
Leen Lambers
Jens Weber (Eds.)

 123

LN
CS

 1
08

87

11th International Conference, ICGT 2018
Held as Part of STAF 2018
Toulouse, France, June 25–26, 2018, Proceedings

Graph
Transformation

Lecture Notes in Computer Science 10887

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Leen Lambers • Jens Weber (Eds.)

Graph
Transformation
11th International Conference, ICGT 2018
Held as Part of STAF 2018
Toulouse, France, June 25–26, 2018
Proceedings

123

Editors
Leen Lambers
University of Potsdam
Potsdam
Germany

Jens Weber
University of Victoria
Victoria, BC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-92990-3 ISBN 978-3-319-92991-0 (eBook)
https://doi.org/10.1007/978-3-319-92991-0

Library of Congress Control Number: 2018944418

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-6937-5167
http://orcid.org/0000-0003-4591-6728

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences and workshops may vary from year to
year, but they all focus on foundational and practical advances in software technology.
The conferences address all aspects of software technology, from object-oriented
design, testing, mathematical approaches to modeling and verification, transformation,
model-driven engineering, aspect-oriented techniques, and tools. STAF was created in
2013 as a follow-up to the TOOLS conference series that played a key role in the
deployment of object-oriented technologies. TOOLS was created in 1988 by Jean
Bézivin and Bertrand Meyer and STAF 2018 can be considered as its 30th birthday.

STAF 2018 took place in Toulouse, France, during June 25–29, 2018, and hosted:
five conferences, ECMFA 2018, ICGT 2018, ICMT 2018, SEFM 2018, TAP 2018, and
the Transformation Tool Contest TTC 2018; eight workshops and associated events.
STAF 2018 featured seven internationally renowned keynote speakers, welcomed
participants from all around the world, and had the pleasure to host a talk by the
founders of the TOOLS conference Jean Bézivin and Bertrand Meyer.

The STAF 2018 Organizing Committee would like to thank (a) all participants for
submitting to and attending the event, (b) the Program Committees and Steering
Committees of all the individual conferences and satellite events for their hard work,
(c) the keynote speakers for their thoughtful, insightful, and inspiring talks, and (d) the
École Nationale Supérieure d’Électrotechnique, d’Électronique, Hydraulique et des
Télécommunications (ENSEEIHT), the Institut National Polytechnique de Toulouse
(Toulouse INP), the Institut de Recherche en Informatique de Toulouse (IRIT), the
région Occitanie, and all sponsors for their support. A special thanks goes to all the
members of the Software and System Reliability Department of the IRIT laboratory
and the members of the INP-Act SAIC, coping with all the foreseen and unforeseen
work to prepare a memorable event.

June 2018 Marc Pantel
Jean-Michel Bruel

Preface

This volume contains the proceedings of ICGT 2018, the 11th International Conference
on Graph Transformation held during June 25–26, 2018 in Toulouse, France. ICGT
2018 was affiliated with STAF (Software Technologies: Applications and Founda-
tions), a federation of leading conferences on software technologies. ICGT 2018 took
place under the auspices of the European Association of Theoretical Computer Science
(EATCS), the European Association of Software Science and Technology (EASST),
and the IFIP Working Group 1.3, Foundations of Systems Specification.

The aim of the ICGT series is to bring together researchers from different areas
interested in all aspects of graph transformation. Graph structures are used almost
everywhere when representing or modeling data and systems, not only in computer
science, but also in the natural sciences and in engineering. Graph transformation and
graph grammars are the fundamental modeling paradigms for describing, formalizing,
and analyzing graphs that change over time when modeling, e.g., dynamic data
structures, systems, or models. The conference series promotes the cross-fertilizing
exchange of novel ideas, new results, and experiences in this context among
researchers and students from different communities.

ICGT 2018 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008,
Enschede (The Netherlands) in 2010, Bremen (Germany) in 2012, York (UK) in 2014,
L’Aquila (Italy) in 2015, Vienna (Austria) in 2016, and Marburg (Germany) in
2017, following a series of six International Workshops on Graph Grammars and Their
Application to Computer Science from 1978 to 1998 in Europe and in the USA.

This year, the conference solicited research papers describing new unpublished
contributions in the theory and applications of graph transformation as well as tool
presentation papers that demonstrate main new features and functionalities of
graph-based tools. All papers were reviewed thoroughly by at least three Program
Committee members and additional reviewers. We received 16 submissions, and the
Program Committee selected nine research papers and two tool presentation papers for
publication in these proceedings, after careful reviewing and extensive discussions. The
topics of the accepted papers range over a wide spectrum, including advanced concepts
and tooling for graph language definition, new graph transformation formalisms fitting
various application fields, theory on conflicts and parallel independence for different
graph transformation formalisms, as well as practical approaches to graph transfor-
mation and verification. In addition to these paper presentations, the conference pro-
gram included an invited talk, given by Olivier Rey (GraphApps, France).

We would like to thank all who contributed to the success of ICGT 2018, the invited
speaker Olivier Rey, the authors of all submitted papers, as well as the members of the
Program Committee and the additional reviewers for their valuable contributions to the
selection process. We are grateful to Reiko Heckel, the chair of the Steering Committee
of ICGT for his valuable suggestions; to Marc Pantel and Jean-Michel Bruel,

the organization co-chairs of STAF; and to the STAF federation of conferences for
hosting ICGT 2018. We would also like to thank EasyChair for providing support for
the review process.

June 2018 Leen Lambers
Jens Weber

VIII Preface

Organization

Steering Committee

Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini University of Pisa, Italy
Gregor Engels University of Paderborn, Germany
Holger Giese Hasso Plattner Institute at the University of Potsdam,

Germany
Reiko Heckel (Chair) University of Leicester, UK
Dirk Janssens University of Antwerp, Belgium
Barbara König University of Duisburg-Essen, Germany
Hans-Jörg Kreowski University of Bremen, Germany
Ugo Montanari University of Pisa, Italy
Mohamed Mosbah LaBRI, University of Bordeaux, France
Manfred Nagl RWTH Aachen, Germany
Fernando Orejas Technical University of Catalonia, Spain
Francesco

Parisi-Presicce
Sapienza University of Rome, Italy

John Pfaltz University of Virginia, Charlottesville, USA
Detlef Plump University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University Federal do Rio Grande do Sul, Brazil
Grzegorz Rozenberg University of Leiden, The Netherlands
Andy Schürr Technical University of Darmstadt, Germany
Gabriele Taentzer University of Marburg, Germany
Bernhard Westfechtel University of Bayreuth, Germany

Program Committee

Anthony Anjorin University of Paderborn, Germany
Paolo Baldan University of Padua, Italy
Gábor Bergmann Budapest University of Technology and Economics,

Hungary
Paolo Bottoni Sapienza University of Rome, Italy
Andrea Corradini University of Pisa, Italy
Juan De Lara Autonomous University of Madrid, Spain
Juergen Dingel Queen’s University, Canada
Rachid Echahed CNRS and University of Grenoble, France
Holger Giese Hasso Plattner Institute at the University of Potsdam,

Germany
Annegret Habel University of Oldenburg, Germany
Reiko Heckel University of Leicester, UK

Berthold Hoffmann University of Bremen, Germany
Dirk Janssens University of Antwerp, Belgium
Barbara König University of Duisburg-Essen, Germany
Leen Lambers

(Co-chair)
Hasso Plattner Institute at the University of Potsdam,

Germany
Yngve Lamo Bergen University College, Norway
Mark Minas Bundeswehr University Munich, Germany
Mohamed Mosbah LaBRI, University of Bordeaux, France
Fernando Orejas Technical University of Catalonia, Spain
Francesco

Parisi-Presicce
Sapienza University of Rome, Italy

Detlef Plump University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro University Federal do Rio Grande do Sul, Brazil
Andy Schürr Technical University of Darmstadt, Germany
Gabriele Taentzer Philipps University of Marburg, Germany
Jens Weber (Co-chair) University of Victoria, Canada
Bernhard Westfechtel University of Bayreuth, Germany
Albert Zündorf University of Kassel, Germany

Additional Reviewers

Atkinson, Timothy
Azzi, Guilherme
Dyck, Johannes
Farkas, Rebeka
Kluge, Roland

Nolte, Dennis
Peuser, Christoph
Sakizloglou, Lucas
Semeráth, Oszkár

X Organization

Introduction to Graph-Oriented Programming
(Keynote)

Olivier Rey

GraphApps, France
rey.olivier@gmail.com
orey.github.io/papers

Abstract. Graph-oriented programming is a new programming para-digm that
defines a graph-oriented way to build enterprise software, using directed
attributed graph databases as backend. Graph-oriented programming is inspired
by object-oriented programming, functional programming, design by contract,
rule-based programming and the semantic web. It integrates all those program-
ming paradigms consistently. Graph-oriented programming enables software
developers to build enterprise software that does not generate technical debt. Its
use is particularly adapted to enterprise software managing very complex data
structures, evolving regulations and/or high numbers of business rules.

Couplings in Enterprise Software

The way the software industry currently builds enterprise software generates a lot of
“structural and temporal couplings”. Structural coupling occurs when software and, in
particular, data structures, are implemented such that artificial dependencies are gen-
erated. A dependency is artificial if it occurs in the implementation but not in the
underlying semantic concepts. Temporal couplings are artificial dependencies gener-
ated by holding several versions of business rules in the same program, those rules
being applicable to data that are stored in the last version of the data structures.

Those couplings are at the very core of what is commonly called “technical debt”.
This debt generates over-costs each time a software evolves. Generally, the require-
ments change, the software is partially redesigned to accommodate the modification,
the data structures evolve, the existing data must be migrated, and all programs must be
non-regressed. In order to implement a small modification in an enterprise software, a
change in regulation for instance, overcoming the technical debt may represent up to
90–95% of the total workload [5, 6].

The software industry has, for a long time, identified the costs associated to
technical debts, and in particular those costs seem to grow exponentially with time [5].
That means that the productivity of any maintenance team of fixed size will constantly
decrease throughout the evolution process. In order to address this core issue of
enterprise software, a lot of engineering-oriented work-arounds can be found: design
patterns that are supposed to enhance software extensibility [1], software architecture
practices that define modules and layers inside an enterprise software [2, 4], or best

http://orcid.org/0000-0003-4462-3712

practices for software refactoring to reduce the costs of the refactoring phase itself [3].
However, every software vendor knows that the core problem of the technical debt has
not been solved.

Graph-Oriented Programming

Graph-oriented programming is meant as an alternative programming paradigm not
collecting technical debts. This paradigm is based on three concepts: (1) Using directed
attributed graph databases to store the business entities without storing their relation-
ships in the entities themselves, i.e. there are no foreign keys; (2) Designing programs
so that the knowledge about relationships between entities (business nodes) is captured
in functional code located “outside” of the nodes, encapsulated in graph transformation
rules; (3) Using best practices in graph transformation design to guarantee a minimal or
even no generation of technical debt. This programming paradigm can be applied using
an object-oriented or functional programming language.

The expected advantages of using graph-oriented programming are multiple:
reusability of software is increased due to less software dependencies; multiple views
of the same data can be implemented in the same application; multiple versions of data
structures and business rules can cohabit, meaning that the software and the data can be
timelined; software maintenance can be done by adding new software rather than by
modifying existing software.

At last, graph-oriented programming enables to build a different kind of enterprise
software that proposes, through the use of a graph-oriented navigation, a new user
experience, closer to our mental way of representing things.

The Approach Taken at GraphApps

At GraphApps, we developed a graph-oriented designer in Eclipse whose purpose is to
model node and relationship types, as they occur in business applications, and to group
them in semantic domains. Code generators, coupled to the designer, generate
parameterized web pages proposing a default view of defined types of business entities.
For each semantic domain, an independent jar file is generated. In addition, we
developed a graph-oriented web framework, which loads the jar files and enables us
to integrate them in the graphical web framework. All domains can be integrated
without introducing any new code dependency. Each domain may include custom
code, in order to implement graph transformations, web page modifications, or new
pages. Moreover, the framework proposes reusable components that offer generic
reusable mechanisms such as business node classification (every business node can be
referenced in a tree of shared folders), business node timelines, navigation history,
personalized links between business nodes, or alternate navigation.

Those tools support a quick prototyping of large and complex applications, the
implementation of time-based business rules, and the cooperative work of several
teams collaborating to the same core model. The way the code is organized enables us
to modify the behavior of the core system, without having to modify existing code,

XII O. Rey

migrating data, or performing non-regressing testing. We have used this set of tools for
many business prototypes and we are using it currently to build a complete innovative
aerospace maintenance information system (composed by many semantic domains)
from scratch.

Conclusion

The paradigm of graph-oriented programming enables us to build a new generation of
enterprise software that will be much easier to maintain and that can address the high
complexity of business entity structures and their life cycles, as well as time-sensitive
business rules. This paradigm may be used to rewrite a huge number of enterprise
software in the coming decades in order to decrease drastically the maintenance costs,
to enhance the capability of personalization of the software and to create new user
experiences by proposing more intuitive ways to navigate within the software.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of Reusable
Object Oriented Software. Addison-Wesley (1994)

2. Buschmann, F.: POSA Volume 1 - A System of Patterns. Wiley (1996)
3. Fowler, M.: Refactoring. Addison-Wesley (1999)
4. Alur, D.: Core J2EE Patterns, 2nd edn. Prentice-Hall (2003)
5. Nugroho, A., Joost, V., Tobias, K.: An empirical model of technical debt and interest. In:

Proceedings of the 2nd Workshop on Managing Technical Debt. ACM (2011)
6. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its man-

agement. J. Syst. Softw. 101, 193–220 (2015)

Introduction to Graph-Oriented Programming (Keynote) XIII

Contents

Graph Languages

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 3
Hans-Jörg Kreowski, Sabine Kuske, and Aaron Lye

Synchronous Hyperedge Replacement Graph Grammars. 20
Corey Pennycuff, Satyaki Sikdar, Catalina Vajiac, David Chiang,
and Tim Weninger

CoReS: A Tool for Computing Core Graphs via SAT/SMT Solvers 37
Barbara König, Maxime Nederkorn, and Dennis Nolte

Graph Transformation Formalisms

Graph Surfing by Reaction Systems . 45
Hans-Jörg Kreowski and Grzegorz Rozenberg

Probabilistic Graph Programs for Randomised
and Evolutionary Algorithms . 63

Timothy Atkinson, Detlef Plump, and Susan Stepney

Graph-Rewriting Petri Nets . 79
Géza Kulcsár, Malte Lochau, and Andy Schürr

Parallel Independence and Conflicts

On the Essence and Initiality of Conflicts. 99
Guilherme Grochau Azzi, Andrea Corradini, and Leila Ribeiro

Characterisation of Parallel Independence in AGREE-Rewriting 118
Michael Löwe

Equivalence and Independence in Controlled Graph-Rewriting Processes 134
Géza Kulcsár, Andrea Corradini, and Malte Lochau

Graph Conditions and Verification

Verifying Graph Transformation Systems with Description Logics 155
Jon Haël Brenas, Rachid Echahed, and Martin Strecker

OCL2AC: Automatic Translation of OCL Constraints to Graph Constraints
and Application Conditions for Transformation Rules 171

Nebras Nassar, Jens Kosiol, Thorsten Arendt, and Gabriele Taentzer

Author Index . 179

XVI Contents

Graph Languages

Splicing/Fusion Grammars and Their
Relation to Hypergraph Grammars

Hans-Jörg Kreowski(B), Sabine Kuske, and Aaron Lye

Department of Computer Science and Mathematics,
University of Bremen, P.O. Box 33 04 40, 28334 Bremen, Germany

{kreo,kuske,lye}@informatik.uni-bremen.de

Abstract. In this paper, we introduce splicing/fusion grammars as a
device for generating hypergraph languages. They generalize the formerly
introduced notion of fusion grammars by adding splicing rules that split
node sets into two node sets and equip them with complementary hyper-
edges. As a result a derivation step in such a grammar is either a fusion of
complementary hyperedges, a multiplication of a connected component
or a splicing. We prove two main results demonstrating the generative
power of splicing/fusion grammars. First, Chomsky grammars are trans-
formed into splicing/fusion grammars where the transformation mimics
a corresponding transformation of Chomsky grammars into splicing sys-
tems as studied in the context of DNA computing. Second, hypergraph
grammars are transformed into splicing/fusion grammars.

1 Introduction

In various scientific fields like DNA computing, chemistry, tiling, fractal geome-
try, visual modeling and others, one encounters various fusion processes. In [1],
this principle is captured in the formal framework of fusion grammars which are
generative devices on hypergraphs.

A fusion grammar provides fusion rules the application of which fuse the
attachment nodes of complementary hyperedges. In addition, within a deriva-
tion, the multiplication of connected components of processed hypergraphs is
allowed. Fusion grammars are more powerful than hyperedge replacement gram-
mars.

In this paper, we generalize fusion grammars to splicing/fusion grammars by
adding splicing rules to fusion grammars. A splicing rule is reverse to a fusion rule
and allows to cut a connected hypergraph in two parts. The new type of grammar
is very powerful as two main results prove: On one hand, Chomsky grammars, on
the other hand, hypergraph grammars (satisfying a certain connnectivity condi-
tion) are transformed into splicing/fusion grammars. This shows, in particular,
that the generative power of splicing/fusion grammars is much greater than the
generative power of fusion grammars because the membership problem of fusion
grammars is decidable, whereas it is undecidable for splicing/fusion grammars
simulating Chomsky grammars of type 0.
c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-92991-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_1&domain=pdf

4 H.-J. Kreowski et al.

The paper is organized as follows. Section 2 provides preliminaries for graph-
transformation. In Sect. 3, the notion of fusion grammars is recalled. In Sect. 4
splicing/fusion grammars are introduced. Section 5 contains the transformation
of Chomsky grammars into splicing/fusion grammars, and Sect. 6 the transfor-
mation of hypergraph grammars into splicing/fusion grammars. Section 7 con-
cludes the paper.

2 Preliminaries

In this section, basic notions and notations of hypergraphs and hypergraph trans-
formation are recalled (see, e.g., [2]).

2.1 Hypergraphs, Morphisms, Basic Constructions

A hypergraph over Σ is a system H = (V,E, att , lab) where V is a finite set of
nodes, E is a finite set of hyperedges, att : E → V ∗ is a function, called attachment
(assigning a string of attachment nodes to each edge), and lab : E → Σ is a
function, called labeling.

The length of the attachment att(e) for e ∈ E is called type of e, and e
is called A-hyperedge if A is its label. The components of H = (V,E, att , lab)
may also be denoted by VH , EH , attH , and labH respectively. The class of all
hypergraphs over Σ is denoted by HΣ .

In drawings, a A-hyperedge e with attachment att(e) = v1 · · · vk is depicted

by
•v1 1

•v2
2 A

•vkk
. Moreover, a hyperedge of type 2 is depicted as an edge

by • •A instead of • A •1 2 and a hyperedge of type 1 by • A instead of
• A1 . If there are two edges with the same label, but in opposite directions,
we may draw them as an undirected edge. We assume the existence of a special
label ∗ ∈ Σ that is omitted in drawings.

Given H,H ′ ∈ HΣ , H is a subhypergraph of H ′ if VH ⊆ VH′ , EH ⊆ EH′ ,
attH(e) = attH′(e), and labH(e) = labH′(e) for all e ∈ EH . This is denoted by
H ⊆ H ′.

Given H,H ′ ∈ HΣ , a (hypergraph) morphism g : H → H ′ consists of two
mappings gV : VH → VH′ and gE : EH → EH′ such that attH′(gE(e)) =
g∗

V (attH(e)) and labH′(gE(e)) = labH(e) for all e ∈ EH , where g∗
V : V ∗

H → V ∗
H′

is the canonical extension of gV , given by g∗
V (v1 · · · vn) = gV (v1) · · · gV (vn) for

all v1 · · · vn ∈ V ∗
H . H and H ′ are isomorphic, denoted by H ∼= H ′, if there is

an isomorphism g : H → H ′, i.e., a morphism with bijective mappings. Clearly,
H ⊆ H ′ implies that the two inclusions VH ⊆ VH′ and EH ⊆ EH′ define a
morphism from H → H ′. Given a morphism g : H → H ′, the image of H in H ′

under g defines the subgraph g(H) ⊆ H ′.
Let H ′ ∈ HΣ as well as V ⊆ VH′ and E ⊆ EH′ . Then the removal of

(V,E) from H ′ given by H = H ′ − (V,E) = (VH′ −V,EH′ −E, attH , labH) with
attH(e) = attH′(e) and labH(e) = labH′(e) for all e ∈ EH′ −E defines a subgraph

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 5

H ⊆ H ′ if attH′(e) ∈ (VH′ −V)∗ for all e ∈ EH′ −E, i.e., no remaining hyperedge
is attached to a removed node. This condition is called dangling condition.

We use frequently the discrete hypergraph [k] with the nodes 1, . . . , k for
some k ∈ N and the handle A• consisting of the nodes 1, . . . , k for some k ∈ N

and a single hyperedge labeled by A ∈ Σ of type k attached to 1 . . . k. Hence,
in particular, [k] ⊆ A•. Given H,H ′ ∈ HΣ , the disjoint union of H and H ′

is denoted by H + H ′. A special case is the disjoint union of H with itself k
times, denoted by k · H. The disjoint union is unique up to isomorphism. It is
easy to see that the disjoint union is commutative and associative. Moreover,
there are injections (injective morphisms) inH : H → H + H ′ and inH′ : H ′ →
H + H ′ such that inH(H) ∪ inH′(H ′) = H + H ′ and inH(H) ∩ inH′(H ′) = ∅.
Each two morphisms gH : H → Y and gH′ : H ′ → Y define a unique morphism
〈gH , gH′〉 : H + H ′ → Y with 〈gH , gH′〉 ◦ inH = gH and 〈gH , gH′〉 ◦ inH′ = gH′ .
In particular, one gets g = 〈g ◦ inH , g ◦ inH′〉 for all morphisms g : H + H ′ → Y
and g+g′ = 〈inY ◦g, inY ′ ◦g′〉 : H +H ′ → Y +Y ′ for morphisms g : H → Y and
g′ : H ′ → Y ′. The disjoint union is the coproduct in the category of hypergraphs.

The fusion of nodes is defined as a quotient by means of an equivalence rela-
tion ≡ on the set of nodes VH of H as follows: H/≡ = (VH/≡, EH , attH/≡, labH)
with attH/≡(e) = [v1] · · · [vk] for e ∈ EH , attH(e) = v1 · · · vk where [v] denotes
the equivalence class of v ∈ VH and VH/≡ is the set of equivalence classes. It is
easy to see that f : H → H/≡ given by fV (v) = [v] for all v ∈ VH and fE(e) = e
for all e ∈ EH defines a quotient morphism.

Let H ∈ HΣ . Then a sequence of triples (i1, e1, o1) . . . (in, en, on) ∈ (N ×
EH × N)∗ is a path from v ∈ VH to v′ ∈ VH if v = attH(e1)i1 , v

′ = attH(en)on

and attH(ej)oj
= attH(ej+1)ij+1 for j = 1, . . . , n − 1 where, for each e ∈ EH ,

attH(e)i = vi for attH(e) = v1 · · · vk and i = 1, . . . , k. H is connected if each two
nodes are connected by a path. A subgraph C of H is a connected component
of H if C ⊆ C ′ ⊆ H for a connected C ′ implies C = C ′. The set of connected
components of H is denoted by C(H).

We use the multiplication of H defined by means of C(H) as follows. Let
m : C(H) → N>0 be a mapping, called multiplicity, then m·H =

∑

C∈C(H)

m(C)·C.

2.2 Pushout and Pushout Complement

Let C be a category and a : K → L, g : L → H, d : K → I, and m : I → H be
morphisms with g ◦ a = m ◦ d. Then H together with g and m is a pushout
of a and d if, for each pair of morphisms g′ : L → X and m′ : I → X with
g′ ◦ a = m′ ◦ d, there is a unique morphism x : H → X with x ◦ g = g′ and
x ◦ m = m′.

Given this pushout, the object I with the morphisms K
d−→ I

m−→ H is called
pushout complement of K

a−→ L
g−→ H.

In the category of hypergraphs, pushouts exist and can be constructed (up to
isomorphism) as the quotient (L + I)/(a = d), where a = d is the equivalence
relation induced by the relation {(a(x), d(x)) | x ∈ K} (for nodes and hyperedges
separately).

6 H.-J. Kreowski et al.

A pushout complement of hypergraph morphisms K
a−→ L

g−→ H exists if and
only if g satisfies the gluing condition, i.e., H − (g(L) − g(a(K))) satisfies the
dangling condition and g satisfies the identification condition which requires that
for all x, y ∈ L with g(x) = g(y), x = y or there are x, y ∈ K with a(x) = x and
a(y) = y (for nodes and hyperedges separately). If g satisfies the gluing condition,
a particular pushout complement can be constructed by I = H−(g(L)−g(a(K))
with the inclusion of I into H as m and the restriction of g ◦ a to K and I as d.
If a is injective, then this pushout complement is unique up to isomorphism.

2.3 Rule Application and Hypergraph Grammars

A (hypergraph grammar) rule r = (L a←− K
b−→ R) consists of L,K,R ∈ HΣ and

two morphisms a, b where a is injective.
The application of a rule r to a hypergraph H ∈ HΣ is denoted by H =⇒

r
H ′

and called a direct derivation. A direct derivation consists of a double pushout
(see, e.g., [3])

L K R

H I H ′
g

a

m d

b

hm′

The two pushouts can be constructed in the following way. To apply r to H, one
needs a matching morphism g : L → H subject to the gluing condition. Then one
removes g(L)−g(K) from H yielding the intermediate hypergraph I with I ⊆ H
(i.e., choosing m as inclusion) and a morphism d : K → I restricting g to K and
I. Finally, I and R are merged along the morphisms d and b meaning that the
resulting hypergraph is H ′ = (I+R)/(d = b) being the quotient of I+R through
the equivalence relation d = b induced by the relation {(dV (v), bV (v)) | v ∈ VK}.
The inclusions inI and inR into I + R composed with the quotient morphism
define morphisms m′ : I → H ′ and h : R → H ′ such that m′ ◦d = h◦ b according
to the definition of the equivalence d = b.

A derivation from H to H ′ is the sequential composition of direct derivations,
i.e., der = (H = H0 =⇒

r1
H1 =⇒

r2
· · · =⇒

rn

Hn = H ′) for some n ∈ N. If r1, . . . , rn ∈
P (for some set P of rules), then der can be denoted as H

n=⇒
P

H ′ or as H
∗=⇒
P

H ′.

Let N ⊆ Σ be a set of nonterminals where each A ∈ N has a type k(A) ∈ N.
A hypergraph grammar is a system HGG = (N,T, P, S) where N ⊆ Σ is a set
of typed nonterminals, T ⊆ Σ is a set of terminals with T ∩ N = ∅, P is a set
of rules and S ∈ N is the start symbol.

The language L(HG) is defined as {X ∈ HT | S• ∗=⇒
P

X}.

Without loss of generality, one can assume that, for each rule L
a←− K

b−→ R
the gluing graph K is discrete such that it can be chosen as [k] for some k ∈ N

and a is an inclusion.

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 7

3 Fusion Grammars

In this section, we recall the notion of fusion grammars as defined in [1].
A fusion grammar provides a set of fusion rules. The application of a fusion

rule merges the corresponding attachment nodes of complementary hyperedges.
Complementarity is defined on a typed set F of fusion labels. Given a hyper-
graph, the set of all possible fusions is finite as fusion rules never create anything
and each fusion decreases the number of hyperedges by two. To overcome this
limitation, we allow arbitrary multiplications of connected components within
derivations in addition to fusion. The start hypergraph and the derived hyper-
graphs consist usually of several connected components which are the building
blocks of fusion and the objects of interest. Some of them may are purely aux-
iliary, some may never terminate. Therefore, the generated language does not
contain derived hypergraphs, but only their marked and terminal connected com-
ponents where markers are used as an additional feature to distinguish between
wanted and unwanted connected components.

Definition 1. Let F ⊆ Σ, called fusion alphabet, and k : F → N be a type func-
tion. Let A /∈ F be the complementary fusion label for each A ∈ F such that
A �= B for all A �= B. The typing is extended to complementary labels by
k(A) = k(A) for all A ∈ F . Then A ∈ F specifies the following fusion rule,
denoted by fr(A)

•1
1

•1
′

1•2
2

•2
′

2

A A

• •
k(A)

k(A)

k(A)′

k(A)
⊇

•1 •1
′

•2 •2
′

•
k(A)

•
k(A)′

→

•1 = 1′

•2 = 2′

•
k(A) = k(A)′

i.e., formally, fr(A) = (A• + A
• in+in←−−−− [k(A)] + [k(A)]

〈1[k(A)],1[k(A)]〉−−−−−−−−−−→ [k(A)])
where in, in are the inclusions of [k(A)] into A• and A

•
, respectively, and 1[k(A)]

denotes the identity on [k(A)].

The numbers at the nodes identify them so that the left-hand side inclusion
and the right-hand side morphism are made visible. The morphism maps each
attachment node and its primed counterpart to the same right-hand side node.
In the formal version of the rule, the priming is not needed because the disjoint
union takes care that the components are properly separated from each other.

Definition 2. 1. A fusion grammar is a system FG = (Z,F,M, T) where Z is a
start hypergraph, F ⊆ Σ is a fusion alphabet, M ⊆ Σ with M ∩ (F ∪ F) = ∅
is a set of markers, and T ⊆ Σ with T ∩ (F ∪ F) = ∅ = T ∩ M is a set of
terminal labels.

2. A derivation step H =⇒H ′ for some H,H ′ ∈ HΣ is either a rule application
H =⇒

r
H ′ for some rule in fr(F) = {fr(A) | A ∈ F} or a multiplication

H =⇒
m

m · H for some multiplicity m.

8 H.-J. Kreowski et al.

3. A derivation H
n=⇒H ′ of length n is a sequence H0 =⇒H1 =⇒ . . . =⇒Hn

with H = H0 and H ′ = Hn including the case n = 0 with H0 = H = H ′ =
Hn. One may write H

∗=⇒H ′.
4. L(FG) = {remM (Y) | Z

∗=⇒H,Y ∈ C(H) ∩ (HT∪M − HT)} is the generated
language of FG where remM (Y) is the hypergraph obtained when removing
all hyperedges with labels in M from Y .

Remark 1. If all components of the start hypergraph have hyperedges with mark-
ers, then all connected components of derived hypergraphs have hyperedges with
markers so that markers have no selective effect. This defines the special case
of fusion grammars without markers. Their generated language is defined by
L(FG) = {Y | Z

∗=⇒H,Y ∈ C(H) ∩ HT }.

4 Splicing/Fusion Grammars

In this section, we introduce the splicing of hypergraphs by means of splicing
rules that are reverse to fusion rules. This is a prerequisite for the definition of
splicing/fusion grammars in the next section. A splicing rule splits a number of
nodes in two parts each and attaches a hyperedge to the nodes of the first part
and a complementary hyperedge to the nodes of the second part. As a splicing
rule can be applied to every collection of k nodes, splicing is very variable and
unrestricted, but too much sometimes. Therefore, we allow its regulation by a
context condition.

Definition 3. Let A ∈ F with type(A) = k and Â ∈ Σ, called complementary
splicing label of A with type(A) = type(Â). Then the splicing rule sr(A) of A
has the form

•1 = 1′

•2 = 2′

•
k(A) = k(A)′

←

•1 •1
′

•2 •2
′

•
k(A)

•
k(A)′

⊆

•1
1

•1
′

1•2
2

•2
′

2

A Â

• •
k(A)

k(A)

k(A)′

k(A)

i.e., formally, K
〈1K ,1K〉←−−−−− K + K

in+ ̂in−−−−→ A• + Â•, where K = [k(A)], in is the
inclusion of K into A• and în is the respective inclusion of K into Â•.

Note that a splicing rule is not a hypergraph grammar rule because in this
case gluing nodes are not embedded injective in the left-hand side.

An application of a splicing rule sr(A) to a hypergraph H, denoted by
H =⇒

sr(A)
H ′, is defined by a double pushout

K K + K A• + Â•

H C H ′

〈1K , 1K〉

f ce

in + în

f ′
e′

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 9

Obviously, it does not make much sense to require an injective morphism
e : C → H because e would be an isomorphism and nothing would be spliced.
Therefore, we allow arbitrary pushout complements. But there are many choices
of the set of nodes of C as well as of the attachment of hypergraphs. By con-
struction, e must be a bijection between C − c(K + K) and H − f(K). The
mapping of K + K to c(K + K) can be chosen such that e(c(K + K)) = f(K).
Further, if a hyperedge of H is attached to f(k) for some k, then its counterpart
in C is attached to c(in(k)) or c(în(k)) which may be different.

Example 1. Consider the splicing rule sr(A) = (• ← • • → • •A Â).

Applying sr(A) to the graph ◦
◦ • ◦ matching the node of its left-hand side

with the middle node of the graph yields the following five pushout complements

(up to isomorphism): ◦
◦ • ◦ ◦

◦ • ◦•
◦
◦ • ◦•

◦
◦ • ◦• ◦

◦ • • ◦. The last four

cases show proper node splittings that differ from each other by the distribution
of the three edges attached to the middle node. Particularly interesting is the
last case as the graph is separated into two proper subgraphs.

To cut down the number of choices, one may restrict the application of splic-
ing rules by some condition. There are various choices like, for example, the
frequently used positive and negative context conditions. We apply another con-
text condition which does not only restrict the matching, but also the pushout
complement.

Definition 4. A splicing rule with fixed disjoint context srfdc(A, a) consists of a
splicing rule sr(A) and a morphism a : K → X for some context X. It is denoted

by srfdc(A, a) = (X a←− K
〈1K ,1K〉←−−−−− K + K

in+ ̂in−−−−→ A• + Â•).
The rule is applicable to a hypergraph H if the pushout complement can be

chosen in the following way

K K + K

H Y + X

〈1K , 1K〉

f y + a〈m, b〉

where m : Y → H is injective and the complement consists of two disjoint parts
one of which is the pregiven context X.

Such a pushout complement does not always exist as there may be no mor-
phism b : X → H or H may not be separable in the required way. But if the
pushout complement exists, then Y, y : K → Y and m : Y → H are unique
up to isomorphism. Without loss of generality, Y can be chosen as the subgraph
H − (b(X) − b(a(K)) meaning that all hyperedges of b(X) are removed as well
as all nodes that are not gluing nodes.

10 H.-J. Kreowski et al.

Example 2. Consider the graph fence0 =
•
•
•

•
•

•
•
•

and the splicing rule with

fixed disjoint context cut = (•2
•1

•
•
•

⊇ [2] ← [2] + [2] ⊆ A• + Â•). cut can be

applied to fence0 matching the nodes in the middle yielding left =
•
•
•

•
•

A and

right = Â •
•

•
•
•
.

Note that we omit the numbering of the tentacles because it is irrelevant in
this example.

If one equips a fusion grammar with an additional splicing mechanism, then
one gets a splicing/fusion grammar.

Definition 5. 1. A splicing/fusion grammar is a system SFG = (Z,F,M, T,SR)
where (Z,F,M, T) is a fusion grammar and SR is a set of splicing rules
where some may have fixed disjoint context. The complementary splicing
labels of A ∈ F in splicing rules, denoted by Â, may be different from the
complementary fusion labels A.

2. A derivation step in SFG may be a multiplication, an application of a fusion
rule or an application of a splicing rule.

3. The generated language L(SFG) is defined as the fusion grammar by using
the more general derivations.

Example 3. To illustrate how splicing/fusion grammars work, we continue the
Example 2. Consider the grammar FENCE = (fence0+comp, {A}, ∅, {∗}, {cut})

with comp = A •
•

•
•
•

•
•

•
•
•

. No fusion is possible in the start hypergraph, but

one can produce n copies of comp and cut can be applied to fence0 yielding
left+right+n·comp. Now the fusion of left and comp is possible yielding fence1 =

•
•
•

•
•

•
•
•

•
•

•
•
•
+right+(n−1)·comp. This splicing of a fence followed by a fusion

can be iterated generating fencen =
•
•
•

•
•

•
•
•

•
•

. . .
•
•

•
•
•

•
•

•
•
•

n

+ n · right .

5 Transformation of Chomsky Grammars into
Splicing/Fusion Grammars

In this section, we translate Chomsky grammars into splicing/fusion gram-
mars where strings are modeled by cycles. The transformation mimics the

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 11

translation of Chomsky grammars into splicing systems as it can be found in
Păun, Rozenberg and Salomaa [4] in various variants.

Let CG = (N,T, P, S) be a Chomsky grammar with N ∩ T = ∅, S ∈ N and
P ⊆ (N∪T)∗N(N∪T)∗×(N∪T)∗. The transformation yields the splicing/fusion
grammar

SFG(CG) = (Z(CG), {Ay | y ∈ N ∪ T ∪ P} ∪ {act}, ∅, T ∪ {be},SR(CG)).

The fusion symbol act is of type 1, all the other fusion symbols are
of type 2. Moreover, we assume that the fusion alphabet, the alphabets
of the complementary fusion and splicing labels and the terminal alpha-
bet are pairwise disjoint. Z(CG) consists of the following connected com-

ponents: •S
be

act, • act, cx = • •x

Ax

act for each x ∈ N ∪ T , and

cp = • •. . . • •v1 vl

Ap

act for each p = (u, v1 . . . vl) ∈ P with vj ∈ N ∪ T for

j = 1, . . . , l. SR(CG) consists of the following splicing rules with fixed disjoint
context:

– spl(x) = (•
1

•
2

act
x ⊇ •

1
•
2

← •1 •2

•
1′

•
2′

⊆ •1 •2

•
1′

•
2′

Ax

Âx

)

for each x ∈ N ∪ T , and

– spl(p) = (•
1

• . . .• •
2

act
u1 uk ⊇ •

1
•
2

← •1 •2

•
1′

•
2′

⊆ •1 •2

•
1′

•
2′

Ap

Âp

)

for each p = (u1 . . . uk, v) ∈ P .

To explain how this splicing/fusion grammar works, one may consider the
following cycle representation of strings: cyc(x1 . . . xn) for x1 . . . xn ∈ N ∪T, n ≥
1, which is depicted in Fig. 1a. It can be defined more formally as ([n], {(i, i +
1, xi) | i = 1, . . . , n − 1} ∪ {(n, 1, xn} ∪ {(1, 1, be)}, pr1, pr2, pr3) where sources,
targets and labels of the edges are given by the projections. Moreover, define
cyc(λ) = •be .

Consider now cyc(x1 . . . xn)act,i which is cyc(x1 . . . xn) with an additional act-
loop at node i. Then the rule spl(xi) can be applied yielding two disjoint compo-
nents. One component is obtained by removing the act-loop from the cycle and
replacing the xi-edge by an Axi

-edge yielding cyc(x1 . . . xi−1Axi
xi+1 . . . xn). The

other component is the context of the rule with an additional Âxi
-edge parallel to

the xi-edge. Therefore, the two components look as the ones depicted in Fig. 1b.
Afterwards, the cycle can be fused with the component cxi

of Z(CG) yielding
Fig. 1c, i.e., cyc(x1 . . . xn)act,i+1. In other words, an act-loop on cyc(x1 . . . xn)
can be moved around the cycle to each node by repetition of these two rule
applications.

Consider now cyc(x1 . . . xn)act,i with xi . . . xi+k−1 = u1 . . . uk for some
p = (u1 . . . uk, v1 . . . vl) ∈ P . Then the splicing rule spl(p) can be applied

12 H.-J. Kreowski et al.

xn

x1 x2be

(a)

xi−1

xi+1

xn

x1

Axi

be

• •xi

̂Axi

act

(b)

xi−1

xixi+1

xn

x1 x2be

act

(c)

xi−1

xi+k

xn

x1

Ap

be

• • . . . • •u1 uk

̂Ap

act

(d)

v1

vl

xn

x1
xi−1

xi+k

be

act

(e)

Fig. 1. Components of the derivation

yielding Fig. 1d. Afterwards, cyc(x1 . . . xi−1Apxi+1 . . . xn) can be fused with
the component cp yielding Fig. 1e. This means that a direct derivation w =
x1 . . . xi−1u1 . . . ukxi+k . . . xn → x1 . . . xi−1v1 . . . vlxi+k . . . xn = w′ in CG
can be simulated by a derivation H

∗=⇒H ′ in SFG(CG) in such a way that
H ′ contains the connected component cyc(w′)act,i+k provided that H contains
cyc(w)act,j for some j ∈ {1, . . . , n}, a copy of cp, and enough copies of the com-
ponents cx for x ∈ N ∪ T . The derivation may start with moving the act-loop
from j to i and finish with applying the rule spl(p) followed by the applica-
tion of fr(Ap). Consequently, a derivation S

∗−→
P

w in CG induces a derivation

Z(CG) ∗=⇒H such that cyc(w)act,m for some m is a connected component of
H, because it can be done step by step and Z(CG) contains cyc(S)act,1 and the
components cx for x ∈ N ∪T and cp for p ∈ P . The latter ones can be multiplied
as much as needed, and the start cycle is a special case of cyc(w)act,j . Finally,
the act-loop can be fused with the component • act removing the act-loop from
cyc(w)act,j yielding cyc(w). If w ∈ T ∗, i.e., w ∈ L(CG), then cyc(w) is terminal
in SFG(CG) such that cyc(w) ∈ L(SFG(CG)). This proves

cyc(L(CG)) = {cyc(w) | w ∈ L(CG)} ⊆ L(SFG(CG)).

A closer look reveals further properties of the derivation process in SFG(CG)
starting from Z(CG). Each derived graph has exactly one cycle as a connected
component either of the form cyc(w)act,j for some w ∈ (N ∪T)∗ or cyc(uAyv) for
some u, v ∈ (N∪T)∗ and for a fusion symbol Ay with y ∈ N∪T ∪P as long as the
cycle is not multiplied. The components cx for x ∈ N ∪T and cp for p ∈ P cannot
be spliced because the act-loops are attached to nodes without outgoing edges.
The second component that results from splicing besides the cycles contains
an edge labeled with a complementary splicing label that is neither a fusion

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 13

symbol nor a complementary fusion symbol nor a terminal symbol. Hence, one
cannot get rid of these edges so that these components never contribute to the
generated language. The components cx and cp can contribute to the language,
but only by fusions with the cycles. Finally, the cycle cyc(w)act,j for some w ∈
T ∗ can be terminated by fusing the two complementary act-hyperedges. This
means, without loss of generality, that only derivations in SFG(CG) may be
considered which start with Z(CG), multiply the component cx and cp as needed,
apply the splicing and the corresponding fusion rule alternatively to the single
present cycle until all labels except act are terminal, and end with the act-act-
fusion. The moving of the act-loop around a cycle cyc(w)act,j does not change
the underlying string w. The substitution of • • . . .• •u1 uk by • • . . .• •v1 vl

for some p = (u1 . . . uk, v1 . . . vl) ∈ P by the respective pair of a splicing and a
fusion corresponds to a direct derivation w = xu1 . . . uky → xv1 . . . vly = w′

in CG provided that it does not match with the initial and the final section
simultaneously, i.e., w = ui . . . ukzu1 . . . ui−1 for some 1 < i < k. But this cannot
happen because one of the middle nodes of the match has the be-loop so that
splicing with the fixed disjoint context of spl(p) is not possible. Summarizing,
each string w underlying a cycle cyc(w) ∈ L(SFG(CG)) is derivable from S in
CG such that w ∈ L(CG).

Altogether, this proves the following result.

Theorem 1. Let CG = (N,T, P, S) be a Chomsky grammar and SFG(CG) the
corresponding splicing/fusion grammar. Then cyc(L(CG)) = L(SFG(CG)).

6 Transformation of Hypergraph Grammars into
Splicing/Fusion Grammars

In this section, hypergraph grammars are transformed into splicing/fusion gram-
mars in such a way that the language generated by each source grammar coin-
cides with the language generated by the target grammar. As splicing/fusion
grammars generate only connected hypergraphs due to the employed selection
mechanism, we restrict hypergraph grammars in such a way that the derivation
process preserves connectedness.

Definition 6. A hypergraph grammar HGG = (N,T, P, S) is called connective
if the following holds: For each rule r = (L ⊇ [k] b−→ R) for some k ≥ 1, each
connected component of L and R contains some gluing node, and if two gluing
nodes i, j are connected by a path of L, then the nodes b(i) and b(j) are connected
by a path in R.

It is easy to see that the application of such rules preserves connected-
ness. Therefore, the generated language L(HGG) contains only connected hyper-
graphs.

The corresponding splicing/fusion grammar

SFG(HGG) = (Z(HGG), F (HGG),M(HGG), T (HGG),SR(HGG))

is constructed as follows:

14 H.-J. Kreowski et al.

– The alphabets are F (HGG) = {Ar | r ∈ P},M(HGG) = {μ}, T (HGG) = T ,
where the type of μ is 0 and the type of Ar for r ∈ P is the number of
gluing nodes of r, the complementary fusion label is denoted by Ar, the
complementary splicing label by Âr. Moreover, F (HGG), F (HGG) = {Ar |
r ∈ P}, F̂ (HGG) = {Âr | r ∈ P},M(HGG), T are pairwise disjoint.

– The start graph Z(HGG) has the connected components S•
μ and C(r) for each

r ∈ P where S•
μ is the hypergraph S• together with an additional hyperedge

labeled by μ and C(r) for r = (L ⊇ [k] b−→ R) is R together with an additional
hyperedge yr with label Ar and attachment b(1) · · · b(k).

– The set SR(HGG) consists of the splicing rules with fixed disjoint context

spl(r) = (L ⊇ [k(Ar)]
〈1[k(Ar)],1[k(Ar)]〉←−−−−−−−−−−− [k(Ar)] + [k(Ar)]

in+ ̂in−−−−→ A•
r + Â•

r for
each r = (L ⊇ [k] b−→ R) ∈ P .

Note that the addition of a hyperedge of type 0 to a connected hypergraph
yields a connected hypergraph as both hypergraphs have the same set of nodes
and the same set of paths so that connectedness is preserved.

We want to prove now the following correctness result.

Theorem 2. Let HGG = (N,T, P, S) be a connective hypergraph grammar
and SFG(HGG) its corresponding splicing/fusion grammar. Then L(HGG) =
L(SFG(HGG)).

The proof of the theorem relies on the following pushout property.

Lemma 1. Let C be a category with coproduct (denoted by +) and pushouts.
Consider the following diagrams:

L K

H I

a

g d

m

(1)
K K + K

H I + L

〈1K , 1K〉
g ◦ a d + a

〈m, g〉

(2)
(1, 2)

Then the left diagram is a pushout if and only if the right diagram is a pushout.

Proof. Using the coproduct property of K+K, (2) commutes iff its compositions
with the two injections ini : K → K + K for i = 1, 2 commute, i.e., together
with the properties of induced morphisms (3) and (4):

g ◦ a = g ◦ a ◦ 〈1K , 1K〉 ◦ in1 =
(2)

〈m, g〉 ◦ (d + a) ◦ in1 = 〈m, g〉 ◦ inI ◦ d = m ◦ d,

(3)

g ◦ a = g ◦ a ◦ 〈1K , 1K〉 ◦ in2 =
(2)

〈m, g〉 ◦ (d + a) ◦ in2 = 〈m, g〉 ◦ inL ◦ a = g ◦ a

(4)

where inI : I → I + L and inL : L → I + L are the injections of the coproduct
I + L. While (4) holds always, (3) holds iff (1) is commutative.

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 15

Using the same arguments, the universal pushout property of (1) turns out
to be equivalent to the universal pushout property of (2).

Let i : I → X and l : L → X for some X be two morphisms with l ◦ a = i ◦ d.
If (1) is a pushout, then there is a unique x : H → X with

x ◦ m = i and x ◦ g = l. (5)

Let now k : K → X and f : I + L → X be two morphisms with

k ◦ 〈1K , 1K〉 = f ◦ (d + a). (6)

(6) is equivalent to (7) and (8):

k = k ◦ 〈1K , 1K〉 ◦ in1 = f ◦ (d + a) ◦ in1 = f ◦ inI ◦ d, (7)
k = k ◦ 〈1K , 1K〉 ◦ in2 = f ◦ (d + a) ◦ in1 = f ◦ inL ◦ a. (8)

Choosing i = f ◦ inI and l = f ◦ inL, we get a unique x : H → X with x ◦ m =
f ◦ inI and x ◦ g = f ◦ inL because (1) is a pushout. This implies:

x ◦ g ◦ a = f ◦ inL ◦ a = k, (9)
x ◦ 〈m, g〉 ◦ inI = x ◦ m = f ◦ inI , , (10)
x ◦ 〈m, g〉 ◦ inL = x ◦ g = f ◦ inL. (11)

Therefore, using the coproduct property of I + L, one gets x ◦ 〈m, g〉 = f , which
shows together with (9), that (2) is a pushout if (1) is a pushout.

Conversely, let (2) be a pushout. Let i and l be morphisms that satisfy
l ◦ a = i ◦ d. This implies:

〈i, l〉 ◦ (d + a) ◦ in1 = 〈i, l〉 ◦ inI ◦ d = i ◦ d = l ◦ a, (12)
〈i, l〉 ◦ (d + a) ◦ in2 = 〈i, l〉 ◦ inL ◦ a = l ◦ a. (13)

Using the coproduct property of K + K, (12) and (13) induce (14):

〈i, l〉 ◦ (d + a) = l ◦ a ◦ 〈1K , 1K〉. (14)

As (2) is pushout, (14) implies a unique morphism x : H → X with x◦g◦a = l◦a
and x ◦ 〈m, g〉 = 〈i, l〉 so that x ◦ m = x ◦ 〈m, g〉 ◦ inI = 〈i, l〉 ◦ inI = i and
x ◦ g = x ◦ 〈m, g〉 ◦ inL = 〈i, l〉 ◦ inL = l. In other words, (2) is pushout, which
completes the proof.

Proof (Theorem 2). We start by showing that a direct derivation H =⇒
r

H ′ for

r = (L ⊇ [k] b−→ R) ∈ P can be simulated in SFG(HGG) if H is connected.
The direct derivation is defined by the double pushout (15), (16) where a is the
inclusion of [k] into L.

16 H.-J. Kreowski et al.

L [k] R

H I H ′

a b

g d h

m m′

(15) (16)

(15, 16)

Due to the Lemma 1, the pushout (15) induces the pushout (17) so that
the application of the splicing rule spl(r) is defined and completed by the
pushout (18)

K K + K

H I + L

〈1K , 1K〉
m ◦ d

= g ◦ a d + a

〈m, g〉

(17)
K + K A•

r + Â•
r

I + L IAr,d + L
̂Ar,a

in + în

d + a d′ + a′

in′ + în′

(18)

(17, 18)
where K = [k(A)] and HA,f for H ∈ HΣ , A ∈ Σ with type k and f : [k] → H
denotes the hypergraph H with an additional hyperedge which has the attach-
ments f(1) . . . f(k) and the label A which can be constructed for the components
of a coproduct separately.

If H is connected, then IAr,d is connected because the new hyperedge con-
nects all nodes that are connected through g(L) in H. Further, the fusion of
IAr,d and C(r) = RAr,inAr is defined by the double pushout

A•
r + A

•
r K + K K

IAr,d + RAr,inAr I + R H ′′

in1 + in2 〈1K , 1K〉

d′ + b′ d + b h

⊇ m′′

(19) (20)

(19, 20)

where b′ maps the Ar-hyperedge to the corresponding hyperedge attached to R.
Due to the Lemma 1, the pushout (20) induces the pushout

[k] R

I H ′′

b

d

m′′ ◦ inI

m′′ ◦ inR(21)

(21)

As both pushouts (16) and (21) are pushouts of b and d, H ′ and H ′′ are
isomorphic.

According to the extension theorem in [5] the splicing and the fusion can
be done on every hypergraph J that has H and C(r) as connected components
yielding J =⇒

spl(r)
J −H + IAr,d +L

̂Ar,a =⇒
fr(Ar)

J − (H +C(r)+ IAr,d)+L
̂Ar,a +H ′.

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 17

If H is marked by a μ-hyperedge, then IAr,d is also marked by a μ-hyperedge
because L is not marked, but L and I together cover H. Therefore, IAr,d is
marked by a μ-hyperedge from which H ′ = H ′′ inherits the marker.

As this reasoning applies to every derivation step of a derivation
Z• =⇒

r1
. . . =⇒

rn

H in HGG , there is a derivation Z(HGG) ∗=⇒J in SFG(HGG)

such that J has a connected component Hμ, i.e., H with an additional μ-
hyperedge. The derivation can start with the multiplication of the C(r) for
r ∈ P as much as needed followed by the application of spl(ri) and fr(Ari

)
for i = 1, . . . , n to the connected component with the μ-hyperedge. If H is ter-
minal, then H is in L(HGG) as well as in L(SFG(HGG)) as H results from Hμ.
In other words, L(HGG) ⊆ L(SFG(HGG)).

The converse inclusion can be proved as follows. Consider H ∈
L(SFG(HGG)). Then there is a derivation Z(HGG) ∗=⇒J in SFG(HGG) where
J has Hμ as connected component. The derivation process has the following
property in addition to the splicing and fusion properties of μ-components (i.e.,
μ-marked connected components) as considered above: Each application of a
splicing rule produces one connected component with an F̂ -hyperedge, i.e., a
hyperedge labeled with a complementary splicing label. F̂ -hyperedges cannot be
removed. Therefore, one can assume that the given derivation does not process
these components any further. The connected component C(r) for r ∈ P in
Z(HGG) has a single F -hyperedge, i.e., a hyperedge labeled by a complemen-
tary fusion label. If a splicing rule is applied to such a connected hypergraph,
then the F -hyperedge is transmitted to one of the resulting components.

