
Chapter 6
The Impact of Discounted Indices
on Equilibrium Strategies of Players
in Dynamical Bimatrix Games

Nikolay Krasovskii and Alexander Tarasyev

Abstract The paper deals with construction of solutions in dynamical bimatrix
games. It is assumed that integral payoffs are discounted on the infinite time
interval. The dynamics of the game is subject to the system of differential equations
describing the behavior of players. The problem of construction of equilibrium
trajectories is analyzed in the framework of the minimax approach proposed by
N.N. Krasovskii and A. I. Subbotin in the differential games theory. The concept
of dynamical Nash equilibrium developed by A. F. Kleimenov is applied to design
the structure of the game solution. For obtaining constructive control strategies of
players, the maximum principle of L. S. Pontryagin is used in conjunction with the
generalized method of characteristics for Hamilton–Jacobi equations. The impact of
the discount index is indicated for equilibrium strategies of the game.

6.1 Introduction

The dynamical bimatrix game with discounted integral payoff functionals is con-
sidered on the infinite horizon. Usually the discount parameter appears to be very
uncertain value which reflects subjective components in economic and financial
models. In this case models with discounted indices require an implementation of
sensitivity analysis for solutions with respect to changing of the discount parameter.
In the paper we build optimal control strategies based on Krasovskii minimax
approach [10, 11], using constructions of Pontryagin maximum principle [21]
and Subbotin technique of method of characteristics for generalized (minimax)

N. Krasovskii (�)
Krasovskii Institute of Mathematics and Mechanics UrB RAS, Yekaterinburg, Russia
e-mail: n.a.krasovskii@imm.uran.ru

A. Tarasyev
Krasovskii Institute of Mathematics and Mechanics UrB RAS, Yekaterinburg, Russia

Ural Federal University, Yekaterinburg, Russia
e-mail: tam@imm.uran.ru

© Springer International Publishing AG, part of Springer Nature 2018
L. A. Petrosyan et al. (eds.), Frontiers of Dynamic Games,
Static & Dynamic Game Theory: Foundations & Applications,
https://doi.org/10.1007/978-3-319-92988-0_6

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92988-0_6&domain=pdf
mailto:n.a.krasovskii@imm.uran.ru
mailto:tam@imm.uran.ru
https://doi.org/10.1007/978-3-319-92988-0_6


68 N. Krasovskii and A. Tarasyev

solutions of Hamilton-Jacobi equations [22, 23]. Basing on constructed optimal
control strategies we simulate equilibrium trajectories for dynamical bimatrix
game in the framework of Kleimenov approach [8]. It is important to note that
in considered statement we can obtain analytical solutions for control strategies
depending explicitly on uncertain discount parameter. That allows to implement the
sensitivity analysis of equilibrium trajectories with respect to changing of discount
parameter and determine the asymptotical behavior of solutions when the discount
parameter converges to zero. It is shown that control strategies and equilibrium
solutions asymptotically converge to the solution of dynamical bimatrix game with
average integral payoff functional considered in papers by Arnold [1].

It is worth to note that we use dynamical constructions and methods of
evolutionary games analysis proposed in the paper [18]. To explain the dynamics of
players’ interaction we use elements of evolutionary games models [2, 5, 6, 25, 27].
For the analysis of shifting equilibrium trajectories from competitive static Nash
equilibrium to the points of cooperative Pareto maximum we consider ideas and
constructions of cooperative dynamical games [20]. The dynamics of bimatrix game
can be interpreted as a generalization of Kolmogorov’s equations for probabilities
of states [9], which are widely used in Markov processes, stochastic models of
mathematical economics and queuing theory. The generalization is understood in
the sense that parameters of the dynamics are not fixed a priori and appear to be
control parameters and are constructed by the feedback principle in the framework
of control theory and differential games theory.

The solution of dynamical bimatrix games is based on construction of positional
strategies that maximize own payoffs at any behavior of competing players, which
means “guaranteeing” strategies [10, 11, 19]. The construction of solutions on the
infinite horizon is divided into fragments with a finite horizon for which Pontryagin
maximum principle is used [21] in accordance with constructions of positional
differential games theory [11]. More precisely, elements of maximum principle are
considered in the aggregate with the method of characteristics for Hamilton-Jacobi
equations [12, 22, 24, 26]. The optimal trajectory in each time interval is constructed
from pieces of characteristics while switching moments from one characteristic to
another are determined by maximum principle. In this method switching moments
and points generate switching lines in the phase space which determine the synthesis
of optimal positional strategies. Let us note that analogous methods for construction
of positional strategies are used in papers [7, 13–17].

In the framework of proposed approach we consider the model of competition on
financial markets which is described by dynamical bimatrix game. For this game we
construct switching curves for optimal control strategies and synthesize equilibrium
trajectories for various values of the discount parameter. We analyze the qualitative
behavior of equilibrium trajectories and demonstrate that equilibrium trajectories
of dynamical bimatrix game provide better results than static Nash equilibrium.
Results of the sensitivity analysis for obtained solutions are demonstrated. This
analysis shows that switching curves of optimal control strategies for the series of
the discount parameter values have the convergence property by the parameter. We
provide calculations confirming the fact that equilibrium trajectories in the problem
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with discounting converge to the equilibrium trajectory in the problem with average
integral payoff functional.

