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Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences and workshops may vary from year to
year, but they all focus on foundational and practical advances in software technology.
The conferences address all aspects of software technology, from object-oriented
design, testing, mathematical approaches to modeling and verification, transformation,
model-driven engineering, aspect-oriented techniques, and tools. STAF was created in
2013 as a follow-up to the TOOLS conference series that played a key role in the
deployment of object-oriented technologies. TOOLS was created in 1988 by Jean
Bézivin and Bertrand Meyer and STAF 2018 can be considered its 30th birthday.

STAF 2018 took place in Toulouse, France, during June 25–29, 2018, and hosted:
five conferences, ECMFA 2018, ICGT 2018, ICMT 2018, SEFM 2018, and TAP 2018,
and the Transformation Tool Contest TTC 2018; eight workshops and associated
events. STAF 2018 featured seven internationally renowned keynote speakers, wel-
comed participants from all around the world and had the pleasure to host a talk by the
founders of the TOOLS conference, Jean Bézivin and Bertrand Meyer.

The STAF 2018 Organizing Committee would like to thank (a) all participants for
submitting to and attending the event, (b) the Program Committees and Steering
Committees of all the individual conferences and satellite events for their hard work,
(c) the keynote speakers for their thoughtful, insightful, and inspiring talks, and
(d) Ecole Nationale Supérieure d’Electrotechnique, Electronique, Hydraulique
et Télécommunications (ENSEEIHT), Institut National Polytechnique de Toulouse
(Toulouse INP), Institut de Recherche en Informatique de Toulouse (IRIT), Occitanie,
and all sponsors for their support. A special thanks goes to all the members of the
Software and System Reliability Department of the IRIT Laboratory and the members
of the INP-Act SAIC, coping with all the foreseen and unforeseen work so as to prepare
a memorable event.

June 2018 Marc Pantel
Jean-Michel Bruel



Preface

This volume contains the papers presented at TAP 2018, the 12th International Con-
ference on Tests and Proofs. The TAP conference promotes research in verification and
formal methods that target the interplay of proofs and testing: the advancement of
techniques of each kind and their combination, with the ultimate goal of improving
software and system dependability. As in the five previous editions, TAP 2018 was part
of STAF (Software Technologies: Applications and Foundations), a federation of
leading conferences in software technology.

TAP 2018 took place in Toulouse in France during June 27–29, 2018. The Program
Committee (PC) received 18 paper submissions, each reviewed by three PC members.
After a lively discussion and careful deliberation, we selected ten contributions (seven
regular papers, one tool demonstration paper, and two short papers) for inclusion in this
proceedings volume and presentation at the conference. The combination of topics
highlights how testing and proving are increasingly seen as complementary rather than
mutually exclusive techniques, and confirms TAP’s commitment to bringing together
researchers and practitioners from both areas of verification.

The program of TAP was nicely completed by a keynote talk by Dirk Beyer
(Ludwigs-Maximilians-Universität München, Germany), who also contributed an
invited paper for this volume, and a tutorial by Sébastien Bardin and Nikolai Kosmatov
(CEA List, France). We would like to thank the invited speakers for contributing an
exciting presentation to the participants of STAF 2018.

We also thank the PC members and the additional reviewers for their timely and
thorough reviewing work, and for contributing to an animated and informed discussion.
Their names are listed on the following pages. The EasyChair system provided flawless
technical support.

The organization of STAF made for a successful and enjoyable conference in a
wonderful location. We thank all the organizers, and in particular the general chair,
Marc Pantel, and the organization chair, Jean-Michel Bruel, for their hard work; and we
also thank ENSEEIHT (Ecole Nationale Supérieure d’Electrotechnique, Electronique,
Hydraulique et Télécommunications) for hosting us.

June 2018 Catherine Dubois
Burkhart Wolff



Organization

Program Committee

Bernhard K. Aichernig TU Graz, Austria
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Jasmin Christian Blanchette Vrije Universiteit Amsterdam, The Netherlands
Achim D. Brucker The University of Sheffield, UK
Catherine Dubois

(Co-chair)
ENSIIE-Samovar, France

Carlo A. Furia Chalmers University of Technology, Sweden
Angelo Gargantini University of Bergamo, Italy
Alain Giorgetti FEMTO-ST Institute, University of Bourgogne

Franche-Comté, France
Martin Gogolla Database Systems Group, University of Bremen,

Germany
Arnaud Gotlieb SIMULA Research Laboratory, Norway
Klaus Havelund Jet Propulsion Laboratory, USA
Rob Hierons Brunel University, UK
Reiner Hähnle TU Darmstadt, Germany
Moa Johansson Chalmers University of Technology, Sweden
Thierry Jéron Inria, France
Chantal Keller LRI, Université Paris-Sud, France
Nikolai Kosmatov CEA List, France
Laura Kovacs Vienna University of Technology, Austria
Tanja Mayerhofer Vienna University of Technology, Austria
Karl Meinke KTH Royal Institute of Technology, Sweden
Corina Pasareanu CMU/NASA Ames Research Center, USA
Alexandre Petrenko CRIM, Canada
Martina Seidl Johannes Kepler University Linz, Austria
Helene Waeselynck LAAS-CNRS, France
Burkhart Wolff (Co-chair) LRI, Université Paris-Sud, France

Additional Reviewers

Arnaud, Mathilde
Avellaneda, Florent
Bannour, Boutheina
Bubel, Richard
Desai, Nisha
Lochbihler, Andreas

Marcozzi, Michaël
Nguena Timo, Omer
Paskevich, Andrei
Smallbone, Nicholas
Steinhöfel, Dominic
Voisin, Frederic



Specify and Measure, Cover and Unmask:
A Proof-Friendly View of Test

Coverage Criteria
(Abstract of Invited Tutorial)

Sébastien Bardin and Nikolai Kosmatov

CEA, List, Software Reliability and Security Laboratory, PC 174, 91191
Gif-sur-Yvette, France

{Sébastien.Bardin,Nikolai.Kosmatov}@cea.fr

Tutorial Abstract. Automatic test data generation (ATG) is a major topic in software
engineering. A large amount of research effort has been invested to automate white-box
testing. While a wide range of different and sometimes heterogeneous code-coverage
criteria have been proposed, testing techniques still lack a generic formalism to
describe them all, and available test automation tools usually support only a small
subset of them.

This tutorial brings participants to a journey into the world of white-box testing
criteria and their automated support. We try to give a convenient proof-friendly view of
coverage criteria and to bridge the gap between the coverage criteria supported by
state-of-the-art white-box ATG technologies, such as Dynamic Symbolic Execution,
and advanced coverage criteria found in the literature. The tutorial is articulated around
labels, a recent specification mechanism for test objectives, and their effective support
in automated testing tools. Labels are generic enough to specify many common testing
criteria, and amenable to efficient automation making it possible to cover the corre-
sponding test objectives and to measure the coverage level of a given test suite. We
propose several optimization techniques resulting in an effective support for labels in
ATG tools. We also show how a combination of static analysis techniques can be
efficiently applied to detect— unmask— infeasible test objectives that are responsible
for waste of test generation effort and imprecise coverage measurement. We demon-
strate the LTest toolset for test automation with efficient support of labels. Finally, we
present a recent extension of labels, called HTOL (Hyperlabel Test Objectives Lan-
guage), capable to encode even most advanced test coverage criteria (such as variants
of MCDC, dataflow criteria, non-interference properties, etc.), including hyperprop-
erties. This tutorial is based on a series of recent research and tool implementation
efforts [1–6].
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Tests from Witnesses
Execution-Based Validation of Verification Results

Dirk Beyer1 , Matthias Dangl1 , Thomas Lemberger1 ,
and Michael Tautschnig2

1 LMU Munich, Munich, Germany
2 Queen Mary University of London, London, UK

Abstract. The research community made enormous progress in the
past years in developing algorithms for verifying software, as shown by
international competitions. Unfortunately, the transfer into industrial
practice is slow. A reason for this might be that the verification tools
do not connect well to the developer work-flow. This paper presents a
solution to this problem: We use verification witnesses as interface between
verification tools and the testing process that every developer is familiar
with. Many modern verification tools report, in case a bug is found,
an error path as exchangeable verification witness. Our approach is to
synthesize a test from each witness, such that the developer can inspect the
verification result using familiar technology, such as debuggers, profilers,
and visualization tools. Moreover, this approach identifies the witnesses as
an interface between formal verification and testing: Developers can use
arbitrary (witness-producing) verification tools, and arbitrary converters
fromwitnesses to tests;we implemented two suchconverters.Weperformed
a large experimental study to confirmthat our proposed solutionworkswell
in practice: Out of 18 966 verification results obtained from 21 verifiers,
14 727 results were confirmed by witness-based result validation, and
10 080 of these results were confirmed alone by extracting and executing
tests, meaning that the desired specification violation was effectively
observed. We thus show that our approach is directly and immediately
applicable to verification results produced by software verifiers that adhere
to the international standard for verification witnesses.

1 Introduction

Automatic software verification, i.e., using methods from program analysis and
model checking to find out whether a program satisfies or violates a given
specification, is a successful andmature technology.The efficiencyandeffectiveness
of the available verification tools for C programs is shown in the annual
competition on software verification [5]. Despite this success story in research, the
state-of-the-art in practice is that notmany software projects have suchverification
tools incorporated into their software-development process. The reason for this gap
between availability of technology on the one side and missed opportunities on the
other side is perhaps twofold: (a) developers are frustrated by false alarms, i.e.,

c© Springer International Publishing AG, part of Springer Nature 2018
C. Dubois and B. Wolff (Eds.): TAP 2018, LNCS 10889, pp. 3–23, 2018.
https://doi.org/10.1007/978-3-319-92994-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92994-1_1&domain=pdf
http://orcid.org/0000-0003-4832-7662
http://orcid.org/0000-0001-7333-6734
http://orcid.org/0000-0003-0291-815X
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in the past, static analyzers reported too many bugs that were not observable in
a concrete program execution, and thus, developers have lost confidence in bug
reports [20]; (b) there is a lack of appropriate interfacing, i.e., it is difficult for
developers to leverage advantages of the verification tools because they are difficult
to integrate and difficult to learn from [1].

To overcome these two problems, we propose (i) to use verifiers that produce
verification witnesses, i.e., abstract descriptions of one or more paths to a
specification violation (many such tools are already available 1), and (ii) to validate
whether a real bug has been found by constructing a test from the produced
verification witness and observing the execution of that test. This way, issue (a)
above is solved because, if the test execution does show and thus confirm the
reported specification violation, the verification result can be examined with high
confidence and on a concrete, executable example (e.g., with a debugger), and
issue (b) is solved because we bridge the gap between the, in most projects,
unfamiliar domain of verification and the established domain of testing, which
makes it easier to integrate verification into the development process.

Execution-Based Validation of Witnesses. Witness validation based on
model-checking technology works well [4,5,9,14], but the disadvantage is that due
to over-approximation, the validation might be as imprecise as the verification
step. A verification witness serves as a (potentially coarse) description of a part
of the state space of a program that contains a specification violation, and the
witness validators can confirm or reject the error report. We complement the
witness-validation technology by direct test execution: A test case (e.g., unit-test
code) is built from the violation witness, and this test case provides a precise
and transparent way to confirm and examine it. 2 By observing and analyzing an
execution that exposes undesirable behavior, developers can convince themselves
that the error report is correct, and address the reported bugs without the risk of
wasting time on a false alarm. If the execution does not violate the specification,
the witness might have represented a false alarm and the developer can assign a
lower priority to that report.

Witnesses as Communication Interface. One barrier for the adoption of
verification technology is that developers have to spend considerable time on
understanding a verification tool and on becoming familiar with it. Thus, we have
to avoid the “lock-in” effect: people might not want to decide for one particular
tool if they have to invest time again when they wish to change the decision
later. If the developer constructs the integration on top of the exchangeable
verification witnesses, i.e., using the witnesses as interface to the verification tools,
the verification tool is exchangeable without any change to the testing process. 3

1 https://sv-comp.sosy-lab.org/2017/systems.php
2 It has been shown that model checkers can be effective in constructing useful tests [12].
3 At least 21 verifiers are available that produce witnesses in the exchangeable format

(cf. Table 1, which lists the verifiers that we use in our experiments).

https://sv-comp.sosy-lab.org/2017/systems.php
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Fig. 1. An incorrect example C program (a), the corresponding violation witness
produced by the verifier (b), and a code fragment used to inject the extracted test values
for compilation (c)

Tests from Witnesses. In order to flexibly bridge the gap from witness to test,
we provide two independently developed implementations of tools that take as
input a program and a violation witness, and synthesize a test that is compilable
and executable. This approach provides the following three features: (1) the
result of a verification tool can be validated by compiling and executing the
corresponding test—if the test violates the specification, the verification tool
reported a correct alarm and the result can be handled appropriately; (2) the
synthesized unit tests can be stored and maintained together with the other unit
tests, but canalsobe re-constructedat any timeondemand; (3) independently from
the verification tool that produced the witness, the full repertoire for inspecting a
failing program—such as debuggers, profilers, and visualization tools—canbe used
by the developer to understand the bug that the test represents.

Experimental Study. To evaluate our proposal, we performed experiments
on thousands of witnesses. We took many C programs from the largest public
repository of verification tasks and many witness-producing verification tools,
and collected 13 200 witnesses of specification violations. We obtained another
5 766 refined witnesses using witness refinement, a procedure introduced in the
original work on verification witnesses [9]. This technique is supposed to refine
witnesses to be more concrete, so we should be able to generate better test cases
from them. In conjunction with the two existing validators, CPAchecker and
UltimateAutomizer, ourmethod significantly increases the confirmation rate: out
of the total of 18 966 witnesses, we were able to extract test cases for 10 080 of them,
meaning that we successfully created and executed the tests, and the specification
violationwas observed.Using the newapproach,we increased the confirmed results
from 12 821 to 14 727 in total.

Example. In the following, we illustrate the complete process from running a
verification task using a verifier through synthesizing the test code from the
violation witness to compiling the program and executing it.

Fig. 1. An incorrect example C program (a), the corresponding violation witness
produced by the verifier (b), and a code fragment used to inject the extracted test values
for compilation (c)

Tests from Witnesses. In order to flexibly bridge the gap from witness to test,
we provide two independently developed implementations of tools that take as
input a program and a violation witness, and synthesize a test that is compilable
and executable. This approach provides the following three features: (1) the
result of a verification tool can be validated by compiling and executing the
corresponding test—if the test violates the specification, the verification tool
reported a correct alarm and the result can be handled appropriately; (2) the
synthesized unit tests can be stored and maintained together with the other unit
tests, but canalsobe re-constructedat any timeondemand; (3) independently from
the verification tool that produced the witness, the full repertoire for inspecting a
failing program—such as debuggers, profilers, and visualization tools—canbe used
by the developer to understand the bug that the test represents.

Experimental Study. To evaluate our proposal, we performed experiments
on thousands of witnesses. We took many C programs from the largest public
repository of verification tasks and many witness-producing verification tools,
and collected 13 200 witnesses of specification violations. We obtained another
5 766 refined witnesses using witness refinement, a procedure introduced in the
original work on verification witnesses [9]. This technique is supposed to refine
witnesses to be more concrete, so we should be able to generate better test cases
from them. In conjunction with the two existing validators, CPAchecker and
UltimateAutomizer, ourmethod significantly increases the confirmation rate: out
of the total of 18 966 witnesses, we were able to extract test cases for 10 080 of them,
meaning that we successfully created and executed the tests, and the specification
violationwas observed.Using the newapproach,we increased the confirmed results
from 12 821 to 14 727 in total.

Example. In the following, we illustrate the complete process from running a
verification task using a verifier through synthesizing the test code from the
violation witness to compiling the program and executing it.

1 extern void __VERIFIER_error(void);
2 extern unsigned char
↪→ __VERIFIER_nondet_uchar(void);

3 int main(void) {
4 unsigned char a =

↪→ __VERIFIER_nondet_uchar();
5 unsigned char b =

↪→ __VERIFIER_nondet_uchar();
6 unsigned char sum = a + b;
7 unsigned char mean = sum / 2;
8 if (mean < a / 2) {
9 __VERIFIER_error();

10 }
11 return 0;
12 }

(a) Example program

q0

q1

q2

q⊥ qE

4: a == 2

o/w

5: b == 254

o/w

o/w

8,else: 8,then:

(b) Witness automaton

1 #include <stdlib.h>
2 void __VERIFIER_error() {
↪→ exit(107); }

3 unsigned char
↪→ __VERIFIER_nondet_uchar() {

4 static unsigned int
↪→ test_vector_index = 0;

5 unsigned char retval;
6 switch (test_vector_index) {
7 case 0: retval = 2U; break;
8 case 1: retval = 254U; break;
9 }

10 ++test_vector_index;
11 return retval;
12 }

(c) Injection of test values
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Figure 1a shows a program that attempts to calculate the mean of two
integer numbers, a computation that is often required in binary-search algorithms.
In lines 4 and 5, two variables a and b of type unsigned char 4 are initialized
nondeterministically, for example from user input. The subsequent lines are
supposed to calculate the mean of the two variables, by first computing their
sum in line 6 and then dividing it by 2 in line 7. If the mean of a and b has
been calculated correctly, it must not be less than half of either of the two
values. This condition is asserted in lines 8 to 10. We can check whether the
condition is satisfied by specifying that the function VERIFIER error() must not
be reachable, and then running a verifier on this verification task. The verifier
should detect and report that the assertion will be violated if the sum of a and b

exceeds the range of the data type unsigned char, causing an overflow. Figure 1b
shows a violation-witness automaton [9] that represents a counterexample to the
specification. The automaton specifies that if we assume that a is assigned the
value 2 in line 4 and b is assigned the value 254 in line 5, control will flow to the
then-branch in line 8, causing a violation of the specification. To independently
validate this witness, we can then extract the input values for a and b, and use them
to provide an implementation of the input function VERIFIER nondet uchar() and the
VERIFIER error() function as depicted in Fig. 1c. After compiling Fig. 1a and 1c

into an executable and running it, we can confirm that these input values trigger
the call to VERIFIER error() by checking its return code. We can even use a debugger
such asGDBto step through the compiled programandobserve the faulty behavior
directly. The debugger will show that the sum of a and b, respectively 2 and 254,
computed in line 6 wraps around to 0. Therefore, the mean is incorrectly calculated
as 0 in line 7. The condition in line 8 then evaluates to 1, because 0 is smaller than 1.

It must be noted that the witness depicted in Fig. 1b is very precise: it provides
a concrete counterexample with explicit values for a and b. But in general, a
violation witness may simply describe a part of the state space that contains a
specification violation, i.e., an abstract counterexample. Suppose a verifier is only
able to provide a witness that specifies that if a + b is greater than 255 in line 6, the
specification will be violated. By using witness refinement [9], we can obtain from
this abstract witness a concrete witness like Fig. 1b.

Contributions. Our approach features the following advantages:

– Verification tools sometimes produce false alarms, which can lead to severe
waste of investigation time. We synthesize tests from verification witnesses, and
consequently trust only verification results confirmed by test execution.

– There are several witness-based validators available, but our execution-based
validation of the error path can be more precise and more efficient, compared to
the previously available validators.

– Avoidance of technology lock-in: A developer’s work flow does not depend on
a particular choice of verification tool, because the developer’s infrastructure
hooks in at the witness. The developer may elect to use a different verifier, or
even use multiple verifiers simultaneously—at no additional cost.

4 The example also works for larger data types, but for ease of presentation, we aim to
keep the range of values small, so that all calculations can be followed by hand.
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– Compared to working with witnesses, developers are more familiar with tests,
and more supporting tools—such as profilers, memory analyzers, and visualiza-
tion tools—are available to analyze the tests that correspond to the witnesses.

– The newly generated tests can complement the existing test suite, and the tests
as well as the witnesses can be stored and maintained as first-class objects in the
software life cycle.

Related Work. Our approach is based on a number of existing ideas, which we
outline in the following.
Verification Witnesses. We build our contributions on top of existing work on
violation witnesses [9], which we will describe in more detail in the background
section. The problem that verification results are not treated well enough by the
developers of verification tools is known and there are also other works that address
the same problem, for example, the work on execution reports [18].
Test-Case Generation.The idea to generate test cases from verification counterex-
amples is more than ten years old [6,48], has since been used to create debuggable
executables [39,42], and was extended and combined to various successful
automatic test-case generation approaches [25,27,36,46]. We complement existing
techniques in the following ways: Our technique works on the flexible exchange
format for violation witnesses. In case such a witness constitutes only an abstract
counterexample, we can use witness refinement to efficiently obtain a concrete
one [9]. Such a mechanism is not available for existing test-case generation tools.
Execution. Other approaches [16,22,35] focus on creating tests from concrete and
tool-specific counterexamples. In contrast, our approach does not require full coun-
terexamples, but works on more flexible, possibly abstract, violation witnesses.
Debugging and Visualization. Besides executing a test, it is important to under-
stand the cause of the error path, and there are tools and methods to debug and
visualize program paths [3,7,28].

2 Background

A verification witness is an exchangeable object that stores valuable information
about the verification process and the verification result. The key is that the format
is open and exchangeable, and that many verification tools support it.

Witness Construction.It has been commonly established practice for verifiers
to provide a counterexample to witness a specification violation, in particular
since counterexamples were used to refine abstract models [21]. The problem was
that these counterexamples were more or less ‘dumps’ of paths through the state
space, sometimes not human-readable, sometimes not machine-readable. Recent
efforts of the software-verification community established a common exchange
format for verification results as verificationwitnesses [9]. In this format, a so-called
violation-witness automaton (as seen in Fig. 1b) describes a state space that
contains the specification violation. This state space does not necessarily have to
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Fig. 3. Concept of witness refinement with example abstract and refined witnesses for
the example program depicted in Fig. 1a from the introduction

represent just a single error path, but may contain multiple error paths and even
paths without a specification violation. As an example for the use of verification
witnesses, the International Competition on Software Verification (SV-COMP)
applies this format and counts a report of a found bug only if a corresponding
violation witness is reported and confirmed [4]. Figure 2 illustrates the process:
the verifiers can be exchanged according to the needs of the user, there is no risk
of technology lock-in. Figure 2 also shows that the exchange format for witnesses
has recently been extended to correctness witnesses [8]. In the remainder of this
paper, however, we will only consider violation witnesses.

Fig. 2. Software verifiers produce witnesses

(c) Refined witness

8,then:
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Fig. 4. Violation-witness validation

WitnessRefinement.The originalwork onverificationwitnesses [9] contains the
proposal to consider refinement of witnesses. The idea is to take a violation witness
as input, replay it with a validating verifier, and produce a new witness that is more
detailed. A more detailed violation witness is closer to a concrete program path and
makes the validation process faster. We will later in this paper use an instance of
a witness refiner to improve witnesses from other verification tools towards being
able to successfully derive tests from witnesses. Figure 3a illustrates the optional
step of using witness-refining validators to strengthen a witness. Figure 3b shows
another, validviolationwitness for thepreviously consideredprogramfromFig. 1a.
In contrast to the witness in Fig. 1b, this witness does not specify any concrete
values for the two nondeterministic values of variables a and b, but specifies that a
property violation occurs if the intermediate variables sum and mean are both equal
to 0. This witness automaton represents a set of 256 different counterexamples:
every counterexample with values for a and b, so that a + b == 0 during execution.
Figure 3c showsaviolationwitness that is a refinement of themore abstractwitness
in Fig. 3b that additionally specifies concrete values for the two variables a and b

and thus restricts the search space in witness validation early on.

Witness Validation. Violation witnesses can be used to independently re-
establish the verification result by using a witness-based result validator that takes
the information from the witness to find a path through the state space of the
program to a specification violation. Thus, a successful validation increases trust
in the verification result, and developers no longer need to rely on the verifiers
alone. Instead, they can focus their attention on the validated results and assign a
lower priority to unconfirmed alarms. The existing witness-based result validators
employpotentially-expensivemodel-checking techniques to replay error paths that
are represented in thewitness.While this is a powerful technique (it can reconstruct
error paths even for abstract witnesses), the technique still has the limitations
of common program-analysis and model-checking techniques, namely that the
technique may over-approximate the semantics of the programming language,

Witness
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Specification

Verification
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FShell-witness2test

Confirmed
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Fig. 5. Software verification with witnesses: construction, (optional) refinement, and
validation work flow

thus potentially confirming false alarms or rejecting valid violation witnesses.
As a solution to this, we propose an execution-based approach to witness-based
result validation. Figure 4 shows the two existing validators CPAchecker and
Ultimate Automizer together with the two new, execution-based validators that
we introduce in this paper: CPA-witness2test and FShell-witness2test.

3 Tests fromWitnesses

This section introduces a new, yet unexplored, application of witnesses that can
easily be integrated into established processes for verification-result validation, as
summarized by Fig. 5. The highlighted area in Fig. 5 outlines the goal: for a given
violation witness, we want to construct a test that can be compiled and executed
to check that the bug is realizable. In particular, driven by our desire to keep the
work-flow independent from special verifiers, we want to have two independently
developed implementations of such witness-to-test tools.

Our new, execution-based witness validator does not require the aid of
model-checking techniques for validating verification results: we generate a test
harness (test code for the program), which can be compiled and linked together
with the original subject program and executed. If the execution does not trigger
the described bug, the witness is deemed spurious, i.e., not realizable.

Adding this new tool to the pool of available witness-based result validators
not only increases the diversity of validation techniques and its potential for
establishing trust in verification results, but also adds novel features to the
validation process: As a valuable by-product of a successful validation, the devel-
opers are able to obtain executable test code that is guaranteed to reproduce the
bug in their system, and they can use all of the infrastructure for inspecting and
debugging that they are trained and experienced in and that is already in place
in their development environment. For example, a C developer might simply run
GDB to step through the executable error path.
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Fig. 6. Flow of execution-based result validation

Figure 6 shows the complete picture of execution-based witness validation.
The verification task (a given program with a given specification) is verified by a
chosen verifier. If the verifier reports a specification violation (False, bug found) it
also produces a violation witness. (Our work does not consider the outcome True,
for which the development of practical support, such as correctness witnesses [8]
and compact proofwitnesses [32], is also a subject of ongoing research.)Thewitness
in GraphML format [15] is then given to witness2test, which synthesizes a test
harness that drives the program to the specification violation. In order to support
our claim of independence from any particular tool implementation, we implement
two completely different instances of witness2test, namely CPA-witness2test

(based on open-source components fromCPAchecker) andFShell-witness2test

(based on ideas from FShell). The test-harness and the original (unchanged)
program are then compiled and linked to obtain an executable program. The
executable program is then executed in a safe execution container. 5 If the reported
specification violation is observed during this execution, the witness is confirmed.
Otherwise the witness is not confirmed, most likely because the witness is not
precise enough or even spurious.

3.1 CPA-WITNESS2TEST

One of our implementations for the witness2test component of the architecture
outlined in Fig. 6 is CPA-witness2test, which is based on the CPAchecker

framework [11].For ourpurpose ofmatchingan inputwitness to theprogramsource
code of a verification task and generating a test harness, we configureCPAchecker

to use the witness automaton as a protocol automaton [9] to guide and restrict the
state-space exploration to the program paths that the witness represents. Unlike
observer automata [44], which we use to represent the specification and which can
only monitor the state-space exploration of an analysis, protocol automata may
also restrict the state-space exploration, for example to a specific program path,
5 We chooseBenchExec [13] as container solution, because it is also used by SV-COMP.
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thereby guiding the analysis along that path. In our case, this path is the error
path represented by the protocol automaton. We configure the analysis to only
consider the (syntactical) branching information of the protocol automaton and to
not semantically analyze the path. During this protocol analysis, we observe which
input-value assumptions from the witness correspond to which input function or
variable of the program. By collecting this information, we are able to construct
a test vector for the program. The test vector maps an input value to each input
variable and a list of input values to each external function. We synthesize a test
harness from a test vector by providing initializations for input variables and
definitions for external functions. An external function with a list (v0, . . . , vn−1)
of n ∈ N input values is defined by using a switch statement with n cases over a
static counter variable 0 ≤ i < n that is initialized to 0 and incremented after
each call to the function. Each case of the switch statement corresponds to an input
value, such that case i selects vi. We also inject a call to the exit function so that
when we later execute the program, we can detect that the intended violation
of the specification was triggered, i.e., the program crashed precisely due to the
bug described by the witness, by checking for a specific execution return value.
Figure 1c shows the exit(107)-call in line 2 and a definition of an input function
VERIFIER nondet uchar() in lines 3 to 12 as generated by CPA-witness2test, where

the counter variable test vector index represents i. The switch statement in this
function definition provides sequential access to the two input values (2, 254) that
CPA-witness2test extracted from the witness of Fig. 1b for the program shown
in Fig. 1a.

3.2 FSHELL-WITNESS2TEST

The key design principle of FShell-witness2test is independence from existing
verification infrastructure: FShell-witness2test’s results shall—by design—be
unbiased towards any existing software-analysis framework. While this does imply
limitationson the class ofwitnesses that canbeprocessedasdiscussedbelow, it does
yield further advantages: FShell-witness2test is easy to extend for prototyping,
and does not require any background in software verification.

FShell-witness2test comprises two major parts: (1) A Python-based pro-
cessor of the witness and the input program, using pycparser 6 to generate test
vectors in a format compatible with FShell [31]. (2) A Perl script that translates
such test vectors into a test harness.

For a given verification task and witness, FShell-witness2test first parses
the specification to restrict itself to reachability properties (call to error function
should not be reachable). The witness and the C program are then handed to the
Python-based processor. The specification defines the entry function to be used by
the generated test harness.

As pycparser cannot handle various GCC extensions, input programs are
preprocessed and sanitized by performing text replacement and removal. We then
obtain the abstract syntax tree and iterate over its nodes to gather data types and

6 https://github.com/eliben/pycparser

https://github.com/eliben/pycparser
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source locations of (1) all procedure-local uninitialized variables, (2) all functions
with prefix VERIFIER nondet, and (3) all uses of such functions. We refer to the
locations of uninitialized variables and nondeterministic-input function uses as
watch points.

Finally we build a linear sequence of nodes from the GraphML encoding of the
witness. Traversing this sequence, any match of line numbers against the watch
points triggers an attempt to extract values from assumptions in the witness. If
parsing the C code that is contained in the assumption succeeds, then an input
value is recorded.

The test vector is compatible with the output of FShell; the program of Fig. 1
yields the following test vector:

IN:
ENTRY main()@[file mean.c line 1]
unsigned char VERIFIER nondet uchar()@[file mean.c line 4]=2
unsigned char VERIFIER nondet uchar()@[file mean.c line 5]=254

Such a test vector is translated to a Makefile that generates an actual test
harness, which consists of invocation code and the implementation of various
nondeterministic-input functions that are present in the program. FShell-

witness2test reports False (confirming the violation) if, and only if, the property
violation is detected in the output of the test execution.

4 Evaluation

We perform a large experimental study to demonstrate the general applicability
and the advantages of our approach.

4.1 Evaluation Goals

The goal of our experimental evaluation is to collect experience with our new kind
of result validation and to support the following claims with data for a large set of
witnesses:

Claim 1: Execution-based validators can confirm violation witnesses that the
existing validators (which are based on model-checking technology) can not
validate. Thus, execution-based validation increases the overall effectiveness.

Claim 2: Result validation based on executable tests can be faster than result
validation based on model-checking technology.

Claim 3: Violation witnesses in the common exchange format for verification
results (cf. Sect. 2) are a valuable source to synthesize test code for specification
violations to complement existing test suites.

4.2 Experiment Setup

We used the benchmarking framework BenchExec (revision fb32a3e7) to con-
duct our experiments. In order to experimentally evaluate our approach, we first
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construct a large set of witnesses that is diverse in terms of (a) subject programs
and (b) verification tools that create witnesses.

Subject Programs. For (a), we consider the largest available set of verification
tasks 7 from the community of automatic software verification and select all 5 692
verification tasks with a reachability property 8.

Verifiers. For (b), we use all verification tools that participated in SV-COMP
2017 for property ReachSafety and whose license allows us to use it 9. Table 1
lists all verifiers that we executed to produce violation witnesses. The table lists
in the first column the verifier name with a link to the project web site for more
information, and a reference to the paper describing the corresponding verifier. For
the experiments, we took the archives from the competition web site. 10

Collection of Witnesses. From the given verification tasks and verifiers, we
started verification runs and collected the obtained violation witnesses. For this
replication of the SV-COMP experiments we followed thoroughly the description
on the competition web site 10 and in the report [4]. In particular, we started
each verifier only on those verification tasks and with those parameters that were
declared by the development teams of the verifiers 11. The number of witnesses that
we obtained with this process is reported in Table 1 (col. ‘Unref.’). Because we use
all available verifiers (not only those that performed well in the competition), the
set of witnesses contains also bad witnesses (e.g., that are syntactically incorrect).
We did not want to exclude them for external validity.

To further increase the external validity of our evaluation, we additionally
produced witnesses by applying a witness-refinement technique (cf. Sect. 2) to
13 200 witnesses above. We used the witness-refiner from the CPAchecker

framework for this step.This refinement is oftenable to improve imprecisewitnesses
by adding concrete input values, and yields another 5 766 witnesses (col. ‘Ref.’) to
a total of 18 966 witnesses (col. ‘Total’) that we will run our experiments on.

In order to highlight the differences between model-checking-based validation
approaches and execution-based validation approaches, we manually crafted some
verification tasks and corresponding witnesses. These witnesses allow us a more
detailed discussion of some effects, but were not added to our set of automatically
generated witnesses.

Computing Resources. Our experiments were conducted on machines with an
Intel Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4 GHz,
33 GB of RAM, and a GNU/Linux operating system (x86 64-linux, Ubuntu 16.04
with Linux kernel 4.4). We limited the verification runs to four processing units
(i.e., two physical cores), 7 GB of memory, and 15 min of CPU time, and the
7 https://github.com/sosy-lab/sv-benchmarks/tree/423cf8c
8 We have to restrict the experiments to property ReachSafety because there were no

witness validators available for the other properties.
9 There are also two commercial verifiers that produce witnesses, but we cannot use them

due to their proprietary license.
10 https://sv-comp.sosy-lab.org/2017/systems.php
11 https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs

https://github.com/sosy-lab/sv-benchmarks/tree/423cf8c
https://sv-comp.sosy-lab.org/2017/systems.php
https://github.com/sosy-lab/sv-comp/tree/svcomp17/benchmark-defs
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Table 1. Violation witnesses produced by verifiers and resulting tests

Verifier Produced witnesses Produced tests

Unref. Ref. Total Count kLOC kB # Inputs (Avg.)

2ls [45] 992 384 1 376 1 208 89.9 3 999 7.57

Blast [47] 778 202 980 327 29.0 938 0.271

Cbmc [34] 831 467 1 298 1 249 67.7 2 991 6.33

Ceagle 619 426 1 045 540 92.2 262 5.39

CPA-BAM-BnB [2] 851 175 1 026 158 42.9 1 114 0

CPA-kInd [10] 263 193 456 656 56.2 2 967 14.9

CPA-Seq [23] 883 767 1 650 838 95.5 3 895 1.79

DepthK [43] 1 159 305 1 464 1 302 65.4 3 170 2.96

Esbmc [37] 653 148 801 478 21.0 1 983 2.53

Esbmc-falsi [37] 981 395 1 376 1 133 53.7 1 906 1.81

Esbmc-incr [37] 970 392 1 362 1 126 53.5 1 896 1.82

Esbmc-kInd [24] 847 352 1 199 1 028 48.9 1 774 1.69

Forester [30] 51 0 51 0 0 0 -

PredatorHP [33] 86 61 147 80 17.2 434 0

Skink [17] 30 25 55 44 0.290 8 0

Smack [41] 871 632 1 503 1 576 128 5 654 6.09

Symbiotic [19] 927 411 1 338 589 38.1 1 375 0

SymDIVINE [38] 247 224 471 405 13.4 580 0

UAutomizer [29] 514 70 584 121 2.24 59 0

UKojak [40] 309 67 376 116 2.15 55 0

UTaipan [26] 338 70 408 121 2.23 59 0

Total 13 200 5 766 18 966 13 095 920 35 119 5.60

witness-refinement and validation runs to two processing units (i.e., one physical
core), 4 GB of memory, and 1.5 min of CPU time. All CPU times are reported with
two significant digits. The limits are inspired by SV-COMP.

Validators. We used CPA-witness2test in version 1.6.14-tap18 from CPA-
checker and FShell-witness2test in revision 2a76669f from the test-gen
branch. We used the model-checking based witness validators CPAchecker,
version 1.6.14-tap18, and Ultimate Automizer 0.1.8.

4.3 Availability of Data and Tools

All tools and all data obtained in our experiments are available via our supple-
mentary web page. 12 The verification tasks are also publicly available 7.

4.4 Results

Claim 1: Effectiveness. Table 2 reports the number of witnesses that the
individual validators were able to confirm. In the columns, it shows: the results of
12 https://www.sosy-lab.org/research/executionbasedwitnessvalidation/

http://www.cprover.org/2LS
http://forge.ispras.ru/projects/blast
http://www.cprover.org/cbmc/
http://sts.thss.tsinghua.edu.cn/ceagle/
http://cpachecker.sosy-lab.org/
http://cpachecker.sosy-lab.org/
https://cpachecker.sosy-lab.org/
https://github.com/hbgit/depthk
http://www.esbmc.org
http://www.esbmc.org
http://www.esbmc.org
http://www.esbmc.org
http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator-hp/
http://science.mq.edu.au/~fcassez/software-verif.html
http://smackers.github.io
https://github.com/staticafi/symbiotic
https://github.com/yaqwsx/SymDIVINE
https://ultimate.informatik.uni-freiburg.de/automizer
https://ultimate.informatik.uni-freiburg.de/kojak
https://ultimate.informatik.uni-freiburg.de/taipan
https://www.sosy-lab.org/research/executionbasedwitnessvalidation/
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Table 2. Confirmed witnesses and verification results

Static validators Dynamic validators Union

CPAchecker Automizer Union CPA-w2t FShell-w2t Union

Confirmed witnesses 11 225 7 595 12 821 7 151 7 545 10 080 14 727
Unref. witnesses 5 750 3 450 7 214 3 506 3 459 5 082 9 056
Ref. witnesses 5 475 4 145 5 607 3 645 4 086 4 998 5 671
Incorrectly confirmed 18 7 25 6 0 6 31

Confirmed verif. results 5 751 5 643 7 215 5 377 5 755 7 292 9 057
Incorrectly confirmed 15 7 22 6 0 6 22

the static validators CPAchecker and Ultimate Automizer, as well as the union
of these two; the results of the dynamic validators CPA-w2t and FShell-w2t, as
well as the union of these two; and the results of the union of all four validators.
The union is the number of witnesses that at least one of the considered validators
was able to confirm, i.e., one of CPAchecker and Ultimate Automizer (col. 4), or
one of CPA-w2t and FShell-w2t (col. 7), or any of the four (col. 8). In the rows,
Table 2 is divided into confirmed witnesses (unrefined and refined witnesses, as
well as incorrectly confirmed witnesses) and confirmed verification results. A
witness is incorrectly confirmed if the verification result reported by a verifier
is wrong and the validator reached the same, wrong conclusion using the
verification-result witness that was provided by the verifier. Since for each
unrefined witness from a verifier, a refined counterpart may exist, the number of
confirmed witnesses is potentially double the number of verification results that
were confirmed using these witnesses. Because of this, Table 2 also reports the
number of confirmed verification results. We considered a verification result as
confirmed if at least one of itswitnesses is confirmedby theusedvalidators.This can
be the unrefined witness, or, if it exists, the refined one. The results of Table 2 show
that the static validators together confirmed a total of 12 821 verification results,
while the dynamic validators together confirmed a total of 10 080 results. Also,
the two different validation techniques confirm different results: a union of 14 727
results were confirmed by both validation techniques together. Of the verification
results that neither of the static validators was able to confirm, CPA-w2t was
able to confirm 735 and FShell-w2t was able to confirm 1 488, meaning that
the techniques complement each other well. Together, they were able to confirm
1 842 results that no static validator was able to confirm. This shows that the
independently developeddynamic techniques complement each other because they
are based on completely different technology. It is also interesting to considerwrong
witnesses, i.e., violation witnesses that constitute false alarms. In our experiments,
the verifiers produced 679 false alarms. Of these, the static approaches incorrectly
confirmed 22 wrong witnesses (of different programs), while FShell-w2t did
not wrongly confirm any false alarms. CPA-w2t confirmed 6 wrong witnesses
incorrectly, all based onprograms that contain floating-point arithmetic. For these,
CPA-w2t has only limited support. Despite that, this highlights a high precision
of our execution-based approach. In sum, using dynamic validators in addition
to static validators can significantly increase the number of successfully validated
verification results.
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Table 3. Performance comparison for witnesses that all validators confirmed (CPU time
for 2 685 witnesses)

CPAchecker Automizer CPA-w2t FShell-w2t

Total time (s) 20 000 45 000 30 000 1 900
Average time (s) 7.4 17 11 0.72
Median time (s) 6.2 11 5.9 0.71

Claim 2: Efficiency. Table 3 considers only results that were confirmed by all
validators, to compare the execution performance. For the dynamic validators,
the reported run time contains all three steps: generating the test from the
witness, compiling and linking, and executing the test. The results show that the
static approaches are slow (CPAchecker and Ultimate Automizer), that the
approach that assembled a static analysis for test generation from CPAchecker

components is also slow (CPA-w2t), and that the light-weight implementation
that is specifically tailored to generating tests from witnesses is extremely
fast (FShell-w2t). Figure 7 displays quantile functions that show for each
validator the necessary maximum CPU time (y-axis) for confirming a certain
quantile of results (x-axis). We observe thatFShell-w2t significantly outperforms
all other validators.

Fig. 7. Quantile plot for CPU time consumed for validating witnesses accepted by all
validators

Interestingly, in our validation we observed that the witnesses that require the
most time to validate are witnesses that are large in size and that describe a long,
detailed error path. Most of these are produced by verifiers that use bounded model
checking, e.g., Cbmc and CPA-kInd, or by our refinement step.
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Claim 3: Test Generation. The last four columns of Table 1 relate the number
of witnesses that we processed to the number of produced tests for which failing
executions are realizable. With ‘produced tests’ we refer to the tests that were
produced by any of the dynamic validators and for which the test execution lead to
an observed specification violation. Note that because we collect tests from both
dynamic validators, the numbers of produced tests exceed the number of witnesses
in some rows. Since the tests are available in source code, and could be maintained
and re-used by developers in practical application scenarios, we also report the
size of these unit tests in lines of code, file size, and the average number of input
values per generated unit test. The table shows that the number of unit tests and
the accompanying size of test code that the approach can produce are significant.
The results confirm that we are able to provide an interface to verification tools via
witnesses and tests that avoids technology lock-in and which enables developers to
explore the verification results using tools and techniques they are familiar with.
Thecombinationof softwareverificationandexecution-based result validationmay
also be used to automatically extend the existing test suites of a project.

