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Abstract. The research community made enormous progress in the
past years in developing algorithms for verifying software, as shown by
international competitions. Unfortunately, the transfer into industrial
practice is slow. A reason for this might be that the verification tools
do not connect well to the developer work-flow. This paper presents a
solution to this problem: We use verification witnesses as interface between
verification tools and the testing process that every developer is familiar
with. Many modern verification tools report, in case a bug is found,
an error path as exchangeable verification witness. Our approach is to
synthesize a test from each witness, such that the developer can inspect the
verification result using familiar technology, such as debuggers, profilers,
and visualization tools. Moreover, this approach identifies the witnesses as
an interface between formal verification and testing: Developers can use
arbitrary (witness-producing) verification tools, and arbitrary converters
fromwitnesses to tests;we implemented two suchconverters.Weperformed
a large experimental study to confirmthat our proposed solutionworkswell
in practice: Out of 18 966 verification results obtained from 21 verifiers,
14 727 results were confirmed by witness-based result validation, and
10 080 of these results were confirmed alone by extracting and executing
tests, meaning that the desired specification violation was effectively
observed. We thus show that our approach is directly and immediately
applicable to verification results produced by software verifiers that adhere
to the international standard for verification witnesses.

1 Introduction

Automatic software verification, i.e., using methods from program analysis and
model checking to find out whether a program satisfies or violates a given
specification, is a successful andmature technology.The efficiencyandeffectiveness
of the available verification tools for C programs is shown in the annual
competition on software verification [5]. Despite this success story in research, the
state-of-the-art in practice is that notmany software projects have suchverification
tools incorporated into their software-development process. The reason for this gap
between availability of technology on the one side and missed opportunities on the
other side is perhaps twofold: (a) developers are frustrated by false alarms, i.e.,
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in the past, static analyzers reported too many bugs that were not observable in
a concrete program execution, and thus, developers have lost confidence in bug
reports [20]; (b) there is a lack of appropriate interfacing, i.e., it is difficult for
developers to leverage advantages of the verification tools because they are difficult
to integrate and difficult to learn from [1].

To overcome these two problems, we propose (i) to use verifiers that produce
verification witnesses, i.e., abstract descriptions of one or more paths to a
specification violation (many such tools are already available 1), and (ii) to validate
whether a real bug has been found by constructing a test from the produced
verification witness and observing the execution of that test. This way, issue (a)
above is solved because, if the test execution does show and thus confirm the
reported specification violation, the verification result can be examined with high
confidence and on a concrete, executable example (e.g., with a debugger), and
issue (b) is solved because we bridge the gap between the, in most projects,
unfamiliar domain of verification and the established domain of testing, which
makes it easier to integrate verification into the development process.

Execution-Based Validation of Witnesses. Witness validation based on
model-checking technology works well [4,5,9,14], but the disadvantage is that due
to over-approximation, the validation might be as imprecise as the verification
step. A verification witness serves as a (potentially coarse) description of a part
of the state space of a program that contains a specification violation, and the
witness validators can confirm or reject the error report. We complement the
witness-validation technology by direct test execution: A test case (e.g., unit-test
code) is built from the violation witness, and this test case provides a precise
and transparent way to confirm and examine it. 2 By observing and analyzing an
execution that exposes undesirable behavior, developers can convince themselves
that the error report is correct, and address the reported bugs without the risk of
wasting time on a false alarm. If the execution does not violate the specification,
the witness might have represented a false alarm and the developer can assign a
lower priority to that report.

Witnesses as Communication Interface. One barrier for the adoption of
verification technology is that developers have to spend considerable time on
understanding a verification tool and on becoming familiar with it. Thus, we have
to avoid the “lock-in” effect: people might not want to decide for one particular
tool if they have to invest time again when they wish to change the decision
later. If the developer constructs the integration on top of the exchangeable
verification witnesses, i.e., using the witnesses as interface to the verification tools,
the verification tool is exchangeable without any change to the testing process. 3

1 https://sv-comp.sosy-lab.org/2017/systems.php
2 It has been shown that model checkers can be effective in constructing useful tests [12].
3 At least 21 verifiers are available that produce witnesses in the exchangeable format

(cf. Table 1, which lists the verifiers that we use in our experiments).

https://sv-comp.sosy-lab.org/2017/systems.php
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Fig. 1. An incorrect example C program (a), the corresponding violation witness
produced by the verifier (b), and a code fragment used to inject the extracted test values
for compilation (c)

Tests from Witnesses. In order to flexibly bridge the gap from witness to test,
we provide two independently developed implementations of tools that take as
input a program and a violation witness, and synthesize a test that is compilable
and executable. This approach provides the following three features: (1) the
result of a verification tool can be validated by compiling and executing the
corresponding test—if the test violates the specification, the verification tool
reported a correct alarm and the result can be handled appropriately; (2) the
synthesized unit tests can be stored and maintained together with the other unit
tests, but canalsobe re-constructedat any timeondemand; (3) independently from
the verification tool that produced the witness, the full repertoire for inspecting a
failing program—such as debuggers, profilers, and visualization tools—canbe used
by the developer to understand the bug that the test represents.

Experimental Study. To evaluate our proposal, we performed experiments
on thousands of witnesses. We took many C programs from the largest public
repository of verification tasks and many witness-producing verification tools,
and collected 13 200 witnesses of specification violations. We obtained another
5 766 refined witnesses using witness refinement, a procedure introduced in the
original work on verification witnesses [9]. This technique is supposed to refine
witnesses to be more concrete, so we should be able to generate better test cases
from them. In conjunction with the two existing validators, CPAchecker and
UltimateAutomizer, ourmethod significantly increases the confirmation rate: out
of the total of 18 966 witnesses, we were able to extract test cases for 10 080 of them,
meaning that we successfully created and executed the tests, and the specification
violationwas observed.Using the newapproach,we increased the confirmed results
from 12 821 to 14 727 in total.

