
Chapter 7
On Control Reconstruction Problems
for Dynamic Systems Linear in Controls

Evgeniy Krupennikov

Abstract In differential games the a posteriori analysis of motions, namely,
trajectories of the dynamics and the analysis of the players’ controls generating
these trajectories are very important. This paper is devoted to solving problems
of reconstruction of trajectories and controls in differential games using known
history of inaccurate measurements of a realized trajectory. A new method for
solving reconstruction problems is suggested and justified for a class of differential
games with dynamics, linear in controls and non-linear in state coordinates. This
method relies on necessary optimality conditions in auxiliary variational problems.
An illustrating example is exposed.

7.1 Introduction

This paper is devoted to solving inverse problems of reconstruction of players’
trajectories and controls in differential games, using known inaccurate measure-
ments of the realized trajectories. The a posteriori analysis is an important part
of the decision making in the future. Inverse problems may occur in many
areas such as economics, engineering, medicine and many others that involve
the task of reconstruction of the players’ controls by known inaccurate trajectory
measurements.

The inverse problems have been studied by many authors. The approach
suggested by Osipov and Kryazhimskii [6, 7] is one of the closest to the material
of this paper. The method suggested by them reconstructs the controls by using a
regularized (a variation of Tikhonov regularization [12]) procedure of control with
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a guide. This procedure allows to reconstruct the controls on-line. It is originated
from the works of Krasovskii’s school on the theory of optimal feedback [3, 4].

Another method for solving dynamic reconstruction problems by known history
of inaccurate measurements has been suggested by Subbotina et al. [10]. It is
based on a method, which use necessary optimality conditions for auxiliary optimal
control problems [9]. This method has been also developed in [5, 8, 10, 11]. A
modification of this approach is presented in this paper. It relies on necessary
optimality conditions in an auxiliary variational problem on extremum for an
integral functional. The functional is a variation of a Tikhonov regularizator.

In this paper the suggested method is justified for a special class of differential
games with dynamics linear in controls and non-linear in state coordinates. Results
of simulation are exposed.

7.2 Dynamics

We consider a differential game with dynamics of the form

ẋ(t) = G(x(t), t)u(t), x(·) : [0, T ] → Rn, u(·) : [0, T ] → Rn, t ∈ [0, T ].
(7.1)

Here G(x, t) is an n × n matrix with elements gij (x, t) : Rn × [0, T ] → R, i =
1, ..., n, j = 1, ..., n that have continuous derivatives

∂gij (x, t)

∂t
,

∂gij (x, t)

∂xk

, i = 1, ..., n, j = 1, ..., n, k = 1, ..., n,

x ∈ Rn, t ∈ [0, T ].

In (7.1) xi(t) is the state of the ith player, while ui(t) is the control of the ith player,
restricted by constraints

|ui(t)| ≤ U < ∞, i = 1, . . . , n, t ∈ [0, T ]. (7.2)

We consider piecewise continuous controls with finite number of points of discon-
tinuity.

7.3 Input Data

It is supposed that some base trajectory x∗(·) : [0, T ] → Rn of system (7.1) has
been realized on the interval t ∈ [0, T ]. Let u∗(·) : [0, T ] → Rn be the piecewise
continuous control satisfying constrains (7.2) that generated this trajectory.

We assume that measurements yδ(·, δ) = yδ(·) : [0, T ] → Rn of the base
trajectory x∗(t) are known and they are twice continuously differentiable functions
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that determine x∗(t) with the known accuracy δ > 0, i.e.

|yδ
i (t) − x∗

i (t)| ≤ δ, i = 1, ..., n, t ∈ [0, T ]. (7.3)

7.4 Hypotheses

We introduce two hypotheses on the input data.

Hypothesis 7.1 There exist such compact set Ψ ⊂ Rn, such constant r > 0 and
such constants ω > 0, ω > 0, ω′ > 0 that

Ψ ⊃ {x ∈ Rn : |xi − x∗
i (t)| ≤ r ∀t ∈ [0, T ]},

0 < ω2 ≤ |detG(x, t)| ≤ ω2,

∣
∣
∣
∣

∂gij (x, t)

∂t

∣
∣
∣
∣
≤ ω′,

∣
∣
∣
∣

∂gij (x, t)

∂xk

∣
∣
∣
∣
≤ ω′,

i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n, x ∈ Ψ, t ∈ [0, T ].
(7.4)

Let’s introduce the following constants

R1 = πω

ω3 , R2 = πω2

ω4 (ω2 + ω′), R3 = πnT ω4ω′

ω2 ,

R4 = T πω2

2ω4
+ 4

πω2

ω
+ 2

R1πω2

ω

(

ln
0.5T ω

ω2
+ 1

)

+ R2 + 1,

Rw = max{1 + ω

ω
(R4 + 2R3), (1 + ω)(R4 + 2R3)},

(7.5)

which will be used in Hypothesis 7.2 and Theorem 7.1.

Hypothesis 7.2 There exist such constants δ0 ∈ (0, min{0.5r, 1
Rw

}] and Y > 0 that
for any δ ∈ (0, δ0]

|yδ
i (t)| ≤ Y , |ẏδ

i (t)| ≤ Y ,
∣
∣ẋ∗

i (t)| ≤ Y , t ∈ [0, T ], i = 1, . . . , n (7.6)

and for any δ ∈ (0, δ0] exists such compact Ωδ ⊂ [0, T ] with measure μΩδ =
βδ δ→0−→ that

|ÿδ
i (t)| ≤ Y , T ∈ [0, T ] \ Ωδ, max

t∈Ωδ
|ÿδ

i (t)|βδ ≤ Y , i = 1, . . . , n. (7.7)

Remark 7.1 Conditions (7.6) reflect the fact that the right hand sides of Eq. (7.1)
are restricted.
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Remark 7.2 In Hypothesis 7.2 the constant Y is unified for all inequalities to
simplify the further calculations and explanations.

Remark 7.3 Hypothesis 7.2 allows the functions ẏδ(·) to be able to approximate
piecewise continuous functions ẋ∗(·) = g(x∗(·), ·)u∗(·).

7.5 Problem Statement

Let’s consider the following reconstruction problem: for a given δ ∈ (0, δ0] and
a given measurement function yδ(·) fulfilling estimates (7.3) and Hypothesis 7.2
to find a function u(·, δ) = uδ(·) : [0, T ] → Rn that satisfies the following
conditions:

1. The function uδ(·) belongs to the set of admissible controls, i.e. the set of
piecewise continuous functions with finite number of points of discontinuity
satisfying constraints (7.2);

2. The control uδ(·) generates trajectory x(·, δ) = xδ(·) : [0, T ] → Rn of
system (7.1) with boundary condition xδ(T ) = yδ(T ). In other words, there
exists a unique solution xδ(·) : [0, T ] → Rn of the system

ẋδ(t) = G(xδ(t), t)uδ(t), t ∈ [0, T ]

that satisfy the boundary condition xδ(T ) = yδ(T ).
3. Functions xδ(·) and uδ(·) satisfy conditions

lim
δ→0

‖xδ
i (·) − x∗

i (·)‖C[0,T ] = 0, lim
δ→0

‖uδ
i (·) − u∗

i (·)‖L2,[0,T ] = 0, i = 1, ..., n.

(7.8)

Hereinafter

‖f (·)‖C[0,T ] = max
t∈[0,T ] |f (t)|, f (·) : [0, T ] → R

is the norm in the space of continuous functions C and

‖f (·)‖L2,[0,T ] =

√
√
√
√
√

T∫

0

n
∑

i=1

f 2
i (τ )dτ, f (·) : [0, T ] → Rn

is the norm in space L2.
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7.6 A Solution of the Inverse Problem

7.6.1 Auxiliary Problem

To solve the inverse problem in Sect. 7.5, we introduce an auxiliary variational
problem (AVP) for fixed parameters δ ∈ (0, δ0], α > 0 and a given measurement
function yδ(·) satisfying estimates (7.3) and Hypothesis 7.2.

We consider the set of pairs of continuously differentiable functions Fxu =
{{x(·), u(·)} : x(·) : [0, T ] → Rn, u(·) : [0, T ] → Rn} that satisfy differential
equations (7.1) and the following boundary conditions

x(T ) = yδ(T ), u(T ) = G−1(yδ(T ), T )ẏδ(T ). (7.9)

Hereinafter G−1 is the inverse matrix for non degenerate matrix G. Let us remark
that due to Hypothesis 7.1, the inverse matrix G−1(yδ(T ), T ) exists.