4.5 Detailed Discussion of Synthetic Examples

Now we discuss a few effects in more detail on hand-crafted example witnesses.
Bugs that occur after only few loop iterations are also known as shallow bugs, as
opposed to deep bugs that occur after many loop iterations. One of the strengths
of dynamic validation approaches is that long loops can simply be executed, while
model checkers usually need to performexpensive symbolic unrolling to reveal deep
bugs, which is therefore a more difficult task for them than discovering shallow
bugs. Thus, we expect the set of witnesses obtained from model checkers to consist
mostly of shallow bugs, while at the same time we must expect that the advantages
of test-based validation become most apparent for witnesses for deeper bugs, which
necessitate many unrollings. Therefore, we hand-crafted a small set of verification
tasks and witnesses, including the example for computing the mean from Fig. 1a in
the introduction, to exemplify the differences between the test-based approaches
and those based on model checking.

Figure 8a shows an example program intended to compare the iterative sum
of ascending values with the result of the Gauss sum formula, and a witness for a
bug in the program. The bug is located in lines 10 to 12 and causes an error for
inputs larger than or equal to 10 000. The depicted witness for this bug assigns
an input value of 10 000. Figure 8b shows an example program that increments
two variables x and y 1 000 000 times and then asserts their equality in line 12,
and a witness for a violation of this assertion. Since y is initialized to x + 1 in
line 5, the assertion will fail for any value of x. The depicted witness for this
bug assigns an input value of 0. Figure 8c shows an example program with a
variable n initialized with an input function in line 4 and copies its value to a
variable x in line 5. In the same line, a variable y is initialized to 0. Then, in
lines 6 to 9, x is decremented and simultaneously y is incremented, until x is 0,
so essentially, y counts the loop iterations, and n − x = y is a loop invariant.
Consequently, y must be equal to n at the end of the loop, and therefore the call to
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Fig. 8. Hand-crafted tasks and witnesses

1 extern void
↪→ __VERIFIER_error(void);

2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main() {
4 unsigned int n =

↪→ __VERIFIER_nondet_uint();
5 if (n < 1) return 0;
6 if (n > 1000000) return 0;
7 unsigned int sum = 0;
8 for (int i = 1; i <= n; i++) {
9 sum = sum + i;

10 if (i == 10000) {
11 sum = sum + 1;
12 }
13 }
14 if (2 ∗ sum != n ∗ (n + 1)) {
15 __VERIFIER_error();
16 }
17 return 0;
18 }

q0 q1 q⊥

qE

4: n == 10000

o/w o/w

14,else:

14,
the

n:

(a) “gauss” code, witness

1 extern void
↪→ __VERIFIER_error(void);

2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main(void) {
4 unsigned int x =

↪→ __VERIFIER_nondet_uint();
5 unsigned int y = x + 1;
6 unsigned int i = 0;
7 while (i < 1000000) {
8 x++;
9 y++;

10 i++;
11 }
12 if (x != y) {
13 __VERIFIER_error();
14 }
15 return 0;
16 }

q0 q1 q⊥

qE

4: x == 0

o/w o/w

12,else:

12,
the

n:

(b) “loop-1” code, witness

1 extern void __VERIFIER_error();
2 extern unsigned int
↪→ __VERIFIER_nondet_uint(void);

3 int main() {
4 unsigned int n =

↪→ __VERIFIER_nondet_uint();
5 unsigned int x=n, y=0;
6 while (x > 0) {
7 x−−;
8 y++;
9 }

10 if (y == n) {
11 __VERIFIER_error();
12 }
13 return 0;
14 }

q0

q1

q⊥ qE

4: n == 0

o/w

o/w

10,else: 10,then:

q0

q1

q⊥ qE

4: n == 1000000

o/w

o/w

10,else: 10,then:

(c) “loop-2” code, witnesses

the error function in line 11 is called for any input value, so that both witnesses in
Fig. 8c are valid counterexamples. The first of these witnesses, however, describes
a violation that skips the loop entirely with an input value of 0, while the second
one, due to assigning an input value of 1 000 000, reaches the violation in line 11
only after 1 000 000 loop iterations. We expect all validators to quickly validate the
witnesses for shallow bugs, i.e., the one depicted in Fig. 1a and the first witness
in Fig. 8c, but we expect test-based validators to perform significantly better on
the witnesses for deep bugs, i.e., those depicted in Fig. 8a and 8b, and the second
witness in Fig. 8c. Table 4 reports the results for validating these tasks and largely
confirms our expectations. While CPAchecker exceeds its resource limitations
(“M” for exceeding the memory limit, “T” for exceeding the CPU time limit)
for all witnesses except for the two that represent shallow bugs, CPA-w2t and
FShell-w2t quickly confirm all witnesses (✓). It is somewhat surprising to see that
UltimateAutomizer is able to confirm the loop-2/wit-2 of Fig. 8c. Checking the
tool output, however, reveals that Ultimate Automizer ignored the input value
of n specified by the witness and used 0 instead of 1 000 000. We were also surprised
that the witnesses in the first two rows were rejected by Ultimate Automizer (✗),
but since the confirmations of the execution-based validators along with their
trustworthy executable tests give us confidence that the witnesses are correct, we
assume that the rejections are either caused by the complexity of validating the
witnesses or by an approximating behavior of Ultimate Automizer similar to the
one leading to the rejection of loop-2/wit-2. Overall, we confirm that for this
class of witnesses, dynamic approaches are more efficient and more effective than
static approaches.
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Table 4. Validation of hand-crafted witnesses

Witness CPAchecker Automizer CPA-w2t FShell-w2t

Result Time (s) Result Time (s) Result Time (s) Result Time (s)

gauss M - ✗ 11 ✓ 3.4 ✓ 0.60

loop-1 T - ✗ 9.6 ✓ 3.4 ✓ 0.60

loop-2/wit-1 ✓ 3.8 ✓ 8.0 ✓ 3.4 ✓ 0.58

loop-2/wit-2 T - ✓ 7.5 ✓ 3.2 ✓ 0.58

mean ✓ 3.5 ✓ 7.1 ✓ 3.6 ✓ 0.58

5 Conclusion

Developers are familiar with testing, and there are many tools available for bug
analysis that are based on execution, such as debuggers. We try to close the gap
between available verification tools and the desire for more precise bug finding
by leveraging verification witnesses in an exchangeable standard format. We
synthesize tests (test code) from verification results (witnesses) and check the
tests for realizability by compiling them, linking them together with the original
program, and executing the result in an isolating container. Prior to our work,
developers would execute a verification tool and obtain the verification results,
which include a violation witness in case a bug is found. Now, we can use the
violation witness to obtain a test that drives the program to the specification
violation (i.e., into the crash that the developer wants to investigate), while
at the same time, we avoid verification-tool lock-in due to the exchangeable
standard format. The approach reports only those tests to the developer that
really expose the bug; any false alarms are suppressed. The results of our thorough
experimental study are encouraging: We verified thousands of programs from the
largest publicly-available collection of C verification tasks, consisting of 73 million
lines of source code (2.3 GB), and synthesized tests that confirmed7 286verification
results exposing known bugs in 974 different verification tasks.
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Abstract. System modeling is a classical approach to ensure their reli-
ability since it is suitable both for a formal verification and for software
testing techniques. In the context of model-based testing an approach
combining random testing and coverage based testing has been recently
introduced [9]. However, this approach is not tractable on quite large
models. In this paper we show how to use statistical approximations to
make the approach work on larger models. Experimental results, on mod-
els of communicating protocols, are provided; they are very promising,
both for the computation time and for the quality of the generated test
suites.

1 Introduction

Many critical tasks are now assigned to automatic systems. In this context, pro-
ducing trusted software is a challenging problem and a central issue in software
engineering. Recent decades have witnessed the strengthening of many formal
approaches to ensure software reliability, from verification (model-checking, auto-
matic theorem proving, static analysis) to testing, which remains an inescapable
step to ensure software quality. A great effort has been made by the scientific
community in order to upgrade hand-made testing techniques to scalable and
proven framework.

Experience shows that random testing is a very efficient technique for detect-
ing bugs, especially at the first stages of testing activities. The strength of
random testing consists of its independence on tester’s priority and choices.
However, the nature of random testing is to draw randomly a test rather than
choosing it, and it is therefore inefficient to detect behaviour of a program occur-
ring with a very low probability. In [9], a random testing approach consisting
of the exploration of large graph based models has been proposed. In order to
tackle the problem of low probabilistic behaviour, the authors have also sug-
gested to bias the random generation, by combining it with a coverage criterion,
in order to optimize the probability to meet system’ features described by this
criterion. It however requires the computation of large linear systems, which
becomes rapidly intractable in practice for large graphs.

In this paper we propose a sampling-based approach in order to compute
approximated values of the system’ solutions, deeply improving the efficiency of
c© Springer International Publishing AG, part of Springer Nature 2018
C. Dubois and B. Wolff (Eds.): TAP 2018, LNCS 10889, pp. 27–43, 2018.
https://doi.org/10.1007/978-3-319-92994-1_2
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the computation. Experimental results on various graphs provided in the paper
show a very significant time computation improvement while keeping similar
covering statistical properties.

1.1 Related Work

A prevailing methods in model-based testing consists in designing the system
under test by a graph-based formal model [18,26] on which different algorithms
may be used to generate the test suites. This approach has been used for a large
class of applications from security of Android systems [23] to digital ecosys-
tems [19]. A large variety of models can be used for model-based testing such
as Petri nets [24], timed automata [27], pushdown automata [11], process alge-
bra [2], etc. Moreover, a strength of model-based testing is that it can be com-
bined with several verification approaches, such as model-checking [8] or those
using SMT-solvers [1]. A general taxonomy with many references on model-based
testing approach can be found in [25].

Random testing approaches have been introduced in [12] and are widely
used in the literature, either for generating data [13,16] or for generating test
suites [21]. As far as we know, the first work combining random testing and
model-based testing has been proposed in [14] as a combination of model-
checking and testing. In [9] the authors have proposed an improved approach to
explore the models at random. This technique has been extended to pushdown
models [11,15] and to grammar-based systems [10].
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d
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a, b a, b

Fig. 1. Illustrating example.

1.2 Formal Background

For a general reference on probability theory, see [20].

Finite Automata. Models considered in this article are finite automata, that are
labelled graphs. More precisely, a finite automaton A is a tuple (Q,Σ,E, I, F ),
where Q is a finite set of states, Σ is a finite alphabet, E ⊆ Q×Σ×Q is the set of
transitions, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states.
A path σ in a finite automaton is a sequence (p0, a0, p1) . . . (pN−1, aN−1, pN )
of transitions. The integer N is the length of the path. If p0 ∈ I and pN in
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F , σ is said successful. The path σ visits a state q if there exists i such that
pi = q. An automaton is trim if every state is visited by at least one successful
path. All automata considered throughout this paper are trim. An example of
an automaton is depicted in Fig. 1: its set of states is {1, 2, 3, 4}, the alphabet is
{a, b, c, d}, its set of transitions is

{(1, a, 3), (3, a, 3), (3, b, 3), (3, c, 4), (4, a, 4), (4, b, 4), (1, b, 2), (2, a, 2), (4, d, 2)},

its set of initial states is reduced to {1} and all its states are final.
Let A = (Q,Σ,E, I, F ) be a n-state automaton and q ∈ Q. We denote by Aq

the automaton on the alphabet Σ whose set of states is Q × {0, 1} (two copies
of Q) and:

– Its set of initial states is I × {0},
– Its set of final states is F × {1} ∪ (F ∩ {q}) × {0},
– Its set of transitions is E′ = {((p, 0), a, (p′, 0)) | (p, a, p′) ∈ E and p �= q} ∪

{((p, 1), a, (p′, 1)) | (p, a, p′) ∈ E} ∪ {((q, 0), a, (p′, 1)) | (q, a, p′) ∈ E}.

Intuitively, a successful path in Aq starts with an initial state of the form (q0, 0)
and remains in a state of the form (p, 0) until it visits q. Then, if q is final in A
it may ends or continue with states of the form (p, 1). One can easily show that
there is a bijection between the set of successful paths of Aq of length N and
the set of successful paths of A of length N visiting q. denoted Let us consider
for instance the automaton depicted in Fig. 1 and state 3. The corresponding
automaton is depicted in Fig. 2 (states (4,0), (1,1) and (2,0) have to be removed
to make the resulting automaton trim).

1, 0

3, 0 4, 0

2, 0

b
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d
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a, b

1, 1

3, 1 4, 1

2, 1

a, b

c

b

a

c

d

a

a, b a, b

Fig. 2. Illustrating example for constrained paths.
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Automata used in many testing applications have a bounded outgoing degree.
Throughout this paper, we consider that |E| = O(|Q|). Note that it is not a
theoretical requirement: it is only used for the complexity issues. Indeed, all
proposed algorithms work for any automata. Under this hypothesis, computing
Aq can be done in time O(n2) and the resulting automaton has at most twice
the number of states (regardless of the fact that |E| = O(|Q|)).
Counting Paths. We call NumPaths an algorithm that, given a finite automaton
A and a positive integer N , computes the number of successful paths of length
N in A. We call RandomPath an algorithm that, given a finite automaton A
and positive integers N, k, randomly, uniformly and independently generates k
successful paths of length N in A. Several algorithms have been developed for
processing NumPaths and RandomPath [22], whose complexities depend on
several parameters. Let us observe, without going into details, using floating
point arithmetics, that NumPaths can be performed in O(nN log N), where
n is the number of states of A. And RandomPath can be performed in time
O(knN log2 N). Note that the different approaches may have different meanings
of time/space complexities, both for the preprocessing step and the generation
step. The reader can see [22, Table 4] and [4, Table 1] for more details.

Random Biased Exploration of Finite Automata. The objective is here to biased
the random generation of paths (i.e. not use a uniform random generation) in
order to improve the state coverage of the automata. It is necessary to provide a
quite detailed description of the algorithms in [22]. The first approach, denoted
later Uniform, consists in uniformly picking up a given number of paths from
the set of successful paths of a given length. The approach can be applied to
very large graphs with hundreds of nodes (see [9, Sect. 6]). However, rare events
can be missed up, and in order to optimize1 the coverage criterion (let us present
it here for nodes coverage2) of the graph, the following approach, denoted later
Exact, is proposed to produce k successful paths of an automaton A whose set
of states is {1, . . . , n}:

1. Choose a set S of successful paths (for instance those of length less than or
equal to a constant N),

2. For each pair of nodes, compute the probability αi,j that a path of S visiting
j also visits i,

3. Solve the linear programming system whose variables are pmin, π1, . . . , πn:

maximize pmin, under the constraints{
for all j, pmin ≤ ∑n

i=1 αi,jπi

1 =
∑n

i=1 πi

(1)

Solution is a distribution π = (π1, . . . , πn) of probabilities over the states of
the automaton,

1 Computing test suites of a reduced size is a major issue in the testing process, since
executing test on the system is frequently a complex issue (not addressed in this
paper).

2 The approach can easily be adapted for transitions coverage.
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4. Repeat k times: pick a node i up at random according to the distribution π.
Pick up at random (uniformly) a path visiting i.

The goal of the linear programming system is to optimize the minimal prob-
ability pmin of a state to be visited by a random path.

Let us illustrate this approach on the example depicted in Fig. 1. Note that if
the goal is to cover a given proportion of the set of states (for instance) Step 4.
can be replaced by: generate paths as soon as the wanted proportion of states are
visited by these paths. There are 16 successful paths of strictly positive length
less than or equal to 3 reported in Table 1. Since the automaton is deterministic,
one can identify successful paths with their labels. Let Sexa be this set of paths.

Table 1. Successful paths of length less than or equal to 3 for Example 1.

Length Paths Number of paths

1 a, b 2

2 aa, ab, ac, ba 4

3 aaa, aab, aba, abb, aac, abc, aca, acb, acd, baa 10

There are 4 out of 16 paths of Sexa visiting state 2. Therefore, the probability
of visiting state 2 by uniformly generated paths of Sexa is 1

4 . In order to generate a
path visiting 2, one has to generate averagely 4 tests. Moreover, for this example
αi,j ’s matrix is

⎛
⎜⎜⎝

1 1 1 1
0.25 1 1

13
1
6

0.825 0.25 1 1
0.375 0.25 6

13 1

⎞
⎟⎟⎠ .

For instance, α1,i = 1 for every i since all paths visit 1. Similarly, α3,4 = 1 since
all paths visiting 4 also visits 3. There are four paths (b, ba, baa and acd) of
needed length visiting 2 and, among these paths, only acd visits 4. Therefore
α4,2 = 1

4 . The resolution3 of linear programming systems (1) provides in this
context the solution: π1 = 0, π2 = 0.526315, π3 = 0, and π4 = 0.473685. In
this context, the biased approach covers all states averagely with less than 3
generated paths.

The bottleneck of this approach is Step 2. since computing the αi,js requires
many manipulations on the graphs (it requires to compute the (Ai)j): for each
i �= j, Algorithm NumPaths has to be applied to graphs 4 times larger than
the initial ones. The complexity is in O(n3N log N) with quite large involved
constants, making the approach intractable for big n’s.

3 Resolutions have been performed using the lp solve solver.
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1.3 Contributions

In this paper we propose to not exactly compute the αi,js but instead to approx-
imate them by using statistical sampling, as described in Sect. 2. Experimental
results on several examples of communication protocols models are provided in
Sect. 3. The paper reports on very promising experimental results: the computa-
tion time is significantly better for a similar quality of the large graphs coverage.

2 Approximating the Linear Programming Systems

In this section, we propose to approximate the coefficients αi,j by αapprox
i,j by

using classical sampling techniques. Using m times Algorithm RandomPath, one
can count as mi the number of paths visiting i, and mi,j the number of paths
visiting both i and j. If mi �= 0 then αapprox

i,j = mi,j

mj
.

2.1 Approximation Algorithm

More precisely, let there be a trim finite automaton A = (Q,A,E, I, F ), a strictly
positive integer m, a strictly positive integer N and a strictly positive integer r
(the parameter r is used to provide some bounds on the precision of the approx-
imation: each evaluation of a parameter is estimated using a sample of size at
least r).

(Step 1): Generate m successful paths in A of length less than or equal to N
uniformly. For each i ∈ Q, let mapprox

i be the number of these paths visiting
i, and mapprox

i,j be the number of these paths visiting both i and j.
(Step 2): For each i, j ∈ Q, i �= j
(a) If r = 0 and mapprox

j = 0, then let αapprox
i,j = 0,

(b) If mapprox
j > r, let αapprox

i,j = mapprox
i,j /mapprox

j ,
(c) If mapprox

j ≤ r, generate r paths visiting i and set αapprox
i,j as the proportion

of these paths visiting j.
(Step 2): For each i ∈ Q, αapprox

i,i = 1.

Let us illustrate the approach on the example depicted in Fig. 1, with N = 4
and r = 0. Rather than compute exactly the αi,j ’s, we randomly and uniformly
generate 1000 paths of length less than or equal to 3. We obtain the following
matrix for the αapprox

i,j :

⎛
⎜⎜⎝

1 1 1 1
0.243 1 0.0835 0.1778
0.826 0.284 1 1
0.288 0.284 0.4697 1

⎞
⎟⎟⎠ .

The resolution of systems provides the solution π1 = 0, π2 = 0.538019, π3 = 0
and π4 = 0.461981.
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In this example, there are 243 paths visiting 2, 826 paths visiting 3 and 288
paths visiting 4. Therefore, running the algorithm with r = 250 will change the
second column of the matrix since mapprox

2 < 250. In this case, the automaton for
the paths visiting 2 is computed. Generating 250 paths visiting state 2 provides
the following matrix:

⎛
⎜⎜⎝

1 1 1 1
0.243 1 0.0835 0.1778
0.826 0.256 1 1
0.288 0.256 0.4697 1

⎞
⎟⎟⎠ .

The resolution of systems provides the solution π1 = 0, π2 = 0.524965, π3 = 0
and π4 = 0.475035.

Section 3 describes more experiments and provides details, both on the qual-
ity of the results and on the time to compute the αi,j ’s.

Notice too that, as mentioned in [9], the optimal solution leads to a loss of
randomness: many πi’s a null. It is proposed in [9] to fix minimal probability to
the πi’s. It can be directly adapted in our approach by adding, in the program-
ming linear system, some inequations of the form πi ≥ ε. This situation would
not be considered in the experiments developed in this paper.

2.2 Complexity

We investigate in this section the worst case complexity of the proposed algo-
rithm. Step (1) can be performed in time O(mnN log2 N + mn2): first the m
paths are generated in time O(mnN log2 N). These paths are not stored but a
table t of size m × n is filled in the following way: t[i][j] = 1 if the i-th path
visits state j, and t[i][j] = 0 otherwise. It is done on the fly and in time O(nm).
The mapprox

i are calculated by computing columns sums in time O(nm) too.
Similarly, each mapprox

i,j can be computed in time O(m). Therefore, computing
all of them is performed in time O(mn2).

Step 2-(a) is performed in time O(1) as well as Step 2-(b). Step 2-(c) is
performed in time O(rnN log2 N): computing the specific automaton is done in
time O(n) (under the hypothesis that the number of transitions is in O(n)).

Step 3 is performed in time O(n).
In conclusion, if we denote by s the number of calls to Step 2-(c), the com-

plexity is: O(((sr + m)nN log2 N + mn2).
A small r (for instance r = 0) will provide a small s (s = 0), but a coarser

approximation, as exposed in the next section.

2.3 Precision of the αapprox
i,j ’s

Each αi,j is the parameter of Bernoulli’s Law (see [20, Sect. 2.2]). The precision
of the estimation can classically be obtained using either Bienaymé-Chebyshev’s
Inequality [5,7] or Hoeffding’s Inequality [17].
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First, assuming that mapprox
j > r, then Bienaymé-Chebyshev’s Inequality

provides for any ε > 0:

P(|αapprox
i,j − αi,j | ≥ ε) ≤ αi,j(1 − αi,j)

ε2mapprox
j

≤ 1
4ε2r

,

and if mapprox
j ≤ r, it provides:

P(|αapprox
i,j − αi,j | ≥ ε) ≤ αi,j(1 − αi,j)

ε2r2
≤ 1

4ε2r
.

In order to have an ε = 0.1 precision with a 0.95 confidence level, r has to be
fixed to 500 (this is an upper bound).

Secondly, one can have another evaluation using Hoeffding’s Inequality (bet-
ter in most of cases): for any 0 < ρ < 1,

P
(|αapprox

p,q − αp,q| ≥ ε
) ≤ 2e−2rε2

.

In order to have an ε = 0.1 precision with a 0.95 confidence level, r has to
be fixed to 185 (this is also an upper bound).

Let us note that the two above inequalities provide upper bounds that are
not very tight: for states j frequently visited by random paths, mj will be signif-
icantly greater than r, and the estimation of the algorithm will be very precise.
As it is shown in the next section, running the algorithm with r = 0 frequently
provides very acceptable solutions and very good solutions with r = 10. For
r = 10 the two bounds above do not ensure precise estimations: Hoeffding’s
Inequality states that with a 0.8 confidence level we have an estimation of αi,j

with ε = 0.34. An hypothesis explaining why r = 10 works is that it is important
to detect whether while visiting j the probability to also visit i is significant.
But it’s not critical to know how significant it is, for instance if αi,j = 0.1 or 0.4;
it is important to know that generating a path visiting j will quite frequently
provide a path visiting i.

Finally, other statistical tools can be used to obtain bounds on r, for instance
the well-known central limit theorem.

3 Experiments

This section is dedicated to an experimental evaluation of the proposed
approximation-based approach. In Sect. 3.1 the set of used automata is described.
Section 3.2 explains the experimental protocol. Finally, the obtained experimen-
tal results are provided in Sect. 3.3, both for the quality of the approach and for
computation time.

3.1 Benchmark

Experiments have been done on several automata modeling communication pro-
tocols designed for the FAST tool [3] available4 online as a library of parametric
4 http://www.lsv.fr/Software/fast/examples/examples.tgz.

http://www.lsv.fr/Software/fast/examples/examples.tgz
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Fig. 3. Comparative results (1) for number of generated tests

counter automata (the parameter can be, for instance, the number of communi-
cating processes). For several examples and parameters, the counter automaton
has been faltered into a classical finite automaton. The list is given in Table 2:
first column contains the name of the protocol with the value of the parameter.
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Fig. 4. Comparative results (2) for number of generated tests

Table 2. Graphs used for benchmarking.

Name States Transitions Eccentricity Nb. of paths

Barber1 15 18 5 74

Berkeley3 1376 3974 51 1, 33 1039

Consistency3 806 1206 600 5, 63 10153

Csm1 24 57 8 934000

Dekker1 86 178 17 8, 80 1011

Dragon3 103 696 50 2, 34 1093

Fms1 120 582 14 1, 41 1020

Illinois3 103 307 100 2, 23 1090

Kanban1 160 1151 14 3, 31 1020

Lift3 499 587 302 7, 24 1059

Moesi2 22 43 11 3, 84 108

Prodcons10 286 660 20 3, 51 107

Ttp8 3201 6765 32 4, 30 107
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The second and the third columns respectively report on the number of states of
the automaton and the number of transitions. The fourth column provides the
eccentricity5 of the automaton, that is the maximal distance of an edge to the
initial states. Finally, the last column gives the approximate number of success-
ful paths in the automaton of length less than or equal to twice the eccentricity.
Note that in these graphs all states are final.

3.2 Experimental Protocol

For each protocol, we have measured the number of tests/generated paths
required to cover either 50%, or 90%, or 95%, or 99%, or 100% of the states.
Several values close to 100% have been chosen since many biased approaches
have been introduced to handle rare events, and many methods will efficiently
cover 50% or 70% of the graph. It is harder to cover the remaining last states.
We have compared 5 different approaches. First, the RW Approach consists in
performing isotropic random walks in the automaton: once in a state, the next
one is picked up uniformly among its neighbours. The path ends either when it
reaches a dead-end state, or when its length is twice the eccentricity. The second
approach, denoted Uniform, is the one introduced in [9]: paths of length bounded
by twice the eccentricity are uniformly generated. The approach denoted Exact
is the biased approach proposed in [9], where the linear system is exactly com-
puted. The Approx 10 and Approx 1000 approaches are the ones proposed in
this article: for 10 [resp. 1000] the αi,j ’s are approximated using 10n [res. 1000n]
randomly generated paths, where n is the number of states.

Note that comparing the distribution π given by the exact approach and
the approximation-based approaches is not easy. Indeed, a linear programming
system may have different optimal solutions. Let us consider for instance the
example depicted in Fig. 5. The set of successful paths visiting 3 is the same as
the set of successfully paths visiting 4. Therefore, in any optimal solutions of the
linear programming system given π3 = x and π4 = y, one can do the following
changes: π3 = z and π4 = t with z + t = x + y, and we also obtain an optimal
solution.

0

3 4

2

b

a

c

d

a

a, b

Fig. 5. Illustrating example with different optimal solutions.

5 Eccentricity is an important parameter since it is the minimal length required for
paths to have a chance to visit each state.
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3.3 Qualitative Experimental Results

Since the test generation procedures are randomized, performance is stochas-
tic. For each example and each coverage proportion, each approach has been
experimented 100 times. For each case, we report on the average number of tests
obtained in order to cover the wanted proportion, but also the minimum number
of tests (the best case), and the maximum number of tests (the worst case).

Results presented in Figs. 3 and 4 are obtained with r = 0: there is no a priori
guarantee on the precision of the approximations. Results presented in Fig. 6 are
obtained with r = 0 and with r = 10 (and in one case with r = 50). For instance,
the second table in Fig. 3 reports on the result for Dekker1: in order to cover 95%
of the set of the states, the RW approach requires on average 790 paths. In the
best case (of the experiments), it only requires 159 paths, and in the worst case
2062 paths have been generated. For the same coverage, the Uniform approach
requires 35.45 paths in average. The Exact approach only requires 15.5 paths in
average.

Relatively to the other approaches, the performance of RW deeply depends on
the topology of the automaton. For instance, for Prodcons10 or Ttp8 or Moesi2,
RW is ugly, and requires much more tests to (partially) cover the set of states. For
Fms1, RW is as efficient as Exact. For some automata, there is no result for RW:
after hours of computation, the approach was not able to cover 90% of the set
of states. In these cases, some states occur with a so low probability on random
walks, that in practice it is not possible to generate a path visiting them.

One can see that for Barber1, Dekker1, Fms1, Moesi2, Kanban1, Ttp8 and
Prodcons10, all biased approaches are better (cover the set of states with less
paths) than the uniform one. Moreover, the Exact approach is better than the
approximate ones, but not significantly with the Approx 1000. Consider for
instance Fms1: the Uniform approach requires on average 87.6 paths to cover
99% of the states. With Approx 10 this number falls to 48.1, and it falls to 40.3
with Approx 1000. The Exact approach requires 29.8 paths on average.

The results for Lift3 are similar but the Approx 1000 is not so close to the
Exact approach. For Berkeley3, Illinois3 and Dragon3, the Exact approach is
clearly more efficient to cover the set of states. It is similar for Consistency3, but
only for the 100% coverage criterion. A significant case is Illinois3: the Exact
approach requires on average a unique path to cover all states, while the Approx
1000 approach requires 47 paths. For all these examples there is a huge number
of paths, and many states j are visited with a very low probability by a path:
the corresponding αi,j ’s are set to zero since r = 0, thus providing a very bad
approximation. For instance, for Illinois3, 84 states over the 103 states are not
visited by any random paths. We run the experiment with Approx 1000 and
r = 10. The obtained results are presented in Fig. 6: these results are much
better and close to the ones of the Exact approach.

In conclusion, for the quality of the coverage, running Approx 10 with r = 10
seems to be an efficient solution.
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Fig. 6. Comparative results (3)
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Table 3. Time to compute the linear programming system.

(Seconds) Berkeley3 Consistency3 Dragon3 Lift3 Illinois3

Exact 26401 40964 29 4337 18

Approx 10 (r = 0) 1 58 1 8 0.4

Approx 1000 (r = 0) 186 5794 21 813 39

Approx 10 (r = 10) 16 110 1 12 1

Approx 1000 (r = 10) 208 5890 25 862 41

Approx 10 (r = 50) – 124 – – -

3.4 Computation Time

Let us note first that for all approaches, generating paths is done practically in a
very efficient way. As mentioned before, the bottleneck step is the computation of
the linear programming system. In Table 3, the time (in seconds) used to compute
the linear programming system is given for the protocols Berkeley3, Consistency3,
Dragon3, Lift3 and Illinois3. The results are similar for the other protocols. For
Illinois3, using Approx 1000 is less efficient than using the Exact approach. The
reason is that the automaton is quite small. However, for other cases, using the
approximation-based approaches is faster. And it is significantly faster for large
automata. For instance, for Consistency3, while the Exact approach requires more
than 11 h, and only about 90 min are needed for Approx 1000 (with r = 0).

In all cases, the best compromise seems to use Approx 10 with r = 10: the
computation time is strongly better, and the quality of the biased approach is
similar to the Exact approach, except for Consistency. For this protocol, we run
the Approx 10 with r = 50 and we obtain better results, closer to the Exact
approach, with a very short computation time (about 2 min, in comparison to
11 h for the Exact approach).

3.5 Experiments on Large Graphs

We have experimented the approaches on a model of the Centralserver2 protocol,
which has 2523 states and 18350 transitions, an eccentricity of 63, and about
8, 04 10113 successful paths of length less or equal to 126. By computing the first
αi,j ’s, we estimate that the computation time of the linear programming system
with Exact will require about 200 days. The linear programming system with
Approx 10 and Approx 1000 (r = 10) has been computed respectively in 81 s and
in 24 min. The obtained qualitative results compared to Uniform are given in
Table 4.

We also used the algorithm proposed in [6] to randomly generate two trim
automata with respectively 5659 states (with 17007 transitions) and 11251 states
(with 33753 transitions). The approximated linear programming system obtained
by the Approx 10 and Approx 1000 approaches (with r = 10) has been com-
puted in respectively 5.5 s and 613 s for the first graph, and in respectively 26.3 s
and 1162 s for the second graph.
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Table 4. Results for Centralserver2.

90% 95% 99% 100%

Uniform 680 573–786 1198 947–1492 2942 2358–3612 9413 5487–19533

Approx 10

(r = 10)
316 287–349 476 437–529 878 775–1037 2065 1223–4337

Approx 1000

(r = 10)
313 281–345 467 415–515 864 729–1037 1926 1252–3514

4 Conclusion

In this paper we proposed an approximation-based approach for the random
biased exploration of large models. It has been experimented on several examples:
in practice the approximation is not too coarse, and the quality of the generated
test suites to cover the states of the model is excellent compared to the exact
approach and to the other random approaches. For computation time, using
approximation is significantly better since the approach can be used on graphs
with more than 10000 states. In the future we plan to investigate recent advances
in optimization in order to improve the computation time.
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appliquées 12, 177–184 (1867)
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Abstract. Function contracts are a well-established way of formally
specifying the intended behavior of a function. However, they usually
only describe what should happen during a single call. Relational prop-
erties, on the other hand, link several function calls. They include such
properties as non-interference, continuity and monotonicity. Other exam-
ples relate sequences of function calls, for instance, to show that decrypt-
ing an encrypted message with the appropriate key gives back the orig-
inal message. Such properties cannot be expressed directly in the tra-
ditional setting of modular deductive verification, but are amenable to
verification through self-composition. This paper presents a verification
technique dedicated to relational properties in C programs and its imple-
mentation in the form of a Frama-C plugin called RPP and based on
self-composition. It supports functions with side effects and recursive
functions. The proposed approach makes it possible to prove a relational
property, to check it at runtime, to generate a counterexample using test-
ing and to use it as a hypothesis in the subsequent verification. Our initial
experiments on existing benchmarks confirm that the proposed technique
is helpful for static and dynamic analysis of relational properties.

Keywords: Relational properties · Specification · Self-composition
Deductive verification · Dynamic verification · Frama-C

1 Introduction

Context. Deductive verification techniques provide powerful methods for formal
verification of properties expressed in Hoare Logic [11,12]. In this formalization,
also known as axiomatic semantics, a program is seen as a predicate transformer,
where each instruction S executed on a state verifying a property P leads to a
state verifying another property Q. This is summarized in the form of Hoare
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triples as {P}S{Q}. In this setting, P and Q refer to states before and after a
single execution of a program S. It is possible in Q to refer to the initial state
of the program, for instance to specify that S has increased the value stored in
variable x, but one cannot express properties that refer to two distinct executions
of S, even less properties relating executions of different programs S1 and S2.
As will be seen in the next sections, such properties, that we will call relational
properties in this paper, occur quite regularly in practice. Hence, it is desirable
to provide an easy way to specify them and to verify that implementations are
conforming to such specification. A simple example of a relational property is
monotonicity of a function f : x < y ⇒ f(x) < f(y).

Several theories and techniques exist for handling relational properties. First,
Relational Hoare Logic [6] is mainly used to show the correctness of program
transformations, i.e. the fact that the result of the transformation preserves the
original semantics of the code. Then, Cartesian Hoare Logic [19] allows for the
verification of k-safety properties, that is, properties over k calls of a function.
The Descartes tool is based on Cartesian Hoare Logic and has been used to
verify anti-symmetry, transitivity and extensionality of various comparison func-
tions written in Java. A decomposition technique using abstract interpretation
is presented in [1] for verification of k-safety properties. The method is imple-
mented in a tool called Blazer and used for verification of non-interference and
absence of timing channel attacks. A relational program reasoning based on an
intermediate program representation in LLVM is proposed by [13]. The method
supports loops and recursive functions and is used for checking program equiv-
alence. Finally, self-composition [3] and its refinement Program Products [2]
propose theoretical approaches to prove relational properties by reducing the
verification of relational properties to a standard deductive verification problem.

Motivation. In the context of the ACSL specification language [5] and the deduc-
tive verification plugin Wp of Frama-C [14], the necessity to deal with relational
properties has been faced in various verification projects. For example, we can
extract the following quote from a work on verification of continuous monotonic
functions in an industrial case study on smart sensor software [7] (emphasis
ours):

After reviewing around twenty possible code analysis tools, we decided to
use Frama-C, which fulfilled all our requirements (apart from the specifi-
cations involving the comparison of function calls).

The authors attempt to prove the monotonicity of some functions (i.e., if x ≤ y
then f(x) ≤ f(y)) using Frama-C/Wp plugin. To address the absence of sup-
port for relational properties in ACSL and Wp, they perform a manual transfor-
mation [7] consisting in writing an additional function simulating the call to the
related functions in the property. Broadly speaking, this amounts to manually
perform self-composition. This technique is indeed quite simple and expressive
enough to be used on many relational properties. However, applying it manually
is relatively tedious, error-prone, and does not provide a completely automated
link between three key components: (i) the specification of the property, (ii) the
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proof that the implementation satisfies the property, and (iii) the ability to use
the property as hypothesis in other proofs (of relational as well as non-relational
properties). Thus, the lack of support for relational properties can be a major
obstacle to a wider application of deductive verification in academic and indus-
trial projects. Finally, another motivation of this work was to obtain a solution
compatible with other techniques than deductive verification, notably dynamic
analysis.

Contributions. To address the absence of support for expressing relational prop-
erties in ACSL and for verifying such properties in the Frama-C platform, we
implemented a new plugin called RPP. This plugin allows the specification and
verification of properties invoking any (finite) number of calls of possibly dis-
similar functions with possibly nested calls, and to use the proved properties as
hypotheses in other proofs. A preliminary version of RPP has been described in
a previous short paper [8]. However, it suffered from major limitations. Notably,
it could only handle pure, side-effect free functions, which in the context of the
C programming language is an extremely severe constraint. Similarly, the origi-
nal syntax to express relational properties is not expressive enough and requires
some additional constructs, in order to properly specify relational properties
of functions with side-effects. The previous work [8] did not address dynamic
analysis of relational properties either.

The current paper will thus focus on the extensions that have been made to
the original RPP design and implementation, as well as its evaluation. Its main
contributions include:
– a new syntax for relational properties;
– handling of side effects;
– handling of recursive functions;
– evaluation of the approach over a suitable set of illustrative examples;
– experiments with runtime checking of relational properties and counterexam-

ple generation when a property cannot be proved in the context of RPP.

Outline. The remainder of this paper is organized as follows. First, in Sect. 2
we briefly recall the general idea of relational property verification with RPP
in the case of pure functions using self-composition. Then, in Sect. 3, we show
how to extend this technique to the verification of relational properties over
functions with side effects (access to global variables and pointer dereference).
Another extension, described in Sect. 4 allows considering recursive functions.
We demonstrate the capacities of RPP by using it on the adaptation to C of the
benchmark proposed for Java in [19] and our own set of test examples (Sect. 5).
Finally, we show in Sect. 6 that RPP can also be used to check relational proper-
ties at runtime and/or to generate a counterexample using testing, and conclude
in Sect. 7.

2 Context and Main Principles

RPP (Relational Property Prover) is a solution designed and implemented as a
plugin of Frama-C [14], an extensible framework dedicated to the analysis of
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C programs. Frama-C offers a specification language, called ACSL [5], and a
deductive verification plugin, Wp [4], that allow the user to specify the desired
program properties as function contracts and to prove them. A typical ACSL
function contract may include a precondition (requires clause stating a prop-
erty that must hold each time the function is called) and a postcondition
(ensures clause that must hold when the function returns), as well as a frame
rule (assigns clause indicating which parts of the global program state the
function is allowed to modify). assigns clauses may be refined by \from direc-
tives, indicating for each memory location l potentially modified by the function
the list of memory locations that are read in order to compute the new value
of l. Finally, an assertion (assert clause) can also specify a local property at
any function statement.

Wp is based on Hoare logic and generates Proof Obligations (POs) using
Weakest Precondition calculus: given a property Q and a fragment of code S, it
is possible to compute the minimal (weakest) condition P such that {P}S{Q}
is a valid Hoare triple. When S is the body of a function f , POs are formulas
expressing that the precondition of f implies the weakest condition necessary
for the postcondition (or assertion) to hold after executing S. POs can then be
discharged either automatically by automated theorem provers (e.g. Alt-Ergo,
CVC4, Z31) or with some help from the user via a proof assistant (e.g. Coq2).

Frama-C also offers an executable subset of ACSL, called E-ACSL [10,18],
that can be transformed into executable C code. It is thus compatible with
dynamic analysis, such as runtime assertion checking of annotations using the
E-ACSL plugin [10,20] or with counterexample generation (in case of a proof
failure) using the StaDy plugin [16,17].

Function contracts allow specifying the behavior of a single function call,
that is, properties of the form “If P (s) is verified when calling f in state s,
Q(s′) will be verified when f returns with state s′”. However, it is not pos-
sible to specify relational properties, that relate several function calls. Exam-
ples of such properties include monotonicity (x < y ⇒ f(x) < f(y)), anti-
symmetry (compare(x, y) = −compare(y, x)) or transitivity (compare(x, y) ≤
0 ∧ compare(y, z) ≤ 0 ⇒ compare(x, z) ≤ 0). RPP addresses this issue by pro-
viding an extension to ACSL for expressing such properties and a way to prove
them. More specifically, RPP works like a preprocessor for Wp: given a rela-
tional property and the definition of the C function(s) involved in the property,
it generates a new function together with plain ACSL annotations whose proof
(using the standard Wp process) implies that the relational property holds for
the original code. As we show below, this encoding of a relational property is
also compatible with dynamic analysis (runtime verification or counterexample
generation).