Example. In the following, we illustrate the complete process from running a
verification task using a verifier through synthesizing the test code from the
violation witness to compiling the program and executing it.
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input a program and a violation witness, and synthesize a test that is compilable
and executable. This approach provides the following three features: (1) the
result of a verification tool can be validated by compiling and executing the
corresponding test—if the test violates the specification, the verification tool
reported a correct alarm and the result can be handled appropriately; (2) the
synthesized unit tests can be stored and maintained together with the other unit
tests, but canalsobe re-constructedat any timeondemand; (3) independently from
the verification tool that produced the witness, the full repertoire for inspecting a
failing program—such as debuggers, profilers, and visualization tools—canbe used
by the developer to understand the bug that the test represents.

Experimental Study. To evaluate our proposal, we performed experiments
on thousands of witnesses. We took many C programs from the largest public
repository of verification tasks and many witness-producing verification tools,
and collected 13 200 witnesses of specification violations. We obtained another
5 766 refined witnesses using witness refinement, a procedure introduced in the
original work on verification witnesses [9]. This technique is supposed to refine
witnesses to be more concrete, so we should be able to generate better test cases
from them. In conjunction with the two existing validators, CPAchecker and
UltimateAutomizer, ourmethod significantly increases the confirmation rate: out
of the total of 18 966 witnesses, we were able to extract test cases for 10 080 of them,
meaning that we successfully created and executed the tests, and the specification
violationwas observed.Using the newapproach,we increased the confirmed results
from 12 821 to 14 727 in total.

Example. In the following, we illustrate the complete process from running a
verification task using a verifier through synthesizing the test code from the
violation witness to compiling the program and executing it.

1 extern void __VERIFIER_error(void);
2 extern unsigned char
↪→ __VERIFIER_nondet_uchar(void);

3 int main(void) {
4 unsigned char a =

↪→ __VERIFIER_nondet_uchar();
5 unsigned char b =

↪→ __VERIFIER_nondet_uchar();
6 unsigned char sum = a + b;
7 unsigned char mean = sum / 2;
8 if (mean < a / 2) {
9 __VERIFIER_error();

10 }
11 return 0;
12 }

(a) Example program

q0

q1

q2

q⊥ qE

4: a == 2

o/w

5: b == 254

o/w

o/w

8,else: 8,then:

(b) Witness automaton

1 #include <stdlib.h>
2 void __VERIFIER_error() {
↪→ exit(107); }

3 unsigned char
↪→ __VERIFIER_nondet_uchar() {

4 static unsigned int
↪→ test_vector_index = 0;

5 unsigned char retval;
6 switch (test_vector_index) {
7 case 0: retval = 2U; break;
8 case 1: retval = 254U; break;
9 }

10 ++test_vector_index;
11 return retval;
12 }

(c) Injection of test values
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Figure 1a shows a program that attempts to calculate the mean of two
integer numbers, a computation that is often required in binary-search algorithms.
In lines 4 and 5, two variables a and b of type unsigned char 4 are initialized
nondeterministically, for example from user input. The subsequent lines are
supposed to calculate the mean of the two variables, by first computing their
sum in line 6 and then dividing it by 2 in line 7. If the mean of a and b has
been calculated correctly, it must not be less than half of either of the two
values. This condition is asserted in lines 8 to 10. We can check whether the
condition is satisfied by specifying that the function VERIFIER error() must not
be reachable, and then running a verifier on this verification task. The verifier
should detect and report that the assertion will be violated if the sum of a and b

exceeds the range of the data type unsigned char, causing an overflow. Figure 1b
shows a violation-witness automaton [9] that represents a counterexample to the
specification. The automaton specifies that if we assume that a is assigned the
value 2 in line 4 and b is assigned the value 254 in line 5, control will flow to the
then-branch in line 8, causing a violation of the specification. To independently
validate this witness, we can then extract the input values for a and b, and use them
to provide an implementation of the input function VERIFIER nondet uchar() and the
VERIFIER error() function as depicted in Fig. 1c. After compiling Fig. 1a and 1c

into an executable and running it, we can confirm that these input values trigger
the call to VERIFIER error() by checking its return code. We can even use a debugger
such asGDBto step through the compiled programandobserve the faulty behavior
directly. The debugger will show that the sum of a and b, respectively 2 and 254,
computed in line 6 wraps around to 0. Therefore, the mean is incorrectly calculated
as 0 in line 7. The condition in line 8 then evaluates to 1, because 0 is smaller than 1.

It must be noted that the witness depicted in Fig. 1b is very precise: it provides
a concrete counterexample with explicit values for a and b. But in general, a
violation witness may simply describe a part of the state space that contains a
specification violation, i.e., an abstract counterexample. Suppose a verifier is only
able to provide a witness that specifies that if a + b is greater than 255 in line 6, the
specification will be violated. By using witness refinement [9], we can obtain from
this abstract witness a concrete witness like Fig. 1b.

Contributions. Our approach features the following advantages:

– Verification tools sometimes produce false alarms, which can lead to severe
waste of investigation time. We synthesize tests from verification witnesses, and
consequently trust only verification results confirmed by test execution.

– There are several witness-based validators available, but our execution-based
validation of the error path can be more precise and more efficient, compared to
the previously available validators.

– Avoidance of technology lock-in: A developer’s work flow does not depend on
a particular choice of verification tool, because the developer’s infrastructure
hooks in at the witness. The developer may elect to use a different verifier, or
even use multiple verifiers simultaneously—at no additional cost.