6.2 Model Dynamics

The system of differential equations which defines the dynamics of behavior for two
players is investigated

ẋ(t) = −x(t) + u(t), x(t0) = x0,

ẏ(t) = −y(t) + v(t), y(t0) = y0.
(6.1)

The parameter x = x(t), 0 ≤ x ≤ 1, means the probability that first player holds
to the first strategy (respectively, (1−x) is the probability that he holds to the second
strategy). The parameter y = y(t), 0 ≤ y ≤ 1, is the probability of choosing the first
strategy by the second player (respectively, (1−y) is the probability that he holds to
the second strategy). Control parameters u = u(t) and v = v(t) satisfy conditions
0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and can be interpreted as signals, that recommend change of
strategies by players. For example, value u = 0 (v = 0) corresponds to the signal:
“change the first strategy to the second one”. The value u = 1 (v = 1) corresponds
to the signal: “change the second strategy to the first one”. The value u = x (v = y)
corresponds to the signal: “keep the previous strategy”.

It is worth to note, that the basis for the dynamics (6.1) and its properties were
examined in papers [18, 25]. This dynamics generalizes Kolmogorov’s differential
equations for probabilities of states [9]. Such generalization assumes that coeffi-
cients of incoming and outgoing streams inside coalitions of players are not fixed a
priori and can be constructed as positional strategies in the controlled process.

6.3 Local Payoff Functions

Let us assume that the payoff of the first player is described my the matrix A = aij ,
and the payoff of the second player is described by the matrix B = bij

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
.

Local payoff functions of the players in the time period t , t ∈ [t0,+∞) are
determined by the mathematical expectation of payoffs, given by corresponding
matrices A and B in the bimatrix game, and can be interpreted as “local” interests
of the players

gA(x(t), y(t)) = CAx(t)y(t) − α1x(t) − α2y(t) + a22,

gB(x(t), y(t)) = CBx(t)y(t) − β1x(t) − β2y(t) + b22.
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Here parameters CA, α1, α2 and CB , β1, β2 are determined according to the
classical theory of bimatrix games (see [27])

CA = a11 − a12 − a21 + a22, DA = a11a22 − a12a21,

α1 = a22 − a12, α2 = a22 − a21,

CB = b11 − b12 − b21 + b22, DB = b11b22 − b12b21,

β1 = b22 − b12, β2 = b22 − b21.

6.4 Nash Equilibrium in the Differential Game
with Discounted Functionals

In this section we consider the non-zero sum differential game for two players with
discounted payoff functionals on the infinite horizon

JD∞
A = [JD−

A, JD+
A ], (6.2)

JD−
A = JD−

A(x(·), y(·)) = lim inf
T →∞

∫ T

t0

e−λ(t−t0)gA(x(t), y(t)) dt,

JD+
A = JD+

A(x(·), y(·)) = lim sup
T →∞

∫ T

t0

e−λ(t−t0)gA(x(t), y(t)) dt,

defined on the trajectories (x(·), y(·)) of the system (6.1).
Payoff functionals of the second player JD∞

B , JD−
B , JD+

B are determined
analogously by replacement of the function gA(x, y) by the function gB(x, y).

Discounted functionals (6.2) are traditional for the problems of evolutionary
economics and economic growth [6, 12], and are related to the idea of depreciation
of financial funds in time. In the problems of optimal guaranteed control such
functionals were considered in the paper [25]. Unlike payoff functionals optimized
in each period, discounted functionals admit the possibility of loss in some periods
in order to win in other periods and obtain better integral result in all periods. This
fact allows the system to stay longer in favorable domains where values of local
payoffs for the players are strictly better than values of static Nash equilibrium.

Let us introduce the notion of dynamical Nash equilibrium for the evolutionary
game with the dynamics (6.1) and discounted payoff functionals (6.2) in the context
of constructions of non-antagonistic positional differential games [8, 11, 18]. Let
us define the dynamical Nash equilibrium in the class of positional strategies
(feedbacks) U = u(t, x, y, ε), V = v(t, x, y, ε).

Definition 6.1 The dynamical Nash equilibria (U0, V 0), U0 = u0(t, x, y, ε),
V 0 = v0(t, x, y, ε) from the class of controls by the feedback principle U =
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u(t, x, y, ε), V = v(t, x, y, ε) for the given problem is determined by inequalities

JD−
A(x0(·), y0(·)) ≥ JD+

A(x1(·), y1(·)) − ε,

JD−
B (x0(·), y0(·)) ≥ JD+

B (x2(·), y2(·)) − ε,

(x0(·), y0(·)) ∈ X(x0, y0, U
0, V 0), (x1(·), y1(·)) ∈ X(x0, y0, U, V 0),

(x2(·), y2(·)) ∈ X(x0, y0, U
0, V ).

Here symbol X stands for the set of trajectories, starting from initial point and
generated by corresponding postional strategies is the sense of the paper [11].