1 See, resp., https://alt-ergo.ocamlpro.com, http://cvc4.cs.nyu.edu, https://z3.codep
lex.com/.

2 See http://coq.inria.fr/.

https://alt-ergo.ocamlpro.com
http://cvc4.cs.nyu.edu
https://z3.codeplex.com/
https://z3.codeplex.com/
http://coq.inria.fr/
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2.1 Original Relational Specification Language

For the specification of a relational property, we initially proposed an exten-
sion [8] of the ACSL specification language with a new clause, relational.
These clauses are attached to a function contract. A property relating calls of
different functions, such as R1 in Fig. 1a, must appear in the contract of the last
function involved in the property, i.e. when all relevant functions are in scope.
In this new clause we introduced a new construct \call(f,<args>) denot-
ing the value returned by the call f(<args>) to f with arguments <args>.
This allows relating several function calls in a relational clause. \call can
be used recursively, i.e. a parameter of a called function can be the result of
another function call. In Fig. 1a, properties R1 and R2 at lines 7–9 and 15–17
specify properties of functions max and min respectively.

Note however that the \call construct only allows speaking about the
return value of a C function. If the function has some side effects, there is no way
to express a relation between the values of memory locations that are modified
by distinct calls. Section 3 describes the improvements that have been made to
the initial version of the relational specification language in order to support side
effects. To ensure that a function has no side effects, an assigns \nothing
clause can be used.

Fig. 1. Pure function with relational properties

2.2 Preprocessing of a Relational Property

The previous work [8] also proposed a code transformation whose output can be
analyzed with standard deductive verification tools. This is materialized in the
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RPP plugin of Frama-C, that relies then on Wp to prove the resulting standard
ACSL annotations.

Going back to our example, applying the transformation to property R1 over
function max gives the code of Fig. 1b. The generated code can be divided into
three parts. First, a new function, called wrapper, is generated. The wrapper
function is inspired by the workaround proposed in [7] and self-composition [3].
As in self-composition, this wrapper function inlines the calls occurring in the
relational property under analysis, with a suitable renaming of local variables to
avoid interferences between the calls.

In addition, the wrapper records the results of the calls in fresh local variables.
Then, in the spirit of calculational proofs [15], we state an assertion equivalent to
the relational property (lines 14–16 in Fig. 1b). The proof of such an assertion is
possible with a classic deductive verification tool (Wp with Alt-Ergo as back-end
prover in our case).

However, the wrapper function only provides a solution to prove relational
properties. The ability to use these properties as hypotheses in other proofs
(relational or not) must be reached otherwise. For this purpose, RPP generates
an ACSL axiomatic definition (cf. axiomatic section at lines 1–8 in Fig. 1b)
introducing a logical reformulation of the relational property as a lemma (cf.
lines 4–7) over otherwise unspecified logic functions (max_acsl and abs_acsl

Fig. 2. Functions Crypt and Decrypt, used by function run.
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in the example). Furthermore, new postconditions are generated in the contracts
of the C functions involved in the relational property. They specify that there is
an exact correspondence between the original C function and its newly generated
logical ACSL counterpart. Thanks to this axiomatic, POs over functions calling
max and abs will have the lemma in their environment and thus will be able to
take advantage of the proven relational property. Note that the correspondence
between max and max_acsl (respectively abs and abs_acsl) can only be
done because max and abs do not access global memory (neither for writing nor
for reading). Indeed, since max_acsl and abs_acsl are pure logic functions,
they do not have side effects and their result only depends on their parameters.

To illustrate the use of relational properties in the proof of other specifica-
tions, we can consider the postcondition and property R4 of function run of
Fig. 2a (inspired by the PISCO project3) whose proof needs to use property R3.
Thanks to their reformulation as lemmas and to the link between ACSL and C
functions, Wp automatically proves the assertion at line 17 (for property R4)
and the postcondition at line 20 of Fig. 2b.

2.3 Soundness of the Transformation

Since our transformation is introducing an ACSL axiomatic, care must be
taken to avoid introducing inconsistencies in the specification. More precisely,
the axiomatic specifies the intended behavior of the ACSL counterpart of
the C functions under analysis. The corresponding ACSL functions are then
only used in the contracts of those C functions. In particular, since the wrapper
is inlining the body of the functions concerned by the relational property, the
lemma of the axiomatic cannot be used to prove the assert annotation
inside the wrapper.

3 Functions with Side Effects

As mentioned above, the initial RPP approach only works for relational prop-
erties over pure functions. More precisely, it allows proving relational properties
of the form:

∀ <args1>, . . . , ∀ <argsN>,

P ( <args1>, . . . ,<argsN>, \call(f_1,<args1>), . . . , \call(f_N,<argsN>))

for an arbitrary predicate P invoking N ≥ 1 calls of non-recursive functions
without side effects. In the context of the C programming language, handling
only pure functions is a major limitation. We thus propose an extension of both
the specification language and the transformation technique in order to let RPP
tackle a wider, more representative, class of C functions.

3 See http://www.projet-pisco.fr/.

http://www.projet-pisco.fr/
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3.1 New Grammar for Relational Properties

Relational properties are still introduced by a relational clause inside an
ACSL contract. However, since we might now refer to memory locations in either
the pre- or the post-state of any call implied in the relational property, we need
to be able to make explicit references to these states, and not only to the value
returned by a given call. Although more verbose, the new syntax can also be
used for pure functions. For instance, property R1 of Fig. 1a can be rewritten as
shown in Fig. 3.

More generally, we introduce the grammar shown in Fig. 4. A relational clause
is composed of three parts. First, we declare a set of universally quantified vari-
ables, that will be used to express the arguments of the calls that are related

Fig. 3. Annotated C function with relational annotations

Fig. 4. Grammar for relational properties
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by the clause. Then, we specify the set of calls on which we will work in the
relational-def part. As shown in Fig. 4a, each call is then associated to an identi-
fier call-id. In the property R1 of Fig. 3, two function calls are explicitly specified
in the \callset construct and not directly in the predicate. Each call has its
own identifier (id1 and id2 respectively). Finally, the relational property itself
is given as an ACSL predicate in the relational-pred part. As described in Fig. 4a,
in addition to standard ACSL constructs, three new terms can be used. First,
\callpure can be used to indicate the value returned by a pure function as was
done with the \call built-in in the original version of RPP. This allows spec-
ifying relational properties over pure functions without the overhead required
for handling side-effects. As before, nested \callpure are allowed. Second,
\callresult, as used in Fig. 3, takes a call-id as parameter and refers to the
value returned by the corresponding call in relational-def. Finally, each such call-
id gives rise to two logic labels. Namely, Pre_call-id refers to the pre-state of
the corresponding call, and Post_call-id to its post-state. These labels can in
particular be used in the ACSL term \at(e,L) that indicates that the term e
must be evaluated in the context of the program state linked to logic label L.
Figure 5a below shows an example of their use.

3.2 Global Variables Accesses

As said before, the new syntax for relational properties enables us to speak
about the value of global variables at various states of the execution, thanks to
the newly defined logic labels bound to each call involved in the \callset of
the property. This is for instance the case in the relational property of Fig. 5a,
which indicates that h is monotonic with respect to y, in the sense that if a
first call to h is done in a state Pre_id1 where the value of y is strictly less
than in the pre-state Pre_id2 of a second call, this will also be the case in the
respective post-states Post_id1 and Post_id2.

Generation of the wrapper function is more complicated in presence of side-
effects. As presented in [3], each function call must operate on its own memory
state, separated from the other calls in order for self-composition to work. We
thus create as many duplicates of global variables as needed to let each part of
the wrapper use its own set of copies. However, to avoid useless copies, RPP
requires that each function involved in a relational property has been equipped
with a proper set of ACSL assigns clauses, including \from components. This
constraint is similar to what is proposed in [9], and ensures that only the parts
of the global state that are accessed (either for writing or for reading) by the
functions under analysis are subject to duplication. As an example, the wrapper
function corresponding to our h function of Fig. 5a is shown in lines 24–33 of
Fig. 5b.

Finally, the generated axiomatic definition enabling the use of the relational
property in other POs must also be modified. The original transformation uses a
logic function that is supposed to return the same \result as the C function.
However, since logic functions are always pure, this mechanism is not sufficient
to characterize side effects in the logic world. Instead, we declare a predicate
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Fig. 5. Relational property on a function with side-effect

that takes as parameters not only the returned value and the formal parameters
of the C function, but also the relevant parts of the program states that are
involved in the property. As for the wrapper function, these additional parame-
ters are inferred from the assigns ...\from... clauses of the correspond-
ing C functions. For instance, predicate h_acsl, on line 5 of Fig. 5b, takes two
arguments representing the values of y before and after and execution of h. This
link between the ACSL predicate and the C function is again materialized by an
ensures clause (lines 17–18). The lemma defining the ACSL predicate is more
complex too, since we have to quantify over the values of all the global variables
at all relevant program states. In the example, this is shown on lines 7–13, where
we have 4 quantified variables representing the value of global variable y before
and after both calls involved in the relational property.

3.3 Support of Pointers

In the previous section, we have shown how to specify relational properties in
presence of side effects over global variables, and how the transformations for
both proving and using a property are performed. However, support of pointer
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Fig. 6. Relational property in presence of pointers

dereference is more complicated. Again, as proven in [3] Self-Composition works
if the memory footprint of each call is separated from the others. Thus, in order
to adapt our method, we must ensure that pointers that are accessed during two
distinct calls point to different memory locations. As above, such accesses are
given by assigns...\from... clauses in the contract of the corresponding
C functions. An example of a relational property on a function k using pointers
(monotonicity with respect to the content of a pointer) is given in Fig. 6a, where
k is specified to assign *y using only its initial content.

Memory separation is enforced using ACSL’s built-in predicate \separated.
For the wrapper function, we add a requires clause stating the appropriate
\separated locations. This can be seen on Fig. 6b, line 20, where we request
that the copies of pointer y used for the inlining of both calls to k points to
two separated area in the memory. Similarly, in the axiomatic part, the lemma
adds separation constraints over the universally quantified pointers (line 9 in the
Fig. 6b).

We also need to refine the declaration of the predicate in presence of pointer
accesses. First, the predicate now needs to explicitly take as parameters the pre-
and post-states of the C function. In ACSL, this is done by specifying logic
labels as special parameters, surrounded by braces, as shown in line 3 of Fig. 6b.
Second, a reads clause allows one to specify the footprint of the predicate,
that is, the set of memory accesses that the validity of the predicate depends on
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(line 4). Similarly, the lemma on lines 6–13 takes 4 logic labels as parameters,
since it relates two calls to k, each of them having a pre- and a post-state.

It should be noted that the memory separation assumption makes the tool
verify relational properties without pointer aliasing. Support of properties with
pointer aliasing is left as future work.

4 Recursive Functions

We have shown in the previous section how we handle functions with side effects.
Let us now focus on another class of functions, namely recursive functions. Sup-
port for recursive functions in RPP is interesting because it is very natural to
specify such functions with relational properties. For example, a naive specifica-
tion of a fact function computing the factorial of an integer can be written as{

∀x. x ≤ 1 =⇒ fact(x) = 1,
∀x. x > 1 =⇒ fact(x) = fact(x − 1) ∗ (x)

The corresponding relational properties are given in Fig. 7a. The proof of the
Induction property requires a modification to the generation of the wrapper
function, that can be observed in Fig. 7b. Indeed, we do not want to inline the
second call to fact on line 12, in order to take advantage of the fact that, since
fact is a pure function that does not read anything from the global environment,
this call returns the same value as the one of line 9, obtained by inlining the
call to fact(x1). This is why, as was indicated on Fig. 4, there is an optional
argument to the \callpure construct, that indicates the maximal depth that
the inlining can reach in the wrapper. The default value of 1, which is also used

Fig. 7. Relational property on recursive C function without side effects
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Fig. 8. Relational property on recursive C function with side effects

explicitly in our example for the first call, on line 9 of Fig. 7a, means that we
inline the body of the function once (i.e. if the function calls other functions,
including itself, these calls themselves will not be inlined). When this parameter
is set to 0, as is the case for the second call in our example (line 10), we keep
the call as such in the wrapper.

Support for recursive functions is not limited to pure functions. Recursive
functions with side effects can also be handled. In particular, as shown in the
grammar, each \call appearing in a \callset can also have an inlining direc-
tive. For instance, we can consider another implementation of the factorial, whose
result is this time recorded in a global variable r (Fig. 8). The corresponding rela-
tional properties (lines 5–9) are similar to the pure case. However, the proof is
slightly different, since the function has side effects, we cannot use logic function
equality. Instead, we use the relational property as an induction hypothesis and
inline both functions.

Note that in this case, a call to the function itself appears in the wrapper,
contrarily to the situation detailed in Sect. 2.3. However, under the assumption
that the function always terminates, this call is performed on arguments that
are strictly smaller than the ones of the wrapper itself. Hence, the axiomatic
can be used as an induction hypothesis in the sense that the wrapper allows us
to prove that if the relational property holds for arguments smaller than x, then
it holds for x.

5 Illustrative Examples

We have seen how to express relational properties over a large class of C functions
and how RPP can generate C code and plain ACSL specifications for proving
and using these properties through a standard Wp process. To check that this
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approach works in practice, we have tested our tool on different benchmarks.
These tests aim at confirming:

– the ability to specify various relational properties over a large class of
functions;

– the capacity to prove and use such properties using the generated transfor-
mation;

– the support of a large range of function implementations;
– the ability to use other techniques (runtime checks, test generation for inval-

idating the property) when Wp fails to discharge a corresponding PO.

The first subsection will present our own benchmark composed of a mix of differ-
ent types of relational properties. This benchmark is mainly designed to validate
the two first items. The second subsection will show how RPP has performed on
the benchmark proposed in [19]. This will confirm the second and third points.
Finally, we will present in Sect. 6 our use of the E-ACSL and StaDy plugins
assessing the last point.

5.1 Internal Examples

As stated previously, we have tested RPP on a set of relational properties
extracted from real case studies. This includes in particular encryption, as pre-
sented in Sect. 2, monotonicity (Sect. 3) or the factorial of Sect. 4, but also prop-
erties found in map/reduce, as the one in row 6 in Fig. 9, stating that the
choice of the partitioning for the initial set of data should not play a role
in the final result. The benchmark is also composed of more academic exam-
ples like linear algebraic properties of matrices, over functions containing loops

Fig. 9. Summary of relational properties considered by RPP
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(rows 7 and 8), or the property of row 10, that states the symmetry of the median
of three numbers.

Figure 9 summarizes the results obtained on the benchmark. The first three
columns indicate respectively whether the corresponding property could be spec-
ified and the corresponding code transformation generated, proved and used as
an hypothesis in other proofs. The last three columns show what kind of C con-
structs are used in the implementation of the functions under analysis, namely
side effects, presence of loops (which are always difficult for Wp-related verifica-
tion techniques, due to the need for loop invariants), and presence of recursive
functions.

5.2 Comparator Functions

We also evaluated RPP on the benchmark proposed in [19]. It is composed of a
collection of flawed and corrected implementations of comparators over a variety
of data types written in Java, inspired from a collection of Stackoverflow4 ques-
tions. Translating the Java code into C was straightforward and fully preserved
the semantics of the functions. We focused on the same properties as [19], that is
anti-symmetry (P1), transitivity (P2) and extensionality (P3). Mathematically,
these properties can be expressed as such:

P1 : ∀ s1, s2. compare(s1, s2) = −compare(s2, s1)
P2 : ∀ s1, s2, s3. compare(s1, s2) > 0 ∧ compare(s2, s3) > 0

⇒ compare(s1, s3) > 0
P3 : ∀ s1, s2, s3. compare(s1, s2) = 0 ⇒ (compare(s1, s3) = compare(s2, s3))

Results are depicted in Fig. 10. For each comparator, we indicate whether
the properties P1, P2 and P3 hold according to RPP (✓ and ✗ show whether
the property was proved valid by Wp). We get similar results as [19], with
the exception of PokerHand, for which the generated wrapper function seems
currently out of reach for Wp (limits of scalability due to the combinatorial
explosion of self-composition). However, by rewriting the function in a more
modular way, Wp was able to handle the example.

6 Dynamic Verification

6.1 Counterexample Generation

For the properties that do not hold in the comparator benchmark, we have been
able to find counterexamples thanks to the proposed encoding of a relational
property by self-composed code and using another Frama-C plugin, StaDy

[17]. StaDy
5 is a testing-based counterexample generator. In particular, StaDy

4 https://stackoverflow.com.
5 See https://github.com/gpetiot/Frama-C-StaDy.

https://stackoverflow.com
https://github.com/gpetiot/Frama-C-StaDy
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Fig. 10. Comparator properties analysed with Wp and StaDy after RPP translation

tries to find an input vector that will falsify an ACSL annotation for which
Wp could not decide whether it holds, thereby showing that the code is not
conforming to the specification.

We apply StaDy to try to find a test input such that the assert clause at
the end of the wrapper function is false. The results are shown in the StaDy

columns of Fig. 10. Obviously, StaDy does not try to find counterexamples for
properties that are proved valid by Wp. For properties that are not proved
valid, ✓ indicates that a counterexample is found (within a timeout of 30 s),
while ✄ indicated the only case where a counterexample is not generated before
a 30-s timeout. A longer timeout (60 min) did not improve the situation in that
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case. Symbol ✐ denotes two cases where the code translation uses features that
are currently not yet supported by StaDy. As shown in the table, thanks to
the RPP translation, StaDy was able to find counterexamples for almost all
unproven properties. Notice that some examples required minor modifications
so that StaDy can be used. To be able to use testing, we had of course to add
bodies for unimplemented functions. Other modifications consisted in reducing
the input space to a representative smaller domain (by limiting the size of an
input array) for some examples to facilitate counterexample generation [17].

6.2 Runtime Assertion Checking

The code transformation technique of RPP also enables runtime verification of
relational properties through the E-ACSL plugin [10,20]. More precisely, the
E-ACSL plugin translates ACSL annotations into C code that will check them
at runtime and abort execution if one of the annotations fails. We tested the
E-ACSL plugin on the test inputs generated by StaDy in order to check that
each generated counterexample does indeed violate the relational property. As
expected, the obtained results validate those of the previous section. Since coun-
terexample generation with StaDy [17] basically includes a runtime assertion
checking step for each test datum considered during the test generation process,
we do not present the results of this step in separate columns.

7 Conclusion and Future Work

We have presented a major extension to an existing verification technique for
relational properties, implemented in the Frama-C plugin RPP. The exten-
sion adds support for functions with side effects (access to global variables and
pointer dereferences) and recursive functions. RPP relies on Frama-C/Wp for
automatic or interactive proof of the relational properties and offers the ability to
use them as hypothesis in other proofs. Moreover, beyond Wp, RPP also allows
users to take advantage of E-ACSL and StaDy plugins to verify relational prop-
erties at runtime and to produce a test input exhibiting the issue when a function
does not respect the specified relational property. We have also shown that our
implementation can handle a wide variety of properties and code: we consider a
large class of relational properties with several, possibly nested, function calls.

However, there are still some limitations, inherent to our use of sequential self-
composition. First, in the case of relational properties linking functions with large
bodies or a large number of functions, the size of the generated wrapper function
may explode, leading to POs that cannot be handled by automated theorem
provers or even generated by weakest precondition calculus. A first solution for
this problem is to use the modularity of the approach to reduce the size of the
function and prove sub-properties. However, it is not always possible to modify
an existing implementation. Alternative methods, based on a generalization of
the technique proposed in [9] for verifying \from clauses, and that do not rely
on the generation of a wrapper function seem thus desirable. The notation of
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relational properties in the presence of side effects can be seen somewhat heavy
to use. To make this notation more succinct, some shorthands for most common
usages will be useful. The possibility to use runtime verification and testing is an
important benefit in situations where the proof does not conclude. Furthermore,
treatment of loops needs to be improved. In particular, it is not possible yet
to specify “relational invariants” that would allow relating the behavior of a
loop in two different contexts, while this is often necessary to complete the
proof of a relational property. Solutions based on program products [2] look
promising. Finally, as already mentioned, we need to extend our technique to
handle potential aliases across the executions involved in a relational property.
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Abstract. In test generation, when computing a reachable concrete
under-approximation of an event system’s predicate abstraction, we aim
at covering each reachable abstract transition with at least one reachable
concrete instance. As this is in general undecidable, an algorithm must
finitely instantiate the abstract transitions for it to terminate. The app-
roach defended in this paper is to first concretely explore the abstract
graph, while concretizing the abstract transitions met at most once. How-
ever, some abstract transitions would require that loops were taken pre-
viously for them to become reached. To this end, in a second phase, a
test engineer guides the exploration by describing a relevance predicate
able to travel such loops. We give hints on how to design and express a
relevance predicate, and provide a method for automatically extracting
a variant out of it. A relevance guided concretization algorithm is given,
whose termination is ensured by using this variant. Experimental results
are provided that show the interest of the approach.

Keywords: Predicate abstraction · Under-approximation generation
Loop variant · Relevance predicate

1 Introduction

In model-based testing [1,2], the user wants to derive a test suite from a model,
that achieves a given coverage (e.g. all states, all transitions, etc.) of it. Some-
times the infinite or very large size of the explicit state space of the model
makes its coverage impossible, and an abstraction of the model can be used
instead: the possibly infinitely many explicit states are grouped into finitely many
abstract super-states. In predicate abstraction [3], explicit states are mapped
onto abstract ones by means of a set of predicates that characterizes each abstract
state. These predicates can for example automatically derive from a formalized
test intention [4]. An abstract transition links two abstract states when it has at
least one explicit instantiation. Such transitions are called may transitions [5],
meaning that they may be instantiated.

The general framework of our work is to generate tests from predicate
abstractions of event systems, that are a special kind of action systems. Con-
trarily to programs, event systems have no explicit control flow that could be
c© Springer International Publishing AG, part of Springer Nature 2018
C. Dubois and B. Wolff (Eds.): TAP 2018, LNCS 10889, pp. 63–82, 2018.
https://doi.org/10.1007/978-3-319-92994-1_4
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preserved in an abstraction for guaranteeing abstract paths to be explicitly
instantiable as reachable and connected sequences. To this end, [6] introduces
an algorithm that widens a frontier of reached states by systematically trying to
prolong the existing concrete sequences with instantiating some yet unexplored
abstract transition. The approach is called concrete exploration (CXP). It aims
at covering each abstract transition, but only once for avoiding the concrete
state space blow-up. Experiments in [6] have shown that, despite covering most
of the abstract transitions, this approach fails at covering some of them whose
enabling would require that previous transitions were taken repeatedly in loops.

In this paper we propose that selected loops are allowed to be traversed by
designing an adequate relevance predicate. It is domain specific, and relies on
the knowledge owned by a test engineer of the model that (s)he has written.
We revisit the relevance function of Grieskamp et al. [7], that achieves a similar
goal in the context of deriving a Finite State Machine from an Abstract State
Machine. Our solution is to observe the coverage achieved by CXP, in order
to drive the loop executions towards a test goal, i.e. reaching one or more con-
crete states in which the non-covered abstract transitions become enabled. Our
relevance predicate expresses a condition over two consecutive concrete states,
telling for the target concrete state if it is relevant or not to continue the explo-
ration from it. It has to make the exploration go through cycles. To achieve
termination of this process, we propose to deduce –from a relevance predicate
exhibited by the test engineer– a variant that strictly decreases until it reaches
a minimal value.

Summarized, our contributions are to: (1) propose a method for designing a
relevance predicate, as well as a simple language for its expression, (2) automati-
cally deduce a loop variant from a relevance predicate expressed in this language,
(3) exhibit an algorithm that implements the approach by completing, with a
relevance predicate as input, an existing under-approximation, (4) experimen-
tally assess the method. The formal background required for reading the paper
is given in Sect. 2. We illustrate our approach in Sect. 3 through the example of
a simple coffee vending machine. Computing of a concrete under-approximation,
designing a relevance predicate and deducing a loop variant from it are explained
in Sect. 4. The algorithm that implements the method is given in Sect. 5. The
experimental results of applying the method to five case studies are in Sect. 6. In
Sect. 7 we position our approach w.r.t. related work, and we conclude the paper
in Sect. 8.

2 Background

In this paper, systems are specified by event systems (ES) described in the B
syntax [8,9]1. Notice however that our proposals and results are general enough
since event system semantics is given by labelled transition systems (LTS).

1 Our experimental models are written in B, but could alternatively be translated into
a syntax with guarded commands [10], such as Abstract State Machines [11,12].
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This section first provides the syntax and the semantics of B event systems.
Then we present a predicate abstraction and formalize it for event systems by
means of May Transition Systems (MTS). Finally, we recall the notion of variant,
usually used to prove the termination of iterative programs and systems. It will
serve as the support to terminate the exploration from a relevance predicate.

2.1 Model Syntax and Semantics

Let us first introduce B event systems in Definition 1. They are composed of
events specified by means of guarded actions [10]. Once the system is in a state
satisfying the guard of an event, the latter is spontaneously fired.

Definition 1 (Event System). Let EvName be a set of event names. A B
event system is a tuple 〈X, I, Init,Ev〉, where X is a set of state variables, I
is a state invariant, Init is an initialization action such that I holds in any
initial state, and Ev is a set of event definitions, each of the form e

def
= a where

e ∈ EvName is the name of the event and a the action it performs. Note that
every application of an event must preserve I.

Definition 2 ((Concrete) State of an Event System). A (concrete) state
of an event system 〈X, I, Init,Ev〉 is a proposition preserving I defined as a
conjunction of valuations of all state variables in X.

The events are defined by composing the following five primitive actions: skip,
an action with no effect, x := E an action assigning the value of the arithmetic
expression E to the state variable x, P ⇒ a, a guarded action requiring the
event system to be in a state satisfying the predicate P before the action a can
be applied, a1[]a2, a bounded non-deterministic choice between the two actions
a1 and a2 and finally @z.a an action applying the action a which depends on
the bound variable z whose value is chosen non-deterministically. The guard
(noted grd) defines the firing the condition of an action. They are defined on the
primitive actions by: grd(skip) def= true (the skip action can always be applied),
grd(x := E) def= true (the single assignment action can always be applied),
grd(P ⇒ a) def= P ∧ grd(a) (as defined before, the guarded action only applies a
if the system is in a state satisfying P , and the guard of a (grd(a)) must also be
satisfied for a to be applied), grd(a1[]a2)

def= grd(a1)∨grd(a2) (one of the actions
a1 or a2 whose guard is satisfied is applied), grd(@z.a) def= ∃(z).grd(a) (there
must exist some bound variable z satisfying the guard of a (which depends on
z) for a to be applied).

See Fig. 1 in Sect. 3 for an example of a B event system. Following [13], we
define the semantics of event systems by means of a labelled transition system
(LTS) whose concrete states are defined in Definition 2. Let e

def= a be an event. It
has a weakest precondition [14] w.r.t. a set Q′ of target states, denoted wp(a,Q′).
It is the largest set of states from which applying a always leads to a state in
Q′. An event also defines a relation between the values of the state variables



66 J. Julliand et al.

before (X) and after (X ′) the application of the event. It is expressed by the
before-after predicate of the event e

def= a, denoted prdX(a).
Let us now formally define wp and prdX following [8]. We associate the sets

of states Q and Q′ with predicates: a set of states Q defines a predicate Q that
holds in any state of Q, but does not hold in any state not in Q.

We define the wp w.r.t. the five primitive actions by: wp(skip,Q′) def=
Q′, wp(x := E,Q′) def= Q′[E/x] that is the usual substitution of x by E,
wp(P ⇒ a,Q′) def= P ⇒ wp(a,Q′), wp(a1[]a2, Q

′) def= wp(a1, Q
′) ∨ wp(a2, Q

′),
wp(@z.a,Q′) def= ∀z.wp(a,Q′), where z is not a free variable in Q′.

Then prdX is defined w.r.t. wp by prdX(a) def= ¬wp(a, x′
1 
= x1 ∨ . . . ∨ x′

n 
=
xn). It is a predicate over the state variables X = {x1, . . . , xn} in the source
state before a, and the target state variables X ′ = {x′

1, . . . , x
′
n} after a.

2.2 Predicate Abstraction

Predicate abstraction [3] is a special instance of the framework of abstract
interpretation [15] that maps the potentially infinite state space C of an
LTS onto the finite state space A of an abstract transition system via a set
P def= {p1, p2, . . . , pn} of n predicates over the state variables. The set of abstract
states A contains 2n states. Each state is a tuple q

def= (q1, q2, . . . , qn) with qi

being equal either to pi or to ¬pi, and q is also considered as the predicate∧n
i=1 qi. We define a total abstraction function α : C → A such that α(c) is an

abstract state q where c satisfies qi for all i ∈ 1 . . . n. By a misuse of language,
we say that c is in q, or that c is a concrete state of q.

Let us now define abstract may transitions. Consider two abstract states q
and q′, and an event e. There exists a may transition q

e→ q′, if and only if there
exists at least one concrete transition c

e→ c′ such that α(c) = q and α(c′) = q′.
The may transition is reachable if and only if there is at least one such concrete
transition c

e→ c′ whose source state c is reachable from a concrete initial state.
We check predicate satisfiability thanks to SMT solvers. For a predicate P , we

define the solver invocation SATc(P ) as returning either a model of P , or unsat
if P is unsatisfiable, or unknown if the solver failed to determine the satisfiability
of P . We also define SAT (P ) as the predicate that is true iff SATc(P ) returns
a model. Let e

def= a be an event definition, q
e→ q′ is a may transition iff

SAT (¬wp(a,¬q′) ∧ q). We compute a concrete witness c
e→ c′ by using the

before-after predicate: (c, c′) := SATc(prdX(a) ∧ q′[X ′/X] ∧ q) where q′[X ′/X]
is the q′ predicate in which each state variable xi is substituted by x′

i.

2.3 May Transition Systems

Definition 3 introduces may transition systems (MTS) having abstract states,
and abstract may transitions. Definition 4 associates an abstraction defined by
an MTS with an ES. The reader will be provided with an example in Sect. 3.
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Definition 3 (May Transition System). Let EvName be a finite set of event

names, and P def
= {p1, p2, . . . , pn} be a set of predicates. Let A be a set of 2n

abstract states defined from P. A tuple 〈Q,Q0,Δ〉 is an MTS if it satisfies the
following conditions: Q(⊆ A) is a finite set of states, Q0(⊆ Q) is a set of abstract
initial states, and Δ(⊆ Q×EvName×Q) is a may transition relation with labels
in EvName.

Definition 4 (MTS from an ES and abstraction predicates). Let ES
def
= 〈X, I, Init,Ev〉 be an ES, and P def

= {p1, p2, . . . , pn} be a set of n predicates
over X defining a set of 2n abstract states. A tuple 〈Q,Q0,Δ〉 is an MTS from
ES and P if it satisfies the following conditions:

– Q
def
= {q ∈ A|∃(q′, e).(q e→ q′ ∈ Δ ∨ q′ e→ q ∈ Δ)},

– Q0
def
= {q|q ∈ A ∧ (SAT (prdX(Init) ∧ q[X ′/X]))[X/X ′]},

– Δ
def
= {q

e→ q′|q ∈ A ∧ q′ ∈ A ∧ e
def
= a ∈ Ev ∧ SAT (¬wp(a,¬q′) ∧ q)}.

Reachable MTS. The reachable MTS from ES and P is the MTS that contains all
the reachable may transitions, and only those ones. The notion of reachable MTS
is the same as that of true FSM in the context of abstract state machines [7].
As such, and as proved in [7], computing the reachable MTS from an ES and a
set P of abstraction predicates is in general an undecidable problem.

2.4 Variant of Iterative Systems

The notion of variant is usually used to prove the termination of iterative pro-
grams and systems. In this paper variants are associated with relevance predi-
cates, which can be seen as a kind of test goal.

For example in the deductive verification tools Frama-C [16] and KeY [17], in
order to prove the termination of program loops, the engineer must provide for
each loop a variant annotation that defines a natural integer arithmetic expres-
sion. This expression must be non-negative before each iteration of the loop,
and must strictly decrease at each iteration. For example, in a binary search
algorithm in the array interval L . . . R, the variant is the expression R − L that
defines the length of the search interval. It has to strictly decrease at each exe-
cution of the body of the following loop: while L < R do M := (L + R + 1)/2;
if T [M ] ≤ X then L := M else R := M − 1 fi od. So, the algorithm termi-
nates when the interval is such that L = R.

The contributions of this paper provide means, for a test engineer, to cover by
tests the transitions whose enabling require that a loop of events have previously
been executed. We mainly propose that the test engineer provides a test goal
described by means of a relevance predicate, from which we deduce a variant such
that any event satisfying the relevance predicate strictly decreases this variant.
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3 Running Example

Our illustrative example is a simplified coffee vending machine (see the ES in
Fig. 1). It has a Balance, which can be augmented by putting coins of value
either 50 or 100 (events insert50 and insert100 in Fig. 1). Balance may not
exceed an arbitrary fixed constant named MAX Bal. There are arbitrary con-
stants for the maximal number of coffees stored in the machine (MAX Cof ),
and the maximal value (MAX Pot+50) of the Pot (the money kept by the
machine). Notice that Balance and Pot are multiples of 50 (specified in the
invariant). The machine has a Status which indicates if it is switched on (1)
or off (0), or out of order (2). When switched on, the machine can serve cof-
fees, after a request by the user (event cofReq that corresponds to pressing the
“request coffee” button), at the price of 50 each (event serveCof): this price is
retrieved from the Balance and sent to the Pot. The number of available cof-
fees is modelled by the CofLeft variable. The user can ask for its change (event
changeReq corresponds to pressing the “give change” button). The events chan-
geReq and cofReq are mutually exclusive. The user can then get its unused bal-
ance back (event backBalance). When switched off, the machine can be refilled
with coffee (event addCof), and its Pot retrieved (event takePot). The events
powerUp and powerDown are for switching the machine respectively on or off.
Finally, a special event (autoOut) sets the machine out of order: it models
the unexpected occurrence of a failure while the machine is in use. It also
occurs when either there is no more coffee, or the Pot is full (see serveCof).
Figure 2 represents the MTS of the ES of Fig. 1 for the three following pred-
icates: p0

def= Status = 0 ∧ Pot ≥ MAX Pot − 50, p1
def= Status = 1 and

p2
def= (Status = 1∧AskChange = 0∧AskCof = 0∧Balance = 0)∨Status = 2

that are respectively the guards of the events takePot, autoOut and powerDown.
The test generation method presented in [6] generates a concrete LTS that

is an under-approximation of the semantics of the specification in Fig. 1. The
method concretizes all the may transitions but some instances are not connected
to the initial state of the under-approximation, due to the choice of traversing
each may transition only once. Sometimes previous transitions should have been
taken in loop for reaching a connected concrete state in which the targeted tran-
sition is enabled. This is for example the case with the transition q2

serveCof−−−−−→ q1.
It serves the machine’s last coffee in stock. Its enabling requires to previously
execute a loop which serves all coffees until emptying the stock. The idea pre-
sented in this paper for covering such transitions is to trigger a second step,
for completing a posteriori the LTS computed at the first step by the algorithm
of [6]. This second step is allowed to loop through some cycles of the abstract
graph, by generating new concrete states from the existing ones as long as they
are relevant. For guaranteeing this looping to terminate, we propose a state to
be relevant as long as it decreases a variant of the loop.

Relevance Predicate Example: In the coffee machine, transition q2
serveCof−−−−−→ q1

can only be triggered once the coffee stock is empty (CofLeft = 0). This requires
having previously looped between states q3 and q2 through the events insert50,
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Fig. 1. ES specification of a coffee machine

addCof

q0 q3 q2 q1 q4

powerUp insert100 autoOut

addCof

insert100,
cofReq,
changeReq,

serveCof

insert50,

autoOut

insert50 serveCof

takePot

powerDown serveCof

backBalance

powerDown

powerUp
powerDown

powerDown

Fig. 2. MTS of the coffee machine w.r.t. predicates p0, p1 and p2.

insert100, cofReq and serveCof. The progress conditions along that loop are that
either the variable Balance increases, or the variable CofLeft decreases, or the
variable AskCof passes from zero to one. In terms of the before and after values
of the variables, this is expressed as the following relevance predicate (RP):
Balance′ > Balance ∨ CofLeft’ < CofLeft ∨ (AskCof = 0 ∧ AskCof’ = 1).
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4 Test Generation Based on Relevance Predicates

We first define the concept of Approximated Transition System (ATS) which
brings together an MTS and one of its under-approximations. Section 4.1 gives
an overview of the process in two phases of under-approximation that we propose
for computing an ATS. Then Sect. 4.2 explains how to design an RP on which the
second phase (detailed in Sect. 5) is based. Finally Sect. 4.3 gives the relationship
between an RP and a variant that guarantees the termination of the method.

We call Approximated Transition System (ATS, see Definition 5) the reunion
of an abstraction with one of its under-approximations that is a concrete part
of the LTS, which is the semantics of the event system from which the MTS is
deduced.

Definition 5 (Approximated Transition System). Let 〈Q,Q0,Δ〉 be an
MTS. A tuple 〈Q,Q0,Δ,C,C0,Δ

c, α〉 is an ATS whose 〈C,C0,Δ
c, α〉 is a con-

cretization of the MTS where C,C0 are sets of respectively concrete states and
concrete initial states, Δc(⊆ C × EvName × C) is a concrete labelled transition
relation, and α is a total abstraction function from C to Q.

Transition Coverage
Analysis

ES MTS

P

ATS(1)

CXP RCXP

Under−app.

RP

Under−app.
extension

ATS(2)Abstraction

Fig. 3. ATS computation process

4.1 Process Overview

We sketch our process in Fig. 3. We propose to compute an ATS in two steps.
We get a first version (ATS (1) in Fig. 3) by an approach [6] called CXP for
concrete exploration, that traverses and concretizes each abstract transition only
once. Then, thanks to a relevance predicate RP provided by the test engineer,
selected loops of abstract transitions are additionally traversed and concretized
by RCXP, in order to connect to new concrete transitions. As a result, ATS (1)
is extended to ATS (2).

The CXP approach is fully described in [6]. The two operations Abstraction
and Under-app. are summarized as follows.

1. Abstraction. The test engineer designs a set of abstraction predicates P
related to the behaviour of the system ES (s)he wishes to observe. It is pro-
posed in [4] that these predicates are extracted from a test purpose, which is a
test intention formalized by a pattern a la Dwyer et al. [18]. Using algorithm
in [6] provides the test engineer with an MTS that over-approximates the
reachable MTS.
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2. Under-app. The under-approximation is computed by concretizing on the
fly each may transition once, as it is discovered. The principle is to compute
an instance that prolongs, whenever possible, some existing sequence con-
nected to a concrete initial state. For CXP’s efficiency, each abstract transi-
tion is concretized only once and thus cannot be applied repeatedly. The ATS
obtained is called ATS (1) in Fig. 3.

In general, not all the instances of abstract transitions built by ATS (1) are
reached, even though they are possibly reachable. It is always the case in par-
ticular, when repeating some transitions in a cycle would have been necessary
for enabling another transition. In case ATS (1) fails at building a connected
instance of a may transition, the transition is concretized anyway but as a
“hanging” instance, i.e. disconnected from the previously reached part of the
under-approximation.

The second step, called RCXP for relevant concrete exploration, requires
human interaction. The test engineer analyses, for each abstract transition of
the MTS unreached in ATS (1), if (s)he thinks it could have been reached. If so
(s)he identifies which transitions taken in loop it would require for reaching it.
For that (s)he can observe in the MTS which cycles lead to enabling the target
transitions. As this looping may not terminate, (s)he has to provide an RP telling
whether or not it is relevant to pursue in the loop. The operation Under-app.
extension consists of adding to ATS (1) the concrete transitions obtained by this
RP guided exploration. It results in ATS (2), in which the transitions originally
targeted by RP are possibly reached. An algorithmic implementation of RCXP
is given in Sect. 5. Let us for now illustrate the process and RP design through
the coffee machine example.

4.2 Design of a Relevance Predicate and Illustration of the Method

For illustrating the application of the method, we consider the coffee machine
example, and a requirement stating that it must not break down after
being powered off, so that collecting the pot remains possible. Using the
temporal logic patterns of Dwyer et al. [18], this can be expressed as:
Never autoOut Between powerDown and takePot. As proposed in [4], the tester
can use the guards of the events invoked in this test purpose as abstraction
predicates for computing the MTS. Here, this gives the predicates p0, p1 and p2

defined in Sect. 3, from which the abstraction of Fig. 2 has been computed. The
tester executes CXP [6] with these predicates as input, and observes the resulting
MTS coverage. In the case of the coffee machine, the two transitions q2

serveCof−−−−−→ q1

and q1
powerDown−−−−−−→ q4 and the state q4 are not covered. Having designed the model,

the tester is able to understand that the transition q2
serveCof−−−−−→ q1 serves the last

coffee in stock, so that its coverage would have required that previously all the
coffees were served. By looking at the MTS, it is easy to see that covering this
transition would require looping between states q3 and q2. (S)He identifies as
illustrated in Sect. 3 the set of events to loop through in order to reach his (her)
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goal. In our case, the goal is serving the last coffee and the set of events to loop
through is insert50, insert100, cofReq and serveCof. After this step (s)he has to
express by means of a before-after predicate how it is relevant that the variables
assigned in these events evolve. The RP is then the disjunction of these before-
after predicates. For the coffee machine example, this gives the RP described in
Sect. 3, paragraph Relevance Predicate Example. The variables have to decrease
a variant for the looping to terminate. Let us now explain in Sect. 4.3 how to
deduce this variant from the RP.

4.3 Variant Deduced from a Relevance Predicate

Given an RP, this section shows how to derive a variant that guarantees the
termination of the computation of relevant concrete states. We assume that
the test engineer uses a simple language defined as follows to express the RP,
where x, x′ denote the state variable x respectively before and after an event
application:

rel p ::= rp1 ∨ . . . ∨ rpn

rp ::= ap | cp
ap ::= x′ < x | x′ > x | x = v ∧ x′ = v′

cp ::= b1 ⇒ ap1 ∧ . . . ∧ bm ⇒ apm

An RP is a disjunction of before-after predicates, each of which being
either an atomic predicate ap or a conditional predicate cp. We consider these
predicates to only use the following three variable types: intervals of integer
MIN x . . . MAX x, booleans, and finite enumerated sets of labels. We assume
that the atomic predicates ap over a state variable x expresses that an integer
variable either strictly decreases (x′ < x) or increases (x′ > x), or the value of
an enumerated variable (including the boolean type) passes from v to v′. We
assume that v 
= v′. We also consider that in the conditional predicate pattern
cp, each bi is a boolean condition on the source state. For any concrete state c,
we finally assume that there exists one and only one i such that the predicate bi

is satisfied in the concrete state c, denoted as: c |= bi.
Let c, c′ denote respectively the state c before and after an event execution.