The application of a fusion rule to two such connected components preserves
one F -hyperedge. To get rid of it, one may apply a fusion rule to a single com-
ponent with an F -hyperedge or to such a component and a μ-component. In
the first case, one gets components that cannot be fused with a μ-component.
Therefore, one can assume that the given derivation has no derivation step of
this kind. In the second case, the resulting μ-component has no F -hyperedge
and no F̂ -hyperedge if the fused μ-component has none such hyperedges. In
particular, μ-components cannot be fused with each other. Therefore, one can
assume that neither the initial component S•

μ nor any derived μ-component
is multiplied in the given derivation. Moreover, it is not difficult to see that
each two derivation steps can be interchanged with each other with the excep-
tion of applying a splicing rule spl(r) followed by the application of the fusion
rule fr(Ar) with respect to the Ar-hyperedge created by the splicing. Sum-
marizing, each derivation Z(HGG) ∗=⇒J can be assumed to be in the normal
form where, besides multiplication of the C(r) for r ∈ P , the derivation steps
are an alternation between an application of a splicing rule spl(r) for some
r ∈ P and an application of the fusion rule fr(Ar), both involving the only
μ-component. As shown above, such a derivation corresponds to a derivation
S• ∗=⇒

P
H in HGG if Hμ is the μ-component of J . Provided that H is terminal,

this proves L(SFG(HGG)) ⊆ L(HGG) completing the proof.

18 H.-J. Kreowski et al.

7 Conclusion

In this paper, we have introduced splicing/fusion grammars as a device for gen-
erating hypergraph languages. Derivations operate on connected components of
hypergraphs: They can be multiplied, fixed parts can be cut off by splicing and
the attachments of complementary hyperedges can be fused. We proved that
splicing/fusion grammars can simulate Chomsky grammars on one hand and
connective hypergraph grammars on the other hand. Both results show the sig-
nificant generative power of these grammars. In particular, it is much greater
than the generative power of fusion grammars (i.e., splicing/fusion grammars
with an empty set of splicing rules). This follows from the fact that the mem-
bership problem of fusion grammars is decidable.

Further research on splicing/fusion grammars may include the following
topics.

The basic operations on hypergraphs, splicing, fusion, and multiplication,
that are employed in the derivation process of splicing/fusion grammars are
inspired and motivated by the corresponding operations in DNA computing. An
interesting question in this connection is how language-generating devices based
on DNA computing like sticker systems, insertion/deletion systems and splicing
system (see, e.g., [4]) are related to splicing/fusion grammars.

The idea behind DNA computing is to interpret tubes of DNA molecules
as data structures and chemical reactions among the molecules as computa-
tional steps. The result of a computation depends on the molecules one finds
in the tube at the end of the process. From a mathematical point of view,
a tube of molecules is a multiset of molecules, as many structurally identical
molecules may be present. In splicing/fusion grammars, molecules are replaced
by connected hypergraphs and multisets of molecules are replaced by hyper-
graphs (where a hypergraph represents a multiset of connected hypergraphs by
counting the number of isomorphic connected components). This is the reason
why the language generated by a splicing/fusion grammar consists of connected
components of derived hypergraphs. On the other hand, the restriction to con-
nected hypergraphs can be inconvenient and undesirable. Therefore, it would be
helpful to find a way to overcome the connectedness requirement.

In this paper, we use a special case of splicing where some fixed part of a
hypergraph is cut off. Moreover, in the main results of Sects. 5 and 6, the cut-off
is “junk”, as it cannot contribute to members of the generated language. But
there are various other meaningful possibilities. For example, splicing can cut a
hypergraph into two pieces that both may be useful in the further processing. Or
other positive or negative context conditions may be required. We are convinced
that interesting phenomena can be modeled and analyzed in this way.

Acknowledgment. We are greatful to the anonymous reviewers for their valuable
comments.

Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars 19

References

1. Kreowski, H.-J., Kuske, S., Lye, A.: Fusion grammars: a novel approach to the
generation of graph languages. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS,
vol. 10373, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61470-0 6

2. Kreowski, H.-J., Klempien-Hinrichs, R., Kuske, S.: Some essentials of graph trans-
formation. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.) Recent Advances in
Formal Languages and Applications. Studies in Computational Intelligence, vol. 25,
pp. 229–254. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-33461-3 9

3. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic
approaches to graph transformation part I: basic concepts and double pushout app-
roach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by
Graph Transformation. Foundations, vol. 1, pp. 163–245. World Scientific, Singapore
(1997)

4. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing — New Computing
Paradigms. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03563-
4

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. (eds.): Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-
31188-2

https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2

Synchronous Hyperedge Replacement
Graph Grammars

Corey Pennycuff, Satyaki Sikdar, Catalina Vajiac, David Chiang,
and Tim Weninger(B)

University of Notre Dame, Notre Dame, IN 46556, USA
{cpennycu,ssikdar,cvajiac,dchiang,tweninge}@nd.edu

Abstract. Discovering the underlying structures present in large real
world graphs is a fundamental scientific problem. Recent work at the
intersection of formal language theory and graph theory has found
that a Probabilistic Hyperedge Replacement Grammar (PHRG) can be
extracted from a tree decomposition of any graph. However, because
the extracted PHRG is directly dependent on the shape and contents of
the tree decomposition, rather than from the dynamics of the graph, it
is unlikely that informative graph-processes are actually being captured
with the PHRG extraction algorithm. To address this problem, the cur-
rent work adapts a related formalism called Probabilistic Synchronous
HRG (PSHRG) that learns synchronous graph production rules from
temporal graphs. We introduce the PSHRG model and describe a method
to extract growth rules from the graph. We find that SHRG rules capture
growth patterns found in temporal graphs and can be used to predict
the future evolution of a temporal graph. We perform a brief evaluation
on small synthetic networks that demonstrate the prediction accuracy of
PSHRG versus baseline and state of the art models. Ultimately, we find
that PSHRGs seem to be very good at modelling dynamics of a tempo-
ral graph; however, our prediction algorithm, which is based on string
parsing and generation algorithms, does not scale to practically useful
graph sizes.

Keywords: Graph generation · Hyperedge replacement
Temporal graphs

1 Introduction

The discovery and analysis of network patterns is central to the scientific enter-
prise. Thus, extracting the useful and interesting building blocks of a network
is critical to the advancement of many scientific fields. Indeed the most pivotal
moments in the development of a scientific field are centered on discoveries about
the structure of some phenomena [14]. For example, chemists have found that
many chemical interactions are the result of the underlying structural properties
of interactions between elements [7]. Biologists have agreed that tree structures
are useful when organizing the evolutionary history of life [8], sociologists find
c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 20–36, 2018.
https://doi.org/10.1007/978-3-319-92991-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_2&domain=pdf

Synchronous Hyperedge Replacement Graph Grammars 21

that triadic closure underlies community development [11], and neuroscientists
have found “small world” dynamics within the brain [4]. Unfortunately, current
graph research deals with small pre-defined patterns [13] or frequently reoccur-
ring patterns [15], even though interesting and useful information may be hidden
in unknown and non-frequent patterns.

Pertinent to this task are algorithms that learn the LEGO-like building blocks
of real world networks in order to gain insights into the mechanisms that underlie
network growth and evolution. In pursuit of these goals, Aguinaga et al. recently
expanded on the relationship between graph theory and formal language theory
that allows for a Hyperedge Replacement Grammar (HRG) to be extracted from
the tree decomposition of a graph [2]. In this perspective, the extracted HRG
contains the precise building blocks of the graph as well as the instructions by
which these building blocks ought to be pieced together [9,12]. In addition, this
framework is able to extract patterns of the network’s structure from small sam-
ples of the graph probabilistically via a Probabilistic HRG (PHRG) in order to
generate networks that have properties that match those of the original graph [1].

In their typical use-case, context free grammars (CFGs) and their probabilis-
tic counterpart PCFGs are used to represent and generate patterns of strings
through rewriting rules. A natural language parser, for example, learns how sen-
tences are recursively built from smaller phrases and individual words. In this
case, it is important to note that the CFG production rules used by natural lan-
guage parsers encode the way in which sentences are logically constructed, that
is, the CFG contains descriptive information about how nouns and verbs work
together to build coherent sentences. CFGs can therefore generate new sentences
that are at least grammatically correct. This is not the case with HRGs.

On the contrary, the PHRG is completely dependent on the graph’s tree
decomposition. Unfortunately, there are many ways to perform a tree decompo-
sition on a given graph, and even the optimal, i.e., minimal-width, tree decom-
position is not unique. As a result, the production rules in a standard HRG are
unlikely to represent the temporal processes that generated the graph.

In the present work we address this problem by learning rules from a temporal
graph, in which edges are added and removed at various timesteps, using a
related formalism called Synchronous CFGs. SCFGs are a lot like regular CFGs,
except that their production rules have two right hand sides, a source and a
target. SCFGs are typically used to perform natural language translation by
producing related sentences from a source language into a target language. We
reproduce an example synchronous grammar from Chiang [5] for illustration
purposes here:

S → NP1 VP2 : NP1 VP2

VP → V1 NP2 : NP2 V1

NP → i : watashi ha

NP → the box : hako wo

V → open : akemasu

22 C. Pennycuff et al.

where the subscript numbers represent links that synchronize the nonterminals
between the source and target RHSs. This grammar can then be used to gen-
erate sentences in both English and Japanese. Starting from the synchronous
starting nonterminal S1, we apply these rules to generate the following sentences
synchronously (Table 1).

Table 1. Derivation of two sentences from a synchronous CFG.

Rule English Japanese

S1 S1

1 NP2 VP3 NP2 VP3

2 NP2 V4 NP5 NP2 NP5 V4

3 i V4 NP5 watashi ha NP5 V4

4 i V4 the box watashi ha hako wo V4

5 i open the box watashi ha hako wo akemasu

From the synchronous grammar formalism we see that the production rules
encode precise translations between the source and target language. Apart from
word-to-word translations, an analysis of these rules would also show the differ-
ences in how sentences are constructed in each language. A machine translation
system would translate a sentence by parsing the given sentence using the LHS
and source-RHS rules. An application of the production rules from the result-
ing parse tree could regenerate the original source sentence if the source-RHS
was applied, or it would generate a translation into the target language if the
target-RHSs were applied instead.

Synchronous HRGs (SHRGs, pronounced “shergs”) are to HRGs as syn-
chronous CFGs are to CFGs. SHRGs have been proposed for performing natural
language understanding and generation by mapping between strings and abstract
meaning representations (AMRs), which are graphical representations of natural
language meaning.

The present work expands upon work in SHRGs with the observation that the
temporal dynamics of a graph, i.e., the changes from one timestep to another,
can be represented like a translation from a source language to a target lan-
guage. Towards this goal, this paper presents a SHRG extraction algorithm for
connected, temporal hypergraphs. We find that these SHRGs encode interesting
information about the temporal dynamics of the graph, and we show that a
parse of a graph can be used to predict its future growth.

2 Definitions

Before we describe the SHRG extraction method, some background definitions
are needed.

Synchronous Hyperedge Replacement Graph Grammars 23

A hypergraph is a tuple (V,E), where V is a finite set of vertices and E ⊆ V ∗

is a set of hyperedges, each of which is a set of zero or more vertices. A (common)
graph is a hypergraph in which every edge connects exactly two vertices.

2.1 Synchronous Hyperedge Replacement Grammars

A HRG generates hypergraphs in a way analogous to the way a context-free
grammar generates strings. It has rules of the form A → R, which means that
an edge labeled A can be rewritten with a hypergraph fragment R. A HRG
derivation starts with the start nonterminal S and applies a rule S → R to it.
The replacement R can itself have other nonterminal hyperedges, so this process
is repeated until there are no more nonterminals in the graph.

A SHRG is similar, but each production has two right-hand sides, which we
call the source RHS, RS and the target RHS, RT . A SHRG generates two graphs
by repeatedly choosing a nonterminal A and rewriting it using a production rule
A → RS : RT . We define SHRGs more formally as follows.

Definition 1. A synchronous hyperedge replacement grammar (SHRG) is a
tuple G = 〈N,T, S,P〉, where
1. N is a finite set of nonterminal symbols. Each nonterminal A has a nonneg-

ative integer rank, which we write |A|.
2. T is a finite set of terminal symbols.
3. S ∈ N is a distinguished starting nonterminal, and |S| = 0.
4. P is a finite set of production rules A → RS : RT , where

– A, the left hand side (LHS), is a nonterminal symbol.
– RS and RT comprise the right hand side (RHS) and are hypergraphs

whose edges are labeled by symbols from T ∪ N . If an edge e is labeled by
a nonterminal B, we must have |e| = |B|.

– Exactly |A| vertices of RS are designated external vertices. The other
vertices in RS and RT are called internal vertices.

– There is a partial graph isomorphism, which we call the linking relation,
between RS and RT . At minimum, the linking relation includes all the
nonterminal edges of both RS and RT . It should respect edge labels as
well as the distinction between internal and external vertices.

When illustrating SHRG rules, we draw the LHS A as a hyperedge labeled
A with arity |A|. We draw the RHS-pair as two hypergraphs separated by a
dashed vertical bar, with external vertices drawn as solid black circles and the
internal vertices as open white circles. Nonterminal hyperedges are drawn with
boxes labeled with a nonterminal symbol and a subscript index that is not part
of the nonterminal label; nonterminals with the same index are linked.

2.2 Tree Decompositions

Definition 2. A tree decomposition of a hypergraph H = (V,E) is a rooted tree
T whose nodes are called bags. Each bag η is labeled with a Vη ⊆ V and Eη ⊆ E,
such that the following properties hold:

24 C. Pennycuff et al.

1. Vertex Cover: For each v ∈ V , there is a vertex η ∈ T such that v ∈ Vη.
2. Edge Cover: For each hyperedge ei = {v1, . . . , vk} ∈ E there is exactly one

node η ∈ T such that e ∈ Eη. Moreover, v1, . . . , vk ∈ Vη.
3. Running Intersection: For each v ∈ V , the set {η ∈ T | v ∈ Vη} is connected.

Definition 3. The width of a tree decomposition is max(|Vη − 1|), and the
treewidth of a graph H is the minimal width of any tree decomposition of H.

3 Related Work

Tree decompositions and HRGs have been studied separately for some time
in discrete mathematics and graph theory literature. HRGs are conventionally
used to generate graphs with very specific structures, e.g., rings, trees, stars.
A drawback of many current applications of HRGs is that their production
rules must be manually defined. For example, the production rules that generate
a ring-graph are distinct from those that generate a tree, and defining even
simple grammars by hand is difficult or impossible. Very recently, Kemp and
Tenenbaum developed an inference algorithm that learned probabilities of the
HRG’s production rules from real world graphs, but they still relied on a handful
of rather basic hand-drawn production rules (of a related formalism called vertex
replacement grammar) to which probabilities were learned [13]. Kukluk et al.
Holder and Cook were able to define a grammar from frequent subgraphs [15],
but their methods have a coarse resolution because frequent subgraphs only
account for a small portion of the overall graph topology.

In earlier work we showed that an HRG can be extracted from a static graph
and used to generate new graphs that maintained the same global and local
properties as the original graph. We also proved under certain (impractical)
circumstances that the HRG can be used to generate an isomorphic copy of the
original graph [2].

Prior work in HRGs extract their production rules directly from a tree decom-
position, but because the tree decomposition can vary significantly, the produc-
tion rules may also vary significantly. Although good at generating new synthetic
graphs that are similar to the original graph, the production rules of HRGs do
not describe the growth process that created the graph.

4 Extracting SHRGs from Temporal Graphs

In this section, we show how to extract growth rules from temporal graphs into
a SHRG. A temporal graph represents a set of entities whose identities persist
over time, and an edge in graph H(i) represents the interaction of a set of entities
at time i. More formally,

Definition 4. A temporal graph is a finite set of vertices V together with a
sequence of graphs H(1), . . . , H(n), where for each graph H(i) = (V (i), E(i)),
V (i) ⊆ V .

Furthermore, in this paper, we assume that each H(i) is connected, so that a
vertex only appears when it becomes connected to the graph.

Synchronous Hyperedge Replacement Graph Grammars 25

4.1 Method

Figure 1 illustrates an example graph with 4 timesteps H(1), . . . , H(4). Each
timestep adds and/or deletes one or more edges as shown by bold or dashed
lines, respectively. Vertices are marked with lowercase Latin letters for illustra-
tion purposes only. Although the example graph is directed and simple, and each
edge only connects two vertices, our only requirement is that the graph must be
a single connected component.

a

b

c a

b

c

d

e

a

b

c

d

e
f

a

b

c

d

e
f

g

H(1) H(2) H(3) H(4)

Fig. 1. Example of a temporal, directed, connected graph with 4 timesteps. Bold edges
show additions within a timestep; dashed edges show deleted edges within a timestep.

η1

η2η3

η4

a

b

c

H(0) ∪ H(1)

b,c

a,c

a

b

c

d

e

H(1) ∪ H(2)

c,e

a,c,e

a,c,d

b,c,e

a

b

c

d

e
f

H(2) ∪ H(3)

c,e

a,c,e

a,c,f

a,c,d

b,c,e

a

b

c

d

e
f

g

H(3) ∪ H(4)

a,c,d

a,c,e

b,c,ea,c,f

a,d,g

G
ra
ph

U
ni
on

Tr
ee

D
ec
om

po
si
tio

n

Fig. 2. Graph unions from the running example established in Fig. 1. η1 . . . η4 corre-
spond to rules that will be extracted in Fig. 3.

In previous work, we showed that a (non-synchronous) HRG can be extracted
from a graph using its tree decomposition [2]. In the present work, we use the
same idea to extract a SHRG from a temporal graph; the primary difference
is that our goal is now to encode differences from one timestep to another in
the production rules. Our key insight is to treat two adjacent timesteps of the
graph, H(i) and H(i+1), as coming from two “languages.” Then, the evolution
of the graph can be viewed as “translation” from one language to the other.
The challenge that remains is how to extract a SHRG from two timesteps of the
temporal graph.

26 C. Pennycuff et al.

For this task, we first note that the extracted SHRG should:

1. describe the temporal dynamics of the graph,
2. generate both graphs, and
3. predict the future growth of a graph.

Our non-synchronous method uses a tree decomposition of the graph as a
guide for extracting HRG rules. In the synchronous case, we form the union of
two timesteps, H(i) ∪ H(i+1), and find a tree decomposition of the union.

The computational complexity of some downstream applications can be
improved if the extracted grammar has at most two nonterminals in each RHS,
and a rule with only one nonterminal should have at least one internal vertex
[1]. As we will see, we can ensure this by a simple normalization step on the tree
decomposition. First, if a bag η has r > 2 children, make a copy η′. The parent
of η becomes the parent of η′, and η′ becomes the parent of η, and one of the
children of η becomes a child of η′. Second, if a bag η contains the same vertices
as its only child, merge η with its child. Figure 2 shows four tree decompositions
for the four graph unions corresponding to the four timesteps of Fig. 1 (where
H(0) is understood to be the empty graph). These tree decompositions have been
binarized and pruned.

We extract a SHRG from the tree decomposition of the graph union in the
following way. The nonterminal alphabet is {S,N1,N2, . . .}, where |Ni| = i. For
brevity, we omit the superscript and simply write all the Ni as N. Let η be a bag
of the tree decomposition of H(i)∪H(i+1), let η′ be its parent, and let η1, . . . , ηm

be its children. Bag η corresponds to a SHRG production A|η′∩η| → RS : RT as
follows. Then, RS and RT are formed as follows.

– Let RS and RT be isomorphic copies of the induced subgraphs H(i)[Vη] and
H(i+1)[Vη], respectively. Vertices copied from the same vertex are linked, and
edges copied from the same edge are linked.

– In both RS and RT , mark the (copies of) vertices in η′∩η as external vertices.
– In both RS and RT , remove all edges between external nodes.
– For each ηi, create in both RS and RT a hyperedge labeled A|η∩ηi| connecting

the (copies of) vertices in η ∩ ηi. These two hyperedges are linked.

Figure 3 illustrates part of the grammar extracted from the graph originally
presented in Fig. 1. The rules shown are extracted from H(1) ∪ H(2); the rule
labeled η1 corresponds to bag η1 in the decomposition of H(1) ∪ H(2). We note
again that the node labels a–e are shown for illustration purposes only; italicized
labels x and y, which are drawn above the vertices, indicate the linking relation.

The root bag η1 in the tree decomposition has no parent. So the rule extracted
from η1 has the start nonterminal, S, as its LHS. The RHSs in η1 are isomorphic
because the subgraph induced by nodes c and e are the same in both H(1) and
H(2). This rule has two nonterminal hyperedges. The first is drawn between c
and e because the intersection of η1 and its left-child η3 is c and e. The second
nonterminal hyperedge is also drawn between c and e because the intersection
between η1 and its right-child η2 is also c and e. Next we see that η2 has a LHS

Synchronous Hyperedge Replacement Graph Grammars 27

Extracted Production Rules

LHS RHS
RS RT

LHS RHS
RS RT

η1 η2

η3 η4

S0
c

e

A2
1

A2
2

c

e

A2
1

A2
2

c eA2
∗ ac

x

ey

A2
1

ac
x

ey

A2
1

c eA2
∗

b

c
x

e
y

b

c
x

e
y c aA2

∗
d

c
x

a
y

d

c
x

a
y

Fig. 3. Rules extracted from H(1) ∪H(2) from Fig. 2. RHSs include internal and exter-
nal vertices from the union-graph, nonterminal hyperedges corresponding to each tree
decomposition node’s children, and terminal edges induced from the source and target
graphs respectively. Vertices are labeled a, b, c, d, e for illustration purposes. The labels
x and y indicate the linking relation.

of size-2, because η2 and its parent η1 have two vertices, c and e, in common; c
and e are also marked as external vertices on the RHSs. The subgraphs induced
by a, c, and e in H(1) and H(2) are drawn as RS and RT respectively, and a
nonterminal edge is drawn between a and c on both RS and RT because η2 and
its only-child η4 share vertices a and c. Finally, rules corresponding to η3 and η4
are drawn in a similar fashion, except that they do not contain any nonterminal
hyperedges on their RHSs because η3 and η4 do not have any children, i.e.,
leaf-nodes in the tree decomposition produce terminal rules in the grammar.

Note that this example only shows the rules that are extracted from one time
step. Rules will also be extracted from the other three time steps to complete
the SHRG grammar. In the frequent case that two extracted rules are identical,
we do not store the same rule twice. Instead, we generate a probabilistic SHRG,
called a PSHRG, by keeping a count of the number of times we see a rule and
then normalizing the rule counts for each unique LHS (analogous to how a PHRG
adds probabilities to an HRG). For example, if there existed an η5 that produced
a rule that was identical to η2, we would note that we saw η2 twice.

4.2 Exploring the Grammar

Using the PSHRG extraction methodology described above, our first task is to
see if the PSHRG grammar is able to capture the dynamic processes involved
within the evolution of a graph. A simple test in this task is to see if PSHRG can
model the dynamics of a known generative process like the preferential attach-
ment dynamics found in the Barabasi-Albert (BA) generative model [3].

Except for the edge deletion in H(3), the running example introduced in
Fig. 1 and used throughout this paper represents the BA generative model. This

28 C. Pennycuff et al.

Table 2. RHSs of rules extracted from a graph grown with using the Barabasi-Albert
(BA) preferential attachment process and compared with three versions of the Erdos-
Renyi (ER) random graph process. The addition of outgoing wedges in line 8 and the
attachment of an edge where one already exist in line 9 indicates that the extracted
PSHRG grammar contains the dynamic processes used to generate BA graphs.

process grows graphs by creating n-nodes and wiring them together in a partic-
ular way. Specifically, in each timestep, a new vertex is connected to the graph
by connecting m directed edges outward from the new vertex to m existing ver-
tices. The connecting vertices are chosen from within the larger graph through
a stochastic process that assigns a connecting probability proportional to the
number of in-links that each vertex already contains. Except for the deleted
edge, the graph from Fig. 1 is created with n = 7 and m = 2, where each new
vertex is connected to 2 existing vertices with a preference to attach to already
well-connected vertices. Graphs generated by the BA process have well known
properties. Most notable, for the purposes of the present work, is that this gen-
erative process is easy to visually identify.

What does the PSHRG grammar of the BA graph look like? Does the PSHRG
capture the generative process of the BA model? To answer these questions, we
generated 1000 graphs using the BA generative method with n = 10 and m = 2
over n−m timesteps. We extracted a PSHRG from these 1000 synthetic temporal
graphs. Ignoring the LHSs, we counted the graph-patterns found in RS and RT ,
and illustrate their occurrence rates in Table 2.

Synchronous Hyperedge Replacement Graph Grammars 29

We compare these rules against graphs generated by 3 variations of the Erdos-
Renyi (ER) random graph generation process [10]. The ER1 random model cre-
ates a random temporal graph by generating n vertices in the first timestep, and
then draws edges between two vertices with probability p at each timestep. ER1

therefore creates a size n graph over n(n−1) timesteps, where n(1−p) timesteps
are expected to contain no changes; when changes do occur, directed edges are
drawn between two random vertices. The second variation ER2 only counts a
timestamp if an edge is created; the random graph in this case is expected to
contain p ·n(n−1) timesteps and directed edges. The third variation ER3 creates
2 directed edges per timestep, i.e., p ·n(n−1) edges over p ·n(n−1)/2 timesteps.

We ignore nonterminal (hyper-)edges, remove unconnected nodes, and merge
isomorphic, RHSs to create the illustration shown in Table 2. Normalized counts
accompany RS and RT for the BA model and the three variants of the ER
model. Rules 1–6 contain production rules that represent patterns that do not
change from one timestep to the next; we find that the ER variants have similar
counts with an unchanged edge representing more than half of all rules. The BA
model produces some unchanged edges, but we also find that about a quarter of
the rules are unchanged wedges (rule 4). The large number of outgoing wedges
(rule 4) is indicative of the types of patterns that we expect to find in graphs
generated by the BA model. Rule 7 shows that edges can be created between
two vertices; there is only a slight difference between the BA model and ER
variants. The creation of outgoing wedges (rule 8) represents nearly 10% of the
patterns found in the BA model, but is never found in the ER variants. Rule
9 represents an interesting pattern of growth where a new vertex is attached
to an existing vertex that already has an in-edge; these patterns are found in
over 15% of BA rules, but only 1% of the ER variants. Rules 8 and 9 especially
represent what we would expect to find in a representation of the BA model.
Rule 8 has an obvious relationship with the BA model, and rule 9 represents the
preferential attachment process that is encoded into the edge wiring process of
the BA model.

In contrast, the ER variants have a large variation in their growth patterns.
Rules 10–13 show only some of the most frequent patterns. Note that the BA
model does not generate any of these rules; in fact, because loops are not possible
in the BA model, rules 3 and 12 will never be extracted from a graph generated
by the BA model.

In summary, these results show promising signs that the PSHRG does encode
information about the growth properties of the underlying model. However, the
present work only investigates the BA model in comparison to a random model.
Further work is needed to make strong claims about the representative power of
PSHRGs.

5 Predicting the Next Timestep

Here we show that PSHRGs extracted from the original temporal graph H can
be used to generate new graphs.

30 C. Pennycuff et al.

Previous work in this area has shown that HRGs (not SHRGs) are able to
generate isomorphic copies of the original graph, which is theoretically interesting
but not practically useful. Other algorithms are able to generate fixed-size graphs
of any size such that the new graphs have properties that are similar to the
original graph [1].

5.1 Method

To generate new graphs from a probabilistic HRG (PHRG), we start with the
special starting nonterminal H ′ = S. From this point, H∗ can be generated as
follows: (1) Pick any nonterminal A in H ′; (2) Find the set of rules (A → R)
associated with LHS A; (3) Randomly choose one of these rules with probability
proportional to its count; (4) Choose an ordering of its external vertices with
uniform probability; (5) Replace A in H ′ with R to create H∗; (6) Replace H ′

with H∗ and repeat until there are no more nonterminal edges.
Fixed-size generation uses algorithms built for PHRGs, which combines A →

R production rules that are identical and considers the normalized counts as
a rule’s firing probability. Prior work in fixed-size string generation has been
adapted to select a rule firing order π over the rules in the PHRG so that the
generated graph is guaranteed to be the requested size [1].

The present work extends this generation algorithm to PSHRGs in order to
generate the next timestep of a temporal graph. This process is straightforward
but surprisingly effective. Recall that PSHRG rules are of the form A → RS : RT .
We can break these rules into their respective parts to create a source-PHRG
A → RS and a target-PHRG A → RT . These two PHRGs can be later reconciled
by attaching an id to each unique rule.

Next we employ the hypergraph parsing algorithm by Chiang et al. to gener-
ate a parse tree using the rules present in the source-PHRG [6]. A rule ordering
π is constructed from Chiang et al.’s algorithm containing the rule ids from the
source-PHRG. Finally, to generate the next graph timestep, we apply the rules
from the target-PHRG according to π. Recall that the source and target sides of
the PSHRG, and thus the rules from the source-PHRG and target-PHRG, are
synchronized, i.e., they contain the same LHS and same number of vertices and
nonterminal hyperedges on the RHSs; therefore π applied to the target-PHRG
rules is guaranteed to “fire” fully and create a prediction of the next timestep.

An example parse-and-generate process is illustrated in Fig. 4 using the rules
extracted from H(1) ∪H(2) from Fig. 2 and illustrated in Fig. 3. In this example,
we parse H(1) with the source-PHRG. Among the (very) many possibilities,
Chiang et al.’s parsing algorithm finds a π of Rules 1, 2, 3, and 4. Therefore, we
are guaranteed that executing the source-PHRG over π will yield H(1).

Next, the bottom row of Fig. 4 illustrates the generation of a target graph by
executing the target-PHRG over π. This carefully constructed example shows
that the target graph is exactly the graph we were expecting to find. However
there are several practical considerations that are not shown in this example:

1. The PSHRG extracted rules from the target graph, which encodes test data
into the training model.

Synchronous Hyperedge Replacement Graph Grammars 31

Pa
rs
in
g
w
ith

so
ur
ce
-P
H
R
G

H
(1

) c a

b

d

e

A2
1

A2
2

Rule 1

b

ac

d

e

A2
1

Rule 2

a

b

c

d

e

Rule 3

A2
1

a

b

c

d

e

Rule 4

G
en
er
at
in
g
w
ith

ta
rg
et
-P
H
R
G

H
(2

) c

e

A2
1

A2
2 b

c

e

A2
1 a

b

c

e

A2
1

a

b

c

d

e

Fig. 4. Parsing graph H(1) with source-PHRG (top). Generating graph H(2) using the
target-PHRG (bottom) using the PSHRG from Fig. 3.

2. Given a source-PHRG (from a PSHRG), there are many different ways to
parse the same graph. A different π output from the graph parser may gen-
erate graphs that are wildly different than the target-graph.

To address practical consideration #1, a proper experimental setup should
not extract a PSHRG from the target-graph. Consider once again the running
example with H(0), . . . , H(4). Our task is to predict H(4) by learning a PSHRG
from H(0), . . . , H(3) (without H(3) ∪H(4)); then, H(3) is parsed with the source-
PHRG to generate π. However, it is important to note that only the target-PHRG
is guaranteed to contain the information from H(3). Therefore, it is possible that
the source-PHRG does not contain enough information to parse H(3). If the
source-PHRG fails to parse the graph, then we cannot predict a target graph.

Practical consideration #2 has two parts. First, many different parses of the
source-graph may be possible given a source-PHRG; therefore many different
πs could be created for a single source graph. Chiang et al.’s graph parser will
generate an optimal parse (i.e., the parse with the highest probability), but
there may be many equally-optimal parses. Second, unlike string parsing, which
contains many different terminal and nonterminal labels, i.e., distinct terms and
specific grammatical structures, graphs are only labeled with ‘vertex’ and ‘edge’;
although nonterminal edges do contain an arity label (latin characters in example
figures are for clarity only). The ambiguity contained in the unlabeled vertices
and edges creates a large search space for the graph parser. The graph parser,
as a result, is unable to efficiently parse large graphs with large PSHRGs.

These practical considerations result in two primary outcomes: (1) the
PSHRG extraction method may not parse some graphs, and therefore may not
work in some cases; (2) given a successful parse of the graph, a graph generated
by firing the target-PHRG over π will only generate an estimate of the target-
graph. The next section presents a small study that explores these practical
considerations across a variety of temporal graphs.

32 C. Pennycuff et al.

5.2 Graph Prediction Experiments

Here we test the ability of PSHRG to predict the future evolution of a temporal
graph. The methodology is straightforward. Given a temporal graph H with n
timesteps, we will extract a PHSRG grammar from H(1) . . . H(n−1). Then we
will use the source-PHRG from the extracted PSHRG to parse H(n−1). This
will create a rule-firing order π guaranteed to generate H(n−1) from the source-
PHRG. Because the source-PHRG and target-PHRG are synchronized in the
PSHRG, we execute the synchronized rules in the target-PHRG via π. This will
generate an estimate of H(n) we denote as H∗. Our goal is to generate H∗ that
is similar to the ground-truth graph H(n).

There are several ways to measure the similarity between H(n) and H∗. First
we compare the distributions of each graph’s in-degree, out-degree, and PageR-
ank scores. Secondly, we employ a relatively new metric called the Graphlet
Correlation Distance (GCD) [16]. The GCD measures the frequency of the vari-
ous graphlets present in each graph, i.e., the number of edges, wedges, triangles,
squares, 4-cliques, etc., and compares the graphlet frequencies of each node across
two graphs. In all cases, the evaluation metrics are distances; lower values are
better.

Existing graph parsing algorithms were built to process small, sentence-sized
graphs (in the domain of computational linguistics). Chiang et al.’s graph pars-
ing algorithm operates in polynomial time given a graph of bounded degree [6];
unfortunately, the general (hyper-)graphs that we consider do not have bounded
degree, thus the computational complexity of the graph parser on general graphs
results in impractical running times. So our test graphs must remain small for
now. Specifically, we test with graphs with 5–12 nodes. We repeat each experi-
ment 50 times and plot the mean.

For evaluation we create synthetic graphs using algorithms that generate
graphs with well known properties. In addition to the Barabasi-Albert (BA)
process discussed in Sect. 3, we also use the Powerlaw-Cluster graph (PLC) and
the GN, GNR, and GNC (i.e., “growing graph”) processes to generate temporal
graphs. Each graph process contains various parameters that can be tuned; we
use k = 2 and k = 3 for BA and include p = 0.25 and p = 0.5 for the PLC
variant, and p = 0.5 for GNR; we used the default parameters found in the
NetworkX package for the GN and GNC processes.

We compare the results of the PSHRG prediction to a random graph (ER)
and to a state-of-the-art temporal model called the Separable Temporal Expo-
nential Random Graph Model (STERGM). As a baseline, the ER “prediction”
simply generates a graph with the proper number of nodes and edges. STERGM
is a temporal-graph extension of static ERG model, which creates maximum-
likelihood estimates for various parameters like the number edges, wedges, tri-
angles, etc. within a given graph. Similar to how we extract PSHRG rules, we
train STERGM on the first n − 1 timesteps of each graph and simulate the nth

timestep.
We begin with a simple test: first we compare the number of edges found in

graphs generated by STERGM, ER, and PSHRG models to the held-out graph

Synchronous Hyperedge Replacement Graph Grammars 33

7 8 9 10

10

20

30

Nodes

Ed
ge
s

PLCp=.25

7 8 9 10
Nodes

PLCp=.50

7 8 9 10
Nodes

BA

7 8 9 10
Nodes

Growing Networks

TRUE k=2 / GN PSHRG k=2 / GN ER k= 2 / GN STERGM k=2 / GN
TRUE k=3 / GNR PSHRG k=3 / GNR ER k=3 / GNR STERGM k=3 / GNR

TRUE GNC PSHRG GNC ER GNC STERGM GNC

Fig. 5. Number of edges generated by ER, STERGM, and PSHRG graph generators
for each of the PLC, BA, and Growing Networks (GN, GNR, GNC) graph processes.

H(n). Figure 5 shows that BA, ER, and the GN-variants perform well compared
to the original graph, which is often occluded in Fig. 5 because of the close
overlap.

k = 2 k = 3

2

4

6

G
C
D

PLCp=.25

k = 2 k = 3

PLCp=.50

k = 2 k = 3

BA

GN GNR GNC

Growing Networks

PSHRG ER STERGM

Fig. 6. Graphlet Correlation Distance (GCD). Dashes represent mean GCD scores for
various graph sizes (bottom-to-top almost always represents smaller-to-larger graphs),
parameters, and models. Lower is better. PSHRG is usually the best. (Color figure
online)

Next we use the GCD to measure the correlation between the various
graphlets found in the graphs. The GCD can range from [0,+∞], where the
GCD is 0 if the two graphs are isomorphic. Colored dashes in Fig. 6 represent
the mean GCD scores comparing the graphs generated by ER, STERGM, and
PSHRG against the temporal graphs for various graph sizes. From bottom-to-
top, dashes almost always represent increasing number of nodes, i.e., the bottom
dash almost always represents a comparison with n = 5 and the top dash almost
always represents a comparison of n = 12. No dashes are missing, but may be
occluded due to overlap. However, STERGM results are missing for PLCp=.50

with k = 3 and BA with k = 3 because STERGM failed to produce any graphs
either through model degeneracy or other error. The model degeneracy problems

34 C. Pennycuff et al.

0

2

4

In
-D

e g
D
is
t

PLCp=.25 PLCp=.50 BA Growing Networks

k = 2 k = 3

0

2

4

O
ut
-D

eg
D
is
t

k = 2 k = 3 k = 2 k = 3 GN GNR GNC

PSHRG ER STERGM

Fig. 7. CVM-test statistics of in-degree (top) and out-degree (bottom) distributions for
various graph sizes (bottom-to-top almost always represents smaller-to-larger graphs),
parameters, and models. Lower is better. PSHRG and STERGM (when available)
results are competitive.

k = 2 k = 3

2

4

6

Pa
ge
R
an
k
D
is
t

PLCp=.25

k = 2 k = 3

PLCp=.50

k = 2 k = 3

BA

GN GNR GNC

Growing Network

PSHRG ER STERGM

Fig. 8. CVM-test statistics of PageRank distributions for various graph sizes (bottom-
to-top almost always represents smaller-to-larger graphs), parameters, and models.
Lower is better. STERGM gives more consistently-lower results.

are a frequent problem in ERGM and STERGM; in these cases no prediction is
output by the program. In most cases we find the PSHRG results in the low-
est GCD scores, and therefore best matches the output created by the graph
processes.

Next we compare the degree and PageRank distributions of the ground-truth
graph against STERGM, ER, and PSHRG models. We calculate the distance
between distributions using the Cramer-von Mises statistic (CVM), which is
roughly defined as the absolute distance between two CDFs. In Fig. 7 (top and
bottom) dashes represent the mean CVM-test statistic for the indegree distri-
bution and outdegree distribution respectively. These results show that PSHRG

Synchronous Hyperedge Replacement Graph Grammars 35

is competitive with or outperforms STERGM in predicting the output of the
temporal graph process.

The PageRank distances illustrated in Fig. 8 shows that PSHRG results vary
wildly. These results are peculiar because of the known correlation between
PageRank and indegree, but may also be due to assumptions made in the design
of the CVM-test.

6 Conclusions

The present work presents a method to extract synchronous grammar rules from
a temporal graph. We find that the synchronous probabilistic hyperedge replace-
ment grammar (PSHRG), with RHSs containing “synchronized” source- and
target-PHRGs, is able to clearly and succinctly represent the graph dynam-
ics found in the graph process. We also find that the source-PHRG grammar
extracted from the graph can be used to parse a graph. The parse creates a rule-
firing ordering that, when applied to the target-PHRG, can generate graphs that
are predictive of the future growth of the graph.

The PSHRG model is currently limited in its applicability due to the com-
putational complexity of the graph parser. We are confident that future work in
graph parsers will enable PSHRGs to model much larger temporal graphs. The
limitation of graph parsing however does not affect the ability of PSHRGs to
extract and encode the dynamic properties of the graph. As a result, we expect
that PSHRGs may be used to discover previously unknown graph dynamics from
large real world networks.

Acknowledgments. We thank Chiemi Matsumoto and Peter Bui for their help with
this project. This work is sponsored by grant from the US NSF IIS (16-52492).

References

1. Aguinaga, S., Chiang, D., Weninger, T.: Learning hyperedge replacement graph
grammars for graph generation. IEEE Trans. Pattern Anal. Mach. Intell. (2018).
https://doi.org/10.1109/TPAMI.2018.2810877

2. Aguinaga, S., Palacios, R., Chiang, D., Weninger, T.: Growing graphs from hyper-
edge replacement grammars. In: CIKM. ACM (2016)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. science
286(5439), 509–512 (1999)

4. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

5. Chiang, D.: An introduction to synchronous grammars. https://www.nd.edu/
∼dchiang/papers/synchtut.pdf

6. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of ACL, pp. 924–
932 (2013)

7. Clarke, B.L.: Theorems on chemical network stability. J. Chem. Phys. 62(3), 773–
775 (1975)

https://doi.org/10.1109/TPAMI.2018.2810877
https://www.nd.edu/~dchiang/papers/synchtut.pdf
https://www.nd.edu/~dchiang/papers/synchtut.pdf

36 C. Pennycuff et al.

8. Doolittle, W.F., Bapteste, E.: Pattern pluralism and the tree of life hypothesis.
Proc. Nat. Acad. Sci. 104(7), 2043–2049 (2007)

9. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.
Handb. Graph Grammars 1, 95–162 (1997)

10. Erdos, P., Rényi, A.: On the evolution of random graphs. Bull. Inst. Internat. Stat.
38(4), 343–347 (1961)

11. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380
(1973)

12. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0013875

13. Kemp, C., Tenenbaum, J.B.: The discovery of structural form. Proc. Nat. Acad.
Sci. 105(31), 10687–10692 (2008)

14. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press,
Chicago (2012)

15. Kukluk, J., Holder, L., Cook, D.: Inferring graph grammars by detecting overlap
in frequent subgraphs. Int. J. Appl. Math. Comput. Sci. 18(2), 241–250 (2008)

16. Yaveroğlu, Ö.N., Milenković, T., Pržulj, N.: Proper evaluation of alignment-free
network comparison methods. Bioinformatics 31(16), 2697–2704 (2015)

https://doi.org/10.1007/BFb0013875

CoReS: A Tool for Computing Core
Graphs via SAT/SMT Solvers

Barbara König , Maxime Nederkorn, and Dennis Nolte(B)

Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Duisburg, Germany
{barbara koenig,dennis.nolte}@uni-due.de,

maxime.nederkorn@stud.uni-due.de

Abstract. When specifying graph languages via type graphs, cores are
a convenient way to minimize the type graph without changing the graph
language, i.e. the set of graphs typed over the type graph. However, given
a type graph, the problem of finding its core is NP-hard. Using the Tool
CoReS, we automatically encode all required properties into SAT- and
SMT-formulas to iteratively compute cores by employing the correspond-
ing solvers. We obtain runtime results to evaluate and compare the two
encoding approaches.

1 Introduction

Type graphs provide a convenient typing mechanism for graphs that has been
used in many papers on graph transformation (cf. [5,7]). Type graphs specify
legal instance graphs and they can also be seen as describing a graph language,
i.e., all graphs that can be mapped into a given type graph via a graph morphism.
This view has been worked out in [4], including the study of closure properties
and decidability.

As for finite automata the question of minimizing type graphs is relevant:
given a type graph, what is the smallest graph that specifies the same language?
Such minimal graphs have been studied in graph theory under the name of cores
[10]. In [4] we have shown how cores can be exploited for invariant checking based
on type graphs. Since the computation of cores is an NP-hard problem, we have
used SAT- and SMT-solvers in order to address this problem and found that
they perform efficiently and that the SAT-solver outperforms the SMT-solver.

For instance tools that need to check for the existence of morphisms (between
several source graphs and a fixed target graph) can profit from the pre-
computation of a core graph. By minimizing the target graph, without changing
the set of graphs that can be mapped into it, computation times can be reduced
to improve the overall performance of the analysis.

For this purpose we wrote the tool CoReS, which can be embedded into other
graph transformation based tools to efficiently compute core graphs.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 37–42, 2018.
https://doi.org/10.1007/978-3-319-92991-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_3&domain=pdf
http://orcid.org/0000-0002-4193-2889
http://orcid.org/0000-0002-6170-6600

38 B. König et al.

2 Preliminaries

We first introduce graphs, graph morphisms and cores. In the context of this
paper we use edge-labelled directed graphs. Please note that the results can
easily be extended to graphs with additional node labels or even hypergraphs.

Definition 1 (Graph). Let Λ be a fixed set of edge labels. A Λ-labeled graph
is a tuple G = 〈V,E, src, tgt , lab〉, where V is a finite set of nodes, E is a finite
set of edges, src, tgt : E → V assign to each edge a source and a target node, and
lab : E → Λ is a labeling function.

Even though the above definition allows for multi-edges, in the encodings we
will not consider two parallel edges with the same label. Please note that a type
graph containing two such edges can not be minimal in the sense defined in the
following.

Definition 2 (Graph morphism). Let G,G′ be two Λ-labeled graphs. A graph
morphism ϕ : G → G′ consists of two functions ϕV : VG → VG′ and ϕE : EG →
EG′ , such that for each edge e ∈ EG it holds that srcG′(ϕE(e)) = ϕV (srcG(e)),
tgtG′(ϕE(e)) = ϕV (tgtG(e)) and labG′(ϕE(e)) = labG(e). If ϕ is bijective it is
called an isomorphism.

We will often drop the subscripts V,E and write ϕ instead of ϕV , ϕE . Last, we
will revisit the definition of retracts and cores from [10]. Cores are a convenient
way to minimize type graphs, as all type graphs specifying equivalent graph
languages, share a unique core up to isomorphism [10].

Definition 3 (Retract and core). A graph H is called a retract of a graph
G if H is a subgraph of G and in addition there exists a morphism ϕ : G → H,
which is the identity when restricted to H, i.e., ϕ|H = idH . A graph H is called
a core of G, written H = core(G), if it is a retract of G and has no proper
retracts.

Example 1. The graph H is a proper retract of G, where the inclusion ι is indi-
cated by the numbers under the nodes, while morphism ϕ is indicated by the
numbers over the nodes:

G = 1 2 3

4 5

A

A

A

B

B ϕ
�
ι

1, 4

1

2

2

3, 5

3

A A
B = H

Since the resulting graph H does have a proper retract, it is not yet a core of G.

Given a graph G and its core H, the set of graphs that can be typed over
G respectively H (i.e., the graphs for which there exists a morphism into G
respectively H) coincide.

The fact that the computation of the core is NP-hard can be easily seen from
a reduction from 3-colourability: Let T be a “triangle” graph with three nodes
and edges connecting all pairs of distinct nodes. A graph G is 3-colourable if and
only if the core of G � T (the disjoint union of G and T) is T .

CoReS: A Tool for Computing Core Graphs via SAT/SMT Solvers 39

3 Encoding Retract Properties

We encode the problem of finding a core into an SMT formula which yields a
model in form of the graph morphism ϕ : G → H if a given graph G has a proper
retract H. Once we find a retract of G, we iterate this procedure until we arrive
at the core.

Following the definitions from the previous section, the morphism into the
proper retract needs to satisfy the following three conditions:

– Graph morphism property : The morphism ϕ needs to preserve the structure.
– Subgraph property : The morphism ϕ needs to be a non-surjective endomor-

phism, i.e. it maps the graph to a proper subgraph structure of itself.
– Retract property : ϕ restricted to its image is an identity morphism.

These properties can easily be encoded into an SMT-formula, but are more
tedious to specify in a SAT-formula as we will see later. We are using the SMT-
LIB2 format [3] where every operator is used in prefix notation.

SMT-LIB2 Encoding : The encoding starts with a specification of the input graph.
Following Definition 1 we need to specify the three sets V,E and Λ. Since ϕ is
assumed to be a (non-surjective) endomorphism, we only have to specify one
graph G:

(declare-datatypes () ((V v1 . . . vN))) | (V = {v1, . . . , vn})
(declare-datatypes () ((E e1 . . . eM))) | (E = {e1, . . . , em})
(declare-datatypes () ((L A . . .))) | (Λ = {A, . . .})

Afterwards we encode the src, tgt and lab functions. For instance the graph
A

1 2

can be encoded in the following way:
(declare-fun src (E) V) | src : E → V

(declare-fun tgt (E) V) | tgt : E → V

(declare-fun lab (E) L) | lab : E → λ

(assert (= (src e1) v1)) | src(e1) = v1

(assert (= (tgt e1) v2)) | tgt(e1) = v2

(assert (= (lab e1) A)) | lab(e1) = A

Next, we specify the constraints for the searched retract morphism ϕ : G → H.
The retract morphism ϕ : G → H actually is an endomorphism ϕ′ : G → G with
img(ϕ′) = H and H ⊆ G. Therefore, we can use ϕV : V → V and ϕE : E → E.

(declare-fun vphi (V)V) |ϕV : V → V

(declare-fun ephi (E)E) |ϕE : E → E

(assert (forall ((e E)) (= (src (ephi e)) (vphi (src e))))) | src(ϕE(e)) = ϕV (src(e))
(assert (forall ((e E)) (= (tgt (ephi e)) (vphi (tgt e))))) | tgt(ϕE(e)) = ϕV (tgt(e))
(assert (forall ((e E)) (= (lab (ephi e)) (lab e)))) | lab(ϕE(e)) = lab(e)

To achieve a non-surjective morphism, we demand the existence of a node that
is not in the image of ϕ:

(assert (exists ((v1V)) not(exists ((v2V)) (= v1 (vphi v2)))))

40 B. König et al.

Last, we need to specify that for ϕ : G → H the retract property ϕ|H = idH

holds. We rephrase this requirement in the following way:

∀x ∈ G
((∃y ∈ G (ϕ(y) = x)

)
=⇒ ϕ(x) = x

)
(1)

Every element in the image of ϕ is part of the retract and therefore always has
to be mapped to itself. This yields the last requirements in our SMT-encoding:

(assert (forall ((v1V)) (=> (exists ((v2V)) (= v1 (vphi v2))) (= v1 (vphi v1)))))
(assert (forall ((e1 E)) (=> (exists ((e2 E)) (= e1 (ephi e2))) (= e1 (ephi e1)))))

This completes the SMT-encoding. We will now encode the same properties
using propositional logic only. Therefore we need to additionally specify con-
straints in order to be able to describe functions.

SAT Encoding : Since in this paper we are working with directed edge-labelled
graphs without parallel edges, an edge mapping of a morphism can always be
deduced from its corresponding source and target node mappings and vice versa.
Therefore, for every possible edge mapping, we encode solely the option to map
its related source and target nodes in the corresponding way. Our set of atomic
propositions A has size |A| = |V × V |. For a pair of nodes (x, y) ∈ V × V the
atomic proposition A � Ax-y ≡ true iff ϕV (x) = y holds.

First, we need to specify the function property of the retract morphism, i.e.
every node is mapped to exactly one node:

∧
x∈V

∨
y∈V

(
Ax-y ∧ (∧

z∈V \{y}
¬Ax-z

)) | ∀x∃!y ϕV (x) = y

Next, the input graph structure is used to specify valid source and target node
mappings. For any edge label λ ∈ Λ let Eλ = {e ∈ E | lab(e) = λ} be the
equivalence class of edges sharing the same label. For two edges e, e′ ∈ Elab(e)

sharing the same label, a label preserving edge mapping ϕE(e) = e′ directly
induces (ϕV (src(e)) = src(e′)) ∧ (ϕV (tgt(e)) = tgt(e′)). Therefore, we get:

∧
e∈E

∨
e′∈Elab(e)

((
Asrc(e)-src(e′)

) ∧ (
Atgt(e)-tgt(e′)

))

To encode that we are searching for a proper subgraph, we specify that there
exists one node which has no pre-image in ϕ and to encode the retract prop-
erty from Definition 3, we adjust the predicate logic formalization above (1):

∨
x∈V

(∧
y∈V

¬Ay-x
)

|∃x∀y ϕ(y) �= x
∧

x∈V

((∨
y∈V

Ay-x
) ⇒ Ax-x

)
|ϕ|H = idH

While the SMT encoding is less ad-hoc and easier to read and understand for
a human, the slightly larger SAT encoding yields better runtime results when
searching for a core graph.

CoReS: A Tool for Computing Core Graphs via SAT/SMT Solvers 41

4 Benchmarks and Conclusion

To evaluate the encodings, a tool named CoReS (Computation of Retracts
encoded as SMT/SAT) has been implemented in Python. The tool, a short
user manual and some examples are available on GitHub [1]. CoReS provides
both a graphical user interface and a command-line interface. The tool generates
SMT/SAT formulas from graphs which are passed to the corresponding solvers.
CoReS can use any SMT-solver which supports the SMT-LIB2 format. For our
set of examples we employed the SMT-solver Z3 [6] and the SAT-solver Lim-
boole [2]. The results are parsed as soon as the SAT/SMT-solver terminates and
produces a model for the formula. If there is a model, it yields a valid graph
morphism into a retract and therefore CoReS computes the retract and restarts
the encoding/solving process on the smaller graph until the solvers can not find
a model anymore. In that case, the last input graph is the searched core.

We ran CoReS on randomly generated graphs which were generated using the
model introduced in [9] which is closely related to the well known Erdős-Rényi
model [8]. We used a Windows workstation with 4.5 GHz, i7-7700k CPU and
16GB RAM to compute average runtime results in seconds. We generated 125
random graphs each for a fixed number of nodes |V |, a fixed number of edge
labels |Λ| and a fixed probability ρ for the existence of an edge and report
average runtimes. Our runtime results are the following:

ρ · |V | · |Λ|
0.5 0.8 1.0 1.2 1.5

|V| |Λ| SAT SMT SAT SMT SAT SMT SAT SMT SAT SMT

16
1 .075 .116 .078 .344 .078 .733 .071 1.17 .070 3.01
2 .067 .155 .096 .463 .080 1.12 .079 2.11 .078 4.21
3 .063 .172 .100 .548 .074 1.14 .071 2.02 .073 4.09

32
1 .301 .620 .306 4.58 .396 12.4 .424 27.4 .500 67.5
2 .389 1.08 .407 7.27 .415 14.9 .447 37.6 .450 121
3 .322 1.52 .383 5.27 .365 19.3 .391 40.3 .382 110

Additional tests have shown that the SAT-based approach can be used on
graphs consisting of 200 nodes, to compute cores with an average runtime of 556s.
Due to the preprocessing of CoReS, the runtime of the SAT encoding becomes
slightly better with more edge labels. For larger graphs consisting of more than
200 nodes, Limboole often crashed without providing any model.

