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Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences and workshops may vary from year to
year, but they all focus on foundational and practical advances in software technology.
The conferences address all aspects of software technology, from object-oriented
design, testing, mathematical approaches to modeling and verification, transformation,
model-driven engineering, aspect-oriented techniques, and tools. STAF was created in
2013 as a follow-up to the TOOLS conference series that played a key role in the
deployment of object-oriented technologies. TOOLS was created in 1988 by Jean
Bézivin and Bertrand Meyer and STAF 2018 can be considered its 30th birthday.
STAF 2018 took place in Toulouse, France, during June 25–29, 2018, and hosted: five
conferences, ECMFA 2018, ICGT 2018, ICMT 2018, SEFM 2018, TAP 2018, and the
Transformation Tool Contest TTC 2018; eight workshops and associated events. STAF
2018 featured seven internationally renowned keynote speakers, welcomed participants
from all around the world and had the pleasure to host a talk by the founders of the
TOOLS conference, Jean Bézivin and Bertrand Meyer. The STAF 2018 Organizing
Committee would like to thank (a) all participants for submitting to and attending the
event, (b) the Program Committees and Steering Committees of all the individual
conferences and satellite events for their hard work, (c) the keynote speakers for their
thoughtful, insightful, and inspiring talks, and (d) the Ecole Nationale Supérieure
d’Electrotechnique, Electronique, Hydraulique et Télécommunications (ENSEEIHT),
the Institut National Polytechnique de Toulouse (Toulouse INP), the Institut de
Recherche en Informatique de Toulouse (IRIT), the region Occitanie, and all sponsors
for their support. A special thanks goes to all the members of the Software and System
Reliability department of the IRIT laboratory and the members of the INP-Act SAIC,
coping with all the foreseen and unforeseen work to prepare a memorable event.

June 2018 Marc Pantel
Jean-Michel Bruel



Preface

The 14th European Conference on Modelling Foundations and Applications (ECMFA
2018) was organized by the ENSEEIHT – Ecole Nationale Supérieure d’Ingénieurs en
Electrotechnique, Electronique, Informatique, Hydraulique et Télécommunications —
and held in Toulouse during June 26–28, 2018, as part of the Software Technologies:
Applications and Foundations (STAF) federation of conferences.

ECMFA is the key European conference aiming at advancing the state of knowledge
and fostering the industrial application of model-based engineering (MBE) and related
methods. MBE is an approach to software engineering that sets a primary focus on
leveraging high-level and suitable abstractions (models) to enable computer-based
automation and advanced analyses. Its focus is on engaging the key figures of research
and industry in a dialog that will result in stronger and more effective practical
application of MBE, hence producing more reliable software based on state-of-the-art
research results.

In this edition, the Program Committee received 45 submissions. Each submission
was reviewed by at least three Program Committee members. The committee decided
to accept 18 papers, 12 papers for the Foundations Track and 6 papers for the
Applications Track. Papers on a wide range of MBE aspects were accepted, including
topics such as (bidirectional and unidirectional) model transformations, model man-
agement, re-engineering, modelling environments, verification and validation, and
domain-specific modelling with respect to business processes, automotive software,
and safety-critical software.

We thank Perdita Stevens and Mélanie Bats for their inspiring keynote talks at
ECMFA 2018. Furthermore, we are grateful to all the Program Committee members for
providing their expertise while reviewing the submitted papers. Their helpful and
constructive feedback to all authors is most appreciated. We thank the ECMFA
Steering Committee in the person of Richard Paige for his priceless advice and the
organization chairs, Marc Pantel and Jean-Michel Bruel, for their prompt and contin-
uous support. Last but not least, we are grateful to all authors who submitted papers to
ECMFA 2018.

June 2018 Alfonso Pierantonio
Salvador Trujillo
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Is Bidirectionality Important?

Perdita Stevens

School of Informatics, University of Edinburgh, Edinburgh, UK
perdita.stevens@ed.ac.uk

Abstract. Bidirectional transformations maintain consistency between infor-
mation sources, such as different models of the same software system. In certain
settings this is undeniably convenient – but is it important? I will argue that
developing our ability to engineer dependable bidirectional transformations is
likely to be crucial to our ability to meet the demand for software in coming
decades. I will discuss some of the work that has been done so far, including
some I’ve had a hand in, and what challenges remain.



The Future of Modeling Tools

Mélanie Bats

Obeo, Colomiers, France
melanie.bats@obeo.fr

Until now, modeling tools have relied mostly on native technologies, and consequently
the graphical modelers based on it are desktop applications. Today there are different
initiatives to bring graphical modeling tools up to the cloud. The journey of building
modeling tools has never been as exciting as it is right now. What would be the
advantages of a cloud based modeling tool? What changes this requires in the archi-
tecture of such tools? At Obeo, we have been working on modeling tools in general,
and on Eclipse Sirius in particular, for a long time now. During this session, we will
discuss the future of development tooling, we will briefly review the progress made
over the last years and where the open source community is moving towards. We will
demonstrate the different levels of integration we currently have, in particular how we
leverage projects like Sprotty, ELK, Theia and Che to move diagrams into the browser.
We will discuss how “Server Protocols” allow to bring our tools on different platforms
and environments and to run them on the cloud or locally. We will also present the
Graphical Server Protocol initiative, which will define a platform-agnostic protocol
between a diagram editor in the browser and a graphical server that manages the
corresponding models in the cloud. Through this talk you will discover what could be
the future of Eclipse Modeling on the web, discover how you can bring your own tools
to the cloud thanks to Sirius, and participate in this exciting endeavour!
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Is Bidirectionality Important?

Perdita Stevens(B)

School of Informatics, University of Edinburgh, Edinburgh, UK
perdita.stevens@ed.ac.uk

Abstract. Bidirectional transformations maintain consistency between
information sources, such as different models of the same software sys-
tem. In certain settings this is undeniably convenient – but is it impor-
tant? I will argue that developing our ability to engineer dependable
bidirectional transformations is likely to be crucial to our ability to meet
the demand for software in coming decades. I will discuss some of the
work that has been done so far, including some I’ve had a hand in, and
what challenges remain.

1 Introduction

It is usually held [15] that whenever the title of an article is given the form of a
boolean question, the answer to the question should be No. For, if I believe the
answer to be Yes, why have I not titled this paper, and the talk it accompanies,
“Bidirectionality is Important”?

Any reader who started at the abstract, or indeed, who knows me, will guess
that – pace Betteridge [4] and Hinchcliffe [12] – this maxim does not apply here.
In this case, the question is a marker for some complexity that I wish to discuss.
What do we, or should we, mean by “important”? What is “bidirectionality”?
Where are we going? What is it all for?

In order to tackle these ridiculously large questions, let me start with some
philosophical background.

2 What Does “Important” Mean to Humans?

To say, to an audience of researchers in software engineering, that a topic is
“important”, is to say that it deserves research attention, because paying it
this attention may eventually have a positive impact on the practice of software
engineering.

This involves not only a prediction (“may eventually”) but also a value judge-
ment (“positive”). Indeed, whenever we decide to classify an issue as “impor-
tant”, we are making a value judgement. Such a judgement may involve an
appeal to an individual’s philosophy or religion; but some things are certain.

1. We make the judgement using our brain, which has evolved, over many mil-
lions of years of natural selection, to enhance our individual survival by pri-
oritising what to pay attention to. What an individual, of any species, needs
to pay attention to depends on the nature of the species. As humans:

c© Springer International Publishing AG, part of Springer Nature 2018
A. Pierantonio and S. Trujillo (Eds.): ECMFA 2018, LNCS 10890, pp. 1–11, 2018.
https://doi.org/10.1007/978-3-319-92997-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92997-2_1&domain=pdf


2 P. Stevens

2. We are members of a social species. That is – like a variety of animals from
lions to mole-rats to bees – we tend to form cooperative groups which we will
call societies. Sometimes it is important to be aware that this fact underlies
the things we think of as worst, as well as those we think of as best, about
humanity. A society has a variety of relations between its individuals, and
there are most likely also individuals who are considered to be entirely outside
it. We cooperate, but not always, and not perfectly.

3. We are members of a species that uses tools. Indeed, like primates that strip
leaves off twigs to fish for insects, we make tools, and like beavers, we engineer
our own ecosystem. We take deliberate action to change our environment from
how it is, to how (we think) we would prefer it to be.

Were any of these things not the case, this conference could not exist. What,
though, are the implications for our subject matter?

Software systems, just like the insect-fishing twigs, are tools. The purpose
of developing a software system is to modify something about the environment,
broadly conceived (e.g. in that people are part of one another’s environments).
Because we are a social species, this may not always be immediately apparent to
someone who is working on the software. Somebody, somewhere, considers the
modification to the environment, that developing the software system effects, to
be beneficial; but that someone may be socially a long way removed from those
who develop it.

For example, I am writing this paper using a text editor named Emacs, and
I consider the environment in which I can do this much better than one in which
I would have to write it using a typewriter. The earliest editors were developed
by people who wanted to use them themselves, as well as to make them available
to others. When I was developing software to help my employer chase up non-
paying customers, though, the benefit to me was only indirect (I got paid), and
the people most affected by the existence of that software certainly did not
consider it beneficial.

Thus, it may not be evident to one person that another person considers
a piece of software to be having a beneficial effect. It is worse than that: nei-
ther within, nor between, societies are our interests perfectly aligned. Therefore,
wherever more than one person is affected by some software, there is the poten-
tial for conflict, which must somehow be resolved. Indeed, all human conflict is
about reconciling competing interests. On a small scale – between people who
are socially close – we do this informally, using our faculties of empathy and
perspective taking. On a larger scale, where these faculties prove insufficient,
we resort to making agreements, often explicit treaties, or contracts, expressing
desired relationships between things different people care about.

In the technical context, we shall return to this in Sect. 6. But first, let us
look more closely at computer systems.
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3 What Do Computer Systems Do?

Evolutionarily speaking, the important thing that computer systems do is to
affect the environment of one or more human beings. They may do this rather
directly, like computer games, providing stimuli that affect the brain’s sensations
of pleasure. They may give someone more, or less, money. They may enable com-
munication between several humans. They may be instrumental in the growing
of food, or in the transportation of a human from Edinburgh to Toulouse.

It is not important that computer systems implement computable functions
from some inputs to some output. That is merely part of how they do the
important things. As soon as we move from mathematics to software engineering,
we have to move up and out.

The attraction of abstracting what our tools do as mathematical functions
is that these are easy to think about. However, effects such as those discussed
are, compared to pure functions, difficult to reason about, and because we do
not (so far) have a relationship of empathic trust with our computer systems,
we need to be able to reason about what they do. The paradigm of software
structured as objects, which have (encapsulated) state, behaviour and identity
[5], and communicate by a predefined collection of messages that have limited
capacity to be parameterised, fits easily into a human mind. It is an admittedly
limited approach to managing just the effect of statefulness, but it is hard to
argue with the overwhelming success of object orientation. (Managing state and
other effects using monads is more powerful, but jokes about the plethora of
object tutorials would fall flat [11].1)

If reasoning about effects is hard, but software must have effects, what gives?
To date, it has been relatively straightforward to step over the gap between
inside and outside a computer system without noticing it. We abstract the gap
in terms of sensors and actuators, or in terms of a user interface in which all the
important interfacing is done by the user. The interaction between a computer
system and a human is typically of the same order of complexity as that between
a human and a company they do business with: it can be governed by a relatively
impoverished contract.

The time in which that gap has been easy to ignore, though, may now be
coming to an end. Artificial intelligence is talked of by the general public again,
and concern is rising about the way in which computer agents can be disguised
as human ones – even though, so far, the disguises (of nefarious Twitter bots for
example) are rather crude. The common feature is that the effects these computer
systems may have on our environment – social, political or physical – are not
predictable; given that we also do not have reason to trust them, the result is
fear. As the interface between computer systems and human individuals and
societies becomes more fractal, the interaction becomes more like that between
humans, in how we must reason about it, than we are used to; this happens

1 See also https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-
monad-tutorial-fallacy/,https://wiki.haskell.org/Monad tutorials timeline.

https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/
https://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/
https://wiki.haskell.org/Monad_tutorials_timeline
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even if the computer side does not have properties we are ready to label as
intelligence.

In order to get to the implications of this for software engineering, let us
think about how we handle predicting or trusting one another. When we talk
about our own behaviour, we talk about having good habits; interpersonally, the
specification each person thinks they should obey is called their principles; our
attempts to ensure that other people behave in a principled way towards is us
called having healthy boundaries.

What does it mean for a software system to have good habits, principles,
boundaries? How can we possibly manage such concepts? Before we return to
these matters let us consider, more concretely, the problems of today’s software
engineering and how models, and bidirectionality, fit in.

4 What Are the Problems of Software Engineering?

Does software engineering have problems? The term “software crisis” seems to
have been coined at the NATO Conference on Software Engineering in 1968.
From then on, peaking about 1990, it was a commonplace that we had a soft-
ware crisis: that is, an inability to develop enough software, with high enough
dependability, to meet demand.

Then, use of this phrase began to fall away, and we came to take for granted
that software systems, even large ones, even safety critical ones, can indeed be
developed predictably enough – at least without hugely more difficulty than, say,
tram systems [6]. Concern turned to the supply of talented developers needed to
meet the ever-increasing demand for software; to attempt to tackle this, we see
educational initiatives aimed at persuading young children to learn to code and
consider software engineering as a career.

Throughout, the “pain” experienced in software engineering has been in two
main areas: requirements, and maintenance. Curiously, I suggest, the innovations
that have led to the demise of the “software crisis” have not focused on either
of these areas. Books could be written on what those innovations are: my point
here is that what we have not seen is a revolution in how requirements are
gathered and managed, nor radically new ways to handle maintenance of software
systems. Rather, in adopting object orientation we have learned to structure our
system in terms of relatively stable units, viz. classes, rather than functions,
setting boundaries around state. We have streamlined the process of developing
dependable software. For example, we have developed ways to catch errors early,
in the form of automated testing. We have derived some benefit from verification,
especially lightweight fully automated verification such as powerful type systems,
which render certain classes of error impossible even in principle. In parallel,
we have increased the agility of the software development process, in which
developers with highly disciplined habits are able to “embrace change” [3]. Some
of these advances work well together; others, as yet, do not.

It is, I think, no accident that these key elements connect so clearly with the
habits, principles and boundaries we identified in the previous section. In the end,
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all of the problems of software engineering come down to one thing: a human
being can only hold so much in their head. We all hate the feeling of being
overwhelmed, of knowing that there are vital facts that we have temporarily
forgotten. In order to make progress, we invent means of managing complexity,
and putting in front of ourselves all, and only, the information that we need at
a given time for a given purpose. (Indeed, arguably this is also our motivation
for developing habits, principles, and boundaries: all of these limit the range of
possible behaviours that we need to consider.) The key challenge is typically to
identify what to leave out, whether that is possible future requirements (YAGNI,
“you ain’t gonna need it”) or detail about what an existing piece of software does
(a more detailed specification, even if it is correct, is not better, if it includes
information that is of no benefit to its user). That brings us, naturally, to models.

5 What Are Models, and What Are They for?

My favourite one-sentence definition of a model is this:

A model is an abstract, usually graphical, representation of some aspect
of a system.

As is often observed, this, like other definitions of models, does not technically
exclude much – “everything’s a model”. What it does do is to emphasise what
is important about models: they represent some things, but not other things,
that are true about systems. A model has, conceptually, a boundary: a piece of
information may be inside the model, or not. That is, they allow us to separate
concerns [8]. A model may be designed for a particular purpose – which may
be prescriptive or descriptive – to include all and only that information that is
necessary for the purpose.

Often the purpose is supporting the work of a particular group of stakeholders
in the system: that is, different people may use different models. Models still
provide benefit, though, and people still spontaneously develop them, any time
there are discernibly different concerns that it is helpful to separate. The purpose
of a model is to focus attention on what is important to some person at some
time.

Different concerns require access to different information. Life is easiest when
they require access to completely different information: the models are orthogo-
nal, in that a change in one can be made without any implications for another.
Recalling that everything is a model, we may for example think about two classes
in different subsystems, that do not interact, as possible models. The developer
of each one may be able to work quite happily on their own class, unaware of
what the developer of the other is doing. However, this happy state of affairs is
rare.

6 What Is Bidirectionality?

Finally, it is time to mention bidirectionality, and bidirectional transformations.
There is a wide field of research on this topic which we will not survey: one place
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to turn for further reading is a recent set of tutorial lectures [9], especially its
introductory chapter [2]. The Bx Wiki2 gives further pointers.

The essence of bidirectionality in a situation is:

– There is separation of concerns into explicit parts such that
– more than one part is “live”, that is, liable to have decisions deliberately

encoded in it in the future; and
– the parts are not orthogonal. That is, a change in either part may necessitate

a change in the other.

Bidirectionality may be present, and it may be helpful to think in these
terms, even without there being any relevant automation. The management of a
bidirectional situation may be automated to a greater or lesser degree, and this
is the job of a bidirectional transformation.

A bidirectional transformation is a means of maintaining consistency between
some data sources, such as models of a software system. It is often convenient
to separate this job conceptually into two tasks:

1. check whether the sources are consistent;
2. if not, change at least one of them (we may or may not wish to specify which),

such that they become consistent.

Each of these tasks could, of course, be carried out by a conventional (uni-
directional) program. The key observation justifying the study of bidirectional
transformations as a distinct idea is that the tasks are so tightly coupled that,
to ensure that they have behaviour that is jointly sensible, they should be engi-
neered together. For example, we normally want a guarantee that the process of
consistency restoration should, indeed, result in consistent sources (it should be
“correct”); and this should remain true, even if the notion of consistency changes
during the course of development, so that the bidirectional transformation must
itself be updated. Writing separate programs to carry out the tasks involves
duplication of effort and requires a separate check of whatever coherence prop-
erties between the tasks are required. Therefore it is extremely helpful for the
bidirectional transformation to be written as a single program in a bidirectional
language, one artefact incorporating both the definition of consistency and the
instructions about how to restore it properly.

Thus, a bidirectional transformation must include a definition of what it is
to be “consistent”. The term sometimes gives difficulty to people who are used
to using it in a logical sense. For our purposes here, consistency is nothing but a
mathematical relation on the sets of models we consider. Given a tuple of models,
it is possible (in principle) to say whether they are, or are not, consistent. If they
are, and if their own groups of stakeholders are each happy with their own model,
we consider that they are in a (relatively) good state from which to continue
development; if not, something needs to be fixed – perhaps not immediately,
but eventually. This is a very flexible notion. Given two sets of models, there

2 http://bx-community.wikidot.com/.

http://bx-community.wikidot.com/
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is a wide choice of possible consistency relations, depending on what kind of
consistency we are interested in for the particular development scenario, and
how much automation we choose. Crucially, consistency need not be a bijection,
but this does not imply consistency restoration will be non-deterministic (the
process may look at both models, or even more information than that).

As a concrete example, suppose that one model is the Java source file for a
class, and the other is that of a JUnit test class. (Recall that while models are
usually graphical, everything’s a model – this certainly includes everything we
call code, which sometimes yields the most familiar examples.) Our bidirectional
transformation might incorporate any of the following notions of consistency (in
which of course we elide some details), or many others:

1. The files compile together without error.
2. 1. holds, and the JUnit file includes a test for every public method.
3. 2. holds, and all the tests pass.
4. 3. holds, and a certain coverage criterion is met.

The more stringent the notion of consistency we use, the more difficult may
be the task of restoring consistency when one of the models is changed; on the
other hand, the more work may be saved for the users of the models. There is a
trade-off between work invested in automating the bidirectional transformation,
and work invested in manually updating the models.

(The connection to the logical – strictly, model-theoretic, for a different sort
of “model”! – sense is that if we identify a model with a set of statements
about a system, then the relation we are interested in may be that the union of
the statements given by all the models is logically consistent, so that there is a
system about which all the statements are true. But for reasons we will not go
into further here, this is not normally a helpful perspective e.g. because models
and their relationships do more than make statements about a hypothetical
system: they also facilitate development.)

To use bidirectional transformations in practice, we need both theoretical
underpinnings and support from languages and tools. At present, the design
space of ways to represent bidirectional transformations is wide open. Many
languages have been proposed, a few of which have gone beyond being academic
prototypes; despite early successes, none has yet achieved more than a tiny degree
of real-world penetration. We should not be despondent about this: the problem
is hard. While, collectively, we have decades of experience designing hundreds of
unidirectional languages in several paradigms, for bidirectional languages that
experience does not yet exist. Even basic questions remain unanswered. In some
cases, we may eventually reach consensus; in others, it will likely turn out that
the right answer depends on the circumstances. Here are a few examples, each
of which has both theoretical and engineering aspects.

– What properties should a language enforce on every bidirectional transforma-
tion, and what will we need other mechanisms to check? For example, should
the language enforce any formal least-change property [7], to capture the idea
that consistency restoration should not change a model gratuitously?
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– To what extent, if any, should a bidirectional transformation maintain and use
information beyond the models themselves, e.g. a record of the relationship
between parts of the models it relates (trace links)?

– Should we directly program transformations which are symmetric (that is,
between models each of which contains information not present in the other?
Or should we program asymmetric transformations (between a source and
a view which is an abstraction of the source), relying on span or cospan
constructions [10] to give the symmetric behaviour?

– Should our languages directly support maintaining consistency between more
than two models? Or should we program binary bidirectional transforma-
tions, and rely on separate mechanisms to maintain consistency in networks
of models related by these [13,14]?

– How should our language handle effects, such as state, non-determinism,
exceptions, and user interaction, while still maintaining guarantees of good
behaviour [1]? (Getting this right is the key to managing the other peren-
nial trade-off of automation, between increased reliability of the automated
process and decreased flexibility, compared to the manual process.)

If we can develop good-enough bidirectional transformation languages, and
other supporting tools, the rewards should be great. To date, the adoption of
model driven development has been limited by the difficulty of incorporating
it into agile development. As long as models have to be maintained manually,
separately from code and from one another, this difficulty remains. Bidirectional
transformations have potential to allow the automation of this process. Imag-
ine if developers could work with whatever model was most appropriate to the
change they were making, with all others, including the final system, automati-
cally updated to match. This would be an advance worth working for, even just
considering the needs of today’s software engineering. It could increase the speed
of producing software, by enabling developers to work with the most cognitively
efficient representations of what they need to have in mind. It could enable
the development of software that is both agile and continuously verified and
documented by means of tools working on appropriate, automatically updated,
models.

7 What Is the Future of Software Engineering?

So far, we have been thinking inside the confines of software engineering as it
is now. It is inconceivable, though, that the development of software fifty or a
hundred years hence will be done in the same way as today. We have already
alluded to one of the forces for change: the inexorably increasing demand for
software which is updated ever more frequently. Pushing to solve this just by
recruiting more software developers is absurd. We will have more important
things for those five-year-olds to do when they grow up. Simultaneously, we are
fractalising the boundary between software and the rest of our environment and
ourselves, even as we demand greater dependability – trustworthiness – from
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the software. The more our software becomes intelligent, the harder it will be
to blame its developers for every wrong decision of the software – but we will
demand someone be blamed.

Software will be so different, and will be developed so differently, that we may
even have some difficulty in even recognising the software and its development
process. I would not be surprised if today’s programming languages look as puz-
zling to my grandchildren (if any) as the punched cards my father used to work
with look to me. Doubtless, I am completely failing to foresee some important
changes. Fundamentally, though, it is economically essential that more of the
decisions about what our software should do will be moved away from software
specialists, and towards people whose jobs only touch on software development.
They may include people who use the software in different roles, but also, spe-
cialists in, say, safety, protection of personal data, or support for users with
special needs. Rather than having to commission changes in the software from
software specialists, or put up with a poor fit with their needs, they will be able
to make changes directly. In order to make their decisions, these people will have
to be provided with information, some of which they will change. The informa-
tion given to a particular person is what we term a model. Such models blur
the distinction between developer and user. (Lest this sound too fanciful, bear
in mind that we already live in this world to some extent: what proportion of
the software systems you work with on a daily basis have a settings screen, or
similar? This is nothing other than a model, albeit one that may often seem too
simple for your needs.) In any setting where more than one person has a model,
there will have to be a task of reconciling decisions that the people make and
record in their models; that is what we have termed bidirectionality.

We cannot possibly expect to specify in detail the behaviour of this exploding
mass of ever-changing software. Rather, we will have to develop analogues of the
habits, principles and boundaries that we expect human participants in our world
to have. These analogues will abstractly represent certain aspects of the system’s
behaviour: that is, they are models. Just as humans adjust their behaviour to
meet one another’s (most vital) expectations, even when they encounter unex-
pected situations, so will our software have to do in future. This will require the
models to adjust, automatically, to meet non-orthogonal expectations – bidirec-
tionality again.

We already touched, in the more mundane setting of relating a class with its
tests, on the fact that different degrees of automation, offering different guar-
antees, are possible. The same will apply in the more challenging future we
envisaged. Indeed we do not expect to be able to rely on our fellow humans
to behave perfectly first time in every interaction; it would be unreasonable to
expect that of computers, once the interface becomes comparable in complexity.

Therefore, to my mind, the most fundamental change we must, as researchers
and engineers, facilitate, is that software must in future be able to explain its
past behaviour and negotiate its future behaviour. Our non-software-specialists
manipulating their models will sometimes see behaviour they do not expect.
They need to be able to ask “why did that happen?” and get an answer they
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can understand, in order to know whether to continue to trust the software
or not. “Computer says No” will not do in future: it must say why not. It
may also take on board a human’s explanation of why it should have said Yes,
adjusting a model accordingly. (We have already explored simple cases where a
bidirectional transformation may be refined by interaction with a human user [1].
Human-directed explanation will be much harder.) Explanations will have to be
made in terms that both computers and humans can understand; non-software-
specialists are not going to learn to do debugging the way software engineers
do. Explanations must be trustworthy; they must stand up in a court of law;
they must be framed like other such explanations, in terms of how the software
interpreted its knowledge and goals in the context of its principles.

8 Conclusions

In this essay, I have given some background to the current interest in bidirectional
transformations, and have tried to sketch how I think software engineering will
change in future and the role of bidirectionality in that future.

A situation involves bidirectionality in an essential way once: there are sepa-
rated concerns; more than one concern is live; and the concerns are not orthog-
onal. This already applies to most software development, so that better under-
standing and automation of bidirectionality would benefit us now. In the future,
I think that the increasing complexity of interactions between humans and com-
puters will render advances in the management of bidirectionality even more
beneficial.

In conclusion: yes, bidirectionality is important.
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Abstract. We present an approach for defining the abstract and con-
crete syntax of UML profiles and their equivalent Papyrus graphi-
cal editors using annotated Ecore metamodels, driven by automated
model-to-model and model-to-text transformations. We compare our
approach against manual UML profile specification and implementation
using Archimate, a non-trivial enterprise modelling language, and we
demonstrate the substantial productivity and maintainability benefits it
delivers.

1 Introduction

The Unified Modeling Language (UML) [10] is the de facto standard for software
and systems modelling. Since version 2.0, UML has offered a domain-specific
extensibility mechanism, Profiles [5], which allows users to add new concepts
to the modelling language in the form of Stereotypes. Each stereotype extends
a core UML concept and includes extra information that is missing from it.
With profiles, UML offers a way for users to build domain-specific modelling
languages (DSML) by extending UML concepts, thus lowering the entry bar-
rier to DSML engineering by building on engineer familiarity with UML and
UML tools (a detailed comparison of using UML profiles versus domain-specific
modelling technology such as [2,17] is beyond the scope of this paper).

Papyrus [16] is a leading open-source UML modelling tool and after a decade
in development, it is developing a critical mass for wider adoption in industry as
means of (1) escaping proprietary UML tooling lock-in, (2) leveraging the MBSE-
related developments in the Eclipse modelling ecosystem enabling automated
management of UML models, and (3) enabling multi-paradigm modelling using
a combination of UML and EMF-based DSLs. Papyrus offers support for the
development of UML profiles; however, this is a manual, tedious and error-prone
process [23], and as such it makes the development of graphical editors that are
based on such profiles difficult and expensive.

In this paper, we automate the process of developing UML profiles and graph-
ical editors for Papyrus. We propose an approach, called AMIGO, supported by
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a prototype Eclipse plugin, where annotated Ecore metamodels are used to gen-
erate fully-fledged UML profiles and distributable Papyrus graphical editors. We
evaluate the effectiveness of our approach for the automatic generation of a non-
trivial enterprise modelling language (Archimate). Furthermore, we apply our
approach on several other DSMLs of varying size and complexity [22], demon-
strating its generality and applicability.

2 Background and Motivation

In this section we outline the process for defining a UML profile and supporting
model editing facilities in Papyrus. We highlight labour-intensive and error prone
activities that motivate the need of automatic generation of those artefacts.

2.1 UML Profile

In order to create a new UML Profile, developers need to create a new UML
model and add new elements of type Stereotype, Property, Association, etc. to
create the desired stereotypes, their properties and their relationships. Papyrus
offers, among other choices, that of creating the UML profile via a Profile Dia-
gram. Users can drag-and-drop elements from the palette to construct the profile.
The properties of each element (e.g., multiplicity, navigability, etc.) can be then
set using the properties view. In a profile, each stereotype needs to extend a UML
concept (hereby referred to as base element or meta-element). Thus, users must
import the meta-elements and add the appropriate extension links. This process
can be repetitive and labour-intensive, depending on the size of the profile.

One of the limitations of UML profiles in Papyrus is that links between
stereotypes can be displayed as edges only if they extend a Connector meta-
element. These connectors do not hold any information about the stereotypes
that they can connect. Users need to define OCL constraints to validate if source
and target nodes are of the desired type and if the navigation of the edges is in the
correct direction. These constraints can be rather long and need to be manually
written and customised for each connector. This can also be a labour-intensive
and error-prone process.

2.2 Distributable Custom Graphical Editor

At this point, the created profile can be applied on UML diagrams. Users select
a UML element (e.g., Class) and manually apply the stereotype. A stereotype
can only be applied to the UML element that was defined as its base element.
This task might be problematic as users need to remember the base elements for
each stereotype. To address this recurring concern, Papyrus offers at least three
possible options which allow users to apply selected stereotypes on UML elements
in a single step though palettes. The first involves customisation through a user
interface which has to be done manually everytime a new diagram is created
and it is not distributable. The other two options require the manual definition
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of palette configuration files that are loaded every time the profile is applied on
a diagram. Although the first is simpler and requires the definition of a single
XML file, it is not encouraged as it is based on a deprecated framework.

The definition of custom shapes for the instantiated stereotypes is another
common requirement. SVG shapes can be bound to stereotypes at the profile
creation process. However, to make these shapes visible, users must set the visi-
bility of the shape of each element to true. Another drawback is that by default
the shape overlaps with the default shape of the base meta-element. Users can
hide the default shapes by writing CSS rules. The rules can be written once but
need to be loaded each time manually on every diagram.

To create a distributable graphical editor that has diagrams tailored for the
profile and to avoid all the aforementioned drawbacks, users need to manually
create several models and files shown in Fig. 1. We propose an approach that uses
a single-source input to automate this labour-intensive, repetitive and error-prone
process. This work is motivated by the increasing interest among our industrial
partners on exploring the viability of Papyrus as a long-term open-source replace-
ment for proprietary UML tools. While Papyrus provides comprehensive profile
support, the technical complexity is high due to the multitude of interconnected
artefacts required (see Fig. 1), which can be a significant hurdle for newcomers.
We aim to lower the entry barrier for new adopters and help them achieve a
working (but somewhat restricted) solution with minimal effort.

Fig. 1. All the artefacts users need to write to develop a distributable editor.

3 Proposed Approach

We propose AMIGO1, an automatic approach in which information like stereo-
types that should be instantiated in the profile, structural (e.g., references) and
graphical information (e.g., shapes) are captured as high-level annotations in an
Ecore metamodel, and is transformed into Papyrus-specific artefacts using auto-
mated M2M and M2T transformations. Figure 2 shows an overview of AMIGO.

1 The code and instructions are available at http://www.zolotas.net/AMIGO.

http://www.zolotas.net/AMIGO
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All EClasses in the Ecore metamodel are automatically transformed into
stereotypes. Annotated EReferences can also create stereotypes. Developers use
the annotations listed below to specify the required graphical syntax of the
stereotype (i.e., if it should be represented as a node or as an edge on the dia-
gram). A detailed list of all valid annotation properties is given in the Appendix.

Fig. 2. An overview of the proposed approach

(1) @Diagram annotations define diagram-specific information like the name
and the icon of the diagram type. This annotation is always placed at the
top package of the Ecore metamodel.

(2) @Node annotations are used for stereotypes that should be instantiated as
nodes in the diagrams. The UML meta-element that this stereotype extends
is provided through the base property, while the SVG shape and the icon in
the palette are specified through the shape and icon properties, respectively.

(3) @Edge annotations are used for stereotypes that should be instantiated as
edges and it can be applied to both EClasses and EReferences. The base
UML element is provided through the base property. The icon in the palette
is also passed as property along with the desired style of the line.

The annotation of the Ecore metamodel is the only manual process required
in our approach. This Ecore metamodel is then consumed by M2M and M2T
transformations shown in Fig. 4 and described in Sect. 4. The transformations
are written in the Epsilon Transformation Language (ETL) [13] and the Epsilon
Generation Language (EGL) [18] but in principle, any other M2M and M2T
language could be used. The automated workflow produces the UML profile with
the OCL constraints and all the configuration models/files needed by Papyrus.
In addition, a one-way M2M transformation, that can be used to transform the
UML models back to EMF models that conform to the original Ecore metamodel,
is also generated. Thus, model management programs already developed to run
against models conforming to the EMF metamodel can be re-used.

AMIGO provides the option to execute polishing transformations that allow
fine-tuning of the generated artefacts. In the following section, the proposed
approach is explained via a running example.
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3.1 Running Example

We use AMIGO to define and generate the UML profile and the Papyrus graph-
ical editor for a Simple Development Processes Language (SDPL). We start
by defining Ecore metamodel using Emfatic (see Listing 1.1). A process defined
in SDPL consists of Steps, Tools and Persons. Each person is familiar with cer-
tain tools and has different Roles, while each step refers to the next step using the
next reference. To generate the UML profile and the Papyrus graphical editor,
we add the following concrete syntax-related annotations shown in Listing 1.1.
AMIGO produces the SDPL Papyrus editor presented in Fig. 3.

– Line 2: The name and the icon that should be used in Papyrus menus are
defined using the name and icon properties of the @Diagram annotation.

– Lines 5, 10 & 14: The @Node annotation is used to define that these types
should be stereotypes that will be represented as nodes on the diagram. The
base parameter defines the UML meta-element the stereotype should extend.
The shape and the palette icon are given using the shape and icon details.

– Lines 17 & 20: The familiarWith EReference and the Role EClass are
extending the meta-element Association of UML. These stereotypes should
be shown as links in the diagrams. In contrast with the familiarWith ERefer-
ence, the types the Roles edge should be able to connect are not known and
need to be specified as properties of the annotation (i.e., source = “src” and
target = “tar”). This denotes that the source/target nodes of this connector
are mapped to the values of the src/tar EReferences, respectively.

– NB Line 8: The next EReference is not required to be displayed as an edge
on the diagram thus it is not annotated with @Edge.

Fig. 3. The SDPL editor for Papyrus generated using AMIGO.
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1 @namespace(uri=”sdpl”,prefix=”sdpl”)
2 @Diagram(name=”SDPL”, icon=”sdpl.png”)
3 package Process;
4

5 @Node(base=”Class”, shape=”step.svg”,
icon=”step.png”)

6 class Step {
7 attr String stepId;
8 ref Step[1] next;
9 }

10 @Node(base=”Class”, shape=”tool.svg”,
icon=”tool.png”)

11 class Tool {
12 attr String name;
13 }
14 @Node(base=”Class”, shape=”per.svg”, icon

=”per.png”)

15 class Person {
16 attr String name;
17 @Edge(base=”Association”, icon=”line.

png”)
18 ref Tool[∗] familiarWith;
19 }
20 @Edge(base=”Association”, icon=”line.png”

, source=”src”, target=”tar”)
21 class Role {
22 attr String name;
23 ref Step[1] src ;
24 ref Person[1] tar ;
25 }

The annotated ECore
metamodel of SDPL.

3.2 Polishing Transformations

The generated editor is fully functional but it can be further customised to fit
custom user needs. In this example the labels should be in red font. This can
be achieved by manually amending the generated CSS file. However, the CSS
file will be automatically overridden if the user regenerates the editor. To avoid
this, the user can use the CSS polishing transformation (#6b in Fig. 4) shown in
Listing 1.2. Every time the profile and editor generation is executed, the polish-
ing transformation will amend the original CSS file with the information shown
in Listing 1.3.

Fig. 4. An overview of the transformation workflow.

1 var allNodeStereotypes = Source!EClass.all(). select (c|c.getEAnnotation(”Node”).isDefined());
2 for (stereo in allNodeStereotypes) {%]
3 [appliedStereotypes˜=[%=stereo.name%]][% if (hasMore){%] , [%}}
4 %] {
5 fontColor:red;
6 }

Listing 1.2. A CSS polishing transformation written in EGL.
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1 [appliedStereotypes˜=Step],[appliedStereotypes˜=Tool],[appliedStereotypes˜=Person]{
2 fontColor:red;
3 }

Listing 1.3. The output that is amended in the original CSS file.

4 Implementation

This section discusses the implementation of the proposed approach. Figure 4
shows the transformations workflow. As the transformations consist of about
1K lines of code, we will describe them omitting low level technical details (see
footnote 1). Every step in the process, except that of polishing transformations
described in Sect. 4.8 is fully automated, as the only required manual step in
AMIGO, is that of annotating the ECore metamodel.

4.1 EMF to UML Profile Generation (#1)

The source model of this transformation is the annotated Ecore metamodel and
the target model is a UML profile model. This transformation consists of two
rules: the first creates one stereotype for each EClass in the metamodel and the
second creates a stereotype for EReferences annotated as @Edge.

When all stereotypes are created, a number of post-transformation operations
are executed to (1) create the generalisation relationships between the stereo-
types, (2) add the references/containment relationships between the stereotypes,
(3) create the extension with the UML base meta-element and (4) generate and
add the needed OCL constraints for each edge:

(1) For each of the superclasses of an EClass in the metamodel we create a
Generalisation UML element. The generalisation element is added to the
stereotype created for this specific EClass and refers via the generalization
reference to the stereotype that was created for the superclass.

(2) For each reference (ref or val) in the metamodel a new Property UML ele-
ment is created and added to the stereotype that represents the EClass.
A new Association UML element should also be created and added to the
stereotype. The name and the multiplicities are also set.

(3) By default the stereotypes extend the Class base element unless a different
value is passed in the base property of the @Node/@Edge annotation. In
this post-transformation operation the necessary Import Metaclass element
and Extension reference are created and attached to the stereotype.

(4) The OCL constraints are created for each stereotype that will be shown as an
edge on the diagram. Two Constraint and two OpaqueExpression elements
are created for each edge stereotype that check the two necessary constraints.

4.2 Constraints

To illustrate the OCL constraints, we provide a partial view of the SDPL UML
profile in Fig. 52.
2 The attributes of the stereotypes are omitted for simplicity.
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Fig. 5. Example UML profile for SDPL.

In Fig. 3, the familiarWith association is used to connect Person Alice with
Tool StarUML. However, the familiarWith stereotype can be applied to any
Association, and not strictly to Associations which connect Person and Tool
stereotyped elements. Therefore, constraints are needed to check two aspects:

– End Types: the elements that a familiarWith association connects have
Person and Tool stereotypes applied;

– Navigability: the familiarWith association starts from an element stereo-
typed as Person and points to an element stereotyped as Tool.

End Types. In Listing 1.4, line 1 accesses the types that familiarWith connects.
Lines 2 and 3 check if the types that familiarWith connects are of type that either
has stereotype Person or Tool.
1 let classes = self .base Association.endType→selectByKind(UML::Class) in
2 classes→exists (c|c.extension Person→notEmpty()) and
3 classes→exists (c|c.extension Tool→notEmpty())

Listing 1.4. The End Types constraint in OCL.

1 let memberEnds=self.base Association.memberEnd in
2 let toolEnd=memberEnds→select(type.oclIsKindOf(UML::Class) and type.oclAsType(UML::

Class).extension Tool→notEmpty()),
3 personEnd=memberEnds→select(type.oclIsKindOf(UML::Class) and type.oclAsType(UML::

Class).extension Person→notEmpty()) in
4 if personEnd→notEmpty() and toolEnd→notEmpty() then
5 personEnd→first().isNavigable() = false and
6 toolEnd→first () .isNavigable() = true
7 else false endif

Listing 1.5. The Navigability constraint in OCL.

Navigability. In Listing 1.5, in lines 2 and 3, we obtain the member ends that
familiarWith connects. If these ends are obtained successfully (line 4), we check
that the personEnd (connecting element stereotyped as Person) is not navigable
(line 5) and the toolEnd (connecting element stereotyped as Tool) is navigable
(line 6). Therefore, we are checking that a familiarWith association can only go
from Person to Tool.

We use the End Types and Navigability constraints as templates with
dynamic sections, where the specific stereotype names are inserted dynamically.
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4.3 Palette Generation (#2)

This transformation is responsible for creating a model (file .paletteconfigura-
tion) that configures the custom palette. The model conforms to the PaletteCon-
figuration metamodel that ships with Papyrus. The transformation creates a new
PaletteConfiguration element and adds two new DrawerConfiguration elements
that represent the two tool compartments in our palette (i.e., nodes and edges).
For each element annotated as @Node/@Edge, a new ToolConfiguration element
is created and added to the appropriate drawer. An IconDescriptor element is
added to the ToolConfiguration pointing to the path of the icon for that tool.

4.4 Diagram Configuration (#3, #4 & #5)

Firstly, in order for Papyrus to offer the choice of creating new custom diagrams
for the generated profile via its menus, a ViewpointConfiguration needs to be
created. This configuration hides the default palette and attaches the one created
before. It also binds the generated CSS stylesheet file (see transformation #6)
to the diagram. Transformation #3 creates a new model that conforms to the
Configuration metamodel and stores this new ViewpointConfiguration element.

Transformation #4 creates the types configuration model (i.e., .typesconfig-
uration file) that conforms to the ElementTypesConfiguration metamodel pro-
vided by Papyrus. This model is responsible for binding the types of the drawn
elements to stereotypes. For each stereotype a new SpecializationTypeConfig-
uration element is created and a unique id is created in the format “Profile-
Name.StereotypeName” (e.g., “SDPL.Step”). The value of the Hint attribute
is set to the qualified name of the meta-element that this type specialises
(e.g., “UML::Class”). A new StereotypeApplicationMatcherConfiguration ele-
ment is also created that holds the qualified name of the stereotype that
should be applied to the drawn element. Binding is performed by creating a
new ApplyStereotypeAdviceConfiguration element that points to the equivalent
stereotype application matcher configuration element created before. This way,
when an element of a specific type is drawn the appropriate stereotype is applied
automatically.

The last model (i.e., the .elementtypesconfiguration file) created by transfor-
mation #5 is one that conforms to the ElementTypesConfiguration metamodel.
This model is responsible for specializing the meta-element shapes to the custom
ones created by the profile. For each stereotype, a new SpecializationTypeCon-
figuration element is created pointing to two elements that it specialises: the
specialization type configuration created in transformation #4 and the shape of
the UML meta-element that this element specialises.

4.5 Stylesheet Generation (#6)

In Papyrus, the look and feel of diagram elements can be customised using CSS.
Each node on a diagram has a set of compartments where the attributes, the
shape, etc. appear. Initially, we create a CSS rule to hide all their compartments
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and another rule to enable the compartment that holds the shape. The latter
rule also hides the default shape inherited from the meta-element the stereotype
extends. Then, for each stereotype that appears as a node, a CSS rule is generated
to place the SVG figure in the shape compartment. Finally, we generate the CSS
rules for each edge, e.g., if a lineStyle parameter is set, then the style property for
that Edge stereotype is set to the value of the lineStyle parameter (e.g., “solid”).

4.6 UML to EMF Transformation Generation (#7)

This M2T transformation generates the ETL file that can transform the UML
models that conform to the UML Profile, back to EMF models that conform
to the source Ecore metamodel. One rule is generated for each of the stereo-
types that transforms the elements having this stereotype applied to them back
to the appropriate type of the Ecore metamodel. Each stereotype has the same
attributes and references as the original EClass thus, this M2T script also gener-
ates the statements that populate the attributes and the references. An example
of an auto-generated rule is shown in Listing 1.6. The rule transforms elements
stereotyped as “Person” in the UML model to elements of type “Person” in an
EMF model which conforms to the Ecore metamodel presented in Listing 1.1.
1 rule PersonUML2PersonEMF
2 transform s: UMLProcess!Person
3 to t : EMFProcess!Person {
4 t .name = s.name;
5 t .age = s.age;
6 t .familiarWith ::= s.familiarWith;
7 }

Listing 1.6. Example of an auto-generated ETL rule.

4.7 Icons, Shapes and Supporting Files (#8)

The approach creates a Papyrus plugin, thus the “MANIFEST.MF”, the “plu-
gin.xml” and the “build.properties” files are created. The first includes the
required bundles while defines the necessary extensions for Papyrus to regis-
ter the UML profile and create the diagrams. The third points the project
to the locations of the “MANIFEST.MF” and “plugin.xml” files. Finally,
two files necessary for Papyrus to construct the UML profile model, (namely
“model.profile.di” and “model.profile.notation”) are generated.

4.8 Polishing Transformations (#1b–#6b)

For each of the transformations #1–#6, users are able to define polishing trans-
formations that complement those included in our implementation. After each
built-in transformation is executed, the workflow looks to find a transformation
with the same file name which is executed against the Ecore metamodel and
updates the already created output model of the original transformation.
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5 Evaluation

AMIGO is evaluated by firstly, applying it to generate a Papyrus editor for the
non-trivial Archimate UML profile [11,12]. The Adocus Archimate for Papyrus3

is an open-source tool that includes a profile for Archimate and the appropriate
editors for Papyrus. We can compare the proportion of the tool that AMIGO is
able to generate automatically, the number of polishing transformations that the
user needs to write to complete the missing parts and finally, identify the aspects
of the editor that our approach is not able to generate. As a result we can measure
the efficiency of AMIGO in generating profiles/editors. Secondly, we assess the
completeness of our approach by applying it on nine other metamodels collected
as part of the work presented in [22] testing if our approach can successfully
generate profiles and editors for a wide variety of scenarios.

5.1 Efficiency

The Archimate for Papyrus tool offers five kind of diagrams (i.e., Application,
Business, Implementation and Migration, Motivation and Technology diagrams).
Thus, in this scenario we need to create the 5 Ecore metamodels and annotate
those EClasses/EReferences to generate the profiles and the editors. AMIGO
successfully generated the Papyrus editor for Archimate, however, some spe-
cial features that the Archimate for Papyrus tool offers need further work. For
example, the tool offers a third drawer that is called “Common” and includes two
tools (i.e., “Grouping” and “Comment”). To implement such missing features,
we need to write the extra polishing transformations. For brevity, we will not
go into details on the content of the polishing transformations for this specific
example.

Table 1, summarises the lines of code (LOC) we had to write to generate the
editors using AMIGO versus the lines of code the authors of the Archimate for
Papyrus had to write. Since all the artefacts except the CSS file are models, we
provide in parentheses the number of model elements users have to instantiate.
For the polishing transformations we only provide the LOC metric as the models
are instantiated automatically by executing the transformation scripts and not
manually. Our approach requires about 91% less handwritten LOC to produce
the basic diagrams and about 86% less code to produce the polished editor.
In terms of model elements, we need to manually instantiate about 63% less
model elements (668 vs. 1828) for the basic editor. Our approach creates the five
diagram editors which offer the same functionality and features as the original
Archimate for Papyrus tool five diagram editors but also atop that the ETL
transformation and the OCL constraints.

3 https://github.com/Adocus/ArchiMate-for-Papyrus.

https://github.com/Adocus/ArchiMate-for-Papyrus
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Table 1. Lines of manually written code (and model elements in parenthesis) of each
file for creating a Papyrus UML profile and editor for ArchiMate.

File AMIGO Archimate
for Papyrus

Handwritten Handwritten
(polishing)

Total Total
handwritten

Ecore 436 (668) 0 436 (668) 0

Profile 0 0 0 1867 (1089)

Palette
configuration

0 24 24 1305 (323)

Element
types
configuration

0 11 11 237 (61)

Types
configuration

0 10 10 788 (327)

Diagram
configuration

0 0 0 58 (28)

CSS 0 195 195 537

Total 436 (668) 240 676 (668) 4792 (1828)

5.2 Completeness

In addition, we tested AMIGO with nine more Ecore metamodels from different
domains. The names and their sizes (in terms of types) are given in Table 2. Next
to the size, in parentheses, the number of types that should be transformed so
they can be instantiated as nodes/edges is also provided. The approach produced
the profiles and the editors for all the metamodels, demonstrating that it can
be used to generate the desired artifacts for a wide spectrum of domains.

Table 2. The metamodels used to evaluate the completeness of AMIGO.

Name #Types (#Nodes/#Edges) Name #Types (#Nodes/#Edges)

Professor 5 (4/5) Ant scripts 11 (6/4)

Zoo 8 (6/4) Cobol 13 (12/14)

Usecase 9 (4/4) Wordpress 20 (19/18)

Conference 9 (7/6) BibTeX 21 (16/2)

Bugzilla 9 (7/6) Archimate 57 (44/11)

5.3 Threats to Validity

There were a few minor features of the original Archimate for Papyrus tool
that our approach could not support. Most of them are related to custom menu
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entries and wizards. For those to be created, developers need to extend the “plu-
gin.xml” file. In addition, the line decoration shapes of stereotypes that extend
the aggregation base element (i.e., diamond) can only be applied dynamically
by running Java code that will update the property each time the stereotype is
applied. Our default and polishing transformations are not able to generate those
features automatically; these should be implemented manually. For that reason,
we excluded these lines of code needed by Archimate for Papyrus to implement
these features from the data provided in Table 1 to achieve a fair comparison.

6 Related Work

Over the past years, several UML profiles have been standardised by the OMG
(e.g., MARTE [9], SySML [4]) and are now included in most major UML tools
(e.g., Papyrus [16]). A list of recently published UML profiles is available in [17].
Irrespective of the way these UML profiles were developed, either following ad-
hoc processes or based on guidelines for designing well-structured UML pro-
files [5,19], they required substantial designer effort. Our approach, subject to
the concerns raised in Sect. 5, automates the process of generating such profiles
and reduces significantly the designer-driven effort for specifying, designing and
validating UML Papyrus profiles and editors.

Relevant to our work is research introducing methodologies for the automatic
generation of UML profiles from an Ecore-based metamodel. The work in [15]
proposes a partially automated approach for generating UML profiles using a set
of specific design patterns. However, this approach requires the manual definition
of an initial UML profile skeleton, which is typically a tedious and error-prone
task [23]. The methodology introduced in [7,8] facilitates the derivation of a
UML profile using a DSML as input. The methodology requires the manual def-
inition of an intermediate metamodel that captures the abstract syntax. Despite
the potential of these approaches, they usually involve non-trivial human-driven
tasks, e.g., a UML profile skeleton [15] or an intermediate metamodel [7,8]. In
contrast, our approach builds on top of standard Ecore metamodels (which are
usually available in MBSE). Furthermore, our approach supports the customi-
sation of UML profiles and the corresponding Papyrus editor.

Our work also subsumes research that focuses on bridging the gap between
MOF-based metamodels (e.g., Ecore) and UML profiles. In [1], the authors pro-
pose a methodology that consumes a UML profile and its corresponding Ecore
metamodel, and uses M2M transformation and model weaving to transform UML
models to Ecore models, and vice versa. The methodology proposed in [23] sim-
plifies the specification of mappings between a profile and its corresponding Ecore
metamodel using a dedicated bridging language. Along the same path, the app-
roach in [6] employs an integration metamodel to facilitate the interchange of
modelling information between Ecore-based models and UML models. Compared
to this research, AMIGO automatically generates UML profiles (like [6,23]), but
requires only a single annotated Ecore metamodel and does not need any medi-
ator languages [23] or integration metamodels [6]. Also, the transformation of
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models from UML profiles to Ecore is only a small part of our generic app-
roach (Sect. 4.6) that generates not only a fully-fledged UML profile but also a
distributable custom graphical editor.

In terms of graphical modelling, our approach is related to EuGENia [14],
which transforms annotated Ecore metamodels to GMF (Graphical Modelling
Framework) models (i.e. GMF graph definition model, tooling model, mapping
model and generation model) to automatically generate graphical model editors.
Sirius [20], a tool based also on GMF, enables users to define a diagram definition
model and use this model to generate a graphical editor. Unlike EuGENia, Sirius
does not require additions to the original Ecore metamodel.

7 Conclusions and Future Work

In this paper we presented AMIGO, an MDE-based approach that uses anno-
tated Ecore metamodels to automatically generate UML profiles and supporting
distributable Papyrus editors. We evaluated AMIGO using Adocus Archimate
for Papyrus and nine other metamodels from [21] showing that AMIGO reduces
significantly the effort required to develop these artifacts. Our future plans for
AMIGO involve providing better support for compartments since although in the
current version users can create compartments using the available compartment
relationships in UML (e.g., Package-Class, etc.), the visual result is not appeal-
ing. More specifically, the compartment where containing elements are placed is
distinct and lies above the compartment that hosts the shape. As a result, the
contained elements are drawn above the custom shape and not inside it. Also,
we will extend AMIGO with support for the automatic generation of OCL con-
straints for opposite references and more connectors (e.g., UML Dependencies).
We also plan to support the execution of validation scripts against the Ecore file
to check that the annotation provided in the Ecore file are correct, and if not, to
produce meaningful error messages. Finally, we plan to execute usability tests
with real users to evaluate AMIGO against the native Papyrus approach.

Acknowledgments. This work was partially supported by Innovate UK and the UK
aerospace industry through the SECT-AIR project, by the EU through the DEIS
project (#732242) and by the Defence Science and Technology Laboratory through
the project “Technical Obsolescence Management Strategies for Safety-Related Soft-
ware for Airborne Systems”.

A Annotations and Parameters

The following are all the currently supported parameters for the annotations.

A.1 @Diagram

– name: The name of the created diagrams as it appears on the diagram creation
menus of Papyrus. [required]

– icon: The icon that will appear next to the name on the diagram creation
menus of Papyrus. [optional]
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A.2 @Node

– base: The name of the UML meta-element that this stereotype should extend.
[required]

– shape: The shape that should be used to represent the node on the diagram.
[required]

– icon: The icon that will appear next to the name of the stereotype in the
custom palette. [optional]

A.3 @Edge

– base: The name of the UML meta-element that this stereotype should extend.
[required]

– icon: The icon that will appear next to the name of the stereotype in the
custom palette. [optional]

– lineStyle: The style of the line (possible values: solid, dashed, dotted, hidden,
double). [optional]

– source (for EClasses only): The name of the EReference of the EClass that
denotes the type of the source node for the edge. [required]

– target (for EClasses only): The name of the EReference of the EClass that
denotes the type of the target node for the edge. [required]
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Abstract. OCL is a important element of many Model-Driven Engi-
neering tools, used for different purposes like writing integrity con-
straints, as navigation language in model transformation languages or to
define transformation specifications. There are refactorings approaches
for manually written OCL code, but there is not any tool for the simpli-
fication of OCL expressions which have been automatically synthesized
(e.g., by a repair system). These generated expressions tend to be com-
plex and unreadable due to the nature of the generative process. However,
to be useful this code should be as simple and resemble manually written
code as much as possible.

In this work we contribute a set of refactorings intended to opti-
mise OCL expressions, notably covering cases likely to arise in generated
OCL code. We also contribute the implementation of these refactorings,
built as a generic transformation component using bentō, a transforma-
tion reuse tool for ATL, so that it is possible to specialise the compo-
nent for any OCL variant based on Ecore. We describe the design and
implementation of the component and evaluate it by simplifying a large
amount of OCL expressions generated automatically showing promising
results. Moreover, we derive implementations for ATL, EMF/OCL and
SimpleOCL.

Keywords: Model-Driven Engineering · Model transformations
OCL · Refactoring

1 Introduction

OCL [25] is used in Model-Driven Engineering (MDE) in a wide range of scenar-
ios, including the definition of integrity constraints for meta-models and UML
models, as a navigation language in model transformation languages and as
input for model finders, among others. The most usual scenario is that OCL
constraints are written by developers who can choose their preferred style, and
thus tend to write concise and readable code. An utterly different scenario is
the automatic generation of OCL constraints. In this setting, the style of the
generated constraints is frequently sub-optimal, in the sense that it may contain
repetitive expressions, unnecessary constructs (e.g., too many let expressions),
trivial expressions (e.g., false = false), etc. This is so since synthesis tools typ-
ically use templates (or sketches in program synthesis [28]) whose holes are filled
by automatic procedures.
c© Springer International Publishing AG, part of Springer Nature 2018
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Faced with the task of writing a non-trivial OCL synthesizer, the implemen-
tor could try to design it in a way that favour the generation of concise and
simple expressions, but this introduces additional complexity at the core of the
synthesizer which can be hard to manage. An alternative is to generate the OCL
constraints in the easiest way from the synthesizer’s implementation point of
view, and then have a separate simplifying process to handle this task. In this
work we propose a catalogue of simplifications for OCL expressions, especially
targeted to OCL code generated automatically. The simplifications range from
well-known rewritings for integers and booleans to more specific ones related to
type comparisons (i.e., oclIsKindOf). This work fills the gap between refactor-
ings and conversions targeted to manually written code [5,6] and the initial work
by Giese and Larsson [19] about OCL simplifications.

On the other hand, there are several OCL implementations like
EMF/OCL [17], SimpleOCL [31], the embedding of OCL in the ATL lan-
guage [21], etc. Hence, committing to a single variant would limit the practical
applicability of the catalogue. To overcome this issue we have implemented it as
a generic transformation component using bentō [8]. Bentō is a transformation
reuse tool for ATL, which allows the development of generic transformations
that are later specialized to concrete meta-models. In this paper we describe the
design and implementation of this component and the main elements of the cat-
alogue. Finally, we have evaluated the catalogue by applying it to a large amount
of OCL expressions and specializing it for ATL, EMF/OCL and SimpleOCL in
order to show its reusability.

Altogether, this work presents the following contributions. (1) A new set
of simplification refactorings for OCL, which complements the ones proposed
in [19] and reuses some of ones described in [6,26]. (2) A design based on the
notion of generic transformation [8] which allows mapping one definition of the
refactorings to several variants of OCL. (3) A working implementation (Beau-
tyOCL) implemented with bentō1, for which the ATL/OCL specialization has
been integrated in anATLyzer2, our IDE for ATL model transformations. The
catalogue can be easily extended with new simplifications and specializations by
submitting pull requests to the available GitHub repository.3

Organization. Section 2 presents related work, and Sect. 3 motivates the work
through a running example. Section 4 introduces the framework used to develop
the catalogue of simplifications, and Sect. 5 describes the catalogue. The work is
evaluated in Sect. 6, and Sect. 7 concludes.

2 Related Work

The closest work to ours was proposed by Giese and Larsson [19]. The motiva-
tion was to simplify constraints generated for UML diagrams in the context of

1 http://github.com/jesusc/bento.
2 http://anatlyzer.github.io.
3 http://github.com/jesusc/beautyocl.

http://github.com/jesusc/bento
http://anatlyzer.github.io
http://github.com/jesusc/beautyocl
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design patterns. Simplifications for primitive types and collections are proposed
by means of examples. More complex cases including conditionals, let expressions
and the treatment of oclIsKindOf expressions are not handled. We depart from
this work and propose a more extensive catalogue. Moreover, we have developed
the catalogue using a reusable approach, with the aim of fostering its usage.

Correa et al. investigated the impact of poor OCL constructs on understand-
ability [7], finding that refactored expressions are more understandable. The
experiments were carried out on hand-written expressions, thus, it is likely that
refactorings for expressions generated automatically have an even bigger impact
on understandability. In [32], a catalogue of refactorings for ATL transforma-
tions is presented. Some of them are applicable to OCL, but they do not target
simplifications. Moreover, the authors point out the possibility of implement-
ing the refactorings in a language independent way, which is now achieved with
our framework. The work of Correa and Werner presents a set of refactorings
for OCL [6]. Some of them are of interest for our case, particularly refactorings
for verbose expressions, while others are particularly useful for hand-written
OCL expressions. A complementary work with additional refactorings is pre-
sented in [26]. Cabot and Teniente [5] proposes a set of transformations to derive
equivalent OCL expressions. Some of these transformations are simplifications,
but they generally focus on equivalent ways of writing a given OCL expression.
Similarly, a set of optimizations patterns to improve the performance of OCL
expressions in ATL programas is presented in [15]. Another source of related
works is expression simplification rules developed with program transformation
systems [22].

Regarding the applicability of our approach, it is targeted to complement
tools which generate or transform OCL constraints. Some of them are based
on filling in a pre-defined template from a given model [1,19,29]. Other works
modify OCL expressions as a response to meta-model evolution [20]. These
approaches could be benefited by our implementation. Nevertheless, given that
our target is automatically generated code, it is specially well suited to comple-
ment approaches related to the notion of program synthesis and program repair.
This is so since they tend to generate “alien code” [23] which may be problematic
when humans need to maintain the generated code. To the best of our knowl-
edge, there are only a few systems of this kind in the MDE and OCL ecosystem,
like our work in quick fixing ATL transformations [11] and the generation or
pre-conditions [12,14,24]. Hence, we believe that this work will be also valuable
to complement OCL synthesis tools likely to appear in the future.

3 Motivation and Running Example

In this section we present the running example which will be used throughout
the paper. We also use it to motivate the need for our catalogue of simplification
refactorings. In previous work we implemented a large set of quick fixes for ATL
transformations [11], with which it is possible to fix many types of non-trivial
problems. This is integrated in the anATLyzer IDE [13] allowing users to auto-
matically generate and integrate pieces of OCL code that fixes problems in their
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transformations. From the usability point view the main concern of our tool was
that the generated OCL expressions where often accidentally complex due to the
automatic procedure used to generate them. In practice, this means that users
may not use the quick fix feature because the OCL expressions which are auto-
matically produced are unnecessarily too complex, difficulting its understanding.
This problem is not exclusive of our approach, but it is acknowledged in other
works [19,23].

Fig. 1. Source and target meta-models of the running example.

To illustrate this issue we will use an excerpt of the PNML2PetriNet transfor-
mation, from the Grafcet to PetriNet scenario in the ATL Zoo4, slightly modified
to show interesting cases. Figure 1 shows the source and target meta-models of
the transformation and Listing 1 shows an excerpt of the transformation.

1 rule PetriNet {
2 from n : PNML!NetElement

3 to p : PetriNet!PetriNet (

4 elements ← n.contents,

5 arcs ← n.contents→select(e | e.oclIsKindOf

(PNML!Arc))

6 )

7 }
8

9 rule Place {
10 from n : PNML!Place

11 to p : PetriNet!Place ( ... )

12 }
13

14 rule Transition {
15 from n : PNML!Transition

16 to p : PetriNet!Transition ( ... )

17 }
18

19 rule PlaceToTransition {
20 from n : PNML!Arc (

21 n.source.oclIsKindOf(PNML!Place) and
22 n.target.oclIsKindOf(PNML!Transition)

23 )

24 to p : PetriNet!PlaceToTransition (

25 ”from” ← n.source,

26 ”to” ← n.target

27 )

28 }
29

30 rule TransitionToPlace {
31 from n : PNML!Arc (

32 −− The developer forgets to add n.source.

oclIsKindOf(PNML!Transition)

33 n.target.oclIsKindOf(PNML!Place)

34 )

35 to p : PetriNet!TransitionToPlace (

36 ”from” ← n.source, −− Problem here, n.

source could be a Place

37 ”to” ← n.target

38 )

39 }
Listing 1. Excerpt of the PNML2PetriNet
ATL transformation.

4 http://www.eclipse.org/atl/atlTransformations/.

http://www.eclipse.org/atl/atlTransformations/
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Consider the bug introduced in line 32 due to a missing check in the
filter which enables the assignment of a Place object to a property of
type Transition. A valid fix would be to extend the rule filter with not

n.source.oclIsKindOf(PNML!Place). This is, in fact, what anATLyzer generates by
default since it just uses the typing of the from ← n.source binding (line 36) to
deduce a valid fix. However, a simpler and more idiomatic expression would be
n.source.oclIsKindOf(PNML!Transition).

Fig. 2. Schema for constraint generation.

Once fixed, we could be interested in generating a meta-model constraint for
PNML to rule out invalid arcs (e.g., an arc whose source and target references
point both to places (or both to transitions)). The implementation of quick fixes
in anATLyzer will generate a constraint like the one shown in Listing 2. The
constraint is generated in the most general way, not taking into account the
possible optimizations that could be made.
1 Arc.allInstances()→forAll(v1 |
2 if v1.oclIsKindOf(Arc) then
3 v1.source.oclIsKindOf(Transition) and v1.target.oclIsKindOf(Place)

4 else false endif or
5 if v1.oclIsKindOf(Arc) then
6 v1.source.oclIsKindOf(Place) and v1.target.oclIsKindOf(Transition)

7 else false endif

Listing 2. Automatically generated invariant to rule out invalid arcs in a Petri net

In general, a synthesizer uses a template and tries to fill the holes using some
automated procedure. Figure 2 shows the schema to generate pre-conditions used
in anATLyzer. To generate a constraint that will be attached to the PNML meta-
model, our system would identify all rules dealing with Arc elements, that is, any
rule whose input pattern has Arc or one of its subtypes (if any). Then, it would
merge rule filters replacing occurrences of the a variable defined in the input
pattern of the rules with the iterator variable v. Please note that this schema
based on “if-then-else” is cumbersome, but it is necessary because there is no
short-circuit in OCL and therefore a simple and expression would not work in
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the general case. Hence, our goal is to simplify these kind of expressions into
more idiomatic code, as shown in the Listing 3.
1 Arc.allInstances()→forAll(v1 |
2 (v1.source.oclIsKindOf(Transition) and v1.target.oclIsKindOf(Place)) or
3 (v1.source.oclIsKindOf(Place) and v1.target.oclIsKindOf(Transition))

Listing 3. Simplified invariant to rule out invalid arcs in a Petri net

In the rest of this paper we present our approach to beautify OCL code,
in particular targeting automatically synthesized OCL code. As we will see,
it is expected that such code has unnecessary complexity, contains repetitive
expressions and it is many times difficult to read. The next section describes the
framework and the following presents the current catalogue.

4 Framework

This section describes the design of the reusable component to simplify OCL
expressions. We have designed the catalogue of simplifications as a set of
reusable transformations using the notion of concept-based transformation com-
ponents [8]. Our aim is to deal with the fact that there are several implemen-
tations of OCL which could be benefited from automatic simplifications. In the
EMF ecosystem, we can find the standard OCL distribution (EMF/OCL), Sim-
pleOCL, OCL embedded in the ATL language, the OCL variant of Epsilon, etc.
These implementations are incompatible among each other, due to a number of
reasons, including different representations of the abstract syntax tree, questions
related to the integration of OCL in another language, different OCL versions,
different supported and unsupported features (e.g., closure operation is not sup-
ported in ATL), access to typing information, etc.

4.1 Overview

Our framework is based on the notion of concept and generic transformation
component. A concept is a description of the structural requirements that a
meta-model needs to fulfil to allow the instantiation of the component with a
concrete meta-model (e.g., a particular OCL implementation in this case). A
generic transformation component consists of a transformation template and
one or more concepts. To instantiate the component for a specific meta-model, a
binding describing the correspondences between the meta-model and the concept
is written, which in turn induces an adaptation of the template to make it
compatible with the meta-model. Please note that the approach of rewriting the
original transformation is more adequate than using a pivot meta-model plus a
transformation since the OCL expressions need to be modified in-place.

Figure 3 shows the architecture of the solution, which is technically imple-
mented using the facilities provided by bentō to develop reusable transforma-
tion components [10]. In this design the simplification component has a set of
small transformations, each one targeting only one kind of simplification. On
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Fig. 3. Architecture of the generic component and its application to simplify ATL/OCL
expressions.

the contrary to previous approaches which assumed one concept per transforma-
tion [8,27], in this work all transformations share a common OCL-based concept
plus two additional concepts to enable parameterized access to type information
and expression comparison facilities (see Sect. 4.2). The output is a set of rewrit-
ing commands, which will be interpreted by a custom in-place engine. Given a
specific OCL implementation for which we want to reuse the simplification com-
ponent, we must implement a binding between the concrete OCL meta-model
and the OCL concept meta-model. The binding establishes the correspondences
between the concrete language meta-model (ATL/OCL in the figure) and the
OCL concept. The bentō tool takes the binding and the component and derives
a new simplification component specialised for ATL. This is fed into the in-place
engine to apply the simplifications to concrete ATL expressions.