The first following three rules associate an initial variant, denoted Vinit(rp, c),
with the concrete state c depending on the RP rp. The next five rules associate
the next value of the variant, denoted V (rp, c′), with an RP rp in a target state
c′ reached from a source state c. Notice that in Rules 4, 5, 6 and 8, V (rp, c) def=
Vinit(rp, c) when c is an initial state:

1. Vinit(ap, c) def= Card(Type(x)),
2. Vinit(b1 ⇒ ap1 ∧ . . . ∧ bm ⇒ apm, c) def=

if c |= b1 then Vinit(ap1, c)
else if . . . else if c |= bm then Vinit(apm, c),

3. Vinit(rp1 ∨ . . . ∨ rpn, c) def= Vinit(rp1, c) + . . . + Vinit(rpn, c),
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4. V (x′ < x, c′) def= V (x′ < x, c) − (x − x′),
5. V (x′ > x, c′) def= V (x′ > x, c) − (x′ − x),
6. V (x = v ∧ x′ = v′, c′) def= V (x = v ∧ x′ = v′, c) − 1,
7. V (b1 ⇒ ap1 ∧ . . . bm ⇒ apm, c′) def=

if c′ |= b1 then V (ap1, c
′)

else if . . . else if c′ |= bm then V (apm, c′).
8. V (rp1 ∨ . . .∨rpn, c

′) def
=

∑

{i|i∈1..n∧(c,c′)|=¬rpi}
V (rpi, c)+

∑

{i|i∈1..n∧(c,c′)|=rpi}
V (rpi, c

′).

Rule 1 allows applying as many operations as the size of the enumerated
sets or of the integer intervals (MAX x − MIN x + 1). Rule 2 applies the
previous rule according to the condition that holds in the initial state. Rule 3
defines the initial variant value as the sum of the variant values of each of the
disjunction members. Rules 4 and 5 define that the next variant value decreases
of the difference between the two successive values of x. Rule 6 defines that the
next variant value for a modification of an enumerated variable decreases of one.
Rule 7 defines that the next variant value for a conditional predicate decreases
as much as the atomic predicate that is satisfied in the state c′. Last, with Rule
8, the variant in the target state of a relevant predicate is unchanged for the
disjunction member that are not satisfied, and varies according to the rules that
apply for the ones that are satisfied.

Property 1. If an RP is satisfied, then the associated variant decreases.

Proof. For a transition c
e−→ c′ in an ATS and for an RP rp, the variant decreases

if V (rp, c′) < V (rp, c). We prove that for the three predicate cases: ap, cp and
rel p. For an atomic predicate, the variant decreases respectively of |x − x′|
and one respectively according to Rules 4, 5 and 6. For a conditional predicate,
the variant decreases as much as the atomic predicate that is true according
to Rule 7. For a disjunctive predicate rel p the variant decreases, according to
Rule 8. Indeed, (1) the variant is not modified for the disjunction members that
are not satisfied in the consecutive states c, c′, and (2) the variant decreases for
the disjunction members that are satisfied in the states c, c′ because they are
either ap or cp, for which the decrease has already been shown.

5 RCXP Algorithm

In this section we present the main contribution of this paper. The RCXP (for
relevant concrete exploration) algorithm implements the second step of the pro-
cess presented in Sect. 4.1.

5.1 Under-Approximation Extension Using Relevance Predicates

To extend the ATS computed in the first place by CXP, we propose an algorithm
called RCXP which aims at covering the non-covered transitions. It is driven by
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an RP designed as explained in Sect. 4.2. RCXP is designed from the concepts
of relevant state and goal state. A goal state is a state in which an non-covered
abstract transition is triggerable. Informally a state is relevant when it gets closer
to a goal state. Formally we say that a target state c′ by a transition t is relevant
w.r.t. the source state c of t when (c, c′) satisfies an RP (see Sect. 4.3).

Algorithm RCXP. Concretization Algorithm using Relevance Predicate
Inputs : 〈Q, Q0, Δ, C, C0, α, Δc〉: an ATS; A: the set of all abstract states

relevance predX : a relevance predicate
Outputs : 〈Q, Q0, Δ, C, C0, α, Δc〉: the ATS enriched
Variables : RCS(resp. PRCS): the set of relevant concrete states to process

(resp. processed)

1 RCS := {c | c ∈ C ∧ Vinit(relevance predX , c) ≥ 0}; PRCS := ∅;
2 /* the reachable concrete states computed by CXP */
3 while RCS 
= ∅ do
4 choose c ∈ RCS;
5 RCS := RCS − {c}; PRCS := PRCS ∪ {c};
6 q := α(c);

7 foreach q′ ∈ A do

8 foreach e
def
= a ∈ Ev do

9 if q
e→ q′ ∈ Δ then

10 (c, c′) := SATc(c ∧ prdX(a) ∧ q′[X′/X] ∧ relevant predX);

11 if (c, c′) 
∈ {unknown, unsat} then
12 if V (relevance predX , c′) ≥ 0 ∧ c′ /∈ PRCS then
13 RCS := RCS ∪ {c′};
14 end

15 α(c′) := q′; C := C ∪ {c′}; Δc := Δc ∪ {c
e→ c′};

16 else
17 /* a goal state is reached, we try to apply the transition from it */

18 (c, c′) := SATc(c ∧ prdX(a) ∧ q′[X′/X]);

19 if (c, c′) 
∈ {unknown, unsat} then

20 α(c′) := q′; C := C ∪ {c′}; Δc := Δc ∪ {c
e→ c′};

21 end

22 end

23 end

24 end

25 end

26 end

Algorithm RCXP launches its execution from each state c built by CXP that
is evaluated as relevant, assuming that the variant expression Vinit(rp, c) is non-
negative (line 1). The algorithm tries to reach a new relevant target concrete
state (line 10) for each target abstract state (line 7) and for each event (line 8)
such that the corresponding transition is may (line 9). If such a state c′ is found
(lines 12–15), it is added (line 15) to the under-approximation. Additionally in
case c′ is new and has a non-negative variant value (line 12), it is added to the set
of relevant states to be processed (line 13). When no more relevant state is found
(else statement in line 16), a goal state has been reached. The algorithm tries
to finally apply the event e from it (lines 18–21) because it might correspond to
a non-covered transition. The algorithm’s result is the input ATS enriched with
new concrete states and transitions.
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5.2 Soundness, Complexity and Termination

This section discusses the soundness, complexity and gives the termination proof
for the RCXP algorithm.

Soundness. RCXP computes an under-approximation of the reachable MTS.
Indeed, as our method only keeps transition instances that are connected to an
initial concrete state, all the may transitions that we cover are reachable, and
thus are part of the reachable MTS.

Complexity. Let us denote by Cin the set C of concrete states of the input
ATS. For each state c ∈ Cin, RCXP computes a concrete instance of each may
transition whose source state is α(c) (there are at most |Ev| × |A| of them).
From every state reached from these concrete transitions (at most |Cin|× |Ev|×
|A| states), RCXP launches a search for relevant successors. The number of
computed successors is bounded by the maximum number of steps allowed by
the variant, which equals maxc∈Cin

(Vinit(rp, c)). Thus, our algorithm runs in
O(|Cin| × |Ev| × |A| × maxc∈Cin

(Vinit(rp, c))). Notice that |Cin|, |Ev| and |A|
depend on the size of the abstract graph and that in practice the number of
“relevant events” is likely to be lower than |Ev|. This means that for an abstract
graph of reasonable size, the complexity is dominated by the number of steps of
the variant.

Termination. Our algorithm computes new concrete states only from concrete
states for which the variant on the one hand is non-negative, and on the other
hand strictly decreases (see Property 1). Thus our algorithm terminates. In addi-
tion, as the number of relevant states may explode, RCXP has been implemented
with a timeout option modifiable by the tester.

6 Experiments

The tool used to generate the results presented in this section, as well as the
complete set of examples, along with their corresponding sets of abstraction and
relevance predicates, can be downloaded, compiled and used by following the
instructions at https://github.com/stratosphr/stratestx/wiki.

6.1 Experimental Results

We have experimented with five different case studies: a multiple battery-
powered electrical system (EL [19]), the coffee machine CM presented in this
paper, two explorations of an automatic subway line (L14, as yet unpublished),
an elevator (ELV, as yet unpublished) and a subpart of the GSM 11.11 standard
(GSM [20]). The subway modelled by L14 in our experimentation has three sta-
tions and three trains that circulate in ring around them. The test goal is to
observe half a revolution of a train around the ring. Two different relevance

https://github.com/stratosphr/stratestx/wiki
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predicates have been experimented with: in L14-1 the half-lap can be that of
any train, whereas it is for a fixed train in L14-2. The GSM system considered
corresponds to the exploration and reading of files on a SIM (Subscriber Iden-
tity Module) card with different access rights. Some files can only be read when
a correct PIN (Personal Identification Number) is entered by the user. After
three unsuccessful attempts with the wrong PIN, the card is locked and can
only be unlocked if the user enters the correct PUK (PIN Unlock Key). After
ten unsuccessful attempts with the wrong PUK, the protected files can never be
read again.

The results are given in Table 1. Columns #Ev, #AP, #ASrchbl and #ATrchbl

give respectively per model the numbers of: events, abstraction predicates, reach-
able abstract states and reachable abstract transitions in the MTS. Then the
results per model are spread over three lines for comparing: the CXP approach
(1st line), the RCXP approach (2nd line) and a full exploration of the reachable
concrete space (FULL, on 3rd line). Notice that we have chosen the problem
sizes in this table for making the full exploration possible.

Table 1 gives the number of: abstract states and transitions reached (#ASrchd

and #ATrchd), target abstract states and transitions of RCXP (#ASrel and
#ATrel) and concrete states and transitions either built (#CS and #CT) or
reached from an initial state (#CSrchd and #CTrchd). The other columns indi-
cate the percentage of abstract states and transitions reached (%AS = #ASrchd

#AS

and %AT = #ATrchd

#AT ) and target abstract states and transitions of RCXP

reached (%ASrel = #ASrel
rchd

#ASrel and %AT rel = #AT rel
rchd

#AT rel where #ASrel
rchd and

#AT rel
rchd are respectively the number of target abstract states and transitions

of RCXP reached). The Time column gives the computation times in hours,
minutes and seconds.

6.2 Results Analysis

Table 1 shows that RCXP succeeds at reaching all the RP targeted transitions in
all of the five case studies (see that all the percentages equal 100 in the %ATrel

Table 1. ATS computation results
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column). Moreover RCXP even succeeds in two out of the five case studies at
reaching all the reachable abstract transitions (see the three percentages that
equal 100 in the %AT column). RCXP generates far less concrete transitions
than FULL. The most spectacular example is EL where RCXP only builds 53
concrete transitions among the 9836 built by FULL. The ratio between RCXP
and FULL depends on RP. In EL, only one action is allowed by RP so that the
number of concrete transitions (#CT) explored by RCXP is very small w.r.t that
explored by FULL. By contrast in L14-1, all actions are allowed by RP, which
makes #CT for RCXP and FULL very close. In L14-2, as RP restricts the actions
allowed to that of a single chosen train, RCXP reduces #CT in large proportion:
93 out of the 7950 of FULL. But only 22.45% coverage of the abstract transitions
is achieved, due to the other trains’ actions being unexplored. The ELV case is
similar, with an RP allowing only the actions on the inside lift buttons. RCXP
builds 401 concrete transitions out of the 6556 of FULL, but covers 85.19% of the
abstract transitions. Note that the ELV case has necessitated several RP design
attempts before covering 100% of the targeted transitions. As many smartcard
like systems, the GSM allows everything to happen but returns error status
words in case of unauthorized events occuring (this is called defensive program-
ming). Therefore, its events are in practice very weakly guarded. For this reason,
and because the GSM system has a lot of state variables, the FULL exploration
is not feasible in reasonable time due to the huge state space (more than 100,000
states and more than a million transitions). However, the height targeted tran-
sitions (leading to states where the SIM card was definitely locked) were all
successfully covered in less than 20 seconds by RCXP by only instanciating 155
states and 208 transitions. The design of the relevance predicate was also easy
since it only had to decrease the number of attempts remaining for the PIN and
the PUK. This shows that the method can be applied to systems of industrial
size and that designing relevance predicates for such systems is not necessarily
harder.

RCXP succeeds at reaching as many targeted abstract transitions as FULL
with, except for L14-1, a much smaller number of concrete transitions generated,
which results in smaller RCXP generation times w.r.t. FULL. Table 1 shows that
in four cases (EL, CM, L14-2, GSM), the time taken by RCXP is much closer to
CXP than it is to FULL. This is less spectacular with ELV, but RCXP remains
faster than FULL by roughly 70%. L14-1 is the exception where RCXP lasts
four times as long as FULL. This is an extreme case because in that experiment
any action on any train is considered as relevant if it helps moving a train in a
privileged direction. Here computing the relevant states amounts to enumerate
about half of them, which is more costly with RCXP than a full enumeration
with FULL, due to the RP evaluation at each step. The examples EL, CM, L14-2
and GSM show that the smallest the subset of events allowed to occur by RP
is, the more the RCXP exploration is efficient.

We have measured the concrete graph’s growth w.r.t. to the problem size
of our case studies. For the two of them (EL and CM) for which the FULL
exploration time took less than two hours despite its growth, we have drawn
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Fig. 4. #CT growth for FULL and RCXP against the system’s size

curves in Fig. 4 to compare RCXP and FULL’s respective growth. As expected
the curves show that FULL grows exponentially. These curves show by con-
trast a linear growth of RCXP. In EL the RP only allows battery fail actions,
thus the sequences explored by RCXP grow linearly with the number of batter-
ies. In CM the RP aims at serving all the coffees, thus RCXP’s linear growth
with the number of coffees. For the other cases, we have observed that L14-2
RCXP’s exploration doesn’t grow with the number of trains as only one of them
is observed, but grows linearly with the number of stations, for the reason that
the observed train has to move as many times as there are stations. The ELV
case is similar with the number of lift moves growing linearly with the number
of storeys to serve. Finally the L14-1 case showed not a linear but exponential
growth of RCXP. Indeed all the trains are observed in this experiment. Thus
adding one train leads to explore all of its actions, as well as their interleavings
with the actions of all the other trains.

As a general conclusion of these experiments we observe that RCXP provides
a means for covering the reachable part of the abstraction, and that it behaves
efficiently provided that the growth of the ATS resulting of CXP is controlled,
and that the number of events involved in the relevance predicate is small.

7 Related Work

The closest methods to ours are those proposed in [7], where a relevance function
is introduced, in [21] that extends [7] and in [22] that implements the process
of [7] in Spec Explorer (SE). These methods are for generating tests. They gener-
ate a Finite State Machine (FSM) that is an under-approximated concretization
of an Abstract State Machine (ASM) may predicate abstraction. Ideally, the
methods seek for building the true FSM of the ASM, which contains only reach-
able links, but all of them. SE [22] proposes five techniques to implement the
defined relevance function and to prune the search space: state grouping, directed
search, parameter selection, state filtering and action restriction that are closely
related to our approach, though with many differences. Our method begins by
computing an abstraction in which the abstract states group the concrete states
defined from a set of state predicates automatically extracted from a test pur-
pose. In SE, the tester must give a state-based grouping expression. Then our
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method computes a concrete under approximation by directed search (CXP).
As in SE, the tester selects for that the values of many parameters, e.g. the ini-
tial number of coffees in the CM. In SE, the directed search is applied after all
the pruning parameters have been given. For us, the covering of each abstract
state and transition only once by CXP leads to a very strong state filtering. To
relax this filtering, the tester designs a relevance predicate by observing which
abstract states and transitions are not covered, in order to fix a new coverage
goal. Then (s)he executes a new directed search (RCXP), that filters the states
that satisfy the relevance predicate. The tester does not provide an execution’s
maximum length as in SE, but termination is ensured thanks to a variant auto-
matically computed from the relevance predicate. Last, our method allows action
filtering by defining the RP, whereas in SE the tester strengthens some actions’
guards.

In [23,24], the set of abstraction predicates is iteratively refined in order
to compute a bisimulation of the model’s semantics when it exists. Except by
arbitrary limiting the number of refinement step (as suggested in [23]), none
of these two methods is guaranteed to terminate, because the refinement step
may would be repeated infinitely if no bisimulation quotient exists for the sys-
tem. SYNERGY [25] and DASH [26] combine under-approximation and over-
approximation for checking safety properties on programs. As we aim at propos-
ing an efficient method for building a reachable under-approximation that covers
all the abstract states and transitions w.r.t. a specification and a set of pred-
icates, our algorithm does not refine the approximation but refines the under-
approximation thanks to a relevance predicate associated to a variant, which
guarantees the refinement process to terminate.

Some other work under-approximate an abstraction for generating tests. The
tools Agatha [27], DART [28], CUTE [29], EXE [30] and PEX [31] also compute
abstractions from models or programs, but only by means of symbolic execu-
tions [32]. This data abstraction approach computes an execution graph. Its set
of abstract states is possibly infinite whereas it is finite with our method.

Another approach [33] for computing an under-approximation of a pred-
icate abstraction is to characterize the abstract transitions not only as may
ones, but also as must+ and must−. Indeed, abstract sequences in the shape
of must−∗ · may · must+∗ can necessarily be instantiated as connected concrete
sequences. An attempt to prolong an existing under-approximation thanks to
these additional modalities is experimentally tested in [34].

8 Conclusion and Further Work

We have proposed a method for computing (or rather completing) a concrete
under-approximation of a may abstraction. Building a new concrete transition is
conditioned by the fact that it prolongs an existing reachable concrete sequence
while satisfying a user defined relevance predicate. To ensure termination this
predicate has to decrease a variant, and we propose a method for automatically
extracting a variant out of the relevance predicate. We have experimented with
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five case studies, for which we have achieved 100% coverage of the abstract
transitions targeted by the relevance predicate, but with far less transitions than
with the full exploration (except for one case as discussed in Sect. 6.2).

This work shows that the efficiency and success of RCXP depends on how
the system is abstracted and the relevance predicate are chosen. Our results
suggest that targeting a few transitions at a time with RCXP is preferable even
if repeating the process is necessary. This corresponds to performing several test
campaigns with different test objectives. We intend to experiment with various
ways of abstracting and writing relevance predicates so as to investigate these
methodological aspects. Also a more expressive relevance predicate language and
a more semantic estimation of the variant’s initial value are to be proposed.
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Abstract. Information-flow control (IFC) techniques assist in avoiding
information leakage of sensitive data to an observable output. Unfortu-
nately, the various IFC approaches are either imprecise, thus producing
many false positive alerts, or they do not scale. Using system depen-
dence graphs (SDGs) to model the syntactic dependencies between dif-
ferent program parts is a highly scalable approach that enables to check
whether the observable output depends on the sensitive input. While this
approach is sound, security violations that it reports can be false alarms.
We present a technique to overcome these problems by combining two
existing approaches in a novel way. We show how each security violation
reported by an SDG-based approach can be used to create a simplified
program that can then be handled with a second approach to prove or
disprove the reported violation. As the second approach we use deduc-
tive verification and test case generation. We show that our approach is
sound, and demonstrate its benefits by means of examples. We discuss
the challenges of implementing the approach using JOANA and KeY.

Keywords: Information flow control · Noninterference
System dependence graph · Deductive verification · Testing

1 Introduction

Software developers focus primarily on correctness with respect to functional
requirements. However, when writing programs, non-functional requirements
should also be considered first-class citizens. One non-functional requirement
is related to confidentiality and requires the avoidance of illegal information
flow ; i.e., to prevent situations where high (confidential) input is leaking to low
(public) output. This property is known as noninterference [13]. Intuitively it
requires that the high input does not interfere with the low output. Thus, by
observing the program’s output, one cannot distinguish between different high
inputs; i.e., if a program is executed twice with different high inputs but identical
low inputs, an attacker will observe identical behaviors (an attacker can observe
c© Springer International Publishing AG, part of Springer Nature 2018
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low information but not high information). For example, if a credit card num-
ber is high input, unauthorized viewers (e.g., people working in the company’s
warehouse) should not be able to observe this information, directly or indirectly.

We introduce the low-equivalence relation (∼L) to characterize program
states that are indistinguishable for an attacker. A program state s is an assign-
ment of values to variables. We assume that the input of a program is included
in the initial state and that the output of a program is included in the final state.
Two states, s and s′, are low-equivalent iff all low variables in s and in s′ have
the same value. In this work we consider only sequential programs, and we use
the property called noninterference as it was first introduced by [13].

Definition 1 (Noninterference). A program P is noninterferent iff for all
initial states s1, s2, either (1) s1 ∼L s2 ⇒ s′

1 ∼L s′
2 , where s′

1, s
′
2 are final

program states after executing P in the initial states s1 and s2, respectively, or
(2) the program does neither terminate for s1 nor for s2.

This means that two program executions starting in two low-equivalent states
must terminate at two low-equivalent states, or not terminate at all. This guar-
antees that low outputs are not influenced by high inputs. In the rest of the
paper we will refer to noninterference with regard to a given high input and a
given low output simply as noninterference.

Various approaches and tools for checking noninterference exist. Some
have a high degree of automation, yet produce many false alarms as they
over-approximate the information flow. Others are more precise, but require
more effort and user interaction. We describe some of the main approaches.
Approaches that are based on System Dependency Graphs (SDGs) syntactically
compute the dependencies between the program statements and check whether
the low output depends on the high input (see, e.g., [14]). Whereas they scale
very well, such approaches over-approximate the actual dependencies in the pro-
gram which results in false alerts. Approaches that are based on type systems, for
instance [25], enforce secure information flow by assigning a security type (e.g.,
high or low) to the program variables and then checking whether the expressions
in the program conform to the type system. Logic-based approaches (e.g. [7]),
have a higher precision, i.e., they produce less false alarms, as they also consider
the semantics of the program statements. However, they have a lower scalability.
In those approaches the proof obligation is to show that the terminating states of
two program executions are low-equivalent, assuming that the two initial states
are low-equivalent. False alarms only occur when the system fails to find a proof
in the allotted time even though the proof obligation is valid. Proving noninter-
ference using this approach requires a quadratic number of program execution
paths to be checked compared to proving a functional property. Approaches for
test cases generation are also affected by this: a quadratic number of test cases
is necessary to achieve the same coverage as for a functional property.

Our Contribution. In this paper we describe an approach to information-flow
analysis that combines an SDG-based technique with deductive verification and
test case generation. Note, however, that our approach enables other techniques
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(e.g., static analyses) to be used together with the SDG-based technique. The
highly scalable SDG-based approach is used to generate a simplified program
for each possible security violation. These simplified programs are information-
flow equivalent (with regard to the analyzed security violation) to the original
program. This means that every illegal flow in the simplified program has a cor-
responding illegal flow in the original program, and vice versa. The necessary
effort for the second approach, i.e., deductive verification and test case genera-
tion, is decreased by the our approach by: (i) excluding pairs of high inputs and
low outputs and the possible security violation they represent; (ii) excluding
execution paths in the program; and (iii) excluding programs statements.

We have implemented our approach using the JOANA tool [14] for the SDG-
based analysis and the KeY system [2] for theorem proving and test case gen-
eration. Applying our approach on some example programs has shown that it
increases the scalability of the deductive verification and the test case genera-
tion techniques, allowing them to focus just on those program parts that may
contribute to the illegal flow of information.

We organize the paper as follows. In Sect. 2 we present a running example
that will be used to demonstrate our ideas. Section 3 describes how we generate
a simplified program. In Sect. 4 we show how the simplified program can help
with verification, and in Sect. 5 we explain how the simplified program helps
with information-flow test case generation. In Sect. 6 we discuss theoretical and
technical details of our approach. In Sect. 7 we present work related to that done
by us, and Sect. 8 concludes.

2 Running Example

int s e cure ( int high , int low ){
i f ( low == 5){

low = id en t i t y 2 ( low , high ) ; }
else {

i f ( low == 2){
low = id en t i t y 1 ( low , high ) ; }

else {
low = id en t i t y 2 ( low , high ) ;}}

return low ;
}

int i d en t i t y 1 ( int low , int high ){
low = low + high ;
low = low − high ;
return low ;

}

int i d en t i t y 2 ( int low , int high ){
return low ;

}

Listing 1. Running example

The method secure in Listing 1 has a secret input high, a non-secret input
low, and a public output—the method’s result. The method is noninterferent,
as the result value does not depend on the value of high, and this can be proved
using deductive verification. The proof requires to consider nine symbolic exe-
cution paths: we need to analyze two program runs as required by Definition 1,
and for each of those we need to consider three cases, namely that the input low
(a) is 5, (b) is 2, or (c) has any other value. SDG-based techniques for checking
noninterference will report a security violation, as the called method identity1
contains a syntactic dependency between its return value (that gets afterwards
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assigned to low) and the parameter high. This dependency, however, only affects
the path in which the initial value of low is 2. Hence, the other two execution
paths can be guaranteed to be secure by the SDG-based method. In the following
section, we will explain how we can simplify the running example program and
we show the advantages of this simplification in proving the noninterference of
the program using a logic-based approach.

3 Generation of the Simplified Program

To check the noninterference property for a given program, we combine the fol-
lowing two approaches: (i) SDG-based information-flow analysis, and (ii) deduc-
tive theorem proving or test-case generation or both. The SDG-based analysis
is purely syntactic, highly scalable, and sound. However, some of the reported
noninterference violations may be false positives. But even if there are false warn-
ings, this analysis allows us to exclude some execution paths and statements that
are guaranteed not to have any effect on the noninterference property. The sec-
ond approach then only needs to deal with those parts of the program that can
potentially lead to an illegal flow of information according to phase (i).

3.1 SDG-Based Information-Flow Analysis

In the first step we use an SDG-based static analysis technique for determining
whether there exists a potential dependence between high input and low output.
The usefulness of Program Dependence Graphs (PDGs) [12] and System Depen-
dence Graphs (SDGs) [19] in the context of information-flow security has been
first noticed in the nineties [29]. Decades of research in this area have resulted in
JOANA, a tool that statically analyzes Java programs of up to 100K LOC [14].
We explain how SDG-based information-flow analysis works using the JOANA
tool. Our approach can be realized using other SDG-based analysis tools as well.
We define SDGs for deterministic inter-procedural programs that consist of vari-
able assignments, branching, loops, and function calls. For those programs we
also assume that a control-flow graph (CFG) is available.

The noninterference property is specified by annotating program parts cor-
responding to high inputs and low outputs. JOANA builds an SDG for the
program. An SDG is a directed graph consisting of interconnected PDGs, where
a PDG represents a single procedure of a program as a directed graph. A detailed
discussion on SDGs can be found, e.g., in [19]. Nodes in the SDG represent pro-
gram statements, conditions, or input parameters, and edges represent depen-
dencies between the nodes; i.e., an edge between nodes exists if the execution
of one node may depend on the outcome of the other node. The CFG nodes of
a program are also present in the SDG. There are roughly two types of edges
in an SDG: data dependence edges, representing possible direct dependencies
and control dependencies which represent possible indirect dependencies (other
dependencies for supporting object orientation and multi-threading are defined
in [17]). Whether an edge exists between two nodes in the SDG is determined
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syntactically by analyzing the control flow graph of the analyzed program. An
overview of formal definitions of the two types of dependencies can be found
in [31]. We present the two standard ones here. To determine whether a node is
data-dependent on another node, we define for each CFG node n two sets, Defn
and Usen, which contain the program variables that are defined in the node and
that are used in the node, respectively. Node n′ is data dependent on n if there is
a variable v that is used in n′ and defined in n, and there is a path from n to n′ in
the CFG such that v is not defined on any node between n and n′ on that path.
The standard definition of a control dependency between two nodes states that
node n′ is control-dependent on node n if the choice of the outgoing edge from n
in the CFG determines whether node n′ is reached. Note that it is undecidable
whether a CFG path is realizable during the execution of the program, i.e., some
paths in the CFG represent executions that cannot actually take place, thus the
CFG is an overapproximation of the program behavior. Since the SDG edges are
defined using CFG paths, they too are an overapproximation of the dependen-
cies in the program. In the rest of the paper, we refer to the program execution
described by a CFG path as execution path. If an SDG path is a sub-path of an
execution path, we say that that execution path corresponds to the SDG path.
An SDG path has one or more corresponding execution paths.

Fig. 1. The SDG of the running example

Figure 1 presents the SDG generated by JOANA for the secure method
in our running example. The dependencies inside the three calls of the
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methods identity1 and identity2 are hidden, and only the method call nodes
are shown. We use this simplification also when describing paths in the SDG.
Node 58 represents the parameter high of method secure, and node 55 the
method exit node. The two nodes are annotated as high and low, respectively.

SDG-based information-flow analysis approaches detect illegal information
flows through graph analysis, using a special form of conditional reachabil-
ity analysis—slicing and chopping—at the SDG level. A security violation is
reported when there is an SDG path from a high node to a low node. JOANA is
sound [31], i.e., any illegal information flow in the program can occur only in the
execution paths corresponding to an SDG path from a high node to a low node.
Thus, if no such SDG path is found, the program is noninterferent. However,
when an SDG path from a high to a low node exists, the program may still be
noninterferent. To distinguish between real and false security alarms, we use a
second technique (verification or test case generation).

For the running example JOANA reports a security violation that contains
an SDG path from the parameter high to the return value of the method
secure. JOANA successfully determines that there is no dependency between
the parameter high and the return value of the two calls to the method
identity2. Since the edges in the SDG represent purely syntactical dependen-
cies, JOANA cannot show the same for the call of identity1. Thus, the SDG
path 58 → 69 → 82 → 55 is reported as a possible violation (the numbers corre-
spond to the node ids in Fig. 1). For the two execution paths where identity2
is called the absence of any illegal information flow is shown. In the second, more
precise, approach the analysis of these two execution paths can be skipped.

3.2 Generating the Simplified Program

SDG-based information-flow analysis approaches use slicing and chopping tech-
niques. Program slicing [32] removes statements from a program in order to
reduce its size and complexity while retaining some specified aspects of its behav-
ior. Slices are defined with respect to a slicing criterion, i.e., a statement or a
variable in the program. Forward slicing is used to compute the program state-
ments which are influenced by the criterion statement, whereas backward slicing
finds the programs statements that influence that criterion statement.

Definition 2 (Forward, Backward Slice). Given an SDG and a criterion
statement represented by a node n in the SDG, we define the forward slice Sfw(n)
and the backward slice Sbw(n) as the following sets:

– Sfw(n) = {ns | ns is reachable from n in the SDG}
– Sbw(n) = {ns | n is reachable from ns in the SDG}
A node that is not contained in the backwards slice of some node n cannot influ-
ence n, and a node not contained in the forward slice of n cannot be influenced
by n. The slice nodes also determine a (sliced) program that is constructed from
the original program by removing those statements which are not in the slice.
One property of the backward slice is that, for every input, the variables in the
criterion statement have the same values as in the original program.
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Definition 3 (Chop). Given two nodes nh and nl in an SDG, we define the
chop of these nodes as the set C(nh, nl) = Sfw(nh) ∩ Sbw(nl).

In the case of information-flow analysis, program chopping provides information
on the program statements that are included in a path from a high program part
to a low program part. A security violation reported by the SDG-based approach
has a corresponding chop for a high input and low output pair represented by
nodes in the SDG. This chop represents an overapproximation of the nodes that
are influenced by the high input and that influence the low output.

The chop that was created by JOANA for the running example contains only
one path. We know that only the statements of the nodes in this path can be
relevant for the potential illegal information flow. Using a chop and the analyzed
program we can generate a simplified program, which we call chop-based program.
The chop-based program of the running example is shown in Listing 2.

Definition 4 (Chop-based program). For a given program P and a chop
C(nh, nl), the chop-based program PC is constructed by removing all statements
from P that have no corresponding node in C(nh, nl).

Theorem 1. Given a program P and a chop C(nh, nl), if the noninterference
property with respect to the high input corresponding to nh and the low output
corresponding to nl holds for the chop based program PC , then it holds for the
original program P as well.

Proof. An illegal information flow may occur only on the execution paths deter-
mined by the SDG paths from a high source to a low sink, and all these SDG
paths are present in the chop reported as a security violation. Thus, it suffices to
show that the noninterference property holds for the program executions deter-
mined by the chop. Since the chop-based program contains by construction all
statements corresponding to the nodes in the chop, the execution paths deter-
mined by the chop in the original program are a subset of the execution paths
of the chop-based program. Thus, if the noninterference property holds for the
chop-based program, it must also hold for every execution path described by the
chop, and hence also for the original program. ��

int s e cure ( int high , int low ) {
low = id en t i t y 1 ( low , high ) ;
return low ;

}
Listing 2. Chop-based pro-
gram for the running example

int s e cure ( int high , int low ) {
i f ( low == 5){

di s ruptExecut ion ( ) ;
low = id en t i t y 2 ( low , high ) ; }

else {
i f ( low == 2){

low = id en t i t y 1 ( low , high ) ; }
else {

di s ruptExecut ion ( ) ;
low = id en t i t y 2 ( low , high ) ;}}

return low ;
}
Listing 3. Simplified program for the
running example
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The chop-based program is greatly simpler than the original and this fact can
help to considerably reduce the effort for deductive verification. However, some
statements that affect path conditions (i.e., conditions on the inputs that need to
hold for an execution path to be taken) under which an illegal information flow
can occur in the original program may be lost in the chopping process. Therefore,
the chop-based program may allow executions that are not possible in the original
program. For this reason, an illegal information flow in the chop-based program
does not necessarily have a corresponding illegal flow in the original program,
since the path conditions that need to hold for the illegal information flow may be
unsatisfiable in the original program. Suppose, e.g., that the method identity1
in the running example is secure only if the condition low == 2 holds when the
method is called. This condition holds in the original program, but not in the
chop-based program. In this case the original program would be noninterferent,
but the chop-based program would contain an illegal information flow. Thus,
whereas the verification effort can be significantly reduced for some programs,
the missing path conditions may cause the noninterference property to become
impossible to verify for other programs. Furthermore, the chop-based program
is of little use for test-case generation, since the test data for this program
may take another path when used to test the original program. For example,
the input parameter low in the original program must be 2 for the identity1
method to be called, but this is not true for the chop-based program. Thus, the
coverage achieved when testing the simplified program does not translate to a
coverage in the original program. Moreover, it may be that an information-flow
leak detected when testing the chop-based program is not a leak in the original
program. E.g., for the method identity1 in the running example to be called
to catch the “potential” information flow from the parameter high to its return
value, the value of low has to be 2 in order for the leak to be observable in the
original program. Since the path condition is no longer present in the chop-based
program, the test-case generation approach can generate two inputs that lead to
a potential leak in the chop-based program but not in the original program.

To overcome the problems of the chop-based programs, we introduce a new
kind of programs—simplified programs. A simplified program is based on the
backward slice of the low output, and has some execution paths excluded. We
decide which paths to exclude by analyzing both the SDG of the entire program
and the chop, to determine whether a branching node (e.g., a node representing
an if-statement) has to be true or false for an illegal information flow to occur.

Definition 5 (Analysis of branching nodes). Let nb ∈ Sbw be a conditional
branching node in the backward slice of some node nl corresponding to the low
output. Let Ntrue be the set of successor nodes following the true branch of nb

in the CFG, and let Nfalse be the successor nodes following the false branch in
the CFG. We define nb to be a condition that must be true if the analyzed chop
C(nh, nl) contains nodes from Ntrue and no nodes from Nfalse. Conversely, nb

is defined as must be false condition if the chop contains nodes from Nfalse and
no nodes from Ntrue.
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Theorem 2. Given a high input and a low output corresponding, respectively,
to the SDG nodes nh and nl, and a branching node nb that must be true (resp.
false), any execution path of the original program along the false (true) branch
of nb will not lead to an illegal information flow from nh to nl.

Proof. This property results from the soundness of the SDG-based approach:
an illegal information flow from nh to nl can occur only along an execution
path determined by chop C(nh, nl). However, because the node nb must be true
(false), we know that no successor of nb is in the chop, thus the chop does not
include any execution path along the false (true) branch of nb. ��

This allows the exclusion the execution paths that do not lead to an illegal
information flow according to Theorem2 from the analysis in the second step.
We exclude these paths by adding a special statement that disrupts the symbolic
execution at the beginning of a false branch for a branching statement that must
be true and at the beginning of a true branch for a branching statement that must
be false. When the program is symbolically executed for verification and reaches
a disruptive statement, the proof closes automatically for that branch. Test case
generation also immediately halts for that path once the symbolic execution
reaches a disruptive statement. We can now define the simplified program.

Definition 6 (Simplified program). Let nh and nl be two nodes in the SDG
of a program P (corresponding to a high input and a low output). We construct
the simplified program PS from P by:

1. Removing all nodes that are not in the backward slice Sbw(nl).
2. Analyzing the remaining conditional nodes and adding disruptive statements

on their true resp. false branches that cannot lead to an illegal information
flow according to Theorem2.

Theorem 3. Given a high input and a low output in a program P with corre-
sponding nodes nh and nl in the SDG for P , the simplified program constructed
according to Definition 6 is noninterferent with respect to nh and nl if and only
if the original program is noninterferent with respect to nh and nl.

Proof. If the simplified program is noninterferent, then none of its execution
paths leads to an illegal information flow. The simplified program contains all
execution paths determined by C(nh, nl), therefore none of the chop paths leads
to an illegal information flow. Due to the soundness of the SDG-based approach,
an illegal information flow can occur only along an execution path determined
by the chop. Therefore also the original program must be noninterferent.

If the original program is noninterferent, then the backward slice Sbw(nl) of
the low output is noninterferent as well, since for every input the low output
of the backward slice is identical to that of the original program. As shown in
Theorem 2, adding disruptive statements excludes only execution paths that are
guaranteed not to lead to an illegal information flow in the original program.
Hence the simplified program must be noninterferent as well. ��
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Theorem 4. Given a high input and a low output in a program P with corre-
sponding nodes nh and nl in the SDG of P , two concrete high inputs h1 and
h2 for nh lead to two different low outputs, l1 and l2, in nl in the simplified
program PS if and only if h1 and h2 lead to the same two different low outputs
l1 and l2 in the original program P .

Proof. The simplified program PS is a backward slice with respect to the low
output, in which some paths that are guaranteed not to lead to an illegal informa-
tion flow are excluded. The two high inputs leading to two different low outputs
in PS cannot have taken one of the excluded paths, otherwise these paths would
not have been excluded. Since the remaining, not excluded, execution paths of
PS are those of the backward slice with respect to the low output, the inputs
that take those execution paths will lead to the same low outputs in the original
program. If the two high inputs lead to two different low outputs in the original
program, the simplified program will lead to the same two different low outputs,
because of the slice property and because the execution paths could not have
been excluded since they do lead to an illegal information flow. ��

The chop reported by JOANA for the running example contains nodes 58,
69, 82, and 55 (Fig. 1). In the backward slice of the low output (i.e., of node 55),
there are two branching nodes, 60 and 68, corresponding to the two if-statements
in the example program. Analyzing the two branching nodes, we automatically
determine that for an illegal information flow to be possible the first if-statement
has to take the false branch and the second if-statement has to take the true
branch. The program in Listing 3 is the simplified program of the running exam-
ple. While in general the backward slice of the return statement can be much
smaller than the original program, in our example it contains the entire pro-
gram. Nevertheless, our approach determines that the paths leading to the call
of identity2 cannot lead to an illegal information flow, and it adds two state-
ments disruptExecution() which stop symbolic execution when verifying the
running example or generating test cases–as we will see in the next sections.

4 Verification of the Simplified Program

We now show how using the simplified program can assist in reducing the verifi-
cation effort compared to the effort needed to verify the original program. Since
our implementation uses KeY we begin by explaining how KeY works.

The KeY system is a deductive program verification tool for Java, which is
based on JavaDL, a first-order dynamic logic for Java. Properties of the pro-
gram are specified as method contracts and auxiliary specifications such as loop
invariants using an extension of the Java Modeling Language (JML) [24]. KeY
transforms the specification and the program code into proof obligations formal-
ized in JavaDL and performs a proof using a sequent calculus. For functional
properties the proof obligation has the form =⇒ Pre → 〈P 〉Post, meaning
that the program P that is executed in a prestate in which the precondition Pre
holds terminates in a poststate where the postcondition Post will hold. JavaDL
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provides an update operator that can be used to “store” changes to the program
state and simplify them if possible.

During proof construction, the program is symbolically executed, statement
by statement, using the appropriate rules for Java programs in the KeY calculus.
Rules are applied automatically according to the heuristic provided by KeY. The
state changes affected by each individual statement are (symbolically) expressed
and added to the update. Updates provide a compact representation of the
symbolic state, and are changed according to the program state changes. When
the entire program has been symbolically executed, the changes recorded in the
update are simplified and applied to the postcondition. After this step, KeY
attempts to show the unsatisfiability of the remaining sequents, which contain
only-first order formulas. It is important to note that a split in the program, due
to a branching statement, causes also a split in the proof. Thus the resulting
proof tree contains at least one branch for each execution path in the program.

The logic JavaDL, the sequent calculus, and the JML specification language
have been extended such that KeY supports the verification of information-flow
properties for sequential Java programs [7]. The proof obligation that needs
to be resolved expresses that two program runs that start in low equivalent
states will also terminate in low equivalent states (similarly to Definition 1 of
noninterference). Using KeY to verify noninterference for the running example
requires 771 rule applications. After symbolic program execution is finished, nine
proof branches remain to be closed—one for each combination of paths in the two
program runs, as explained in Sect. 2. For the chop-based program in Listing 2,
verification needs 298 rule applications, and only one proof goal remains to be
closed after symbolic execution (as there is only one possible path combination).
However, as already explained, noninterference of the chop-based program is
a sufficient but not a necessary condition for noninterference of the original
program. To get a necessary condition ensuring that noninterference is preserved
when the program is simplified, path conditions need to be preserved, which is
the case in the simplified program according to Definition 6. The verification of
the simplified program in Listing 3 requires 511 rule applications. In this case, the
symbolic execution halts when one of the two program runs reaches a path that
has already been deemed secure by JOANA, and the corresponding proof branch
is closed. Thus, of the nine proof goals remaining after symbolic execution, eight
are trivially closed—sometime even before their symbolic execution is finished.