Overall our SAT-based approach outperforms our straightforward SMT-
based encoding for the computation of core graphs. It has to be taken into
account that for the SAT-based approach we used preprocessing to reduce the
number of atomic propositions. This preprocessing step, which only adds atomic
propositions which conform to the structure preservation of a morphism, in com-
bination with the already smaller exploration space of a SAT formula compared
to an SMT formula, can explain the runtime results.

42 B. König et al.

References

1. CoReS: https://github.com/mnederkorn/CoReS. Accessed 22 Feb 2018
2. Limboole: http://fmv.jku.at/limboole/index.html. Accessed 19 Feb 2018
3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard - Version 2.0. In: Pro-

ceedings of the 8th International Workshop on Satisfiability Modulo Theories (SMT
2010), Edinburgh, Scotland, July 2010

4. Corradini, A., König, B., Nolte, D.: Specifying graph languages with type graphs.
In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 73–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-61470-0 5

5. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae
26(3/4), 241–265 (1996)

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2006). https://doi.org/10.1007/3-540-31188-2

8. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae (Debrecen)
6, 290–297 (1959)

9. Gilbert, E.N.: Random graphs. Ann. Math. Statist. 30(4), 1141–1144 (1959)
10. Nešetřil, J., Tardif, C.: Duality theorems for finite structures (characterising gaps

and good characterisations). J. Comb. Theor. Ser. B 80, 80–97 (2000)

https://github.com/mnederkorn/CoReS
http://fmv.jku.at/limboole/index.html
https://doi.org/10.1007/978-3-319-61470-0_5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-31188-2

Graph Transformation Formalisms

Graph Surfing by Reaction Systems

Hans-Jörg Kreowski1(B) and Grzegorz Rozenberg2,3

1 Department of Computer Science, University of Bremen,
Bibliothekstr. 5, 28359 Bremen, Germany

kreo@informatik.uni-bremen.de
2 Leiden Institute of Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
g.rozenberg@liacs.leidenuniv.nl

3 Department of Computer Science, University of Colorado,
Boulder, CO 80309-0347, USA

Abstract. In this paper, we introduce graph-based reaction systems
as a generalization of set-based reaction systems, a novel and well-
investigated model of interactive computation. Graph-based reaction sys-
tems allow us to introduce a novel methodology for graph transformation,
which is not based on the traditional “cut, add, and paste” approach,
but rather on moving within a “universe” graph B (surfing on B) from a
subgraph of B to a subgraph of B, creating subgraph trajectories within
B. We illustrate this approach by small case studies: simulating finite
state automata, implementing a shortest paths algorithm, and simulat-
ing cellular automata.

1 Introduction

The goal of this paper is to introduce a novel framework for graph transfor-
mation. It results from extending set-based reaction systems to graph-based
reaction systems. We introduce the main notions and illustrate the framework
by considering three case studies: a simulation of finite state automata, a parallel
shortest-path algorithm, and a simulation of cellular automata.

The concept of reaction systems was introduced about ten years ago (see [9])
and has been intensely studied since then (see, e.g., [3,5–8,10,11,14,21,22]). It
was inspired by the functioning of living cells and the original motivation was
to provide a formal framework for the modeling of biochemical processes taking
place in the living cell. It turned out to be a novel and actively investigated
paradigm of interactive computation interesting also for modeling of information
processing beyond biochemistry. The original notion of reaction systems and
their interactive processes is purely set-theoretic. In this paper, we enhance the
framework by a graph-based level of description so that graph-related problems
and models can be handled in a natural way.

A graph-based reaction system consists of a finite background graph and a
set of reactions. A reaction has three components: a reactant graph, an inhibitor
which is a pair consisting of a set of nodes and a set of edges, and a product
c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 45–62, 2018.
https://doi.org/10.1007/978-3-319-92991-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_4&domain=pdf

46 H.-J. Kreowski and G. Rozenberg

graph. Reactant and product are subgraphs of the background graph while the
inhibitor consists of a subset of the set of nodes together with a subset of the
set of edges of the background graph. Reactions specify basic transformations of
states which are subgraphs of the background graph. A reaction is enabled by
a state if the reactant is a subgraph of the state and no nodes or edges of the
inhibitor are present in the state. The dynamics of a reaction system is defined
by discrete interactive processes. In one step of a process, all enabled reactions
are applied simultaneously and the union of their product graphs forms the
successor state. This means that the processing is deterministic and parallel.
Since the successor state T ′ of a state T consists of the product graphs of all
reactions enabled on T , a node or an edge is sustained, i.e., it is also present
in T ′, only if it is produced by one of the enabled reactions. In this sense, each
consecutive graph produced by an interactive process is a “new” graph.

Most approaches to rule-based graph transformation consider abstract graphs
meaning that the graph resulting from a rule application is uniquely constructed
up to isomorphism. In our framework, reactions are applied to subgraphs of
a concrete background graph yielding subgraphs. Therefore, the processing of
graphs in graph-based reaction systems may be seen as a kind of surfing in
analogy to the surfing on the Internet by following links, where our “websites”
are subgraphs and our “links” are reactions.

The paper is organized as follows. After the preliminaries recalling the basic
notions and notations of graphs in Sect. 2, Sect. 3 presents the notion of graph-
based reaction systems and their interactive processes. In Sect. 4 finite-state
automata are simulated by reaction systems operating on the state graphs of
the automata. The computational potential of graph-based reaction systems is
illustrated in Sect. 5 where a parallel shortest-path algorithm is considered. In
Sect. 6, the well-known computational model of cellular automata is simulated
by graph-based reaction systems. Discussion in Sect. 7 concludes the paper.

2 Preliminaries

In this section, the basic notions and notations to be used in this paper concern-
ing graphs are recalled.

A (simple, directed, and edge-labeled) graph is a system G = (V,Σ,E) where
V is a finite set of nodes, Σ is a finite set of edge labels, and E V × V × Σ is a
set of edges.

For an edge e = (v, v′, x), v is called the source of e, v′ the target of e, and x
the label of e. An edge e with label x is an x-edge, and if source and target are
equal, then it is also called an x-loop or a loop. The components V , Σ, and E
of G are also denoted by VG, ΣG, and EG respectively. The set of all graphs is
denoted by G. We reserve a special label ∗ which is always included in each label
alphabet Σ. An edge labeled by ∗ can be considered as unlabeled. The label ∗ is
used only for this purpose and to simplify the notation, it is omitted in drawings
when used.

For graphs G and H such that ΣH = ΣG, H is a subgraph of G, denoted
by H sub G, if VH ⊆ VG, and EH ⊆ EG. The inclusion, the union, and the

Graph Surfing by Reaction Systems 47

intersection of subgraphs are defined componentwise. Thus, for subgraphs H and
H ′ of a graph G with Σ = ΣH = ΣH′ , H ∪ H ′ = (VH ∪ VH′ , Σ,EH ∪ EH′) and
H ∩ H ′ = (VH ∩ VH′ , Σ,EH ∩ EH′). Obviously, the union and the intersection
of subgraphs of G are subgraphs of G.

For a graph G = (V,Σ,E), an ordered pair (X,Y) such that X ⊆ V and
Y ⊆ E is called a selector of G. Note that X and Y are “independent” of each
other: X may contain nodes that are neither sources nor targets of edges in Y
and Y may contain edges such that their sources and targets are not in X.

The inclusion, union, and intersection of selectors are defined componentwise,
i.e., for selectors P = (X,Y) and P ′ = (X ′, Y ′), P ⊆ P ′ if X ⊆ X ′ and Y ⊆ Y ′,
P ∪ P ′ = (X ∪ X ′, Y ∪ Y ′), and P ∩ P ′ = (X ∩ X ′, Y ∩ Y ′) respectively.

Subgraphs and selectors are closely related to each other. Given a selec-
tor P = (X,Y) of a graph G, P induces a subgraph of G, denoted by
ind(P), by adding all sources and targets of edges of Y to X, i.e., ind(P) =
(X ∪ {v, v′ | (v, v′, x) ∈ Y }, Σ, Y). This subgraph induction preserves inclusion,
union, and intersection, i.e., for all selectors P and P ′ of G, P ⊆ P ′ implies
ind(P) sub ind(P ′), ind(P ∪ P ′) = ind(P) ∪ ind(P ′), and ind(P ∩ P ′) =
ind(P) ∩ ind(P ′).

On the other hand, given a subgraph H of a graph G, its selector is U(H) =
(VH , EH). The operation U is called extraction. Obviously, extraction preserves
inclusion, union and intersection, i.e., for all subgraphs H and H ′ of G, H sub H ′

implies U(H) ⊆ U(H ′), U(H ∪ H ′) = U(H) ∪ U(H ′), and U(H ∩ H ′) = U(H) ∩
U(H ′). It is easy to see that the induced subgraph of the extraction of a subgraph
yields the subgraph back, i.e., for all subgraphs H of G, ind(U(H)) = H The
other way around, the selector of a subgraph induced by some selector P contains
P , i.e. P ⊆ U(ind(P)). As a consequence, we get for each selector P of a graph
G and for each subgraph H of G that P ⊆ U(H) if and only if ind(P) sub H.

Some special kinds of subgraphs are used in this paper. Given a graph G with
Σ = ΣG, a node v ∈ VG induces a subgraph Out(v) = ({v} ∪ {v′ | (v, v′, x) ∈
EG, v �= v′, x ∈ Σ}, Σ, {(v, v′, x) ∈ EG | v′ ∈ VG, v �= v′, x ∈ Σ}, called the
out-neighborhood of v. Its set of nodes consists of v and its out-neighbors and its
set of edges consists of the outgoing edges of v. Moreover, a subgraph consisting
of an x-loop and the attached node v is denoted by loop(v, x). The empty graph
(∅, Σ, ∅) is denoted by ∅.

Finally, we use IN to denote the set of natural numbers (including 0) and
IN+ to denote the set of positive integers.

3 Reaction Systems on Graphs

In this section, the basic notions and notations of reaction systems on graphs are
introduced. While the original notion of reaction systems is purely set-theoretic,
the concept is carried over to graphs and subgraphs instead of sets and subsets.
Let us first recall the original notions concerning reaction systems.

A set-based reaction system A consists of a finite background set S and a
finite set of reactions A each of which is of the form b = (X,Y,Z), where X,Y,Z

48 H.-J. Kreowski and G. Rozenberg

are non-empty subsets of S such that X ∩ Y = ∅. The components X,Y,Z are
called the sets of reactants, inhibitors, and products of b, respectively. States are
subsets of the background set S. A reaction b = (X,Y,Z) is enabled by a state
T if X ⊆ T and Y ∩ T = ∅. The application of b to T yields the successor state
which is the union of the products of all enabled reactions.

In graph-based reaction systems, the background set is replaced by a back-
ground graph, and the states and the components of reactions are replaced by
subgraphs with one exception. We use both nodes and edges as inhibitors, where
we may use edges as inhibitors without necessarily forbidding their sources and
targets. Therefore, we define inhibitors as selectors which leads to the following
notion of a (graph-based) reaction.

Definition 1 (reaction). Let B be a graph. A reaction over B is a triple b =
(R, I, P) where R and P are non-empty subgraphs of B and I is a selector of
B such that I ∩ U(R) = ∅. R is called reactant graph, I is called inhibitor, and
P is called product graph. The reaction b is called uninhibited if the inhibitor is
empty, i.e. I = (∅, ∅).

We use the notations Rb, Ib and Pb to denote R, I and P , respectively.
Next we formalize the application of a reaction and of a set of reactions to a

graph (which is a subgraph of the “universe” graph B).

Definition 2 (state, enabled reaction, result). Let B be a graph.

1. A state of B is a subgraph of B.
2. A reaction b = (R, I, P) over B is enabled by a state T , denoted by enb(T),

if R sub T and I ∩ U(T) = ∅.
3. The result of a reaction b on the state T is resb(T) = Pb if enb(T) and

resb(T) = ∅ otherwise.
4. The result of a set of reactions A over B on a state T is resA(T) =⋃

b∈A resb(T).

It is important to notice (since the union of subgraphs of B is a subgraph of
B) the result of A on T is a subgraph of B.

We are ready now to define the notion of a graph-based reaction system.

Definition 3 (graph-based reaction system). A graph-based reaction sys-
tem is a pair A = (B,A) where B is a graph, called the background graph of A,
and A is a set of reactions over B. For a state T of B, also called a state of A,
the result of A on T is the result of A on T , i.e., resA(T) = resA(T).

Thus a graph-based reaction system A = (B,A) is basically a set of reactions
A. In specifying A, we also specify its background graph B which is a sort of a
“universe” of A, as for each reaction b ∈ A both Rb and Pb are subgraphs of B,
and Ib = (X,Y) is such that X is a subset of the set of nodes of B and Y is a
subset of the set of edges of B.

We are interested in dynamic processes associated with A which determine
graph transformations specified by A. Such processes are defined as follows.

Graph Surfing by Reaction Systems 49

Definition 4 (interactive process). Let A = (B,A) be a graph-based reac-
tion system.

1. An interactive process in A is an ordered pair π = (γ, δ) such that γ, δ are
sequences of subgraphs of B, γ = C0, . . . , Cn and δ = D0, . . . , Dn for some
n ∈ IN+ where Di = resA(Ci−1 ∪ Di−1) for i = 1, . . . , n. The sequence γ is
the context sequence, the sequence δ is the result sequence, and the sequence
τ = T0, . . . , Tn with Ti = Ci ∪ Di for i = 0, . . . , n is the state sequence.

2. If the context sequence γ is such that Ci = ∅ for i = 0, . . . , n, then π is
context-independent.

Since the successor state T ′ of a state T is the union of product graphs of all
reactions enabled on T , a node or an edge of T is sustained, i.e., it is also present
in T ′, only if it is produced by one of the enabled reactions. In this sense, each
consecutive graph generated by an interactive process is a “new” graph.

When π is context-independent, then Ti = Di for i = 0, . . . , n meaning that
the result sequence and state sequence coincide and that the state sequence
describes the whole process determined by its initial state T0 = D0. Therefore,
whenever context-independent processes are considered, we will just focus on
their state sequences.

The notion of graph-based reaction systems is chosen in such a way that
set-based reaction systems (where also uninhibited reactions are allowed) can
be seen as the special case where the background graphs are discrete (one can
forget then the empty set of edges and the set of edge labels, and the remaining
set of nodes forms the background set of a set-based reaction system).

The choice of selectors (rather than subgraphs) as inhibitors is significant
and desirable. Having a subgraph as inhibitor would require that forbidding
an edge would imply also forbidding its source and target nodes, which is too
restrictive. On the other hand, choosing reactants and products as subgraphs
seems to be a good choice. As pointed out in the preliminaries, a selector is
included in the selector extracted from a subgraph if and only if its induced
subgraph is included in the given subgraph. Therefore, it does not make any
difference whether reactants are chosen as subgraphs or selectors. However, if
one would define products as selectors, then the union of the products of all
enabled reactions would not always be a subgraph so that one would have to
define a successor state as the induced subgraph of this union. But this is equal
to the union of the induced subgraphs of the involved selectors. Therefore, by
using subgraphs to define products we avoid an additional subgraph induction.

For an interactive process π of a graph-based reaction system A over B,
its state sequence τ = T0, . . . , Tn is a sequence of subgraphs of B. Hence, the
consecutive steps of π define a trajectory T0, . . . , Tn of subgraphs of B. In other
words, following π through its state sequence, we surf on B moving from a
subgraph of B to a subgraph of B. Therefore, π can be seen as a process of
consecutive graph transformations beginning with T0 and leading to Tn. In this
way, we deal here with graph transformations determined by graph surfing.

50 H.-J. Kreowski and G. Rozenberg

4 Simulating Finite State Automata

To demonstrate how interactive processes work that are not context-
independent, finite state automata are transformed into graph-based reaction
systems such that the recognition of strings is modeled by certain interactive
processes that run on the state graphs of the automata.

Let F = (Q,Σ, φ, s0, F) be a finite state automaton with the set of states Q,
the set of input symbols Σ, the state transition function φ : Q × Σ → Q, the
initial state s0 ∈ Q, and the set of final states F ⊆ Q. Then the corresponding
graph-based reaction system A(F) = (B(F), A(F)) is constructed as follows.

The background graph extends the state graph of F by a run-loop at each
node and an extra node with a loop for each input symbol. Formally, B(F) =
(Q ∪ {input}, Σ ∪ {init, fin, run, ∗}, E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) with E1 =
{(s, φ(s, x), x) | s ∈ Q,x ∈ Σ}, E2 = {(s0, s0, init)}, E3 = {(s′′, s′′, fin) |
s′′ ∈ F}, E4 = {(s, s, run) | s ∈ Q}, and E5 = {(input, input, x) | x ∈ Σ}. The
subgraph resulting from removing the run-loops and the node input and its loops
is the state graph gr(F) of F , while gr(F)− denotes the state graph without the
init-loop. The node input with its loops represents the input alphabet. The
run-loops are used in the interactive processes.

The set of reactions A(F) consists of seven types of uninhibited reactions
given by drawings below.

1. replacing the init-loop by the run-loop: (s0init , (∅, ∅),

s0run),

2. sustaining nodes of the state graph: (s , (∅, ∅) , s) for s ∈ Q,

3. sustaining transition edges: (s φ(s, x)x , (∅, ∅), s φ(s, x)x)

for s ∈ Q,x ∈ Σ with s �= φ(s, x),

4. sustaining transition loops: (sx , (∅, ∅) , sx)

for s ∈ Q,x ∈ Σ with s = φ(s, x),

5. sustaining final-state loops: (s′′fin , (∅, ∅) , s′′fin) for s′′ ∈ F ,

6. moving along transition edges due to input symbol:

(s φ(s, x)run x inputx , (∅, ∅) , φ(s, x)run)

for s ∈ Q,x ∈ Σ with s �= φ(s, x),
7. staying at transition loops due to input symbol:

(srun x inputx , (∅, ∅) , srun)

for s ∈ Q,x ∈ Σ with s = φ(s, x).
Let us consider now interactive processes given by context sequences of the

form cs(x1 · · · xn) = ∅, loop(input, x1), . . . , loop(input, xn), ∅ for n ∈ IN+ and
xi ∈ Σ for i = 1, . . . , n. Moreover, cs(λ) for the empty string λ ∈ Σ∗ denotes the

Graph Surfing by Reaction Systems 51

context sequence ∅, ∅. Obviously, this establishes a one-to-one correspondence
between Σ∗ and cs(Σ∗) = {cs(w) | w ∈ Σ∗}.

Let π(x1 · · · xn) denote the interactive process that has cs(x1 · · · xn), for n ∈
IN+ and xi ∈ Σ for i = 1, . . . , n, as its context sequence and D0, . . . , Dn+1 with
D0 = gr(F) as its result sequence. In all reaction steps, the state graph without
the init-loop gr(F)− is sustained due to the sustaining reactions of type 2 to 5,
i.e., gr(F)− is a subgraph of Di for i = 1, . . . , n + 1.

In the first step, the first reaction is enabled replacing the init-loop by a run-
loop. From then on this reaction is not enabled ever again because the init-loop
is never recreated. In each consecutive reaction step i + 1 for i = 1, . . . , n, the
result graph Di+1 has a single run-loop at some node si and is accompanied
by the context graph loop(input, xi) so that exactly one of the run-reactions is
enabled putting the run-loop at node φ(si, xi).

In the case of the interactive process π(λ) that has cs(λ) = ∅, ∅ as its context
sequence and D0,D1 as its result sequence with D0 = gr(F), one gets D1 =
gr(F)− ∪ loop(s0, run), as only the first reaction is enabled by gr(F) and its
application replaces the init-loop by the run-loop.

To illustrate how these interactive processes look like, let us consider the
automaton Fxy∗x with the state graph given by the upper right graph D0 in
Fig. 1 and the context sequence

cs(xyyx) = ∅, loop(input, x), loop(input, y), loop(input, y), loop(input, x), ∅.

The resulting interactive process is given in Fig. 1.
We will demonstrate now that recognition processes in F correspond to spe-

cific processes in A(F). This is stated in the following lemma.

Lemma 1. Let F = (Q,Σ, φ, s0, F) be a finite state automaton. Let cs(w)
be the context sequence of w ∈ Σ∗. Let w = uv for some u, v ∈ Σ∗ with
length(u) = i. Let D(u) be the (i + 1)-th result graph of the interactive process
π(w). Then D(u) = gr(F)− ∪ loop(φ∗(s0, u), run).

Proof. The proof is by induction on i.
Induction base: Let i = 0, i.e. u = λ. Then D(λ) is the result of the first

reaction step. Therefore, D(λ) = gr(F)− ∪ loop(s0, run) as pointed out above.
This proves the statement for i = 0 because s0 = φ∗(s0, λ) by definition of φ∗.

Induction step: Consider w = uxv with length(u) = i and length(ux) = i+1.
By the induction hypothesis, one gets D(u) = gr(F)− ∪ loop(φ∗(s0, u), run).
And the successor result graph is D(ux) = gr(F)− ∪ loop(φ(φ∗(s0, u), x), run)
as described above. This proves the statement for i + 1, because φ∗(s0, ux) =
φ(φ∗(s0, u), x) by definition of φ∗. This completes the proof.

The lemma allows one to relate the recognition of strings by finite state
automata to certain interactive processes. Let F = (Q,Σ, φ, s0, F) be a finite
state automaton. An interactive process given by the context sequence cs(w) can
be considered as accepting w ∈ Σ∗ if the final result graph D(w) contains the
subgraph loop(s′′, run) ∪ loop(s′′, fin) for some s′′ ∈ F , meaning that the run-
loop ends up in a final state. Accordingly, the accepted language of A(F) can be

52 H.-J. Kreowski and G. Rozenberg

C0 = ∅ D0 =

1 2 3

4

init

y

fin

x, y

x x

y
x, y

C1 = inputx D1 =

1 2 3

4

run

y

fin

x, y

x x

y
x, y

C2 = inputy D2 =

1 2 3

4

run

y

fin

x, y

x x

y
x, y

C3 = inputy D3 =

1 2 3

4

run

y

fin

x, y

x x

y
x, y

C4 = inputx D4 =

1 2 3

4

run

y

fin

x, y

x x

y
x, y

C5 = ∅ D5 =

1 2 3

4

runy

fin

x, y

x x

y
x, y .

Fig. 1. An interactive-process sample

Graph Surfing by Reaction Systems 53

defined as L(A(F)) = {w ∈ Σ∗ | loop(s′′, run) ∪ loop(s′′, fin) sub D(w), s′′ ∈
F}.

It follows then by Lemma 1 that the recognized language of a finite state
automaton and the accepted language of the corresponding graph-based reaction
system coincide.

Theorem 1. Let F be a finite state automaton and A(F) the corresponding
graph-based reaction system. Then L(F) = L(A(F)).

Proof. By definition, w ∈ L(F) implies φ∗(s0, w) ∈ F . By Lemma 1, D(w)
contains the subgraph loop(φ∗(s0, w), run) Therefore, w ∈ L(A(F)) if and only
if the node φ∗(s0.w) carries a fin-loop. This implies that φ∗(s0, w) ∈ F , which
completes the proof.

5 Computing Shortest Paths

Graph-based reaction systems can be used to check graph properties and to
compute functions on graphs. This is demonstrated by the family of graph-
based reaction systems SHORT (n) = (B(n), A(n)) for n ∈ IN+ that compute
the lengths of shortest paths from an initial node.

The background graph is the complete unlabeled directed graph with n nodes
B(n) = ([n], {∗}, [n] × [n] × {∗}) with the set of nodes [n] = {1, . . . , n} and all
pairs of nodes as unlabeled edges, i.e. ∗ is the label of all edges.

The set A(n) of reactions consists of two reactions for each pair (i, j) ∈
[n] × [n] of nodes with i �= j:

1. (i j , (∅, {(j, j, ∗)}) , j),

2. (i j , (∅, {(j, j, ∗)}) , i j).

The first reaction moves a loop from the source of an edge to its target
provided that there is no loop on the target node. The second reaction sustains
an edge together with its source and its target provided that the target carries
no loop. Thus edges incoming to nodes with loops are not sustained. Loops are
never sustained. A node is sustained only if it is the source or the target of a
sustained edge. These reactions are a good illustration of the usefulness of using
selectors (rather than subgraphs) as inhibitors.

To see what happens in context-independent interactive processes of this
reaction system, consider the example in Fig. 2 where the process is represented
by its state sequence. It starts with a state that is equipped with a single loop
attached to node 2. In the resulting state of the first reaction step, the nodes 3,
4 and 5 have loops, after the second step, the nodes 6 and 7 have loops, after
the third step, the nodes 8 and 9 have loops, and after the forth step, the node

54 H.-J. Kreowski and G. Rozenberg

T0 = 1 2 4 7 9 10

3 6

5 8

T1 = 2 4 7 9 10

3 6

5 8

T2 = 4 7 9 10

63

85

T3 =

8

7 9 10

6

T4 = 9 10

T5 = ∅ .

Fig. 2. The state sequence of a context-independent interactive process of SHORT(10)

10 has a loop. In other words, the number of steps in which a node gets a loop
corresponds to the length of the shortest path from node 2 to this node.

In general, one can prove the following result.

Theorem 2. Let τ = T0, . . . , Tm for some m ∈ IN+ be the state sequence of a
context-independent interactive process in the reaction system SHORT (n) for
some n ∈ IN+, where T0 is a state with a single loop attached to node i0. Then

Graph Surfing by Reaction Systems 55

the following holds: A node i has a loop in state Tk for some k if and only if the
length of a shortest path from i0 to i has length k.

Proof. By induction on k.
Induction base for k = 0: The node i0 is the only node with a loop in T0,

and the empty path (the path of length 0), from i0 to i0 is the shortest path of
length 0.

Induction hypothesis: The statement holds for all l ≤ k − 1 for some k ≥ 1.
Induction step: Let i be a node of Tk with a loop. Then it got its loop from a

node j in Tk−1 with a loop by a reaction of type 1 that moves the loop from j to
i along the edge (j, i). By induction hypothesis, a shortest path from i0 to j has
length k − 1. Extending this path by the edge (j, i), one gets a path from i0 to
i of length k. This must be a shortest path because otherwise i would acquire a
loop earlier in the process (by induction hypothesis). But, due to the inhibitors
of the reactions, no node gets a loop twice because all incoming edges of a node
with loop are not present in the successor state and no edges (which are not
loops) are created. This completes the proof.

6 Simulating Cellular Automata

The framework of cellular automata provides a quite old paradigm of compu-
tation with massive parallelism. The notion was introduced by von Neumann
(see [18]) and has been intensively studied since then (see, e.g., [17]). In this
section, we show that computations in cellular automata can be simulated by
interactive processes of graph-based reaction systems. The major obstacle is that
cellular automata may run on infinite networks of cells whereas reaction systems
are strictly finite.

After recalling the notion of cellular automata and their computations that
run on configurations, related graph-based reaction systems are constructed.
We demonstrate then that computations in cellular automata correspond to
interactive processes in a reasonable way.

6.1 Cellular Automata

A cellular automaton is a system C = (COL,w, k, φ, CELL,N) where COL
is a finite set of colors, w ∈ COL is a special default color, k ∈ IN+ is the
neighborhood size, φ : COLk+1 → COL is a transition function subject to the
condition φ(w, . . . , w) = w for the default color w, CELL is a set of cells,
and N = {(Ni | i = 1, . . . , n} is the neighborhood specification, where each
Ni : CELL → CELL for i = 1, . . . , k is the i-th neighborhood function. For each
v ∈ CELL, (N1(v), . . . , Nk(v)) is the neighborhood of v subject to the condition
that Ni(v) �= Nj(v) for all i, j ∈ {1, . . . , k} such that i �= j.

The triple (COL,COLk, φ) may be interpreted as a finite transition sys-
tem with the state set COL, the input alphabet COLk, and the deterministic
transition function φ. We speak about colors rather than states to avoid any

56 H.-J. Kreowski and G. Rozenberg

confusion with the states of reaction systems. The neighborhood specification N
determines, for each cell, its k neighbors ordered from 1 to k.

A configuration of C is a function α : CELL → COL such that the set of
active cells act(α) = {v ∈ CELL | α(v) �= w} is finite. Although CELL may be
infinite, each configuration is finitely specified by its set of active cells.

Given a configuration α, one gets a uniquely determined successor configu-
ration α′ : CELL → COL defined by

α′(v) = φ(α(v), α(N1(v)), . . . , α(Nk(v)))

for each v ∈ CELL.
To get the new color of a cell, the transition function is applied to the current

color of the cell and the colors of the neighbors as input. Note that, because
a w-cell can only become active if some of its neighbors are active, for each
configuration α, act(α′) is finite so that α′ is a configuration. Such a transition
from α to its successor α′ is denoted by α → α′.

Given configurations α and β, a computation (in C) from α to β of length
n ∈ IN+ is a sequence of configurations α0, α1, . . . , αn such that α = α0, β = αn,
and α0 → · · · → αn. We write α →+ β if there is a computation from α to β of
length n for some n ∈ IN+.

6.2 Related Graph-Based Reaction Systems

Cellular automata give rise to a special type of graph-based reaction systems
that simulate their computational behavior of cellular automata. This requires
to choose the proper background graphs and reactions as well as to resolve the
potential infinity of the sets of cells.

Let C = (COL,w, k, φ, CELL,N) be a cellular automaton. Then, for each
finite subset Z ⊆ CELL, the cells of interest, a graph-based reaction sys-
tem A(C, Z) = (B(C, Z), A(C, Z)) is defined as follows. The background graph
B(C, Z) = (V,Σ,E) is defined by:

V = Z ∪ {Ni(v) | v ∈ Z, i = 1, . . . , k},
Σ = COL ∪ {1, . . . , k} ∪ {∗}, and
E = {(v,Ni(v), i) | v ∈ Z, i = 1, . . . , k} ∪ {(v, v, c) | v ∈ Z, c ∈ COL} ∪
{(v, v, w) | v ∈ V \ Z}.

The set of reactions A(C, Z) consists of the following uninhibited reactions (recall
that Out(v) denotes the out-neighborhood of v, see the formal definition at the
end of Sect. 2):

(Out(v) ∪ loop(v, c) ∪ ⋃k
i=1 loop(Ni(v), ci), (∅, ∅), loop(v, φ(c, c1, . . . , ck)))

for v ∈ Z and c, ci ∈ COL, i = 1, . . . , k,
(Out(v), (∅, ∅), Out(v)) for v ∈ Z, and
(loop(v, w), (∅, ∅), loop(v, w)) for v ∈ V \ Z.

Graph Surfing by Reaction Systems 57

Here is the intuition behind the formal definition above.
The set of nodes of the background graph consists of all cells of interest and

all their neighbors. The edges that are not loops connect the cells of interest
with their neighbors (directed from each cell of interest to its neighbors), where
the labels reflect the order in the neighborhood. Moreover, there are loops at
each cell of interest, one for each color, and the cells that are not cells of interest
carry a w-loop each.

There are three kinds of reactions, all uninhibited.

1. For each cell of interest v ∈ Z and each combination (c0, c1, . . . , ck) of labels
of loops on v and all its neighbors (where the label of each cell not in Z is
w), there is exactly one uninhibited reaction such that its reactant graph is
of the form to the left and its product graph is of the form to the right:

vN1(v) . . . Nk(v)

v

c0

c1 ck

1
k

v

φ(c0, . . . , ck)

2. For each cell of interest v ∈ Z, there is exactly one uninhibited reaction such
that its reactant graph is of the form:

N1(v) . . . Nk(v)

v

1
k

and its product is identical to the reactant graph.
3. For each cell v ∈ V \ Z, there is exactly one uninhibited reaction such that

its reactant graph is of the form:

v

w

and its product is identical to the reactant graph.

To see how the reactions work, we consider well-formed states. A state
T sub B(C, Z) is well-formed if T contains all nodes and all (out-)neighborhood
edges of B(C, Z), and also one loop per node. Such a state is determined by a
function lab : VB(C,Z)) → COL fixing the labels of the loops. We use Tlab to
denote this state.

A reaction step on Tlab yields a well-formed state Tlab′ . Each node v ∈ Z
and all of its out-neighbors have single loops, so that the reaction of the first
kind with the fitting loop labels applies to the out-neighborhood of v ∈ Z,

58 H.-J. Kreowski and G. Rozenberg

sustains v and produces a loop at v. The second kind of reactions sustains
the out-neighborhood of v. The third kind of reactions sustains the w-loops
of nodes that are not cells of interest. Altogether, the resulting state is well-
formed with respect to the labeling function lab′ : VB(C,Z)) → COL with
lab′(v) = φ(lab(v), lab(N1(v), . . . , lab(Nk(v)) for v ∈ Z and lab′(v) = w oth-
erwise.

This consideration allows to relate the context-independent interactive pro-
cesses in A(C, Z)) on well-formed states with the computations in the modeled
cellular automaton. The formulation of this result makes use of the fact that
each labeling function lab : VB(C,Z)) → COL can be extended to a configuration
α(lab) : CELL → COL defined by α(lab)(v) = lab(v) for v ∈ VB(C,Z)) and
α(lab)(v) = w otherwise.

Theorem 3. Let C = (COL, k, φ, w,CELL,N) be a cellular automaton. Let
A(C, Z) be the reaction system defined by some Z ⊆ CELL. Let Tlab0 be a
well-formed state for some labeling function lab0 : VB(C,Z) → COL. Let, for
some n ∈ IN+, α(lab0) = α0 → α1 → · · · → αn be a computation in C starting
in the configuration that extends lab0 subject to the condition act(αi) ⊆ Z for
i = 1, . . . , n. Let Tlab0 → · · · → Tlabn be the state sequence of the corresponding
interactive process of the same length. Then one gets αi = α(labi) for i =
1, . . . , n.

Proof. The theorem is proven by induction on n.
We begin with the induction step. Consider α(lab0) = α0 → α1 →

· · · → αn+1. Using the induction hypothesis for n, one gets αi = α(labi)
for i = 1, . . . , n, where the labeling functions are given by the state sequence
Tlab0 → · · · → Tlabn of some interactive process. Due to the definition of a reac-
tion step, Tlabn+1 is specified by labn+1 : VB(C,Z) → COL given by labn+1(v) =
φ(labn(v), labn(N1)(v), . . . , labn(Nk)(v))) for v ∈ Z and labn+1(v) = w oth-
erwise. Now one can show that αn+1 = α(labn+1) by considering two cases.
For v ∈ Z, one obtains the following sequence of equalities using the def-
inition of αn+1, the induction hypothesis, the definition of α(lab) for some
lab, the definition of labn+1, and the definition of α(labn+1) in this order:

αn+1(v) = φ(αn(v), αn(N1(v)), . . . , αn(Nk(v)))
= φ(α(labn)(v), α(labn)(N1(v)), . . . , α(labn)(Nk(v)))
= φ(labn(v), labn(N1(v)), . . . , labn(Nk(v)))
= labn+1(v)
= α(labn+1)(v).

Finally, one can show the equality for v ∈ CELL \ Z. As act(αn+1) ⊆ Z, we
get αn+1(v) = w for all v ∈ CELL \ Z. The same holds for α(labn+1), because
α(labn+1)(v) = w for v ∈ CELL \ VB(C,Z) by definition and α(labn+1)(v) =
labn+1(v) for v ∈ VB(C,Z), but labn+1(v) = w for v ∈ VB(C,Z) \ Z due to the
definitions of α(labn+1) and labn+1.

To prove the induction base for n = 1, the argumentation of the induction
step can be repeated for α1 and α(lab1), as was done for αn+1 and α(labn+1),
using the fact that α0 = α(lab0) by definition.

Graph Surfing by Reaction Systems 59

This completes the proof.

If a computation of a cellular automaton reaches a configuration in which a
cell that is not of interest becomes active, then the related graph-based reaction
system cannot produce the color of this cell because only cells of interest can be
recolored. But if one considers an arbitrary computation of finite length, then
the set of active cells along the computation is finite so that the graph-based
reaction system with the set of active cells as the set of cells of interest or some
larger set simulates the given computation.

7 Discussion

We have introduced graph-based reaction systems as a generalization of set-
based reaction systems enhancing in this way the framework of reaction systems
so that we can deal with processing (transformation) of graphs. This framework
is illustrated by three small case studies: recognition of strings by finite state
automata through processing their state graphs, modeling of graph algorithms
through a parallel shortest-path algorithm, and modeling of parallel computation
through a simulation of cellular automata.

Graph-based reaction systems provide a novel approach to graph transfor-
mation. Traditional approaches to graph transformation (see. e.g., the handbook
volumes [13,20] and individual papers, such as [4,12,16]) follow the “cut, add,
and paste” methodology. Given a graph T , one removes some parts of it and
pastes some new parts into the remainder of T . The framework of reaction sys-
tems employs a novel, very different methodology: no “cut, add, and paste” takes
place.

Instead, the whole process of graph transformation takes place within a given
“graph universe” specified by the background graph B. Then, given a subgraph
T of B, the reactions of a graph-based reaction system together with a possible
context graph C (which is also a subgraph of B) determine the subgraph T1

which is the successor of T . In this way, T is transformed to T1 and consequently
one moves in B from its subgraph T to its subgraph T1. Iterating this procedure
(for a given sequence γ of context graphs), one moves from T1 to T2, from T2

to T3, etc. creating in B a trajectory of subgraphs of B. Each such trajectory
determines a specific way of surfing on B.

The idea of graph transformation by surfing on a given universe graph orig-
inates in [11]. The graph universe there is given by a (possibly infinite) well-
founded partial-order graph Z (called zoom structure), and the surfing is directed
by one of reaction systems given by a finite set F – each of reaction systems in
F explores a specific segment of Z. An inzoom of Z is a finite reverse walk in
Z (i.e., a walk against the directions of edges in Z). A state of Z is a finite set
of inzooms of Z, and a reaction system A over Z transforms states of Z into
states of Z (the background set of A is a subset of the set of inzooms of Z).
From a graph-theoretic point of view, each reverse walk in Z represents a finite
(one-)path graph and so each state T of Z represents a subgraph GT of Z (which

60 H.-J. Kreowski and G. Rozenberg

is the union of the path graphs of T). Therefore, moving in A from state T to
state T ′ corresponds to moving in Z from its subgraph GT to its subgraph GT ′ .

From the point of view of graph transformation, graph-based reaction systems
generalize the setup above in several ways:

(i) by allowing the background graph to be an arbitrary graph,
(ii) by allowing states as well as reactants and products to be arbitrary sub-

graphs of the background graph, and
(iii) by allowing inhibition by nodes and edges (rather than only by inzooms).

In this paper, we introduced a novel framework for graph transformation
through (interactive processes of) graph-based reaction systems. There are sev-
eral “natural” research directions to be pursued in order to develop this frame-
work.

1. Further case studies utilizing this framework should be investigated. For
example, graph-based variants of tilings or of fractals such as the approxi-
mation of the Sierpinski triangle and the evaluation of reversible circuits on
their diagrammatic representations are good candidates (see. e.g., [1,15,19]).

2. Surfing on graphs through graph-based reaction systems brings sequences of
graphs (rather than traditional sets of graphs) to the forefront of research.
Investigation of sequences of sets “generated” by set-based reaction systems
turned out to be very interesting and fruitful (see, e.g., [6,14,21,22]). Clearly,
this line of research should be pursued for sequences of graphs defined by
graph-based reaction systems.

3. A natural first step towards the understanding of the dynamics of graph-
based reaction systems is the investigation of context-independent processes.
For example, what sequences of graphs are generated by such processes?

4. An important research theme is “the structure of a system vs. its behavior”.
In the case of graph-based reaction systems it may be translated into the influ-
ence of the structure of reactions on interactive processes. For example, what
kind of processes (sequences of graphs) result from restricting the reactions
by requiring that each inhibitor I = (X,Y) is such that |Y | = 1 (or dually
that |X| = 1)? Graph-based reaction system satisfying such restriction(s) are
kind of minimal systems.

Finally, we would like to mention that another kind of relationship between
graphs and reaction systems is discussed in [2], where one considers networks of
reaction systems. Such a network is a graph where reaction systems are placed
in the nodes of the graph and then edges between nodes provide communication
channels between reaction systems placed in the corresponding nodes.

Acknowledgement. We are grateful to the anonymous reviewers for their helpful
comments.

Graph Surfing by Reaction Systems 61

References

1. Abdessaied, N., Drechsler, R.: Reversible and Quantum Circuits: Optimization and
Complexity Analysis. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31937-7

2. Bottoni, P., Labella, A., Rozenberg, G.: Networks of reaction systems. Int. J.
Found. Comput. Sci. (2018, to appear)

3. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction sys-
tems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

4. Drewes, F., Habel, A., Kreowski, H.-J.: Hyperedge replacement graph grammars
(Chap. 2). In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation: Foundations, vol. 1, pp. 95–162. World Scientific
Publishing Co., Singapore (1997)

5. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Combinatorics of life and death for
reaction systems. Int. J. Found. Comput. Sci. 21(3), 345–356 (2010)

6. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions defined by reaction sys-
tems. Int. J. Found. Comput. Sci. 22(1), 167–178 (2011)

7. Ehrenfeucht, A., Petre, I., Rozenberg, G.: Reaction systems: a model of computa-
tion inspired by the functioning of the living cell. In: Konstantinidis, S., Moreira,
N., Reis, R., Shallit, J. (eds.) The Role of Theory in Computing, pp. 11–32. World
Scientific Publishing Co., Singapore (2017)

8. Ehrenfeucht, A., Rozenberg, G.: Events and modules in reaction systems. Theoret.
Comput. Sci. 376(1–2), 3–16 (2007)

9. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae
75(1–4), 263–280 (2007)

10. Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theoret.
Comput. Sci. 410(4–5), 310–322 (2009)

11. Ehrenfeucht, A., Rozenberg, G.: Zoom structures and reaction systems yield explo-
ration systems. Int. J. Found. Comput. Sci. 25(4–5), 275–305 (2014)

12. Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In:
Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73,
pp. 1–69. Springer, Heidelberg (1979). https://doi.org/10.1007/BFb0025714

13. Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of
Graph Grammars and Computing by Graph Transformation: Concurrency, Paral-
lelism, and Distribution, vol. 3. World Scientific Publishing Co., Singapore (1999)

14. Formenti, E., Manzoni, L., Porreca, A.E.: Fixed points and attractors of reaction
systems. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS,
vol. 8493, pp. 194–203. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08019-2 20

15. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman, New York
(1987)

16. Janssens, D., Rozenberg, G.: Graph grammars with neighbourhood-controlled
embedding. Theoret. Comput. Sci. 21, 55–74 (1982)

17. Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334(1–3),
3–33 (2005)

18. von Neumann, J.: The general and logical theory of automata. In: Jeffress, L.
(ed.) Cerebral Mechanisms in Behavior - The Hixon Symposium. Wiley, New York
(1951)

19. Peitgen, H., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science.
Springer, Berlin (2004). https://doi.org/10.1007/b97624

https://doi.org/10.1007/978-3-319-31937-7
https://doi.org/10.1007/978-3-319-31937-7
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1007/978-3-319-08019-2_20
https://doi.org/10.1007/978-3-319-08019-2_20
https://doi.org/10.1007/b97624

62 H.-J. Kreowski and G. Rozenberg

20. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations, vol. 1. World Scientific Publishing Co., Singapore
(1997)

21. Salomaa, A.: Functions and sequences generated by reaction systems. Int. J. Found.
Comput. Sci. 466(4–5), 87–96 (2012)

22. Salomaa, A.: On state sequences defined by reaction systems. In: Constable, R.L.,
Silva, A. (eds.) Logic and Program Semantics. LNCS, vol. 7230, pp. 271–282.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29485-3 17

https://doi.org/10.1007/978-3-642-29485-3_17

Probabilistic Graph Programs for
Randomised and Evolutionary Algorithms

Timothy Atkinson(B) , Detlef Plump , and Susan Stepney

Department of Computer Science, University of York, York, UK
{tja511,detlef.plump,susan.stepney}@york.ac.uk

Abstract. We extend the graph programming language GP 2 with prob-
abilistic constructs: (1) choosing rules according to user-defined proba-
bilities and (2) choosing rule matches uniformly at random. We demon-
strate these features with graph programs for randomised and evolution-
ary algorithms. First, we implement Karger’s minimum cut algorithm,
which contracts randomly selected edges; the program finds a minimum
cut with high probability. Second, we generate random graphs according
to the G(n, p) model. Third, we apply probabilistic graph programming
to evolutionary algorithms working on graphs; we benchmark odd-parity
digital circuit problems and show that our approach significantly outper-
forms the established approach of Cartesian Genetic Programming.

1 Introduction

GP2 is a rule-based graph programming language which frees programmers from
handling low-level data structures for graphs. The language comes with a concise
formal semantics and aims to support formal reasoning on programs; see, for
example, [11,19,22]. The semantics of GP2 is nondeterministic in two respects:
to execute a rule set {r1, . . . , rn} on a host graph G, any of the rules applicable
to G can be picked and applied; and to apply a rule r, any of the valid matches
of r’s left-hand side in the host graph can be chosen. GP 2’s compiler [4] has
been designed by prioritising speed over completeness, thus it simply chooses
the first applicable rule in textual order and the first match that is found.

For some algorithms, compiled GP2 programs reach the performance of
hand-crafted C programs. For example, [1] contains a 2-colouring program whose
runtime on input graphs of bounded degree matches the runtime of Sedgewick’s
program in Graph Algorithms in C. Clearly, this implementation of GP2 is not
meant to produce different results for the same input or make random choices
with pre-defined probabilities.

However, probabilistic choice is a powerful algorithmic concept which is essen-
tial to both randomised and evolutionary algorithms. Randomised algorithms
take a source of random numbers in addition to input and make random choices

T. Atkinson—Supported by a Doctoral Training Grant from the Engineering and
Physical Sciences Research Council (EPSRC) in the UK.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 63–78, 2018.
https://doi.org/10.1007/978-3-319-92991-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_5&domain=pdf
http://orcid.org/0000-0002-5036-3358
http://orcid.org/0000-0002-1148-822X
http://orcid.org/0000-0003-3146-5401

64 T. Atkinson et al.

during execution. There are many problems for which a randomised algorithm
is simpler or faster than a conventional deterministic algorithm [18]. Evolution-
ary algorithms, on the other hand, can be seen as randomised heuristic search
methods employing the generate-and-test principle. They drive the search pro-
cess by variation and selection operators which involve random choices [6]. The
existence and practicality of these probabilistic algorithms motivates the exten-
sion of graph programming languages to the probabilistic domain. Note that
our motivation is different from existing simulation-driven extensions of graph
transformation [10,14]: we propose high-level programming with probabilistic
constructs rather than specifying probabilistic models.

To cover algorithms on graphs that make random choices, we define Proba-
bilistic GP2 (P-GP 2) by extending GP 2 with two constructs: (1) choosing rules
according to user-defined probabilities and (2) choosing rule matches uniformly
at random. We build on our preliminary GP 2 extension [1], where all rule sets
are executed by selecting rules and matches uniformly at random. In contrast,
we propose here to extend GP2 conservatively and allow programmers to use
both probabilistic and conventional execution of rule sets. In addition, weighted
rules can be used to define more complex probability distributions.

We present three case studies in which we apply P-GP2 to randomised and
evolutionary algorithms. The first example is Karger’s randomised algorithm for
finding a minimum cut in a graph [12]. Our implementation of the algorithm
comes with a probabilistic analysis, which guarantees a high probability that
the cut computed by the program is minimal. The second example is sampling
from Gilbert’s G(n, p) random graph model [9]. The program generates random
graphs with n vertices such that each possible edge occurs with probability p.

To our knowledge, these graph programs are the first implementations of the
randomised algorithms using graph transformation. Our final case study is a
novel approach to evolving graphs by graph programming [2]. We use graphs to
represent individuals and graph programs as probabilistic mutation operators.
Whereas our examples of randomised algorithms allow to analyse the proba-
bilities of their results, performance guarantees for evolutionary algorithms are
difficult to derive and we therefore turn to empirical evaluation. We use the well
established approach of Cartesian Genetic Programming (CGP) as a benchmark
for a set of digital circuit synthesis problems and show that our approach out-
performs CGP significantly.

The rest of this paper is arranged as follows. Section 2 introduces the graph
programming language GP2, and Sect. 3 explains our probabilistic extension to
GP2. Sections 4 and 5 detail our applications of this extension to randomised
and evolutionary algorithms, respectively. Section 6 summarises this work and
proposes future topics of work.

2 Graph Programming with GP2

This section briefly introduces the graph programming language GP2; see [20]
for a detailed account of the syntax and semantics of the language, and [4] for

Probabilistic Graph Programs for Randomised and Evolutionary Algorithms 65

Main := link!

link(a,b,c,d,e:list)

a
1

c
2

e
3

b d
a

1
c

2
e

3

b d

where not edge(1,3)

Fig. 1. A GP 2 program computing the transitive closure of a graph.

its implementation. A graph program consists of declarations of graph transfor-
mation rules and a main command sequence controlling the application of the
rules. The rules operate on host graphs whose nodes and edges are labelled with
integers, character strings or lists of integers and strings. Variables in rules are
of type int, char, string, atom or list, where atom is the union of int and
string. Atoms are considered as lists of length one, hence integers and strings
are also lists. For example, in Fig. 1, the list variables a, c and e are used as edge
labels while b and d serve as node labels. The small numbers attached to nodes
are identifiers that specify the correspondence between the nodes in the left and
the right graph of the rule.

Besides carrying list expressions, nodes and edges can be marked. For exam-
ple, in the program of Fig. 4, the end points of a randomly selected edge are
marked blue and red to redirect all edges incident to the blue node to the red
node.

The principal programming constructs in GP 2 are conditional graph-
transformation rules labelled with expressions. The program in Fig. 1 applies
the single rule link as long as possible to a host graph. In general, any subpro-
gram can be iterated with the postfix operator “!”. Applying link amounts to
nondeterministically selecting a subgraph of the host graph that matches link’s
left graph, and adding to it an edge from node 1 to node 3 provided there is
no such edge (with any label). The application condition where not edge(1,3)
ensures that the program terminates and extends the host graph with a minimal
number of edges. Rule matching is injective and involves instantiating variables
with concrete values. Also, in general, any unevaluated expressions in the right-
hand side of the rule are evaluated before the host graph is altered (this has no
effect on the link rule because it does not contain operators).

Besides applying individual rules, a program may apply a rule set {r1, . . . , rn}
to the host graph by nondeterministically selecting a rule ri among the appli-
cable rules and applying it. Further control constructs include the sequential
composition P ; Q of programs P and Q, and the branching constructs if T
then P else Q and try T then P else Q. To execute the if-statement, test
T is executed on the host graph G and if this results in some graph, program P
is executed on G. If T fails (because a rule or set of rules cannot be matched),

66 T. Atkinson et al.

program Q is executed on G. The try-statement behaves in the same way if T
fails, but if T produces a graph H, then P is executed on H rather than on G.

Given any graph G, the program in Fig. 1 produces the smallest transitive
graph that results from adding unlabelled edges to G. (A graph is transitive if
for each directed path from a node v1 to another node v2, there is an edge from
v1 to v2.) In general, the execution of a program on a host graph may result in
different graphs, fail, or diverge. The semantics of a program P maps each host
graph to the set of all possible outcomes. GP2 is computationally complete in
that every computable function on graphs can be programmed [20].

3 P-GP2: A Probabilistic Extension of GP2

We present a conservative extension to GP2, called Probabilistic GP 2 (P-GP 2),
where a rule set may be executed probabilistically by using additional syntax.
Rules in the set will be picked according to probabilities specified by the pro-
grammer, while the match of a selected rule will be chosen uniformly at random.
When the new syntax is not used, a rule set is treated as nondeterministic and
executed as in GP2’s implementation [4]. This is preferable when executing
confluent rule sets where the discovery of all possible matches is expensive and
unnecessary.

3.1 Probabilistic Rule Sets

To formally describe probabilistic decisions in P-GP 2, we consider the applica-
tion of a rule set R = {r1, . . . , rn} to some host graph G. The set of all possible
rule-match pairs from R in G is denoted by GR:

GR = {(ri, g) | ri ∈ R and G ⇒ri,g H for some graph H} (1)

We make separate decisions for choosing a rule and a match. The first decision
is to choose a rule, which is made over the subset of rules in R that have matches
in G, denoted by RG:

RG = {ri | ri ∈ R and G ⇒ri,g H for some match g and graph H} (2)

Once a rule ri ∈ RG is chosen, the second decision is to choose a match with
which to apply ri. The set of possible matches of ri is denoted by Gri :

Gri = {g | G ⇒ri,g H for some graph H} (3)

We assign a probability distribution (defined below) to GR which is used
to decide particular rule executions. This distribution, denoted by PGR , has to
satisfy:

PGR : GR → [0, 1] such that
∑

(ri,g)∈GR
PGR(ri, g) = 1 (4)

where [0, 1] denotes the real-valued (inclusive) interval between 0 and 1.

Probabilistic Graph Programs for Randomised and Evolutionary Algorithms 67

grow_loop(n:int) [3.0]

n
1

n
1

1
2

Fig. 2. A P-GP 2 declaration of a rule with associated weight 3.0. The weight is indi-
cated in square brackets after the variable declaration.