4.2 Transformation Templates

We use ATL as our implementation language to develop the transformation tem-
plates. The in-place mode of ATL is quite limited, and it is not adequate to per-
form the rewritings required to implement our catalogue. Thus, we extended the
in-place capabilities of ATL by creating a simple command meta-model to repre-
sent rewriting actions, which is later interpreted by a custom in-place engine. The
rationale of choosing ATL despite of its limitations for in-place transformations is
due to practical matters. First, we wanted to reuse the infrastructure provided by
bentō, which currently supports ATL as the language to develop templates. Sec-
ondly, given the motivation of integrating the simplifications within anATLyzer

it seems logical to use ATL to avoid extra dependencies. Finally, Henshin [2]
was also considered but developing rewritings like the ones of this work is not
very natural either, since one needs to specify every possible container type of
an expression that is going to be replaced, so that the replacement action can
be “statically” computed. Other languages like VIATRA [30] or EOL [18] have
action languages which are imperative which complicates its integration with
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bentō (i.e., it is not a declarative language and thus is difficult to write a HOT
for it, which is the main mechanism used by bentō to adapt transformations).

Listing 4 shows a simplification rule written in ATL. An if expression like if

true then thenExp else elseExp endif is rewritten to thenExp. The execution of the
rule creates a Replace command which indicates which element (source) needs to
be substituted by which element (target).
1 helper context OCL!OclExpression def: isTrue() : Boolean = false;

2 helper context OCL!BooleanExp def: isTrue() : Boolean = self.booleanSymbol;

3

4 rule removeIf {
5 from o : OCL!IfExp ( o.condition.isTrue() )

6 to a : ACT!Replace

7 do {
8 a.source ← o;

9 a.target ← o.thenExpression;

10 }
11 }

Listing 4. Simplification rule

After the execution of the transformation our in-place transformation engine
interprets and applies replacement commands over the source model. If there are
no applicable actions, another transformation of the catalogue is tried. Thus,
the in-place engine works by executing transformations and evaluating com-
mands using an iterative, as-long-as-possible algorithm. We support commands
for replacing elements, cloning and modifying pieces of abstract syntax tree and
setting properties. This simple approach is enough for our implementation needs.
All the transformations are executed in a pre-defined order, and termination has
to guaranteed by ensuring that the generated commands only reduce the given
expression. In this sense, it is possible to extend anATLyzer to enforce this
property, which is part of our future work.

4.3 Concept Design

The transformation template is a regular ATL transformation, typed against
Ecore meta-models which act as transformation concepts. A key element in a
generic component is the design of such concepts. Our framework requires three
concepts, which are depicted in Fig. 4. The OCL concept represents the elements
of the OCL language which will be subject to simplifications. The Typing concept
provides a mechanism to access typing information for OCL expressions, whereas
the Comparison concept provides a way to determine if two expressions are
equal. These latter two concepts are hybrid concepts, as defined in [16], since
they provide hook methods which will be implemented by each specialization.

OCL Concept. A concept should contain only the elements required by the
transformation template. This is intended to facilitate its binding when it is
going to be reused and to remove unnecessary complexity from the transforma-
tion template implementation. However, if we strictly use this approach to imple-
ment the catalogue, we would have many transformations whose concepts have
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OCL Concept (excerpt)                                 Typing concept                         Comparison concept

OclExpression

PropertyCallExp

NavExp Operation
CallExp

IteratorExp

source

1

name: String

<<singleton>>
ExprTyping

typeOf(OclExpression) : CType
modelName(VarDcl) : String

CType

CClass DataType

superTypes

*

<<singleton>>
Comparator

same(OclExpression, 
OclExpression) : Boolean

Fig. 4. Concepts used in the simplification component.

many shared elements. For example, all simplification transformations which use
operators would need to define a new OperatorCallExp class. It is thus impractical
to build each concept separately. Moreover, it would require to have as many
bindings as reused transformations. Therefore, we have designed a superimposed
concept which contains all the elements required by the transformations of the
catalogue. From this concept we automatically extract the minimal concept of
each transformation using the approach described in [9], so that each individual
rewriting could be used in isolation if needed. Please note that the superimposed
OCL concept (i.e., it merges all the concepts used by the individual rewritings)
do not necessarily need to be exactly like the OCL specification, but it may have
less elements which are not handled by the simplifications (e.g., the property
name in a navigation expression is irrelevant, while the name of an iterator is
important). The OCL concept currently implemented contains only 20 classes
and 27 features. This is much smaller than the 85 classes of the ATL meta-model
and the 54 classes of the EMF/OCL meta-model.

Typing Concept. There are a number of transformations in the catalogue
which require access to the types of the abstract syntax of the OCL expression.
One alternative would be to extend the OCL concept with elements to repre-
sent typing information. However, this approach is not flexible enough since it
assumes that concrete OCL meta-models have their expressions annotated with
types. An alternative design is to have a separate concept with operations to
retrieve the typing information. Each concrete binding is in charge of providing
access the typing information computed by underlying OCL type checker. This
design is, to some extent, similar to the idea of mirrors [3].

Comparison Concept. The comparison concept is also a hybrid concept, but
it addresses the problem of comparing two OCL expressions to determine if they
are equivalent. The concept does not prescribe any mechanism to compare the
expressions, but the implementations may decide to use simple approaches (e.g.,
comparing string serializations) or more complex ones (e.g., clone detection).
The only requirement is that it must be reliable, in the sense that it cannot be
heuristic.
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5 Catalogue

This section describes through examples the most relevant simplifications cur-
rently implemented in the catalogue. The catalogue has been created based on
the author’s experience building anATLyzer, but it can be easily extended as
new needs arise from other tools.

5.1 Literal Simplifications

This set of simplifications replaces operations over primitive values by their
results. For instance, an operation like 1 < 0 is replaced by false by applying
a constant folding simplification. This category also covers the simplification of
collection expressions like Set { Set { 1 } }→flatten() ⇒ Set{1}.

It is worth noting that this kind of expressions will be rarely written by a
developer, but are likely to appear in synthesized OCL code, hence the need for
the catalogue in this setting.

5.2 Iterators

This set of simplifications deals with iterator expressions which can be removed
or whose result can be computed at compile time. The following listing shows the
three simplifications implemented up to now. The simplifications for select also
apply to reject just by swapping the behaviour of True select and False select.

Original

−− Unnecessary collect

Place.allInstances()→collect(p | p)→select(p | ...)

−− True select

Place.allInstances()→select(p | true)→collect(p | ...)

−− True forAll

Place.allInstances()→forAll(p | true)

Simplified

−− Unnecessary collect

Place.allInstances()→select(p | ...)

−− True select

Place.allInstances()→collect(p | ...)

−− True forAll

true

5.3 Noisy Let Expressions

Let expressions are useful when a large expression is used many times, otherwise
it tends to introduce unnecessary noise. This simplification takes into account
the size of the assigned expression and the number of usages in order to remove
such let expressions. The following listing shows an example.

Original

let src = arc.source in

let tgt = arc.target in

src.oclIsKindOf(PNML!Place) and

tgt.oclIsKindOf(PNML!Transition)

Simplified

arc.source.oclIsKindOf(PNML!Place) and

arc.target.oclIsKindOf(PNML!Transition)

The main concern with this simplification is that it may break well-crafted
code, when the developer intended to organize a set of logical steps into let
variables. Thus, the simplification should only be applied for synthesized code
which is known to generate repetitive let expressions.
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5.4 Type Comparison Simplifications

These simplifications are aimed at removing unnecessary type comparisons using
oclIsKindOf/oclIsTypeOf or to simplify a complex chain of type comparisons into
a simpler one.

Remove If-Then Type Comparison. An example of this simplification has
been shown in Fig. 2 and Listing 3. If the condition cond of an if expression is a
single type comparison in the form expr.oclIsKindOf(T) we check if typeOf(expr)
= T. In such case, we can safely replace the whole expression with true, which
may enable other simplifications (see for instance if-else elimination below).

Full Subclass Checking to Supertype. This simplification takes a chain of or
expressions in which each subexpression checks the type over the same variable
and tries to simplify it to a unique type check over a common supertype.

For example, the listing below (left) is intended to rule out arcs from the
contents reference. This simplification recognizes that all subtypes of NetCon-

tentElement are checked, and the simpler n.oclIsKindOf(PNML!NetContentElement)

can be used instead.

Original

aPetriNet.contents→select(n |
n.oclIsKindOf(PNML!Place) or

n.oclIsKindOf(PNML!Transition))

Simplified

aPetriNet.contents→select(n |
n.oclIsKindOf(PNML!NetContentElement))

The application condition of this simplification is relatively complex to imple-
ment, hence the advantage of implementing it in a reusable module. A binary
operator must be composed by only “or” sub-expressions and each subexpres-
sion must apply an oclIsKindOf operator to the same source expression. Then,
we extract the set of types used as arguments of the oclIsKindOf operations
(types). From this set we obtain the most general common supertype (sup)
of all of these classes (if any), with the constraint that all subclasses of such
supertype are “covered” by the classes in types, that is the following OCL con-
straint must be satisfied: sup.allSubclasses→forAll(sub | types→forAll(c | c = sub or

c.superTypes→includes(sub))).
In the example, the most general supertype satisfying this constraint is Net-

ContentElement. This is so because its set of subtypes is completely covered by
Transition and Place. In contrast, NetContent is not a valid result because Arc is
not in the set of types compared by the expression. One concern with this sim-
plification is that for some cases explicitly checking the subtypes could be more
readable than the simplified code, since it evokes more clearly the vocabulary of
the transformation meta-model. An alternative is to parameterize the simplifica-
tion with a threshold indicating the minimum number of “oclIsKindOf checks”
that need to exists in the original code to trigger it.

5.5 Unshort-Circuiting

OCL does not have short circuit for boolean expressions. Thus, automatic syn-
thesis procedures need to take special care to produce safe boolean expressions.
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For instance, the expression arc.source.oclIsKindOf(PNML!Place) and arc.source.tokens

is unsafe because the tokens feature will be accessed regardless of the result of
the first type comparison (i.e., if arc.source is a Transition). Hence, a runtime error
will be raised. The usual solution is to write nested ifs, one for each boolean
sub-expression, which typically leads to unreadable code. In the case of syn-
thesized code the situation is exacerbated since it is likely that the synthesizer
implementation always generate nested ifs to stay on the safe side.

For example, the following listing (left) shows a piece of code in which short
circuit evaluation is not actually necessary because the name feature is defined
in a superclass of Place. Therefore, it can be simplified as shown in the right part
of the listing.

Original

if arc.source.oclIsKindOf(PNML!Place) then

if arc.source.name <> OclUndefined then

’plc’ + arc.source.name

else

’no−name’

endif

else

’no−name’

endif

Simplified

if arc.source.oclIsKindOf(PNML!Place) and

arc.source.name <> OclUndefined then

’plc’ + arc.source.name

else

’no−name’

endif

Please note that this simplification makes use of the Comparison concept to
be able reason more accurately about what can be simplified and the Typing
concept to check typing correctness. Another variants of this simplification can
also be implemented, for instance for checking OclUndefined conditions.

5.6 Conditionals

Remove Dead If/Else Branch. This is the most basic simplification of con-
ditionals. Given a true or a false literal in the condition, the corresponding then
or else parts are used to replace the conditional in the AST. For instance, if true
then ‘a’ else ‘b’ endif can be simplified to ‘a’.

Remove Equals Condition and Then Expression. A simple but useful
simplification is recognizing that the condition and the “then” branch (or else
branch) of an if expression are the same, and thus they always yield the same
result.

Original

if place.tokens→size() = 1 then

place.tokens→size() = 1

else

false

endif

Simplified

place.tokens→size() = 1

−− If the else branch of the original expression

−− is true, then whole expression can be

−− replaced by true

If Fusion. This simplification takes a binary operation between the results of
two if expressions whose conditions are the same. In this case, it is safe to inline
the then and else branches of the second expressions in the first one, as in the
following example:
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Original

if elem.oclIsKindOf(PN!Place) then

elem.tokens→size() > 1

else false endif

and

if elem.oclIsKindOf(PN!Place) then

not elem.name.oclIsUndefined()

else true endif

Simplified

if elem.oclIsKindOf(PN!Place) then

elem.tokens→size() > 1 and

not elem.name.oclIsUndefined()

else

false and true

endif

The simplified version is more concise, and at the same time enables more
simplification opportunities.

6 Evaluation

This section reports the evaluation of our approach. We have evaluated whether
the simplifications are able to reduce the complexity of expressions synthesized
automatically (usefulness) and to what extent it is possible to reuse the cata-
logue (reusability) for different OCL dialects, reflecting on the advantages and
limitations of the approach.

6.1 Usefulness

We have applied the simplifications of the catalogue to two different kinds of
automatically generated OCL constraints, both for the ATL variant of OCL.
The first experiment consisted on simplifying OCL preconditions generated from
target invariants of model transformations as described in [14]. We simplified
24 constraints coming from invariants defined in three transformations used by
existing literature HSM2FSM, ER2REL and Factories2PetriNets. The second
experiment applied the simplifications to the quick fixes generated by anAT-

Lyzer for the 100 transformations of the ATL Zoo, focussing on those quick
fixes which generate rule filters, binding filters or pre-conditions since they are
the most interesting in terms of complexity of the generated expressions. Table 1
summarizes the results of the experiments. The complete data, and the scripts
and instructions to reproduce the experiments are available at the following
URL: http://sanchezcuadrado.es/exp/beautyocl-ecmfa18.

For the preconditions, a total of 440 simplifications were applied to 24 expres-
sions. In average, 18.3 simplifications were applied for each expression, however
the median was 5 simplifications. This is because some expressions were partic-
ularly large and involved more simplifications. For instance, two of the expres-
sions had more than 3000 nodes, which enabled the application of more than
150 simplifications for each one. In the quick fixes experiment a total of 6562
simplifications were applied to 1729 expressions. We express the simplification
power of the catalogue (shown in the “% nodes removed by simplifications” row)
by counting the number of nodes of the AST before and after the simplifications.
In both experiments the obtained reduction is similar, around 20% in average
and 16% in the median.

http://sanchezcuadrado.es/exp/beautyocl-ecmfa18
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Table 1. Summary of the results of the experiments.

Pre-conditions Quick fixes

#Simp. % Avg. Median #Simp. % Avg. Median

Literals 6 1.4% - - 2397 36.5% - -

Iterators 6 1.4% - - 712 10.6% - -

Noisy let 0 0.0% - - 177 2.7% - -

Type comparison 38 8.6% - - 31 0.5% - -

Unshort-circuiting 362 82.3% - - 63 0.9% - -

Conditionals 28 6.6% - - 3182 48.5% - -

Total simplifications 404 100% 18.3 5 6562 100% 3.8 2

% of nodes removed by simplifications 19.3% 16.8% 33.5% 15.8%

Regarding which simplification categories are more useful, the results are
disparate. Some simplifications occur much more often in one experiment than in
the other. For instance, simplifications for literals and conditionals are very useful
for quick fixes, whereas unshort-circuiting is more useful for pre-conditions. This
suggests that simplifications are to some extent specific to the kind of generated
code and the method used to generate such code.

At first glance some of the simplifications are quite simple, others are most
complex (e.g., those based on the typing and comparison concepts). Combining
all of them, the user gets a much better experience. For instance, the follow-
ing listing shows the situation before and after the use of BeautyOCL. The
simplifications applied has been the following: (1) replacing the oclIsKindOf
operation by true, then (2) replacing the if expression by its condition and
finally (3) simplifying the remaining expr and expr by expr where expr = not

i.hasLiteralValue.oclIsUndefined(). As can be observed the result is much more read-
able. In other evaluated expressions the results are not so “beauty”, but the
user would expect an even simpler expression. Nevertheless, the results are
very promising, and it is expected to have very good results as the catalogue
grows.

Original

if not i.hasLiteralValue.oclIsUndefined() then −− #2

i.hasLiteralValue.oclIsKindOf(RDM!Literal) −− #1

else

false

endif

and not i.hasLiteralValue.oclIsUndefined() −− #3

Simplified

not i.hasLiteralValue.oclIsUndefined()

The catalogue instantiated for ATL has been integrated into anATLyzer

through a dedicated extension point, so that the generated quick fixes are auto-
matically simplified. Moreover, a quick assist to let the user simplify a piece of
expression on demand is also available. A screencast demonstrating this feature
in more detail is available at https://anatlyzer.github.io/screencasts/.

https://anatlyzer.github.io/screencasts/
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Regarding threats to validity, the main threat to the internal validity of these
experiments is that we have only used code synthesized by AnATLyzer. The main
reason is the lack of availability of similar tools for other OCL variants. Another
issue is that we use the number of nodes to measure the improvement of an
expression after simplifications. This metric can be misleading sometimes. For
instance, the removal of let expressions generates a simpler expression, but it can
introduce a few more nodes. A controlled experiment with final users is required
to effectively assess this question. A threat to the external validity is the number
of OCL variants reused. Variants like Epsilon or USE are not considered due to
not using Ecore meta-models. This is so because our simplifications work at the
abstract syntax level, specified with Ecore. Please note that many of them are
complex transformations (e.g., use type information or compare sub-expressions)
which cannot be addressed with text-based transformations.

6.2 Reusability

The catalogue of simplifications has been designed with reusability in mind in
order to be able to easily instantiate the catalogue for a specific OCL variant.
To assess to what extent this is possible we have instantiated the component for
ATL/OCL, EMF/OCL and SimpleOCL.

The catalogue was first tested and debugged by writing a binding to ATL.
The binding was relatively straightforward. The binding for EMF/OCL was
also simple except for one important issue. The designed concept expects that an
OperatorExp has a name to identify the concrete operator. However, in EMF/OCL
an operation is identified by a pointer to an EOperation defined in the standard
OCL meta-model. Our binding for the target model (i.e., to support the cre-
ation of operator expressions) is not powerful enough to handle this natively.
The solution to overcome this has been to extend the typing concept with a
“setOperation” so that it is possible to programmatically find and assign the
proper EOperation if needed. For SimpleOCL the main limitation is that it does
not compute any typing information, and thus we could not reuse those sim-
plifications making use of the typing concept. This means that the instantiated
catalogue for SimpleOCL needs to be smaller.

Regarding the size of the implementations, the ATL transformation templates
consists of 791 SLOCs, whereas the bindings for ATL, EMF/OCL and Sim-
pleOCL are 38, 49 and 48 SLOCs respectively. The bindings are relatively simple
mappings specifications. These figures provide some evidence of the advantage
of building transformations as reusable components.

Altogether, the catalogue has proved useful to optimise OCL expressions in
terms of their size, thus having simpler and perhaps more beautiful expressions.
The effort invested in the creation of the catalogue is amortized by allowing
multiple instantiations. Moreover, this work is also non-trivial case study of the
application of genericity techniques to model transformations, which can be a
baseline to improve these techniques.
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7 Conclusions

In this paper we have presented a catalogue of OCL simplifications for OCL
expressions, which targets code which has been automatically generated. This
catalogue has been implemented as a generic transformation component, with
the aim of making it applicable to any OCL variant based on Ecore. The cur-
rent implementation fully supports ATL and has also been partially instantiated
for EMF/OCL and SimpleOCL. The evaluation shows that the proposed sim-
plifications are useful and they can generally reduce the size of the expressions
around 30%. As future works we plan to add new simplifications to the catalogue
in order to be able to reduce generated expressions by anATLyzer even more.
Also, we would like to extend bentō to allow using rewriting languages like Strat-
ego [4] to develop the transformation templates for the generic transformation
components. Another line of work is to reflect on how to optimise other kinds of
MDE artefacts generated automatically, like models or meta-models.

Acknowledgements. Work funded by the Spanish MINECO TIN2015-73968-JIN
(AEI/FEDER/UE).
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Abstract. Uncertainty is an inherent property of any measure or esti-
mation performed in any physical setting, and therefore it needs to be
considered when modeling systems that manage real data. Although
several modeling languages permit the representation of measurement
uncertainty for describing certain system attributes, these aspects are
not normally incorporated into their type systems. Thus, operating with
uncertain values and propagating uncertainty are normally cumbersome
processes, difficult to achieve at the model level. This paper proposes an
extension of OCL and UML datatypes to incorporate data uncertainty
coming from physical measurements or user estimations into the models,
along with the set of operations defined for the values of these types.

1 Introduction

It has been claimed that the expressiveness of a model is at least as important
as the formality of its expression [19]. This expressiveness is determined by the
suitability of the language for describing the concepts of the problem domain or
for implementing the design. While in software engineering there exists a variety
of modeling languages tailored at addressing different problems, they may not
be well suited for capturing some key aspects of the real world [3,17,27], and in
particular for managing data uncertainty in a natural manner. In this respect, the
emergence of Cyber-Physical Systems (CPS) [3] and the Internet of Things (IoT),
as examples of systems that have to interact with the physical world, has made
evident the need to faithfully represent some extra-functional properties of the
modeled systems and their elements, as well as to overcome current limitations
of existing modeling languages and tools.

One aspect of particular relevance is related to the uncertainty of the
attribute values of the modeled elements, specially when dealing with certain
quality characteristics such as precision, performance or accuracy. Data uncer-
tainty can come from different reasons, including variability of input variables,
numerical errors or approximations of some parameters, observation errors, mea-
surement errors, or simply lack of knowledge of the true behavior of the sys-
tem or its underlying physics [12]. On other occasions estimations are needed
c© Springer International Publishing AG, part of Springer Nature 2018
A. Pierantonio and S. Trujillo (Eds.): ECMFA 2018, LNCS 10890, pp. 46–62, 2018.
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because the exact values cannot be obtained since the associated properties are
not directly measurable or accessible, values are too costly to measure, or simply
because they are unknown.

In a previous paper [28] we presented an extension of the OCL/UML datatype
Real to deal with measurement uncertainty of numerical values, by incorporating
their associated uncertainty [12,13]. However, we soon realized that this was not
enough: data uncertainty rapidly extends to all OCL/UML datatypes since it is
not just a matter of propagating the uncertainty through the arithmetical oper-
ations, but also of dealing with the uncertainty when we compare two uncertain
numbers, or need to make a decision about a collection of elements. This requires
the definition of uncertain Booleans—values that are true or false with a given
probability (level of confidence). Similarly, integers should also be endowed with
uncertainty, e.g. when they are used to represent timestamps in milliseconds,
and we need to deal with imprecise clocks. This extends to collections too (e.g.,
a forAll statement in a set of uncertain values), and to datatypes operations.

This paper shows how measurement uncertainty can be incorporated into
OCL [21] primitive data types and their collections (and hence into UML [23],
since both languages share the same primitive types), by defining super-types
for them, as well as the set of operations defined on the values of these types.
Both analytical and approximate algorithms have been developed to implement
these operations. We provide a Java library and a native implementation in
USE [9,10].

This paper is structured as follows. First, Sect. 2 briefly introduces the con-
cepts related to measurement uncertainty that will be used throughout the paper.
Then, Sect. 3 describes our proposal and the algebra of operations on uncertain
values and the implementations we have developed for these operations. Section 4
illustrates some usage scenarios and applications of the proposal. Section 5 com-
pares our work to similar proposals. Finally, we conclude the paper in Sect. 6
with an outlook on future work.

2 Background

Uncertainty is the quality or state that involves imperfect and/or unknown infor-
mation. It applies to predictions of future events, estimations, physical measure-
ments, or unknown properties of a system [12].

Measurement uncertainty is the special kind of uncertainty that normally
affects model elements that represent properties of physical elements. It is defined
by the ISO VIM [14] as “a parameter, associated with the result of a measure-
ment, that characterizes the dispersion of the values that could reasonably be
attributed to the measurand.”

The Guide to the Expression of Uncertainty in Measurement (GUM) [12]
defines measurement uncertainty for Real numbers representing values of
attributes of physical entities, and states that they cannot be complete without
an expression of their uncertainty. Such an uncertainty is given by a confidence
interval, which can be expressed in terms of the standard uncertainty—i.e., the
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standard deviation of the measurements for such value. Therefore, a real number
x becomes a pair (x, u), also noted x ± u, that represents a random variable X
whose average is x and its standard deviation is u. For example, if X follows a
normal distribution N(x, u), we know that 68.3% of the values of X will be in
the interval [x − u, x + u].

The GUM framework also identifies two ways of evaluating the uncertainty
of a measurement, depending on whether the knowledge about the quantity X
is inferred from repeated measured values (“Type A evaluation of uncertainty”),
or scientific judgment or other information concerning the possible values of the
quantity (“Type B evaluation of uncertainty”).

In Type A evaluation of uncertainty, if X = {x1, . . . , xn} is the set of mea-
sured values, then the estimated value x is taken as the mean of these values,
and the associated uncertainty u as their experimental standard deviation, i.e.,
u2 = 1

(n−1)

∑n
i=1(xi − x)2 [12]. In Type B evaluation, uncertainty can also be

characterized by standard deviations, evaluated from assumed probability dis-
tributions based on experience or other information. For example, if we know or
assume that the values of X follow a Normal distribution, N(x, σ), then we take
u = σ. And if we can only assume a uniform or rectangular distribution of the
possible values of X, then x is taken as the midpoint of the interval, x = (a+b)/2,
and its associated variance as u2 = (b−a)2/12, and hence u = (b−a)/(2

√
3) [12].

In addition to the measure or estimation of individual attributes, in general
we need to combine them to produce an aggregated measure, or to calculate a
derived attribute. For example, to compute the area of a rectangle we need to
consider its height and its width, combining them by multiplication. The indi-
vidual uncertainties of the input quantities need to be combined too, to produce
the uncertainty of the result. This is known as the propagation of uncertainty,
or uncertainty analysis.

Uncertainty can also apply to Boolean values. For example, in order to imple-
ment equality and comparison of numerical values with uncertainty, the tradi-
tional values of true and false returned by boolean operators are no longer
enough. They now need to return numbers between 0 and 1 instead, repre-
senting the probabilities that one uncertain value is equal, less or greater than
other [20]. This leads to the definition of Uncertain Booleans, which are Boolean
values accompanied by the level of confidence that we assign to them. This is a
proper supertype of Boolean and its associated operations. Note that this app-
roach should not be confused with fuzzy logic: although both probability and
fuzzy logic represent degrees of subjective belief, fuzzy set theory uses the con-
cept of fuzzy set membership, i.e., how much an observation belongs to a vaguely
defined set, whilst probability theory uses the concept of subjective probability,
i.e., the likelihood of an event or condition [16].

3 Extension of OCL and UML DataTypes

Our goal is to extend the OCL and UML languages by declaring new types able to
express uncertainty. The benefits are twofold. First, uncertainty can be expressed
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Fig. 1. OCL types, from [21].

in models, i.e., our approach allows the user to define and manipulate uncertainty
in a high-level and platform-independent way. Second, information at the model
level can be transferred to standard algorithms and tools, so that these can also
manage uncertainty by dealing with complex types in their computations.

We propose to extend the OCL types, which are shown in Fig. 1, with uncer-
tainty information. Of course, not all of them need such information, such
as types oclInvalid, oclAny, or oclVoid. Other types, such as Class and
Tuple, are user-defined and composed of other heterogeneous types that will
convey such information, so there is no need to extend them at this level.
Similarly for TemplateParameter types, which refer to generic types. There-
fore, we need to cover the primitive types (Real, Integer, Boolean, String,
and UnlimitedNatural), collections (Set, Bag, OrderedSet, and Sequence) and
messages. In this paper we focus on the primitive types, excluding String, and
on collections. Uncertainty in Strings, Messages and Enumerations—which are
datatypes both in OCL and UML—is of different nature, and therefore their
extension is left for future work.

3.1 Extension Strategy

In order to extend the OCL/UML primitive types, we apply subtyping [18]. We
say that type A is a subtype of type B (noted A <: B), if all elements of A
belong to B, and the behavior of operations of B, when applied to elements of
A, is the same as those of A [1], i.e., they respect behavioral subtyping [18]. If
A <: B, then we say that B is a supertype of A.

For instance, Integer is a subtype of Real because every Integer num-
ber can be seen as a Real number whose decimal part is zero. Besides, Real
operations, when applied to Integer numbers, behave as those of type Integer.

Then, for extending a primitive OCL datatype T we will define a supertype
that incorporates information about the uncertainty of the values of T, and
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Table 1. New OCL primitive types and their operations.

Type Operations

UReal +, −, ∗, /, abs(), neg(), power(), sqrt(),

inv(), floor(), round(), <, ≤, >, ≥, =,

<>, uEquals(), uDistinct(), min(), max(),

toString(), toInteger(), toReal(),

toUInteger()

UInteger +, −, ∗, div, /, abs(), neg(), power(),

sqrt(), inv(), mod(), <, ≤, >, ≥, =, <>,

uEquals(), uDistinct(), min(), max()

toString(), toInteger(), toUReal(),

toUInteger()

UUnlimitedNatural +, ∗, div, /, mod, <, ≤, >, ≥, =, <>,

uEquals(), uDistinct(), min(), max(),

toString(), toInteger(), toUReal(),

toUInteger()

UBoolean not, and, or, xor, implies, equivalent, =,

<>, equalsC(), uEquals(), uDistinct(),

toString(), toBoolean(), toBooleanC()

defines the operations for the extended type, which are also applicable to the
base type—i.e., the subtype. This uncertainty information will vary depending
on whether the values of the base type are numbers (types Real, Integer and
UnlimitedNatural) or boolean values. In the first case, the uncertainty infor-
mation will record measurement uncertainty, and will be expressed as specified
in the GUM [12]. Thus, numbers of the extended types will be pairs (x, u), with
u the associated uncertainty (cf. Sects. 3.2–3.4). Operations will respect the sub-
typing relationship, ensuring safe-substitutability. In the case of booleans, the
uncertainty will be given by means of a real number between 0 and 1 that rep-
resents the assigned confidence (cf. Sect. 3.5).

Table 1 shows the newly defined types and their operations. Besides, the
subtyping relationships (<:) among the numeric datatypes—both standard and
extended—are shown below:

UnlimitedNatural\{*} <: Integer <: Real

<
:

<
:

<
:

UUnlimitedNatural\{*} <: UInteger <: UReal

In addition, Boolean <: UBoolean, completing the relationships. To extend col-
lections we will specify them using the corresponding extended operations of
their element types. The following sections describe these extensions in detail.
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3.2 Extending Type Real

To represent real values with measurement uncertainty, we make use of type
UReal and the algebra of operations defined on the values of that type, which
we presented in our previous work [28]. Basically, the values of UReal are pairs of
Real numbers X = (x, u). They determine the expected value (x) and associated
standard uncertainty (u) of a quantity X, as defined in Sect. 2. Real numbers x
are naturally injected into type UReal, corresponding to pairs (x, 0).

We have specified in OCL, and also implemented in Java, all the operations
on the values of type UReal, to allow modelers to use them for defining derived
attributes and for specifying operations and invariants in OCL and UML models.
Furthermore, to validate our proposal we have also extended the tool USE by
implementing the new types as native ones—see Sect. 3.7.

As an example, the following listing shows the specification of two of the
UReal operations1:
context UReal : : add ( r : UReal ) : UReal
post : r e s u l t . x = s e l f . x + r . x and

r e s u l t . u = ( s e l f . u∗ s e l f . u + r . u∗r . u ) . sqrt ( )
context UReal : : mult ( r : UReal ) : UReal
post : r e s u l t . x = ( s e l f . x∗r . x ) and

r e s u l t . u = ( r . u∗r . u∗ s e l f . x∗ s e l f . x + s e l f . u∗ s e l f . u∗r . x∗r . x ) . sqrt ( )

In addition to the traditional comparison operations between uncertain reals
(<, ≤, >, etc.), which return a Boolean value, comparisons between real num-
bers with uncertainty should return uncertain booleans. To illustrate this need,
consider the graphical representation of two pairs of uncertain reals shown in
Fig. 2. We can see that there is indeed an overlap (represented by the gray area):
it constitutes the probability that the two values are equal.

Then, given two UReal values x and y we define three real numbers (l, e, g)
that represent, respectively, the probability of x being less, equal or greater than
y. Of course, it is always the case that l+e+g = 1. For example, the triplet that
we obtain for values a and b (Fig. 2a) is the following: (0.893, 0.106, 1.11 ·10−16).
This means that a < b with probability 0.893; a = b with probability 0.106, and
a > b with a probability 1.11 · 10−16. Similarly, the triplet for c and d (Fig. 2b)
is: (0.152, 0.754, 0.094). Note that these 3 numbers correspond to the three areas
in which the curve that represents the first of the values can be divided (this is
clearer in Fig. 2b).

All this has been specified in OCL using an auxiliary operation on type UReal
called calculate(r:UReal) that returns a tuple with the triplet. With it, the
specification of comparison operations between UReal numbers is as follows (lt
and gt mean lower/greater than, le and ge mean lower/greater or equal than, b
and c conform the UBoolean type, as explained in Sect. 3.5).

1 Operations on basic datatypes normally use infix notation (e.g., x + y, a < b,
P and Q). This is the notation that we already support in our USE implemen-
tation for the newly defined types (UReal, UBoolean, etc.), see Sect. 3.7. However,
other languages that we have used to implement these new types (e.g., Java) do
not support infix notation. Therefore, in the following we will use either an infix
or prefix notation (x.add(y), a.lt(b), P.and(Q)) for the operations of these types,
depending on the context and on the particular language used.
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(a) Representation of a = 2.0±0.3 and
b = 2.5± 0.25.

(b) Representation of c = 1.0±0.5 and
d = 1.25± 0.75.

Fig. 2. Graphical representation of UReal values.

context UReal : : lt ( r : UReal ) : UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c = s e l f . calculate ( r ) . l )

context UReal : : le ( r : UReal ) : UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c=l et x : Tuple ( l : Real , e : Real , g : Real )=

s e l f . calculate ( r ) in x . l + x . e )
context UReal : : gt ( r : UReal ) : UBoolean

post : ( r e s u l t . b ) and ( r e s u l t . c=s e l f . calculate ( r ) . g )
context UReal : : ge ( r : UReal ) : UBoolean

post : ( r e s u l t . b ) and ( r e s u l t . c=l et x : Tuple ( l : Real , e : Real , g : Real )=
s e l f . calculate ( r ) in x . g + x . e )

context UReal : : uEquals ( r : UReal ) : UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c = s e l f . calculate ( r ) . e )

context UReal : : uDistinct ( r : UReal ) : UBoolean
post : ( r e s u l t . b ) and ( r e s u l t . c = 1.0 − s e l f . uEquals ( r ) )

The complete OCL specifications of these types and operations, and their
implementation in SOIL [4]—an OCL extension that permits the execution of
OCL specifications for simulation purposes—is available from [2], together with
the two implementations in Java that we provide, depending on whether we
assume values are independent and normally distributed—and therefore a closed
form expression can be used for the calculations—or using Monte-Carlo simula-
tions in case variables follow arbitrary distributions.

Table 1 shows the set of operations defined for type UReal, including conver-
sion operations to other OCL datatypes (both standard and extended).

3.3 Extending Type Integer

Type UInteger is the supertype of OCL type Integer that defines measure-
ment uncertainty. This is needed, for instance, when representing timestamps
of events, which are normally expressed in milliseconds, and may have some
uncertainty due to lack of clock accuracy.

This extension is straightforward. Every UInteger element is of the form
(n, u) with n an Integer value and u a Real value that represents the uncer-
tainty. The injection of any Integer value n into type UInteger is naturally
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defined by (n, 0). In turn, the behavior of UInteger operations is defined by lift-
ing the operation to type UReal, and then projecting the corresponding result, if
needed. This, together with the subtyping relationship Integer <: Real exist-
ing in OCL, ensures the proper subtyping relationship between Integer and
UInteger.

3.4 Extending Type UnlimitedNatural

An OCL UnlimitedNatural is either a non-negative Integer or a special unlim-
ited value (*) that represents the upper value of a multiplicity specification [21].

First, we have that UnlimitedNatural\{*} <: Integer, that is, excluding
value *, unlimited naturals are just non-negative integers. This special value *
cannot be used in any arithmetic operation with unlimited naturals, but only
with comparison (including max and min) operations. Although subtraction is
not defined in OCL for unlimited naturals, it can be naturally defined as a partial
operation, and hence lifted to type Integer (and hence to Real).

The extension of UnlimitedNatural to UUnlimitedNatural consists in
adding a new component to every unlimited natural value, with the expression
of its uncertainty. The uncertainty of special value * will always be 0.

Operations on UUnlimitedNatural values not involving special value * are
defined by lifting them to type UInteger. Comparison operations need to con-
sider the particular case of special value * (internally represented by “−1”), lift-
ing the operation to the supertype if this value is not involved. For illustration
purposes, the following listing shows the OCL specifications of the comparison
operations between UUnlimitedNatural values.
uEquals ( r : UUnlimitedNatural ) : UBoolean

post : r e s u l t = i f ( s e l f . x<>−1) and ( r . x<>−1) then
s e l f . toUInteger ( ) . uEquals ( r . toUInteger ( ) )

else ( s e l f . x=−1) and ( r . x=−1)
endif

lt ( r : UUnlimitedNatural ) : UBoolean
post : i f ( s e l f . x<>−1) and ( r . x<>−1) then

r e s u l t=s e l f . toUInteger ( ) . lt ( r . toUInteger ( ) )
else ( r e s u l t . b = (( s e l f . x<>−1) or ( r . x=−1)) ) and ( r e s u l t . c=1.0)
endif

le ( r : UUnlimitedNatural ) : UBoolean
post : r e s u l t=s e l f . lt ( r ) . or ( s e l f . equals ( r ) )

gt ( r : UUnlimitedNatural ) : UBoolean
post : r e s u l t = not s e l f . le ( r )

ge ( r : UUnlimitedNatural ) : UBoolean
post : r e s u l t = not s e l f . lt ( r )

max ( r : UUnlimitedNatural ) : UUnlimitedNatural
post : r e s u l t = i f ( s e l f . x=−1) then s e l f

else i f ( r . x=−1) then r
else i f r . lt ( s e l f ) . toBoolean ( ) then s e l f else r endif
endif

endif
min ( r : UUnlimitedNatural ) : UUnlimitedNatural

post : r e s u l t = i f ( s e l f . x=−1) then r
else i f ( r . x=−1) then s e l f

else i f r . lt ( s e l f ) . toBoolean ( ) then s e l f else r endif
endif

endif
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3.5 Extending Type Boolean

Type UBoolean is the supertype for type Boolean that adds uncertainty to its
values. In this case, the uncertainty does not refer to measurement uncertainty,
but to confidence. Thus, a UBoolean value is a pair (b, c) where b is a boolean
value (true, false) and c is a real number in the range [0 . . . 1], representing the
confidence that b is certain. Boolean values true and false are injected into the
supertype as (true, 1) and (false, 1), respectively.

A property of this representation is that (b, c) = (¬b, 1− c) for every boolean
value b. Then, in its internal representation we will use a canonical form, always
taking b the value of true and c the corresponding confidence. Using this canon-
ical form, a true value with 95% confidence is represented as (true, 0.95) and a
false value with 95% confidence as (true, 0.05).

The operations supported by type UBoolean extend those of type Boolean,
as defined by OCL [21]. We have defined the basic (not, and and or) and sec-
ondary operations (implies, equivalent and xor) of the traditional Boolean
algebra, extending them with uncertainty. Assuming all values are independent,
the following listing shows the specification of all the UBoolean type operations.
not ( ) : UBoolean

post : ( r e s u l t . b ) and
( r e s u l t . c = i f s e l f . b then 1− s e l f . c else s e l f . c endif )

and( b : UBoolean ) : UBoolean
post : l et C : Real = ( s e l f . c ∗ b . c ) in ( r e s u l t . b ) and

( r e s u l t . c=i f ( s e l f . b and b . b ) then C else (1−C ) endif )

or ( b : UBoolean ) : UBoolean
post : l et C : Real = ( s e l f . c + b . c − ( s e l f . c ∗ b . c ) ) in

( r e s u l t . b ) and
( r e s u l t . c = i f ( s e l f . b or b . b ) then C else (1−C ) endif )

implies ( b : UBoolean ) : UBoolean
post : l et C : Real = ( s e l f . c + b . c − ( s e l f . c ∗ b . c ) ) in

( r e s u l t . b ) and
( r e s u l t . c = i f ( s e l f . b implies b . b ) then C else (1−C ) endif )

equivalent ( b : UBoolean ) : UBoolean
post : l et C : Real = ( s e l f . c + b . c − ( s e l f . c ∗ b . c ) ) in

( r e s u l t . b ) and
( r e s u l t . c = i f ( s e l f . b implies b . b ) and ( b . b implies s e l f . b )

then C else (1−C ) endif )

xor ( b : UBoolean ) : UBoolean
post : r e s u l t = s e l f . uEquivalent ( b ) . not ( )

equals ( b : UBoolean ) : Boolean = ( s e l f . b=b . b ) and ( s e l f . c=b . c ) or
( s e l f . b=not b . b ) and ( s e l f . c=1−b . c )

equalsC ( b : UBoolean , c : Real ) : Boolean =
( s e l f . b=b . b ) and ( ( s e l f . c−b . c ) . abs ( )<=1−c )

distinct ( b : UBoolean ) : Boolean = not ( s e l f . equals ( b ) )

toBoolean ( ) : Boolean =
i f ( s e l f . c>=0.5) then ( s e l f . b ) else (not s e l f . b ) endif

toBooleanC ( c : Real ) : Boolean =
i f ( s e l f . c>=c ) then ( s e l f . b ) else (not s e l f . b ) endif
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We have kept ‘=’ (equals()) and ‘<>’ (distinct()) operations with their
usual semantics, that is, two UBoolean elements are the same if their boolean and
confidence values match. We have also extended the equals() operation with
the possibility of indicating a confidence threshold that both UBoolean values
are equal. Other identity operations (uEquals(), uDistinct()) compare two
UBoolean values, returning another UBoolean. Finally, some conversion opera-
tions allow UBoolean values to be converted into Boolean values, either approx-
imately, if the confidence is greater than or equal to 0.5, or by indicating a
threshold for the confidence.

We have also specified an alternative implementation of these operations, in
case no assumption can be made about the independence of the variables in a
boolean expression. It is based on the Monte-Carlo simulation method proposed
in [13] for Type-A measurement uncertainty in real numbers, adapted to boolean
values. Basically, every UBoolean value contains a sequence of Boolean values
that represent the sample obtained when measuring that value. Operations are
performed on the samples, and then b and c become just derived values. An
excerpt of such specification, showing only the first two operations, is shown in
the listing below. Note that an additional invariant, at the end of the listing,
requests that all samples should be of the same size.
class UBoolean_A

-- canonical form : triplets ( sample [] , true ,c) , with :
-- sample : the set of measured values obtained for self
-- c: the confidence that self is true

attributes
sample : Sequence ( Boolean )
b : Boolean derive : true
c : Real derive : s e l f . sample−>count ( true ) / s e l f . sample−>s ize ( )

not ( ) : UBoolean_A
post : ( Sequence { 1 . . s e l f . sample−>s ize}−>forAll ( i |

r e s u l t . sample−>at ( i )=not s e l f . sample−>at ( i ) ) )
and( b : UBoolean_A ) : UBoolean_A

post : ( Sequence { 1 . . s e l f . sample−>s ize}−>forAll ( i |
r e s u l t . sample−>at ( i )=( s e l f . sample−>at ( i ) and b . sample−>at ( i ) ) ) )

. . .
context UBoolean_A inv SameSampleSize :

UBoolean_A . allInstances−>forAll ( u1 , u2 | u1 . sample−>s ize=u2 . sample−>s ize )

Similar specifications (and their corresponding implementations in Java) are
also available for the rest of the extended types.

3.6 Extending OCL Collections

OCL collections can be easily extended based on the extended operators for
primitive datatypes. The following listing shows the specification of all collection
operations. Those that return a UBoolean value incorporate a ‘u’ at the start of
their name, to distinguish them from their boolean versions:
source−>uForAll ( e | P ( e ) ) : UBoolean
: := source−>iterate ( e , acc : UBoolean=UBoolean ( true , 1 ) | acc .and( P ( e ) ) )

source−>uExists ( e | P ( e ) ) : UBoolean
: := source−>iterate ( e , acc : UBoolean=UBoolean ( true , 0 ) | acc . or ( P ( e ) ) )
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source−>uIncludes ( e ) : UBoolean
: := source−>iterate ( v , acc : UBoolean=UBoolean ( true , 0 ) |

i f v . uEquals ( e ) . c > acc . c then v . uEquals ( e ) else acc endif )

source−>uIncludesAll ( collection ) : UBoolean
: := collection−>uForAll ( e | source−>uIncludes ( e ) )

source−>uExcludes ( e ) : UBoolean
: := source−>uForAll ( v | v . uEquals ( e ) . not ( ) )

source−>uExcludesAll ( collection ) : UBoolean
: := collection−>uForAll ( e | source−>uExcludes ( e ) )

source−>uSelect ( P ( ) : UBoolean ) : collection
: := source−>iterate ( v , acc : collection=collection {} |

i f P ( v ) . toBoolean ( ) then acc−>including ( v ) else acc endif )

source−>uSelect ( P ( ) : UBoolean , c :Real ) : collection
: := source−>iterate ( v , acc : collection=collection {} |

i f P ( v ) . toBooleanC ( c ) then acc−>including ( v ) else acc endif )

source−>uReject ( P ( ) : UBoolean ) : collection
: := source−>iterate ( v , acc : collection=collection {} |

i f P ( v ) . toBoolean ( ) then acc−>excluding ( v ) else acc endif )

source−>uReject ( P ( ) : UBoolean , c :Real ) : collection
: := source−>iterate ( v , acc : collection=collection {} |

i f P ( v ) . toBooleanC ( c ) then acc−>excluding ( v ) else acc endif )

source−>uCount ( e ) : Integer
: := source−>iterate ( v , acc : Integer=0 |

i f v . uEquals ( e ) . toBoolean ( ) then acc + 1 else acc endif )

source−>uCountC ( e , c ) : Integer
: := source−>iterate ( v , acc : Integer=0 |

i f v . uEquals ( e ) . toBooleanC ( c ) then acc + 1 else acc endif )

source−>uOne ( P ( ) : UBoolean ) : Boolean
: := source−>uSelect ( e | P ( e ) )−>size ( )=1

source−>uOneC ( P ( ) : UBoolean , c :Real ) : Boolean
: := source−>uSelect ( e | P ( e ) . toBooleanC ( c ) )−>size ( )=1

source−>uIsUnique ( P ( ) : UBoolean ) : UBoolean
: := source−>uForAll ( e | source−>uForAll ( v | e<>v implies

P ( e ) . uEquals ( P ( v ) . not ( ) ) ) )
source−>sum ( ) : UReal
: := source−>iterate ( v , acc : UReal=UReal ( 0 , 0 ) | acc . add ( v ) )

3.7 Implementation in USE

USE [9] is a modeling tool that allows the validation of OCL and UML models
by means of executing the UML models and checking its OCL constraints. The
tool is open-source and distributed under a GNU General Public License. To
validate our proposal we have extended the OCL/UML language in USE by
adding the previously described uncertain types as basic primitive data types,
as well as their native operations, so they become available to any OCL/UML
modeler. An example of how the new types can be effectively used is illustrated
in Sect. 4. The extended tool can be downloaded from our website2.
2 http://atenea.lcc.uma.es/downloads/uncertainOCLTypes/use-5.0.0 extended.zip.

http://atenea.lcc.uma.es/downloads/uncertainOCLTypes/use-5.0.0_extended.zip
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Fig. 3. UML class diagram for train example.

4 Applications

To illustrate our proposal, let us consider the system described by the metamodel
shown in Fig. 3. It is composed of people, trains and stations. Both persons and
trains move towards stations. For simplicity, we assume they all move in one
single direction. Monitors observe their movements, and record their last two
positions and the time in which they were observed. The speed is automatically
calculated from this information, as well as the expected time to arrive at the
station. For a person it is also important to know if she will be able to catch her
target train, i.e., reach the station at least 3 s before the train does. All these
calculations can be specified by means of OCL expressions:
context MovingObject : : speed :Real

derive : ( self . current . position−self . previous . position ) /
( self . current . time−self . previous . time )

context MovingObject : : timeToStation : Real
derive : ( self . headsTo . position−self . current . position ) / self . speed

context Person : : arrivesOnTime :Boolean
derive : ( self . timeToStation + 3) <= self . targetTrain . timeToStation

Figure 4 shows a UML object diagram with an example of such a system,
using conventional UML datatypes Real and Boolean.

Fig. 4. UML object diagram with Real and Boolean types.
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Fig. 5. UML object diagram with uncertain types.

Note, however, that in practice all these attributes and operations are subject
to uncertainty: positions and times are never 100% precise, and this imprecision
is propagated to derived values and estimated times. For example, suppose our
positioning system is correct up to one centimeter, and our clock has a precision
of 1 s. This can be captured in our model by simply updating the types of Real
and Boolean variables to UReal and UBoolean, respectively (this was already
showed in Fig. 3).

Figure 5 shows an object diagram with uncertain variables. Those variables
take into account the measurement uncertainty in the observations, and propa-
gate it through the computations. We can see how the expected train and user
arrival times at the station are T = 44.560 ± 10.581 and M = 40.045 ± 5.704,
respectively, and therefore their difference is T − M = −4.515 ± 12.374. Using a
UBoolean comparison operation, M ≤ T = (true, 0.887), which means that the
user will be able to arrive on time to catch the train with a probability of 0.887.
This is much more realistic than the first model, which probably was too näıve
to be of real use. Something worth noticing is that we only had to change the
types of the variables; all the OCL expressions that were used to compute the
values of derived attributes remained exactly the same.

5 Related Work

The need to represent and manipulate physical values in software models is
emerging, in particular units or real-time properties of cyber-physical sys-
tems [27]. For example, given that timing values are by nature uncertain (they
are very often estimates and/or measured by means of monitoring), the real-
time community is used to represent probability distributions and intervals for
timing properties, and their influence is evident in the MARTE Profile [22] and
SysML [24]. However, neither MARTE nor SysML support operations for per-
forming calculations with these values, they remain at the descriptive level.

Similarly, in [31], the authors propose a conceptual model, called Uncer-
tum, which is supported by a UML profile (UUP, the UML Uncertainty Profile)



Expressing Measurement Uncertainty in OCL/UML Datatypes 59

that enables including uncertainty in test models. Uncertum is based on the U-
Model [32], extending it for testing purposes. UUP is a very complete profile that
covers all different kinds of uncertainties, in particular measurement uncertainty.
Again, their focus, testing, is slightly different from ours, and they only need to
represent uncertainty but not to perform operations with it, and therefore they
also remain at a descriptive level.

Other works on Business Process Models (e.g., [15]) also consider uncertainty
when modeling the arrival time of clients, the availability of some resources or
the duration of some tasks. These works use probabilistic mass functions for
modeling the values of the corresponding attributes. We have preferred to use the
way defined by the GUM [12,13]. Apart from being simpler and widely adopted
by other engineering disciplines, it has the main benefit of permitting operations
on variables that do not follow any particular probabilistic distribution.

The work in [30] defines an XML-based modeling language for measurement
uncertainty evaluation based on the GUM, and a simulation framework for it.
This work can be in principle considered closely related to our proposal, but
the fact that it is not integrated with the type system of a mainstream model-
ing language (such as OCL or UML), and its low-level syntax (based on plain
XML) hindered its usability. Similarly, the work in [11] defines a datatype that
incorporates measurement uncertainty and provides some libraries to perform
computations with its values. The integration of these works with OCL/UML
models is not straightforward, and therefore their adoption and usage by UML
modelers might be limited. To the best of our knowledge these works are more
closely related to the mathematical libraries and tools already existing [29] for
propagating measurement uncertainty and operating with uncertain values, than
to our work.

Other works deal with model uncertainty, but focusing on aspects different
from the ones we have described here. For instance, on the uncertainty on the
models themselves and on the best models to use depending on the system
properties that we want to capture [19]. Other works deal with the uncertainty of
the design decisions, of the modeling process, or of the domain being modeled [5–
8,26]. We depart from them since we are concerned with the uncertainty of the
values of the quantities being measured, which is a different problem.

Finally, the OMG defined the Structured Metrics Meta-model (SMM) [25],
which is part of the Architecture Driven Modernization (ADM) effort, and aims
at representing measurement information related to software, its operation and
design. The SMM is a specification for the definition of measures and the rep-
resentation of their measurement results, including uncertainty, independently
of the representation of the measured entities. In this sense, our proposal can
be considered as a refinement of the SMM metamodel, particularizing it to the
domain of OCL and UML datatypes.

6 Conclusion and Future Work

In this paper we have focused on representing and managing measurement
uncertainty in OCL and UML software models, something required in order
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to precisely capture and manipulate some of the essential quality properties of
any physical system. We have extended the OCL datatypes and their related
operations with uncertainty information. OCL and Java libraries have also been
developed to implement the type and its operations in MDE settings. Our imple-
mentation is available on [2].

This work opens several interesting lines of research that we would like to
explore next. First, we would like to analyze how uncertainty could be added to
those OCL datatypes not covered here, namely Strings and Enumerations. As
mentioned earlier, the nature of their uncertainty seems to be rather different
from the rest. Second, we would like to provide mappings from our high-level
OCL/UML specifications to other specification and simulation languages and
tools, in particular Modelica and Simulink. The objective is to achieve a stepwise
refinement heterogeneous specification and simulation process, whereby high-
level specifications (and hence more lightweight) can be progressively refined into
more concrete, complete (and more complex) specifications. Finally, we would
like to further validate our proposal with different kinds of examples, checking
the expressiveness and applicability of this type of specifications.

Acknowledgements. This work has been partially supported by the Spanish Gov-
ernment under Grant TIN2014-52034-R. We would like to thank Martin Gogolla for
his help and support during the development of the USE tool extension, and to the
reviewers for their constructive comments and very valuable suggestions.

References

1. America, P.: Inheritance and subtyping in a parallel object-oriented language. In:
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Abstract. Metamodels are a central artifact of model-driven engineer-
ing. As they determine the structure of instance models, they are a foun-
dation for other model-driven artifacts such as model transformations,
code generators or model analyses. Therefore, the quality of metamodels
is important for any model-driven process. However, the implications of
metamodel design to other artifacts such as model analyses or model
transformations has barely been looked at through empirical research.
In this paper, we present an empirical study where we analyzed equiv-
alent model analyses and transformations for 19 different metamodels
of the same domain. The results indicate that metamodel design has a
strong influence to model analysis in terms of code metrics but only little
influence on model transformations targeting this metamodel.

1 Introduction

To aid the increased complexity of modern (software) systems, model-driven
engineering (MDE) helps by raising the level of abstraction. Models can be used
for analysis to conclude insights on the represented system or for transformation
into other artifacts, such as models of other metamodels or code.

In the Neurorobotics-platform developed in the scope of the Human Brain
Project (HBP), these dependent artifacts include not only editors, but also an
entire simulation platform where the connection between robots and neural net-
works is described in models [1,2]. As the HBP is designed for a total duration
of ten years, it is likely that the metamodel will degrade unless extra effort is
spent for its refactorings [3,4]. For such refactorings, we aim to measure their
success and potentially automate them.

A central artifact for the specification of model analyses or model transfor-
mations is the metamodel [5] as it defines the abstract syntax used by instances.
As a consequence, metamodel design has a strong impact on the design of model
analyses and model transformations, particularly because metamodel evolution
usually implies an evolution of these artifacts [6]. Therefore, ensuring the quality
of metamodels is very important.
c© Springer International Publishing AG, part of Springer Nature 2018
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As metamodels are formalizations of the domain they are describing, many
design decisions for the creation of the metamodel are already determined by
the domain. Nevertheless, many decisions are left to the metamodel developer,
opening a design space of metamodels, even for a fixed domain. The goal of our
research is to evaluate the metamodels of this design space for their quality. This
quality may be dependent on the particular domain, but we think there are also
notions of it that are domain-independent such as subtleties in the inheritance
and composition hierarchies.

There have been surprisingly few research activities on the actual implica-
tions of metamodel design to other artifacts: Does a concise metamodel imply
concise analyses? Does a modular metamodel support modularity of model trans-
formations? Does an understandable metamodel help to understand analyses?
Often, it is difficult to answer these questions, because especially the quality
of metamodels is not well captured by metrics. Further, as model analyses and
transformations are laborious to create, they are hardly created for multiple
semantically equivalent metamodels. This makes it very hard to reason on the
influence of metamodeling design decisions to these artifacts: We usually do not
know how transformations or analyses would look like if the metamodel was
designed differently. Existing empirical studies neglect the different intention of
transformations [7] or only look at correlations within the metamodel [8–10].

On the other hand, an automated quantitative measurement of quality is only
the second step: For many purposes, it suffices to know whether the intuitive
perception of quality correlates with code metrics of model transformations or
analyses: To what degree matches the intuition of what is good or bad in a
metamodel to what the metrics for later developed artifacts tell us.

In this paper, we present an empirical study to analyze and quantify the
design impact of 19 different metamodels of the same domain to 38 equivalent
model analyses (two for each metamodel) and 19 equivalent transformations that
each transform into one of the metamodels from a common source model. We
have reported correlations between the perceived quality or metric values of the
metamodels and metric values of model analyses or transformations.

The remainder of this paper is structured as follows: Sect. 2 explains the
experiment setup in more detail. Section 3 presents the resulting correlations.
Section 4 discusses insights drawn from the results. Section 5 discusses threats
to validity. Section 6 presents related work. Lastly, Sect. 7 describes future work
before Sect. 8 concludes the paper.

2 Method

The method for our study is sketched in Fig. 1.
At first, a group of participants create metamodels on a common domain

description. Then, we propose to let the participants review each others created
metamodels. In parallel, transformation developers and analysis developers may
develop artifacts based on the created metamodels. Here, it is very important
that analyses and transformations are created consistently across metamodels,



On the Influence of Metamodel Design to Analyses and Transformations 65

Study participants

Transformation 
developer

Metamodels

Transformations
(one for each metamodel)

Analyses
(two for each metamodel)

Metamodel Assessments

Metamodel metric results

Transformation metric results

Analysis metric results

Analysis 
developer

Correlations
Metamodels vs.
Transformations

Correlations
Metamodels vs. 

Analyses

Fig. 1. Method overview for the empirical study

which is why all transformations and all analyses should be written by the same
developers, ideally. Then, from each artifact, metamodels, analyses and trans-
formations, several metrics are computed that are correlated in a last step. In
the remainder of this section, we discuss each step in more detail.

2.1 Data Sources

In this section, the data sources of this experiment setup are described in detail.

Metamodels. The 19 metamodels we use originate from students attending a
practical course on model-driven engineering across multiple years. The students
were working in groups of two to create an Ecore-metamodel based on a tex-
tual domain description of component-based software architectures. This domain
description includes creating a component repository, assembling software archi-
tectures from components and deploying software architectures to resources. The
domain description is inspired by Palladio [11] that uses similar models to predict
non-functional properties of such systems. Palladio is taught in other courses so
that several students already knew the underlying concepts. In the experiment,
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we asked them to create Ecore metamodels for these concepts. For that, the
students used the tools provided by Eclipse.

Fig. 2. Characteristics of the created metamodels

Due to space limitations, we cannot describe the 19 metamodels in detail.
To still give an impression on the created metamodels, we depicted a histogram
of the number of classes in Fig. 2a. The metamodels contained between 15 and
45 classes with a peek between 25 and 30 classes. Further, we depicted the
average number of features per class in Fig. 2b, i.e. the number of attributes and
references, including those defined in base classes.

We did not publish the metamodels as they originate from homework assign-
ments of a practical course and unfortunately, we have not for a consent to
publish them.

Peer-Reviews. We captured the human perception of metamodel quality for
the metamodels in a controlled setting: We gave a questionnaire to participants
of the last edition of that practical course and asked the students to review 7
metamodels of their colleagues, making sure that nobody had to review their
own metamodel. The questionnaire that we used is publicly available online1.

The review of the metamodels was done by students in a controlled experi-
ment setting, though we allowed the students to collaborate on evaluating meta-
models assigned to them. However, the low level of experience with modeling
techniques means that the peer reviews rather reflect an intuitive feeling on the
metamodels rather than expert opinions.

Similar to previous experiments [9,10], we asked students to evaluate the
complexity, understandability, conciseness, modularity, consistency, complete-
ness and changeability of the metamodels. Further, students were asked to esti-
mate how easy it would be to create instances of this metamodel and how easy
it would be to specify model transformations. Lastly, they should evaluate the
overall quality. Complexity is asked as the degree in which a metamodel is not
complex. Therefore, a high value for complexity means that the metamodel is
simple. As the values obtained this way are basically intuitions, they are highly
subjective.
1 https://sdqweb.ipd.kit.edu/wiki/Metamodel Quality.

https://sdqweb.ipd.kit.edu/wiki/Metamodel_Quality
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Root =>
(from assemblyConnector in Root.Systems

.FirstOrDefault ().AssemblyConnectors
where !assemblyConnector.From.Provided

.Contains(assemblyConnector.ConnectedInterface) ||
!assemblyConnector.To.Required
.Contains(assemblyConnector.ConnectedInterface)

select assemblyConnector).Distinct ()

Listing 1. An exemplary analysis whether components are correctly connected

Analyses. Based on the metamodels, we created two model analyses and a
model transformation for each metamodel. The analyses compute violations to
the following validity rules:

Correct Connection of Assemblies. Assemblies, i.e. usages of components in
a software architecture, must be connected on the same interface. This inter-
face is required by the requiring component and provided by the providing
component.

Correct Allocation of Assemblies. Assemblies that are connected in the
software architecture must be deployed either to the same resource container
or there must be a link between the resource containers. Such a connection
exists because the component of one assembly requires an interface provided
by the component of the other assembly.

We are aware that validation constraints are only one particular kind of
analyses. In the domain that we studied, they seem to us as a good compromise
between simplicity (the analyses have to be implemented for each metamodel)
and non-trivial complexity.

All model analyses are implemented C# in the query syntax, based on meta-
model representations using NMF [12]. As argued previously by Akehurst et
al. [13], C# is equivalent to OCL. Therefore, we expect that the results for
analyses written in the C# query syntax should generalize to OCL. However,
the usage of C# allows us to use the code metric implementations from Visual
Studio to correlate them to metamodel properties.

As two examples, we depicted exemplary analyses in Listings 1 and 2 (for
MM15).

Both model analysis tasks are rather simple and therefore solvable in a few
lines of code. The solutions for the query whether assemblies are correctly con-
tained ranged from 6 to 25 lines of code. The solutions for the allocation query
ranged from 17 to 62 lines of code.

All analyses and transformations were created by two students in order to
reduce the influence of the individual analysis developer. After all analyses and
transformations were written, all of them were refactored to minimize learning
effects.
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Root =>
(from connector in Root.Systems

.FirstOrDefault ().AssemblyConnectors
from requiringAllocation in Root.Allocations

.FirstOrDefault ().AllocationContexts
where requiringAllocation.AllocatedContext == connector.From
from providingAllocation in Root.Allocations

.FirstOrDefault ().AllocationContexts
where providingAllocation.AllocatedContext == connector.To &&

providingAllocation.Container != requiringAllocation.Container &&
!Root.Environments.FirstOrDefault ().Links

.Any(link =>
link.Containers.Contains(providingAllocation.Container) &&
link.Containers.Contains( requiringAllocation.Container))

select connector).Distinct ()

Listing 2. An exemplary analysis whether components are correctly allocated

Transformations. For every metamodel, we also implemented a model trans-
formation from the much more detailed Palladio Component Model (PCM, the
metamodel used in Palladio) to that metamodel. PCM also describes compo-
nent repositories, software architecture and deployment of component-based soft-
ware architectures. However, PCM is a complex metamodel with more than 200
classes, as it supports the architecture-based quality prediction of component-
based systems. If a developer simply wants to take a look at the software archi-
tecture and deployment, a transformation to a simpler metamodel is appropriate.

As we always create a transformation from PCM, we vary the target meta-
model of the model transformation, not the source. The reason is that we assume
that the impact of metamodel design to model transformations from the meta-
model into another domain is quite similar to the impact that metamodel design
has on model analyses.

All model transformations have been implemented using ATL [14], one of the
most commonly used textual model transformation languages [15].

Because the created metamodels are mostly projections of PCM, many trans-
formation rules are essentially simple copy rules with filters. For example, we
depicted the transformation rule to transform assembly contexts from PCM to
MM15 in Listing 3.

2.2 Metrics

For a quantitative analysis, we capture metrics for each of the involved artifacts
– metamodels, analyses and transformations.

Metamodels. Although many studies have reported metrics for metamodels,
very few of them are empirically validated (cf. Sect. 6), making the selection
of metrics to some degree arbitrary. In this work, we use the adapted Sarkar
metrics for inheritance-based coupling (IC), association-based coupling (AC),
association-based coupling from opposite references (ACop), association-based
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rule AssemblyContext2AssemblyContext {
from
pcmAssemblyContext : PCM!AssemblyContext

to
assemblyContext : MM15!AssemblyContext(
name <- pcmAssemblyContext.entityName ,
instantiatedComponent <- pcmAssemblyContext.

encapsulatedComponent__AssemblyContext ,
provided <- pcmAssemblyContext. encapsulatedComponent__AssemblyContext

.providedRoles_InterfaceProvidingEntity
->select(role | role.oclIsKindOf(PCM!OperationProvidedRole))
->collect(role | role.providedInterface__OperationProvidedRole),

required <- pcmAssemblyContext. encapsulatedComponent__AssemblyContext
.requiredRoles_InterfaceRequiringEntity
->select(role | role.oclIsKindOf(PCM!OperationRequiredRole))
->collect(role | role.requiredInterface__OperationRequiredRole)

)
}

Listing 3. An exemplary transformation rule from PCM

coupling of composite references (ACcmp) and the class uniformity (CU) [10]2

and some basic metrics such as the number of classes (TNC), the number of
features (NF , attributes and references of a class, including inherited ones) and
the depth of inheritance (DIT ).

Analyses. For the analyses, we rely on widely accepted metrics: cyclomatic
complexity, class coupling and lines of code. Additionally, we use the Maintain-
ability index [16], a composite metric based on the Halstead effort, the lines
of code and the cyclomatic complexity. We use the implementations of these
metrics that ship with Visual Studio as the analyses are specified in C#3.

Transformations. For the ATL transformations, we use the metrics defined by
van Amstel [17]. However, some of these metrics rather measure the coding style
of the transformation developer such as the number of unused rules. Though
these metrics are useful for transformation development, we do not expect a
correlation of this metric to metamodel design. Therefore, we concentrate only
on the following metrics:

– The number of transformation rules
– The number of rule inheritance trees
– The mean number of bindings per rule
– The mean cyclomatic complexity of helpers.

These metrics are chosen because a correlation of them with metamodel qual-
ity seems reasonable and the metrics are sufficiently generic. We did not account
2 In [10], we also introduced an adapted version of module uniformity (MU) but we

discarded this metric as it showed major weaknesses.
3 In contrast to [16], Visual Studio rescales the maintainability index to fit into the

value range of 0 to 100.
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for metrics such as the number of abstract transformation rules or the depth of
rule inheritance trees simply because the model transformations that we used
as inputs hardly used abstract transformation rules and therefore, correlations
are rather random. However, we included the number of inheritance trees such
where transformation rules that share a common base rule are counted as one.

2.3 Analysis

For the analysis, we rely on a statistical tool: Pearson correlation indices. Because
these correlation indices require the random variables to be normal distributed,
we check this using Quartile-Quartile-plots (QQ-plots). QQ-plots print the quar-
tiles of a sample distribution against the quartiles of a normal distribution. If the
points appear on a line, the assumption of a normal distribution for the sample
data is reasonable.

Due to the low number of data points in our experiments, we do not control
for family-wise error rates. As a consequence, our results are not statistically
clear but only indicate trends. More empirical studies are necessary to confirm
the results of this paper to be sure on a good level of confidence.

3 Results

We divide the presentation of results into four parts: Correlations of model
transformation metrics and model analysis metrics to metamodel perception
and metamodel metrics. Due to space limitations, we only depict selected corre-
lations. However, the raw metric values, scripts used to obtain the correlations
and spreadsheets with all correlations are available online4.

3.1 Correlations Between Metamodel Perception and Model
Transformation Metrics

The correlations between the perceived quality evaluations from the students
and metrics for the model transformations are depicted in Table 1.

Very interesting is the fact that there are no significant correlations for Trans-
formation Creation with any of the considered transformation metrics (there are
also no significant correlations with any of the metrics not reported in Table 1).
We have two interpretations for this fact. Either, the impact of metamodel design
to model transformations is not well captured by the selected metrics or it is
not easy to estimate how good a metamodel is suited for the creation of model
transformations.