The running example showcases how the SDG-based approach can assist
verification by excluding statements and execution paths from the program. The
exclusion of execution paths is especially useful when dealing with information-
flow properties such as noninterference. If the original program has n execution
paths, the verification process must prove that the noninterference property
holds for n2 paths. Adding a single disruptive statement, the number of paths
that need to be verified in the simplified program drops to a number between
(n − 1)2 and n2/4 (depending on whether the affected condition is at the top
level or not). Thus, the number of execution paths that need to be analyzed
with the theorem prover can drop to a quarter of those required for the original
program.
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The statements removed from the original program can also lead to a dra-
matic decrease of the verification effort. Consider the example in Listing 4. The
method secure contains a call to the method sort that has no influence on
any potential information flow from the parameter high to the return value of
secure. The verification of the method secure would normally be done using a
verified method contract for sort. Using the method contract in the noninter-
ference proof of secure increases the size of the proof. Moreover, the method
sort itself needs to be specified and verified before it can be soundly used in the
proof of secure, thus increasing the user’s workload. For the example shown in
Listing 4 a trivial contract for the method sort is sufficient. However, the user
has to look into the code, notice that the call of the sort method has nothing
to do with a potential information flow, and then to specify and verify it. Our
approach can automatically detect such statements and soundly remove them.

int [ ] a ;
int s e cure ( int high , int low ) {

low = high ∗ 0 ;
s o r t ( a ) ;
return low ;

}
Listing 4. Example containing a
complex method call

int [ ] a ;
int s e cure ( int high , int low ) {

low = high ∗ 0 ;
a = new int [ 5 ] ;
for ( int i =0; i<a . l ength ; i++){

a [ i ] = low ;}
return low ;

}
Listing 5. Multiple low outputs exam-
ple

The individual analysis of simplified programs corresponding to high input
and low output pairs can also benefit verification. Consider the program in
Listing 5. We regard the parameters high and low to be the high resp. low
inputs, and both the return value of the secure method and the potentially
thrown exception of this method are regarded as low outputs. In this case, two
simplified programs are generated—one for the potential flow from high to the
return value and one for the potential flow from high to the exception. For the
first pair, the array generation with new and the loop initializing the array are
removed, thus making the absence of this flow trivial to verify. For the second
pair, no statements are removed; however, the verification engineer can verify
the absence of a thrown exception by specifying the normal termination of the
method as a functional property and doing a functional proof.

Most tools support the classical noninterference property, in which the low-
equivalence relation is equality. KeY additionally allows the noninterference
property to be defined by requiring object structures in the two low-equivalent
program states to be (only) isomorphic. This is useful for showing noninterfer-
ence for methods that create new objects, as two independent program runs
will generate different references but isomorphic structures. KeY also allows an
expression to be declassified, i.e., the attacker is allowed to know the value of
the declassified expression, but no more than that. Both these extensions of the
noninterference property are relaxations, and thus a program that fulfills the non-
interference property as defined in Definition 1 fulfills the extended properties as
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well. Hence, we can use our approach to generate the chop-based or the simplified
program even when attempting to prove the extended noninterference property.

5 Testing the Simplified Program

When the verification of the noninterference property fails, testing can be used
to either find an illegal information flow or to gain confidence in the program by
running a high coverage test suite. For both goals, manually writing test cases
that achieve a good path coverage is a difficult task. For noninterference this
problem is further escalated because the test must run the program twice to
check for an illegal flow. The simplified program can be used to reduce the effort
required for generating noninterference test cases.

Symbolic execution-based test generation is a well established technique for
generating test suites with a high path coverage. However, this technique suffers
from the path explosion problem, i.e., the number of possible execution paths of a
program is very large, resulting in a reduced scalability. For the noninterference
property, the number of paths is quadratic when compared to usual functional
properties. This is where our technique comes into play. By testing the simplified
program rather than the original program, the number of execution paths that
need to be considered can decrease, thus improving the scalability.

We have implemented a prototypical test-case generator (TCG) for informa-
tion flow properties by extending the automatic TCG of KeY (see [2, Chap. 12]).
The TCG attempts to generate two low equivalent inputs for each pair of path
conditions from the two program runs. The TCG starts by loading the same
proof obligation for noninterference as would be done when verifying the prop-
erty. We no longer require auxiliary specification, but unwind the loops and inline
method calls for a bounded number of times (specified by the user). The pro-
gram is symbolically executed twice and we obtain a proof tree that has a proof
goal for each pair of execution paths. A model for a formula represented by such
a proof goal satisfies both path conditions in addition to the low-equivalence of
the two inputs. An SMT solver (Z3) is used to find a model for these formu-
las. The user now has two options. With the first option, only test cases with
input pairs that lead to not low-equivalent output pairs are generated. These
tests showcase a counterexample. With the second option, the postcondition is
ignored and the TCG attempts to generate a test case for each (satisfiable) pair
of path conditions. These tests can be used to validate the results of verification.
An noninterference test consists of two executions of the method under test,
with two low-equivalent inputs, that result in two outputs. A test oracle checks
whether the two outputs are low equivalent, determining whether the test is
successful.

The running example contains three execution paths and, thus, the TCG will
attempt to generate 32 input pairs. However, only three pairs are low equivalent
as the branch that is taken is determined by the low input. Thus, the TCG
generates a test suite with three noninterference test cases. When running the
TCG on the simplified program, only one test case will be generated for the case
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in which both low inputs are 2. This is possible due to the inserted statements
in the simplified program that disrupt symbolic execution. For the simplified
program, the TCG attempts (and succeeds) to generate a noninterference test
case only once, compared to the nine attempts for the original program. Hence,
in this case eight test-case generation attempts (calls to the SMT solver) that
cannot lead to a noninterference property violation are soundly skipped. Test-
ing the simplified program can reduce the number of generated test cases also
by removing program statements that are not relevant for computing the low
output. When testing the program shown in Listing 4, the method sort would
be inlined during the symbolic execution phase, thus requiring a large number
of execution paths to be tested. By removing the call to sort, the simplified
program contains only one execution path. Removing statements also leads to
reduction in the computational resources needed to run the information-flow
tests.

An additional benefit of using our two-step approach is the fact that we treat
each high input and low output pair separately. If an illegal information flow is
found during testing, the user can easily identify the high input and low output
of the leak by noticing for which simplified program the test fails.

It is difficult to define an appropriate coverage criterion for noninterference
test suites. For functional properties full path coverage is ideal, however, this
is not achievable in the general case because some execution paths may have
unsatisfiable path conditions, i.e., no input will result in such an execution path
being taken. When extending the path-coverage criterion to information-flow
testing, requiring a test case for every pair of execution paths in the two program
runs, the low-equivalence requirement for the two inputs poses an additional
problem because many pairs of execution paths are incompatible. This results in
a low path coverage that is not an indication for a badly designed test suite. In
the running example, only for three out of the nine path pairs a noninterference
test case can be generated; resulting in a path coverage of only 33%. Execution
paths excluded from the original program have path conditions that depend on
the high input. Those paths are thus determined only by the low input and
are likely to form incompatible pairs with other paths. By excluding them, the
achieved path coverage becomes a better indicator for the quality of testing.

6 Discussion

The novelty of our approach is that we soundly bridge the gap between two
kinds of approaches: the scalable over-approximating IFC approach and the more
precise but less scalable one. This is achieved by automatically transforming the
output of the SDG-based approach into an input of a more precise approach, thus
simplifying the analyzed program. Furthermore, the simplified program that we
generate is not a mere slice of the original program; by taking advantage of the
noninterference property, we also exclude entire branches from the analysis with
the precise approach. We have shown that a single branch exclusion can lead the
more precise approach to handle only one quarter of the execution paths that
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would otherwise need to be handled. This is a crucial advantage, as existing
precise IFC approaches suffer from an exacerbated path explosion problem.

We defined two types of simplified programs: the chop-based program and the
simplified program; both can be useful for verification, but sometimes the chop-
based program makes verification impossible. To help the user chose between
the two versions, we devise a criterion based on the following theorem:

Theorem 5. Given the SDG of a program and a chop representing a reported
security violation, then if every node that represents a conditional branching
statement in the SDG is also present in the chop, the chop-based program is
noninterferent if the original program is noninterferent.

Proof. All branching conditions depend on the high input, otherwise the corre-
sponding branching nodes would not be in the chop. The consequence for such a
program is that all execution paths must lead to the same low output, otherwise
the low output would be conditionally dependent on a high output. Removing
statements that do not depend on the high input would change the value of this
output but the noninterference property remains unaffected. ��

For such programs the chop-based program is better suited to assist verifica-
tion, since no path can be excluded when generating the simplified program as
the conditional branching nodes have at least one true and one false successor
in the chop. The simplified program in this case is the backward slice based on
the low output of the original program and it may contain more statements than
the chop-based program. The inputs that lead to an illegal information flow in
the chop-based program will as well lead to one in the original program, and
thus the chop-based program can even be used for testing. We check whether
the chop fulfills the condition described in Theorem5, and respectively use the
chop-based or the simplified program.

The implementation of our approach uses JOANA and KeY, two tools that
do not work on the same programming language. While JOANA works on Java
bytecode that was transformed into a single static assignment (SSA) form, KeY
works on Java source code. For the soundness of our implementation (but not for
the soundness of our approach), we must assume that compiling a Java program
into bytecode does not change the information-flow properties of the program.
Moreover, this also raises the issue of mapping bytecode statements into source
code statements. We are able to determine the source code line (which may
contain more than one source code statement) from which a bytecode statement
originates. However, a source code statement can be compiled into more than
one bytecode statement and, due to the SSA form, some source code statements
may not even have a corresponding bytecode statement. Using these tools it is
thus impossible to generate the chop-based and the simplified program as defined
in Sect. 3. Instead, we generate an overapproximation of the chop-based and the
simplified program by removing a line in the source code only if: (i) the SDG
contains a node corresponding to a bytecode statement originating from that
line, and (ii) no such node is in the chop (for the chop-based program) or in the
backward slice of the low output (for the simplified program). To avoid multiple
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source code statements on the same line, we preprocess the source code program
and transform it into a program with only one statement per line.

SDG-based slicing as done in JOANA can result in a program that is not exe-
cutable or that may incorrectly handle jump statements, such as goto, break,
or continue. Our approach is nevertheless feasible, as various solutions that
enhance SDG-based slicing and enable the generation of executable program
slices from SDGs have been proposed; see, e.g., [1,5,18]. We obtain executable
slices by not removing lines containing certain types of statements such as con-
structors or static initializers and by supporting only programs without jump
statements.

While JOANA supports full Java (minus reflection), KeY handles sequential
Java programs only. KeY also requires that the source code or method contracts
of library methods to be available. The implementation of our approach using
these two tools thus supports the same Java subset that KeY does.

The scalability of our approach is bounded by the scalability of the two tools
it uses. JOANA is able to handle programs of up to 100k LOC, whereas KeY can
handle programs of up to 1000 LOC. The generation of the backward slice and
the chop that are necessary for constructing the simplified program are anyway
the operations that JOANA performs in its analysis, and the analysis of the
branching nodes is a graph reachability problem similar to how slicing is done in
the SDG-based approach. The main bottleneck of our approach is therefore the
analysis using KeY rather than the generation of the simplified program. Thus,
the most favorable case for using our approach is when an original program that
is too large for KeY is simplified and reduced to a size that KeY can handle.
This is achievable either by removing program parts as done for the program in
Listing 4 or by excluding execution paths as done for the running example.

7 Related Work

A lot of research has been done on IFC, dating back to the works described
in [8,9] and later in [13]. A survey on approaches for IFC is found in [28]. In
what follows, we describe some approaches that are similar to ours.

The Hybrid Approach [22] also aims to combine automatic dependency-graph
analysis and a theorem proving. The user first attempts to show noninterference
using JOANA. If user suspects the reported violation to be a false alarm, he must
identify the cause of the alarm and extend the program such that the low output
is overwritten with a value that does not depend on the high input. The extended
program is rechecked by JOANA, and KeY is used to show that the extended
program computes the same low output as the original. This approach improves
the precision provided by JOANA. However, the communication between tools
is done manually; there is no assistance in finding the causes of the false alarms.
The results provided by JOANA are not used to simplify the program. In fact,
by extending it, the program verified by KeY becomes even more complex.

The Combined Approach (CA) [6] uses theorem proving to show that SDG
edges corresponding to method calls do not represent a real dependency in the
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program. If this is shown for an edge on every path from a high input to a low
sink, then the respective violation is disproved. Using our approach individual
statements that have no effect on a potential illegal information flow can be
removed while the CA works on a method level of granularity. The CA and the
approach shown in this paper are orthogonal. In fact, the approach described
here can be used to simplify the proof obligations generated by the CA. The CA
is well suited for programs where the part that cannot be handled by the SDG-
based approach is concentrated in a called method. If the syntactic dependencies
between the high input and low output are spread throughout the program, then
the whole program needs to be verified and no simplification is done to it. In
such cases our approach, however, can still profit from the SDG-based analysis.

Another combination of SDG-based approaches and theorem provers is by
checking the satisfiability of the path conditions for the execution paths deter-
mined by the reported security violation [17,30]. If a path condition is unsatis-
fiable, then the respective execution path cannot lead to an illegal information
flow. A program input that satisfies the path condition serves as a “witness”
and the user can analyze the program execution with that single input and
check whether an illegal information flow occurs. This is a difficult task, espe-
cially for indirect dependencies. The noninterference tests that we generate have
two inputs and show the illegal information flow more clearly.

A sound information-flow testing mechanism based on standard testing tech-
niques and on a combination of dynamic and static analyses was proposed in [23].
Once a path coverage property has been achieved, a conclusion regarding non-
interference can be established. A tool that uses symbolic execution in combina-
tion with a form of self-composition for noninterference testing of C programs
is presented in [26]. A logic-based approach to detect and generate exploits for
information flow properties and present them as a JUnit test is described in [10].
Information flow test case generation was also done in [15,20].

The combination of static and dynamic analysis has been employed in other
areas as well. Testing can be used to better understand the reasons of a failed
proof attempt; see, e.g. [27]. An incomplete proof can also be used to generate a
simplified software monitor [3], thus reducing the execution overhead of the mon-
itored software. Programming languages with dynamic features, e.g. JavaScript,
are difficult to handle for purely static analyses. This led to the development of
hybrid static-dynamic approaches for these languages as, e.g., in [4,16]. Dynamic
techniques have been used to generate program invariant candidates, which can
then be used to aid static techniques [11,21].

8 Conclusion

We have explored an approach for proving or testing the noninterference property
of a program, that uses SDG-based analysis to remove irrelevant program parts
and to exclude execution paths that do not lead to an illegal information flow.
For each pair of high input and low output we generate a simplified program.
We have shown that the simplified program is information-flow equivalent to
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the original program. Thus, a noninterference proof for the simplified program is
also one for the original program. The same holds for the counterexample. The
examples in the paper show how the simplified program assists in the verification
and testing of the noninterference property.

We have discussed implementation details of our approach using JOANA as
an SDG-based analysis tool and KeY as both a theorem prover and a test case
generator. Because the two tools work respectively on Java bytecode and Java
source code, our prototypical implementation generates an overapproximation
of the simplified program. This is only an engineering challenge, our approach
can be implemented using tools that work on the same programming language.
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Abstract. Program-based test-generation methods (also called “white-
box” tests) are conventionally described in terms of a control flow graph
and the generation of path conditions along the paths in this graph.
In this paper, we present an alternative formalization based on state-
exception monads that allows for direct derivations of path conditions
from program presentations in them; the approach lends itself both for
program-based testing procedures—designed to meet classical coverage
criteria—and bounded verification. Our formalization is implemented in
the Isabelle/HOL interactive theorem prover, where symbolic execution
can be processed through tactics implementing test-generation strate-
gies for various coverage criteria. The resulting environment is a major
step towards testing support for the development of invariants and post-
conditions in C verification environments similar to Isabelle/AutoCorres.

Keywords: White-box testing · Bounded verification
Symbolic execution · Coverage criteria · Interactive theorem proving

1 Introduction

In this paper, we present a range of program-based (“white-box”) test generation
methods inside an interactive theorem prover. Conventional implementations
[3,7,8] convert the abstract-syntax tree of the source program into a control flow
graph (CFG for short) defining a set of paths, giving rise to various path-coverage
criteria. In contrast, we base our work on a shallow embedding of programs
in the state-exception monad. This presentation can be seen as a minimalistic
imperative core language tuned to program verification. As a side-effect, our
test-generation procedure meeting different coverage criteria is implemented by
a semantically neutral annotation process combined with tactical decomposition
based on derived rules; it is therefore a verified tool by construction.

The contributions are the following. First, we propose to perform a sym-
bolic execution of programs using the semantic rules of a state-exception monad.
Compared to conventional presentations, it provides a lightweight environment
for white-box test generation (around 1500 LOC, including proofs). Second, we
embed the process into the Isabelle/HOL proof assistant, to offer:
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– a formal verification of symbolic execution, via the correctness of the state-
exception monad rules;

– reasonably efficient automatic engines for various coverage criteria, via Isa-
belle’s support for term manipulation;

– bounded model checking, via the possibility to formally prove the validity of
the abstract test cases.

Our paper proceeds as follows. After recalling the CFG-based approach for
white-box testing on a running example, we detail our novel approach based
on monads. We demonstrate the resulting symbolic execution rules by example,
and explain their use both for bounded verification and for testing by injecting
different forms of test-hypothesis. We conclude by tactics—implemented in the
Isabelle/HOL interactive theorem prover—achieving various coverage criteria by
construction, and illustrate the approach on a few examples.

All the material can be found at https://www.lri.fr/∼keller/TAP18. For read-
ability reasons, the definitions in the paper are written in Higher Order Logic (as
defined by Church’s Simple Type Theory [5]), expressed in a ML-like language
with pre-defined symbols such as implication (=⇒), set comprehension ({ | }),
. . . , and a type constructor theorem that can be applied only to valid expressions
(validity being proved interactively by Isabelle/HOL tactics). The notation

assumes H: P
shows Q

means theorem P =⇒Q (giving the name H to hypothesis P).

2 The Classical Approach to White-Box Testing

In order to contrast our approach to “the classical one”, we will briefly present the
latter using a running example: an algorithm for computing the integer square
root of an integer. We use a vanilla imperative language in order to represent
our example program:

1 int squareroot(int a):

2 -- pre : 0 ≤ a

3 -- post: result2 ≤ a ∧ a < (result +1)2

4 { int tm = 1; int sqsum = 1; int i = 0;

5 while sqsum ≤ a {

6 i := i + 1;

7 tm := tm + 2;

8 sqsum := tm + sqsum;

9 };

10 return(i)

11 }

The return command assigns its argument to the implicitly declared return
value result that is in the variable scope of the post-condition.

https://www.lri.fr/~keller/TAP18
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Fig. 1. The CFG for the integer squareroot program

The algorithm computes the sum of odd numbers and exploits the well-known
fact:

i−1∑

x=0

(2x + 1) = 1 + 3 + 5 + . . . + (2i − 1) = i2

Thus, the impairs are accumulated in the variable sqsum to a series of squares
(i+1)2. If sqsum becomes larger than the input a, i must be its integer square-
root.

In this article, we focus on program-based test methods, that make use of
both the specification and the program itself to automatically build concrete
tests in order to check if the program meets the specification on those tests,
preferably given various coverage criteria.

The classical approach transforms our example program into a control-flow
graph (CFG) as shown in Fig. 1. Except for the start-node S and the end-node
E, the nodes are labeled with corresponding program line numbers; these nodes
represent the state-set that is reachable after a program point. These state-
sets can be characterized by formulas associated to nodes; for example: 4 �→
{σ|σ.tm = 1}, 5 �→ {σ|σ.tm = 1∧σ.sqsum = 1}, etc; the notation σ.tm standing
for “the value of tm in state σ”.

The node labeled 7 is a decision node where the left outgoing arc represents
the computations where the evaluation of the condition yielded false (F), while
the right outgoing arc represents the evaluation to true (T) leading to one more
traversal of the loop.

On the basis of a CFG, the notion of an execution path can be estab-
lished: the path [S,4,5,10,E] is the path that does not traverse the loop,
[S,4,5,6,7,8,5,10,E] the path that traverses the loop exactly once, etc. The
formula φπ characterizing the set of states that will lead to an execution along
a path π is called a path condition; for the case π = [S, 4, 5, 10, E], for example,
φπ is σ.a = 0. Path conditions can be constructed automatically by a symbolic
execution process (a variant thereof will be presented later in the paper); how-
ever, a path condition can be unsatisfiable reflecting the fact that it does not
necessarily represent a computation that is actually possible. This may happen
due to conflicting conditions in decision nodes, for example. Whenever φπ is
unsatisfiable, π is called infeasible.

While the set of execution paths is infinite whenever the program contains
unbounded loops, CFG’s and the resulting notion of paths lend themselves nat-
urally to coverage criteria which are fairly easy to understand and which found
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their way into industrial applications and technical standards for software qual-
ity such as ISO 25119 [13]. For example a coverage criterion could constrain the
set of all (if possible feasible) paths of a CFG to a path set covering all decision
nodes (allcond), a path set covering all transitions (alltrans), or the set of
paths that traverse all loops at most k times (allpathk). In particular, variants
based on allpath3 are used in many industrial development processes since they
have empirically shown a reasonably good compromise between cost and error
detection capacity.

3 Instead of CFG’s: Symbolic Execution on Monads

3.1 Basic Definitions

We base this work on the Monad theory distributed with the HOL-TestGen
testing framework [4]. This presentation is geared towards testing (see Sect. 8
for a comparison to other monad theories).

We define the monad-type as a transition function from a state of type σ to
a successor state and some output of type ’o:

type (’o ,’ σ ) MONSE = ’σ →(’o ∗ ’σ) option

The composition operator on monads bind and the neutral element unit are
standard:

let bindSE : (’o,’σ) MONSE →(’o →(’o,’σ) MONSE) →(’o,’σ) MONSE

= fun f g → (λσ . case f σ of None →None | Some (out, σ ’) → g out σ ’)

let unitSE : ’o →(’o ,’ σ ) MONSE = fun e →(λσ. Some(e,σ))

We will use alternative notations for the bindSE combinator: the notation
x ←f ; g stands for bindSE f (fun x →g) and f;− g for ←f ; g . It is straight-

forward to prove the fundamental unit and associativity monad laws.

3.2 The Enriched Monad Infrastructure

As standard, in addition to these two basic blocks, it is convenient to declare
common constructions used to define and manipulate monadic programs.

It is possible to add combinators for exception raising and handling and other
usual programming constructs. We focus only on the conditional and the slightly
more tricky case of loop definitions:

let if SE : (’σ → bool) → (’o ,’ σ ) MONSE →(’o,’σ) MONSE →(’o,’σ) MONSE

= fun c E F → (λσ . if c σ then E σ else F σ )

let whileSE : (’σ → bool) → (unit ,’ σ ) MONSE →(unit,’σ) MONSE

= fun c B → ( lfp (Γ c B))”

In the definition of whileSE, lfp is a least-fixpoint operator, and Γ b cd is a state
relation defined by:
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let Γ b cd : ’ σ ∗ ’ σ
= fun cw →{(s , t) | if b s then (s , t) ∈ (cd O cw) else s = t}
where O is the relation composition (remind that { | } is set comprehen-
sion). Informally, it means that the initial and final states of a loop are equal
if the condition is false, and related by one more application of the loop body
otherwise.

The proof of the unfold theorem:

theorem while SE unfold:
(whileSE b do c od) = (ifSE b then c;−whileSE b do c od else return() fi)

is relatively complicated, but folklore (it is described in Winskell’s book [18]; a
first formal treatment in Isabelle we know of is [12]). Since our objective is to
perform symbolic execution, the while operator can be decorated with a natural
integer that limits the number of loops unrolling:

theorem while n unfold:
(while [Suc n] b do c od) = ( ifSE b then c;−while[n] b do c od else return() fi )

where while [n] is defined as whileSE by ignoring the decoration n.
Note furthermore that we will embed assumeSE and assert SE to model pre-

and post-conditions, respectively. The construction assumeSE puts a program in
a initial state that satisfies some predicate P (if such a state exists), and assert SE

checks if the final state of a program satisfies some predicate (by returning the
program that succeeds if and only if its state satisfies P).

let assumeSE : (’σ →bool) → (unit ,’ σ ) MONSE

= fun P → (λσ . if ∃ σ . P σ then Some((), SOME σ. P σ ) else None)

let assert SE : (’σ → bool) → (bool ,’ σ ) MONSE

= fun P → (λσ . if P σ then Some(True,σ) else None)

Here, the construction SOME σ. P σ returns a state σ that satisfies P (note that
it is guarded by the fact that P is satisfiable).

3.3 Symbolic Execution Rules for the Monad

Instead of the syntax-based concept “execution path”, we define the semantic
concept of a valid test-sequence as a valid monad execution of a particular format:
it consists of a series of monad computations m1 . . .mn applied to inputs i1 . . . in
and a post-condition P wrapped in a return depending on observed output.
Validity is formally defined as follows:

let valid SE : ’σ → (bool ,’ σ ) MONSE →bool”
= fun σ m → (m σ 
=None) and fst(the (m σ ))”

where the operator the is defined such that the (Some x) returns x (again, it is
guarded by the fact that m σ 
=None). We will write σ |=m for valid SE σ m.
Since each individual computation mi may fail, the concept of a valid test-
sequence corresponds to a feasible path in a non-deterministic automaton, that



108 C. Keller

leads to a state in which the observed output satisfies P . Using the notation
introduced in Sect. 3.1, we will write an entire sequence as follows:

σ |=o1 ←m1 i1; ...; on ←mn in; returnSE (P o1 ... on)

Note that since the mi can be conditionals or a while loop, a sequence represents
the stack of executions yet to be executed, and the oj the intermediate results
stored on way (if any).

The notion of a valid test-sequence has two facets. On the one hand, it
is executable, i.e., a program, if and only if m1, . . . , mn, P are. Thus, a code
generator can map a valid test-sequence statement to code. In particular, in
Isabelle/HOL, depending on the configuration, the code generator can map the
calls to the mi to Isabelle/HOL-defined operations or to external code, i.e.. some
code to be tested. On the other hand, and this is a major strength of this monadic
approach, valid test-sequences can be treated by a standard and simple family of
symbolic executions rules, characterized by the following schema (for all monadic
operations m of a system, which can be seen as its step-functions):

σ |= returnSEP = P (1)

m i σ = None =⇒ (σ |= s ← m i ;m’ s) = False (2)

m i σ = Some(b, σ′) =⇒ (σ |= s ← m i ;m’ s) = (σ′ |= m’ b) (3)

(σ |= ( if SEb then c else d fi);−m) = (b σ ∧ σ |= c;−m) ∨ (¬b σ ∧ σ |= d;−m) (4)

(σ |= while [Suc n] b do c od ;− m) =
(σ |= ( if SEb then c;−while[n] b do c od else returnSE()fi);−m) (5)

(σ |= assumeSEP ;− m) = (∀σ′ ∈ {σ′|P σ′}.(σ′ |= m)) (6)

(σ |= assert SEP ;− m) = (P σ ∧ (σ |= m)) (7)

This kind of rules is usually specialized for concrete operations m; if they
contain pre-conditions Cm (constraints on i and state), or conditions, this cal-
culus will just accumulate them and construct a constraint system to be treated
by a solver (see next section for an example).

A technical improvement specific to Isabelle is to use its meta-logic (which
is based on an intuitionistic fragment of Higher Order Logic) instead of
Isabelle/HOL connectives. It gives better performance compared to rewriting
the rules presented above. For example, the conditional rule is expressed as
case-splitting as follows, similar to a disjunction elimination rule:

σ |= if SEb then c else d fi ;− m

[
σ |= c ;− m, b σ

]
···
Q

[
σ |= d ;− m, ¬b σ

]
···
Q

Q

(8)
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4 Representing Programs and Symbolic Execution

We are ready to undertake the final steps to actually represent imperative pro-
grams as a symbolic evaluation problem (that will be used in bounded verification
and testing scenarios later).

We will introduce a notation for the assignment, which is modeled to never
fail in our core language:

let assign : (’ σ → ’ σ ) → (unit ,’ σ ) MONSE = fun f σ→Some ((), f σ)

for which we derive the desired destruction rule:

σ |= assign f ;− m = f σ |= m

With respect to the representation of state, we follow the idea of Isa-
belle/SIMPL [14] to reuse records where the record fields represent the program
variables. For our running example, this means that we define the state as:

type state = {tm : int ,
i : int ,
sqsum : int ,
a : int}

Note that the variable a could also be modeled as a parameter not represented
in the state since it is not modified. As standard, from this record, one can
generate the accessor functions a, sqsum, i and tm; update operations like σ (|tm
:= E|); and a memory-theory with rules like tm(σ(|tm := E|))= E and sqsum(σ(|tm
:= E|))= sqsum σ. (In Isabelle, they are all generated automatically.) As standard,
we extend the notation for updates to chains of updates such as

σ (|tm:=1, sqsum:=1, i:=0|)
where the rightmost “wins” when applied to the same record field. Note that the
types of record fields can be arbitrary HOL types; here, we profit largely from
our compact shallow embedding representation. Moreover, other memory-models
could be used as well.

The right-hand side of assignments, assertions, and conditions in if SE and
whileSE are represented as state-transition functions or as state-to-bool pre-
dicates. However, we will use notations such as 〈sqsum ≤ a〉 for fun σ → (sqsum

σ) ≤ (a σ ), i.e. 〈 〉 represents a parser that applies any record field name to a
bound variable (for the state) that is λ-abstracted at the topmost level. Similarly,
〈 i := i + 1〉 represents λσ . σ (| i := ( i σ + 1)|).

To semi-interactively perform symbolic execution of our programs under test,
we state the pre- and post-conditions as Isabelle theorems (which will allow us
to apply manually or systematically the correctness rules of the state-exception
monad, as explained in the remaining of the article). Thus, we can represent our
squareroot example program in the following format:

assumes annotated program:
σ 0 |=assumeSE 〈0 ≤ a〉 ;−
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〈tm := 1〉 ;−
〈sqsum := 1〉 ;−
〈 i := 0〉 ;−
(whileSE 〈sqsum ≤ a〉 do

〈 i := i + 1〉 ;−
〈tm := tm + 2〉 ;−
〈sqsum := tm + sqsum〉

od) ;−
assert SE(λσ. σ= σR)

shows σR |=assertSE〈 i2 ≤a ∧a < (i+1)2〉
Note that σR is a free variable in this goal denoting the “result state” after the
execution of our squareroot program; it is the purpose of the entire assumption
to construct this state (symbolically). However, in the conclusion, we require
that the post-condition is to hold in this state which expresses our verification
notion.

We will run a little simulation of our rule set in order to show how every-
thing fits together; we will automate the entire process in subsequent sections,
targeting different objectives.

Assume that we want to explore the program up to all paths of the depth 3.
Then we rewrite whileSE by while [Suc(Suc(Suc 0)))] and apply subsequently
the destruction of assumeSE (Rule 6) and repeatedly the destruction of assign

(Rule 7). This transforms our goal into:

∀ σ . 0 ≤a σ =⇒
σ (|tm := 1,sqsum := 1,i := 0|) |=

(while [Suc(Suc(Suc 0)))] 〈sqsum ≤ a〉 do
〈 i := i + 1〉 ;−
〈tm := tm + 2〉 ;−
〈sqsum := tm + sqsum〉

od) ;−
assert SE(λσ. σ= σR)

Further repetitive applications of destruction of while [ ] and if SE (Rules 4 and
5) as well as assign (Rule 7) leave us basically with a proof state of the following
form:

1. ∀ σ . 9 ≤a σ =⇒
σ (| i := 3, tm := 7, sqsum := 16|) |=
(while [0] 〈sqsum ≤ a〉 do

〈 i := i+1〉 ;−
〈tm := tm+2〉 ;−
〈sqsum := tm + sqsum〉 od) ;−

assert SE (λσ. σ = σR) =⇒
σR |=assertSE 〈i2 ≤ a ∧ a < (i+1)2〉

2. ∀ σ . 4 ≤a σ =⇒ ¬ 9 ≤a σ =⇒
σR = σ(|i:=2, tm:=5, sqsum:=9|) =⇒
σ (| i :=2, tm:=5, sqsum:=9|)
|= assert SE 〈i2 ≤ a ∧ a < (i+1)2〉

3. ∀ σ . 1 ≤a σ =⇒ ¬ 4 ≤a σ =⇒
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σR = σ(|i := 1, tm := 3, sqsum := 4|) =⇒
σ (| i :=1, tm:=3, sqsum:=4|)
|= assert SE 〈i2 ≤ a ∧ a < (i+1)2〉

4. ∀ σ . 0 ≤a σ =⇒ ¬ 1 ≤a σ =⇒
σR = σ(|tm:=1, sqsum:=1, i:=0|) =⇒
σ (|tm:=1, sqsum:=1, i:=0|)
|= assert SE 〈i2 ≤ a ∧ a < (i+1)2〉

This proof state contains now by construction:

– in the last sub-goal, the path condition for never entering the loop (essentially
a σ = 0),

– in the third sub-goal, the path condition for entering the loop exactly once
(1 ≤ a σ < 4),

– in the second sub-goal, the path condition for entering the loop twice (4 ≤
a σ < 9),

– in the first sub-goal, the path condition for traversing the loop more than
twice (9 ≤ a σ).

In the first sub-goal, the remaining while [0] represents the class of all possible
remaining executions; therefore, for this class no elimination of the σR can be
achieved via application of the one-point-rule.

Note that the decoration on while [ ] allows one to unroll nested loops at
different depths.

In the remaining of the paper, sub-goals containing assumptions of the form:
σ |=(while [0] ... do ... ;− ... ) will be called incomplete, and the others will
be called complete. Obviously, the latter represent execution paths through the
program where the resulting equation σR = E(σ) bounds σR to the result of the
symbolic execution.

5 Verification vs. Testing

At this stage, we have obtained the result of symbolic executions up to a cer-
tain depth. Once again, the embedding into the Isabelle/HOL proof assistant
offers a lightweight framework to perform bounded verification or testing, or a
combination of the two.

To this end, the ideas of the Isabelle/HOL-TestGen system [4] can be reused.
HOL-TestGen exploits the concept that two types of hypotheses are used to
express the differences between a proof of a property P and its test [9]:

– the uniformity hypothesis assumes that if a test passes for one instance of a
partition of the input-output relation of a program specification P , then P
will hold for the whole partition, and

– the regularity hypothesis assumes that if a test passes with sufficiently “deep”
or “complex” input data for P , then P will always hold.
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HOL-TestGen generates from test specifications of the format:

pre x → post x (PUT x)

for the (black-box) program under test PUT, which is logically just an unin-
terpreted constant, a partitioning of the input-output relation, and explicit test
hypotheses which were added to test-property on the fly as a consequence of
the targeted test-criterion. In a last step, HOL-TestGen generates test-drivers—
basically test-oracles from post-conditions—that are linked to the actual code of
PUT. Note again that it is not necessary to construct an invariant in a white-
box testing approach, the precondition for filtering illegal input and the post-
condition for generating oracles suffices.

In this section, we explain how these ideas apply in our setting. For the
engineering part consisting in transforming goals into test hypotheses and test
cases, we refer the reader to the description of the HOL-TestGen system [4].

5.1 Strategy: Bounded Verification (Also Called Bounded
Model-Checking)

If we adopt this overall concept to white-box testing, we need only to find an
equivalent to the regularity hypothesis. The strategy for bounded verification
consists of:

– attempting to prove the complete goals automatically. For the case 2) in
squareroot, for example, this boils down to proving:

4 ≤a σ =⇒ ¬ 9 ≤a σ =⇒
σ (| i :=2, tm:=5, sqsum:=9|) |=

assert SE 〈i2 ≤ a ∧ a < (i+1)2〉
which falls into a fragment decided by many automated provers. (In Isabelle,
this goals is automatically discharged by the auto command.)

– admitting the incomplete goals. They would require an invariant for their
proofs. Rather than attempting to prove them, we turn them into an explicit
test hypothesis of the form:

THYP(∀ σ. 9 ≤a σ →
σ (| i := 3, tm := 7, sqsum := 16|) |=
(whileSE 〈sqsum ≤ a〉 do

〈 i := i+1〉 ;−
〈tm := tm+2〉 ;−
〈sqsum := tm + sqsum〉 od) ;−

assert SE ( 〈i2 ≤ a ∧ a < (i+1)2〉))
where THYP(x)≡x just serves as a semantically neutral marker to control
the tactic process. This form of explicit test-hypothesis states “beyond our
analysis depth, we assume that the program is correct” and represents a
regularity hypothesis adapted to program-based testing.

Adding the explicit regularity hypothesis to the assumptions of the original goal
(thus weakening it logically) allows for a formal proof of the modified goal making
explicit under which assumptions our program (model) satisfies the specification.
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5.2 Strategy: White-Box Testing

Testing differs from bounded verification in basically two ways: first, we use
additionally the uniformity hypothesis, stating that for each partition of the
input-output relation (i.e. the path conditions), we assume that the program is
correct provided that we found one instance in this partition where it behaves
correctly (in ISO 25119 [13], this assumption is used for what is called “equiva-
lence class testing”). Second, the concrete instance of a partition, called concrete
test-case and usually constructed by a constraint solver, can be converted into
test driver code that is run against the real program, not just a model of it. This
turns testing into a validation method that covers also hardware, the underly-
ing operating system, the compiler, etc, of the program under test. Therefore,
evaluators in formal evaluation schemes like Common Criteria insist on tests val-
idating a (code) model against “the real thing”; verifications based on immanent
arguments over models are acceptable as complements, but not as a complete
replacement of tests.

In our running example, the uniformity test-hypothesis will be, for example:

THYP((∃ σ. 4 ≤ a σ ∧ ¬ 9 ≤ a σ ∧
σ |= squareroot ;− assertSE 〈i2 ≤ a ∧ a < (i+1)2〉) →
(∀ σ . 4 ≤ a σ =⇒ ¬ 9 ≤ a σ −→
σ |= squareroot ;− assertSE 〈i2 ≤ a ∧ a < (i+1)2〉))

where squareroot is an abbreviation for our program code.
A constraint solver might find the solution a σ = 7 for the path-condition

above, thus permitting us to construct automatically from the uniformity
hypothesis the concrete test:

σ (|a := 7|) |=squareroot ;− assertSE 〈i2 ≤ a ∧ a < (i+1)2〉

6 Support for Coverage Criteria

In the end of Sect. 4, we detailed how a manual application of the rules of the
state-exception monad (via Isabelle basic tactics) perform step-by-step symbolic
execution. In this section, we explain how to build new tactics that automate
the process, with support for various coverage criteria.

These tactics are based on the following observations. Repeated applications
of the rule for symbolic execution of if SE (Rule 4) guarantee branch coverage,
since each branch of each control structure is covered. In our small imperative
language, this is equivalent to decision coverage, since we do not handle func-
tion calls yet [15]. Similarly, repeated applications of the rule for whileSE loops
(Rule 5) immediately followed by the rule for if SE guarantee loop coverage up to
a certain depth.

The Isabelle tactical language, called Eisbach [11], allows us to design vari-
ous tactics that apply and combine the symbolic execution rules, together with
simplifications of the goal:



114 C. Keller

– the tactic branch and loop coverage simply relies on the two coverage criteria
described above;

– the tactic mcdc and loop coverage covers more: it also performs Modified Condi-
tion/Decision Coverage (MC/DC for short), meaning that each condition (i.e.
Boolean sub-expression) appearing in a decision affects the decision outcome
independently;

– conversely, the tactic loop coverage positive branch covers less: it performs loop
coverage but, for branches, always chooses the first branch (other choices, such
as random, could as well be implemented). This may be useful if one wants to
explore loop unrolling without a combinatorial explosion (see e.g. Sect. 7.1).

For instance, applied to the annotated program of Sect. 4, the tactic

apply (branch and loop coverage ”Suc (Suc (Suc 0))”)

directly leads to the proof state presented in the end of the section.
The Eisbach tactical language defines new tactics by combining existing ones

using the syntax of regular expression. For instance, the first two tactics are
programmed from a single parametric method defined as follows:

method loop coverage for n::nat methods simp mid simp end =
(bound while n)?, loop coverage steps simp mid, simp end?

The syntax means the following. loop coverage is the name of the tactic, parame-
terized by a natural number n and two other tactics named simp mid and simp end.
This tactic sequentially performs:

1. (bound while n)?: every occurrence (if there is any, represented by the ?) of
whileSE is replaced by while [n], justified by the definition of while [n].

2. loop coverage steps simp mid: the equations of Sect. 4 are repeatedly applied:
the auxiliary tactic loop coverage steps is a simple loop that, as much as
possible, applies those equations, and simplifies intermediate results by the
(abstract) tactic simp mid. Note that, at each step, at most one equation can
be applied, depending on the first instruction remaining in the program.

3. simp end?: if possible, the result is simplified by the (abstract) tactic simp end.

The choice of the simplifications leads to the first two variants.

– In the case of branch coverage, only basic simplifications are performed:

method branch and loop coverage for n::nat =
loop coverage n memory simp simp all

where memory simp is the memory-theory presented in Sect. 4 and simp all is
the standard Isabelle simplifier.

– As for MC/DC, simplifications should also split conjunctive and disjunctive
hypotheses according to their elimination rules. To this end, we can use the
Isabelle auto tactic1:

1 A specific tactic that only calls the simplifier and applies elimination rules of con-
nectives would work as well and be less powerful.
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method mcdc and loop coverage for n::nat = loop coverage n auto auto

The third tactic loop coverage positive branch is similar but the rule for if SE

is applied only after loop unrollings. Other branches are symbolically executed
using a weaker rule:

(σ |= ( if SEb then c else d fi);−m) = (b σ ∧ σ |= c;−m) ∨ (opaque(¬b σ ∧ σ |= d;−m))

where opaque is a tag that forbids further application of rules.
These prototype tactics are already reasonably efficient: it takes less than 30 s

to unroll the loop 100 times with MC/DC on our running example, searching
counter-examples up to 10000.

7 Examples

This section illustrates the flexibility and expressivity of the monadic approach
(Sect. 7.1) and the tactics we just presented (Subsects. 7.1 and 7.2). These exam-
ples and more have been implemented in Isabelle/HOL and are fully automated
using the tactics; they can be found in the online material.