AVP is to find a pair of functions x(·, δ, α) = xδ,α(·) : [0, T ] → Rn and
u(·, δ, α) = uδ,α(·) : [0, T ] → Rn such that {xδ,α(·), uδ,α(·)} ∈ Fxu and such
that they provide an extremum for the integral functional

I (x(·), u(·)) =
T∫

0

[

−‖x(t) − yδ(t)‖2

2
+ α2‖u(t)‖2

2

]

dt. (7.10)

Here α is a small regularising parameter [12] and ‖f ‖ =
√

n∑

i=1
f 2

i , f ∈ Rn is

Euclidean norm in Rn.

7.6.2 Necessary Optimality Conditions in the AVP

We can write the necessary optimality conditions for the AVP (7.1), (7.10), (7.9) in
Lagrange form [14]. Lagrangian for the AVP has the form

L(x, u, ẋ, λ(t), t) = −‖x − yδ(t)‖2

2
+ α2‖u‖2

2
+

n
∑

i=1

⎡

⎣λi(t)

n
∑

j=1

[

ẋi − gij (x, t)uj

]

⎤

⎦ ,

where λ(t) : [0, T ] → Rn is the Lagrange multipliers vector.
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The 2n corresponding Euler equations are

λ̇i (t) + (xi(t) − yδ
i (t)) +

n
∑

j=1

[

λj (t)

n
∑

k=1

uk(t)
∂gjk

∂xi

(x(t), t)

]

= 0,

−α2ui(t) +
n∑

j=1

[

λj (t)gji (x(t), t)
] = 0, i = 1, . . . , n.

(7.11)

The first n equations in (7.11) can be rewritten in vector form:

λ̇i (t)+(xi(t)−yδ
i (t))+〈λj (t),

∂G

∂xi

(x(t), t)u(t)〉 = −→
0 , i = 1, . . . , n. (7.12)

Hereinafter 〈a, b〉 means the scalar product of vectors a ∈ Rn, b ∈ Rn and
∂G

∂xi

(x(t), t) is a matrix with elements
∂gjk

∂xi

(x(t), t), j = 1, ..., n, k = 1, ..., n.

The last n equations in (7.11) define the relations between the controls ui(t) and
the Lagrange multipliers λi(t), i = 1, . . . , n:

u(t) = 1

α2 GT (x(t), t)λ(t). (7.13)

Hereinafter GT means transpose of a matrix G.
We can substitute equations (7.13) into (7.12) and (7.1) to rewrite them in the

form of Hamiltonian equations, where the vector s(t) = −λ(t) plays the role of the
adjoint variables vector:

ẋ(t) = −(1/α2)G(x(t), t)GT (x(t), t)s(t),

ṡi (t) = xi(t) − yδ
i (t) + 1

α2 〈s(t), ∂G

∂xi

(x(t), t)GT (x(t), t)s(t)〉, i = 1, . . . , n.

(7.14)

By substituting (7.13) into (7.9), one can obtain boundary conditions, written for
system (7.14):

x(T ) = yδ(T ), s(T ) = −α2(G(yδ(T ), T )GT (yδ(T ), T )
)−1

ẏδ(T ). (7.15)

Thus, we have got the necessary optimality conditions for the AVP (7.1), (7.10),
(7.9) in Hamiltonian form (7.14), (7.15).

7.6.3 A Solution of the Reconstruction Problem

Let’s introduce the function

uδ,α(·) = −(1/α2)GT (xδ,α(·), ·)sδ,α(·), (7.16)
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where xδ,α(·), sδ,α(·) are the solutions of system (7.14) with boundary condi-
tions (7.15).

We now introduce the cut-off functions

ûδ
i (t) =

⎧

⎪⎨

⎪⎩

U, u
δ,α
i (t) ≥ U,

u
δ,α
i (t), |uδ,α

i (t)| < U,

−U, u
δ,α
i (t) ≤ −U.

i = 1, . . . , n. (7.17)

We consider the functions ûδ
i (·) as the solutions of the inverse problem described

in Sect. 7.5. We choose α = α(δ) in a such way that α(δ)
δ→0−→ 0.

7.6.4 Convergence of the Solution

In this paper a justification for the suggested method is presented for one sub-class of
considered differential games (7.1), (7.2). Namely, we consider from now dynamics
of form (7.1), where matrixes G(x, t) are diagonal with non-zero elements on the
diagonals. The dynamics in such case have the form

ẋi(t) = gi(x(t), t)ui(t), i = 1, ..., n,

where the functions gi(x, t) = gii (x, t), i = 1, . . . , n are the elements on the
diagonal of the matrix G(x, t).

Condition ω2 ≤ |detG(x, t)| ≤ ω2 in Hypothesis 7.1 in such case is replaced by
equal condition

ω2 ≤ g2
i (x, t) ≤ ω2, i = 1, . . . , n. (7.18)

Necessary optimality conditions (7.14) has now the form

ẋi(t) = −si (t)
g2

i (x(t), t)

α2
,

ṡi(t) = xi(t) − yδ
i (t) + 1

α2

n
∑

j=1

[

s2
j (t)

∂gj (x(t), t)

∂xi(t)
gj (x(t), t))

]

,

i = 1, . . . , n

(7.19)

with boundary conditions

xi(T ) = yδ
i (T ), si (T ) = −α2ẏδ

i (T )/g2
i (y

δ(T ), T ), i = 1, . . . , n. (7.20)

The following lemma is true.
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Lemma 7.1 For δ ∈ (0, δ0] twice continuously differentiable measurement func-
tions yδ

i (·), i = 1, . . . , n satisfying estimates (7.3) and Hypothesis 7.2 fulfill the
following relations

lim
δ→0

‖yδ
i (·) − x∗

i (·)‖C[0,T ] = 0, lim
δ→0

‖ ẏδ
i (·)

gi(yδ(·), ·) − u∗
i (·)‖L2,[0,T ] = 0, i = 1, ..., n.

(7.21)

Proof The first relation in (7.21) is true due to (7.3). Let’s prove the second one.
Relying upon Luzin’s theorem [2] one can find for the piecewise continuous

function u∗(·) such constant Y
u

that for any δ ∈ (0, δ0] and all i = 1, . . . , n there
exist such twice continuously differentiable functions uδ

i (·) : [0, T ] → R and such
set Ωδ

u ⊂ R with measure μΩδ
u = βδ

u that

|uδ
i (t)| ≤ Y

u
, t ∈ [0, T ], |u̇δ

i (t)| ≤ Y
u
, t ∈ [0, T ] \ Ωδ

u,

βδ
u max

t∈Ωδ
u

|u̇δ

i (t)| ≤ Y
u
,

‖uδ
i (·) − u∗

i (·)‖L2,[0,T ] ≤ δ, i = 1, . . . , n.

(7.22)

Let’s estimate the following expression first (hereinafter in the proof i =
1, . . . , n).

‖ẏδ
i (·) − uδ

i (·)gi(y
δ(t), t)‖2

L2,[0,T ] =
T∫

0

(

ẏδ
i (t) − uδ

i (t)gi(y
δ(t), t)

)2
dt. (7.23)

The integral in (7.23) can be calculated by parts.