The strongest correlation between perceived metamodel quality and metrics
of the model transformations is the connection between complexity and the mean
cyclomatic complexity of helpers: A simple metamodel is correlated with a low
cyclomatic complexity of helpers, can be expressed with slightly less transfor-
mation rules that contain more bindings.
4 https://sdqweb.ipd.kit.edu/mediawiki-sdq-extern/images/a/a0/ECMFA2018Result

s.zip.

https://sdqweb.ipd.kit.edu/mediawiki-sdq-extern/images/a/a0/ECMFA2018Results.zip
https://sdqweb.ipd.kit.edu/mediawiki-sdq-extern/images/a/a0/ECMFA2018Results.zip
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Table 1. Correlations between model transformation metrics and perceived metamodel
quality

# Transformation
rules

# Rule
inheritance trees

Mean #
bindings

Mean helper
CC

Complexity −0.16 −0.10 0.39 −0.43

Understandability 0.20 0.27 0.38 −0.06

Conciseness 0.16 0.14 0.25 −0.17

Modularity 0.34 0.44 0.03 0.08

Consistency 0.07 0.04 0.13 0.12

Completeness −0.36 −0.20 0.17 0.33

Correctness −0.08 −0.02 −0.05 0.26

Changeability 0.07 0.14 0.13 0.10

Instance creation 0.00 −0.01 0.11 −0.13

Transformation
Creation

0.24 0.31 −0.16 −0.11

Overall quality 0.08 0.19 0.08 0.14

3.2 Correlations Between Metamodel Perception and Model
Analysis Metrics

The correlations between metamodel perception and model analysis metrics are
depicted in Table 2. In this table, we have printed correlations with an absolute
value higher than 0.5 in bold. For 19 observations, the threshold for a signifi-
cant (i.e. significantly larger than 0) correlation is 0.53 for a one-sided test at
confidence level 99% and 0.58 for the two-sided test. As mentioned above, we do
not take the family-wise error-rate into account and therefore, the results only
indicate trends.

We can see strong correlations (meaning that |�| > 0.5) from the metamodel
correctness to all of the selected code metrics for both analyses with the only
exception for class coupling in the allocation analysis. The reason for this corre-
lation is that metamodels perceived as incorrect often lack important navigation
links. Therefore, analyses based on these metamodels often use naming conven-
tions instead of references.

Furthermore, we have strong correlations between the overall quality and the
maintainability index. This correlation is very interesting as the maintainability
index is a very aggregated metric, similar to the overall quality of a metamodel
being an aggregate of the quality attributes. The fact that there is a correlation
between the two of them confirms the hypothesis that better metamodels make
model analysis easier, even though this connection is hard to grasp, at least in
terms of other quality attributes or code metrics, besides correctness.
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Table 2. Correlations between model analysis metrics and perceived metamodel qual-
ity. The analyses are abbreviated with Conn for the analysis for Correct Connection
of Assemblies and Alloc for the analysis Correct Allocation of Assemblies.

Analysis Class coupling Lines of code Maintainability
index

Cyclomatic
complexity

Alloc. Conn. Alloc. Conn. Alloc. Conn. Alloc. Conn.

Complexity 0.04 0.03 0.06 −0.17 0.09 0.10 −0.22 −0.16

Understandability −0.05 0.03 0.07 −0.04 0.11 0.08 −0.23 −0.03

Conciseness 0.20 −0.10 0.02 −0.22 0.07 0.27 −0.14 −0.21

Modularity −0.14 −0.03 0.03 −0.01 0.09 0.07 −0.14 −0.01

Consistency −0.25 −0.27 −0.34 −0.29 0.40 0.30 −0.36 −0.28

Completeness −0.46 −0.08 −0.18 −0.14 0.28 0.12 −0.28 −0.13

Correctness −0.32 −0.54 −0.54 −0.58 0.59 0.62 0.51 −0.57

Changeability −0.23 −0.16 −0.24 −0.20 0.35 0.18 −0.35 −0.19

Instance creation −0.08 −0.05 −0.11 −0.23 0.21 0.20 −0.25 −0.22

Transf. creation −0.33 −0.42 −0.13 −0.36 0.33 0.36 −0.41 −0.36

Overall quality −0.37 0.43 −0.43 −0.48 0.52 0.51 −0.50 −0.47

3.3 Correlations Between Metamodel Metrics and Model
Transformation Metrics

The correlations between the metrics from metamodels and model transforma-
tions are depicted in Table 3. Again, we have printed correlations with |�| > 0.5
in bold.

Table 3. Correlations between model transformation metrics and metamodel metrics

# Transf. rules Mean # bindings Mean helper CC

TNC −0.07 −0.12 0.82

DIT 0.04 0.17 0.36

NF 0.09 −0.16 −0.83

AC −0.40 −0.11 0.50

AC cmp −0.31 −0.29 0.43

AC op −0.28 −0.05 0.51

CU −0.24 0.01 −0.51

IC −0.41 −0.28 −0.03

Very interestingly, the cyclomatic complexity of the helpers correlates
strongly with the total number of classes, but strongly negative with the num-
ber of features. This is due to the different implementations of parameter types
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in the metamodels: While some metamodels implemented these types as enu-
merations (allowed by the domain description) while other implemented every
enumeration literal as a type. Because these types do not have any features, also
the average number of feature is lower for these metamodels. In the transfor-
mation, the helper implementation for the enumerations is a pre-initialized map
from which the corresponding enumeration entry can be obtained. This causes
a very low cyclomatic complexity whereas the implementation for metamodels
with explicit type classes requires a more elaborated control flow.

Another interesting, though not so strong correlation is between the Sarkar
coupling metrics AC or IC and the number of transformation rules, especially
because the correlation is negative: A metamodel with a higher coupling can be
transformed to with fewer rules. The inheritance-based coupling IC also corre-
lates with coefficient 0.43 with the average number of output pattern elements
of a transformation rule. Indeed, some of the metamodels are tightly coupled
such that the conceptual separation between a component repository, a system
and its deployment becomes meaningless as the classes are very intertwined. In
such a case, a single transformation rule handles the transformation of all these
concepts together.

However, fewer but larger rules also means that the connection between input
and output model elements gets blurred. Moreover, rules also act as a unit for
reuse, in particular for superimposition. This point of view also explains the
positive, yet not so strong correlation of perceived metamodel modularity and
the number of transformation rules and moreover the number of rule inheritance
trees.

3.4 Correlations Between Metamodel Metrics and Model Analysis
Metrics

The correlations between metamodel metrics and model analysis metrics are
depicted in Table 4.

The only correlation with |�| > 0.5 between metamodel metrics and metrics of
the model analyses is the negative correlation between the DIT of the metamodel
and lines of code in the analysis: A more extensive usage of inheritance goes along
with a reduction of the lines of code. This correlation is reasonable because
the increased usage of inheritance enables a unified transformation of model
elements. However, the correlation is only strong in the allocation analysis and
much weaker in the connection analysis.

4 Discussion

The fact that the manual metamodel assessments were done by students instead
of more trained experts in modeling technologies means that we essentially mea-
sure how intuitive the quality of model analyses and transformations can be
guessed from the metamodel. The fact that we did not see very strong and
significant correlations in many cases is therefore not surprising.
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Table 4. Correlations between model analysis metrics and metamodel metrics. The
analyses are abbreviated like in Table 2.

Analysis Class coupling Lines of code Maintainability
index

Cyclomatic
complexity

Alloc. Conn. Alloc. Conn. Alloc. Conn. Alloc. Conn.

TNC 0.00 0.28 −0.11 0.28 −0.02 −0.21 0.29 0.18

DIT −0.23 −0.20 −0.55 −0.28 0.47 0.33 −0.27 −0.27

NF −0.32 −0.41 −0.05 −0.32 0.14 0.23 −0.34 −0.24

AC −0.14 0.24 −0.23 0.14 0.24 −0.21 0.17 −0.17

AC cmp −0.08 0.34 −0.23 0.19 0.16 −0.28 0.21 −0.05

AC op 0.11 0.35 −0.15 0.10 0.12 −0.14 0.12 −0.05

CU 0.05 −0.18 −0.01 −0.23 0.06 0.14 −0.23 −0.15

IC 0.32 0.30 0.46 0.27 −0.45 −0.32 0.28 0.33

Furthermore, the correlations that we found often had explanations that are
very specific to the domain: The fact that complexity influenced helpers more
than transformation rules5 is presumably specific to our case of a transformation
between similar component models.

As shown for object-oriented design already [18], a higher DIT value even-
tually correlates with a fault probability, the fact that the DIT correlated with
shorter (in terms of lines of code) analyses is therefore probably due to the
experiment setup.

However, there are also connections that we think are to some degree inde-
pendent of our scenario:

– The fact that a more accurate (correct) metamodel simplifies navigation
through the model which in turn improves all code metrics of an analysis
is a connection that we think holds independent from our study. However, we
will have to repeat the study for other domains and other types of analysis
to verify this.

– Using an enumeration in case there is no additional information need simpli-
fies the analysis. In addition to the correlations, we think that a key advantage
here is that using an enumeration makes it very explicit that constants are
used, meanwhile this is not clear for classes that have no features: It is unclear
whether they should be treated as singletons or not.

– A high coupling in the metamodel makes model transformation rules in trans-
formations targeting that metamodel more complex as the target model ele-
ments are very intertwined. Whether the Sarkar metrics are a suitable choice
to control this coupling will have to be double-checked.

5 The metric set by van Amstel does not include a metric to measure the complexity
of model transformation rules, so we might have seen results if we had a proper
metric.
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Another very interesting finding is that while there is no model transforma-
tion metric that correlates strongly with the perception of any high-level quality
attribute, we have a strong correlation even between the most abstract overall
metamodel quality and very abstract code metrics such as the Maintainability
Index. This may indicate that whereas code metrics do a relatively good job in
capturing the complexity of code, this is not as much the case for model trans-
formations. Thus, we require more elaborate model transformation metrics to
better capture and thus predict the quality of a model transformation.

However, there is also another interpretation to this correlation, namely that
the quality of a metamodel simply has more implications to artifacts that con-
sume instances of it (such as model analyses) than to artifacts that produce
these instances (such as model transformations targeting this metamodel).

Interestingly, if we have a look at the correlations between metamodel metrics
and metrics for model transformations and model analyses, we see a different
picture: While there is only one stronger correlation of the metamodels to code,
we see plenty of them to model transformation metrics. We think that this is
because the metrics of model transformations and metamodels are somehow
closer together. A possible reason for this is that existing metamodel metrics are
as bad in characterizing metamodel quality as model transformation metrics are
for characterizing model transformation quality.

The results (the correlations) from this study will have to be reproduced at
least in another domain and for different types of analysis for the results to have
a more general applicability. Independently from the obtained correlations, they
do not imply causality. Therefore, the presented paper only is a starting point to
study the connections between metamodels and other artifacts in more depth.

5 Threats to Validity

As usual, we divide the threats to validity into internal and external validity.

5.1 Internal Validity

The participants in the study did not know how we wanted to analyze the peer-
reviews from the metamodels, nor did they know what analyses or transforma-
tions we wanted to create based on these metamodels. Therefore, we can exclude
a subject effect. For the correlation of metrics, such a subject effect is also clear.

We collected the metamodel reviews in a single session such that we can
exclude an influence of histories, maturation or mortality. For the creation of
the metamodels, these threats do not apply. The assignment of students to their
review assignments was done by random such that we can exclude a subject
effect from ourselves.

However, not all metamodels have been evaluated by all of the students as
evaluating a metamodel is also quite time-consuming. Further, we may have faced
an instrumentation or sequencing effect as the students evaluated the metamod-
els sequentially. However, we allowed the students to revoke edit their reviews
after they had started reviewing other metamodels to mitigate such an effect.
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Furthermore, the internal validity only affects the correlations of perceived
metamodel quality to the other metrics.

5.2 External Validity

All metamodels that we have analyzed come from the same domain. Further,
all analyses are in principle only two different analyses that essentially both
simple validation constraints. Therefore, we cannot claim that the results are
generalizable (cf. Sect. 4) for all domains and all analyses, but we think that the
results may be a good indicator for future research.

6 Related Work

To the best of our knowledge, the study by Di Rocco et al. [7] was the only
one yet to connect model transformations with metamodel metrics by means
of empirical research. However, their study ignores the different purpose of the
considered transformations. Furthermore, the relation of the analyzed metrics
to quality of metamodels or model transformations is unclear as the study was
only limited to correlations between metrics.

Most related work in the context of metamodel quality consists of adoptions
of metrics for UML class diagrams and object-oriented design. In prior work,
we have shown that this adoption is sometimes misleading as in the case of the
Sarkar metrics [10]. Others work very well [19]. However, these studies did not
consider model transformations or analysis.

Di Rocco et al. applied metrics onto a large set of metamodels [8]. Besides size
metrics, they also feature the number of isolated metaclasses and the number of
concrete immediately featureless metaclasses. Based on the characteristics they
draw conclusions about general characteristics of metamodels. However, to the
best of our knowledge, they did not correlate the metric results to any quality
attributes.

A more elaborate analysis of related work in the context of measuring meta-
model quality can be found in our previous work [10,19]. We do not repeat it
here due to space limitations.

7 Future Work

In the current form of the experiment, we were only able to relate the qual-
ity of metamodels to static properties of model analyses and transformations.
However, we are particularly interested also in the dynamic properties such as
runtime for an example model and response times to incremental updates. For
this, we only need to run the transformations and analyses incrementally. For
this, we plan to use NMF Expressions6 to incrementalize the analyses and
NMF Synchronizations to run the transformations incrementally [21].

6 See [20] for a usage example.
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Furthermore, though our results look promising, we require more data points,
in particular for more domains. Therefore, we aim to repeat the study in a
different domain.

Lastly, it would be interesting to what degree the results of this study were
different if we used expert opinions instead of student assessments for the meta-
model quality.

8 Conclusion

In this paper, we have presented an empirical study to evaluate the influence
of metamodel design to other artifacts, in particular model analyses and model
transformations. We see this study as a starting point for empirical research in
this direction in order to gain a better characterization of this connection and to
use insights from such empirical study to improve the metamodel design process.

Besides metamodel metrics, we used intuitive metamodel assessments done
by students to calculate correlations. Here, we see that the perception hardly
correlates with model transformation metrics, but there are strong correlations
with code metrics.

From the correlations between metamodel metrics and metrics of model anal-
yses or model transformations, we were able to detect several correlations that
we think apply independent of our experiment setup: More correct metamodels
makes model analysis easier and a high coupling of the metamodels causes fewer
but more complex rules in model transformations.

In general, the correlations between perceived metamodel quality and code
metrics for the model analyses were stronger than the correlations between per-
ceived metamodel quality and transformations targeting this metamodel. On the
contrary, metamodel metrics seem to correlate stronger to model transformation
metrics than they do to code metrics of the model analyses.

Because we had not enough data points to perform a family-wise error cor-
rection, these results have to be seen as preliminary and we look forward to
repeat this study and confirm the results in future research.
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Abstract. In rule-based approaches, a model transformation definition
tells how an instance of a source model should be transformed to an
instance of a target model. As these models undergo changes, model
transformations defined over these models may get out of sync. Restor-
ing conformance between model transformations and the models is a
complex and error prone task. In this paper, we propose a formal app-
roach to automatically co-evolve model transformations according to the
evolution of the models. The approach is based on encoding the model
transformation definition as a traceability model and the evolution of
the models as applications of graph transformation rules. These rules
are used to obtain an evolved traceability model from the original trace-
ability model. We will identify the criteria which need to be fulfilled in
order to make this automatic co-evolution possible. We provide a tool
support for this procedure, in which the evolved model transformation
definition is derived from the evolved traceability model.

1 Introduction

In Model-driven software engineering (MDSE) models are used to represent cer-
tain aspects of software systems. Model transformations are used to encode
model manipulations such as model translation, code-generation, behaviour def-
inition, etc. These transformations are usually specified as a set of rules which
tell how to transform instances of the source model to instances of the target
model. Although the levels of definition (model/metamodel level) and applica-
tion (instance/model level, resp.) of these transformations may vary in different
contexts, we stick to the term “model transformation”. That is, the model to
which the transformation is applied might be located at any of the levels – M0,
M1, M2, etc. – in a metamodelling hierarchy.
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As model evolution is inevitable due to new regulations, evolution, refactor-
ing, changes in requirements’ specifications, etc., model transformations would
also need to co-evolve in order to work properly on the new versions of the mod-
els [13,20,23,24,27,32]. The modeller can of course change the transformations
manually by inspecting the model evolution. However, this procedure is based
on individual skills and, like any other refactoring activity, presents intrinsic
difficulties as it is error-prone and tedious if performed without automation [6].
Additionally, the ways a model transformation can co-evolve is not unique since
its validity can be restored through different co-evolution strategies, i.e., differ-
ent adaptations can be derived from the model evolution. Moreover, it is crucial
that the modeller is able to specify the particular evolution strategy she has in
mind in order to have a uniform and consistent co-evolution of the artefacts.

M1
T ��

ev1

��

�

co−ev

��

M2

ev2

��
M

′
1

T ′
�� M

′
2

This diagram depicts the model evolution and
model transformation co-evolution scenario. The mod-
els M1 and M2 represent the original source and target
models which we start with, respectively. The map-
ping T from M1 to M2 represent the original model
transformation definition. The model M

′
1 represents

the new version of M1, the same goes for M
′
2, while the mappings ev1 and ev2

represent the evolution of the original models. The mapping co − ev represents
the transformation co-evolution. In this paper, we consider the scenario where
the source model M1 is changed. The case where M2 changes, or where both M1

and M2 change, are left for future work.
We encode the transformation definition T as traceability mapping [8] which

we will represent as a traceability model. A traceability mapping is a set of
traceability links between the models, which may be directly executed [12,25,
26], or used for automatic transformation rule generation [7]. For the formal
semantics of traceability mappings we rely on Kleisli-mappings [9], which is
a categorical construction consisting of two steps: first a derived instance is
created by querying the source instance, then, the target instance is extracted
as a retyping of the augmented instance. Although we focus our examples on rule
based model transformations which are defined in ATL [16] due to its built-in
support for traceability mapping creation, the general procedure can be applied
to other transformation definition approaches. The expressiveness of the Kleisli-
mappings depends on the language used in the querying step, hence picking
the right query language would cover complex ATL (and other transformation
languages) features.

The evolution ev1 from M1 to M
′
1 might have happened by editions in a model

editor or by applying automatic model refactorings, however, the modification
can be represented as a minimal (or normalised) sequence of rule applications
which in turn can be extracted by inspecting the models (see e.g. [17,18]). In our
implementation we use the language Edelta [1] for specifying and applying the
evolution, but we formalise the approach by using graph transformation rules.
Although our examples are refactoring evolutions from [29], the approach can
be generalised to other evolutions as long as the necessary criteria are satisfied.
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Before explaining the approach, we give an intuition on the necessary criteria
for automatic co-evolution of transformation definition. First we have to check
what might have happened in ev1: If no element from M1 is deleted by the
evolution, the transformation will still be working. If we only rename elements,
or change model elements which are not involved in the transformation, the rules
can be retyped and the transformations will be working as before. However, if
we have changed model elements by ev1 over which we have typed some rules,
the rules need to be changed (we say, co-evolved) accordingly. The change can be
propagated to the transformation rule if it does not delete elements (renaming
is allowed), which are used by the transformation rule. Adding elements to M1

which affect negative context is not considered a co-evolution issue in this paper
since the very purpose of defining the negative context in the first place is to
block applying the rule in undesired situations.

In the next section we present our running example. Then in Sect. 3 we outline
the formalisation of our technique, which is implemented in a prototype tool (see
Sect. 4) for evaluation. In Sect. 5, we explore existing approaches for dealing with
transformation evolution. Finally, in Sect. 6 we summarize the main ideas of the
paper and outline our future research.

2 Motivating Example

This section explores a motivating example demonstrating the problem of cou-
pled evolution of models and model transformations. The scenario involves two
Ecore [33] models, Company (Fig. 1) and CRM (Fig. 2), and an ATL [16] trans-
formation called Company2CRM (Listing 1).

Fig. 1. Company model Fig. 2. CRM model
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The Company model is used to define Companies that contain Persons iden-
tified with firstname, lastname and position. The position is specified with two
different options, i.e., employee or client, specified in the model with an enumera-
tion. Moreover each person can be assigned to multiple Projects. The CRM model
supports the definition of software in the Customer Relationship Management
domain. A CRM software system is usually composed of Accounts, that can be
used to give access to Clients or Workers of the company.

The ATL transformation in Listing 1 is responsible for translating instances
of the Company in Fig. 1 to instances of the CRM model in Fig. 2. The transforma-
tion is composed of four matched rules, the first one at lines 5–12 is responsible
for creating a CRM instance for each Company, setting the web url, composed by
an expression elaborating the company name. The rule Person2Worker creates
an instance of Account and Worker if the Person instance has the position set to
employee (line 14). On the contrary rule Person2Client generates an Account and
a Client instance when the Person instance has the position set to client (line 25).

1 module Company2CRM;
2 c r e a t e OUT: CRM from IN: Company;
3
4 r u l e Company2CRM{
5 from s: Company!Company
6 to t: CRM!CRM(
7 address <- ’www.’+s.name.toLower ()

+’.com’,
8 accounts <- s.persons ,
9 projects <-s.projects )

10 }
11 r u l e Person2Worker{
12 from s: Company!Person(s.position

=# employee)
13 to t: CRM!Account(
14 username <- s.firstname.toLower ()+

’.’+s.lastname.toLower () ),
15 t1: CRM!Worker(
16 account <-t,
17 name <-s.firstname+’�’+s.lastname )
18 }
19 r u l e Person2Client{
20 from s: Company!Person(s.position

=# client)
21 to t: CRM!Account(
22 username <- s.firstname.toLower ()+

’.’+s.lastname.toLower () ),
23 t1: CRM!Client(
24 account <-t ,
25 name <-s.firstname+’�’+s.lastname )
26 }
27 r u l e Project2Project{
28 from s: Company!Project
29 to t: CRM!Project(
30 name <-s.name )
31 }

Listing 1. Company2CRM

1 module Company2CRM;
2 c r e a t e OUT: CRM from IN: Company;
3
4 r u l e Evolved_Company2CRM{
5 from s: Company!Organisation
6 to t: CRM!CRM(
7 address <- ’www.’+s.name.toLower ()

+’.com’,
8 accounts <- s.persons ,
9 projects <-s.projects )

10 }
11 r u l e Evolved_Person2Worker{
12 from s: Company!Employee
13 to t: CRM!Account(
14 username <- s.firstname.toLower ()+

’.’+s.lastname.toLower () ),
15 t1: CRM!Worker(
16 account <-t,
17 name <-s.firstname+’�’+s.lastname )
18 }
19 r u l e Evolved_Person2Client{
20 from s: Company!Client
21 to t: CRM!Account(
22 username <- s.firstname.toLower ()+

’.’+s.lastname.toLower () ),
23 t1: CRM!Client(
24 account <-t ,
25 name <-s.firstname+’�’+s.lastname )
26 }
27 r u l e Project2Project{
28 from s: Company!Project
29 to t: CRM!Project(
30 name <-s.name )
31 }

Listing 2. EvoCompany2CRM
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Fig. 3. Evolved source model

We consider now a model evolution sce-
nario where the source of the transformation
in Listing 1 has been evolved to the model in
Fig. 3. We can describe the patterns applied
on the model as follows. First, an intro-
duction of subclasses [29] is applied: (i) the
class Person becomes abstract, (ii) two new
classes are added, i.e. Employee and Client,
(iii) the attribute position with its enumer-
ation is deleted as effect of introduction of
subclasses.

As effect of this evolution on the source
model, the transformation Company2CRM in
Listing 1 is corrupted. In particular, the lines
14 and 25 are responsible for the error “Fea-
ture position does not exist on Person”. Another refactoring pattern applied
in this example is the Rename class, where the class Company is renamed to
Organisation. This refactoring applied on the Company model triggers another
inconsistency in the transformation execution, which is identified in line 6 where
Company is highlighted as no longer existing in the source of the transformation.

In Listing 2, the expected migrated Company2CRM transformation is shown,
namely EvoCompany2CRM. This repairing operation is complex and hence error
prone if manually performed, especially if multiple refactoring patterns are
applied to the models [32]. The repaired transformation parts in Listing 2 can
be identified in lines 6 where the class Company in the source pattern of the
transformation rule is renamed to Organisation; as well as lines 14–25, where the
filtering conditions of the previous version have been replaced by the new input
patterns, i.e., Employee and Client.

3 Formalization

In this section, we show how to formalize the induced co-evolution of model
transformations due to evolved source models M1. Note that we will not go into
details of categorical constructions such as pushout, pullback, morphisms, etc.,
the interested reader may for example consult [11].

3.1 Model Transformations as Query-Retyping-Combination

A model transformation T is specified by a source model M1 and a target model
M2 and correspondences between elements of M1 and M2 (a traceability map-
ping). The execution of the transformation takes an instance I1 typed over M1

as input and returns I2 typed over M2 (see top of Fig. 4) in two steps:

– Derive new data from existing elements in I1 and augment I1 with this data.
– Create I2 as a substructure, modulo renaming, of the augmented I1.
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We pick up notations and terminology from [8,9], where the first step is
called query execution, and the second step is called retyping execution. In the
sample ATL transformation in Sect. 2, the crucial actions are the following (we
disregard here transformation of names and the univalent mapping of Company
to CRM and of Projects). For each Person p:

1. create a new account a,
2. create a new object x of type Worker/Client depending on whether

p.position.emp= employee or p.position.cli = client (in Person2Worker/
Person2Client p.position =#employee is the concrete syntax for
p.position.emp = employee), and

3. augment with a link from x to a.

This results in a relation between the source and target model as follows:
Each person is in one-to-one correspondence to an account, each position value
is in one-to-one-correspondence to either a worker or a client object. Hence these
relations can be interpreted as retypings. In contrast to that, the account links
are true augmentations of existing source data.

Fig. 4. Transformation co-evolution by rule application
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Fig. 5. Ecore to/from graph

Thus it makes sense to separate these
two facts in terms of query and retyp-
ing specifications as shown in Fig. 4. The
graph M1 depicts the (relevant part of)
model M1, namely the fact that each
person possesses a position with an enu-
meration type, which in turn references
either of the literals Employee or Client.
The query specification is an embedding
emb of M1 into the traceability model
Q(M1), which specifies the above men-
tioned augmentations by two new associa-
tions labelled 1 and 2 . Note that in Fig. 4
class models are encoded as attributed
graphs with node inheritance [3,11,14].
For simplicity reasons we still call the nodes of our graphs for EClasses, EEnums,
etc., however, we represent internally each node’s type as an attribute of the
node (see Fig. 5). This is to avoid violating constraints which are imposed by
the Ecore metamodel, e.g. an ELiteral cannot refer to an EClass. Once our formal
construction is tested with several examples, reverting back to a model which
conforms to Ecore is as simple as deducing the types from the attribute which
stores the type of the node.

Retyping in the above sense is specified by a graph morphism v in Fig. 4
(e.g. v(Account) = Person means that Account objects are retyped Persons).
Also, v specifies that type enumerations will be excluded from the target. Upon
execution of this transformation (see top row in Fig. 4), for an instance I1 which
is typed over M1 by graph morphism t1, the step Query Execution is an operation
which takes t1 as input and returns the augmentation of I1 with relations 1 =
{(e:Employee, p:Person) | p.position.emp = e} and 2 = {(c:Client, p:Person) |
p.position.cli = c}. The Retyping Execution step accordingly performs retyping
and exclusion by pulling back Q(t1) along v, i.e. by constructing the intersection
over a common model taking mappings into account.

3.2 Transformations Co-evolution by Rule Application

As mentioned, a model evolution M1
ev1 �� M ′

1 can be specified in a variety of
ways. An appropriate choice is graph transformation rules [11]. From our sample
evolution in Sect. 2 we disregard the renaming of Company to Organization, and
focus only on the interesting evolution of introducing subclasses from enumera-
tions. This evolution is performed by applying to M1 the graph transformation
rule L

l←− K
r−→ R, where l is a monomorphism, in the left column of Fig. 4. We

assume that no other class uses the type enumeration, such that a deletion rule
(not shown) of a literal in this enumeration causes no side-effects.

The rule can be applied to a class with an attribute which stores a type (in
the example the attribute position of Person). Since this attribute takes a certain
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value from an enumeration, this value can be substituted by an appropriate
subclass (subclassing is shown as the arrow labelled 3 in R). Now L can be
matched with M1 via morphism m1 : L → M1. If m1(lit) = Employee, using the
double pushout (DPO) approach from [11] we get M ′

1 as shown in Fig. 4. This
is achieved by deleting elements (matched with elements in) L but not in K,
creating elements in R but not in K, while avoiding any dangling edges.

This rule can be applied at a second match m2 (with m2(lit) = Client). The
application of this rule decreases the possible values of the position attribute. If all
values are dereferenced, a second rule (not shown in Fig. 4) can be applied, which
deletes the position attribute of Person together with the type enumeration. Note
that the dangling condition in DPO rewriting prevents application of this rule
as long as the matched attribute position possesses values. Any rule application

as described above yields a span M1 M0
λ�� ρ �� M ′

1 (see Fig. 6).
Note that the structure of M2 is partitioned into renamed types of M1 and

true augmentations in Q(M1) − M1 (cf. Sect. 3.1). In the example, Person is
renamed (new name is Account) causing persons to be retyped, whereas the
enhancement with 1 or 2 causes true augmentation of instances I1. Clearly,
rebuilding instances typed over M2 after the evolution is only possible if the
application of the graph transformation rule does not delete types of M1 that
shall be renamed. Hence, we consider the following subset relation necessary to
allow for successful rebuilding of M2-instances:

v(M2) ⊆ λ(M0) ∪ (Q(M1) − M1) (1)

Let’s assume that we have applied the rule in the left column in Fig. 4. Then
it is possible to interpret (λ, ρ) again as a graph transformation rule and emb
as a match of its left hand side M1. If we compute the corresponding direct
derivation, then we obtain two pushouts as in the left part of Figs. 4 and 6.

Fig. 6. Double pushout Fig. 7. Transformation co-evolution

Our goal is to construct an evolved transformation

T ′ := (M ′
1
� � emb′

�� Q′(M ′
1) M2

v′
�� )

Obviously this is possible, if in Fig. 6, there is a morphism u : M2 → N0, such
that u;λ∗ = v. This equation means that v′ := u; ρ∗ represents the new retyped
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version of the new augmented structure Q′(M ′
1) and that it acts in the same way

as v on the parts that are preserved by the evolution. Simple formal arguments
show that u exists, if v(M2) ⊂ λ∗(N0). But this condition is fulfilled, if (1) holds,
because N0 = M0 ∪ (λ∗)−1(Q(M1) − M1) by the pushout property of the top
left square in Fig. 6. We summarize this as a proposition:

Proposition 1. If M1 evolves to M ′
1 as described above and if condition (1)

holds, then T can automatically be co-evolved to T ′, cf. Fig. 7. ��
This co-evolution is depicted in Fig. 6: Query specification is now an embed-

ding emb′ of M ′
1 into Q′(M ′

1). Since there are two pushout squares, the augmen-
tation still consists of the two new associations labelled 1 and 2 of Q(M1) in
Fig. 4. Retyping (v′) is the same as before, but v′ now specifies that inheritance
relations in M ′

1 are excluded from the target.
Note that the graph transformation rules can sequentially be applied, each

application yielding a co-evolved transformation. Sequentially means to first
rewrite only the ATL-code-part concerning the employee-position and in the
second application the part for the client-position. The final deletion of position
causes no further change to the new ATL code.

4 Co-evolution Using Traceability Models

We will now build upon the example in Sect. 2 and outline an implementation of
the proposed formal approach to solve the co-evolution process in model trans-
formations. Figure 8 represents the complete picture of the situation, where the
transformation Company2CRM is represented as a traceability model between
the source and target models. The traceability model Q(CompanyM) shows how
the source model is augmented and the repeated labels on the arrows (e.g. 3 )
indicate the mappings from the target model CrmM. This follows the Query
and Retyping Execution pattern explained in Sect. 3. In the bottom left side, we
report the EvoCompanyM model which is the result of the evolution explained in
Sect. 2, applied on CompanyM. This is achieved by applying the rule in Fig. 4 two
times (App1R1 and App2R1), before applying the deletion rule (App1R2) which
deletes the enumeration type and the position attribute. This evolution is imple-
mented in the Edelta [1] language, which is explained in Subsect. 4.2. Finally, the
model Q(EvoCompany) shows the automatically generated augmented model of
the EvoCompany. This augmented model with the mappings from CRM (which
are depicted by the labels on the arrows) represents the co-evolved transforma-
tion as a traceability model.

Figure 9 depicts the procedure for automatically deriving the Evolved Trace-
ability model (labelled C ) from the Transformation Traceability model (labelled
with A ) and the Evolution Traceability model (labelled B ). This procedure starts
with a traceability model generated from ATL transformation rules using the
AnATLyzer [2] tool. This tool analyses ATL transformations in order to spot
possible inconsistencies and produces a detailed view of the traceability links
between the models. Although the presented approach has been tested with ATL
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Fig. 8. Co-evolution scenario in the running example

Fig. 9. Procedure Fig. 10. Traceability metamodel

transformations, it can be extended to other transformation languages such as
ETL [19]. The Evolution Traceability model embodies the traceability informa-
tion about how the model M1 is evolved into M ′

1.
Our traceability model conforms to a traceability metamodel (inspired

by [8]); an excerpt of which is shown in Fig. 10. The TraceabilityModel contains a
specification of two different types of traceability links: (i) a ClassTraceabilityLink
representing links between classes, and, (ii) a FeatureTraceabilityLink representing
links between features belonging to these classes. We differentiate between the
links representing a transformation rule and the links representing an evolution
by the attribute isEvo. A traceability link can be specified also among features
which may lead to complex problems that arise from the introduction of OCL
expressions [22]. In the next subsections we detail the components of Fig. 9.
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4.1 Representing Transformation as Traceability Model

In this section we explain how we represent traceability models with a partic-
ular instantiation of the traceability metamodel in Fig. 10. The procedure of
generating the traceability model from the produced traceability links can be
summarised as follows: for each rule of the transformation, the input and output
patterns are linked and internally the features of the classes in the patterns are
connected when the bindings are specified [16].

Figure 11 depicts the transformation traceability model containing the infor-
mation extracted from the transformation shown in Listing 1. The central panel
shows the Company2CRM transformation which is composed of 4 matched rules,
where the highlighted TraceLink represents the Person2Worker matched rule. The
left panel shows the source model of the Company2CRM transformation, where
the Person class is automatically linked as input source pattern with a constraint
on the position attribute that has to be set to employee in order to produce a
Worker and an Account instance, which is highlighted in the right panel. This
is expressed using the concepts constraint and refConstraint for identifying the
element where the constraint is applied (e.g., the attribute position) and for
expressing the condition (e.g., the literal to be employee), respectively.

Fig. 11. Traceability model for Com-
pany2CRM

Fig. 12. Traceability model for Com-
pany2EvoCompany

In Fig. 12 the evolution example is represented using the same concepts from
the traceability metamodel. In general, if the type of the link is specified with
isEvo, then a traceability link declares how the concepts in the original model
have been evolved. In fact, two patterns of refactorings have been reported in the
central panel in which two evolution traceability links are shown. The highlighted
one represents the internal part of the introduction of subclasses, where the
position attribute, and the enumeration literal employee in the original model
are linked to the Employee class in the evolved one (same link for Client). The
evolution of the original model can be specified directly using our traceability tool
(Fig. 12) or it can be automatically generated from the existing model evolution
specification in Edelta [1], which is briefly clarified in the sequel.

4.2 Specifying Model Evolution with Edelta

Edelta is a domain specific language for specifying and applying generic model
refactorings. The language allows the modeller to specify both atomic and com-
plex changes. Edelta provides modellers with an extension mechanism enabling
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the use of already developed refactorings which can be organized in generic
libraries. An example is shown in Listing 3.
1 package i t .gssi.refactorings
2metamodel "ecore"
3 de f renameMetaclass(EClass c, String newname){
4 c.name=newname;
5 }
6 de f introduceSubclasses(EAttribute attr ,EEnum attr_type , EClass

containingclass){
7 containingclass.abstract=true;
8 v a l subclasses =attr_type ;
9 f o r (subc:subclasses.ELiterals){

10 containingclass.EPackage.EClassifiers += newEClass(subc.literal.toString
.toFirstUpper)

11 [
12 ESuperTypes += containingclass;
13 ];
14 containingclass.EStructuralFeatures -= attr;
15 }
16 }

Listing 3. Edelta definition for generic renaming and introduction of subclasses

The listing shows the definition of the generic refactorings renameMetaclass
and introduceSubclasses which are part of a catalogue of refactorings doc-
umented in [29]. Listing 4 reports an Edelta program, using the Edelta library
refactorings (see line 3) originally defined in Listing 3. The evolution in the
case study outlined in Sect. 2 is now specified in lines 4–8, where the refactor-
ing definitions renameMetaclass and introduceSubclasses form Listing 3 are
invoked. The model subject to the modifications is declared at line 1. Moreover,
Edelta provides a construct, namely ecoreref, that is responsible for accessing
the actual model elements on which the program is operating, e.g., in lines 5 and
8. The Edelta tool is able to generate the evolved model by running this Edelta
program. However, in this paper we use the Edelta program for generating the
evolution traceability model (labelled B in Fig. 9).
1metamodel "CompanyM"
2metamodel "ecore"
3 use MMRefactorings as refactorings
4 // Renaming the metaclass Company to Organisation
5 refactorings.renameClass( e c o r e r e f (Company),’Organisation ’)
6 // Introduce subclasses from the attribute position of the metaclass Person
7 changeEClas s CompanyM.Person{
8 refactorings.introduceSubclasses( e c o r e r e f (Person.position), e c o r e r e f (

CompanyMM .^ t ype ) as EEnum , i t )
9 }

Listing 4. Edelta program for the running example

4.3 Deriving the Evolved Traceability Model

In this section, we explain the process of deriving the evolved traceability model
(labelled C in Fig. 9). The input of this process is the original Transformation
Traceability model A and the Evolution Traceability model B , which are both
represented as instances of the metamodel in Fig. 10. We create first an empty
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Evolved Traceability model. Then we iterate through all the traceability links
and look for links where the sources are the same.

That is, the source of the transformation traceability link is involved in
an evolution. For example, the source of the transformation traceability link
Person2Worker in Fig. 11 is also the source of the IntroduceSubclass evolution
specification, expressed with a traceability link in Fig. 12. The ResolvePattern
function is responsible for manipulating the traceability link according to the
found evolution pattern. For example, the resulting traceability link highlighted
in Fig. 13 is generated in such a way that the source of the current link is now
Employee.superType=Person instead of Person.position=#employee.

The result of the execution of this process on the transformation Com-
pany2CRM is the evolved traceability model shown in Fig. 13. The highlighted
traceability link shows that the source of the rule has been correctly fixed to
Employee and the rule has been renamed as evolved Person2Worker, to dis-
tinguish which rules have been co-evolved. The log, shown in Fig. 14, lists the
steps of the procedure where the red lines show three traceability links found in
the evolution specification—once RenameClass and twice IntroduceSubclass—; it
reports also that these patterns have been found in the source model of the trans-
formation, in particular in the affected transformation rules Company2CRM, Per-
son2Client and Person2Worker. After the pattern resolution, it saves the evolved
traceability model and concludes the procedure.

Fig. 13. Result of the co-evolution Fig. 14. Log of co-evolution

From Traceability Model to ATL. The generated evolved traceability model
can be extracted to create ATL transformation rules using a model-to-text trans-
formation approach similar to [7]. The transformation generation translates the
traceability model into a transformation model and with an higher-order trans-
formation (HOT) the rules and bindings are produced. The generated ATL trans-
formation will correspond to the one in Listing 2.

5 Related Works

Co-evolution is widely treated in literature in relation to different artefacts
corrupted because of model evolution [15,27,28,30,31,34]. In this section, we
explore some related approaches specific to co-evolution of model transforma-
tions. Each approach presents a different methodology, usually based on pre-
processing the model changes and reacting to adapt the artefacts.

Meńdez et al. [27] introduce the notion of domain conformance: the relation-
ship between a transformation and its domain model that is corrupted during the
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evolution scenario. They proposed a transformation co-evolution process based
on impact analysis and the suggestion of a set of actions to re-establish the
affected relationship. This work is limited to the impact analysis and sugges-
tion of co-evolution without a complete automation like what we obtain by the
evolved traceability model.

Di Ruscio et al. [6] discuss the problem of co-adapting models, transforma-
tions, and tools. They propose a characterization of different aspects involved
co-evolution problems with the goal of clarifying the difficulties and the basic
requirements for possible unifying solutions. In [5,32] a feature-based approach
is used for variability exploration and resolution in models and model trans-
formation co-evolution. This approach uses feature models to assist the user in
selecting a suitable co-evolution when multiple solutions are available. This app-
roach relies on a specific DSL for migration called EMFMigrate that is able to
automate the co-evolution process, driven by the user specification. In our app-
roach we perform the resolution by an algorithm that can be modified in order
to satisfy different users’ needs and tools.

In [13] an approach to transformation co-evolution is proposed where the
process is divided into two main stages: detection stage, where the changes to
the domain model are detected and classified, and co-evolution stage, where the
required actions for each type of change are performed. Kruse [21] present an
operator-based approach to support co-evolution of models and model transfor-
mations. The approach allows the description of changes applied to a domain
model and the automatic or semi-automatic resolution of the impact on related
model transformations. Our co-evolution approach is different in the usage of
traceability models which uniformly treats different transformation languages as
long as traceability models can be created from the transformation rules.

The approach in [23] proposes a set of atomic model changes which are able
to describe arbitrary model evolutions. It supports reusability and extensibility
by means of change composition, and provides resolution actions for both models
and transformations changes ensuring an intra-artefact consistent co-evolution
of models and transformations. The resolution actions resemble our procedure,
however, the formalisation with traceability models is more generic in the sense
that it does not rely on a predefined set of model changes.

A formal treatment of the evolution of model transformations by model refac-
toring was proposed in [10] using graph transformations not only to specify
the evolution, but also the model transformation itself. In this paper, evolution
rule’s left-hand sides govern the migration of the model transformation rules.
Since both the evolution and the transformation are based on the same formal
technique, precise conditions can be given for successful migration. However,
their approach requires to construct a comprehensive type graph, which includes
concepts from both the source and the target metamodel of the transforma-
tion, together with correspondence links between them. In our approach these
correspondence links are not necessary. Moreover, the query-retyping-approach
abstracts away from the concretely used transformation language and one is not
forced to formalize the transformation in the same way as the evolution.
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6 Conclusions

We have proposed a formal approach to automatically evolve model transfor-
mations to keep it in sync with the evolved model. The approach is based on
encoding the model transformation definition as a traceability model and the
evolution of the models as applications of graph transformation rules. By apply-
ing the rules, we obtain an evolved traceability model from the original one,
that can in turn be converted into an evolved version of the transformation
definitions. We have also implemented a prototype tool for co-evolving model
transformations written in ATL.

We plan to test the approach with other transformation languages. More-
over, we will characterise the cases when the approach is applicable according
to the definition of breaking-resolvable and breaking unresolvable changes [4].
Our approach has also some limitations which deserve further investigations: (i)
determine which of the refactorings presented in [29] can be represented as graph
transformation rules; (ii) further development of the prototype; (iii) extend the
approach to deal with evolution of the target of the transformation definition.
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Abstract. Language editors play an important role in a Model-Driven
Engineering context, as they enable the productive use of Domain Spe-
cific Languages (DSLs). To support language editor development, numer-
ous language editor frameworks exist including extensible UML tools
such as Enterprise Architect and textual language editor frameworks
such as Xtext. When maintaining DSL-based software systems, language
editor migration is an important task, which can be well supported with
bidirectional transformation (bx) languages. There currently exists, how-
ever, no systematic guidelines describing why, when, and how bx lan-
guages can be leveraged for language editor migration. In this paper,
therefore, we analyse the problem and solution domains for language
editor migration, identifying and describing a set of reusable solution
strategies that support assessing the potential and advantages of using
bx languages in this context.

1 Introduction

Model-Driven Engineering (MDE) is a software engineering approach that con-
siders models as first-class citizens to be used throughout all engineering dis-
ciplines and in any application domain. As models are suitable abstractions of
a (software) system, a complete system will be typically defined by multiple
models, each of which is an element of a Domain Specific Modelling Language
(DS(M)L). A modelling language is a set of all possible models that conform to
the modelling language’s abstract syntax, are represented by a concrete syntax,
and that satisfy a given semantics. The abstract syntax of a modelling language
defines all concepts and their respective relations in the language. The concrete
syntax of a modelling language refers to its notation, i.e., the manner in which
users will view and specify models of the language [8].

As the MDE approach explicitly encourages the use of possibly numerous
DSLs, language editors with which models in the concrete syntax(es) of the
DSLs can be specified, play a central role. To use a DSL productively, end
users require a suitable language editor that is comparable in functionality to
established IDEs for general purpose languages. As a consequence, numerous

c© Springer International Publishing AG, part of Springer Nature 2018
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language editor frameworks exist to support the development and maintenance
of language editors. These include visual language editor frameworks such as
Enterprise Architect, GMF, Sirius, and Graphiti, as well as textual language
editor frameworks such as Xtext and MPS. The former are used to develop
visual language editors supporting a visual concrete syntax, while the latter are
used to develop textual language editors supporting a textual concrete syntax.

As part of the maintenance of a DSL-based software system, language editor
migration is a crucial and common task, especially as available language editor
frameworks often evolve rapidly. The main drivers for language editor migra-
tion are basically the same as for software migration in general: technological
obsolescence of the currently used language editor framework, inability to realise
new emerging requirements, or loss of knowledge on how to efficiently evolve the
existing language editor [4].

A model transformation translates a set of input models into a set of output
models. For this paper, it suffices to consider unidirectional model transforma-
tions with exactly one input model, the source model, and one output model, the
target model. We thus have unidirectional forward model transformations going
from source to target, and backward model transformations going from target to
source [25]. In some cases, a given pair of unidirectional forward and backward
transformations are coupled in the sense that they cannot be changed indepen-
dently of each other. This coupling can be formalised either via roundtripping
laws [9], or by specifying an underlying consistency relation over pairs of source
and target models that both the forward and backward model transformations
must respect [28]. Let us refer to such a coupled pair of forward and backward
transformations as a bidirectional model transformation (bx).

While a bx can be realised (to a certain extent) by combining two sep-
arately specified forward and backward unidirectional model transformations,
there are numerous bx languages with which a bx can be specified as a single
program. Expected advantages include improved maintainability, and support
for a wider range of consistency management operations such as model gen-
eration, consistency checking, and traceability link creation. Prominent exam-
ples of actively developed bx languages include grammar-based approaches such
as Triple Graph Grammars (TGGs) [26], constraint-based approaches such as
JTL [6], and combinator-based approaches such as BiGUL [19]. The inter-
ested reader is referred to existing surveys on bx languages [18,27] for fur-
ther details. Bx is relevant for various application scenarios in diverse domains
including databases (e.g., inverting queries and solving the view-update prob-
lem), supporting concurrent engineering by synchronising related software arte-
facts, and providing improved tools for program language analyses and compiler
development [7].

Based on the accumulated experience of maintaining and migrating an MDE
tool eMoflon (and its predecessor MOFLON) [22] for many years, we have recog-
nised that bx languages can also be used to support the task of language editor
migration. Intuitively, this is because two distinct concerns have to be addressed.
On the one hand, existing models specified in the concrete syntax supported by
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the legacy language editor must be migrated to the new language editor. On the
other hand, a means of generating the abstract syntax from the concrete syntax
of models specified with the new language editor must be established to use it. In
this context, bidirectional model transformations address both concerns simul-
taneously. To fully leverage bx languages, however, an a priori understanding of
the application scenario and the corresponding solution space is required. With-
out an upfront decision and a rough plan of how to apply bx languages, somehow
extending an implemented unidirectional to a bidirectional model transformation
as an a posteriori consideration can lead to an increase in effort and reduction
in quality. There currently exist, however, no systematic guidelines on the usage
of bx languages for language editor migration.

Our contribution in this paper is thus to analyse the problem and solution
domains for language editor migration, identifying and describing a set of bidi-
rectional method patterns, i.e., reusable solution strategies to support assessing
the potential and advantages of leveraging bx languages in this context. Our
analysis is presented using problem and solution domain description languages
proposed in our previous work in the industry automation domain [3].

The rest of the paper is structured as follows: Sect. 2 presents our running
example for the entire paper – a recent language editor migration project for a
part of eMoflon1, an MDE tool that provides languages for specifying unidirec-
tional and bidirectional model transformations. The migration was performed
for the bidirectional part, and involved the transition from a visual language
editor implemented with Enterprise Architect (EA)2, to a textual language edi-
tor implemented with Xtext3. Section 3 presents our analysis of the problem
domain, while Sect. 4 identifies a series of different strategies (patterns) in the
solution domain. To demonstrate the benefit of our identified patterns, Sect. 5
applies them to structure the discussion of advantages and trade-offs of the final
strategy chosen and implemented in our running example. Related approaches
are discussed in Sect. 6, while Sect. 7 concludes.

2 Migrating eMoflon from Enterprise Architect to Xtext

The meta-modelling and model transformation tool eMoflon is the current ver-
sion of its predecessor MOFLON [1]. Development of MOFLON started in 2002,
with a first stable release (1.0) in 2006 [2]. Since then the tool has been main-
tained and regularly migrated for diverse reasons ranging from standardisation
efforts to a shift in research focus from code generation to (bidirectional) model
transformation. For more details the interested reader is referred to [2].

An important change implemented with the shift from MOFLON to eMoflon
in 2011 was the migration to EA, i.e., establishing a professional UML tool
as a new language editor [2]. While this has been successful, especially in an
industrial context, a series of drawbacks emerged over the years for both end
1 www.emoflon.org.
2 http://www.sparxsystems.com/.
3 http://www.eclipse.org/Xtext/.

www.emoflon.org
http://www.sparxsystems.com/
http://www.eclipse.org/Xtext/


100 E. Yigitbas et al.

users and developers including (i) the extra hurdle of applying for academic and
campus licences, (ii) having to master an additional complex tool environment,
and (iii) spending substantial human resources as the required tool chain for
EA is orthogonal to Eclipse plugin development. Establishing an Xtext-based
textual language editor for eMoflon provides an adequate solution: students only
need to install a single open-source Eclipse plugin and can use an editor that
feels familiar from previous lectures on Java and Eclipse. As eMoflon developers
are familiar with graph grammars (a generalisation of string grammars), they
already posses the right skill set for Xtext development. Finally, tailoring of
Xtext-based editors is in Java/EMF and thus requires no extra dependencies.
Figure 1 depicts the migration of eMoflon from EA (baseline scenario above) to
Xtext (envisioned scenario below) schematically as a component diagram.

The EA-based language editor takes its input in a visual concrete syn-
tax ➊ specified as diagrams that the end user can manipulate. An example of
such a diagram (a TGG rule) is depicted in the upper left corner of Fig. 1. These
diagrams are persisted in a database that can be accessed via SQL queries. EA
provides an internal metamodel for all diagrams and the corresponding abstract
syntax ➋ can be extracted from this database. Diagrams are basically simple
tree-like, rather generic structures, with cross-tree references realised via unique
identifiers. An excerpt of this EA abstract syntax for the same TGG rule is
depicted in the upper right corner of Fig. 1. Note that only the portion of the
diagram in the visual concrete syntax ➊ with a grey background is depicted in
the EA abstract syntax ➋. To map this to an abstract syntax ➌ that eMoflon
(the backend) can process, an EA export was implemented. The corresponding
model fragment for our TGG rule excerpt (again only the portion with a grey
background) is depicted in the lower right corner of Fig. 1. Note the explicit
connectivity and TGG-specific concepts such as “domains” that result from an
interpretation of attributes in the generic, tree-like EA abstract syntax.

In the envisioned scenario, an Xtext-based editor takes as input a textual
concrete syntax ➍ for TGGs. The corresponding textual fragment for our TGG
rule excerpt is depicted in the lower left corner of Fig. 1. The entire TGG rule is
depicted and the lines with a grey background correspond to the portion of the
visual concrete syntax ➊ with a grey background. The output of the Xtext-based
editor ➎ is an EMF-compatible model that must be transformed to the eMoflon
abstract syntax.

The goal of this paper is to provide a systematic means of classifying and dis-
cussing relevant requirements of such a migration project and the corresponding
consequences for feasible solutions.

3 Problem Domain: How Are the Editors to Be Used?

In this section, we analyse the problem domain for language editor migration
by identifying and describing possible usage scenarios of both editors before and
after the migration. We view each scenario as a consistency restoration task and
formalise it using a description language for consistency management scenarios
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Fig. 1. Current and envisioned scenario.

proposed by Stevens [29], and extended in our previous work in the industry
automation domain [3]. We refer interested readers to Anjorin et al. [3] for full
details and present the minimum required for this paper in the following.

The first step is to specify a common transformation context consisting of
types (depicted as curved rectangles) and consistency relations (depicted as edges
between types). The transformation context for language editor migration is
depicted in Fig. 2. The types are grouped into two layers (represented as swim
lanes in the diagram): the artefact layer and the model layer. In this context,
artefacts are arbitrary representations of data, while models are compatible with
a chosen modelling framework. We identify three types: Legacy representing



102 E. Yigitbas et al.

artefacts used by the legacy editor, New representing artefacts used by the new
editor, and Model representing the common representation on the model layer.
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Fig. 2. Transformation context for editor
migration

There are also three consistency
relations: LegacyToModel consisting
of consistent pairs of models and
legacy artefacts, ModelToNew consist-
ing of consistent pairs of models and
new artefacts, and LegacyToNew rep-
resenting a consistency relation that
can be defined for pairs of legacy and
new artefacts. Note that the (practi-
cal) means of defining the consistency
relations is left open and can be via
constraints, rules, consistency restoration programs, etc.

Example: For our running example, legacy artefacts are EA diagrams in a
database, new artefacts are textual files, and (EMF) models are in the abstract
syntax expected by the eMoflon backend.

Based on this transformation context, we now discuss relevant usage scenar-
ios of both legacy and new editors, before and after the migration. There are
basically two different scenarios: (i) a one-time migration is feasible, i.e., work
with the legacy editor can be prohibited as soon as the migration is performed,
and (ii) for some time after the migration (possibly indefinitely), working with
the legacy editor still has to be supported in some way.

3.1 Complete Switch from Legacy to New Editor

Before discussing what kind of migration is required, it is helpful to specify how
the legacy editor is currently being used. The different possibilities are repre-
sented as resolution paths consisting of a sequence of transformation networks.
A transformation network consists of objects and links typed over the types and
consistency relations in the transformation context, respectively. Using the same
swim lanes as the transformation context, two resolution paths are depicted in
Fig. 3. Resolution paths are denoted visually as “story boards” partitioned into
transformation networks by white vertical lines. Each network is a snapshot con-
sisting of all objects and links that are currently relevant. Version numbers are
used to indicate what has been changed from one network to the next. Objects
with a black fill are authoritative and must not be changed in the next step.
Inconsistent links are depicted as bold dashed red lines.

We are now ready to read the resolution path depicted to the left of Fig. 3,
representing parsing using the legacy editor: The path starts with a consistent
network consisting of a model and legacy artefact both in version 1. In the next
step, the legacy artefact is changed to version 2, making it inconsistent with the
model. Consistency should only be restored by updating the model to version 2
in the last network. To the right of Fig. 3, a path representing serialising with
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legacy editor starts with the same initial network. In this path, however, the
model is updated to version 2, making it inconsistent with the legacy artefact.
Consistency can thus only be restored by updating the legacy artefact.
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2
:Model
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1
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1
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Fig. 3. Usage of legacy editor: parsing (left) and serialising (right)

Parsing is the basic usage scenario that every language editor must typically
support, while serialising is typically optional but can be very useful, e.g., to
reflect refactorings performed on model level to the artefact level.
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Fig. 4. One-time migration

Independently of how the legacy
editor is being used, the requirement
for a one-time migration is depicted
in Fig. 4. The resolution path starts
with a consistent legacy artefact and
model, which are not to be changed in
the process. In the next step, the new
artefact should be created in such a
way that the network stays consistent.
In a final step, we discard the legacy
artefact, i.e., in all subsequent networks it becomes irrelevant for consistency.
Note that the second network can be used to capture requirements concerning the
consistency between legacy and new artefacts, independent of their consistency
to a common model. In practice this might be necessary due to layout, comments,
file encoding, and other details that might not be present on the model layer
but nonetheless be important for the migration. Finally, although we do not
depict this explicitly, the same two resolution paths for parsing and serialising
also describe how the new editor is to be used after a one-time migration.

Example: EA was used mainly for parsing as serialising required an incremental
update of the layout of the visual concrete syntax (and we never had sufficient
resources to implement and maintain this). The new Xtext editor, however, sup-
ports serialising as, in our experience at least, most users accept a standard
formatter for a textual concrete syntax. This means that the layout of the tex-
tual concrete syntax did not have to be incrementally updated as the standard
formatter could be used after regenerating the textual artefacts.
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3.2 Concurrent Usage of Both Editors

Support for switching regularly between or working concurrently with both the
legacy and the new language editor is sometimes an important requirement in
practice. It might be impossible to force all stakeholders working on shared
models to switch to the new editor at the same time, or it might be a strategic
decision to support both editors for a period of time especially when introducing
a new concrete syntax. We differentiate between concurrent usage (i) where users
can request for and acquire locks for a model, and (ii) where locking is infeasible.

Two resolution paths for concurrent usage with locks are depicted in Fig. 5.
In the first path to the left, the legacy artefact has been changed to version 2
making it inconsistent with both the model and the new artefact.
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Fig. 5. Concurrent usage with locks

As it is possible to acquire a lock for the model, the changed legacy artefact
is made authoritative and cannot be changed when restoring consistency in the
following network. Consistency must thus be restored by updating both the
corresponding model and the new artefact. In the second path to the right,
the new artefact is changed and made authoritative. Consistency must thus be
restored by updating both the corresponding model and the legacy artefact.
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Fig. 6. Concurrent usage without locks

If locking is infeasible or undesir-
able, there is no way of ensuring that
only changes to one artefact need to
be reflected in the model, and the res-
olution path depicted in Fig. 6 must
be supported. In the first network,
both artefacts have been changed to
version 2 and are inconsistent with the
model and each other. As restoring
consistency in this case can require
changes to all objects (indicated by the version numbers in the final consistent
network), no object in the first network is made authoritative.

Example: We had a mix of (i) long-term users, who had been using eMoflon
for some time already, were already familiar with the visual concrete syntax,
and had often already obtained a permanent licence for EA, and (ii) short-term
users who were typically students in our lectures, only had an EA licence for
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some months, and often had a preference for textual languages. Our requirement
was thus concurrent usage of both editors on shared models, and locking was
acceptable.

4 Solution Domain: Patterns for Editor Migration

A method is used to systemise an endeavour by specifying the activities to per-
form, artefacts to create, roles to involve and tools to use [11]. In this section,
we propose a set of methods on how to perform the transition to a new language
editor, related to the scenario introduced in the previous section. To describe
the methods in a structured and reusable way, we decompose them into a set of
generic method building blocks. These blocks can be composed into a method
and can be refined for a specific situation. This approach is based on Situa-
tional Method Engineering (SME) [14] principles, which is the discipline that
encompasses all aspects of creating a method for a specific situation.
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Fig. 7. Relevant method fragments from Anjorin et al. [3]

In previous work [3], we have proposed a set of atomic, reusable building
blocks of methods, so called method fragments, and used them to describe dif-
ferent solution strategies for consistency management problems. A subset of
relevant method fragments for this paper is depicted in Fig. 7. Our fragments
consist of four fragments for model synchronisation (SYNC), and a single frag-
ment for model integration (INT). Models are denoted by M with a subscript
for the domain (S for source, T for target). Empty models are denoted by ∅.
Changes (deltas) applied to a model to yield another model are denoted by
vertical arrows with δ together with a domain subscript as label. Correspon-
dences (traceability links) between consistent models in different domains are
denoted by horizontal arrows. The activity performed in each fragment is denoted
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by a black “wedge” connected to its input deltas/correspondences and output
deltas/correspondences by dashed arrows.

The top-left SYNC fragment represents an initial forward transformation.
The input is a source delta δS and the output is a target delta δT that pro-
duces a consistent target model MT , and a correspondence between the source
and target models. Analogously, the top-right SYNC fragment represents an ini-
tial backward transformation. The bottom-left and bottom-right SYNC fragments
represent incremental versions of forward and backward synchronisation; a cor-
respondence between existing models is required as an additional input, and
the synchroniser is to restore consistency by incrementally changing the output
model.

The single INT fragment to the right of Fig. 7 represents the activity of model
integration. The input in this case consists of both a source and target delta,
as well as a correspondence between existing and consistent source and target
models. To restore consistency, an integrator has to resolve possible conflicts
and determine output deltas δ′

S and δ′
T leading to consistent models M ′

S and
M ′

T , respectively, and the correspondence between these models. We refer the
interested reader to Anjorin et al. [3] for further details.

We are now ready to discuss different solution strategies, referred to as method
patterns, for language editor migration, formed by composing these model frag-
ments in a suitable manner. If a one-time migration (see Subsect. 3.1) suffices,
the method patterns depicted in Fig. 8 are applicable. To adapt the fragments
to language editor migration (see the transformation context in Sect. 3), legacy
artefacts are denoted by AL, A′

L, . . ., new artefacts by AN , A′
N , . . ., and the com-

mon model for the backend by M,M ′, . . .. To reduce diagram clutter, we omit
the labels for deltas. Finally, a red circle with a “1” in the top-right corner of a
fragment indicates that the fragment is only required as a one-time activity.

The simplest scenario is if the new editor is only to be used as a parser (see
Subsect. 3.1). In this case, the method pattern MigrationToParser, depicted to
the left of Fig. 8, suffices: the first activity is to forward transform legacy artefacts
to models. This is not a one-time activity as the legacy editor was already in
use as at least a parser (and perhaps a serialiser too). The next activity is to
forward transform the models to new artefacts. As the new editor is only used as
a parser, this is now a one-time activity that does not need to be repeated. The
final activity is to backward transform new artefacts to models, representing the
usage of the new editor after the migration. In general this final activity might
have to be incremental, either for efficiency reasons or to enable editors that
cover only a part of the model.

If the new editor is to be used as a serialiser too, the method pattern
MigrationToParserSerialiser, depicted to the right of Fig. 8, is required: the
difference compared to MigrationToParser is that there are now no one-time
activities, and that an extra incremental forward transformation from model to
new artefact is required. This additional fragment must be incremental in general
to retain information in the new artefact (layout, comments, manual additions,
etc.) that is not to be transferred to the model layer.
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Fig. 8. Method patterns for one-time migration to parser (and serialiser)

To enable concurrent usage of the legacy and new editors, the method pat-
terns depicted in Fig. 9 are required. If locks on the model can be enforced
then ConcurrentUsageWithLocks suffices: compared to MigrationToParser-
Serialiser the activity “grid” is now completely filled with additional incre-
mental fragments serialising models back to legacy artefacts and incrementally
(re)parsing legacy artefacts back to models. Note that it is now irrelevant if the
legacy (new) editor is used as a serialiser or not – repeated (incremental) forward
transformations from model to legacy (new) artefact are always necessary.

If locking is infeasible (see Subsect. 3.2), then the rather advanced method
pattern ConcurrentUsage, depicted to the right of Fig. 9 is required. After an
initial migration (analogous to all other method patterns), both legacy and new
artefacts can be edited concurrently without locking the model. To restore con-
sistency the pattern proposes lifting the changes to the model layer to produce
models M ′′ and M ′. These two models then have to be consolidated using an
INT fragment to produce M∗, which can then be reflected in both legacy and
new artefacts. Interestingly, the INT fragment required here is a special case of
the general INT fragment depicted to the right of Fig. 7, as MS and MT in the
fragment are the same model M in the pattern, representing a model integra-
tion between models in the same domain. Although this special case can be built
on top of a standard three-way merge for models (e.g., EMFCompare), it still
requires non-trivial conflict detection, conflict resolution, user intervention and
(most probably) faces scalability challenges.

Example: In our migration project we attempted to implement Concurrent-
UsageWithLocks and were able to leverage a bx language (TGGs) for parsing and
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Fig. 9. Method patterns for concurrent usage with and without locks

serialising new artefacts. The export for EA was, however, already implemented
as a well-tested, complex unidirectional transformation, so we decided to imple-
ment the required import (serialisation) for EA also as a separate unidirectional
transformation. This proved to be challenging and was only really successful for
class diagrams. One of the main (practical) problems was preserving the layout
of the visual concrete syntax. The standard layout in EA was (barely) acceptable
for class diagrams and effectively prevented a repeated import of TGG diagrams
in practice. Other problems included scalability of the EA API, and the cost
of maintaining and adequately testing two separate transformations for parsing
and serialising legacy artefacts.

5 Discussion: Leveraging Bx for Editor Migration

In this section, we discuss questions concerning the applicability of our patterns,
when and why using a bx language to realise which patterns makes sense, and
the current level of automation provided by available state-of-the-art tooling.

5.1 When Do I Need Which Method Pattern?

Figure 10 provides an overview of which method pattern is applicable for which
of the usage scenarios identified in Sect. 3. The MigrationToParser method
pattern can be used to address the one-time migration requirement if the new
editor is only to be used as a parser. If the new editor is to be used also as a
serialiser, then the MigrationToParserSerialiser method pattern is required.

Both of these method patterns are generalised by the more advanced pattern
ConcurrentUsageWithLocks that can be used to support consistent concurrent
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Method Pattern Addressed Usage Scenarios

MigrationToParser One-time migration when new editor is used only for parsing

MigrationToParserSerialiser One-time migration when new editor is used for parsing and serialising 

ConcurrentUsageWithLocks One-time migration when new editor is used for parsing and serialising, 
concurrent usage with locks

ConcurrentUsage One-time migration when new editor is used for parsing and serialising, 
concurrent usage with and without locks

Fig. 10. Method patterns and solved scenarios

usage of both editors assuming locks for the model can be acquired and enforced.
If locking is infeasible, however, then the method pattern ConcurrentUsage is
required, which covers all previously mentioned usage scenarios including the
concurrent usage of legacy and new editors without requiring locks on the model.

5.2 Why and When Do I Need a Bx Language?

Method patterns are guidelines and do not prescribe the usage of a bx language.
All fragments can be implemented as unidirectional model transformations, or
even performed manually if required only once for very few artefacts. In all but
the simplest method pattern MigrationToParser, however, all fragments have
to be performed repeatedly implying that a high-level of automation is desirable.
We refer to our methods patterns as “bidirectional” as they all contain pairs of
required fragments for forward and backward transformations. The fragments in
each pair are tightly coupled in the sense that they typically cannot be main-
tained (evolved) separately. While realising such pairs of fragments with a bx
language is not mandatory, it can be advantageous as bx languages typically
derive multiple fragments (in this case forward and backward) from a single
specification. Expected advantages include improved maintainability, productiv-
ity, and the general quality of the fragments. The incremental versions of the
fragments are also more challenging to program directly, while bx languages typ-
ically support this by automatically exploiting traceability links. Concerning our
method patterns, MigrationToParser is the only pattern where a bx language
is not necessary as the model-to-new-artefact fragment is a one-time activity.

5.3 What is the Current Level of Automation and Availability of
bx Tooling for Realising the Method Patterns?

Concerning the method fragments depicted in Fig. 7, all SYNC fragments are well-
supported by numerous state-of-the-art bx tools. Some bx tools [17,19] require
the fragment for incremental forward (backward) synchronisation and derive
the fragment for incremental backward (forward) propagation for free. Some bx
tools [13,22], typically TGG-based, require a rule-based specification of consis-
tency and automatically derive all SYNC fragments from this. The distinction
between initial (from scratch) and incremental fragments is useful in practice as
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initial fragments can be sometimes realised with a different, optimised strategy.
Other bx tools [6] require a constraint-based definition of consistency and are
also able to provide all SYNC fragments automatically. Challenges here include
learning these languages, achieving adequate scalability in some cases, and exer-
cising full control over the synchronisation process. In contrast, the general INT
fragment is still a current research focus of the bx community. This is because
it is non-trivial to define precisely what behaviour is desirable and what not.
Model integration requires conflict detection and resolution, and probably has
to include user interaction in some meaningful way. Nonetheless, some initial
attempts already exist: Leblebici et al. [23] are able to handle non-conflicting
situations by combining TGGs with ILP solvers, while constraint-based bx tools
are typically able to handle model integration, albeit in a non-scalable manner
with a fixed global metric such as minimized edit distance. Our method pattern
that contains the INT fragment, however, only requires a special case that can
be based on a standard three-way merge such as EMFCompare4.

6 Related Work

There exist numerous (industrial) projects that can be viewed as language editor
migration projects and thus be analysed with our usage scenarios and method
patterns. In the following we discuss a few that we find particularly relevant.

