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Abstract. In the last years, neural networks have proven to be a pow-
erful framework for various image analysis problems. However, some
application domains have specific limitations. Notably, digital pathol-
ogy is an example of such fields due to tremendous image sizes and quite
limited number of training examples available. In this paper, we adopt
state-of-the-art convolutional neural networks (CNN) architectures for
digital pathology images analysis. We propose to classify image patches
to increase effective sample size and then to apply an ensembling tech-
nique to build prediction for the original images. To validate the devel-
oped approaches, we conducted experiments with Breast Cancer Histol-
ogy Challenge dataset and obtained 90% accuracy for the 4-class tissue
classification task.
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1 Introduction

Histology is a key discipline in cancer diagnosis thanks to its ability to evalu-
ate tissues anatomy. The classical approach involves glass slide microscopy and
requires thoughtful analysis by a pathologist. Digital pathology imaging provides
a statistically equivalent way to analyze tissues [13], so it’s a natural applica-
tion area for machine learning methods [10]. Recent advances in deep learning
suggest that these methods can be useful for a set of digital pathology image anal-
ysis problems including cell detection and counting and segmentation [7]. One
of the most important and challenging tasks is tissue classification, and recent
studies (e.g., [1]) demonstrate promising results. However, these image analysis
problems differ from standard one in different ways. A crucial limiting factor
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is a combination of relatively small sample sizes (usually hundreds of exam-
ples) and extremely high resolution (the typical image size is 50000× 50000).
For comparison, the ImageNet dataset contains millions of 256× 256 images [3].
This combination leads to high variance of deep learning models predictions and
requires careful design of data processing pipelines. In this work, we propose
two methods for digital pathology images segmentation and classification. Both
methods include data preprocessing, intensive usage of modern deep learning
architectures and an aggregation procedure for decreasing model variability.

2 Problem

Generally, our task was to recognize benign and malignant formations on breast
histology images. We were solving this problem in two formulations: image clas-
sification and segmentation.

2.1 Data

In this paper we use the Breast Cancer Histology Challenge (BACH-18) dataset
which consists of hematoxylin and eosin stained microscopy images as well as
whole-slide images.

Microscopy Images. The first subset consists of 400 microscopy images of
shape 2048 × 1536 × 3, where 3 stands for the number of channels, the color
space is RGB.

The images were obtained as patches from much larger microscopy images,
similar to those described further in current subsection.

Every dataset entry is labeled as belonging to one of the four classes: Normal
(n, 0), Benign (b, 1), Carcinoma in situ (is, 2) or Invasive Carcinoma (iv, 3).
The labels are evenly distributed between the 400 images (Fig. 1).

Fig. 1. Samples from the first subset (from left to right): Normal, Benign, Carcinoma
in situ and Invasive Carcinoma

Whole-Slide Images. The second subset consist of 20 whole-slide images of
shape (approx.) 40000 × 60000 × 3, where, similarly, 3 stands for the number of
channels, and the color space is RGB.

For half of the images segmentation masks of corresponding spatial shape are
provided. Each pixel of the mask is labeled from 0 to 3 (from Normal to Invasive
Carcinoma). During the model training only this half of the dataset was used
(Fig. 2).
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Fig. 2. A sample from the second subset: whole-slide image (left) and the corresponding
mask overlayed on the image (right). The black color stands for Invasive Carcinoma,
gray - Benign, the rest - Normal. Note the roughness of the ground truth segmentation.

3 Microscopy Images Classification

3.1 Preprocessing

One of the common problems in work with histology slides is preprocessing. As
it turned out, network pays attention to areas of inhomogeneity. For this reason,
our image preparation was aimed at normalization and contrast enhancement of
the slide. We tried a couple of well-known methods of digital pathology images
preprocessing (e.g., [9]), but it didn’t increase the performance. Also, we tested
simple data transformations like inversion, channel-wise mean subtraction, con-
version to different color spaces, etc. A simple channel-wise mean subtraction
provided the largest performance boost (about 10% of accuracy score), so we
ended up using only this preprocessing approach.

3.2 Training

We used two popular architectures for image classification: ResNet [5] and
DenseNet [6]:

ResNet is a convolutional neural network which won the 1st place on ILSVRC
2015 classification task. We used ResNet34 implemented in torchvision1 with
slight architectural changes: we replaced the pooling layer before the fully-
connected layer by an average spatial pyramid pooling layer [4]. We tried several
levels of pyramid pooling depth from 1 (global average pooling) to 3.

DenseNet is a convolutional neural network which has a slightly smaller
error rate on the ImageNet dataset than ResNet. We used DenseNet169
and DenseNet201 from torchvision’s implementation with similar architectural
changes as for ResNet.

In our experiments we used Adam optimizer [8] with an exponential-like
learning rate policy: each 20 epochs the learning rate decreased by a factor of 2.
Initially the learning rate was taken equal to 0.01.
1 http://pytorch.org/docs/0.3.0/torchvision/models.html.

http://pytorch.org/docs/0.3.0/torchvision/models.html
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Experiments have shown that feeding the images directly into the network
yields poor results due to quite large images shape. In order to overcome this
difficulty we chose to train out models on patches extracted from the original
images: during training each patch was randomly (with a 2D uniform distribution)
extracted from an image, also picked at random, with the label being the same as
for the original image. This approach led to a performance increase of about 15%.

