®

Check for
updates

Is Bidirectionality Important?

Perdita Stevens®)

School of Informatics, University of Edinburgh, Edinburgh, UK
perdita.stevens@ed.ac.uk

Abstract. Bidirectional transformations maintain consistency between
information sources, such as different models of the same software sys-
tem. In certain settings this is undeniably convenient — but is it impor-
tant? 1 will argue that developing our ability to engineer dependable
bidirectional transformations is likely to be crucial to our ability to meet
the demand for software in coming decades. I will discuss some of the
work that has been done so far, including some I’ve had a hand in, and
what challenges remain.

1 Introduction

It is usually held [15] that whenever the title of an article is given the form of a
boolean question, the answer to the question should be No. For, if I believe the
answer to be Yes, why have I not titled this paper, and the talk it accompanies,
“Bidirectionality is Important”?

Any reader who started at the abstract, or indeed, who knows me, will guess
that — pace Betteridge [4] and Hinchcliffe [12] — this maxim does not apply here.
In this case, the question is a marker for some complexity that I wish to discuss.
What do we, or should we, mean by “important”? What is “bidirectionality”?
Where are we going? What is it all for?

In order to tackle these ridiculously large questions, let me start with some
philosophical background.

2 What Does “Important” Mean to Humans?

To say, to an audience of researchers in software engineering, that a topic is
“important”, is to say that it deserves research attention, because paying it
this attention may eventually have a positive impact on the practice of software
engineering.

This involves not only a prediction (“may eventually”) but also a value judge-
ment (“positive”). Indeed, whenever we decide to classify an issue as “impor-
tant”, we are making a value judgement. Such a judgement may involve an
appeal to an individual’s philosophy or religion; but some things are certain.

1. We make the judgement using our brain, which has evolved, over many mil-
lions of years of natural selection, to enhance our individual survival by pri-
oritising what to pay attention to. What an individual, of any species, needs
to pay attention to depends on the nature of the species. As humans:

© Springer International Publishing AG, part of Springer Nature 2018
A. Pierantonio and S. Trujillo (Eds.): ECMFA 2018, LNCS 10890, pp. 1-11, 2018.
https://doi.org/10.1007/978-3-319-92997-2_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92997-2_1&domain=pdf

2 P. Stevens

2. We are members of a social species. That is — like a variety of animals from
lions to mole-rats to bees — we tend to form cooperative groups which we will
call societies. Sometimes it is important to be aware that this fact underlies
the things we think of as worst, as well as those we think of as best, about
humanity. A society has a variety of relations between its individuals, and
there are most likely also individuals who are considered to be entirely outside
it. We cooperate, but not always, and not perfectly.

3. We are members of a species that uses tools. Indeed, like primates that strip
leaves off twigs to fish for insects, we make tools, and like beavers, we engineer
our own ecosystem. We take deliberate action to change our environment from
how it is, to how (we think) we would prefer it to be.

Were any of these things not the case, this conference could not exist. What,
though, are the implications for our subject matter?

Software systems, just like the insect-fishing twigs, are tools. The purpose
of developing a software system is to modify something about the environment,
broadly conceived (e.g. in that people are part of one another’s environments).
Because we are a social species, this may not always be immediately apparent to
someone who is working on the software. Somebody, somewhere, considers the
modification to the environment, that developing the software system effects, to
be beneficial; but that someone may be socially a long way removed from those
who develop it.

For example, I am writing this paper using a text editor named Emacs, and
I consider the environment in which I can do this much better than one in which
I would have to write it using a typewriter. The earliest editors were developed
by people who wanted to use them themselves, as well as to make them available
to others. When I was developing software to help my employer chase up non-
paying customers, though, the benefit to me was only indirect (I got paid), and
the people most affected by the existence of that software certainly did not
consider it beneficial.

Thus, it may not be evident to one person that another person considers
a piece of software to be having a beneficial effect. It is worse than that: nei-
ther within, nor between, societies are our interests perfectly aligned. Therefore,
wherever more than one person is affected by some software, there is the poten-
tial for conflict, which must somehow be resolved. Indeed, all human conflict is
about reconciling competing interests. On a small scale — between people who
are socially close — we do this informally, using our faculties of empathy and
perspective taking. On a larger scale, where these faculties prove insufficient,
we resort to making agreements, often explicit treaties, or contracts, expressing
desired relationships between things different people care about.