Blouin et al. [5] report on how a synchronisation layer between textual and
visual editors was established using bidirectional transformations in an indus-
trial context. In this case, both textual and visual editors existed and were
already in use, but it was impossible to use them concurrently on the same
model. The goal of the project was thus to support the usage scenario con-
current usage with locks described in Subsect. 3.2. The primary challenge was
coping with information loss as neither editor completely covered all parts of the
model. Blouin et al. leveraged TGGs as a bx language and were able to exploit
its support for deriving incremental fragments required for the method pattern
ConcurrentUsageWithLocks.

Hermann et al. [16] present an industrial project concerning the translation
of satellite procedures from one textual concrete syntax to another. While the
project is not directly motivated by editor usage, Hermann et al. use Xtext for
both languages mainly due to its support for both parsing and serialising scenar-
ios (see Fig. 3). To the best of our knowledge, this project actually represents a
one-time migration implemented via MigrationToParser and does not require a
bx language. Hermann et al. use TGGs, nonetheless, and argue that this enables
providing formal correctness guarantees, which was crucial for the project.

Maro et al. [24] report on their experience with integrating graphical and tex-
tual editors for domain specific languages based on UML profiles. This project
was motivated by the requirement to provide additional textual editors for some
developers, corresponding to our usage scenarios concurrent usage. Unidirec-
tional transformations were used to implement ConcurrentUsageWithLocks,
4 https://www.eclipse.org/emf/compare.

https://www.eclipse.org/emf/compare
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and the authors report on challenges and limitations concerning information
loss and merging. A bx language could have addressed some of these challenges.

All these projects (and many more) indicate that the domain of language
editor migration is indeed relevant in practice. We argue that our usage scenarios
and method patterns can help analyse, compare, and reflect on such projects.

Our usage scenarios and method patterns are specified using description lan-
guages for consistency management scenarios proposed in our previous work [3]
adapting and extending work by Stevens [29] and Engels [11].

The research area of megamodelling provides other viable alternatives as lan-
guages that could be used for formalising such patterns. Lämmel’s LAL language
for example, which is based on MegaL and has been used to describe basic bx
patterns [20], could be used to describe consistency management scenarios.

In the research area of method engineering, there are different methods that
guide a complex software engineering task by specifying the activities to enact,
artefacts to generate, tools to use or roles to involve [11]. A specific manifestation
of method engineering is Situational Method Engineering (SME) which encom-
passes all aspects of creating a method for a specific situation [15]. Approaches
that follow the SME paradigm consider the situational context in which a method
will be applied during the development of the method, so that it can be adapted
to the context and is then called situation-specific.

Surveys focussed on bidirectional transformation languages [18,27] discuss
relevant properties pertaining to bidirectional model transformations. Results
in a similar direction are provided by Eramo et al. [12], and Lano et al. [21]
proposing patterns for specifying bidirectional transformations with their tool
UML-RSDS. Diskin et al. [10] also suggest a taxonomy for model synchronisation
application scenarios and discuss various (types of) examples. To the best of our
knowledge, however, no existing work addresses the role, potential and trade-off
of bidirectional transformations in the context of language editor migration.

7 Conclusion and Future Work

Language editor migration is a crucial and common task, especially as available
language editor frameworks often evolve rapidly. When maintaining DSL-based
software systems, the language editor migration task can be well supported with
bidirectional transformation (bx) languages. There currently exists, however,
no systematic guidelines describing why, when, and how bx languages can be
leveraged for language editor migration. We propose a solution to this problem
by identifying a set of bidirectional method patterns for language editor migration
scenarios. We use a recent migration project to show how our patterns can
support the structured analysis of the problem domain and help in identifying
and describing a set of reusable solution strategies in the solution domain.

Bidirectional transformations are relevant in other domains including lan-
guage translation, data exchange, and quality assurance. Important future work
is to identify bidirectional method patterns for these application domains and
investigate the effectiveness and efficiency of the proposed languages for describ-
ing consistency management problems. In this context, tool-support should be



112 E. Yigitbas et al.

established to simplify the correct, systematic specification of consistency related
requirements and aspects in the problem domain, as well as method patterns
in the solution domain. The envisioned tool support can also provide formal
analyses, reuse of method “templates”, refactoring, etc. Finally, our description
languages can be extended to cover non-functional or quality-of-service (QoS)
properties regarding consistency management such as efficiency, scalability, and
optimality with respect to an objective function.
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Abstract. Traditional model management programs, such as transfor-
mations, often perform poorly when dealing with very large models.
Although many such programs are inherently parallelisable, the execu-
tion engines of popular model management languages were not designed
for concurrency. We propose a scalable data and rule-parallel solution
for an established and feature-rich model validation language (EVL). We
highlight the challenges encountered with retro-fitting concurrency sup-
port and our solutions to these challenges. We evaluate the correctness of
our implementation through rigorous automated tests. Our results show
up to linear performance improvements with more threads and larger
models, with significantly faster execution compared to interpreted OCL.

1 Introduction

Many MDE tools face performance difficulties when dealing with very large
models. Scalability has been a long-standing issue with MDE [1]. Moreover, it
is a multi-faceted problem, with challenges in model persistence, collaboration,
domain-specific languages, queries and transformations [2]. Most popular MDE
tools were not designed to handle models with millions or even tens of thousands
of elements. Furthermore, their execution engines typically perform unnecessary
computations and do not exploit capabilities of modern hardware. Improving the
efficiency of existing model management programs would help to address their
poor performance over large models.

This paper aims to improve the execution time of model validation con-
straints by devising a novel parallel execution approach which can scale not only
with the constraints, but also with the model elements. Specifically, we apply a
novel rule and data-parallel approach to the task of model validation. We imple-
ment our solution by modifying the execution engine of the Epsilon Validation
Language – a hybrid (i.e. declarative and imperative) model validation language.
In doing so, we uncover a multitude of practical challenges with concurrency and
provide solutions to such challenges. We hope that by choosing a complex model
validation language and supporting all of its features without any additional con-
structs or change in syntax or semantics, other model validation solutions with
equal or more limited expressive power can also be adapted in a similar manner.
Our implementation is open-source, available from Epsilon Labs repository [3].

The remainder of this paper is as follows. Section 2 reviews the most rele-
vant work related to our research. Section 3 introduces the Epsilon Validation
c© Springer International Publishing AG, part of Springer Nature 2018
A. Pierantonio and S. Trujillo (Eds.): ECMFA 2018, LNCS 10890, pp. 115–131, 2018.
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Language. Section 4 discusses challenges encountered with parallel model vali-
dation. Section 5 presents an overview of our parallel implementation. Section 6
evaluates the correctness and performance of our implementation, including a
comparison to interpreted and compiled OCL. Section 7 concludes the paper and
outlines further development opportunities.

2 Related Work

Our work is a direct continuation of a previous effort to parallelise the Epsilon
Validation Language in a Masters’ project [4]. The implementation and choice of
metamodel for performance evaluation was inspired by this work. Although some
promising speedups were achieved and the main challenges with parallelisation
were identified, there remained some outstanding issues with the implementation
and evaluation, which we hope to have addressed after substantial refactoring.

2.1 Background

Generally there are three approaches to improving model management program
performance: incrementality, laziness and parallelism. The MDE community has
put substantial effort into studying incrementality as this can lead to significant
performance improvements. This arises by caching results for model elements
which have already been evaluated so that after a small change, the program
is only executed over the changed elements. Furthermore, a reactive execution
engine can be obtained by combining incrementality with laziness, so that the
program is not only re-executed on a subset of the model, but also only when the
results of the program are actually used. Most research in this area focuses on
optimising model transformation engines such as ATL [5], as the ATL language
and its engine’s architecture make such semantics more straightforward to imple-
ment. Consequently, there are incremental [6], lazy, [7], parallel [8], distributed
[9] and reactive [10] extensions of ATL.

Although incrementality and laziness are valuable optimisations, they do not
improve execution times when computations are mandatory, for example when
a program is executed on a model for the first time, or a large proportion of the
model is changed, and when the program results are always used. By contrast,
parallelism exploits modern hardware to perform computations at a higher rate,
rather than reducing the overall number of computations.

2.2 Model Validation Optimisations

The most well-known and commonly used language for model querying and
validation is the Object Constraint Language (OCL) [11], which is a functional
language free from side-effects and imperative features. Most optimisations of
model validation algorithms are built on OCL.

Cabot and Teniente [12] designed an incremental model validation algorithm
which ensures the smallest/least work expression can be provided to validate a
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given constraint in response to a CRUD (Create/Read/Update/Delete) event/
change in the model. It automatically generates the most efficient expression for
incremental validation for a given event. Tisi et al. [13] proposed an iterator-
based lazy production and consumption of collection elements. Iteration oper-
ations return a reference to the collection and iterator body, which produces
elements when required by the parent expression. Laziness in this context is use-
ful when a small part of a large collection is required, as the iteration overhead
can actually be worse than eager evaluation in some cases.

Vajk et al. [14] devised a parallelisation approach for OCL based on Com-
municating Sequential Processes (CSP). The authors’ solution exploits OCL’s
lack of side effects by executing each expression in parallel and then combining
the results in binary operations and aggregate operations on collections. They
demonstrate equivalent behaviour between the parallel and sequential OCL CSP
representations analytically. Their implementations use CSP as an intermediate
representation which is then transformed into C# code. Users must manually
specify which expressions should be parallelised. The authors’ evaluation was
brief, with relatively small models and simple test cases. Despite the absence of
any non-parallel code in their benchmark scenarios, their implementation was
1.75 and 2.8 times faster with 2 and 4 cores respectively.

3 Epsilon Validation Language

Epsilon [15] is an Eclipse project that provides languages for model management
tasks such as validation, transformation, comparison and pattern matching. All
task-specific languages build upon a feature-rich model-oriented language – the
Epsilon Object Language (EOL) [16] – a dynamically typed, interpreted language
which supports imperative programming. EOL also supports native types, effec-
tively allowing for execution of arbitrary Java code. A key feature of Epsilon
is that it works across a range of modelling technologies by abstracting model
operations through a connectivity layer, so a script written to work on an EMF
model can also be used on an XML document or a spreadsheet without changes.

The Epsilon Validation Language (EVL) [17] extends EOL to enable users to
express their validation constraints in a more structured and declarative man-
ner. Since EOL supports all features of OCL with similar syntax and built-in
operations, EVL is can be used in the same manner as OCL. Users define con-
straints within the context of a model element type, where each constraint has
a check expression (or statement block for more complex constraints) returning
a Boolean. In addition, constraints may also have a guard, which is semantically
identical to prepending the constraint check expression with a Boolean expres-
sion followed by the implies operator. Guard blocks can also be declared in a
context. Constraints may have dependencies on other constraints using the sat-
isfies operation, which returns the result of calling the specified constraint(s)
for the current element. Constraints declared as lazy will only be executed when
invoked by a satisfies operation. A context declared as lazy is equivalent to hav-
ing all of its constraints being lazy. EVL also allows users to defined fixes for
constraints, which can modify the model with arbitrary imperative code. Like
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all Epsilon rule-based languages, EVL has pre and post blocks, which allow for
arbitrary code to be run before and after the main program, respectively.

3.1 Example Program

Suppose that we have a model of a Java program, and we want to ensure
that every class overrides the equals method according to the contract1.
Listing 1 shows how this could be implemented in EVL. Note that by declaring
the hasHashCode constraint as lazy, we only check it once per ClassDeclara-
tion as a pre-condition for the hasEquals. If hasHashCode fails for the current
element under consideration (referred to as self ), then we avoid executing the
hasEquals check expression for the current class. This means a class may fail
to satisfy either hasHashCode or hasEquals, but not both. Therefore our results
will never contain the same class more than once. Also note that by declaring
the getMethods operation as cached, we avoid re-evaluating it for a given model
element, so that if a class satisfies hasHashCode, we do not need to find all of its
methods again in line 9.

Listing 1. EVL program over Java metamodel

1 @cached
2 operation AbstractTypeDeclaration getMethods() : Collection {
3 return self.bodyDeclarations.select(bd|bd.isKindOf(MethodDeclaration));
4 }
5
6 context ClassDeclaration {
7 constraint hasEquals {
8 guard : self.satisfies("hasHashCode")
9 check : self.getMethods().exists(method |

10 method.name == "equals" and
11 method.parameters.size() == 1 and
12 method.parameters.first().type.type.name == "Object" and
13 method.modifier.isDefined() and
14 method.modifier.visibility == VisibilityKind#public and
15 method.returnType.type.isTypeOf(PrimitiveTypeBoolean))
16 }
17 @lazy
18 constraint hasHashCode {
19 check : self.getMethods().exists(method |
20 method.name == "hashCode" and
21 method.parameters.isEmpty() and
22 method.modifier.isDefined() and
23 method.modifier.visibility == VisibilityKind#public and
24 method.returnType.type.isTypeOf(PrimitiveTypeInt))
25 }
26 }

1 Equal objects must have the same hash code, but unequal objects do not necessarily
have different hash codes.
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3.2 Execution Semantics

The execution algorithm for sequential EVL is given in Listing 2.

Listing 2. Simplified sequential EVL algorithm

1 preBlock.execute();

2 for (Context context : contexts) {

3 for (Object element : context.getAllOfKind()) {

4 if (!context.isLazy() && context.guard(element)) {

5 for (Constraint constraint : context.getConstraints()) {

6 if (!constraint.isLazy() && constraint.guard(element)) {

7 if (!constraint.check(element)) {

8 unsatisfiedConstraints.add(constraint, element);

9 }

10 }

11 }

12 }

13 }

14 }

15 postBlock.execute();

For each context (line 2), we loop through all elements of that type and sub-
types (line 3). Provided that the guard blocks of each context and constraint are
satisfied and they are not marked as lazily evaluated (lines 4 and 6 respectively),
we simply execute the check block (line 7) of each constraint within the declared
context (line 5) for the current element. We add each failure to the set of unsat-
isfied constraints (line 8). Not shown in Listing 2 is the constraint trace, which
keeps track of results to avoid re-evaluating constraint and element pairs in case
of a satisfies operation (i.e. dependencies between constraints). The semantics of
how this is used will be discussed in the next section. Also note that the pre and
post blocks (lines 1 and 15, respectively) are not of interest as they may contain
arbitrary imperative code. We have also excluded fixes for simplicity.

4 Challenges with Parallelisation

Our observation from Listing 2 is that each iteration of the three loops need not
be performed sequentially, since there is no dependency between them (except
for occasional constraint dependencies, discussed below). Fixes in EVL are per-
formed optionally after validation and initiated by the user, so the model is only
queried, never written to2. In theory, this makes the task of executing read-
only operations (check blocks) within a loop inherently parallelisable. However
in practice, this is complicated by a number of factors, to which we now turn.

2 Parallel execution of fixes is beyond the scope of this paper.
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4.1 Accessing Data Structures

A key challenge with retro-fitting concurrency into an existing program is han-
dling of access to data structures. When multiple threads have shared access
to the same mutable data, the non-deterministic nature of parallel execution
can lead to inconsistent states (Readers-Writers problem). There are generally
three solutions to this problem: Not sharing such data between threads, making
the data immutable; or using synchronization whenever accessing the data [18].
Unfortunately in most cases, the easiest option of the three (synchronization)
is adopted. This has a major impact on performance not only because a single
thread can execute synchronized regions at a time, but also the overhead intro-
duced by synchronization mechanisms. This is especially problematic for data
structures which are subject to frequent writes.

Even though model validation is in principle a read-only task, intermediate
data structures such as the set of unsatisfied constraints need to be written to
concurrently. Furthermore, caches (such as those used to store model elements)
can present problems if they are written to during execution. In Epsilon, caching
of model elements is performed lazily, i.e. when all elements of a specified type
are requested for the first time.

4.2 Control Flow Traceability

It is important to be able to report on errors encountered during execution. EVL
scripts are interpreted, so errors such as accessing an invalid model property
are reported at runtime. Epsilon therefore records the execution stack trace
so that in the event of an error, the location of the fault can be identified and
reported to the user. When executing concurrently however, each thread could be
executing different parts of the script or the same parts with different data. When
an exception occurs, a co-ordination mechanism is needed to stop all threads
from executing, and for the cause of the exception to be correctly reported.
Furthermore, since exceptions are usually propagated to the program’s top level,
the reporting needs to be able to capture the stack trace of the thread which
encountered the issue and make it available to the main thread, as parallel
execution should be terminated at this point.

4.3 Handling Properties and Variables Scope

EVL is a structured extension of EOL, which supports almost every feature of a
general-purpose scripting language. Amongst these are user-defined operations
which may be defined in the context of types such as model elements or even
built-in types. More fundamentally however is the ability to define variables in
different scopes. Epsilon therefore has an internal frame stack which is used heav-
ily throughout the code base. With multiple threads executing concurrently, the
scoping of variables needs to be respected in an equivalent manner to sequen-
tial execution. So, for example, whenever a variable is declared in an executable
block, once that block has finished execution, the variable should be discarded
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and inaccessible from all threads. Similarly, if a variable is declared globally in
the pre section, it should be visible at all times to all threads.

Furthermore, EOL also allows individual objects (e.g. model elements) to
have extended properties associated with them. These properties should be
accessible from multiple threads.

4.4 Lazy Constraints and Dependencies

A classic impediment of parallelism is dependencies. In EVL, this can occur
through satisfies operation calls. This is typically used in the guard block of
a constraint to prevent it from executing if another constraint (or set of con-
straints) is not satisfied for the same model element. With multiple threads of
execution, the target(s) of a satisfies operation may be executing concurrently
with the caller. This means that there may be a duplication of effort, with the
same constraint being executed at least twice, or the caller may need to wait for
the result. In the latter case, not only does performance become single-threaded
but there is a co-ordination overhead of notifying the caller when the result
is made available. Further complicating matters are lazy constraints, which are
only executed when invoked by a satisfies operation.

4.5 Testing for Correctness

Finally, we would like to emphasize the non-deterministic nature of concurrent
programs. With single-threaded execution, the behaviour of the program is pre-
dictable, so a test suite which passes once will always pass for the same pro-
gram with identical inputs. However with multiple threads, those same tests may
become “flaky”; failing only on some occasions (depending on thread schedul-
ing). In the best case, inconsistent output would result in a failure on at least
one occasion, thus exposing a potential issue. Much more dangerous is correct
behaviour under test conditions but spurious runtime exceptions resulting from
a malformed internal state. Furthermore, debugging concurrent programs is also
difficult, since the same tools and techniques used to detect issues with sequential
programs may be inadequate or misleading when used for concurrent programs.

5 Parallel Solution

In this section we give a high-level overview of our solution to the problems
identified in the previous section. Firstly we begin with an outline of the parallel
execution approach.

5.1 Architecture

Our parallel solution abstracts the execution process using an extension of the
ExecutorService [19] interface. This allows us to, in theory, substitute any paral-
lel execution infrastructure without depending explicitly on threads. Our imple-
mentation uses a custom ThreadPoolExecutor [20] with a fixed pool of threads.
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Parallel execution begins when the EVL script has been parsed and the models
under validation are fully loaded into memory, and ends once all constraints have
been checked.

5.2 Parallelisation Strategies

To achieve maximum parallelism, it is important to choose the appropriate level
of granularity. For instance, parallelising only constraints themselves would have
no performance benefits if there is just a single constraint in the script. A similar
argument can be made for contexts. Since the issue of scalability is rooted in
the size of models, parallelism should ideally be performed at the element level.
Parallelisation is performed by wrapping the desired jobs into a function and
passing it to the ExecutorService. We have experimented with the following
parallel implementation strategies:

Element-Based. In this strategy, we parallelise the second for loop (line 4
onwards) in Listing 2. Each context and constraint is executed in a single thread,
but a separate job is created for each element. This is ideal if the model is large
and the number of constraints and contexts is small.

Stage-Based. This strategy is unlike the previous two in that it splits the
execution into three distinct phases, where the input to each phase is the output
from the previous phase. In the first phase, we loop through all elements in all
contexts (as in lines 2 and 3), and submit a job for each context and element
pair. The job simply checks whether the context should be executed (as in line
4) and if so, it adds the context and element pair to a thread-local batch data
structure. Once this is complete, the results from all threads are merged and
passed on to the next phase. In the second phase, we loop through the results
from the first phase and all of the constraints for each context in the results (as
in line 6) and check whether the constraint should be executed (as in line 6) and
if so, it adds the element and constraint pair to another thread-local batch data
structure. As before, once the jobs have completed the thread-local results are
merged and passed to the final phase. In the third phase, we submit a job for
each constraint and element pair (as in lines 7–9) and await the results.

This strategy clearly separates the three stages of the algorithm, with the
main advantage being that we can achieve maximum parallelism at all of the
for loops. Furthermore, it may be helpful for garbage collection since the data
is more clearly scoped as a result of the staged filtering process. On other hand,
the overhead introduced by additional intermediate results structures could be
detrimental to performance and/or memory consumption.

Constraint-Based. This strategy differs from the element-based solution in
that the parallelisation is performed at the third for loop (line 6 onwards). This
means we create a job for each constraint and model element pair (i.e. it is both
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data and rule parallel), but the context guards are executed by the main thread.
This is ideal if there are many constraints and there are no guarded contexts.

5.3 Thread-Safe Data Structures

It is useful to classify access to internal data structures during execution of the
script into one of three categories: read only, write only, and read and write. The
first category is inherently thread-safe since it is immutable. Such structures
include the script itself, the model, the constraints and constraint contexts. The
second category will never be queried during execution. An effective solution for
this is to create a per-thread data structure and then merge all of the thread-
local data structures once execution has completed. Since no thread will ever
attempt to read from the structure, we do not need to merge or synchronize
access during execution. The set of unsatisfied constraints (i.e. the results data
structure) belongs in this category. The third category is unsurprisingly the
most complex to deal with. Structures which fall into this category include the
operation contributor registry (a cache for storing operations available on a given
object), constraint trace (a cache of executed constraint-element pairs and their
results), execution controller (which keeps track of the stack trace and allows for
debugging of statements and expressions) and the frame stack.

Our solution is to use a thread-local structure (serial thread confinement)
with base delegation. We will use the frame stack as an example to illustrate
this. The idea is that each thread has its own frame stack (which is only accessible
from that thread) so that whenever the getFrameStack() method is called, we
return the frame stack associated with the calling thread. Each thread-local
frame stack also has a reference to the main thread’s frame stack. Whenever
a variable lookup is performed, we first check the thread-local stack and if it
is not present, we then look in the base. Once parallel execution has finished
(i.e. all constraint and element pairs have been checked), we merge the thread-
local results back into the base frame stack (i.e. that of the main thread). In
the constraint-based strategy, the main thread also needs to write to the frame
stack during execution, so we make the base structure thread-safe by using an
appropriate collection. In all cases, this is either a ConcurrentLinkedDeque [21]
(e.g. for frame stack); a lock-free double-ended queue structure where writes
are based on atomic compare-and-swap operations or ConcurrentHashMap [22]
(where there is no synchronization for reads and locking for writes is of high
granularity). We found that this approach eliminated many concurrency issues
and is sufficient for supporting EVL’s imperative features without introducing a
major performance bottleneck due to excessive synchronization.

5.4 Exception Handling

By using a thread-local execution controller, each thread is able to keep track of
its own execution trace so that when an error occurs, the cause can be identified
in a similar manner to sequential execution. However we found that propagation
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and signalling that an exception has occurred to be more involved. Our solu-
tion is to use an ExecutionStatus object which encapsulates the state of success
and/or failure within our ExecutorService. The idea is that when all jobs have
been submitted to the executor, we start a termination thread which blocks
until the ExecutorService has finished executing all jobs. Meanwhile, the main
thread locks onto the ExecutionStatus, waiting for a signal. So at this point, both
the main and termination threads are idle. If the ExecutorService completes all
jobs successfully, the termination thread signals a condition which notifies the
main thread, at which point the termination thread ends and normal execution
is resumed. If an exception occurs, the main thread is also signalled and the
exception can be propagated as usual. The exception signalling occurs by calling
the setException method in our ExecutionStatus object. Before this method gets
called, we first capture the exception message, since the thread-local stack trace
will disappear once parallel execution ends.

5.5 Dependencies

The original EVL algorithm added every constraint and element pair it checked
to the constraint trace. This was wasteful since in most cases there are no depen-
dencies between constraints. This is also the only structure for which we use
a synchronized collection rather than thread-local base delegation, which intro-
duces considerable overhead after checking each constraint and element pair. We
changed this behaviour (in both sequential and parallel EVL) to avoid unneces-
sary writes to the constraint trace whilst also limiting the number of times each
constraint-element combination is checked to at most 2 times. This is achieved
by keeping track of the set of constraints depended on. When a satisfies opera-
tion is invoked, we first check whether the constraint is in this set. If so, we then
proceed to check the trace for the specific constraint and element. If the result
is not present, we perform the check and add it to the trace. If the constraint
was not in the set of constraints depended on, we add it and also add the result
to the trace. In practice, we optimise the checking of the constraints depended
on every time a constraint is executed using a flag which indicates whether the
constraint is a dependency. This flag is set to true on the constraint when it is
first invoked by a satisfies operation. If this flag is true, we know to check the
trace for a result, otherwise we proceed as usual.

As an example, suppose that constraint A depends on constraint B. If A
runs before B, then B is checked during A. However B is then added to the trace
and constraints depended on, so when B runs, it will not be re-checked. If B
runs before A, then unfortunately B is checked again when A runs, but won’t be
checked afterwards because it will be in the trace. Future invocations (i.e. with
different elements) will then know to check the trace first because constraint B
will be in the set of constraints depended on.
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6 Evaluation

As our solution is built on an already established model validation engine and
does not change the syntax, semantics or supported features of the existing
platform, our evaluation criteria will focus exclusively on correctness and per-
formance. We consider correctness to be a hard requirement, since concurrent
programs are notoriously difficult to reason about due to the non-deterministic
nature of execution.

6.1 Test Models and Scripts

Our main test script runs over models conforming to the Java 5 language meta-
model provided by MoDisco [23]; a model-driven reverse engineering project
designed to migrate legacy code artefacts into models. We chose this metamodel
because it is substantially complex (749 elements) yet relatively easy to compre-
hend given the familiarity of the domain to Java programmers. Moreover, we are
able to obtain models from real code artefacts automatically using MoDisco’s
Java Discovery feature as opposed to synthetically generating large models. Of
course, since there are plenty of open-source Java projects, it is easy to obtain
models of various sizes. For convenience and reproducibility, we used the models
from [24], which vary from approximately 100,000 to over 4.35 million elements.

For our validation constraints, we took inspiration from the Findbugs3

project, which lists a large number of “code smells” in Java code. Some of these
require sophisticated static analysis, so in order to minimise errors with our val-
idation constraints we implemented a subset of the simpler bug locators. Our
EVL program consists of 31 constraints across 16 contexts (model element types),
written in a declarative style. To ensure that our parallel implementations scale
as intended, we also created three other scripts. One of these contains a single
constraint for each of the 16 contexts, another contains 9 constraints within a
single context, and one which consists of a single constraint within a single con-
text. The rationale is to test throughput and identify any potential weaknesses
in the scalability of our solutions.

6.2 Correctness

It would be challenging to formally prove correctness of our parallel solution
using static analysis techniques due to the size and complexity of the codebase.
Instead, we opt for a thorough series of automated dynamic JUnit tests. In this
section, we give a brief overview of our testing methodology.

Epsilon already has a large suite of unit tests, especially for EOL, which we
build upon. Our test suite for EVL ensures that all language features are exer-
cised thoroughly. This is achieved by having a test script, a minimal plain XML
model and by assertion of an expected number of unsatisfied constraints for
each context and constraint in the script. The features tested include pre and

3 http://findbugs.sourceforge.net/bugDescriptions.html.

http://findbugs.sourceforge.net/bugDescriptions.html
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post blocks, lazy constraints, constraint dependencies, contextless constraints,
constraint pre-conditions, imperative code, user-defined, cached and imported
operations, constraint messages, fixes as well as ensuring correct scoping of vari-
ables. We also have another script which accesses a non-existent property of the
model to ensure correct propagation and reporting of exceptions in the user’s
code.

Our second test suite consists of equivalence tests with the sequential imple-
mentation. The infrastructure for this is rather complex, since we need to ensure
that we are comparing the same model and script combinations whilst varying
the modules (execution strategies); which themselves have different configura-
tions as well. We automate this check by calculating an ID for each model,
metamodel and script combination. We refer to a combination of model, meta-
model, script and module as a scenario. Our first test is whether the scenario
can actually execute without exceptions. Once this is established, we then check
that for the oracle scenario (which uses the original sequential implementation),
the results and internal data structures are “equal”. These include the unsat-
isfied constraints, frame stacks, the constraint trace, constraints depended on,
operation contributors and stack trace manager. We use the scripts described
in the previous subsection as well as other complex scripts and models which
were developed independently from the project. For this suite alone, we have 15
models, 5 metamodels and 9 scripts.

Since some changes were made to the Epsilon core code base, we also need
to ensure that the original sequential EVL engine produces correct results when
executed over a real model and script, as opposed to ones solely designed for
testing the engine internals. To do this, we took our java findbugs script and re-
wrote it in OCL. Since we execute the same model with EVL and used the same
constraint names, we can could compare the references (i.e. memory address) of
the EObjects (model elements) in our test suite to ensure that the set of results
from EVL and OCL are identical.

All three of the above test suites are parameterised with an EVL engine
implementation, so we could repeat the tests for all our solutions. Since we have
three parallelised implementations, each of which accepts a number of threads to
use as a parameter, we opted to use 1, 2, the number of logical cores on the system
and many (8191) threads for each implementation. To detect concurrency issues,
we also parametrised each suite with a number of cycles, which would repeat the
tests a specified number of times. Given the very large number of combinations
of modules and parameters, scripts and models as well as the tests themselves,
each run results in thousands of unique tests.

After running the tests and real experiments on both small and large models
tens of thousands of times on a HPC cluster, we can be confident in the correct-
ness of our implementation from a practical sense as we did not encounter any
exceptions, crashes or incorrect results.
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6.3 Performance

Our platform for performance evaluation has the following characteristics: Win-
dows 10 Enterprise (v1607), Intel Core i7-4790K @ 4.00 GHz (4 cores/8 threads)
CPU, 16 GB DDR3-1600 MHz RAM, Samsung 850 EVO 500 GB SSD, Java
HotSpot 64-bit Server VM (build 9.0.4+11). We disabled Turbo Boost for a
fairer comparison when varying the number of threads. The arguments to the
JVM were as follows4:

-XX:InitialRAMFraction=16 -XX:MaxRAMFraction=1
-XX:+AggressiveOpts -XX:+UseParallelOldGC

We measure the parsing and loading time of a model independently from the
execution time of a module, using System.nanoTime(), and report our results
in milliseconds. We calculate memory consumption (in MB) by summing the
peak usage of all memory pools after measuring execution time. We run each
experiment three times and use a script to automatically calculate the mean,
speedup and efficiency of our results. We should also note that each experiment is
run in a separate JVM invocation to minimise interference and warm-up effects.

6.4 Analysis of Results

Table 1 shows our main result, which we split into five sections (separated
by alternated shading) for convenient analysis. All speedups are relative to
the sequential EVL implementation unless otherwise indicated. The number of
threads are in parenthesis where applicable.

Our parallel implementations perform similarly for the findbugs script, with
around 3× speedup using four threads. This decreases slightly with model
size, but for models with hundreds of thousands of elements, the performance
improvements are still significant. The imperfect efficiency of our parallel solu-
tion can be mostly explained by the overhead of creating and submitting jobs
to the executor, as well as merging thread-local results. As demonstrated by our
second group of results, when running a parallel version with a single thread as
the baseline we see an almost perfect speedup using two threads. The original
sequential implementation is over 10% faster than the single-threaded stage-
based implementation, which can be interpreted as an estimate of the paralleli-
sation overhead. The third group of our results shows broadly similar results
across the parallel implementations, with single-threaded efficiency of 89% rel-
ative to the sequential implementation for three million elements. The fourth
group of results act as a test of throughput, since the script contains only a
single constraint. Here we see that despite the large model size, the absolute
execution time is too small for parallelism to provide significant benefits, with
efficiency dropping to just 33%. The last group of results shows that for multiple
constraints within a single context, the element-based implementation is clearly
superior. With four threads, we observe 100%, 90% and 84% efficiency for the

4 We use the ParallelOld garbage collector since we’re interested in throughput.
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Table 1. Selected benchmark results

MODULE SCRIPT ELEMENTS TIME SPEEDUP MEMORY
Sequential findbugs all 4M 9 227 448 — 2758

Stage–Based (4) findbugs all 4M 3 009 693 3.066 4 342
Compiled OCL findbugs all 4M 22 024 418.972 475

Sequential findbugs all 1M 948 871 — 3366
Stage–Based (4) findbugs all 1M 330 027 2.875 4 967
Compiled OCL findbugs all 1M 7 078 134.059 559

Sequential findbugs all 200K 47 181 — 5016
Stage–Based (4) findbugs all 200K 16 636 2.836 5 043
Compiled OCL findbugs all 200K 2 593 18.196 12

Sequential findbugs all 2M 3 815 590 1.119 3 782
Stage–Based (1) findbugs all 2M 4 265 051 — 4822
Stage–Based (2) findbugs all 2M 2 162 179 1.973 5 050
Stage–Based (4) findbugs all 2M 1 251 400 3.408 4 981
Stage–Based (8) findbugs all 2M 874 808 4.875 5 031

Sequential findbugs all 3M 5 892 807 — 4139
Stage–Based (1) findbugs all 3M 6 626 802 0.889 4 428

Elements–Based (1) findbugs all 3M 6 693 093 0.88 4 196
Constraints–Based (1) findbugs all 3M 6 609 898 0.892 4 443

Interpreted OCL findbugs all 3M 5 845 796 1.008 3 442
Compiled OCL findbugs all 3M 18 757 314.166 478

Sequential findbugs 1Constraint 4.3577M 11 024 — 1269
Stage–Based (4) findbugs 1Constraint 4.3577M 8 248 1.337 2 149

Elements–Based (4) findbugs 1Constraint 4.3577M 8 180 1.348 2 320
Interpreted OCL findbugs 1Constraint 4.3577M 12 745 0.865 584

Sequential findbugs 1Context 2.5M 30 193 — 1236
Elements–Based (8) findbugs 1Context 2.5M 6 038 5.000 3 490

Constraints–Based (8) findbugs 1Context 2.5M 7 139 4.229 3 700
Stage–Based (8) findbugs 1Context 2.5M 7 126 4.237 3 693

Elements–Based (4) findbugs 1Context 2.5M 7 527 4.011 3 274
Constraints–Based (4) findbugs 1Context 2.5M 8 379 3.603 3 368

Stage–Based (4) findbugs 1Context 2.5M 8 997 3.356 3 582
Interpreted OCL findbugs 1Context 2.5M 25 701 1.175 697

element, stage and constraint-based implementations respectively. However it is
the Hyper-threaded performance which shows marked differences. Although the
constraint-based implementation is faster than the stage-based one with four
threads, this difference disappears once we add the remaining logical processors.
With eight threads, they both achieve 4.23× speedup, whereas the element-based
implementation is five times faster.

We observe similar performance between interpreted OCL and sequential
EVL for our main findbugs script, though there is a 15% difference for both the
single constraint and single context variants, with OCL being faster in the former
case and slower in the latter. However we should note that the implementations of
EVL and Eclipse OCL are fundamentally different. Compiled OCL is in a league
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of its own in terms of performance, though its advantage greatly diminishes
with smaller models. The benefits of using EVL over compiled OCL include a
richer feature set and the ability to work with any modelling technology, amongst
others [17]. Furthermore, the performance of parallel EVL will improve over time
as the number of cores in developer workstations increases. Currently, compiled
Eclipse OCL requires the user to embed their constraints in the metamodel and
manually regenerate the code for any changes to the constraints or metamodel.

Overall, these results indicate what one would expect from a parallel algo-
rithm in that with smaller problems, the overhead of co-ordination outweighs
the gains but with a bigger problem, the parallel version is able to “catch up”
and overtake the sequential algorithm’s performance [26]. Typical speedups for
parallel model management programs in the literature with four threads range
between 2.5×–3× (in the case of LinTra [25], 1.19× with four threads and 3.24×
with sixteen). However these are in the context of model-to-model transforma-
tion; a task which is arguably more complex.

7 Conclusions and Future Work

In this paper, we have presented a novel parallel model validation solution which
is scalable with both the number of constraints and number of model elements.
Along the way, we have identified and provided solutions to concurrency issues
arising from uncommon features in model validation such as constraint depen-
dencies and imperative programming constructs. We have also tested our solu-
tion by not only exercising all features of the language, but also through equiv-
alence testing with the non-concurrent version as well as with OCL; a popular
model querying and validation language with a well-defined specification. In
terms of performance, we observed roughly linear improvements in execution
times as we increased the number of threads, though naturally our parallel solu-
tion does impose an overhead which reduces the efficiency in cases where the
absolute execution times are relatively small. However we realise that smaller
models and scripts benefit significantly less, if at all, from parallelisation.

To further improve performance, we intend to combine our parallel solution
with an incremental one [27], which will undoubtedly present new challenges. To
improve scalability, we are also considering a distributed solution; though the
lack of shared memory and communication costs in distributed systems would
require some modifications to our proposed parallel solution. If our solution is
modified to accommodate partial and lazy loading of models from non-volatile
memory, we could also avoid the upfront cost (both in time and memory) of
parsing the model and possibly even make the process multi-threaded. Another
possibility is to parallelise first-order logic operations on collections, since these
are commonly used and are usually pure functions (i.e. free from side effects).

Going beyond model validation, we plan to refine our solution by applying it
to other rule-based model management tasks in Epsilon, such as pattern match-
ing (EPL) [28], model comparison (ECL) [29] and model-to-text transformation
(EGL) [30]. In principle, our systematic analysis and devised approach should
also be applicable to other model management languages outside of Epsilon.
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industrial context. We present this solution as a way to overcome issues
regarding the use of SysML in an industrial context. We contribute by
providing a method and a list of the existing challenges and experimenta-
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1 Introduction

This paper focuses on the verification and validation (V&V) of system models,
built as part of the system development process at Bombardier Transportation
(BT) for producing a broad portfolio of railway products. The Systems Modeling
Language (SysML) [1] is used to develop the system models based on a BT
customized System Modeling Method (SysMM) [2]. The main objective is to
develop a generic V&V solution based on SysML without any tool dependent
criteria so that it is reusable across all BT divisions and projects.

1.1 MBSE and V&V

Systems engineering is an interdisciplinary process for supporting the system
life cycle. Model-Based Systems Engineering (MBSE) introduces new capability
into systems engineering practice and is defined by INCOSE as “the formalized
application of modeling to support system requirements, design, analysis, veri-
fication and validation activities beginning in the conceptual design phase and
continuing throughout development and later life cycle phases” [3].
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As there are several definitions of the terms verification and validation
(V&V), we refer in this paper to the definitions of the standard IEEE 1012-
2012 [4], which we apply in the context of model development, and not on the
scale of the whole development process. From this point of view, verification
ensures that the models created during the early steps of the development pro-
cess have been correctly built, meaning they are free of errors and represent a
coherent system. As for validation, it ensures that the system represented by the
models match the requirements traced to the information displayed or induced.

1.2 Motivating Example

From a technical point of view, the main aspect in verifying a model is ensuring
that no errors were made in the specification of the system design. Creating
models and having correct models are two different things, and can impact the
rest of the development process. Similarly to validation, the earlier an error is
detected, the less the cost [5].

From an organizational point of view, within large organizations, ensuring
that everyone create models under the same guidelines and constraints is a chal-
lenging task. It is crucial that the modeling team members work the same way
and are able to exchange and communicate around their delivered models with
others without any misunderstanding or consistency issues. This gets more com-
plex with teams spread across continents and/or companies. Having one defined
modeling method across an organization and applying it the same way are two
different things.

During the early phases of MBSE adoption at BT, the focus on models’
V&V was triggered mainly by specific projects based on particular customers
or countries needs. As MBSE enabled the reuse of models specification across
projects, the goals of V&V was extended towards being more generic and project-
independent. This however introduced the discovery of hundreds of errors by the
BT V&V team even sometimes for a single verification or validation rule. It was
not that the models were globally false, but rather that the project specific teams
had their own interpretation of the method or specific modeling practice, gained
from experience. What it did mean is that the models could neither be easily
reused by other teams, nor could they be adapted while reproducing the same
modeling approach. This is a main challenge for large organizations that are
driven by project specific customers in contrast with those able to generalize
their products and offer a predefined product portfolio (e.g., in automotive).
Therefore, the need for reusing V&V of the delivered models is crucial to ensure
proper systems models reuse. Moreover, it is crucial to implement the suitable
adoption approach, similar to the D3 MBSE Adoption Toolbox [6].

1.3 Outline of the Paper

Section 2 presents BT SysMM, how it was implemented, and what were the
specifications of the verification solution to be developed. Section 3 discusses
the state of the art introducing the solutions on which we based our work on.
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Section 4 presents our solution and the work realized, providing a return on
experience. Section 5 shows an example of application, and Sect. 6 describes the
challenges known beforehand as well as those encountered when developing and
implementing our solution. Finally, Sect. 7 concludes on what has been done and
gives future directions for this work.

2 Background on BT SysMM

MBSE has been deployed at BT for several years across various applications, for
instance in requirements, functional and safety engineering [2]. The BT System
Modeling Method (SysMM) [2] consists of three main tasks. Each one aims
at analyzing the system of interest (SOI) on a specific abstraction level (see
Fig. 1). SysMM describes how BT engineers analyze, define, and represent their
SOI using system models. The purpose of SysMM is to manage complexity and
increase quality of the design artifacts to reduce development costs.

Fig. 1. BT system modeling method tasks [2]

The need for V&V of the SysMM system models was addressed from the
beginning. SysMM tasks include V&V activities to ensure the quality of the
deliverables. For instance, the Operational Analysis deliverables (left side of
Fig. 1) are first verified automatically by the system modeling tool to check
if the model elements and diagrams are conform with the associated guidelines.
Then they are validated by the domain experts to ensure that the system model
representation complies with the specification of the real-world system and the
system requirements.

However, through the deployment of SysMM on several projects, the imple-
mentation of V&V solutions started to get very challenging due to the many
changes triggered from the various dimensions such as the applications of mod-
eling (e.g., functional description and variant management) and the hierarchy
levels (e.g., train, consist and subsystems). Therefore, the need for a generic
and reusable V&V solution was addressed to improve the V&V activities and
hence optimize the deployment of MBSE. The targeted approach was built on
the following objectives:

• Enable formal, generic and reusable V&V methods to be used across different
projects and different departments.
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• Ensure an early start of the V&V activities with regards to the system models
development and keep it running in parallel to the SysMM tasks.

• Support V&V automation as much as possible to reduce the time consumed
on V&V activities and avoid any potential errors due to manual actions.

3 State of the Art

As explained in [7,8], SysML on its own is not the best suited to apply a devel-
opment method or build meaningful models in systems engineering. We have
to ensure that we manipulate system concepts that are represented by corre-
sponding model elements, along with proper semantic and relationships. A good
example would be the lack of elements representing a function, which lead to
the creation of specific methods on how to define a functional architecture based
on SysML [9]. However, it is possible to adapt SysML to our needs through the
use of profile, constraints and additional semantic. The Arcadia method [7] is an
example of an adaptation of SysML to system development using system con-
cepts. Arcadia is not considered as a DSML by its creators because of the broad
scope of its application and its links to modeling standards. However, Arcadia
does not follow the SysML standard fully, and has fixed concepts linked to the
modeling elements. BT developed a profile that aims to give semantics to SysML
elements while following a general modeling method that could be used also for
other systems beside trains. From this comes the need for the verification of the
models according to the semantics defined in the profile. The difference with
Arcadia is that we can adapt our semantics and our profile depending on ours
needs and the method used, without relying on a fixed solution and tool.

We consider here an existing solution for SysML model V&V and several
examples of its application. The same way system V&V is different from model
V&V, there are differences in the ways to perform V&V. Before considering
common V&V solutions such as tests or model checking, which would require
for the model to be executable, we want to check if its construction is coherent
and holds correct meaning compared to a real system. As shown in [10,11], it is
possible to have an implementation and verification of a SysML profile through
the use of the Object Constraint Language (OCL) [12]. OCL enables to define
constraints on a model, which we refer to as rules in this paper. We speak of
verification rules and validation rules depending on their usage, but they are
often called validation rules in practice, as shown in the several tools using this
mechanism [13–15].

While OCL is widely used for this purpose, V&V rules can be developed in
other languages supported by the modeling or analysis tools. For this reason, we
consider the model V&V solution studied in this paper to be the rules mecha-
nism, whether the rules themselves are coded in OCL or some other language.

Regarding the use of OCL to check or analyze a model, we can find several
examples of its adaptation to industrial context and needs, offering technical
solutions [16]. Some, such as [17] include OCL as a V&V solution in a process
for models and instances design. In this paper, we focus on its use in a much
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broader context, that is a system development process including many kind
of models and taking into account the work of several modeling teams across
different projects. We use OCL rules to enforce a semantic and detect error in
the model representing the system. Validation using OCL rules is technically
possible but it is currently not practical to develop those in a project context,
as it will be explained further in this document.

4 BT SysMM V&V

4.1 Method Stakeholders

Figure 2 shows the context of SysMM V&V and the roles of its stakeholders. The
V&V activities are part of SysMM and embedded within each task of SysMM
(e.g., Operational Analysis). They start in parallel and continue until the deliver-
ables of the SysMM task are verified and validated. Moreover, there is a common
V&V part across all the tasks of SysMM, related to the generic and reusable
models (such as the model library elements and glossary).

Operational
Analysis

Functional 
Analysis

Technical 
Analysis

SysML Model

Verification Rules

: V&V Task

Validation 
RulesModel

Developer

V&V 
Developer

Domain 
Expert
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validates

supports
Method 

Developer

delivers

uses

developed according todevelops

Fig. 2. BT SysMM verification and validation stakeholders context

The context in Fig. 2 indicates that the SysML model is the system of interest
under which the V&V takes place. The verification rules are also represented with
a model icon because they are implemented using OCL directly in the systems
modeling tool. Both the SysML model and the verification rules are included in
a project model, whereas the validation rules are documented in a formal textual
format and shared through a common guideline. Validation rules are currently
broad and/or abstract considerations that cannot be evaluated by a script. While
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verification check the model and its semantic, validation targets the information
expressed in the model regarding the system requirements and expectations. We
could define lists of validation rules that check specific considerations expressed
by domain experts, but quite often, the lack of resources (time and skills) to
develop and use such rules during the project is a challenge.

The SysML model represents an abstraction of the real world system (e.g.,
train, subsystems or components). Furthermore, the SysML model is being
developed based on the defined method and guidelines bundled here with the
BT SysMM. The SysMM V&V identifies four stakeholder roles with their own
responsibilities and competencies. Table 1 lists these four roles and describes
them in detail.

Table 1. The BT SysMM V&V stakeholders roles description

Stakeholder Role description

Method developer Is responsible for defining and developing the system
modeling method, its guidelines, training courses and tools’
customization specifications. This also includes the V&V
method parts and their relationship to other method parts.
The method developer possesses a unique governance role in
monitoring the deployment of the method on projects to
ensure the reusability of delivered system models

Model developer Is a member of the modeling team that is responsible to
develop the system models and verify them according to a
defined set of verification rules based on project needs. The
verification process is done automatically by the system
modeling tool and can be set to be active all the time or
triggered by the model developer

V&V developer Is responsible to develop and maintain the verification and
validation rules based on the input from the method
developer, domain expert and project needs. Additionally,
this includes analyzing the V&V requirements, implementing,
testing and delivering them. It is the role of the V&V
developer to ensure the reusability of V&V rules across
several projects

Domain expert Is a member of the architects team who possess the authority
and knowledge in a particular railway technical domain, e.g.,
brake, propulsion or train control. The domain expert plays a
crucial role in validating the system models’ content based on
his own experience of the real-world system represented by
system models

It is crucial for these roles to be well defined in the company, as not every-
one should be able to define, develop, apply or change rules implementing the
modeling method or defining the conditions that models have to satisfy to be
validated. While we can define any arbitrary number of users, the definition of
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Fig. 3. Verification method

the modeling method and the management of the rules and their packages should
be allocated to specific entities. This allows to centralize the skills, development
efforts, and rules specifications, while avoiding conflicts and incoherences among
the modeling teams. This is part of how we can address the challenges in change
management, reusability and conflicting rules discussed later in Sect. 6.

4.2 V&V Method Overview

As we presented the different roles in the previous section, we now show the
method and work process they follow in order to specify, develop, share and
apply verification rules. This is illustrated in Fig. 3. As validation rules are not yet
managed using the rules mechanism, they are not part of the method presented.
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Rules are defined and used for a specific purpose and context. A key aspect
of our implemented solution is the allocation of verification rules to modules
or packages. In this way, rules in a same package can share a same application
context and correspond to a same step in the modeling method with the related
semantics. As the packages are managed by the method developers, they can be
communicated to any team, enabling uniformity and reuse. Rules specific to a
project will be contained in their own package. When working on a server, the
packages can be automatically updated. Choosing the right verification packages
enable us to define, apply and adapt our semantics. Packages can be versioned
to be able to work on older projects. We can define packages providing the
semantics of other modeling methods when working with or for other providers.
Packages are to be built so as to separate conflicting rules.

Verification rules are not just a technical solution, they are specifications on
how the modelers should work and what they should deliver. In order to specify,
communicate, understand and use the rules, a proper documentation is required.
Supposing you work with teams with different tools or an external provider, you
can communicate the rules that have to be followed during modeling, even if they
are not implemented or compatible with the tools. The documentation should
at least specify for each rule: an ID, a target, a method, its current place in the
life-cycle and the specification/constraint/error addressed by the rule.

4.3 Benefits

Aside from the semantics, the rules enforce the (modeling) methods and sup-
port work processes. Checking the rules on each step results in a report on the
quality and level of advancement in the work done, enabling to proceed to the
next development step after having checked for errors. Note that by verifying
the relationships between concepts/elements, we ensure a certain degree of trace-
ability. Supposing that we have modeled the requirements as artifacts, we can
achieve part of the system validation just by ensuring that they are linked to
other elements such as functions or scenarios. This is also true across abstraction
levels, when switching the SOI from the system to a sub-system.

An advantage of the approach based on verification rules is that it is pro-
gressive, empiric, iterative and adaptive. We can specify, update and change the
semantics and modeling rules over time. Note that most verification rules should
be decided at the start of a project. While we can always develop rules during a
project in answer to an immediate need, we should not remove or change any of
them once the modeling activities have started. A key point in BT is that new
modeling methods are being developed and spread in the different company sites
across the world, and with rules they are supported by a common and automatic
solution. Modeling teams can check the models and learn at the same time the
method implemented by the rules. They also provide a feedback and request new
rules. Rules support the training of modeling teams as the rules enforce the way
the method has to be applied. In return, the method developers learn from the
experience of modeling teams. This create a dynamics that optimizes the work
performed and the results obtained across projects, each supplying new rules
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and improvements. This would not be possible if we were to impose a new tool
with a fixed semantics.

4.4 Issues

Before and during development, we came across several issues that had to be
solved, such as how to define our rules or how to reduce the time needed for
them to be checked. Some of these were problems we wanted to address with our
solution, others resulted from its implementation. This enabled us to express new
needs and opportunities that will be presented as challenges in Sect. 6. There is
also the matter of maturity between verification and validation rules. Finding a
way to develop, apply and check validation rules in an automatic way will be
the object of further studies. In the rest of the document, we focus on issues
related specifically to verification rules or ones that apply to the rule mechanism
solution as a whole.

5 Use Case Example

Traditionally, the work split during the model development between teams is
based on the work breakdown structure which defines a list of scopes covering all
functionalities of the SOI (e.g., train or subsystem). The functional scope travel
direction, taken from [2], is used in this section to illustrate the application of
SysMM V&V on an example from the railway domain. A scope here is referred
to a part of the work breakdown structure of the whole function set. Figure 4
shows some of the SysML diagrams delivered using the SysMM operational and
functional analysis tasks.

Fig. 4. BT SysMM diagrams example on which V&V is applied [2]
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The operational analysis part is demonstrated through the use case and activ-
ity diagrams. The use case diagram defines the use case “Set Travel Direction
Of Train”, its actor (i.e., the driver) and the respective trigger signal “Train
Travel Direction Request”. The activity diagram describes the internal behavior
of this use case in a generic manner independent from any specific functional or
technical solution in order to reuse it in several projects.

The functional analysis part is shown with the internal block definition dia-
gram where previously modeled activities are structured in a functional architec-
ture that fits a particular train platform or project. The functional architecture
defines all functions needed to cover the travel direction scope with functional
blocks and their interfaces. These function blocks are linked back to the activ-
ities of the operational analysis and allocated later on to the technical blocks
solution to ensure traceability.

The scope discussed here is one out of other hundreds of scopes normally
modeled to describe the safety related functions of a train. Usually, a set of scopes
is assigned to particular domain experts and model development team. The
model developers, usually system engineers, takes the responsibility to develop
the SysML models based on the input requirements of their own scope.

During the modeling activities, the model developers verify their models
automatically based on the verification rules implemented in the tool. These
rules are aligned with the deployed method and implemented using OCL in
the systems modeling tool. Table 2 lists a sample of textual representation of the
verification rules for model elements such as use cases or signals. The verification
rules check automatically if model elements are modeled according to the defined

Table 2. BT SysMM rules examples

Sample Verification Rules:

1. A use case must own at least one activity

2. A use case name must follow the naming convention guidelines (e.g.,
starting with a verb and all words are capitalized)

3. A triggered use case must have at least one actor and one trigger signal

4. A signal name must follow the naming convention guidelines

5. Model elements, e.g., use cases, must be unique across the whole model

6. Each function is linked to at least one activity

Sample Validation Rules:

1. Are the use cases’ actors complete according to the requirements?

2. Are all actors and signals considered in the correct way with respect to
the requirements linked to the use case?

3. Does the use case activity describe the exact scenario of real operation as
described in the requirements?

4. Is the functional architecture solution (i.e., functional split and
allocation) satisfying the relevant requirements?
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method. If not, the model developer is getting a notice about the result of the
check i.e., an error, warning or information. One can see from the list that the
verification rules check also model consistency and completion.

After the model is verified, it is shared with the responsible domain expert
for the sake of validation. The second part of Table 2 lists a sample of the vali-
dation rules relevant to the presented example. These rules are documented in a
formalized textual format and offered to support the domain expert during his
model validation activities. The validation rules are always traced back to the
system requirements. It is the role of the domain expert to apply his experience
in order to check these traceability links and confirm that the model specification
is valid with respect to the provided requirements.

6 V&V Adoption Challenges

In the following, we contribute by providing the list of challenges faced during
the adoption of the V&V work on SysML models at BT and discuss the need to
achieve a common interpretation of them in order to start solving them.

SysML Tools Integration. It is often the situation within large organizations
that different departments or different sites’ locations use different SysML tools.
Challenges do not lie in the tool’s diversity instead with the integration between
the different tools. Model exchange (i.e., elements and diagrams) is still hardly
possible between different SysML tools. In case tool vendors offer it (i.e., nor-
mally with the XMI file exchange), an additional effort and customization is
always required. The early phase objective of BT was to achieve a model V&V
solution across different SysML tools from the beginning of the system model
development and not only at the end, i.e., model delivery from each tool. Unfor-
tunately, this objective for having a common SysML V&V solution across differ-
ent SysML tools is still not possible without having an extra SysML-independent
V&V tool which is not preferred. This lead us to have a flexible solution that is
the rule mechanism. Rules can be documented and transmitted even if they have
different implementations. What is lacking is a way to quickly develop, deploy
and/or adapt them across tools and teams. As the rules relate to concepts and
data, part of the solution could be to apply them on a metamodel and transport
them from one tool to another, based on the work with OSLC [18,19].

Complexity with Large SysML Models. The evolution of systems, compo-
nents and functions has hugely contributed in growing the number of elements
and relations of SysML models. For instance, modeling one functional scope,
e.g., brake control or propulsion of a railway vehicle on the vehicle level only,
includes in average 20 use cases, 150 signals and 25 function blocks. Covering
only the safety related functions on the vehicle level, one should multiply these
numbers by around 100 other scopes. The issue here is not only with the high
number of model elements but with the dependencies inside a model or across
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several models. Very often when dealing with large systems and large teams,
complexity issues arise where existing tools and methods can reach their limits
in solving them. This kind of high complexity levels has a huge influence on
the V&V benefit. Therefore, a suitable solution should deal with the complexity
issues and not only on tools-level but also on methods and processes.

Conflicting V&V Rules. As we do not rely on a tool applying a DSML
and separating the different scopes of study, we tend to use the same SysML
elements for different purposes. For example, while we do not apply a stereotype
on a sequence diagram, we do not use the same type of signals in the messages
depending on whether we are making an operational analysis, that is an analysis
of the system behavior from an external point of view, or whether we are making
a functional analysis, meaning we specify the signals exchange between functions.
Using the right signals according to one analysis will result in not using those
required for the other. Applying a verification rule depends on the verification
goal, the scope and the type of the element. If we check all verification rules
on the whole project, then independently from performance issues, there will be
contradictions and the model will never be considered correct.

V&V Managed Reuse. Many organizations still follow an opportunistic and
isolated reuse approach, where a set of data is copied and pasted from one context
to another. Unfortunately, this still happens even with work performed on SysML
models and results in losing the “source of truth” as soon as the copied source
or pasted target is changed. During the early stages of modeling, V&V rules are
often created only for a particular deployment (project or product) and thus
specific. Reusability between different deployments gets complicated without
proper modularity concepts for defining the communality and variability of the
V&V rules. According to BT MBSE objectives, reuse is a key factor for improving
the system models V&V efficiency. In order to achieve a managed V&V reuse,
modularity, governance and variability management must be in place for V&V
solutions.

V&V Change Management. The work with V&V rules is subject to many
changes, most of which are due to models or rules modifications, emerging from
different stakeholders for the aim of optimization – of V&V rules. Working
around those changes is eased by following our method, managing rules in PLM
and documenting them, but it is not enough. Each change request triggers a
sequence of tasks (e.g., review request with impact analysis, change approval,
change implementation with review and reporting) in order to reach the final
successful implementation and closing the change request. Such tasks are often
grouped under the term of change management. Although the usage of methods
as agile, scrum and kanban helps a lot in addressing the change and delivering
value with a quick impact and continual basis, the responsibility still lies on the
personnel side of the team involved. Particularly, dependencies between change
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requests are often not visible from the beginning, consume time and impact
the V&V solution delivery timeline. Moreover, the integration between agile
tools and SysML tools – to achieve a full traceability – is still very challenging
when dealing with multi-user environment. Although the technology is heading
towards cloud based solutions, their low performance due to large models is still
an issue.

V&V Optimization. Although the work done at BT with regard to V&V
has evolved enormously for the aim of optimization during the last years, it
still requires high effort to analyze all relevant rules and the order of execut-
ing them to deliver better V&V results. Particularly, defining the dependencies
between the verification rules is still very challenging and needs a lot of tool cus-
tomizations, specific method solutions and personnel effort. Therefore, there is a
need to investigate which other domains could solve the optimization challenges,
for instance in [20] the combination of Statistical Machine Learning and OCL
demonstrates how Artificial Intelligence can support in solving this challenge
and in [21] an implementation of machine learning for a model-based conceptual
design evaluation is demonstrated.

7 Conclusion and Future Directions

In this paper we presented the work related to the verification and validation
of SysML models from an industrial perspective. Although the usage of OCL is
well known for model verification, we first contributed by describing the method
and roles used at BT to achieve efficient V&V results and accelerate the system
development process with less time consumed on testing and system validation.
Our second contribution concerned the description of common challenges faced
with model-based V&V in large organizations. After having identified these chal-
lenges, a common understanding between the whole modeling team was achieved
to justify the reasons behind the previous pitfalls and failures.

Our future work spans in two main directions: on one hand, we aim to analyze
and the describe the fulfillment of the V&V method developed in relation to
the challenges discussed in this paper. In so doing, we expect to identify the
challenges which cannot be solved through method, process or tool solutions. On
the other hand, we aim to apply new domains, such as Artificial Intelligence (AI)
and machine learning to use the large amount of available data, let the AI system
learn from it and support with an optimized V&V results. Finally, we aim to use
this work to trigger the MBSE community and particularly the SysML working
group in upcoming conference workshops to consider V&V more in detail in
future SysML versions (e.g., 2.0) in order to solve industrial adoption challenges
from a language prescriptive. The SysML V2 working group [22] states that the
next version of SysML should enable a concise representation of the concepts
and be able to validate that the model is logically consistent. It should also be
highly adaptable and customizable in regard of domain specific concepts. The
rules mechanism presented here enables to do both, and it would be interesting
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to be able to express the rules based on the SysML language rather than on
its implementation in tools, while taking in account the other challenges we
expressed.
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Abstract. Modern cyber-physical systems are complex to model due,
among other things, to timing constraints and complex communications
between components of such systems. Therefore, testing models of these
systems is not straightforward. This paper presents an approach for auto-
matically testing components of UML-RT models with respect to a set
of formally defined properties. Compared to existing model-based tech-
niques where abstract test cases are complemented with their concrete
counterparts, our approach solely leverages on constructs provided by
the modeling language to express all artifacts (component to test, test
harness, the property of interest) and existing code generator to gener-
ate test cases. This helps to reduce the cost of ensuring the consistency
between code- and model-level tests. Moreover, to reduce the number of
test cases and the associated cost, our approach integrates our test case
generators with slicing techniques to reduce the size of the components.
A prototype implementation has been sketched and our approach has
been evaluated over two case studies.

1 Introduction

Real-time embedded systems (RTE) which are often safety-critical [3] typically
interact with physical components (e.g., sensors or actuators) which entails real-
time constraints on the behavior of the system, and hence require intensive
testing to ensure that they meet stringent requirements. For example, a control
system of an elevator’s door must guarantee that the opening of the door must
not occur when the elevator is moving. As a second example, if an infusion pump
system generates a low-pressure signal, it must recover automatically and send
a follow-up healthy pressure signal within 5 min of the first signal [10].

Using code-centric only approaches for developing complex RTE systems is
very challenging. Model Driven Engineering (MDE) techniques tackle this chal-
lenge by raising the level of abstraction on which the developers construct soft-
ware. If a model contains faults, these faults will propagate to any refinement of
that model or the code that is generated from the model. Therefore, finding and
resolving faults at the model level typically is more efficient than finding the same
faults in the next stages. Hence, for MDE approaches to succeed, appropriate
techniques and approaches for model-level testing and validation are required.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Pierantonio and S. Trujillo (Eds.): ECMFA 2018, LNCS 10890, pp. 147–163, 2018.
https://doi.org/10.1007/978-3-319-92997-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92997-2_10&domain=pdf


148 R. Ahmadi et al.

In many existing model testing approaches [7,11,13,15] the system is only
tested at the model-level without generating code from the model and running it,
so these approaches make assumptions about the environment. Moreover, if only
the model is validated and not its code generator, there might be inconsistencies
between the expected and the actual behavior of the generated code [25]. It is
also possible to generate code from an RTE model and use existing code-centric
approaches for testing, but this contradicts the goals of MDE which aims to
remove the accidental complexity of source code. Moreover, often understanding
the generated code can be challenging for model developers, due to the low
readability of the generated code or simply because the model developer is not
familiar with the language of the generated code.

In this paper, we present an approach and prototype tool for unit testing
models of RTE systems. We use UML-RT, a popular modeling language that is
nowadays used for modeling complex industrial systems and is supported by var-
ious open-source and commercial tools (Eclipse Papyrus-RT [5], IBM RSA-RTE,
IBM RoseRT). Using our approach, we overcome some of the issues mentioned
above for testing models of RTE systems. In our approach, we rely on the mod-
eling language to transform a component of the model to a testable component
(such that a test harness can drive and test it) and we construct the test suite
and the test harness at the model-level, so we can rely on the standard code
generator to generate code for the mentioned components and the glue code for
integrating them. Using this approach, a modeler can test a model on any plat-
form (by running the code generator for that platform) without being dependent
on any particular target language (since the target language can be changed).
Moreover, since models and components of RTE systems can be large, we propose
concentrating the test generation on user-selected aspects of a model through
properties.

In the next section, we briefly introduce UML-RT with an example model.
We then explain our approach. Then, an evaluation of the approach is given and
then we conclude the paper.

2 UML-RT Modelling Language

UML for Real-Time (UML-RT) [28] is a domain-specific language dedicated to
modeling complex real-time systems with soft real-time constraints. UML-RT
has its roots in the well-known Real-time Object-Oriented Modeling (ROOM)
language [29]. It contains a small set of concepts and provides a light notation
that makes it suitable for designing such systems.

The main concepts of UML-RT are capsules, capsule parts, ports, protocols,
and connectors. A capsule is an independent component running in its own flow
of execution. Capsules are hierarchically defined using capsule parts. A capsule
part is an instance of a capsule encapsulated in another capsule. Figure 1 depicts
the top level structure of a Cruise Control system modeled in UML-RT. The sys-
tem consists of five communicating capsule parts. Capsules own ports, allowing
them to communicate via message passing. To allow two capsules to commu-
nicate, capsule ports are typed with protocols, that is, a formal description of
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the incoming and outgoing messages a capsule can receive from and send to
other capsules. Two ports typed with the same protocol can be formally con-
nected through connectors. Besides, one of them must be conjugated. Conjugated
ports invert the direction of incoming and outgoing messages such that a base
(non-conjugated) and a conjugated port typed with the same protocol can be
connected [28]. Ports can be of different kinds: external ports are boundary ports
exposed by the capsule to be connected with other capsules. Internal ports allow
a capsule to communicate with the capsule parts it contains. Relay ports are,
as their name suggests, ports that are only used to allow messages to cross the
boundary of a capsule, enforcing encapsulation.

On the behavioral side, state machines model the behavior of capsules. Exam-
ple state machines are shown in Sect. 4. A UML-RT state machine is an extension
of a Mealy state machine [22] augmented with extra features, including state
actions, composite states, and concurrency.

To facilitate modeling, the UML-RT Runtime System (RTS) library includes
a set of services that provide utilities for, e.g., importing parts, logging messages,
and scheduling. For instance, if a UML-RT capsule contains other capsules, then
the container can dynamically import the containing capsules using a frame port.
For scheduling, the RTS provides timer ports.

Fig. 1. Adaptive cruise control system model with five capsule parts

3 Approach

In our approach, we rely on the modeling language to express artifacts such as
test harness and properties, therefore our approach is not dependent on any other
particular programming language, any external test harness, or Unit Testing
frameworks (such as Google Test or JUnit). The two terms Capsule Under Test
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(CUT) and State machine Under Test (SUT) refer, respectively, to the UML-
RT component we want to test and its state machine denoting its behavior. The
Test Harness (TH) is the component that tests the CUT.

3.1 Approach Overview

Figure 2 illustrates the workflow associated with our framework. It consists of
five consecutive steps (respectively numbered 1a,1b, 2 , 3 , and 4). For testing real-
time systems modeled in UML-RT, first, a test property is expressed using a
UML-RT state machine (Step 1a). The test property is used for examining the
behavior of the capsule under test w.r.t. various test inputs. Section 3.2 explains
the test properties. We then prepare an individual capsule (Step 1b) from the
UML-RT model. The capsule to prepare is denoted C in Fig. 2. Preparing the
capsule includes taking the capsule out of its context (its connections with other
capsules) and slicing it w.r.t. the specified property. The preparation puts the
capsule into a new, testing-specific environment (similar technique has been used
before in other contexts [8,31]). Due to slicing the CUT may be significantly
smaller than the original capsule, even though the slicing step is optional and our
framework works without slicing. The complete process is detailed in Sect. 3.3.

C

Capsule Extraction & Slicing1b

pass
fail

Property Specification
using a template or from scratch

1a

CUT Property

Test Harness

report
test suite running

(Property-aware)
Test Suite Generation

2

Code Generation
& Execution

3

success
fail
success
. . .

Reporting4

Fig. 2. Framework overview for testing models of real-time systems

The result of the two first steps 1a and 1b is a new model containing the isolated
capsule to test CUT, an empty test harness TH, and a Property capsule whose
behavior was previously modeled in Step 1a. The middle stage in Fig. 2 shows
the three capsules, their connections, and the directions of message flow between
them. The goal of the TH is to stimulate the isolated capsule CUT by providing
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a series of test inputs. To this end, the test suite is generated and captured as
a state machine during Step 2 w.r.t. the property to test and are injected into
the TH. In our framework, three strategies are used to generate the test suite.
The three strategies are discussed in Sect. 3.4.

During Step 3 , C++ code can be generated and the test cases can be exe-
cuted. As mentioned at the beginning of this section, all artifacts are expressed
in the same modeling language. Therefore, we can use any standard UML-RT
code generator to generate an executable implementation containing the CUT,
TH, and the property. During execution, the TH is executed in order to exercise
the CUT to verify whether the property modeled in Step 1a holds, given the test
cases generated in Step 2 . Once the system is executed, a report is generated
during Step 4 . The report lists all successful and unsuccessful tests and provides
some evidence of the validity of the property w.r.t. the implementation.