4 The example also works for larger data types, but for ease of presentation, we aim to
keep the range of values small, so that all calculations can be followed by hand.
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– Compared to working with witnesses, developers are more familiar with tests,
and more supporting tools—such as profilers, memory analyzers, and visualiza-
tion tools—are available to analyze the tests that correspond to the witnesses.

– The newly generated tests can complement the existing test suite, and the tests
as well as the witnesses can be stored and maintained as first-class objects in the
software life cycle.

Related Work. Our approach is based on a number of existing ideas, which we
outline in the following.
Verification Witnesses. We build our contributions on top of existing work on
violation witnesses [9], which we will describe in more detail in the background
section. The problem that verification results are not treated well enough by the
developers of verification tools is known and there are also other works that address
the same problem, for example, the work on execution reports [18].
Test-Case Generation.The idea to generate test cases from verification counterex-
amples is more than ten years old [6,48], has since been used to create debuggable
executables [39,42], and was extended and combined to various successful
automatic test-case generation approaches [25,27,36,46]. We complement existing
techniques in the following ways: Our technique works on the flexible exchange
format for violation witnesses. In case such a witness constitutes only an abstract
counterexample, we can use witness refinement to efficiently obtain a concrete
one [9]. Such a mechanism is not available for existing test-case generation tools.
Execution. Other approaches [16,22,35] focus on creating tests from concrete and
tool-specific counterexamples. In contrast, our approach does not require full coun-
terexamples, but works on more flexible, possibly abstract, violation witnesses.
Debugging and Visualization. Besides executing a test, it is important to under-
stand the cause of the error path, and there are tools and methods to debug and
visualize program paths [3,7,28].

2 Background

A verification witness is an exchangeable object that stores valuable information
about the verification process and the verification result. The key is that the format
is open and exchangeable, and that many verification tools support it.

Witness Construction.It has been commonly established practice for verifiers
to provide a counterexample to witness a specification violation, in particular
since counterexamples were used to refine abstract models [21]. The problem was
that these counterexamples were more or less ‘dumps’ of paths through the state
space, sometimes not human-readable, sometimes not machine-readable. Recent
efforts of the software-verification community established a common exchange
format for verification results as verificationwitnesses [9]. In this format, a so-called
violation-witness automaton (as seen in Fig. 1b) describes a state space that
contains the specification violation. This state space does not necessarily have to
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(a) Concept sketch

q0

q1

q2

q⊥ qE

6: sum == 0

o/w

7: mean == 0

o/w

8,else: 8,then:

(b) Abstract witness

q0

q1

q2

q3

q4

q⊥ qE

4: a == 2

o/w

5: b == 254

o/w

6: sum == 0

o/w

7: mean == 0

o/w

o/w

8,else:

Fig. 3. Concept of witness refinement with example abstract and refined witnesses for
the example program depicted in Fig. 1a from the introduction

represent just a single error path, but may contain multiple error paths and even
paths without a specification violation. As an example for the use of verification
witnesses, the International Competition on Software Verification (SV-COMP)
applies this format and counts a report of a found bug only if a corresponding
violation witness is reported and confirmed [4]. Figure 2 illustrates the process:
the verifiers can be exchanged according to the needs of the user, there is no risk
of technology lock-in. Figure 2 also shows that the exchange format for witnesses
has recently been extended to correctness witnesses [8]. In the remainder of this
paper, however, we will only consider violation witnesses.

Fig. 2. Software verifiers produce witnesses

(c) Refined witness

8,then:
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Fig. 4. Violation-witness validation

WitnessRefinement.The originalwork onverificationwitnesses [9] contains the
proposal to consider refinement of witnesses. The idea is to take a violation witness
as input, replay it with a validating verifier, and produce a new witness that is more
detailed. A more detailed violation witness is closer to a concrete program path and
makes the validation process faster. We will later in this paper use an instance of
a witness refiner to improve witnesses from other verification tools towards being
able to successfully derive tests from witnesses. Figure 3a illustrates the optional
step of using witness-refining validators to strengthen a witness. Figure 3b shows
another, validviolationwitness for thepreviously consideredprogramfromFig. 1a.
In contrast to the witness in Fig. 1b, this witness does not specify any concrete
values for the two nondeterministic values of variables a and b, but specifies that a
property violation occurs if the intermediate variables sum and mean are both equal
to 0. This witness automaton represents a set of 256 different counterexamples:
every counterexample with values for a and b, so that a + b == 0 during execution.
Figure 3c showsaviolationwitness that is a refinement of themore abstractwitness
in Fig. 3b that additionally specifies concrete values for the two variables a and b

and thus restricts the search space in witness validation early on.

Witness Validation. Violation witnesses can be used to independently re-
establish the verification result by using a witness-based result validator that takes
the information from the witness to find a path through the state space of the
program to a specification violation. Thus, a successful validation increases trust
in the verification result, and developers no longer need to rely on the verifiers
alone. Instead, they can focus their attention on the validated results and assign a
lower priority to unconfirmed alarms. The existing witness-based result validators
employpotentially-expensivemodel-checking techniques to replay error paths that
are represented in thewitness.While this is a powerful technique (it can reconstruct
error paths even for abstract witnesses), the technique still has the limitations
of common program-analysis and model-checking techniques, namely that the
technique may over-approximate the semantics of the programming language,

Witness

Program

Specification

Verification
Task

Validator

CPAchecker

Ultimate Automizer

CPA-witness2test

FShell-witness2test

Confirmed
/ Unconfirmed
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Fig. 5. Software verification with witnesses: construction, (optional) refinement, and
validation work flow

thus potentially confirming false alarms or rejecting valid violation witnesses.
As a solution to this, we propose an execution-based approach to witness-based
result validation. Figure 4 shows the two existing validators CPAchecker and
Ultimate Automizer together with the two new, execution-based validators that
we introduce in this paper: CPA-witness2test and FShell-witness2test.