6.5 Auxiliary Zero-Sum Games

For the construction of desired equilibrium feedbacks U0, V 0 we use the approach
[8]. In accordance with this approach we construct the equilibrium using optimal
feedbacks for differential games ΓA = Γ −

A ∪ Γ +
A and ΓB = Γ −

B ∪ Γ +
B with

payoffs JD∞
A and JD∞

B (6.2). In the gamed ΓA the first player maximizes the
functional JD−

A(x(·), y(·))with the guarantee using the feedbackU = u(t, x, y, ε),
and the second player oppositely provides the minimization of the functional
JD+

A(x(·), y(·)) using the feedback V = v(t, x, y, ε). Vice versa, in the game ΓB

the second player maximizes the functional JD−
B (x(·), y(·))with the guarantee, and

the first player maximizes the functional JD+
B (x(·), y(·)).

Let us introduce following notations. By u0A = u0A(t, x, y, ε) and v0B =
v0B(t, x, y, ε) we denote feedbacks that solve the problem of guaranteed maximiza-
tion for payoff functionals JD−

A and JD−
B respectively. Let us note, that these

feedbacks represent the guaranteed maximization of players’ payoffs in the long
run and can be named “positive”. By u0B = u0B(t, x, y, ε) and v0A = v0A(t, x, y, ε)

we denote feedbacks mostly favorable for opposite players, namely, those, that
minimize payoff functionals JD+

B , JD+
A of the opposite players. Let us call them

“punishing”.
Let us note, that inflexible solutions of selected problems can be obtained in the

framework of the classical bimatrix games theory. Let us propose for definiteness,
(this proposition is given for illustration without loss of generality for the solution),
that the following relations corresponding to the almost antagonistic structure of
bimatrix game hold for the parameters of matrices A and B,

CA > 0, CB < 0,

0 < xA = α2

CA

< 1, 0 < xB = β2

CB

< 1,

0 < yA = α1

CA

< 1, 0 < yB = β1

CB

< 1.

(6.3)

The following proposition is fair.
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Lemma 6.1 Differential games Γ −
A , Γ +

A have equal values

w−
A = w+

A = wA = DA

CA

,

and differential games Γ −
B , Γ +

B have equal values

w−
B = w+

B = wB = DB

CB

for any initial position (x0, y0) ∈ [0, 1] × [1, 0]. These values, for example, can
be guaranteed by “positive” feedbacks ucl

A , vcl
B corresponding to classical solutions

xA, yB

u0A = ucl
A = ucl

A(x, y) =
⎧⎨
⎩
0, xA < x ≤ 1,
1, 0 ≤ x < xA,

[0, 1] , x = xA.

v0B = vcl
B = vcl

B (x, y) =
⎧⎨
⎩
0, yB < y ≤ 1,
1, 0 ≤ y < yB,

[0, 1] , y = yB.

“Punishing” feedbacks are determined by formulas

u0B = ucl
B = ucl

B (x, y) =
⎧⎨
⎩
0, xB < x ≤ 1,
1, 0 ≤ x < xB,

[0, 1] , x = xB,

v0A = vcl
A = vcl

A (x, y) =
⎧⎨
⎩
0, yA < y ≤ 1,
1, 0 ≤ y < yA,

[0, 1] , y = yA,

and correspond to classical solutions xB, yA (6.3), which generate the static Nash
equilibrium NE = (xB, yA).

The proof of this proposition can me obtained by the direct substitution of shown
strategies to corresponding payoff functionals (6.2).

Remark 6.1 Values of payoff functions gA(x, y), gB(x, y) coincide at points
(xA, yB), (xB, yA)

gA(xA, yB) = gA(xB, yA) = wA, gB(xA, yB) = gB(xB, yA) = wB.
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The point NE = (xB, yA) is the “mutually punishing” Nash equilibrium, and the
point (xA, yB) does not possess equilibrium properties in the corresponding static
game.

6.6 Construction of the Dynamical Nash Equilibrium

Let us construct the pair of feedbacks, which consist the Nash equilibrium. For this
let us combine “positive” feedbacks u0A, v0B and “punishing” feedbacks u0B, v0A.

Let us choose the initial position (x0, y0) ∈ [0, 1]×[0, 1] and accuracy parameter
ε > 0. Let us choose the trajectory (x0(·), y0(·)) ∈ X(x0, y0, U

0
A(·), v0B(·)),

generated by “positive” u0A = U0
A(t, x, y, ε) and v0B = v0B(t, x, y, ε). Let us choose

Tε > 0 such that

gA(x0(t), y0(t)) > JD−
A(x0(·), y0(·)) − ε,

gB(x0(t), y0(t)) > JD−
B (x0(·), y0(·)) − ε,

t ∈ [Tε,+∞].

Let us denote by uε
A(t): [0, Tε) → [0, 1], vε

B(t): [0, Tε) → [0, 1] step-by-
step implementation of strategies u0A, v0B such that the corresponding step-by-step
trajectory (xε(·), yε(·)) satisfies the condition

max
t∈[0,Tε]

‖(x0(t), y0(t)) − (xε(t), yε(t))‖ < ε.

From the results of the paper [8] the next proposition follows.