We have sketched a prototype implementation to automate testing of UML-
RT models using our approach. This prototype has been built as a set of Eclipse
plug-ins on top of Eclipse Papyrus for Real-Time (Papyrus-RT). It allows users
to select a UML-RT capsule, slice it w.r.t. various criteria, and generate test
cases and the test harness from the slice or from the original capsules1. In the
remainder of this section, we elaborate our approach by detailing each step.

3.2 Property Specification

Test properties are formal specifications of informal requirements, specified by
means of simple state machines [10,14]. Even though languages such as Lin-
ear Temporal Logic (LTL) and Metric Temporal Logic (MTL) are very expres-
sive languages for formal property specifications, formalizing a property in a
state machine can be more intuitive for system engineers who are non-experts
in such logic formalisms [10]. Moreover, as opposed to state machine properties,
debugging LTL properties is difficult. Properties express predicates on message
sequences and thus expect certain sequences of output messages from the CUT.

In our framework, test properties direct the framework to reduce the number
of test cases required for testing the property. Figure 7 on page 12 shows a prop-
erty defined for a Collision Avoidance (CA) system. Based on the state machine
of this property, this property fails if the CA system generates a reverse output
message followed by a vibrate output message or vice-versa. Our framework sup-
ports defining time-sensitive properties, as well. To this end, outgoing messages
from the CUT carry a timestamp as an extra parameter, so time-sensitive prop-
erties keep track of these timestamps to compute timespans between messages.
This is because, in the case of asynchronous communication between capsules in
a model, the exact amount of time between sending a message from the CUT and
its reception and consumption by the property is undermined [24]. Figure 7 on
page 12 shows a time-sensitive property for a traffic light system (the property
and the system are both explained in Sect. 4).

1 The tool along with the sample models presented in this paper can be found at:
https://bitbucket.org/rezaahmadi/umlrtunit.

https://bitbucket.org/rezaahmadi/umlrtunit
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3.3 Capsule Preparation

The process of capsule preparation consists of two steps: extracting a capsule
from its context and slicing it w.r.t. the specified property of interest to create
a possibly smaller capsule (our CUT).

A UML-RT capsule can be large in terms of its behavioral (state machine)
and/or structural aspects (ports, parts, connectors). Since we are only interested
in aspects of a capsule (state machine or structure) that may affect a property
of interest, we conduct slicing on a capsule by taking the specified property as
the criterion to preserve only related parts of a capsule. The slicing operation,
as we will show in Sect. 4, may produce a significantly smaller capsule, which
results in a smaller test suite, and thus a more efficient testing. In the following,
we will explain how a slicing criterion is extracted from a property ϕ.

So, assume ϕ is a property and transitions(ϕ) are the transitions of the state
machine of ϕ, then criterion Crϕ is:

Crϕ = { triggert | t ∈ transitions(ϕ) } (1)

where triggert is a message that triggers the transition t. Once the criterion is
constructed, the slicing is conducted on the capsule.

To compute the slice of a capsule, we construct a dependency graph that rep-
resents structural as well as behavioral dependencies between UML-RT model
objects. The behavioral dependencies capture the dependencies between objects
inside a capsule boundary, e.g. the dependencies between states, transitions, and
action codes, as well as the dependencies of these objects with ports on the same
capsule. The structural dependencies, on the other hand, express potential con-
nections between ports and parts in a composite capsule. Our slicing algorithm
is based on traversing the edges in the constructed dependency graph for the
given slicing criterion. Since our criterion is a set of messages M that are sent
to a set of ports P on a capsule C, we first find all the transitions T in the state
machine of C responsible for sending these messages to P and the nodes N in
the dependency graph that represent T. Similar to other tools [4,20], to compute
the slice, our tool marks other nodes that are reachable from N to identify the
relevant model elements from the UML-RT capsule.

So, let Sliceϕ(C) be the results of slicing C with respect to ϕ,
Outgoings(C, pi) be all outgoing messages of capsule C that are sent on port pi

of C, and Outgoings(Sliceϕ(C), pi) be all outgoing messages of the slice that are
sent on port pi of the slice. Slicing will preserve the messages that the property
state machine listens to. More formally:

∀triggert ∈ Crϕ | triggert ∈ Outgoings(C, pi) =⇒
triggert ∈ Outgoings(Sliceϕ(C), pi);

(2)

In other words, Sliceϕ(C) preserves the behavior and structure of those parts
of C that affect the behavior of ϕ. Therefore, a test case of the test harness TH ϕ

will cause the original capsule C to exhibit an execution that violates property
ϕ iff that same test case also causes Sliceϕ(C) to violate the property.
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Note that a slice is a well-formed subset of the original capsule, which means
it includes all original parts of the capsule (including states, transitions, and
ports) to maintain the executability feature of the capsule. This is obtained by
various dependencies that we consider during slicing as we explained.

3.4 Test Suite Generation

After a capsule is extracted and its slice is computed, test suites are generated
on the UML-RT capsule representing our slice. We propose three techniques for
generating test cases for UML-RT capsules: Random, Simple Exploration, and
Symbolic Execution. For both Simple Exploration and Random techniques, we
consider a test budget based on two user input parameters: test suite size and
test length to limit the size of the test suite. Moreover, in each test, for message
parameters with primitive types, we generate a random value (based on a range
specified by the user), and for complex data types, a random value for each mem-
ber in that type. In Symbolic Execution our test budget is determined by the
size of the (SET), which is explained in the following part. Each of these three
techniques has different strengths and weaknesses that are detailed in Sect. 4.

Test Generation Using Symbolic Execution. We used the Symbolic Execu-
tion (SE) technique proposed in [34] for generating test inputs (similar to Rapos
and Dingel [27]). SE traverses a state machine using a breadth first algorithm and
creates a SET that represents all the possible executions of that state machine.
Figure 3 shows how we integrated SE in our approach for property-aware test
generation. First, slicing reduces the size of the capsule by only considering the
parts of the capsule relevant for checking a property. Then, SE is used to gener-
ate a reduced SET from the ’sliced’ capsule, hence reducing the number of test
cases that need to be generated. Once the SET is generated from the slice, test
cases are generated by solving symbolic paths (using Choco [18]).

Fig. 3. Property-aware test suite generation using symbolic execution
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Other Test Generation Techniques. Due to limitations of SE (not support-
ing complex data types as message parameters and supporting only a subset of
UML-RT action codes), we implemented two other alternative approaches for
generating tests for UML-RT capsules: Random and Simple Exploration. Ran-
dom is a black box test generation technique where test cases are formulated
directly from the capsule ports (internal, timer, frame, and user-defined ports)
connected to the capsule. We first find the protocol (type) of each port and
create a collection containing the union of messages with Output direction from
conjugated ports and messages with Input direction from non-conjugated ports.
A test case is generated based on different combinations of messages. On the
other hand, Simple Exploration is a white box test generation technique with sim-
ilarities to previous approaches of test generation for state machines [19,23,30].
We traverse the state machine state by state and for each outgoing transition
of the current state, we generate a pair, where in each pair, the first element
represents a trigger that fires the transition, and the second element represents
the set of outgoing messages that are generated by taking that transition.

3.5 Generating the Test Harness State Machine

We transform the generated test inputs from the previous step into a state
machine. We then inject this state machine as a composite state inside the test
suite running state in the TH (cf. Fig. 2). As a result, the TH and the CUT
communicate in a ping-pong fashion, CUT requests for the next test input and
TH sends the next input until the end of the current test case and finally the
test suit. Figure 4 shows parts of the test suite in the TH. A new test case starts
once TH receives nextTest. Each state has a state entry action code, which is
responsible for sending signals to the CUT (as well as collecting the sequences
of sent signals for reporting purposes).

Fig. 4. Parts of the TH representing two test cases.
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3.6 Refining the Capsule to Make It Testable

Figure 5 illustrates the capsule refinement process. The left side of Fig. 5 shows
the capsule to refine. The capsule owns two ports, a timer port, and a user-
defined port p1 typed with a user-defined protocol. The behavior of the capsule
to refine is defined using the state machine shown below the capsule. The state
machine of the capsule to refine consists of an initial pseudostate p1, and three
simple states S1, S2, and S3 embedded in a composite state.

The right side of Fig. 5 shows the transformation of both the capsule and
its state machine to prepare it for being driven by the TH. Both structure and
behavior are transformed via Model-to-Model (M2M) transformation rules. On
the structural side, rules are applied to establish the communication between the
TH and the CUT. To support this scenario, a new port called TData is added
and typed with the TestChannel protocol. The TestChannel protocol is used to
connect the TH to the CUT and to the capsule implementing the property. It
includes all the required messages that can drive the CUT in its state space (cf.
Fig. 5). In addition, it defines two output messages respectively named nextState
and nextTest, and two incoming messages tearDown and setUp. The two output
messages, nextState, and nextTest are messages the CUT can issue to the TH
to request the next input signals. This communication between the two continues
until the entire sequence of test cases inside the TH runs out of input signals.
Since more than one test case might be executed on the CUT, the two input
signals tearDown and setUp are issued by the TH to move the CUT into its
initial state and initialize its variables.

Figure 5 includes the two messages t1 and t2 from the port p1 but excludes the
timeout message from the timer port. Timeout signals are sent to each capsule
only by the RTS timing services and after the timeout happens the CUT informs
the TH, so the TH can send the rest of the test inputs. Also, note that the above
definition does not take into consideration the fact that ports can be conjugated
in UML-RT. For conjugated ports, the list of incoming and outgoing messages
are inverted compared to their definition in the protocol.

On the behavioral side, the state machine of the CUT needs additional trans-
formations to be driven by the TH. To do so, our rules explore the entire state
machine to determine the set of all transitions that are triggered by messages
received through the user-defined ports. For each triggerable transition, an extra
trigger is created allowing the capsule to be triggered by the TH. Applying this
transformation to the SUT on the right side of Fig. 5, the transition between S1
and S2 is now refined so it can be triggered upon reception of either t1 from
p1 or its doppelganger from TData. Note that, for a transition to be fired, only
one trigger needs to be activated. Finally, one last transformation is required to
allow the TH to drive it. This last transformation allows the SUT and TH to
execute in an alternate fashion, i.e., after sending an input to the SUT, the TH
waits for an acknowledgment message from the SUT before it sends the next
message. Acknowledgment messages are modeled using a nextState event added
in each stable state of the SUT and triggered when entering the state.
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Left: original capsule with its ports and state machine. Right: a transformed to testable
capsule with same objects. From top to bottom: capsules, state machines, and protocols

Fig. 5. Illustration of the capsule refinement process

4 Case Studies

We evaluated our approach to detect property violations in two case studies. The
first one, the Collision Avoidance is an industrial-sized system from the automo-
tive domain originally designed in Stateflow at the University of Waterloo [17]
and some complementary aspects from [2]. We manually converted these models
to a behaviorally equivalent UML-RT model. The second one is an academic
model of a traffic light. Both models are described below.

Collision Avoidance (CA) System. This system prevents or mitigates colli-
sions by continuously monitoring the road ahead and parts of the side-fronts of
the vehicle. Whenever an obstacle is detected, it notifies the driver by audible or
visual alerts. In addition, the system automatically brakes, vibrates or steers the
wheels in the opposite direction if it detects an imminent collision. Due to space
limitation and simplification, only a small part of the system is shown in Fig. 6.
In few words, the system behaves as follows: initially, it is disengaged (not shown
here) and becomes engaged when the speed of the vehicle reaches 25 km/h. In
the Engaged state, the system is constantly collecting various signals, such as
signals that enable vibration, indicate the detected threat level, or the collision
direction. Based on the threat level values that the system receives from other
components of the vehicle:
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– if the threat level is 1, a warning(1) message is generated and the system
moves to the Warn state;

– if the threat level is 2, a warning(2) message is generated, and the vehicle
is slowed down by applying a mild brake (30%). If vibrate is enabled, it also
generates a vibrate message, and then moves to the Avoid state;

– if the threat level is 3, then a warning(3) message is generated, and a hard
brake (80%) is applied. If the system receives a merging collision threat sig-
nal (cd==0), then a reverse signal is generated and if the signal shows a
forward collision (cd==1), then a vibrate signal is generated (provided that
the vibrate is enabled). The system then moves to the Mitigate state.

Fig. 6. Collision avoidance system (partial model)

Figure 6 shows one capsule of the system with two ports, ca com and ca info.
ca com receives commands from the brake system and threat measurements from
other components of the system. This port is also used to send commands for
braking and steering wheel systems. ca info port sends information signals to
the user panel such as errors or warnings. Based on the specification provided
in [2,17], the system vibrates the steering wheel if it detects a forward collision,
and should steer the car in opposite direction if it detects a merging collision.
So, we can imagine the following safety property in the system:
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Property P1: The CA system should not vibrate the steering wheel (send
vibrate signal to its ca com port) and reverse the steering wheel (send a reverse
signal to its ca com port) at the same time.

In other words, every pair of vibrate and reverse signals must be separated
by at least one brake signal. Violation of this property may be disruptive for the
user who may lose control of the vehicle. In order to integrate this property into
our framework, a state machine of this requirement is specified, which is shown
in Fig. 7. Based on the figure, the property fails if the CA system generates a
reverse output message followed by a vibrate output message or vice-versa.

Traffic Light Control (TLC) System. Due to space limitation, we do not
show the model of this system2. TLC is a system that controls the lights based
on several timers, but also on the number of cars detected by a camera. The
system can monitor two lanes (where the left lane is used to turn left). It keeps
track of the number of cars waiting for the green light on the two lanes of the
road. Moving between the three states Green, Yellow, and Red is done with
predefined timers. When the traffic light is red, specific signals can trigger an
early transition to green when at least five cars are waiting for the green light
on the main lane or the activation of a left turn signal if two cars arrive on the
left lane. This is used to relieve traffic congestion. One property to check can be:

Property P2: If the system detects more than two cars on the left lane, then
it must turn the left arrow on after at most 10 s.

The state machine of this property is shown in Fig. 7. When the property
receives a leftLane signal and the input parameter of the message is less than
two (less than two cars were detected on the left lane), then the property is
restarted. If the input parameter is greater or equal to two, then the property
expects a leftArrowOn signal within ten seconds to satisfy the property.

Fig. 7. Two requirements specified for CA system (left) and TLC system (right)

2 The complete model can be found at: https://bitbucket.org/rezaahmadi/umlrtunit.

https://bitbucket.org/rezaahmadi/umlrtunit
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Evaluation Results. For testing the systems we started with Symbolic Exe-
cution (SE) as our first technique. By considering the property of interest in the
CA system, we are interested in transitions in the system that send a reverse
or a vibrate message to the ca com port, therefore we slice w.r.t. the mentioned
messages and port. In both cases (with/without slicing), we were able to catch
a bug in the system: the action code of both t6-mitigate and t11-mitigate allow
for generating both reverse() and vibrate(), since the first ‘if’ statement misses
an extra check (&& cd==1 ) to ensure a vibrate signal is generated if and only
if the input signals show a possible forward collision. Table 1 shows the outcome
of our experiment on the CA system using the SE technique. As shown in the
table, in the CA system, slicing reduces the number of test cases and the time
required to generate tests by a factor of 2. In this system, the computed slice
only preserves ca com port, since the slice is not dependent on ca info port nor
on the action code that communicate with this port.

Table 1. Effect of integrating slicing with SE for testing the systems

System Collision Avoidance (CA) Traffic Light Control (TLC)

Slicing used? Y N Y N

Size (S/T/LOAC/P) 9/22/33/1 12/36/81/2 15/14/25/7 15/14/30/7

Test Cases (#) 3,387 6,271 517 549

Tests G.T. (s) 325.3 662.3 2,157 2,684

S.T. (s) 0.36 n/a 0.08 n/a

T.T. (s) 325.7 662.3 2,165 2,684

LOAC: Lines of action code; S: State; T: Transition; G.T.: Generation time; P: Ports;
S.T.: Slicing time; T.T.: Total time

TLC is less complex than the AC system in terms of size of the state machine
and lines of action code, but as shown in Table 1, slicing still helped to reduce the
number of test cases. Note that, TLC has less number of action codes than CA,
but at the same time TLC has more conditional statements in its action code,
which leads to more symbolic execution paths, and hence, as shown in the table,
it results in more test cases, and longer test case generation time for this system.
In TLC, by running all the test cases, the property never enters Passed state. In
fact, SE generates required test cases and their inputs parameters to drive the
system such that the property reaches Wait4LeftArrow state, but a timer on the
system required to activate a particular transition is not fired. The mentioned
transition was responsible for activating the leftArrowOn signal, required by the
property to be satisfied. By looking into the dependency graph generated by the
slicing, we find out that this timer is not dependent on any other action code,
which suggests that it is never set.

We also executed the two other test generation techniques (Random and
Simple Exploration) on both systems and we applied the slicing operator on
both these techniques, as well. We gave these two techniques the more amount
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of resources (in terms of the test generation time and the number of generated
test cases), and yet they failed to find the bugs (in contrast to SE technique).
The reason might be that Random testing blindly generates test sequences and
the Simple Exploration technique does not evaluate guards or action code. So
in both techniques, some test cases might not be feasible. Moreover, these tech-
niques generate random values for parameters, which does not work well for
numerical parameters that range over a wide range of values. Having said that,
these techniques are much simpler to implement and work much faster compared
to SE techniques, which are appropriate for systems with fewer decision predi-
cates over numerical input parameters. Therefore, as our future work, we may
work on a hybrid technique to benefit from the strengths of the three techniques.

5 Related Work and Discussion

There are various approaches and tools for testing UML profiles, (e.g., SysML [1])
and for generating tests from UML state machines [19,23,30] based on different
coverage criteria. Compared to ours, none of these approaches direct the test case
generation and are not suitable for RTE systems. TTCN [33] and approaches
based on it [12] are used to simulate and test the communication between sys-
tems, as opposed to our approach that makes an infrastructure around com-
ponents of an RTE system to make the component testable and to test the
system at run-time. In Model-Based Testing (MBT) techniques [26,32] abstract
and concrete tests are typically generated from the model and the implementa-
tion respectively, which requires ensuring the consistency between the two. Our
approach, however, does not require to complement abstract test cases with con-
crete counterparts and create and maintain the mapping between them. Other
approaches more closely related to ours include TGV [15], which is a black
box conformance testing technique and uses a test purpose for test selection.
STG [7], introduced by the same authors, is more efficient, which generates test
data symbolically. However, in STG a synchronized product of test purpose and
the specification are sent to the symbolic execution tool (the product is larger
than the original specification), which can end up into path explosion [6]. In our
approach, we reduce the size of the symbolic execution input to make the sym-
bolic execution a relatively lighter task. Moreover, TGV does not support timers
for scheduling purposes. The same limitation exists in tools and techniques such
as [14,21] where the user specifies the SUT as a basic statechart, and a simple
LTL property is used to direct the test case generation. Besides, in this work, the
property and the SUT are formalized in two languages, which forces the modeler
to know both LTL and the modeling language notations. In our approach, prop-
erties and SUT are both specified using statecharts that are more intuitive and
straightforward for modeler compared to LTL properties. Simulink [16] uses its
Design Verifier component to specify temporal properties in state machines, but
Simulink [16] is more suitable for automatic control and digital signal process-
ing than for modeling real-time applications. Drusinsky [9,10] specifies temporal
properties using statecharts (calls them assertions) and uses a commercial code
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generator to generate JUnit test cases with random parameters to test the asser-
tions. In our approach, we test the whole system at run-time by generating code
from the system as well as the properties, and we support SE as an effective
technique for generating input parameters.

6 Conclusion

In this paper, we proposed a framework for automatically testing components
of UML-RT models w.r.t. formally specified properties. Compared to existing
model-based techniques where abstract test cases are complemented with their
concrete counterparts, our approach solely leverages on constructs provided by
the modeling language to express all artifacts (component to test, test harness,
the property of interest) and the existing code generator to generate code for the
artifacts. The generated code is executed to test the system at run-time. Based
on our evaluations, our approach was able to find some bugs on two UML-RT
models. Our approach has some limitations. The Symbolic Execution engine
that we are using does not support complex data types and only supports a very
limited subset of the UML-RT action languages. The mentioned limitations are
not applicable to Random and Simple Exploration techniques, however, these
techniques need more work to generate more accurate parameter values. We
intend to address these shortcomings in future work. We may work on a hybrid
technique to benefit from the strengths of the three techniques.
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Abstract. The Network Functions Virtualization (NFV) paradigm is
making way for the rapid provisioning of network services (NS). Defin-
ing a process for the design, deployment, and management of network
services and automating it is therefore highly desirable and beneficial
for NFV systems. The use of model-driven orchestration means has been
recently advocated in this context. As part of this effort, we propose a
process enactment approach with NFV systems as the target domain.
We provide support for automated process execution with a megamodel-
based enactment approach. An integrated process modelling and enact-
ment environment, MAPLE, has been built into Papyrus for this pur-
pose. Process modelling is carried out with UML activity diagrams. The
enactment environment transforms the process model to a model trans-
formation chain, and then orchestrates it with the use of megamodels.
We demonstrate our environment by enacting a NS design process.

1 Introduction

Automating the end-to-end management of network services (NS), in other
words, enacting the workflow or process for network service management without
manual intervention is highly desirable in the NFV domain and remains a major
challenge for network operators and service providers [1,2]. The European Tele-
com Standards Institute (ETSI) has very recently launched a zero-touch network
and service management group. As stated in [3], the challenges of 5G will trigger
the need for a radical change in the way networks and services are managed and
orchestrated.

We believe the application of model-driven engineering (MDE) methods and
tools is essential to further such developments in the NFV domain [4]. MDE
advocates the use of models as first class citizens in the engineering process. The
models are manipulated with model transformations which form the backbone
for automation in MDE. ETSI has recently released an information model for
NFV [5]. Leveraging these models can substantially benefit the NFV systems
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by reducing their development and management efforts. Moreover, explicit mod-
elling of the process not only allows for the automation of the NS management
process but also paves the way for streamlining or optimizing the process to ulti-
mately speed up deployment time. Such a process model (PM) can potentially
be mapped to model transformation chains hence enabling NS management and
orchestration via model-driven process enactment [6–8].

Previously, we have proposed a model-based process for NS design and
deployment [9]. The proposed workflow is compliant with the NFV reference
framework, and is a first step towards the necessary automation of the NS design
and deployment process for NFV systems. We followed up the work in [10] by
elaborating on a method for NS design and proposing an initial approach for
enacting the NS design, deployment and management process. In this paper,
we focus on the enactment support and present an integrated process enact-
ment environment for NFV systems. MAPLE (MAGIC Process Modelling and
Enactment Environment) provides support for model management with the use
of megamodels. We demonstrate the use of MAPLE on the NS design process,
which represents a portion of the NS management process.

We adapt the Papyrus [11] environment to provide tool support for process
enactment. Papyrus is the tool of choice of ETSI NFV. It is an open-source
Eclipse-based UML 2 modelling environment which mainly provides a graphical
editor for creating UML 2 compliant diagrams, but also includes extensive sup-
port for SysML, UML-RT as well as other UML-based domain-specific languages.
One of the core ideas of Papyrus is that it is completely customizable: appear-
ance, diagrams, palettes, etc. Everything (in theory) can be tweaked, allowing
one to use this tool as a base for building custom environments fairly easily.
Nowadays, Papyrus is widely used in the industry, and it is thus far more inter-
esting and useful to develop plug-ins for this platform than to create standalone,
isolated programs.

This paper is structured as follows: Sect. 2 gives a brief background on meg-
amodelling and process modelling. Section 3 discusses the main functionalities
of our enactment environment, and presents its architecture. Section 4 presents
our NFV case study, and demonstrates the use of the environment on the NS
design process. Section 5 discusses some related work. Finally, Sect. 6 concludes
with some future work.

2 Background

This section provides a brief background on some of the underlying concepts,
namely megamodels and process models.

Megamodels: Model management approaches typically use megamodels which
provide structures to avoid the so-called ‘meta-muddle’ [12]. A megamodel con-
tains artifacts (which are models), relations between them (which may be trans-
formations), and other relevant metadata. A megamodel can be seen as a map to
find and link together all involved models. It can be used to enforce conformance
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and compatibility checks between the various models and transformations. It is
also useful for reusing and composing transformations in transformation chains.

Process Models: In our work, we use UML 2.0 Activity Diagrams [13] to
represent and visualize a process model. Activity Diagrams are typically used to
model software and business processes. These allow the modelling of concurrent
processes and their synchronization with the use of fork and join nodes. Both
control-flow and object-flow can be depicted in the model. An activity node
can either be a simple action (representing a single step within an activity)
or an activity (representing a decomposable activity which embeds actions or
other activities). An activity specifies a behaviour that may be reused, i.e., an
activity can be included in other activity diagrams to invoke behaviour. Along
with the activities, the input and output models associated with each activity
are also clearly identified via input and output parameter nodes (denoted by
the rectangles on the activity border). Since UML 2.0 Activity Diagrams are
given semantics in terms of Petri Nets [13], the precise formal semantics allow
the activity diagrams to be simulated and analyzed.

3 Process Enactment Environment

In our approach, process enactment is carried out with the use of transforma-
tion chain orchestration in combination with model management means. Trans-
formation chaining is the preferred technique for modelling the orchestration of
different model transformations [14]. Orchestration languages are used for the
composition of the transformations in order to model the chain as sequential
steps of transformations. Complex chains can incorporate conditional branches
and loops, and also can model composite chains (a chain including other trans-
formation chains). Figure 1 gives an overview of our enactment approach.

Fig. 1. Process enactment approach
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3.1 Functionalities

We elaborate here on the main functionalities provided by MAPLE.

Creating the Process Model (PM). As mentioned earlier, in our work we
use UML Activity Diagrams to represent and visualize Process Models. It is also
possible for such processes to be modelled with some other workflow modelling
language, for instance BPMN [15].

The Eclipse Papyrus Activity Diagram environment is used to create a PM.
The PM instance conforms to the Activity Diagram language. Each PM includes
a set of activities or actions. In our work, the behaviour of each of these activ-
ities is implemented with a model transformation. For our purpose, we need to
associate these actions with the model transformations which implements them.
We use the attributes of the activity nodes in the diagram to add information
about the associated transformations.

Each action in the PM is also associated with a set of input and output mod-
els. Papyrus requires all metamodels to be mapped to profiles to allow model
instances to be created and to be used as source or target models of the trans-
formations. As per the ETSI NFV modelling guidelines, our models also comply
with the NFV Papyrus OpenModelProfile [16].

Deriving the Megamodel (MgM). One of the main issues we had to address
in this work is related to resource management: how can we centralize informa-
tion about resources we need so that we can easily access them? The problem
induced by this question is actually not trivial: a transformation involves sev-
eral metamodels that can be expressed using heterogeneous technologies. The
transformation itself can be considered as a model conforming to a specific meta-
model, for instance ATL [17], QVT [18], Epsilon [19], etc. Besides, transforma-
tions define a very precise configuration as to what must be fed in and pulled
out, something we need to be aware of whenever we run the transformations.

We use megamodels for model management as part of MAPLE. The MgM is
derived in two steps: (1) by registering the resources, and then (2) by registering
the PM. Registering the resources: To begin with, the resources which are part of
the project (metamodels/profiles) are registered in the MgM. This is carried out
automatically by going through the project workspace (referred to as workspace
discovery), and an initial MgM is derived at this stage.

Registering the PM: Following the workspace discovery, the MgM is incremen-
tally built by carrying out a PM discovery. This step involves registering the
PM and the associated model transformations in the MgM. The PM needs to be
linked with the elements of the MgM so that we can reach, when needed, every
information relevant to enact it. However, we do not want any constraint on
the shape of the process model, effectively decoupling its metamodel as much as
possible from the megamodel one. Therefore, the MgM should be ideally inde-
pendent from the PM, since it is meant for keeping track of resources. We do
not want to (and actually cannot) refer to the MgM in the PM, but we still need
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a link between these two entities. This link is created by weaving the PM and
the MgM, and storing the details in a weave model. A weave model is a special
kind of model that defines relationships between the objects and relations of
other distinct models (at least two) [20]. The weave model binds every relevant
element of the PM to their corresponding resources in the MgM, without touch-
ing the structure of either of them. The weave model is dependent on the PM.
In other words, the weave metamodel is always specific to the PM language it
weaves. Thus, if we had to adapt the environment for another PM language (e.g.,
expressed with BPMN), it would be necessary to create a new weaver to bind
the new type of PM with the MgM.

Building the Transformation Chain. The PM is given translational seman-
tics by mapping it to a transformation chain. The chain is in essence a schedule
with the required details (sequence of actions, transformations used, inputs and
outputs of the transformations). This allows us to build a generic enacter, instead
of having an enacter for each kind of PM. Having a generic enacter also leaves
scope for integrating other formalisms for modelling the PM.

The translation from a PM to a transformation chain is implemented as an
ATL model transformation, which takes as input various data (the PM, the
weave model, the MgM and if applicable, additional environment information)
and yields the corresponding transformation chain.

Executing the Transformation Chain. Once the transformation chain is
created, we need to be able to execute the chain in order to enact the PM.
For this purpose, we developed an enacter, which is simply a program that can
execute the correct actions in the right order, based on a schedule, namely the
transformation chain model.

Similar to UML 2 Activity Diagrams, the generated chain is also given token-
based semantics. Therefore, the enacter developed is based on controlling the
tokens and activating the actions when needed.

3.2 User Interface

One of the major constraints in the development of MAPLE was that it must
be based on Eclipse so that it can be integrated in Papyrus. As the MgM is a
complex structure, we decided to only allow it to be manipulated through an
interface (a user interface for the user but also an API for the developer) to avoid
corrupting it with incorrect additions. It is possible to create and maintain more
than one MgM for a given project.

Our main goal was to have an extensible tool, which would allow any tech-
nology, transformation type/engine, and PM language to be adapted and accom-
modated at a later time. The fact that we must base ourself on Eclipse puts a
lot of constraints on the user interface the tool can provide. Eclipse is primarily
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an editor, and megamodels should not be intruding its overall workflow (espe-
cially given the fact that they will not be used all the time). For this reason, the
interface of the tool was provided via global and contextual menus.

Registering resources is carried out via a dialog box which allows the user to
select the MgM in which to register the resource(s) and to select the discoverer
(workspace or PM) (see Fig. 2). The user request to begin enactment of a process
model is carried out via Eclipse’s launch configuration system (see Fig. 3). A PM
launch configuration is characterized by a MgM, a PM and a specific translator
(provided through an extension point, see Sect. 3.3).

Fig. 2. The Register dialog Fig. 3. Launch configuration UI

3.3 Architecture

The backend architecture of the enactment extension developed for Papyrus
(Neon Release) is shown in Fig. 4. In the figure, the core functionalities are
represented using rountangles (rounded-corner rectangles). The rectangles are
extensions, that is modules without which the system can work but can be
recognized by the system for adding new functionalities.

Fig. 4. Backend architecture (Color figure online)
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Model Loaders. This part corresponds to the blue boxes in Fig. 4 and is centered
around the loading engine. The goal of this subsystem is to provide a high level
interface with the actual resources of the system (i.e., the file system). It is able
to recognize the correct way of loading a file and to extract data from it that
could be interesting to have in the megamodel, for example. Typically, when
trying to register a file in the MgM, the discovery engine asks the loading engine
to load it so that it can extract data. Defining loaders (such as, EcoreLoader,
UMLLoader) allows different technologies to be incorporated in the global system,
making it able to understand new formats.

Registering Resources. This part corresponds to the green boxes in Fig. 4 and
is centered around the discovery engine. The discovery is the process by which
a resource is added to the MgM. It includes the recognition of the resource
(determining that it is a metamodel, a transformation, a profile, etc.) as well as
the extraction of its data (URI, name, inputs and outputs, etc.). This is also the
process that can weave the PM to the MgM, with the help of the weave engine.

As in the case of the loaders, it is possible to develop a custom discoverer
(for instance, as shown in Fig. 4, WorkspaceDiscoverer or PMDiscoverer). This
allows the tool to be extended with discoverers for other kinds of workflow mod-
elling languages. As the weave is entirely dependent on the PM language, it
should be noted that the weaving process is completely devolved to the discov-
erer, which must provide both a specific weaver (an implementation) as well as
fill it. In our case, the weave model conforms to a variant of the UML Activity
Diagram formalism.

Megamodel Management. This part corresponds to the orange part in Fig. 4 and
is centered around the megamodel manager. This is the part that allows the user
to access the MgM: request to register a resource, create or delete an MgM,
etc. It also includes an extensive API for manipulating the MgM, ensuring its
validity throughout the process.

Translation. This part corresponds to the purple part in Fig. 4 and revolves
around the translation engine. The goal of this part is to carry out the translation
of a PM to a transformation chain that can be enacted. It exposes an extension
point that allows anyone to plug his own translation means, which is required if
ever we want to use another type of PM.

Scheduling and Enactment. This part corresponds to the red part in Fig. 4. It
is composed of two subparts: a generic enacter (Enacter), independent from
the project (inside the dashed box labelled “Enactment Core”), and an inter-
face between this enacter and the remaining part of the project, through the
ProcessModelEnacter part.

It should be noted that the ProcessModelEnacter is not an independent
enacter, but a layer on top of the generic enacter, providing it with specific
behaviour as to what to do with each action; that is, actually executing the trans-
formations they correspond to, using interfaces with different transformation
engines defined as extensions (e.g.: ATLHandler, QVTHandler, JavaHandler).
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Launcher. This part corresponds to the gray rectangle in Fig. 4. This is what
orchestrates everything needed to execute the PM, which includes translating to
a model transformation chain and enacting the chain. Enactment configurations
(data associated with the PM to translate and enact it) are stored as a standard
Eclipse launch configuration, which are also managed by this part.

4 NFV Case Study

We have used MAPLE to model and enact part of the NS management PM
proposed in [9]. In this section, we demonstrate the enactment of the NS design
process which is one of the activities of the NS management process.

4.1 Network Service Design

An NS, such as VoIP, is a composition of Network Function(s) (NF) and/or other
NSs, interconnected with one or more Forwarding Graphs (FG). These graphs
interconnect the NFs and describe the traffic flow between them. Virtualized
Network Functions (VNF) are the building blocks of an NS in NFV. VNFs are
software pieces that have the same functionality as their corresponding Physical
Network Functions (PNF), e.g., a virtual firewall (vFW) vs. a traditional fire-
wall device. The design of an NS consists of defining an NS Descriptor (NSD),
a deployment template which captures all this information. This template is
provided to the NFV Orchestrator for the NS lifecycle management.

Coming up with the deployment template for an NS is not an easy task
for an inexperienced tenant who has limited knowledge regarding the details of
the target NS. Instead of these details, the tenant may request at some level
of abstraction the functional and non-functional characteristics of the targeted
NS. The gap between these NS requirements (NSReq) and the NS deployment
template is filled with an automated NS design method. With the help of a
network function ontology (NFOntology), it is indeed possible to fill this gap and
design automatically NSDs from NSReqs. The NF ontology captures the known
NF/service decompositions and their (standard) architectures. In the NS design
method, the NSReq decomposition is guided by the NFOntology to a level where
proper network functions can be selected from an existing VNF catalogue. After
the selection of the VNFs, the method continues with the design of the forwarding
graphs given the characteristics of the selected VNFs and their dependencies.
This generates a set of forwarding graphs, which are refined further based on
the non-functional requirements in the NSReq, resulting in the target NSD. As
a final step, the NF ontology is enriched with the new decompositions. It is also
possible to enrich the NF ontology with new standards and new services. Please
note that the goal of this paper is not to describe the details of the NS design
method but to show how the process is enacted using our tool. The NS design
process and the associated modelling languages which are part of the NS Design
PM are described in details in [10]. A revised version of the PM is shown in
Fig. 5.
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Fig. 5. NS design PM [10] Fig. 6. NS design chain

4.2 Using MAPLE for NS Design

We begin by registering the NS design resources (profiles for NSReq, NFOntology,
etc.) that are used in the process by creating an initial MgM (see graphical view
of the MgM in Fig. 7). This MgM includes the meta-metamodels (UML and
Ecore pre-loaded in the base MgM) and conformance links. In the MgM, the
metamodels are represented in orange, UML profiles in green, transformation
models in brown, and other models (PM, weave model) in gray. The dashed links
represent conformance relationship, and the solid black links represent object
flow.

The next step is to register the PM which automatically refines the MgM
based on information available in the PM. Each activity in the NS Design PM
is implemented as an ATL transformation. Each associated transformation is
stored as an attribute of the corresponding activity node. The PM itself is also
added as a resource (see Fig. 8). While discovering and registering the PM, when-
ever an object flow links two pins and that flow and pins do not have any
assigned name, MAPLE can detect it and create an intermediate model. This
step resulted in creating an initial repository of models, NFV-specific languages,
and tools along with the relationships between the artifacts.

When the process is requested to be enacted, the NS design PM is mapped
to a transformation chain (see Fig. 6). Orchestration of the chain is carried out
with the use of the embedded orchestration engine. The process execution
begins by taking NSReq models as inputs and creating an intermediate model,
SolutionMap, which is incrementally refined. Once the initial NSD is created,
MAPLE enables NSD refinement and ontology enrichment to be carried out



MAPLE: An Integrated Environment for Process Modelling and Enactment 173

concurrently since they are independent of each other, hence optimizing deploy-
ment time. The enactment ends with the generation of the target models, NSD and
NFOntology (not shown here for space reasons). With this environment, NFV
users with limited modelling expertise and minimal knowledge about the under-
lying ATL transformations can generate a target NSD with basically a few clicks.
The configurations for ATL, making sure that the correct models are passed into
each transformation, do not need to be handled by the user. The same PM can
be enacted again with different inputs if desired, and it can also be reused as
part of another PM if required. A demo video of the enactment environment is
available at https://users.encs.concordia.ca/∼magic/maple-demo.php.

Fig. 7. NS design megamodel - initial version (Color figure online)

Fig. 8. NS design megamodel - complete version

This work sets the basis for the enactment of the entire NS design, deployment
and management process. Each activity in the NS lifecycle involves a complex
chain of tasks. We are working on modelling the behaviour of the other activities,
e.g. NS Instantiation and VNF Instantiation. The entire PM can then be mapped
on to a composite chain of transformations along with an extended MgM to allow
for automated deployment and management of network services. When the NS
management PM is enacted using MAPLE, the resulting MgM will prove to be
a very useful repository for NFV projects in the industry and academia.

https://users.encs.concordia.ca/~magic/maple-demo.php
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4.3 Discussion

In the NFV community, application of MDE is still at the initial stages where
information modelling with class diagrams and state machines are more typical.
Advanced applications of MDE in this domain is minimal. This work is meant
to set the pillars for a project which can advance greatly with the appropriate
use of MDE, as well as provide much-needed inspiration to the open-source NFV
industry projects to embrace MDE methods and technology.

The proposed enactment support, MAPLE, has been built into a mainstream,
open-source, industry standard tool which is also NFV’s tool of choice - Eclipse
Papyrus. MAPLE requires the PM to be created using UML Activity Diagrams
in Papyrus. Once the PM is created, enacting it is fairly intuitive using our
environment and as elaborated earlier in this section, only requires a few steps
on the user end. For the process to be enacted, the actions which are part of
an activity need to be implemented. This can be done using model transforma-
tions (implemented with ATL or any general-purpose language) or by defining
executables (Java, C, etc.) for the actions. The latter allows legacy code to be
integrated and used within the PM.

MAPLE is easily extensible, and we plan on providing support for other
transformation languages including Epsilon and QvT. The tool can also be
extended to support other workflow modelling languages. One of the main contri-
butions is the underlying support for model management. The megamodel forms
a repository of models, metamodels, and tools for the NFV domain, which can be
of great use in this domain. The generated models are also persisted and added
back to the repository to be inspected, compared, or used in transformations at
a later time. The MgM makes it possible to explicitly deal with dependencies
between models. It is used to carry out type checks between the metamodels
of the models to be transformed and to check the compatibility between the
metamodels and the transformations by querying the MgM. In case of activi-
ties which include a heterogeneous set of transformations, the MgM determines
which transformation engine should execute the transformation.

In addition to being useful for carrying out conformance and compatability
checks, the created MgM can be used for advanced traceability support. The
metamodel we have defined for megamodels already includes traceability-related
elements. Work is in progress to extend the tool for this purpose. Such a feature
would indeed be beneficial for NFV systems. For instance, it would then be
possible to retain trace links all the way from the generated NSD back to the
original NS requirements and the ontology. With the MgM, trace info can also
be maintained for multiple executions of the PM. Such information can be useful
for data analytics which is an important component of any NFV system.

5 Related Work

We have covered the state of the art with regards to process modelling in the
NFV domain in [9]. Process enactment is a widely adopted method in the busi-
ness process modelling domain. The model-based methods and tools in this
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domain mostly support SPEM/BPMN processes and use BPEL for orchestra-
tion [21,22]. UML Activity Diagrams together with MDE enablers, such as model
transformations, are not widely used in this area for modelling and enacting
processes. However, model-driven orchestration has been recently promoted for
NFV, and viewed as a more robust method than business process workflows for
NFV orchestration [4]. BPMN-like workflows are in general implementations of
specific task-oriented cases which are appropriate for immutable business pro-
cesses as stated in [4]. In software defined environments which evolve rapidly,
such workflows bring about difficulties and risks.

A few model-based continuous integration and deployment methods and tools
have been proposed with cloud as the target domain [23,24], which use domain-
specific languages to model the deployment of cloud applications and provide
means to adapt the models for use in the runtime environment. These approaches
do not support process modelling. While model-based approaches exist in the
NFV domain [2,25], the application of advanced MDE techniques, such as model
management and transformation chain orchestration, is minimal for NFV sys-
tems. With this work, we aimed to show how MDE means can be used in the
NFV domain to further the vision of automating end-to-end network service
management.

There has been a lot of work on megamodelling [12,26–29], transformation
chaining [6,7,30–32], and a combination of both [33–35] in the MDE community.
The FTG+PM framework [35] which supports process execution based on an
FTG (Formalism Transformation Graph - a subset of megamodels) is similar to
our approach. However, the FTG and PM is defined as a single combined formal-
ism, and so the FTG needs to be created together with the PM. There is no sup-
port for automated derivation of the MgM (which is a core part of our approach),
and the research tool developed only supports execution of T-Core transforma-
tions. Tooling for model management (AM3) including automated megamodel
discovery was developed as part of AMMA [26]. Tools supporting workflow or
transformation chain orchestration [6,30,33,36] also existed at some point.

Our initial intention was to reuse and integrate existing components to build
our environment. However to the best of our knowledge, no working tools to serve
our purpose exist at the moment. We looked into Eclipse-based tools includ-
ing MoDISCO/AM3, UNiTi, TraCo for megamodelling support and Wires*,
MWE2 (Modelling Workflow Engine), ATLFlow for orchestration support. None
of the tools with megamodelling support were usable (incompatible with Eclipse
Papyrus, unavailable, or failed to work) at the time of this work. Orchestration
engines available were not adequate for our needs, since we wanted to support
concurrent executions of model transformations. With regards to the transla-
tion engine, Wires* could have been adapted for our purpose since it supported
orchestration of ATL transformation chains derived from UML Activity Dia-
grams. However, the tool is no longer maintained and not available for use. For
this reason, we developed our own translation engine and orchestration engine
as well as the underlying model management support which allowed us to offer a
flexible and extensible integrated environment for process modelling and enact-
ment in Papyrus.
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6 Conclusion

Automating NS management is one of the challenges in the NFV domain, and
this is what we have aimed to address in this paper. This work resulted in a
comprehensive and extensible environment, MAPLE, for model-driven process
enactment. We have used the existing UML Activity Diagram environment in
Papyrus and integrated process enactment means with it.

In our approach, we followed the model-driven paradigm all through. The
core of the approach combines orchestration of model transformation chains
with model management means. We begin with a process which is modelled as
a UML Activity Diagram (referred to as the PM). The activities in the PM
are associated with model transformations. Input and output objects are model
instances of some existing domain-specific language. For model management, we
build a megamodel (MgM) of the target system. This MgM contains information
of all MDE resources that are being used by the process, as well as the link(s)
between these resources. The PM itself is also a resource which is registered
in the MgM. To enact the PM, the MgM is used along with the PM to build
a model transformation (MT) chain. Token-based enactment means have been
implemented to orchestrate the MT chain.

The enactment support has been created with NFV systems as the target
domain, and was applied to the NS design process proposed in [10]. The approach
along with the tool support is not restricted to NFV, and can be used in various
domains for process enactment. Full traceability support is not yet available.
However, the environment designed and implemented is not closed; it can be
improved and, most of all, extended as required to meet NFV needs.
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out within MAGIC, the NSERC/Ericsson Industrial Research Chair in Model Based
Software Management.
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Qusai Ramadan1(B), Daniel Strüber1, Mattia Salnitri2, Volker Riediger1,
and Jan Jürjens1,3

1 University of Koblenz-Landau, Koblenz, Germany
{qramadan,strueber,riediger,juerjens}@uni-koblenz.de

2 Politecnico di Milano, Milano, Italy
mattia.salnitri@polimi.it

3 Fraunhofer-Institute for Software and Systems Engineering ISST, Dortmund,
Germany

Abstract. Detecting conflicts between security and data-minimization
requirements is a challenging task. Since such conflicts arise in the spe-
cific context of how the technical and organizational components of the
target system interact with each other, their detection requires a thor-
ough understanding of the underlying business processes. For example, a
process may require anonymous execution for a task that writes data to a
secure data storage, where the identity of the writer is needed for the pur-
pose of accountability. To address this challenge, we propose an extension
of the BPMN 2.0 business process modeling language to enable: (i) the
specification of process-oriented data-minimization and security require-
ments, (ii) the detection of conflicts between these requirements based on
a catalog of domain-independent anti-patterns. The considered security
requirements were reused from SecBPMN2, a security-oriented exten-
sion of BPMN 2.0, while the data-minimization part is new. SecBPMN2
also provides a graphical query language called SecBPMN2-Q, which we
extended to formulate our anti-patterns. We report on feasibility and
usability of our approach based on a case study featuring a healthcare
management system, and an experimental user study.

Keywords: Conflicts · Security · Data-minimization · BPMN

1 Introduction

Protecting the privacy of users has become a key activity in companies and
governmental organizations. A important requirement for privacy is data-
minimization [14,34], that is, to minimize “the possibility to collect personal
data about others” and “within the remaining possibilities, [to minimize] collect-
ing personal data” (Pfitzmann and Hansen in [28], p. 6). In addition to secu-
rity concepts such as confidentiality, five data-minimization concepts, namely,
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Anonymity, Pseudonymity, Unlinkability, Undetectability and Unobservability,
are considered as fundamental for protecting the users’ privacy. These concepts
were first defined by Pfitzmann and Hansen [28] and later included in the ISO
15408 standard of common criteria for information technology security evalua-
tion [16].

Although privacy-enhancing technologies [35] address specific data-
minimization needs, privacy breaches often do not come from loopholes in the
applied protection technologies, but from conflicting requirements on the busi-
ness level of the target system [6,13–15,25]. For example, in healthcare, users
have strong privacy concerns about how and for what purpose their health infor-
mation is handled, which may interfere with an organization’s documentation
responsibilities for ensuring complete accountability. Various approaches have
been proposed that deal with security and data-minimization requirements in a
unified framework from the early stages of development [8,11,17,26]. However,
these approaches focus on the identification of security and data-minimization
requirements in the elicitation phase without analyzing trade-offs or detecting
conflicts between them. The final output is usually a set of textual requirements.
Relying on textually-specified security and data-minimization requirements to
manually uncover conflicts between them is a difficult and error-prone task. The
main reasons for that are:

First, conflicts between the data-minimization and security requirements
depend on the context of how the technical and organizational components of the
target system interact with each other. Specifically, conflicts not only result from
trade-offs between requirements related to the same asset in the system (e.g.,
anonymous vs. accountable execution of a task), but also from those related
to different assets. For example, a task may be required to be executed anony-
mously, while writing data to a secure data storage where the identity of the
writer must be known for accountability reasons. The detection of such conflicts
requires an understanding of the underlying business processes and their included
interactions between security and data-minimization requirements. However, no
existing approach supports the modeling of data-minimization requirements in
business process models in the first place.

Second, a single data-minimization concept may have varied meanings based
on what (which of the system assets) and from who (i.e., adversary type) to pro-
tect. These variations make it hard to decide whether two specific requirements
are conflicting. For example, providing fully anonymous execution of a specific
task hinders the ability of the system to keep the task’s executor accountable,
leading to a conflict. In contrast, providing partial anonymity by means of using
pseudonyms is not conflicting with accountability. So far, there exists no app-
roach to detect such conflicts between security and data-minimization require-
ments in the design of a concrete system.

To address these challenges, we propose an extension of the Business Process
Modeling Language (BPMN, [1]), supporting: (i) the specification of process-
oriented data-minimization and security requirements in BPMN models, (ii)
the detection of conflicts between security and data-minimization requirements
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based on a catalog of domain-independent anti-patterns. While the security
annotations were reused from the security-oriented BPMN extension SecBPMN2
[33], our approach is the first to directly support modeling data-minimization
requirements in BPMN models. It is also the first to support automatic con-
flict detection between specified security and data-minimization requirements
in BPMN models. To express the anti-patterns, we extended SecBPMN2-Q, a
graphical query language for BPMN models. We validate our approach using a
case study based on a healthcare management system, and an experimental user
evaluation.

The paper is organized as follows. Section 2 provides the necessary back-
ground. Section 3 introduces our BPMN extension. Section 4 presents the con-
sidered types of conflicts and our approach to detect them. Section 5 presents
the tool support for our approach. Sections 6 and 7 are devoted to the validation
based on a case study and user evaluation. Sections 8 and 9 discuss related work
and conclude, respectively.

2 Background

We introduce the fundamental data-minimization concepts used in our work,
and a BPMN-oriented security engineering approach whose security concepts
we reused.

Data-Minimization Concepts. Pfitzmann and Hansen [28] define five data-
minimization concepts that can be refined into privacy requirements for the
target system [8,11,17,26]. (i) Anonymity is the inability of an adversary to
sufficiently identify a subject within a set of subjects, called the anonymity set.
(ii) Pseudonymity is a special case of anonymity where a pseudonym is used
as an identifier for a data subject other than one of the data subject’s per-
sonal identifiable information. (iii) Unlinkability is the inability of an adversary
to sufficiently distinguish whether two items of interests (IOIs, e.g., subjects,
messages, actions,. . . ) within a system are related or not. (iv) Undetectability is
the inability of an adversary to sufficiently distinguish whether an IOI is exist
or not. By the definition [28], undetectability of an IOI can only hold against
outsider adversary (i.e., neither being the system nor one of the participants in
processing the IOI). (v) Unobservability is the undetectability of an IOI against
all subjects uninvolved in it (i.e., outsider adversary) and the anonymity of the
subject(s) involved in the IOI against other subject(s) involved in that IOI (i.e.,
insider adversaries).

Business Process Model-Based Security Engineering. [20] is a promising
research direction in the field of security engineering. The key idea is to extend
graphical business process modeling languages such as BPMN [1] to supports
the modeling and analysis of procedural security requirements as early as during
the design phase. Among various approaches [20], only the work proposed in
[31] considers a data-minimization requirement, namely anonymity. However,
further fundamental data-minimization requirements such as unlinkability and
undetectability were not addressed yet.
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To capture conflicts between security and data-minimization requirements,
a unified framework for modeling both types of requirements is needed.
Compared to other approaches, we found that the security concepts from
SecBPMN2 [33] offer the following advantages: (i) In contrast to the work in
[7,10,18,22,31,32,37] which support only a restricted set of security aspects,
SecBPMN2 offers 10 security annotations, namely accountability, auditability,
authenticity, availability, confidentiality, non-repudiation, integrity, separation
of duties, binding of duties, and non-delegation. Accountability specifies that the
system should hold the executors of the activities responsible for their actions.
Authenticity imposes that the identity of a given activity’s executor must be
verified, or that it should be possible to prove a given data object as genuine,
respectively. Audibility indicates that it should be possible to keep track of all
actions performed by an executor or accessor of an activity, data object, or
message flow. Non-delegation specifies that an activity shall be executed only
by assigned users. Binding of duties and Separation of duties requires that the
same person or different persons should be responsible for the completion of
two related tasks, respectively. Confidentiality and Integrity indicate that only
authorized users are allowed to read or modify data from a given activity, mes-
sage flow, or data object, respectively. Availability indicates that it should be
possible to ensure that an activity, data object, or message flow is available and
operational when are required by authorized users.

Reusing these concepts allows us to study interactions between a compre-
hensive set of security and data-minimization requirements, enabling a pow-
erful approach to conflict detection. (ii) While other works [27,36] use tex-
tual stereotypes to enrich business process models with security requirements
(e.g., �confidentiality�), SecBPMN2 represents security annotations using
graphical icons [33]. The example in Fig. 2, explained in detail later, illustrates
the specification of confidentiality, accountability, non-repudiation and binding-
of-duty requirements in a BPMN model (icons in orange). Graphical annotations
have the potential to increase the complexity of the resulting business process
models less than textual ones would do [24], and as consequence, may contribute
to the usability of our approach.

In addition, SecBPMN2 provides a query language for specifying queries that
can be matched against a given SecBPMN model, called SecBPMN2-Q [33]. We
reuse and extend this query language in our approach for specifying conflicts as
anti-patterns.

3 Modeling Data-Minimization and Security
Requirements

We propose a BPMN extension for specifying data-minimization and security
requirements. Our support for data-minimization requirements is new, while the
security-specific elements are reused from the security-oriented BPMN extension
SecBPMN2. We first present a running example and then a complete description
of our extension.
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Fig. 1. Running example: Specifying data-minimization and security requirements in
a healthcare business process. (Color figure online)

Running Example. Figure 1 represents a business process in the context of
healthcare management. A patient makes use of a telemedicine device to receive
an over-distance healthcare service. A patient can also evaluate the service
through an online evaluation portal. Executors of a business process are rep-
resented by pools and swimlanes such as Tele-medicine Device and System Portal
respectively. Communication between pools is represented by message flows; the
content of such communications are messages: for example, Tele-medicine Device
sends the message measures to System Portal. Atomic activities are represented
with tasks, for example Send alert. Data Objects provide information about what
activities require to be performed and/or what they produce, for example elec-
tronic healthcare record (EHR). A data association is a directional association
used to model how data is written to or read from a data object. For instance,
the Check the case task needs the EHR data object to be read. Events are repre-
sented with circles. Start events and End events mark the initial and terminal
points. Catch events represent points in a business process where an event needs
to happen, for example at this time. Gateways specify deviations of the execution
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sequence: the gateway allows either the right or left branch
to be executed.

Security concepts are represented with orange icons. Confidentiality is asso-
ciated to message flows, meaning that the content of the message is to be pre-
served and not to be accessed by unauthorized users, respectively. Accountability
is associated to Submit evaluation meaning that the task’s executor must be mon-
itored. Our new data-minimization concepts, discussed below, are represented
with yellow icons.

Data-Minimization Annotations. To allow users to enrich business pro-
cess models with data-minimization requirements, we extended BPMN’s arti-
fact class with four concrete data-minimization concepts namely, anonymity,
undetectability, unlinkability and unobservability. The meta-model of these con-
cepts is shown in Fig. 2: gray parts represent SecBPMN2 elements; white parts
are new elements. Since an additional concept described by Pfitzman et al.,
pseudonymity, is a special case of anonymity, we use one annotation for both
concepts. An attribute called level captures the required anonymity level (i.e.,
full anonymous vs pseudonymous). Using one annotation to represent related
concepts is recommended to reduce graphical complexity [20]. A special type of
association called SecurityAssociation is used to link security annotations with
elements in the business process model. Additional details are captured using
attributes and references, describing in particular the items of interests (IOIs)
and adversary perspectives, as introduced in Sect. 2. In this section, we focus
on the meta-model elements being relevant for conflict detection, leaving the
discussion of others (in particular, the specification of Mechanisms and Data-
SubjectRoles) outside the scope of this paper.

Fig. 2. Meta-model of our BPMN extension. Attributes show their default values.
(Color figure online)

To reduce specification overhead, data-minimization annotations have an
attribute autoPropagated which supports the propagation of the requirement
to selected other elements in the model. Four cases are possible, depending on
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the type of the element the annotation is linked with: (1) For an activity, the
requirement is propagated to all following tasks in the same lane. (2) For a mes-
sage flow, the requirement is propagated to all message flows that goes from the
source-Pool of the considered messageFlow to its target Pool. (3) For a data
input association, the requirement is propagated to all data input associations
that read data from that data object in the same lane. (4) For a data output
association, the requirement is propagated to all data output associations that
write data to that data object in the same lane.

We designed the graphical syntax of the data-minimization annotations fol-
lowing Moody’s guidelines for increasing the usability of modeling languages
[24]. The data-minimization annotations share two common visual aspects with
security annotations in SecBPMN2: they all have a solid texture, and a circular
shape; they differ in their fill color, using yellow instead of orange. We believe
that having different colors for security and data-minimization annotations con-
tributes to usability.

In the rest of this section, all data-minimization annotations are defined.
Each of them is defined in terms of one or more variants, one for every type of
BPMN element it can be linked with. We mapped each annotation to a restricted
list of element types to avoid overlapping meaning of different data-minimization
annotations. For example, two messages cannot be linked to each other as related
(i.e., unlinkability) if they are sent anonymously (i.e., anonymity). Therefore,
having both unlinkability and anonymity annotations for message flows would
be redundant.

Anonymity comes in four variants for the different BPMN elements it can be
linked to: (i) Anonymity-Activity specifies that the executor of the task should
be anonymous with respect to a given adversary perspective. (ii) Anonymity-
MessageFlow specifies that the sender of the message should be anonymous with
respect to a given adversary perspective. (iii) Anonymity-DataOutputAssociation
specifies that the task should not write personal identifiable information to the
data object. (iv) Anonymity-DataInputAssociation specifies that the task should
only retrieve an anonymized variant of the data object.

The exact meaning of this annotation can be shaped by two attributes: The
attribute level specifies the required anonymity level (i.e., fully anonymous or
pseudonymous). In some scenarios, the system requires that the executor of an
activity should be accountable, and thus, pseudonyms should be used to de-
identify the executor of the activity. The attribute insider specifies against who
to protect. The considered adversary type is either just outsider (false) or both
outsider and insider (true). We define the outsider adversary as any entity being
part of the surrounding of the system considered. The insider is any entity being
part of the system considered, including the system itself.

The example model Fig. 1 shows three anonymity annotations associated to
different BPMN elements. Consider, for example, the one associated to the Fill
evaluation form activity. This annotation specifies that a patient shall be able to
execute the Fill evaluation form task anonymously within the set of all patients
without being identifiable by either outsider or insider adversaries. Since the
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requirement is propagated, the same requirement applies to the Submit evalua-
tion task.

Unlinkability comes in two variants, depending on which BPMN elements
the annotation linked with. (i) Unlinkability-Process can be linked with two
pools/lanes to specify that an adversary of the given type shall not be able to
link two executed processes as related. In other words, if linked to two pools, this
annotation imposes that a subject may make use of multiple services without
allowing others to link these uses together as related [28]. (ii) Unlinkability-
DataObject can be linked with two data objects to specify that, from the given
adversary perspective, it should not be possible to link the two data objects as
related. Since unlinkability can only be applied to two specific processes or data
objects, it cannot be propagated to other elements. The attacker type is specified
using the insider attribute, in the same way as in the anonymity case.

The example model includes two unlinkability annotations. Consider, for
example, the unlinkability annotation associated with the two data objects
namely, EHR and Evaluation. This annotation specifies that both outsider and
insider adversaries must not be able to link an EHR and an Evaluation data
objects as related.

Undetectability has three variants, depending on the BPMN elements it
is linked with. (i) Undetectability-Activity specifies that an adversary should not
be able to detect whether an activity is executed or not. (ii) Undetectability-
MessageFlow specifies that an adversary cannot sufficiently distinguish a
true messages from a false ones (e.g., random noise). (iii) Undetectability-
DataInputAssociation specifies that a task should not be able to distinguish
whether a piece of data is exists in a data object or not.

The example model shows an undetectability annotation linked with the
message flow between the Send data to portal task and the Receive data start
event. The annotation specifies that outsider adversaries must not be able to
distinguish true messages sent over the message flow between the Send data to
portal task and Receive data event from a false ones. In other words, at a specific
time, an outsider adversary cannot detect whether the Tele-midicine device is
sending data or not.

Unobservability can only be applied to message flows, leading to pre-
cisely one variant called Unobservability-MessageFlow : the sender of the message
should be anonymous with respect to insider adversaries and the message itself
should not be detectable by outsider adversaries.

The example model includes an unobservability annotation linked with the
message flow between the Submit evaluation task and the Receive evaluation catch
event. This annotation specifies that an outsider adversaries should not be able
detect true messages being sent over the message flow from false ones, and the
patient who sent messages over the message flow must be anonymous to the
insider adversary.
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4 Conflict Detection

Uncovering conflicts during the design of business processes is of vital impor-
tance to avoid privacy violations and expensive fixes in the later development
phases. Detecting conflicts manually in annotated business process models is
a challenging task, especially in real cases where business process frequently
are composed of many tasks. We present an automated conflict detection tech-
niques which takes as input a BPMN model with data-minimization and security
annotations, and reports a list of conflicts and potential conflicts. The former
represent definitive mismatches between two requirements; the latter may result
in conflicts under certain circumstances. Consequently, our tool shows conflicts
as errors, and potential conflicts as warnings to the user.

Conflicts between security and data-minimization requirements occur in
two flavors: First, requirements related to the same asset in the system may be
conflicting. For example, consider the accountability and anonymity annotations
linked with the Send data to portal task in Fig. 1. For accountability, the system
needs to track the executor of this task’s responsibility, while the anonymity
annotation specifies that the executor should be fully anonymous against insider
adversaries. Second, requirements related to different, dependent assets may be
conflicting. For example, in Fig. 1, consider the anonymity and non-repudiation
annotations linked with the Fill evaluation form task and the Evaluation form data
object, respectively. The former imposes that an executor to the Fill evaluation
form task should be fully anonymous against insider adversaries; the latter indi-
cates that an accessor to the Evaluation form data object should not be able to
deny that she accessed the Evaluation form. Since the Fill evaluation form task
writes data to the Evaluation form, a conflict is reported.

Potential conflicts as considered in our work result from control flows
between activities with specified requirements. For example, Fig. 1 includes a
path between the anonymity-annotated fill evaluation form task and the non-
repudiation-annotated Submit evaluation task. Such situations not necessarily
give rise to an actual conflict. For instance, imagine a flow between two tasks
where the first task allows a customer to anonymously use a service and the
second task allows the service provider to prevent a customer from being able to
deny his payment for receiving a service. In this situation, it may be sufficient
for a service provider to prove that a customer performed the payment task
without uncovering which service a customer is paying for, and as a consequence,
preserve the customer anonymity. Such potential conflicts should be reported and
discussed during the design of the business process models.

Automated Conflict Detection Using Anti-patterns. We propose an auto-
mated conflict detection technique that relies on encoded knowledge about
conflicts and potential conflicts between pairs of requirements. Specifically,
we propose a catalog of conflict anti-patterns which are matched against the
given business process model in order to detect conflicts and potential con-
flicts. Our patterns are formulated in a specialized query language, which
extends an existing query language called SecBPMN2-Q [33]. SecBPMN2-Q sup-
ports custom graphical queries enriched with security requirements that can be
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Fig. 3. Conflicts C1–C5 between non-repudiation and anonymity as anti-patterns.

matched to SecBPMN2 models, usually for verification purposes. We extended
SecBPMN2-Q so that it supports our new data-minimization annotations as well,
allowing us to specify conflicts as anti-patterns that can automatically detected.

Figure 3 shows a selection of anti-patterns defined using our SecBPMN2-Q
extension. Together, the depicted anti-patterns represent all conflicts that can
happen between non-repudiation and anonymity. The patterns include labels of
the form “@X”, which act as placeholders for element names, allowing us to
formulate the anti-patterns in a domain-independent way. All anonymity anno-
tations in Fig. 3 are specified with the following attributes: {anonymity level =
full anonymous, insider = true}.

Consider, for example, conflicts C1 and C5 in Fig. 3. These conflicts arise
when non-repudiation and anonymity annotations are linked to the same task or
message flow, respectively. C1 can be matched to one place in the example model,
which is highlighted in Fig. 1: The anonymity annotation of the Fill evaluation
form is propagated to the Submit evaluation task, which is annotated with a non-
repudiation annotation. In contrast, C5 does not occur in the example model,
since the model does not have an anonymity- and non-repudiation-annotated
message flow. C2, C3 and C5 each come in two variants, resulting from duality:
the direction of the data object call (read or write) can be inverted, and the
assignment of requirements to elements can be swapped.

Figure 4 shows three anti-patterns specifying potential conflicts between
anonymity and non-repudiation. In these patterns, we use a walk relation (illus-
trated using an edge with double arrowhead), which is defined for pairs of activ-
ities, events or gateways. It allows to match all pairs of elements in the input
model for which there is a path between the source and the target element.
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Fig. 4. Potential conflicts between non-repudiation and anonymity as anti-patterns.

Note that 3 out of 8 overall potential conflicts for the considered pair of require-
ments are shown. Two additional cases called PC3 and PC5 are formed in anal-
ogy to C3 and C5 in Fig. 3; three additional variants arise from duality like in the
discussion of the conflicts. Again, all anonymity annotations are specified with
the following attributes: {anonymity level = full anonymous, insider = true}.

The potential conflict PC1 in Fig. 4 includes a non-repudiation-annotated
and an anonymity-annotated task between which a path exists. PC4 specifies a
path between an anonymity-annotated task and another task that sends mes-
sages over a non-repudiation-annotated message flow. Both situations may lead
to a conflict, depending on the actual circumstances in the system.

From matching potential conflicts PC1 and PC4 to the example model in
Fig. 1, two warnings will be reported: (i) There is a path between the anonymity-
annotated Fill evaluation form task and the non-repudiation-annotated Submit
evaluation task, thus violating PC1. (ii) There is a path between the anonymity-
annotated Fill evaluation form task and the Submit evaluation task which sends
messages over a non-repudiation-annotated message flow, leading to a violation
of PC4.

Catalog of a Domain-Independent Conflicts. As mentioned in Sect. 2,
SecBPMN2 in fact supports 10 different security requirements. Similar to our
data-minimization annotations, the same security annotation can be linked to
different BPMN elements. We analyzed all possible situations where conflicts
or potential conflicts between a security and a data-minimization annotation
may happen. For each identified situation, we specified an anti-pattern using
our extension of SecBPMN2-Q.

We now give an overview of the resulting catalog of anti-patterns. A more
detailed account is found in [30]. Table 1 shows all pairs of requirements for which
we identified a (potential) conflict. Each cell shows the number of conflicts, plus
the number of potential conflicts between the considered pair of requirements.
For example, there are 8 conflicts and 8 potential conflicts for non-repudiation
and anonymity. The origin of these numbers is explained in the previous descrip-
tions of Figs. 3 and 4. The other numbers arise from the various possibilities of
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linking a data-minimization or a security annotation with other BPMN elements.
In total our catalog contains 140 anti-patterns.

Table 1. Overview of conflict + potential conflict anti-patterns per pair of require-
ments.

Considering conflicts and potential conflicts, Accountability, Authenticity,
Audibility, and Non-delegation represent different requirements to keep insider
users accountable for their actions. To preserve them, the identity of an action’s
executor must be verified. Therefore, similarly to Non-repudiation, all of these
security concepts may have conflicts or potential conflicts with Anonymity
(where required against insiders) and Unobservability, since part of its defini-
tion implies full anonymity against insiders.

Binding and Separation of duties can conflict with Anonymity if any of the
activities to which they are applied also require to be executed anonymously.
For instance, it will be hard, in case of Binding of Duties, to prove that two
fully-anonymously executed activities are executed by the same person or not. A
potential conflict between the Binding of duties and Unlinkability is also possible:
Unlinkability is linked to two pools and indicates that the two process executions
should not be linked to each other as related. Therefore, it may conflict with
Binding of Duty.

Confidentiality, Integrity, and Availability represent different requirements to
allow authorized users to read, modify, or access a system asset, respectively. The
satisfaction of these requirements relies on authorization, which, however, does
not necessarily imply identification: The literature provides many techniques
for performing authorization without uncovering the real identity of an action
executor, for example, zero-knowledge protocols [23]. However, the system devel-
opers may choose to implement these requirements by a mechanism that relies
on identification, such as access control, which may lead to conflicts with data-
minimization requirements. Hence, a decision about whether a conflict arises
cannot be made on the abstraction level of process models. Therefore, as shown
in Table 1, we classified the interactions between these security requirements and
the data-minimization requirements as potential conflicts.
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In some cases, Confidentiality and Integrity are considered as supplement-
ing requirements to Anonymity [15]. For instance, anonymity against outsider
adversaries implies that the outsider adversaries should not be able to trace a
message back to its sender. However, if the sent message contains personal iden-
tifiable information and it is sent in clear (i.e., without encryption), an outsider
attacker can easily link the messages to its sender. Such kind of interactions can
not be considered as conflicts or potential conflicts, and thus, they are omitted
from Table 1.