7.1 Maximum of an Array

Symbolic execution of programs manipulating usual data types can be faithfully
performed using standard functional representation. We give here the example
of a function computing the maximum of an array: the array can be represented
as a function whose domain is non-negative integers together with a length. The
state thus contains

type state = {arr : nat → int, (∗ The array is represented as a function ... ∗) ,
l : nat, (∗ ... and a length ∗)
i : nat, (∗ The loop index ∗)
res : int (∗ The result ∗)

}
and the program is the usual one:

assumes annotated program:
σ 0 |=assumeSE 〈1 ≤l〉 ;−

〈 res := arr 0〉 ;−
〈 i := 1〉 ;−
(whileSE 〈i < l〉 do
( if SE 〈res < arr i〉 then 〈res := arr i 〉 else skipSE fi) ;−
〈 i := i + 1〉

od) ;−
assert SE(λσ. σ=σR)

shows σR |=assertSE 〈(∀ k < l. res ≥arr k) ∧(∃ k < l. res = arr k)〉
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The post-condition is also standard, stating that the result is greater or equal
than all the elements of the array, and equal to one of them, under the pre-
condition that the length is at least 1. Such a property is well-suited for testing
or bounded checking.

On this example, full bounded symbolic execution presented in this article
(and performed by the branch and loop coverage and mcdc and loop coverage tactics)
unrolls the loop a given amount of time and explores both branches inside the
loop, leading to an exponential blow-up where the maximum could be anywhere
in the array. Under the regularity hypothesis though, it may be sufficient to
test only one or a few possible cases for the maximum at each length, which is
obtained by the tactic loop coverage positive branch (or any variant that executes
only one branch at each step). We refer the reader to the online material for an
executable comparison.

In any case, this example actually generates abstract test cases that precisely
determinate the position of the maximum of the array.

Other standard data-structures can be modeled such as hash tables, or lists
(using Isabelle/HOL lists).

7.2 Median of Three Integers

To illustrate MC/DC vs. branch coverage, we take the example of a program
computing the median of three integers:

assumes annotated program:
σ 0 |=(ifSE 〈(b ≤a ∧a ≤c) ∨ (c ≤a ∧ a ≤b)〉 then 〈res := a〉 else

( if SE 〈(a ≤b ∧b ≤c) ∨ (c ≤b ∧ b ≤a)〉 then 〈res := b〉 else
〈 res := c〉 fi ) fi ) ;−
assert SE(λσ. σ=σR)

shows σR |=assertSE 〈(res = a ∨res = b ∨res = c)
∧ ( res > a −→ res ≤b ∧ res ≤c)〉

The post-condition only consider one case but can be completed by adding the
second conjunct for every permutations of a, b and c.

The branch and loop coverage tactic generates only three abstract test cases
whose premises are:

– (b ≤a ∧ a ≤c) ∨ (c ≤a ∧ a ≤b)

– (a ≤b ∧ b ≤c) ∨ (c ≤b ∧ b ≤c)

– the negation of the first two

whereas, as required, the mcdc and loop coverage tactic generates six abstract test
cases corresponding to the possible modified conditions, of the shape (b ≤a ∧ a

≤c) for every permutation of a, b and c.

8 Related Work

Using monads is a standard technique for representing stateful compu-
tations. Leaving aside existing implementations in HOL4 and Coq, the
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Isabelle/HOL library alone defines a standardized monad-syntax for both
a non-deterministic (Kleisli-like) and a deterministic monad. Other libraries
include Isabelle/Simpl [14], Isabelle/ORCA [2] and Isabelle/AutoCorres [10].
These infra-structures are geared towards program-proofs or program refine-
ment proofs, include bool’s to capture termination, and, in the case of Impera-
tive HOL, a very specific heap-memory model used in the AutoCorres Tool for
verifying C Programs. Besides having improved syntax support, the used monad
here is geared to pure partial program semantics and optimized forms of partial
evaluation therein. In particular, it is agnostic to a particular memory model. The
presented loop-unfold theorem is not available in neither of mentioned monad
theories.

Generating tests by counterexample generators is an active research area.
There are basically two approaches. One is to take an input formula, try to con-
struct a family of finite models, usually by bit-blasting into SAT problems, and
to construct a counter-example on this basis [1,16]. The other one is to interpret
the input formula as a filter, i.e. to compile it to program for a Boolean function,
and stimulate it by random values until a hit is found. This concept going back
to [6] is known as QuickCheck and leads to a wealth of implementations for
various languages meanwhile. Both approaches suffer from their generality when
it comes to the generation of counterexamples for programs with pre-conditions.
Moreover, they cannot compete with white-box testers with respect to the depth
of program exploration as well as the coverage of given criteria imposed by stan-
dards such as [13].

As currently most developed white-box testers we mention Pex [7] and Path-
Crawler [17]. They present direct algorithmic implementations working on CFG’s
and scale well for realistic sizes of programs. In contrast, our approach is based on
a shallow representation of a semantics and derived rules. It enjoys the following
two advantages:

– the code is very small (around a 1500 LOC, including proofs of correctness)
but first experiments show that it is reasonably efficient (Sect. 6);

– our implementation is based on derived rules and can therefore guarantee
correctness.

Regarding expressivity, the programming language handled by our approach is
Turing complete; we leave for future work to handle convenient paradigms such
as local states (e.g. by replacing the memory model by a stack), function calls
and recursion.

The aforementioned state-of-the-art testers have been combined with tech-
niques for borderline analysis, regular expression constraint-solvers and test-
execution environments supporting virtual system calls. The approach presented
in the paper is being integrated in the HOL-TestGen2 [4] framework, to make
use of its concrete test generator and code extraction. In addition, it explicitly
constructs the test hypotheses.

2 See https://www.brucker.ch/projects/hol-testgen for more details, in particular the
TestSequence theory.

https://www.brucker.ch/projects/hol-testgen
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9 Conclusion

We have shown an approach to model white-box testing of block-structured
imperative programs. We used a shallow, monad-style embedding of the lan-
guage. We believe this allows for a particularly concise and elegant formaliza-
tion of the symbolic execution process, which is traditionally described on a
control-flow graph: the trick is done by just eight rules with little deductive cost
(first-order matching). We have shown that the process can be easily wrapped
up in a tactic process.

The approach lends itself to precisely study the borderlines between deductive
verification, bounded verification and testing in a uniform setting. By re-using
HOL-TestGen’s concept of explicit test-hypothesis, the approach allows us to
establish a precise link between test and proof.

It was not our objective to develop in this paper a full-blown tool (for that, we
would have to integrate it into, say, Isabelle/SIMPL which necessitates to cope
with much more features and machinery). Still, the shown experiments indicate
that our approach does scale fairly well. Therefore, we believe that our technique
has the potential for a tool that effectively tests pre- and post-conditions as well
as invariants for realistic program verification attempts.
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References

1. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5 11

2. Bockenek, J.A.: An extension of Isabelle/UTP with simpl-likecontrol flow. Ph.D.
thesis, Virginia Polytechnic Institute and State University (2017)

3. Botella, B., Delahaye, M., Ha, S.H.T., Kosmatov, N., Mouy, P., Roger, M.,
Williams, N.: Automating structural testing of C programs: experience with
pathcrawler. In: Proceedings of the 4th International Workshop on Automation
of Software Test, AST 2009, Vancouver, BC, Canada, 18–19 May 2009, pp. 70–78
(2009)

4. Brucker, A.D., Wolff, B.: On theorem prover-based testing. Formal Asp. Comput.
(FAOC) 25(5), 683–721 (2013)

5. Church, A.: A set of pustulates for the foundation of logic (1). Ann. Math. (1932)
6. Claessen, K., Hughes, J.: Testing monadic code with quickcheck. SIGPLAN Not.

37(12), 47–59 (2002)
7. de Halleux, J., Tillmann, N.: Parameterized unit testing with pex. In: Beckert, B.,
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Abstract. The V&V practices of safety-critical industries (e.g. avion-
ics) are currently based on either unit testing or unit proof to verify that
a function satisfies its low-level requirements in order to be compliant
with the highest certification levels [26] (e.g. DO-178C level A for avionic
software). In this context, the verification engineer must assess sufficient
coverage of both code (structural coverage) and specification (functional
coverage). However, there is no shared method for test and proof to
measure structural coverage. In practice, this prevents the verification
engineer from combining test and automatic proof to verify low-level
requirements of a common piece of code in order to mitigate the verifica-
tion cost. This paper fills this gap between test and proof by introducing
a new notion of verification coverage based on mutation coverage. It sub-
sumes functional coverage and structural coverage for both unit testing
and unit proof. Consequently, it allows the verification engineer to mix
test tools and automatic provers in the verification process for the sake of
reducing verification cost, in the sense that the more automation is used
during the verification, the less resource is spent to verify the program.

Keywords: Coverage criteria · Combining test and proof

1 Introduction

In software development of critical systems, the code verification step is crucial
since it prevents unexpected behaviors to arise during program execution. In
particular, the verification engineers must ensure that the program satisfies its
specifications. For this purpose, testing is the most commonly used technique to
reach the expected level of confidence. It consists in running the tested program
on some input data and comparing the expected results according to the given
oracles derived from the program specifications [28,32]. Program proof is another
suitable verification technique [9]. It consists in statically verifying the program
with respect to its specifications for all possible executions by means of logical
reasoning [17–19].
c© Springer International Publishing AG, part of Springer Nature 2018
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Whatever the underlying technique, one must ensure that enough verification
has been performed. This part of the verification process is usually performed
by measuring coverage, e.g. test coverage. For this purpose, the DO-178 stan-
dard for avionic software [29] introduces two processes: functional analysis and
structural analysis. The former guarantees that all the program specifications
are verified, while the latter guarantees that every path and every piece of code
in the program is reached and contributes to producing the expected results.

Functional analysis is independent from the verification technique. The ver-
ification of a function achieves full functional coverage as soon as one succeeds
to test or prove all the specifications [12,13], thus all program specifications are
verified. Structural analysis depends on the underlying verification technique.
For testing, it relies on various structural coverage criteria (statement cover-
age, branch coverage, MC/DC coverage, etc.) [2] to ensure that executing a
test suite covers each path and/or piece of code in the right way. For program
proof, structural analysis may be performed by fulfilling different objectives. For
instance, in DO-333 [30], one must ensure four objectives [10,26]: assumption
coverage (each proof assumption is checked); completeness (the specifications
specify outputs for every input condition and, conversely, input conditions for
every output), data-flow (all the dependencies between inputs and outputs are
found) and extraneous code (every piece of code depends on at least one specifi-
cation). By guaranteeing their objectives, we ensure that neither path nor piece
of code contributes to producing a result unexpected in any specification existed.

This current workflow has a major limitation: while test coverage on the one
hand and proof coverage on the other hand are well-known concepts, it is not
possible to use test coverage for proof and conversely. Test coverage can only
be used when testing the entire program with the oracle derived from program
specification, while proof coverage is only defined when all the program specifi-
cations are proved. Consequently, for a particular piece of code, it is not possible
to test some specifications while proving the others, because there is no way to
define the coverage of the combined verification.

Nowadays, during a proof campaign, the engineer relies on automated the-
orem provers in the hope to prove all program specifications and to ensure all
objectives defined in DO-333 [9]. Usually most proof obligations are automat-
ically discharged, but sometimes a few of them might not. In such a case, on
account of the above-mentioned limitation, the engineer may either manually
prove them and verify coverage through DO-333, or discard the proof campaign
and rely on testing as defined in DO-178. In both cases, the verification process
is much more expensive because it requires a lot of additional manual work.

This paper presents a new notion of verification coverage which aims at reduc-
ing the verification cost by keeping the existing proofs and adding only the nec-
essary tests to complete the verification process. It subsumes functional coverage
and structural coverage for both test and proof. It also relies on a new notion of
witness that formalizes a verification activity and allows the verification engineer
to sum up which verification technique has been used to validate that a partic-
ular piece of code contributes to enforcing some specifications. Furthermore, we
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introduce a methodology and a companion algorithm that allow the verification
engineer to check whether a verification campaign is complete with respect to this
coverage.

The remainder of our paper is organized as follows. First, Sect. 2 discusses
related work. Then, Sect. 3 introduces a running example. Section 4 presents the
general idea of our work, which is then formalized in Sect. 5. Section 6 explains
how to automatize as much as possible a verification campaign with respect
to our new verification coverage. Finally, Sect. 7 exemplifies our process on the
running example.

2 Related Work and Discussion

As previously mentioned, coverage is a major obstacle for combining test and
proof. Typically, it prevents us from complete a partial proof campaign by means
of testing. Several existing works already study different kinds of combinations
of testing and formal verification techniques [3,8,21,33], but they do not deal
with the coverage issue. According to Bishop et al. [8], these combinations can be
divided into four levels described below. We aim at defining a notion of coverage
for the last two ones:

– Level 1 (Separately): test and proof are applied separately to verify different
parts of the system;

– Level 2 (Assistance): proof supports test or conversely;
– Level 3 (Friendship): proof contributes to the automated generation of tests

and their results are combined;
– Level 4 (Unification): test and proof are fully combined.

Our notion of coverage is based on existing notions of label coverage and
mutation coverage. Label coverage [5,6] relies on labels. Labels are logical for-
mulae attached at program points. They can encode most structural coverage
criteria. Originally, they were used to automatically generate test suites that
satisfy a given structural criterion. Then, in [4], their usage has been extended
in order to detect unfeasible labels when combining program proof and abstract
interpretation. However, in these works, formal methods were only used for sup-
porting testing (level 2 above). In particular, structural coverage was still limited
to testing and cannot be applied to program proof. More recently, labels have
been extended to hyperlabels [23,24] to enlarge the variety of criteria that can
be represented. We believe that our technique can be extended to hyperlabels,
but we leave this to future work.

Our work also relies on mutants (in the sense of [16,25]) to check our coverage
metrics. A mutant m of a program p is a program obtained by slightly modifying
p. Mutation testing consists in verifying that the outputs for p and m differ. In
that case, one says that the mutant m is killed. Mutation coverage is defined by
the number of killed mutants. Our work extends the usage of mutants to program
proof. Many different mutation schemes exist [1,27] for various programming
languages. Our work relies on statement deletion to create mutants inspired by
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Delamaro et al. [15]. But we also use other mutation operators like expression
modification when it is more beneficial than statement deletion. Our proposed
methodology is indeed independent from the underlying mutation schemes, but
they may lead to different results: the choice of the best mutation scheme for
a particular use case is let to the end-user. Mutation has also been explored
to propose a notion of coverage for model checking [11]. The model is mutated
and the model part is considered covered if the mutant survives. Their notion of
coverage does not apply to testing. However, it inspired our more general notion
of verification coverage.

3 Running Example

This section introduces a running example that illustrates current issues when
combining test and proof in order to verify a C function in the context of a
DO-178 certification.

Figure 1 presents a scheme of a function transform The complete C code
is omitted for the sake of brevity This function is typical of reactive embedded
software: it computes an output signal from an input by a linear regression
depicted in Fig. 2. Here, all the values are bounded by an upper bound smax and
a lower bound smin. In C program, these bounds are global variables. The linear
regression also depends on parameters x1, x2, y1 and y2 that must satisfy the
following consistency constraints:

smin ≤ x1 < x2 ≤ smax and smin ≤ y1 ≤ smax and smin ≤ y2 ≤ smax.

Signals are implemented by a structure named Signal. Each Signal con-
tains a floating-point value in interval [smin, smax], and an error flag indicating
whether the constraints are satisfied. Parameters xi and yi (i = 1, 2) are passed
to the C function via another structure named Block. Furthermore, the function
returns 0 when the constraints are satisfied and an error code otherwise.

1 int transform (Block *p, Signal *input , Signal *output ){
2 // 1. verify block validity
3 // 2. modify the value of the output signal w.r.t. the input signal
4 // 3. set the error flag
5 }

Fig. 1. Scheme of function transform.

The verification objectives for this function are the informal requirements
defined in the spirit of DO-178. They may be formalized and split in four groups
of specification:

ERR 7 specifications defining the error code in case of invalid parameters.
OK 1 specification formalizing the result when the constraints are satisfied.
VALUE 3 specifications defining the expected value of the output signal.
VALID 1 specification controlling the error flag of the output signal.
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input value
smin smax

smin

smax

x1 x2

y2

y1

Fig. 2. Linear regression for transformation.

The function has been implemented in C and formally specified in the ACSL
specification language [7]. Then, we tried to verify this code with Frama-C [20].
This framework has already been (successfully employed) for experimenting com-
binations of test and proof of C programs [22]. Here, E-ACSL [31], the runtime
verification plug-in of Frama-C, is first run to check that the C code satisfies
its formal ACSL specifications. For this purpose, we need to manually define at
least 10 test cases, 7 among them for testing all situations when the constraints
are invalid and 3 other used to test the expected value of output signal when
the constraints are valid, to cover all the possible cases (or even more, depend-
ing on the chosen structural coverage criterion). Then, WP, the Frama-C plug-in
for deductive verification, was used to (automatically) prove this function. Yet,
one specification in group VALUE remained unproved because of floating-point
computations in the code. Consequently, neither test nor proof alone allows us
to complete the verification process with reasonable resource spent.

Careful code review allows us to argue that only a limited piece of code con-
tributed to the unproved properties. Therefore, the intuitive goal of our approach
is to complete the obtained proofs by adding only a few test cases that cover
the remaining code fragments and the unproved specifications. We also aim at
defining a notion of verification coverage for this use case.

4 Verification Campaign

This section provides additional details about the new kind of verification cam-
paigns combining test and proof that we propose.
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4.1 Labeled Mutant

Our technique is independent from a particular structural coverage criterion by
relying on a notion of labels which can be used to encode most structural coverage
criteria [6]. Each label is a property associated to a program point and divides the
code source in two pieces that the below one is the corresponding code fragment
of label. A label is satisfied when a verification activity demonstrates that there
is an execution passing through this label and satisfying its associated property.
A structural coverage criterion holds if and only if all the labels for this criterion
are satisfied.

In order to gain additional results during a verification campaign, each label
is associated to a mutant that modifies the corresponding code fragment. Such a
mutant is named labeled mutant. Any method of mutation is possible whenever
it fulfills the following condition: the mutant shall only modify the executions
that pass the label.

In this paper, two kinds of mutation operators are used to generate labeled
mutants: the replace and erase operators. The former replaces a statement by
another one, while the latter removes it. Their formal definitions (omitted here)
inspired by [1] and fulfill the above-mentioned condition. Mainly, they consist of
introducing a conditional statement guarded by the labeled property. Figure 3
provides an example of such mutations for a small piece of code from our running
example.

1 ....
2 if(p->y2 < smin){
3 // label Lreturn6:
4 // label condition: true;
5 // labeled mutant: replace (0) ;
6

7 // initial statement: return (-6);
8

9 // mutant created before simplify:
10 // if (1)
11 // then {return 0;}
12 // else {return -6;}
13

14 // mutant after simplify:
15 return 1 ? 0 : -6;
16 }
17 ....

(a) Replace

1 ....
2 if(x->v >= p->x2){
3 // label Lstmt2:
4 // label condition: true;
5 // labeled mutant: erase;
6

7 // initial statement: y->v = p->y2;
8

9 // mutant created before simplify:
10 // if (1)
11 // then {}
12 // else {y->v = p->y2;}
13

14 // mutant after simplify:
15 if (! (1)) {y->v = p->y2;}
16 }
17 ....

(b) Erase

Fig. 3. Example of labeled mutant.

Mutants are actually created for trying to kill them. Indeed, killing a mutant
means that the corresponding statement in the initial program was meaningful
for the checked criterion. Our method consists in finding out specifications that
are validated in the initial program but not any more in a mutant (i.e. the mutant
is killed by that specification) through various verification activities (inspired by
the definition of mutation testing [16,25]). It allows us to conclude that the
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mutated piece of code, denoted by a label, has a strong connection with these
specifications. Full coverage is therefore achieved by establishing such a strong
connection for each specification and piece of code corresponding to each label.

4.2 Verification Campaign

Our verification campaign assumes the existence of the source code, its spec-
ifications and labels encoding a particular structural coverage criterion. These
labels may actually be automatically generated [5]. A verification campaign con-
sists in a sequence of verification activities (either test or proof). Each of them
provides two pieces of information: verification information indicating which
specifications S is validated and coverage information indicating which labels
L are covered. These pieces of information are grouped together through the
notion of witness, as informally explained below.

Proof Activities. Automated deductive verification may provide verification
information about the validity or the invalidity of each specification S. In our
context, invalidity of S means validity of its negation ¬S1. If S is validated in
the initial code, it means that no execution passing any label contradicts the
specification. This information is recorded through a proof witness between this
specification and every label. However, if S is validated/invalidated in a labeled
mutant (of label L), it means that S and L have no correlation at all (i.e. label
L is associated to a piece of code that no matter how we modify this piece,
specification S is still proved)/are strongly connected.

Consider our running example in which we successfully prove a specification
of ERR named error6. Therefore, for each label L, one proof witness is recorded
between error6 and L. Furthermore, the specification is still proved in labeled
mutant of label Lstmt2 (Fig. 3b) but it is invalidated in labeled mutants of label
Lreturn6 (Fig. 3a). Thus, we conclude that there is no correlation between spec-
ification error6 and label Lstmt2, while this specification and label Lreturn6
are strongly connected.

Test Activities. Testing a specification S requires to manually define test cases.
After defining them, testing the specification in source code and in mutants is
an automatic process that provides us with test witnesses between labels and
specifications. These witnesses are more precise than proof witnesses, since they
assess that the corresponding label is reached.

In our running example, a particular test case activates the specification
error6 (its assumptions are fulfilled). It also covers several statements, one of
them being the statement (a code fragment) associated to label Lreturn6. Yet,
the statement associated to label Lstmt2 is uncovered. Therefore, there is a test
witness for the pair (error6, Lreturn6), but none for the pair (error6, Lstmt2).

1 Usually, one only tries to prove S. Here, one tries to prove both S and ¬S in order
to get additional coverage information as explained later.
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Error Detection. If a specification S is invalidated in the original source code
as a results of a verification activity, we get an error which is recorded as error
witness between S and all the existing labels.

Coverage Analysis. A specification S and a label L are strongly connected if
and only if there is one verification witness that validates the pair (S,L) in
the original source code and one witness that invalidates this pair in the corre-
sponding mutant. All the strong connections between specifications and labels
are stored in a coverage matrix. Its columns represent specifications, while its
rows represent labels. Fulfilling our verification coverage means positively filling
this matrix. Indeed, it means that all the specifications S are verified (ensuring
functional coverage), while all labels are covered (ensuring structural coverage).

The matrix may be quite large. Thus, analyzing it may be painful. Con-
sequently, we provide a way to consolidate it by merging all the cells of the
same column or row into a single one whenever possible. It helps the verification
engineer in the analysis.

5 Formalization of Verification Witnesses

This section formalizes the underlying concepts of a verification activity intro-
duced in the previous section, in particular verification witnesses.

5.1 Basic Concepts

Execution. Given a program P with L list of program point and M list of possible
memory state for P,

→
x denotes an input vector for P . An execution P (

→
x) of a

program P on some input datum
→
x = x1, . . . , xn is a (finite or infinite) sequence

(li,mi)0≤i of (program) states. Each state is a pair composed of a program point
l ∈ L and a memory state m ∈ M. A memory state m at a point l of an execution
P (

→
x) denotes the association of a value to each variable when P (

→
x) reaches l.

For a particular execution P (
→
x) = (li,mi)0≤i, a sub-sequence of states between

two program points li and lj (i ≤ j) is denoted by (li,mi) ↪→
P (

→
x )

(lj ,mj).

Specification and Functional Coverage. A program requirement R is formalized
by a collection of specifications, denoted by R � {S1, . . . , Sn}. Functional cov-
erage is achieved once all specifications in R are verified. A specification S in
our framework is an implication H ⇒ C which consists in a hypothesis H and a
conclusion C. The hypothesis H is a pair (l, h) where l is a program point and
h ∈ P(M) denotes a property over memory states. Similarly, the conclusion C
is a triplet (l, l′, r) where l and l′ denote two program points and r is a relation
between two memory states, i.e. a subset of P(M × M). For a specification
S � H ⇒ C, the first program point l of C must be the same as the one of the
hypothesis H.

Given an execution P (
→
x) of program P and a specification S = H ⇒ C,

P (
→
x) � (l, h) (resp. P (

→
x) � (l, l′, r)) denotes that P passes through the
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hypothesis H = (l, h) (resp. conclusion C = (l, l′, r)). However, there is a differ-
ent when P (

→
x) passes through the hypothesis H and P (

→
x) passes through the

conclusion C. In the case of P (
→
x) � (l, h), it means that this execution reaches l

and the corresponding memory state satisfies h. However, P (
→
x) � (l, l′, r) means

that each time l′ is reached from l (i.e. each sequence (l,m) ↪→
P (

→
x )

(l′,m′) ),
then its corresponding memory state satisfies r (i.e. (m,m′) ∈ r). More formally,
passing through an hypothesis (resp. a conclusion) is defined as follows:

P (
→
x) � (l, h) � ∃(li,mi) ∈ P (

→
x), li ≡ l ∧ mi ∈ h;

P (
→
x) � (l, l′, r) � ∀(m,m′) ∈ M2 s.t. (l,m) ↪→

P (
→
x )

(l′,m′), (m,m′) ∈ r.

Label and Structural Coverage. A label exactly matches the notion of hypothesis
introduced above: it is a pair of a program point l and a condition h that memory
states must satisfy at l. Therefore, the notion of passing through an hypothesis
is extended to a label.

Extending a label {l, h} to a mutant M at label l (that is, the original pro-
gram mutated at program point l) defines a new label {l, h,M}, named label
with mutant. From this point, all labels in the following are considered labeled
mutants. Formally, given a program P , a label {l, h,M}, and an input datum
→
x, P (

→
x) and M(

→
x) shall contain the same series of program states if and only

if P (
→
x) does not pass through {l, h,M}, since the mutant shall modify the exe-

cution trace of the original program.

Verification Activity. In our context, a verification activity is either a unit proof
or a unit test. Both of them tries to provide evidence that each program execution
satisfies each program specification. However, both processes are not performed
in the same way in practice. It results in difference when measuring coverage.

Consider a program P , an hypothesis H = (l, h), a conclusion C = (l, l′, r)
and a specification S = H ⇒ C. Unit test checks that the specification is satisfied
in the program by observing some program executions. Each observation is a test
case. A successful test case with input datum

→
x validates both the hypothesis

H and the conclusion C. It provides us the evidence P (
→
x) � H ∧ C. A test is

successful whenever all its test cases are themselves successful.
For unit proof, verifying a specification ensures that no execution violates

the specification, which means either the verification passes through both H
and C, or through the negation of H. Therefore, the evidence for a successful
unit proof is ∀→

x, either (P (
→
x) � H ∧ C) or (P (

→
x) � ¬H). Thus, even if such

an evidence ensures that every possible execution satisfies the specification, it
does not ensure that the goal C is actually satisfied since the hypothesis H could
be invalidated. (contrary to evidence provided by unit testing).

5.2 Verification Witness About the Initial Program

A witness results from a verification activity. It consists of two pieces of infor-
mation: a verification technique (either proof or test) and a verdict indicating
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which specification is satisfied and by which means. We introduce one kind of
witness by verification technique:

– A test witness (denoted by T) represents the existence of some test evidence,
passing through the label L:

T(S,L,
→
x) � P (

→
x) � H ∧ C ∧ L.

– A proof witness (denoted by P) indicates the existence of a proof for some
specification S. It ensures that S is satisfied for every execution of program P :

P(S) � ∀→
x, either (P (

→
x) � H ∧ C) or (P (

→
x) � ¬H).

Another witness (less considered here than the other ones) is the error wit-
ness. It comes when the verification technique finds an error in the code.

– Error Witness (denoted by ER) indicates the existence of an error during the
verification of some specification S = H ⇒ C:

ER(S) � ∃→
x, (P (

→
x) � H ∧ ¬C).

Hence, witnesses provide us with a formal evidence of all activities performed
during our verification campaign.

5.3 Verification Witness About a Mutant

As already explained, our methodology requires a verification of mutants: com-
bining the result of verification in source code and in labeled mutant allows
us to deduce relationships between specifications and pieces of code (denoted
by labels). In order to separate witnesses provided by verification of a labeled
mutant M from the ones coming from the verification of the original code, we
introduced additional types of witnesses. Even if the verification of a specifica-
tion S = H ⇒ C for a mutant may produce many different results, only the
following two cases are useful in our contexts:

– The specification H ⇒ C is satisfied in the mutant,
– The opposite specification of S,H ⇒ ¬C, is satisfied by the mutant.

Each result can be obtained by any verification activity (either test or proof).
Hence, the verification of a specification S for a mutant M of a label L can lead
to one of the four following witnesses:

– Witness SP of proof for the labeled mutant: when the specification S is proved
on the mutant M of label L:

SP(S,L) � ∀→
x, either (M(

→
x) � H ∧ C) or (M(

→
x) � ¬H).

– Witness ST of test for the labeled mutant: when the specification S is tested
on the mutant M of label L with input datum

→
x :

ST(S,L,
→
x) � M(

→
x) � H ∧ C ∧ L.
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– Witness OP of proof for the opposite specification on the labeled mutant: when
the opposite specification H ⇒ ¬C is proved on the mutant M of label L:

OP(S,L) � ∀→
x, either (M(

→
x) � H ∧ ¬C) or (M(

→
x) � ¬H).

– Witness OT of test for for the opposite specification on the labeled mutant:
when the opposite specification H ⇒ ¬C is tested by an execution M(

→
x)

that passes the label L:

OT(S,L,
→
x) � M(

→
x) � H ∧ ¬C ∧ L.

5.4 Witness Precedence

Since formal proof assesses properties for all input data, while testing only checks
a sample of data, there is a natural precedence of proof witnesses (P, SP, OP)
over test ones (T, ST, OT). Other combinations of witnesses are also comparable.

In particular, it is possible to have two contradicting witnesses: one witness
shows that a specification S is satisfied by the mutant M , while the other one
shows that S is violated by M . It could arrive in two different cases:

– Both witnesses are proof witnesses SP(S,L) and OP(S,L). From those wit-
nesses, we know that the specification S and its opposite were proved. This
situation only occurs when no execution satisfies the hypothesis of S (i.e.
the specification is completely useless in the mutant). In this case, OP(S,L)
(which is required to claim that S and L are strongly connected) brings harm
to the coverage measure. Therefore, we only keep witness SP and reject OP.

– Both witnesses are test witnesses ST(S,L,
→
x) and OT(S,L,

→
y ). This situation

can only occur when
→
x 
= →

y . In this case, we only keep witness OT because it
leads to better coverage.

Hence, we can define a partial ordering over witnesses, illustrated by the
diagram below. It shows that SP is greater than any witness over labeled mutants.

P SP → OP
↓ ↓ ↓
T ST ← OT

6 Formalization of Verification Campaigns

6.1 Coverage Matrix

A coverage matrix allows an engineer to check the advancement of a verification
campaign. Each column of such a matrix represents a specification, while each
row represents a label. The matrix records the results of a (possibly still ongoing)
verification campaign. Table 1 depicts the possible marks stored in the matrix
cells with respect to verification witnesses of specification S that have been
computed for the original program P and the mutant M associated to the label L.
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Table 1. Marks recording verification and coverage information.

Spec. on P Spec on M Witness Verification
information

Coverage
information

no witness no witness (empty)
error any witness ER(S)

no witness
proved & SP(S,L)

?
opp. proved OP(S,L)

proved
no witness & P(S)

P
?tested P(S) ∧ (∃→

x.ST(S,L,
→
x))

tested tested ∃→
x. ( T(S,L,

→
x) ∧ ST(S,L,

→
x) ) T

proved proved P(S) ∧ SP(S,L) P −
tested proved (∃→

x.T(S,L,
→
x)) ∧ SP(S,L) T

proved
opp. proved & P(S) ∧ OP(S,L)

P
opp. tested P(S) ∧ (∃→

x.OT(S,L,
→
x))

tested
opp. proved & (∃→

x.T(S,L,
→
x)) ∧ OP(S,L)

T
opp. tested ∃→

x.( T(S,L,
→
x) ∧ OT(S,L,

→
x) )

Marks in cells encode verification and coverage information for a pair of a
specification S and a label L. Figure 4 provides a synthetic view of the possible
connections between labels and specifications. An empty cell means that no
verification activity occurred. Otherwise, each line contains either one or two
marks. When one mark is used, mark ✗ means that S is invalidated in the original
program (thus no coverage information is required), while mark ? means that we
only have coverage information. When two marks are used, the first mark (either
T or P ) denotes verification information (either test or proof). The second mark
denotes coverage information. Here, mark ? means that S is validated while
there is no information about the connection between S and L. Mark − means
no correlation between S and L, while S is validated. Mark ✓ means validation
of S in source code and invalidation of S in the mutant of L, so S and L are
strongly connected.

Fig. 4. Possible marks in coverage matrix cells.

6.2 Consolidated Coverage Matrix

A coverage matrix is usually quite large. For instance, our running example have
11 specifications and 12 labels, with made a total 132 cells in the coverage matrix.
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Consequently, it is not easy for a verification engineer to handle it in a useful way.
For solving this issue, we provide a way to consolidate it by gathering columns
and rows. This consolidation results in adding one column named specification
consolidation and one row named label consolidation as shown in Fig. 5.

Fig. 5. Consolidated coverage matrix.

Mark meanings are slightly modified in the new cells as depicted in Table 2.
For a specification S, mark P (resp. T ) denotes that S is tested (resp. proved)
and strongly connected to at least one label. Mark ✗ means that S is invalidated.
Mark − indicates no correlation of S with any label, which means that either
one piece of code is missing (in other words, one expected functionality is prob-
ably not implemented), or the specification is absurd (e.g. it has unsatisfiable

Table 2. Consolidation rules for specifications and labels.

If specification S has · · · Then the symbol for the
consolidation cell of S is · · ·

It means · · ·

At least one cell P✓ P S are proved

At least one cell T✓ T S is tested

All cells are either P− or T− – Either S is absurd, or one
label is missing for S

At least one cell ✗ ✗ S is invalidated

Other case ? Verification of S is
inconclusive

If label L has · · · Then the symbol for the
consolidation cell of L is · · ·

It means · · ·

At least one cell P✓ ✓ L is strongly connected to
at least one specification

At least one cell T✓

All cells are either P− or T− – No correlation between L
and any specification

Other case ? Not enough coverage
information for label L
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hypotheses). This kind of information may be particularly useful for debugging
code and/or specification. Mark ? means that the verification is currently incon-
clusive: an additional verification activity is required. For a label L, mark ✓
means that L is strongly connected to at least one specification. Mark − means
no correlation between L and any specification. Mark ? is used for all the other
cases which are inconclusive with respect to the coverage criterion.

Full coverage (as per DO-178) is reached if, after consolidating the coverage
matrix, the resulting consolidated specification table only contains marks P or
T , meaning that every specification is verified, while the resulting consolidated
label table only contains mark ✓, meaning that every label is covered.

6.3 Verification Campaign Automatization

This section proposes an algorithm, shown in Fig. 6 and currently being imple-
mented as a new Frama-C plugin. It consists of two consecutive steps that autom-
atize as much as possible a verification campaign, in order to quickly reach full
coverage.

1. Proving.
(a) Manually provide all the necessary data (initial code, formal specification,

labels and mutants) to an automatic proof technique (e.g. plug-in WP of
Frama-C with an associated SMT solver).

(b) Automatically, from the results, fill the (consolidated) coverage matrix.
(c) Manually choose the next action according to the coverage matrix:

– if full coverage is reached, the verification campaign is complete;
– if an error is found, correct it and restart the verification campaign;
– if no error is found but coverage is yet incomplete, continue the ver-

ification campaign by using another technique (e.g. another prover)
or testing. If one goes for testing, goto step 2.

2. Testing.
(a) Manually define test cases in order to test the uncovered specifications

(not containing any mark ✓ in the coverage matrix). In order to quickly
reach full coverage, try as much as possible to choose test cases which
can pass through the remaining labels (not containing any mark ✓ in the
coverage matrix).

(b) Manually provide all the necessary data (specification, code, label,
mutant) and test case to a testing tool (e.g. plug-in E-ACSL of Frama-C).

(c) Automatically, from the results, fill the (consolidated) coverage matrix.
(d) Manually choose the next action according to the coverage matrix:

– if full coverage is reached, the verification campaign is complete;
– if an error is found, correct it and restart the verification campaign;
– if no error is found but coverage is yet incomplete, continue the ver-

ification campaign by defining (at least) one other test case.
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Witness

Result
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Automatic
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Fig. 6. Algorithm for automatizing a verification campaign.

7 Experiment

This section applies the previous algorithm to our running example of Sect. 3.
To demonstrate that our verification coverage is able to detect a missing speci-
fication, we intentionally remove the VALID specification from our example.

Labels and their associated mutant are defined according to statement cov-
erage criterion. Therefore, one label is attached to each statement. Two kinds
of mutant operators, replace and erase, are used to define the labeled mutant of
each label, as explained in Sect. 4.1.

We now apply the algorithm of Sect. 6.3. First, we try to prove that the
function satisfies its specifications by using plug-in WP of Frama-C. The results
are stored in the coverage matrix (partially) shown in Fig. 7.

Except for the four rows from label Lstmt1 to label Lstmt4, all rows of the
matrix contain at least one mark P✓ which means a mark ✓ in the consolidated
label table. Similarly, each column in categories ERR and OK contains at least
one mark P✓ which means a mark P in the consolidated specification table.
It means that the verification campaign already succeeds for the corresponding
labels and specifications: plug-in WP was able to validate them alone.

The four rows from label Lstmt1 to label Lstmt4 do not contain mark P✓.
They lead to four marks ? in the consolidated label table. Also, no column in the
category VALUE contains mark P✓, hence three marks ? in the corresponding
cells of the consolidated specification table. Consequently, these 4 labels and the
3 specifications in category VALUE were not covered by plug-in WP.

We now choose the plug-in E-ACSL to test them. For that purpose, we define
three test cases which pass through the remaining labels Lstmt1 to Lstmt4.
Figure 8 shows the resulting updated cells of the coverage matrix. From the
consolidated label table, we conclude that label Lstmt4 is the only label not yet
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Fig. 7. Coverage matrix after running plug-in WP.

covered. It prevents us to complete the verification campaign. Proofreading the
code allows us to establish that the related piece of code has no correlation with
any specification.

Fig. 8. Interesting subset of the coverage matrix after running plug-in E-ACSL.

We now add an additional specification corresponding to that piece of code.
It matches the previously removed VALID specification. Running the very same
test cases again leads to an updated coverage matrix. Figure 9 shows the only
interesting cells. It allows us to conclude that our verification campaign is com-
plete: we reach full functional and structural coverage by combining proof with
plug-in WP and test with plug-in E-ACSL run on only three test cases.

Fig. 9. Coverage cells of the added specification after running E-ACSL again.
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8 Conclusion and Future Work

By combining and enhancing labels [5,6] and mutations [16,25], we introduce a
new notion of verification coverage that allows us to combine test and proof for
verifying a group of specifications related to the same piece of code. It subsumes
both the usual notions of functional coverage and structural coverage.

Our verification coverage establish connections between pieces of code repre-
sented by labels and functional specifications. It allows us to measure verifica-
tion and coverage rates through the number of specifications and labels strongly
connected. Thus it provides a way to decrease the influence of a particular veri-
fication method when measuring coverage.

Based on this verification coverage, we also introduce an algorithm that
automatizes most parts of a verification campaign combining test and proof in
order to complete the verification process as quickly as possible. This algorithm
is currently being implemented as a new Frama-C plug-in.

We also formalize our work thanks to new notions of verification witnesses
and coverage matrices. Coverage matrices are consolidated per specification and
per label in order to synthesize the verification and the coverage results. Such
consolidations help the verification engineer to decide the next verification activ-
ity to be performed.

Future work includes studying the impact of mutation and coverage criteria
on verification coverage. We also aim at extending existing toolchains in order
to automatize label generation, choice of mutation operators and test case gen-
eration with respect to different coverage criteria. It would reduce the parts of
our algorithm that are not yet automated.
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Abstract. Despite significant progress made by runtime verification
tools in recent years, memory errors remain one of the primary threats
to software security. The present work is aimed at providing an objective
up-to-date experience study on the capacity of modern online runtime
verification tools to automatically detect security flaws in C programs.
The reported experiments are performed using three advanced runtime
verification tools (E-ACSL, Google Sanitizer and RV-Match) over 700
test cases belonging to SARD-100 test suite of the SAMATE project
and Toyota ITC Benchmark, a publicly available benchmarking suite
developed at the Toyota InfoTechnology Center. SARD-100 specifically
targets security flaws identified by the Common Weakness Enumeration
(CWE) taxonomy, while Toyota ITC Benchmark addresses more general
memory defects, as well as numerical and concurrency issues. We com-
pare tools based on different approaches – a formal semantic based tool,
a formal specification verifier and a memory debugger – and evaluate
their cumulative detection capacity.

The results of the experiments indicate that the selected tools cumila-
tively detected 84% of all seeded defects. Although for several categories
of errors detection rates are higher, we observed that applying several
tools is beneficial for uncovering certain issues. For instance, in detecting
concurrency issues of the Toyota ITC Benchmark, the highest per-tool
result was 73%, whereas cumulative detection ratio of all three tools used
together was 93%.

Keywords: Runtime verification · Software security · Memory safety
Dynamic analysis · Experience report

1 Introduction

The C programming language is one of the most commonly used languages for
development of critical software such as operating systems, drivers, hypervisors,
cryptography libraries, etc. At the same time C lacks protection mechanisms,
leaving the entire responsibility for correct management of memory and resources
c© Springer International Publishing AG, part of Springer Nature 2018
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to the developer. Execution of a badly written C program can lead to an unde-
fined behaviour, one that is not formally specified by the C language standard
[21]. Undefined behaviours in C programs are potential causes of memory errors,
such as buffer overflows, format string vulnerabilities, double free violations and
many others. Memory errors are known to be one of the main threats to software
security [40] because they can be exploited by an attacker to trigger execution
of malicious code capable of stealing or corrupting data, provoking system fail-
ures and even taking control of the affected machine. Detecting memory errors
is therefore of the utmost importance for security of code.