3 Tests fromWitnesses

This section introduces a new, yet unexplored, application of witnesses that can
easily be integrated into established processes for verification-result validation, as
summarized by Fig. 5. The highlighted area in Fig. 5 outlines the goal: for a given
violation witness, we want to construct a test that can be compiled and executed
to check that the bug is realizable. In particular, driven by our desire to keep the
work-flow independent from special verifiers, we want to have two independently
developed implementations of such witness-to-test tools.

Our new, execution-based witness validator does not require the aid of
model-checking techniques for validating verification results: we generate a test
harness (test code for the program), which can be compiled and linked together
with the original subject program and executed. If the execution does not trigger
the described bug, the witness is deemed spurious, i.e., not realizable.

Adding this new tool to the pool of available witness-based result validators
not only increases the diversity of validation techniques and its potential for
establishing trust in verification results, but also adds novel features to the
validation process: As a valuable by-product of a successful validation, the devel-
opers are able to obtain executable test code that is guaranteed to reproduce the
bug in their system, and they can use all of the infrastructure for inspecting and
debugging that they are trained and experienced in and that is already in place
in their development environment. For example, a C developer might simply run
GDB to step through the executable error path.

Program
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Verification
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Blast
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Witnesses
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Ultimate
Automizer

(Refined)
Witnesses

(b) Optional witness refinement
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Unit Tests
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(c) Witness validation
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Fig. 6. Flow of execution-based result validation

Figure 6 shows the complete picture of execution-based witness validation.
The verification task (a given program with a given specification) is verified by a
chosen verifier. If the verifier reports a specification violation (False, bug found) it
also produces a violation witness. (Our work does not consider the outcome True,
for which the development of practical support, such as correctness witnesses [8]
and compact proofwitnesses [32], is also a subject of ongoing research.)Thewitness
in GraphML format [15] is then given to witness2test, which synthesizes a test
harness that drives the program to the specification violation. In order to support
our claim of independence from any particular tool implementation, we implement
two completely different instances of witness2test, namely CPA-witness2test

(based on open-source components fromCPAchecker) andFShell-witness2test

(based on ideas from FShell). The test-harness and the original (unchanged)
program are then compiled and linked to obtain an executable program. The
executable program is then executed in a safe execution container. 5 If the reported
specification violation is observed during this execution, the witness is confirmed.
Otherwise the witness is not confirmed, most likely because the witness is not
precise enough or even spurious.

3.1 CPA-WITNESS2TEST

One of our implementations for the witness2test component of the architecture
outlined in Fig. 6 is CPA-witness2test, which is based on the CPAchecker

framework [11].For ourpurpose ofmatchingan inputwitness to theprogramsource
code of a verification task and generating a test harness, we configureCPAchecker

to use the witness automaton as a protocol automaton [9] to guide and restrict the
state-space exploration to the program paths that the witness represents. Unlike
observer automata [44], which we use to represent the specification and which can
only monitor the state-space exploration of an analysis, protocol automata may
also restrict the state-space exploration, for example to a specific program path,
5 We chooseBenchExec [13] as container solution, because it is also used by SV-COMP.
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thereby guiding the analysis along that path. In our case, this path is the error
path represented by the protocol automaton. We configure the analysis to only
consider the (syntactical) branching information of the protocol automaton and to
not semantically analyze the path. During this protocol analysis, we observe which
input-value assumptions from the witness correspond to which input function or
variable of the program. By collecting this information, we are able to construct
a test vector for the program. The test vector maps an input value to each input
variable and a list of input values to each external function. We synthesize a test
harness from a test vector by providing initializations for input variables and
definitions for external functions. An external function with a list (v0, . . . , vn−1)
of n ∈ N input values is defined by using a switch statement with n cases over a
static counter variable 0 ≤ i < n that is initialized to 0 and incremented after
each call to the function. Each case of the switch statement corresponds to an input
value, such that case i selects vi. We also inject a call to the exit function so that
when we later execute the program, we can detect that the intended violation
of the specification was triggered, i.e., the program crashed precisely due to the
bug described by the witness, by checking for a specific execution return value.
Figure 1c shows the exit(107)-call in line 2 and a definition of an input function
VERIFIER nondet uchar() in lines 3 to 12 as generated by CPA-witness2test, where

the counter variable test vector index represents i. The switch statement in this
function definition provides sequential access to the two input values (2, 254) that
CPA-witness2test extracted from the witness of Fig. 1b for the program shown
in Fig. 1a.

3.2 FSHELL-WITNESS2TEST

The key design principle of FShell-witness2test is independence from existing
verification infrastructure: FShell-witness2test’s results shall—by design—be
unbiased towards any existing software-analysis framework. While this does imply
limitationson the class ofwitnesses that canbeprocessedasdiscussedbelow, it does
yield further advantages: FShell-witness2test is easy to extend for prototyping,
and does not require any background in software verification.

FShell-witness2test comprises two major parts: (1) A Python-based pro-
cessor of the witness and the input program, using pycparser 6 to generate test
vectors in a format compatible with FShell [31]. (2) A Perl script that translates
such test vectors into a test harness.

For a given verification task and witness, FShell-witness2test first parses
the specification to restrict itself to reachability properties (call to error function
should not be reachable). The witness and the C program are then handed to the
Python-based processor. The specification defines the entry function to be used by
the generated test harness.