In the technical context, we shall return to this in Sect.6. But first, let us
look more closely at computer systems.



Is Bidirectionality Important? 3

3 What Do Computer Systems Do?

Evolutionarily speaking, the important thing that computer systems do is to
affect the environment of one or more human beings. They may do this rather
directly, like computer games, providing stimuli that affect the brain’s sensations
of pleasure. They may give someone more, or less, money. They may enable com-
munication between several humans. They may be instrumental in the growing
of food, or in the transportation of a human from Edinburgh to Toulouse.

It is not important that computer systems implement computable functions
from some inputs to some output. That is merely part of how they do the
important things. As soon as we move from mathematics to software engineering,
we have to move up and out.

The attraction of abstracting what our tools do as mathematical functions
is that these are easy to think about. However, effects such as those discussed
are, compared to pure functions, difficult to reason about, and because we do
not (so far) have a relationship of empathic trust with our computer systems,
we need to be able to reason about what they do. The paradigm of software
structured as objects, which have (encapsulated) state, behaviour and identity
[5], and communicate by a predefined collection of messages that have limited
capacity to be parameterised, fits easily into a human mind. It is an admittedly
limited approach to managing just the effect of statefulness, but it is hard to
argue with the overwhelming success of object orientation. (Managing state and
other effects using monads is more powerful, but jokes about the plethora of
object tutorials would fall flat [11].1)

If reasoning about effects is hard, but software must have effects, what gives?
To date, it has been relatively straightforward to step over the gap between
inside and outside a computer system without noticing it. We abstract the gap
in terms of sensors and actuators, or in terms of a user interface in which all the
important interfacing is done by the user. The interaction between a computer
system and a human is typically of the same order of complexity as that between
a human and a company they do business with: it can be governed by a relatively
impoverished contract.

The time in which that gap has been easy to ignore, though, may now be
coming to an end. Artificial intelligence is talked of by the general public again,
and concern is rising about the way in which computer agents can be disguised
as human ones — even though, so far, the disguises (of nefarious Twitter bots for
example) are rather crude. The common feature is that the effects these computer
systems may have on our environment — social, political or physical — are not
predictable; given that we also do not have reason to trust them, the result is
fear. As the interface between computer systems and human individuals and
societies becomes more fractal, the interaction becomes more like that between
humans, in how we must reason about it, than we are used to; this happens

! See also https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-
monad-tutorial-fallacy/,https: / /wiki.haskell.org/Monad_tutorials_timeline.


https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/
https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/
https://wiki.haskell.org/Monad_tutorials_timeline

4 P. Stevens

even if the computer side does not have properties we are ready to label as
intelligence.

In order to get to the implications of this for software engineering, let us
think about how we handle predicting or trusting one another. When we talk
about our own behaviour, we talk about having good habits; interpersonally, the
specification each person thinks they should obey is called their principles; our
attempts to ensure that other people behave in a principled way towards is us
called having healthy boundaries.

What does it mean for a software system to have good habits, principles,
boundaries? How can we possibly manage such concepts? Before we return to
these matters let us consider, more concretely, the problems of today’s software
engineering and how models, and bidirectionality, fit in.

4 What Are the Problems of Software Engineering?

Does software engineering have problems? The term “software crisis” seems to
have been coined at the NATO Conference on Software Engineering in 1968.
From then on, peaking about 1990, it was a commonplace that we had a soft-
ware crisis: that is, an inability to develop enough software, with high enough
dependability, to meet demand.

Then, use of this phrase began to fall away, and we came to take for granted
that software systems, even large ones, even safety critical ones, can indeed be
developed predictably enough — at least without hugely more difficulty than, say,
tram systems [6]. Concern turned to the supply of talented developers needed to
meet the ever-increasing demand for software; to attempt to tackle this, we see
educational initiatives aimed at persuading young children to learn to code and
consider software engineering as a career.