P-GP 2 allows the programmer to specify PGR by rule declarations in which
the rule can be associated with a real-valued positive weight. This weight is listed
in square brackets after the rule’s variable declarations, as shown in Fig. 2. This
syntax is optional and if a rule’s weight is omitted, the weight is 1.0 by default.
In the following we use the notation w(r) for the positive real value associated
with any rule r in the program.

To indicate that the call of a rule set {r1, . . . , rn} should be executed prob-
abilistically, the call is written with square brackets:

[r1, . . . , rn] (5)

This includes the case of a probabilistic call of a single rule r, written [r], which
ignores any weight associated with r and simply chooses a match for r uniformly
at random. Given a probabilistic rule set call R = [r1, . . . , rn], the probability
distribution PGR is defined as follows. The summed weight of all rules with
matches in G is

∑
rx∈RG w(rx), and the weighted distribution over rules in RG

assigns to each rule ri ∈ RG the following probability:

w(ri)∑
rx∈RG

w(rx)
(6)

The uniform distribution over the matches of each rule ri ∈ RG assigns the
probability 1/ |Gri | to each match g ∈ Gri . This yields the definition of PGR for
all pairs (ri, g) ∈ GR:

PGR(ri, g) =
w(ri)∑

rx∈RG

w(rx)
× 1

|Gri | (7)

In the implementation of P-GP 2, the probability distribution PGR decides
the choice of rule and match for R = [r1, . . . , rn] (based on a random-number
generator). Note that this is correctly implemented by first choosing an applica-
ble rule ri according to the weights and then choosing a match for ri uniformly
at random. The set of all matches is computed at run-time using the existing
search-plan method described in [3]. Note that this is an implementation decision
that is not intrinsic to the design of P-GP 2.

If a rule set R is called using GP 2 curly-brackets syntax, execution follows the
GP2 implementation [4]. Hence our language extension is conservative; existing

68 T. Atkinson et al.

probability_edge(a,b,c:list)

p 1.0 - p

a
1

c
2

b
a

1
c

2

b
a

1
c

2

Fig. 3. A PGTS rule with multiple right-hand sides. The probability of each right-hand
side is the value given above it.

GP2 programs will execute exactly as before because probabilistic behaviour
is invoked only by the new syntax. The implementation of P-GP 2 is available
online1.

3.2 Related Approaches

In this section we address three other approaches to graph transformation which
incorporate probabilities. All three aim at modelling and analysing systems
rather than implementing algorithms by graph programs, which is our inten-
tion. The port graph rewriting framework PORGY [8] allows to model complex
systems by transforming port graphs according to strategies formulated in a
dedicated language. Probability distributions similar to those in this paper can
be expressed in PORGY using the ppick command which allows probabilistic
program branching, possibly through external function calls.

Stochastic Graph Transformation Systems [10] (SGTS) are an approach to
continuous-time graph transformation. Rule-match pairs are associated with con-
tinuous probability functions describing their probability of executing within a
given time window. While the continuous time model is clearly distinct to our
approach, the application rates associated with rules in SGTS describe similar
biases in probabilistic rule choice as our approach.

Closest to our approach are Probabilistic Graph Transformation Systems
(PGTS) [14]. This model assumes nondeterministic choice of rule and match
as in conventional graph transformation, but executes rules probabilistically. In
PGTS, rules have single left-hand-sides but possibly several right-hand sides
equipped with probabilities. This mixture of nondeterminism and probabilistic
execution gives rise to Markov decision processes. There are clear similarities
between our approach and PGTS: both operate in discrete steps and both can
express nondeterminism and probabilistic behaviour. However, PGTS are strict
in their allocation of behaviour; rule and match choice is nondeterministic and
rule execution is probabilistic. In our approach, a programmer may specify that
a rule set is executed in either manner. It seems possible to simulate (unnested)
PGTS in our approach by applying a nondeterministic rule set that chooses a
rule and its match followed by a probabilistic rule set which executes one of the
right-hand sides of this rule. For example, the first loop in the G(n, p) program

1 https://github.com/UoYCS-plasma/P-GP2.

https://github.com/UoYCS-plasma/P-GP2

Probabilistic Graph Programs for Randomised and Evolutionary Algorithms 69

Main := (three_node; [pick_pair]; delete_edge!; redirect!; cleanup)!

three_node(a,b,c:list)

a
1

b
2

c
3

a
1

b
2

c
3

delete_edge(a,b:list; n:int)

a
1

b
2

n
a

1
b

2

cleanup(a,b:list)

a
1

b
2

a
1

pick_pair(a,b:list; n:int)

a
1

b
2

n
a

1
b

2

redirect(a,b,c:list; n:int)

a
1

b
2

c
3

n

a
1

b
2

c
3

n

Fig. 4. The contraction procedure of Karger’s algorithm implemented in P-GP 2 (Color
figure online)

in Fig. 6 simulates a single PGTS rule; pick_edge nondeterministically chooses
a match, and [keep_edge, delete_edge] probabilistically executes some right-
hand side on the chosen match. Figure 3 visualises this single PGTS rule.

4 Application to Randomised Algorithms

4.1 Karger’s Minimum Cut Algorithm

Karger’s contraction algorithm [12] is a randomised algorithm that attempts to
find a minimum cut in a graph G, that is, the minimal set of edges to delete to
produce two disconnected subgraphs of G. The contraction procedure repeatedly
merges adjacent nodes at random until only two remain. As this algorithm is
designed for multi-graphs (without loops or edge direction), we model an edge
between two nodes as two directed edges, one in each direction. For visual sim-
plicity, we draw this as a single edge with an arrow head on each end. We assume
that input graphs are unmarked, contain only simulated directed edges, and are
connected. We also assume that edges are labelled with unique integers, as this
allows us to recover the cut from the returned solution.

Figure 4 shows a P-GP 2 implementation of this contraction procedure. This
program repeatedly chooses an edge to contract at random using the pick_pair
rule, which marks the surviving node red and the node that will be deleted
blue. The nodes’ common edges are deleted by delete_edge and all other edges
connected to the blue node that will be deleted are redirected to connect to
the red surviving node by redirect. In the final part of the loop, cleanup

70 T. Atkinson et al.

1 2 3

4 5 6 7 8 9 10 11

12 13 14

2

13

∗

Fig. 5. Karger’s contraction algorithm applied to a simple 8-node graph to produce a
minimal 2-edge cut. The probability of producing this cut is at least 1

28 ; our implemen-
tation generated this result after seven runs.

deletes the blue node and unmarks the red node. This sequence is applied as
long as possible until the rule three_node is no longer applicable; this rule is an
identity rule ensuring that a contraction will not be attempted when only 2 nodes
remain. The final graph produced by this algorithm represents a cut, where the
edges between the 2 surviving nodes are labelled with integers. The edges with
corresponding integer labels in the input graph are removed to produce a cut.

Karger’s analysis of this algorithm finds a lower bound for the probability
of producing a minimum cut. Consider a minimum cut of c edges in a graph
of n nodes and e edges. The minimum degree of the graph must be at least c,
so e ≥ n.c

2 . If any of the edges of the minimum cut are contracted, that cut
will not be produced. Therefore the probability of the cut being produced is
the probability of not contracting any of its edges throughout the algorithm’s
execution. The probability of picking such an edge for contraction is:

c

e
≤ c

n.c
2

=
2
n

(8)

Thus the probability pn of never contracting any edge in c is:

pn ≥
n∏

i=3

1 − 2
i

=
2

n(n − 1)
(9)

For example, applying Karger’s algorithm to the host graph G shown in Fig. 5
can produce one possible minimum cut (cutting 2 edges), which happens with
probability greater or equal to than 1

28 . By using rooted nodes (see [4]) it is
possible to design a P-GP 2 program that executes this algorithm on a graph
with edges E in O(|E|2) time, with pick_pair being the limiting rule taking
linear time to find all possible matches, applied |E| − 2 times.

4.2 G(n, p) Model for Random Graphs

The G(n, p) model [9] is a probability distribution over graphs of n vertices where
each possible edge between vertices occurs with probability p. Here we describe
an algorithm for sampling from this distribution for given parameters n and p.
This model is designed for simple graphs and so we model an edge between two
nodes, in a similar manner to that used in Karger’s algorithm, as two directed
edges, one in each direction.

Probabilistic Graph Programs for Randomised and Evolutionary Algorithms 71

Main := (pick_edge; [keep_edge, delete_edge])!; unmark_edge!

pick_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

unmark_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

keep_edge(a,b,c:list) [p]

a
1

c
2

b
a

1
c

2

b

delete_edge(a,b,c:list) [1.0 - p]

a
1

c
2

b a
1

c
2

Fig. 6. P-GP 2 program for sampling from the G(n, p) model for some probability p.
The input is assumed to be a connected unmarked graph with n vertices. (Color figure
online)

1 2

3 4

1 2

3 4

∗

Fig. 7. The G(n, p) program applied to a complete 4-node graph with p = 0.4. The
probability of producing this result is 0.0207.

As we are concerned with a fixed number of vertices n, we assume an
unmarked input graph with n vertices and for each pair of vertices v1, v2 exactly
one edge with v1 as its source and v2 as its target – effectively a fully con-
nected graph with two directed edges simulating a single undirected edge. Then
G(n, p) can be sampled by parameterising the GP 2 algorithm given in Fig. 6 by
p. In this algorithm, every undirected edge in the host graph is chosen nonde-
terministically by pick_edge, marking it red. Then this edge is either kept and
marked blue by keep_edge with probability p or it is deleted by delete_edge
with probability 1 − p. After all edges have either been deleted or marked blue,
unmark_edge is used to remove the surviving edges’ marks. By applying this
algorithm, each possible edge is deleted with probability 1 − p and hence occurs
with probability p, sampling from the G(n, p) model.

Sampling from the G(n, p) model yields a uniform distribution over graphs
of n nodes and M edges and each such graph occurs with probability:

pM (1 − p)(
n
2)−M (10)

Figure 7 shows a possible result when applying this algorithm to a simple
4-node input with p = 0.4.

72 T. Atkinson et al.

i2 i1

NOR OR OR

NOR OR AND AND

AND OR NOR

o2 o1

Fig. 8. An example EGGP Individual for a digital circuit problem. Outgoing edges of
nodes represent the nodes that they use as inputs; for example o2 = (i2 ↓ i1)∨ (i2 ∨ i1).

5 Application to Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a class of meta-heuristic search and optimisa-
tion algorithms that are inspired by the principles of neo-Darwinian evolution.
In its most general sense, an EA is an iterative process were a population of
individual candidate solutions to a given problem are used to generate a new
population using mutation and crossover operators. Individuals from the existing
population are selected to reproduce according to a fitness function; a measure of
how well they solve a given problem. Mutation operators make (typically small)
changes to an individual solution, whereas crossover operators attempt to com-
bine two individual solutions to generate a new solution that maintains some of
the characteristics of both parents.

Graphs have been used extensively in EAs due to their inherent generalisa-
tion of various problems of interest; digital circuits, program syntax trees and
neural networks are commonly studied examples. For example, there are exten-
sions of Genetic Programming (a type of EA that evolves program syntax trees)
that incorporate graph-like structures, such as Parallel Distributed GP [21] and
MOIST [15]. Neural Evolution of Augmenting Topologies [23] evolves artificial
neural networks treated as graph structures. Cartesian Genetic Programming
(CGP) evolves strings of integers that encode acyclic graphs [17], and has been
applied to various problems such as circuits and neural networks [24].

In [2], probabilistic graph programming (specifically, the P-GP 2 variant
described in [1]) was proposed as a mechanism for specifying mutation oper-
ators. The approach, Evolving Graphs by Graph Programming (EGGP), was
evaluated on a set of classic digital circuit benchmark problems and found to
make statistically significant improvements in comparison to an existing imple-
mentation of CGP [25]. In the rest of this section, we explain the implementation

Probabilistic Graph Programs for Randomised and Evolutionary Algorithms 73

of EGGP using probabilistic graph programming and present new benchmark
results for a set of odd parity digital circuit synthesis problems.

5.1 Evolving Graphs by Graph Programming

Individuals in EGGP represent computational networks with fixed sets of inputs
and outputs. They have a fixed set of nodes, each either representing a function,
an input or an output. Output and function nodes have input connections, which
are given by their outgoing edges. These edges are labelled with integers to
indicate the ordering of the inputs of that node; this is an necessary feature
for asymmetric functions such as division. Figure 8 shows an example EGGP
individual for digital circuit synthesis with 2 inputs, 2 outputs and function set
{AND, OR, NAND, NOR}.

Definition 1. [EGGP Individual] An EGGP Individual over function set F is a
directed graph I = {V,E, s, t, l, a, Vi, Vo} where V is a finite set of nodes and E is
a finite set of edges. s : E → V is a function associating each edge with its source.
t : E → V is a function associating each edge with its target. Vi ⊆ V is a set of
input nodes. Each node in Vi has no outgoing edges and is not associated with
a function. Vo ⊆ V is a set of output nodes. Each node in Vo has one outgoing
edge, no incoming edges and is not associated with a function. l : V → F labels
every “function node” that is not in Vi ∪ Vo with a function in F . a : E → Z

labels every edge with a positive integer.

In our implementation of EGGP in P-GP 2, function associations are encoded
by labelling a node with a string representation of its function. For example, in
Fig. 8, a node with function AND is labelled with the string “AND”. Input and
output nodes are encoded by labelling each of those nodes with a list of the form
a:b where b is the string “IN” or “OUT” respectively, and a is a list uniquely
identifying that output or input. The function a described in Definition 1 is
used to order inputs, an important feature for avoiding ambiguity in asymmetric
functions; as we deal with symmetric functions in this work these details are
omitted from Fig. 8.

In [2], two types of atomic mutations are used. The first, function mutation,
relabels a function node with a different function, where the new function is
chosen with uniform probability. The second mutation, edge mutation, redirects
an edge so that a function node or output node uses a different input. In [2] and
here, digital circuits are of interest, therefore we require mutation operators that
preserve acyclicity.

The edge mutation used, given in Fig. 9, selects an edge to mutate with
uniform probability using pick_edge. The source of this edge is marked blue and
its target is marked red. Then mark_output is applied as long as possible. This
marks all nodes, for which there is a directed path to the source of the selected
edge, blue. The remaining unmarked nodes have no such directed path to the
source of the selected edge and so can be targeted by a new edge from that source
without introducing a cycle. A new (unmarked) target is chosen with uniform

74 T. Atkinson et al.

Main := try ([pick_edge]; mark_output!; [mutate_edge]; unmark!)

pick_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

mark_output(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

unmark(a:list)

a
1

a
1

mutate_edge(a,b,c,d:list; s:string)

a
1

c
2

d:s
3

b

a
1

c
2

d:s
3

b

where s != "OUT"

Fig. 9. A P-GP 2 program for mutating an individual’s edge while preserving acyclicity.
(Color figure online)

probability using mutate_edge, executing the edge mutation. The condition of
mutate_edge means that an output node cannot be targeted, thereby preserving
the requirement that output nodes have no incoming edges. Finally, unmark
unmarks all blue marked nodes, returning the now mutated EGGP individual
to an unmarked state. The entire program is surrounded by a try statement to
prevent errors in the case that an edge is chosen to mutate but there are no valid
new targets.

In our implementation2, edge and node mutations are written as P-GP 2 pro-
grams which are compiled to C code and integrated with raw C code performing
the rest of the evolutionary algorithm. As a crossover operator has not yet been
developed for EGGP, the 1 + λ evolutionary algorithm is used, where in each
generation 1 individual survives and is used to generate λ new solutions. A more
detailed explanation of EGGP and its parameters is available in [2].

5.2 Odd-Parity Benchmark Problems

Here we compare EGGP against the commonly used graph-based evolutionary
algorithm Cartesian Genetic Programming (CGP) for a new set of benchmark
odd-parity circuit synthesis problems. CGP is a standard approach in the liter-
ature that uses a graph-based representation of solutions, but uses linear encod-
ings that do not exploit graph transformations during mutation. The problems
studied are given in Table 1 and complement the even-parity problems examined
in [2]. We use the publicly available CGP library [25] to produce CGP results.

2 https://github.com/UoYCS-plasma/EGGP.

https://github.com/UoYCS-plasma/EGGP

Probabilistic Graph Programs for Randomised and Evolutionary Algorithms 75

Table 1. Digital circuit benchmark problems.

Problem Inputs Outputs

5-bit odd parity (5-OP) 5 1

6-bit odd parity (6-OP) 6 1

7-bit odd parity (7-OP) 7 1

8-bit odd parity (8-OP) 8 1

Table 2. Results from Digital Circuit benchmarks for CGP and EGGP. The p value
is from the two-tailed Mann-Whitney U test. Where p < 0.05, the effect size from the
Vargha-Delaney A test is shown; large effect sizes (A > 0.71) are shown in bold.

Problem EGGP CGP p A

ME MAD IQR ME MAD IQR

5-OP 38,790 13728 29,490 96,372 41,555 91,647 10−18 0.86

6-OP 68,032 22,672 52,868 502,335 274,132 600,291 10−31 0.97

7-OP 158,852 69,477 142,267 1,722,377 934,945 2,058,077 10−33 0.99

8-OP 315,810 128,922 280,527 7,617,310 4,221,075 9,830,470 10−34 0.99

For both algorithms we use the following common parameters. We use the 1+λ
evolutionary algorithm with λ = 4. 100 fixed nodes are used for each individual.
Fitness is defined as the number of incorrect bits in the entire truth table of
a given individual. CGP is applied with a mutation rate of 0.04, considered to
be appropriate in [17], whereas EGGP has been observed to perform better at
lower rates and is applied with a mutation rate of 0.01.

For both algorithms, we execute 100 runs until a solution is found and mea-
sure the number of evaluations required to find a correct solution in each run.
This value approximates the effort required by an algorithm to solve a given
problem. We measure the following statistics; median evaluations (ME), median
absolute deviation (MAD), and interquartile range in evaluations (IQR). The
median absolute deviation is the median absolute difference in evaluations from
the median evaluations statistic. We test for significant differences in the median
of the two results using the non-parametric two-tailed Mann-Whitney U test [16]
and measure the effect size of significant differences using the Vargha-Delaney
A test [26].

Table 2 shows the results from running these experiments. These are con-
sistent with the results in [2], in that EGGP and its mutation operators per-
form statistically significantly better (with large effect size) for digital circuit
synthesis problems (on all of the problems studied here) than CGP under sim-
ilar conditions. These results are not intended to represent a detailed study of
the application of probabilistic graph programming to EAs. Instead they give a
flavour of promising results published elsewhere, and represent a possible app-

76 T. Atkinson et al.

roach to empirical evaluation of P-GP 2 programs when formal approximations
of behaviour are intractable.

6 Conclusion and Future Work

We have presented P-GP 2, a conservative extension to the graph programming
language GP 2 which allows a programmer to specify probabilistic executions
of rule sets, with weighted distributions over rules and uniform distributions
over matches. This language has been used to implement Karger’s randomised
algorithm for finding a minimum cut of a graph with high probability. We have
also implemented a P-GP 2 program for the G(n, p) random graph model which
generates n-node graphs in which edges between nodes exist with probability p.
Finally, we have described the application of P-GP 2 to evolutionary algorithms
in our approach EGGP. The program of this case study was evaluated empirically
on common circuit benchmark problems and found to significantly outperform
a publicly available implementation of Cartesian Genetic Programming.

There are a number of possible directions for future work. We would like
to explore which algorithms from the areas of randomised graph algorithms
and random graph generation can be described in P-GP2. Obvious examples
include randomised algorithms for checking graph connectedness [18], generating
minimum spanning trees [13] and generating random graphs according to the
model of [7]. Additionally, it would be interesting to investigate the efficiency of
using incremental pattern matching [5] in the implementation as an alternative
method for identifying all matches. Turning to evolutionary algorithms, there are
various avenues to be explored, such as using graph programming to represent
crossover operators, and combining domain knowledge and graph representations
to possibly achieve even better performance.

References

1. Atkinson, T., Plump, D., Stepney, S.: Probabilistic graph programming. In: Pre-
Proceedings of Graph Computation Models (GCM 2017) (2017)

2. Atkinson, T., Plump, D., Stepney, S.: Evolving graphs by graph programming.
In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.)
EuroGP 2018. LNCS, vol. 10781, pp. 35–51. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77553-1 3

3. Bak, C.: GP 2: efficient implementation of a graph programming language. Ph.D.
thesis, Department of Computer Science, University of York (2015). http://etheses.
whiterose.ac.uk/12586/

4. Bak, C., Plump, D.: Compiling graph programs to C. In: Echahed, R., Minas, M.
(eds.) ICGT 2016. LNCS, vol. 9761, pp. 102–117. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40530-8 7

5. Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark evaluation of incre-
mental pattern matching in graph transformation. In: Ehrig, H., Heckel, R., Rozen-
berg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 396–410. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-8 27

https://doi.org/10.1007/978-3-319-77553-1_3
https://doi.org/10.1007/978-3-319-77553-1_3
http://etheses.whiterose.ac.uk/12586/
http://etheses.whiterose.ac.uk/12586/
https://doi.org/10.1007/978-3-319-40530-8_7
https://doi.org/10.1007/978-3-319-40530-8_7
https://doi.org/10.1007/978-3-540-87405-8_27

Probabilistic Graph Programs for Randomised and Evolutionary Algorithms 77

6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series, Second edn. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-05094-1

7. Erdős, P., Rényi, A.: On random graphs. Publ. Math. (Debrecen) 6, 290–297 (1959)
8. Fernández, M., Kirchner, H., Pinaud, B.: Strategic port graph rewriting: an interac-

tive modelling and analysis framework. In: Proceedings of 3rd Workshop on Graph
Inspection and Traversal Engineering (GRAPHITE 2014). Electronic Proceedings
in Theoretical Computer Science, vol. 159, pp. 15–29 (2014). https://doi.org/10.
4204/EPTCS.159.3

9. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)
10. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. Fun-

damenta Informaticae 74(1), 63–84 (2006)
11. Hristakiev, I., Plump, D.: Checking graph programs for confluence. In: Seidl, M.,

Zschaler, S. (eds.) STAF 2017. LNCS, vol. 10748, pp. 92–108. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-74730-9 8

12. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-
cut algorithm. In: Proceedings of 4th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 1993), pp. 21–30. Society for Industrial and Applied Mathe-
matics (1993)

13. Karger, D.R.: Random sampling in matroids, with applications to graph connec-
tivity and minimum spanning trees. In: Proceedings of 34th Annual Symposium
on Foundations of Computer Science (FOCS 1993), pp. 84–93 (1993). https://doi.
org/10.1109/SFCS.1993.366879

14. Krause, C., Giese, H.: Probabilistic graph transformation systems. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp.
311–325. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-
6 21

15. Galván-López, E., Rodŕıguez-Vázquez, K.: Multiple interactive outputs in a single
tree: an empirical investigation. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi,
L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 341–350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71605-1 32

16. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

17. Miller, J.F. (ed.): Cartesian Genetic Programming. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-17310-3 2

18. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

19. Plump, D.: Reasoning about graph programs. In: Proceedings of Computing with
Terms and Graphs (TERMGRAPH 2016). Electronic Proceedings in Theoretical
Computer Science, vol. 225, pp. 35–44 (2016). https://doi.org/10.4204/EPTCS.
225.6

20. Plump, D.: From imperative to rule-based graph programs. J. Logical Algebraic
Methods Program. 88, 154–173 (2017). https://doi.org/10.1016/j.jlamp.2016.12.
001

21. Poli, R.: Parallel distributed genetic programming. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, pp. 403–431. McGraw-Hill, New York
(1999)

22. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-
grams. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 33–48.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2 3

https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.1007/978-3-662-05094-1
https://doi.org/10.4204/EPTCS.159.3
https://doi.org/10.4204/EPTCS.159.3
https://doi.org/10.1007/978-3-319-74730-9_8
https://doi.org/10.1109/SFCS.1993.366879
https://doi.org/10.1109/SFCS.1993.366879
https://doi.org/10.1007/978-3-642-33654-6_21
https://doi.org/10.1007/978-3-642-33654-6_21
https://doi.org/10.1007/978-3-540-71605-1_32
https://doi.org/10.1007/978-3-642-17310-3_2
https://doi.org/10.4204/EPTCS.225.6
https://doi.org/10.4204/EPTCS.225.6
https://doi.org/10.1016/j.jlamp.2016.12.001
https://doi.org/10.1016/j.jlamp.2016.12.001
https://doi.org/10.1007/978-3-319-09108-2_3

78 T. Atkinson et al.

23. Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolv-
ing neural network topologies. In: Proceedings of Annual Conference on Genetic
and Evolutionary Computation (GECCO 2002), pp. 569–577. Morgan Kaufmann,
Burlington (2002)

24. Turner, A.J., Miller, J.F.: Cartesian genetic programming encoded artificial neural
networks: a comparison using three benchmarks. In: Proceedings of GECCO 2013,
pp. 1005–1012. ACM (2013). https://doi.org/10.1145/2463372.2463484

25. Turner, A.J., Miller, J.F.: Introducing a cross platform open source Cartesian
genetic programming library. Genet. Program. Evol. Mach. 16(1), 83–91 (2015).
https://doi.org/10.1007/s10710-014-9233-1

26. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

https://doi.org/10.1145/2463372.2463484
https://doi.org/10.1007/s10710-014-9233-1

Graph-Rewriting Petri Nets

Géza Kulcsár(B) , Malte Lochau , and Andy Schürr

Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
{geza.kulcsar,malte.lochau,andy.schuerr}@es.tu-darmstadt.de

Abstract. Controlled graph rewriting enhances expressiveness of plain
graph-rewriting systems (i.e., sets of graph-rewriting rules) by introduc-
ing additional constructs for explicitly controlling graph-rewriting rule
applications. In this regard, a formal semantic foundation for controlled
graph rewriting is inevitable as a reliable basis for tool-based specifica-
tion and automated analysis of graph-based algorithms. Although several
promising attempts have been proposed in the literature, a comprehen-
sive theory of controlled graph rewriting capturing semantic subtleties of
advanced control constructs provided by practical tools is still an open
challenge. In this paper, we propose graph-rewriting Petri nets (GPN) as
a novel foundation for unifying control-flow and rule-application seman-
tics of controlled graph rewriting. GPN instantiate coloured Petri nets
with categorical DPO-based graph-rewriting theory where token colours
denote typed graphs and graph morphisms and transitions define tem-
plates for guarded graph-rewriting rule applications. Hence, GPN enjoy
the rich body of specification and analysis techniques of Petri nets includ-
ing inherent notions of concurrency. To demonstrate expressiveness of
GPN, we present a case study by means of a topology-control algorithm
for wireless sensor networks.

1 Introduction

Graph-rewriting systems provide an expressive and theoretically founded, yet
practically applicable and tool-supported framework for the specification and
automated analysis of complex software systems [5]. Due to their declarative
nature, graph-rewriting systems are inherently non-deterministic as (1) multi-
ple graph-rewriting rules might be simultaneously applicable to an input graph
and (2) the input graph might contain multiple matches for a rule application.
The lack of expressiveness in controlling rule applications may obstruct a precise
specification of more complicated graph-based algorithms involving sequential,
conditional, iterative (and intentionally non-terminating), or even concurrent
composition of rule applications. To tackle this problem, various tools (e.g.,
PROGRES [18], Fujaba [7] and eMoflon [14]) incorporate controlled (or, pro-
grammed) graph rewriting enriching declarative graph rewriting with additional
constructs for explicitly restricting the order and matches of rule applications.

This work has been partially funded by the German Research Foundation (DFG) as
part of project A1 within CRC1053–MAKI.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 79–96, 2018.
https://doi.org/10.1007/978-3-319-92991-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_6&domain=pdf
http://orcid.org/0000-0002-5387-8277
http://orcid.org/0000-0002-8404-753X
http://orcid.org/0000-0001-8100-1109

80 G. Kulcsár et al.

Bunke was one of the first to lay a formal foundation for controlled graph
rewriting by proposing a generalization of programmed string grammars to graph
grammars [2]. Since then, several promising attempts have been proposed to
investigate essential semantic aspects of graph-rewriting processes. Schürr pro-
poses a semantic domain for controlled graph-rewriting systems with sequenc-
ing, choice and recursion using a denotational fix-point characterization of valid
input-output graph pairs [17]. The transformation units of Kreowski et al. [13]
provide a high-level, flexible formalism to describe controlled graph-rewriting
processes, however, as in the previous case, operational semantics and formal
analysis aspects are out-of-scope. In contrast, Plump and Steinert propose an
operational semantics for the programmed graph-rewriting language GP, mostly
focusing on algorithmic aspects and data structures for executing GP programs
on input graphs [16]. Further existing approaches, like those of Guerra and de
Lara [9] as well as Wimmer et al. [20], integrate graph-based model trans-
formations and control structures of coloured Petri nets for purposes similar
to those pursued in this paper. Nevertheless, those approaches rely on out-of-
the-box model-transformation engines and, thus, do not address issues arising
from graph-rewriting theory. While algebraic higher-order nets by Hoffmann and
Mossakowski [10] provide a means to handle graphs attached to tokens in Petri
nets models, they do not extend PN transition semantics for algebraic graph
rewriting as in our work. Corradini et al. propose a trace notion and a corre-
sponding trace-based equivalence relation for (non-controlled) graph-rewriting
processes [3]. Thereupon, Corradini et al. propose graph processes as a compact
representation of sequences of rule applications incorporating a static notion of
independence inspired by Petri nets [1,4].

To summarize, existing formalisms mostly focus on particular formal aspects
concerning (mostly operational) semantics of (controlled) graph rewriting,
whereas a comprehensive theory of controlled graph rewriting is still an open
issue. From a theoretical point of view, recent approaches often lack a proper
trade-off between separation and integration of the two competing, yet par-
tially overlapping, theories involved in controlled graph rewriting, namely cate-
gorical graph-rewriting theory (e.g., DPO/SPO style) and process theory (e.g.,
operational/denotational semantics). As a result, essential theoretical concepts
established in both worlds in potentially different ways (e.g., notions of non-
determinism, conflict, independence and concurrency) may be obscured when
being combined into one formal framework, owing to the different interpre-
tations of those concepts in their respective originating theory. As a crucial
example, concurrency in graph rewriting usually amounts to independently com-
posed, yet operationally interleaved rule application steps, thus leaving open the
truly concurrent aspects of operational step semantics. From a practical point
of view, recent approaches are often incomplete, missing semantic subtleties of
advanced constructs provided by recent tools (e.g., negative application condi-
tions, propagation of sub-graph bindings to synchronize matches of rule appli-
cations etc. [7,14,19]). (Note that another important aspect of graph rewriting
in practice, namely attributed graphs, is out-of-scope for this paper.)

Graph-Rewriting Petri Nets 81

In this paper, we propose graph-rewriting Petri nets (GPN) as a novel foun-
dation of controlled graph rewriting unifying control-flow and rule-application
semantics of those systems in a comprehensive and intuitive way. To this end, we
aim at integrating constructs for expressing control-flow specifications, sub-graph
bindings and concurrency in controlled graph rewriting into a unified formal
framework which allows for automated reasoning using state-of-the-art analysis
techniques. GPN are based on coloured Petri nets (CPN) [11], a backward-
compatible extension of Petri nets introducing notions of typed data attached to
tokens (so-called colours) being processed by guarded transitions. In particular,
GPN instantiate CPN with categorical DPO-based graph-rewriting theory where
token colours denote type graphs and graph morphisms and transitions define
templates for guarded graph-rewriting rule applications. In this way, rule appli-
cations are composeable in arbitrary ways in GPN, including inherent notions
of concurrency. In addition, our GPN theory incorporates advanced constructs
including complex transition guards and (concurrent) propagation of multiple
graphs and/or sub-graph matches among rule applications. The resulting GPN
theory preserves major theoretical properties and accompanying reasoning tech-
niques of the underlying (coloured) Petri net framework such as reachability
analysis as well as natural notions of conflict and independence of controlled
graph-rewriting rule applications. To demonstrate expressiveness of GPN, we
present a case study by means of a topology-control algorithm for wireless sensor
networks and we describe how to reason about essential correctness properties
of those systems by utilizing the underlying Petri net theory.

2 An Illustrative Example: WSN Topology Control

We first illustrate controlled graph rewriting by an example: a simplified wire-
less sensor network (WSN) in which autonomous, mobile sensors communicate
through wireless channels. WSN communication topologies evolve over time (e.g.,
due to unpredictable status changes of nodes or links) thus potentially deteri-
orating topology quality. The quality of topologies is usually measured by per-
formance metrics and other properties like energy consumption of nodes. Topol-
ogy control (TC) is a widely used technique to maintain or improve quality of
topologies in a proactive manner, by continuously adapting the status of com-
munication links [15]. In a realistic WSN scenario, TC is necessarily employed
in a decentralized setting, where an external environment sporadically impacts
the current topology in an unpredictable manner. When analyzing WSN evo-
lution, those changes are interleaved with proactively performed TC actions
which might lead to inconsistent states or violations of essential WSN properties
(e.g., network connectedness). Nevertheless, existing approaches assume that TC
operates on a consistent snapshot of the entire topology thus abstracting from
realistic environment behaviors and concurrency aspects [12].

Figure 1 shows four stages in the evolution of a sample WSN topology, start-
ing from topology T0 (Fig. 1a). We denote the current physical distance between
sensor nodes by edges either being labeled short or long (S,L). From stage T0

82 G. Kulcsár et al.

n1

n3n2

n4
n5

n6

n7 n8

n9

L

S
S

LL

L L

L SL

S

(a) T0

n1

n3n2

n4
n5

n6

n7 n8

n9

S

X

S

LL

L L

S SL

S

L++

(b) TEnv
1

n1

n3n2

n4
n5

n6

n7 n8

n9

S

S

LL

L L

S S

S

(c) TTC
2

n1

n3n2

n4
n5

n6

n7 n8

n9

S

S

LL

L S

L S

L

(d) TEnv
3

Fig. 1. WSN example: topology control and environmental changes

to TEnv
1 , the environment causes the following changes: edges n2n7 and n4n5

become short (indicated by the new labels in red), a new long edge n2n8 appears
(in green with label L++), and edge n1n3 falls out due to communication fail-
ure or insufficient range (indicated by a red cross), causing the topology to lose
connectedness. In the next stage TTC

2 , a TC action inactivates the presumably
redundant long edges n3n7 and n2n8 (dashed edges) as both can be replaced
by an alternative path via two short edges with better quality measures [12].
Besides, no further long edges exist in the current topology matching this pat-
tern. In the next stage TEnv

3 , the environment changes n1n9 and n2n7 into long
edges while n4n6 becomes short. The change of n1n9 does not lead to any TC
action, whereas the change of n2n7 poses a problem now as the path which pre-
viously caused the inactivation of n3n7 is not short anymore. In contrast, edges
n4n5 and n4n6 now provide a short path enabling inactivation of edge n5n6. In a
realistic setting, the change of the distance of n2n7 might even cause a deadlock :
if the TC inactivation action is performed concurrently to the environmental
changes, the two short edges required for inactivation are not present anymore.
To summarize, TC processes should fulfill the following basic correctness prop-
erties:

– (P1a) Redundancy reduction: TC should eventually inactivate long edges for
which there are alternative paths via 2 short edges.

– (P1b) Connectedness preservation: TC must preserve connectedness of
input-topology graphs.

– (P2) Liveness: TC must not deadlock due to concurrent interactions with
environmental behaviors.

We next present a specification of TC actions as graph-rewriting rules to inves-
tigate those properties in more detail. As shown in Fig. 1, we use graphs for
representing WSN topologies, with nodes denoting sensors (names given as sin-
gle letters) and edges denoting bidirectional communication links via (volatile)
channels. In addition to length attributes S (short) and L (long), a further edge
attribute represents link status (active, inactive or unclassified) thus leading to
six possible edge types S;a, S;i, S;u, L;a, L;i and L;u, respectively. Sta-
tus active indicates that the link is currently used for communication, whereas

Graph-Rewriting Petri Nets 83

n1 x

n4

z
n5

y

S;aS;a

Lm

n1 x

n4

z
n5

y

Km

S;a S;a

n1 x

n4

z
n5

y

Rm

S;aS;a

(a) Rule ρm: Match Two Short Edges

n1

y
n4

z
L;u

Lmu

n1

y
n4

z

Kmu

L;u n1

y
n4

z

Rmu

L;u

(b) Rule ρmu: Find Long u-Edge

n1

y
n4

z
L;u

Li

n1

y
n4

z

Ki

n1

y
n4

z

Ri

L;i

(c) Rule ρi: Inactivate Long Edge

n1

y
n4

z
L;u

La

n1

y
n4

z

Ka

n1

y
n4

z

Ra

L;a

(d) Rule ρa: Activate Long Edge

Fig. 2. Graph-rewriting rules for topology-control actions

inactive links are currently not in use. Edges with status unclassified are in
use but require status revision, usually due to environmental changes. Based on
this model, the DPO graph-rewriting rules in Fig. 2a–d specify (simplified) TC
actions. A DPO-rule ρ consists of three graphs, where L is called left-hand side,
R right-hand side and K interface. Graphs L and K specify deletion of those
parts of L not appearing in K while R and K specify creation of those parts of
R not appearing in K. An application of rule ρ on input graph G consists in (1)
finding an occurrence (match) of L in G, (2) deleting elements of G according to
L and K, and (3) creating new elements in G according to R and K, thus, yield-
ing an output graph H. As a common restriction in the WSN domain, nodes in a
WSN topology graph are only visible to their direct neighbor nodes thus limit-
ing granularity of graph patterns within graph-rewriting rules, accordingly. For
instance, rule ρm in Fig. 2a matches two neighboring active short edges (indicated
by the label S;a) in topology graph G without performing any changes to G.
Similarly, rule ρmu (Fig. 2b) matches a long unclassified (L;u) edge. The actual
adaptations (rewritings) of the topology graph following those rule applications
are performed by rule ρi and rule ρa (Fig. 2c–d), by inactivating or activating
an (L;u) edge, respectively. A TC algorithm based on these rules defines a non-
terminating TC process repeatably triggered by environmental changes of links
as modeled by the rules in Fig. 3. In Fig. 3a–b, we only present the rules for status
a and in Fig. 3c–d for edge type S;a (S;u); whereas the complete specification
includes 14 such rules (six for length change as well as six for deletions and two
for creations of links).

TC continuously searches for active short edge pairs (ρm) as well as long
unclassified edges (ρmu), and then either inactivates a long unclassified edge
(ρi) if it forms a triangle exactly containing the previously matched short edges
and the long edge or it activates such an edge (ρa), otherwise. However, a
TC algorithm specified in a purely declarative manner by means uncontrolled
graph-rewriting rule applications is not sufficient for faithfully reasoning about
the aforementioned properties. Hence, we conclude four major challenges to be
addressed by a comprehensive controlled graph-rewriting formalism as will be
presented in the following.

84 G. Kulcsár et al.

n1

y
n4

z
S;a

Lsl

n1

y
n4

z

Ksl

n1

y
n4

z

Rsl

L;a

(a) Rule ρsl: Short Edge to Long

n1

y
n4

z
L;a

Lls

n1

y
n4

z

Kls

n1

y
n4

z

Rls

S;a

(b) Rule ρls: Long Edge to Short

n1

y
n4

z
S;a

L−−

n1

y
n4

z

K−−

n1

y
n4

z

R−−

(c) Rule ρ--: Delete Edge

n1

y
n4

z

L++

n1

y
n4

z

K++

n1

y
n4

z

R++

S;u

(d) Rule ρ++: Create Edge

Fig. 3. Graph-rewriting rules for the environment

(C1: Control-Flow Specification) Control-flow constructs for graph-rewriting
processes, namely sequential-, negated-, conditional-, and iterative rule com-
position to restrict orderings of graph-rewriting rule applications.

(C2: Subgraph Binding) Data-flow constructs for propagating subgraph bind-
ings among rules to restrict matches of graph-rewriting rule applications (cf.
dependencies between rule ρm and the subsequent rules in Fig. 2).

(C3: Concurrency) Control-flow and data-flow constructs for concurrent rule
composition and synchronization of graph-rewriting processes being compat-
ible with solutions for C1 and C2.

(C4: Automated Analysis) Techniques for automated analysis of correctness
properties for algorithms specified as controlled graph-rewriting processes
including C1, C2, C3.

3 Foundations

We first recall basic notions of graph rewriting based on category theory [5].

Definition 1 (Graphs, Typed Graphs). A (directed) graph is a tuple G =
〈N,E, s, t〉, where N and E are sets of nodes and edges, and s, t : E → N are
the source and target functions. The components of a graph G are denoted by
NG, EG, sG, tG. A graph morphism f : G → H is a pair of functions f = 〈fN :
NG → NH , fE : EG → EH〉 such that fN ◦ s = s′ ◦ fE and fN ◦ t = t′ ◦ fE; it
is an isomorphism if both fN and fE are bijections. We denote by Graph the
category of graphs and graph morphisms.

A typed graph is a graph whose elements are “labelled” over a fixed type graph
TG. The category of graphs typed over TG is the slice category (Graph ↓ TG),
also denoted GraphTG [4].

Definition 2 (Typed Graph-Rewriting System). A (TG-typed graph)
DPO rule is a span (L l← K

r→ R) in GraphTG. The typed graphs L, K,
and R are called left-hand side, interface, and right-hand side. A (TG-typed)
graph-rewriting system is a tuple G = 〈TG,R, π〉, where R is a set of rule names
and π maps rule names in R to rules.

Graph-Rewriting Petri Nets 85

We write ρ : (L l← K
r→ R) for rule π(ρ) with ρ ∈ R. A rule application of

rule ρ on input graph G amounts to a construction involving two pushouts by (1)
finding a match of L in G, represented by morphism m, (2) choosing a pushout

complement K
k−→ D

f−→ G for K
l−→ L

m−→ G, representing the application
interface, and (3) creating a pushout R

n−→ H
g←− D over K

k−→ D
f−→ G, yielding

output graph H by deleting and creating elements of G according to the rule span
and match m. By G

ρ@m
===⇒ H we denote application of rule ρ on input graph G

at match m, producing output graph H.
We next revisit coloured Petri nets (CPN), constituting a conservative exten-

sion of plain Petri nets (PN). To this end, we employ the notations of multisets.

Definition 3 (Multiset). A multiset ranged over a non-empty set S is a func-
tion M : S → N for which the following holds.

– M(s) is the coefficient (number of appearances) of s ∈ S in M ,
– s ∈ M ⇔ M(s) > 0 (membership),
– | M |= ∑

s∈S M(s) (size),
– (M1++M2)(s) = M1(s) + M2(s) (summation),
– M1 �= M2 ⇔ ∀s ∈ S : M1(s) ≤ M2(s) (comparison),
– (M1−−M2)(s) = M1(s) − M2(s) iff M2 �= M1 (subtraction), and
– (n∗∗ M)(s) = n ∗ M(s) (scalar multiplication)

The symbol
∑++ is defined on multisets according to summation ++. By

N
S we refer to the set of all multisets over set S and by M∅ we denote the empty

multiset (i.e., M∅(s) = 0 for each s ∈ S). By i’s we refer to the ith appearance
of element s in multiset M , where 1 ≤ i ≤ M(s). As depicted, for instance, in
Fig. 6, a PN consists of a set of places (circles), a set of transitions (rectangles)
and a set of (directed) arcs (arrows) each leading from a place to a transition or
vice versa. Markings of places are depicted as filled circles within places.

Definition 4 (Petri Net). A Petri net is a tuple (P, T,A,M0), where P is a
finite set (places), T is a finite set (transitions) such that P ∩ T = ∅, A ⊆ (P ×
T)∪(T ×P) is a set (directed arcs), and M0 ∈ N

P is a multiset (initial marking).
We use the notations •t = {p ∈ P | pAt} (preplaces) and t• = {p ∈ P | tAp}
(postplaces) for t ∈ T as well as •p = {t ∈ T | tAp} and p• = {t ∈ T | pAt} for
p ∈ P , respectively. These notations naturally extend to multisets X : P ∪T → N

by •X :=
∑

x∈S∪T X(x)∗∗•x and X• :=
∑

x∈S∪T X(x)∗∗x•.

Transition t ∈ T is enabled by marking M ∈ N
P if all preplaces of t are

marked by at least one token. For each occurrence of enabled transition t in a
step, one token is consumed from all preplaces and one token is added to each
postplace of t.

Definition 5 (PN Step). Let N be a PN and M ∈ N
P be a marking, then

M
X−→ M ′ with non-empty X ∈ N

T and M ∈ N
P is a step of N iff (1) •X �= M

(enabledness) and (2) M ′ = (M−− •X)++ X• (occurrence).

86 G. Kulcsár et al.

We may omit X as well as M ′ in denoting steps M
X−→ M ′ if not relevant.

Definition 6. Let N be a Petri net.

– Marking M ′ is reachable from marking M in N iff there exists a sequence
M → M ′′ → · · · → M ′. By RN (M) ⊆ N

P we denote the set of markings
reachable from M in N .

– Two transitions t, u ∈ T are concurrent, denoted t � u, iff ∃M ∈ RN (M0) :

M
{t,u}−−−→ M ′.

– N is k-bounded iff ∀M ∈ RN (M0) : ∀p ∈ P : M(p) ≤ k. A 1-bounded Petri
net is also called 1-safe.

– N is live iff ∀M ∈ RN (M0) \ {Mh} : M →
Coloured Petri nets (CPN) extend PN by assigning typed data (colours) to

tokens and by augmenting net elements with inscriptions denoting conditions
and operations involving typed variables over token data. Let Σ be a finite non-
empty set (types or colours), V a finite set (variables) and Type : V → Σ a
function (type declaration). By INSCRV we denote the set of inscriptions over
V and by Type[v] we denote the set of values of variable v. Subscript MS as in
C(p)MS denotes the object (e.g., C(p)) to be a multiset.

Definition 7 (Coloured Petri Net). A Coloured Petri Net (CPN) is a tuple
(P, T,A,Σ, V,C, Γ,E,Ξ), where

– P is a finite set (places),
– T is a finite set (transitions) such that P ∩ T = ∅,
– A ⊆ (P × T) ∪ (T × P) is a set (directed arcs),
– Σ is a finite, non-empty set (colours),
– V is a finite set (typed variables) such that ∀v ∈ V : Type[v] ∈ Σ,
– C : P → Σ is a function (place colours),
– Γ : T → INSCRV is a function (transition guards) such that ∀t ∈ T :

Type[Γ (t)] = Bool,
– E : A → INSCRV is a function (arc expressions) such that ∀a ∈ A :

Type[E(a)] = C(p)MS with p ∈ P being the place related to a,
– Ξ : P → INSCR∅ is a function (initialization expressions) such that ∀p ∈ P :

Type[Ξ(p)] = C(p)MS.

CPN steps extend PN steps by binding elements (t, b) of transitions t ∈ T ,
where b is a function (binding) such that ∀v ∈ Var(t) : b(v) ∈ Type[v] (i.e.,
assignments of values to variables occurring in inscriptions of the transition
according to the type of the variable). By B(t), we denote the set of all bindings
of t ∈ T and by BE, we denote the set of all binding elements of CPN N . By
〈var1 = value1, var2 = value2, . . .〉, or 〈b〉 for short, we denote value assignments
to variables in binding b. Furthermore, by Var(t), we denote the set of free
variables of t ∈ T (i.e., v ∈ Var(t) either if v occurs in guard Γ (t) of t or in
inscription E(a) of some arc a ∈ A having t as source or target).

Graph-Rewriting Petri Nets 87

Definition 8 (CPN Step). Let N be a CPN and M : P → N
Σ a

coloured marking, then M Y=⇒ M′ with Y ∈ N
BE and M : P → N

Σ

is a step of N iff (1) ∀(t, b) ∈ Y : Γ (t)〈b〉 and ∀p ∈ P :
∑++

(t,b)∈Y

E(p, t)〈b〉 �= M(p) (enabledness) and (2) ∀p ∈ P : M′(p) = (M(p)−−∑++
(t,b)∈Y E(p, t)〈b〉)++

∑++
(t,b)∈Y E(t, p)〈b〉 (occurrence).

As an example, Fig. 4 shows a basic CPN with one transition, whose inscrip-
tion will be descried in the next section. The passing of input/output values in
a CPN step is handled by arc and guard variables: variable G is bound to the
value of input token 1‘G, and the produced output token is being bound to the
value of variable H.

Coloured marking M′ is reachable from M in N iff there exists a sequence of
CPN steps from M to M′, denoted as M ⇒ M′′ ⇒ · · · ⇒ M′. By RC

N (M) we
denote the set of coloured markings reachable from M in N . The set of reach-
able coloured markings of N is denoted as RC

N (M0) where the initial coloured
marking M0 of N is defined as ∀p ∈ P : M0(p) = I(p)〈〉. Thereupon, all further
PN notions of Definition 6 are adaptable to CPN, accordingly.

4 Graph-Rewriting Petri Nets

We now introduce graph-rewriting Petri nets (GPN) as an instantiation of CPN.
To this end, we define graph-rewriting inscriptions to specify controlled graph-
rewriting processes as GPN.

4.1 GPN Syntax

In GPN, token colours represent objects (i.e., graphs) and morphisms, respec-
tively, from category GraphTG and transitions correspond to DPO rule appli-
cations. Although the distinction between graphs and morphisms is not really
necessary from a categorical point of view (as objects may be represented as
identity morphisms), it is useful to handle subgraph bindings as first-class entity
in GPN being distinguished from complete graphs when specifying inputs and
outputs of GPN transitions. Notationally, colour set

ΣTG = {Obj (GraphTG),Mor(GraphTG)}
consists of two colours: objects (denoted in capital letters) and morphisms
(denoted in non-capital letters) in GraphTG. In the following, we use the same
typing for elements of GraphTG) in an obvious way for convenience.

By INSCRTG,V , we denote the set of graph-rewriting inscriptions over a set
of variables V , typed over ΣTG. Transition guards in GPN are given as graph-
rewriting inscriptions representing templates for diagrams in GraphTG having
a bound part as well as free variables thus expressing DPO rule applications
potentially involving subgraph bindings. In an inscription I, the diagram tem-
plate containing variable names is given by a finite category FVI, where the
bound part (i.e., elements already fixed in GraphTG) is given by a binding

88 G. Kulcsár et al.

functor BI : BVI → GraphTG with BVI being a finite category. The structure
of the diagram is given by the type of the variables as well as further structural
properties of the inscription (cf. ΦI in the next paragraph). The distinction
between bound and free names directly corresponds to the respective notion of
variables in CPN such that firing a GPN transition t consists in binding free
variables of t by extending the binding functor to a complete diagram. Bound
elements (from BVI) are denoted by bold letters (e.g., L, r) and free variables
by sans-serif letters (e.g., G, b).

In addition, a proper graph-rewriting inscription has to involve further cate-
gorical properties to hold for the diagram for yielding the intended DPO seman-
tics, including, for instance, commutativity of arrows, pushout squares, as well
as non-existence or partiality of morphisms. We refer to this set of properties of
inscriptions I by ΦI . For instance, when utilizing the DPO diagram in Fig. 4b as
transition guard Iρ in which span (L l←− K r−→ R) is mapped by BIρ

to concrete
graphs and morphisms according to rule ρ, ΦIρ

requires both rectangles to be
pushouts (and thus to commute), indicated by (PO). In a concurrent setting,
GPN inscriptions will be further generalized to compound operations with poten-
tially multiple graphs and subgraph bindings involved. Adapting step semantics
of CPN to GPN means that (inscription) bindings are functors mapping variable
set FVI into GraphTG in a way that conforms to BI thus completing the bound
parts of the inscription.

Definition 9 (Graph-Rewriting Inscription). A graph-rewriting inscrip-
tion I ∈ INSCRTG,V is based on the following components:

(i) a finite category of bound variables BVI with v ∈ BVI ⇒ v ∈ V ,
(ii) a finite category of free variables FVI with v ∈ FVI ⇒ v ∈ V , BVI ⊆ FVI,
(iii) a binding functor BI : BVI → GraphTG such that ∀v ∈ BVI : Type(v) =

Type(BI(v)) and
(iv) a set of categorical properties ΦI for (the images of) FVI.

A binding B for I is a functor B : FVI → GraphTG such that B |BVI
= BI and

∀v ∈ FVI : Type(v) = Type(B(v)). I〈B〉 evaluates to true if B(FVI) satisfies
ΦI .

A GPN defined over type graph TG is a CPN over ΣTG with inscriptions I ∈
INSCRTG,V .

Definition 10 (Graph-Rewriting Petri Net). A graph-rewriting Petri net
(GPN) over type graph TG is a CPN with set of colours ΣTG, transition guard
function Γ and arc expression function E ranged over INSCRTG,V , initial mark-
ing function Ξ ranged over INSCRTG,∅.

We further require each transition of a GPN to consume and produces at least
one graph token (i.e., having non-empty sets of pre- and postplaces).

Graph-Rewriting Petri Nets 89

4.2 GPN Semantics

We first illustrate GPN semantics intuitively by describing the GPN pattern cor-
responding to a basic DPO rule application. Then, we provide a generic pattern
for GPN transitions. To avoid bloat of notation, we simplify transition guards
using a compact graphical notation.

DPO Rule Application. The most basic GPN pattern in Fig. 4 consists of a
transition applying rule ρ : (L l←− K

r−→ R) to input graph G, producing output
graph H (both typed over TG). We denote the GPN transition guard simply

ρ

1‘G

HG

(a) Net Structure: DPO Rule Applica-
tion with Input Graph G

L Kl

G

m

D

(PO)

f

k

R

H

r

n

g

(PO)

(b) Guard ρ: DPO Application of Rule
ρ

Fig. 4. Basic GPN pattern: DPO rule application

by ρ which is satisfied if G
ρ@m
===⇒ H for some match m (cf. Definition 2ff). In

GPN terms, guard ρ is satisfied if there is a respective inscription binding such
that the complete diagram becomes a DPO rule application (indicated by (PO)
as imposed in Φρ).