As pycparser cannot handle various GCC extensions, input programs are
preprocessed and sanitized by performing text replacement and removal. We then
obtain the abstract syntax tree and iterate over its nodes to gather data types and

6 https://github.com/eliben/pycparser

https://github.com/eliben/pycparser
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source locations of (1) all procedure-local uninitialized variables, (2) all functions
with prefix VERIFIER nondet, and (3) all uses of such functions. We refer to the
locations of uninitialized variables and nondeterministic-input function uses as
watch points.

Finally we build a linear sequence of nodes from the GraphML encoding of the
witness. Traversing this sequence, any match of line numbers against the watch
points triggers an attempt to extract values from assumptions in the witness. If
parsing the C code that is contained in the assumption succeeds, then an input
value is recorded.

The test vector is compatible with the output of FShell; the program of Fig. 1
yields the following test vector:

IN:
ENTRY main()@[file mean.c line 1]
unsigned char VERIFIER nondet uchar()@[file mean.c line 4]=2
unsigned char VERIFIER nondet uchar()@[file mean.c line 5]=254

Such a test vector is translated to a Makefile that generates an actual test
harness, which consists of invocation code and the implementation of various
nondeterministic-input functions that are present in the program. FShell-

witness2test reports False (confirming the violation) if, and only if, the property
violation is detected in the output of the test execution.

4 Evaluation

We perform a large experimental study to demonstrate the general applicability
and the advantages of our approach.

4.1 Evaluation Goals

The goal of our experimental evaluation is to collect experience with our new kind
of result validation and to support the following claims with data for a large set of
witnesses:

Claim 1: Execution-based validators can confirm violation witnesses that the
existing validators (which are based on model-checking technology) can not
validate. Thus, execution-based validation increases the overall effectiveness.

Claim 2: Result validation based on executable tests can be faster than result
validation based on model-checking technology.

Claim 3: Violation witnesses in the common exchange format for verification
results (cf. Sect. 2) are a valuable source to synthesize test code for specification
violations to complement existing test suites.

4.2 Experiment Setup

We used the benchmarking framework BenchExec (revision fb32a3e7) to con-
duct our experiments. In order to experimentally evaluate our approach, we first
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construct a large set of witnesses that is diverse in terms of (a) subject programs
and (b) verification tools that create witnesses.

Subject Programs. For (a), we consider the largest available set of verification
tasks 7 from the community of automatic software verification and select all 5 692
verification tasks with a reachability property 8.

Verifiers. For (b), we use all verification tools that participated in SV-COMP
2017 for property ReachSafety and whose license allows us to use it 9. Table 1
lists all verifiers that we executed to produce violation witnesses. The table lists
in the first column the verifier name with a link to the project web site for more
information, and a reference to the paper describing the corresponding verifier. For
the experiments, we took the archives from the competition web site. 10

Collection of Witnesses. From the given verification tasks and verifiers, we
started verification runs and collected the obtained violation witnesses. For this
replication of the SV-COMP experiments we followed thoroughly the description
on the competition web site 10 and in the report [4]. In particular, we started
each verifier only on those verification tasks and with those parameters that were
declared by the development teams of the verifiers 11. The number of witnesses that
we obtained with this process is reported in Table 1 (col. ‘Unref.’). Because we use
all available verifiers (not only those that performed well in the competition), the
set of witnesses contains also bad witnesses (e.g., that are syntactically incorrect).
We did not want to exclude them for external validity.

To further increase the external validity of our evaluation, we additionally
produced witnesses by applying a witness-refinement technique (cf. Sect. 2) to
13 200 witnesses above. We used the witness-refiner from the CPAchecker

framework for this step.This refinement is oftenable to improve imprecisewitnesses
by adding concrete input values, and yields another 5 766 witnesses (col. ‘Ref.’) to
a total of 18 966 witnesses (col. ‘Total’) that we will run our experiments on.

In order to highlight the differences between model-checking-based validation
approaches and execution-based validation approaches, we manually crafted some
verification tasks and corresponding witnesses. These witnesses allow us a more
detailed discussion of some effects, but were not added to our set of automatically
generated witnesses.

Computing Resources. Our experiments were conducted on machines with an
Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4 GHz,
33 GB of RAM, and a GNU/Linux operating system (x86 64-linux, Ubuntu 16.04
with Linux kernel 4.4). We limited the verification runs to four processing units
(i.e., two physical cores), 7 GB of memory, and 15 min of CPU time, and the
7 https://github.com/sosy-lab/sv-benchmarks/tree/423cf8c
8 We have to restrict the experiments to property ReachSafety because there were no

witness validators available for the other properties.
9 There are also two commercial verifiers that produce witnesses, but we cannot use them

due to their proprietary license.
10 https://sv-comp.sosy-lab.org/2017/systems.php
11 https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs

https://github.com/sosy-lab/sv-benchmarks/tree/423cf8c
https://sv-comp.sosy-lab.org/2017/systems.php
https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs
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Table 1. Violation witnesses produced by verifiers and resulting tests

Verifier Produced witnesses Produced tests

Unref. Ref. Total Count kLOC kB # Inputs (Avg.)