T∫

0

(

ẏδ
i (t) − uδ

i (t)gi(y
δ(t), t)

)

︸ ︷︷ ︸

U

(

ẏδ
i (t) − uδ

i (t)gi(y
δ(t), t)

)

dt
︸ ︷︷ ︸

dV

=
[
(

ẏδ
i (t) − uδ

i (t)gi(y
δ(t), t)

)

︸ ︷︷ ︸

U

(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)

︸ ︷︷ ︸

V

]∣
∣
∣
∣

T

0

−
T∫

0

(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)

︸ ︷︷ ︸

V

·
(

ÿδ
i (t) − u̇

δ

i (t)gi(y
δ(t), t) − uδ

i (t)
(

n∑

j=1

[g′
i,xj

(yδ
i (t), t)ẏ

δ
j ] + g′

i,t (y
δ
i (t), t)

))

︸ ︷︷ ︸

dU

dt

(7.24)
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To estimate the whole expression (7.24) we first estimate the differenceV = yδ
i (t)−

x∗
i (0) −

t∫

0
uδ

i (τ )gi(y
δ(τ ), τ )dτ . In order to do this, we estimate integral

t∫

0

(

uδ
i (τ ) − u∗

i (τ )
)

gi(y
δ(τ ), τ )dτ =

∫

Ωt≥δ

(

uδ
i (τ ) − u∗

i (τ )
)

gi(y
δ(τ ), τ )dτ

+
∫

Ωt
<δ

(

uδ
i (τ ) − u∗

i (τ )
)

gi(y
δ(τ ), τ )dτ,

(7.25)

where set Ωt≥δ = {τ ∈ [0, t] : |uδ
i (τ ) − u∗

i (τ )| ≥ δ} and set Ωt
<δ = {τ ∈ [0, t] :

|uδ
i (τ ) − u∗

i (τ )| < δ}.
The first term in (7.25)

∣
∣
∣
∣
∣
∣
∣

∫

Ωt
<δ

(

uδ
i (τ ) − u∗

i (τ )
)

gi(y
δ(τ ), τ )dτ

∣
∣
∣
∣
∣
∣
∣

≤ δμ(Ωt
<δ)ω ≤ δT ω. (7.26)

Remark 7.4 Let’s remember that hereinafter when the first argument of functions
gi(x, t), i = 1, . . . , n belongs to compact Ψ from Hypothesis 7.1, relations (7.18)
are true.

Using (7.22), the second term in (7.25)

∣
∣
∣
∣
∣
∣
∣

∫

Ωt
<δ

(

uδ
i (τ ) − u∗

i (τ )
)

gi(y
δ(τ ), τ )dτ

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

∫

Ωt
<δ

(

uδ
i (τ ) − u∗

i (τ )
)2 gi(y

δ(τ ), τ )

uδ
i (τ ) − u∗

i (τ )
dτ

∣
∣
∣
∣
∣
∣
∣

≤ max
τ∈Ωt

<δ

∣
∣
∣
∣
∣

gi(y
δ(τ ), τ )

(

uδ
i (τ ) − u∗

i (τ )
)

∣
∣
∣
∣
∣

∫

Ωt
<δ

(

uδ
i (τ ) − u∗

i (τ )
)2

dτ

≤ ω

δ

T∫

0

(

uδ
i (τ ) − u∗

i (τ )
)2

dτ ≤ δT ω.

(7.27)
From (7.25), (7.26) and (7.27) follows that

∣
∣
∣
∣
∣
∣

t∫

0

(

uδ
i (τ ) − u∗

i (τ )
)

gi(y
δ(τ ), τ )dt

∣
∣
∣
∣
∣
∣

≤ δ2T ω. (7.28)
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We can now estimate function V in (7.24):

∣
∣
∣y

δ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ

∣
∣
∣

≤
∣
∣
∣y

δ
i (t) − x∗

i (0) −
t∫

0

u∗
i (τ )gi(y

δ(τ ), τ )dτ

∣
∣
∣

+
∣
∣
∣

t∫

0

(

uδ
i (τ ) − u∗

i (τ )
)

gi(y
δ(τ ), τ )dτ

∣
∣
∣

≤
∣
∣
∣y

δ
i (t) − x∗

i (0) −
t∫

0

u∗
i (τ )gi(x

∗(τ ), τ )dτ

∣
∣
∣

+
∣
∣
∣

t∫

0

u∗
i (τ )

(

gi(y
δ(τ ), τ ) − gi(x

∗(τ ), τ )
)

dτ

∣
∣
∣

+δ2ωT ≤
∣
∣
∣y

δ
i (t) − x∗

i (t)

∣
∣
∣

+
∣
∣
∣

t∫

0

U
(

n max
θ∈[0,T ], j=1,...,n

∣
∣g′

i,xj
(yδ(θ), θ)(x∗

j (θ) − yδ
j (θ))

∣
∣
)

dτ

∣
∣
∣+ δ2T ω ≤

δ(1 + T Unω′ + 2ωT )
def= δRu.

(7.29)
Thus, the term UV|T0 in sum (7.24) can be estimated as

(

ẏδ
i (t) − uδ

i (t)gi(y
δ(t), t)

)(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)
∣
∣
∣
∣

T

0

≤ 2δ
(

Y + Y
u
ω
)

Ru.

(7.30)

Using (7.7), (7.22) and (7.29), the term
T∫

0
VdUdt in (7.24) can be estimated in

the following way

∣
∣
∣

T∫

0

[(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)

·
(

ÿδ
i (t) − u̇

δ

i (t)gi(y
δ(t), t) − uδ

i (t)
(

n
∑

j=1

[g′
i,xj

(yδ
i (t), t)ẏ

δ
j ] + g′

i,t (y
δ
i (t), t)

))]

dt

∣
∣
∣
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≤
∣
∣
∣

∫

[0,T ]\Ωδ

(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)

ÿδ
i (t)dt

∣
∣
∣

+
∣
∣
∣

∫

Ωδ

(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)

ÿδ
i (t)dt

∣
∣
∣

+
∣
∣
∣

∫

[0,T ]\Ωδ
u

(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)

u̇
δ

i (t)gi(y
δ(t), t)dt

∣
∣
∣

+
∣
∣
∣

∫

Ωδ
u

(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)

u̇
δ

i (t)gi(y
δ(t), t)dt

∣
∣
∣

+
∣
∣
∣

T∫

0

(

yδ
i (t) − x∗

i (0) −
t∫

0

uδ
i (τ )gi(y

δ(τ ), τ )dτ
)

·
( n
∑

j=1

[g′
i,xj

(yδ
i (t), t)ẏ

δ
j ] + g′

i,t (y
δ
i (t), t)

)

dt

∣
∣
∣

≤ δT RuY + δRuY + δT RuY
u
ω + δRuY

u
ω + δT Ruω

′(nY + 1)
def= δRu.

(7.31)

Combining estimates (7.30) and (7.31), we can now estimate expression (7.24).

T∫

0

(

ẏδ
i (t) − uδ

i (t)gi(y
δ(t), t)

)2
dt ≤ δ

(

Ru + 2(Y + Y
u
ω)Ru

)

(7.32)

Finally, we can use the first mean value theorem for definite integrals and
estimate (7.32) to get

∣
∣
∣
∣
∣
∣

T∫

0

(
ẏδ(t)

gi(yδ(t), t)
− uδ

i (t)

)2

dt

∣
∣
∣
∣
∣
∣

≤ max
t∈[0,T ]

[

1

g2
i (y

δ(t), t)

] T∫

0

(

ẏδ
i (t) − uδ

i (t)gi(y
δ(t), t)

)2
dt

≤ δ
2
(

Y + Y
u
ω
)

Ru + Ru

ω2
δ→0−→ 0.

(7.33)
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It follows from (7.33) that

lim
δ→0

∥
∥
∥
∥

ẏδ(·)
gi(yδ(·), ·) − uδ

i (·)
∥
∥
∥
∥

L2,[0,T ]
= 0.

Remember that we consider such function uδ
i (·) that lim

δ→0

∥
∥uδ

i (·) − u∗
i (·)

∥
∥

L2,[0,T ] =
0. So, from the triangle inequality ‖f1(·) + f2(·)‖L2,[0,T ] ≤ ‖f1(·)‖L2,[0,T ] +
‖f2(·)‖L2,[0,T ] follows that

lim
δ→0

∥
∥
∥
∥

ẏδ(·)
gi(yδ(·), ·) − u∗

i (·)
∥
∥
∥
∥

L2,[0,T ]
= 0, i = 1, . . . , n,

which was to be proved. ��
Theorem 7.1 For any fixed δ ∈ (0, δ0] there exists such parameter αδ

0 = αδ
0(δ)

that the solution xδ,αδ
0(·), sδ,αδ

0(·) of system (7.19) with boundary conditions (7.20)
is extendable and unique on t ∈ [0, T ].

Moreover, lim
δ→0

αδ
0(δ) = 0 and

lim
δ→0

‖xδ,αδ
0

i (·) − x∗
i (·)‖C[0,T ] = 0, lim

δ→0
‖uδ,αδ

0
i (·) − u∗

i (·)‖L2,[0,T ] = 0, i = 1, ..., n,

(7.34)

where

u
δ,αδ

0
i (·) = −(1/(αδ

0)
2)gi(x

δ,αδ
0(·), ·)sδ,αδ

0
i (·), i = 1, . . . , n. (7.35)

Proof Let’s introduce new variables:

zi(t) = xi(t) − yδ
i (t), wi(t) = si (t) + α2ẏδ

i (t)

g2
i (x(t), t)

, i = 1, . . . , n. (7.36)

Their derivatives are

żi (t) = ẋi(t) − ẏδ
i (t),

ẇi (t) = ṡi (t) + α2ÿδ
i (t)

g2
i (x(t), t)

− 2

α2
n∑

j=1

[

gi
′
xj

(x(t), t)ẋj (t)
]

g3
i (x(t), t)

= ṡi (t) + α2ÿδ
i (t)

g2
i (x(t), t)

+ 2

n∑

j=1

[

gi
′
xj

(x(t), t)sj (t)g
2
j (x(t), t)

]

g3
i (x(t), t)

, i = 1, . . . , n.