Hence, input variable G is bound to the graph corresponding to the input
token (1′G denoting a multiset consisting of a single graph G) and the output
token corresponds to the output graph bound to variable H. Sequential com-
positions of this basic GPN pattern specifies controlled sequences of DPO rule
applications (incl. loops) restricted to the given ordering, as well as control-flow
branches (choices) and joins (i.e., places with multiple outgoing/incoming arcs).

Generic GPN Transition Pattern. Figure 5 shows the most general form
(net structure and transition guard) of GPN transitions including concurrent
behaviors. As represented by the transition label in Fig. 5a, each GPN transi-
tion either denotes an application of a rule ρ or a non-applicability condition of ρ
(i.e., requiring the left-hand side of ρ to not have any match in G, where output
graph H is omitted in the transition label as G remains unchanged). The set of
preplaces of transitions might include a (non-empty) set G of (simultaneously
consumed) input graphs G1, G2, . . . , Gl to each of which either ρ is applied or
a non-applicability condition is imposed. Application of rule ρ to a set of input
graphs is performed by means of a non-deterministic merge as follows: (1) select-
ing (non-deterministically) a family of injective arrows G∩

el−→ Gl, l = 1 . . . m
from an arbitrary graph G∩ representing a common overlapping of each input
graph, and (2) creating a co-limit object over that family in the category of typed

90 G. Kulcsár et al.

B
G{ρ | �ρ}B′

H

b′
1 Hb′

k H

b1 Gmbn G1

(a) Generic Transition

G∩

G1 Gm

e1 em

G

(b) Generic Guard: Graph Merge

L

i = 1 . . .n

Si

Bi

G′
i

sLi

iLi

bi

G

(=)

(=) p

m

bLi

Kl

D

(PO)

f

k

R

H

r

n

g

(PO)

S′
jsRj

j = 1 . . . k

B′
j

(=)

b′
j

iRj

(c) Generic Guard: Rule Application with Subgraphs

Fig. 5. Generic pattern for GPN transitions

graphs, as indicated in Fig. 5b. This diagram is part of the transition guard and
the merged graph G is used as input for applying ρ to produce output H. Corre-
spondingly, the set of postplaces might include forks into multiple (at least one)
concurrent instances of H.

Subgraph Binding and Matching. In addition to control-flow dependen-
cies restricting the orderings of rule applications, GPN further allow to express
data-flow dependencies among rule applications for restricting the matches to
which particular rules are to be applied in a given input graph (cf. e.g., Fig. 2,
rules ρm and ρi (ρa)). GPN therefore allow to propagate parts of output graphs
from preceding rule applications (subgraph binding) to be matched within input
graphs of subsequent rule applications (subgraph matching) via additional tokens
coloured by respective matching morphisms. To this end, GPN transitions are
equipped with synchronization interfaces R1

sR←−− S
sL−→ L2 between sequentially

applied rules ρ1 and ρ2 to be a span relating the right-hand side of ρ1 with the
left-hand side of ρ2. In Sect. 2, the rules ρi and ρa require left-hand side syn-
chronization interfaces to ρm (cf. Fig. 2) in order to ensure that exactly those
edges are matched for a node pair which have been previously matched by ρm.
This concept is, however, not limited to GPN net structures with sequentially
applied rules, but rather generalize to any kind of rule composition. In Fig. 5a, B′

denotes the (possibly empty) set of outgoing subgraph binding morphisms, while

Graph-Rewriting Petri Nets 91

B denotes the (possibly empty) set of incoming subgraph matching morphisms of
a GPN transition. The rightmost rectangle in Fig. 5c represents subgraph binding
where the rule-application structure is extended by right-hand side synchroniza-
tion interfaces of ρ (for some subsequent rule(s)). For each right-hand interface
S′
j (indexed by j = 1 . . . k), the application of ρ produces an additional token

b′
j coloured as morphism for that subgraph of H which is (1) within the co-

match of the rule application and (2) corresponds to that part of the co-match

designated by S′
j

sR
j−−→ R. This property is captured by the commutation of the

arrows n ◦ sR
j and b′

j ◦ iRj , denoted by (=). The bidirectionality of iRj denotes
that iRj is an isomorphism. Conversely, the leftmost part (rectangle and trian-
gle) of Fig. 5c represents subgraph matching for left-hand side synchronization
interfaces (indexed by i = 1 . . . n, where an application of rule ρ additionally
consumes a token coloured as morphism to be checked for compatibility with
the input graph. The additional commutative diagram expresses that (1) the
bound part Bi of the previous graph G′

i should be also present in the current
input graph G (partial morphism p commuting with b in the lower triangle) and
(2) the occurrence bL

i of Bi in G should be isomorphic to the left-hand side
synchronization interface (the leftmost commutative rectangle). Here, a partial
graph morphism p between G′ and G is a graph morphism p : G0 → G where
∃g : G0 → G′ injective.

Properties of GPN Processes. We utilize the notion of reachable coloured
markings of CPN (cf. Sect. 3) to characterize semantic correctness properties on
GPN models as described in Sect. 2. In particular, we are interested in com-
pleted markings only consisting of tokens being coloured over Obj (GraphTG),
whereas markings additionally containing tokens coloured over Mor(GraphTG)
correspond to intermediate steps of GPN processes.

Definition 11 (GPN Language). A marking M of GPN N is completed
if for all p ∈ P with M(p) �= ∅ it holds that C(p) = Obj (GraphTG). The
language of N for initial completed marking M0 is defined as L(N ,M0) =
RC�

N (M0), where RC�
N (M) denotes the subset of completed markings reachable

from marking M.

This definition characterizes GPN semantics in terms of input/output corre-
spondences according to the definition of the graph language as the set of graphs
generated by a set of rules applied to a given start graph [5]. Note that GPN is
able to simulate the standard semantics of plain graph-rewriting systems, i.e.,
sets of rules: For a given rule set, such a GPN canonically consists of a single
place (initially holding a single start graph token) and one transition for every
rule, each having this place as its pre- and postplace.

Thereupon, a more elaborated process-centric characterization of GPN
semantics might employ a labeled transition system (LTS) representation.

Definition 12 (GPN Processes). The LTS of GPN N for initial completed
marking M0 is a tuple (S, s0,→,P), where S = N

ΣTG (processes), s0 = M0

92 G. Kulcsár et al.

(initial process), M Y−→ M′ iff M Y=⇒ M′ (labeled transitions) and P = {pred |
pred : Obj (GraphTG) → Bool} (predicates).

Predicates pred ∈ P might be used to define (computable) correctness prop-
erties pred : Obj (GraphTG) → Bool to be checked on graphs in reachable
completed markings (e.g., connectedness as described in Sect. 2). In the next
section, we provide an elaborated case study illustrating the intuition of the
above definitions, by means of a GPN model for our WSN running example
(cf. Sect. 2).

5 Case Study

We now demonstrate how GPN address the challenges in controlled graph-
rewriting by revisiting our WSN and TC case study from Sect. 2.

ρm

2
ρmu

��ρmu

1

bm bm
bm

3
bu ρi

�ρi

bu
bu

ρls ρsl ρ−− ρ++

4

be

be

Fig. 6. GPN model for the WSN and TC scenario

Control-Flow Specification (C1). A possible GPN specification of the WSN
and TC scenario is shown in Fig. 6, where we omit arc labels denoting graph
variables (but still include binding variables like bm) and we annotate places
by numbers 1–4 for the sake of clarity. The environment behavior affecting the
WSN topology graph comprises the following actions (lower part of the GPN):
ρls turns long edges into short, ρsl short edges into long, ρ−− deletes an edge
while ρ++ creates a fresh (unclassified) edge. Moreover, the rules ρsl and ρ−−
propagate their matches as subgraph bindings to the TC process (upper part
of the GPN) as those changes influence TC decisions. This specification repre-
sents an idealistic (i.e., synchronous) model of TC, as all actions (TC as well
as environmental) are assumed to be atomic (i.e., non-interfered and instanta-
neously globally visible). Thus, each transition/rule application consumes the

Graph-Rewriting Petri Nets 93

global token (current topology) at place 1 and immediately produces a token
(evolved/adapted topology) to the same place.

Subgraph Matching/Binding (C2). Regarding the TC process, transition
ρm first matches a pair of neighboring short edges in the current graph and
passes this match as subgraph binding to place 2 for the next step (using the
binding variable bm). Place 3 plays a similar role for passing the long edge to be
inactivated from ρmu to ρi. For those rules, the parallel presence of their positive
and negative forms amounts to a deterministic conditional if-else construct based
on rule applicability. We omitted rule ρa in Fig. 2d from the model due to space
restrictions. Transition ��ρmu handles those case where the subgraph binding pre-
viously matched by ρm becomes outdated in the current graph due to concurrent
changes by the environment (i.e., either one of the matched edges of the edge
pair becomes long by action ρsl or it disappears by action ρ−−). However, the
model might deadlock if ρmu is not applicable but place 4 has no token. This can
be solved by introducing two new transitions as in Fig. 7a (where place numbers
correspond to Fig. 6). With that extension, subgraph binding guarantees liveness
as the new transitions capture the case above.

Concurrency (C3). The idealized (synchronous) GPN specification considered
so far above does not yet sufficiently capture the concurrent (or even distributed)
semantics aspects of TC for WSN, which shall be reflected (still in a simplified
manner) in the GPN in Fig. 7b. Here, the dashed boxes Topology Control and
Environment refer to the GPN components as depicted in upper and lower part
of Fig. 6, respectively, such that place 1 retains its role (i.e., all its arcs are com-
bined into GTC ,HTC , GEnv ,HEnv). As a consequence, both TC and the environ-
ment fork the current graph (place 1 and place 5, respectively) while performing
their (concurrent and thus potentially conflicting) changes to the topology. After-
wards, the merge transition (cf. Fig. 5b) labeled {G1,G2}∅G (where ∅ is the empty
rule leaving the input graph unmodified) integrates both local graphs into the
new global topology graph. In this GPN model, the (non-deterministic) merge
transition potentially yields many different subsequent GPN steps as both sub-
processes do not synchronize their matches as done in the first GPN model. In a
future work, we plan to study different possible trade-offs between both extrema
presented here, by considering different possible degrees of granularity of syn-
chronization of subgraph-matches and -merges using GPN. In this regard, the
detection of concurrent transitions (cf. Definition 6) can be employed to refine
the (inherently imprecise) notion of critical pair analysis techniques [5] in the
context of controlled graph-rewriting semantics.

Automated Analysis (C4). Correctness properties like P1a-b and P2 in
Sect. 2 can be specified on the LTS process semantics of GPN using appropri-
ate predicates according to Definition 12. For instance, a predicate for property
P1a holds for topology graph G reached in a marking iff for each inactive edge
xy, there is a node z with short edges xz and yz. Similarly, P1b (i.e., con-
nectedness) holds iff for each pair of nodes x and y, there is a path between x
and y not containing any inactive edge. Predicates P1a and P1b constitutes

94 G. Kulcsár et al.

2

4

bm��ρmu
bu

bm,beρmu
bu

1

G Hu

G Hu

bm
bm

be

3
bu
bu

(a) New Transitions for P2

1

Topology Control

Environment

HTC

GTC

5
HEnv

GEnv

{G1,G2}∅GG1 G2

G

G

(b) Concurrent WSN Model

Fig. 7. Extensions of the WSN and TC model

correctness properties in terms of invariants to be checked for any reachable
completed marking, whereas P2 requires further capabilities to express liveness
properties on the LTS semantics of the GPN model (e.g., using temporal log-
ics). For automated reasoning, we may choose as initial marking any possible
initial topology graph G0 on place 1 to explore the set of reachable markings.
In this regard, 1-safety of the underlying PN of a GPN is of particular inter-
est as most essential PN analysis problems become decidable or computation-
ally cheaper [6]. Here, the GPN model in Fig. 6 is 1-safe due to the centralized
structure with place 1, whereas the GPN model in Fig. 7b is unbounded as the
environment may continuously produce an arbitrary number of tokens to place
5. Thus, applying existing PN analysis tools to GPN at least allows for exploring
uncoloured reachable markings (e.g., for over-approximating pairs of potentially
concurrent transitions). Concerning reachability analysis of coloured markings,
CPN Tools constitutes a state-of-the-art simulation and analysis tool for CPN
which we currently integrate in our graph-rewriting framework eMoflon in an
ongoing work.

To summarize, while certain basic aspects of the case study are directly
expressible in other recent modeling approaches (e.g., control flow in Henshin [19]
and eMoflon [14], predicate analysis in Groove [8]), neither of those approaches
addresses all the challenges C1-4 (cf. Sect. 2). Crucially, explicit concurrency is
considered by none of the existing approaches, whereas Petri nets and therefore
also GPN are equipped with a natural notion of true concurrency, thus being
particularly well-suited for our purposes.

6 Conclusion and Future Work

We proposed graph-rewriting Petri nets (GPN) to build a comprehensive the-
oretical foundation for modeling and automated analysis of controlled graph-
rewriting processes. In particular, GPN provides a control-flow specification
language for graph rewriting processes with a natural notion of concurrency.
Additionally, GPN provide an explicit means to handle sub-graph bindings,
being prevalent in practical applications of controlled graph rewriting (cf. C1-3

Graph-Rewriting Petri Nets 95

in Sect. 2). Furthermore, GPN constitutes an appropriate basis for automated
semantic analysis of controlled graph-rewriting systems (cf. C4 in Sect. 2).

Our plans for future work are twofold. First, we want to explore further theo-
retical properties of GPN based on existing (C)PN results (e.g., revised notion of
parallel independence in the context of concurrent graph-rewriting processes as
well as equivalence notions beyond input/output equivalence). Second, we plan
to use GPN as back-end for existing controlled graph-rewriting modeling tools
and languages (e.g., SDM in eMoflon [14]) as well as for developing novel mod-
eling approaches directly based on GPN. This would allow us to apply existing
analysis tools like CPN Tools [11] for automatically analyzing crucial proper-
ties of graph-based algorithms like our WSN case study.

References

1. Baldan, P., Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Löwe, M.: Concur-
rent semantics of algebraic graph transformation. In: Handbook of Graph Gram-
mars and Computing by Graph Transformation, vol. 3, pp. 107–187. World Scien-
tific (1999). https://doi.org/10.1142/9789812814951 0003

2. Bunke, H.: Programmed graph grammars. In: Claus, V., Ehrig, H., Rozenberg, G.
(eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 155–166. Springer, Heidelberg
(1979). https://doi.org/10.1007/BFb0025718

3. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: Abstract graph deriva-
tions in the double pushout approach. In: Schneider, H.J., Ehrig, H. (eds.) Graph
Transformations in Computer Science. LNCS, vol. 776, pp. 86–103. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-57787-4 6

4. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae
26(3–4), 241–265 (1996). https://doi.org/10.3233/FI-1996-263402

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

6. Esparza, J.: Decidability and complexity of Petri net problems — an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

7. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph
rewrite language based on the unified modeling language and Java. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp.
296–309. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46464-
8 21

8. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14, 15–40
(2012). https://doi.org/10.1007/s10009-011-0186-x

9. Guerra, E., de Lara, J.: Colouring: execution, debug and analysis of QVT-relations
transformations through coloured petri nets. Softw. Syst. Model. 13(4), 1447–1472
(2014). https://doi.org/10.1007/s10270-012-0292-6

10. Hoffmann, K., Mossakowski, T.: Algebraic higher-order nets: graphs and petri nets
as tokens. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS,
vol. 2755, pp. 253–267. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-40020-2 14

https://doi.org/10.1142/9789812814951_0003
https://doi.org/10.1007/BFb0025718
https://doi.org/10.1007/3-540-57787-4_6
https://doi.org/10.3233/FI-1996-263402
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-540-46464-8_21
https://doi.org/10.1007/978-3-540-46464-8_21
https://doi.org/10.1007/s10009-011-0186-x
https://doi.org/10.1007/s10270-012-0292-6
https://doi.org/10.1007/978-3-540-40020-2_14
https://doi.org/10.1007/978-3-540-40020-2_14

96 G. Kulcsár et al.

11. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation
of Concurrent Systems. Springer Science & Business Media, Heidelberg (2009).
https://doi.org/10.1007/b95112

12. Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A system-
atic approach to constructing families of incremental topology control algorithms
using graph transformation. Softw. Syst. Model. 1–41 (2017). https://doi.org/10.
1007/s10270-017-0587-8

13. Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph transformation units – an
overview. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 57–75. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-68679-8 5

14. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Di
Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08789-4 10

15. Li, M., Li, Z., Vasilakos, A.V.: A survey on topology control in wireless sensor
networks: taxonomy, comparative study, and open issues. Proc. IEEE 101(12),
2538–2557 (2013). https://doi.org/10.1109/JPROC.2013.2257631

16. Plump, D., Steinert, S.: The semantics of graph programs. In: RULE 2009 (2009).
https://doi.org/10.4204/EPTCS.21.3

17. Schürr, A.: Logic-based programmed structure rewriting systems. Fundam. Inf.
26(3,4), 363–385 (1996). https://doi.org/10.3233/FI-1996-263407

18. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES-approach: language and
environment. In: Handbook of Graph Grammars and Computing by Graph Trans-
formation, vol. 2, pp. 487–550. World Scientific (1999). https://doi.org/10.1142/
9789812815149 0013

19. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy,
M.: Henshin: a usability-focused framework for EMF model transformation devel-
opment. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp.
196–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61470-0 12

20. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger,
W.: Right or wrong?–verification of model transformations using colored petri nets.
In: DSM 2009 (2009)

https://doi.org/10.1007/b95112
https://doi.org/10.1007/s10270-017-0587-8
https://doi.org/10.1007/s10270-017-0587-8
https://doi.org/10.1007/978-3-540-68679-8_5
https://doi.org/10.1007/978-3-540-68679-8_5
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1109/JPROC.2013.2257631
https://doi.org/10.4204/EPTCS.21.3
https://doi.org/10.3233/FI-1996-263407
https://doi.org/10.1142/9789812815149_0013
https://doi.org/10.1142/9789812815149_0013
https://doi.org/10.1007/978-3-319-61470-0_12

Parallel Independence and Conflicts

On the Essence and Initiality of Conflicts

Guilherme Grochau Azzi1(B) , Andrea Corradini2 , and Leila Ribeiro1

1 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
{ggazzi,leila}@inf.ufrgs.br
2 Università di Pisa, Pisa, Italy

andrea@di.unipi.it

Abstract. Understanding conflicts between transformations and rules is
an important topic in algebraic graph transformation. A conflict occurs
when two transformations are not parallel independent, that is, when
after applying one of them the other can no longer occur. We contribute
to this research thread by proposing a new characterization of the root
causes of conflicts, called “conflict essences”. By exploiting a recently
proposed characterization of parallel independence we easily show that
the conflict essence of two transformations is empty iff they are paral-
lel independent. Furthermore we show that conflict essences are smaller
than the “conflict reasons” previously proposed, and that they uniquely
determine the so-called “initial conflicts”. All results hold in categories
of Set-valued functors, which include the categories of graphs and typed
graphs, and several of them hold in the more general adhesive categories.

Keywords: Graph transformation · Double-pushout
Parallel independence · Conflict · Critical pair · Initial conflict

1 Introduction

Graph transformation is a formal model of computation with an intuitive graph-
ical interpretation. Graphs are used to represent states of the system, while pos-
sible transitions are represented by transformation rules. The algebraic approach
is not restricted to a particular notion of graph: using category theory, its defini-
tions and results can be instantiated for different notions of graph (e.g. labelled,
attributed) whose categories satisfy certain axioms.

An important topic in algebraic graph transformation is the study of parallel
independence and conflicts. When two transformations are parallel independent
they may be applied in any order; if a transformation can no longer happen
after applying another, they are in conflict [5]. Understanding conflicts between
transformations and rules provides great insight into the behaviour of a transfor-
mation system. Indeed, the potential conflicts between two rules, in a minimal
context, can be enumerated by Critical Pair Analysis (CPA) and used to check
local confluence of the system [9]. This has many applications, particularly in
Model-Driven Development (e.g. [6,16,17]).

c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 99–117, 2018.
https://doi.org/10.1007/978-3-319-92991-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_7&domain=pdf
http://orcid.org/0000-0002-3740-7002
http://orcid.org/0000-0001-6123-4175

100 G. G. Azzi et al.

Conflict

Conflict
Essence

Conflict
Reason

Critical Pair

Essential
Critical Pair

Initial
Conflict

represented by
unique [8]

is a [8]

has unique [14]

uniquely determines [14]

represented by
unique [14]

is a
[14]

is a
[13]

represented by
unique [13]

has unique
(Def. 21)

contained in
(Theorem 32)

uniquely determines (Theorem 34)

Results proved for: Adhesive Categories SetS GraphT

Fig. 1. Overview of conflicts and their root causes, where new concepts and results are
in bold.

When two transformations are in conflict, understanding its root causes is
often difficult. The formal characterization of conflict reasons [14] helps, but it
may include elements unrelated to the conflict and lacks a direct connection to
the definition of parallel independence. Moreover, critical pairs generated by any
two rules are numerous and often redundant, hindering the application of CPA.

An overview of the results presented in this paper and of related concepts
from the literature is depicted in Fig. 1. Based on conflict reasons, essential crit-
ical pairs were proposed as a subset of critical pairs. They were proven complete
(for the categories of graphs and typed graphs [14]), in the sense that every crit-
ical pair is the embedding of some essential critical pair into a larger context.
More recently, initial conflicts were also proposed and proven to be a complete
subset of critical pairs (in any adhesive category [13]), and were proven to exist
for the categories of graphs and typed graphs. Relations between initial conflicts
and conflict reasons were not reported, to the best of our knowledge.

In this paper, we contribute to this research thread by proposing a new
characterization for the root causes of conflicts, called conflict essences, based on
a recently proposed characterization of parallel independence [3]. In any adhesive
category with strict initial object we show that having an empty conflict essence
is equivalent to parallel independence, and that conflict essences are smaller
than conflict reasons. In categories of Set-valued functors, we show that conflict
essences uniquely determine initial conflicts. Furthermore, we identify sufficient
conditions for this to hold in any adhesive category.

The reader should be familiar with basic concepts of Category Theory and
with the dpo approach [5]. Some background notions and a motivating example
are introduced in Sect. 2. We define conflict essences in Sect. 3, proving impor-
tant properties and comparing them to conflict reasons. In Sect. 4 we show that
essences uniquely determine initial conflicts, and in Sect. 5 we conclude.

On the Essence and Initiality of Conflicts 101

2 Preliminaries

2.1 Algebraic Graph Transformation

In this section we briefly review the basic definitions of algebraic graph trans-
formation, according to the Double-Pushout (dpo) approach [5]. We follow the
generalization of dpo to work with objects of any adhesive category [12], which
include variations of graphs (typed, labelled, attributed), and several other struc-
tures. A more recent and detailed introduction to algebraic graph transforma-
tion is available in [8], where the theory is generalized to M-adhesive categories,
which also encompass structures like Petri nets and algebraic specifications.

We begin by reviewing the notion of adhesive category, which underlies sev-
eral other definitions, as well as some of its properties. For proofs and a detailed
discussion we refer to [12].

Definition 1 (Adhesive Category). A category C is called adhesive if (i) it
has all pullbacks, (ii) it has all pushouts along monos, and (iii) such pushouts are
van Kampen (VK) squares, which implies that they are preserved and reflected
by pullbacks [12].

Fact 2 (Properties of Adhesive Categories). Let C be an adhesive category.

1. Pushouts along monos in C are pullbacks.
2. For every object C of C, let Sub(C) be the partial order of its subobjects,

i.e. equivalence classes of monic arrows with target C, where f : A � C and
g : B � C are equivalent if there is an isomorphism h : A → B making
the triangle commute. Then Sub(C) is a distributive lattice: intersection of
subobjects is obtained as the pullback of the corresponding monos, union is
obtained from a pushout over the intersection.

We proceed by reviewing the basic concepts of dpo rewriting in an arbitrary
category C. Assumptions on C will be made explicit when needed.

Definition 3 (Rule, Match and Transformation). A rule ρ is a span ρ =

L
l� K

r� R, with monic l and r. We call L and R the left- and right-hand
sides, respectively, while K is called the interface. A transformation system
G is a finite set of rules.

A match for a rule ρ in an object G is
a monic arrow m : L � G. Given a match
m : L → G for rule ρ, a transformation
G

ρ,m
=⇒ H corresponds to a diagram (1), where

L K R

G D H

m

l r

k m′

l′ r′

(1)

both squares are pushouts. In an adhesive category,
the left pushout is guaranteed to be unique up to
isomorphism, if it exists.

In the technical development that follows we will use the notions of strict
initial objects and of initial pushouts [9] that we recall here.

102 G. G. Azzi et al.

Definition 4 (Strict Initial Object). An object 0 is initial in a category C

if for each object C of C there is a unique arrow !C : 0 → C. An initial object 0
is strict if for any arrow f : X → 0, the source X is also initial. If any initial
object is strict, all initial objects are, since they are isomorphic. Furthermore, if
0 is strict, then every arrow !C : 0 → C is mono.

Many adhesive categories of interest, including the categories of functors
presented in the next section, have a strict initial object, but not all of them: for
example, the category of sets and partial functions is adhesive, but the initial
object is not strict [12].

Definition 5 (Initial Pushout). Given a mor-
phism f : X → Y , the outer rectangle of dia-
gram (2) is an initial pushout (over f) when,
for any pushout 1© with monic x and y, there
exist unique arrows b∗ and c∗ making the dia-
gram commute. The subobject b : B → X is the

B U X

C V Y

b

f ′
b∗ x

g f

c

c∗ y

1© (2)

boundary of f , while c : C → Y is the context.

The next two properties of initial pushouts will be useful later. For the proof
of Lemma 7 we refer to [9].

Lemma 6. In any category with a strict initial object 0, the
square of diagram (3) is an initial pushout of f if and only
if f is an isomorphism.

0 X

0 Y

id0

!X

f

!Y

(3)

Lemma 7. Initial pushouts are preserved
and reflected by pushouts along monos.That
is, assuming in diagram (4) that square
2© is a pushout with monic hL and
hK , and squares 1© and 3© are initial
pushouts, then there exist unique isomor-
phisms b∗ and c∗ making the diagram

B X X B

C Y Y C

b

d

b∗

hK

f f

b

d

c

c∗

hL

1© 2© 3©
c

(4)

commute.

The categories of graphs and of typed graphs, which are now introduced, are
adhesive. Thus, the theory of dpo transformation applies to those categories.

Definition 8 (Categories of Graphs). A graph G = (V,E, s, t) has sets V
of nodes and E of edges, along with source and target functions s, t : E → V .
A graph morphism f : G → G′ is a pair of functions f = (fV : V → V ′, fE :
E → E′) that preserve incidence, that is, fV ◦ s = s′ ◦ fE and fV ◦ t = t′ ◦ fE.
Graphs along with graph morphisms determine the category of graphs Graph.

Given graph T , called a type graph, we can view arrows g : G→T as graphs
typed over T . The category of T -typed graphs is GraphT = Graph ↓ T .

Example 9. As a motivating example, we use a model of an elevator system,
which is based on the type graph of Fig. 2. The system is composed of multiple

On the Essence and Initiality of Conflicts 103

floors and elevators . Solid edges between floors indicate the next floor
up, while dashed edges indicate that the source floor is below the target. Solid
edges from an elevator to a floor indicate its position, while a self-loop edge of
type or indicates its direction of motion. People on a floor may request an
elevator, which is represented as a self-loop edge of type or , depending
on the direction the elevator is expected to go. People inside an elevator may
request a stop at a specific floor, which is represented by a dashed arrow from
the elevator to the floor.

Due to limited space, we present in Fig. 2 only some rules, related to moving
the elevator up. Only left- and right-hand sides are shown, their intersection is
the interface. The elevator should only move up when given a reason to do so,
i.e. some request involving a higher floor. The rule move-up-AS, for example,
moves the elevator up one floor given a stop request for some floor above.

Since matches are required to be injective, this rule is not applicable when
the requested floor is y. Thus, we must define another rule move-up-NS when
the stop request involves the next floor up; then the request is fulfilled and the
corresponding edge is deleted. We also depict the rules applicable when the next
floor has requested an elevator to move up (move-up-NU) or down (move-up-ND).

Fig. 2. Type graph and some transformation rules for an elevator system.

2.2 Categories of Set-Valued Functors

Not all results of this paper are proven in terms of adhesive categories, some rely
on categories of Set-valued functors. In this section, we show how such categories
generalize many important graph models and review some of their properties.

Definition 10 (Set-Valued Functor Category). Given category S, the cate-
gory SetS has functors S→Set as objects and natural transformations as arrows.
If t : F .→ G is a natural transformation between functors F,G : S → Set and S
is an object of S, we denote by tS : F (S) → G(S) the component of t on S.

104 G. G. Azzi et al.

G = V E
s

t
(5)

It is easy to see that the category of graphs is iso-
morphic to SetG, where G is depicted on diagram (5).
A functor G : G→Set selects two sets G(V) and G(E)
as well as two functions G(s), G(t) : G(E) → G(V). A natural transformation
f : G .→ G′ has two components fV : G(V) → G′(V) and fE : G(E) → G′(E),
then naturality corresponds to preservation of incidence.

Set-valued functors generalize graph structures, which in turn generalize
graphs and many variations (e.g. labelled graphs, hypergraphs, E-graphs) [10].
They are also closed w.r.t. the construction of slice categories.

Definition 11. A graph structure signature is an algebraic signature Σ
containing only unary operator symbols. A graph structure is a Σ-algebra for
a graph structure signature Σ. The category of algebras for a graph structure
signature is then a category of graph structures.

Lemma 12. Every category of graph structures is isomorphic to SetS for some
small, free category S.

Proof. A graph structure signature Σ defines a graph by taking sorts as nodes
and operation symbols as edges. Let S be the free category generated by this
graph. It is easy to see that the category of Σ-algebras is isomorphic to SetS. ��
Fact 13. For any functor category SetS and any object C : S → Set in it, the
slice category SetS ↓ C is equivalent to a Set-valued functor category [15].

Functor categories SetS are particularly well-behaved. They inherit a lot of
structure from Set, and many categorical concepts can be considered point-
wise for each object of S. When dealing with such concepts, we will apply set-
theoretical reasoning to SetS. Then, given X,Y ∈ SetS and f : X → Y , we will
write X, Y and f instead of X(S), Y (S) and fS for an implicit, universally
quantified S.

Fact 14. In any category of functors SetS, limits and colimits are constructed
pointwise for each object of S [15]. In particular, the initial object 0 of SetS is
strict, composed only of empty sets.

Fact 15. In any functor category SetS, a morphism f : X → Z is monic (epic)

iff each component fS is injective (surjective) [15]. A pair of morphisms X
f→

Z
g← Y is jointly epic iff each pair of components (fS , gS) is jointly surjective.

Fact 16. Given a small category S, the category of functors SetS is a topos [11].
Then it is adhesive [12] and has unique epi-mono factorisations [11].

In the context of graph transformation, we often have commutative squares
that are both a pullback and a pushout. A set-theoretic characterization will be
useful in the following. It underlies a construction of initial pushouts, which we
omit due to limited space.

On the Essence and Initiality of Conflicts 105

Lemma 17. In any category of functors SetS, if square (6) is a pullback, then
it is also a pushout iff both of the following hold for any element z ∈ Z.

(i) If there is no x ∈ X with z = f(x), then there
is a unique y ∈ Y with z = g(y).

(ii) If there is no y ∈ Y with z = g(y), then there is a
unique x ∈ X with z = f(x).

W X

Y Z

f ′

g′

f

g

(6)

Lemma 18. Any category of functors SetS has initial pushouts for all arrows.

3 The Essence of Conflicting Transformations

An important tool for understanding the behaviour of a transformation system is
the notion of parallel independence, which ensures that two transformations don’t
interfere with each other. Essentially, if two transformations H1

t1⇐= G
t2=⇒ H2

are parallel independent, then there exist transformations H1
t′
2=⇒ H and H2

t′
1=⇒

H reaching the same state. If they are not parallel independent, it is said they
are in conflict.

Understanding the root causes of such conflicts is a subject of ongoing
research [2,14]. In this section, we propose a formal characterization of these
root causes and compare it to previous work. We show that our characterization
has many useful properties, including a direct connection to the definition of
parallel independence and being preserved by extension into larger contexts.

We start introducing parallel independence according to the so-called essen-
tial definition [3].

Definition 19 (Parallel Independence). A pair of transformations (t1, t2) :
H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 is parallel independent when, building the pullbacks 1©,

2© and 3© as in diagram (7), the arrows K1L2 → L1L2 and L1K2 → L1L2 are
isomorphisms.1

If t1 and t2 are not parallel independent, we say they are in conflict. When
K1L2→L1L2 is not an isomorphism, we say t1 disables t2; when L1K2→L1L2

is not an isomorphism, we say t2 disables t1.

K1L2 L1L2 L1K2

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

∼=
2© p2p1

∼=
3©

n1

l1r1

k1 m1 m2 k2

l2 r2

n2

g1h1

1©

g2 h2

(7)

1 Since l1 and l2 are monos, this is equivalent to requiring existence of arrows L1L2 →
K1 and L1L2 → K2 making the resulting triangles commute. However, this simpler
condition is not helpful for the characterization of conflicts.

106 G. G. Azzi et al.

We refer the reader to [3] for a proof that this definition is equivalent to the
traditional one (see e.g. [8]) if diagrams are taken in an adhesive category and
rule morphisms are monic.

Example 20. Figure 3a shows a pair of parallel independent transformations
obtained by applying the rules move-up-NU and move-up-ND of Example 9 to
two different elevators. In Fig. 3b the transformations caused by the same rules
are in conflict, since the edge between elevator and floor is deleted by both rules.

(a) Parallel independent transformations. (b) Transformations in conflict.

Fig. 3. Examples of parallel independence.

A disabling occurs when some element is matched by both rules and deleted
by at least one of them, as illustrated in Example 20. Since matches are monic,
they can be interpreted as subobjects of G and the pullback L1L2 as their
intersection. Pulling it back along l1 removes exactly the elements that would
be deleted by the transformation using ρ1 and that are matched by m2.

B1 C1

K1L2 L1L2 L2

K1 L1 G

b1

d1

c14©

q1

q2

p1

p2

m2

l1 m1

2© 1©
(8)

In order to determine such elements,
we use an initial pushout over arrow
K1L2 → L1L2 (Definition 5). In fact in
a functor category SetS the context of a
mono f : X �Y is the smallest subobject
of Y containing all the elements which are
not in the image of f . This brings us to
the following definition.

Definition 21 (Conflict and Disabling Essence). In any adhesive category,
let (t1, t2) : H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 be a pair of transformations.

The disabling essence c1 : C1 � L1L2 for (t1, t2) is obtained by taking
pullbacks 1© and 2© as in diagram (8), then the initial pushout 4© over q2.

The conflict essence c : C → L1L2 is the union in Sub(L1L2) of the dis-
abling essences c1 for (t1, t2) and c2 for (t2, t1). Recall from Fact 2 that this is
obtained as a pushout over the pullback of (c1, c2).

Remark 22. The disabling and conflict essences are also subobjects of G, since
the composite m1 ◦ p1 ◦ c = m2 ◦ p2 ◦ c is a monomorphism C � G.

Example 23. The disabling essences for Example 20 are constructed in Fig. 4. In
Fig. 4a, where transformations are independent, the essence is empty. In Fig. 4b,
where a disabling exists, the essence contains an edge from elevator to floor.

On the Essence and Initiality of Conflicts 107

(a) Disabling essence for Figure 3a. (b) Disabling essence for Figure 3b.

Fig. 4. Examples of disabling essence.

From Example 23 we may expect that an empty disabling essence is equiva-
lent to having no disabling. More generally, we can show that this holds when-
ever the essence is the strict initial object, establishing a direct correspondence
between conflict essences and the definition of parallel independence.

Theorem 24. In any adhesive category with a strict initial object, let (t1, t2) :
H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 be a pair of transformations. Then the disabling essence is

initial iff t1 doesn’t disable t2, and the conflict essence is initial iff t1 and t2 are
parallel independent.

Proof. The case for disabling essences follows directly from Lemma 6: the dis-
abling essence is initial if and only if q2 in diagram (8) is an isomorphism,
which means that t1 doesn’t disable t2, according to Definition 19. For conflict
essences, recall that the strict initial object is the bottom element of the lattice
Sub(L1L2). Since c = c1 ∪ c2, C is initial iff C1 and C2 are initial, which is
equivalent to having no disablings and thus parallel independence. ��

Another important property of the disabling essence is that it factors uniquely
through the context of the (initial pushout over) arrow K1

l1→ L1. This means
that the essence only contains deleted elements, or elements incident to them.

Bl1 Cl1 C1

K1 L1 L1L2

1© cl1

h

c1

l1 p1

(9)

The next result is exploited in Subsect. 3.2 to
relate our notion to disabling reasons [14]. It
would also be the basis for a precise compari-
son of conflict essences with the basic conflict
conditions introduced in [2], which is left for
future work.

Lemma 25. In any adhesive category, let (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2 be a
transformation pair, let c1 : C1 � L1L2 be its disabling essence and let square
1© be the initial pushout over l1 in diagram (9). Then the disabling essence of
(t1, t2) factors uniquely through the context Cl1 over l1, i.e., there is a unique
mono h : C1 � Cl1 with p1 ◦ c1 = cl1 ◦ h.

108 G. G. Azzi et al.

3.1 Conflict Essence and Extension

The extension of a transformation into a larger context underlies the concept of
completeness of critical pairs and initial conflicts: any pair of conflicting trans-
formations is the extension of a critical pair [8,9] and of an initial conflict [13].
It ensures that checking each critical pair (or each initial conflict) for strict con-
fluence guarantees local confluence for the entire transformation system [8,9].

Definition 26 (Extension Diagram). An extension diagram over trans-
formation t : G

ρ,m
=⇒ H and extension morphism e : G → G is a diagram (10)

where m = e ◦ m is monic and there is a transformation t : G
ρ,m
=⇒ H defined by

the four pushout squares of diagram (11).

G H

G H

e

t

f

t

(10)

L K R

G D H

G D H

m

l

k

r

n

e d

g h

f

g′
h

(11)

It was already shown that conflicts are reflected by extension [13], i.e. when
the extension of a transformation pair is in conflict, the original transformation
pair is in conflict as well. It turns out they are also preserved by extension in
categories of set-valued functors, and in particular of graphs and typed graphs.
Furthermore, conflict essences are also preserved, which means the root causes
of a conflict don’t change with extension.

Lemma 27 (Essence Inheritance). In a category of functors SetS, let

(t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2 and (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2 be two
pairs of transformations such that both extension diagrams of (12) exist for some
f : G → G.
Then the transformation pairs have isomor-
phic conflict and disabling essences. That is,
given the mediating morphism hL : L1L2 �
L1L2 between the pullback objects and the
conflict (disabling) essences c of (t1, t2) and

H1 G H2

H1 G H2

f

t1 t2

t1 t2

(12)

c of (t1, t2), then hL ◦ c ∼= c in Sub(L1L2).

Proof. [Disabling] Consider diagram (13) where L1L2 and L1L2 are pullback
objects for (m1,m2) and (m1,m2), respectively, and hL their unique mediating

On the Essence and Initiality of Conflicts 109

morphism. Constructing the squares 2© and 1© + 2© as pullbacks, by decompo-
sition there is a unique monomorphism hK making 1© a pullback. We will show
that 1© is also a pushout. Then, since initial pushouts are reflected by pushouts
along monomorphisms (Lemma 7), there is an isomorphism hC : C1→C1 between
the contexts of q2 and q2, with c1 ◦ hC = hL ◦ c1. This makes c1 and hL ◦ c1
isomorphic in Sub(L1L2).

K1L2 K1L2 K1 D1 D1

L1L2 L1L2 L1 G G

hK

q2

q1

q1

q2

k

l1

k

g

f ′

g

hL

p1

p1

1©

m1

m1

2©

f

3© 4© (13)

Note that, because the left square of (12) is an extension diagram, there
exist pushouts 3© and 4© in diagram (13). Without loss of generality, assume all
vertical morphisms of (13) are inclusions, as well as hL and hK .

In order to show that pullback 1© is also a pushout, by Lemma 17 it suffices
to show that (hL, q2) is jointly epic. We will show that every element x ∈ L1L2

that is not in L1L2 must be in K1L2. That is, it must be preserved by step t1.
So assume such an x ∈ L1L2 \ L1L2 and consider the two elements y1 =

m1(p1(x)) ∈ G and y2 = m2(p2(x)) ∈ G. These elements of G are distinct, but
identified by f . In fact, x /∈ L1L2 implies that m1(p1(x)) �= m2(p2(x)), that is,
y1 �= y2; instead, since (p1, p2) is a pullback of (m1,m2), we have m1(p1(x)) =
m2(p2(x)) which is equivalent to f(y1) = f(y2).

Since 4© is a pushout and pullback, and f(y1) ∈ G has two distinct preimages
by f , it follows from Lemma 17 that f(y1) has a unique preimage by g. That is,
f(y1) ∈ D1 ⊆ G. Then, since 2© + 3© + 4© is a pullback and f(m1(p1(x))) =
f(y1) = g(f(y1)), x must have a preimage by q2. That is, x ∈ K1L2 ⊆ L1L2.

In conclusion, every x ∈ L1L2 \ L1L2 is such that x ∈ K1L2 and therefore
1© is a pushout. This implies that q2 and q2 have isomorphic initial pushouts,
making hL ◦ c1 isomorphic to c1 in Sub(L1L2).

[Conflict] Follows directly from the previous point. Given the unions c and
c of c1, c2 ∈ Sub(L1L2) and c1, c2 ∈ Sub(L1L2), it is trivial to show that c ◦ hL

is isomorphic to c when cj ◦ hL is isomorphic to cj for j ∈ {1, 2}.

Corollary 28. In a category of functors SetS, assume the extension diagrams
of (12) exist. Then t1 disables t2 if and only if t1 disables t2. Furthermore, t1
and t2 are in conflict if and only if t1 and t2 are in conflict.

3.2 Comparing Reasons and Essences

Conflict essences provide some advantages over the conflict reason spans pro-
posed in [14]. In order to simplify the comparison, we introduce conflict and
disabling reasons in a slightly different but equivalent way, characterizing them
as subobjects of L1L2, the pullback object of the matches.

110 G. G. Azzi et al.

Definition 29 (Disabling Reason). In an adhesive category, let (t1, t2) :
H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 be a pair of transformations.

The disabling reason s1 : S1�L1L2 for (t1, t2) is the mediating morphism
obtained by constructing the initial pushout over l1 as in diagram (14), then the
pullbacks (o1, s12) of (m1 ◦ cl1,m2) and (p1, p2) of the matches.

A disabling reason satisfies the conflict
condition if there is no morphism b∗ : S1 →
Bl1 making diagram (14) commute.

If s1 : S1 � L1L2 and s2 : S2 � L1L2 are
the disabling reasons of (t1, t2) and (t2, t1), the
conflict reason subobject s : S � L1L2 is
constructed as follows. If both s1 and s2 sat-
isfy the conflict condition, then s = s1 ∪ s2
in Sub(L1L2). If only s1 satisfies the con-
flict condition, then s = s1; analogously for

S1

Bl1 Cl1 L1L2

K1 L1 L2

G

o1 s1

s12

b∗

l′1

bl1 cl1 p1 p2

l1
m1 m2

(14)
s2.

A conflict reason span is defined in [14] as the span L1
cl1◦o1← S1

s12→ L2 if only
s1 satisfies the conflict condition, symmetrically if only s2 satisfies it, and as a
span obtained by building a pushout over a pullback if both satisfy the condition.
The equivalence with Definition 29 follows by the bijection between spans of
monos commuting with L1

m1→ G
m2← L2 and monos to L1L2, and observing that

the construction in the third case is identical to that of unions of subobjects.

Fact 30. Given morphisms L1
m1→ G

m1← L2 with pullback

object L1L2, the set of spans L1

f
� S

g
� L2 commuting with

(m1,m2) is isomorphic to the set of monos h : S � L1L2.

Proof. Given a span L1

f
� S

g
� L2 commuting with

(m1,m2), there is a unique h making (15) commute. Since
p1 ◦ h is monic, h is also monic, thus we constructed a uni-
que mono corresponding to (f, g). Given monic h : S �
L1L2, we can construct the span (p1 ◦ h, p2 ◦ h). These
constructions establish a bijection.

S

L1L2

L1 L2

G

f g

h

p1 p2

m1 m2

(15)
��

Note that the relation between disabling reasons and any condition of parallel
independence is not very direct. It has been shown that a disabling exists (in the
sense of Definition 19) if and only if the reason satisfies the conflict condition [14],
but the proof is much more involved than that of Theorem24.

Interestingly, both Definitions 29 and 21 use the same operations, but in
reversed orders. More explicitly, the disabling reason is obtained by first tak-
ing the context of (the initial pushout over) l1, containing all elements deleted
by ρ1 (and the boundary), and then the intersection with the image of m2.
Instead, the disabling essence first restricts on the elements which are matched

On the Essence and Initiality of Conflicts 111

by both transformations, and then takes the context, thus filtering out boundary
elements of l1 that are not relevant for the conflict. This suggests that disabling
essences are in general smaller than disabling reasons, as illustrated by the fol-
lowing example.

Example 31. The disabling reasons for Example 20 are constructed in Fig. 5. In
Fig. 5a, even though the transformations were independent, the reason contains
both floors. In Fig. 5b, the floor y is part of the reason despite not being involved
in the conflict.

(a) Disabling reason for Figure 3a. (b) Disabling reason for Figure 3b.

Fig. 5. Examples of disabling reason.

(a) Extension diagrams.

(b) Reason for
upper pair.

(c) Reason for
lower pair.

Fig. 6. Extended transformations with distinct disabling reasons.

As Example 31 shows, the disabling and conflict reasons may contain elements
that aren’t directly related to the conflict. In the case of graphs, these are isolated
boundary nodes [13], i.e. nodes adjacent to a deleted edge where this deletion
does not cause a disabling. A comparison with Example 23 indicates that this is
not the case for the essences.

The presence of isolated boundary nodes provides another disadvantage:
extending a transformation pair may modify the disabling reason by introducing

112 G. G. Azzi et al.

new isolated boundary nodes, as shown in Fig. 6. This cannot happen for conflict
essences, as proved in Lemma 27.

We conclude this section with a formal proof that every conflict essence is
more precise than the corresponding reason, since the former factors uniquely
through the latter. Indeed, essences are subobjects of reasons, since the unique
factoring is a monomorphism.

Theorem 32 (Precision of Essences). In any adhesive category, let (t1, t2) :
H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 be a pair of transformations with conflict (disabling) essence

c : C �L1L2 and reason s : S �L1L2. Then c ⊆ s in Sub(L1L2), that is, there
is a unique monomorphism h : C � S such that c = s ◦ h.

Proof. [Disabling] By Lemma 25, there is a unique monomorphism f : C1�Cl1

with p1◦c1 = cl1◦f , where Cl1 is the context of l1. By Definition 29, the rectangle
of diagram (16) is a pullback. Then there is a unique h with p2 ◦ s1 ◦h = p2 ◦ c1.
Since p2 is monic, we have s1 ◦ h = c1.

[Conflict] If only s1 satisfies the
conflict condition, then s = s1 by
Definition 29. In this case t1 does not
disable t2, thus by Theorem 24 c2
is the bottom of Sub(L1L2), which
implies c = c1 ∪ ⊥ = c1, and

C1 S1 L1L2 L2

Cl1 L1 G

h

c1

f

s1

o1

p2

p1 m2

cl1 m1

(16)
thus c = c1 ⊆ s1 = s.

The case when only s2 satisfies the conflict condition is symmetrical. If both
s1 and s2 satisfy it, then s = s1 ∪ s2. Since c1 ⊆ s1 and c2 ⊆ s2, then it follows
from distributivity of Sub(L1L2) that c = c1 ∪ c2 ⊆ s1 ∪ s2 = s. ��

4 Conflict Essences and Initial Conflicts

In this section we show how conflict essences can be used to characterize initial
conflicts. Although this is only proven for categories of Set-valued functors, the
characterization is stated completely in categorical terms, unlike the previous
element-based characterization in the category of typed graphs [13]. Thus, this
formulation may be applicable to other categories.

In order to curb the redundancy of critical pairs, a notion of initiality with
respect to embedding was introduced in [13].

Definition 33 (Initial Transformation Pair). Given the pair of transforma-
tion steps (t1, t2) : H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2, a pair (s1, s2) : J1

ρ1,n1⇐= I
ρ2,n2=⇒ J2 is an

initial transformation pair for (t1, t2) if it satisfies both of the following.

(i) The pair (s1, s2) can be embedded into (t1, t2) as in diagram (17).

(ii) For every pair (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2 that can be embedded into (t1, t2)
as in diagram (18), then (s1, s2) can be embedded into (t1, t2).

On the Essence and Initiality of Conflicts 113

J1 I J2

H1 G H2

f

s1 s2

t1 t2

(17)

J1 I J2

H1 G H2

H1 G H2

h

s1 s2

g

t1 t2

t1 t2

(18)

Initial transformation pairs are not guaranteed to exist in any category, but
they exist in the category of typed graphs [13]. It turns out this is also true for
any category of Set-valued functors, where initial conflicts can be constructed as
pushouts of the conflict essence.

Theorem 34 (Construction of Initial Transformation Pairs). In any cat-
egory of functors SetS, let (t1, t2) : H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 be a pair of transfor-

mations with conflict essence c : C � L1L2. Then the pushout L1
n1→ I

n2← L2

of L1
p1◦c← C

p2◦c→ L2 determines an initial transformation pair (s1, s2) : J1
ρ1,n1⇐=

I
ρ2,n2=⇒ J2 for (t1, t2).

Proof. We have to show that L1
n1→ I

n2← L2 (i) determines a transformation
pair (s1, s2) which (ii) can be embedded into (t1, t2) via some morphism f and
(iii) can be embedded into any other pair of transformation steps (t1, t2) that is
embedded into (t1, t2) via some morphism g.

Note that (iii) follows from (ii). In fact, consider the mediating morphism
p : L1L2 → L1L2. By essence inheritance, the conflict essence of (t1, t2) is c :
C � L1L2 with c = p ◦ c. Then (n1, n2) is also the pushout of (p1 ◦ c, p2 ◦ c),
since p1 ◦ c = p1 ◦ p ◦ c = p1 ◦ c and analogously p2 ◦ c = p2 ◦ c. Then by (ii) the
transformation determined by (n1, n2) can be embedded into (t1, t2).

To prove (i) and (ii), note that (n1, n2) is jointly epic, since it is a pushout.
There is also a unique morphism f : I → G making diagram (19) commute.

Now consider the diagram (20), where (p1, p2) is the pullback of (m1,m2)
and 1© is the initial pushout of q2. From the transformation step t1, there is
also a pushout 3© + 4©, and we can construct a pullback 4©. We can also show
n1 ◦ p1 ◦ c1 = n1 ◦ p2 ◦ c1. In fact, since the conflict essence is the union of the
disablings, there is h : C1 � C with c1 = c ◦ h. Then nj ◦ pj ◦ c1 = nj ◦ pj ◦ c ◦ h
for j ∈ {1, 2}, and n1 ◦ p1 ◦ c = n2 ◦ p2 ◦ c by construction of (n1, n2).

114 G. G. Azzi et al.

C

L1 L2

I

G

p1◦c p2◦c

n1

m1

n2

m2

f

(19)

L2

C1 L1L2 I G

L1

B1 K1L2 D′
1

K1 D1

n2

c1

1©
p1

p2

2©

f

3©
4©

n1

d1

b1

q2

q1

g

f ′

k1

l1 k′
1

g

(20)

Then, by the following lemma, 3© and 4© are pushouts in diagram (20).
Pushout 3© ensures the existence of the transformation step s1, as required by
(i). Pushout 4© ensures that s1 can be embedded into t1, as required by (ii).
The proof that a transformation step s2 exists and can be embedded into t2 is
analogous, using the disabling reason of (t2, t1). ��
Lemma 35 (PO-PB Decomposition by Disabling Essence). In any cat-
egory of functors SetS, assume that in diagram (20) the triangle and squares
1©– 4© commute and all morphisms except f and f ′ are monic. Let m1 = f ◦ n1

and m2 = f ◦ n2. Assume also: (n1, n2) is jointly epic; (p1, p2) is the pullback of
(m1,m2); n1 ◦p1 ◦c1 = n2 ◦p2 ◦c2; 3©+ 4© is a pushout; 2© and 4© are pullbacks;
1© is the initial pushout of q2. Then both squares 3© and 4© are pushouts.

Proof. We will show that square 3© is a pushout, which by decomposition implies
that 4© is also a pushout. Without loss of generality, assume that all vertical
morphisms of diagram (20) as well as c1 and b1 are inclusions.

By Lemma 17, it suffices to show that every element x ∈ I \ n1(L1) has a
unique preimage by G, that is x ∈ D′

1 ⊆ I. Since (n1, n2) is jointly epic and
x /∈ n1(L1), we must have x ∈ n2(L2). Thus, there is y2 ∈ L2 with x = n1(y2).

Now, consider f(x) ∈ G. Recall that (m1, g) is a pushout and thus jointly
epic, then f(x) must be in the image of m1 or g. We will show that it is always
in the image of g, that is, f(x) ∈ D1. Then, since 4© is a pullback, x ∈ D′

1.
When f(x) is in the image of m1 there is y1 ∈ L1 with m1(y1) = f(x) =

m2(y2). Then since (p1, p2) is a pullback there is a unique z ∈ L1L2 with
p1(z) = y1 and p2(z) = y2. But z cannot be in C1, otherwise we would
have x = n2(p2(c1(z))) = n1(p1(c1(z))), contradicting the assumption that
x /∈ n1(L1). Thus, we must have z ∈ K1L2. Then, since squares 2©– 4© com-
mute in diagram (20), we have f(x) = k1(q1(z)) ∈ D1. ��

On the Essence and Initiality of Conflicts 115

Note that the proof of Theorem 34 doesn’t directly depend on details of the
category of functors. Thus, it holds in any category with essence inheritance and
po-pb decomposition by disabling essence.