Throughout, the “pain” experienced in software engineering has been in two
main areas: requirements, and maintenance. Curiously, I suggest, the innovations
that have led to the demise of the “software crisis” have not focused on either
of these areas. Books could be written on what those innovations are: my point
here is that what we have not seen is a revolution in how requirements are
gathered and managed, nor radically new ways to handle maintenance of software
systems. Rather, in adopting object orientation we have learned to structure our
system in terms of relatively stable units, viz. classes, rather than functions,
setting boundaries around state. We have streamlined the process of developing
dependable software. For example, we have developed ways to catch errors early,
in the form of automated testing. We have derived some benefit from verification,
especially lightweight fully automated verification such as powerful type systems,
which render certain classes of error impossible even in principle. In parallel,
we have increased the agility of the software development process, in which
developers with highly disciplined habits are able to “embrace change” [3]. Some
of these advances work well together; others, as yet, do not.

It is, I think, no accident that these key elements connect so clearly with the
habits, principles and boundaries we identified in the previous section. In the end,



Is Bidirectionality Important? 5

all of the problems of software engineering come down to one thing: a human
being can only hold so much in their head. We all hate the feeling of being
overwhelmed, of knowing that there are vital facts that we have temporarily
forgotten. In order to make progress, we invent means of managing complexity,
and putting in front of ourselves all, and only, the information that we need at
a given time for a given purpose. (Indeed, arguably this is also our motivation
for developing habits, principles, and boundaries: all of these limit the range of
possible behaviours that we need to consider.) The key challenge is typically to
identify what to leave out, whether that is possible future requirements (YAGNI,
“you ain’t gonna need it”) or detail about what an existing piece of software does
(a more detailed specification, even if it is correct, is not better, if it includes
information that is of no benefit to its user). That brings us, naturally, to models.

5 What Are Models, and What Are They for?

My favourite one-sentence definition of a model is this:

A model is an abstract, usually graphical, representation of some aspect
of a system.

As is often observed, this, like other definitions of models, does not technically
exclude much — “everything’s a model”. What it does do is to emphasise what
is important about models: they represent some things, but not other things,
that are true about systems. A model has, conceptually, a boundary: a piece of
information may be inside the model, or not. That is, they allow us to separate
concerns [8]. A model may be designed for a particular purpose — which may
be prescriptive or descriptive — to include all and only that information that is
necessary for the purpose.

Often the purpose is supporting the work of a particular group of stakeholders
in the system: that is, different people may use different models. Models still
provide benefit, though, and people still spontaneously develop them, any time
there are discernibly different concerns that it is helpful to separate. The purpose
of a model is to focus attention on what is important to some person at some
time.

Different concerns require access to different information. Life is easiest when
they require access to completely different information: the models are orthogo-
nal, in that a change in one can be made without any implications for another.
Recalling that everything is a model, we may for example think about two classes
in different subsystems, that do not interact, as possible models. The developer
of each one may be able to work quite happily on their own class, unaware of
what the developer of the other is doing. However, this happy state of affairs is
rare.

6 What Is Bidirectionality?

Finally, it is time to mention bidirectionality, and bidirectional transformations.
There is a wide field of research on this topic which we will not survey: one place



6 P. Stevens

to turn for further reading is a recent set of tutorial lectures [9], especially its
introductory chapter [2]. The Bx Wiki? gives further pointers.
The essence of bidirectionality in a situation is:

— There is separation of concerns into explicit parts such that

— more than one part is “live”, that is, liable to have decisions deliberately
encoded in it in the future; and

— the parts are not orthogonal. That is, a change in either part may necessitate
a change in the other.

Bidirectionality may be present, and it may be helpful to think in these
terms, even without there being any relevant automation. The management of a
bidirectional situation may be automated to a greater or lesser degree, and this
is the job of a bidirectional transformation.

A bidirectional transformation is a means of maintaining consistency between
some data sources, such as models of a software system. It is often convenient
to separate this job conceptually into two tasks:

1. check whether the sources are consistent;
2. if not, change at least one of them (we may or may not wish to specify which),
such that they become consistent.