2ls [45] 992 384 1 376 1 208 89.9 3 999 7.57

Blast [47] 778 202 980 327 29.0 938 0.271

Cbmc [34] 831 467 1 298 1 249 67.7 2 991 6.33

Ceagle 619 426 1 045 540 92.2 262 5.39

CPA-BAM-BnB [2] 851 175 1 026 158 42.9 1 114 0

CPA-kInd [10] 263 193 456 656 56.2 2 967 14.9

CPA-Seq [23] 883 767 1 650 838 95.5 3 895 1.79

DepthK [43] 1 159 305 1 464 1 302 65.4 3 170 2.96

Esbmc [37] 653 148 801 478 21.0 1 983 2.53

Esbmc-falsi [37] 981 395 1 376 1 133 53.7 1 906 1.81

Esbmc-incr [37] 970 392 1 362 1 126 53.5 1 896 1.82

Esbmc-kInd [24] 847 352 1 199 1 028 48.9 1 774 1.69

Forester [30] 51 0 51 0 0 0 -

PredatorHP [33] 86 61 147 80 17.2 434 0

Skink [17] 30 25 55 44 0.290 8 0

Smack [41] 871 632 1 503 1 576 128 5 654 6.09

Symbiotic [19] 927 411 1 338 589 38.1 1 375 0

SymDIVINE [38] 247 224 471 405 13.4 580 0

UAutomizer [29] 514 70 584 121 2.24 59 0

UKojak [40] 309 67 376 116 2.15 55 0

UTaipan [26] 338 70 408 121 2.23 59 0

Total 13 200 5 766 18 966 13 095 920 35 119 5.60

witness-refinement and validation runs to two processing units (i.e., one physical
core), 4 GB of memory, and 1.5 min of CPU time. All CPU times are reported with
two significant digits. The limits are inspired by SV-COMP.

Validators. We used CPA-witness2test in version 1.6.14-tap18 from CPA-
checker and FShell-witness2test in revision 2a76669f from the test-gen
branch. We used the model-checking based witness validators CPAchecker,
version 1.6.14-tap18, and Ultimate Automizer 0.1.8.

4.3 Availability of Data and Tools

All tools and all data obtained in our experiments are available via our supple-
mentary web page. 12 The verification tasks are also publicly available 7.

4.4 Results

Claim 1: Effectiveness. Table 2 reports the number of witnesses that the
individual validators were able to confirm. In the columns, it shows: the results of
12 https://www.sosy-lab.org/research/executionbasedwitnessvalidation/

http://www.cprover.org/2LS
http://forge.ispras.ru/projects/blast
http://www.cprover.org/cbmc/
http://sts.thss.tsinghua.edu.cn/ceagle/
http://cpachecker.sosy-lab.org/
http://cpachecker.sosy-lab.org/
https://cpachecker.sosy-lab.org/
https://github.com/hbgit/depthk
http://www.esbmc.org
http://www.esbmc.org
http://www.esbmc.org
http://www.esbmc.org
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp/
http://science.mq.edu.au/~fcassez/software-verif.html
http://smackers.github.io
https://github.com/staticafi/symbiotic
https://github.com/yaqwsx/SymDIVINE
https://ultimate.informatik.uni-freiburg.de/automizer
https://ultimate.informatik.uni-freiburg.de/kojak
https://ultimate.informatik.uni-freiburg.de/taipan
https://www.sosy-lab.org/research/executionbasedwitnessvalidation/
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Table 2. Confirmed witnesses and verification results

Static validators Dynamic validators Union

CPAchecker Automizer Union CPA-w2t FShell-w2t Union

Confirmed witnesses 11 225 7 595 12 821 7 151 7 545 10 080 14 727
Unref. witnesses 5 750 3 450 7 214 3 506 3 459 5 082 9 056
Ref. witnesses 5 475 4 145 5 607 3 645 4 086 4 998 5 671
Incorrectly confirmed 18 7 25 6 0 6 31

Confirmed verif. results 5 751 5 643 7 215 5 377 5 755 7 292 9 057
Incorrectly confirmed 15 7 22 6 0 6 22

the static validators CPAchecker and Ultimate Automizer, as well as the union
of these two; the results of the dynamic validators CPA-w2t and FShell-w2t, as
well as the union of these two; and the results of the union of all four validators.
The union is the number of witnesses that at least one of the considered validators
was able to confirm, i.e., one of CPAchecker and Ultimate Automizer (col. 4), or
one of CPA-w2t and FShell-w2t (col. 7), or any of the four (col. 8). In the rows,
Table 2 is divided into confirmed witnesses (unrefined and refined witnesses, as
well as incorrectly confirmed witnesses) and confirmed verification results. A
witness is incorrectly confirmed if the verification result reported by a verifier
is wrong and the validator reached the same, wrong conclusion using the
verification-result witness that was provided by the verifier. Since for each
unrefined witness from a verifier, a refined counterpart may exist, the number of
confirmed witnesses is potentially double the number of verification results that
were confirmed using these witnesses. Because of this, Table 2 also reports the
number of confirmed verification results. We considered a verification result as
confirmed if at least one of itswitnesses is confirmedby theusedvalidators.This can
be the unrefined witness, or, if it exists, the refined one. The results of Table 2 show
that the static validators together confirmed a total of 12 821 verification results,
while the dynamic validators together confirmed a total of 10 080 results. Also,
the two different validation techniques confirm different results: a union of 14 727
results were confirmed by both validation techniques together. Of the verification
results that neither of the static validators was able to confirm, CPA-w2t was
able to confirm 735 and FShell-w2t was able to confirm 1 488, meaning that
the techniques complement each other well. Together, they were able to confirm
1 842 results that no static validator was able to confirm. This shows that the
independently developeddynamic techniques complement each other because they
are based on completely different technology. It is also interesting to considerwrong
witnesses, i.e., violation witnesses that constitute false alarms. In our experiments,
the verifiers produced 679 false alarms. Of these, the static approaches incorrectly
confirmed 22 wrong witnesses (of different programs), while FShell-w2t did
not wrongly confirm any false alarms. CPA-w2t confirmed 6 wrong witnesses
incorrectly, all based onprograms that contain floating-point arithmetic. For these,
CPA-w2t has only limited support. Despite that, this highlights a high precision
of our execution-based approach. In sum, using dynamic validators in addition
to static validators can significantly increase the number of successfully validated
verification results.
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Table 3. Performance comparison for witnesses that all validators confirmed (CPU time
for 2 685 witnesses)