(7.37)
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System (7.19) can be rewritten in this variables as

żi (t) = −wi(t)
g2

i (z(t) + yδ(t), t)

α2 ,

ẇi (t) = zi(t) + Fi(z(t), w(t), t), i = 1, . . . , n.

(7.38)

where

Fi(z(t), w(t), t) = α2
(

ÿδ
i (t)

g2
i (z(t) + yδ(t), t)

+

n
∑

j=1

[

2
g2

j (z(t) + yδ(t), t)gi
′
xj

(z(t) + yδ(t), t)

(

wj (t)

α2 − ẏδ
j (t)

g2
j (z(t)+yδ(t),t)

)

g3
i (z(t) + yδ(t), t)

+gj
′
xi

(z(t) + yδ(t), t)(ẏδ
j (t))2

g3
j (z(t) + yδ(t), t)

+ gj (z(t) + yδ(t), t)gj
′
xi

(z(t) + yδ(t), t)w2
j (t)

α4

−2
gj

′
xi

(z(t) + yδ(t), t)ẏδ
j (t)wj (t)

α2gj (z(t) + yδ(t), t)

])

, i = 1, . . . , n.

(7.39)
Boundary conditions (7.20) in new variables take the form

z(T ) = 0, w(T ) = 0. (7.40)

As it follows from Hypothesis 7.1, the right hand side of system (7.38) is
locally Lipschitz on Ψ × [0, T ]—so, by Cauchy theorem there exists such interval
[T0, T ] ⊂ [0, T ] that solutions zδ,α(·) : [T0, T ] → Rn, wδ,α(·) : [T0, T ] → Rn of
system (7.38) with boundary conditions (7.40) exist and are unique on t ∈ [T0, T ].
Moreover, due to continuity of the solutions and zero boundary conditions (7.40),
there exists such interval [t1, T ] ⊂ [T0, T ] that

|zδ,α
i (t)| ≤ αδRw, |wδ,α

i (t)| ≤ α2δRw, i = 1, . . . , n, t ∈ [t1, T ],

where the constant Rw is defined in (7.5).
Let’s now extend the solution further in reverse time (to the left from t1 on time

axis). As the solution is continuous, we can always extend it up to such moment t0
that either z

δ,α
i (t0) = 2αδRw, i ∈ {1, . . . , n} or w

δ,α
i (t0) = 2α2δRw, i ∈ {1, . . . , n}

or extend it up to t = 0. If we are able to extend it up to t = 0 without reaching
values 2αδRw, 2α2δRw (the second case), then

|zδ,α
i (t)| ≤ 2αδRw, |wδ,α

i (t)| ≤ 2α2δRw, i = 1, . . . , n, t ∈ [0, T ].
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In the first case there exists such moment t0 ∈ [0, T ] that

z
δ,α
i (t) ≤ 2αδRw, w

δ,α
i (t) ≤ 2α2δRw, i = 1, . . . , n, t ∈ [t0, T ]. (7.41)

Let’s consider this case closer.
We introduce a new system of ODEs for functions zi(·), wi(·), i = 1, . . . , n

żi (t) = −wi(t)
g2

i (zδ,α(t) + yδ(t), t)

α2
,

ẇi(t) = zi(t) + Fi(z
δ,α(t), wδ,α(t), t),

i = 1, . . . , n, t ∈ [t0, T ]
(7.42)

with boundary conditions

z(T ) = 0, w(T ) = 0, (7.43)

where z
δ,α
i (t), w

δ,α
i (t) are solutions of system (7.38) with boundary condi-

tions (7.40), constrained by (7.41).
System (7.42) is a heterogeneous linear system of ODEs with time-dependent

coefficients, continuous on t ∈ [t0, T ]. So, the solution of (7.42), (7.43) exists and
is unique on t ∈ [t0, T ].

Let’s now prove that the solutions of (7.42), (7.43) coincide with the solutions
of (7.38), (7.40). To do this, we introduce residuals

�z(t) = zδ,α(t) − z(t), �w(t) = wδ,α(t) − w(t).

Subtracting Eq. (7.42) from (7.38) (with substituted solutions zδ,α(t), wδ,α(t)), we
get

�zi(t) = −w
δ,α
i (t)

g2
i (zδ,α(t) + yδ(t), t)

α2 + wi(t)
g2

i (zδ,α(t) + yδ(t), t)

α2

= −�wi(t)
g2

i (z
δ,α(t) + yδ(t), t)

α2 ,

�wi(t) = �zi(t) + Fi(z
δ,α(t), wδ,α(t), t) − Fi(z

δ,α(t), wδ,α(t), t) = �zi(t),

i = 1, . . . , n

(7.44)
with boundary conditions

�z(T ) = 0, �w(T ) = 0. (7.45)

As a homogenous system of linear ODEs with continuous time-dependent coeffi-
cients, system (7.44) with zero boundary conditions has the only trivial solution

�z(t) ≡ 0, �w(t) ≡ 0, t ∈ [t0, T ]. (7.46)
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That means that zδ,α(t) = z(t), wδ,α(t) = w(t), t ∈ [t0, T ].
Now let’s study the properties of the solutions z(t), w(t) of system (7.42) with

boundary conditions (7.43). System (7.42) can be rewritten in vector form

Ż(t) = A(t)Z(t) + F(t), (7.47)

where

Z(·) = (z1(·), . . . , zn(·),w1(·), . . . , wn(·)),
F (·) = (0, . . . 0

︸ ︷︷ ︸

n

, F1(z
δ,α(·),wδ,α(·), ·), . . . , Fn(zδ,α(·),wδ,α(·), ·)) (7.48)

and the 2n × 2n matrix A(t) can be written in the block form A(t) =
(

O GA(x, t)

In O

)

, where In is an identity matrix, O is an n × n zero matrix,

GA(x, t) =

⎛

⎜
⎜
⎝

−g2
1(xδ,α(t), t) 0 . . . 0

0 −g2
2(x

δ,α(t), t) . . . 0
. . . . . . . . . . . .

0 0 . . . −g2
n(x

δ,α(t), t)

⎞

⎟
⎟
⎠

.

Solutions of system (7.42) can be written in the following form with the help of
Cauchy formula for solutions of a heterogenous system of linear ODEs with time-
dependent coefficients. One can easily check that for boundary conditions, given at
the point t = T (instead of t = 0), it has the form

Z(t) = Φ(t)Φ−1(T )Z(T ) − Φ(t)

T∫

t

Φ−1(τ )F (zδ,α(τ ),wδ,α(τ ), τ )dτ, (7.49)

were Φ(·) is an n × n fundamental matrix of solutions for the homogenous part of
system (7.42). This matrix can be chosen as

Φ(t) = exp

⎡

⎣−
T∫

t

A(τ )dτ

⎤

⎦ =
∞
∑

k=0

1

k!

⎛

⎝−
T∫

t

A(τ )dτ

⎞

⎠

k

. (7.50)

One can check that after expanding the kth powers in the sum in the latter formula
and folding the sum again, using the Taylor series for sin and cos functions, we can

get that Φ(t) =
(

Φ1(t) Φ2(t)

Φ3(t) Φ1(t)

)

, where Φ1(t), Φ2(t), Φ3(t) are diagonal matrixes
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with ith elements on diagonals

Φ1ii (t) = cos

⎛

⎜
⎝

1

α

√
√
√
√
√(T − t)

T∫

t

g2
i (xδ,α(τ ), τ )dτ

⎞

⎟
⎠ ,

Φ2ii (t) = 1

α
Φ̃i(t) sin

⎛

⎜
⎝

1

α

√
√
√
√
√(T − t)

T∫

t

g2
i (xδ,α(τ ), τ )dτ

⎞

⎟
⎠ ,

Φ3ii (t) = −α
1

Φ̃i (t)
sin

⎛

⎜
⎝

1

α

√
√
√
√
√(T − t)

T∫

t

g2
i (x

δ,α(τ ), τ )dτ

⎞

⎟
⎠ ,

(7.51)

where continuous function

Φ̃i (t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

√

T∫

t

g2
i (x

δ,α(τ ), τ )dτ

√
T − t

, t ∈ [t0, T ),

gi(x
δ,α(T ), T ), t = T ,

i = 1, . . . , n.