Each of these tasks could, of course, be carried out by a conventional (uni-
directional) program. The key observation justifying the study of bidirectional
transformations as a distinct idea is that the tasks are so tightly coupled that,
to ensure that they have behaviour that is jointly sensible, they should be engi-
neered together. For example, we normally want a guarantee that the process of
consistency restoration should, indeed, result in consistent sources (it should be
“correct”); and this should remain true, even if the notion of consistency changes
during the course of development, so that the bidirectional transformation must
itself be updated. Writing separate programs to carry out the tasks involves
duplication of effort and requires a separate check of whatever coherence prop-
erties between the tasks are required. Therefore it is extremely helpful for the
bidirectional transformation to be written as a single program in a bidirectional
language, one artefact incorporating both the definition of consistency and the
instructions about how to restore it properly.

Thus, a bidirectional transformation must include a definition of what it is
to be “consistent”. The term sometimes gives difficulty to people who are used
to using it in a logical sense. For our purposes here, consistency is nothing but a
mathematical relation on the sets of models we consider. Given a tuple of models,
it is possible (in principle) to say whether they are, or are not, consistent. If they
are, and if their own groups of stakeholders are each happy with their own model,
we consider that they are in a (relatively) good state from which to continue
development; if not, something needs to be fixed — perhaps not immediately,
but eventually. This is a very flexible notion. Given two sets of models, there

2 http://bx-community.wikidot.com/.


http://bx-community.wikidot.com/

Is Bidirectionality Important? 7

is a wide choice of possible consistency relations, depending on what kind of
consistency we are interested in for the particular development scenario, and
how much automation we choose. Crucially, consistency need not be a bijection,
but this does not imply consistency restoration will be non-deterministic (the
process may look at both models, or even more information than that).

As a concrete example, suppose that one model is the Java source file for a
class, and the other is that of a JUnit test class. (Recall that while models are
usually graphical, everything’s a model — this certainly includes everything we
call code, which sometimes yields the most familiar examples.) Our bidirectional
transformation might incorporate any of the following notions of consistency (in
which of course we elide some details), or many others:

. The files compile together without error.

. 1. holds, and the JUnit file includes a test for every public method.
. 2. holds, and all the tests pass.

. 3. holds, and a certain coverage criterion is met.

=W N

The more stringent the notion of consistency we use, the more difficult may
be the task of restoring consistency when one of the models is changed; on the
other hand, the more work may be saved for the users of the models. There is a
trade-off between work invested in automating the bidirectional transformation,
and work invested in manually updating the models.

(The connection to the logical — strictly, model-theoretic, for a different sort
of “model”! — sense is that if we identify a model with a set of statements
about a system, then the relation we are interested in may be that the union of
the statements given by all the models is logically consistent, so that there is a
system about which all the statements are true. But for reasons we will not go
into further here, this is not normally a helpful perspective e.g. because models
and their relationships do more than make statements about a hypothetical
system: they also facilitate development.)

To use bidirectional transformations in practice, we need both theoretical
underpinnings and support from languages and tools. At present, the design
space of ways to represent bidirectional transformations is wide open. Many
languages have been proposed, a few of which have gone beyond being academic
prototypes; despite early successes, none has yet achieved more than a tiny degree
of real-world penetration. We should not be despondent about this: the problem
is hard. While, collectively, we have decades of experience designing hundreds of
unidirectional languages in several paradigms, for bidirectional languages that
experience does not yet exist. Even basic questions remain unanswered. In some
cases, we may eventually reach consensus; in others, it will likely turn out that
the right answer depends on the circumstances. Here are a few examples, each
of which has both theoretical and engineering aspects.

— What properties should a language enforce on every bidirectional transforma-
tion, and what will we need other mechanisms to check? For example, should
the language enforce any formal least-change property [7], to capture the idea
that consistency restoration should not change a model gratuitously?



8 P. Stevens

— To what extent, if any, should a bidirectional transformation maintain and use
information beyond the models themselves, e.g. a record of the relationship
between parts of the models it relates (trace links)?

— Should we directly program transformations which are symmetric (that is,
between models each of which contains information not present in the other?
Or should we program asymmetric transformations (between a source and
a view which is an abstraction of the source), relying on span or cospan
constructions [10] to give the symmetric behaviour?

— Should our languages directly support maintaining consistency between more
than two models? Or should we program binary bidirectional transforma-
tions, and rely on separate mechanisms to maintain consistency in networks
of models related by these [13,14]?