Conversely, conflicts may not only occur between security and data-
minimization requirements. Table 1 indicates that a particular Anonymity anno-
tation might conflict with other Anonymity or Unobservability annotations.
For instance, requiring full anonymous execution for an activity is in conflict
with requiring the users to execute the same activity anonymously using their
pseudonyms. Undetectability, by definition [28], only shields against outsider
attackers. Therefore, it is omitted from the Table 1 since it does not give rise
to conflicts with security or data-minimization requirements.

5 Tool Support

We developed a prototypical implementation of our work on top of STS [2], the
supporting tool for the BPMN extension SecBPMN2 [33]. Our implementation
supports the two main contributions of this work: First, the modeling of data-
minimization and security requirements in BPMN models, using a suitable model
editor. Second, automated conflict analysis in data-minimization- and security-
annotated BPMN models, based on our catalog of anti-patterns. The examples
shown Figs. 1, 3 and 4 come from screenshots of our implementation. Our con-
flict detection approach takes as an input a security- and data-minimization-
annotated BPMN model. The output is a set of textual messages that describe
the detected conflicts. On demand, the conflict can be highlighted in the model.
For example, the highlighted path in Fig. 1 is the result of selecting the conflict
message that describes the PC1 anti-pattern in Fig. 4. Our implementation is
available online at http://www.sts-tool.eu/downloads/secbpmn-dm/.

6 Case Study

To study the feasibility our approach, we applied it in a healthcare scenario.
We extended a teleconsultations healthcare management case study from the
Ospedale Pediatrico Bambino Gesù, a pediatric Italian hospital. The case study
was part of the VisiOn research project [3]. The main objective of VisiOn consists
in increasing the citizens awareness on privacy. The final outcome of the project
was a platform that can be used by public administrations and companies to
design their systems, using privacy as a first-class requirement.

The teleconsultations case study described a situation where a patient EHR
can be transfered from the OPBG system to specialists in another hospital for a

http://www.sts-tool.eu/downloads/secbpmn-dm/
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teleconsultations purposes. In this scenario many security requirements are con-
sidered (e.g., confidentiality, accountability) but the privacy preferences were
more related to data anonymization. In this paper, we extended this scenario to
cover situations where data-minimization plays an important role not only pro-
tecting the users data but also their activities and communications. To this end,
we modeled a process featuring an over distance healthcare service, an excerpt
being shown in Fig. 1. Using our approach, as explained in Sect. 3, we were able
to enrich the model with data-minimization requirements that represent privacy
preferences for patients.

For conflict detection, we annotated the model with security requirements
that represent security needs from the system point of view. Assessing the accu-
racy of conflict detection based on this model required a ground truth. To this
end, we manually analyzed the model and identified 8 conflicts and 20 potential
conflicts, a subset being discussed in Sect. 4. Applied to the model, our con-
flicts detection technique precisely detected these expected 8 conflicts and 20
potential conflicts. The used version of the model with all data-minimization
and security requirements can be found in https://github.com/QRamadan/
conflictsDetection/.

7 Usability Validation

Our main contribution is twofold: we provide support for the enrichment of the
BPMN models with data-minimization requirements, and the detection of con-
flicts between data-minimization and security requirements. As a preliminary
evaluation for both contributions, we performed a user experiment that focused
on two research questions: (RQ1) How usable are our data-minimization anno-
tations, compared to textual requirement specifications? (RQ2) How useful is
the conflict detection output? The focus of RQ1 is on our new data-minimization
annotations; the security annotations from SecBPMN2 were already evaluated
in an earlier work [33]. As participants, we recruited 6 doctoral students and 1
post-doc from three institutions. We asked the participants to rate their expe-
rience in process modeling (in particular, BPMN), privacy, and security using
5-point Likert scales. Six participants rated their BPMN experience as 3 or 4.
Six participants rated their security expertise as 3 or 4. The self-assessed privacy
experience was 4 for one participant, 3 for four participants and 2 for two par-
ticipants. In total, this distribution approximates the knowledge of the intended
user group.

The set-up of our experiment involved a questionnaire with embedded model
excerpts based on the model from our case study. Models were included in two
versions: with visual data-minimization and security annotations (proposed app-
roach), and with textual data-minimization requirement description and visual
security annotations (baseline). The participants received a description sheet of
all used annotations. For RQ1, participants were asked to complete comprehen-
sion tasks and, afterward, to state their subjective notation preference for solving
our tasks, for communication with non-technical stakeholders, and for develop-
ing their own projects. For RQ2, participants were asked to identify conflicts

https://github.com/QRamadan/conflictsDetection/
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Fig. 5. Results: preference scores for notation (RQ1) and helpfulness of output (RQ2).

manually. Afterwards, we showed them the output of our tool and asked them
to rate its helpfulness to be used it for this task. We also asked the participants
for informal feedback using a free-form input field.

The summarized results are shown in Fig. 5; the shown scores accumulate the
answers to multiple related questions. Regarding RQ1, we found that the par-
ticipants mostly preferred our proposed approach for solving the tasks (62%),
and for developing their own project (86%). One participant stated that “with
the extension, it’s a lot easier to detect the model elements that are affected
by a requirement than with the text version (have to find the relevant elements
and correlate text and model)”. However, for communication with non-technical
stakeholders, all participants gave a neutral (57%) or negative (43%) answer. An
explanation offered by a participant was that to “fully understand the effect of
the annotations is very hard. This is the reason why I rated both variants equally
usable for non-technical audience”. Regarding RQ2, the majority of participants
rated the conflict detection results as very helpful for the identification of con-
flicts (79%). Two of the participants stated that the detection results pointed
them to conflicts that they had not noticed when inspecting the models manu-
ally. In summary, our results give a promising outlook for the usability of our
approach.

Threats to Validity. Owing to the limited sample size, we relied on descrip-
tive statistics, leaving a comprehensive user study with a more rigorous statisti-
cal analysis to future work. The actual usefulness in practice may significantly
depend on the considered model, of which we only considered one in our exper-
iment. Usability was assessed through a subjective questionnaire rather than
objective performance measures. This threat can be addressed using a different
kind of experiment, as we plan to conduct in the future. Finally, we only consid-
ered the comprehension, rather than the editing of models. On the other hand,
understanding is a necessary part of any editing process.
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8 Related Work

Conflicts Between Security and Data Minimization. To the best of our
knowledge, no existing approach supports conflict detection between security
and data-minimization requirements. Hansen et al. in [15] defined six privacy
and security goals for supporting the privacy needs of users. The authors con-
sidered a subset of the data-minimization concepts in [28], namely anonymity
and unlinkability, and discuss their relationships. However, conflicts are dis-
cussed on the conceptual level, while in our work, we argue that the specific
conflicts arising in a system can be identified by analyzing the data-system’s min-
imization and security requirements. The perspective papers of Ganji et al. [13]
and Alkubaisy [6] highlight the importance of detecting conflicts between secu-
rity and privacy requirements, for data-minimization requirements in particular.
Both papers discuss the components required for a potential approach, however,
without providing a complete solution. Ganji et al. [13] envision a realization
based on the SecureTropos framework as future work.

Data-Minimization-Aware Approaches. Various works in security require-
ments engineering aim to specify privacy requirements using the data-
minimization concepts proposed in [28]. In Deng et al.’s LINDDUN frame-
work [11], both misuse cases and data-minimization requirements can be iden-
tified by mapping predefined threat-tree patterns to the elements of a data-
flow diagram. Kalloniatis et al. [17] propose the Pris methodology, which maps
data-minimization and other security concepts to a system’s organizational
goals to identify privacy requirements. Pris introduces privacy-process patterns
that describe the effect of privacy requirements to organizational processes.
Mouratidis et al. [26] present a conceptual framework that combines security
and data minimization concepts, and show its use to specify details about pri-
vacy goals such as the involved actors and threats. Beckers et al. [8] propose a
privacy-threats analysis approach called ProPAn that uses functional require-
ments modeled in the problem-frame approach to check if insiders can gain
information about specific stakeholders. Ahmadian et al. [4] support a privacy
analysis for system design models, based on the four privacy key elements of
purpose, retention, visibility and granularity. Since none of these approaches
considers conflicts between data-minimization and security requirements, our
approach can be seen as complementary: Their output can be used as input for
our approach to allow the enrichment of the business process models with data-
minimization and security requirements and then to perform conflict detection.

Diamantopoulou et al. [12] provide a set of privacy process patterns for data-
minimization and security concepts, aiming to provide predefined solutions for
different types of privacy concerns in the implementation phase. In addition to
textual description of the patterns, BPMN design patterns were provided to
guide operationalization at the business process level. This work is complemen-
tary to ours, as it focuses on the implementation of data-minimization require-
ments, rather than on the detection of conflicts.
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9 Conclusions and Future Work

We proposed an extension of the BPMN modeling language to enable the spec-
ification of data-minimization and security requirements in a unified frame-
work. Based on this extension, we introduce a technique for conflict detection
between the specified requirements. Our technique analyses data-minimization-
and security-enriched models based on a catalog of a domain-independent anti-
patterns, which we formulated in an extension of a graphical query language
called SecBPMN2-Q. We validated our approach in a case study based on a
healthcare management system, and an experimental user study.

In the future, we aim to formally validate the completeness of our technique.
Encoding the semantics of data-minimization and security requirements using
graph transformations would allow us to apply formal conflict detection [9,19]
for that purpose. We also aim to extend our approach to support the resolution
of conflicts. As a first step, we aim to extend existing work in [33] to ensure that
the enriched model is aligned with the collected security and data-minimization
requirements. This will allow us to identify and fix unintentional conflicts (e.g.,
errors during the enrichment of the model with security and data-minimization
requirements). Although a fully automated process would be appreciated, we
believe that the resolution of actual conflicts (e.g., between two requirements
related to different views of system stakeholders) is a sensitive issue that requires
human intervention, a further challenging task that involves reasoning on the
privacy impact of different solution strategies [5,21]. Once that all conflicts are
resolved, the system design typically needs to be aligned with the specified pri-
vacy and security requirements, a challenge that can benefit from the use of
model transformation technology [29]. Finally, we intend to perform a compre-
hensive user experiment to study the usability and validity of our approach in a
broader setting.
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Abstract. Researchers and practitioners alike have the intuition that test cases
diversity is positively correlated to fault detection. Empirical results already
show that some measurement of diversity within a pre-existing state-based test
suite (i.e., a test suite not necessarily created to have diverse tests in the first
place) indeed relates to fault detection. In this paper we show how our proce-
dure, based on a genetic algorithm, to construct an entire (all-transition) ade-
quate test suite with as diverse tests as possible fares in terms of fault detection.
We experimentally compare on a case study nine different ways of computing
test suite diversity, including measures already used by others in software testing
as well as measures inspired by the notion of diversity in the life sciences.
Although our results confirm a positive correlation between diversity and fault
detection, we believe our results raise more questions than they answer about the
notion and measurement of test suite diversity, which leads us to argue that more
work needs to be dedicated to this topic.

Keywords: State-based testing � FSM � Fault detection � Test suite diversity

1 Introduction

Model-based testing [47] has received a lot of attention [33, 38, 43] for many reasons
[34]: (i) Software complexity increases and user’s tolerance of defects decreases, which
calls for more functional testing; (ii) Software testing remains very expensive, which
makes automated model-based testing very attractive; (iii) tools are mature enough to
be used in a wide range of domains [44]. And there is empirical evidence that
model-based testing can result in good return on investment [34].

Transition based models like state machines are widely used for model-based
testing. Although a finite-state machine (FSM) can be used to describe the state-based
behaviour of a small system, it becomes rapidly too large as the size of the system
increases [20]. Extended finite state machines (EFSMs) are then preferred. Testing an
implementation against its (E)FSM specification, and protocol testing are examples of
applications of (E)FSMs in model-based testing. It can also be of great help in the
challenging process of software integration [23], such as services in the cloud [19].

We argued in previous publications that state-based testing from an (E)FSM is a
multi-objective optimization problem [4, 5]: (i) one wants feasible paths despite
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conflicting actions and guard conditions (one wants test cases that can actually exe-
cute), which is akin to the un-decidable path sensitization problem [7]; (ii) one wishes
to obtain a test suite that is adequate for some selection criterion [9] (transition cov-
erage has proved to be a good minimum [47]) in an attempt to ensure some level of
quality of the test suite; (iii) one is interested in increasing diversity among test cases
since, intuitively and experimentally, diversity relates to fault detection [20]; (iv) one
wishes to reduce costs, measured for instance as the cumulative length of test cases in a
test suite. We presented [4, 5] a promising test suite construction procedure, using these
four objectives, based on a multi-objective genetic algorithm.

One of the main factors affecting the success of any search-based algorithm is
(are) the objective function(s). In this paper we specifically focus on similarity mea-
surement. Although the impact of different test case similarity measures on effective-
ness at detecting faults has been already studied [20], it is not clear whether those
results would apply to a multi-objective test suite construction like ours [4, 5]. Indeed,
the measures of similarity were used to evaluate a pre-existing test suite, in an attempt
to relate similarity to fault detection (i.e., measure a test suite “quality” in terms of
similarity and fault detection), not to guide the construction of an entire test suite such
as in our multi-objective genetic algorithm.

As a genetic algorithm has its roots in biology and genetics we continue in the same
line of thoughts and use methods which biologists use to measure similarity from
individuals to populations. In this paper we therefore turn our attention to test suite
diversity (the opposite of similarity), get inspiration from our colleagues in the life
sciences, and look at how they determine diversity of species. We study different
mechanisms to compute the diversity of an entire test suite, relying on different
pair-wise diversity comparisons of test cases within a test suite on a case study. In this
paper we specifically focus on state based testing from an FSMs, rather than from an
EFSM, since we observed [6] that counters in EFSM guard conditions have an adverse
effect on the convergence of our multi-objective search [4, 5]; we want to study
measures of test suite diversity without the confounded, uncontrolled effect of such
counters.

Section 2 discusses related work on diversity measurement in software testing and
in the life sciences. Section 3 discusses the design of our case study and we discuss
results in Sect. 4. Section 5 discusses threats to the validity of our study. We conclude
in Sect. 6.

2 Related Work

We first summarize our entire test suite construction technique (Sect. 2.1). We then
discuss related work in similarity measurement for software testing (Sect. 2.2) and
similarity measurement, actually diversity, in the life sciences (Sect. 2.3).

2.1 Multi-objective Entire Test Suite Construction

We proposed to use a multi-objective genetic algorithm to create test suites from an
(E)FSM [3–6]. We assume the reader is somewhat familiar with genetic algorithms and
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only detail below aspects which make our solution different (we create an entire test
suite) from others. Since the purpose of this paper is not to introduce our multi-
objective test suite construction, we refer the reader interested in more details about that
aspect of our work, including precise definitions of mutation and cross-over operators
as well as other design decisions, to our previous publications [3–6].

The goal of our genetic algorithm was to find test suites that achieve high adequacy,
ideally 100% adequacy, using the all-transitions selection criterion, have a high chance
of being feasible in the case the EFSM has guard conditions (we use a surrogate
measure of feasibility), minimize cost (i.e., cumulative number of triggered transitions
in all test cases), and minimize the similarity between the test paths that constitute the
test suites [20].

In a multi-objective genetic algorithm, a chromosome is a solution to the opti-
mization problem, and genes compose a chromosome. In our context, a chromosome is
a test suite and a gene is a test case, i.e., a sequence or path of EFSM transitions. One of
the objectives of test suite construction is to achieve a certain level of adequacy
according to a selection criterion. Since different adequate (i.e., satisfying a criterion)
test suites usually exist and have varying numbers of test cases, our chromosomes have
variable length (i.e., variable number of test cases/genes).

Since a chromosome has many characteristics (e.g., number of genes/test cases,
length of each gene/test path, specifics of each gene/test path), a chromosome can be
mutated in many different ways. Specifically, adding/removing a gene to a chromo-
some (test suite) means adding/removing a test case; Altering a gene means changing
the test suite, for instance by mixing transitions between different test cases of the test
suite. Similarly, the cross-over operator, which considers two chromosomes (in the
general case), considers two test suites in our context. Cross-over can consist in
exchanging test cases between two test suites but also exchanging transitions between
test cases of different test suites.

2.2 Similarity Measurement in Software Testing

Different pair-wise similarity measures can be used on test cases [20] to identify to
what extent two test cases (pair-wise comparison) differ (or are similar to each other).
One measure, which is not limited to identical length sequences (recall we have
variable length chromosomes), is the Levenshtein distance [18]. Although not the
recommendation of Hemmati et al., this is the best measure of similarity they studied
[20] that supports variable length sequences. To change this distance measure into a
similarity measure, we reward matches by one point and penalize mismatches/gaps by
assigning no point [20].

The Hamming distance is another widely used [20] similarity measure. It is based
on the edit distance between two strings and is the minimum number of edit operations
(i.e., insertions, deletions and substitutions) required to transform one string into the
other. The Hamming distance can be used as a sequence-based similarity measure
between strings of equal length. For variable length strings it is used as a set-based
measure [20].

The last similarity measure we used is the set-based Gower-Legendre (Dice)
measure since this is the one suggested by Hemmati et al. [20]. As the Dice measure is

Life Sciences-Inspired Test Case Similarity Measures 201



a set-based measure, the order of transitions and their repetitions will be lost in
computation. The Dice measure of two test paths f and g is based on commonalities and
differences between the sets of symbols (in our case, transitions of the EFSM) of the
test paths: Dice f ; gð Þ ¼ f \ gj j=ð f \ gj j þ 1

2 f [ gj j � f \ gj jð ÞÞ.
Similarly to Hemmati et al. [20], we defined the similarity of a test suite (chro-

mosome) as the sum of the similarity measures computed for each unordered pair of
test paths (genes) in that chromosome. The following objective function needs to be
minimized: similaritySum Sð Þ ¼ P

f ;gð Þunordered pairs in S similarity f ; gð Þ.
The notion of test cases and test suite diversity (or similarity) is an active research

topic. Although this paper is not a systematic mapping study, we report on a few
significant pieces of work below. These principles (pair-wise measures and aggregation
procedure) have been used to measure the diversity of test inputs of test suites [35]. The
Euclidian (pair-wise) distance between test inputs is extensively used in (adaptive)
random testing [39]. The cosine similarity, Jaccard distance, Euclidian distance measures
are also used for pairwise comparisons of tests cases to rank them [48]. Shi et al. present a
measure of distance entropy of a test suite, using Shannon entropy, based on pair-wise
comparisons (Euclidian distance) [45]. We note (see below) that Shannon (Information)
entropy is not the preferred measure of diversity in the life sciences. The test set diameter,
based on Kolmogorov complexity, also measures test suite diversity [16]. It would be
interesting to study how these measures relate to those used in the life sciences.

Our work is similar to existing published work that study similarity of state-based
tests, with the difference that we use measures of similarity to construct test suites
instead of measuring diversity of test suites created with other means. Another important
difference is our use of similarity measures from the life sciences (see below).

2.3 Similarity Measurement from the Life Sciences

The three major parameters utilized by biologists to express variation of a population
are diversity within a population, diversity among populations and distance between
two populations. The first and second parameters are referred to as a- and b-diversity
respectively and c-diversity represents total diversity a þ bð Þ [31].

Kosman [31] divides methods of diversity analysis into five categories: Genotypic
methods, Gene methods, Genetic methods, Functional methods and True diversity
methods. Genotypic methods were initially developed for measuring species diversity.
They use information about relative frequencies of genotypes in a population. In our
context, a genotype can be mapped to a transition, pair of transitions, paths, sub-paths
or states. Gene methods analyze gene variation in populations and are based on cal-
culations of frequencies of alleles at individual loci1. In our context, transitions are
example of alleles, and each position of transitions in a test path is a locus. After
measuring dissimilarity between pairs of individuals using any measure, a genetic
method calculates the diversity of a population using a matrix of dissimilarities in
which each row and each column represents an individual and each element is the

1 An allele is a form of a gene (one member of a pair) that is located at a specific position on a specific
chromosome. Locus (plural: loci) is the location of a gene on a chromosome.

202 N. Asoudeh and Y. Labiche



pair-wise dissimilarity between two individuals. Functional methods are mostly used in
the study of ecosystems. Each organism (species) is described by a set of functional
traits which are believed to be important for the function of an ecosystem. Differences
between organisms are assessed based on dissimilarity between their functional pro-
files. The term true diversity was first coined by Jost [25, 26] and later the idea was
complemented by Tuomisto [46].

Genotypic, gene, genetic, functional and true diversity methods are further divided
based on the type of diversity parameters used to measure dissimilarity: i.e., diversity
within population (a), distance between populations, diversity among populations (b)
and total diversity (c). A complete list of parameters and categories can be found in
Kosman’s paper [31].

In our multi-objective genetic algorithm, we need to measure diversity within a
population, i.e., a-diversity: we have a population of test cases (individuals) and we are
interested in how diverse they are. Therefore, we now briefly describe methods
belonging to each of the five categories that are used to measure a-diversity.

The three most commonly used genotypic methods to measure diversity within a
population P [31] are Shannon Information, Simpson diversity, and the Stoddard index.
These measures rely on the frequency of a genotype in the entire set of genotypes. Nei
[37] defined the most common gene method [32] for the assessment of diversity within
a population. The measure relies on the frequency of alleles at different loci in genes.
The average dissimilarity within population and Kosman’s diversity within population
are two common genetic methods [32]. Both rely on a pair-wise dissimilarity measure:
d xi; xj
� �

is the dissimilarity between individuals xi and xj. With Kosman’s diversity
within a population of size n, individuals are matched to form n pairs in a way that the
sum of dissimilarities between the pairs has its maximum value. Finding those pairs is
similar to solving the assignment problem [8]. Rao has proposed the quadratic entropy
as an index of functional diversity within a population [40], relying on frequencies of
genotypes and pair-wise dissimilarity values. Ricotta and Szeidl [41, 42] proposed two
different approaches to generalize Shanon’s entropy, originally a genotypic measure, as
a functional method to measure diversity within populations. Jost proposed a con-
version of common diversity measures to true diversity [25].

Kosman and Leonard performed a conceptual analysis of the different types of
methods mentioned above [32]. They compared those measures on organisms with
asexual or mixed mode of reproduction. Based on their study, Kosman’s diversity
within population (KW) is more appropriate and informative than other measures as it
includes both genotypic structure of a population and a measure of dissimilarity
between various genotypes. Another interesting measure to consider based on this
study is the average dissimilarity within population (ADW) as a representative of all
the measures that are based on allele frequencies (e.g., Nei’s measure).

Therefore, we selected Kosman diversity within population (KW), and average
dissimilarity within population (ADW), to apply to ourmulti-objective genetic algorithm.
In a population P with n individuals x1; . . .; xn; d xi; xj

� �
represents the dissimilarity

between xi and xj according to measure d. With ASSdmax P;Pð Þ the matching of n pairs of
individuals such that the sum of dissimilarities between the pairs has its maximum value,
we have: KW Pð Þ ¼ 1

n :ASS
d
max P;Pð Þ and ADW Pð Þ ¼ 1

n2 :
Pn

i;j¼1 dðxi; xjÞ.
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3 Experimental Design

In light of related work, we selected three methods of computing test suite diversity:
two population diversity methods from the life sciences (i.e., KW and ADW) and the
summing up of pair-wise similarities (SUM) as used by others in the software testing
field. Since these methods all rely on pair-wise comparisons of individuals in a pop-
ulation, we used the three functions that have been mostly used in the field, namely,
Levenshtein distance, Hamming distance and Dice. This results in nine different
combinations to experiment with. Because KW and ADW are based on pair-wise
dissimilarities rather than similarities we used the original version of all these three
pair-wise measures without converting them to similarity measures.

The main research question we were trying to answer was: what is the effect of
using different methods of computing similarity on cost and effectiveness of test suites
generated by our multi-objective genetic algorithm? To be more specific, we broke
down this question into the following research questions: (i) What is the effect of using
different pair-wise dissimilarity measures on cost, or on effectiveness? (ii) What is the
effect of using different methods of computing diversity on cost, on effectiveness?

The rest of this section discusses the case study system we used (Sect. 3.1) and the
procedure we followed during the case study (Sect. 3.2).

3.1 Case Study

We selected a case study system for which we have a state model (FSM) and source
code: a simple Cruise Control (Fig. 1).

Fig. 1. FSM for the Cruise Control system
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We selected this system because, although it does not have guards or actions and
therefore any traversal of the state machine graph is a feasible test path (as a conse-
quence we have really three fitness functions), it allowed us to check the correctness of
our approach and focus on the three other fitness functions, and especially
diversity/similarity measurement. Its simplicity, while remaining complex enough (28
transitions, seven events) and representative of a large number of similar FSMs that are
used for testing purposes, allowed us to control some factors in the case study: For
example, we know guards and counters in guards are difficult to handle [6]; We use an
FSM (without guards) which allows us to remove the adverse effect of guards. Our
four-objective optimization turns into a three objective one. With only three fitness
functions we can furthermore plot results (not shown here due to space limits) and learn
from those results in a qualitative analysis: e.g., we can visually observe the result of
the competition between the fitness functions.

3.2 Procedure

We designed the following analysis procedure to answer our research questions.

• We ran each of the nine different versions of the genetic algorithm 100 times. Recall
we have three pair-wise similarity measures and three ways to aggregate those
pair-wise computations to compute a test suite diversity measure, resulting in nine
possible measures of test suite diversity, which we implemented in nine versions of
the genetic algorithm (all other characteristics of the genetic algorithm, e.g., seed
population, operators, cross-over and mutation rates, remained the same). Since a
genetic algorithm is inherently non-deterministic, we must account for possible
variations in results. With 100 executions we can perform statistical analyses;

• We randomly selected 20 out of the 100 executions and collected their resulting
Pareto front (i.e., final solutions found by the genetic algorithm). Also, to be fair in
our comparisons, from each of the 20 Pareto front sets, this random selection only
kept the (one) adequate test suite with the lowest cost. This means we picked the
best solutions in terms of cost and adequacy for all different flavours of our genetic
algorithm. We could not analyse all generated solutions and had to filter. We
obtained 180 (20 times nine) different test suites;

• We compared the different versions of the genetic algorithm, through those 180 test
suites, in terms of cost using Analysis of Variance (ANOVA) [15]. The charac-
teristic that separates different treatments or populations from one another is referred
to as the factor under study and each treatment or population is called a level of the
factor. The goal of ANOVA is investigating if differences between different samples
are due to chance or are caused by different treatments. In our case, we have two
factors under study. The first factor is the pair-wise similarity (dissimilarity) mea-
sure, which has three different levels, i.e., Dice, Hamming distance and Levenshtein
distance. The second factor is the method for measuring diversity within a whole
test suite, which has three levels: KW, ADW, and SUM. We performed multiple
single factor ANOVAs as well as a Two-way ANOVA for dependent variable cost.
Our surrogate measure of cost is to count the cumulative number of transitions in all
the test cases of a test suite;
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• We executed these test suites on mutants and measured mutation scores, i.e., the
proportion of seeded mutants (faults) that are killed (revealed) by a test suite.
Mutation analysis is a well-known method commonly used for the evaluation of
testing strategies [1, 2]. We used MAJOR [28], a mutation analysis tool for Java, to
seed faults and perform the mutation analysis. We used all the mutation operators
available with MAJOR and created 198 mutants for Cruise Control. When identi-
fying whether a mutant is killed or alive, we need an oracle for each test case. Our
detailed oracle was to check the target state, transition triggered as well as com-
paring the value of state variables for each transition in the transition sequence
defining a test case. Comparisons took place between executions against mutants
and executions against un-mutated code. Similarly to other studies of this kind
reported in literature, we considered mutants that are not killed by any of the
(180) test suites that are part of the experiment as equivalent. Similarly to cost, we
used ANOVA (one-way, two-way) to compare the different versions of the genetic
algorithm, through those 180 test suites, for dependent variable effectiveness.

4 Results

As mentioned in the previous section we had two different factors under study and each
of them had three different levels. Cost and effectiveness were the two dependent
variables. Following the statistical procedure described above resulted in three different
single factor ANOVA tests with different methods of computing pair-wise similarity as
the factor under study and cost of generated test suites as dependent variables. It also
resulted in three single factor ANOVA tests with different methods of computing
diversity within a test suite as the factor under study and cost of generated test suites as
dependent variable. Replacing cost with the effectiveness at detecting faults (mutation
score) as the dependent variable resulted in six additional single factor ANOVAs (three
for pair-wise similarity measure as the ANOVA factor and three with method of
computing diversity within a test suite as the factor under study). Combining two
factors resulted in two different two-way ANOVAs, one of them with cost and the other
with effectiveness at detecting faults as the dependent variables. Detailed results of all
twelve different one-way ANOVA tests and the two two-way ANOVA tests are not
provided here due to space constraints. They can be found publicly elsewhere [3].

Two assumptions about the data when using ANOVA are that samples have a
normal distribution and standard deviations are close enough (i.e. the largest standard
deviation is not greater than twice the smaller one). Figures 2 and 3 show there is no
major skewness in samples. Standard deviations of samples are close enough to each
other: Tables 1 and 2. Obviously, such assumptions are usually not met together in
practice but ANOVA is known to be very robust to departures from these assumptions
[24]. Therefore, we conclude that our data are amenable to the use of ANOVA.

In this section we separately study the effect of different configurations of our
genetic algorithm on cost (Sect. 4.1) and effectiveness at finding faults (Sect. 4.2).
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Fig. 2. Box plot and descriptive statistics comparing costs

Fig. 3. Box plot and descriptive statistics comparing mutation scores

Table 1. Mean and variance of cost values

Hamming Levenshtein Dice
ADW KW SUM ADW KW SUM ADW KW SUM

Average 69.1 56.3 51.1 65.9 59.2 48.3 51.8 47.9 44.9
Variance 108.7 48.2 30.0 91.3 44.2 23.8 29.0 27.4 32.7
SD (r) 10.4 6.9 5.8 9.5 6.6 4.8 5.3 5.2 5.7

Table 2. Mean and variance of mutation scores

Hamming Levenshtein Dice
ADW KW SUM ADW KW SUM ADW KW SUM

Average 98.65 98.31 97.90 98.95 98.24 97.84 98 98.15 97.77
Variance 1.34 1.31 2.96 1.83 2.51 2.57 2.47 2.93 2.16
SD (r) 1.16 1.14 1.72 1.35 1.58 1.60 1.57 1.71 1.47
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4.1 Effect on Cost

Results of the experiment with nine different configurations of our genetic algorithm
are presented in Table 1. As mentioned earlier these nine different flavours are results
of using different pair-wise similarity measures and aggregation methods. Each column
of the table represents one configuration and its effect on cost in terms of average,
variance and standard deviation of 20 test suites. Figure 2 presents the same result in
the form of box plots representing the distribution of cost values for each implemen-
tation of our genetic algorithm.

When comparing different samples of data (i.e. the 20 test suites collected for each
method) in terms of cost, the null hypothesis was rejected in all the six one-way
ANOVA tests. This means, there is a relation between cost of test suites generated by
our genetic algorithm and the method used to compute diversity/similarity within test
suites (Dice vs. Hamming vs. Levenshtein), regardless of the method to aggregate
pair-wise comparisons for computing diversity for an entire test suite (ADW, KW,
SUM).

We also observed that among the three different measures we used to compute
pair-wise similarities/dissimilarities, the Dice measure resulted in test suites of lowest
cost on average (i.e. average cost of test suites was lower than the two other measures)
regardless of the method used to compute diversity/similarity within test suites. This is
in accordance with what Hemmati et al. have reported [20].

When comparing average cost of test suites based on the method used to compute
diversity/similarity within test suites, summing up all the pair-wise similarities had the
lowest cost value regardless of the method used to compute pair-wise similarity/
dissimilarity. This means that the way methods from life sciences promote diversity
within test suites results in test suites of higher cost.

If we study effect size, which depicts the strength of a treatment effect and is
independent of sample size, we come up with the following conclusions. We used the
Omega test, depicted as x2, which is an unbiased measure of effect size [14]. In
general, Omega is considered as a more accurate measure of the effect size compared to
other measures like Cohen’s d measure. x2 ¼ :01 depicts a small effect and x2 ¼
:06 and .14 depict medium and large effects respectively [14]. The following are effect
sizes for the different ANOVA tests we performed to investigate effect of size:

• Independent variable: pair-wise measure, test suite diversity: ADW ! x2 ¼ 0:41
• Independent variable: pair-wise measure, test suite diversity: KW ! x2 ¼ 0:35
• Independent variable: pair-wise measure, test suite diversity: SUM ! x2 ¼ 0:16
• Independent variable: test suite diversity, pair-wise measure: Dice ! x2 ¼ 0:20
• Independent variable: test suite diversity, pair-wise measure: Hamming ! x2 ¼ 0:48
• Independent variable: test suite diversity, pair-wise measure: Levenshtein !

x2 ¼ 0:49
• Two-way ANOVA: x2 ¼ 0:30

All the values are greater than 0.14 which means the similarity measurement
method has a considerable effect on the cost of test suites.
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4.2 Effect on Mutation Score

Similar to the previous section, we have summarized the results of the experiment in
Table 2 and Fig. 3. With mutation score as the factor under study the results of
one-way ANOVA tests were different. In all the six different scenarios (i.e. three
different pair-wise similarity/dissimilarity measures and three different methods to
compute similarity/diversity within whole test suites) we were not able to reject the null
hypothesis.

The average mutation scores are very close to each other. In other words changing
the method of computing diversity/similarity does not change mutation score signifi-
cantly. Considering the fact that all the test suites selected for our statistical analysis
were adequate test suites this was perhaps to be expected: i.e., covering all transitions,
all other things being equal, may be enough in the Cruise Control case study to kill a
similar number of mutants. In terms of effect size, using the Omega test (see previous
section) we observe the following:

• Independent variable: pair-wise measure, test suite diversity: ADW ! x2 ¼ 0:04
• Independent variable: pair-wise measure, test suite diversity: KW ! x2 ¼ 0:01
• Independent variable: pair-wise measure, test suite diversity: SUM ! x2 ¼ 0:03
• Independent variable: test suite diversity, pair-wise measure: Dice ! x2 ¼ 0:05
• Independent variable: test suite diversity, pair-wise measure: Hamming ! x2 ¼ 0:02
• Independent variable: test suite diversity, pair-wise measure: Levenshtein !

x2 ¼ 0:05
• Two-way ANOVA: x2 ¼ 0:01

All of the values above are less than 0.06, which means there is a small effect size.
Therefore, we can conclude that changing the method of computing similarity does not
have a statistically nor a practically significant effect on mutation score. This is a
different observation than that of Hemmati et al. [20].

4.3 Qualitative Analysis of Results

As mentioned earlier, Dice, as a pair-wise similarity measure resulted in test suites of
lower costs compared to other measures. Also, we observed summing up pair-wise
similarities is simply the best way of aggregating those pair-wise measures into a single
value representing the diversity of a test suite. As Fig. 4 suggests, in addition to those
two observations there is a trend among different methods of computing similarity
within test suites. As we move from Hamming to Levenshtein and then Dice there is an
overall monolithic decrease in cost of test suites with the exception of KW. Consid-
ering the fact that the KW measure uses a maximum distance to match pairs, and that
longer tests (and therefore more expensive ones) have more chances to be matched, this
is not entirely surprising. Both the Dice measure and the Hamming distance (as
implemented in this work) are set-based measures while the Levenshtein distance is a
sequence-based measure. Therefore, the Levenshtein typically results in longer
sequences of transitions (test paths) to maximize KW distance, which increases cost of
generated test suites.
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In mutation analysis there were mutants that none of the test suites could kill. This
could be due to the fact that we used transition coverage, and mutation operators (like
Literal Value Replacement) that do not change the sequence of transitions triggered by
a test case could not be killed by any of the test suites. This is the reason that all the
mutation scores are high. As mentioned there is not much variation in mutation scores
and we hypothesize that this may be due to the characteristics of the case study (FSM
and source code) whereby all the test suites we used were adequate and were as
effective as each other at detecting faults. Another reason could be our use of very
detailed oracles.

To conclude, as changing the method of computing diversity does not have a
significant effect on the mutation score, the method which results in test suites of lower
cost is a better one in terms of cost and effectiveness. Therefore, the Dice measure is the
best measure to compute pair-wise similarities/dissimilarities in terms of cost and
effectiveness. Regarding the method of computing diversity within test suites, summing
up all the pair-wise values had better results than the two methods from life sciences
(ADW, KW) regarding cost and effectiveness.

5 Threats to Validity

Like any empirical evaluation, our work is subject to threats to validity.
Regarding threats to conclusion validity, which is about empirical work that leads

someone to reach an incorrect conclusion about a relationship in one’s observations,
there are two points to consider. The first threat is due to the stochastic nature of genetic
algorithms. To avoid this threat we executed each different version of our
multi-objective genetic algorithm 100 times before starting the statistical analysis. As
mentioned earlier, we sampled the set of 100 results and each sample had 20 Pareto
front solutions in it. Also to be fair in our comparisons, from each Pareto front we
selected the adequate test suites with the lowest cost. This means we picked the best
solution in terms of cost and coverage for all different flavours of our genetic algorithm.

The second threat can be the size of the case study. Although the case study
represents a typical case where a state machine is used to model behaviour, it is
admittedly modest in size. However, behaviour of a similar size and complexity is
usually modeled using state machines in UML-based development [12, 17] and in
industrial case studies reported in the literature [10, 13, 21]. Additionally, it is very
uncommon in practice to model subsystems or entire systems using state machines, as
this is far too complex in realistic cases; one rather typically models communicating
state machines and each separate communicating state machine is simple; there is one
exception though, when one abstracts out from low level behavioural details of a (sub-)
system in order to simplify the (E)FSM, in which case the state model used for testing
purposes is (much) simpler than the actual implemented state-based behaviour. This is
the case in our Cruise Control case study: the FSM does not model (abstraction) how
the car speed evolves (up and down) as the driver (events triggering transitions in the
FSM) breaks or presses on the gas pedal.

Construct validity relates to test measures and whether they are actually measuring
what they are supposed to. We tried to minimize construct threats by the way we
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designed our experiment. We ran our GA 100 times and used ANOVA to perform
statistical analysis. As mentioned earlier our data seem to satisfy ANOVA assumptions
and ANOVA has proved to be quite robust to deviations from these assumptions.

A threat to internal validity of our experiment is the fact that we used mutation
score as a surrogate measure of effectiveness at detecting faults, and that we use the
cumulative number of transitions as a surrogate measure of test suite cost. As a test
suite’s mutation score has proved to be correlated with its real fault detection rate [1, 2,
27] the probability that this threat affects the validity of our results should not be
significant. A complementary study whereby state-based faults are simulated would
nevertheless be interesting. Although test cost can include test set up, execution time
and many other aspects, our measure is one typically used in the field. Another possible
threat to internal validity is our use of precise oracles: we checked states but also other
variable values, we checked after each transition and not only at the end of tests; this
could explain why mutations scores are similar and factors/treatments are not
discriminating.

Regarding external validity, which can limit the extent to which results of our
experiments can be applied to similar situations, we need to consider the fact we per-
formed our experiment in the context of our multi-objective genetic algorithm. Someone
studying the relation between diversity and cost and fault detection in the context of
another test generation approach may get different results. We tried to minimize this
threat by using the Cruise Control FSM in which all the paths are feasible so that
feasibility (one of the four fitness functions of our multi-objective genetic algorithm)
didn’t affect results of our experiment. The fact that we use only one case study, and that
this case study may only be representative of a certain kind of a larger set of software
systems, is also a threat to external validity, which limits our capability to generalize.

6 Conclusion

In this paper we investigated the effect of using different methods of computing
diversity in a test suite made of several test cases. We specifically focussed on test
suites that are constructed by our multi-objective genetic algorithm [3–6], which, while

Fig. 4. Relation between cost of test suites (y-axis) and method used to compute similarity
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maximizing test suite diversity (i.e., reducing similarity between its test cases), attempts
to also reach adequacy (all-transitions criterion), to maximize test case feasibility (i.e.,
capability to find inputs that can make test cases executable), and to reduce test suite
cost.

When computing the diversity of a test suite we relied on a mechanism to compare
test cases in the test suite in a pair-wise manner and a mechanism to aggregate
pair-wise comparisons to obtain a measure of test suite diversity. We considered three
pair-wise comparison measures of tests that have been used by others: Dice, Hamming,
Levenshtein. We used two methods from the life sciences to aggregate pair-wise
values: Kosman’s diversity and the average dissimilarity within population; and added
one measure (sum of pair-wise comparisons) that others in software testing have used.
We experimented with nine possible ways to compute test suite diversity, embedded in
our multi-objective genetic algorithm, on one case study, and compared cost (cumu-
lative number of transitions in a test suite) and effectiveness at finding faults (in fact
mutants) of generated test suites. We used analysis of variance (ANOVA) to analyze
the results.

We observed that changing the similarity computation method, either the pair-wise
comparison or the aggregation mechanism, affects the cost of generated test suites
without having a major effect on their fault detection rate. Among the nine possible
combinations, our algorithm produces the best results in terms of cost and effectiveness
at finding faults when we use the Dice measure to perform pair-wise comparisons of
test cases in a test suite and we sum up pair-wise comparisons to obtain a measure of
test suite diversity. These results partially conform to what others have observed before
us [20] (Hemmati et al. use Dice and SUM), though not in the context of creating an
entire test suite with an optimization procedure: our results confirm their results for cost
but not for effectiveness at finding faults.

These results must be taken with care since our study should first be replicated on
other case study systems, of varying size of complexity (as perceived from the state
model as well as source code) to address threats to validity. That would additionally
allow us to better understand the scalability of our multi-objective genetic algorithm
solution: the multi-objective algorithm returns a Pareto front, that is a set of test suites
out of which one should typically be selected. Also, we believe it would be interesting
to study these alternative ways of measuring diversity with other test suite construction
solutions (multi-objective or single-objective) than ours; do these measures have a
similar (or different) effect when used with other test suite construction techniques?

Nevertheless, and we believe more importantly, we argue these results are to some
extent counter-intuitive. Specifically, it is counter-intuitive (at least to us) that summing
up pair-wise comparisons of test cases is a measure of test suite diversity. Specifically,
in light of the large body of knowledge of diversity measurement in the life sciences,
our results are surprising; it is not clear how summing up pair-wise comparisons of test
cases does actually measure diversity. Is this a matter of measurement threat? Are we
measuring the right things? The fact that the Dice pair-wise comparison is good in this
context is also counter-intuitive, and this also relates to the notion of diversity. The
Dice measure is a set-based measure; When using it on two state-based test cases
(pair-wise comparison), which are transition paths in the FSM, the order of transitions
and their repetitions are lost in the computation of diversity. On the other hand, our

212 N. Asoudeh and Y. Labiche



intuition is that the sequence of transitions in a state model does matter from a testing
point of view. It does matter at least from a modeling point of view and this was the
initial reason for modeling the behaviour as an FSM. In other words, the notion of state,
the notion of history is lost in the computation of diversity. Empirical results show that
pairs of consecutive transitions, round trip paths, specific pairs of states and transitions
do matter in terms of fault detection [9–11, 20, 22, 29, 30, 36]. Yet, in our experiments
and others where diversity is studied [20], this information is lost while some relation
between the measured notion of diversity and fault detection is observed. In other
words, we have empirical work that shows transition and state sequences matter for
fault detection and at the same time this does not matter when computing diversity
which we assume is good for fault detection. Is our measure of diversity on par with
our intuition of what diversity is?

We therefore believe much more work is warranted to try to explain how measures
of test suite diversity actually relate to our intuitive idea/notion of test suite diversity.
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Johannes Härtel, Marcel Heinz, and Ralf Lämmel(B)
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Abstract. Mining software repositories is a common activity in software
engineering with diverse use cases such as understanding project quality,
technology usage, and developer profiles. Such mining activities involve,
more often than not, a phase for data extraction from the source code in
the repository with recurring tasks such as processing the folder structure
(possibly on the timeline), classifying repository artifacts (e.g., in terms
of the languages or technologies used), and extracting facts from the
artifacts by parsing or otherwise. We describe a new approach for such
data extraction; its key pillar is a declarative rule-based language for the
uniform, inference-based extraction of facts from the repository (the file
system), the artifacts in the repository (their content), and previously
extracted facts. All inferred facts are maintained in a triple store. We
describe a case study for the purpose of understanding the usage of
EMF. To this end, we describe an emerging catalog of patterns of using
EMF in repositories and we detect these patterns on GitHub. In our
implementation, we use Apache Jena for which we provide dedicated
language support tailored towards mining software repositories.

1 Introduction

Our long-term research objective is to apply megamodeling [4,5] to the problem
of documenting software-technology usage in software projects. In our previ-
ous work [9,14,17,19,29], we focused on case studies, basic aspects of language
support for such megamodeling, some forms of verification of a megamodel to
correspond to a proper system abstraction, the axiomatization of the involved
megamodeling expressiveness, the methodology for discovering megamodels, and
surveying related concepts in the literature. We also use the term (models of)
‘linguistic architecture’ for such megamodels.

In this paper, we apply a mining- (or reverse engineering-) oriented view on
documenting (or modeling) usage of technologies. We aim at extracting (infer-
ring) facts uniformly from a software repository such that these facts classify
artifacts in the repository and describe relationships, for example, related to
dependencies, conformance, and correspondence. In particular, we aim at detect-
ing patterns of technology usage. This problem is somewhat similar to design-
pattern detection [24,25,34] and architecture recovery [2,16,18,27].
c© Springer International Publishing AG, part of Springer Nature 2018
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In the case study of this paper, we are concerned with EMF. We aim to
better understand how EMF is used ‘in the wild’ in GitHub projects. To this
end, we also describe an emerging catalog of patterns for EMF. There are, for
example, patterns dealing with the more or less consistent and complete presence
of interrelated artifacts: metamodel versus derived Java code versus generator
model. In this paper, we do not study the evolution history of projects [40].

Our approach is original in that we use a declarative rule-based language
for the uniform, inference-based extraction of facts from the repository (the
folder structure), the artifacts in the repository (their content), and previously
extracted facts. All inferred facts are maintained in a triple store. To give the
reader an idea, consider the following trivial rule drawn from the case study:

1 (?x sl:manifestsAs sl:File) (?x sl:elementOf sl:XML) Extension(?x,”ecore”) →
2 (?x sl:elementOf sl:Ecore).

Listing 1. Sample rule classifying Ecore files.

The body of the rule (i.e., the condition left to ‘→’) quantifies over artifacts ?x
that are files with extension ‘ecore’ and readily known to be of ‘type’ (language)
XML. For each such artifact, the head of the rule (right to ‘→’) states that
the artifact is also of ‘type’ (language) ‘Ecore’. Thus, the rule infers triples for
artifacts to be classified as metamodels.

Our rule-based approach is declarative and modular, when compared to the
common use of problem-specific custom functionality for processing folder struc-
ture and file content (e.g., [9,21]). Our approach leverages an extensible suite of
accessor primitives for interacting with standardized formats and structures such
as Java, XML, and the file system (the folder structure) in a uniform manner.
The rule-based approach helps in manifesting only the facts that are actually
needed, as opposed to operating on complete ASTs or similar structures (as in,
e.g., [1,34,35,39]); it is up to the rules and the accessor primitives to selectively
extract and infer more facts. Such inference is similar to the event-condition-
action paradigm [10].

Summary of the Paper’s Contributions

– We develop a rule-based approach for uniform, inference-based data extrac-
tion from source-code repositories. While we leverage existing techniques
known in the semantic web context and as specifically supported by Apache
Jena, we provide dedicated language support on top of—tailored towards
mining software repositories.

– We initiate work towards a structured catalog of EMF repository patterns.
Each pattern captures a particular situation in a repository such as the pres-
ence of a certain kind of artifact and a potential or definite symptom of
incompleteness or inconsistency (e.g., a missing or an unsynchronized arti-
fact). This catalog calls for future work.

– We design and execute a case study for mining instances of EMF repository
patterns in projects on GitHub. In this large-scale case study, we examine
5759 repositories. In this paper, we limit ourselves to only studying the most
recent version of each project, leaving an evolutionary analysis to future work.
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Roadmap of the Paper. Section 2 develops the rule-based approach for data
extraction in mining software repositories. Section 3 develops the catalog of EMF
repository patterns. Section 4 describes the design of the case study for EMF
and the results. Section 5 discusses threats to validity. Section 6 discusses related
work. Section 7 concludes the paper. The rules and the dataset for the case study
and the implementation of the rule-based language are available online1.

2 Rule-Based Data Extraction from Repositories

In our approach, the result of data extraction is a ‘model’—a set of triples as
inferred by the successful application of rules. A rule is of the form ‘body → head .’
where body is the condition part and head corresponds to the inferred triples.
That is, a rule matches the body against the current set of triples and for each
resulting match, the head adds new triples to the model. Inference is a monotone
process of inferring triples until a fixed point is reached, i.e., no more successful
rule applications for new triples are applicable. The rules may use ‘primitives’, as
discussed below, to access the repository (the folder structure and the content of
files). The rule-based approach provides full control over materializing just the
‘repository content of interest’ in the model. In this section, we may occasionally
use rules from the case study for illustrative purposes.

2.1 The Triple Model

Fact extraction infers triples or, in fact, labeled edges of a model (a graph).
Nodes are URIs (Unified Resource Identifiers) or literals (such as strings). Each
triple consists of a subject node (a URI), a predicate (a URI) and an object node
(a URI or literal) where the predicate can be viewed as the edge label. In the
earlier rule in Listing 1, we use sl:File as an object for classifying a repository
artifact ?x in the subject position with sl:manifestsAs as the predicate for the
form of classification needed, i.e., an artifact to manifest as, for example, a folder
or file. sl (for ‘software language’) represents a custom prefix.

Fact extraction starts from a graph with the following triple:

1 repository:/ sl:manifestsAs sl:Folder.

Listing 2. The initial model containing one triple.

The subject URI repository:/ is special in that it refers to the root of the
actual repository folder. Inference discovers folders and files and content thereof,
as we discuss below.

2.2 A Scheme for Referencing Repository Content

Figure 1 illustrates the straightforward scheme that we assume for referring to
repository content. This is the foundation for treating folders, files, and con-
tent particles (fragments of content) for files of different languages in a uniform
1 https://github.com/softlang/qegal.

https://github.com/softlang/qegal
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Fig. 1. URIs for referring to repository content for a small sample project containing
an ANT and a Java file.

manner. Whether or not all the conceivable nodes are materialized in the model
depends on the fact extractor, i.e., on the design of the rules. Typically, we mate-
rialize the catalog of the file system completely, but we materialize file content
selectively, as we will discuss in more detail in a second.

2.3 Repository Accessors

The rule-based approach relies on primitives for accessing the repository (folder
structure and content of files). In particular, the body of a rule may use such
primitives to match or bind repository data such as file names and file content
in terms of different representations (e.g., ASTs). Primitives may be also used
in heads of rules for the purpose of data manipulation or for expanding given
bindings into sets of inferred triples.

The primitives needed in the case study are shown in Table 1 with some
omissions for brevity. The primitives are free of side effects to the repository. A
primitive takes one or more arguments. Each argument is either a URI, a literal,
or a placeholder to be bound. The application of a primitive may fail, if the given
arguments are not in the corresponding relationship or placeholders cannot be
bound to valid results.

2.4 Materialization of the Folder Structure

The following rule is the starting point for decomposing the repository folder:

1 (?x, sl:manifestsAs, sl:Folder) → DecFs(?x, ”/∗”, sl:partOf, ?x).

Listing 3. Recursive folder decomposition into parts.

For the initial model (Listing 2), the placeholder ?x in the body of
the rule in Listing 3 is matched with repository:/. The head uses the
DecFs(folder, subj, pred, obj) primitive, as described in Table 1, to
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Table 1. Primitives for accessing folder structure (in general) and file content for XML
and Java (in the case study).

Primitive Parameters and Description

IsFile (artifact) Matches if the artifact URI can be accessed as a
file

IsFolder (artifact) Matches if the artifact URI can be accessed as a
folder

Extension (file, extension) Matches if the file URI has a given
extension. (When extension is a placeholder, it will be bound.)

XmlWellformed (file) Parses the content referred to by the file URI and
matches if the content is well-formed XML

Children (uri, part1,. . . ,partn) Decompose a uri into its parts split at
‘/’; parts filled in are matched; variable parts are bound

DecFs (folder, xpath, result) Decompose references to file system
by applying an XPath expression xpath on the repository
starting from the given folder; assigns the URI of the first
result to result

DecFs (folder, subj, pred, obj) A variation on the previous
primitive. It infers a set of triples, when used in the head of a
rule. The inferred triples vary in the subject based on the
argument subj which corresponds to the XPath expression in
the basic form of DecFs. The arguments pred and obj are
assigned to regular URIs. For instance,
DecFs(repository:/,"/*",sl:partOf, repository:/) adds a
sl:partOf triple for all first-level repository children (XPath
‘/*’ for subject) of the repository (for the object)

DecJava,DecXml Variations on DecFs working on Java ASTs or XML trees as
opposed to the file system

StrXml, StrJava,
UriXml, UriJava

Variations on the decomposition primitives for use in rule
bodies, as described above. These variations perform data
lookup as opposed to constructing a reference. The Str...

primitives look up a string (e.g., an attribute in XML) and
return it as a result. Likewise, the Uri... primitives look up a
string which is a URI

decompose file paths, to compose subject URIs, and to infer triples with the
sl:partOf predicate and ?x as the object. Listing 4 presents the resulting triples.

1 repository:/ sl:manifestsAs sl:Folder. // Initial repository root classification.
2 repository:/src/ sl:partOf repository:/. // src is part of the repository.
3 repository:/build.xml sl:partOf repository:/. // build.xml is part of the repository.

Listing 4. Evolved model after applying the rule for folder decomposition.

We should enable the recursive application of the previous rule. To this end,
we need to infer triples with the manifestation types sl:Folder and sl:File
of discovered artifacts. The following rules match all (newly added) sl:partOf
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triples, check whether the part is a folder or a file (using the corresponding
primitives), and, if so, add suitable triples with the sl:manifestsAs predicate.

1 (?x, sl:partOf, ?parent) (?parent, sl:manifestsAs, sl:Folder) IsFolder(?x) →
2 (?x, sl:manifestsAs, sl:Folder). // Classifies folders.
3 (?x, sl:partOf, ?parent) (?parent, sl:manifestsAs, sl:Folder) IsFile(?x) →
4 (?x, sl:manifestsAs, sl:File). // Classifies files.

Listing 5. Classifying files and folders.

We would like to classify files by languages, as this is a prerequisite for diving
deeper into the content, e.g., at the level of parse trees or ASTs. The following
rules classify files by a language adding an sl:elementOf relationship between
the file and the language at hand. We use (?x sl:manifestsAs sl:File)
to select potential candidates ?x. Listing 6 illustrates the rules for language
classification.

1 (?x sl:manifestsAs sl:File) Extension(?x,”java”) → (?x sl:elementOf sl:Java).
2 (?x sl:manifestsAs sl:File) XmlWellformed(?x) → (?x sl:elementOf sl:XML).
3 (?x sl:manifestsAs sl:File) (?x sl:elementOf sl:XML) Extension(?x,”ecore”) →
4 (?x sl:elementOf sl:Ecore).
5 (?x, sl:manifestsAs, sl:File) Children(?x, , ”META−INF”, ”MANIFEST.MF”) →
6 (?x, sl:elementOf, sl:Manifest).
7 (?x, sl:manifestsAs, sl:File) (?x, sl:elementOf, sl:XML) Children(?x, , ”build.xml”) →
8 (?x, sl:elementOf, sl:Ant).
9 (?x, sl:manifestsAs, sl:File) Children(?x, ,”build.gradle”) →

10 (?x, sl:elementOf, sl:Gradle).
11 (?x, sl:manifestsAs, sl:File) (?x, sl:elementOf, sl:XML) Children(?x, , ”pom.xml”) →
12 (?x, sl:elementOf, sl:Pom).

Listing 6. Rules for basic language classification.

2.5 Pluggable Primitives

In our implementation, we rely on the extensibility of the rule engine. That is,
Apache Jena allows us to plug Java code for new primitives into the engine. In
the common semantic web-like use case, primitives are used for basic string or
data manipulation. In our mining context, primitives correspond to significant
functionality involving repository access, parsing, and more complex analyses.
Consider the following implementation of the Extension primitive:

1 public class Extension extends QegalBuiltin {
2 @Override
3 public boolean trackedBodyCall(Node[] args, int length, RuleContext context) {
4 BindingEnvironment env = context.getEnv();
5 String file = getArg(0, args, context).getURI();
6 Node extension = getArg(1, args, context);
7 return env.bind(extension, NodeFactory.createLiteral(iolayer.extension(file)));
8 }
9 }

Listing 7. Implementation of the extension builtin.
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This primitive for extension matching or extraction would be typically
used in the body of a rule and thus, we need to implement a method
trackedBodyCall which receives the bound or free arguments args and returns
true if the primitive completes successfully, i.e., matching or binding succeeds.
Extension(file, extension) takes two arguments: the file argument which
must be given and the extension argument which is matched if present or
bound if it is a placeholder. That is, the method env.bind(current, expected)
returns true if the current and expected assignments match or, in the case that
current is an open placeholder, it binds it to the expected value and returns
true. For brevity, we omit the discussion of implementing primitives for head
usage.

2.6 Dedicated Language Support

Our implementation leverages the Apache Jena2 implementation for rule-based
inference and triple processing. Our experience with the rule-based approach in
case studies such as the one of Sect. 4 led us to advance the Jena approach by
adding language support addressing the complexities of mining software repos-
itories. In addition to the specific primitives needed, as discussed earlier, there
are these aspects:

Fig. 2. IDE support for working with rules and primitives.

IDE support. Based on XText, [3]3 provide editing, syntax highlighting, auto-
completion, code navigation, and other IDE support (see Fig. 2 for an illus-
tration) also subject to JVM integration for the pluggable primitives of the
rule-based language;

2 https://jena.apache.org/.
3 http://www.eclipse.org/Xtext/.

https://jena.apache.org/
http://www.eclipse.org/Xtext/
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Logging and profiling. Log the execution of primitives with appropriate con-
text and runtimes to enable debugging of the rule-based system and to check
for performance hogs, thereby guiding optimization of primitives and rule set;

Exception handling. Recover from and log exceptions thrown by accessor
primitives to enable completion of repository processing and post-mortem
analysis, subject to a dedicated interface for primitives and housekeeping;

Virtualized access. Be able to switch between actual file-system-based access
to artifacts (development mode) and immediate repository access without
manifestation on the local file system (production mode);

Testing. Use a combination of parametrized and instance-based tests on white-
and blacklisted repositories and the derived models, also using redundant
repository processing (e.g., based on grep) to obtain reasonable baselines.

3 Towards an EMF Repository Pattern Catalog

EMF can be used in different ways in projects, subject to the presence of dif-
ferent types of artifacts, possibly with different multiplicities and in different
combinations. In this paper, we begin work towards a catalog for EMF which
covers these basic ‘artifact’ types: Ecore Package, as identified in ‘.ecore’ files
where one such file can possibly define several such packages; Java Package –
an actual Java package containing derived classes according to a metamodel,
a factory, and a package description; and Generator Package as identified in
‘.genmodel’ files.

Artifacts of these types can be related in certain ways in a project. In fact,
by checking on certain relationships, e.g., by determining the absence of certain
artifacts or elements thereof, we may infer cases of incompleteness or inconsis-
tency, where these are either potential or definite problems of usage or, in fact,
of maintaining EMF usage in the repository. Table 2 lists patterns organized
along these different dimensions (artifact type, presence, incompleteness, incon-
sistency, potential versus definite). We group by cardinalities of artifacts: single,
double, and triple artifact patterns. For brevity, we exclude patterns related to
XMI-based persistence in this paper. Generally, further work is needed to arrive
at a more comprehensive catalog for EMF.

4 An MSR Case Study on EMF

We located projects with traces of EMF usage on GitHub. We assessed these
projects in terms of some basic architectural characteristics to prepare a selection
of well-understood project layouts for which a mining process is assumed to
provide more comprehensible insights. Eventually, we detected EMF repository
patterns as introduced in Sect. 3. We describe these phases here and summarize
our findings.
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Table 2. An EMF repository pattern catalog (some of the corresponding detection
rules are discussed in Sect. 4. All of the rules are available online.)

Id Cls. Artifacts Description and cause

Single artifact patterns

E Pres - Ecore Pkg. The presence of an Ecore Pkg. in ‘.ecore’ files as
root or subpackage

J Pres - Java Pkg. The presence of a Java Pkg.

G Pres - Genmodel
Pkg.

The presence of a Genmodel Pkg. in ‘.genmodel’
files as root or subpackage

C Pres - Customized
Java Pkg.

The presence of a Java Pkg. with customized
interface or implementation

Double artifact patterns

EJ1 Pot. Incomp. - Ecore Pkg.
- Java
Pkg.(ma)

A Java Pkg. cannot be found for a given nsURI
as extracted from some Ecore Pkg. This is only
a potential incompleteness, because a Java Pkg.
could be potentially derived, if no customization
is intended

EJ2 Def. Incomp - Ecore Pkg.
(m)
- Java Pkg.

An Ecore Pkg. cannot be found for a given
nsURI as extracted from some Java Pkg. This is
a definite because the Java Pkg. is derived and
thus, the underlying primary artifact (the Ecore
Pkg.) should also be in the repository

EJ3 Pres - Ecore Pkg.
- Java Pkg.

The presence of a Java Pkg. and Ecore Pkg.
with the same nsURI. One Ecore Pkg. can
correspond to many Java Packages.

EE Def. Incons - Ecore Pkg.
- Ecore Pkg.

An Ecore Pkg. with at least one competing Pkg.
with the same nsURI

EJc1 Def. Incons. - Ecore Pkg.
- Java Pkg.

A Java class that is part of the Java Pkg. with a
corresponding Ecore Pkg., but without a
corresponding Ecore classifier (based on name
comparison). For instance, one may have
forgotten to remove a Java class derived from an
earlier version of the metamodel

EJc2 Def. Incons. - Ecore Pkg.
- Java Pkg.

An Ecore classifier contained in an Ecore Pkg.
with a corresponding Java Pkg., but without a
corresponding Java classifier (based on name
comparison). The Java Pkg. is thus out of sync
with the Ecore Pkg. in the repository

Triple artifact patterns

EJJ Pres. - Ecore Pkg.
- Java Pkg.
- Java Pkg.

An Ecore Pkg. with at least two corresponding
Java Packages

EJG Pot. Incomp - Ecore Pkg.
- Java Pkg.
- Generator
Pkg. (m)

For a corresponding pair of Java Pkg. and Ecore
Pkg., a corresponding Generator Pkg. cannot be
found
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4.1 Locating Repositories

We used the GitHub search API to locate all recently indexed Ecore, Genera-
tor Model and Java Model files on GitHub as an indication of EMF usage in
repositories. The corresponding queries are listed in Table 3.

Table 3. Queries for locating repositories through GitHub API.

Evidence Query Extension

Java model “extends EObject {” java

Ecore model GenModel ecore

Generator model EClass genmodel

(For what it matters, the API search limit is circumvented by recursive
query segmentation which splits a query by setting an upper and lower bound
in file size based on the returned number of total results. This process may miss
some results.) The search API only considers heads of default branches and files
smaller than 384 KB. A list of 5759 GitHub repositories was extracted from the
query results.

4.2 Selection of Repositories

We applied the rule-based mining approach to recover the repository layout in
terms of usage of build systems, project dependencies, and other aspects. We
developed the following classifiers for repositories as an extension of the pattern
catalog of Sect. 3:

Homogeneous versus heterogeneous build system. We search for traces of Mani-
fest, POM, Gradle, and ANT, as modeled by the rules in Listing 6. In the homoge-
neous case, only one such technology is used; otherwise we apply the heterogeneous
classifier. We assume that the heterogeneous situation is harder to understand in
terms of project dependencies.

Single component versus multiple components. Based on an analysis of project
dependencies, as described in more detail below, we determine the number of com-
ponents. We assume that repositories with multiple components are special. Such
a repository may be, for example, a ‘zoo’ [28]. Note that a single component can
still imply the presence of multiple (dependent) projects.

Variants. This classifier applies when we locate different versions of the same project
in a repository based on the analysis of project dependencies. We assume again that
repositories with variants are special. Such a repository may capture, for example,
versions in a migration process.

EMF ’s default is the use of Manifest files for defining OSGi projects
and dependencies. We decided to only include homogeneous repositories using
Manifest files for mining. The analysis of dependencies is based on ‘Bundle-
SymbolicName’ elements in Manifest files. Listing 8 presents the rules for
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inferring the occurrence of declarations (predicate sl:decOccures) and refer-
ences (predicate sl:refOccures) and OSGi dependencies between Manifest files
(predicate sl:dependsOn):

1 // Extraction of Bundle−SymbolicName declaration.
2 (?file, sl:elementOf, sl:Manifest) StrManifest(?file, ”Bundle−SymbolicName”, ?x)
3 ReplaceAllToUri(?x, ”(;[ˆ,]∗)|\\s”, ””, ?declaration) → // Replace all details.
4 (?file, sl:decOccurs, ?declaration).
5 // Extraction of Bundle−SymbolicName references.
6 (?file, sl:elementOf, sl:Manifest) StrManifest(?file, ”Require−Bundle”, ?x)
7 ReplaceAll(?x, ’(”[ˆ”]∗)”’, ””, ?xi) // Replace all strings.
8 ReplaceAll(?xi, ”(;[ˆ,]∗)|\\s”, ””, ?references) → // Replace all details.
9 SplitToUri(?references, ?file, sl:refOccurs, ’,’).

10 // Creating dependency structure
11 (?a, sl:elementOf, sl:Manifest) (?b, sl:elementOf, sl:Manifest)
12 (?a, sl:decOccurs, ?deca) (?a, sl:refOccurs, ?decb) (?b, sl:decOccurs, ?decb) →
13 (?deca, sl:dependsOn, ?decb).

Listing 8. Rules for extracting OSGi declarations, references and dependencies.

The primitive StrManifest(file, property, value) is a specialized
decomposition of a Manifest file, comparable to StrJava in Sect. 2.3; it binds
value to a Manifest property in literal form. In the rules shown above, it binds
?x to the required or defined bundles in string representation. The chains of
ReplaceAllToUri, ReplaceAll and SplitToUri process ?x in that it can be
added to the model as declaration or reference. We exclude repositories with
duplicated declarations (sl:decOccurs) for the same URI (classifier Variants).
We apply an algorithm for detecting connected components to the sl:dependsOn
triples, as inferred by the last rule shown above. We exclude repositories with
multiple components.

The results of the selection steps are depicted in Fig. 3. In what follows, we
only consider repositories with a single component, Manifest usage only, and no
variants. We refer to these repositories as ‘Vanilla EMF repositories’. There are
1438 such projects. These are the projects considered for mining below.

Fig. 3. Number of repositories with a particular build system further partitioned into
homogeneous versus heterogeneous case.
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4.3 Pattern Detection

For brevity, we only discuss here the detection of correspondence between Java
and Ecore models; we show the decomposition of an Ecore model; we omit the
rules for Java model detection in the set of available Java files; we also omit
handling Ecore sub-packages.

Consider the beginning of a small Ecore sample file as follows:

1 <ecore:EPackage ... name=”fsml” nsURI=”http://www.softlang.org/metalib/emf/
Fsml” nsPrefix=”fsml”>

2 <eClassifiers xsi:type=”ecore:EClass” name=”FSM”>
3 ...

Listing 9. The first lines of a sample Ecore file.

The following rules decompose an Ecore model into root package and nested
classifiers:

1 // Decomposition of the Ecore file into ...
2 (?x, sl:elementOf, sl:Ecore) → // ... the root package.
3 DecXml(?x, ”/ecore:EPackage”, sl:partOf,?x)
4 DecXml(?x, ”/ecore:EPackage”, sl:elementOf, sl:EcorePackageXMI).
5 (?x, sl:elementOf, sl:EcorePackageXMI) → // ... the nested classifiers in a package.
6 DecXml(?x, ”/eClassifiers”, sl:partOf, ?x)
7 DecXml(?x, ”/eClassifiers”, sl:elementOf, sl:EcoreClassifierXMI).
8 // Extracting URI and nsURI, necessary for detecting correspondence.
9 (?x, sl:elementOf, sl:EcorePackageXMI) →

10 UriXml(?x, ?x, sl:nsUri, ”/@nsURI”). // NsUri for a package as URI.
11 (?classifier, sl:elementOf, sl:EcoreClassifierXMI)
12 (?classifier, sl:partOf, ?package) (?package, sl:nsUri, ?nsUri) // Get package’s

nsURI.
13 StrXml(?classifier, ”/@name”, ?classifierName) // Get the classifier’s name as

string.
14 UriConcat(?nsUri, ’#//’, ?classifierName, ?uri) → // Build a compound ?uri.
15 (?classifier, sl:uri, ?uri). // Uri for a classifier, i.e., nsURI with appended name.