(7.52)

Using (7.18), one can obtain that

ω ≤
∣
∣
∣Φ̃i (t)

∣
∣
∣ ≤ ω, i = 1, . . . , n. (7.53)

Due to simple structure of matrix Φ(t), one can check that inverse matrix

Φ−1(t) =
(

Φ1(t) −Φ2(t)

−Φ3(t) Φ1(t)

)

.

Let’s return to (7.49). Here Z(T ) = −→
0 , so vector Z(t) = −Φ(t)

T∫

t

Φ−1(τ )

F (τ)dτ has the following coordinates

Zi(t) = zi(t) = Φ1,ii (t)
T∫

t

Φ2,ii(τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

−Φ2,ii(t)
T∫

t

Φ1,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ,

Zi+1(t) = wi(t) = Φ3,ii (t)
T∫

t

Φ2,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

−Φ1,ii (t)
T∫

t

Φ1,ii(τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )

]

dτ,

t ∈ [t0, T ], i = 1, . . . , n.

(7.54)
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To estimate these expressions, we consider the following expression

T∫

t0

cos

⎛

⎜
⎝

1

α

√
√
√
√
√(T − τ )

T∫

τ

g2
i (xδ,α(θ), θ)dθ

⎞

⎟
⎠ f δ

i (τ )dτ, i = 1, . . . , n (7.55)

where function f δ
i (·) = f δ

i (·, δ) : [0, T ] → R depends on δ and is continuous in
the first argument for any δ ∈ (0, δ0].

Let’s introduce functions ϕi(τ ) =
(√

(T − τ )
T∫

τ

g2
i (xδ,α(θ), θ)dθ

)

, i =
1, . . . , n, which are continuously differentiable in τ .

Note that all following calculations in the proof are true for all i ∈ {1, . . . , n}.
Using Hypothesis 7.1, we can estimate the derivative

ϕ̇i(τ ) =
−

T∫

τ

g2
i (x

δ,α(θ), θ)dθ − (T − τ )g2
i (x

δ,α(τ ), τ )

2

√

(T − τ )
T∫

τ

g2
i (x

δ,α(θ), θ)dθ

≥ − 2ω2(T − τ )

2
√

(T − τ )2ω2
= −ω2

ω
.

Similarly, ϕ̇i(τ ) ≤ −ω2

ω
, τ ∈ [t0, T ].

(7.56)

So, ϕi(τ ) is a decreasing function with restricted derivative and ϕi(T ) = 0. This
means that we can construct a finite increasing sequence {τ1 < τ2 < . . . <

τnϕi
, nϕi ∈ N} that has the following properties:

ϕi(τ(nϕi
−k)) = α(0.5 + k)π, k = 0, . . . , (nϕi − 1);

α
πω

ω2 ≤ (τj+1 − τj ) ≤ α
πω

ω2 , nϕi ≤ T ω

αω2 , (7.57)

as the derivative ϕ̇(t) is restricted by (7.56).
Let’s add to this sequence elements τ0 = t0 and τ(nϕi

+1) = T .
Integral (7.55) can be rewritten as

T∫

t0

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ =

nϕi∑

j=0

τj+1∫

τj

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ. (7.58)
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Because cos
(

ϕi (τ )
α

)

is sign-definite on τ ∈ [τj , τj+1], j = 0, . . . , nϕi and

f δ
i (τ ) is continuous, it follows from the first mean value theorem for definite

integrals that for each j = 0, . . . , nϕi there exists such point τ̃j ∈ [τj , τj+1]
that

τj+1∫

τj

cos
(

ϕi (τ )
α

)

f δ
i (τ )dτ = f δ

i (τ̃j )

τj+1∫

τj

cos
(

ϕi (τ )
α

)

dτ . Combining the terms

of sum (7.58) by pairs [τj , τj+1], [τj+1, τj+2], we get

τj+2∫

τj

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

= f δ
i (τ̃j )

τj+1∫

τj

cos

(
ϕi(τ )

α

)

dτ + f δ
i (τ̃j+1)

τj+2∫

τj+1

cos

(
ϕi(τ )

α

)

dτ.

(7.59)

To estimate expression (7.59), we first make the following estimates:

τj+2∫

τj

cos

(
ϕi(τ )

α

)

dτ =
τj+2∫

τj

α

ϕ̇i(τ )

ϕ̇i(τ )

α
cos

(
ϕi(τ )

α

)

dτ, j = 0, . . . , nϕi − 3,

(7.60)

as (T − τ ) �= 0 for j < nϕi . We can integrate (7.60) by parts.

τj+2∫

τj

α

ϕ̇i(τ )
︸ ︷︷ ︸

U

ϕ̇i(τ )

α
cos

(
ϕi(τ )

α

)

dτ

︸ ︷︷ ︸

dV

= α

ϕ̇i(τ )
︸ ︷︷ ︸

U

sin

(
ϕi(τ )

α

)

︸ ︷︷ ︸

V

∣
∣
∣
∣

τj+2

τj

−α

τj+2∫

τj

sin

(
ϕi(τ )

α

)

︸ ︷︷ ︸

V

d

dτ

(
1

ϕ̇i(τ )

)

dτ

︸ ︷︷ ︸

dU

, j = 0, . . . , nϕi − 3.

(7.61)

Here
∣
∣
∣
∣
∣

α

ϕ̇i(τ )
sin

(
ϕi(τ )

α

) ∣
∣
∣
∣

τj+2

τj

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

α

ϕ̇i(τ )

∣
∣
∣
∣

τj+2

τj

∣
∣
∣
∣
∣
≤ α sup

t∈[τj ,τj+2]

∣
∣
∣
∣

d

dτ

1

ϕ̇i(τ )

∣
∣
∣
∣
(τj+2 − τj ).
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One can check that the derivative

∣
∣
∣
∣

d

dτ

1

ϕ̇i(τ )

∣
∣
∣
∣
=
∣
∣
∣
∣

1
√

(T − τ )
T∫

τ

g2
i (x

δ,α(θ), θ)dθ

− 2

ϕ̇(τ )

(

− g2
i (x

δ,α(τ ), τ ) + (T − τ )gi(x
δ,α(τ ), τ )

·
( n
∑

i=1

[

∂gi(x
δ,α(τ ), τ )

∂xi

(

−wδ,α(τ )g2
i (x

δ,α(τ ), τ )

α2

)]

+ ∂gi(x
δ,α(τ ), τ )

∂t

))
∣
∣
∣
∣

≤ 1

ω(T − τj+2)
+ 2ω

ω2

(

ω2 + T ω(δnω′ω2Rw + ω′)
)

.

(7.62)

So, the term UV
∣
∣τj+1
τj

in (7.61) can be estimated by using (7.57) and (7.62) as

∣
∣
∣
∣
∣

α

ϕ̇i(τ )
sin

(
ϕi(τ )

α

) ∣
∣
∣
∣

τj+2

τj

∣
∣
∣
∣
∣
≤ α2

(
R1

T − τj+2
+ R2 + δR3Rw

)

, (7.63)

where the constants R1, R2, R3 are defined in (7.5). Let’s emphasize that these
constants don’t depend on δ and α.

Now let’s estimate the term
∫ τj+1
τj

VdU in (7.61).

α

∣
∣
∣
∣
∣
∣
∣

τj+2∫

τj

sin

(
ϕi(τ )

α

)
d

dτ

(
1

ϕ̇i(τ )

)

dτ

∣
∣
∣
∣
∣
∣
∣

≤ α sup
τ∈[τj ,τj+2]

∣
∣
∣
∣
sin

(
ϕi(τ )

α

)
d

dτ

(
1

ϕ̇i(τ )

)∣
∣
∣
∣
(τj+2 − τj )

≤ α2
(

R1

T − τj+2
+ R2 + δR3Rw

)

.