Also, we observed that preprocessing each individual patch instead of pre-
processing the whole image yields slightly better results.

Each network was trained on patches of shape 500×500 pixels, with batches
of size ≈10 (this value differs between models). The training process lasted for
120 epochs, and every epoch 300 batches were fed into the network.

We also tried pretraining our models on similar datasets: BreakHis2 and
Breast carcinoma histological images from the Department of Pathology, “Agios
Pavlos” General Hospital of Thessaloniki, Greece [14]. See Table 1 for perfor-
mance comparison.

3.3 Model Selection and Stacking

While building models, we experimented with different architectures, learning
rate policies and pretraining. Thus, we ended up with 29 different models built
and evaluated using 3-fold cross-validation (CV). We had a goal of combining
these models in order to make more accurate predictions.

During inference we deterministically extracted patches according to a grid
with a stride of 100 pixels. Thus, every multiclass network would generate a
matrix of shape 176×4 containing 4 class probabilities for 176 patches extracted
from the image. Similarly, every one-vs-all network would generate a matrix of
shape 176 × 1.

We extracted various features from these class probabilities predictions:

– min, max and mean values of the probabilities of each class
– (for multiclass networks only) on how many patches each class has the highest

probability
– 10, 25, 75 and 90 percentile probability values of each class
– on how many patches probabilities go above 15% and 25% threshold values

for each class.

After building the features, the problem was reduced to tabular data clas-
sification. So, for our final classifier, we have chosen XGBoost [2] as one of the
state-of-the-art approaches for such tasks. Our pipeline was the following:

– Choose reasonable XGBoost hyperparameters (based on cross-validation
score) for the classifier built on top of all (29) models we have.

– Use greedy search for model selection: keep removing models while the accu-
racy on CV keeps increasing.

– Fine-tune the XGBoost hyperparameters on the remaining models set.

2 https://omictools.com/breast-cancer-histopathological-database-tool.

https://omictools.com/breast-cancer-histopathological-database-tool
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By following this procedure we reduced the number of models from 29 to
12. It is also worth mentioning that we compared accuracies for different sets of
models and hyperparameters by averaging accuracy score from 10-fold CV across
20 different shuffles of the data to get statistically significant results (for such a
small dataset) and thus optimize based on merit rather than on randomness.

3.4 Inference

Given the relatively small dataset, we decided that we might take advantage from
retraining the networks on the whole dataset. However, this approach leaves no
possibility to assess the stacking quality.

As a trade-off, we decided to use 6-fold CV (instead of 3-fold CV), so that the
network would see 83% (vs 66%) of data: a substantial increase in performance
(compared to the 3-fold CV models) would mean that retraining on the whole
dataset might be beneficial.

In the 6-fold CV setting, the performance of every individual network
increased significantly. We also have fine-tuned the composition for 6-split net-
works that resulted in two more models being held out and slightly changed
hyperparameters (see Table 1 for a comparison of networks’ performances). How-
ever, the resulting ensemble classifier could not surpass the one build on top of
3-fold CV.

Nevertheless, for our final classifier we chose to average the patch predictions
across all 6 networks and use the XGBoost classifier built on top of 6-fold CV.
This approach is computationally inefficient, but allows us to reduce variance of
the predictions.

4 Whole-Slide Images Segmentation

4.1 Preprocessing

Similarly to the first problem, we use channel-wise mean subtraction as a prepro-
cessing strategy. Also, given the unusually big images, we tried to downsample it
by various factors: the downsampling by a factor of 40 along each spatial dimen-
sion proved to be very effective. Thereby, downsampled input is used in some
ensemble models.

4.2 Training

In our segmentation experiments we also used the same optimizer and learning
rate policy as in Sect. 3.2.

In case when downsampling was included in the preprocessing pipeline the
images were fed directly into the network, and the network was trained for 1500
epochs. Otherwise, the network was trained for 150 epochs with patches of shape
300×300 (40 patches per batch), similarly to the procedure described in Sect. 3.2.



882 A. Pimkin et al.

4.3 Models

For the segmentation task, we introduce T-Net, a novel architecture based on
U-Net [11]. It can be regarded as a generalization, which applies additional convo-
lutions to the connections between the downsampling and upsampling branches
(Fig. 3).

Fig. 3. A schematic example of the T-Net architecture.

We used 3 different models:

– T-Net for binary segmentation Normal-vs-all trained on patches (T-Net 1).
– T-Net for a similar task but trained on images downsampled by a factor of 40

along each dimension (T-Net 2). We also used a weighted-boundary log loss,
which adds linearly decreasing weights to the pixels near the ground-truth
regions’ boundaries. Basically, it can be reduced to multiplying the ground
truth mask by the corresponding weights and calculating the log loss for the
resulting “ground truth”.

– T-Net for multiclass segmentation trained on images downsampled by a factor
of 40 along each dimension (T-Net 3).