Lemma 6.2 The pair of feedbacks U0 = u0(t, x, y, ε), V 0 = v0(t, x, y, ε),
combines together “positive” feedbacks u0A, v0B and “punishing” feedbacks u0B , v0A
according to relations

U0 = u0(t, x, y, ε) =
{

uε
A(t), ‖(x, y) − (xε(t), yε(t))‖ < ε,

u0B(x, y), otherwise,

V 0 = v0(t, x, y, ε) =
{

vε
B(t), ‖(x, y) − (xε(t), yε(t))‖ < ε,

v0A(x, y), otherwise

is the dynamical ε-Nash equilibrium.

Below we construct flexible “positive” feedbacks that generate trajectories
(xf l(·), yf l(·)), which reduce to “better” positions than the inflexible dynami-
cal equilibrium (xB, yA), (xA, yB) by both criteria JD∞

A (xf l(·), yf l(·)) ≥ vA,
JD∞

B (xf l(·), yf l(·)) ≥ vB .
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6.7 Two-Step Optimal Control Problems

For the construction of “positive” feedbacks u0A = u
f l
A (x, y), v0B = v

f l
B (x, y)

we consider in this section the auxiliary two-step optimal control problem with
discounted payoff functional for the first player in the situation, when actions of
the second player are most unfavorable. Namely, let us analyze the optimal control
problem for the dynamical system (6.1)

ẋ(t) = −x(t) + u(t), x(0) = x0,

ẏ(t) = −y(t) + v(t), y(0) = y0.
(6.4)

with the payoff functional

JD
f

A =
∫ Tf

0
e−λtgA(x(t), y(t)) dt. (6.5)

Here without loss of generality let us consider that t0 = 0, T = Tf , and terminal
moment of time Tf = Tf (x0, y0) we determine later.

Without loss of generality, we assume that the value of the static game equals to
zero

wA = DA

CA

= 0, (6.6)

and next conditions hold

CA > 0, 0 < xA = α2

CA
< 1, 0 < yA = α1

CA
< 1. (6.7)

Let us consider the case when initial conditions (x0, y0) of the system (6.4) satisfy
relations

x0 = xA, y0 > yA. (6.8)

Let us assume that actions of the second player are mostly unfavorable for the first
player. For trajectories of the system (6.4), which start from initial positions (x0, y0)

(6.8), these actions v0A = vcl
A (x, y) are determined by the relation

vcl
A (x, y) ≡ 0.

Optimal actions u0A = u
f l
A (x, y) of the first player according to the payoff functional

JD
f
A (6.5) in this situation can be presented as the two-step impulse control: it

equals one from the initial time moment t0 = 0 till the moment of optimal switch s
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and then equals to zero till the final time moment Tf

u0A(t) = u
f l
A (x(t), y(t)) =

{
1, if t0 ≤ t < s,

0, if s ≤ t < Tf .

Here the parameter s is the optimization parameter. The final time moment Tf is
determined by the following condition. The trajectory (x(·), y(·)) of the system
(6.4), which starts from the line where x(t0) = xA, returns to this line when
x(Tf ) = xA.

Let us consider two aggregates of characteristics. The first one is described
by the system of differential equations with the value on the control parameter
u = 1

ẋ(t) = −x(t) + 1,
ẏ(t) = −y(t),

(6.9)

solutions of which are determined by the Cauchy formula

x(t) = (x0 − 1)e−t + 1, y(t) = y0e
−t . (6.10)

Here initial positions (x0, y0) satisfy conditions (6.8) and time parameter t satisfies
the inequality 0 ≤ t < s.

The second aggregate of characteristics is given by the system of differential
equations with the value of the control parameter u = 0

ẋ(t) = −x(t),

ẏ(t) = −y(t),
(6.11)

solutions of which are determined by the Cauchy formula

x(t) = x1e
−t , y(t) = y1e

−t . (6.12)

Here initial positions (x1, y1) = (x1(s), y1(s)) are determined by relations

x1 = x1(s) = (x0 − 1)e−s + 1, y1 = y1(s) = y0e
−s, (6.13)

and the time parameter t satisfies the inequality 0 ≤ t < p. Here the final time
moment p = p(s) and the final position (x2, y2) = (x2(s), y2(s)) of the whole
trajectory (x(·), y(·)) is given by formulas

x1e
−p = xA, p = p(s) = ln

x1(s)

xA

, x2 = xA, y2 = y1e
−p. (6.14)
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Fig. 6.1 Families of
characteristics and switching
points in the two-step optimal
control problem
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The optimal control problem is to find such moment of time s and the corre-
sponding switching point (x1, y1) = (x1(s), y1(s)) on the trajectory (x(·), y(·)),
where the integral I = I (s) reaches the maximum value

I (s) = I1(s) + I2(s), (6.15)

I1(s) =
∫ s

0
e−λt (CA((x0 − 1)e−t + 1)y0e−t − α1((x0 − 1)e−t + 1)

−α2y0e
−t + a22) dt,

I2(s) = e−λs

∫ p(s)

0
e−λt (CAx1(s)y1(s)e

−2t − α1x1(s)e
−t − α2y1(s)e

−t + a22) dt.