CPAchecker Automizer CPA-w2t FShell-w2t

Total time (s) 20 000 45 000 30 000 1 900
Average time (s) 7.4 17 11 0.72
Median time (s) 6.2 11 5.9 0.71

Claim 2: Efficiency. Table 3 considers only results that were confirmed by all
validators, to compare the execution performance. For the dynamic validators,
the reported run time contains all three steps: generating the test from the
witness, compiling and linking, and executing the test. The results show that the
static approaches are slow (CPAchecker and Ultimate Automizer), that the
approach that assembled a static analysis for test generation from CPAchecker

components is also slow (CPA-w2t), and that the light-weight implementation
that is specifically tailored to generating tests from witnesses is extremely
fast (FShell-w2t). Figure 7 displays quantile functions that show for each
validator the necessary maximum CPU time (y-axis) for confirming a certain
quantile of results (x-axis). We observe thatFShell-w2t significantly outperforms
all other validators.

Fig. 7. Quantile plot for CPU time consumed for validating witnesses accepted by all
validators

Interestingly, in our validation we observed that the witnesses that require the
most time to validate are witnesses that are large in size and that describe a long,
detailed error path. Most of these are produced by verifiers that use bounded model
checking, e.g., Cbmc and CPA-kInd, or by our refinement step.
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Claim 3: Test Generation. The last four columns of Table 1 relate the number
of witnesses that we processed to the number of produced tests for which failing
executions are realizable. With ‘produced tests’ we refer to the tests that were
produced by any of the dynamic validators and for which the test execution lead to
an observed specification violation. Note that because we collect tests from both
dynamic validators, the numbers of produced tests exceed the number of witnesses
in some rows. Since the tests are available in source code, and could be maintained
and re-used by developers in practical application scenarios, we also report the
size of these unit tests in lines of code, file size, and the average number of input
values per generated unit test. The table shows that the number of unit tests and
the accompanying size of test code that the approach can produce are significant.
The results confirm that we are able to provide an interface to verification tools via
witnesses and tests that avoids technology lock-in and which enables developers to
explore the verification results using tools and techniques they are familiar with.
Thecombinationof softwareverificationandexecution-based result validationmay
also be used to automatically extend the existing test suites of a project.

4.5 Detailed Discussion of Synthetic Examples

Now we discuss a few effects in more detail on hand-crafted example witnesses.
Bugs that occur after only few loop iterations are also known as shallow bugs, as
opposed to deep bugs that occur after many loop iterations. One of the strengths
of dynamic validation approaches is that long loops can simply be executed, while
model checkers usually need to performexpensive symbolic unrolling to reveal deep
bugs, which is therefore a more difficult task for them than discovering shallow
bugs. Thus, we expect the set of witnesses obtained from model checkers to consist
mostly of shallow bugs, while at the same time we must expect that the advantages
of test-based validation become most apparent for witnesses for deeper bugs, which
necessitate many unrollings. Therefore, we hand-crafted a small set of verification
tasks and witnesses, including the example for computing the mean from Fig. 1a in
the introduction, to exemplify the differences between the test-based approaches
and those based on model checking.

Figure 8a shows an example program intended to compare the iterative sum
of ascending values with the result of the Gauss sum formula, and a witness for a
bug in the program. The bug is located in lines 10 to 12 and causes an error for
inputs larger than or equal to 10 000. The depicted witness for this bug assigns
an input value of 10 000. Figure 8b shows an example program that increments
two variables x and y 1 000 000 times and then asserts their equality in line 12,
and a witness for a violation of this assertion. Since y is initialized to x + 1 in
line 5, the assertion will fail for any value of x. The depicted witness for this
bug assigns an input value of 0. Figure 8c shows an example program with a
variable n initialized with an input function in line 4 and copies its value to a
variable x in line 5. In the same line, a variable y is initialized to 0. Then, in
lines 6 to 9, x is decremented and simultaneously y is incremented, until x is 0,
so essentially, y counts the loop iterations, and n − x = y is a loop invariant.
Consequently, y must be equal to n at the end of the loop, and therefore the call to
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Fig. 8. Hand-crafted tasks and witnesses

1 extern void
↪→ __VERIFIER_error(void);

2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main() {
4 unsigned int n =

↪→ __VERIFIER_nondet_uint();
5 if (n < 1) return 0;
6 if (n > 1000000) return 0;
7 unsigned int sum = 0;
8 for (int i = 1; i <= n; i++) {
9 sum = sum + i;

10 if (i == 10000) {
11 sum = sum + 1;
12 }
13 }
14 if (2 ∗ sum != n ∗ (n + 1)) {
15 __VERIFIER_error();
16 }
17 return 0;
18 }

q0 q1 q⊥

qE

4: n == 10000

o/w o/w

14,else:

14,
the

n:

(a) “gauss” code, witness

1 extern void
↪→ __VERIFIER_error(void);

2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main(void) {
4 unsigned int x =

↪→ __VERIFIER_nondet_uint();
5 unsigned int y = x + 1;
6 unsigned int i = 0;
7 while (i < 1000000) {
8 x++;
9 y++;

10 i++;
11 }
12 if (x != y) {
13 __VERIFIER_error();
14 }
15 return 0;
16 }

q0 q1 q⊥

qE

4: x == 0

o/w o/w

12,else:

12,
the

n:

(b) “loop-1” code, witness

1 extern void __VERIFIER_error();
2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main() {
4 unsigned int n =

↪→ __VERIFIER_nondet_uint();
5 unsigned int x=n, y=0;
6 while (x > 0) {
7 x−−;
8 y++;
9 }

10 if (y == n) {
11 __VERIFIER_error();
12 }
13 return 0;
14 }

q0

q1

q⊥ qE

4: n == 0

o/w

o/w

10,else: 10,then:

q0

q1

q⊥ qE

4: n == 1000000

o/w

o/w

10,else: 10,then:

(c) “loop-2” code, witnesses

the error function in line 11 is called for any input value, so that both witnesses in
Fig. 8c are valid counterexamples. The first of these witnesses, however, describes
a violation that skips the loop entirely with an input value of 0, while the second
one, due to assigning an input value of 1 000 000, reaches the violation in line 11
only after 1 000 000 loop iterations. We expect all validators to quickly validate the
witnesses for shallow bugs, i.e., the one depicted in Fig. 1a and the first witness
in Fig. 8c, but we expect test-based validators to perform significantly better on
the witnesses for deep bugs, i.e., those depicted in Fig. 8a and 8b, and the second
witness in Fig. 8c. Table 4 reports the results for validating these tasks and largely
confirms our expectations. While CPAchecker exceeds its resource limitations
(“M” for exceeding the memory limit, “T” for exceeding the CPU time limit)
for all witnesses except for the two that represent shallow bugs, CPA-w2t and
FShell-w2t quickly confirm all witnesses (✓). It is somewhat surprising to see that
UltimateAutomizer is able to confirm the loop-2/wit-2 of Fig. 8c. Checking the
tool output, however, reveals that Ultimate Automizer ignored the input value
of n specified by the witness and used 0 instead of 1 000 000. We were also surprised
that the witnesses in the first two rows were rejected by Ultimate Automizer (✗),
but since the confirmations of the execution-based validators along with their
trustworthy executable tests give us confidence that the witnesses are correct, we
assume that the rejections are either caused by the complexity of validating the
witnesses or by an approximating behavior of Ultimate Automizer similar to the
one leading to the rejection of loop-2/wit-2. Overall, we confirm that for this
class of witnesses, dynamic approaches are more efficient and more effective than
static approaches.
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Table 4. Validation of hand-crafted witnesses

Witness CPAchecker Automizer CPA-w2t FShell-w2t

Result Time (s) Result Time (s) Result Time (s) Result Time (s)

gauss M - ✗ 11 ✓ 3.4 ✓ 0.60

loop-1 T - ✗ 9.6 ✓ 3.4 ✓ 0.60

loop-2/wit-1 ✓ 3.8 ✓ 8.0 ✓ 3.4 ✓ 0.58

loop-2/wit-2 T - ✓ 7.5 ✓ 3.2 ✓ 0.58

mean ✓ 3.5 ✓ 7.1 ✓ 3.6 ✓ 0.58

5 Conclusion

Developers are familiar with testing, and there are many tools available for bug
analysis that are based on execution, such as debuggers. We try to close the gap
between available verification tools and the desire for more precise bug finding
by leveraging verification witnesses in an exchangeable standard format. We
synthesize tests (test code) from verification results (witnesses) and check the
tests for realizability by compiling them, linking them together with the original
program, and executing the result in an isolating container. Prior to our work,
developers would execute a verification tool and obtain the verification results,
which include a violation witness in case a bug is found. Now, we can use the
violation witness to obtain a test that drives the program to the specification
violation (i.e., into the crash that the developer wants to investigate), while
at the same time, we avoid verification-tool lock-in due to the exchangeable
standard format. The approach reports only those tests to the developer that
really expose the bug; any false alarms are suppressed. The results of our thorough
experimental study are encouraging: We verified thousands of programs from the
largest publicly-available collection of C verification tasks, consisting of 73 million
lines of source code (2.3 GB), and synthesized tests that confirmed7 286verification
results exposing known bugs in 974 different verification tasks.
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C., Schüssele, F., Podelski, A.: Ultimate Taipan: Trace abstraction and abstract
interpretation. In: Legay,A.,Margaria, T. (eds.) Proceedings ofTACAS2017. LNCS,
vol. 10206, pp. 399–403. Springer, Heidelberg (2017)

27. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: Young, M., Devanbu, P.T., (eds.)
Proceedings of FSE 2006, pp. 117–127. ACM (2006)

28. Gunter, E.L., Peled, D.: Path exploration tool. In: Cleaveland, W.R. (ed.)
Proceedings of TACAS 1999. LNCS, vol. 1579, pp. 405–419. Springer, Heidelberg
(1999)

29. Heizmann, M., Chen, Y.-W., Dietsch, D., Greitschus, M., Nutz, A., Musa, B.,
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Havelund, K. (eds.) Proceedings of TACAS 2014. LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014)

35. Li, K., Reichenbach, C., Csallner, C., Smaragdakis, Y.: Residual investigation:
Predictive and precise bug detection. In: Heimdahl, M.P.E., Su, Z., (eds.)
Proceedings of ISSTA 2012, pp. 298–308. ACM (2012)

36. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Emmerich, W., Knight, J.,
Rothermel, G. (eds.) Proceedings of ICSE 2007, pp. 416–426. IEEE (2007)

https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1007/s10009-015-0407-9
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1145/1181775.1181790
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/3-540-49059-0_28
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_30
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1007/978-3-662-54580-5_24
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1145/2338965.2336789
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41


Tests from Witnesses 23

37. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22. In:
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