One way to automatically detect memory errors in a program is by using
static program analysis techniques, such as abstract interpretation [9], deductive
methods [13] and model checking [16,26]. An orthogonal approach to detecting
memory errors is by means of dynamic analysis, for instance, using online run-
time verification [17], a technique that observes an execution of the program
and detects errors before they occur. Over recent years online runtime verifica-
tion (sometimes referred to as monitoring) has been successfully used to detect
numerous undefined behaviours in C programs. For instance, over 300 previously
unknown errors have been detected in the Chromium browser using AddressSan-
itizer [29].

Static analysis techniques analyze programs without executing them, but typ-
ically require fine-tuning to get usable results (including a low number of false
alarms for abstract interpretation, proved properties for deductive methods and
termination in a reasonable amount of time for model checking). In contrast
to static methods, runtime verification analyzes programs by executing them
in a concrete setting, eliminating the need for fine-grained tuning and reducing
engineering effort to get proper results. One of the drawbacks of runtime veri-
fication, however, is that it analyzes one behaviour at a time. This is different
to static analysis techniques that typically analyze all program behaviours. It is
also possible to run the program in a simulated environment. The benefit of this
approach is that it does not need a concrete setting or extensive tuning. Simu-
lated runs, however, typically suffer from significant performance overheads.

Motivation. Due to increasing interest in verification techniques and tools in
academia and industry they rapidly evolve, offering novel solutions or significant
improvements almost every year. As such, related experimental studies tend to
become outdated very fast. Most of such studies are performed by the authors
of a tool and aimed at comparing it with its previous version or a few related
tools in order to demonstrate the benefits of the proposed solution. Such studies
do not provide a global view of the state of the art: for instance, such an impor-
tant research question as the cumulative detection capacity of several tools used
together is often not addressed.

More importantly, the main focus of experiments with monitoring tools is
about to change. Since the execution overhead used to be an important bar-
rier to their application, many prior experimental studies [4,29,31,37,41,42]
focused primarily on tools’ performance and often conducted experiments
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using computationally-intensive programs rather than investigated the detection
power. However, due the increasing computation power of modern computers and
the recent progress of monitoring techniques, the execution overhead does not
necessarily represent critical limitations for many monitoring tools today.

Finally, software security has become one of the most important concerns
in many domains of software engineering and automatic detection of potential
security vulnerabilities is an attractive and promising application for monitoring
tools. Both researchers and practitioners need to have an objective and up-to-
date vision of what kinds of security vulnerabilities can be detected by modern
state-of-the-art tools tools and which ones are likely to remain undetected.

The Runtime Verification Competitions [2,18] (held in the context of the
International Conference on Runtime Verification since 2014) evaluate both
soundness and performance of the participating tools. These events are very
helpful for the tool developers allowing them to compare their tools with others
and identify their weaknesses. However, the competitions cannot provide a com-
plete global picture either. This is because the participating tools are typically
evaluated on a handful of benchmarks submitted by the authors of the tools.
Further, these competitions do not focus on security vulnerabilities.

Goals and Means. The purpose of this work is to provide an experience report
evaluating the capacity of bug checking tools to detect security vulnerabilities
with an emphasis on memory errors. We choose the C programming language
as one of the most relevant languages for security-critical software. Our first
objective is to give an up-to-date vision of this detection capacity at a large
scale.

To reach this goal, we selected two existing publicly available benchmark
suites with over 700 test cases in total. They are representative of security-related
vulnerabilities and already classified into several subcategories. The first bench-
mark we used is SARD-100 [11], a test suite belonging to the Software Assur-
ance Metrics And Tool Evaluation (SAMATE) project of the National Institute
of Standards and Technology (NIST). SARD-100 targets security flaws of the
Common Weakness Enumeration (CWE) taxonomy [8]. The second suite, Toy-
ota ITC Benchmark [34], is a publicly available benchmarking suite developed at
the Toyota InfoTechnology Center. Toyota ITC Benchmark mostly focusses on
memory errors, but also contains a number of programs seeded with numerical
and concurrency issues.

Evaluating tools of such a large number of test cases requires tool automation.
We therefore choose to run the selected tools using a fixed set of documented
options (when required) without any specific tuning. This approach allows us to
give a realistic and objective picture of how effective the compared tools can be
when used by a competent engineer who is not a developer of the tool. This app-
roach particularly fits security vulnerability detection: in this context, most end-
users favour automation to precision. Since static tools require such a fine-tuning,
we exclude them for our experimentation and focus on runtime verification tools
only. We selected a representative subset of online monitoring tools (E-ACSL,
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Google Sanitizer and RV-Match) following a number of well-defined criteria
such as availability, robustness, capacity of online monitoring1. Addionnally, we
try to consider different scientific approaches – a formal semantic based tool, a
formal specification verifier and a memory debugger – in order to objectively
evaluate the cumulative detection power of these tools used together.

As we have mentioned above, previous studies often focused on tool perfor-
mance that is not a critical limitation for many monitoring tools today. Also,
including tool performance in our evaluation would be unfair for RV-Match
which is based on a simulated environment. Therefore, we also exclude perfor-
mance evaluation from our study in order to focus only on detection capability.
This way, it allows us to provide a global and objective view of how effective
modern runtime verification tools can be for verification engineers looking for
security vulnerabilities.

Contributions. The contributions of this paper include:

– an experimental campaign aimed at evaluating the capacity to detect security-
related vulnerabilities using three modern runtime verification tools, E-ACSL,
Google Sanitizer and RV-Match, and two benchmarking suites, SARD-100
and Toyota ITC Benchmark;

– an experience report presenting the recorded results separately for each
(sub-)category and each tool, as well as globally over the three tools and
for all programs; detailed results of each tool for each benchmark program
are available in the companion report2;

– a careful analysis of the reported results showing where we stand with runtime
detection of security vulnerabilities using monitoring tools.

Outline. The rest of the paper is organized as follows. Section 2 presents related
work on runtime monitoring techniques and tools. Section 3 describes our experi-
mental setup and explains the choice of selected tools and benchmarks. Section 4
presents and discusses the experimental results, and Sect. 5 summarizes the
threats to validity of the present experiment. Finally, Sect. 6 presents concluding
remarks and future work directions.

2 Related Work

We now review techniques that focus on runtime detection of memory errors in
C programs.

Online monitoring of C programs for memory-related software vulnerabilities
goes decades back. One of the oldest (yet still active) techniques to detecting
defects in C programs at runtime is Rational Purify [20]. This tool instruments

1 Which dynamically analyzes a program run on the fly, unlike offline monitoring
based on previously recorded execution traces.

2 See https://goo.gl/S4NF5m.

https://goo.gl/S4NF5m
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object files with additional instructions that track memory state of an executing
program and identify operations on unallocated or uninitialized memory loca-
tions. More recent techniques, such as MemCheck [31], SGCheck [32], or Dr.
Memory [4] achieve a similar task using dynamic binary instrumentation, an
approach that injects memory monitors to binary programs at execution time.

One of the benefits of binary-level memory monitoring is its ability to check
every memory access (typically using memory shadowing) including those occur-
ring in C library or third-party code. Binary monitors are widely used during
development and testing stages in many large-scale software projects [39]. How-
ever, since such tools reason at the level of instructions they often fail to detect
issues visible only at a source level of the language including such problems as
misuse of pointers, type violations or use of variable addresses outside of scope
of their definition3.

Source-level techniques to runtime detection of memory errors have also been
developed. Seminal work of Jones and Kelly [23] enabled runtime bounds check-
ing using a splay tree to track program pointers and bounds of objects they
reference. At runtime this technique checks operations on pointers (e.g., deref-
erence, arithmetic) by querying the splay tree-shaped metadata. This technique
served as a building block for a number of runtime memory error detectors.
CRED [28] added support for tracking out-of-bounds pointers using an addi-
tional auxiliary hash table. Dhurjati and Adve [12] improved bounds checking
technique using Automatic Pool Allocation memory partitioning. Baggy bounds
checking [1] used specialized memory allocator to constrain size and alignment
of allocated blocks and used array-based lookup to improve performance. Mem-
Safe [35] used a mix of static and dynamic analyses to prevent memory errors
at runtime via a combination of object and pointer metadata.

Even though effective for tracking memory errors the above techniques have
not gone beyond research prototypes, as such they are difficult to use in practice
without expert knowledge.

Google AddressSanitizer [29] is probably the first successful attempt to cre-
ate a widely-used industrial-strength source-level monitor for C/C++ programs.
AddressSanitizer uses shadow memory to track program allocations at run-
time using source-to-source transformations. This tool benefits from a compact
shadow state encoding that tracks 8-byte sequences by only 3 bits. This allows
for significant reduction of monitoring overhead costs. Initially integrated with
the clang compiler AddressSanitizer has later been ported to GCC replacing
mudflap [14] tool. Nowadays AddressSanitizer is a part of a bigger tool suite
called Google Sanitizer that contains several tools that focus on different issues:
AddressSanitizer (illegal memory accesses and memory leaks), MemorySani-
tizer [37] (uninitialized memory accesses), ThreadSanitizer [30] (data races and
deadlocks) and UndefinedBehaviourSanitizer [38] (undefined behaviours).

3 More precisely, in some cases memory corruption errors caused by such violations
are detectable by binary analysis tools but only after they are disconnected from the
source code error that caused them.
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One of the disadvantages of fully automatic analyzers such as Address-
Sanitizer or MemCheck is that they cannot easily enforce custom properties
(e.g., function contracts or loop invariants). Such issues can be addressed using
behaviour interface specification languages such as E-ACSL. E-ACSL [10] is a
runtime verification tool for C programs built atop the Frama-C [24] frame-
work for source-code analysis. E-ACSL transforms a C program P annotated
with formal specifications in the E-ACSL specification language into a moni-
tored program P ′ that behaves similar to P but aborts at runtime if any given
annotation is violated. Formal E-ACSL specifications usable by the tool can
be provided manually or generated automatically by another tool such as the
Frama-C kernel or its RTE plug-in [24]. The present focus of E-ACSL is runtime
enforcement of function contracts, detection of integer overflows and validating
memory accesses made by the program at runtime.

An orthogonal way of detecting errors (including security vulnerabilities) in C
programs is by using simulated environments. One such tool is RV-Match [19].
The aim of RV-Match is to ensure that a run of a C program strictly conforms
to the ISO C11 [5] standard, i.e., does not rely on implementation specific or
undefined behaviours described by the standard.

RV-Match is built using the K semantics framework [27]. K is a program
analysis framework based on term rewriting that allows to define rigorous seman-
tics for a target programming language. The framework also provides several
tools for formal analysis of programs written in the target language including a
symbolic execution engine, a semantic debugger, a model checker and a deductive
verifier. RV-Match uses formal executable C semantics [15] to instantiate the
K framework for C and interprets programs according to the formal operational
semantics of the language.

Another approach to enforcing memory safety of C programs is called
Cyclone [22]. Cyclone is a safe dialect of the C programming language designed
to retain C semantics and performance and at the same time prevent memory-
related errors. To achieve this goal Cyclone imposes restrictions on C programs.
For instance, Cyclone limits pointer arithmetic, enforces pointer initialization
and disallows unsafe casts. This approach also uses “fat-pointers” to enable
runtime bounds checks and prevent accesses to unallocated memory. Presently
Cyclone is no longer supported but some of its ideas made into the Rust pro-
gramming language [25] that pursues similar goals.

Overall, technique such Cyclone or Rust are compromises between safety and
security and performance that prevent many issues commonly associated with
C programs by design. Using such techniques for an existing program, however,
may be a daunting task as it requires porting a program to one of these languages.

3 Experimental Setup

3.1 Objectives and Evaluation Approach

The key objective of this paper is to evaluate the capacity of state-of-the-art
monitoring tools to detect security vulnerabilities in C programs. We address
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this objective using an empirical study that analyses benchmarked code belong-
ing to the test suite #100 of the Software Assurance Reference Dataset Project
(SARD) [11] and the Toyota InfoTechnology Center dataset [6,34] using E-
ACSL [10], Google Sanitizer [29,30,37,38] and RV-Match [19]. For each tool
we compute its detection ratio (i.e. the number of discovered bugs over the total
number of bugs) and report the results.

More precisely, this evaluation seeks answers to the following research ques-
tions:

(RQ1). What is the cumulative detection ratio of the selected state-of-the-art
tools used together for each category of vulnerabilities?
(RQ2). What is the detection ratio of each of the selected tools for each
category of vulnerabilities?
(RQ3). Are different tools complementary in the bugs they detect?

The following sections provide details on the choice of the tools and bench-
marks used in this empirical study and discusses evaluation methodology.

3.2 Selected Tools

We now discuss the key selection criteria of the runtime verification tools used
in the present experiment.

Availability and Robustness. One of our goals is to evaluate runtime verifi-
cation techniques usable by most developers. For this experimentation we select
freely available, robust tools capable of verifying C code at runtime with no
or little manual effort. Consequently we reject research prototypes, incomplete
implementations, or techniques usable only by experts.

Memory Analysis. Many vulnerabilities in C occur due to its almost unre-
stricted use of memory. Therefore we only consider tools capable of analysing
the memory state of a running program. Another source of security flaws in C
programs are executions that lead to undefined behaviours with respect to a
chosen ISO C standard. Since such issues are defined at a source level of the C
programming language we only consider tools using source code analysis. Con-
sequently we reject binary monitors such as MemCheck [31] or Dr Memory [4].

Online Monitoring. In a security-oriented analysis it is important to prevent
errors, as otherwise a vulnerability can be exploited before it can be reported.
To address this requirement for this experimentation we consider only online
runtime verification tools capable of detecting vulnerabilities before they occur.

Potential Complementarity. To have a global vision of the cumulative detec-
tion capacity of different state-of-the-art techniques, we select tools using differ-
ent approaches to runtime error detection. In other words, we reject tools that
approach a problem similarly but differ in implementation.
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Based on the above requirements for this experimentation we select the fol-
lowing tools (in alphabetic order):

E-ACSL [10] – a verifier of a rich specification language;
Google Sanitizer [29,30,37,38] – a source-level memory debugger;
RV-Match [19] – a verifier of formal language semantics.

More detailed descriptions of the selected tools is given in Sect. 2.

3.3 Selected Benchmarks

We now briefly discuss the source code benchmarks used in this empirical study.
SARD-100 [11] is a test suite belonging to the Software Assurance Metrics

And Tool Evaluation (SAMATE) project of the National Institute of Standards
and Technology (NIST). Each SARD-100 program contains a vulnerability of
the Common Weakness Enumeration (CWE) taxonomy [8]. Initially developed
for testing against source code security analyzers based on Source Code Security
Analysis Tool Functional Specification [3] SARD-100 explores such important
security issues as SQL and command injections, buffer overflows, format string
vulnerabilities, use-after-free errors and others (21 CWE vulnerabilities in total).

Toyota ITC Benchmark [6,34] is a publicly available benchmarking suite
developed at Toyota InfoTechnology Center, USA. The suite is based on Annex
A (Source Code Weaknesses) of Source Code Security Analysis Tool Functional
Specification [3]. Toyota ITC Benchmark consists of 638 test cases exploring
9 defect types and 51 sub-types. Toyota ITC Benchmark focusses on memory
defects (e.g., static, dynamic, stack, pointer arithmetic), numerical defects (such
as division by zero or integer overflows) and concurrency issues (race conditions,
deadlocks).

One of the key factors for selecting SARD-100 and Toyota ITC Benchmark for
the present experimentation is that both contain code samples originating from
reliable sources with clearly marked vulnerabilities. The test cases belonging to
these suites allow to explore a broad range of security-related issues typical to
C programs.

3.4 Evaluation Methodology

During the present experimentation we perform a series of program runs under
E-ACSL, Google Sanitizer and RV-Match monitoring and compute detection
ratio of each tool. The percent detection ratio of a tool run over programs con-
taining N defects is computed as D/N ∗ 100, where D is the number of defects
detected by the analyzer.

In this experiment we used latest stable versions of the tools available at
the time of the experiment4. The RV-Match and Google Sanitizer monitored
4 At the time of this writing (March, 2018) E-ACSL-0.9 is not available publicly yet

and was obtained from the developers of the tool. E-ACSL-0.9 is scheduled to be
released in May, 2018.
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programs were obtained via kcc-1.0 and clang-4.0.1 compilers respectively.
Since these tools make use of built-in analyses no external specifications were
provided. Programs monitored via E-ACSL (version 0.9) were obtained via its
driver script called e-acsl-gcc.sh that takes a C program, automatically anno-
tates it using the RTE [24] plugin of Frama-C and finally compiles it using the
gcc compiler (gcc version 5.4.0 was used). For E-ACSL analysis we also used
partial function contracts provided by the Frama-C standard library.

During this experimentation a defect is considered detected if it is reported
either during compile stage or before its occurrence at runtime. We consider runs
of monitors that failed due to internal errors or by intercepting signals as missing
defects. Also, since Google Sanitizer consists of 4 separate tools (AddressSani-
tizer, UndefinedBehaviourSanitizer, ThreadSanitizer and MemorySanitizer) we
consider a defect detected if it is reported by either of the tools.

The monitored programs were run once per tool except for the cases using
random number generators that potentially surpass the execution of vulnerable
code. In such cases the benchmarks were run continuously until erroneous paths
were explored.

The tools used in this experiment were run using inputs provided via the
benchmarking suites. Where such inputs were not available (several programs
from SARD-100) we used inputs that explored vulnerabilities in the bench-
marked code.

The platform for all results reported here was 2.30 GHz Intel i7 processor
with 16 GB RAM, running 64-bit Gentoo Linux.

False Positives. Even though some of the tools used in this experimentation
can produce false alarms (in particular AddressSanitizer [29]), we do not report
false positive detection rate for the tools. This is because no false alarms were
detected during this experimentation. In other words, for this particular study
the rate of false positive defects equates to 0% in all cases. We manually verified
that all defects reported by the tools during this study correspond to actual
defects.

Runtime Overheads. In dynamic analysis performance overhead of a tech-
nique is an important issue, however, this experimentation does not report run-
time or memory overheads of the tools. This is because of the following reasons.

The goal of this experimentation is in identifying a technique’s capability
to detect different security-related issues rather than evaluating its applicability
to large and computationally intensive programs. Consequently, the experiment
uses small programs whose execution time in most cases does not exceed one sec-
ond. The size of the programs used during this experiment is not representative
for evaluating the tools’ robustness with respect to performance overhead.

Performance overhead of the tools used in this experimentation was assessed
in prior work. For instance, [42] reports on runtime and memory overheads of
both E-ACSL and AddressSanitizer using computationally intensive benchmarks
for CPU testing developed by the Standard Performance Evaluation Corporation
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(SPEC CPU) [36]. This experimentation has shown that for the selected SPEC
CPU programs the runtime overheads of E-ACSL (on average 19 times com-
pared to execution of unmonitored programs) of AddressSanitizer (1.58 times).
Further, the experiment has shown that E-ACSL was was more memory efficient
comparing to AddressSanitizer (2.48 vs. 4.22 times on average).

Thorough empirical study evaluating performance overheads of RV-Match
has not been conducted. This is mainly because at the present stage of implemen-
tation RV-Match is not yet ready to deal with large programs. A preliminary
result reported in [19] shows that analysis of a small example program consist-
ing of 10,000 loop iterations took 11 s. Taking into account that an unobserved
execution of the same program is under 0.01 s, such a result might suggest that
overheads of RV-Match are presently too high to be used in practice with
real-world programs.

4 Experimental Results

We now discuss detection results of using E-ACSL, Google Sanitizer and RV-
Match over SARD-100 dataset and Toyota ITC Benchmark.

4.1 Results for SARD-100

Table 1 shows detection results of E-ACSL, Google Sanitizer and RV-Match
over C benchmarks belonging to the SARD-100 dataset. The leftmost column
of the table shows a given CWE vulnerability, the rest of the columns show
error detection ratio in percent followed by the number of discovered and overall
defects.

The overall results indicate that E-ACSL, Google Sanitizer and RV-Match
detected 67%, 56% and 54% of bugs respectively. Cumulative error detection
ratio (i.e., with respect to defects detected by at least one of the tools) is 67%.

All tools missed security vulnerabilities that do not lead to memory errors
(Non-memory defects category), namely resource, command and SQL injections,
cross-site scripting and issues related to the use of hard-coded passwords. Such
result is because the focus of both Google Sanitizer and RV-Match is anal-
ysis aiming to detect memory errors and undefined behaviors. The executions
exploring these vulnerabilities did not lead to such issues.

The results further indicate that all tools are well equipped for detection of
memory-related errors including buffer overflows, null pointer dereferences, use-
after-free and similar issues. During analysis of memory-related defects (Mem-
ory Defects category) E-ACSL detected all seeded defects except for one test
case utilizing bad input to scanf (CWE-391 ). Google Sanitizer and RV-Match
detected less issues. For instance, in CWE-121 both tools missed a defect that
uses a fixed size buffer to store user-supplied input via puts function. Further-
more, RV-Match does not support detection of heap memory leaks when mem-
ory is allocated via library functions (such as strdup). We should also note that
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Table 1. Detection results of E-ACSL, Google Sanitizer and RV-Match over SARD-
100 test suite

E-ACSL Sanitizer RV-Match Cumulative

Non-memory defects

CWE-078: Command
Injection

0% (0/6) 0% (0/6) 0% (0/6) 0% (0/6)

CWE-080: Basic XSS 0% (0/5) 0% (0/5) 0% (0/5) 0% (0/5)

CWE-089: SQL Injection 0% (0/4) 0% (0/4) 0% (0/4) 0% (0/4)

CWE-099: Resource
Injection

0% (0/4) 0% (0/4) 0% (0/4) 0% (0/4)

CWE-259: Hard-coded
Password

0% (0/5) 0% (0/5) 0% (0/5) 0% (0/5)

CWE-489: Leftover Debug
Code

0% (0/1) 0% (0/1) 0% (0/1) 0% (0/1)

Memory defects

CWE-121: Stack Buffer
Overflow

100% (11/11) 91% (10/11) 91% (10/11) 100% (11/11)

CWE-122: Heap Buffer
Overflow

100% (6/6) 100% (6/6) 100% (6/6) 100% (6/6)

CWE-416: Use After Free 100% (9/9) 100% (9/9) 100% (9/9) 100% (9/9)

CWE-244: Heap
Inspection

0% (0/1) 0% (0/1) 0% (0/1) 0% (0/1)

CWE-401: Memory Leak 100% (5/5) 80% (4/5) 60% (3/5) 100% (5/5)

CWE-468: Pointer Scaling 50% (1/2) 50% (1/2) 50% (1/2) 50% (1/2)

CWE-476: Null
Dereference

100% (7/7) 100% (7/7) 100% (7/7) 100% (7/7)

CWE-457: Uninitialized
Variable

100% (4/4) 75% (3/4) 100% (4/4) 100% (4/4)

CWE-415: Double Free 100% (6/6) 100% (6/6) 67% (4/6) 100% (6/6)

CWE-134: Format String 100% (8/8) 0% (0/8) 0% (0/8) 100% (8/8)

CWE-170: String
Termination

100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

CWE-251: String
Management

100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5)

CWE-391: Unchecked
Error

0% (0/1) 0% (0/1) 0% (0/1) 0% (0/1)

Concurrency defects

CWE-367: Race Condition 0% (0/4) 0% (0/4) 0% (0/4) 0% (0/4)

CWE-412: Unrestricted
Lock

0% (0/1) 0% (0/1) 0% (0/1) 0% (0/1)

Overall 67% (67/100) 56% (56/100) 54% (54/100) 67% (67/100)
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Google Sanitizer missed one memory leak because this tool does not treat mem-
ory that has not been freed but available via a global variable as a leak. Finally,
Google Sanitizer and RV-Match do not support runtime detection of format
string vulnerabilities (via standard library functions such as printf).

Even though Google Sanitizer and RV-Match include functionality allowing
to discover concurrency issues (e.g., race conditions), both tools missed a handful
of such defects in SARD-100. E-ACSL does not support monitoring of multi-
threaded programs.

4.2 Results for Toyota ITC Benchmark

Table 2 shows detection results of E-ACSL, Google Sanitizer and RV-Match
over programs from Toyota ITC Benchmark. The presentation of the results is
similar to that of Table 1 in Sect. 4.1.

Table 2. Detection results of E-ACSL, Google Sanitizer and RV-Match over Toyota
ITC Benchmark

Defect type E-ACSL Sanitizer RV-Match Cumulative

Dynamic Memory 94% (81/86) 78% (67/86) 94% (81/86) 94% (81/86)

Static Memory 100% (67/67) 96% (64/67) 100% (67/67) 100% (67/67)

Pointer-related 56% (47/84) 32% (27/84) 99% (83/84) 99% (83/84)

Stack-related 35% (7/20) 70% (14/20) 100% (20/20) 100% (20/20)

Resource 99% (95/96) 60% (58/96) 98% (94/96) 100% (96/96)

Numeric 93% (100/108) 59% (64/108) 98% (106/108) 98% (106/108)

Miscellaneous 94% (33/35) 49% (17/35) 71% (25/35) 97% (34/35)

Inappropriate Code 0% (0/64) 0% (0/64) 0% (0/64) 0% (0/64)

Concurrency 0% (0/44) 73% (32/44) 66% (29/44) 93% (41/44)

Overall 71% (430/604) 57% (343/604) 84% (505/604) 87% (530/604)

The results indicate that E-ACSL, Google Sanitizer and RV-Match have
detected 71%, 57% and 84% of defects respectively. Cumulative error detection
ratio over Toyota ITC Benchmark is 87%.

All tools detected most defects related to improper use of dynamic and static
memory that include such issues as buffer over- and underflows (top two rows of
Table 2). 78% detection rate in Dynamic defects of Google Sanitizer is because
this tool could not detect a number of heap buffer-underruns where negative
offsets were used to access unallocated memory.

In Pointer-related defects E-ACSL detected 56% of bugs. The tool could not
identify defects related to improper use of function pointers. Detection ratio of
Google Sanitizer is 32%. This result is the lowest of all tools in the Pointer-
related category. This tool had issues detecting defects related to passing a null
pointer to free, incorrect pointer arithmetic and the use of function pointers.



Detection of Security Vulnerabilities in C Code Using Runtime Verification 151

RV-Match detected 99% of errors related to improper use of pointers. This tool
missed only one defect related to using an uninitialized pointer.

Stack-related defect type includes three defect sub-types: stack overflow,
cross-thread access and static buffer overrun. E-ACSL has little support for
detecting stack overflows and cannot monitor multi-threaded programs. The
detection rate of E-ACSL in this case is only 35%. Google Sanitizer and RV-
Match provide better support and identified 70% and 100% of defects respec-
tively.

Resource Management defects of Toyota ITC Benchmark contain such issues
as double free, freeing non-dynamic memory, return of local addresses and mem-
ory leaks. For this vulnerability type Google Sanitizer has the lowest detection
ratio of 60%. This tool has missed several bugs related to freeing static memory
and returning local variables. E-ACSL on the contrary has been able to identify
most such defects (99%). RV-Match has similar result of 98%.

E-ACSL and RV-Match detected most errors of Numeric defect type (inte-
ger overflows, bit-field overflows, division by zero), 93% and 98%. Both tools
missed defects involving floating point overflow. Additionally, E-ACSL failed to
detect overflows via bit-field values. Google Sanitizer has detected fewer defects
(59% via UndefinedBehaviourSanitizer). This tool had issues detecting errors
involving integer precision loss because of cast and loss of integer sign because
of unsigned casts.

Miscellaneous defects of Toyota ITC Benchmark describe endless loops,
invalid extern variable declarations, missing return statements and similar issues.
E-ACSL detected 94% of such issues. Detection ratio for Google Sanitizer and
RV-Match were lower – 49% and 71% respectively.

All tools missed all defects of the Inappropriate Code type. Such issues consist
of mostly syntactic and stylistic issues such as left-over debug code, specifying
same condition twice and so on. Even though they contribute to the overall
score such defects do not lead to undefined behaviours or memory errors and
can hardly be regarded as security-related.

Finally, E-ACSL missed all defects of Concurrency type. As noted earlier
E-ACSL does not support detection of such issues. Google Sanitizer and RV-
Match detected 73% and 66% respectively. A notable result is that these tools
miss defects of different subtypes and the detection cumulative rate over both
tools is 93%.

4.3 Summary of Results

The overall results of our experiment show that the present state-of-the-art run-
time verification tools for C programs provide strong support for detection of
issues stemming from improper use of memory and undefined behaviours. On
the other hand the results indicate lack of support for such important security
flaws as command injections that remain one of the most dangerous software
bugs [7] and still found even in well-tested C applications [33].

With respect to RQ1 that considers the cumulative capacity of error detec-
tion, we can conclude that in tracking non-concurrent memory errors using one
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tool may be sufficient to detect most defects. This is supported by the results
for SARD-100 and Toyota ITC Benchmark that show consistently high detec-
tion ratios for typical memory errors such as buffer overflows, double free viola-
tions, null pointers dereferences, use of initialized values and so on. Regarding
RQ3, the results indicate that combining the results of all tools one can achieve
higher detection ratio. For instance, in detection of resource-management mem-
ory defects of Toyota ITC Benchmark, E-ACSL detected 99% of all defects yet
the cumulative detection ratio is 100%. Further, while E-ACSL detected 94%
defects of miscellaneous type of Toyota ITC Benchmark, the combined result
(with RV-Match) is 97%. The most interesting result is for detection of con-
currency issues. Notably, the detection ratios of both Google Sanitizer and RV-
Match are relatively low – 73% and 66%, cumulative result however is 93%,
almost all seeded defects of that type.

Per-tool analysis of results (see RQ2) shows that for detection of memory-
related vulnerabilities in single-threaded executions E-ACSL shows superior
performance. One reason for such result is the tool’s memory tracking model
that allows tracking bounds of memory blocks and identify more vulnerabilities
involving illegal memory accesses. E-ACSL is also the only tool that enables
runtime analysis for format string vulnerabilities. On the other hand both
Google Sanitizer and RV-Match show good scores for detecting defects in
multi-threaded executions (e.g., deadlocks and race conditions). E-ACSL has
no support for such analysis. Furthermore, both tools have also shown better
support for detecting improper use of function pointers and stack overflows.

5 Threats to Validity

We now discuss issues that might have affected validity of the experiment pre-
sented in this paper.

The first issue refers to the choice of source code benchmarks used in eval-
uating precision of runtime verification tools. We aimed to select representative
code covering a broad range of defects typically leading to security vulnerabil-
ities in C. Different choice of programs might affect the results. For instance,
neither SARD-100 nor Toyota ITC Benchmark explores issues related to infor-
mation flow leakage in its full generality. Since the analyzers used during the
experiment have no support for such analysis the precision results of all tools
could be lower if such issues were present.

Another issue refers to the choice of the runtime verification tools used in
the experiment. We aimed to select popular online monitoring tools capable
of detecting typical security issues occurring in C program with little manual
effort. However, we cannot claim that our tool selection was representative for
detecting security vulnerabilities. For instance, as shown by the experiment E-
ACSL, Google Sanitizer and RV-Match have good support for detecting defects
related to the use of memory and undefined behaviours but do not support
detection of SQL or command injections. Furthermore, we might have overlooked
some of the tools that address similar issues and also freely available and easy
to use.
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The third issue refers to generating monitored programs using Google San-
itizer. This tool has a number of compile- and runtime options affecting the
results of its analysis. Even though we tried to study this tool and use all docu-
mented features there might be some options that we overlooked. Furthermore,
Google Sanitizer is under active development and we used the latest released
version. It is therefore possible that the latest development version of Google
Sanitizer has a different precision over the same code samples.

The fourth issue refers to collecting results. During our experimentation we
discovered several bugs in programs from SARD-100 and Toyota ITC Bench-
mark. To ensure the correctness of the precision results we manually verified
that programs under analysis are correct (i.e., contain defects of the claimed
types and the provided inputs lead to execution of erroneous path). However, as
we had to deal with large number of defects (over 700) we might have overlooked
some of the issues that might have also affected the final results.

Finally, the authors of this paper have been involved in design and the devel-
opment of the E-ACSL runtime verification tool. While we did our best to stay
impartial and aimed at providing a fair and unbiased study we might have had
the developers’ advantage when reasoning about the results produced by E-
ACSL.

6 Conclusions and Future Work

This experience report provides a global view of the capacity of modern runtime
verification tools to detect security vulnerabilities with an emphasis on mem-
ory errors. We consider different approaches – a formal semantic based tool, a
formal specification verifier and a memory debugger – in order to evaluate the
cumulative detection power of these tools used together. We have presented the
experimental protocol, the selected tools and benchmarks, and provided and ana-
lyzed the recorded results. Detailed results are available online and can be used
for a more detailed analysis. They indicate the level of support by the selected
tools for various kinds of issues. Overall, the cumulative detection rate of the
three selected tools over all defects of the considered benchmark suites is 84%.
Although detection rates achieve highest values for several categories of errors,
we observed that applying several tools appears to be beneficial for detecting
several categories of issues. For instance, in detecting concurrency issues in the
Toyota ITC Benchmark the highest per-tool result is 73%, whereas the cumu-
lative rate is 93%. Future work includes experiments with other categories of
tools, using larger benchmark suites of security related issues, as well as further
analysis of failures and improvement of their support in the compared tools.
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Abstract. Most popular technologies are based on informal or semi-
formal standards that lack a rigid formal semantics. Typical exam-
ples include web technologies such as the DOM or HTML, which are
defined by the Web Hypertext Application Technology Working Group
(WHATWG) and the World Wide Web Consortium (W3C). While there
might be API specifications and test cases meant to assert the compli-
ance of implementations, the actual standard is rarely accompanied by
a formal model that would lend itself for, e. g., verifying the security or
safety properties of real systems.

Even when such a formalization of a standard exists, two important
questions arise: first, to what extent does the formal model comply with
the standard and, second, to what extent does a concrete implementa-
tion comply with the formal model and the assumptions made during
the verification of certain properties?

In this paper, we present an approach that brings all three involved
artifacts—the (semi-)formal standard, the formalization of the stan-
dard, and the implementations—closer together by combining verifica-
tion, symbolic execution, and specification-based testing.

Keywords: Standard compliance · Compliance tests · DOM

1 Introduction

Most popular technologies are only specified by standards using a semi-formal or,
worse, an informal notation. Moreover, the tools used for writing standards only
support, if at all, trivial consistency checks. Thus, it is no surprise that such stan-
dards usually contain inconsistencies (e. g., different sections of the same stan-
dard that contradict each other) or unwanted under-specifications (e. g., where
the authors of the standard omit the specification of important properties that,
e. g., the defined API should fulfill).

Even if a standard is developed formally, or contains a (often non-normative)
formalization, two important questions arise: 1. to what extent does the formal
model comply with the semi-formal parts of the standard, and 2. to what extent
does an actual implementation comply with the formal model? If the formal
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model was used for verifying properties, one also needs to validate that the real
system fulfills the assumptions made during the verification.

Neither the problem of glitches and inconsistencies of standards nor the use
of testing for showing compliance of implementations are new (see, e. g., [1,7,8]
for examples of formalizations of standards, outside the Web domain, and the use
of testing for showing the compliance of implementations.) Still, most standard
development today is based on semi-formal specifications. Prominent examples
of such a semi-formal standard development are the standards for the com-
mon web technologies, such as the Document Object Model (DOM) or HTML.
Both are defined by the Web Hypertext Application Technology Working Group
(WHATWG) and the World Wide Web Consortium (W3C). These web stan-
dards are developed in an open process, e. g., everybody can read and comment
on upcoming versions of the standard, and they usually include type-checked
interfaces for the defined APIs. These interfaces are specified in Web IDL [11].
Moreover, these standards are complemented by a manually defined compliance
test suite that can be used by developers to check their implementation. Addi-
tionally, due to the manual process of developing the compliance tests, their
quality mostly depends on expert knowledge and their quality varies greatly,
depending on who wrote the test cases.

In this paper, we present an approach that brings all three involved
artifacts—the standard, the formalization of the standard, and the
implementations—closer together by combining verification, symbolic execution,
and specification-based testing. Moreover, we report on a case study applying
this approach to the Document Object Model (DOM) standard [10,13] that spec-
ifies the central data structure of all modern web browsers as well as algorithms
for querying and updating the DOM. Our case study is based on the official
DOM standard, the compliance test suite provided by the authors of the stan-
dard (which is used by browser vendors to show that their browsers faithfully
implement the standards), and our own formalization of the standard [3,4] in
Isabelle/HOL [9].

The rest of the paper is structured as follows: in Sect. 2 we present our app-
roach for linking formal and informal parts as well as implementations using test
and proof. In the next section (Sect. 3) we report on our experience in applying
our approach to the DOM standard [13]. We conclude in Sect. 4.

2 Using Test and Proof for Formalizing Standards

In this section, we present an approach using and combining test and proof for
providing strong links between semi-formal standards (and their compliance test
suites) and a formalization. Figure 1 illustrates the overall scenario for both tra-
ditional development of standards (upper part of the figure) and the integration
of “test and proof”-activities (bottom part).

First, let us recall the process and challenges of developing informal or semi-
formal standards and implementations that should comply with such a standard:
most standards are developed as a text document that contains technical details,
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Fig. 1. Using test and proof for establishing strong links between formal standards,
compliance test suites, and implementations.

e. g., in the form of interface specifications or pseudo-code, that implementations
need to comply with. Such semi-formal or informal standards usually contain
many inconsistencies; tool support for ensuring the syntactic consistency of the
standard is sometimes available in a limited form, but the semantic consistency is
an open problem. Also, linking standards to implementations is, in the best case,
only supported by the possibility to automatically extract interface definitions
(APIs), if the standard defines a (software) system. Alternatively, if the standard
defines a data format (or a language) it might possible to extract grammar
definitions for the abstract or concrete syntax of the defined data format or
language. A good standard also includes an extensive set of compliance test
cases. These compliance test cases are usually specified manually by experts.
Hence, manually developed test cases cannot guarantee to cover all important
cases and, thus, they can only provide a weak compliance-relationship between
standard and implementation. Nevertheless, they are the only machine-checkable
artifact for vendors to validate the compliance of their product to the standard.

Second, let us discuss how test and proof can improve the situation and
address the consistency and compliance challenges of semi-formal and informal
standard development. In the following, we assume that an executable formal-
ization (e. g., expressed in Isabelle/HOL) of the standard exists. Of course, if
we start with an informal standard, the question arises to which extent the for-
malization is a faithful representation of the informal (or semi-formal) standard,
i. e., the compliance of the formalization. As we assume an executable model, we
can—similarly to implementations—use symbolic execution to show the compli-
ance of the formal model to the semi-formal standard (or, more precisely, the
manually developed compliance test suite). In addition, we can use the formal
model to actually prove important properties of the standard (e. g., proving the
correctness of the algorithms presented in the standard). We can also general-
ize test cases provided in the compliance test suite and turn them into proof
obligations for our formal model. Using symbolic specification-based test case
generation techniques (e. g., as presented in [6]), we can automatically generate
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new compliance test cases that, e. g., guarantee branch coverage on the level of
the specification. Finally, we could generate a reference implementation using
code generators available in systems such as Isabelle [9] or Coq [2].

3 Case Study: The Document Object Model (DOM)

We successfully applied this approach to our formal model [3,4] of the DOM
standard [13]. This increases the confidence that our formalization faithfully
represents the official standard.

3.1 Formalizing the DOM Standard

We illustrate our approach using the insertBefore method as an example.
The interface of insertBefore is given in Web IDL [11]:

interface Node {
Node insertBefore(Node node, Node? child);

}

The behavior of this method is described using structural English:

insertBefore:
The insertBefore(node, child) method, when invoked, must return the
result of pre-inserting node into context object before child.

This descriptions refers, using hyperlinks, to the concepts pre-inserting and con-
text object. Without a clear understanding of these concepts, we cannot formalize
insertBefore. The concept pre-inserting is described as follows:

pre-insert:
To pre-insert a node into a parent before a child, run these steps:

1) Ensure pre-insertion validity of node into parent before child.
2) Let reference child be child.
3) If reference child is node, set it to node’s next sibling.
4) Adopt node into parent’s node document.
5) Insert node into parent before reference child.
6) Return node.

Again, several new concepts are introduces and to fully understand the behavior
of insertBefore, we need to understand and formalize these concepts as well.
We formalize the insertBefore using monads in Isabelle/HOL:

definition insert_before :: "_ object_ptrCore_DOM ⇒ _ node_ptrCore_DOM
⇒ _ node_ptrCore_DOM option ⇒ _ dom_prog"

where
"insert_before ptr node child = do {
ensure_pre_insertion_validity node ptr child;
reference_child ←(if Some node = child
then next_sibling node
else return child);

owner_document ←get_owner_document ptr;
adopt_node owner_document node;
insert_node ptr node reference_child

}"
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3.2 Showing Standard Compliance

While our formalization tries to stay as close as possible to the description in the
standard, it is not obvious that it complies to it. To show this compliance, we first
selected all relevant test cases from the official DOM compliance test suite [12],
i. e., the test suite used by web browser vendors to show that their DOM imple-
mentation complies to the standard. These test cases are written in JavaScript,
which is embedded into the DOM document under test. We then automatically
translated these tests into higher-order logic (HOL) to symbolically execute (the
test cases can be “evaluated” by Isabelle’s simplifier using a set of simplifier
rules optimized for code generation) them on our model of the DOM. For exam-
ple, consider the following test case (the left-hand site shows the official spec-
ification in JavaScript, the right-hand site our formalization in Isabelle/HOL):
test(function() {

var a = document.createElement(’div’);

var b = document.createElement(’div’);

var c = document.createElement(’div’);

assert_throws(’NotFoundError’, () => {

a.insertBefore(b, c);

});

},’Calling insertBefore with a reference’ +

’child whose parent is not the context’ +

’node must throw a NotFoundError.’)

lemma "test (do {

a ←document.createElement(’’div’’);

b ←document.createElement(’’div’’);

c ←document.createElement(’’div’’);

assert_throws(NotFoundError,

(cast a).insertBefore(cast b,

Some (cast c)))

}) Node_insertBefore_heap"

by code_simp

(* ’Calling insertBefore with a reference
child whose parent is not the context
node must throw a NotFoundError.’ *)

This test checks whether the DOM method insertBefore throws a certain
exception if called with a certain combination of arguments. We formalized
this test into a state-exception-monad and show the error-freeness by symbolic
execution.