On the Fig. 6.1 we depict the initial position IP , chosen on the line x = xA when
y > yA, the characteristic CH , oriented on the vertex (1, 0) of the unit square,
characteristics CH1, CH2, CH3, oriented on the vertex (0, 0) of the unit square,
switching points SP1, SP2, SP3 of the motion along characteristics and final points
of the motion FP1, FP2, FP3, located of the line x = xA.

6.8 The Solution of the Two-Step Optimal Control Problem

We obtain the solution of the two-step optimal control problem (6.9)–(6.15), by
calculating the derivative dI/ds, presenting it as the function of optimal switching
points (x, y) = (x1, y1), equating this derivative to zero dI/ds = 0 and finding
the equation F(x, y) = 0 for the curve, that consist from optimal switching points
(x, y).
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Sufficient maximum conditions in such construction are obtained from the fact
that the integral I (s) has the property of monotonic increase by the variable s in the
initial period, because the integrand gA(x, y) is positive, gA(x, y) > wA = 0, in the
domain x > xA, y > yA. In the finite period the integral I (s) strictly monotonically
decreases by the variable s, because the integrand gA(x, y) is negative, gA(x, y) <

wA = 0, in the domain x > xA, y < yA.
Firstly let us calculate integrals I1, I2

I1 = I1(s) = CA(x0 − 1)y0
(1 − e−(λ+2)s)

(λ + 2)
+ CAy0

(1 − e−(λ+1)s)

(λ + 1)

−α1(x0 − 1)
(1 − e−(λ+1)s)

(λ + 1)
− α1

(1 − e−λs)

λ

−α2y0
(1 − e−(λ+1)s)

(λ + 1)
+ a22

(1 − e−λs)

λ
.

I2 = I2(s) = e−λsCAx1(s)y1(s)
(1 − e−(λ+2)p(s))

(λ + 2)

−e−λsα1x1(s)
(1 − e−(λ+1)p(s))

(λ + 1)

−e−λsα2y1(s)
(1 − e−(λ+1)p(s))

(λ + 1)

+e−λsa22
(1 − e−λp(s))

λ
.

Let us calculate derivatives dI1/ds, dI2/ds and present them as functions of
optimal switching points (x, y) = (x1, y1)

dI1

ds
= CA(x0 − 1)y0e−2se−λs + CAy0e

−se−λs

−α1(x0 − 1)e−se−λs − α1e
−λs − α2y0e

−se−λs + a22e
−λs

= e−λs(CAxy − α1x − α2y + a22).

While calculating the derivative dI2/ds let us take into the account next expressions
for derivatives dx/ds, dy/ds, dp/ds and the exponent e−p as functions of variables
(x, y):

dx

ds
= 1 − x,

dy

ds
= −y,

dp

ds
= 1 − x

x
, e−p = α2

CAx
.
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Let us introduce the new derivative q = e−p and obtain the expression for dI2/ds

dI2

ds
= e−λs

(
− λCAxy

(1 − q(λ+2))

(λ + 2)
+ CA(1 − x)y

(1 − q(λ+2))

(λ + 2)

−CAxy
(1 − q(λ+2))

(λ + 2)
+ CA(1 − x)yq(λ+2)

+λα1x
(1 − q(λ+1))

(λ + 1)
− α1(1 − x)

(1 − q(λ+1))

(λ + 1)
− α1(1 − x)q(λ+1)

+λα2y
(1 − q(λ+1))

(λ + 1)
+ α2y

(1 − q(λ+1))

(λ + 1)
− α2y

(1 − x)

x
q(λ+1)

+a22
(1 − x)

x
qλ − a22(1 − qλ)

)
.

Let us summarize derivatives dI1/ds and dI2/ds, equalize the expression to zero
and express y by x in the following form:

y =
(
α1x − λα1x

(1 − q(λ+1))

(λ + 1)
+ α1(1 − x)

(1 − q(λ+1))

(λ + 1)
+ α1(1 − x)q(λ+1)

−a22
(1 − x)

x
qλ + a22(1 − qλ) − a22

)/

(
CAx − λCAx

(1 − q(λ+2))

(λ + 2)
+ CA(1 − 2x)

(1 − q(λ+2))

(λ + 2)
+ CA(1 − x)q(λ+2)

+λα2
(1 − q(λ+1))

(λ + 1)
+ α2

(1 − q(λ+1))

(λ + 1)
− α2

(1 − x)

x
q(λ+1) − α2

)
.

Simplifying the expression we obtain the formula:

y =
(
α1

(1 − q(λ+1))

(λ + 1)
+ α1q

(λ+1) − a22
1

x
qλ

)/
(
CA

(1 − q(λ+2))

(λ + 2)
+ CAq(λ+2) − α2

1

x
q(λ+1)

)
.