(7.64)

Applying estimates (7.63) and (7.64) to (7.60)–(7.61), we get

∣
∣
∣
∣
∣
∣
∣

τj+2∫

τj

cos

(
ϕi(τ )

α

)

dτ

∣
∣
∣
∣
∣
∣
∣

≤ 2α2
(

R1

T − τj+2
+ R2 + δR3Rw

)

. (7.65)
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Now let’s return to expression (7.59). By splitting the last integral term in (7.59)

as
τj+2∫

τj+1

=
τj+2∫

τj

−
τj+1∫

τj

, we get

∣
∣
∣
∣
∣
∣
∣

τj+2∫

τj

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣

τj+1∫

τj

cos

(
ϕi(τ )

α

)

dτ
(

f δ
i (τ̃j ) − f δ

i (τ̃j+1)
)

∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

f δ
i (τ̃j+1)

τj+2∫

τj

cos

(
ϕi(τ )

α

)

dτ

∣
∣
∣
∣
∣
∣
∣

.

(7.66)

By Heine–Cantor theorem, every continuous function defined on a closed interval
is uniformly continuous. So, continuous f δ

i (τ ) is uniformly continuous on [t0, T ].
In other words,

∀δ > 0 ∃αδ
1 = αδ

1(δ) > 0 : ∀τ1, τ2 ∈ [τj , τj+2]
(|τ1 − τ2| < αδ

12
πω

ω2

) ⇒ (|f δ
i (τ1) − f δ

i (τ2)| < δ
)

.
(7.67)

Remark 7.5 As f δ
i (τ ) is uniformly continuous on [t0, T ], we are able to choose the

same αδ
1 = αδ

1(δ) in (7.67) for each j = 0, . . . , (nϕi + 1) as [τj , τj+2] ⊂ [t0, T ].
Combining (7.57), (7.65), (7.66), (7.67), we get

∣
∣
∣
∣
∣
∣
∣

τj+2∫

τj

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

∣
∣
∣
∣
∣
∣
∣

≤ αδ
πω

ω2
+ 2α2 max

τ∈[τj ,τj+2] f
δ
i (τ )

(
R1

T − τj+2
+ R2 + δR3Rw

)

.

(7.68)

To be specific, let’s assume that the number nϕi is odd. Then

T∫

t0

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

=
τ1∫

t0

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ +

0.5(nϕi
−1)−1

∑

j=1

τ2j+1∫

τ2j−1

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

+
τnϕi∫

τnϕi
−2

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ +

T∫

nϕi

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ.

(7.69)
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Using (7.68), let’s first estimate the sum

∣
∣
∣
∣
∣
∣
∣

0.5(nϕi
−1)−1

∑

j=1

⎡

⎢
⎣

τ2j+1∫

τ2j−1

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤
0.5(nϕi

−1)−1
∑

j=1

[

αδ
πω

ω2 + 2α2f
δ

i

(
R1

T − τ2j+1
+ R2 + δR3Rw

)]

,

(7.70)

where nϕi ≤ T ω
αω2 and f

δ

i = max
τ∈[t0,T ] f

δ
i (τ ).

The following sum can be estimated by substituting the denominator in the
fraction with it’s minimal possible value (7.57) and reversing the order of terms
in the sum.

0.5(nϕi
−1)−1

∑

j=1

α

T − τ2j+1
≤

0.5(nϕi
−1)−1

∑

j=1

α

(απω/ω2)j
= ω2

πω

0.5(nϕi
−1)−1

∑

j=1

1

j
.

The partial sum
0.5(nϕi

−1)−1
∑

j=1

1
j

of a harmonic series can be estimated by Euler–

Mascheroni formula
k∑

n=1

1
n

≤ (ln k) + 1. Thus, continuing estimates (7.70) we get

∣
∣
∣
∣
∣
∣
∣

0.5(nϕi
−1)−1

∑

j=1

⎡

⎢
⎣

τ2j+1∫

τ2j−1

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤ δ
T πω2

2ω4 + 2αf
δ

i

(

πω2R1

ω
(ln

0.5T ω

αω2 + 1) + R2 + δR3Rw

)

.

(7.71)

We have estimated the second term of sum in the right hand side of (7.69).
Using (7.57), one can get the following relations for the first, third and forth terms
in (7.69).

∣
∣
∣
∣

τ1∫

t0

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ +

τnϕi∫

τnϕi
−2

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

+
T∫

nϕi

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

∣
∣
∣
∣
≤ 4α

πω2

ω
f

δ

i .

(7.72)
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Remark 7.6 We assumed that the number nϕi is odd. In the case of even nϕi the
calculations are similar, because the only difference is in formula (7.69), where the

lower limit of the integral
τnϕi∫

τnϕi
−2

cos
(

ϕi (τ )
α

)

f δ
i (τ )dτ is exchanged for τnϕi

−1.

Finally, applying (7.71) and (7.72) to (7.69), we get

∣
∣
∣
∣

T∫

t0

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

∣
∣
∣
∣
≤ δ

T πω2

2ω4

+αf
δ

i

(

4
πω2

ω
+ 2

R1πω2

ω

(

ln
T ω

2ω2 + 1

)

+ R2

)

+ α| ln α|f δ

i + 2αδf
δ

i R3Rw.

For any given δ ∈ (0, δ0] there exists a constant f
δ

i = f
δ

i (δ) (as f δ
i (τ ) is

continuous for δ ∈ (0, δ0]). We can always find such parameter αδ
2 = αδ

2(δ) that

αδ
2(δ)| ln αδ

2(δ)|f δ

i (δ) ≤ δ. (7.73)

This is possible because lim
α→0

α| ln α| = 0. Thus, for any

α ≤ α0 = min{αδ
1, α

δ
2, 1}, (where αδ

1 is from (7.67), αδ
2 is from (7.73)),

(7.74)
we have

∣
∣
∣
∣
∣
∣

T∫

t0

cos

(
ϕi(τ )

α

)

f δ
i (τ )dτ

∣
∣
∣
∣
∣
∣

≤ δR4 + 2δ2R3Rw, (7.75)

where the constants R3, R4 are defined in (7.5).
We can apply this result to expressions (7.54). First, let’s estimate expression

α2Φ2,ii(t)

T∫

t0

Φ1,ii (τ )
Fi(z

δ,α(τ ),wδ,α(τ ), τ )

α2 dτ, (7.76)

for which f δ
i (τ ) = Fi(z

δ,α(τ ),wδ,α(τ ), τ )/α2 not= f δ
i,1(τ ) in the sense of (7.55). It

follows from (7.39), (7.41) and Hypotheses 7.2, 7.1 that

f
δ

i = f
δ

i,1 = max
τ∈[t0,T ]

∣
∣Fi(z

δ,α(τ ),wδ,α(τ ), τ )/α2
∣
∣

≤
⎛

⎝

max
τ∈[t0,T ] ÿ

δ(τ )

ω2
+ n

ω2ω′Y + ω′Y 2

ω3

⎞

⎠ + δnRw

(

ω2ω′

ω3
+ 2

ω′Y
ω

)

+ δ2R2
wωω′.

(7.77)
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For α ≤ α1
0, where α1

0 is defined in the same way as α0 in (7.67), (7.73), (7.74),

but assuming f δ
i (τ ) = f δ

i,1(τ ) and f
δ

i (τ ) = f
δ

i,1(τ ), estimates (7.75) and (7.53)
give us

∣
∣
∣
∣
∣
Φ2,ii (t)

T∫

t0

Φ1,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

∣
∣
∣
∣
∣

≤ αω(δR4 + 2δ2R3Rw), t ∈ [t0, T ].
(7.78)

Let’s introduce α2
0 that is defined in the same way as α0 in (7.67), (7.73), (7.74),

but assuming

f δ
i (τ ) = Φ̃i (τ )Fi(z

δ,α(τ ),wδ,α(τ ), τ )/α2 not= f δ
i,2(τ ), f

δ

i,2 = ωf
δ

i,1.