Tests are, of course, a very limited way of showing such important proper-
ties, as they only show the property for concrete input values (here, a simple
DOM instance). To overcome this limitation, we generalize such test cases in to
generic theorems that show the corresponding property for all possible inputs. In
our example, we generalize the test into the following theorem, which we prove
formally in Isabelle/HOL:

lemma insert_before_non_child_reference_node:
assumes "heap_is_wellformed h" and "is_known_ptrCore_DOM ptr"
and "¬ (h �reference_child.parentNode → r Some element)"
and "¬ (is_character_data_ptr element)"
and "

∧
ancestors. h �get_ancestors element → r ancestors

=⇒cast new_child /∈set ancestors"
shows "h �element.insertBefore(new_child, Some reference_child)

→ e NotFoundError"

Instead of creating three concrete elements, we can quantify over all possible
elements. The two assumptions give additional insight; the test would fail if
the argument were a CharacterData or included in the reference’s ancestors,
because these circumstances are checked earlier and cause different exceptions.

Using this approach, we formalized all non-type-related test cases from the
official test suite to “test” our model. Table 1 shows the number of formalized
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Table 1. The number of tests regarding our supported DOM methods that are available
from the official suite and not related to type checks. Additionally, we present a rough
estimate of the complexity of the tested function along with the coverage of the tests
to estimate how much each function would benefit from automatically generated tests.

# Test cases
in scope

Function
complexity

Function
coverage

assignedNodes 24 High High

assignedSlot 24 High High

insertBefore 5 High Low

getElementByID 10 Medium Medium

removeChild 8 Medium Medium

attachShadow 2 Medium Medium

createElement 49 Medium Low

adoptNode 2 Medium Low

getRoot 3 Medium Low

childNodes 2 Low Medium

parentNode 3 Low Medium

shadowRoot 2 Low Low

host 1 Low Low

getOwnerDocument 0 Low –

getAttribute 0 Low –

setAttribute 0 Low –

nextSibling 0 Low –

tests per DOM function that we support. We cannot easily utilize test cases
regarding type checks, as we decided to formalize a strongly typed model. The
official compliance test suite contains many typing-related tests, mainly due to
two reasons:

1. Dynamic typing and prototype-based inheritance of JavaScript leads to many
tests that, for example, check the behavior of functions when passed null or
undefined, whereas we in HOL only allow None in places where the DOM
standard actually permits it.

2. We model a simplified version of the core DOM. We turned many classes
that extend the Node interface and, thus, participate in the node tree,
into attributes of other interfaces. For example, the DOM standard defines
DocumentType as a node that must appear in exactly one location of the
node tree—it must be the first child of a Document. We model the docu-
ment type as a field of a Document. Many tests of the official suite test that
constraint, which we therefore did not formalize.

The official test suite is developed manually and, thus, it is not surprising that
the test cases vary in style and quality. For example, the compliance test for
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the tree-modifying method insertBefore consists of 26 test cases, of which
only five are relevant for our formalization. This indicates that the test authors’
concern is mostly testing the absence of run time errors and, to a lesser extent,
the correctness of this rather complex method.

3.3 Formal Verification: Analyzing the Standard

In many cases, the methods defined in the DOM standard need to fulfill impor-
tant properties. These properties are neither spelled out explicitly nor does the
compliance test suite contain test cases for them. During the formalization of
the standard, these properties often emerge as proof obligations that need to be
shown to be able to prove the high-level properties specified in the standard.

An example for such an important property is that after a successful call of
insert_before, the list of child nodes remains distinct, even if the new child
was already a child of that node:

lemma insert_before_children_remain_distinct:
assumes "heap_is_wellformed h" and "is_known_ptrCore_DOM ptr"
and "

∧
parent. h �get_parent new_child
→ r Some parent =⇒is_known_ptrCore_DOM parent"

and "h �insert_before ptr new_child child_opt → h h2"
shows "

∧
ptr children. is_known_ptrCore_DOM ptr

=⇒h2 �get_child_nodes ptr → r children
=⇒distinct children"

This is true because insert_before first removes the new child from its old
parent before inserting it into the child node list of the new parent.

While the verification as such is important to ensure the consistency and
implementability of the standard, it also forms the basis for developing an
improved compliance test suite. Using a specification-based or theorem prover-
based test-case generation approach [6], the proven lemmas can be systematically
turned into additional compliance test cases that ensure that actual implemen-
tations fulfill these crucial properties.

4 Conclusion

We reported on a first case study combining test and proof for formalizing a
standard that is the core of modern web-browsers. We can show the compli-
ance of our formal model to the standard by symbolically executing the official
compliance test suite. Our manual analysis of this test suite revealed several
important properties that not sufficiently covered, or not covered at all, by the
compliance test suite.

As future work, we plan to automatically generated test cases from our for-
mal model (e. g., using HOL-TestGen [5]) and to contribute them to the official
compliance test suite. We also plan to enrich our model with a security model
formalizing common web-related security measures to verify and test the security
guarantees of modern web browsers (and applications running on top of them).
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Abstract. Automated testing is important for validating the behavior
of programs with complex user interfaces, such as web applications. In the
enterprise context, web applications are popular client-server programs
that provide rendered web pages as a user front-end, and the business
logic is typically implemented on the server-side. In this paper, we present
an approach to automatically generate test cases for component-based
user interfaces for web applications built on the Java EE platform. We
generate a sequence of user actions to navigate through the web appli-
cation. For each supported user action, we gather constraints from the
view template describing the web page (e.g. a button must be enabled
in order to be clicked by a user), as well as constraints that are intro-
duced while executing a server-side component. We have implemented
our approach in a tool to determine its practical use in an experiment.

Keywords: Automated test case generation · Web applications
Symbolic execution · Java Enterprise Edition

1 Introduction

Many modern enterprise organizations use web applications as a front-end to
provide a user-friendly access to business functionalities. Such an application
can be characterized as a client-server program, in which the client runs in a
web browser and displays the user interface. The displayed content of these
applications is typically generated dynamically, e.g. because they depend on
the state of other systems such as database systems. The connection to these
systems is established on the server-side. A client sends a request for a page via
the Hypertext Transfer Protocol (HTTP) to a server, and the server generates a
rendered web page (e.g. in HTML) that is sent as a response back to the client.

There are many tools and frameworks that support the development of web
applications, and Java is one of the most popular programming languages [3]. The
Java Enterprise Edition (Java EE) is a platform that supports the development of
enterprise software systems by providing a great set of application programming
interfaces (APIs). The JavaServer Faces (JSF) are part of one of these APIs. JSF
c© Springer International Publishing AG, part of Springer Nature 2018
C. Dubois and B. Wolff (Eds.): TAP 2018, LNCS 10889, pp. 167–176, 2018.
https://doi.org/10.1007/978-3-319-92994-1_10
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is a specification for building user interfaces for JavaServer web applications1. In
its latest version, it uses Facelets as a templating system that reflects the views
of a JSF application. Facelets are XML-based documents that describe the user
interface (UI) of the web pages. Facelets “extend” the traditional plain HTML
document with a more powerful set of definitions. For instance, it can be defined
that clicking on a button in a web page triggers the invocation of Java method
that is implemented in an Enterprise JavaBean (EJB) on the server-side, or that
data displayed in the rendered web page are the result of a method invocation
of an EJB. Figure 1 shows an abstract overview of a client that requests a web
page (view.xhtml). Before the web page can be rendered to plain HTML, an
EJB named dataBean is used to query some data of a connected database (DB).
The rendered web page is then sent back to the client, which can display it to
the user in a browser.

Testing a software program can provide information about the quality of the
tested program. Often, this includes the execution of the program with the intent
of finding defects in the software [12]. Test case generation is one of the most
labor-intensive tasks in software testing, and as a result an automation of that
task has been the subject to an intensive research effort [1].

In this paper, we propose an approach to automatically generate executable
test cases for JSF web applications. We generate a sequence of user actions that
navigate through the web application, and during this generation we take con-
straints both from the JSF web page, as well as from invoked EJB methods into
account. We have implemented our approach in a tool that has two main com-
ponents: (1) a JSF web application analyzer including a walker that simulates a
user interacting with the application, and (2) a prototype of a symbolic execu-
tion system for Java EE programs. Both components can share their constraint
stacks as well as their symbolic heap representation.

Fig. 1. A client interacting with a JSF application.

Contributions. In summary, this paper makes the following contributions:

– We present an approach for an automated generation of test cases for JSF
web applications, that symbolically execute all invoked EJB methods.

– We have implemented the approach in a tool that is available as open source
on a public repository [5].

1 https://javaee.github.io/javaserverfaces-spec/, accessed March 2018.

https://javaee.github.io/javaserverfaces-spec/
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– We show that our tool generates executable test cases that simulate a use
navigating through the web application.

Outline. The rest of the paper is organized as follows. In the next section, we
motivate our approach with an example and explain the key components of our
tool. Section 3 presents a formal definition of our approach. In Sect. 4, we present
experimental results and statistics showing that our tool generates executable
test cases. We present related work in Sect. 5 and conclude the paper in Sect. 6.

2 Motivating Example

We motivate our approach with an example web application2 for maintaining
issues. Figure 2 shows three rendered pages of that application that (1) lists all
existing issues, (2) edit an existing issue, and (3) create a new issue.

(1) View Issues

Create Issue

ID Author Title Status Action

1

2

3

John

Max

Lisa

Issue1

Issue2

Issue3

OPEN

OPEN

ARCHIVED

edit

edit

edit

archive

archive

(2) Edit Issue

View Issues Create Issue

ID:

Author:

Title*:

Status*:

1
John
Issue1

OPEN

submit cancel

(3) Create Issue

View Issues

Author*:

Title*:

submit cancel

Fig. 2. Rendered pages of the example web application.

The View Issues page has a link to navigate to the Create Issue page on the
top. Additionally, it has a table that shows all three issues that exists so far. For
each issue, the user can click either on a button labeled edit which navigates to
the Edit Issue page, or on an button labeled archive to change the status of that
issue to ARCHIVED, though this button is only available for issues that have not
yet been archived. On the Edit Issue page, a user can change the title and status
of an existing issue by clicking on the button labeled submit, or cancel the editing
by clicking cancel. The page has also two links that navigate to the View Issues
and to the Create Issue page respectively. On the Create Issue page, a user can
insert the author name and the title of a new issue. Both fields are required. The
constraints (e.g. a button is rendered based on the value of an entry in a table)
are either defined in the XHTML file, or introduced while executing a method
of a backing bean. In our approach, we support both sources of constraints.

Figure 3 shows a part of the XHTML code of the View Issues page from
Fig. 2. We parse the XHTML files with an ANTLR parser [13]. Line 1 defines a
link to navigate to the Create Issue page. In Line 3 the data table of that page
is defined. The table gets its values as a result of the invocation of the method

2 The application issue-tracker is available as open-source on a public repository [5].
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getAllIssues from a bean named requestBean. The relevant method is shown
in Fig. 4a, and it returns a list λ of objects of type Issue. In order to click on
a button labeled edit (see Line 11), there must be at least one element e in the
list, and we identify the constraint λ.length ≥ 1. In order to click on the button
labeled archive (see Line 13), that element must also have a status that is equal
to OPEN, and thus we identify the constraint e.status = s, with s being an
object-reference to a string constant with the value “OPEN”.

1 <h : l i n k outcome=” c r ea t e . xhtml” value=”Create I s su e ” />
2 . . .
3 <h : dataTable value=”#{requestBean . a l l I s s u e s }” var=” i s s u e ” . . .
4 <h : column>
5 <f : f a c e t name=”header ”>ID</f : f a ce t>
6 <h : outputText value=”#{ i s s u e . id }” />
7 </h : column>
8 . . .
9 <h : column>

10 <f : f a c e t name=”header ”>Actions</f : f a ce t>
11 <h : commandButton value=” ed i t ”
12 ac t i on=”#{issueManager . e d i t I s s u e ( i s s u e )}” />
13 <h : commandButton value=” arch ive ”
14 rendered=”#{ i s s u e . s t a tu s == ’OPEN’} ”
15 ac t i on=”#{i ssueManager . a r ch ive ( i s s u e )}” />
16 </h : column>
17 . . .

Fig. 3. A data-table definition in JSF, getting data from a backing bean.

1 @State l e s s @Named( ” requestBean ” )
2 public c lass RequestBean {
3 @Pers istenceContext
4 EntityManager em;
5

6 List<I s sue> g e tA l l I s s u e s ( ) {
7 return em. createQuery (
8 ”FROM Is sue ” , I s su e . class )
9 . g e tRe su l tL i s t ( ) ;

10 }
11

12 void arch ive ( long id ) {
13 I s su e i s s u e = em. f i nd ( I s su e .

class , id ) ;
14 i s s u e . s e tS ta tu s ( ”ARCHIVED” ) ;
15 }
16 . . .

(a) An EJB named requestBean that
gets data from a database.

1 @SessionScoped
2 @Named( ” issueManager ” )
3 public c lass IssueManager {
4 @Inject RequestBean reqBean ;
5

6 St r ing a rch ive ( I s su e i ) {
7 reqBean . a r ch ive ( i . ge t Id ( ) ) ;
8 return ”view . xhtml” ;
9 }

10

11 St r ing ed i t ( I s su e i ) {
12 reqBean . ed i t ( i ) ;
13 return ”view . xhtml” ;
14 }
15 . . .

(b) An EJB named issueManager that nav-
igates to a page view.xhtml when an issue

has been archived.

Fig. 4. EJBs used in the web application that introduce additional constraints.

When a user clicks on the button archive, the method archive of the bean
named issueManager is invoked with an argument issue that is the current
object of type Issue displayed in the current row of the data table. The method
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is shown in Fig. 4b. It calls the method archive of the injected EJB requestBean
(see Line 12 in Fig. 4a), which then updates the status of the given object issue
to ARCHIVED. As a result, the button labeled archive in the View Issues is
not rendered for that row any more. Hence, the invocation of EJB methods
strongly influence the navigation through the web application and must be con-
sidered when generating test cases. In the next section, we describe our test case
generation approach in more detail.

3 Proposed Approach

Our approach requires access to the compiled Java bytecode of the EJBs used in
the web application, as well as to the XHTML files that define the web pages of
the application. We generate a sequence of user actions starting in an initial state
at a given start page. A state q = (ω, db, C, h) is defined as a current web page ω,
a database state db, a set of constraints C, and a heap state h. We represent db
similar to the approach presented in [6] with a set of required entities that must
exists before a test case is executed, as well as a set of entities that exist after
test execution.

We illustrate our approach with the example application of Fig. 2, and we
start at the page View Issues. First, we parse that page (see Fig. 3 for a snippet)
with an ANTLR parser to identify three possible user actions {a1, a2, a3}. The
action a1 is the action when a user clicks on the Create Issue link. This action
does not require any additional constraints. For each action that navigates to
a new web page, we add an assertion that we have successfully navigated to it.
Hence, we set a1.asserts = {α1}, with α1 being the assertion that we have
successfully navigated to the Create Issue web page.

The action a2 represents a click on the button labeled edit in the web page.
Since that button is included in a row of a data-table, there must be at least
one element in the value-list of the data table. Hence, we analyze the value
attribute of the dataTable definition in the XHTML page (see Line 3 in Fig. 3)
to identify where the data of that table is queried from. In the example, we
identify the method getAllIssues from the bean named requestBean as a
data provider (see Fig. 4a). Hence, we symbolically execute that method and
identify that the result λ originates from a database query (see Lines 7ff in
Fig. 4a). Hence, we set λ.length ≥ 1. Moreover, we generate a new symbolic
object e of type Issue, and add e to both λ, as well as to the required set
of entities in db. After adding these constraints to C, we analyze the value of
the action attribute of the button (see Line 12 in Fig. 3). Since the action in
Line 12 references a EJB bean, we symbolically execute that method as well.
We pass the symbolic object e as a parameter for the argument issue, since it
is the referenced variable of that row (see Line 3). Figure 4b shows the invoked
method edit. It returns a string view.xhtml, and thus the action a2 navigates
to the View Issue page. We therefore add an assertion α2 for navigating to that
page to a2. Additionally, we add an assertion α3 to a2 which asserts that the
current value of e is displayed in the data table on the View Issues page.
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As a symbolic executor of Java EE programs, we have implemented a tool
that is similar to the symbolic execution system proposed in [6], though it has
a more powerful API to pass a given set of constraints as well as a symbolic
representation of a heap into the system. In our approach, we need those features
in order to share the constraints from the analysis of the web-application with
the symbolic execution system. Our symbolic execution tool uses Choco [14] as
a constraint solver and is also available as open source on a public repository [5].

The action a3 represents a click on the button labeled archive. The action
is only rendered when the value of the field status in the current issue (i.e.
the instance of the current row in the data table) has a value that equals the
string “OPEN”. Similar to the action a2, we generate a new symbolic object e′,
and add e′ to the data-value list λ. Similar to the approach in [6], we represent
the attribute-values of an object as logic variables. Hence, we generate a new
logic variable s′, add the constraint s′ = “OPEN”, and set e′.status = s′. We
represent primitive data types as either integer or real values. For example, a
logic variable of type char is represented as an ASCII encoded integer value,
and the value of a String object is represented as an array of logic variables of
type char (exactly as it is implemented in the java.lang.String class). Hence,
s′ is internally represented with four logic variables s′

1,..4 having the constraints
s′
1 = 79, s′

2 = 80, s′
3 = 69, and s′

4 = 78. We generate the test cases based on the
solution a constraint solver has found, and we re-transform the integer values
for the variables in the solution to its original type, e.g., s′

2 has the value “P”.
For each identified user action a, we generate a copied state q′ from the

current state q, add a to its action-sequence, and update the current web page
of q′ to the page ω′ that the action a navigates to. Then, we start the process of
identifying actions on ω′ again. We stop our test case generation when either a
maximum action-sequence length has been reached, or when there is no action
on the current page that changes the state q. Consider the example with two
web pages ω1 and ω2 that both link to each other, and we start our test case
generation in ω1. Since a click on a link only changes the current web page of the
state q – but adds no additional constraints to q – we only generate two actions
a1 and a2. In a1, a user clicks on the link that navigates to ω2, and a2 navigates
to ω1 respectively.

4 Tool Implementation and Experimental Evaluation

We have implemented our approach in a tool that is available as open source
on a public repository [5]. Figure 5 shows an overview of the key components of
that tool. The figure shows our system in a state in which four execution-states
q1,...,4 have already been generated (left-hand side). Currently, we use a first-
in-first-out principle to take the next state q∗ of that list. First, we parse the
content of the current web page q∗.page of that state with an ANTLR [13] parser
for XML documents. As a result, we identify a set A of possible user actions on
q∗page. Second, we filter A based on the coverage q∗.cov in order to identify user
actions that have not yet been executed in the state q∗. Each of these filtered



Automated Test Case Generation for Java EE Based Web Applications 173

actions is then executed based on the current state q∗. As a result, we generate
n ≥ 1 new states q∗1, . . . q∗n, which are then added to the list of states shown
on the left-hand side of Fig. 5.

q∗.pageq1

q2

q3

q4

next parser filter

q∗.cov

execute

q∗

{q∗1, . . . , q∗n}

TCGq.as

WebApp Analysis

Symbolic Execution System

A ∀a ∈ A′ ⊆ A

mugst

C, h, db
C′, h′, db′

Fig. 5. An overview of the key components of the tool implementing our approach. On
the top part is the web-application parser, on the bottom part the symbolic execution
system for Java EE programs.

When the action a invokes a method of an EJB in the web application, we use
a symbolic execution system called mugst [5] to symbolically execute that Java
method. If that execution has more than one distinct result based on the given
constraint set C, symbolic heap h, and database state db, we generate for each of
these results a different state as output. Every executed action is added to the
action-sequence of q∗. We stop the generation of new states when either a fixed
time budget is achieved (e.g. five minutes execution time) or when there are no
new uncovered actions. Additionally, we discard states from the left-hand side
when the length of their action-sequence is greater than a configurable maximum
length. Finally, we use a test-case generator (TCG) to generate executable test
cases based on a given action-sequence q.as.

We use the example application from Fig. 3 as an application under test in
our experiment. Figure 6 shows a snippet of a generated test case with an action-
sequence of length three. The test start on the pageView Issues. First, it clicks on
the first edit button of the data-table displayed on that page. Then, an assertion
of that action is generated in Lines 7ff. It checks if we have navigated to the Edit
Issue page by identifying elements on that page, e.g. a text field with author as
identifier and A as input text.

In order to click on the edit button, an entity e of type Issue must exist in
the database. Line 3 shows that required entity e with concrete values for its
attributes. Similar to the approach proposed in [6], we represent the values of
an entity as logic variables. For instance, we represent the value of the attribute
status with a logic variable s. In order to click on the button archive, the
value of s must be equal to the string constant OPEN (see constraint Line 14
in Fig. 3), and therefore we add such a constraint on s to the constraint stack
C. Our tool automatically parses the xhtml page for such constraints, generates
them as explained before, and adds them to C.

The second action clicks on the submit button on the Edit Issue page and
navigates back to the View Issue page (see Line 13 in Fig. 4b). Similar, the third
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1 public c lass I s sueTrackerTest extends WebappTest {
2 // requ i r ed e n t i t i e s :
3 // w. i t . e n t i t y . I s s u e (0 ) : id=1, s t a tu s=”OPEN” , name=”A”
4 @Test public void t e s t I t ( ) throws Throwable {
5 d r i v e r . f indElement (By . xpath (
6 ” (// input [ @type=’submit ’ and @value=’ ed i t ’ ] ) [ 1 ] ” ) ) . c l i c k ( ) ;
7 try {
8 d r i v e r . f indElement (
9 By . xpath ( ”// input [ @id=’author ’ , conta in s ( t ex t ( ) , ’A ’ ] ” ) ;

10 } catch ( NoSuchElementException e ) { f a i l ( ) ; }
11

12 d r i v e r . f indElement (
13 By . xpath ( ”// input [ @type=’submit ’ and @value=’submit ’ ] ” ) ) . c l i c k ( ) ;
14 try {
15 d r i v e r . f indElement (By . xpath ( ”// t r / td [ conta in s ( t ext ( ) , ’ 1 ) ’ ) ] ” ) ) ;
16 d r i v e r . f indElement (
17 By . xpath ( ”// t r / td [ conta in s ( t ex t ( ) , ’OPEN) ’ ) ] ” ) ) ;
18 } catch ( NoSuchElementException e ) { f a i l ( ) ; }
19

20 d r i v e r . f indElement (
21 By . xpath ( ”// input [ @type=’submit ’ and @value=’ a rch ive ’ ] ” ) ) . c l i c k ( ) ;
22 try {
23 d r i v e r . f indElement (By . xpath ( ”// t r / td [ conta in s ( t ext ( ) , ’ 1 ) ’ ) ] ” ) ) ;
24 } catch ( NoSuchElementException e ) { f a i l ( ) ; }
25 }

Fig. 6. A snippet of a test case generated by our tool.

action clicks on the archive button on the View Issue page. In order to click on
that button, the constraint s = OPEN is added to the constraint stack.

Table 1. Statistics for generating test cases for the example application.

n 2 3 4 5 6 7 8 9 10

t 1 2 4 7 11 23 42 91 191

#TC 21 44 99 206 446 940 1963 4107 8416

In contrast to Java Standard Edition (SE) applications, a Java EE application
typically runs inside a container that provides additional functionalities, such as
dependency injection. In Line 3 of Fig. 4a, an instance of type EntityManager
is injected into the field em by the container. However, the concrete injected
instance must not be known by the owning class. For example, both Hiber-
nate [8] and EclipseLink [4] are valid implementations of an EntityManager,
and an instance of both implementations could be injected into the field em. A
symbolic execution of Java EE applications must take that container-managed
initialization of EJB classes into account. In our prototype, we inject instances
of special classes – such as of type EntityManager – similar to the approach
proposed in [6]. Further special handling is the subject of future work.

We use JUnit [10] as a framework to execute the tests, and Selenium [15] as
a framework to automate a web browser, e.g. to simulate user-actions in a real
browser such as Firefox or Chrome.
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Table 1 shows the results of our experiment on the example application. The
first column shows the fixed action-sequence length, the second column the time
t to generate the test cases in seconds, and the third column the amount of
generated distinct test cases. The data shows that we can generate large test
suites in a reasonable amount of time. The reason why we generate much more
test cases when n increases, is that we currently see each element in a data-table
as a distinct entity that results in a different system state, and thus influences
our coverage criteria.

5 Related Work

The literature proposes many approaches and tools for an automated test case
generation of user-driven applications. Similar to our approach, the work of
Jensen et al. [9] uses symbolic execution to systematically explore all paths of a
program invoked by the user-interface. In contrast to that work, our approach
combines constraints from the web-page definition (xhtml file), as well as the
invoked program methods. Additionally, we also implemented initial support for
common Java EE features (e.g. dependency injection) in our symbolic execution
system. Other works [2,6,7] generate unit tests for EJB classes, though they
do not take constraints into account that result from a user-driven application
which invokes methods of those EJBs.

Similar to Mirshokraie [11], we generate assertions for detecting faults in
the application, and we generate executable JUnit test cases with Selenium as
a web-driver. Currently, our assertions are verifying that specific UI elements
are displayed in the web browser when a specific user-action has been executed.
Mirshokraie mutates the Domain Object Model (DOM) that represents the
rendered HTML page in order to expose weaknesses in the generated test suite.
Currently, such an evaluation of the generated test cases is not implemented by
our tool, but may be the subject of future work.

6 Conclusion, Limitations and Future Work

We have presented an approach for an automated test case generation for web
applications based on the Java EE platform. Our approach has been implemented
in a prototype that is available as open-source on a public repository.

The symbolic execution system that we have used in our prototype is in early-
stage, yet under ongoing development. For the generation of Java entity objects,
we are currently able to generate a set of objects for one type, but not be able to
query a database with complex SQL queries (such as those having subqueries,
etc.). The main contribution of this paper is presenting an approach to generate
test cases for web applications, as well as a tool that implements that approach.
As a coverage criteria, we analyze if an action changes the system state that
has not yet been covered. We symbolically represent such a state as a set of
constraints, as well as a symbolic heap space including generated objects. As a
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hard termination criteria, we stop the test case generation when a fixed (user-
defined) action-sequence length has been reached. However, our implementation
has a well defined API that allows to add additional coverage strategies.

As future work, we would like to improve our symbolic execution system and
run more experiments with the prototype on large real-world web applications.
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Abstract. Internet of Things (IoT) applications are becoming increas-
ingly critical and require formal verification. Our recent work presented
formal verification of the linked list module of Contiki, an OS for IoT.
It relies on a parallel view of a linked list via a companion ghost array
and uses an inductive predicate to link both views. In this work, a few
interactively proved lemmas allow for the automatic verification of the
list functions specifications, expressed in the acsl specification language
and proved with the Frama-C/Wp tool.

In a broader verification context, especially as long as the whole sys-
tem is not yet formally verified, it would be very useful to use runtime
verification, in particular, to test client modules that use the list mod-
ule. It is not possible with the current specifications, which include an
inductive predicate and axiomatically defined functions. In this early-
idea paper we show how to define a provably equivalent non-inductive
predicate and a provably equivalent non-axiomatic function that belong
to the executable subset e-acsl of acsl and can be transformed into exe-
cutable C code. Finally, we propose an extension of Frama-C to handle
both axiomatic specifications for deductive verification and executable
specifications for runtime verification.

Keywords: Linked lists · Executable specification
Deductive verification · Runtime verification · Frama-C
Internet of Things

1 Introduction

Among distributed systems, connected devices and services, also referred to as
the Internet of Things (IoT), have proliferated very quickly in the past years.
There are now billions of interconnected devices, and this number is growing. It
is anticipated that by 2021, about 46 billion devices will be in use.
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Some of these devices are in service in security-critical domains, but even in
domains that are not necessarily critical, privacy issues may arise with devices
collecting and transmitting a lot of personal information. Moreover, insufficiently
secured devices can be used, for example, for massive distributed denial of service
attacks [8]. This raises important security challenges. Formal methods – that
have been successfully used for years in highly critical domains – can help today
to bring security into the IoT field.

While the correctness of an implementation with respect to a formal func-
tional specification provides a very strong form of guarantee, it can be very costly
to achieve, and is currently mostly reserved to domains where it is required by
regulations or offers a competitive advantage. In practice, it is very useful to rely
on a combination of formal methods to achieve an appropriate degree of guaran-
tee: static analysis to ensure the absence of runtime errors, deductive verification
to prove functional correctness, and runtime verification for parts of code that
cannot be (or are not yet) proved using deductive verification.

This work uses Frama-C [7], a framework for source code analysis of
industrial-size programs written in C. Frama-C offers combined formal meth-
ods approaches, by providing its users with a collection of plugins that perform
static and dynamic analysis for safety and security critical software. Collabora-
tive verification across plugins is enabled by their integration on top of a shared
kernel, and their compliance to a common specification language: acsl [1].

Recently, Frama-C has been applied in the context of the IoT for verification
of several modules of Contiki [5], an open-source operating system for the IoT. In
our previous work, we formally verified the linked list module of Contiki [2]. The
verification technique relies on companion ghost arrays to provide an alternative
view of the lists and a linking predicate relating a list and its companion array. A
small set of lemmas (proved using Coq [12]) allow us to verify the specifications
of the list module functions automatically using the Frama-C/Wp tool.

In a broader verification context, especially when some parts of the system
are not yet proven, it would be desirable to benefit of the formal specification
of the proven module while testing its (yet unproven) client modules, e.g. to
check that the preconditions of proven functions are always satisfied along the
tests of a client module. A Frama-C plugin, called e-acsl2c in this paper,
can automatically transform specifications into executable C code, verifiable
at runtime, but only if they belong to the executable subset of acsl, named
e-acsl [4,11]. In our work [2], the formal specification of the list module relies on
an inductive linking predicate and an axiomatically defined function, which are
convenient for deductive verification but do not belong to this subset. Of course,
we do not want to loose the effort put in conducting deductive verification.

This early-idea paper explores a solution inspired by verification by program
transformation: instead of generating an executable definition from an axiomatic
one, we propose to define an executable one and prove its equivalence with the
axiomatic definition. To support this methodology, the already implemented
e-acsl2c tool could be extended as follows: e-acsl2c would look for known
equivalences when encountering a non-executable element in order to produce
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its executable counterpart. This extension is simple enough to be quickly and
safely added to e-acsl2c, but of course requires the user to state the executable
definitions and prove their equivalence with the axiomatic ones. We present a
proof-of-concept application of this approach to the list case study [2].

The remaining part of the paper is organized as follows. In Sect. 2 we give
an overview of Frama-C, and its Wp and e-acsl2c plugins. Section 3 briefly
presents the verification of the Contiki list module, with a particular emphasis
on two axiomatic definitions that cannot be handled by e-acsl2c. We then
present equivalent executable specifications and discuss the proofs of equivalence
with the axiomatic specifications (Sect. 4). In Sect. 5 we discuss an extension of
e-acsl2c to support such an approach and related work.

2 FRAMA-C Platform and Its WP and E-ACSL2C Plugins

Frama-C [7] offers various plugins built around a kernel providing basic services
required for any analysis. It relies on the CIL frontend [9] extended to treat
acsl annotations. acsl, for ANSI/ISO C Specification Language, is based on
the notion of contract like in Eiffel or JML. It allows users to specify functional
properties of programs through pre/post-condition, and provides different ways
to define predicates and logic functions. Some useful built-in predicates and logic
functions are provided, to handle for example pointer validity or separation.

Wp is a deductive verification plugin provided with Frama-C. It is based
on weakest precondition calculus. Given a C program annotated in acsl, Wp

generates the corresponding proof obligations that can be discharged by SMT
solvers or with interactive proof. A combination of automatic and interactive
proofs often offers a good trade-off for a complete proof. Indeed, some proper-
ties can only be defined recursively, and in this case, SMT solvers often become
inefficient, trying to unroll them. By using inductive or axiomatically defined
functions, we can prevent this behavior but reasoning about them still requires
induction, a task that SMT solvers are not good at. Thus, the last step is gen-
erally to state lemmas that can be directly instantiated by SMT solvers. These
lemmas can be easily used by SMT solvers to verify specifications, but their
proofs require to reason by induction: they are proved interactively.

The e-acsl2c plugin transforms annotations that belong to the executable
subset e-acsl of acsl into C code in order to verify them at runtime [4]. This
subset [4,11] restricts acsl to executable features: quantifications over finite
intervals only, no axioms or lemmas, no inductive predicates or axiomatic defi-
nitions of logic functions. Mathematical (unbounded) integer arithmetic is sup-
ported via a translation to larger types or using a dedicated library (GMP).
Pointer properties (such as validity) are handled thanks to a dedicated memory
model [14].

3 The List Module of Contiki

The linked list module of Contiki is a critical module of the kernel intensively
used in the core part of the OS. Its formal verification was thus necessary.
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The formal verification we have performed [2] relies on a view of each list via
a ghost array that mirrors it, and the following linking predicate defining their
relation.
1 inductive linked_n{L}( struct list *root , struct list **cArr ,
2 Z index , Z n, struct list *bound){
3 case linked_n_bound{L}:
4 ∀ struct list **cArr , *bound , Z index;
5 0 ≤ index ≤ MAX_SIZE ⇒
6 linked_n(bound , cArr , index , 0, bound);
7 case linked_n_cons {L}:
8 ∀ struct list *root , **cArr , *bound , Z index , n;
9 0 < n /\ 0 ≤ index /\ 0 ≤ index + n ≤ MAX_SIZE /\

10 \valid(root) /\ root == cArr[index] /\
11 linked_n(root ->next , cArr , index + 1, n - 1, bound) ⇒
12 linked_n(root , cArr , index , n, bound);
13 }

This predicate inductively relates a list starting at root to a segment of com-
panion array cArr, starting from an offset index and having n elements, that
ends with the excluded cell address bound (either NULL or a pointer to the
first non-represented list element if any). This relation is verified (cf. axiom
linked_n_cons, lines 6–11) if root is a valid memory location, if we find
this value at offset index of cArr, and if, recursively, the list that starts at
root->next is linked to the segment starting from index+1 with n-1 elements.
That is, for all i, the address of the ith cell of the list can be found at index+i
of cArr. The empty list (cf. axiom linked_n_bound lines 3–5), that starts and
ends with bound, is related to a cArr segment from any index for a length of 0
elements. The linking relation between the list and its ghost array is maintained
as an invariant by the functions of the list API. Thus, for verification we add
some ghost code that updates the companion array when needed.

Some lemmas allow us to split (or merge) a list into sub-lists related to
consecutive subranges of the companion array. It allows, for example, to prove
properties about the removal of an element of the list, where we have to show
that the beginning of the list did not change, and that all elements starting
from the item to remove have been shifted, so the list does not contain the item
anymore. Of course, that means that we need a way to specify the location of an
element in the list. This is done using the index_of function presented below:
1 axiomatic Index_of_item {
2 logic Z index_of(struct list *item , struct list **cArr ,
3 Z down , Z up) reads cArr[down .. up -1];
4 axiom no_more_elements:
5 ∀ struct list *item , **cArr , Z d, u; 0 ≤ u ≤ d ⇒
6 index_of(item , cArr , d, u) == u;
7 axiom found_item:
8 ∀ struct list *item , **cArr , Z d, u;
9 0 ≤ d < u /\ cArr[d]==item ⇒ index_of(item ,cArr ,d,u)==d;

10 axiom not_the_item:
11 ∀ struct list *item , **cArr , Z d, u;
12 0 ≤ d < u /\ cArr[d]�=item ⇒
13 index_of(item ,cArr ,d,u) == index_of(item ,cArr ,d+1,u);
14 }
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This function searches an item in the companion array cArr (therefore, in the
list), between two indices down and (excluded) up and returns the corresponding
offset. If the element is not in the list, the function returns up. This definition
is also recursive. For an empty range, down equals up, the offset is up (cf. axiom
no_more_elements, lines 5–6). For a non-empty range, if the element is the first
one (cf. axiom found_item, lines 7–9), the offset is the index of this element
down. Finally, for a non-empty range, if the first element, at offset d, is not the
one we are searching (cf. axiom not_the_item, lines 10–12), the function has to
search the item in the subrange that starts at d+1.

Finally, additional properties (cf. [2]) are required to specify memory separa-
tion between the different elements of the list and between the elements of the
list and the ghost array. For lack of space, we do not present them here.

4 From Axiomatic to Executable Specifications

We design new specifications in the e-acsl subset of acsl, and prove their
equivalence with the axiomatic specifications presented in the previous section.

An executable linking predicate linked_exec equivalent to linked_n follows:

1 logic boolean array_view(struct list *root ,
2 struct list **cArr ,
3 Z idx , Z size , struct list *bound) =
4 (size==0)? root==bound: (root==cArr[idx] ∧
5 array_view(root ->next , cArr , idx+1, size -1, bound));
6

7 predicate linked_exec{L}( struct list *root ,
8 struct list **cArr , Z idx ,
9 Z size , struct list *bound) =

10 0 ≤ size ∧ 0 ≤ idx ∧ idx + size ≤ MAX_SIZE ∧
11 (∀ Z k; idx ≤ k < idx + size ⇒ \valid(cArr[k])) ∧
12 array_view(root , cArr , idx , size , bound) == \true;

The idea is to replace an inductive predicate, which is not supported by e-acsl,
by a non-inductive predicate and a recursive logical function. Informally, the
validity stated in linked_exec as a bounded quantification (line 9) and the
equality between root and cArr[idx] imply the validity of root (as stated line
9 of linked_n) and the equality in linked_n_cons. The other conditions, in
linked_exec and linked_n respectively, are identical.

An executable function almost equivalent to the axiomatic index_of follows:

1 logic Z index_of_exec (struct list *item , struct list **cArr ,
2 Z down , Z up) =
3 (down < 0 ∨ up < 0) ? -1: (0 ≤ up ∧ up ≤ down) ? up:
4 (0 ≤ down ∧ down < up ∧ cArr[down] == item) ? down:
5 index_of_exec (item , cArr , down+1, up);

This function is not fully equivalent to the inductive axiomatic function
index_of previously presented because the axiomatic definition says nothing
when one of the bound is negative. An executable version could lead to run-
time errors in that case, thus it includes an additional check to prevent them.
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Therefore we add a new case to the axiomatic version index_of to ensure the
equivalence with the new logical function and its (stricter) bound checks:

1 axiom invalid_bounds:
2 ∀ struct list *item , **cArr , Z down , up;
3 (down < 0 ∨ up < 0) ⇒ index_of(item , cArr , down , up) == -1;

The deductive verification of the list module is not impacted by this modification.
We have proved the following two lemmas that state respectively that

the axioms defining the function index_of and the recursive function
index_of_exec are equivalent, and that the inductive predicate linked_n and
the non inductive predicate linked_exec are equivalent:

1 lemma equiv_index_of:

2 ∀ struct list *item , struct list **cArr , Z down , Z up;

3 index_of(item , cArr , down , up) ==
4 index_of_exec(item , cArr , down , up);

5 lemma equiv_linked:

6 ∀ struct list *root , struct list **a, struct list *b,

7 Z index , Z size;

8 linked_n(root , a, index , size , b)⇐⇒
9 linked_exec(root , a, index , size , b);

The first lemma is proved using Coq as follows: after case reasoning to assure
that 0 ≤ down < up, the result is established by induction on a value len equal
to up − down and replacing down with up − len.

The second lemma is also proved in Coq. The first implication is proved by
induction on the inductive predicate linked_n. The second implication is proved
by induction on size and using two lemmas on array_view themselves proved
by induction on size. The proofs are not very simple but comparable to some
of the lemmas for linked_n proved for the deductive verification of the list API.

5 Discussion

The e-acsl2c plugin currently does not support the full e-acsl subset, but it is
evolving rapidly. The proposed approach assumes a better support of the e-acsl
language to make the specifications described in the previous section executable.

Since this support is still partial, in order to apply the proposed app-
roach, we proceed by manual transformation: as predicate definitions (such as
linked_exec) are not supported yet, we inline them, i.e. instead of applying
linked_exec in a specification, we copy its body into it. As logical function def-
initions are not supported yet, we define corresponding C functions (and specify
their equivalence with their logical counterparts, these specifications being auto-
matically checked by Wp) and hard-coded calls to these functions in the body of
the C list functions we specified, using C assert. Our study provides a proof-of-
concept for the proposed approach of creating a (provably equivalent) executable
specification.

Note that even if the linked_exec predicate is proved to be equivalent to the
previous linked_n predicate, the inductive version is still needed for the formal
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proof to ensure that we get an induction principle on the Coq side, but also to
prevent the SMT solvers or WP to unfold the predicates during automatic proof.

Assuming the e-acsl specification language is fully supported, we envision
an extension of e-acsl2c to support this approach in a convenient and semi-
automatic way. We propose a new annotation equivalent taking two names as
arguments (either two predicates or two functions), that would:

– generate the corresponding equivalence lemma (to be proved),
– make e-acsl2c replace the first argument with the second argument for the

generation of C code.

Note that this annotation could be transitive: if the second argument is still not
executable, the system could look for another equivalence relating the second
name to a third one, and so on.

The proposed approach enables combined verification, very helpful in practice
as many real-life systems are not fully proved. Its benefit is the possibility to
use both axiomatic specification, more convenient for deductive verification, and
equivalent executable specification, usable for dynamic verification, without the
need for a large and complex extension of e-acsl2c. For more automation –
that would require much more implementation work – it could be possible to
build on the work of Tollitte et al. [13].

For higher-level languages, such as Eiffel or Java, a related approach is to
associate a model to a class [10]. The model plays the same role as the companion
array in our approach. Such a model is also a class, but an immutable one used
only for verification purposes. Model classes are valid classes of the considered
language, and can therefore be used in dynamic verification tasks. For deductive
verification purposes, the classes may be translated to elements of theories of the
underlying theorem provers. In this case, the faithfulness of the mapping may
be checked [3].

As future work we also plan to experiment with alternative specifications in
the spirit of the work of Gladisch and Tyszberowicz [6]. In the case of JML, they
used a pure observer method that takes a list object and an index, and returns
the object at that index in the list, to specify Java methods on a linked list
data structure. While the methods they consider are simpler than the list API
of Contiki, our ghost arrays can essentially be seen as observations of the linked
lists. We could consider such an observer directly written as a logical function
in e-acsl. C pointers are however not Java references and can lead to some
complications.

Acknowledgment. This work was partially supported by a grant from CPER DATA
and the project VESSEDIA, which has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 731453.
The authors thank the Frama-C team for providing the tools and support. Many
thanks to the anonymous referees for their helpful comments.



184 F. Loulergue et al.

References
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