Listing 10. Decomposing Ecore into classifiers appending a nsURI.

That is, a sl:partOf relationship is inserted along the nesting structure and
fragments are classified by sl:EcorePackageXMI and sl:EcoreClassifierXMI
respectively. This decomposition is handled by the first two rules using the
DecXml to construct URIs in the repository referencing scheme. In contrast,
the last two rules extract the attributes ‘nsURI’ and ‘name’ using UriXml and
StrXml. The primitives return the recovered content directly as string or URI,
as we need the actual attribute values ‘FSM’ (name) and ‘http://www.softlang.
org/metalib/emf/Fsml’ (nsURI).

http://www.softlang.org/metalib/emf/Fsml
http://www.softlang.org/metalib/emf/Fsml


228 J. Härtel et al.

The following rules establish the correspondence between the elements of
sl:EcorePackageXMI and sl:EcorePackageJava by matching the nsURI.

1 // Correspondence between XMI and Java Packages.
2 (?xmi, sl:elementOf, sl:EcorePackageXMI) (?java, sl:elementOf, sl:EcorePackageJava)
3 (?xmi, sl:nsUri, ?nsUri) (?java, sl:nsUri, ?nsUri) →
4 (?xmi, sl:correspondsTo, ?java).
5 // Correspondence between XMI and Java Classifiers.
6 (?xmiClassifier, sl:uri, ?uri) (?javaClassifier, sl:uri, ?uri)
7 (?xmiClassifier, sl:elementOf, sl:EcoreClassifierXMI)
8 (?javaClassifier, sl:elementOf, sl:EcoreClassifierJava) →
9 (?xmiClassifier, sl:correspondsTo, ?javaClassifier).

Listing 11. Rules recovering the correspondence.

The Java model extraction underlying the latter classification is based on
accessing the nsURI property in the Java AST by a similar primitive UriJava
(not shown here). Corresponding classifiers are aligned by comparing the nsURI
concatenated with the classifier name.

Fig. 4. Overall pattern sum
and the number of repositories
a pattern occurs in.

E J G EJ1 EJ2 EJ3 EE EJc2 EJJ
Sum 4427 2217 2181 1894 96 2598 1376 496 45
Repo 1389 1152 1294 404 43 1127 157 223 18
mean 3.1 1.5 1.5 1.3 0.1 1.8 1.0 0.3 0.0
std 9.8 3.2 2.2 6.2 0.5 7.3 8.3 1.6 0.5
25% 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
50% 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0
75% 2.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0
max 261 71 28 103 10 248 251 26 16
cv 3.2 2.1 1.5 4.7 8.2 4.0 8.6 4.5 15.2

Fig. 5. The distribution of detecting a pat-
tern in the repositories (where the minimum
is always 0.0). Row ‘cv’ lists the coefficient of
variation.

4.4 Results

The results of the case study applied on 1438 Vanilla EMF repositories are shown
in Figs. 4, 5 and 6. The discussion is not comprehensive. Overall, the online cor-
pus features additional results. At the most basic level, we show numbers of
repositories per pattern and numbers of pattern instances (Fig. 4). The median
pattern occurrence of Ecore (E), Java (J) and Genmodel (G) packages and the
regular correspondence (EJ3) in a repository is 1 (Fig. 5). This indicates that
common usage is concerned with only one package. The coefficient of variation for
measuring the relative variability ‘cv’ is the highest for EJ2, EE and EJJ — the
first two patterns indicate problems; the latter pattern represents a very rare case
(1% of the Vanilla repositories). We expect corner cases and problems to have
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Fig. 6. Different repository and mining characteristics shown with respect to the
amount of files in a repository. The right column shows how often different types
of patterns occur for some histogram buckets and for the different characteristics.

high variations in pattern occurrence. Having no package correspondence (EJ1)
or a regular package correspondence (EJ3) can both be considered as common
usage. Forgetting to remove Java classifiers (EJc2) can also be considered a com-
mon usage despite being a definite inconsistency. On the contrary, we detected
no repository missing a Java classifier for an Ecore classifier (EJc1). In Fig. 6,
we examine the projects on scales for different characteristics (forks, stars, and
mining time) to see how the size of projects relates to these characteristics and
also how the relative frequency of pattern-based problems or the absence thereof
relates to these characteristics. For instance, we can observe (right-bottom and
right-middle charts in Fig. 6) that definite incompleteness and inconsistency is
of much less or no concern with increasingly more forked or stared repositories.

5 Threats to Validity

The initialization and filtering of the repository list towards ‘Vanilla EMF’ can
be seen as a threat to external validity. We might miss ‘important’ repositories
and thereby produce biased results. Further, due to the complexity of EMF and
the diversity of possible repository layouts, we might potentially miss particular
cases in the rules. We extensively tested our rules in an instance- and parameter-
based manner to cover this internal threat, but some rules are incomplete (e.g.,
regarding the considered build systems) or approximative (e.g., in assuming a
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very strict naming scheme for generated classifiers). Our pattern catalog and the
rating of patterns, i.e., potential or definite incompleteness or inconsistency, are
potentially subjective, even though we have extensive experience with EMF.

6 Related Work

The reported research is original in terms of (i) leveraging an inference- and
rule-based approach (as opposed to using any computational approach which
would operate on more ‘complete’ representations) and (ii) developing a pattern
catalog for EMF usage in repositories. However, there is related research in
the broader areas of mining software repositories, program comprehension, and
reverse engineering which we group accordingly below.

Pattern Detection. This may concern design or API-usage patterns. For
instance, in [36], API-usage patterns are mined based on structural, semantic,
and co-usage similarity for the accessed API methods and fields; in [34], logic
metaprogramming is used to detect patterns in a logic layer on top of Java ASTs
using JDT.

Classification of Artifacts. In [21], language usage trends are analyzed in 22
open source software projects by counting files with language-specific file exten-
sions, e.g., ‘.py’, and certain file-name patterns, e.g., ‘README’. In [26], the
use of different Eclipse-based MDE technologies is examined on GitHub repos-
itories. The approach combines search based on technology-specific extensions
and string-based content search, just like in our case study (Table 3). In [33], a
large dataset of UML models is collected from GitHub by script-based inspection
of downloaded images (e.g., ‘.jpg’), standard UML formats (e.g., ‘.uml’) and tool
specific formats (e.g., ‘.argo’). In [32], the number of languages used and their
relatedness to each other is analyzed in a random set of 1150 GitHub repositories
relying only on metadata and version history.

Linking Artifacts. In [41], traces between XML documents are analyzed using
an imperative rule language and XML technology such as XPath. This work
exceeds ours by considering references encoded in text fragments that are then
mined using NLP-techniques. In [8], the distribution frequency at GitHub is
empirically compared to CRAN for R packages. Further, package dependencies
between projects’ ‘DESCRIPTION’ files are mined to explore inter-repository
dependency problems. In [30], a system’s ground truth architecture is recovered
by analyzing dependencies in the build configuration. To raise accuracy, the
folder layout is considered. Arguably, our work relates to traceability recovery
[7,15,22,31,38].

Fact Extraction. In [20], metrics are computed in multi-language repositories
by reusing existing parser technology that is part of Eclipse. In [37], API usage
in Java-based GitHub repositories is analyzed by parsing the code and resolving
method calls to APIs. Their approach exceeds ours in using JDT type resolution
which we may want to incorporate into our rule-based language model. In [1],
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OO-specific ASTs (i.e., Java) are converted into RDF triples. This enables data
extraction through SPARQL-queries on a triple store. In [39], a rule-based app-
roach similar to ours is presented that relies on parsing code into a knowledge-
discovery-model (KDM). It is used to mine dependencies in Java EE application.
While we also employ AST structures, we rely on selective fact extraction as
opposed to full materialization of the involved artifacts. In [11–13], the infras-
tructure, the domain specific language and applications of Boa, a framework for
structured data extraction targeting repositories, is described. While the actual
purpose and the surrounding infrastructure of our approach is highly compa-
rable, the computation substantially differs in that Boa’s fact extraction is not
driven by previously inferred facts. The Boa language is compiled to a map-
reduce framework to be executed in parallel. Such distribution is difficult to
align with our rule-based inference mechanism.

Analysis of Changes. In [6], the frequency of code changes in Java-projects
using Hibernate is traced while differentiating between data model, mapping,
performance configurations, and query calls. In [23], the dependencies between
projects considering build files specific to JavaScript, Ruby, and Rust are exam-
ined and their evolution is traced. In our future work, we will take version history
into account.

7 Conclusion

In this paper, we have provided some insight into basic variation points and
potential completeness and consistency problems with using EMF and detecting
or maintaining such usage in repositories. We have used a rule-based approach
to detect patterns of usage.

In future work, we would like to analyze evolution of repositories in terms
of layout and pattern instances. Further, we would like to increase precision
with regard to some aspects of correspondence, completeness, and consistency
by integrating type resolution with Java classpath recovery. Moreover, we also
work on a more profound generalization of referring to and accessing ‘arbitrary’
code or model elements across technological spaces: codename URA (unified
resource accessor). Ultimately, we would like to move from (small) patterns of
technology usage to inferring usage of more complex and modular megamodels
for technology documentation [17].
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Abstract. This paper proposes and evaluates an efficient approach for
loading models stored in a change-based format. The work builds on
language-independent change-based persistence (CBP) of models con-
forming to object-oriented metamodelling architectures such as MOF
and EMF, an approach which persists a model’s editing history rather
than its current state. We evaluate the performance of the proposed load-
ing approach and assess its impact on saving change-based models. Our
results show that the proposed approach significantly improves loading
times compared to the baseline CBP loading approach, and has a negli-
gible impact on saving.

1 Introduction

Conventional approaches for file-based model persistence in metamodelling archi-
tectures such as MOF [1] and EMF [2] are state-based – saving the current state
of a model. In these approaches, version control and change detection are dele-
gated to external systems. State-based persistence is computationally expensive,
as a whole model must be saved and loaded; this can particularly affect large
models and collaborative developments.

In [3], we proposed change-based persistence (CBP), an approach that per-
sists the full sequence of changes made to a model instead of persisting the state.
Compared to state-based approaches, CBP supports fast detection of changes,
which can speed up model comparison and merging, as well as fast incremental
model validation and transformation [4,5]. However, saving the change history
of a model results in large, and ever-growing, CBP files. Loading times are also
significant, as the loading process has to reconstruct a model’s current state from
its history [3]. This paper proposes and evaluates an approach that reduces CBP
model loading time by avoiding the replaying of historical changes that have no
impact on the final state of the model.

The rest of the paper is structured as follows. Section 2 introduces a running
example and provides a brief introduction to CBP. Section 3 presents the app-
roach to speed up model loading and its supporting data structures. Section 4
c© Springer International Publishing AG, part of Springer Nature 2018
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presents experimental results and evaluation. Section 5 provides an overview of
related work, and Sect. 6 concludes with a discussion on directions of future
work.

2 Running Example

To explain model CBP, we use a minimal tree metamodel and an example
tree model in Fig. 1a and b. The metamodel is expressed in the Eclipse Mod-
elling Framework (EMF) Ecore metamodelling language, the de-facto standard
for object-oriented metamodelling. The example is contrived to avoid unneces-
sary repetition, whilst providing adequate coverage of the core features of Ecore
(classes, single/multi-valued features, references). In this example, a tree model
consists of named nodes which can – optionally – contain other nodes (child
reference).

(a) The tree metamodel
(EMF/Ecore).

(b) A tree model that conforms to the metamodel. Node n3
is created and then deleted.

Fig. 1. Running example of a metamodel and a conformant model.

The current state of the model in Fig. 1b has two nodes, n1, n2. The model
was constructed by firstly creating the three nodes (n1, n2 and n3) and then
nodes n2 and n3 were then added as children of n1. Finally, node n3 was deleted.

Listing 1. State-based tree model.
1 <Node id="n1" name="A">
2 <children id="n2" name="B"/>
3 </Node>

Listing 2. Change-based tree model.
1 create n1 of Node
2 set n1.name to "A"
3 create n2 of Node
4 set n2.name to "B"
5 create n3 of Node
6 set n3.name to "C"
7 add n2 to n1.children
8 add n3 to n1.children
9 remove n3 from n1.children

10 delete n3

Listing 1 shows the state-based representation of the model, using simplified
XMI. Listing 2 shows the change-based representation, using the CBP syntax
introduced in [3]. Lines 1–6 of Listing 2 record the creation and naming of the
three nodes; lines 7–8 record the addition of n2 and n3 as children of n1; lines
9–10 capture the deletion of n3 (the remove command removes f n3 from its
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container; the delete command completely removes n3 from its model). Changes
in a CBP representation can be uniquely identified by their line numbers.

The example model history illustrates a case where earlier events (creating
n3 in line 5, naming it in line 6, making it a child of n1 in line 8, removing
it from the container in line 9) are superseded by a subsequent event (deletion
of n3 in line 10). Loading of the current model would arguably be faster if the
events in lines 5, 6, 8, 9 and 10 could be ignored.

3 Towards Efficient Loading of Change-Based Models

The flowchart in Fig. 2 provides an overview of the editing lifecycle of a CBP
model [3], with the proposed extensions shown as starred blocks. A model is
loaded (1), edited (2) and saved (3). During editing, the changes made to the
model are recorded in a memory-based data structure, serialised and with the
latest events appended at the end (4). The change events are persisted into a CBP
file every time the model is saved (5). When a model is re-loaded, the current
model state is recreated by replaying the events stored in the CBP file (6).

Fig. 2. CBP workflow, with optimised loading elements indicated by starred blocks.

A key principle of CBP is that the editing history is immutable, as this is
essential for supporting incremental model management operations. As such,
superseded events cannot be simply removed from the CBP file. Therefore, the
proposed approach adds two artefacts: a in-memory ModelHistory data struc-
ture which aggregates change events per model element, and an IgnoreList file,
which persists the position (i.e. line numbers) of superseded events so that the
events can be ignored the next time the model is loaded. The Ignore List is saved
alongside the CBP file. The rest of this section presents how the Model History
is used to detect superseded events and generate the Ignore List.

3.1 Model History

The Model History data structure stores events and their line numbers in a CBP
representation. The data can be used to reason about the events of a particular
element and to determine which events are superseded. We refer to the line
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number in the CBP representation as the event number. The proposed data
structure is defined in Fig. 3 using a class diagram.

A ModelHistory has a URI attribute to identify the model for which it records
changes. A ModelHistory can link to many ElementHistory objects, each iden-
tified by its element field which is queried from the model. An ElementHistory
can link to many FeatureHistories, representing the editing histories of individ-
ual features – either references or attributes of the element. A FeatureHistory
has a type (attribute or reference) and a name, identifying the feature.

Fig. 3. The class model defining Model History.

Fig. 4. The object diagram of the CBP model history in Listing 2.

An EventHistory represents series of events of the same type; it has an
attribute type to identify the events’ type and can have many Lines. A Line
has a number attribute, to record the event number and a value that records the
element involved in the event (Value is only used for events with types ADD,
REMOV E and MOV E). Each FeatureHistory can have many EventHistories,
to represent the events that modify the values of the features. Each Elemen-
tHistory can have many EventHistories to represent events that affect the state
of the elements (life-cycle and relations to multivalued features). Figure 4 shows
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an object diagram corresponding to the model in Fig. 3 that captures the model
history shown in Listing 2. The grey rectangles are History objects related to the
deleted node n3. The rectangles with the dashed outline are Line objects that
represent superseded changes.

Next, we present the different strategies used to identify superseded events
that will be added to the Ignore List.

3.2 Set and Unset Events

During the lifecycle of a model, a single-valued feature can have its value set
(assigned) or unset many times. Each event is persisted, but only the last
assigned value needs to be considered. For example, in Listing 3, the feature
name is set to the value “A”, unset, and finally set to the value “B”. In the
final state of the model, n1.name = “B”. Thus, only line 4 is significant for the
model’s final state and therefore lines 2 and 3 can be ignored when loading the
model. For a set event, all preceding set and unset events can be ignored, but
for an unset event, all set and unset events can be ignored. Executing it does
not have any effect on the final state of a model if all the preceding events also
have been ignored.

Listing 3. A CBP representation of
attribute name assignments.
1 create n1 of Node
2 set n1.name to "A"
3 unset n1.name
4 set n1.name to "B"

Listing 4. A CBP representation of
attribute name assignments.
1 create n1 of Node
2 set n1.name to "A"
3 set n1.name to "B"
4 unset n1.name

Based on the Listing 3, our approach creates an instance of ElementHistory
n1 which contains an instance of FeatureHistory name. The FeatureHistory
name consists of two EventHistory instances, with types SET and UNSET
(the instances are named set and unset respectively for brevity). The set records
the Line instances that hold the event numbers where the set events, and simi-
larly for unset.

From Listing 3, we can thus infer that name.set.lines= {2, 4} and
name.unset. lines= {3}. The event numbers in both lists are used to determine
that the events represented by lines 2 and 3 are superseded by that in line 4,
which is a set event, giving an ignoreList= {2, 3}. By the same process, for List-
ing 4, we can reason that name.set.lines= {2,3} and name.unset.lines= {4}.
However, this case, the highest-numbered event is an unset, all so line numbers
are put into the ignoreList (ignoreList= {2, 3, 4}) (unset event can be ignored
along with all preceding set and unset events).

3.3 Add, Remove, and Move Events

For a multi-valued feature, add, remove, and move events can be called many
times, to modify the feature. If an element is added to the feature, moved
multiple times, and finally removed, then all the element’s preceding events can
be ignored, as long as the order of the feature’s elements is not changed.
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Listing 5 shows an example without a move event. In the Listing, nodes n1,
n2, and n3 are added to the children feature of p (lines 5–7), In the latest state
of the model, children only contains n1 and n3. As a result, the loading process
could ignore the events that represent the add and remove events on n1.

Listing 5. A CBP of add
and remove operations.
1 create p of Node
2 create n1 of Node
3 create n2 of Node
4 create n3 of Node
5 add n1 to p.children
6 add n2 to p.children
7 add n3 to p.children
8 remove n2 from p.

children

Listing 6. A CBP representation of add, move, and
remove operations.
1 create p of Node //children=[]
2 create n1 of Node //children=[]
3 create n2 of Node //children=[]
4 create n3 of Node //children=[]
5 add n1 to p.children //children=[n1]
6 add n2 to p.children //children=[n1,n2]
7 add n3 to p.children //children=[n1,n2,n3]
8 move 0 to 1 in p.children //children=[n2,n1,n3]
9 remove n2 from p.children //children=[n1,n3]

To create the Ignore List for the Listing 5, we can deduce that children.add.
lines= {{5, n1}, {6, n2} {7, n3}} (5 is the line number and n1 is the value) and
children.remove.lines= {{8, n1}}. Since n2 is removed from its containing fea-
ture (line 8), then executing its preceding add and remove events is unnecessary.
Note that we retain the create event (line 3) as n2 has not been deleted from the
model – only removed from its containing feature. We can iterate through the
add and move structures to identify the events on n2 that should be removed,
resulting in the ignoreList= {6, 8}.

Listing 6 shows an example with a move event1. A move event is inserted at
line 8 thus makes the remove event of n2 moves to line 9. With the introduction
of this move event, we now have the children.add.lines= {{5, n1}, {6, n2}
{7, n3}}, children.move.lines= {{8, n1}}, and children.remove.lines=
{{9, n2}}. In the final state of the model, the children should have the n1
and n3 in order, children= [n1, n3].

However, executing the previous strategy naively leads to an erroneous final
state. Using ignoreList= {6, 8} produced by the naive strategy leads to a differ-
ent order of n1 and n3 in the final state of the model where children= [n3, n1]
as shown by the naive optimised CBP in Listing 7. To overcome this problem,
*IsMoved flags in Fig. 3 is used to sign features and elements if they have been
moved – the flags are set to true. If an element’s *IsMoved flag is true then all
of its line numbers related to add, move, remove events cannot be put into the
ignoreList. The flags are set to false if the feature is empty.

Listing 7. A naive optimised CBP representation of original CBP representation in
Listing 6 .
1 create p of Node // children = []
2 create n1 of Node // children = []
3 create n2 of Node // children = []
4 create n3 of Node // children = []
5 add n1 to p.children // children = [n1]
6 add n3 to p.children // children = [n1, n3]
7 move 0 to 1 in p.children // children = [n3, n1]

1 The commented parts show the end states of children after each event.
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3.4 Create and Delete Events

When an element is deleted, it is completely removed from the model. Therefore,
all previous events (create, set, unset, move, add, remove, delete) on features
of element can be ignored, along with all events on the element’s features. For
example, when node n3 in Listing 2 is deleted, the events in lines 5–6 and 8–10
are superseded. If the Listing 2 is optimised – some of its events are ignored –
when loading, it runs as if the Listing 8 are executed.

Listing 8. Change-based representation of the model in Fig. 1b after removal of node
n3.
1 create n1 of Node
2 set n1.name to "A"
3 create n2 of Node
4 set n2.name to "B"
5 add n2 to n1.children

Using the Listing 2, we can construct the structure of histories that are
related to element n3 as follows: n3.create.lines= {5}, n3.name.set.lines= {6},
n1.children.add.lines= {{7, n2}, {8, n3}}, n1.children.remove.lines= {{9,
n3}}, and n3.delete.lines= {10}. Thus, when element n3 is deleted, by iter-
ating through all these history structures, all line numbers associated with n3
can be identified and added to ignoreList producing ignoreList= {5 6, 8, 9, 10}
so they can be ignored in the next model loading.

4 Performance Evaluation

We developed the proposed efficient loading approach on top of the original
CBP implementation2 from [3] and evaluated our approach’s model loading per-
formance, as well as its memory footprint and its impact on the time required
to save changes made to CBP models. The evaluation was performed on Intel R©
CoreTM i7-6500U CPU@2.50 GHz 2.59 GHz, 12 GB RAM, and the JavaTM SE
Runtime Environment (build 1.8.0 162-b12).

Given that CBP is a very recent contribution and we are not aware of any
existing datasets containing real-world models expressed in a change-based for-
mat, we have used synthetic change-based models for the evaluation of our exper-
iments. The synthetic models were derived from real-world cases: the BPMN2
[6,7] and Epsilon [8,9] software projects, and the United States article [10] on
Wikipedia (the article is further referred as Wikipedia). For the first two projects,
for each version of the cases, we used MoDisco [11] to generate a UML2 [12] model
that reflects its source code. For the Wikipedia article, a model that conforms to
the Modisco XML metamodel [13] was generated. Since these cases have many
versions – represented by commits/revisions, different models of the versions
can be generated, and to some degree, they reflect the time-ordered changes
of the cases. The synthetic change-based model for each case was derived by

2 The prototype, tests, and data used in the evaluation are available under https://
github.com/epsilonlabs/emf-cbp and https://goo.gl/1zUBQC for reproducibility.

https://github.com/epsilonlabs/emf-cbp
https://github.com/epsilonlabs/emf-cbp
https://goo.gl/1zUBQC
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comparing an initially-empty running model to different versions of the case’s
models sequentially. All identified differences were then reconciled by performing
a unidirectional merging to the running model. All changes made to the running
model during the merging process were captured and persisted into a CBP file.
EMF Compare was used [14] to perform the comparison and merging.

Using the synthetic models, we performed performance evaluation on loading
time, saving time, and memory footprint for both loading and saving. To compare
the loading time, we ran the optimised and original (baseline) CBP algorithms to
reconstruct the current state of each of the three models (the results are shown in
Fig. 5). As discussed in Sect. 3, optimised CBP also does extra work when saving
the changes to a model, in order to save time (relative to original CBP) when
loading a model. To analyse the performance effect of optimisation activities,
we, therefore, compared the overall time required to save a new version of the
models described above, after one single change has been made (The results are
shown in Fig. 6). We also compare the memory footprints for both loading and
saving since the optimised CBP approach also requires the maintenance of an
additional in-memory data structure that keeps track of element and feature
editing histories (see Figs. 7 and 8 for the results).

For each combination of dimensions (loading time, saving time, loading mem-
ory footprint, saving memory footprint), persistence types (original CBP, opti-
mised CBP, and XMI), and cases (BPMN2, Epsilon, and Wikipedia), we per-
formed measurement 22 times. The results of the measurement enabled us to
perform the Welch’s t-test [15] to find the significance of the comparisons for each
case. We used a significance level of 5%. If t-test’ p-value< 0.05, we rejected the
null hypothesis – the means of the compared persistence types are equal (H0) –
and accepted the alternative hypothesis – the means of the compared persistence
types are not equal (H1).

For loading and saving time, we measured the delta time required to complete
the loading and saving. For memory footprint, we measured the delta of memory
used before and after loading and saving completes. The results are presented
below.

4.1 Data Description

Table 1 summarises events, elements and saved versions for the Epsilon, BPMN2,
and Wikipedia cases. Total Events is the numbers of events that were produced
by our approach in generating a change-based model for each case. Ignored
Events is the number of superseded events that do not need to be replayed
when reloading the models. Elements is the number of elements contained in
each model. Total V ersions is the number of commits/revisions made to the
cases, taken from the git repositories or Wikipedia at the time this evaluation
performed. Processed V ersions is the number of commits/revisions that were
processed to produce change-based models: since the comparison between ver-
sions takes considerable time, not all versions are processed here.
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Table 1. Description of change-based models generated for evaluation.

Model Total
events

Ignored
events

Elements Total
versions

Processed
versions

BPMN2 1.2 million 1.1 million 62,062 192 192 (100.0%)

Epsilon 2.6 million 1.8 million 79,459 3,037 727 (23.9%)

Wikipedia 11.5 million 7.8 million 12,144 37,996 3,100 (8.2%)

4.2 Model Loading Time

This subsection presents the results of the loading time measurement of change-
based models for each pair of the persistence types and cases, and the t-test
results of their comparisons (Table 2 and Fig. 5).

Table 2. The t-test results of loading time comparison between original CBP (CBP),
optimised CBP (OCBP), and XMI.

Group Mean SD Comparison t df p-value

BPMN2 Load Time (s) BPMN2 Load Time

CBP 5.81 0.08 CBP vs. XMI 315.95 21.46 <0.05

OCBP 3.02 0.13 CBP vs. OCBP 87.67 35.10 <0.05

XMI 0.47 0.47 OCBP vs. XMI 93.86 21.18 <0.05

Epsilon Load Time (s) Epsilon Load Time

CBP 16.60 0.23 CBP vs. XMI 324.18 22.78 <0.05

OCBP 8.28 0.09 CBP vs. OCBP 160.06 27.48 <0.05

XMI 0.60 0.05 OCBP vs. XMI 354.52 42.06 <0.05

Wiki Load Time (s) Wikipedia Load Time

CBP 34.23 0.145 CBP vs. XMI 1,110.10 21.00 <0.05

OCBP 26.14 1.583 CBP vs. OCBP 23.90 21.35 <0.05

XMI 0.02 0.001 OCBP vs. XMI 77.37 21.00 <0.05

Mean= average, SD= standard deviation, t= t-test’s t-value,
df = degree of freedom, p-value= significance, s= the unit is seconds

These loading times show a considerable time saving for optimised CBP:
BPMN2 was 48.02% faster, Epsilon 50.12% faster, and the Wikipedia page
23.63% faster than in the original CPB implementation (all optimised CBP’s
means are smaller than all original CBP’s means), which has a positive cor-
relation to the number of ignored events. All the t-test results also show that
loading times for all the persistence types are significantly different (all the
p-values< 0.05).

For reference, we also compare CBP loading with the execution time for
loading the equivalent state-based model in XMI. Figure 5 shows that, even with
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the improvements delivered by the new algorithm, loading change-based models
is still significantly slower than loading a state-based model (all XMI’s means
are smaller than other persistence types’ means).
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Fig. 5. Results for loading a model in original CBP (CBP), optimised CBP (OCBP),
and for loading a state-based (XMI) representation.

4.3 Model Saving Time

This subsection presents the results of the saving time measurement of change-
based models for each pair of the persistence types and cases, and the t-test
results of their comparisons (Table 3 and Fig. 6). As discussed in [3], CBP loading

Table 3. The t-test results of saving time comparison between original CBP (CBP),
optimised CBP (OCBP), and XMI.

Group Mean SD Comparison t df p-value

BPMN2 Save Time (s) BPMN2 Save Time

CBP 0.00097 123e−5 CBP vs. XMI −175.58 22.01 <0.05

OCBP 0.00081 12e−5 CBP vs. OCBP 0.62 21.38 0.54

XMI 0.30122 793e−5 OCBP vs. XMI −177.76 21.01 <0.05

Epsilon Save Time (s) Epsilon Save Time

CBP 0.00069 3.4e−5 CBP vs. XMI −6.01 21.00 <0.05

OCBP 0.00080 8.0e−5 CBP vs. OCBP 160.06 28.24 <0.05

XMI 0.40025 595e−5 OCBP vs. XMI −314.80 21.01 <0.05

Wiki Save Time (s) Wikipedia Save Time

CBP 0.00071 4.9e−5 CBP vs. XMI −46.19 21.08 <0.05

OCBP 0.00075 4.1e−5 CBP vs. OCBP −3.48 40.77 <0.05

XMI 0.01195 114e−5 OCBP vs. XMI −46.01 21.06 <0.05

Mean= average, SD= standard deviation, t= t-test’s t-value,
df = degree of freedom, p-value= significance, s= the unit is seconds
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Fig. 6. A comparison on time required for persisting an event between original CBP
(CBP), optimised CBP (OCBP), and XMI.

time penalties are balanced against the benefits that CBP brings, in terms of
persisting changes (saving time).

As shown in Table 3 and Fig. 6, the performance of the two CBP implemen-
tations is not very different. Since the significance level is 5%, only the BPMN2
case that fails. However, the difference between the means of its original CBP
(0.97 ms) and optimised CBP (0.81 ms) is small. This indicates that the cost of
the extra work in the optimised CBP algorithm is negligible. On the other hand,
both CBP implementations are significantly faster at saving changes than state-
based XMI (the means of both CBP implementations are smaller than XMI’s
means, and both CBP implementations have p-values< 0.05 when compared
to XMI). This is expected, as the CBP implementations only need append the
last changes to the existing model file (their performance is thus relative to the
number of changes since the last save), while the XMI implementation needs to
reconstruct an XML document for the entire state of the model, and replaces
the contents of the model file every time (and hence its performance is relative
to the size of the entire model).

4.4 Memory Footprint

Here we present the results of measuring the memory footprint after loading
models (Table 4 and Fig. 7) and persisting single changes (Table 5 and Fig. 8)
using the models from the three cases. The results show the significant memory
overhead of the extra data structure when loading models (all the means of
optimised CBP are greater than all the means of original CBP and all compar-
isons between both CBPs show p-values< 0.05, Table 4). Both CBPs are also
outperformed by XMI in terms of memory footprint when loading models (all
the means of XMI are smaller than all the means of both CBPs and all com-
parisons against XMIs show all p-values< 0.05, Table 4). In loading, XMI uses
significantly less memory than the optimised CBP representation and performs
slightly better than the original CBP.
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Fig. 7. A comparison on memory footprint after loading a model between original CBP
(CBP), optimised CBP (OCBP), and XMI.

Table 4. The t-test results of memory footprint comparison after loading a model
between original CBP (CBP), optimised CBP (OCBP), and XMI.

Group Mean SD Comparison t df p-value

BPMN2 Load Memory (M) BPMN2 Load Memory

CBP 9.76 76.0e−4 CBP vs. XMI 4,392.5 21.22 <0.05

OCBP 22.36 0.015 CBP vs. OCBP −3,695.7 32.28 <0.05

XMI 2.63 5.5e−4 OCBP vs. XMI 6,572.4 21.06 <0.05

Epsilon Load Memory (M) Epsilon Load Memory

CBP 15.74 1.248 CBP vs. XMI 28.16 41.99 <0.05

OCBP 43.15 0.056 CBP vs. OCBP −102.9 21.08 <0.05

XMI 5.05 1.271 OCBP vs. XMI 140.49 21.08 <0.05

Wiki Load Memory (M) Wikipedia Load Memory

CBP 2.29 2.4e−4 CBP vs. XMI 4,523.5 25.16 <0.05

OCBP 126.48 0.29 CBP vs. OCBP −2,009.3 21.00 <0.05

XMI 1.52 7.6e−4 OCBP vs. XMI 2,021.8 21.00 <0.05

Mean= average, SD= standard deviation, t= t-test’s t-value, df = degree
of freedom, p-value= significance, M = the unit is megabytes

In terms of saving, both CBP implementations persist a single change faster
than XMI indicated by their means that are smaller than the means of XMI,
and all the CBPs’ t-tests with XMI show that their differences are significant at
p-value< 0.05 (Table 5). The optimised CBP has a larger memory footprint than
the original CBP since the means of the optimised CBP for all cases are greater
than the means of the original CBP. However, their memory footprints are not
very different. Even though the BPMN2 and Epsilon cases have p-values< 0.05,
the differences of the means of their original and optimised CBPs are small, and
the Wikipedia case also shows p-value> 0.05 on its original CBP vs. optimised
CBP comparison.
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Fig. 8. A comparison on memory footprint after persisting an event between CBP,
optimised CBP, and XMI.

Table 5. The t-test results of memory footprint comparison after saving an event
between original CBP (CBP), optimised CBP (OCBP), and XMI.

Group Mean SD Comparison t df p-value

BPMN2 Save Memory (M) BPMN2 Save Memory

CBP 0.0023 6.3e−5 CBP vs. XMI −489,170 41.49 <0.05

OCBP 0.0029 80e−5 CBP vs. OCBP −3.22 21.26 <0.05

XMI 8.84 5.6e−5 OCBP vs. XMI −51,180 21.21 <0.05

Epsilon Save Memory (M) Epsilon Save Memory

CBP 0.0025 18.8e−6 CBP vs. XMI −4.3e+6 21.00 <0.05

OCBP 0.0031 279.9e−6 CBP vs. OCBP −10.131 21.19 <0.05

XMI 17.61 2.4e−6 OCBP vs. XMI −295,090 21.00 <0.05

Wiki Save Memory (M) Wikipedia Save Memory

CBP 0.0025 1.9e−5 CBP vs. XMI −391,970 40.52 <0.05

OCBP 0.0028 84.1e−5 CBP vs. OCBP −1.75 21.02 0.094

XMI 2.0194 1.5e−5 OCBP vs. XMI −11,245 21.01 <0.05

Mean= average, SD= standard deviation, t= t-test’s t-value, df = degree
of freedom, p-value= significance, M = the unit is megabytes

4.5 Threats to Validity and Limitations

In this work, we have only tested the algorithms on synthesised models which
may not be representative of the complexity and interconnectedness of models
in other domains. Diverse characteristics of models in different domains can
affect the effectiveness of the algorithm and therefore yield different outcomes.
So far, CBP optimisation only supports ordered and unique features. Support
for duplicate values means that removal of an item does not necessarily result in
the item not being present in the feature value. Additional information must be
captured to persist the number of copies and positions of the feature members
to properly generate the ignore list.
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4.6 Discussion

For the original CBP loading, the total time required to load a model is
TCBP = TE + TO, where TE is the total time required to complete executing
all events, and TO is the total time needed to complete other required routines
(e.g. initialisation, reading files). For the optimised CBP loading, the total time
to load a change-based model is reduced by the total time saved-up by ignor-
ing superseded events TI , that is TOCBP = TE + TO − TI . Thus, it is expected
that optimised CBP can load a model faster than original CBP. This statement
is in accordance with our finding in Sect. 4.2 that the total saved-up loading
time corresponds to the number of ignored events. However, it still requires
more investigation to determine the degree of their correlation, which will be
addressed in our future work.

5 Related Work

There are several non-XMI approaches to state-based model persistence, using
relational or NoSQL databases. For example, EMF Teneo [16] persists EMF mod-
els in relational databases, while Morsa [17] and NeoEMF [18] persist models
in document and graph databases, respectively. None of these approaches pro-
vides built-in support for versioning and models are eventually stored in binary
files/folders which are known to be a poor fit for text-oriented version control
systems like Git and SVN. Connected Data Objects (CDO) [19], provides sup-
port for database-backed model persistence as well as collaboration facilities,
but its adoption necessitates the use of a separate version control system in the
software development process (e.g. a Git repository for code and a CDO reposi-
tory for models), which introduces fragmentation and administration challenges
[20]. Similar challenges arise in relation to other model-specific version control
systems such as EMFStore [21].

6 Conclusions and Future Work

This paper proposes an efficient algorithm and supporting data structures for
loading change-based models. Performance is evaluated on synthesised models,
with comparison against the existing change-based implementation, and state-
based XMI. Our results show considerable savings in terms of loading time with
a negligible impact on saving time, but at the cost of a higher memory footprint.
In future, we intend to evaluate CBP against state-based persistence on real
complex models. We also plan to investigate the impact of change-based model
persistence on the performance of change detection, model merging, and conflict
resolution in the context of collaborative modelling. Meanwhile, the CBP app-
roach can be further optimised to consume less memory and speed up parsing,
such as using binary format instead of text. We are also exploring a hybrid persis-
tence representation that offers a combination of state-based and change-based
persistence.
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Abstract. The creation of domain-specific data validation rules is com-
monly performed by the relevant domain experts. Such experts are often
not acquainted with the low-level technologies used to actually execute
these rules and will hence document them in some informal form, such
as in natural language. In order to execute these rules, they need to be
transformed by technical experts into a relevant executable language,
such as SQL. The technical experts in turn are often not familiar with
the business logic these rules are depicting and will thusly have to col-
laborate with the business experts to gain insight into the semantics of
the rules. This paper presents an approach for writing financial data
validation rules in constrained natural language, that can then be auto-
matically transformed and executed against the data they are referring
to. In order to achieve this, we use the Xtext framework for creating
the editor where business experts can create their rules that can then be
transformed into executable constraints. We evaluate this approach in
terms of its extensibility, coverage and verboseness with respect to the
business rules sent to specific UK banks submitting data under one of
the Bank of England’s annual reviews.

1 Introduction

Organizations will commonly communicate their policies in natural language, be
it internally to their staff and stakeholders or externally to interested parties. As
natural language is inherently vague, for achieving consistency and amenability
to computer-based processing it needs to be either written in or converted to
a formal notation. A common approach is to introduce domain experts (in the
domain the data these policies are written against is stored) to convert the nat-
ural language documents into the appropriate executable form. This introduces
another level of risk as the domain experts will have to interpret these doc-
uments, introducing formal meaning to an inherently informal description. As
such, the domain experts may have to consult the business experts themselves in
order to gain a better understanding, leading to a large increase in both company
resources used as well as error-prone cross-domain knowledge transfer.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Pierantonio and S. Trujillo (Eds.): ECMFA 2018, LNCS 10890, pp. 251–263, 2018.
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Another approach is to write the policies themselves in a form more amenable
to automation, but also retaining the ability for them to be written by business
experts. In this paper we introduce a constraint natural language (CNL) for
expressing constraints providing the benefits of machine-readable content whilst
also being closely resemblant of natural language itself. This allows data vali-
dation rules to be written by non-technical stakeholders without the need for
the technical experts; this allows each expert to focus on their respective fields,
avoiding any additional risk.

The remainder of the paper is structured as follows: Sect. 2 discusses tools and
methodologies of a CNL-based approach to business rules and Sect. 3 introduces
the Open Rules Platform (ORP), a framework for writing validation rules in
CNL. ORP is a commercial product from JC Chapman1 that was produced as
part of a knowledge transfer partnership (KTP) program2 in collaboration with
the University of York. Section 4 discusses the results obtained by using ORP in
an industrial use-case and finally Sect. 5 concludes and mentions future lines of
work.

2 Background and Related Work

The development and use of constrained natural language, also referred to as
controlled natural language or controlled language, has been extensively inves-
tigated over the past decade. This section presents the main state-of-the-art
practices and technologies and discusses the approach taken by the Open Rules
Platform. As it is assumed that the reader is familiar with model-driven engi-
neering practices like model transformation and domain-specific languages and
editors, such information is omitted.

2.1 Constrained Natural Language

One of the most popular standards used to create such business rules in con-
strained natural language is the Semantics of Business Vocabulary and Business
Rules (SBVR). This specification by the Object Management Group (OMG)
covers two aspects: Vocabulary (natural language ontology) and Rules (elements
dictating policy) [1]. Rules are composed of facts that rely on concepts which
are made up of terms. Each term expresses a business concept and a fact can
make assertions regarding this concept. Since SBVR does not use any specific
language to express these concepts in a concrete fashion (it uses the notion of a
“semantic formulation” to describe structure), it is left to the creator to decide
the scope and expressiveness of any language conforming to this standard. As
SBVR supports both formal and informal expressions, covering both aspects of
the formalist vs naturalist approach to constrained natural language [2], it is
down to the SBVR-based languages to decide which way they lean towards. For

1 http://www.jcchapman.com/.
2 http://ktp.innovateuk.org/.

http://www.jcchapman.com/
http://ktp.innovateuk.org/


Towards a Framework for Writing Executable Natural Language Rules 253

example SBVR Structured English leans heavily towards the formal side whilst
RuleSpeak3 leans towards a more natural form of constrained natural language
[1].

There are various tools with languages conforming to the SBVR standard,
such as RuleCNL [3] and others [4–6], that vary in their expressiveness and
ease of use. As good as SBVR is at introducing structure to constrained natural
languages, its inherent complexity means that for smaller dialects the overhead
of following the standard may overshadow its usefulness. As such, even though
the Open Rules Platform is heavily inspired by SBVR as well as languages using
it, it does not formally abide by the standard, instead deciding to keep a more
minimalist language metamodel, more amenable to extension.

3 Executable Natural Language Rules

This section presents the architecture and design of the OR platform. Since the
platform uses multiple tools and technologies, we briefly introduce them, focusing
on how each technology contributes to the system. Finally we discuss the various
metamodels used by the OR platform, in order to provide more insight into how
the system behaves.

3.1 Architecture

Figure 1 shows an overview of the OR platform and below we detail the tech-
nologies used:

– Eclipse Modeling Framework (EMF) [7]. This framework is used to facilitate
the creation of meta-models that encode the abstract syntax of the developed
CNL.

– Xtext [8]. This framework is used to define a textual concrete syntax for
the CNL. It offers various (semi-)automatically generated artefacts such as
a rich editor for writing statements in this syntax as well as an API for this
functionality, which can be used to create web-based editors offering similar
capabilities.

– Epsilon [9]. This framework is used to transform CNL models into executable
representations (e.g. SQL, EVL). Epsilon comprises a family of languages for
performing various model management operations, underpinned by a common
model connectivity layer that can access various modeling technologies (like
EMF, relational databases or spreadsheets).

– CNL/Mapping metamodels. These metamodels (defined in EMF) are pro-
vided to the CNL Xtext parser in order to provide the structure for generating
rules models as well as a mapping model from the relevant CNL documents.
More details on these artefacts are given in Sect. 3.2.

3 http://www.rulespeak.com/en/.

http://www.rulespeak.com/en/
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Fig. 1. Architecture of the Open Rules Platform
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– Rules/domain/mapping CNL documents. These structured text documents,
adhering to the CNL grammar, encode rules/constraints for a particular
domain/metamodel of interest. The domain document will contain the termi-
nology used by that domain, which can then be used by the CNL document
to write rules for that domain. As such, changing to another domain is as
simple as creating a new domain document, and will not affect any part of
the CNL syntax other than offering a new domain to write rules against.

– CNL parser. This component parses CNL rules expressed in the language’s
concrete syntax (aka CNL documents), into in-memory models that conform
to the CNL metamodel, that will then be consumed by the transformation
engine (Epsilon).

– Generators. Generators consume models and produce executables for a spe-
cific back-end and its configuration. These models can be either:

– The rules/domain/mapping models themselves, whereby a model to text
transformation is performed to produce executable code from the models.

– Back-end specific models representing the technologies used to store the
data (such as an SQL model that would conform to a metamodel of
the Sequel language). Back-end metamodels will be used for a model to
model transformation of the rules/domain/mapping models into a back-
end specific model that can then be consumed by a generator to produce
executable code. This second approach has not been implemented but can
have merit, as discussed in Sect. 5.

– Executables. These are specific to the runtime environment of the end-user
such as a MySQL relational database with a specific runtime configuration.

– Back-ends. This is the actual data against which the generated rules will be
run against.

3.2 Design

Two metamodels underpin the OR platform: that of the CNL itself and that
of the various configurations and mappings required to trace elements from the
data itself to the rules written in CNL.

CNL Metamodel. The CNL metamodel captures the abstract syntax of the
language. As such it does not contain any information about how the CNL will
look like but what types of elements it can contain. As such, it is the responsibility
of the Xtext parser to convert CNL documents into models conforming to this
metamodel, which can then be automatically consumed (in this case by Epsilon)
to produce executables. Figure 2 shows a simplified version of the metamodel;
important metaclasses are briefly introduced below:

– ConstrainedNaturalLanguageRules. Contains a list of validation rules and/or
a list of CNL metadata. This root element allows any CNL document to
either contain the rules, the metadata (domain the rules are written against)
or both.



256 K. Barmpis et al.

Fig. 2. Simplified CNL metamodel

– ScopedRules. The first type of rule, where one or more rules are written
against a single scope (domain element, found in the metadata document).

– MatchScopedRules. The second type of rule, where a single rule is written
against sub-collections of data defined in the matches. These collections can
be of the same or different scopes, allowing rules to link queries of multiple
domain elements together into a single rule.

– CNLRule. A rule written against elements in the metadata domain, in con-
strained natural language. It contains a root element of the abstract syntax
tree used to define it (after it is parsed into such a tree by the CNL parser).

– GPLRule. A rule written against elements in the metadata domain, in a pro-
gramming language. It contains a String with the relevant syntax conforming
to the language (in an unaltered state from the original CNL document).
The responsibility of correctly defining this rule lies with the person writing
the document as this rule is directly passed on to a relevant parser without
change. This type of rule allows for arbitrarily complex expressions which
would otherwise not be expressible in CNL to be written in the same docu-
ment as the natural language rules themselves.

– Expression. The common supertype for all abstract syntax elements a rule
can be made up of, such as comparison, arithmetic (summation, difference,
multiplication and division), logical (and/or), unary and other simple binary
expressions.

– MetaValue. Common supertype for defining domain metadata.

Mapping Metamodel. As different back-ends can require slight variations of
similar concepts (such as wrapping identifiers or escaping special characters), a
set of configuration options allows abstracting the most commonly found ones
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from having to be hard-coded into the generators themselves. These include,
for example, converting names to lowercase, specifying special characters that
enclose identifiers or strings, other special characters that may need to be sub-
stituted, etc.

Since it is unlikely that the domain used to create the CNL rules will be
a perfect match with the actual data it is validating, the mapping metamodel
is also tasked to map various CNL-domain elements to their appropriate data-
domain siblings:

– 1 to 1 mappings. Such mappings denote a single feature in the CNL is mapped
onto a single feature in the back-end. This mapping is handled directly by
the generator, without the need to introduce any new transformation or other
overhead.

– 1 to n mappings. Such mappings denote that a single feature in the CNL
needs to be mapped to a list of features in the back-end. The values from
this list will be then aggregated (in the order provided by the list), using one
of the AggregationOperations available in the mapping model, returning a
single result.

– Logical Mappings. As different back-ends may use different symbols for
denoting equality, negation or other logical and comparison operators, the
technology-specific versions can be provided here, in case they differ from the
defaults (for example if SQL uses = instead of == for equality).

These manipulations are used by any Epsilon Generation Language (EGL)
generator that generates executables (such as the EVL or the SQL generators
provided in the use-case presented in Sect. 4). Any time an identifier (type, fea-
ture, variable) is passed to the EGL generator (through the CNL model it is
using as its source for code generation), the following may occur, for example:

– A simple mapping (from the mapping model) to replace the identifier with a
new one.

– Replacing or removing special characters.
– Converting strings to lowercase.

Generators. These components take a CNL model (after it has been mapped
using the appropriate mapping model conforming to the metamodel presented
above) and generate appropriate execution-level code to be run against the stored
data. Such generators can be produced either using a model to model or a model
to text transformation:

Using a model to text transformation is recommended when there are a
lot of static text regions that need to be frequently repeated. This provides the
freedom to create optimal execution-level code, but may end up being non-trivial
to maintain, should the static regions end up becoming too verbose.

Using a model to model transformation is relevant when an appropriate meta-
model and unparser of the execution language is available.
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Generic EVL Generator. This generator produces code written in the Epsilon
Validation Language. The generation mainly comprises transforming the rule
abstract syntax tree into the appropriate expression in EVL. This generator can
run against any data format supported by the Epsilon framework, such as EMF
models, XML documents, Spreadsheets, Relational Databases, etc. Nevertheless,
since it is a generic layer it may not be able to be fully optimized against all such
technologies and alternative generators may need to be used for performance
reasons.

Optimized Native SQL Generator. Since SQL has a substantially different struc-
ture to EVL, a native generator provides full control over how a CNL model
is converted to executable code to be run against a relational database. This
allows tackling of issues such as type correctness by using the database meta-
data (instead of having to compare each relevant data item to a type), allows
effective use of derived tables and merging etc. Preliminary tests have shown
that for certain classes of validation rules this can greatly outperform a näıve
EVL generator, and that it can be up to an order of magnitude faster than
writing inefficient SQL (further investigation onto this is required, as detailed in
Sect. 5).

Web-Based Validation. Xtext offers a generated web-based API for writing
CNL rules on a web-client and executing a program on these rules on the server
side, returning a document containing relevant execution information. Using one
of the above mentioned generators, we can perform validation of the provided
rules against data stored on the server. This would execute the following (on the
server side, after receiving the CNL document from the client):

– The input CNL model is transformed using the relevant mapping model to
an in-memory transformed CNL model.

– The transformed CNL model is used to generate the appropriate execution-
level code to run against the stored data.

Currently the EVL generator is used to produce EVL code which will run against
data stored on an Excel spreadsheet, but both the generator used and the data
connector can be replaced if necessary with the appropriate ones. The EVL code
is executed against the data, getting back violations for each of the rules. The
violations are formatted into a report document which is then returned to the
client, providing feedback on offending elements (if any).

4 Evaluation

In this section we present the empirical results obtained when evaluating the
OR platform against a domain-specific use-case.
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4.1 Use-Case

Annually the Bank of England (BoE) produces a large set of rules that speci-
fied UK banks follow to submit data as part of one of the BoE’s annual reviews.
These rules help ensure the submitted data is consistent with the BoE’s expecta-
tions and cover a variety of different aspects such as retail risk, commercial risk,
operational risk, etc. These rules are provided in a mixture of natural language
and procedural statements and are written so that domain experts can under-
stand them, hence are not amenable to machine consumption in any way. In
order for these rules to be executed against the actual data the bank holds, they
have to be understood by a domain expert and then a technical expert will have
to write the appropriate low-level code representing these rules. This process
requires stakeholders with different expertise to collaborate and can introduce
further risk as the two interpretation steps need to be in line with one another.

4.2 Coverage

As a first criterion for evaluating the OR platform for this use-case, we classified
BoE’s rules into 8 categories and then analyzed the coverage of the OR platform
with respect to the total number of rules. This was done to estimate the actual
coverage of the OR platform as it would not have been feasible within the scope
of this project to convert all 3668 rules into CNL to execute them; as such
random sampling of each category has been performed.

Table 1. Classification of business rules

Category Description Count

Type/enum check This rule only contains a single type or
enumeration check

1556

Comparison This rule only contains a single comparison 315

Comparison+logic This rule only contains a combination of
comparison and logical operators

40

Using variables/functions This rule requires comparison/logical
operations across tables

1534

Duplicate check This rule requires all values of a field to be
different

17

Multi-key match This rule requires multiple fields to be
treated as a key to a search

99

Enumeration sub-matching This rule requires that the legal values of a
field are determined by the current value of
another field

27

Complex rule This rule is too complex to classify 80

3668
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Table 1 presents these categories in more detail. Here, we can see that the
large majority of rules fall under either simple type/enumeration checks or elab-
orate rules requiring the use of variables and functions (matching rules), often
across different domain elements. from the remaining rules, the 80 complex rules
are noteworthy as it was decided that attempting to further classify them or to
convert them to CNL was not efficient. Instead, these rules are flagged as com-
plex and meant to be executed through the use of GPL rules that are written in
the target language used to execute against the data itself. Finally, the category
of enumeration sub-matching is not yet supported, even though such a feature
can be added in further iterations of the tool, as mentioned in Sect. 5.

As such, we achieve 97% coverage (as we don’t currently offer CNL expres-
siveness for complex rules and enumeration sub-matching rules), whilst opening
the possibility (through the use of GPL rules) for any rule to be written in the
CNL document regardless, in order to ensure that a single document contains
all the rules that need to be executed, regardless of whether they can be actually
expressed in CNL.

4.3 Verboseness

The second criterion used to evaluate the OR platform is the verboseness of the
rules, when written in CNL. Should the CNL form of the rules be disproportion-
ate to the complexity of the rule (the size of the rule written in the execution
language) then it may be unreasonable to expect them to be written by domain
experts as it will become tedious to write extremely long CNL rules. As such,
we compare the size in characters (ignoring whitespaces) of various rules written
in CNL with the rule written in both EVL as well as SQL, as a representative
sample of verboseness.

Table 2. Rule character count ignoring spaces

Category cnl1 cnl2 evl1 evl2 sql1 sql2

Type/enum check 33 57 86 111 202 215

Comparison 51 184 118 327 116 405

Comparison+logic 131 139 209 243 139 154

Using variables/functions 314 447 522 703 568 740

Duplicate check 55 58 226 241 116 119

Multi-key match 63 89 487 627 163 187

Table 2 shows the relevant character count for two representative rules written
for each of the categories the tool supports. CNL written in the ORP framework
is much less verbose than the SQL it would require to execute against data
in relational databases (in this case a MySQL database) and less verbose than
EVL constraints written in Epsilon. Considering both the EVL and SQL were
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generated by the tool and as such attempt to be as minimal as possible (as they
do not care about human readability at all), we have gained confidence that
writing rules in CNL will require less effort than the same rule written by the
relevant expert in EVL or SQL.

Below we see how the type/enum check constraint annotated as cnl1 looks
like:

1 in a Branch the country must be in Europe

Similarly for the comparison+logic cnl1 constraint:

1 in a MortgageAgreement

2 when the beginningDate exists and the initialEndingDate exists

3 then the beginningDate must be before or by the initialEndingDate

4.4 Extensibility

The final criterion used to evaluate the OR platform is its extensibility. Since
the system claims to offer domain-agnostic CNL capabilities for writing rules in
any domain, we need to gain some confidence that this can be feasible. As such,
extensibility can be broken down into three distinct categories:

– Language extensibility. Since the OR platform offers a constrained form of
English for expressing rules, this category considers how easy it is to alter this
constrained subset should a new type of (English) expression be required or
should a new type of executable expression be required (such as the example
of the enumeration sub-matching rules in the coverage example, which are
not currently expressible in CNL).

– Regarding extending the subset of English supported by the CNL, this
would require adding the new expressions in the Xtext parser that reads
the CNL document and creates the relevant model. Since adding new
English phrases is unlikely to affect the model itself but rather only the
parser, we believe that the OR platform is extensible in this regard as
only one component of the system needs to be adapted to add this func-
tionality.

– Regarding the extending of the semantic expressions offered by the OR
platform, this would require the extension of the CNL metamodel to
include these new concepts, as well as the extension of the Xtext parser
to include a way to express these rules in English. As the adaption of
two different interconnected components is required to achieve this, we
consider this to be a task of moderate difficulty for an extender of the
tool.

– Domain extensibility. If rules need to be written in a different domain, a
domain document will have to be created detailing the various concepts in
that domain and their relevant features. These concepts will then be usable
in the CNL document describing the rules written for that domain. Since
the CNL document is not bound to a specific set of concepts but to another



262 K. Barmpis et al.

document which will describe these concepts, we believe it is natural to change
from one domain to another without much effort.

– Execution technology extensibility. This category considers whether it is pos-
sible to change the data storage technology and still be able to execute CNL
rules. The execution layer of the OR platform is de-coupled from the lan-
guage itself, as the data can be accessed either through the Epsilon model
connectivity layer (whilst generating EVL rules), or through the use of a new
generator that takes the rule document alongside the domain and mapping
documents and produces executable code for the required storage technology.
As such, we have gained confidence that the OR platform is extensible with
respect to use of other data storage technologies.

Overall extending the OR platform for these three categories will require
adding/changing only one component in most cases (with two components need-
ing to be changed when new types of semantic expressions need to be added).

5 Conclusions and Further Work

Concluding, we have presented ORP and its CNL, aimed at offering executable
validation rules written in natural language. We have evaluated this framework
in a real-world case-study using a subset of the Bank of England’s business
rules and have obtained promising results in both the areas of coverage and
verboseness, whilst qualitative evaluation of extensibility is also promising.

The tool can be extended to provide advanced features to cover even more
types of rules, such as: n to 1 mappings; such mappings denote multiple fields in
the CNL needing to be mapped onto a single field in the data schema (that needs
to be disaggregated appropriately). Simple numerical disaggregations (such as
each CNL field containing an equal (numerically) subdivision of the target field)
can be performed within the CNL itself without the need for further informa-
tion, but any complex expression-based mapping will need to be presented and
incorporated into the mapping model. Reference resolution; to tackle data nor-
malization, references need to be navigated using unique identifiers of elements.
This navigation may require extra information such as naming conventions of
the target object (such as using a foreign key with a different column name to
the original, in a relational database, etc.).

Finally, investigating the applicability of using model-to-model transforma-
tions to various back-end technologies through an appropriate metamodel and
unparser (for example using an SQL metamodel and an SQL unparser to con-
vert a CNL model into an executable SQL model) can provide insight into this
alternative approach.
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Abstract. This article presents our experience in re-engineering a pres-
sure sensing system – a subsystem often found in safety-critical medical
devices – using the B formal method. We evaluate strengths and limita-
tions of the B method and its supporting platform Atelier B in this con-
text. We find that the current state-of-the-art of model-oriented formal
methods and associated tool-sets, especially in automatic code genera-
tion, requires further improvement to be amenable to a wider deployment
to industrial applications for model-driven engineering purposes.

1 Introduction

One of the ways to promote the use of formal methods for model-driven engi-
neering of industrial applications is to demonstrate the ability of formal methods
to automatically generate executable source code from “correct by construction”
software models [10]. However, automatic generation of code from a formal spec-
ification such that it requires no further human intervention or post-processing
before deployment is a weak link in the development chain [3].

Dataflow-oriented frameworks, such as Simulink1 or Safety-Critical Appli-
cation Development Environment (SCADE)2, are already popular for their
model-driven engineering capabilities in safety-critical domains such as avion-
ics and automotive systems [27]. The appeal of these frameworks stems from
their graphical notation and simulation capabilities. However, as compared to
model-oriented formal methods [12], these frameworks lack sophisticated verifi-
cation techniques which guarantee correctness [10] and also suffer from scalability
issues [28]. Model-oriented formal methods lend themselves better to abstraction
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and reduction techniques, the key ingredients in modeling and proving correct-
ness properties, and are supported by a variety of model checkers and theorem
provers.

In practice, however, many projects are not about developing new software
systems from scratch but improving on existing software systems or porting
them to new platforms. Thus, it would also be desirable to be able to use formal
methods in maintenance and re-engineering projects. Thereby it should also be
possible to transform only parts or individual modules. Doing so would improve
the quality of software systems and this would also increase the potential for
automation such as automatic code generation.

In this article, we report about our experience with the development of a con-
trol software for a Pressure Sensing System (PSS) – a subsystem of a hemodialy-
sis machine [21]. A typical pressure sensing system reads sensor data, transforms
the data into meaningful information, saves results, checks whether different val-
ues are within certain ranges (which depend on certain modes of running the
machine), and raises different types of alarm if defined thresholds are violated.

Based on our experience that stems from the application of formal meth-
ods on several industrial and academic projects, for example, hemodialysis
machines [23,24], aircraft landing gear system [16], machine control systems [25],
and stereoacuity measurement system [5], we decided to use the B method [2]
for the task. The B method enjoys extensive tool support, covers all the neces-
sary development phases (e.g., support for code generation), and the developers
of the PSS system already had experiences with it. Related model-oriented for-
mal methods either do not cover all phases of development, e.g., there is no
automatic code generator available for Alloy [14], Temporal Logic of Actions
(TLA+) [18] and Z [29], or have limited code generation capabilities, e.g.,
Abstract State Machines (ASMs) [8], Event-B [4] and the Vienna Development
Method (VDM) [15]. A detailed comparison of various model-oriented formal
methods concerning their modeling and code generation capabilities is available
in [17].

The main objective of the development was the automatic generation of C
language code from a formal requirements model that was, in turn, developed
through a re-engineering process. Due to space limitation (and also a nondisclo-
sure agreement with the case study provider), we do not include artifacts, such
as model and code, in the paper. We also deliberately omit a detailed discussion
on the “traditional” use of formal methods, e.g., requirements modeling, prop-
erty verification, assessment of code complexity, and proof statistics. For such
a discussion, interested readers may consult the work by Mashkoor [22] that
contains a detailed account of our effort of model-driven engineering of various
components of a hemodialysis machine including a discussion on verification and
validation. Here, we rather focus on the modeling and code generation experience
with the B method.

In the following, we first briefly describe the B method in Sect. 2. Then we
present the case study including its description, overall aim and objectives in
Sect. 3. In Sect. 4, we highlight the undertaken re-engineering process. In Sects. 5
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and 6, we report the experiences and challenges we met in the course of modeling
and code generation with the B method respectively. Section 7 discusses some
related work. The paper is concluded in Sect. 8 with a discussion on deployed
methods and tools.

2 B Method

B is a refinement- and state-based formal method. A B model describes data
structures and operations thereupon. A state is defined by particular values of
the variables of the data structure, and operations describe state transitions. A
so-called machine captures a part of the data structure, constraints on the data
structure, and operations on the values of the data structure. Requirements are
basically described either by constraints (this includes, e.g., safety requirements)
or by operations. In a way, a machine resembles programming code for a software
module, but it is more abstract, is not tailored to a specific platform, captures
requirements more directly, and is suitable for logical analysis.

Modeling in B starts with one or more abstract machines which are sup-
posed to capture the most basic requirement(s) in a concise way. These machines
are then refined by adding constraints and detailing the actions of operations,
according to additional requirements. This is done in separate files which are
called “refinements.” This way, the consecutive development of the formal spec-
ification is well documented. Verification includes proving that each refinement
preserves the specified properties of the abstract machine or of the previous
refinement.

A special case of refinement is called “implementation.” This does not add
further requirements to the model, but transforms the final specification model
into a form which is suitable for code generation.

The three different machine types – abstract machines, refinements, and
implementations – must obey different constraints regarding the language in
which they can be expressed. The language for implementations even has its
own name, B0 (“B zero”).

Tool support for modeling and analyzing in B is available in the form of
the Atelier B platform3. Atelier B includes an editor, syntax and type check-
ers, a proof obligation generator, automatic provers and an interactive proving
environment, as well as code generators for different target languages. A stand-
alone model checker and animator, ProB [20], is available for B and can be used
together with Atelier B.

3 Pressure Sensing System Case Study

3.1 Case Study Description

Pressure sensors are important ingredients of modern diagnostic and therapeutic
devices such as dialysis machines, respiratory devices, drug-delivery systems and
3 http://www.atelierb.eu.

http://www.atelierb.eu
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patient monitors. Pressure sensors provide either gauge or differential pressure
that is used for various purposes, e.g., extracting and measuring volumetric flow
rates, and total fluid volume transferred. This allows to monitor drug administra-
tion and to detect anomalies, in which case alarms can be raised. Consequently,
pressure sensors enhance the capabilities of medical devices by providing physi-
cians with the ability to measure blood pressure, administer precise quantities
of drugs or oxygen, and track patient compliance.

A PSS is safety-critical with respect to human health and life. For instance,
in dialysis machines, PSS are vital to ensure that the dialyzed fluid is pumped
back into the human body with the right pressure. If the pressure is not within a
certain range, an alarm must be raised and the flow must be disconnected from
the patient. Both admissible range and type of alarm are thereby dependent on
operation mode and other circumstances. Raising an alarm is part of the tasks
of PSS software, whose code may attain several thousands LoC (much of which
is dedicated to interfaces and data structures).

The PSS is not large but still a nontrivial system. Its implementation uses
relatively few programming constructs; in particular, no loops and no recursion
are used. Thus we could test only a roughly estimated half of B’s major language
constructs, and even less of common programming constructs. Yet this is not
uncommon for hardware control software, and the restriction of constructs used
facilitates safe modeling and programming – or code generation – as well as
verification. At the same time, complex data structures with many fields are used
in the interface, and many and often nested case distinctions have to be made, in
particular for determining whether different values are within permissible limits
and how to react if not, depending on various factors, including the operation
mode. The interface also requires many type casts to be performed, amongst
others. With an order of magnitude of a thousand lines of code, all this makes
the software liable to error and thus formal analysis of the code, and even more
correct construction by design through the use of formal methods, are bound
to improve correctness and thereby safety. We used this opportunity to conduct
a pilot project for evaluating the feasibility of methods and tools for eventual
deployment.

3.2 Aim and Objectives of the Case Study

The overall aim of the case study was to re-engineer the control software for a
PSS – a subsystem of a hemodialysis machine – piece-wise so that the subsys-
tem can be transformed into a form which allows for proving certain correctness
properties, e.g., by verification (by automatic theorem proving), validation (by
simulation), and automatic test case generation. More generally, the quality, cer-
tifiability, and maintainability of existing software should be gradually improved
in this way. The primary objectives of the case study were that

– C code should be automatically generated from a formal specification,
– it should be possible to directly integrate the resulting C code in the existing

software (without further human intervention or post-processing), and
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– the generated code should perform exactly the same externally visible actions
as the original one. (This objective should be validatable through inspection
of the generated code by developers of the original C code.)

Thus, the project crucially involved re-engineering. This is certainly not an
exceptional situation as we have ourselves experienced other cases that required
re-engineering of often completely undocumented legacy code before. There exists
also much safety-critical software for which only informal specifications are
available.

3.3 System Interface

The interface of the system’s most important procedure has the form,

void do sensor(const SHARED DATA ∗data access)

where SHARED DATA is a structure containing two other structures, one for data
which must not be changed (read-only) and another for data which may be
changed (write access) by the software; values of the writable structure are also
read within the module, e.g., old values for comparison with the new values
(before the old values are updated). In total, the two structures contain sev-
eral dozen data fields, most of which are writable. It should be noted that the
respective procedure parameter, data access, serves for both input and output;
there is no formal output parameter, although output is actually produced (as
a “side effect.”) Access control for the shared data is not implemented within
the system in question.

4 Re-engineering Process

In order to re-engineer the PSS, we first converted its code into an abstract
model in the language of a formal method (and the respective tool platform).
Then, we tried to automatically generate code out of this model such that the
result can again be integrated into the whole targeted software system.

There was no complete requirements specification available for the respective
PSS except for a document that briefly explained a large number of parameters
and modes of operation and gives a brief, pseudo-code outline of the required
actions. The detailed specification had to be extracted from the provided C code
(approx. 1K LoC).

To this end, we abstracted from the C code by means of the ASM method.
This method is more suitable for reverse engineering as it allows for n-to-m
refinement, where the number of algorithmic steps in the refinement (m) may
actually be smaller than the original number of steps (n). B, in contrast, allows
only for 1-to-1 refinement (through the definition of originally abstract sub-
machines). On the other hand, tool support for B is much better than for ASMs,
especially for verification and code generation, so we chose to use both methods
to exploit their relative strengths where appropriate.



Model-Driven Re-engineering of a Pressure Sensing System 269

One of the important cornerstones of the specification process is the repre-
sentation of requirements at various abstraction levels using the notion of refine-
ment. By following this technique, requirements are easy to specify, analyze and
implement. In this style of specification writing, requirements are incrementally
added to the model until the model is detailed enough to be effectively imple-
mented. If the refinement model of the method is flexible enough, such as that of
the ASM method, it is possible to reverse this process for the sake of increasing
abstraction.

It is not possible to directly translate an ASM model to a B model with an
off-the-shelf tool or method. However, both B and the ASM method are state-
based methods and corresponding models are similar enough to allow for manual
translation with a high degree of confidence, provided that the theoretically
more expressive ASM method is exploited only to the point where it remains
compatible with the expressive capabilities of B.