One can use the scheme of proof (7.55)–(7.78) and (7.51)–(7.53) to obtain that
for α ≤ min{α1

0, α2
0} the following estimates are true as well

∣
∣
∣
∣
∣
Φ1,ii (t)

T∫

t0

Φ2,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

∣
∣
∣
∣
∣

≤ αω(δR4 + 2δ2R3Rw), t ∈ [t0, T ];
(7.79)

∣
∣
∣
∣
∣
Φ3,ii (t)

T∫

t

Φ2,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

∣
∣
∣
∣
∣

≤ α2 1
ω
(δR4 + 2δ2R3Rw), t ∈ [t0, T ];

(7.80)

∣
∣
∣
∣
∣
Φ1,ii(t)

T∫

t

Φ1,ii(τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )

]

dτ

∣
∣
∣
∣
∣

≤ α2(δR4 + 2δ2R3Rw), t ∈ [t0, T ].
(7.81)

Remark 7.7 Estimates (7.78)–(7.81) are true under combined condition

α ≤ αδ
0

def= min{α1
0 , α2

0}. (7.82)

Combining (7.54) and (7.78)–(7.81), we get

|zi(t)| ≤ αδ(1 + ω)(R4 + 2δR3Rw),

|wi(t)| ≤ α2δ
1+ω

ω
(R4 + 2δR3Rw), t ∈ [t0, T ], i = 1, . . . , n.
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For δ : 0 < δ ≤ δ0 ≤ 1
Rw

, α ∈ (0, αδ
0], as far as zδ,α(t) = z(t), wδ,α(t) = w(t), t ∈

[t0, T ],

|zδ,α
i (t)| = |zi(t)| ≤ αδ(1 + ω)(R4 + 2R3) ≤ αδRw,

|wδ,α
i (t)| = |wi(t)| ≤ α2δ

1+ω

ω
(R4 + 2R3) ≤ α2δRw,

t ∈ [t0, T ], i = 1, . . . , n.

(7.83)

Remark 7.8 Estimates (7.83) are true for t0 ∈ [0, T ) as long as solutions zδ,α(·),
wδ,α(·) of system (7.38) with boundary conditions (7.40) exist and are unique on
t ∈ [t0, T ] and (7.41) is true.

But (7.83) means that for δ ∈ (0, δ0], α ∈ (0, αδ
0] at t = t0 (in particular)

|zδ,α
i (t0)| ≤ αδRw, |wδ,α

i (t0)| ≤ α2δRw, i = 1, . . . , n,

which is contrary to the assumption that either z
δ,α
i (t0) = 2αδRw, i ∈ {1, . . . , n} or

w
δ,α
i (t0) = 2α2δRw, i ∈ {1, . . . , n}. That means that such moment t0 does not

exist.
In other words, we have proved that we can extend the solutions zδ,α(·), wδ,α(·)

up to t = 0 and

|zδ,α
i (t)| ≤ αδ2Rw,

|wδ,α
i (t)| ≤ α2δ2Rw, t ∈ [0, T ], i = 1, . . . , n

(7.84)

for δ ∈ (0, δ0] and α ∈ (0, αδ
0].

As far as we can extend solutions zδ,α(·), wδ,α(·) on t ∈ [0, T ], we can return to
variables (7.36)

x
δ,α
i (t) = z

δ,α
i (t) + yδ

i (t), u
δ,α
i (t) = −gi(x

δ,α(t), t)

α2
w

δ,α
i (t) + ẏδ(t)

gi(xδ,α(t), t)
.

Applying the result (7.84) (see Remark 7.8), we get that

|xδ,α
i (t) − yδ

i (t)| ≤ αδ2Rw, |uδ,α
i (t) − ẏδ

i (t)

gi(xδ,α(t), t)
| ≤ δ2Rw,

i = 1, ..., n, t ∈ [0, T ]
(7.85)

for δ ≤ (0, δ0] and α ∈ (0, αδ
0].

It follow from (7.85) and Hypothesis 7.2 that

|xδ,αδ
0

i (t) − x∗
i (t)| ≤ |xδ,αδ

0
i (t) − yδ

i (t)| + |x∗
i (t) − yδ

i (t)|
≤ αδ2Rw + δ

δ→0−→ 0, i = 1, ..., n, t ∈ [0, T ],
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which means that

lim
δ→0

‖xδ,αδ
0

i (·) − x∗
i (·)‖C[0,T ] = 0 (7.86)

Let’s now make the following calculations.

∣
∣
∣
∣
∣

ẏδ
i (t)

gi(xδ,α(t), t)
− ẏδ

i (t)

gi(yδ(t), t)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

ẏδ
i (t)

(

gi(y
δ(t), t) − gi(x

δ,α(t), t)
)

gi(xδ,α(t), t)gi (yδ(t), t)

∣
∣
∣
∣
∣

≤ Ynω′2αδRw

ω2 , i = 1, ..., n, t ∈ [0, T ]
(7.87)

for δ ≤ (0, δ0] and α ∈ (0, αδ
0].

It follows from (7.87) and (7.85) that

|uδ,αδ
0

i (t) − ẏδ
i (t)

gi(yδ(t), t)
| ≤ |uδ,αδ

0
i (t) − ẏδ

i (t)

gi(x
δ,αδ

0(t), t)
|

+
∣
∣
∣
∣
∣

ẏδ
i (t)

gi(x
δ,αδ

0(t), t)
− ẏδ

i (t)

gi(yδ(t), t)

∣
∣
∣
∣
∣

≤ δ2Rw + Ynω′2αδ
0δRw

ω2 , i = 1, ..., n, t ∈ [0, T ].

(7.88)

Relation (7.88) and Lemma 1 imply that

‖uδ,αδ
0

i (·) − u∗
i (t)‖2

L2,[0,T ] =
T∫

0

(u
δ,αδ

0
i (t) − u∗

i (t))
2dt =

T∫

0

[
(

u
δ,αδ

0
i (t) − ẏδ

i (t)

gi(yδ(t), t)

)2

+2

(

u
δ,αδ

0
i (t) − ẏδ

i (t)

gi(yδ(t), t)

)(

ẏδ
i (t)

gi(yδ(t), t)
− u∗

i (t)

)

+
(

u∗
i (t) − ẏδ

i (t)

gi(yδ(t), t)

)2
]

dt

≤ T

(

δ2Rw + Ynω′2αδ
0δRw

ω2

)2

+ T

(

δ2Rw + Ynω′2αδ
0δRw

ω2

)(

Y

ω
+ U

)

+
∥
∥
∥
∥
∥

ẏδ
i (t)

gi(yδ(t), t)
− u∗

i (t)

∥
∥
∥
∥
∥

2

L2,[0,T ]

δ→0−→ 0,

which was to be proved. ��
Let’s now consider for a fixed δ ∈ (0, δ0] cut-off functions

ûδ
i (t) =

⎧

⎪⎪⎨

⎪⎪⎩

U, u
δ,αδ

0
i (t) ≥ U,

u
δ,αδ

0
i (t), |uδ,αδ

0
i (t)| < U,

−U, u
δ,αδ

0
i (t) ≤ −U,

, i = 1, . . . , n, (7.89)
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where the functions u
δ,αδ

0
i (·), i = 1, . . . , n are defined in (7.35) and αδ

0 is introduced
in Theorem 7.1 in (7.82).

It follows from Theorem 7.1 that

‖uδ,αδ
0

i (·) − u∗
i (·)‖2

L2,[0,T ] = ‖(uδ,αδ
0

i (·) − ûδ
i (·)) + (ûδ

i (·) − u∗
i (·))‖2

L2,[0,T ]

= ‖uδ,αδ
0

i (·) − ûδ
i (·)‖2

L2,[0,T ] + ‖ûδ
i (·) − u∗

i (·)‖2
L2,[0,T ]

+2

T∫

0

(

u
δ,αδ

0
i (t) − ûδ

i (t)
)(

ûδ
i (t) − u∗

i (t)
)

dt
δ→0−→ 0.

(7.90)
Combining (7.89) and constraints (7.2), we get

(

u
δ,αδ

0
i (t) − ûδ

i (t)
)(

ûδ
i (t) − u∗

i (t)
) ≥ 0, t ∈ [0, T ].

Since all terms in the last expression in (7.90) are non-negative, we obtain

‖uδ,αδ
0

i (·) − ûδ
i (·)‖2

L2,[0,T ]
δ→0−→ 0, (7.91)

‖ûδ
i (·) − u∗

i (·)‖2
L2,[0,T ]

δ→0−→ 0. (7.92)

Now let’s prove the following lemma

Lemma 7.2 The system of differential equations

ẋi(t) = gi(x(t), t)ûδ
i (t), xi(T ) = yδ

i (T ), i = 1, . . . , n, t ∈ [0, T ],
(7.93)

where ûδ
i (·) is defined in (7.89) for a fixed δ ≤ (0, δ0], have a unique solution

x(·) not= x̂δ(·) : [0, T ] → Rn. Moreover,

lim
δ→0

‖x∗
i (·) − x̂δ

i (·)‖C[0,T ] = 0, i = 1, . . . , n.