Taking into the account the fact that wA = 0 (6.6), we obtain a22 = (α1α2)/CA.
By substitution of this relation and the expression q = α2/(CAx) to previous
formula we obtain:

y =
(
α1

(
1 −

( α2

CAx

)(λ+1))
(λ + 2)

)/(
CA

(
1 −

( α2

CAx

)(λ+2))
(λ + 1)

)
.
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Multiplying both parts on the expression by x(λ+2), we obtain:

y =
(
α1

(
x(λ+1) −

( α2

CA

)(λ+1))
(λ + 2)x

)/(
CA

(
x(λ+2) −

( α2

CA

)(λ+2))
(λ + 1)

)
.

Taking into the account relations xA = α2/CA and yA = α1/CA (6.7), we obtain
the final expression for the switching curve M1

A(λ):

y =
(λ + 2)

(
x(λ+1) − x

(λ+1)
A

)
yAx

(λ + 1)
(
x(λ+2) − x

(λ+2)
A

) .

To construct the final switching curve MA(λ) for the optimal strategy of the first
player in the game with the discounted functional in the case CA > 0, we add to the
curve M1

A(λ) the similar curve M2
A(λ) in the domain, where x ≤ yA and y ≤ yA

MA(λ) = M1
A(λ) ∪ M2

A(λ), (6.16)

M1
A(λ) =

{
(x, y) ∈ [0, 1] × [0, 1] :

y =
(λ + 2)

(
x(λ+1) − x

(λ+1)
A

)
yAx

(λ + 1)
(
x(λ+2) − x

(λ+2)
A

) , x ≥ xA, y ≥ yA

}
,

M2
A(λ) =

{
(x, y) ∈ [0, 1] × [0, 1] :

y = −
(λ + 2)

(
(1 − x)(λ+1) − (1 − xA)(λ+1)

)
(1 − yA)(1 − x)

(λ + 1)
(
(1 − x)(λ+2) − (1 − xA)(λ+2)

) + 1,

x ≤ xA, y ≤ yA

}
.

In the case when CA < 0, curves MA(λ), M1
A(λ) andM2

A(λ) are described by
formulas

MA(λ) = M1
A(λ) ∪ M2

A(λ), (6.17)

M1
A(λ) =

{
(x, y) ∈ [0, 1] × [0, 1] :

y =
(λ + 2)

(
(1 − x)(λ+1) − (1 − xA)(λ+1)

)
yA(1 − x)

(λ + 1)
(
(1 − x)(λ+2) − (1 − xA)(λ+2)

) ,

x ≤ xA, y ≥ yA

}
,
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M2
A(λ) =

{
(x, y) ∈ [0, 1] × [0, 1] :

y = −
(λ + 2)

(
x(λ+1) − x

(λ+1)
A

)
(1 − yA)x

(λ + 1)
(
x(λ+2) − x

(λ+2)
A

) + 1, x ≥ xA, y ≤ yA

}
.

The curve MA(λ) divides the unit square [0, 1] × [0, 1] into two parts: the upper
part

Du
A ⊃ {(x, y) : x = xA, y > yA}

and the lower part

Dl
A ⊃ {(x, y) : x = xA, y < yA}.

The “positive” feedback u
f l
A has the following structure

u
f l
A = u

f l
A (x, y) =

⎧⎨
⎩
max{0,−sgn(CA)}, if (x, y) ∈ Du

A,

max{0, sgn(CA)}, if (x, y) ∈ Dl
A,

[0, 1], if (x, y) ∈ MA(λ).

(6.18)

On the Fig. 6.2 we show switching curves M1
A(λ), M2

A(λ) for the first player.
Directions of velocities ẋ are depicted by horizontal (left and right) arrows.

Fig. 6.2 Switching curves
M1

A(λ), M2
A(λ) for the first

player in the problem with
discounted payoff functionals

NA

M
A
2(λ)

0
0.15

y
A

M
A
1(λ)

0.6

1x
A
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For the second player one can get similar switching curvesMB(λ) for the optimal
control problem with the discounted functional, corresponding to the matrix B.
More precisely, in the case when CB > 0, the switching curve MB(λ) is given
by relations

MB(λ) = M1
B(λ) ∪ M2

B(λ), (6.19)

M1
B(λ) =

{
(x, y) ∈ [0, 1] × [0, 1] :

x =
(λ + 2)

(
y(λ+1) − y

(λ+1)
B

)
xBy

(λ + 1)
(
y(λ+2) − y

(λ+2)
B

) , x ≥ xB, y ≥ yB

}
,

M2
B(λ) =

{
(x, y) ∈ [0, 1] × [0, 1] :

x = −
(λ + 2)

(
(1 − y)(λ+1) − (1 − yB)(λ+1)

)
(1 − xB)(1 − y)

(λ + 1)
(
(1 − y)(λ+2) − (1 − yB)(λ+2)

) + 1,

x ≤ xB, y ≤ yB

}
.