4.4 Postprocessing

While working with output of network trained on patches of the non-
downsampled whole-slide images we faced the fact that output probability maps
were too heterogeneous, which resulted in holes in segmented areas after thresh-
olding, although ground truth consists of 1-connected domains. So, for primary
processing we use Gaussian blur with square kernel of fixed size (processing
hyperparameter) to reduce the hole sizes on the next steps. Then we threshold
the probability map and get several clusters of areas with holes, many of which
we merge with the morphological closing operation [12]. Finally, we discard the
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connected components with areas less than a
√
Sa, where Sa is the mean of com-

ponent areas in the power of a (a is a hyperparameter). The postprocessing steps
are shown in Fig. 4.

Original Blurred Thresholded Closed Result Ground Truth

Fig. 4. Example of postprocessing. (Original) and (blurred) is the probability maps.
Black on (Ground truth) is ‘iv’, gray is ‘is’. Black on the other images means abnormal.

4.5 Ensembling

Due to strong class imbalance (75%−n : 1%− b : 1%− is : 23%− iv) we focused
our research on the Normal-vs-All task to adjust the output more precisely.
Experiments have shown that the network trained on whole-slide images (T-Net
1) predicts quite “ragged” regions while the network trained on downsampled
images (T-Net 2) predicts a lot of false-positive pixels.

Our approach is T-Net ensemble that consists of blending these two mod-
els, letting them to compensate each other’s mistakes, and transforming output
binary mask into a multiclass one using (T-Net 3)’s prediction:

Result = 3 · BinaryMask + (TNet3) · (1 − BinaryMask) (1)

However, given the fact that the metric proposed by the organizers of the
BACH-18 challenge is biased towards the abnormal classes (1, 2, 3), we decided
to use a much simpler approach - shifted blending, by setting the binary positive
class to Invasive Carcinoma and the negative class to Benign:

Result = 1 + 2 · BinaryMask (2)

It significantly increased the proposed metric. Also, since it is shifted we provide
more common metrics for both approaches. See Sect. 5.2 for details.

Each model was trained and evaluated with 3-fold CV. To evaluate perfor-
mance of the ensemble we used 5-fold CV (on top of the test predictions from
3-fold CV).

5 Results

5.1 Microscopy Images Classification

Table 1 shows the models’ accuracies. Note the significant performance boost
gained from stacking.
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Table 1. Models’ accuracy for the microscopy images classification task: multiclass
(first block), one-vs-all (second block), final ensemble built on top of 3- and 6-fold CV
(third block)

Network 3-fold CV 6-fold CV

ResNet 34 .83 ± .01 .86 ± .03

ResNet 34, pretrained on patches from whole slides .83 ± .05 .85 ± .04

ResNet 34, pretrained on BreakHis Dataset .81 ± .04 .87 ± .06

ResNet 34, pretrained on Agios Pavlos dataset .83 ± .03 .86 ± .03

ResNet 34, patch mean subtraction .79 ± .04 .83 ± .03

DenseNet 169 .78 ± .06 .85 ± .02

DenseNet 201 .80 ± .03 .82 ± .06

ResNet 34, Benign vs all .90 ± .01 .91 ± .02

ResNet 34, InSitu vs all .90 ± .05 .93 ± .02

ResNet 34, Invasive vs all .90 ± .03 .91 ± .03

Ensemble (stacking) .90 ± .05 .90 ± .05

Table 2. Segmentation results

Network BachScore Dice(b) Dice(is) Dice(iv) Dice(abnormal)

T-Net 1 .54± .16 .61± .19 .69± .16

T-Net 2 .59± .20 .68± .21 .71± .19

T-Net 3 .56± .19 .01± .01 .03± .04 .59± .21 .66± .21

T-Net ensemble .64± .20 .01± .02 .01± .02 .71± .23 .72± .20

T-Net shifted blending .70± .06 .04± .06 .03± .04 .73± .21 .74± .18

5.2 Whole-Slide Images Segmentation

In the BACH-18 challenge the following metric is used:

BachScore = 1 −
∑

i

∣
∣predi − gti

∣
∣

∑
i max{gti, 3 − gti} · I[gti > 0&predi > 0]

, (3)

where the summation is performed across all the pixels and gti, predi are the
i-th pixel values of the ground truth and prediction respectively.

Table 2 shows the models’ performances according to BachScore, as well as
the Dice score - a more common segmentation quality measure (it is computed
for each channel separately and also from the point of “normal/abnormal” task).

6 Conclusion

We proposed a two-stage procedure for digital pathology images classifi-
cation problem. To increase effective sample size, we used random patches for
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training. The developed ensembling technique allowed us not only to increase
the prediction quality due to averaging but also combine results for individual
patches into the whole image prediction. In overall, a promising classification
accuracy was obtained.

As for the whole-slide images segmentation task, we obtained contro-
versial results: on the one hand we obtained promising Bach and Dice scores,
but on the other hand most of our work was aimed at roughening the obtained
predictions in accordance with the given labeling. Moreover, the results of our
top performing ensemble were heavily improved by hard biasing which doesn’t
allow us to say how well this result depicts our method’s performance.
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