implemen-
tation for the MSIA-based attention focusing as well as the HSIP-based attention model
using the fast (iterative) Gaussian smoothing algorithm.
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Fig. 3. Attention point extraction in maritime videos: (a) initial video images; (b) spatial
saliency map; (c) temporal change map; (d) MSIA operator map; (e) MSIA points; (f) HSIP
points;
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6 Conclusions

A computational model for spatiotemporal attention-guided analysis of videos is put
forth. Our technique is based on the sequential detection of FoA points, identification
of FPAs and matching of the FPA’s descriptor sets with the reference ones. The
proposed approach showed the following advantageous characteristics confirmed by
the preliminary experiments reported herein: (1) localization of FoAs points inside
object-relevant and homogeneous areas by selected properties; (2) local uniqueness of
feature-point areas achieved through the isotropic definition of the multi-scale local
contrast; (3) enhanced sensitivity in motion detection due to the temporal change
determination using the area-time accumulated differentiation.

Acknowledgement. We gratefully acknowledge the financial support of the Ontario Centers of
Excellence (OCE) and the National Sciences and Engineering Research Council of Canada
(NSERC) towards the project “Big Data Analytics for the Maritime Internet of Things”.

Table 1. F-measure of attention focusing models by the stimuli response.

Response of attention
focusing to

HSIP
detector

Attention operator
STIA

Attention operator
MSIA

Area saliency 0.81 0.80 0.86
Area coherence 0.71 0.78 0.92
Area motion 0.75 0.79 0.91
Attention point 0.72 0.77 0.87

Table 2. RMSE-based accuracy of FoA-point localization and local scale estimation.

Algorithm FoA localization Local scale
Low scale range High scale range Low scale range High scale range

MSIA operator 0.03 0.18 0.11 0.09
HSIP detector 0.31 0.34 0.3 0.18
STIA operator 0.23 0.2 0.05 0.13

Table 3. Normalized run-time per pixel of the attention-focusing process.

Window (scale)
size:

HSIP-based
attention

Direct computation
MSIA

Fast recursive computation
MSIA

3 x 3 1 1 1
5 x 5 1.7 2.6 1.2
7 x 7 2.6 3.8 1.6
15 x 15 4.8 9.1 1.6
31 x 31 9.2 24.5 1.6
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