In the case when the parameter CB is negative CB < 0, curves MB(λ), M1
B(λ) and

M2
B(λ) are determined by formulas

MB(λ) = M1
B(λ) ∪ M2

B(λ), (6.20)

M1
B(λ) =

{
(x, y) ∈ [0, 1] × [0, 1] :

x =
(λ + 2)

(
(1 − y)(λ+1) − (1 − yB)(λ+1)

)
xB(1 − y)

(λ + 1)
(
(1 − y)(λ+2) − (1 − yB)(λ+2)

) ,

x ≥ xB, y ≤ yB

}
,

M2
B(λ) =

{
(x, y) ∈ [0, 1] × [0, 1] :

x = −
(λ + 2)

(
y(λ+1) − y

(λ+1)
B

)
(1 − xB)y

(λ + 1)
(
y(λ+2) − y

(λ+2)
B

) + 1, x ≤ xB, y ≥ yB

}
.
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The curveMB(λ) divide the unit square [0, 1]×[0, 1] into two parts: the left part

Dl
B ⊃ {(x, y) : x < xB, y = yB}

and the right part

Dr
B ⊃ {(x, y) : x > xB, y = yB}.

The “positive” feedback v
f l

B has the following structure

v
f l

B = v
f l

B (x, y) =
⎧⎨
⎩
max{0,−sgn(CB)}, if (x, y) ∈ Dl

B,

max{0, sgn(CB)}, if (x, y) ∈ Dr
B,

[0, 1], if (x, y) ∈ MB(λ).

(6.21)

Remark 6.2 Let us note that in papers by Arnold [1] average integral payoff
functionals were considered

1

(T − t0)

∫ T

t0

gA(x(t), y(t)) dt. (6.22)

In the paper [16] switching curves for optimal control strategies of players in
the game with average integral functionals were obtained. For example, for the first
player in the case when CA > 0 the switching curve in the domain x ≥ xA, y ≥ yA

is described by relations

y = 2α1x

CAx + α2
. (6.23)

The asymptotical analysis of solutions (6.16) for the gamewith discounted payoff
functionals shows, that according to L’Hospital’s rule, when the discount parameter
λ tends to zero, the relation for switching curves (6.16) of the control strategy for the
first player converges to switching curves (6.23) in the game with average integral
payoff functionals (6.22).

On the Fig. 6.2. the solid line shows the switching curve of control strategies
for the first player in the game with average integral payoff functionals, which is
asymptotically approximated by solutions of the game with discounted functionals
when λ ↓ 0. The dashed line and the dotted line show switching curves of control
strategies for the first player in the game with discounted payoff functionals with
values of the discount parameter λ = 0.1 and λ = 0.2, respectively.

On the Fig. 6.3 we show switching curves M1
B(λ), M2

B(λ) for the second player.
Directions of velocities ẏ are depicted by vertical (up and down) arrows.

It is worth to clarify the asymptotical behavior of switching curves for optimal
control when discount parameters can be infinitely large. In this case, one can check
that switching curve MA(λ) for optimal control in the problem with discounted



6 The Impact of Discounted Indices on Equilibrium Strategies 83

Fig. 6.3 Switching curves
M1

B(λ), M2
B(λ) for the second

player in the problem with
discounted payoff functionals

NB

M
B
2(λ)

M
B
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0.7
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Fig. 6.4 Asymptotical
behavior of switching curve
MA(λ) for the first player in
the problem with discounted
payoff functionals

NA

M
A
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M
A
1(λ)
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y
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0.15
0 1

0.6

integral payoffs describing long-term interests of players converge to the switching
line y = yA generated by the short-run payoff function gA(x, y) when the discount
parameter λ tends to infinity. Such behavior of the switching curve MA(λ) is shown
on the Fig. 6.4.

y =
(λ + 2)

(
x(λ+1) − x

(λ+1)
A

)
yAx

(λ + 1)
(
x(λ+2) − x

(λ+2)
A

)

=
(
1 + 1

(λ + 1)

)(
1 −

(xA

x

)(λ+1))
(
1 −

(xA

x

)(λ+2))yA → yA, when λ → +∞.
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6.9 Guaranteed Values of Discounted Payoffs

Let us formulate the proposition, which confirms, that the “positive” optimal control
by the feedback principle u

f l
A (x, y) (6.18) with the switching cure MA, defined by

formulas (6.16), (6.17), guarantee that the value of discounted payoff functionals is
more or equal than the value wA (6.6) of the static matrix game.

Theorem 6.1 For any initial position (x0, y0) ∈ [0, 1] × [0, 1] and for any
trajectory

(xf l(·), yf l(·)) ∈ X(x0, y0, u
f l

A ), xf l(t0) = x0, yf l(t0) = y0, t0 = 0,

generated by the optimal control by the feedback principle u
f l
A = u

f l
A (x, y) there

exists the final moment of time t∗ ∈ [0, TA] such that in this moment of time the
trajectory (xf l(·), yf l(·)) reaches the line where x = xA, namely xf l(t∗) = xA.
Then, according to the construction of the optimal control, that maximizes the
integral (6.15) by the feedback principle u

f l
A , the following estimate holds

∫ T

t∗
e−λ(t−t∗)gA(x(t), y(t)) dt ≥ wA

λ

(
1 − e−λ(T −t∗)), ∀T ≥ t∗. (6.24)

In particular, this inequality remains valid when time T tends to infinity

lim inf
T →+∞ λ

∫ T

t∗
e−λ(t−t∗)gA(xf l(t), yf l(t)) dt ≥ wA. (6.25)

Inequalities (6.24), (6.25) mean, that the value of the discounted functional is not
worse, than the value wA (6.6) of the static matrix game.