— How should our language handle effects, such as state, non-determinism,
exceptions, and user interaction, while still maintaining guarantees of good
behaviour [1]? (Getting this right is the key to managing the other peren-
nial trade-off of automation, between increased reliability of the automated
process and decreased flexibility, compared to the manual process.)

If we can develop good-enough bidirectional transformation languages, and
other supporting tools, the rewards should be great. To date, the adoption of
model driven development has been limited by the difficulty of incorporating
it into agile development. As long as models have to be maintained manually,
separately from code and from one another, this difficulty remains. Bidirectional
transformations have potential to allow the automation of this process. Imag-
ine if developers could work with whatever model was most appropriate to the
change they were making, with all others, including the final system, automati-
cally updated to match. This would be an advance worth working for, even just
considering the needs of today’s software engineering. It could increase the speed
of producing software, by enabling developers to work with the most cognitively
efficient representations of what they need to have in mind. It could enable
the development of software that is both agile and continuously verified and
documented by means of tools working on appropriate, automatically updated,
models.

7 What Is the Future of Software Engineering?

So far, we have been thinking inside the confines of software engineering as it
is now. It is inconceivable, though, that the development of software fifty or a
hundred years hence will be done in the same way as today. We have already
alluded to one of the forces for change: the inexorably increasing demand for
software which is updated ever more frequently. Pushing to solve this just by
recruiting more software developers is absurd. We will have more important
things for those five-year-olds to do when they grow up. Simultaneously, we are
fractalising the boundary between software and the rest of our environment and
ourselves, even as we demand greater dependability — trustworthiness — from



Is Bidirectionality Important? 9

the software. The more our software becomes intelligent, the harder it will be
to blame its developers for every wrong decision of the software — but we will
demand someone be blamed.

Software will be so different, and will be developed so differently, that we may
even have some difficulty in even recognising the software and its development
process. I would not be surprised if today’s programming languages look as puz-
zling to my grandchildren (if any) as the punched cards my father used to work
with look to me. Doubtless, I am completely failing to foresee some important
changes. Fundamentally, though, it is economically essential that more of the
decisions about what our software should do will be moved away from software
specialists, and towards people whose jobs only touch on software development.
They may include people who use the software in different roles, but also, spe-
cialists in, say, safety, protection of personal data, or support for users with
special needs. Rather than having to commission changes in the software from
software specialists, or put up with a poor fit with their needs, they will be able
to make changes directly. In order to make their decisions, these people will have
to be provided with information, some of which they will change. The informa-
tion given to a particular person is what we term a model. Such models blur
the distinction between developer and user. (Lest this sound too fanciful, bear
in mind that we already live in this world to some extent: what proportion of
the software systems you work with on a daily basis have a settings screen, or
similar? This is nothing other than a model, albeit one that may often seem too
simple for your needs.) In any setting where more than one person has a model,
there will have to be a task of reconciling decisions that the people make and
record in their models; that is what we have termed bidirectionality.

We cannot possibly expect to specify in detail the behaviour of this exploding
mass of ever-changing software. Rather, we will have to develop analogues of the
habits, principles and boundaries that we expect human participants in our world
to have. These analogues will abstractly represent certain aspects of the system’s
behaviour: that is, they are models. Just as humans adjust their behaviour to
meet one another’s (most vital) expectations, even when they encounter unex-
pected situations, so will our software have to do in future. This will require the
models to adjust, automatically, to meet non-orthogonal expectations — bidirec-
tionality again.

We already touched, in the more mundane setting of relating a class with its
tests, on the fact that different degrees of automation, offering different guar-
antees, are possible. The same will apply in the more challenging future we
envisaged. Indeed we do not expect to be able to rely on our fellow humans
to behave perfectly first time in every interaction; it would be unreasonable to
expect that of computers, once the interface becomes comparable in complexity.