Conflicting transformation pairs that are themselves initial are called initial
conflicts. They provide a suitable subset of critical pairs, being complete in the
sense that any conflicting transformation pair is a unique extension of some
initial conflict [13]. We provide a simple characterization for initial conflicts.

Definition 36 (Initial Conflict). A pair of conflicting transformation steps
(t1, t2) : H1

ρ1,m1⇐= G
ρ2,m2=⇒ H2 is an initial conflict when it is isomorphic to its

initial transformation pair.

Corollary 37. In a category of functors SetS, let (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2=⇒ H2

be a pair of transformations with non-empty conflict essence. Then the following
are equivalent:

(i) (t1, t2) is an initial conflict
(ii) the conflict essence of (t1, t2) is isomorphic to L1L2

(iii) the pullback square to the right is also a pushout.

L1L2 L1

L2 G

p1

p2 m1

m2

5 Conclusions

In this paper we have introduced conflict essences as a formal characterization
of the root causes of conflicts. We have shown that, in adhesive categories, they
are empty if and only if the transformations are parallel independent, and they
are not larger than the previously proposed conflict reasons. In categories of
set-valued functors, which include the categories of graphs and typed graphs,
we have shown that essences are preserved by extension, and that they uniquely
determine initial conflicts. We have also identified two sufficient conditions for
the existence of initial conflicts in an adhesive category: essence inheritance
(Lemma 27) and po-pb decomposition by disabling essence (Lemma 35).

As future work, we intend to adapt the definitions of this paper to the Sesqui-
Pushout approach [4]. In the context of the dpo approach, we intend to apply
the conflict conditions of [2] to the essences. From a more practical perspective, it
should be possible to improve the efficiency of Critical-Pair Analysis, as imple-
mented by AGG [18] and Verigraph [1] by enumerating conflict essences and
initial conflicts instead of critical pairs. Furthermore, integrating this work with
constraints and application conditions [7] is important for practical applications.

Acknowledgements. The authors would like to acknowledge the brazilian agency
CAPES for their support in the form of scholarships.

116 G. G. Azzi et al.

References

1. Azzi, G.G., Bezerra, J.S., Ribeiro, L., Costa, A., Rodrigues, L.M., Machado, R.:
The verigraph system for graph transformation. In: Heckel, R., Taentzer, G. (eds.)
Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 160–178.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6 9

2. Born, K., Lambers, L., Strüber, D., Taentzer, G.: Granularity of conflicts and
dependencies in graph transformation systems. In: de Lara, J., Plump, D. (eds.)
ICGT 2017. LNCS, vol. 10373, pp. 125–141. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61470-0 8

3. Corradini, A., et al.: On the essence of parallel independence for the double-pushout
and sesqui-pushout approaches. In: Heckel, R., Taentzer, G. (eds.) Graph Trans-
formation, Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75396-6 1

4. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

5. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Handbook of Graph Grammars and Computing by Graph Trans-
formations. Foundations, vol. 1, pp. 163–246. World Scientific (1997). https://doi.
org/10.1142/9789812384720 0003

6. Cota, É.F., Ribeiro, L., Bezerra, J.S., Costa, A., da Silva, R.E., Cota, G.: Using
formal methods for content validation of medical procedure documents. Int. J.
Med. Inf. 104, 10–25 (2017). https://doi.org/10.1016/j.ijmedinf.2017.04.012

7. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.-H.: Constraints and application
conditions: from graphs to high-level structures. In: Ehrig, H., Engels, G., Parisi-
Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 287–303.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 21

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

9. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30203-2 12

10. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation - part II: single pushout approach
and comparison with double pushout approach. In: Handbook of Graph Grammars,
pp. 247–312. World Scientific (1997). https://doi.org/10.1142/9789812384720 0004

11. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, vol. 2.
Oxford University Press, Oxford (2002)

12. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511–
545 (2005). https://doi.org/10.1051/ita:2005028

13. Lambers, L., Born, K., Orejas, F., Strüber, D., Taentzer, G.: Initial conflicts and
dependencies: critical pairs revisited. In: Heckel, R., Taentzer, G. (eds.) Graph
Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 105–123. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75396-6 6

https://doi.org/10.1007/978-3-319-75396-6_9
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1007/978-3-319-75396-6_1
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1142/9789812384720_0003
https://doi.org/10.1142/9789812384720_0003
https://doi.org/10.1016/j.ijmedinf.2017.04.012
https://doi.org/10.1007/978-3-540-30203-2_21
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-540-30203-2_12
https://doi.org/10.1142/9789812384720_0004
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1007/978-3-319-75396-6_6

On the Essence and Initiality of Conflicts 117

14. Lambers, L., Ehrig, H., Orejas, F.: Efficient conflict detection in graph transfor-
mation systems by essential critical pairs. ENTCS 211, 17–26 (2008). https://doi.
org/10.1016/j.entcs.2008.04.026

15. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-
0927-0

16. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Softw. Syst. Model. 6(3), 269–285 (2007). https://doi.org/10.1007/
s10270-006-0044-6

17. Oliveira, M., Ribeiro, L., Cota, É., Duarte, L.M., Nunes, I., Reis, F.: Use case
analysis based on formal methods: an empirical study. In: Codescu, M., Diaconescu,
R., Ţuţu, I. (eds.) WADT 2015. LNCS, vol. 9463, pp. 110–130. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-28114-8 7

18. Taentzer, G.: AGG: a graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25959-6 35

https://doi.org/10.1016/j.entcs.2008.04.026
https://doi.org/10.1016/j.entcs.2008.04.026
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/s10270-006-0044-6
https://doi.org/10.1007/s10270-006-0044-6
https://doi.org/10.1007/978-3-319-28114-8_7
https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-540-25959-6_35

Characterisation of Parallel Independence
in AGREE-Rewriting

Michael Löwe(B)

FHDW Hannover, Freundallee 15, 30173 Hannover, Germany
michael.loewe@fhdw.de

Abstract. AGREE is a new approach to algebraic graph transforma-
tion. It provides sophisticated mechanisms for object cloning and non-
local manipulations. It is for example possible to delete all edges in a
graph by a single rule application. Due to these far-reaching effects of
rule application, Church-Rosser results are difficult to obtain. Currently,
there are only sufficient conditions for parallel independence, i.e. there
are independent situations which are not classified independent by the
existing conditions. In this paper, we characterise all independent situ-
ations.

1 Introduction

The AGREE approach to algebraic graph transformation has been introduced in
[1] as a rewrite mechanism in categories with partial arrow classifiers.1 It comes
equipped with comfortable control mechanisms for item cloning. Besides that,
it allows global manipulations of the objects that are rewritten. In the category
of graphs for example, a rule �E and a rule �D can be formulated that erases
respectively duplicates all edges in the graph it is applied to.2 These global
effects complicate the analysis of AGREE-rewrites wrt. parallel independence
and Church-Rosser properties. Currently, there are only parallel independence
results available for the sub-set of so-called local AGREE-rewrites, compare [2].

But there are non-local and independent rewrites. A simple example in the
category of graphs is the pair of rules �E and �D mentioned above: If we duplicate
all edges and thereafter erase all edges or if we erase all edges and thereafter
duplicate all remaining (none) edges, we obtain the same result, namely a discrete
graph with the same set of vertices as in the beginning. In this paper, we develop
better criteria for parallel independence than in [2] that are also able to handle
rules with such global effects. The major tool for this purpose is the modelling
of AGREE-rewrites as gluing constructions that have been introduced in [10].

Definition 1 (Gluing). The gluing of two pairs of morphisms (l : K → L, r :
K → R) and (m : L′ → L, n : L′ → G) in a category is given by the diagram in
1 For details compare Definition 2 below.
2 This is mainly due to a pullback construction that is part of definition of rewrite in

AGREE. For details compare Sect. 3.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 118–133, 2018.
https://doi.org/10.1007/978-3-319-92991-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_8&domain=pdf

Characterisation of Parallel Independence in AGREE-Rewriting 119

L K R

L′ K′ R′

G D H

(PB) (FPC)

l r

(FPC)

m

n (PO)

t

u

l′ r′

p

q

g h

Fig. 1. Gluing

Fig. 1, where (i) (l′, t) is pullback of (l,m), (ii) (u, g) and (r′, p) are final pullback
complements of (l′, n) resp. (t, r), and (iii) (h, q) is pushout of (u, r′).

The gluing construction provides a general framework into which all algebraic
approaches to graph transformation can be integrated. If we interpret the span
(l, r) as rule and the span (m,n) as match,

1. a double-pushout rewrite [4] requires monic l, isomorphic m, and that (u, g)
is not only final pullback complement but also pushout complement,

2. a single-pushout rewrite at conflict-free match [8,9] requires monic l and
isomorphic m, and

3. a sesqui-pushout rewrite [3] requires isomorphic m only.

In Sect. 3, we integrate AGREE-rewriting with right-linear rules into this
framework.3 AGREE is the first approach that does not require the m-part of
a match to be an isomorphism. Instead the n-part must be monic. By this inte-
gration, we obtain a straightforward notion of parallel independence in Sect. 4:
two matches in the same object are parallel independent, if there are residuals
for both matches after the rewrite with the other rule. Finally, Sect. 5 provides
“syntactical”, easy to check, and characterising criteria for parallel independence.
The conclusion in Sect. 6 interprets the obtained results on an intuitive level and
presents the independence of the rules �E and �D (see above).

2 Preliminaries

This section introduces fundamental notions, requirements, and results that
make up the categorical framework for the following sections. We assume for
the underlying category C
P1 that it has all finite limits and colimits,
P2 that it has all partial arrow classifiers, and
P3 that pushouts along monomorphisms are stable under pullbacks.

A pushout (f ′, g′) of (g, f) as depicted in sub-diagram (1) of Fig. 2 is stable
under pullbacks, if, for all commutative situations as in Fig. 2, the pair (f ′

m, g′
m)

is pushout of the span (gm, fm), if sub-diagrams (2)–(5) are pullbacks.4

3 As in [2], we consider right-linear rules only.
4 This is only half of the usually required adhesivity, compare [4].

120 M. Löwe

P D

B A A• X

E C A D

U Q

(4)

(2)

f ′
m

mP

(3) fm

gm

m

(1)f ′ f

g

(PB)

(m,f)•

(5)

g′

ηA

f

m

mU mQ

g′
m

Fig. 2. Stability and partial arrow classification

Definition 2 (Partial arrow classifiers). A category has partial arrow clas-
sifiers, if there is a monomorphism ηA : A � A• for every object A with the
following universal property: For every pair (m : D � X, f : D → A) of mor-
phisms with monic m, there is a unique morphism (m, f)• : X → A• such
that (m, f) is the pullback of (ηA, (m, f)•), compare right part of Fig. 2. In the
following, the unique morphism (m, f)• is also called totalisation of (m, f).

Fig. 3. Sample partial arrow classifiers in the category of graphs

Figure 3 depicts three sample partial arrow classifiers in the category of
graphs: (1) for a single vertex, (2) for a graph with two vertices, and (3) for
a graph with two vertices, a loop, and an edge between the vertices. The graph
A that is classified is painted black, the grey parts are added by the classifier A•.
The classifier provides the additional structure that is needed to map the objects
that are not in the image of m in arbitrarily given pair (m : D � X, f : D → A).

In a category with partial arrow classifiers, each monomorphism m : A �
B induces a morphism (m, idA)• : B → A• in “the opposite” direction. We
abbreviate (m, idA)• by m•. The morphisms ηA : A � A•, m : A � B, and
m• : B → A• produce a commutative triangle m• ◦ m = ηA such that (m, idA)
is pullback of (ηA,m•). In this situation, we say that ηA is reflected along m•.

Definition 3 (Pullback reflection). A morphism b : B → A is reflected along
a morphism r : R → A if there is morphism β : B → R such that (β, idB) is
pullback of (b, r). The morphism β is called the r-reflection of b.

Characterisation of Parallel Independence in AGREE-Rewriting 121

B• A C

B B D

(PB) (PB)

b•

(e,d)•

c

ηB b

idB

d

x

e

d

Fig. 4. Diagram for Fact F3

Categories with partial arrow classifiers possess many interesting properties.
Some of these properties that are used below are:5.

F1: Pushouts preserve monomorphisms.
F2: Pushouts along monomorphisms are pullbacks.
F3: Let (b : B � A, c : C → A) be a co-span such that b is monic. Then (e :

D � C, d : D → B) is pullback of (b, c), if and only if b• ◦ c = (e, d)•.
F4: If e : B � C and c : C → A are two morphisms such that e and c ◦ e are

monic, then e is the c-reflection of c ◦ e, if and only if e• = (c ◦ e)• ◦ c.6
F5: For c : C � B, b : B → A, and a : C � A, a• ◦ b = c• implies b ◦ c = a.7

Proof. (Fact F3) The situation is depicted in Fig. 4: (⇒) Since (e, d) is pullback of
(c, b) and (idB , b) is pullback of (ηB , b•), pullback composition provides (e, d) as
pullback of (ηB , b•◦c). Since (e, d) is also pullback of (ηB , (e, d)•), the uniqueness
of the totalisation provides b• ◦ c = (e, d)•. (⇐) If b• ◦ c = (e, d)•, then (b, idB)
is pullback of (ηB , b•) and (e, d) is pullback of (ηB , (e, d)•). Since b• ◦ (c ◦ e) =
(e, d)• ◦e = ηB ◦d, there is x : D → B with (x, e) as pullback of (b, c) by pullback
decomposition and x ◦ idB = d implying x = d. ��

These facts imply some additional properties. Important for the rest of the
paper are facts about the existence of certain final pullback complements.

Definition 4 (Final pullback complement). Let (a, d) be the pullback of
(b, c) as depicted in the left part of Fig. 5. The pair (d, c) is the final pullback
complement of the pair (a, b) if for every collection (x, y, z, w) of morphisms
such that (x, y) is pullback of (b, z) and a ◦ w = x, there is unique morphism w∗

providing w∗ ◦ y = d ◦ w and c ◦ w∗ = z.
5 Compare [6,7]. Facts F1 and F2 are consequences of the fact that all pushouts in

a category with partial arrow classifiers are hereditary. A pushout (f ′, g′) of (g, f)
as depicted in sub-diagram (1) of Fig. 2 is hereditary, if for all commutative sit-
uations as presented in Fig. 2 in which sub-diagrams (2) and (3) are pullbacks,
and m, mP , and mQ are monomorphisms the following property is valid: the co-span
(f ′

m, g′
m) is pushout of the span (gm, fm), if and only if sub-diagrams (4) and (5) are

pullbacks and mU is monomorphism. Hereditariness implies stability of pushouts
under pullbacks along monomorphisms. For some of the following results, however,
we need requirement P3 which does not require monic m, mP , mQ, and mU .

6 Special case of F3 for d = idB and b = c ◦ e.
7 Consequence of F3 for d = idB .

122 M. Löwe

A′ B′

P

A B A B

C D C D

Q

C′ D′

b′

i

d′

a′

j
w

y

x

(PB)b d

a

(2)

(3)

(1)b d

a

c

(4)

(5)

c

w∗

z

q

c′

p

Fig. 5. Final pullback complement

The next proposition states that final pullback complements and pullbacks
are mutually dependent in some situations.8

Proposition 5 (Pullbacks and final pullback complements). Let a com-
mutative diagram as in Fig. 5 (right part) be given such that (d, c) is final pullback
complement of (a, b) in sub-diagram (1), and sub-diagrams (2) and (3) are pull-
backs. Then sub-diagram (4) is pullback, if and only if (d′, c′) is final pullback
complement of (a′, b′).

Partial arrow classifiers produce certain final pullback complements.

Proposition 6 (Final pullback complement by classification). If (a, ηB)
is pullback of (ηA, (ηB , a)•) for a given morphism a : A → B, then the pair
(ηB , (ηB , a)•) is the final pullback complement of (a, ηA).

Proof. Let the tuple (x, y, z, w) in Fig. 6 be given such that (x, y) is pullback of
(ηA, z) and a ◦ w = x. Then y is monomorphism. Construct w∗ = (y, w)•. This
provides ηB ◦ w = w∗ ◦ y and (w, y) as pullback of (ηB , w∗). And, since (y, x) is
the pullback of (ηA, z) and the pullback of (ηA, (ηB , a)• ◦ w∗), we can conclude
z = (ηB , a)• ◦ w∗, due to uniqueness of partial arrow totalisation for (y, x).
Uniqueness of w∗ is provided by the uniqueness of the totalisation of (y, w). ��

Corollary 7 (Final pullback complements). Every pair (b : B � C, a :
A → B) of morphisms with monic b has a final pullback complement.

Proof. Consequence of Propositions 5 and 6. A proof can be found in [1].

The existence of certain final pullback complements which is guaranteed by
Corollary 7 leads to another result which is important for the rest of the paper.

Corollary 8 (Weak final pullback complement adhesivity). In each com-
mutative diagram as in Fig. 7 in which sub-diagram (5) is a pushout along monic

8 For the proof, see [11].

Characterisation of Parallel Independence in AGREE-Rewriting 123

Q

A• B•

A B

P

w∗=(y,w)•

z

ηA

(ηB ,a)•
ηB

a

x

y

w

Fig. 6. Classifier provides final pullback complement

a, sub-diagram (1) is pullback, and (a′, f) is final pullback complement of (e, a)
in sub-diagram (2), the following property is valid: (b′, d′) is pushout of (a′, c′)
if and only if sub-diagram (3) is pullback and in sub-diagram (4) (d′, h) is final
pullback complement of (g, d).

F E

B A

D C

H G

(3)

(2)

b′

f

(1) c′

a′

e

(5)b c

a

(4)

d

h g

d′

Fig. 7. Weak final pullback complement adhesivity

Proof. Due to Corollary 7, we can always construct sub-diagram (4) as final
pullback complement. By Fact F2, (5) is pullback which implies that (2)+(5) is
pullback. Since g ◦ c′ = c ◦ e, final pullback complement (4) provides morphism
b′ such that h ◦ b′ = b ◦ f and b′ ◦ a′ = d′ ◦ c′. Now the premises for Proposition 5
(if-part) are satisfied, namely (2) and (4) are final pullback complements and (5)
and (1) are pullbacks. Thus, also sub-diagram (3) is pullback. Finally, stability
of pushouts under pullbacks guarantees that (b′, d′) is pushout of (a′, c′). ��

3 AGREE Rewrites as Gluing Constructions

In this section, we show that AGREE-rewrites are gluing constructions in the
sense of [10]. As in [2], we only consider rules whose right-hand sides are monic.

Definition 9 (AGREE rule, match, and rewrite). A right-linear AGREE
rule � is a triple � = (l : K → L, t : K � TK , r : K � R) of morphism such that
t and r are monic. A match in an object G is a monic morphism m : L � G.
A rewrite with a rule at a match is constructed as depicted in Fig. 8:

124 M. Löwe

L• TK

L K R

G D H

(t,l)•

m

ηL

n

l r

t

p
(PB)

m•

hg

n′

(PO)

Fig. 8. AGREE rewrite

1. Let ηL : L � L• be the partial arrow classifier for the rule’s left-hand side.
2. Construct pullback (g, n′) of the pair ((t, l)• : K ′ → L•,m• : G → L•).
3. Let n : K � D be the unique morphism such that g ◦n = m◦ l and n′ ◦n = t.
4. Construct (h : D � H, p : R � H) as pushout of (r : K � R,n : K � D).

The span (g : D → G,h : D � H) is called the trace of the derivation. The
trace of a derivation with rule � at match m is also denoted by � 〈m〉. ��

The right-hand side of every trace is monic, since pushouts preserve
monomorphisms by Fact F1. By the next definition, AGREE-rules and matches
are made compatible to the gluing construction of Definition 1. The following
theorem proves that AGREE-rewrites are special gluings.

Definition 10 (AGREE-flavoured rule and global match). A span of
morphisms σ = (l : K → L, r : K � R) is an AGREE-flavoured gluing rule if
there is an AGREE rule � = (l′ : K ′ → L′, t : K ′ � K, r′ : K ′ � R′) such that:9

1. ηL : L′ � L is the partial arrow classifier for L′, i.e. L = L′ •,
2. l is the totalisation of the partial morphism (t, l′), i.e. l = (t, l′)•, and
3. (r, t′) is pushout of (t, r′).

A span (m : G′ → L, i : G′ → G) is a global match for an AGREE-flavoured
rule in an object G, if:10

1. i is the identity on G, i.e. G′ = G and i = idG, and
2. there is a monomorphism m′ : L′ � G′ such m = m′ • which is called base

match of m (for �) in the following. ��
Theorem 11. An AGREE rewrite is a gluing construction.

Proof. For the proof consider Fig. 9 which depicts an AGREE rule (l′, t, r′)
together with the induced AGREE-flavoured gluing rule (l, r), compare Defi-
nition 10. A given match m′ : L � G for the AGREE rule (l′, t, r′) induces a
global match (m : G → L, idG : G → G) for (l, r). Thus in Fig. 9, G = G′ and

9 Compare top part of Fig. 9.
10 Compare left part of Fig. 9.

Characterisation of Parallel Independence in AGREE-Rewriting 125

L K R

L′ K′ R′

G′ D′ H ′

G D H

(PB) (PO)

l r

m′

ηL

n′

l′ r′

t

p′

t′

(FPC)i

m

(PO)i′
h′g′

n

i′′

p

mi
n′
i

hg

ni
p′
i

pi

Fig. 9. AGREE-flavoured gluing construction

i = idG for the rest of the proof. The pair (n, g′) is constructed as pullback of
(l,m) in both rewrite approaches and the morphism n′ : K ′ � D making the
diagram commutative provides (idK′ , n′) as pullback of (n, t) due to composi-
tion and decomposition properties of the pullbacks (idL′ ,m′) of (m, ηL), (t, l′)
of (ηL, l), (g′, n) of (m, l), and (l′, n′) of (m′, g′).

Next, let (p′, h′) be the right-hand side of the AGREE rewrite step with rule
(l′, t, r′) at match m′, i.e. (p′, h′) is the pushout of (r′, n′). Then we get a unique
morphism p : H ′ → R making the diagram in Fig. 9 commutative.

R′ K′

R′ K′

R K

H ′ D′

(4)

(2)
idR′

p′ (3) n′

idK′

r′

(1)t′ t
r′

(5)

r

p n

h′

Fig. 10. Rewrite details

The details of the resulting (right-hand) situation are depicted in Fig. 10:

1. Sub-diagram (1) is pushout along monic r′.
2. The pair (p′, h′) in the outer rectangle is pushout of (r′, n′).
3. In sub-diagram (2), (r′, idR′) is final pullback complement of (idK′ , r′).
4. Sub-diagram (3) is pullback.

With these premises, Corollary 8 guarantees that sub-diagram (4) is pullback
and the pair (h′, p) is final pullback complement of (n, r) in sub-diagram (5).

126 M. Löwe

Since we have chosen the match such that G′ = G and i = idG, we can choose
i′ = idD, i′′ = idH , g′ = g, and h′ = h and immediately obtain the remaining
final pullback complement (i′, g) and pushout (i′′, h) in Fig. 9. ��
Corollary 12. An AGREE rewrite step is a gluing construction consisting of a
pullback and a pushout (complement).

Proof. In the commutative diagram in Fig. 9, the pair (r, p) is pushout, since
(r, t′) and (p′, h′) are pushouts and pushouts decompose.

We conclude this section by a notion of local match. Local matches provide a
better integration of AGREE-rewrites into the gluing framework of Definition 1,
since local matches are real spans of morphisms.

Definition 13 (Local match). If σ = (l : K → L, r : K � R) is a rule that
is flavoured by the AGREE rule � = (l′ : K ′ → L′, t : K ′ � K, r′ : K ′ � R′), a
span (m : G′ → L, i : G′ � G) is a local match, if

1. i is monic,
2. there is a base match m′ : L′ � G′ such that m = m′ •, and
3. given the pullbacks (g′ : D′ → G′, n : D′ → K) and (g : D → G,ni : D → K)

of (m, l) and ((i◦m′)•, l) resp. and the induced unique morphism i′ : D′ → D
for (i ◦ m′)• ◦ i = m, (i′, g) is final pullback complement of (g′, i).11

The global match that is induced by a local match (m : G′ → L, i : G′ � G)
is

(
(i ◦ m′)• : G → L, idG : G → G

)
. ��

In the following, the totalisation (i ◦ m′)• is also called mi, compare Fig. 9.

Proposition 14 (Local match). The gluing construction for a rule σ that is
flavoured by an AGREE rule � at a local match (m, i) results in the same trace
as the gluing construction for σ at the induced global match mi.

Proof. Compare Fig. 9. The gluing of (l, r) at the global match produces pullback
(g, ni) of (l,mi) on the left-hand and final pullback complement (h, pi) of (r, ni)
on the right-hand side. Since the rule is AGREE-flavoured, we get morphisms
n′

i and p′
i such that ni ◦ n′

i = t and (h, p′
i) is pushout of (n′

i, r
′).

Building the gluing at the local match, we construct an AGREE rewrite
with (l′, t, r′) at match m′. Thus, we get pullbacks (n, g′) of (l,m) and (n′, l′) of
(g′,m′), final pullback complement (h′, p) of (n, r) and pushout (p′, h′) of (r′, n′).

Since i is monic, m′ is the i-reflection of i◦m′ and mi◦i = m by Fact F4. Thus,
there is i′ such that ni ◦ i′ = n and (g′, i′) is pullback of (i, g). Definition 13(3)
makes sure that (g, i′) is final pullback complement of (g′, i).

Since g ◦ n′
i = i ◦ m′ ◦ l′ = i ◦ g′ ◦ n′ = g ◦ (i′ ◦ n′) and ni ◦ (i′ ◦ n′) = n ◦ n′ =

t = ni ◦ n′
i, (ni, g) being pullback guarantees that i′ ◦ n′ = n′

i. Due to (h′, p′)
being pushout and h ◦ i′ ◦ n′ = h ◦ n′

i = p′
i ◦ r′, there is i′′ such that i′′ ◦ p′ = p′

i

and i′′ ◦ h′ = h ◦ i′. Pushout decomposition guarantees that (i′′, h) is pushout of
(i′, h′). ��
11 Compare Fig. 9 where (i ◦ m′)• is called mi!.

Characterisation of Parallel Independence in AGREE-Rewriting 127

4 Parallel Independence

Any form of parallel independence analysis investigates situations in which
rewrite rules χ1 : L1 � R1 and χ2 : L2 � R2 can be applied to object
G at matches m1 :: L1 � G resp. m2 : L2 � G leading to derivations
χ1 〈m1〉 :: G � H1 and χ2 〈m2〉 :: G � H2. The aim is to formulate condi-
tions that make sure that

– χ1 can be applied at a residual match m∗
1 :: L1 � H2 after χ2 has been

applied at m2 resulting in object H2,
– χ2 can be applied at a residual match m∗

2 :: L2 � H1 after χ1 has been
applied at m1 resulting in object H1, and

– both sequences, namely G
χ1〈m1〉� H1

χ2〈m∗
2〉� H12 and G

χ2〈m2〉� H2
χ1〈m∗

1〉� H21,
produce the same result.

The notion “same result” means in its weak form that H12 and H21 are equal or
at least structurally equal.12 In a stronger form, “same result” means that the
two derivation sequences are equal, i.e. χ2 〈m∗

2〉◦χ1 〈m1〉 = χ1 〈m∗
1〉◦χ2 〈m2〉. The

strong form can only be formulated in a setup where derivations are represented
by some sort of morphisms for which a composition is well-defined.

The central notion in this analysis is the notion of residual match. Intuitively,
a match m∗

1 : L1 � H2 is a residual for m1 : L1 � G in the transformation result
of χ2 〈m2〉 :: G � H2, if m1 and m∗

1 are the “same” match or χ2 〈m2〉 maps m1

to m∗
1 by some suitable mapping mechanism of matches in G to matches in H2.

In a setup in which matches and derivations are represented by morphisms
in a suitable category, the most straightforward idea for a match mapping is
morphism composition: If matches m1 : L1 → G and m2 : L2 → G for rules χ1

and χ2 are morphisms and the derivations of G to H1 via rule χ1 at match m1 and
to H2 via rule χ2 at match m2 are represented by morphisms χ1 〈m1〉 : G → H1

and χ2 〈m2〉 : G → H2, the residual of m1 after χ2 〈m2〉 is m∗
1 = χ2 〈m2〉 ◦ m1

and the residual of m2 after χ1 〈m1〉 is m∗
2 = χ1 〈m1〉 ◦ m2.

In our context of AGREE-flavoured rules, traces of rewrites are represented
by special spans, compare Definition 9. Thus, we have to pass to the category of
spans in order to exploit the ideas for residuals described above:

Definition 15 (Span category). A concrete (right-linear) span is a pair of
morphisms 〈l : K → L, r : K � R〉 such that r is monic. Two concrete spans
〈l : K → L, r : K � R〉 and 〈l′ : K ′ → L, r′ : K ′ � R〉 are equivalent, if there
is an isomorphism i : K ↔ K ′ such that l′ ◦ i = l and r′ ◦ i = r. An
abstract span (l : K → L, r : K � R) is the class of all concrete spans equivalent
to 〈l : K → L, r : K � R〉. The category of spans has the same objects as the
underlying category and abstract spans as morphisms. The identity for object
A is defined by (idA : A → A, idA : A → A). Composition of two morphisms
(l : K → L, r : K � R) and (p : H → R, q : H � S) is defined by (p, q)◦ (l, r) =
(l ◦ p′, q ◦ r′) where (p′, r′) is the pullback of (r, p).

12 Equal up to isomorphism.

128 M. Löwe

Fact 16 (Gluing construction). A gluing construction is a commutative dia-
gram in the category of abstract spans.

With these prerequisites, we can precisely express what we mean by residual
in AGREE-flavoured rewriting.

Definition 17 (Residual). A global match m : G → L for a gluing rule with
AGREE-flavour has a residual m∗ in a trace (g : D → G,h : D � H), if
m∗ = (m ◦ g, h) = (g, h) ◦ (m, id) is local match for p.

By Theorem 11 and Proposition 14, we know that AGREE rewrites at global
and local matches are gluing constructions. Exploiting composition and decom-
position properties of gluings, we obtain the following crucial result.

Theorem 18 (Church-Rosser). Let σ1 〈m1〉 = (g1, h1) and σ2 〈m2〉 =
(g2, h2) be two traces starting at the same object G, one for the application of
AGREE-flavoured rule σ1 at global match m1 and the other for the application
of rule σ2 at global match m2. If m∗

1 and m∗
2 are residuals for m1 and m2 respec-

tively, then σ1 〈m∗
1〉 ◦ σ2 〈m2〉 = σ2 〈m∗

2〉 ◦ σ1 〈m1〉, where σ1 〈m∗
1〉 and σ2 〈m∗

2〉
are the traces of the rewrites with σ1 and σ2 at m∗

1 and m∗
2 respectively.

For the proof, we need the following lemmata (proofs can be found in [11]).13

Lemma 19 (Gluing decomposition). If the pair [(i, j) , (h, k)] is gluing of
[(a, b) , (c, d)], [(x, y) , (p, q)] is gluing of [(a, b) , (m,n) ◦ (c, d)], and b, d, and n are
monic, then there is a span (r, s) such that (r, s)◦(i, j) = (x, y) and [(r, s) , (p, q)]
is gluing of [(h, k) , (m,n)], compare Fig. 11.

Lemma 20 (Gluing composition). If [(i, j) , (h, k)] is gluing of [(a, b) , (c, d)],
[(r, s) , (p, q)] is gluing of [(h, k) , (m,n)], and b, d, and n are monic, then the pair
[(r, s) ◦ (i, j) , (p, q)] is gluing of [(a, b) , (m,n) ◦ (c, d)], compare again Fig. 11.

Proof (for Theorem 18). Let [(g12, h12), (u, v)] be the gluing construction for
rewrite rule σ1 at the residual m∗

1 = (m1 ◦ g2, h2) such that (g12, h12) is the
trace σ1 〈m∗

1〉. By Lemma 19, there is a span (x, y) such that [(x, y), (g12, h12)] is
the gluing of [(g1, h1), (g2, h2)]. Due to Lemma 20, the composition of this gluing
square with the gluing construction which stands for the application of rule σ2

at match m2 represents the application of rule σ2 at residual m∗
2 = (m2 ◦g1, h1).

Thus, the span (x, y) is the trace σ2 〈m∗
2〉 of the rewrite step with rule σ2 at

residual m∗
2. Due to Fact 16, σ1 〈m∗

1〉 ◦ σ2 〈m2〉 = σ2 〈m∗
2〉 ◦ σ1 〈m1〉. ��

Theorem 18 justifies the following definition of parallel independence.

Definition 21 (Parallel independence). Matches m1 and m2 for AGREE-
flavoured rules p1 and p2 in the same object are parallel independent, if they
possess mutual residuals, i.e. if there are residuals for m1 and m2 in the trace of
the rewrite with p2 at m2 and in the trace of the rewrite with p1 at m1 respectively.
13 These two lemmata demonstrate that gluing constructions in categories of abstract

(right linear) spans possess the same composition and decomposition properties as
simple pushouts in arbitrary categories.

Characterisation of Parallel Independence in AGREE-Rewriting 129

A B C

D E F A C

S T U

G H K G K

L M N P R

P Q R

a b

c

d f

e

a′ b′

j

i

(m,n)◦(c,d)

(a,b)

(c,d) (x,y)
(i,j)

n◦d′

c◦m′

m′

d′

α

v

t u

x

β

h k (h,k)

(m,n)

(r,s)
m

n

γ

λ

δ

n′
p′

ε
r

s

(p,q)

w

p q

y

Fig. 11. Composition and decomposition of gluings

5 Characterisation of Parallel Independence

In this section, we analyse the notion of parallel independence given by Def-
inition 21. The aim is to find characterising conditions that are easy to check
without constructing (parts of) the rewrites and taking only the structure of the
participating rules and matches into account.

We start by investigating necessary conditions for parallel independence.
First we analyse the structure of the left-hand sides of independent rule appli-
cation. For this purpose consider Fig. 12. It depicts the pullback (π1 : L12 �
L′
1, π2 : L12 � L′

2) of two base matches m′
1 and m′

2 for the left-hand sides
ηL1 : L′

1 � L1 and ηL2 : L′
2 � L2 of two rules in the same object G. Both

pullback morphisms are monic since the base matches are required to be monic.

Proposition 22 (Necessary condition – left-hand sides). If a global match
m2 for an AGREE-flavoured rule (l2, r2) has a residual in the trace of rule (l1, r1)
at global match m1 and (π1 : L12 � L′

1, π2 : L12 � L′
2) is the pullback of the

base matches m′
1 : L′

1 � G and m′
2 : L′

2 � G, then (π2, π1)• has a l1-reflection
(α1 in Fig. 12) and π1 has a monic l′1-reflection (β1 in Fig. 12).

Proof. For the proof compare Fig. 12. If match m2 has residual in the trace
(g1 : D1 → G,h1 : D1 � H1), there is a base match γ1 : L′

2 � D1 such that
m2◦g1 = γ•

1 , compare Definition 13(2). Since m2 = m′
2

•, we obtain (i) m′
2

•◦g1 =
γ•
1 , (ii) m′

2 = g1 ◦ γ1 and (g1 ◦ γ1)• ◦ g1 = γ•
1 by Fact F5, and (iii) that γ1 is the

g1-reflection of m′
2 by Fact F4. By Fact F3, m1 ◦ m′

2 = m′
1

• ◦ m′
2 = (π2, π1)•.

Since (n1, g1) is pullback of (l1,m1) and pullbacks compose, (n1 ◦ γ1, idL′
2
) is

pullback of (l1,m1 ◦ m′
2) = (l1, (π2, π1)•). Thus, (π2, π1)• has a l1-reflection,

namely n1 ◦ γ1 which is also called α1 in Fig. 12.
Since (t1, l′1) is pullback of (ηL′

1
, l1) and l1 ◦ (α1 ◦ π2) = (π2, π1)• ◦ π2 =

m1 ◦ m′
2 ◦ π2 = m1 ◦ m′

1 ◦ π1 = ηL′
1

◦ π1, there is morphism β1 : L12 � K ′
1

130 M. Löwe

L1 K1

L′
2

L12 L′
1 K′

1

L2 G

D1

m1

l1

ηL′
2

m′
2

α1

(π2,π1)
•

π2
π1

ηL′
1

m′
1

β1

t1

n′
1

l′1

m2

γ1

n1

g1

Fig. 12. Parallel independence: left-hand side

with l′1 ◦ β1 = π1 and t1 ◦ β1 = α1 ◦ π2. Pullback decomposition [of (π1, π2)
by (l′1, n

′
1)] guarantees that (π2, β1) is pullback of (γ1, n′

1). Pullbacks (α, idL′
2
)

of (l1, (π2, π1)•) and (π2, idL12) of (idL′
2
, π2) can be composed to pullback (α1 ◦

π2, idL12) of (l1, (π2, π1)•◦π2). Since t1◦β1 = n1◦n′
1◦β1 = n1◦γ1◦π2 = α◦π2 and

(π2, π1)• ◦π2 = ηL′
1
◦π1, (t1 ◦β1, idL12) is pullback of (l1, ηL′

1
◦π1). Since (l′1, t1) is

pullback of (l1, ηL′
1
), (β1, idL12) is pullback of (l′1, π1) by pullback decomposition

such that β1 is the l′1-reflection of π1. Since π1 is monic, β1 is monic as well. ��
In a second step, we investigate necessary conditions that are stipulated by

the right hand sides of rules and rewrites. For this purpose consider Fig. 13.
Again, (π1, π2) is the pullback of the base matches. And the morphisms β1 and
γ1 are the reflections induced by Proposition 22, if match m2 has a residual in
the trace (g1, h1) of the rewrite with rule (l1, r1) at match m1, and morphism γ2
is one of the reflections induced by Proposition 22, if match m1 has a residual in
the trace (g2, h2) of the rewrite with rule (l2, r2) at match m2.

Proposition 23 (Necessary condition – right-hand sides). If matches m1

and m2 for AGREE-flavoured rules (l1, r1) and (l2, r2) have residuals in the trace
of the other rule, (π1, π2) is the pullback of the base matches m′

1 and m′
2, and

β1 is the l′1-reflection of π1, then (r′
1 ◦β1, π2)• has a l2-reflection (δ1 in Fig. 13).

Proof. For the proof, consider Fig. 13 which depicts the complete situation.
Since both matches have residuals, there are reflections β1, γ1, and γ2. Since
(m2 ◦ g1, h1) is the residual for m2, (h′

1, g21) is final pullback complement of
(g′

2, h1) where (ε′
1, g

′
2) is pullback of γ•

1 = m2 ◦ g1 and l2, (g21, n21) is pullback
of m21 = (h1 ◦ γ1)• and l2, and h′

1 is the unique morphism making the diagram
commutative, compare Definition 13(3).

Since also (g2, n2) is pullback of (m2, l2) due to the construction of the rewrite
for rule (l2, r2) at match m2, there is unique morphism g′

1 such that n2 ◦ g′
1 = ε′

1

and (g′
1, g

′
2) is pullback of (g1, g2) by pullback decomposition. Since g1 ◦ n′

1 =

Characterisation of Parallel Independence in AGREE-Rewriting 131

L12 L′
1 K′

1 R′
1

L2 L′
2 G D1 H1

K2 K′
2 D2 D∗ D21

(PB)

π1

π2

γ2

m′
1

ε2

n′
1

l′1 r′
1

p12

(r′
1◦β1,π2)

•

p′
1

l′2

m′
2ηL2

g2

m2

γ1
γ•
1

g′
2

g1 h1

m21 = (h1◦γ1)
•

δ1

l2

n′
2

t2

n2

ε′
1

ε1

h′
1g′

1

n21

g21

β1

Fig. 13. Parallel independence: right-hand side

m′
1 ◦ l′1 = g2 ◦ (γ2 ◦ l′1), there is ε2 with g′

1 ◦ ε2 = γ2 ◦ l′1 and g′
2 ◦ ε2 = n′

1. By
pullback composition and decomposition properties, ε2 is the g′

2-reflection of n′
1.

Since (h′
1, g21) is final pullback complement of (g′

2, h1), (r′
1, n

′
1) is pullback of

(h1, p
′
1) by Fact F2, and g′

2 ◦ ε2 = n′
1, there is unique morphism p12 such that

g21 ◦ p12 = p′
1 and p12 ◦ r′

1 = h′
1 ◦ ε2. Now, we have that

1. (h′
1, g21) is final pullback complement,

2. (r′
1, idR′

1
) is trivially final pullback complement of (idK′

1
, r′

1),
3. (ε2, idK′

1
) is pullback of (n′

1, g
′
2), and

4. (n′
1, r

′
1) is pullback of (h1, p

′
1).

In this situation, Proposition 5 guarantees that p12 is g21-reflection of p′
1.

Since (g21, n21) is pullback of (m21, l2), n21 ◦ p12 is the l2-reflection of m21 ◦
p′
1. Since pushout (p′

1, h1) of (r′
1, n

′
1) is also pullback, composition of pullbacks

provides (π2, r
′
1 ◦ β1) as pullback of (p′

1, h1 ◦ γ1).14 By Fact F3, m21 ◦ p′
1 = (h1 ◦

γ1)• ◦ p′
1 = (r′

1 ◦ β1, π2)•. Therefore, n21 ◦ p12 is l2-reflection of (r′
1 ◦ β1, π2)•. ��

The final step in this section is the proof that the necessary conditions of
Propositions 22 and 23 are sufficient as well.

14 (π2, β1) is pullback of (α1, t1), compare proof of Proposition 22.

132 M. Löwe

Theorem 24 (Characterisation of parallel independence). Two global
matches m1 and m2 for rules σ1 = (l1, r1) and σ2 = (l2, r2), which are AGREE-
flavoured by (l′1, t1, r

′
1) and (l′2, t2, r

′
2) respectively, are parallel independent, if

and only if:

1. (π2, π1)• has a l1-reflection (and π1 has a derived l′1-reflection β1) and, vice
versa, (π1, π2)• has a l2-reflection (and π2 has a derived l′2-reflection β2) and

2. (r′
2 ◦ β2, π1)• has a l1-reflection and (r′

1 ◦ β1, π2)• has a l2-reflection

where (π1, π2) is pullback of the base matches m′
1 and m′

2 for m1 and m2 resp.

Proof. (⇒) Immediate consequence of Propositions 22 and 23. (⇐) We have to
show properties (2) and (3) of Definition 13, property 1 is satisfied since h1 and
h2 in the traces σ1 〈m1〉 = (g1, h1) and σ2 〈m2〉 = (g2, h2) are monic by Fact F1.

For property (2) compare again Fig. 12 and let α1 be the l1-reflection of
(π2, π1)•. Since (g1, n1) is constructed as pullback of (m1, l1) in a rewrite and
we have m1 ◦ m′

2 = m′
1

• ◦ m′
2 = (π2, π1)• = l1 ◦ α1 by Fact F3, we get γ1 with

g1 ◦ γ1 = m′
2 and n1 ◦ γ1 = α1 such that, by pullback decomposition, γ1 is the

g1-reflection of m′
2 = g1 ◦ γ1. The reflection γ1 is monic, since m′

2 is. In this
situation, Fact F4 provides γ•

1 = (g1 ◦ γ1)• ◦ g1 = m′
2

• ◦ g1 = m2 ◦ g1 as desired.
Now, β1 can be derived as the l′1-reflection of π1 as in the proof of Proposition 22.

For property (3), we can presuppose that there are reflections β1, γ1 and
β2, γ2. Consider Fig. 13 in which δ1 is the l2-reflection of (r′

1 ◦ β1, π2)•. Since
(r′

1◦β1, π2) is pullback of (p′
1, h1◦γ1), compare proof of Proposition 23, we obtain

(r′
1 ◦ β1, π2)• = m21 ◦ p′

1 by Fact F3. Therefore, δ1 is the l2-reflection of m21 ◦ p′
1

and m21 ◦ p′
1 = l2 ◦ δ1. Since (n21, g21) is pullback of (l2,m21), there is p12 such

that g21 ◦ p12 = p′
1, n21 ◦ p12 = δ1, and p12 is the g21-reflection of p′

1 by pullback
decomposition. As in the proof of Proposition 23, ε2 can be constructed as the
g′
2-reflection of n′

1. Now, we have pullbacks (idR′
1
, p12), (idK′

1
, r′

1), (ε2, idK′
1
), and

(h′
1, g

′
2) such that 2 in Sect. 2 guarantees that (h′

1, p12) is pushout of r′
1 and ε2.

Since (r′
1, idR′

1
) is trivially final pullback complement of (idK′

1
, r′

1), we conclude
by Corollary 8 that (h′

1, g21) is final pullback complement of (g′
2, h1). ��

6 Conclusion

Theorem 24 states that parallel independence of two rewrites σ1 〈m1〉 and
σ2 〈m2〉 is guaranteed, if the AGREE-rule �1 which flavours σ1 is completely
(left- and right-hand side) preserved by the left-hand side of σ2 and vice versa.
These conditions can be easily checked without construction of the rewrites: On
the basis of the pullback of the participating base matches, certain reflections of
the left- and the right-hand side of one rule wrt. the left-hand side morphism of
the other rule must be checked. In most application categories, like graphs, the
pullback of a suitable pair of monic morphisms is a simple intersection and the
reflection property is equivalent to partial injectivity of the rules left-hand sides.

Characterisation of Parallel Independence in AGREE-Rewriting 133

As an example, we formalise the two AGREE-rules �E and �D which are
mentioned in the introduction:

�E = (∅, tE , ∅)with tE : ∅ → ({v} , ∅, s, t) with s = t = ∅
�D = (∅, tD, ∅)with tD : ∅ → ({v} , {e, e′} , s, t) where s and t are finalmappings

Since LE = LD = ∅, ηLE
= ηLD

= ∅ : ∅ � 1, where 1 is the final graph.
There is only one base match mE = ∅ for �E and mD = ∅ for �D in any graph.
Their intersection (pullback) is empty and both projections (π1 and π2) are
empty morphisms. Thus, (π1, π2)• and (π2, π1)• are empty morphisms which are
reflected by every graph morphism. Since the right-hand side morphisms rE and
rD of both rules are empty, (rD ◦β1, π2)• and (rE ◦β2, π1)• are empty morphisms
and reflected by any other graph morphism. Thus, every two rewrites with �E

and �D are parallel independent and the corresponding derivations sequences
commute by Theorem 18.

It is the task of future research to apply the developed parallel independence
condition in more complex case studies and to figure out, if and how non-local
effects of rewrites can be used in practical examples.

References

1. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21145-9 3

2. Corradini, A., Duval, D., Prost, F., Ribeiro, L.: Parallelism in AGREE transforma-
tions. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 37–53.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40530-8 3

3. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

5. Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.): Graph Transformations.
LNCS, vol. 6372. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15928-2

6. Goldblatt, R.: Topoi. Dover Publications, Mineola (1984)
7. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig et al. [5], pp. 250–265

(2010)
8. Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig,

H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532,
pp. 490–504. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0017408

9. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

10. Löwe, M.: Graph rewriting in span-categories. In: Ehrig et al. [5], pp. 218–233
(2010)

11. Löwe, M.: Characterisation of parallel independence in agree-rewriting. Technical
report 2018/01, FHDW Hannover (2018)

https://doi.org/10.1007/978-3-319-21145-9_3
https://doi.org/10.1007/978-3-319-21145-9_3
https://doi.org/10.1007/978-3-319-40530-8_3
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-15928-2
https://doi.org/10.1007/978-3-642-15928-2
https://doi.org/10.1007/BFb0017408

Equivalence and Independence
in Controlled Graph-Rewriting Processes

Géza Kulcsár1(B) , Andrea Corradini2 , and Malte Lochau1

1 Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
{geza.kulcsar,malte.lochau}@es.tu-darmstadt.de

2 Dipartimento di Informatica, University of Pisa, Pisa, Italy
andrea@di.unipi.it

Abstract. Graph transformation systems (GTS) are often defined as
sets of rules that can be applied repeatedly and non-deterministically to
model the evolution of a system. Several semantics proposed for GTSs
are relevant in this case, providing means for analysing the system’s
behaviour in terms of dependencies, conflicts and potential parallelism
among the relevant events. Several other approaches equip GTSs with an
additional control layer useful for specifying rule application strategies,
for example to describe graph manipulation algorithms. Almost invari-
ably, the latter approaches consider only an input-output semantics, for
which the above mentioned semantics are irrelevant.

We propose an original approach to controlled graph transformation,
where we aim at bridging the gap between these two complementary
classes of approaches. The control is represented by terms of a simple
process calculus. Expressiveness is addressed by encoding in the calcu-
lus the Graph Processes defined by Habel and Plump, and some initial
results are presented relating parallel independence with process alge-
braic notions like bisimilarity.

1 Introduction

Graph-rewriting systems are used for many different purposes and in various
application domains. They provide an expressive and theoretically well founded
basis for the specification and the analysis of concurrent and distributed sys-
tems [7]. Typically, a set of graph-rewriting rules describes the potential changes
of graph-based, abstract representations of the states of a system under con-
sideration. Each rule can be applied when a certain pattern occurs in the state,
producing a local change to it. Thus, graph-rewriting systems are inherently non-
deterministic regarding both the rule sequencing and the selection of the match,
i.e. the pattern to rewrite. Several semantics have been proposed for graph trans-
formation systems (gts), which emphasize the parallelism that naturally arises
between rules that are applied to independent parts of the distributed state.

This work has been partially funded by the German Research Foundation (DFG) as
part of project A1 within CRC1053–MAKI.

c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 134–151, 2018.
https://doi.org/10.1007/978-3-319-92991-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_9&domain=pdf
http://orcid.org/0000-0002-5387-8277
http://orcid.org/0000-0001-6123-4175
http://orcid.org/0000-0002-8404-753X

Equivalence and Independence in Controlled Graph-Rewriting Processes 135

They include, among others, the trace-based, the event structure and the process
semantics summarized and compared in [2]. The common intuition is that the
semantic domain should be rich enough to describe the computations of a system
(i.e., not only the reachable states), but also abstract enough to avoid distin-
guishing computations that differ for irrelevant details only, or for the order in
which independent rule applications are performed.

Sometimes however, mainly in the design of graph manipulation algorithms,
a finer control on the order of application of graph rules is desirable, for exam-
ple including sequential, conditional, iterative or even concurrent composition
operators. To address this problem, several approaches to programmed graph
grammars or controlled graph rewriting have been proposed, which generalize
the controlled string grammars originally introduced with the goal of augment-
ing language generation with constraints on the order of application of produc-
tions [6]. One of the first approaches to programmed graph grammars is due to
Bunke [3]. Regarding the semantics of controlled graph rewriting, Schürr pro-
poses a semantic domain including possible input/output graph pairs [14], which
has been the basis for the development of several tools (such as PROGRES [15],
Fujaba (SDM) [9] and eMoflon [12]). Habel and Plump [10] propose a minimal
language for controlled graph rewriting (see Sect. 4) with the goal of showing its
computational completeness, for which an input/output semantics is sufficient.
Also Plump and Steinert propose an input/output semantics, presented in an
operational style, for the controlled graph rewriting language GP [13].

In this paper, we propose an original approach to controlled graph rewrit-
ing, where control is specified with terms of a simple process calculus able to
express non-deterministic choice, parallel composition, and prefixing with non-
applicability conditions, thus constraining in a strict but not necessarily sequen-
tial way the order of application of rules of a given system. In the present paper
we introduce the relevant definitions and start exploring the potentialities of
the approach, while the long-term goal is to equip such systems with an abstract
truly-concurrent semantics, suitable as foundation of efficient analysis techniques
(like for example [1] for contextual Petri nets). We start by introducing pro-
cess terms which specify a labeled transition system (LTS) where transitions
represent potential applications of possibly parallel rules. This corresponds con-
ceptually to the code of an algorithm, or to an unmarked net in the theory of
Petri nets, an analogy that we adopt by calling those processes unmarked. Next,
we define the operational semantics of such process terms when applied to a
graph, yielding the marked LTS where transitions become concrete rule appli-
cations. The LTS semantics involves explicit handling of parallel independence
(i.e., arbitrary sequentialization) of rule applications, if they are fired by con-
trolled processes running in parallel: our notion of synchronization allows for
single shared transitions of parallel processes whenever there are parallel inde-
pendent rule applications of the involved processes. Particularly, synchronized
actions represent a first step towards adequately capturing true concurrency of
independent rule applications in a controlled setting.

136 G. Kulcsár et al.

From an expressiveness perspective, in order to enrich controlled graph-
rewriting processes by conditional branching constructs as necessary in any con-
trol mechanism, we introduce non-applicability conditions formulated over rules,
corresponding to the condition that a given rule is not applicable. We also prove,
as a sanity check, that our control language including non-applicability condi-
tions is able to encode in a precise way the language proposed by Habel and
Plump in [10]: an input/output semantics is sufficient to this aim.

The LTS framework is exploited next to start exploring other potentialities
of the approach. We introduce an abstract version of the marked LTS showing
that it is finite branching under mild assumptions, and define trace equivalence
and bisimilarity among marked processes. Besides some pretty obvious results
concerning such equivalence, we show that in a simple situation bisimilarity can
be used to check that two derivations are not parallel independent: a link between
the classical theories of GTSs and of LTSs that we intend to explore further.

2 Preliminaries

We introduce here the basic definitions related to (typed) graphs, algebraic
Double-Pushout (dpo) rewriting, parallel derivations and shift equivalence [7].