Proof Let’s introduce new variables

�xi(t) = xi(t) − x
δ,αδ

0
i (t), i = 1, . . . , n,

where xδ,αδ
0(t) is the solution of system (7.19) with boundary conditions (7.20).

System (7.93) in this variables has the form

�̇xi(t) = gi

(�x(t) + xδ,αδ
0(t), t

)

ûδ
i (t) − gi

(

xδ,αδ
0(t), t

)

u
δ,αδ

0
i (t),

�xi(T ) = 0, i = 1, . . . , n.
(7.94)
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The right-hand sides of this equations

∣
∣
∣gi

(�x(t) + xδ,αδ
0(t), t

)

ûδ
i (t) − gi

(

xδ,αδ
0(t), t

)

u
δ,αδ

0
i (t) ± gi

(

xδ,αδ
0(t), t

)

ûδ
i (t)

∣
∣
∣

=
∣
∣
∣ûδ

i (t)
(

gi

(�x(t) + xδ,αδ
0(t), t

) − gi

(

xδ,αδ
0(t), t

))

+gi

(

xδ,αδ
0(t), t

)(

ûδ
i (t) − u

δ,αδ
0

i (t)
)
∣
∣
∣

≤ U
n∑

j=1
[ω′|�xj (t)|] + ω|ûδ

i (t) − u
δ,αδ

0
i (t)|

≤ Uω′n‖�x(t)‖ + ω|ûδ
i (t) − u

δ,αδ
0

i (t)|.
(7.95)

Since estimates (7.95) are true and the function |ûδ
i (·) − u

δ,αδ
0

i (·)| is continuous, the
solution of system (7.94) is unique and can be extended on [0, T ] [13]. Thus, the

solutions x̂δ
i (t) = �xi(t)−x

δ,αδ
0

i (t), i = 1, . . . , n of system (7.93) can be extended
on t ∈ [0, T ] as well.

From (7.95) it follows that

∣
∣
∣‖�x(t)‖′

t

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

n∑

i=1
[�xi(t)�̇xi(t)]

‖�x(t)‖

∣
∣
∣
∣
∣
∣
∣
∣

≤

n∑

i=1
[‖�x(t)‖ · |�̇xi(t)|]

‖�x(t)‖

≤ n(Uω′n‖�x(t)‖ + ω|ûδ
i (t) − u

δ,αδ
0

i (t)|).

Hence,

‖�x(t)‖ ≤ ‖�x(T )‖ +
T∫

t

n
(

Uω′n‖�x(τ)‖ + ω|ûδ
i (τ ) − u

δ,αδ
0

i (τ )|)dτ

≤ ‖�x(T )‖ + nω

T∫

t

|ûδ
i (τ ) − u

δ,αδ
0

i (τ )|dτ + n2Uω′
T∫

t

‖�x(τ)‖dτ.

Applying the Grönwall–Bellman inequality, we get

‖�x(t)‖ ≤
(

‖�x(T )‖ + nω

T∫

t

|ûδ
i (τ ) − u

δ,αδ
0

i (τ )|dτ
)

exp(n2Uω′T ).
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Here ‖�x(T )‖ ≤ √
nδ

δ→0−→ 0. Since (7.91),
T∫

t

|ûδ
i (τ ) − u

δ,αδ
0

i (τ )|dτ
δ→0−→ 0, t ∈

[0, T ]. So, ‖�x(t)‖ δ→0−→ 0, t ∈ [0, T ]. In other words,

lim
δ→0

‖xδ,αδ
0

i (·) − x̂δ
i (·)‖C[0,T ] = 0, i = 1, ..., n.

Combining this result with result of Theorem 7.1 (7.34), we get

lim
δ→0

‖x̂δ
i (·) − x∗

i (·)‖C[0,T ] = 0, i = 1, ..., n,

which was to be proved.

Lemma 7.2, definition (7.89) and formula (7.92) mean that functions (7.89) can
be considered as solution of the inverse problem described in Sect. 7.5.

7.7 Remarks on the Suggested Method

Note that Hypotheses 7.2 and 7.1, Theorem 7.1 and Lemmas 7.1 and 7.2 provide that
in case of diagonal matrix G(x, t) the solution for the inverse problem described in
Sect. 7.5 can be found as

ûδ
i (t) =

⎧

⎨

⎩

U, uδ
i (t) ≥ U,

uδ
i (t), |uδ

i (t)| < U,

−U, uδ
i (t) ≤ −U.

where uδ
i (·) = ẏδ

i (·)
gi(yδ(·), ·) , i = 1, . . . , n.

The case of non diagonal non degenerate matrix G(x, t) is more interesting. In
this case the solution can still be found by inversing the matrix G(yδ(t), t)

uδ(·) = G−1(yδ(·), ·)ẏδ(·), (7.96)

but it involves finding the inverse matrix G−1(yδ(t), t) for each t ∈ [0, T ].
One can modify the algorithm suggested in Sect. 7.6 to solve the inverse problem

for the case of non-diagonal matrix G(yδ(t), t) as well. The justification uses the
same scheme of proof, but is more complex due to more complicated form of
system (7.19). It will be published in later works.

Comparing the direct approach (7.96) and the approach suggested in this paper,
one can see that the second one reduces the task of inversing non-constant n × n

matrix G(yδ(t), t) to the task of solving systems of non-linear ODEs. In some
applications numerical integration of ODE systems may be more preferable than
matrix inversing. Accurate comparing of this approaches (including numerical
computations issues) is the matter of the upcoming studies and also will be
published in later works.



7 On Control Reconstruction Problems for Dynamic Systems Linear in Controls 117

7.8 Example

To illustrate the work of the suggested method let’s consider a model of a
macroeconomic process, which can be described by a differential game with the
dynamics

dx1(t)

dt
= ∂G(x1(t), x2(t))

∂x1
u1(t),

dx2(t)

dt
= ∂G(x1(t), x2(t))

∂x2
u2(t).

(7.97)

Here t ∈ [0, T ], x1 is the product, x2 is the production cost. G(x1, x2) is the profit,
which is described as

G(x1, x2) = x1x2(a0 + a1x1 + a2x2), (7.98)

where a0 = 0.008, a1 = 0.00019, a2 = −0.00046 are parameters of the
macroeconomic model [1]. The functions u1(t), u2(t) are bounded piecewise
continuous controls

|u1| ≤ U, |u2| ≤ U, U = 200, t ∈ [0, T ]. (7.99)

The control u1 has the meaning of the scaled coefficient of the production increase
speed and u2 has the meaning of the scaled coefficient of the speed of the production
cost changing.

This model has been suggested by Albrecht [1].
We assume that some base trajectories x∗

1 (t), x∗
2 (t) of system (7.97) have been

realized on the time interval t ∈ [0, T ] (time is measured in years). This trajectory
is supposed to be generated by some admissible controls u∗

1(·), u∗
2(·). We also

assume that we know inaccurate measurements of x∗
1 (t), x∗

2 (t)—twice continuously
differentiable functions yδ

1(t), yδ
2(t) that fulfill Hypothesis 7.2.

Remark 7.9 To model measurement functions yδ
1(t) and yδ

2(t) real statistics on Ural
region’s industry during 1970–1985 [1] have been used. They satisfy Hypothe-
sis 7.2.

We consider the inverse problem described in Sect. 7.5 for dynamics (7.97)–
(7.99) and functions x∗

1 (t), x∗
2 (t), u∗

1(·), u∗
2(·) and yδ

1(t), yδ
2(t). We assume in

our example that we don’t know the base trajectory and controls, but know the
inaccurate measurements yδ

1(t), yδ
2(t).

The trajectories x
α,δ
1 (t), x

α,δ
2 (t) and controls û

α,δ
1 (t), û

α,δ
2 (t), generating them,

were obtained numerically. The results are presented on Figs. 7.1, 7.2, and 7.3. On
Figs. 7.1 and 7.2 time interval is reduced for better scaling.
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Fig. 7.1 Graphics of x
δ,α
1 (t), t ∈ [1980, 1985] for various values of approximation parameters

Fig. 7.2 Graphics of u
δ,α
1 (t), t ∈ [1980, 1985] for various values of approximation parameters
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Fig. 7.3 Graphic of error x
δ,α
1 (t) − yδ

1(t) for α = 10−5, t ∈ [1970, 1985]
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