Therefore, to my mind, the most fundamental change we must, as researchers
and engineers, facilitate, is that software must in future be able to explain its
past behaviour and megotiate its future behaviour. Our non-software-specialists
manipulating their models will sometimes see behaviour they do not expect.
They need to be able to ask “why did that happen?” and get an answer they



10 P. Stevens

can understand, in order to know whether to continue to trust the software
or not. “Computer says No” will not do in future: it must say why not. It
may also take on board a human’s explanation of why it should have said Yes,
adjusting a model accordingly. (We have already explored simple cases where a
bidirectional transformation may be refined by interaction with a human user [1].
Human-directed explanation will be much harder.) Explanations will have to be
made in terms that both computers and humans can understand; non-software-
specialists are not going to learn to do debugging the way software engineers
do. Explanations must be trustworthy; they must stand up in a court of law;
they must be framed like other such explanations, in terms of how the software
interpreted its knowledge and goals in the context of its principles.

8 Conclusions

In this essay, I have given some background to the current interest in bidirectional
transformations, and have tried to sketch how I think software engineering will
change in future and the role of bidirectionality in that future.

A situation involves bidirectionality in an essential way once: there are sepa-
rated concerns; more than one concern is live; and the concerns are not orthog-
onal. This already applies to most software development, so that better under-
standing and automation of bidirectionality would benefit us now. In the future,
I think that the increasing complexity of interactions between humans and com-
puters will render advances in the management of bidirectionality even more
beneficial.

In conclusion: yes, bidirectionality is important.

References

1. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Notions of
bidirectional computation and entangled state monads. In: Hinze, R., Voigtlander,
J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 187—-214. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19797-5_9

2. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Introduction to
bidirectional transformations. In: Gibbons and Stevens [9], pp. 1-28 (2018)

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Co., Inc., Boston (2000)

4. Betteridge, I.: Techcrunch: irresponsible journalism. Technovia.co.uk, February
2009. Accessed via [15] 18 Apr 2018

5. Booch, G.: Object Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, San Francisco (1991)

6. Brocklehurst, S.: Going off the rails: the Edinburgh trams saga. http://www.bbc.
com/news/uk-scotland-edinburgh-east-fife-27159614

7. Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: On principles of least change and
least surprise for bidirectional transformations. J. Object Technol. 16(1), Article
no. 3, 1-31 (2017)


https://doi.org/10.1007/978-3-319-19797-5_9
https://doi.org/10.1007/978-3-319-19797-5_9
http://technovia.co.uk/
http://www.bbc.com/news/uk-scotland-edinburgh-east-fife-27159614
http://www.bbc.com/news/uk-scotland-edinburgh-east-fife-27159614

10.

11.

12.

13.

14.

15.

Is Bidirectionality Important? 11

Dijkstra, E.W.: Selected writings on Computing: A Personal Perspective. Chapter
On the Role of Scientific Thought, pp. 60-66. Springer (1982). https://doi.org/10.
1007/978-1-4612-5695-3

Gibbons, J., Stevens, P. (eds.): Bidirectional Transformations. LNCS, vol. 9715.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79108-1

Johnson, M., Rosebrugh, R.: Cospans and symmetric lenses. In: Proceedings of the
7th International Workshop on Bidirectional Transformations. ACM (2018)
Petricek, T.: What we talk about when we talk about monads. Art Sci. Eng.
Program. 2(3), Article no. 12 (2018)

Shieber, S.M.: Is this article consistent with Hinchliffe’s rule? Ann. Improbable
Res. 21(3), 18-19 (2015)

Stevens, P.: Towards sound, optimal, and flexible building from megamodels. Talk
at Bx 2018 (paper in preparation)

Stevens, P.: Bidirectional transformations in the large. In: 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and Systems
(MODELS), pp. 1-11. IEEE (2017)

Wikipedia contributors. Betteridge’s law of headlines—Wikipedia, the free ency-
clopedia (2018). Accessed 18 April 2018


https://doi.org/10.1007/978-1-4612-5695-3
https://doi.org/10.1007/978-1-4612-5695-3
https://doi.org/10.1007/978-3-319-79108-1

	Is Bidirectionality Important?
	1 Introduction
	2 What Does ``Important'' Mean to Humans?
	3 What Do Computer Systems Do?
	4 What Are the Problems of Software Engineering?
	5 What Are Models, and What Are They for?
	6 What Is Bidirectionality?
	7 What Is the Future of Software Engineering?
	8 Conclusions
	References