Definition 1 (Graphs and Typed Graphs). A (directed) graph is a tuple G =
〈N,E, s, t〉, where N and E are finite sets of nodes and edges, and s, t : E → N
are the source and target functions. The components of a graph G are often
denoted by NG, EG, sG, tG. A graph morphism f : G → H is a pair of functions
f = 〈fN : NG → NH , fE : EG → EH〉 such that fN ◦ sG = sH ◦ fE and
fN ◦ tG = tH ◦ fE; it is an isomorphism if both fN and fE are bijections.

Graphs G and H are isomorphic, denoted G ∼= H, if there is an isomorphism
f : G → H. We denote by [G] the class of all graphs isomorphic to G, and
we call it an abstract graph. We denote by Graph the category of graphs and
graph morphisms, by |Graph| the set of its objects, that is all graphs, and by
[|Graph|] the set of all abstract graphs.

The category of typed graphs over a type graph T is the slice category
(Graph ↓ T), also denoted GraphT [4]. That is, objects of GraphT are pairs
(G, t) where t : G → T is a typing morphism, and an arrow f : (G, t) → (G′, t′)
is a morphism f : G → G′ such that t′ ◦ f = t.

Along the paper we will mostly work with typed graphs, thus when clear
from the context we omit the word “typed” and the typing morphisms.

Definition 2 (Graph Transformation System). A (dpo T -typed graph) rule is
a span (L l← K

r→ R) in GraphT where l is mono. The graphs L, K, and R
are called the left-hand side, the interface, and the right-hand side of the rule,
respectively. A graph transformation system (gts) is a tuple G = 〈T,R, π〉,
where T is a type graph, R is a finite set of rule names, and π maps each rule
name in R into a rule.

Equivalence and Independence in Controlled Graph-Rewriting Processes 137

The categorical framework allows to define easily the parallel composition of
rules, by taking the coproduct of the corresponding spans.

Definition 3 (Parallel Rules). Given a gts G = 〈T,R, π〉, the set of parallel
rule names R∗ is the free commutative monoid generated by R, R∗ = {p1| . . . |pn |
n ≥ 0, pi ∈ R}, with monoidal operation “ |” and unit ε. We use ρ to range over
R∗. Each element of R∗ is associated with a span in GraphT , up to isomor-
phism, as follows:

1. ε : (∅ ← ∅ → ∅), where ∅ is the empty graph;
2. p : (L l← K

r→ R) if p ∈ R and π(p) = (L l← K
r→ R);

3. ρ1|ρ2 : (L1+L2
l1+l2←−−− K1+K2

r1+r2−−−−→ R1+R2) if ρ1 : (L1
l1←− K1

r1−→ R1) and
ρ2 : (L2

l2←− K2
r2−→ R2), where G + H denotes the coproduct (disjoint union)

of graphs G and H, and if g : G → G′ and h : H → H ′ are morphisms, then
g + h : G + H → G′ + H ′ denotes the obvious mediating morphism.

For ρ ∈ R∗, we denote by 〈ρ〉 the set of rule names appearing in ρ, defined
inductively as 〈ε〉 = ∅, 〈p〉 = {p} if p ∈ R, and 〈ρ1|ρ2〉 = 〈ρ1〉 ∪ 〈ρ2〉.

Note that the above definition is well-given because coproducts are asso-
ciative and commutative up to isomorphism. Clearly, the same rule name can
appear several times in a parallel rule name. In the following, we assume that
G = 〈T,R, π〉 denotes an arbitrary but fixed gts.

Definition 4 (Rule Application, Derivations). Let G be a graph, let ρ : (L l←
K

r→ R) be a possibly parallel rule, and let m be a match, i.e., a (possibly non-
injective) graph morphism m : L → G. A dpo rule application from G to H
via ρ (based on m) is a diagram δ as in (1), where both squares are pushouts in

GraphT . In this case we write G
δ=⇒ H or simply G

ρ@m
===⇒ H. We denote by D

the set of dpo diagrams, ranged over by δ. For a rule p ∈ R and a graph G, we
write G � p=⇒ if there is no match m such that G

p@m
===⇒ H for some graph H.

A (parallel) derivation ϕ from a graph G0 is a
finite sequence of rule applications ϕ = G0

δ1=⇒
G1 · · · Gn−1

δn=⇒ Gn, via ρ1, . . . , ρn ∈ R∗. A
derivation is linear if ρ1, . . . , ρn ∈ R.

L Kl

G

m

D

(PO)

f

k

R

H

r

n

g

(PO) (1)

Intuitively, two rule applications starting from the same graph are parallel
independent if they can be sequentialized arbitrarily with isomorphic results.
This property is captured categorically by the following definition [5].

138 G. Kulcsár et al.

Definition 5 (Parallel Independence). Given two
(possibly parallel) rules ρ1 : (L1

l1←− K1
r1−→ R1) and

ρ2 : (L2
l2←− K2

r2−→ R2) and two matches L1
m1−−→ G

m2←−− L2 in a graph G, the rule applications ρ1@m1

and ρ2@m2 are parallel independent if there exist
arrows a1 : L1L2 → K1 and a2 : L1L2 → K2 such
that l1 ◦ a1 = π1 and l2 ◦ a2 = π2 as in Diagram (2),
where L1L2 is the pullback object over L1

m1−−→
G

m2←−− L2.

L1 K1l1

G

m1

L1L2

π1

L2

π2

a1

(PB)

m2

K2l2

a2

(2)

As discussed in [5], this definition is equivalent to others proposed in litera-
ture, but does not need to compute the pushout complements to be checked.

As recalled by the next result, two parallel independent rule applications can
be applied in any order to a graph G obtaining the same resulting graph, up to
isomorphism. Furthermore, the same graph can be obtained by applying to G
the parallel composition of the two rules, at a match uniquely determined by the
coproduct construction.

Proposition 1 (Local Church-Rosser and Parallelism Theorems [7]). Given two

rule applications H1
ρ1@m1⇐==== G

ρ2@m2====⇒ H2 with parallel independent matches m1 :
L1 → G and m2 : L2 → G, there exist matches m′

1 : L1 → H2, m′
2 : L2 → H1

and m : L1 + L2 → G such that there are rule applications H1
ρ2,m′

2===⇒ H12,

H2
ρ1,m′

1===⇒ H21 and G
ρ1|ρ2,m
=====⇒ H, and graphs H12, H21 and H are pairwise

isomorphic.

3 Controlled Graph-Rewriting Processes

In this section, we first motivate diverse aspects of our approach by presenting a
(simplified) application of controlled graph-rewriting processes (Sec. 3.1). Then,
in Sec. 3.2, we start to develop the theory by first introducing unmarked pro-
cesses, representing a process-algebraic control-flow specification, i.e., a process
whose executions specify permitted derivations. Afterwards (Sec. 3.3), we intro-
duce marked processes as pairs of unmarked processes and graphs, and compare
marked traces to parallel derivations [2].

3.1 An Illustrative Example: WSN Topology Control

We illustrate controlled graph-rewriting processes by an example: a simplified
wireless sensor network (wsn) model in which autonomous sensors communi-
cate through wireless channels, represented as typed graphs where nodes denote
sensors and edges denote bidirectional communication links via channels. We
use different edge types to represent the link status: active (a) indicates that
the link is currently used for communication, whereas link status inactive (i)

Equivalence and Independence in Controlled Graph-Rewriting Processes 139

n1 x

n4

z
n5

y

aa
u

Le

n1 x

n4

z
n5

y

Ke

aa
n1 x

n4

z
n5

y

Re

aa
i

(a) Rule pe: Eliminate Active Triangle

n1 x

n4

z
n5

y

a
a

Lu

n1 x

n4

z
n5

y

Ku

a
n1 x

n4

z
n5

y

Ru

a
u

(b) Rule pu: Unclassify Active Neighbor

n1

y
n4

z
u

La

n1

y
n4

z

Ka

n1

y
n4

z

Ra

a

(c) Rule pa: Activate Edge

Fig. 1. Topology control operations as dpo rules

denotes links currently not in use. Links with status unclassified (u) require
status revision.

The dpo rules shown in Fig. 1a–c represent topology control (tc) opera-
tions [11]: pe and pu reduce link redundancy either conservatively by eliminating
u-edges from active triangles (pe), or through unclassifying edges with active
neighbors (pu), whereas pa is a stability counter-measure, activating unclassified
edges. We use the rules in Fig. 1 to specify controlled graph-rewriting processes
expressing different topology control strategies. Due to the decentralized nature
of wsn, both sequential rule control with non-applicability conditions and parallel
processes are inherent in topology control strategies. As a concrete example for
a tc strategy, let us consider (using a yet informal process-algebraic notation).

PTC := Pe || Pu Pe := pe.Pe + (pa, {pe}).Pe Pu := pu.Pu

Here, each P (with a subscript) is a process name that can appear in other
processes, allowing to express recursion. The dot (“.”) operator represents prefix-
ing, while “+” represents non-deterministic choice and “ || ” parallel composition.
Actions can be either plain rule applications (like pe in Pe) or rule applications
with additional non-applicability conditions (as in (pa, {pe})). The second com-
ponent of the action is a set of rule names (here, containing only pe), denoting
that pa should be applied only if pe is not applicable. (Here, as also later in the
paper, we omit the second component of an action if it is empty, writing for
example pe for (pe, ∅).)

PTC defines a strategy where, in parallel, unclassified edges get inactivated if
being part of a triangle or activated otherwise (Pe), while Pu repeatedly unclassi-
fies edges with active neighbors. Although this strategy specification provides an

140 G. Kulcsár et al.

intuitive separation of classification and unclassification, and guarantees using a
non-applicability condition that no a-triangles arise, still, the possibly overlap-
ping applications of pe and pu might create unwanted triangles in our concurrent
setting. The above example illustrates the need for a formal analysis methodol-
ogy to reason about controlled parallel graph-rewriting processes.

3.2 Unmarked Processes

As suggested by the example in the previous section, unmarked processes are
terms of a process calculus including prefixing of actions, non-deterministic
choice, parallel composition, as well as recursion to express iteration and intended
non-termination (e.g., for specifying reactive behaviors).

An action γ = (ρ,N) consists of a (possibly parallel) rule name ρ ∈ R∗ and
a set N of rule names, N = {p1, . . . , pk}. Intuitively, given a graph G such an
action can be fired by applying ρ to G only if none of the rules in N is applicable
to G. For the definition of unmarked processes, we use the following sets: K is
a set of process identifiers, ranged over by A, and P is the set of (unmarked)
processes, ranged over by P,Q.

Definition 6 (Unmarked Process Terms). The syntax of an unmarked process
term P ∈ P is inductively defined as

P,Q : := 0 | γ.P | A | P + Q | P || Q

where A ∈ K and γ ranges over R∗ × 2R.

The process 0 is the inactive process incapable of actions. Given a process P ,
γ.P represents an action prefix, meaning that this process can perform an action
γ and then continue as P . Process identifiers are used to represent process terms
through defining equations, and thus might be used to describe recursive process
behavior. A defining equation for A ∈ K is of the form A := P with P ∈ P.
We assume that each A ∈ K has a unique defining equation. P + Q represents
a process which non-deterministically behaves either as P or as Q. The parallel
composition of P and Q, denoted as P || Q, is a process which might interleave
the actions of P and Q or even execute them in parallel.

There are some syntactically different processes which we treat as equivalent
in each context. This relation is called structural congruence and denoted ≡.

Definition 7 (Structural Congruence of Unmarked Processes). The relation ≡
on unmarked process terms is the least equivalence relation s.t.

P ||0 ≡ P P + Q ≡ Q + P P || Q ≡ Q || P
The semantics of an unmarked process term is a labeled transition system

having processes as states and moves labeled by actions as transitions. We first
recall the standard definition of labeled transition systems and of their traces.

Equivalence and Independence in Controlled Graph-Rewriting Processes 141

struct
P ≡ Q P

α−→ P ′

Q
α−→ P ′ pre

γ.P
γ−→ P

stop
0

�−→ 0

choice P
α−→ P ′

P + Q
α−→ P ′ par P

γ−→ P ′

P || Q γ−→ P ′ || Q
rec A := P P

α−→ P ′

A
α−→ P ′

sync
P

(ρ1,N1)−−−−−→ P ′ Q
(ρ2,N2)−−−−−→ Q′ 〈ρ1〉 ∩ N2 = ∅ 〈ρ2〉 ∩ N1 = ∅

P || Q (ρ1|ρ2,N1∪N2)−−−−−−−−−−→ P ′ || Q′

Fig. 2. Transition rules of unmarked processes

Definition 8 (Labeled Transition System, Trace, Trace Equivalence). A labeled
transition system (LTS) is a tuple (S,A,−→X), where S is a set of states, A is a
set of actions containing the distinguished element “�” representing successful
termination, and −→X ⊆ S × A × S is a transition relation. As usual, we will
write s

a−→ s′ if (s, a, s′) ∈−→X .
A trace t = a1a2 . . . an ∈ A∗ of a state s ∈ S is a sequence of actions such

that there exist states and transitions with s
a1−→X s1

a2−→X . . .
an−−→X sn. A trace

is successful if its last element, and only it, is equal to �.
States s, s′ ∈ S are trace equivalent w.r.t. →X , denoted as �T

X , if s and s′

have the same set of traces.

The LTS for unmarked process terms is defined by inference rules as follows.

Definition 9 (Unmarked Transition System). The unmarked transition system
(UTS) of G is an LTS (P, (R∗ × 2R) ∪ {�},−→) with −→ being the least relation
satisfying the rules in Fig. 2, where α ranges over (R∗ × 2R) ∪ {�}, γ ranges
over R∗ × 2R, and N over 2R.

Rule struct expresses that structural congruent processes share every tran-
sition. Rule pre states that any action γ appearing as a prefix induces a transi-
tion labeled by γ and then the process continues as specified. Rule rec says that
process identifiers behave as their defining processes. Rule choice expresses that
P +Q can proceed as P or Q by firing any of their transitions (commutativity of
+ is provided by struct). In the case of parallel composition, interleaved actions
as in rule par mean that one side of the composition proceeds independently of
the other. In contrast, sync represents synchronization, i.e., that the two sides
agree on performing their respective actions in parallel, which in the case of rules
amounts to performing the composed rule, where the non-applicability conditions
of both sides hold, while both sides proceed. Finally, stop introduces the special
�-transition to denote termination, i.e. that the empty process 0 was reached.
Note that termination is global, in the sense that a process of the shape P ||0
does not have a �-transition unless P ≡ 0.

142 G. Kulcsár et al.

3.3 Marked Processes

Now, we extend unmarked process specifications by letting them not only specify
potential rule sequences, but also operate on a given graph. The states of a
marked process are pairs containing an unmarked process and a graph, while
the marked transitions correspond to rule applications. Since a concrete rule
application is characterized by a dpo diagram (as in Diagram (1)), we include
in the labels of the marked transition system not only the names of the applied
(parallel) rule and of the rules in the non-applicability condition, but also the
resulting dpo diagram.

Definition 10 (Marked Transition System). The marked transition system
(mts) is an LTS (P × |GraphT |,R × D × 2R ∪ {�},−→D) where −→D is the
least relation satisfying the following rules and δ is a dpo diagram over ρ:

MARK
P

(ρ,N)−−−→ P ′ G
ρ@m
===⇒ H ∀p ∈ N : G � p=⇒

(P,G)
(ρ,δ,N)−−−−→D (P ′,H)

STOP
P

�−→ P ′

(P,G) �−→D (P ′, G)

It easily follows from the definition that, as desired, traces of controlled graph-
rewriting processes correspond to the parallel derivations of Definition 4. In par-
ticular, Proposition 2.1 states that every successful trace of a marked process
naturally determines a(n underlying) parallel derivation; Proposition 2.2 pro-
vides a process definition by recursive choice, which has a successful trace for
each linear derivation starting from a given graph, while Proposition 2.3 does the
same for parallel (i.e., not necessarily linear) derivations by providing a recursive
process allowing for arbitrary parallel composition of the rules as well.

Proposition 2 (Traces and Derivations).

1. Given a marked process (P,G), each of its successful traces uniquely identi-
fies an underlying parallel derivation of G starting from G. In particular, if
(ρ1, δ1, N1) · · · (ρn, δn, Nn)� is a successful trace of (P,G), then δ1; · · · ; δn is
its underlying derivation.

2. Let PR be the unmarked process defined as follows:

PR = 0 +
∑

p∈R p.PR

Then for each graph G and for each linear derivation ϕ starting from G there
is a successful trace of (PR, G) such that ϕ is its underlying derivation.

3. Let QR be the unmarked process defined as follows:

QR = 0 +
(
(
∑

p∈R p.0 + ε.0) || QR
)

Then for each graph G and for each parallel derivation ϕ starting from G
there is a successful trace of (QR, G) such that ϕ is its underlying derivation.

Equivalence and Independence in Controlled Graph-Rewriting Processes 143

4 On the Expressiveness of Unmarked Processes

Unmarked processes are intended to provide a high-level, declarative language
for specifying the evolution of systems modeled using graphs and rewriting rules
on them. In a trace of the corresponding marked system, as it results from Propo-
sition 2, all the relevant information about the computation are recorded, and
this can be exploited for analyses concerned with the truly concurrent aspects
of such computations, including causalities, conflicts and parallelism among the
individual events. Some preliminary results in this direction are presented in the
next section.

In this section, as a proof of concept for the choice of our unmarked processes,
we consider an alternative control mechanism for graph rewriting and discuss
how it can be encoded into ours. The chosen approach is declarative and abstract
like ours, therefore the encoding is pretty simple. Still, it may provide some
insights for encoding more concrete and expressive control structures (like those
of [15]) which is left as future work.

Habel and Plump [10] interpret computational completeness as the ability
to compute every computable partial function on labelled graphs: we refer the
reader to the cited paper for motivations and details of this notion. They show
in [10] that three programming constructs suffice to guarantee computational
completeness: (1) non-deterministic choice of a rule from a set of dpo rules, (2)
sequential composition, and (3) maximal iteration, in the sense that a program
is applied repeatedly as long as possible. Graph Programs are built using such
constructs, and their semantics is defined as a binary relation on abstract graphs
relating the start and end graphs of derivations, as recalled by the following
definitions.

Definition 11 (Graph Programs [10]). Graph programs over a label alphabet C
are inductively defined as follows:

(1) A finite set of dpo rules over C is an elementary graph program.
(2) If GP1 and GP2 are graph programs, then GP1;GP2 is a graph program.
(3) If GP is a graph program by (1) or (2), then GP↓ is a graph program.

The set of graph programs is denoted as GP.

Notice that Graph Programs are based on graphs labeled on a label alphabet
C = 〈CE , CN 〉, and the main result of completeness exploits constructions based
on this assumption. It is an easy exercise to check that such graphs are one-to-
one with graphs typed over the type graph TC = 〈CN , CN × CE × CN , π1, π3〉. It
follows that AC , the class of abstract graphs labeled over C introduced in [10],
is actually isomorphic to

[|GraphTC |]. Nevertheless, we still use AC in defini-
tions and results of the rest of this section, when they depend on the concrete
representation of graphs as defined in [10].

Definition 12 (Semantics of Graph Programs [10]). Given a program GP over
a label alphabet C, the semantics of GP is a binary relation →GP on AC, which
is inductively defined as follows:

144 G. Kulcsár et al.

(1) →GP = ⇒GP if GP = {p1, . . . , pn} is an elementary program;
(2) →GP1;GP2 = →GP2 ◦ →GP1 ;
(3) →GP↓ =

{〈G,H〉 | G →∗
GP H and H is a normal form w.r.t. →GP

}
.

We show that there is an encoding of Graph Programs in unmarked processes
that preserves the semantics.

Definition 13 (Encoding Graph Programs as Processes). Given unmarked pro-
cesses P and Q, their sequentialization is the process P � Q := P [AQ/0] where
AQ ∈ K is a fresh identifier with AQ := Q and t[x/y] denotes the syntactic
substitution of x for y in a term t.

The encoding function [[]] : GP → P is defined as follows:

– If GP = {p1, . . . , pn} is an elementary graph program, then [[GP]] :=∑n
i=1 pi.0.

– [[GP1;GP2]] := [[GP1]] � [[GP2]].
– [[GP↓]] := AGP↓ ∈ K where AGP↓ := [[GP]] � AGP↓ + ̂[[GP]].

Process ̂[[GP]] is a process which acts as the identity (and terminates successfully)
on all and only the graphs which are normal forms with respect to [[GP]]. It is
defined inductively as follows:

– ̂[[GP]] := (ε, {p1, . . . , pn}).0 if GP = {p1, . . . , pn} is an elementary program;
– ̂[[GP1;GP2]] := ̂[[GP1]] + [[GP1]] � ̂[[GP2]];
– ̂[[GP↓]] := (p, {p}).0, where p is any rule.

Proposition 3 (Encoding Preserves Semantics). For each graph program GP
and graph G in GraphTC it holds G →GP H iff ([[GP]], G) →∗

D (0,H).

An easy consequence of this precise encoding is that the main result of [10],
stating the computational completeness of graph programs, also holds for
unmarked processes.

Corollary 1. Given a label alphabet C and subalphabets C1 and C2, for every
computable partial function f : AC1 → AC2 , there exists an unmarked process
that computes f .

5 Equivalence and Independence

In this section, we elaborate on the semantics of marked processes by first
introducing an abstraction of DPO diagrams to provide a more compact rep-
resentation of marked transition systems. Afterwards, we investigate different
equivalence notions (trace, bisimilarity) and re-interpret parallel independence
of actions in marked processes.

Abstract Labels. When reasoning about a system in terms of graphs repre-
senting its possible states and of graph transformations modeling its evolution,

Equivalence and Independence in Controlled Graph-Rewriting Processes 145

a natural attitude is to abstract from irrelevant details like the identity of the
involved nodes and edges. Formally, this corresponds to considering individ-
ual graphs, or also diagrams in the category of graphs, up to isomorphism. By
applying this standard abstraction technique to our marked transition systems
we define an abstract variant of them having the advantage of exhibiting a state
space where branching is bounded under some obvious, mild assumptions. This
is certainly valuable for the analysis of such systems, but this is left as future
work. On the contrary, note that the marked transition systems of Definition 10
are infinitely branching even for a single rule and a single state, because the
pushout object is defined only up to isomorphism.

Definition 14 (Abstract dpo Diagrams). Given two dpo diagrams δ1 and δ2
as in Fig. 1 with each graph indexed by 1 and 2, respectively, they are equivalent,
denoted as δ1 ∼= δ2, if there exist isomorphisms L1 → L2,K1 → K2, R1 →
R2, G1 → G2,D1 → D2,H1 → H2, such that each arising square commutes.

An abstract dpo diagram is an equivalence class [δ] = {δ′ | δ ∼= δ′}. We
denote by [D] the set of abstract dpo diagram.

Definition 15 (Abstract Marked Transition System). The abstract marked
transition system (amts) of G is an LTS (P × [|GraphT |] ,R × [D] × 2�R ∪
{�},−→[D]) with −→[D] being the least relation satisfying the following rule as
well as rule STOP from Definition 10:

MARK
P

(ρ,N)−−−→ P ′ G
ρ@m
===⇒ H ∀p ∈ N : G � p=⇒

(P, [G])
(ρ,[δ],N)−−−−−→[D] (P ′, [H])

where [δ] is an abstract DPO diagram over ρ.

Proposition 4 (amts is Finite Branching). If for each rule p : (L l← K
r→ R)

in R the left-hand side l is not surjective, then the amts of G is finite-branching,
i.e., for each unmarked process P and T -typed graph G there is a finite number
of transitions from (P, [G]).

Considering graphs and dpo diagrams only up to isomorphism is safe for
the kind of equivalences of systems considered below, based on traces or on
bisimilarity, but it is known to be problematic for example for a truly concurrent
semantics of gtss [2]. For instance, rule pu in Sec. 3.1 has two different matches
in a graph identical to its left-hand side, but it induces a single abstract dpo
diagram. If only the latter is given, it could be impossible to determine whether
such rule application is parallel independent or not from another one.

Equivalences. To capture the equivalence of reactive (non-terminating) pro-
cesses in a branching-sensitive manner, finer equivalence notions are required.
Bisimilarity is a well-known branching-sensitive equivalence notion.

146 G. Kulcsár et al.

Definition 16 (Simulation, Bisimulation). Given an LTS (S,A,→X) and s, t ∈
S. A simulation is a relation R ⊆ S × S s.t. whenever s R t, for each transition
s

α−→X s′ (with α ∈ A), there exists a transition t
α−→X t′ with s′ R t′. State s is

simulated by t if there is a simulation relation R such that s R t.
A bisimulation is a symmetric simulation. States s and t are bisimilar,

denoted s �BS
X t, if there is a bisimulation R such that s R t.

Note that as we compare labels containing full DPO diagrams involving also
input graphs, in order for two MTS processes to be bisimilar, their graphs should
be the same concrete graphs. In the case of AMTS, both graphs should be in
the same isomorphism class, i.e., they are isomorphic.

First, we state that simulation is “faithful” to synchronization, i.e., a parallel
process simulates a sequential one if the latter can apply the corresponding
parallel rule.

Proposition 5. Given unmarked processes P1, P2, P3, Q with bisimilar associ-
ated UTSs and actions γ1 = (ρ1, N1), γ2 = (ρ2, N2), γc = (ρ1|ρ2, N1 ∪ N2). Let
P0 := γ1.γ2.P1 + γ2.γ1.P2 + γc.P3 and Q0 := γ1.Q || γ2.0.

Then, the process (P0, G) is simulated by (Q0, G). Moreover, (P0, G) and
(Q0, G) are bisimilar if P1 := 0, P2 := 0, P3 := 0 and Q := 0.

The following proposition states that, as expected, “concrete” equivalence
implies abstract equivalence w.r.t. trace equivalence as well as bisimilarity.

Proposition 6. Given P,Q ∈ P and G,H ∈ |GraphT |, (1) (P,G) �T
D (Q,H)

implies (P, [G]) �T
[D] (Q, [H]) and (2) (P,G) �BS

D (Q,H) implies (P, [G]) �BS
[D]

(Q, [H]).

Now, to conclude the different kinds of transition systems and their equiv-
alences, we show that unmarked process equivalence and graph isomorphism
implies marked process equivalence for both trace equivalence and bisimilarity,
in both a concrete and an abstract setting, as expected. (The abstract case is a
direct consequence of Proposition 6.)

Proposition 7. For any P,Q ∈ P and G ∈ |GraphT |, (1) P �T Q implies
(P,G) �T

D (Q,G) and (2) P �BS Q implies (P,G) �BS
D (Q,G).

For a bisimilarity relation, it is an important property if the processes retain
bisimilarity if put into different contexts, i.e., if it is a congruence. In the fol-
lowing, we show that our abstract amts bisimilarity has the desired property of
being retained if the control processes are expanded by a further context. (We
have a similar result for �BS

D if we set the same concrete starting graph G for
both sides.)

Theorem 1. Given P,Q ∈ P with P �BS Q as well as G ∈ |GraphT |. Then,
the following hold (with R ∈ P):

Equivalence and Independence in Controlled Graph-Rewriting Processes 147

1. (P + R, [G]) �BS
[D] (Q + R, [G]),

2. (P || R, [G]) �BS
[D] (Q || R, [G]), and

3. (γ.P, [G]) �BS
[D] (γ.Q, [G]) for any γ ∈ R∗ × 2R.

Proof. First, we prove that UTS bisimilarity (�BS) is a congruence w.r.t. those
operators. In particular, P �BS Q implies the following:

1. P + R �BS Q + R: The resulting transition system on both sides arises as a
union (i.e., “gluing” at the root) of P and R on the left-hand side as well as
Q and R on the right-hand side. Then, the statement follows from P �BS Q.

2. P ||R �BS Q || R: The proof is done by coinduction. At the starting state,
there are three possibilities for firing transitions: (i) P (Q) fires, (ii) R fires
or (iii) synchronization (cf. rule sync in Fig. 2) takes place.
Transitions of case (i) are covered w.r.t. bisimilarity through the assumption.
If R fires as in case (ii), proceeding to R′, the resulting marked states consti-
tute a pair which is of the same form as our starting pair: P ||R′ and Q || R′.
Thus, the statement holds by coinduction. In case (iii), we have the same situ-
ation as in case (ii): if each of the partaking processes X ∈ {P,Q,R} proceeds
to X ′ and synchronization takes place, the resulting processes are P ′ || R′ and
Q′ ||R′. Moreover, P ′ �BS Q′ due to P �BS Q. Thus, the statement holds
by coinduction.

3. γ.P �BS γ.Q: Here, on both sides, the outgoing transitions of the starting
state correspond to transitions over γ, after which the two sides become P
and Q, respectively. Thus, the statement follows from P �BS Q. �

The statements in the Theorem are easy consequences of the fact that UTS
bisimilarity is a congruence, as well as Propositions 6 and 7.

Note that a similar result would hold only for choice if we do not require
unmarked bisimilarity; assuming only marked bisimilarity, parallel composition
and prefixing might introduce fresh rule applications, leading to fresh graph
states where the behavior of the two sides might diverge. For instance, using
rules from Sec. 3.1, (ρu.0, G) �BS

[D] (ρu.0+ ρe.0, G) if G has no triangle to apply
ρe on; however, a parallel (or prefix) context where ρa might create a match for
ρe ruins bisimilarity as the right-side process has a ρe-transition that the other
cannot simulate.

Summarizing, an abstract representation of a marked transition system might
be a useful tool in order to gain a finite representation. Investigating equivalence
notions, amts exhibits a trade-off between hiding some execution details on the
one hand, but enabling a bisimilarity congruence for control processes on the
other hand.

Independence. In this section, we demonstrate how abstract marked processes
allow for a novel characterization of parallel independence in the context of
controlled graph-rewriting processes. Intuitively, two rule applications available
simultaneously are parallel independent if after performing any of the applica-
tions, the other rule is still applicable on the same match image as in the original

148 G. Kulcsár et al.

rule application (cf. Proposition 1). In the following, we refer to a 4-tuple of DPO
diagrams δ′

2, δ1, δ2, δ
′
1 as strictly confluent [7] if they correspond to some matches

m′
2,m1,m2,m

′
1 as in Proposition 1. Now, we are ready to re-interpret the notion

of parallel independence for marked transitions.

Definition 17 (Parallel Transition Independence). Given an abstract marked

process (P, [G]) with outgoing transitions (P, [G])
(ρ1,[δ1],N1)−−−−−−−→[D] (P1, [H1]) and

(P, [G])
(ρ2,[δ2],N2)−−−−−−−→[D] (P2, [H2]), these outgoing transitions are parallel inde-

pendent if there exist the following transitions:

(i) (P1, [H1])
(ρ2,[δ′

2],N2)−−−−−−−→[D] (P12, [H12]), and

(ii) (P2, [H2])
(ρ1,[δ′

1],N1)−−−−−−−→[D] (P21, [H21])

such that there is a 4-tuple of (representative) elements of [δ′
2], [δ1], [δ2], [δ

′
1] which

is strict confluent and (P12, [H12]) �BS
[D] (P21, [H21]).

The following proposition states that parallel transition independence implies
parallel independence of the involved rule applications. Note that the inverse
implication does not hold, as parallel independence is defined only for rules
and their matches; thus, it might happen that some non-applicability conditions
prevent a subsequent rule application even if the applications themselves are
parallel independent.

Proposition 8. Given two parallel independent transitions (P, [G])
(ρ1,[δ1],N1)−−−−−−−→[D] (P1, [H1]) and (P, [G])

(ρ2,[δ2],N2)−−−−−−−→[D] (P2, [H2]), the correspond-
ing rule applications ρ1@m1 and ρ2@m2, respectively, are parallel independent.

For instance, in our example in Sec. 3.1, if (PTC , G) has outgoing transitions
for both pa and pu (on some graph G), then we know that the rule applications
inducing those transitions were parallel independent. In that case, those appli-
cations can be executed also as a synchronized action. Note, instead, that if we
consider a different pair of rules like pe and pu, not each of their applications to
the same graph is independent as their left-hand sides have common elements
and thus their matches might overlap.

Finally, we elaborate on the consequences of parallel independence in
the presence of synchronization. Particularly, (1) for actions without non-
applicability conditions, the absence of a synchronized transition indicates the
parallel dependence of transitions, and (2) parallel transition independence is
equivalent to the existence of a synchronized action in parallel processes, i.e.,
synchronization implies strict confluence.

Theorem 2 (Bisimilarity and Parallel Independence). Given bisimilar
unmarked processes P1, P2, Q1, Q2 and actions γ1 = (ρ1, N1), γ2 = (ρ2, N2) with
rules ρ1, ρ2.

Equivalence and Independence in Controlled Graph-Rewriting Processes 149

1. Let P ′
0 := ρ1.(ρ2 ||P1) + ρ2.(ρ1 || P2) and Q0 := ρ1.Q1 || ρ2.0. There exist

no parallel independent applications ρ1@m1, ρ2@m2 on G, if and only if
(P ′

0, [G]) �BS
D (Q0, [G]).

2. Let (Q′
0, [G]) := (γ1.Q1 || γ2.Q2, [G]). Two transitions (Q′

0, [G])
(ρ1,δ1,N1)−−−−−−→[D]

(Q1 || γ2.Q2, [H1]), (Q′
0, [G])

(ρ2,δ2,N2)−−−−−−→[D] (γ1.Q1 || Q2, [H2]) are parallel inde-

pendent if and only if there are transitions (Q′
0, [G])

(ρ1|ρ2,δc,N1∪N2)−−−−−−−−−−−→[D]

(Q1 || Q2, [H]), (Q1 || γ2.Q2, [G])
(ρ2,δ′

2,N2)−−−−−−→[D] (Q1 ||Q2, [H]), and

(γ1.Q1 ||Q2, [H2])
(ρ1,δ′

1,N1)−−−−−−→[D] (Q1 || Q2, [H]).

Proof. 1. If: We prove the statement indirectly. First, let us observe that if
there is a pair of outgoing transitions over ρ1 and ρ2 in (P ′

0, [G]), then those
transitions are also present in (Q0, G). Thus, let us assume that there are
ρ1@m1, ρ2@m2 parallel independent. Then, there is also an outgoing transi-
tion (ρ1|ρ2, [δc], ∅): We set mc : L1 + L2 → G of δc such that mc = m1 + m2.
This transition cannot be mimicked by (P ′

0, [G]), a contradiction.
Only if: If there are no parallel independent transitions of ρ1 and ρ2, then
(Q0, [G]) is unable to synchronize: If there would be a match mc of ρ1|ρ2, then
there also would be parallel independent matches m1,m2 of ρ1, ρ2 separately,
by taking m1 = mc ◦ e1 and m2 = mc ◦ e2, where e1 and e2 are the obvious
embeddings of the left-hand sides in the coproduct, i.e., L1

e1−→ L1+L2
e2←− L2.

Thus, the transition sequences induced by ρ1, ρ2 are the same in (P ′
0, [G]) and

(Q0, [G]).
2. If: The existence of a transition (ρ1|ρ2, [δc], N1 ∪ N2) implies the existence

of parallel independent matches m1,m2 for ρ1, ρ2 due to the construction in
Clause 1 above. Thus, there are parallel independent transitions from (Q′

0, G)
over ρ1@m1 and ρ2@m2, respectively, as we know from the synchronized
transition that both N1 and N2 hold in G. By the assumption, we also know
that there is at least one application of ρ1 after which ρ2 is applicable and N2

holds, and the same vice versa. If those applications were using other matches
than m1,m2, i.e., if the corresponding DPO diagrams were not isomorphic
to δ1, δ2, δ

′
1, δ

′
2, then at least one of the graphs resulting from the sequences

ρ1.ρ2 and ρ2.ρ1 were not isomorphic to H, the result of the synchronized rule
application.
Only if: This is a direct consequence of Definition 17 and the construction
of mc in Clause 1 above.

6 Conclusions and Future Work

In this paper we have introduced an original approach to controlled graph-
rewriting, where the control layer is described using terms of a simple pro-
cess calculus, instead of standard programming constructs as in most other
approaches. We have presented an operational semantics for processes, enabling
a novel perspective on the equivalence of those processes on the one hand, and

150 G. Kulcsár et al.

(in)dependence of processes running in parallel on the other hand. Among other
things, we have shown that congruence of the bisimilarity relation is achieved
by abstracting from concrete graph details. Furthermore, we have re-interpreted
the notion of parallel independence in our operational setting and shown that
synchronization and bisimulation captures parallel (in)dependence as present in
controlled graph-rewriting processes.

Among the several topics that we intend to address in future work, we men-
tion (i) to study conditions of bisimilarity and/or simulation among marked
processes which are more interesting than those pretty elementary addressed in
this paper; (ii) to compare our notion of process bisimulation with the graph-
interface bisimulation of Ehrig and König [8] by including their generalized
notion of graph-rewriting steps in our framework; (iii) to investigate a Petri net
interpretation, particularly the connection between the non-applicability con-
ditions introduced here and inhibitor arcs; (iv) exploiting the process calculus
framework, to explore composition (or synchronization) operations that are not
conservative with respect to linear derivations, like for example amalgamation;
(v) to consider a more elaborate notion of transition independence for capturing
true concurrency of rule applications more faithfully.

References

1. Baldan, P., Bruni, A., Corradini, A., König, B., Rodŕıguez, C., Schwoon, S.: Effi-
cient unfolding of contextual Petri nets. Theor. Comput. Sci. 449, 2–22 (2012).
https://doi.org/10.1016/j.tcs.2012.04.046

2. Baldan, P., Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Löwe, M.: Concur-
rent semantics of algebraic graph transformation. In: Handbook of Graph Gram-
mars and Computing by Graph Transformation, vol. 3, pp. 107–187. World Scien-
tific (1999). https://doi.org/10.1142/9789812814951 0003

3. Bunke, H.: Programmed graph grammars. In: Claus, V., Ehrig, H., Rozenberg, G.
(eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 155–166. Springer, Heidelberg
(1979). https://doi.org/10.1007/BFb0025718

4. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundam. Inform.
26(3/4), 241–265 (1996). https://doi.org/10.3233/FI-1996-263402

5. Corradini, A., et al.: On the essence of parallel independence for the double-pushout
and sesqui-pushout approaches. In: Heckel, R., Taentzer, G. (eds.) Graph Trans-
formation, Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75396-6 1

6. Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In:
Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp.
101–154. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-662-07675-
0 3

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

8. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp.
151–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24727-
2 12

https://doi.org/10.1016/j.tcs.2012.04.046
https://doi.org/10.1142/9789812814951_0003
https://doi.org/10.1007/BFb0025718
https://doi.org/10.3233/FI-1996-263402
https://doi.org/10.1007/978-3-319-75396-6_1
https://doi.org/10.1007/978-3-662-07675-0_3
https://doi.org/10.1007/978-3-662-07675-0_3
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-540-24727-2_12
https://doi.org/10.1007/978-3-540-24727-2_12

Equivalence and Independence in Controlled Graph-Rewriting Processes 151

9. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph
rewrite language based on the unified modeling language and Java. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp.
296–309. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46464-
8 21

10. Habel, A., Plump, D.: Computational completeness of programming languages
based on graph transformation. In: Honsell, F., Miculan, M. (eds.) FoSSaCS 2001.
LNCS, vol. 2030, pp. 230–245. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45315-6 15

11. Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A system-
atic approach to constructing families of incremental topology control algorithms
using graph transformation. Softw. Syst. Model. 38, 47–83 (2017). https://doi.org/
10.1016/j.jvlc.2016.10.003

12. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: Di
Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 138–145. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08789-4 10

13. Plump, D., Steinert, S.: The semantics of graph programs. In: RULE. EPTCS, vol.
21 (2009). https://doi.org/10.4204/EPTCS.21.3

14. Schürr, A.: Logic-based programmed structure rewriting systems. Fundam. Inform.
26(3, 4), 363–385 (1996). https://doi.org/10.3233/FI-1996-263407

15. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES-approach: language and
environment. In: Handbook of Graph Grammars and Computing by Graph Trans-
formation, vol. 2, pp. 487–550. World Scientific (1999). https://doi.org/10.1142/
9789812815149 0013

https://doi.org/10.1007/978-3-540-46464-8_21
https://doi.org/10.1007/978-3-540-46464-8_21
https://doi.org/10.1007/3-540-45315-6_15
https://doi.org/10.1007/3-540-45315-6_15
https://doi.org/10.1016/j.jvlc.2016.10.003
https://doi.org/10.1016/j.jvlc.2016.10.003
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.4204/EPTCS.21.3
https://doi.org/10.3233/FI-1996-263407
https://doi.org/10.1142/9789812815149_0013
https://doi.org/10.1142/9789812815149_0013

Graph Conditions and Verification

Verifying Graph Transformation Systems
with Description Logics

Jon Haël Brenas1(B), Rachid Echahed2(B), and Martin Strecker3(B)

1 UTHSC - ORNL, Memphis, TN, USA
jhael@uthsc.edu

2 CNRS and University Grenoble-Alpes, LIG Lab., Grenoble, France
rachid.echahed@imag.fr

3 Université de Toulouse, IRIT, Toulouse, France
martin.strecker@irit.fr

Abstract. We address the problem of verification of graph transforma-
tions featuring actions such as node merging and cloning, addition and
deletion of nodes and edges, node or edge labeling and edge redirection.
We introduce the considered graph rewrite systems following an algo-
rithmic approach and then tackle their formal verification by proposing
a Hoare-like weakest precondition calculus. Specifications are defined as
triples of the form {Pre}(R, strategy){Post} where Pre and Post are
conditions specified in a given Description Logic (DL), R is a graph
rewrite system and strategy is an expression stating in which order
the rules in R are to be performed. We prove that the proposed calcu-
lus is sound and characterize which DL logics are suited or not for the
targeted verification tasks, according to their expressive power.

1 Introduction

Graphs, as well as their transformations, play a central role in modelling data
in various areas such as chemistry, civil engineering or computer science. In
many such applications, it may be desirable to be able to prove that graph
transformations are correct, i.e., from any graph (or state) satisfying a given set
of conditions, only graphs satisfying another set of conditions can be obtained.

The correctness of graph transformations has attracted some attention in
recent years, see e.g., [3,5,6,9,16,19,21,24]. In this paper, we provide a Hoare-
like calculus to address the problem of correctness of programs defined as strategy
expressions over graph rewrite rules. Specifications are defined as triples of the
form {Pre}(R, strategy){Post} where Pre and Post are conditions, R is a graph
rewrite system and strategy is an expression stating how rules in R are to be
performed. Our work is thus close to [9,16,21] but differs both on the class of
the considered rewrite systems as well as on the logics used to specify Pre and
Post conditions.

The considered rewrite rules follow an algorithmic approach where the left-
hand sides are attributed graphs and the right-hand sides are sequences of ele-
mentary actions [14]. Among the considered actions, we quote node and edge
c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 155–170, 2018.
https://doi.org/10.1007/978-3-319-92991-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_10&domain=pdf
http://orcid.org/0000-0001-9953-9871

156 J. H. Brenas et al.

addition or deletion, node and edge labelling and edge redirection, in addition
to node merging and cloning. To our knowledge, the present work is the first to
consider the verification of graph transformations including node cloning.

Hoare-like calculi for the verification of graph transformations have already
been proposed with different logics to express the pre- and post-conditions.
Among the most prominent approaches figure nested conditions [16,21] that
are explicitly created to describe graph properties. The considered graph rewrite
transformations are based on the double pushout approach with linear spans
which forbid actions such as node merging and node cloning.

Other logics might be good candidates to express graph properties which go
beyond first-order definable properties such as monadic second-order logic [13,22]
or the dynamic logic defined in [5]. These logics are undecidable in general and
thus either cannot be used to prove correctness of graph transformations in an
automated way or only work on limited classes of graphs.

Starting from the other side of the logical spectrum, one could consider the
use of decidable logics such as fragments of Description Logics (DLs) to specify
graph properties [1,8]. DLs [4] are being used heavily in formal knowledge rep-
resentation languages such as Owl [2]. In this paper we consider the case where
Pre and Post conditions are expressed in DLs and show which Description Logic
can be used or not for the targeted verification problems.

The use of decidable logics contributes to the design of a push-button tech-
nology that gives definite and precise answers to verification problems. Model-
checking [24] provides an alternative to our approach with ready to use tools,
such as Alloy [7,18] or GROOVE [15]. The main issue with those tools is that
they are restricted to finding counter-examples, instead of a full verification,
when the set of possible models is infinite (or too large to be checked in a timely
manner), and thus provide only part of the solution. On the other hand, tech-
niques based on abstract interpretation (such as [23]) are not guaranteed to give
correct answers and have a risk of false positive or negative.

The paper is organized as follows. Section 2 provides the considered defini-
tions of graphs and the elementary graph transformation actions. Section 3 recalls
useful notions of Descriptions Logics. In Sect. 4, we define the considered graph
rewrite systems and strategies. Section 5 provides a sound Hoare-like calculus
and states which DLs can be used or not for the considered program verification
problems. Section 6 concludes the paper. The missing proofs and definitions can
be consulted in [10].

2 Preliminaries

We first define the notion of decorated graphs we consider in this paper.

Definition 1 (Decorated Graph). Let C (resp. R) be a set of node labels
(resp. edge labels). A decorated graph G over a graph alphabet (C, R) is a tuple
(N , E, ΦN , ΦE, s, t) where N is a set of nodes, E is a set of edges, ΦN is
a node labeling function, ΦN : N → P(C), ΦE is an edge labeling function,

Verifying Graph Transformation Systems with Description Logics 157

ΦE : E → R, s is a source function s : E → N and t is a target function
t : E → N .

Notice that nodes are decorated by means of subsets of C while edges are
labeled with a single element in R.

Graph transformation systems considered in this paper follow an algorithmic
approach based on the notion of elementary actions introduced below.

Definition 2 (Elementary action, action). Let C0 (resp. R0) be a set of
node (resp. edge) labels. An elementary action, say a, may be of the following
forms:

– a node addition addN (i) (resp. node deletion delN (i)) where i is a new node
(resp. an existing node). It creates the node i. i has no incoming nor outgoing
edge and it is not labeled (resp. it deletes i and all its incident edges).

– a node label addition addC(i, c) (resp. node label deletion delC(i, c)) where i
is a node and c is a label in C0. It adds the label c to (resp. removes the label
c from) the labeling of node i.

– an edge addition addE(e, i, j, r) (resp. edge deletion delE(e, i, j, r)) where e
is an edge, i and j are nodes and r is an edge label in R0. It adds the edge e
with label r between nodes i and j (resp. removes all edges with source i and
target j with label r).

– a global edge redirection i � j where i and j are nodes. It redirects all
incoming edges of i towards j.

– a merge action mrg(i, j) where i and j are nodes. This action merges the two
nodes. It yields a new graph in which the first node i is labeled with the union
of the labels of i and j and such that all incoming or outgoing edges of any
of the two nodes are gathered.

– a clone action cl(i, j, Lin, Lout, Ll in, Ll out, Ll loop) where i and j are nodes
and Lin, Lout, Ll in, Ll out and Ll loop are subsets of R0. It clones a node i
by creating a new node j and connects j to the rest of a host graph according
to different information given in the parameters Lin, Lout, Ll in, Ll out, Ll loop

as specified further below.

The result of performing an elementary action a on a graph G = (NG, EG,
ΦG

N , ΦG
E , sG, tG), written G[a], produces the graph G′ = (NG′

, EG′
, ΦG′

N , ΦG′
E , sG′

,

tG
′
) as defined in Fig. 1. A (composite) action, say α, is a sequence of elementary

actions of the form α = a1; a2; . . . ; an. The result of performing α on a graph G
is written G[α]. G[a;α] = (G[a])[α] and G[ε] = G where ε is the empty sequence.

The elementary action cl(i, j, Lin, Lout, Ll in, Ll out, Ll loop) might be not easy
to grasp at first sight. It thus deserves some explanations. Let node j be a
clone of node i. What would be the incident edges of the clone j? Answering
this question is not straightforward. There are indeed different possibilities to
connect j to the neighborhood of i. Figure 2 illustrates such a problem where
node q′

1, a clone of node q1, has indeed different possibilities to be connected to
the other nodes. In order to provide a flexible clone action, the user may tune

158 J. H. Brenas et al.

the way the edges connecting a clone are treated through the five parameters
Lin, Lout, Ll in, Ll out, Ll loop. All these parameters are subsets of the set of edge
labels R0 and are explained informally below:

– Lin (resp. Lout) indicates that every incoming (resp. outgoing) edge e of i,
which is not a loop, and whose label is in Lin (resp. Lout) is cloned as a new
edge e′ such that s(e′) = s(e) and t(e′) = j (resp. s(e′) = j and t(e′) = t(e)).

– Ll in indicates that every self-loop e over i whose label is in Ll in is cloned as
a new edge e′ with s(e′) = i and t(e′) = j. (see the blue arrow in Fig. 2).

– Ll out indicates that every self-loop e over i whose label is in Ll out is cloned
as a new edge e′ with s(e′) = j and t(e′) = i. (see the red arrow in Fig. 2).

– Ll loop indicates that every self-loop e over i whose label is in Ll loop is cloned
as a new edge e′ which is a self-loop over j, i.e., s(e′) = j and t(e′) = j. (see
the self-loop over node q′

1 in Fig. 2).

The semantics of the cloning action cl(i, j, Lin, Lout, Ll in, Ll out, Ll loop) as
defined in Fig. 1 use some auxiliary pairwise disjoint sets representing the
new edges that are created according to how the clone j should be con-
nected to the neighborhood of node i. These sets of new edges are denoted
E′

in, E′
out, E

′
l in, E′

l out and E′
l loop. They are provided with the auxiliary bijec-

tive functions in, out, l in, l out and l loop as specified below.

1. E′
in is in bijection through function in with the set {e ∈ EG| tG(e) = i ∧

sG(e) �= i ∧ ΦG
E(e) ∈ Lin},

2. E′
out is in bijection through function out with the set {e ∈ EG| sG(e) =

i ∧ tG(e) �= i ∧ ΦG
E(e) ∈ Lout},

3. E′
l in is in bijection through function l in with the set {e ∈ EG| sG(e) =

tG(e) = i ∧ ΦG
E(e) ∈ Ll in},

4. E′
l out is in bijection through function l out with the set {e ∈ EG| sG(e) =

tG(e) = i ∧ ΦG
E(e) ∈ Ll out},

5. E′
l loop is in bijection through function l loop with the set {e ∈ EG| sG(e) =

tG(e) = i ∧ ΦG
E(e) ∈ Ll loop}).

Informally, the set E′
in contains a copy of every incoming edge e of node i

(i.e., tG(e) = i), which is not a self-loop (i.e., sG(e) �= i), and having a label in
Lin, (i.e., ΦG

E(e) ∈ Lin). Lin is thus used to select which incoming edges of node
i are cloned. The other sets E′

out, E′
l in, E′

l out and E′
l loop are defined similarly.

Example 1. Let A be the graph of Fig. 2a, over an alphabet (C0,R0) such that
{a, b} ⊆ R0. Performing the action cl(q1, q′

1,R0,R0,X, Y, Z) yields the graph
presented in Fig. 2b where the blue-plain (resp. red-dashed, purple-dotted) edge
exists iff X (resp. Y , Z) contains the label {a}.

Readers familiar with algebraic approaches to graph transformation may rec-
ognize the cloning flexibility provided by the recent AGREE approach [11]. The
parameters of the clone action reflect somehow the embedding morphisms of
AGREE-rules. Cloning a node according to the approach of Sesquipushout [12]
could be easily simulated by instantiating all the parameters by the full set of
edge labels, i.e., cl(i, j,R0,R0,R0,R0,R0).

Verifying Graph Transformation Systems with Description Logics 159

If α = addC(i, c) then: If α = delC(i, c) then:

NG′
= NG,EG′

= EG, NG′
= NG,EG′

= EG,

ΦG′
N (n) =

{
ΦG

N (n) ∪ {c} if n = i
ΦG

N (n) if n �= i
ΦG′

N (n) =
{

ΦG
N (n)\{c} if n = i

ΦG
N (n) if n �= i

ΦG′
E = ΦG

E , sG′
= sG, tG′

= tG ΦG′
E = ΦG

E , sG′
= sG, tG′

= tG

If α = addE(e, i, j, r) then: If α = delE(e, i, j, r) then:

NG′
= NG, ΦG′

N = ΦG
N NG′

= NG, ΦG′
N = ΦG

N

EG′
= EG ∪ {e} EG′

= EG\{a ∈ EG |
sG(a) = i, tG(a) = j and ΦG

E(a) = r}
ΦG′

E (e′) =
{

r if e′ = e
ΦG

E(e′) if e′ �= e
ΦG′

E is the restriction of ΦG
E to EG′

sG′
(e′) = sG(e′) if e′ �= e, sG′

(e) = i sG′
is the restriction of sG to EG′

tG′
(e′) = tG(e′) if e′ �= e, tG′

(e) = j tG′
is the restriction of tG to EG′

If α = addN (i) then: If α = cl(i, j, Lin, Lout, Ll in, Ll out, Ll loop) then:

NG′
= NG ∪ {i} where i is a new node NG′

= NG ∪ {j}
EG′

= EG, ΦG′
E = ΦG

E ,sG′
= sG, tG′

= tG EG′
= EG ∪ E′

in ∪ E′
out ∪ E′

l in ∪ E′
l out ∪ E′

l loop

ΦG′
N (n) =

{ ∅ if n = i
ΦG

N (n) if n �= i
ΦG′

N (n) =
{

ΦG
N (i) if n = j

ΦG
N (n) otherwise

If α = delN (i) then:

NG′
= NG\{i}

EG′
= EG\{e|sG(e) = i ∨ tG(e) = i}

ΦG′
N is the restriction of ΦG

N to NG′

ΦG′
E is the restriction of ΦG

E to EG′

sG′
is the restriction of sG to EG′

ΦG′
E (e) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΦG
E(in(e)) if e ∈ E′

in

ΦG
E(out(e)) if e ∈ E′

out

ΦG
E(l in(e)) if e ∈ E′

l in

ΦG
E(l out(e)) if e ∈ E′

l out

ΦG
E(l loop(e)) if e ∈ E′

l loop

ΦG
E(e) otherwise

tG′
is the restriction of tG to EG′

If α = i � j then:

NG′
= NG, EG′

= EG

ΦG′
N = ΦG

N , ΦG′
E = ΦG

E ,sG′
= sG

tG′
(e) =

{
j if tG(e) = i
tG(e) if tG(e) �= i

sG′
(e) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sG(in(e)) if e ∈ E′
in

j if e ∈ E′
out

i if e ∈ E′
l in

j if e ∈ E′
l out

j if e ∈ E′
l loop

sG(e) otherwise
If α = mrg(i, j) then:

NG′
= NG\{j}, EG′

= EG, ΦG′
E (e) = ΦG

E(e)

ΦG′
N (n) =

{
ΦG

N (i) ∪ ΦG
N (j) if n = i

ΦG
N (n) otherwise

sG′
(e) =

{
i if sG(e) = j
sG(e) otherwise

tG′
(e) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j if e ∈ E′
in

tG(out(e)) if e ∈ E′
out

j if e ∈ E′
l in

i if e ∈ E′
l out

j if e ∈ E′
l loop

tG(e) otherwise

tG′
(e) =

{
i if tG(e) = j
tG(e) otherwise

Fig. 1. G′ = G[α], summary of the effects of the elementary actions: addN (i),
delN (i), addC(i, c), delC(i, c), addE(e, i, j, r), delE(e), i � j, mrg(i, j) and
cl(i, j, Lin, Lout, Ll in, Ll out, Ll loop).