The analogous result is fair for trajectories, which generated by the optimal
control v

f l

B (6.21), that corresponds to the switching curve MB (6.19), (6.20).

Proof The result of the theorem follows from the fact that the value of the payoff
functional (6.5) is maximum on the constructed broken line. In particular, it is more
or equal, than the value of this functional on the trajectory which stays on the
segment x = xA (see Fig. 6.1) with the control u(t) = xA. The value of the payoff
functional on such trajectory is following

∫ T

t∗
e−λ(t−t∗)wA dt = wA

λ

(
1 − e−λ(T −t∗)).

These arguments imply the required relation (6.24), which in the limit transition
provides the relation (6.25). ��
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Remark 6.3 Let us consider the acceptable trajectory (x
f l
AB(·), yf l

AB(·)), generated
by “positive” feedbacks u

f l
A (6.18), v

f l
B (6.21). Then in accordance with the

Theorem 6.1, next inequalities take place

lim inf
T →+∞ λ

∫ T

t∗
e−λ(t−t∗)gA(x

f l
AB(t), y

f l
AB(t)) dt ≥ wA

lim inf
T →+∞ λ

∫ T

t∗
e−λ(t−t∗)gB(x

f l
AB(t), y

f l
AB(t)) dt ≥ wB

and, hence, the acceptable trajectory (x
f l

AB(·), yf l

AB(·)) provides the better result for
both players, than trajectories, convergent to points of the static Nash equilibrium,
in which corresponding payoffs are equal to values wA and wB .

6.10 Equilibrium Trajectories in the Game with Discounted
Payoffs

Let us consider payoff matrices of players on the financial market, which reflect
the data of investigated markets of stocks [3] and bonds [4] in USA. The matrix
A corresponds to the behavior of traders, which play on increase of the course and
are called “bulls”. The matrix B corresponds to the behavior of traders, which play
on the depreciation of the course and are called “bears”. Parameters of matrices
represent rate of return for stocks and bonds, expressed in the form of interest rates,

A =
(

10 0
1.75 3

)
, B =

(−5 3
10 0.5

)
. (6.26)

Characteristic parameters of static games are given at the following levels [27]

CA = a11 − a12 − a21 + a22 = 11.25,

α1 = a22 − a12 = 3, α2 = a22 − a21 = 1.25,

xA = α2

CA

= 0.11, yA = α1

CA

= 0.27;

CB = b11 − b12 − b21 + b22 = −17.5,

β1 = b22 − b12 = −2.5, β2 = b22 − b21 = −9.5,

xB = β2

CB

= 0.54, yB = β1

CB

= 0.14.
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On the Fig. 6.5 we present broken lines of players’ best replies, saddle points
NA, NB in static antagonistic games, the point of the Nash equilibrium NE in the
static bimatrix game.

Let us note, that players of the coalition of “bulls” gain in the case of upward
trend of markets, when players of both coalitions invest in the same market. And
players of the coalition of “bears” make profit from investments in the case of
downward trend of markets when players of the coalition of “bulls” move their
investments from one market to another.

For the game of coalitions of “bulls” and “bears” we construct switching curves
MA(λ), MB(λ) and provide calculations of equilibrium trajectories of the market
dynamics with the value of the discount parameter λ = 0.1.

This calculations are presented on the Fig. 6.6. Here we show saddle points NA,
NB in static antagonistic games, the point of the Nash equilibrium NE in the static
bimatrix game, switching lines for players’ controlsMA(λ) = M1

A(λ)
⋃

M2
A(λ) and

MB(λ) = M1
B(λ)

⋃
M2

B(λ) in the dynamical bimatrix game with discounted payoff
functionals for matrices A, B (6.26). The field of velocities of players is depicted by
arrows.

The field of directions generates equilibrium trajectories, one of which is
presented on the Fig. 6.6. This trajectory T R(λ) = (x

f l
AB(·), yf l

AB(·)) starts from the
initial position IP = (0.1, 0.9) and moves along the characteristic in the direction
of the vertex (1, 1) of the unit square [0, 1] × [0, 1] with control signals u = 1,
v = 1. Then it crosses the switching line MB(λ), and the second coalition switches
the control v from 1 to 0. Then, the trajectory T R(λ) moves in the direction of
the vertex (1, 0) until it reaches the switching line MA(λ). Here players of the first
coalition change the control signal u from 1 to 0. After that the movement of the
trajectory is directed along the characteristic to the vertex (0, 0). Then the trajectory
crosses the line MB(λ), on which the sliding mode arises, during which the switch
of controls of the second coalition occurs, and the trajectory T R(λ) converge to

Fig. 6.5 Saddle points NA,
NB and the point of the Nash
equilibrium NE

1

1

0 x
A

x
B

y
A

y
B

NA

NB

NE



6 The Impact of Discounted Indices on Equilibrium Strategies 87

Fig. 6.6 The equilibrium
trajectory in the game with
discounted payoffs
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the point IM(λ) = MA(λ)
⋂

MB(λ) of the intersection of switching lines MA(λ),
MB(λ).
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