Once the informal requirements were formally specified, the next step was
to make sure that the requirements conformed to verification standards, i.e.,
requirements are consistent and verifiable. During this process, it was deter-
mined that a specification conformed to some precisely expressed properties
that the model is intended to fulfill such as well-definedness, invariant preser-
vation and other safety conditions. For verification of the model, we used two
well-established approaches of theorem proving and model checking. The for-
mer helped us to reason about defined properties using a rigorous mathematical
approach. The latter helped us to verify dynamic properties of the model by
exploring its whole state space. While theorem proving is helpful in ensuring

Fig. 1. Model-driven re-engineering process



270 A. Mashkoor et al.

safety constraints of the system, model checking is effective in verifying tempo-
ral constraints of the system such as liveness and fairness properties and also
help in validating the specification against requirements.

The last step of the formal development process is the translation of the
requirements specification into program code. This last refinement step is, in
fact, already very detailed and close to the implementation stage. The whole
re-engineering process is depicted in Fig. 1.

As the main objective of the work was code generation, the rest of the paper
will focus only on our experiences and challenges with the B method. However,
for a detailed comparison between the ASM and B methods, please see [17].

5 Modeling Experience

In the following, we present our modeling experience with the B method. We
first describe what we particularly liked about the method, and later, what was
limiting about it.

5.1 Strengths of the B Method

Composition

Support for composition and decomposition in a modeling method is important
for any domain of application when it comes to “larger-than-toy” systems [9].
Without decomposition, large complex models cannot be effectively over-viewed
and handled. Decomposition is also of great value while proving the correctness
of a large system. Composition is also important for model reuse.

Composition and decomposition are supported by the B method by allowing
to call operations of other machines and to access, e.g., data structures from
other machines. This works basically like calling procedures in procedural pro-
gramming languages, but B additionally provides a few options regarding the
visibility and accessibility of elements of other machines. Every machine has its
own file.

Refinement

Refinement is a way of specifying the requirements of a complex system through a
series of models for the same system with increasing depth of detail or, for reverse
engineering, with increasing abstractness. Refinement is the central element in
the B method. B defines a very powerful and well-supported refinement process.
B supports a one-to-one notion of refinement. This is rather strict but eventually
results in a higher degree of automatically discharged proofs. B allows to refine
a model up to the level of detail required for implementation, or actually right
down to programming code.

In practice, refinement relies very much on defining the actions of opera-
tions which can initially be the empty action, “skip.” That is, in the oper-
ations of one machine one can call operations of other machines which may
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initially be left abstract. For instance, in this project, one machine may call
another machine called “update shared data,” for which the algorithmic defi-
nition remains “skip,” i.e., abstract, because those details are not relevant for
the specification or for the current level of abstraction.

Nondeterminism

Support for nondeterminism in a modeling method is very useful for keeping
models abstract. B supports nondeterminism by allowing for nondeterministic
choice of values for variables out of a given set (corresponding to Hilbert’s ε oper-
ator) as well as by operators “ANY” (unbounded choice of value) and “CHOICE”
(nondeterministic choice of alternative substitutions). In this fashion, new con-
cepts can be added to specifications abstractly in the earlier refinements and
can be concretized in the later ones. For example, in this project, we initialize a
variable, potentially of a complex data type, with an unspecified value from this
data type – as in “l d sensor input :: SENSOR DATA.” Thereby no assumption
about a concrete value is made other than that it is of type SENSOR DATA.

Correctness Assurance

The possibility to express and prove properties, such as consistency, safety and
temporal constraints (e.g., termination, deadlock freeness, fairness, and liveness),
are integral to reason about the correctness of a safety-critical system. B enables
the expression of typical safety properties through invariants. An invariant is a
property that the specification is assumed to meet and maintain. Following is a
sample requirement from the project:

If the system is in the preparation mode or if the system is in the therapy
mode and if the critical fluid temperature exceeds the maximum tempera-
ture of 41 ◦C, then the software shall disconnect the supply of the critical
fluid within 60 s and execute an alarm signal.
The safety properties are specified in terms of invariants as follows:

inv1 systemMode = Preparation ∧ criticalFluidTemperature > 41 ⇒
systemState = { CriticalFluid �→ Disconnected} ∧ disconnectionTime < 60 ∧ alarm = ALM1

inv2 systemMode = Therapy ∧ criticalFluidTemperature > 41 ⇒
systemState = { CriticalFluid �→ Disconnected} ∧ disconnectionTime < 60 ∧ alarm = ALM2

The support environment Atelier B generates POs to make sure that the
system specification is well-behaved, i.e., maintains system invariants.

5.2 Limitations of the B Method

No Loops Except in Implementations

A restriction for abstract machines and refinements except for implementations
– the last refinement steps before code generation – is that no loops are allowed
(in implementations, WHILE loops are possible). While we did not need loops in
our case study (so far), this restriction can certainly be critical.
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Data Types

In a specification and an associated abstract model, usually very few data types
are really needed. For this purpose, the data types provided by B (including
booleans, integers, arrays, and structures) are largely sufficient. However, in an
associated programming code – which also has to take into account efficient use
of resources, amongst others –, we often need ultimately more such as a 16-bit
integer, a 8-bit unsigned integer, and strings. In the context of the programming
language C, pointers are also important constructs whose support is not present
in typical modeling languages, so as B. In our case, already the modeling of the
interface turned out to be a problem due to this nonexistent support of pointers.

Subsets

In B0 - the restricted B “dialect” required as a basis for code generation - all
enumerated types have to be redefined as integer intervals. Arbitrary sets of
integers are not allowed. But this precludes the definition of subsets (sub-types)
whose members are not consecutive members of the base type. For instance,
when we have a range of (named) colors as the base set, then we cannot create
a greater number of arbitrary subsets of that – say, rainbow colors, RGB-colors,
reddish colors, etc. – even with the most fancy ordering of the colors in the base
set. (n.b., the result – an interval – is not a “set” in the mathematical sense any
more because of the imposed ordering!) In general, the limit is two subsets.

In our case study, certain data types are used all of which may have the
value NO DATA. The definition of such types is not possible in B0 because (a)
more than two of such otherwise disjoint types cannot be defined as sub-types
of a common supertype (or SET), as stated above, and (b) NO DATA can only be
defined once and cannot be a member of different sets (which have to be disjoint
when defined in SETS). (Note that we are only talking about enumeration sets
here – with numerical types (e.g., INT), this is not possible at all.) A workaround
for the “NO DATA” problem is to define different constants for different types –
NO DATA X, NO DATA Y, ... –, but this is not compatible with given interfaces.

Note that this problem only surfaces at the level of implementations, i.e., the
last refinements before code generation; in B proper, arbitrary subsets can be
defined (as constants).

Restrictions on Record Handling

Single record fields cannot be directly set via an operation call. Instead, an
auxiliary variable has to be used (i.e., such an assignment requires two lines of
code instead of one). We suspect that there may be further, similar restrictions
for handling record fields; see also code generation problems regarding struc-
tures/records in the next subsection.
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Identifiers

The language B imposes restrictions on identifiers: scalar parameters of machines
must be lowercase only while set parameters must be uppercase only. While this
had no direct influence on our case study (although the use of machine param-
eters might be considered in further development), this indirectly imposes the
convention to use only uppercase names for sets in general, and only lowercase
names for constants and variables, for instance. This, however, may clash with
conventions of existing code (and did so in our case study).

No Pragmas

It seems impossible to model compiler directives (pragmas) in B. Pragmas might
be seen as too implementation-specific constructs to earn a place in formal mod-
eling, but they are frequently used in legacy code (including the one we dealt
with; e.g. #if 0 ... #endif) and may be required when just single modules
of a larger system are to be modeled. (Note that #include and #define state-
ments are automatically generated by Atelier B from respective IMPORTS or SEES
sections or from constant definitions, respectively.)

6 Code Generation Experience

In the following, we present our experience with code generation. For the case
study, we used the community version of Atelier B including its code generator
that is released for public use after every two years4.

6.1 Strengths of the Atelier B Suite

The provided tool support is very good. Atelier B comes with code generators for
different target languages, including C, C++, Java, and Ada. Although the gen-
erated code requires some post-processing, it is a good basis for the implementa-
tion of a B specification. The generated code is well-structured, well-documented
and legible.

6.2 Limitations of the Atelier B Suite

Identifiers

In order to fit into a given interface, identifiers have to match exactly. However,
this is not possible with the code generator of Atelier B. This code generator
produces identifiers – most importantly, procedure names – as a combination of
the machine name and the operation or set or constant name, separated by a
double underscore. This is motivated by the need to avoid identifier clashes and
4 According to ClearSy, they will fix some of the concerns raised in this paper in the

upcoming version of the code generator.



274 A. Mashkoor et al.

related scoping problems (see [1, p. 6]). However, this renders it impossible to
get procedure (and custom type) names prescribed by an existing interface.

This is a crucial problem in a project setting where only a part of an existing
piece of software shall be transformed to code generated from a formal model.
Manually rectifying all these names is tedious and error-prone. Automated post-
processing would have to be performed separately for each project5.

Structures and Records

The translation of structures (“struct” types) is actually faulty: the result can-
not be compiled without post-processing (we did manual corrections).

In the B model, we had a single definition file in which all the struct types
were defined. But in the generated code, any typing declaration with such a
structure was individually expanded to the whole type definition with all fields
and their types, and everywhere it was given a different name. In the interface
of a procedure with two parameters of the same struct type, this struct was
twice expanded and given two different names. The respective type names (R 1,
R 2, ...) even differed between the header files and the corresponding definition
files.

To mend this, in post-processing, one has to make the necessary struct
definitions once and for all in some header file and then change every occurrence
of this type to the respective type name. If one has large structures (in our case,
with up to 36 fields), this is hard to automate, even using regular expressions,
and error-prone. (The regular expression “struct R ? {∗}” actually matches
any occurrence of any structure type, and the number attached to R does not
give any indication as to which particular structure type is actually given in the
respective place.)

Miscellaneous Observations

In B0, the language from which code can be generated, we discov-
ered a strange restriction on expressions, i.e., for IF conditions: a state-
ment of the form “IF a < (b + c) THEN ...” is not possible (though
it is in B in general); instead, one has to add an auxiliary statement:
“aux := b + c; IF a < aux THEN ...”6.

An issue related with data type restrictions as well as with identifier restric-
tions is that the generated code requires the Standard Library for C. This may
seem reasonable at first sight, but in practice, the Standard Library is not always
used in industrial practice. This is a real problem in particular when the task
is to obtain code which fits into given interfaces of a larger, existing system. In

5 According to ClearSy, in the upcoming version of the code generator, custom iden-
tifiers (without prefix) would be possible. This would indeed constitute a major
improvement and should be regarded as an important and feasible requirement for
code generators.

6 According to ClearSy, this construct eases the proving process.
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such a case, there is no realistic possibility to change the libraries used or to
rename types (or other identifiers). At the moment, further post-processing is
required if, e.g., the Standard Library is not used or not supported in the target
environment.

7 Related Work

Bert et al. [7], apart from our work, also critically evaluated the performance of
the Atelier B platform in this direction and have suggested several improvements.
An experience report involving Atelier B by Beneviste [6] briefly mentions code
generation for VHDL. However, both of these aforementioned works were not
really useful for our case study.

Event-B is a variant of B for higher-level specification, verification and val-
idation of systems and environments where software systems are supposed to
operate. We, alternatively, tried to generate code from an Event-B model of the
pressure sensing system but failed. It turned out that none of the available code
generators for Event-B was usable for our purpose. The one by Wright [30] was
custom-built and only supports a part of the Event-B syntax. The most signif-
icant shortcoming is that it does not support contexts and therefore cannot be
used when constants and sets are used in a model. The one by Fürst et al. [13]
is not publicly available, thus we could not use it at all. EB2ALL [26] explicitly
requires the manual alteration of code after generation. This is contradictory to
one of the objectives of the case study. The Tasking Event-B tool [11], which
appears to be the most mature of all, is compatible only until Rodin 2.8 (the
current Rodin version at the time of writing this paper is 3.2) and may only
work properly on 32-bit machines; however, such a machine was not available
for the case study.

8 Conclusion

The use of formal methods is “highly recommended” for safety-critical software
by international standards and can actually also be economic in the long run
for other kinds of software. Yet there are still a couple of hurdles for a more
widespread use of formal methods in industrial software development, which
have to be addressed one by one. Two such issues are the extra effort invested
in formal modeling and the potentially unsafe transition from the specification
to the implementation. Both issues can be tackled by means of automated code
generation from formal models, i.e., from those models which are used in formal
specification and analysis.

We have put the current state-of-the-art tool support for code generation
to test with a case study drawn from real industrial software development. We
have chosen B for this purpose because it is well-suited for ordinary software
development, is well-known also in parts of industry, supposed to be mature,
has commercial tool support including code generation, and there was already
expertise available within the team.
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The results of our practical investigations are mixed. First and foremost: yes,
generating code from B models, using B’s standard tool Atelier B, does work.
However, there are several restrictions which we have encountered, ranging in
severity from inconvenient to critical. Some of these restrictions not only concern
code generation, but also modeling in B.

We believe that the necessary improvements are feasible with reasonable
effort. For the scenario which the formal methods community typically envisages,
i.e., where one starts with a completely new development from requirements
engineering via formal specification and analysis to design and coding (etc.),
code generation already works quite well when we take aside type restrictions,
the problems with records which we encountered, as well as efficiency issues.

But for a scenario which involves re-engineering and improving a single mod-
ule out of a large system by means of (e.g.,) the B method, there are still major
shortcomings, as we have described in detail in this paper. Note, however, that
other application examples are likely to identify more issues; to name just a few
examples, we did so far not touch upon loops, recursive function calls, float (real)
types, or strings. Some of the necessary improvements will probably require more
customization of the tool. This concerns enhanced support of (custom) types in
particular. It should be noted, though, that the tool is still being improved and
certain issues may even have been solved by the time this paper is actually
published, or will be solved in the near future.

According to ClearSy [19], almost all safety-critical products using B have
their own code generator because of the constraints imposed by the platform
running it. However, this further confirms our impression that off-the-shelf code
generation is still an open issue (which probably holds for other formal methods
as well).

A factor for the successful application of a particular method which cannot
be neglected is the existence of a dynamic community wherein experiences can
be shared and issues can be discussed. The B method has rich tool support and
a sizable community in this regard. On the other hand, more popular methods
with larger and more diverse communities, such as Event-B and TLA+, are
either not universally applicable, or do not support code generation, or both. This
suggests that a new impetus is needed for general-purpose formal methods which
support the whole software development cycle, from specification and analysis to
code generation and test suite generation to maintenance and versioning/product
family development.

Still, it must be noted that, in principle, most important technologies and
tools are there and do work. What is desirable now is further improvement and
consolidation of these methods and tools.

We end with final remarks for practitioners. When starting to use formal
methods in software development, the goals of their introduction must be clear
and expectations need to be realistic. Furthermore, it is important to select a
suitable method for the chosen goals and with respect to the given organizational
environment and similar parameters. It should also be considered to introduce
formal methods incrementally so as to minimize impact on development time and
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costs at each step and thus lowering the economic and psychological thresholds
which cannot be completely avoided at the beginning. This article may help to
assess what can be expected from the current state-of-the-art of some important
aspects of formal methods. This article also explicitly addresses the scenario
of incremental introduction, in particular, using formal methods for selected
modules out of a larger system.

Acknowledgment. Thanks to Thierry Lecomte (ClearSy) for providing feedback that
helped a lot to improve the quality of the presented work.
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Abstract. AUTOSAR (AUTomotive Open System ARchitecture) is an
open industry standard for the automotive sector. It defines the automo-
tive three-layered software architecture. One layer is application layer,
where functional behaviours are encapsulated in Software Components
(SW-Cs). Inside SW-Cs, a set of runnable entities represent the internal
behaviours and are realized as a set of tasks.To address AUTOSAR’s
lack of support for modelling behaviours of runnables, other modelling
languages such as Simulink are employed. Simulink simulations assume
tasks are completed in zero execution time, while real executions require
a finite execution time. This time mismatch can result in failures of ana-
lyzing an unexpected runtime behaviour during the simulation phase.
This paper extends the Simulink environment to accommodate the tim-
ing relations of tasks during simulation. We present a Simulink block
that can schedule tasks with a non-zero simulation time. This enables
more realistic analysis during the model development stage.

Keywords: AUTOSAR · Simulink · Simulation · Scheduling

1 Introduction

Modern automotive systems are software intensive and the complexity of these
systems is rapidly growing. There are many critical functions of modern vehicles
that rely on software. An example is embedded controllers that coordinate with
each other to perform advanced control functions such as autonomous driving,
active safety, and infotainment. All of these functions are related to software
which indicates cars contain some of the largest pieces of software1. A modern
high-end car features around 100 million lines of code. To address the challenge
of automotive systems, a worldwide development partnership AUTOSAR was
formed [1]. AUTOSAR standardizes the entire automotive electronic software
architecture and development methodology [16].

1 http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code.
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While there are many tools that support the AUTOSAR process, MAT-
LAB/Simulink (ML/SL) is a popular option for developing automotive software
that meets the AUTOSAR standard, providing a tool chain that supports the
AUTOSAR development process. We can directly use Simulink blocks to develop
AUTOSAR software components. Embedded Coder2 provides the mapping of
the Simulink models to AUTOSAR components and generates the AUTOSAR
compliant production code.

Simulation is a process of representing the actions of a real-world system.
Through simulation, engineers can evaluate the system design and diagnose prob-
lems in the early phase of the design process. However, the Simulink simulation
algorithm dose not take every factor of the real world into account such as the
time of real-world computation. In other words, software tasks are completed in
zero execution time in the simulation stage. In the real world, software tasks take
non-zero execution time that varies according the hardware platform. Hence,
simulation cannot reflect a real execution at run-time on a specific target hard-
ware platform. Therefore, developing a more realistic model of an AUTOSAR
based software application in Simulink is needed.

AUTOSAR supports a modified version of the priority ceiling scheduling [7].
In this approach, when a lower priority process uses a shared resource, and a
higher priority process needs access to the shared resource, the priority of the
lower priority process is raised to a higher priority so that it may finish using
the resource. This is not always the desired behaviour. Ideally, the contention
over the shared resource should be minimized during the modelling phase. How-
ever, this requires accurate simulation of the timing of each of the software
components.

Automotive ECU (Electronic Control Unit) software consists of multiple
threads which are often encapsulated in time-triggered tasks and executed on
a Real-Time Operating System (RTOS). The use of model-based development
in creating the ECU software is limited in that a thread in an ECU is derived
from multiple Simulink/StateFlow models that are independently developed,
validated and code-generated. The concept of a thread and timing are largely
absent at the time of development and validation of the models. Thus there is
a large discrepancy between the run-time semantics and the models giving rise
to additional work at run-time. This can be avoided if the run-time abstractions
of time-triggered tasks can be captured early at the modelling level. This would
enable carrying out detailed concurrency and timing analysis early in the cycle
thereby reducing the overall time and efforts involved in the development and
validation cycle of ECU development. In this research, we propose an approach
that can reflect the real system behaviours during the simulation phase and in
the future, identify race conditions at the model level.

2 https://www.mathworks.com/products/embedded-coder.html.

https://www.mathworks.com/products/embedded-coder.html
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1.1 AUTOSAR

AUTOSAR aims to meet the needs of future cars, provides an open industry
standard among suppliers and manufacturers. The best way to achieve this goal
is to minimize the coupling of software modules through abstraction. Hence,
AUTOSAR defines three main layers: the application layer, the runtime envi-
ronment (RTE), and the basic software (BSW) [17].

Fig. 1. AUTOSAR components, interfaces and runnables. (Adapted from [1])

The functions in application layer are implemented by SW-Cs, which encap-
sulate part or all of the automotive electronic functions as shown in Fig. 1. The
component communications are via a new concept VFB (Virtual Functional
Bus), which is an abstraction of all communication mechanisms of AUTOSAR.
Using VFBs, engineers abstract the communication details of software compo-
nents. Inside the SW-Cs, the internal behaviours are represented by a set of
runnables. A runnable is the smallest piece of code that can be independently
scheduled either by a timer or an event. Finally, runnables are implemented as
a set of tasks on a target platform. Runnables from different components may
be mapped into the same task and must be mapped in such a way that ordering
relations and causal dependencies are preserved.

1.2 AUTOSAR Support in ML/SL

In fact, ML/SL has supported AUTOSAR compliant code generation since ver-
sion R2006a. ML/SL and Embedded Coder provide a powerful platform for
AUTOSAR software development from behaviour modeling to production code
generation. First, each single AUTOSAR concept can be represented by an
ML/SL block. Existing ML/SL blocks can be applied to AUTOSAR develop-
ment and no additional AUTOSAR-specific blocks are required. Table 1 shows
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examples of key mappings between AUTOSAR concepts and Simulink concepts
[15]. Second, ML/SL provides a Simulink-AUTOSAR Mapping Explorer for con-
figuring the mapping of Simulink inports, outports, entry-point functions, data
transfers, and lookup tables to AUTOSAR elements. Last, Embedded Coder
software supports AUTOSAR-compliant C code generation and AUTOSAR
XML(ARXML) description files exporting from an ML/SL model.

Table 1. Examples of ML/SL and AUTOSAR concepts mapping

ML/SL AUTOSAR

Subsystem Atomic software component

Function call subsystem Runnable

Function calls RTEEvents

1.3 Simulink

ML/SL system models are blocks connected to each other by signals between
input and output ports. ML/SL simulation engine determines the execution
order of blocks before simulation in a sorted order, called the block invoca-
tion order. The block invocation order can be determined by the data depen-
dencies among the blocks. ML/SL uses two kinds of block direct feedthrough
and non-direct feedthrough to ensure the simulation can follow the correct data
dependencies. A block for which the output ports is directly determined by its
input ports is a direct-feedthrough block, while a block for which inputs only
affect its state is a non-direct feedthrough block. ML/SL use the following two
basic rules to form the sorted order [11]: A block must be executed before any
of the blocks whose direct-feedthrough ports it drives; Blocks without direct
feedthrough inputs can execute in arbitrary order as long as they precede any
block whose direct-feedthrough inputs they drive. All blocks are scheduled in a
sorted order and executed in a sequential execution order. The simulink engine
maintains a virtual clock to execute each ordered block at each virtual time.
Hence, a Simulink block is usually exhibited as a zero execution time behaviour.

Simulink Coder3 not only supports code generation for ML/SL models,
it offers a framework to execute the generated code in a real-time environ-
ment. The framework assures the generated code follow the standard of sim-
ulation engine and the implementation should preserve the semantics of models.
Simulink Coder has two code generation options for periodic tasks: single task
and multi-task. Single task implementations can preserve the semantics during
the simulation because the generated code is invoked by a simple scheduler in a
single thread without preemptions. For multi-task implementations, the gener-
ated code is invoked by a rate monotonic (RM) [8] scheduler in a multithreaded
RTOS environment, where each task is assigned a priority and preemptions occur
3 https://www.mathworks.com/products/simulink-coder.html.

https://www.mathworks.com/products/simulink-coder.html
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between tasks. As a consequence of preemption and scheduling, the implementa-
tion semantic can conflict with the model semantic in a multi-rate system. Hence,
the Simulink simulation does not always reflect the actual model behaviours in
implementation. In this work, we develop a scheduler that can schedule the exe-
cutions of ML/SL blocks with priorities and preemptions during the simulation.

1.4 Scheduler

ML/SL uses a scheduler mechanism to schedule the execution of Simulink sub-
systems in a specific order [12]. The scheduler is implemented by Stateflow charts
and it implicitly controls the order of execution in a Simulink model. There are
three kinds of schedulers that can be implemented using Stateflow including
Ladder logic scheduler, Loop scheduler, and Temporal logic scheduler. In this
work, we developed a new scheduler to replace the ML/SL scheduler to enable
a more realistic simulation.

2 Related Work

Logical Execution Time (LET) [6] was introduced as part of the time-triggered
programming language Giotto. It abstracts from the physical execution of a real-
time program to eliminate I/O execution time so that a LET model execution
is independent from its actual execution. LET uses ports to define a logical task
execution, input ports take values at the start of a task and the output ports
release the values at the end of the task execution. LET has an assumption that
actual task execution should be able to be finished during the logical execution.
Derler et al. [3] demonstrated that real-time software based on LET paradigm
has the ability to exhibit the equivalent behaviour on a specific platform during
the simulation phase in ML/SL. However, Naderlinger et al. [14] points out that
data dependency problems may occur when simulating LET-based software.

In order to keep data consistency and preserving semantics, Ferrari et al.
[4] discuss the proof of absence of interference, disabling of preemption, com-
munication buffers and semaphores as possibilities on a single-core resource in
the context of AUTOSAR. Zeng et al. [18] present similar mechanisms for the
preservation of communication semantics for a multi-core platform.

TrueTime [5] simulator is an ML/SL based network simulation toolbox and
it is good for co-simulation of scheduling algorithms, control algorithms, and
network protocols. TrueTime is designed as a research tool that requires a learn-
ing curve for system engineers to use this tool. Additionally, tasks cannot be
expressed directly using production code and requires a special format for func-
tion code.

Cremona et al. [2] propose a framework TRES, which is used for a co-
simulation of the software model and the hardware execution platform. It adds
the schedulers and tasks to Simulink models to model the scheduling delays.

Recently, Naderlinger [13] introduces timing-aware blocks into ML/SL, which
consumes a finite amount of simulation time so that simulation behaviour of
ML/SL models is equivalent to real-time execution behaviour.
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Our work differs in the sense that we aim to bring the impact of real-time
execution to the semantics of model simulation in the context of AUTOSAR.
Hence, our approach natively support AUTOSAR development in ML/SL and
the model scheduler can be integrated into code generation.

3 Model Scheduler

In order to reflect the real-time execution of an AUTOSAR Simulink model
on a actual hardware during the simulation process, we propose a customized
scheduler, Model Scheduler, which schedules the order of execution of each sub-
system at a specific time so that Simulink simulation is able to capture the real
behaviour of AUTOSAR applications.

Our model scheduler replaces the Stateflow temporal logic scheduler in the
ML/SL model and schedules a set of given tasks with non-zero execution time
so that the model can have a real-time behaviour during simulation. The model
scheduler is implemented as an S-Function block that can easily substitute for
the Stateflow scheduler in an ML/SL model. The model scheduler takes tasks
and runnables information as input parameters and outputs scheduled subsystem
function call triggers. Inside the model scheduler, we implemented a preemptive
scheduling algorithm written in C based on Fixed Priority Scheduling (FPS) [9]
algorithm, which computes the scheduling and the model scheduler outputs a
subsystem function call trigger when a task is scheduled. A function call trigger
is a control signal, which triggers the connected subsystem to execute when a
control signal has function-call event.

While one of the standard scheduling algorithms in OSEK/AUTOSAR is
priority ceiling scheduling, we would like to minimize the changes in priority
of tasks due to shared resources. Thus we use FPS so that we can identify
race conditions that occur in the model. In FPS, each task has a fixed priority
preassigned by users, and they are stored in a ready queue in an order determined
by their priorities. The highest priority task are selected from the ready queue
to execute. The oldest task will be selected if there are more than one of same
priority tasks exist. In a preemptive system, if a higher priority task is scheduled
during the execution of a lower priority one, then the higher priority task is
executed immediately and the lower priority task is moved to the ready queue.
RM scheduling algorithm is one of the widely used FPS algorithm and it is used
in Simulink Coder for code generation. In RM scheduling, the priority of a task
is associated with its period, a task has a smaller period then it has a higher
priority.

The S-Function provides a mechanism to extend the capabilities of ML/SL
by customizing blocks and S-Functions can be accessed from a block diagram so-
called S-Function block. Customized algorithms can be added to Simulink models
via S-Function blocks written either in MATLAB or C. An S-Function block has
a parameter field that users pass specify parameters to the corresponding S-
Function block. S-Functions communicate with the ML/SL engine through a
set of callback functions so-called S-Function API. Thus, S-Functions make it
possible to control ML/SL simulation process by using a customized algorithm.
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4 Tool Implementation: Model Scheduler

Model Scheduler is implemented as a custom configurable Simulink library block
that includes an FPS algorithm written in C and invokes the connected subsys-
tem in the ML/SL interactive development environment.

An S-Function contains a set of callback functions, which the simulation
engine executes at different stages during simulation. We use output function
(mdlOutputs) that computes the output values based on the input parameters.
Before running a simulation, we need to provide the necessary parameters in
the block parameters dialogue shown in Fig. 2. The parameters include Task,
Priority, Period, Runnable, Task Mapping, Execution Time. The user-entered
parameters are implemented by a block mask, which provides the parameter
dialogue box.

Fig. 2. Model scheduler parameters Fig. 3. Task active chart

A simple example shown in Fig. 4 illustrates the usage of our model sched-
uler. In this example, Model Scheduler schedules three runnables and they are
mapped to two tasks. Each subsystem represents an AUTOSAR runnable. In
general, the execution order of specific Simulink subsystem is determined by a
Stateflow scheduler. In our case, the Stateflow scheduler is replaced by our tool
Model Scheduler and each Simulink subsystem is scheduled to be executed at a
specified time with a finite execution time. Model Scheduler yields three outputs.
The first output port is the trigger signals that periodically output the specified
time for each subsystem. The trigger signals are connected to a demux block
which splits the multiple trigger signals to a single signal to trigger each subsys-
tem. The second output port is a runnable activation chart that illustrates each
runnable schedule. It shows the start and finish time of each runnable including
the runnable execution time. The third output port is a task activation chart
that illustrates each task schedule.

Model Scheduler is based on an FPS algorithm and implemented as a level 2
S-function written in C. Our algorithm takes as arguments the six input param-
eters mentioned above. The parameters can be grouped into two levels, one
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Fig. 4. A simple example of using model scheduler to schedule AUTOSAR SW-Cs.

describes the properties of a task such as Priority and Period the other one
describes the properties of a runnables such as Task Mapping and Execution
Time. Model Scheduler reserves this two-level information and computes the
current active runnable signal. In this work, we assume execution time of each
runnable is already known. The execution time could either be measured by
running the code on a test platform, or by analysing the behaviour of generated
code (or Simulink model) by off-the-shelf tools. Normally the FPS algorithm
computes a scheduling table, then a runtime dispatching algorithm invokes each
task according to the precomputed table.

Simulating a model has three phases: model compilation, link phase and
simulation loop phase [10]. The Simulink engine each time goes through the
loop is called as one simulation step. In each simulation step, Model Scheduler is
executed and computes the running task and runnable of current sampling time
and yields a signal to the output port when the current sample time is a beginning
of a task period. The output signal triggers the connected subsystem, which is
a runnable of the current execution task. The model scheduler determines the
current active runnable along with the associated task information at each single
simulation step. If a task or a runnable is expected to run at this simulation
step, then model scheduler invokes a macro to trigger the subsystem connected
to Model Scheduler.

Let us see an example of how Model Scheduler performs the schedule compu-
tation. The simple example (Fig. 4) has the following settings shown in Table 2.
During the simulation loop phase, task T1 and T2 are all scheduled at the first
simulation step and Model Scheduler maintains a scheduling table to store the
scheduled tasks. T1 is the only executed task at the first simulation step due
to its higher priority and the execution of T1 takes 3 ms as only runnable R1 is
mapped to T1. In the first simulation step, Model Scheduler output a function-
call signal to trigger T1 that is connected to the first output port of demux
Runnable1 subsystem. There is no output signals at the simulation step two
because it is still during the execution of T1. Until simulation step three, T1

completes its execution and it is time to trigger T2. R2 and R3 are mapped to
T2 so they have the same priority and period. R2 is executed at this simulation
step because its connection order is before R3. R3 is executed right after the
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completion of R2. After execution of R3, that is an idle time so there is no trig-
ger signal being output. Figure 3 illustrates the task execution process during
each simulation step. T1 is active during the first three simulation steps and T2

is active at the following six simulation steps in the first 10 ms period.

Table 2. The simple example settings

Task Period (ms) Execution time (ms) Priority Runnable

T1 10 3 2 R1

T2 20 3 1 R2

T2 20 3 1 R3

5 Case Study

In this section, we use AUTOSAR compliant ML/SL models scheduled by our
model scheduler to show the scheduler can capture the actual behaviour on a
hardware platform during a Simulink simulation.

5.1 AUTOSAR Model Scheduling

First, we demonstrate a simple example that shows how Model in the Loop (MIL)
analysis benefits from our model scheduler. Figure 5 shows a simple example
using a model scheduler to schedule four runnables mapped to three tasks. The
details of settings are shown in Table 3.

Fig. 5. Using model scheduler to schedule AUTOSAR SW-Cs.
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Table 3. Using model scheduler parameters setting

Task Period (ms) Execution time (ms) Priority Runnable

T1 10 3 3 R1

T2 20 3 2 R2

T2 20 5 2 R3

T3 30 2 1 R4

In this example, we have four runnables which are mapped to three tasks:
R1 is mapped to T1; R2 and R3 are mapped to T2; R4 is mapped to T3. The
model scheduler takes parameters of tasks as input to calculate three outputs.
The first output is the runnable triggers which are connected to four subsystems
accordingly. The other two outputs are time execution diagrams of tasks and
runnables.

If we simulate this example using a standard scheduler, the execution order
of this example is T1T2T3 or R1R2R3R4 respectively and they are completed
within the first 10 ms period based on tasks settings. In reality the above order
is not possible, since each task requires a certain amount of execution time on a
hardware platform. Our scheduler tries to be realistic by taking execution time
into account.

Figure 6 shows runnables execution diagram of our scheduler. There are four
output signals and each output signal represents each runnable. The first signal
shows the execution of R1 in T1. It has the highest priority so it is trigged at
the beginning and takes 3 ms execution time. After the execution of T1, the
next highest priority is T2 with 2 runnables. R2 is triggered at time of 3 ms and
takes another 3 ms execution time. R3 is supposed to be triggered right after
the completion of R2. However, R3 is triggered right after the completion of the
second R1 instance because the period of T1 is 10 ms and the execution time for
both R1 and R2 are 3 ms. There is only 4 ms left before R1 is triggered at next
period and it is less than the execution time of R3 of 5 ms. Because a runnable is
the smallest atomic component within a SW-C, there is no preemption between
runnables. R3 cannot be preempted by R1. Thus, R3 is scheduled to be executed
after the completion of second R1 instance. The execution order of our scheduler
is T1T2T1T2T3 or R1R2R1R3R4. Figure 7 shows the tasks execution diagram.
There are three output signals represent tasks execution. During the first period
of T2, T1 is triggered twice and T2 is preempted by T1.

5.2 Scheduler Example

In this section, we use an example model, which is scheduled by two different
schedulers the Stateflow Scheduler and Model Scheduler, to show our scheduler
is able to simulate actual behaviours during the simulation phase. The State-
flow scheduler takes zero execution time during the Simulink simulation. On the
contrary the model scheduler triggers each subsystem which takes a specified
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Fig. 6. Runnables execution time dia-
gram

Fig. 7. Tasks execution time diagram

execution time during simulation. By comparing simulation results between
these two schedulers, the potential unexpected behaviours of Simulink models
are exposed.

Fig. 8. An example using stateflow scheduler

Figure 8 shows the normal example which uses a Stateflow temporal logic
scheduler to trigger each task. The parameter settings are the same as Table 2
except the execution time of R3 is 5 ms. There are three runnables (R1, R2, R3)
mapping to two tasks (T1, T2) in this example. R1 writes a constant value to a
global variable A. R2 reads A first then writes the summation of A and its delay
value to A. R3 reads A then subtracts its delay value from A, and outputs the
result. Figure 9 shows the simulation output of this normal example. The three
signals are the outputs of R1, R2, R3 from top to bottom. From this simulation
result, the output of R3 is an increasing number. In the normal simulation, the
execution order are T1T2 or R1R2R3.

We replaced the Stateflow scheduler with our model scheduler and run sim-
ulation again, we can get a different result shown in Fig. 10. In the second sim-
ulation, the output of R3 is a pattern of zero, constant value, which is different
from the previous example. The execution order of this example are T1T2T1T2

or R1R2R1R3. In the previous example, R3 always reads A which is written by
R2. Using our scheduler, R3 reads the global variable A from the output of the
second R1 instance because T2 is preempted by T1 during the execution of T2.
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Fig. 9. Output of stateflow scheduler Fig. 10. Output of model scheduler

So far, we have demonstrated model scheduler is capable of simulating
task interference while runnables are atomic execution. However, runnables run
within the context of a task and tasks can be preempted. Hence, runnables can
be preempted by runnables in other tasks. In order to show model scheduler is
able to simulate the preemption at runnable level, we manually split a single
runnable into several function-call subsystems so that our model scheduler treat
these subsystems as “runnnables” to simulate runnables preemptions. This split-
ting example is depicted in Fig. 11. When we set the parameters accordingly, we
can simulate the preemptions at the runnable level.

Fig. 11. Splitting a single runnable into three subsystems

6 Limitations

One of the shortcomings of model scheduler is that our model scheduler does
not yet support runnable preemption automatically. In reality, runnables can be
preempted by another task during its execution. If we can simulate this scenario
during simulation phase automatically, it can increase the confidence of design
and reduce human effort. Since the time for each block is an estimation, it may
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not accurately represent the real time of the system. Multiple simulations with
different time parameters may be needed to cover the possible behaviours of the
system.

7 Future Work

We plan to automatically transform Simulink models to subdivide a runnable
into subsystems automatically. Additionally, our current model scheduler only
support periodic events. Both periodic and aperiodic tasks exist in real-time
system and aperiodic events are necessary in automotive software. One possible
area of expansion is to support aperiodic events in our model scheduler. Further,
we could add more real-time scheduling algorithms such as Earliest-deadline-first
(EDF) scheduling to model scheduler so that engineers can verify the design
under different scheduling algorithms to meet the requirements of diverse target
platforms.

We also plan to use the modified models to identify interference between
tasks. Currently, our model scheduler requires execution time as parameters
to perform simulation so that we can find potential issues during the simulation
phase. In the future, we perform a model scheduler simulation based on the input
parameters, we can model the execution times as variables inside the scheduler
and change the value of execution until we find a potential interference.

8 Conclusion

Model scheduler is able to schedule Simlulink models in a more realistic way so
that ML/SL simulation can reflect the real-time execution on the target plat-
form. This was implemented in an S-Function block based on FSP algorithm
written in C. Model scheduler can manage the hierarchy of tasks and runnables,
moreover runnables are scheduled according to the tasks parameters. We have
demonstrated a few simple examples to show the abilities of model scheduler. The
approach discussed in this paper enables that ML/SL simulation takes software
execution time into account without any modification to the current models. It
can fill in the gap between the semantics of model simulation and its real-time
execution.
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Abstract. Recent approaches contribute facilities to breathe life into
metamodels, thus making behavioral models directly executable. Such
facilities are particularly helpful to better utilize a model over the time
dimension, e.g., for early validation and verification. However, when
even a small change is made to the model, to the language definition
(e.g., semantic variation points), or to the external stimuli of an execu-
tion scenario, it remains difficult for a designer to grasp the impact of
such a change on the resulting execution trace. This prevents accessible
trade-off analysis and design-space exploration on behavioral models. In
this paper, we propose a set of formally defined operators for analyzing
execution traces. The operators include dynamic trace filtering, trace
comparison with diff computation and visualization, and graph-based
view extraction to analyze cycles. The operators are applied and vali-
dated on a demonstrative example that highlight their usefulness for the
comprehension specific aspects of the underlying traces.
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1 Introduction

A large amount of DSLs are used to represent behavioral aspects of systems in
the form of behavioral models (e.g., [1–5]). To better appreciate how such models
unfold over the time dimension, a lot of efforts have been made to facilitate the
design of so-called executable DSLs (e.g., [6–12]), which enable the execution
of conforming models using execution semantics. Two approaches are commonly
used to define the execution semantics of an executable DSL, namely operational
semantics (i.e., interpretation) and translational semantics (i.e., compilation).
We focus in this paper on executable DSLs defined with operational semantics,
and more precisely with discrete-event operational semantics.

Executing a model gives the possibility to observe the evolution of its state
over time, i.e., the trace of the execution [13]. Once an execution trace has been
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captured (e.g., by instrumenting the model interpreter), it can be exploited in
several development contexts, such as providing prompt feedback to the mod-
eler, understanding the fault revealed by a failed test case, or performing complex
automated dynamic analyses of the considered traces. In particular, in the con-
text of design-space exploration, trade-off analyses of different design choices can
be achieved by comparing the traces resulting from executing different variants of
the model. This is especially important as even the smallest change in the model
(e.g., changing a guard on a transition), in the considered execution scenario
(e.g., exchanging the order of two signals sent to an UML state machine), or in
the language definition (e.g., semantic variation points) can lead to a completely
different execution trace.

However, it remains difficult for a modeler to grasp the impact of a design
change on the resulting execution trace. Comparing execution traces is often
hampered by noisy or redundant data captured in execution traces, which leads
to finding irrelevant differences between the traces. In particular, it is often com-
pulsory to filter out extraneous dynamic information from an execution trace, in
order to focus only on the changes occurring in a relevant subset of the model
state. In addition, due to the sequential nature of a trace, it is laborious to visu-
alize which model states were explored multiple times during the execution of
a behavioral model, and between which states the model may have oscillated,
e.g., in order to discover potential cycles or bottlenecks.

To address these problems, we propose in this paper a set of formally defined
trace comprehension operators. These operators can be used for dynamic infor-
mation filtering, trace comparison with diff computation and visualization, and
graph-based views extraction to analyze cycles. Some operators can be combined
for better results, e.g., to extract a graph-based view out of filtered traces. We
provide a formalization of each operator, and we implemented them as part of
the GEMOC Studio1, an Eclipse-based language and modeling workbench. We
validate the approach by demonstrating the relevance of the operators for model
variants conforming to a State Machines DSL inspired by UML State Machines.

The remainder of the paper is structured as follows. Section 2 presents the
scope of considered DSLs and execution traces, and a motivating example.
Section 3 shows an overview of the proposed solution. Section 4 describes the
formalization of the trace comprehension operators. Section 5 presents the imple-
mentation and the validation of our approach with a use case based on a State
Machine DSL. Section 6 presents related work. Finally, Sect. 7 concludes.

2 Background and Motivating Example

In this section, we first precisely scope the executable DSLs considered in our
approach, i.e., metamodel-based DSLs with discrete-event operational seman-
tics. We then present the considered execution traces, and finally we present a
motivating example based on a State Machines DSL.

1 https://eclipse.org/gemoc.

https://eclipse.org/gemoc
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Fig. 1. The State Machines executable DSL.

2.1 Considered Executable DSLs

An executable DSL is composed of both an abstract syntax defining the con-
cepts of the domain, and an execution semantics defining how these concepts
are executed. In this paper, we focus on executable DSLs whose abstract syntax
is a metamodel, and whose execution semantics is an operational semantics. A
metamodel is a class-based object-oriented model defined using a metamodeling
language (e.g., MOF [14] or Ecore [15]) composed of a set of metaclasses. A
metaclass is composed of a set of properties, each either an attribute (typed by
a datatype, e.g., , integer) or a reference to another metaclass.

The left part of Fig. 1 shows the abstract syntax of an example of State
Machines DSL, which is directly inspired from UML State Machines. A StateMa-
chine contains at least one Region. A Region contains Vertex elements, which can
be State elements or PseudoState elements. PseudoState elements are further
refined into Initial, ExitPoint and DeepHistory elements. Finally, a Region also
contains Transition elements which point to a source and a target Vertex. Tran-
sition elements contain Trigger elements, which may each possess an event.

Next, we decompose the operational semantics of an executable DSL in two
parts: a data structure representing the state of the executed model, and a
model transformation altering the model state. We define this data structure as
a metamodel which extends the abstract syntax with new dynamic metaclasses
and properties using package merge. Executing the model consists in applying the
model transformation of the semantics, which performs an endogenous, possibly
in-place, transformation on the model state. We do not make assumptions on
the language used to define the model transformation, nor on the content of the
transformation. Instead, we only consider that it produces a sequence of changes
in the state of the model, each change caused by a given observable event (e.g., a
rule call for rule-based languages, or a method call for imperative languages).

The upper right part of Fig. 1 shows the metamodel of the operational
semantics extending the abstract syntax with new dynamic properties: the
currentState property in Region is used to track the current state of the Region
during the execution, the lastState property in DeepHistory stores the last vis-
ited state in the owning Region element, and finally the counter counts the
number of fired transitions during the execution. Finally, we consider that the
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Fig. 2. Two ATM state machine variants: a without history and b with history.

Fig. 3. Traces from the example models: a is without history, b is with history.

only observable event of the DSL is the firing of Transition elements. Thus, the
execution semantics only defines a fire event.

2.2 Considered Execution Traces

At runtime, an executed model is composed of a set of objects, each object
being an instance of a metaclass of the DSL. An object assigns one value per
property of the corresponding metaclass. A model state is a recording of all values
assigned to dynamic properties—i.e., the properties added by the operational
semantics—of the executed model at a certain point of the execution.

We call execution trace a sequence containing all model states reached during
an execution and all observed execution events. A trace is obtained by recording
the execution of a behavioral model. In a trace, we call dimension the sequence of
all values assigned to a specific dynamic property by an object over the execution.
As our previous work [13,16], considering a trace as a set of dimensions is central
to our approach, as it gives the possibility to efficiently manipulate the parts of
a trace related to specific dynamic properties. We present examples of traces in
the following subsection.

2.3 Motivating Example

Figure 2 depicts two models conforming to the State Machines DSL shown in
Fig. 1. Both models represent the behavior of a cash dispenser, also called ATM,
with states such as Idle or Serving Customer. Transitions represent how the ATM
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switches mostly between idling, maintenance and service states. The difference
between the two models lies in the added deep history pseudostate in the region
of the Maintenance state. The semantics of the deep history pseudostate is that
it stores the last visited state of its containing region and, when targeted by a
transition, restores this state as the current state of the region. Adding such a
pseudostate can thus affect greatly how the execution unfolds, and predicting
the impact of such a change can be difficult.

Figure 3 shows two execution traces resulting from the execution of the mod-
els in Fig. 2 with the following sequence of stimuli: turn on, failure, service, fix
b, test, failure, service, fix b, fix c, test, success. In these traces, r1 refers to the
Region element owned by the state machine and r2 to the Region element owned
by the Maintenance state. The s property refers to the current state of a Region
element, and the h refers to the last state of a DeepHistory element. Finally, the
n property refers to the counter of fired transitions of the state machine. The
name of the states are abbreviated for space reasons.

By looking at the execution traces shown in Fig. 3, we can glimpse that if we
were ignoring the dimensions counter and lastState, then many similarities
between the two traces could be found. For instance, the states 〈Maintenance,
Check C, 9〉 and 〈Maintenance, Check C, Check C, 8〉 would then be equivalent.
Even in a single trace, the value of the counter is different in each model state,
which make it hard to identify possible cycles encountered in the states of the
State Machine. For instance, ta features a cycle that can only be detected if the
counter dimension is ignored: 〈Maintenance, Check B, 4〉 and 〈Maintenance,
Check B, 8〉 are two states part of this cycle.

In summary, even with small models with little dynamic information, and
with only small changes between model variants, it is already challenging to
understand and to compare the resulting execution traces. A similar observation
could be made if small changes were made to the semantics of the considered
DSL, or to the stimuli of the considered execution scenario. In this context, to
ease the task of understanding execution traces, our contribution is a set of four
trace comprehension operators. We give a brief presentation of these operators
in Sect. 3, before defining them formally in Sect. 4.

3 Approach Overview

In this section, we present an overview of the contribution of this paper, i.e., four
different and complementary trace comprehension operators. Figure 4 summa-
rizes the application context including the inputs and outputs of the different
operators. On the left, two behavioral models named A and B are shown, and a
trace is obtained for each of their executions. Then, four different operators can
be used to manipulate the obtained traces:

– The Filter operator takes an execution trace as input and produces a refined
version of the input execution trace as output. It removes a selected set of
dimensions (see Sect. 2.2 for the definition of dimension) from the input trace,
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Fig. 4. Overview of a possible workflow using all four proposed operators.

which results in a simplified trace that only reflects the evolution of a subset
of the model state. Note that Filter does not change the amount of model
states in the trace, and only changes the content of each model state.

– The Reduce operator also takes an execution trace as input and produces a
refined version of the input execution trace as output, where each subsequence
of successive identical model states is merged into a single model state. Reduce
is particularly useful when applied after the Filter operator when the only
differences between the states of a sequence of successive states were found
in the dimensions that were filtered out.

– The Compare operator takes two execution traces as input and produces
a trace difference model as output. This difference model highlights all the
changes that occurred between the first trace and the second one: which states
were added, or removed, or substituted by other states. Such comparison can
be used to better understand the impact of a design change on the trace
resulting from the execution.

– The Graph operator takes an execution trace as input and produces a state
graph as output. This state graph is a representation of all different model
states reached during the execution. Among other benefits, such higher-level
view provides a better global understanding of the execution, and can high-
light cycles and bottleneck states.

The middle and right part Fig. 4 show a typical workflow where the traces
obtained from the models are simplified through the use of the Filter and Reduce
operators, before being used as input for the Graph and Compare operators. In
the following section, we provide a formal specification of these four operators.

4 Operators for Execution Trace Comprehension

In this section we present our contribution, i.e., a set of four trace comprehension
operators. Figure 5 summarizes graphically all proposed operators using abstract
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Fig. 5. Graphical summary of all four trace comprehension operators.
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examples, and will be used throughout the section to illustrate the operators. In
what follows, we first formally define what is a execution trace, then we provide
a formal definition of each trace comprehension operator.

4.1 Execution Trace Formalization

In order to give a formal definition of operators that manipulate execution traces,
we must first formally define the concept of trace. In the remainder of the paper,
we denote T the set of all execution traces.

Definition 1 (Trace). A trace is a tuple 〈S,D,E<, val , step〉 where:

– S is the set of model states of the execution trace.
– D is the set of dimensions of the execution trace.
– E< = (E,<E) is the totally ordered set of events that occurred during the

execution where, ∀e1, e2 ∈ E, e1 <E e2 if e1 happens before e2.
– val : (S × D) → V is the function mapping a model state and a dimension

to a value. Using val , we define a state equivalence relation Eq ⊆ S × S as
(a, b) ∈ Eq ⇔ ∀d ∈ D, val(a, d) = val(b, d), denoted a ≡ b.

– step : E< → (S×S) is the function mapping an event to a starting an ending
state. Note that an event can have the same starting and ending state, which
means that the model state did not change due to the event occurrence. We
denote:

• a
e−→ b the fact that step(e) = (a, b),

• a
∗−→ b the fact that step can lead from a to b with a sequence of events,

i.e.:

∃e ∈ E<, a
e−→ b ∨ ∃n ∈ N,∃e1, ..., en ∈ E<,∃s1, ..., sn−1 ∈ S,

a
e1−→ s1

e2−→ ...
en−1−−−→ sn−1

en−→ b ∧ ∀i ∈]1;n], ei−1 <E ei,

• a → b the fact that a = b ∧ ∃e ∈ E<, a
e−→ b, i.e., a directly precedes b,

– for any two states a and b, there is an ordered sequence of events that lead
from a to b or from b to a, i.e., ∀a, b ∈ S, a

∗−→ b ∨ b
∗−→ a.

– the total order on events <E combined with the step function create a total
order <S over the states defined as: ∀a, b ∈ S, a <S b ⇔ a

∗−→ b We denote
s = Si the fact that |{s′ ∈ S : s′ <S s}| = i

Example 1. Using only natural integer values (i.e., V = N), and events ei
ordered by their index i, let tex be an execution trace conforming to Defini-
tion 1:

tex = 〈{s1, s2, s3, s4}, {d1, d2, d3}, {e1, e2, e3, e4, e5}, val, step〉
where val(s1, d1) = 0 val(s2, d1) = 0 val(s3, d1) = 2 val(s4, d1) = 0

val(s1, d2) = 0 val(s2, d2) = 0 val(s3, d2) = 1 val(s4, d2) = 0
val(s1, d3) = 0 val(s2, d3) = 1 val(s3, d3) = 2 val(s4, d3) = 3

and s1
e1−→ s1 s1

e2−→ s2 s2
e3−→ s2 s2

e4−→ s3 s3
e5−→ s4
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4.2 Dimension Filtering

When an operational semantics introduces a large amount of dynamic properties,
or when the executed model is very large, an execution trace may contain a
large amount of dimensions to grasp. Yet, understanding specific aspects of the
behavior might only require looking of a specific subset of dimensions of interest.
For this purpose, our first operator is called Filter (see Fig. 5a), and aims at
removing dimensions out of a trace in order to simplify it. This operator is in
fact an abstraction operator on the model states contained in the trace.

Definition 2 (Filter). Given an input trace 〈S,D,E<, val , step〉 and an input
set of dimensions I, the Filter operator is defined as:

Filter : (T × P(D)) → T
(〈S,D,E<, val , step〉, I) �→ 〈S,D′, E<, val ′, step〉

where D′ = D \ I and val ′ : S × D′ → V is defined as val ′(s, d′) = val(s, d′).

Example 2. We apply Filter to the trace tEx and dimension d3 from Example 1:

Filter(tEx , {d3}) = 〈{s1, s2, s3, s4}, {d1, d2}, {e1, e2, e3, e4, e5}, val ′, step〉

where val ′(s1, d1) = 0 val ′(s2, d1) = 0 val ′(s3, d1) = 2 val ′(s4, d1) = 0
val ′(s1, d2) = 0 val ′(s2, d2) = 0 val ′(s3, d2) = 1 val ′(s4, d2) = 0

and s1
e1−→ s1 s1

e2−→ s2 s2
e3−→ s2 s2

e4−→ s3 s3
e5−→ s4

Note that s1 ≡ s2 and s1 → s2, i.e., two successive model states are identical.
The next operator will enable the merging of these states to obtain a more
compact trace, i.e., where a state is always different from the preceding state.

4.3 Trace Reduction

When using a trace recorder that always records the model state at each occur-
ring observable event without checking if the state has changed, or when using
the Filter operator introduced above, a trace may contain successive equivalent
states which are redundant and can be considered as superfluous data. This phe-
nomenon is also known as stuttering [17]. To simplify such traces, we propose
an operator Reduce (see Fig. 5b) which merges such successive equivalent states
while preserving the behavior depicted by the trace.

Definition 3 (Reduce). The Reduce operator is defined as:

Reduce : T → T
〈S,D,E<, val , step〉 �→ 〈S′,D,E<, val ′, step′〉

where:
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– S′ is the set of sets of successive equivalent states of S, i.e:

S′ = {s ∈ P(S) : ∀a ∈ s,∀b ∈ S, a ≡ b ∧ a → b ⇒ b ∈ s}
– step′ : E< → (S′ × S′) is defined as: step′(e) = 〈A,B〉 ⇔ step(e) ∈ (A × B)
– val ′ : (S′ × D) → V is defined as val ′(B, d) = val(a, d) for any a ∈ B

Hence, each output state of S′ is composed of (and thus replaces) a set of
equivalent successive states of S, and both step′ and val ′ are adjusted accord-
ingly.

Example 3. Resulting trace from Reduce(Filter(TEx , {d3})).

Reduce(Filter(TEx )) =

〈{s′
1 = {s1, s2}, s′

2 = {s3}, s′
3 = {s4}}, {d1, d2}, {e1, e2, e3, e4, e5}, val ′, step′〉

where val ′(s′
1, d1) = 0 val ′(s′

2, d1) = 2 val ′(s′
3, d1) = 0

val ′(s′
1, d2) = 0 val ′(s′

2, d2) = 1 val ′(s′
3, d2) = 0

and s′
1

e1−→ s′
1 s′

1
e2−→ s′

1 s′
1

e3−→ s′
1 s′

1
e4−→ s′

2 s′
2

e5−→ s′
3

The soundness of Reduce can easily be proven, i.e., the fact that two succes-
sive states of S′ cannot be equivalent, and that one state of S is only mapped
to a single state of S′. These properties can be rephrased as two theorems:

Theorem 1. Reduce(T ) = 〈S′, , , , 〉 ⇒ ∀s1, s2 ∈ S′, s1 → s2 ⇒ s1 ≡ s2.

Theorem 2. Reduce(T ) = 〈S′, , , , 〉 ⇒ ⋂

s∈S′
s = ∅.

4.4 Trace Comparison

As understanding a single execution trace is already a difficult task, grasping
the differences between two execution traces is even more challenging and error-
prone. To address this problem, we propose a Compare operator that produces
a trace difference showing the similarities and dissimilarities between two traces.
Note that since traces may come from different models (e.g., an original and a
revised one), each trace may possess its own set of dimensions, hence Compare
requires an explicit mapping between the dimensions of the first and second
traces.

Our comparison procedure relies on the notorious Levenshtein distance [18],
which is an operator counting the minimal number of insertion, deletion or sub-
stitution operations required to transform one string into another. For instance,
the Levenshtein distance between “STRING” and “TRACE” is four, which is
computed by summing the number of insertions in italics and of substitutions in
bold. While the output of the Levenshtein distance is an integer, computing this
distance requires computing all the distances between all the possible prefixes
of the input strings (i.e., substrings starting with the first character). It is then
possible to infer from all these distances the exact set of insertions, deletions or
substitutions required to transform the first string into the second string, which
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is the kind of information we require to construct a trace difference. For our
work, we adapted the Levenstein distance to compare traces instead of strings,
where model states play the role of characters, which can be compared using the
equivalence relation.

Definition 4 (Levenshtein distance on traces). The Levenshtein distance
between two traces T1 = 〈A, , , , 〉 and T2 = 〈B, , , , 〉 is given by
levT1,T2(|A|, |B|) where:

levT1,T2(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (i, j) if min(i, j) = 0,

min

⎧
⎪⎨

⎪⎩

levT1,T2(i − 1, j) + 1
levT1,T2(i, j − 1) + 1
levT1,T2(i − 1, j − 1) + 1Ai �≡Bj

otherwise

Where 1Ai �≡Bj
equals 0 when Ai ≡ Bj , and equals 1 otherwise.

As we can see, to obtain the Levenstein distance levT1,T2(|A|, |B|), we rely
on a recursive operator levT1,T2(i, j) which computes the distance between the
subsequence of states [0, i] of T1 and the subsequence of states [0, j] of T2. These
distances can be used to infer the insertions, deletions and substitutions required
to go from the first trace to the second. In that goal, we define the following
notations on top of lev :

– inT1,T2(i, j) denotes levT1,T2(i, j) = levT1,T2(i, j − 1) + 1,
– delT1,T2(i, j) denotes levT1,T2(i, j) = levT1,T2(i − 1, j) + 1,
– substT1,T2(i, j) denotes levT1,T2(i, j) = levT1,T2(i − 1, j − 1) + 1.

Using this levT1,T2(i, j) through these notations, we can define the Diff oper-
ator which produces a unique set containing states of T1 that were deleted, states
of T2 that were inserted, and pairs of states from T1 and T2 that were substituted.

Definition 5 (Diff ). We define the union set of inserted, deleted and pairs of
substituted states identified as part of a Levenshtein distance computation as
Diff T1,T2

= DiffRecT1,T2
(|A|, |B|), where:

DiffRecT1,T2
(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DiffRecT1,T2
(0, 0) = ∅

DiffRecT1,T2
(i, j − 1) ∪ Bj if inT1,T2(i, j)

DiffRecT1,T2
(i − 1, j) ∪ Ai if delT1,T2(i, j)

DiffRecT1,T2
(i − 1, j − 1) ∪ {Ai, Bj} if substT1,T2(i, j)

DiffRecT1,T2
(i − 1, j − 1) otherwise

Finally, we define Compare as a trivial projection of the output of the Diff
operator into a tuple that separates insertions, deletions and substitutions in
three different sets.
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Definition 6 (Compare). Given two traces T1 = 〈A, ,D1, , 〉 and T2 =
〈B, ,D2, , 〉 and a mapping M ⊆ P(D1×D2), the Compare operator is defined
as:

Compare : T × T × (D1 × D2) → P(B) × P(A) × P(A × B)
(T1, T2,M) �→ 〈In,Del ,Subst〉

where In = Diff T1,T2
∩B, Del = Diff T1,T2

∩A and Subst = Diff T1,T2
∩ (A×B).

Note that while the comparison results are unordered, this does not prevent
the presentation of the comparison result in a human-readable way. This can
be done by iterating over the states of both traces in parallel, and looking for
them in the trace difference. For instance, Fig. 5c was obtained from the trace
difference obtained with Compare containing 〈{b4}, {a2}, {〈a3, b2〉}〉 using the
following reasoning:

– a1 and b1 are absent from the result: hence all their values are equal (first
column).

– a2 is not contained in a pair: hence it has been deleted from t1 (second
column).

– a3 and b2 are contained in a pair: hence some values are different from a3 to
b2. These values can be identified by iterating over the dimension pairs that
are part of the provided matching (third column).

– a4 and b3 are absent from the result: hence all their values are equal (fourth
column).

– b4 is not contained in a pair: hence it has been inserted in t2 (fifth column).

4.5 State Graph Extraction

For each model state in an execution trace, there may be other equivalent model
states scattered over the trace, which means that the execution is going back to
this state several times during the execution. However, the sequential nature of a
trace makes it difficult to grasp such information, and to understand the possible
cycles in the execution trace. To provide a better understanding of the encoun-
tered model states, we propose the last operator called Graph (see Fig. 5d), which
creates a directed graph from a trace, where each vertex is mapped to a set of
equivalent states of the trace, and each event adds an edge between the vertexes
containing its source and target states, if such an edge does not already exists.
These edges also carry the set of events that caused their existence.

Definition 7 (Graph). Let G be the set of all directed graphs. The Graph oper-
ator is defined as:

Graph : T → G
〈S,D,E<, val , step〉 �→ 〈V,A〉

where:

– V is the set of vertices, with V = {s ∈ P(S) : ∀a, b ∈ s, a ≡ b}
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– A is the set of directed edges, with A = {〈v1,Events , v2〉 ∈ V × P(E) × V :
∀e ∈ Events,∃a ∈ v1,∃b ∈ v2, a

e−→ b}
Example 4. Resulting graph from Graph(Filter(TEx , {d3}))

Graph(Filter(TEx )) = 〈{v1 = {s1, s2, s4}, v2 = {s3}},
{(v1, {e1, e2, e3}, v1), (v1, {e4}, v2), (v2, {e5}, v1)}〉

5 Implementation and Evaluation

In this section, we first explain how we implemented the operators as part of
the GEMOC Studio. We then present how we validate the approach using the
motivating example conforming to the State Machine DSL from Sect. 2.3.

5.1 Implementation Within the GEMOC Studio

We implemented the four operators within the GEMOC Studio, an open source
(EPL 1.0) Eclipse package atop the Eclipse Modeling Framework. The GEMOC
Studio includes a language workbench to implement executable DSLs, and a
modeling workbench to create, execute and debug conforming models. We imple-
mented a set of graphical views to display both execution traces and operators
outputs (i.e., traces, diff models and graphs) in a human-readable way.

At runtime, traces commonly reach a large amount of states that must be
stored in memory. Therefore, while this is out the scope of this paper, our imple-
mentation aims at limiting the amount of memory required by the trace com-
prehension operators. Most notably, when both the input and the output of an
operator are traces (i.e., with Filter and Reduce), and when the output is sig-
nificantly similar to the input, we produce a virtual trace that contains links to
the concrete input trace instead of containing values, along with information on
filtered dimensions (for Filter) or regrouped states (for Reduce).

The source code of the operators can be found in the Github repository of
the GEMOC execution framework2, and more information can be found about
the implementation on our companion web page3.

5.2 Evaluation

To evaluate the contribution of this paper, we demonstrate the usefulness of
the proposed operators to understand the execution traces of the State Machine
models previously shown as a motivation in Sect. 2.3. We recall that the models
were depicted in Fig. 2, and the considered execution traces in Fig. 3. Figure 6
shows different applications of the four operators to the two execution traces,
most of them by combining the use of multiple operators. We explain below how
the results help better understand the traces.
2 https://github.com/eclipse/gemoc-studio-modeldebugging.
3 http://gemoc.org/ecmfa18.

https://github.com/eclipse/gemoc-studio-modeldebugging
http://gemoc.org/ecmfa18
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Fig. 6. Various applications of the operators on the traces from in Fig. 3.

Filter and Reduce. To obtain the trace shown in Fig. 6a from ta, we first
apply Filter on the counter and Maintenance.currentState dimensions, then
we apply Reduce. We choose to filter the counter dimension because it changes at
each state and thus hampers further cycle analysis or trace comparison, and the
Maintenance.currentState in order to hide the internal working of the Mainte-
nance hierarchical state. The result is a more high-level trace which only focuses
on the information of interest, i.e., which states of the main state machine were
visited. This demonstrates that the Filter and Reduce can be used both to get rid
of noisy data (e.g., the counter), and to modulate the level of detail featured in
a trace my removing undesired dimensions (e.g., Maintenance.currentState).

Compare. To obtain the trace difference shown in Fig. 6b, we first apply Fil-
ter on the counter dimension on ta and tb and on the Maintenance.lastState
dimension on tb, then we apply Compare on the resulting traces. The mapping
of dimensions provided to Compare is not shown, as it is trivial except for the
deep history dimension which has no match. Figure 6b shows us that both traces
align almost perfectly—except for a deleted state from one trace to the other—
which was difficult to notice simply by looking at the original traces from Fig. 3.
Note that this result is only possible because the traces were filtered before the
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comparison, since comparing unfiltered traces would not find much similarities
because of the counter property. This demonstrates that the Compare opera-
tor, especially when combined with Filter and Reduce, can effectively help to
understand subtle behavioral differences induced by design choices.

Graph. To obtain the graph shown in Fig. 6c, we directly applied Graph on the
original ta trace. We can observe that the resulting graph is of little interest
as it takes the form of a sequence identical to ta, which is mostly due to the
incremented counter. However, in Fig. 6d, we first applied the Filter operator
on ta to filter out the counter and Maintenance.currentState dimensions, fol-
lowed by the Reduce operator. Applying Graph on the resulting trace shows us
a better overview of the states visited during the execution. In particular, we
can observe a cycle in the visited states, highlighted in gray. This demonstrates
that the Graph operator, especially when combined with Filter and Reduce, can
effectively help understanding which model states were visited in the execution,
and which cycles can be observed between model states.

Additional Material. Our companion web page (See footnote 3) extends this
evaluation with more complex models conforming to a real world DSL called
ThingML.

6 Related Work

Several approaches rely on execution trace comparison to better understand the
semantic differences between executable models [19–23]. Among the approaches
closest to our work, the work done by Langer et al. [22] relies on dedicated
matching rules to align pairs of traces in order to compute semantic differences,
where a set of matching rules define how traces should be meaningfully compared
in the context of a given executable DSL. In contrast, our generic approach does
not require any matching rules as input, and instead relies on simplifying first
the traces using Filter and Reduce in order to abstract away details that would
prevent from aligning equivalent states.

Alimadadi et al. [24] propose a high-level abstraction operator that detects
recurring patterns and hierarchies of patterns in sequences of events. Their algo-
rithm is inspired from sequence alignment algorithms used in bioinformatics,
similarly to our Compare operator. Overall, while the motivation for their work
is the same as ours, our approach relies on a set of more low-level operators that
manipulate sequences of both states and events. In other words, our operators
could be used as basic building blocks for providing higher-level operators.

Process mining is a process-centric management technique bridging the gap
between data mining and traditional Business Process Management (BPM) [25,
26]. The main objective of process mining is to extract process-related infor-
mation from event logs for providing information about actual processes [26].
Events are defined as process steps and event logs as sequential events recorded
by an information system [27]. In [25], discovery is mentioned as one of the main
goals of process mining, i.e., taking an event log as input and to produce a pro-
cess model as output. Event log comparisons techniques are also discussed in
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the realm of process mining [28]. Compared to our presented approach, process
mining starts with logs produced by information systems and not directly by
the interpretation of the process models. Furthermore, current process mining
techniques are only applicable on business process modeling languages such as
BPMN and their formal representation such as Petri nets. Our techniques are
general enough to be applicable for executable modeling languages in general.
Furthermore, we consider events and data while the latter is mostly neglected
by process mining approaches.

7 Conclusion and Perspectives

Traces obtained from the execution of behavioral models are essential both as
sources of feedback and to perform trade-off analyses. Yet, it remains difficult
for a modeler to understand how a design change impacts the obtained execu-
tion traces. To address this problem, we proposed in this paper a set of formally
defined trace comprehension operators which can be used for dynamic informa-
tion filtering, trace comparison with diff computation and visualization, and
graph-based views extraction to analyze cycles. We implemented our approach
as part of the GEMOC Studio, an Eclipse-based language and modeling work-
bench, and we validated the approach using model variants conforming to a State
Machine DSL. We showed that our operators can be used to better understand
the impact of small but significant changes made to the considered model.

The direct perspectives of this work include extending the trace compari-
son operator to consider events along model states (e.g., to compare different
operational semantics with different observable events), improving the execution
trace metamodel to support execution traces of concurrent behaviors (i.e., a par-
tial ordering of events), extending the state graph operator to consider multiple
traces as input, providing an additional operator to compare state graphs, and
specifying rigorous guidelines explaining how and when to use which operator.
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