3 DL Logics

Description Logics (DLs) are a family of logic based knowledge representation
formalisms. They constitute the basis of well known ontology languages such as
the Web Ontology Language OWL [2]. Roughly speaking, a DL syntax allows
one to define Concept names, which are equivalent to classical first-order logic
unary predicates, Role names, which are equivalent to binary predicates and

160 J. H. Brenas et al.

q0

q1

q2

b

b

a

(a) A graph and

q0

q1 q′
1

q2

b

b

a

b

b

a
a a

(b) the possible results of cloning node q1 as node q′
1

Fig. 2. Example of application of the elementary action Clone (Color figure online)

Individuals, which are equivalent to classical constants. There are various DLs
in the literature, they mainly differ by the logical operators they offer to con-
struct concept and role expressions or axioms. In this paper we are interested
in extensions of the prototypical DL ALC. We recall that these extensions are
named by appending a letter representing additional constructors to the logic
name. We focus on nominals (represented by O), counting quantifiers (Q), self-
loops (Self), inverse roles (I) and the universal role (U). For instance, the logic
ALCUO extends ALC with the universal role and nominals (see [4], for details
about DL names). Below we recall the definitions of DL concepts and roles we
consider in this paper.

Definition 3 (Concept, Role). Let A = (C0,R0,O) be an alphabet where C0

(resp. R0 and O) is a set of atomic concepts (resp. atomic roles and nominals).
Let c0 ∈ C0, r0 ∈ R0, o ∈ O, and n an integer. The set of concepts C and roles
R are defined by:

C := � | c0 | ∃R.C | ¬C | C ∨ C | o (nominals) | ∃R.Self (self loops)
| (< n R C) (counting quantifiers)

R := r0 | U (universal role) | R−(inverse role)
For the sake of conciseness, we define ⊥ ≡ ¬�, C ∧C ′ ≡ ¬(¬C ∨¬C ′), ∀R.C ≡
¬(∃R.¬C) and (≥ n R C) ≡ ¬(< n R C).

The concepts Calc and roles Ralc of the logic ALC, which stand for “Attribu-
tive concept Language with Complement”, are subsets of the concepts and roles
given above. They can be defined as follows:

Calc := � | c0 | ∃R.Calc | ¬Calc | Calc ∨ Calc and Ralc := r0

Definition 4 (Interpretation). An interpretation over an alphabet
(C0,R0,O) is a tuple (ΔI , ·I) where ·I is a function such that cI

0 ⊆ ΔI , for
every atomic concept c0 ∈ C0, rI

0 ⊆ ΔI × ΔI , for every atomic role r0 ∈ R0,
oI ∈ ΔI for every nominal o ∈ O. The interpretation function is extended to
concept and role descriptions by the following inductive definitions:

Verifying Graph Transformation Systems with Description Logics 161

– �I = ΔI

– (¬C)I = ΔI\CI

– (C ∨ D)I = CI ∪ DI

– (∃R.C)I = {n ∈ ΔI |∃m, (n,m) ∈ RI and m ∈ CI}
– (∃R.Self)I = {n ∈ ΔI |(n, n) ∈ RI}
– (< n R C)I = {δ ∈ ΔI |#({m ∈ ΔI |(δ,m) ∈ RI and m ∈ CI}) < n}
– (R−)I = {(n,m) ∈ ΔI × ΔI |(m,n) ∈ RI}
– UI = ΔI × ΔI .

Definition 5 (Interpretation induced by a decorated graph). Let G =
(N,E,ΦN , ΦE , s, t) be a graph over an alphabet (C,R) such that C0 ∪ O ⊆ C
and R0 ⊆ R. The interpretation induced by the graph G, denoted (ΔG , ·G), is
such that ΔG = N , cG

0 = {n ∈ N |c0 ∈ ΦN (n)}, for every atomic concept c0 ∈ C0,
rG
0 = {(n,m) ∈ N × N |∃e ∈ E.s(e) = n and t(e) = m and r0 = ΦE(e)}, for

every atomic role r0 ∈ R0, oG = {n ∈ N |o ∈ ΦN (n)} for every nominal o ∈ O.
We say that a node n of a graph G satisfies a concept c, written n |= c if n ∈ cG.
We say that a graph G satisfies a concept c, written G |= c if cG = N , that is
every node of G belongs to the interpretation of c induced by G. We say that a
concept c is valid if for all graphs G, G |= c.

To illustrate the different notions introduced in this paper, we use a running
example inspired from ontologies related to the Malaria surveillance.

Example 2. Malaria is an infectious, vector-borne disease that overwhelmingly
affects Sub-Saharan Africa. In order to reduce its incidence, one of the most
widely used techniques is to install long lasting insecticide-treated nets (LLINs).
Several materials can be used to produce LLINs and they can be treated with
many different insecticides. Each insecticide has a mode of action that charac-
terizes how it affects mosquitoes. In order to avoid the appearance of insecticide
resistances in mosquito populations, it is required to use LLINs with different
modes of actions.

In this example, we start by giving examples of concepts, roles and nominals
related to Malaria surveillance. Let Amal = (Cmal,Rmal,Omal), be an alpha-
bet such that {LLIN, Insecticide,Material,House,ModeOfAction} ⊆ Cmal,
{has ins, has mat, has moa, ins in} ⊆ Rmal and {i0, l,mat,DDT} ⊆ Omal.
We can then express as concepts that i0 is an insecticide (∃U.io ∧ Insecticide),
that there exists a LLIN using the material mat (∃U.mat ∧ ∃has mat−.LLIN)
or that all LLINs except for l are installed in at most one house (∀U.LLIN ⇒
((< 2 ins in House) ∨ l)).

4 Graph Rewrite Systems and Strategies

In this section, we introduce the notion of DL decorated graph rewrite systems.
These are extensions of the graph rewrite systems defined in [14] featuring new
actions over graph structures decorated over an alphabet (C, R) consisting of
concepts C and roles R of a given DL logic.

162 J. H. Brenas et al.

Definition 6 (Rule, DLGRS). A rule ρ is a pair (L, α) where L, called the
left-hand side (lhs), is a decorated graph over (C, R) and α, called the right-hand
side (rhs), is an action. Rules are usually written L → α. A DL decorated graph
rewrite system, DLGRS, is a set of rules.

ρ2:

l : LLIN ∧ ∀ins in.⊥

l′ : LLIN ∧ ∀ins in.⊥ ∧ ¬l

i : Insecticide mrg(l, l′)

ρ0: l : LLIN ∧ ∃ins in.� i : DDT delN (l)

ρ1:

l : LLIN

i : Insecticide

m : ModeOfAction

h : House

l′ : LLIN

i′ : Insecticide

m′ : ModeOfAction ∧ ¬m

cl(l′, l′′, L);
delE(e, l, h, ins in);

addE(e′, l′′, h, ins in)

has ins

has ins

has ins has ins

has moa has moa

e : ins in

has ins

Fig. 3. Rules used in Example 3. In rule ρ1,
#»L = {∅, {has ins, has mat}, ∅, ∅, ∅}.

Example 3. We now define some rules that can be applied to our malaria exam-
ple. These rules are given in Fig. 3. Rule ρ0 searches for a LLIN (l) using DDT
as an Insecticide and installed in a place, i.e., such that l |= ∃ins in.�. As DDT
is highly dangerous to human health, l is then deleted.

Rule ρ1 changes the LLIN installed in a House. As already said in Example 2,
one has to avoid using insecticides with the same mode of action twice in a row
in the same House. ρ1 thus searches for a LLIN (l) that is installed in a House
(h) which has an Insecticide (i) with a given ModeOfAction (m). It also searches
for a LLIN (l′) that has an Insecticide (i′) with a different ModeOfAction (m′

where m′ |= ¬m). A new LLIN (l′′) is then created by cloning l′, the edge,
e, between l and h is removed (it loses its label) and a new one, e′, is created
between l′′ and h labeled with ins in.

Verifying Graph Transformation Systems with Description Logics 163

The idea behind rule ρ2 is that there are two kinds of LLINs: those that are
currently used, i.e. installed in some House, and those that are used as templates
for creating new LLINs by cloning with ρ1. In order to limit the number of
templates, if two LLINs which are not installed anywhere, i.e., they are models
of ∀ins in.⊥, and they use the same Insecticide, then they can be considered as
the same, and thus can be merged into one template by rule ρ2.

Definition 7 (Match). A match h between a lhs L and a graph G is a pair of
functions h = (hN , hE), with hN : NL → NG and hE : EL → EG such that:
1. ∀n ∈ NL,∀c ∈ ΦL

N (n), hN (n) |= c 2. ∀e ∈ EL, ΦG
E(hE(e)) = ΦL

E(e)
3. ∀e ∈ EL, sG(hE(e)) = hN (sL(e)) 4. ∀e ∈ EL, tG(hE(e)) = hN (tL(e)).

The third and the fourth conditions are classical and say that the source
and target functions and the match have to agree. The first condition says that
for every node, n, of the lhs, the node to which it is associated, h(n), in G has
to satisfy every concept in ΦL

N (n). This condition clearly expresses additional
negative and positive conditions which are added to the “structural” pattern
matching. The second condition ensures that the match respects edge labeling.

Definition 8 (Rule application). Let G be a graph decorated over an alphabet
(C0, R0) consisting of atomic concepts C0 and roles R0 of a given DL logic.
G rewrites into graph G′ using a rule ρ = (L,α) iff there exists a match h
from L to G. G′ is obtained from G by performing actions in h(α)1. Formally,
G′ = G[h(α)]. We write G →ρ G′.

Very often, strategies are used to control the use of possible rules in rule-based
programs (e.g. [20,26]). Informally, a strategy specifies the application order of
different rules. It does not indicate where the matches are to be tried nor does
it ensure unique normal forms.

Definition 9 (Strategy). Given a graph rewrite system R, a strategy is a word
of the following language defined by s, where ρ is any rule in R:
s := ε (Empty Strategy) ρ (Rule) s ⊕ s (Choice)

s; s (Composition) s∗ (Closure) ρ? (Rule Trial)
ρ! (Mandatory Rule)

Informally, the strategy “s1; s2” means that strategy s1 should be applied
first, followed by the application of strategy s2. The expression s1 ⊕ s2 means
that either the strategy s1 or the strategy s2 is applied. The strategy ρ∗ means
that rule ρ is applied as many times as possible. Notice that the closure is the
standard “while” construct, that is the strategy s∗ applies s as much as possible.

Example 4. Let us assume that we want to get rid of DDT-treated LLINs, change
the LLINs in 1 or 2 Houses and then remove duplicate templates. In such a
situation, one can use the strategy: ρ∗

0; (ρ1 ⊕ (ρ1; ρ1)); ρ∗
2.

1 h(α) is obtained from α by replacing every node name, n, of L by h(n).

164 J. H. Brenas et al.

We write G ⇒s G′ to denote that graph G′ is obtained from G by applying
the strategy s. In Fig. 4, we provide the rules that specify how strategies are
used to rewrite a graph. For that we use the formula App(s) such that for all
graphs G, G |= App(s) iff the strategy s can perform at least one step over G.
This formula is specified below.

• G |= App(ρ) iff there exists a match h from the left-hand side of ρ to G
• G |= App(ρ!) iff there exists a match h from the left-hand side of ρ to G
• G |= App(ε) • G |= App(s0 ⊕ s1) iff G |= App(s0) or G |= App(s1)
• G |= App(s∗

0) • G |= App(s0; s1) iff G |= App(s0)
• G |= App(ρ?)

Whenever G |= App(s), this does not mean that the whole strategy, s, can
be applied on G, but it rather ensures that at least one step of the considered
strategy can be applied.

G ⇒ε G
(Empty rule)

G ⇒s0 G′′ G′′ ⇒s1 G′

G ⇒s0;s1 G′ (Strategy composition)

G ⇒s0 G′

G ⇒s0⊕s1 G′ (Choice left)
G ⇒s1 G′

G ⇒s0⊕s1 G′ (Choice right)

G �|= App(s)

G ⇒s∗ G
(Closure false)

G ⇒s G′′ G′′ ⇒s∗ G′ G |= App(s)

G ⇒s∗ G′ (Closure true)

G �|= App(ρ)

G ⇒ρ � (Rule False)
G |= App(ρ) G →ρ G′

G ⇒ρ G′ (Rule True)

G �|= App(ρ)

G �⇒ρ!
(Mandatory Rule False)

G |= App(ρ) G →ρ G′

G ⇒ρ! G′ (Mandatory Rule True)

G �|= App(ρ)

G ⇒ρ? G
(Rule Trial False)

G |= App(ρ) G →ρ G′

G ⇒ρ? G′ (Rule Trial True)

Fig. 4. Strategy application rules

Notice that the three strategies using rules (i.e. ρ, ρ! and ρ?) behave the
same way when G |= App(ρ) holds, as shown in Fig. 4, but they do differ when
G �|= App(ρ). In such a case, ρ can yield any graph, denoted by �, (i.e. the
process stops without an error), ρ! stops the rewriting process with failure and
ρ? ignores the rule application and moves to the next step to be performed, if
any, of the considered strategy.

The formula App has to be able to express the existence of a match in the
considered logic. However, assuming the nodes of the lhs are explicitly named,
L = ({n0, . . . , nk}, E, ΦN , ΦE , s, t), for a rule ρ, one may specify the existence
of a match in a more direct way when using explicitly one nominal oi for each
node ni of the lhs. That is to say, one can define a predicate App(ρ, {o0, . . . , ok}),

Verifying Graph Transformation Systems with Description Logics 165

also noted App(ρ), such that G |= App(ρ, {o0, . . . , ok}) iff there exists a match
h such that hN (n0) = oG

0 , . . . , hN (nk) = oG
k . This requires less expressive power

to express than App. We also define NApp(ρ) ≡ ¬App(ρ).

Example 5. For the rule ρ2 of Fig. 3, App(ρ2, {l0, i0, l
′
0}) ≡ ∃U.(l0 ∧ LLIN ∧

∀ins in.⊥∧∃has ins.(i0∧Insecticide∧∃has ins−.(l′0∧LLIN∧¬l∧∀ins in.⊥))).

5 Verification

In this section, we follow a Hoare style verification technique to specify properties
of DLGRS’s for which we establish a sound proof procedure.

Definition 10 (Specification). A specification SP is a triple {Pre}(R, s)
{Post} where Pre and Post are DL formulas, R is a DLGRSand s is a strategy.

Example 6. Continuing with the malaria example, we give a simple example of a
specification. We first define a precondition as every LLIN is installed in at most
one House: Pre ≡ ∀U.LLIN ⇒ (<2 ins in House). We can consider a post-
condition having the same constraints as the precondition augmented with the
fact that no House is equipped with a LLIN using DDT : Post ≡ (∀U.LLIN ⇒
(<2 ins in House)) ∧ (∀U.House ⇒ ∀ins in−.∀has ins.¬DDT). To complete
the specification example, we consider the DLGRS given Fig. 3 and the strategy
as proposed in Example 4.

Definition 11 (Correctness). A specification SP is said to be correct iff for
all graphs G, G′ such that G ⇒s G′ and G |= Pre, then G′ |= Post.

In order to show the correctness of a specification, we follow a Hoare-calculus
style [17] by computing weakest preconditions. For that, we give in Fig. 5 the
definition of the function wp which yields the weakest precondition of a formula
Q w.r.t. actions and strategies.

The weakest precondition of an elementary action, say a, and a postcondition
Q is defined as wp(a,Q) = Q[a] where Q[a] stands for the precondition consisting
of Q to which is applied a substitution induced by the action a that we denote
by [a]. The notion of substitution used here follow the classical ones from Hoare-
calculi (e.g., [25]).

Definition 12 (Substitutions). A substitution, written [a], is associated to
each elementary action a, such that for all graphs G and DL formula φ, (G |=
φ[a]) ⇔ (G[a] |= φ).

When writing a formula of the form φ[a], the substitution [a] is used as a
new formula constructor whose meaning is that the weakest preconditions for
elementary actions, as defined above, are correct. DL logics are not endowed with
such substitution constructor. The addition of such a substitution constructor
to a given description logic is not harmless in general. That is to say, if φ is
a formula of a DL logic L, φ[a] is not necessarily a formula of L. Hence, only
closed DL logics under substitutions can be used for verification purposes. The
two following theorems characterize non trivial fragments of DL logics which are
closed, respectively not closed, under substitutions.

166 J. H. Brenas et al.

Theorem 1. The description logics ALCUO,ALCUOI,ALCQUOI,ALCUOS
elf ,ALCUOISelf , and ALCQUOISelf are closed under substitutions.

The proof of this theorem consists in providing a rewrite system which trans-
forms any formula with substitutions into an equivalent substitution free formula
in the considered logic. Details of such a rewrite system can be found in [10].

Theorem 2. The description logics ALCQUO and ALCQUOSelf are not
closed under substitutions.

The proof of the above theorem is not straightforward. It uses notions of
bisimulations induced by the considered logics. Two bisimilar models are pro-
vided which do not fulfill the same set of formulas. Details of the proof can be
found in [10].

wp(a, Q) = Q[a] wp(a;α, Q) = wp(a, wp(α, Q))
wp(ε, Q) = pwQ (s0; s1, Q) = wp(s0, wp(s1, Q))
wp(s0 ⊕ s1, Q) = wp(s0, Q) ∧ wp(s1, Q) wp(s∗, Q) = invs

wp(ρ, Q) = App(ρ) ⇒ wp(αρ, Q) wp(ρ!, Q) = App(ρ) ∧ wp(αρ, Q)
wp(ρ?, Q) = (App(ρ) ⇒ wp(αρ, Q)) ∧ (¬App(ρ) ⇒ Q)

Fig. 5. Weakest preconditions w.r.t. actions and strategies, where a (resp. α, αρ) stands
for an elementary action (resp. action, the right-hand side of a rule ρ) and Q is a formula

In presence of DL logics closed under substitutions, the definitions of wp(s,Q)
for strategy expressions consisting of the Empty Strategy, the Composition or the
Choice operators are quite direct (see, Fig. 5). The definitions of wp(s,Q) when
strategy s is a Rule, Mandatory Rule or Rule Trial are not the same depending
on what happens if the considered rewrite rule cannot be applied. When a rule ρ
can be applied, then applying it should lead to a graph satisfying Q. When the
rule ρ cannot be applied, wp(ρ, Q) indicates that the considered specification
is correct; while wp(ρ!, Q) indicates that the specification is not correct and
wp(ρ?, Q) leaves the postcondition unchanged and thus transformations can
move to possible next steps.

As for the computation of weakest preconditions for the Closure of strategies,
it is close to the while statement. It requires an invariant invs to be defined,
wp(s∗, Q) = invs, which means that the invariant has to be true when entering
the iteration for the first time. On the other hand, it is obviously not enough to be
sure that Q will be satisfied when exiting the iteration or that the invariant will
be maintained throughout the execution. To make sure that iterations behave
correctly, we need to introduce some additional verification conditions computed
by means of a function vc, defined in Fig. 6.

As the computation of wp and vc requires the user to provide invariants, we
now introduce the notion of annotated strategies and specification.

Verifying Graph Transformation Systems with Description Logics 167

vc(ε, Q) = vc(ρ, Q) = vc(ρ!, Q) = vc(ρ?, Q) = � (true)
vc(s0; s1, Q) = vc(s0, wp(s1, Q)) ∧ vc(s1, Q)
vc(s0 ⊕ s1, Q) = vc(s0, Q) ∧ vc(s1, Q)
vc(s∗, Q) = vc(s, invs) ∧ (invs ∧ App(s) ⇒ wp(s, invs)) ∧ (invs ∧ ¬App(s) ⇒ Q)

Fig. 6. Verification conditions for strategies.

Definition 13 (Annotated strategy, Annotated specification). An anno-
tated strategy is a strategy in which every iteration s∗ is annotated with an
invariant invs. It is written s∗{invs}. An annotated specification is a specifica-
tion whose strategy is an annotated strategy.

Example 7. As the strategy introduced in Example 4 contains two closures, we
need to define two invariants. We choose inv0 ≡ Pre and inv2 ≡ Post. The
annotated strategy we use is thus AS ≡ ρ∗

0{inv0}; (ρ1 ⊕ (ρ1; ρ1)); ρ∗
2{inv2}.

Definition 14 (Correctness formula). We call correctness formula of an
annotated specification SP = {Pre}(R, s){Post}, the formula : correct(SP) =
(Pre ⇒ wp(s, Post)) ∧ vc(s, Post).

Example 8. The specification of the considered running example is thus
{Pre}(R, s){Post}, where Pre and Post are those introduced in Example 6, the
rules R are those of Example 3 and the annotated strategy s is the strategy AS
as defined in Example 7.

Theorem 3 (Soundness). Let SP = {Pre}(R, s){Post} be an annotated spec-
ification. If correct(SP) is valid, then for all graphs G, G′ such that G ⇒s G′,
G |= Pre implies G′ |= Post.

The proof is done by structural induction on strategy expressions (see [10]).

Example 9. We now compute the correctness formula of the specification of
Example 8: corr ≡ (Pre ⇒ wp(AS, Post)) ∧ vc(AS, Post).

By applying the weakest precondition rules, wp(AS, Post)) ≡ wp(ρ∗
0, wp

((ρ1 ⊕ ρ1; ρ1); ρ∗
2, Post)) ≡ inv0. Thus: corr ≡ (Pre ⇒ inv0) ∧ vc(AS, Post).

Let us now focus on vc(AS, Post). For ease of reading, let us write S1 ≡
(ρ1 ⊕ (ρ1; ρ1)); ρ∗

2{inv2}. By applying the rules for the verification conditions,
one gets that vc(AS, Post) ≡ vc(ρ∗

0, wp(S1, Post))∧vc(S1, Post). We will discuss
the resulting subformulas.

1. We now focus on the first formula, vc(ρ∗
0, wp(S1, Post)). By applying the

rules for the verification conditions, one gets that vc(ρ∗
0, wp(S1, Post)) ≡

vc(ρ0, inv0)∧ (inv0 ∧App(ρ0, {l0, i0}) ⇒ wp(ρ0, inv0))∧ (inv0 ∧NApp(ρ0) ⇒
wp(S1, Post)). The rules state that vc(ρ,Q) = �; thus it is possible to get rid
of the first formula vc(ρ0, inv0).
Similarly, wp(ρ0, inv0) = App(ρ0, {l0, i0}) ⇒ inv0[delN (l0)].

168 J. H. Brenas et al.

Altogether: vc(ρ∗
0, wp(S1, Post)) ≡

(inv0 ∧ App(ρ0, {l0, i0}) ⇒ inv0[delN (l0)]) ∧ (inv0 ∧ NApp(ρ0) ⇒
wp(S1, Post)).
Let us now focus on the last wp. Unfolding the definition of wp(S1, Post) ≡
wp(ρ1 ⊕ ρ1; ρ1, wp(ρ∗

2, Post)). Applying the rules of weakest preconditions
yields wp(ρ1, wp(ρ∗

2, Post)) ∧ wp(ρ1, wp(ρ1, wp(ρ∗
2, Post))). From the defini-

tion of the weakest precondition for a closure, one gets that wp(ρ∗
2, Post) =

inv2. By applying the rule for the weakest precondition of a rule application,
one gets that:
wp(ρ1, inv2) ≡ App(ρ1, {l1, h1, i1,m1, l

′
1, i

′
1,m

′
1}) ⇒ inv2σ1

and
wp(ρ1, wp(ρ1, inv2)) ≡ App(ρ1, {l2, h2, i2,m2, l

′
2, i

′
2,m

′
2}) ⇒

(App(ρ1, {l3, h3, i3,m3, l
′
3, i

′
3,m

′
3}) ⇒ inv2σ3)σ2

where σi ≡ [addE(l′′i , hi, ins in)][delE(l′′i , hi, ins in)][cl(l′i, l
′′
i ,

#»

L)].
2. Let us now focus on the second formula. Let us apply the verification condi-

tions rules, vc(S1, Post) ≡ vc(ρ1 ⊕ ρ1; ρ1, wp(ρ∗
2, Post)) ∧ vc(ρ∗

2, Post). More
applications of those rules yield vc(ρ1 ⊕ ρ1; ρ1, wp(ρ∗

2, Post)) ≡ �.
Thus: vc(S1, Post) ≡ vc(ρ∗

2, Post)
We apply again the rule for closures to vc(ρ∗

2, Post) and get vc(ρ2, inv2) ∧
(App(ρ2, {l4, i4, l

′
4}) ∧ inv2 ⇒ wp(ρ2, inv2)) ∧ (inv2 ∧ NApp(ρ2) ⇒ Post).

Applying the verification rules yields vc(ρ2, inv2) ≡ �.
Applying the weakest precondition to wp(ρ2, inv2) yields App(ρ2, {l4,
i4, l

′
4}) ⇒ inv2[mrg(l4, l′4)] and thus: vc(S1, Post) ≡

(App(ρ2, {l4, i4, l
′
4}) ∧ inv2 ⇒ inv2[mrg(l4, l′4)]) ∧ (inv2 ∧ NApp(ρ2) ⇒ Post)

To sum up, the correctness formula is corr ≡ (Pre ⇒ inv0)∧
(inv0 ∧ App(ρ0, {l0, i0}) ⇒ inv0[delN (l0)]) ∧
(inv0 ∧ NApp(ρ0) ∧ App(ρ1, {l1, h1, i1,m1, l

′
1, i

′
1,m

′
1}) ⇒ inv2σ1) ∧

(inv0 ∧ NApp(ρ0) ∧ App(ρ1, {l2, h2, i2,m2, l
′
2, i

′
2,m

′
2}) ∧

App(ρ1, {l3, h3, i3,m3, l
′
3, i

′
3,m

′
3})σ2 ⇒ inv1σ3σ2) ∧

(inv2 ∧ App(ρ2, {l4, i4, l
′
4}) ⇒ inv2[mrg(l4, l′4)]) ∧ (inv2 ∧ NApp(ρ2) ⇒ Post).

The intermediate lines are the result of (1) and the last line is the result of
(2). Furthermore,
– Pre, Post, inv0 and inv2 are defined in Examples 6 and 7;
– App(ρ0, {l0, i0}) ≡ ∃U.(l0 ∧ LLIN ∧ ∃ins in.� ∧ ∃has ins.(i0 ∧ DDT));
– NApp(ρ0) ≡ ∀U.(¬LLIN ∨ ∀ins in.⊥ ∨ ∀has ins.¬DDT);
– App(ρ1, {li, hi, ii,mi, l

′
i, i

′
i,m

′
i}) ≡ ∃U.(li ∧ LLIN ∧ ∃ins in.(hi ∧ House) ∧

∃has ins.(ii ∧ Insecticide ∧ ∃has moa.(mi ∧ ModeOfAction))) ∧ ∃U.(l′i ∧
∃has ins.(i′i ∧ ∃has moa.(m′

i ∧ ModeOfAction ∧ ¬mi)));
– App(ρ2, {l4, i4, l

′
4}) ≡ ∃U.(l4∧LLIN ∧∀ins in.⊥∧∃has ins.(i4∧Insecticide∧

∃has ins−.(l′4 ∧ LLIN ∧ ∀ins in.⊥ ∧ ¬l4))) and
– NApp(ρ2) ≡ ∀U.Insecticide ⇒ (< 2 has ins− (LLIN ∧ ∀ins in.⊥)).

6 Conclusion

We have presented a class of graph rewrite systems, DLGRSs, where the lhs’s
of the rules can express additional application conditions defined as DL logic

Verifying Graph Transformation Systems with Description Logics 169

formulas and rhs’s are sequences of actions. The considered actions include node
merging and cloning, node and edge addition and deletion among others. We
defined computations with these systems by means of rewrite strategies. There
is certainly much work to be done around such systems with logically decorated
lhs’s. For instance, the extension to narrowing derivations would use an involved
unification algorithm taking into account the underlying DL logic. We have also
presented a sound Hoare-like calculus and shown that the considered verification
problem is still decidable with a large class of DL logics. Meanwhile, we pointed
out two rich DL logics which are not closed under substitutions and thus cannot
be candidate for verification issues. Future work includes an implementation of
the proposed verification technique (work in progress) as well as the investigation
of more expressive logics with connections to some SMT solvers.

References

1. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. In: Proceedings of 28th AAAI Conference
on Artificial Intelligence (AAAI 2014), pp. 966–973. AAAI Press (2014)

2. Antoniou, G., van Harmelen, F.: Web ontology language: owl. In: Staab, S., Studer,
R. (eds.) Handbook on Ontologies in Information Systems, pp. 67–92. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-24750-0 4

3. Asztalos, M., Lengyel, L., Levendovszky, T.: Formal specification and analysis of
functional properties of graph rewriting-based model transformation. Softw. Test.
Verif. Reliabil. 23(5), 405–435 (2013)

4. Baader, F.: Description logic terminology. In: The Description Logic Handbook:
Theory, Implementation, and Applications, pp. 485–495 (2003)

5. Balbiani, P., Echahed, R., Herzig, A.: A dynamic logic for termgraph rewriting. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 59–74. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15928-2 5

6. Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-
state graph transformation systems. Inf. Comput. 206(7), 869–907 (2008)

7. Baresi, L., Spoletini, P.: On the use of alloy to analyze graph transformation sys-
tems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 306–320. Springer, Heidelberg (2006). https://
doi.org/10.1007/11841883 22

8. Brenas, J.H., Echahed, R., Strecker, M.: A hoare-like calculus using the SROIQσ
logic on transformations of graphs. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.)
TCS 2014. LNCS, vol. 8705, pp. 164–178. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44602-7 14

9. Brenas, J.H., Echahed, R., Strecker, M.: Proving correctness of logically decorated
graph rewriting systems. In: 1st International Conference on Formal Structures for
Computation and Deduction, FSCD 2016, pp. 14:1–14:15 (2016)

10. Brenas, J.H., Echahed, R., Strecker, M.: On the verification of logically decorated
graph transformations. CoRR, abs/1803.02776 (2018)

11. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic
graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21145-9 3

https://doi.org/10.1007/978-3-540-24750-0_4
https://doi.org/10.1007/978-3-642-15928-2_5
https://doi.org/10.1007/978-3-642-15928-2_5
https://doi.org/10.1007/11841883_22
https://doi.org/10.1007/11841883_22
https://doi.org/10.1007/978-3-662-44602-7_14
https://doi.org/10.1007/978-3-662-44602-7_14
https://doi.org/10.1007/978-3-319-21145-9_3
https://doi.org/10.1007/978-3-319-21145-9_3

170 J. H. Brenas et al.

12. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

13. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

14. Echahed, R.: Inductively sequential term-graph rewrite systems. In: Ehrig, H.,
Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp.
84–98. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-8 7

15. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. STTT 14(1), 15–40 (2012)

16. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rela-
tive to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

18. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2012)
19. König, B., Esparza, J.: Verification of graph transformation systems with context-

free specifications. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.)
ICGT 2010. LNCS, vol. 6372, pp. 107–122. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15928-2 8

20. Plump, D.: The graph programming language GP. In: Bozapalidis, S., Rahonis,
G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 99–122. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03564-7 6

21. Poskitt, C.M., Plump, D.: A Hoare calculus for graph programs. In: Ehrig, H.,
Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp.
139–154. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-
2 10

22. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-
grams. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 33–48.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09108-2 3

23. Rensink, A., Distefano, D.: Abstract graph transformation. Electron. Notes The-
oret. Comput. Sci. 157(1), 39–59 (2006). (In: Proceedings of 3rd International
Workshop on Software Verification and Validation (SVV 2005))

24. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: a com-
parison of two approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30203-2 17

25. Virga, R.: Efficient substitution in Hoare logic expressions. Electr. Notes Theor.
Comput. Sci. 41(3), 35–49 (2000)

26. Visser, E.: Stratego: a language for program transformation based on rewriting
strategies system description of stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001.
LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45127-7 27

https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/978-3-540-87405-8_7
https://doi.org/10.1007/978-3-642-15928-2_8
https://doi.org/10.1007/978-3-642-15928-2_8
https://doi.org/10.1007/978-3-642-03564-7_6
https://doi.org/10.1007/978-3-642-15928-2_10
https://doi.org/10.1007/978-3-642-15928-2_10
https://doi.org/10.1007/978-3-319-09108-2_3
https://doi.org/10.1007/978-3-540-30203-2_17
https://doi.org/10.1007/3-540-45127-7_27
https://doi.org/10.1007/3-540-45127-7_27

OCL2AC: Automatic Translation of OCL
Constraints to Graph Constraints and

Application Conditions for
Transformation Rules

Nebras Nassar1(B) , Jens Kosiol1 , Thorsten Arendt2 ,
and Gabriele Taentzer1

1 Philipps-Universität Marburg, Marburg, Germany
{nassarn,kosiolje,taentzer}@informatik.uni-marburg.de
2 GFFT Innovationsförderung GmbH, Bad Vilbel, Germany

thorsten.arendt@gfft-ev.de

Abstract. Based on an existing theory, we present a tool OCL2AC
which is able to adapt a given rule-based model transformation such
that resulting models guarantee a given constraint set. OCL2AC has two
main functionalities: First, OCL constraints are translated into semanti-
cally equivalent graph constraints. Secondly, graph constraints can fur-
ther be integrated as application conditions into transformation rules.
The resulting rule is applicable only if its application does not violate
the original constraints. OCL2AC is implemented as Eclipse plug-in and
enhances Henshin transformation rules.

Keywords: OCL · Nested graph constraints · Model transformation
Henshin

1 Introduction

Model transformations are the heart and soul of Model-Driven Engineering
(MDE). They are used for various MDE-activities including translation, opti-
mization, and synchronization of models [13]. Resulting models should belong
to the transformation’s target language which means that they have to satisfy
all the corresponding language constraints. Consequently, the developer has to
design transformations such that they behave well w.r.t. language constraints.

Based on existing theory [8,12], we developed a tool, called OCL2AC, which
automatically adapts a given rule-based model transformation such that result-
ing models satisfy a given set of constraints. Use-cases for this tool are abundant,
including instance generation [12], ensuring that refactored models do not show
certain model smells (anymore), and generating model editing rules from meta-
models to enable high-level model version management [9].

Our tool builds upon the following basis: The de facto standard for defining
modeling languages in practice are the Eclipse Modeling Framework (EMF) [5]
for specifying meta-models and the Object Constraint Language (OCL) [10] for
c© Springer International Publishing AG, part of Springer Nature 2018
L. Lambers and J. Weber (Eds.): ICGT 2018, LNCS 10887, pp. 171–177, 2018.
https://doi.org/10.1007/978-3-319-92991-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92991-0_11&domain=pdf
http://orcid.org/0000-0002-0838-6513
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0002-4866-6405
http://orcid.org/0000-0002-3975-5238

172 N. Nassar et al.

expressing additional constraints. Graph transformation [6] has been shown to be
a versatile foundation for rule-based model transformation [7] focusing on the
models’ underlying graph structure. To reason about graph properties, Habel
and Pennemann [8] have developed (nested) graph constraints being equivalent
to first-order formulas on graphs.

OCL2AC consists of two main components: The first component OCL2GC
translates a reasonable subset of OCL constraints to graph constraints using
the formally defined OCL translation in [12] as conceptual basis. The second
component GC2AC integrates graph constraints as application conditions into
transformation rules specified in Henshin, a language and tool environment for
EMF model transformation [2]. The resulting application conditions ensure that
EMF models resulting from applications of the enhanced rules do not violate
the original constraints. The rules’ actions are not changed by the integration.
Each of these two components is designed to be usable on its own.

Note that our OCL translator is novel: Instead of checking satisfiability, it
enhances transformation rules such that their applications can result in valid
models only. To that extent, OCL2AC can be used to not just check constraint
satisfaction but also to tell the user how to improve transformation rules.

The paper is structured as follows: In Sect. 2, we present preliminaries.
Section 3 presents the two main components of the tool and their internal func-
tionalities. Related work is given in Sect. 4 while Sect. 5 concludes the paper.

2 Preliminaries

2.1 Introductory Example

Fig. 1. A simple Statecharts meta-model

To illustrate the behaviour of our
tool, we use a simple Statecharts
meta-model displayed in Fig. 1.

A StateMachine contains at least
one Region which may potentially
contain Transitions and Vertices. Ver-
tex is an abstract class with a con-
crete subclass State. FinalState inher-
its from State. A State can again con-
tain Regions. Transitions connect Ver-
tices.

A basic constraint on Statecharts which is not expressible by just the graph-
ical structure of the meta-model or by multiplicities is: A FinalState has no
outgoing transition. We name this constraint no outgoing transitions.

2.2 OCL

The Object Constraint Language (OCL) [10] is a constraint language used to
supplement the specification of object-oriented models. OCL constraints may
be used to specify invariants, operation contracts, or queries. The constraint
no outgoing transitions can be specified in OCL as:

OCL2AC: Automatic Translation of OCL Constraints 173

context F i n a l S t a t e i n v a r i a n t n o o u t g o i n g t r a n s i t i o n s :
s e l f . outgo ing−>i sEmpty () ;

Our technique supports a slightly restricted subset of Essential OCL [10]. Since
OCL constraints are translated to nested graph constraints and thereby get a
precise semantics, we focus on OCL constraints corresponding to a first-order,
two-valued logic and relying on sets as the only collection type. Also, there is
only limited support for user-defined operations. Details can be found in [1,12].

2.3 Graph Rules, Graph Conditions, and Graph Constraints

Our tool currently enhances Henshin rules [2]. A rule specifies elements as to be
deleted, created, or preserved at application. Additionally, it may be equipped
with an application condition controlling its applicability. Figure 2 shows a Hen-
shin rule insert outgoing transition. When applying it at chosen nodes Vertex and
Transition in an instance, an edge of type outgoing is created between them.

Fig. 2. Transformation rule

∀ self:FinalState ,

� self:FinalState var9:Transitionoutgoing

Fig. 3. Graph constraint no outgoing transitions

(Nested) graph constraints are invariants which are checked for all graphs,
whereas (nested) graph conditions express properties of morphisms. The primary
example for that are application conditions for transformation rules. Constraints
are special cases of conditions since the empty graph can be included into any
graph. A version, important from the practical point of view, are compact con-
straints and conditions [12]. They allow for dense representation and obtain their
semantics by completing them into nested constraints or conditions. All those
formalisms allow to express first-order properties [8]. As an example, the graph
constraint in Fig. 3 states that a FinalState does not have an outgoing transition.

3 Tooling and Architecture

We implemented an Eclipse plug-in, called OCL2AC, with two components: (1)
OCL2GC takes an Ecore meta-model and a set of OCL constraints as inputs
and automatically returns a set of semantically equivalent graph constraints
as output. (2) GC2AC takes a transformation rule defined in Henshin and a
graph constraint, possibly compact, as inputs, and automatically returns the
Henshin rule with an updated application condition guaranteeing the given graph
constraint. Each component can be used independently as an Eclipse-based tool.
The tool is available for download at [1]. We introduce the architecture and
internal processes of both components and highlight some additional features.

174 N. Nassar et al.

3.1 From OCL to Graph Constraints

The first component of our tool takes an Ecore meta-model and a set of OCL
constraints as inputs and returns a set of semantically equivalent (nested) graph
constraints as output. The translation process is composed of the steps shown
in Fig. 4, which can be automatically performed.

Meta-model

OCL Constraints

OCL
Constraints

prepare

translate Compact
Condi on

simplify

Nested Graph
Constraints

simplify

complete

1

2

3

4

5

Graph Constraints

Fig. 4. From OCL to graph constraints: component design

In Step (1) an OCL constraint is prepared by refactorings. This is done to ease
the translation process, especially to save translation rules for OCL constraints.
The semantics of the constraint is preserved during this preparation. Step (2)
translates an OCL constraint to a graph constraint along the abstract syntax
structure of OCL expressions. This translation largely follows the one in [12]. Let
us consider the translation of OCL constraint no outgoing transitions to the graph
constraint displayed in Fig. 3: The expression self.outgoing→isEmpty() is refac-
tored to not(self.outgoing→size() ≥ 1). Hence, a translation rule for isEmpty() is
not needed. Then, this sub-expression is translated to a compact condition con-
taining a graph with one edge of type outgoing from a node of type FinalState
to a node of type Transition. The existence of such a pattern is negated.

Then a first simplification of the resulting compact condition takes place in
Step (3), using equivalence rules [11,12]. Applying those can greatly simplify the
representation of a condition; they can even collapse nesting levels.

Step (4) completes the compact condition to a nested graph constraint being
used to compute application conditions later on. The resulting nested graph
constraint is simplified in Step (5) using again equivalence rules. Our tool allows
to display the resulting constraint as nested graph constraint or as compact
constraint. The intermediate steps are computed internally only.

3.2 From Graph Constraints to Left Application Conditions

The second component of our tool takes a Henshin rule and a graph constraint
as inputs, and returns the Henshin rule with an updated application condition
guaranteeing the given graph constraint. Figure 5 gives an overview of the steps
to be performed:

In Step (1) the given graph constraint is prepared; if the input is a com-
pact constraint, it is expanded to a nested constraint. Moreover, it is refactored

OCL2AC: Automatic Translation of OCL Constraints 175

Graph Constraint

Henshin Rule

Graph
Constraint

prepare

Henshin Rule
rac

Henshin Rule
lac

simplify

shift left

1

2 3

4
Updated

Henshin Rule
A B

ac

A B

ac

Fig. 5. Integration as application conditions: component design

to eliminate syntactic sugar. The operator ⇒ for implication, for example, is
replaced with basic logic operators. Step (2) shifts a given graph constraint gc
to the RHS of the given rule so that we get a new right application condi-
tion rac for this rule. The main idea of shift is to consider all possible ways in
which gc could be satisfied after rule application. This is done by overlapping
the elements of the rule’s RHS with each graph of gc in every possible way. This
overlapping is done iteratively along the nesting structure of gc. This algorithm
is formally defined in [8] and shown to be correct. The result of this calculation
is yet impractical as one would need to first apply the rule and then check the
right application condition to be fulfilled. Therefore, we continue with the next
step.

Step (3) translates a right application condition rac to the LHS of the given
rule r to get a new left application condition lac. It is translated by applying
the rule reversely to the right application condition rac, again along its nesting
structure. If the inverse rule of r is applicable, the resulting condition is the new
left application condition. Otherwise r gets equipped with the application condi-
tion false, as it is not possible to apply r at any instance without violating gc.
The rule r with its new application condition has the property that, if it is appli-
cable, the resulting instance fulfills the integrated constraint. Step (4) simplifies
the resulting left application condition using equivalences as for graph condi-
tions. The output is the original Henshin rule with an updated left application
condition guaranteeing the given graph constraint.

For example, integrating the constraint no outgoing transitions into the rule
insert outgoing transition results in the application condition displayed in Fig. 6.
The upper part forbids node rv:Vertex being matched to a FinalState. The lower
part requires that the rule is matched to consistent models only, i.e., not con-
taining already a FinalState with an outgoing Transition. It may be omitted if
consistent input models can always be assumed.

Tool Features. OCL2AC provides a wizard for selecting a rule and a graph con-
straint that shall be integrated. The inputs of the wizard are a Henshin model
(file) and a graph constraint model being generated by OCL2GC or manually
designed based on the meta-model for compact conditions (at [1]). OCL2AC
additionally provides tool support for pretty printing graph constraints and appli-
cation conditions of Henshin rules in a graphical form as shown in Figs. 3 and 6

176 N. Nassar et al.

¬∃

⎛
⎜⎜⎝
rv:FinalState

rt:Transition
,∃

rv:FinalState

rt:Transition

var9:Transitionoutgoing

∨ ∃
rv:FinalState

rt:Transition

⎞
⎟⎟⎠ ∧

¬∃

⎛
⎜⎜⎜⎜⎜⎝

rv:Vertex

rt:Transition

self:FinalState

,∃

rv:Vertex

rt:Transition

self:FinalState var9:Transitionoutgoing

∨ ∃

rv:Vertex

self:FinalState rt:Transitionoutgoing

⎞
⎟⎟⎟⎟⎟⎠

Fig. 6. Application condition for the rule insert outgoing transition after integrating the
constraint no outgoing transitions

above. Pretty printing is supported for both compact and detailed representa-
tion of nested constraints and application conditions. The output of the pretty
printing is a LaTEX-file being rendered as pdf-file and displayed in a developed
Eclipse PDF viewer.

4 Related Work

We briefly compare our tool with the most related tools for translating OCL or
calculating application conditions. To the best of our knowledge, we present the
first ready-to-use tool for integrating constraints as application conditions into
transformation rules.

In [3], Bergmann proposes a translation of OCL constraints into graph pat-
terns. The correctness of that translation is not shown. The implementation cov-
ers most of that translation. In [11], Pennemann introduces ENFORCe which
can check and ensure the correctness of high-level graph programs. It integrates
graph constraints as left application conditions of rules as well. However, the tool
is not published to try that out. Furthermore, there is no translation from OCL
to graph constraints available. Clarisó et al. present in [4] how to calculate an
application condition for a rule and an OCL constraint, directly in OCL. They
provide a correctness proof and a partial implementation.

5 Conclusion

OCL2AC automatically translates OCL constraints into semantically equivalent
graph constraints and thereafter, it takes a graph constraint and a Henshin rule
as inputs and updates the application condition of that rule such that it becomes
constraint-guaranteeing. OCL2AC is a ready-to-use tool implemented as Eclipse
plug-in based on EMF and Henshin. As future works, we intend to use it for
improving transformation rules for various modeling purposes such as model
validation and repair.

OCL2AC: Automatic Translation of OCL Constraints 177

Acknowledgement. We are grateful to Jan Steffen Becker, Annegret Habel and
Christian Sandmann for their helpful support. This work was partially funded by
the German Research Foundation (DFG), projects “Generating Development Envi-
ronments for Modeling Languages” and “Triple Graph Grammars (TGG) 2.0”.

References

1. OCL2AC: Additional material (2018). https://ocl2ac.github.io/home/
2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced

concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010 Part I. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

3. Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
670–686. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11653-2 41

4. Clarisó, R., Cabot, J., Guerra, E., de Lara, J.: Backwards reasoning for model
transformations: method and applications. J. Syst. Softw. 116(Suppl. C), 113–132
(2016). https://doi.org/10.1016/j.jss.2015.08.017

5. Eclipse Foundation: Eclipse Modeling Framework (EMF) (2018). http://www.
eclipse.org/emf/

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

7. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation -
General Framework and Applications. Monographs in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47980-3

8. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 245–296 (2009)

9. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the specifi-
cation of model editing operations from meta-models. In: Van Gorp, P., Engels, G.
(eds.) ICMT 2016. LNCS, vol. 9765, pp. 173–188. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42064-6 12

10. OMG: Object Constraint Language. http://www.omg.org/spec/OCL/
11. Pennemann, K.H.: Development of correct graph transformation systems. Ph.D.

thesis, Carl von Ossietzky-Universität Oldenburg (2009)
12. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essen-

tial OCL invariants to nested graph constraints for generating instances of meta-
models. Sci. Comput. Program. 152, 38–62 (2018)

13. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20(5), 42–45 (2003)

https://ocl2ac.github.io/home/
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-319-11653-2_41
https://doi.org/10.1016/j.jss.2015.08.017
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-319-42064-6_12
https://doi.org/10.1007/978-3-319-42064-6_12
http://www.omg.org/spec/OCL/

Author Index

Arendt, Thorsten 171
Atkinson, Timothy 63
Azzi, Guilherme Grochau 99

Brenas, Jon Haël 155

Chiang, David 20
Corradini, Andrea 99, 134

Echahed, Rachid 155

König, Barbara 37
Kosiol, Jens 171
Kreowski, Hans-Jörg 3, 45
Kulcsár, Géza 79, 134
Kuske, Sabine 3

Lochau, Malte 79, 134
Löwe, Michael 118
Lye, Aaron 3

Nassar, Nebras 171
Nederkorn, Maxime 37
Nolte, Dennis 37

Pennycuff, Corey 20
Plump, Detlef 63

Ribeiro, Leila 99
Rozenberg, Grzegorz 45

Schürr, Andy 79
Sikdar, Satyaki 20
Stepney, Susan 63
Strecker, Martin 155

Taentzer, Gabriele 171

Vajiac, Catalina 20

Weninger, Tim 20

	Foreword
	Preface
	Organization
	Introduction to Graph-Oriented Programming (Keynote)
	Contents
	Graph Languages
	Splicing/Fusion Grammars and Their Relation to Hypergraph Grammars
	1 Introduction
	2 Preliminaries
	2.1 Hypergraphs, Morphisms, Basic Constructions
	2.2 Pushout and Pushout Complement
	2.3 Rule Application and Hypergraph Grammars

	3 Fusion Grammars
	4 Splicing/Fusion Grammars
	5 Transformation of Chomsky Grammars into Splicing/Fusion Grammars
	6 Transformation of Hypergraph Grammars into Splicing/Fusion Grammars
	7 Conclusion
	References

	Synchronous Hyperedge Replacement Graph Grammars
	1 Introduction
	2 Definitions
	2.1 Synchronous Hyperedge Replacement Grammars
	2.2 Tree Decompositions

	3 Related Work
	4 Extracting SHRGs from Temporal Graphs
	4.1 Method
	4.2 Exploring the Grammar

	5 Predicting the Next Timestep
	5.1 Method
	5.2 Graph Prediction Experiments

	6 Conclusions
	References

	CoReS: A Tool for Computing Core Graphs via SAT/SMT Solvers
	1 Introduction
	2 Preliminaries
	3 Encoding Retract Properties
	4 Benchmarks and Conclusion
	References

	Graph Transformation Formalisms
	Graph Surfing by Reaction Systems
	1 Introduction
	2 Preliminaries
	3 Reaction Systems on Graphs
	4 Simulating Finite State Automata
	5 Computing Shortest Paths
	6 Simulating Cellular Automata
	6.1 Cellular Automata
	6.2 Related Graph-Based Reaction Systems

	7 Discussion
	References

	Probabilistic Graph Programs for Randomised and Evolutionary Algorithms
	1 Introduction
	2 Graph Programming with GP2
	3 P-GP2: A Probabilistic Extension of GP2
	3.1 Probabilistic Rule Sets
	3.2 Related Approaches

	4 Application to Randomised Algorithms
	4.1 Karger's Minimum Cut Algorithm
	4.2 G(n, p) Model for Random Graphs

	5 Application to Evolutionary Algorithms
	5.1 Evolving Graphs by Graph Programming
	5.2 Odd-Parity Benchmark Problems

	6 Conclusion and Future Work
	References

	Graph-Rewriting Petri Nets
	1 Introduction
	2 An Illustrative Example: WSN Topology Control
	3 Foundations
	4 Graph-Rewriting Petri Nets
	4.1 GPN Syntax
	4.2 GPN Semantics

	5 Case Study
	6 Conclusion and Future Work
	References

	Parallel Independence and Conflicts
	On the Essence and Initiality of Conflicts
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Graph Transformation
	2.2 Categories of Set-Valued Functors

	3 The Essence of Conflicting Transformations
	3.1 Conflict Essence and Extension
	3.2 Comparing Reasons and Essences

	4 Conflict Essences and Initial Conflicts
	5 Conclusions
	References

	Characterisation of Parallel Independence in AGREE-Rewriting
	1 Introduction
	2 Preliminaries
	3 AGREE Rewrites as Gluing Constructions
	4 Parallel Independence
	5 Characterisation of Parallel Independence
	6 Conclusion
	References

	Equivalence and Independence in Controlled Graph-Rewriting Processes
	1 Introduction
	2 Preliminaries
	3 Controlled Graph-Rewriting Processes
	3.1 An Illustrative Example: WSN Topology Control
	3.2 Unmarked Processes
	3.3 Marked Processes

	4 On the Expressiveness of Unmarked Processes
	5 Equivalence and Independence
	6 Conclusions and Future Work
	References

	Graph Conditions and Verification
	Verifying Graph Transformation Systems with Description Logics
	1 Introduction
	2 Preliminaries
	3 DL Logics
	4 Graph Rewrite Systems and Strategies
	5 Verification
	6 Conclusion
	References

	OCL2AC: Automatic Translation of OCL Constraints to Graph Constraints and Application Conditions for Transformation Rules
	1 Introduction
	2 Preliminaries
	2.1 Introductory Example
	2.2 OCL
	2.3 Graph Rules, Graph Conditions, and Graph Constraints

	3 Tooling and Architecture
	3.1 From OCL to Graph Constraints
	3.2 From Graph Constraints to Left Application Conditions

	4 Related Work
	5 Conclusion
	References

	Author Index

