
Chapter 5
Solution for a System of Hamilton–Jacobi
Equations of Special Type and a Link
with Nash Equilibrium

Ekaterina A. Kolpakova

Abstract The paper is concerned with systems of Hamilton–Jacobi PDEs of the
special type. This type of systems of Hamilton–Jacobi PDEs is closely related with
a bilevel optimal control problem. The paper aims to construct equilibria in this
bilevel optimal control problem using the generalized solution for the system of the
Hamilton–Jacobi PDEs. We introduce the definition of the solution for the system
of the Hamilton–Jacobi PDEs in a class of multivalued functions. The notion of the
generalized solution is based on the notions of minimax solution and M-solution to
Hamilton–Jacobi equations proposed by Subbotin. We prove the existence theorem
for the solution of the system of the Hamilton–Jacobi PDEs.

5.1 Introduction

The paper deals with a differential game, the dynamics of the game is entirely
defined by the policy of the first player. The payoff functional of the first player
is also determined by the control of the first player and the payoff functional of the
second player depends on control of both players. Actually we investigate a bilevel
optimal control problem. In considerable problem Nash equilibrium coincides with
Stackelberg equilibrium [1, 5]. We restrict our attention to the case when the players
use open-loop strategies and examine this problem applying the solution of the
system of Hamilton–Jacobi equations.

The solution for a strongly coupled system of the Hamilton–Jacobi equations is
open mathematical problem. For the general case there is no existence theorems.
Furthermore the system of Hamilton–Jacobi equations is connected with the system
of the quasilinear first order PDEs. The systems of quasilinear PDEs (the system
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of conservation laws) describe many physical processes. If we differentiate the
system of Hamilton–Jacobi equations w.r.t. phase variable x, then we obtain a
system of quasilinear equations. The existence theorems for a generalized solution
are obtained only for initial values with a small total variation [3, 8]. Using this
link Bressan and Shen [3] constructed Nash strategies in the feedback for some
non-zero sum two players differential game on the line. The authors do not solve
the system of Hamilton–Jacobi equations, but they solve the corresponding strictly
hyperbolic system of quasilinear PDEs. This way can be applied only in the case
of the scalar phase variable and the hyperbolic system of quasilinear equations.
Analogous constructions for a differential game with simple motions were described
in [4].

As we mentioned above the theory of the system of Hamilton–Jacobi equations
is open mathematical problem, at the same time the theory of generalized solution
for the single Hamilton–Jacobi equation is well-developed. Subbotin proposed the
notion of minimax solution, he proved the existence and uniqueness theorems [13].
Crandall et al. introduced the viscosity approach [6]. Moreover Subbotin proved the
equivalence of these approaches.

In the paper we consider the systems of Hamilton–Jacobi equations where the
first equation of the system does not depend on the solution of the second equation,
and the second equation depends on partial derivatives of the solution for the first
equation. This implies that we can solve the equations of the system sequentially.
This system is connected with a bilevel optimal control problem [16]. Using the
minimax/viscosity approach we obtain the solution of the first equation of the
system. Further we substitute the derivative of the minimax/viscosity solution in the
second equation. The second equation is solved in the framework of M-solutions
[9].

Our main result is the following. We show that the solution for the system of
Hamilton–Jacobi equations of special type belongs to a class of multivalued map.
We construct this multivalued solution and connects with a Nash equilibrium in a
bilevel optimal control problem.

5.2 Bilevel Optimal Control Problem

A bilevel optimal control problem is a particle case of two-level differential games.
Let us consider the bilevel optimal control problem with dynamics

ẋ = f (t, x, u), x(t0) = x0, u ∈ U ⊂ R
n. (5.1)
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Here t ∈ [0, T ], x ∈ R
n. The players maximize payoff functionals I1, I2:

I1(u(·)) = σ1(x(T )) +
T∫

t0

g1(t, x(t), u(t))dt,

I2(u(·), v(·)) = σ2(x(T )) +
T∫

t0

g2(t, x(t), u(t), v(t))dt.

Here u and v are controls of the players. Assume that U,V ⊂ Rn are compact sets.
Denote the set of all measurable controls of the first player by Ũ :

Ũ = {u : [t0, T ] → U, u are measurable functions},

and the set of all measurable controls of the second player by Ṽ :

Ṽ = {v : [t0, T ] → V, v are measurable functions}.

From [7, 12] it follows that the payoffs of the players satisfy the system of the
Hamilton–Jacobi equations:

∂c

∂t
+ H1(t, x, p) = 0, c(T , x) = σ1(x); (5.2)

∂w

∂t
+ H2(t, x, p, q) = 0, w(T , x) = σ2(x), (5.3)

under condition

H1(t, x, p) = max
u∈U

〈f (t, x, u), p〉 + g1(t, x, u)

= 〈f (t, x, u∗(t, x, p)), p〉 + g1(t, x, u∗(t, x, p)),

H2(t, x, q) = 〈f
(
t, x, u∗(t, x,

∂c(t, x)

∂x

))
, q〉

+ max
v∈V

g2

(
t, x, u∗(t, x,

∂c(t, x)

∂x

)
, v

)
.

Here

u∗(t, x, p) ∈ arg max
u∈U

〈f (t, x, u), p〉 + g1(t, x, u), (5.4)
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p = ∂c
∂x

, q = ∂w
∂x

.
Further we shall assume that

A1. the function H1 : [0, T ] × R
n × R

n → R is continuously differentiable, H1
satisfies sublinear condition w.r.t. x, p, the function H1 is strongly convex w.r.t.
p for any (t, x) ∈ [0, T ] × R

n.
A2. the function σ1 is Lipschitz continuous.
A3. the function H2 : [0, T ]×R

n×R
n×R

n → R is continuously differentiable, H2
satisfies sublinear condition w.r.t. x, p, q , the function H2 is strongly convex
w.r.t. q for any (t, x) ∈ [0, T ] × R

n.
A4. the function σ2 is continuously differentiable.

From assumptions A1, A3 we get

g1(t, x, p) = H ∗
1

(
t, x,

∂H1(t, x, p)

∂p

)
,

g2(t, x, p, q) = H ∗
2

(
t, x,

∂H1

∂p
,
∂H2(t, x, p, q)

∂q

)
.

Here H ∗
1 ,H ∗

2 are conjugate functions to H1, H2, ∂H1
∂p

=
(

∂H1
∂p1

, . . . , ∂H1
∂pn

)
. Hence

g1, g2 are continuous functions w.r.t all variables. Since condition A1 holds a
measurable function (5.4) u∗ : (t, x, p) → U is well-defined.

Let us introduce the mapping

(t0, x0) → ξ(t0, x0) = {ξ ∈ R
n : x̃(t0, ξ) = x0, x̃(T , ξ) = ξ,

s̃(T , ξ) = Dxσ1(ξ), z̃(T , ξ) = σ1(ξ), z̃(t0, ξ) = c(t0, x0)} (5.5)

Here (x̃(·), s̃(·), z̃(·)) is the unique and extendable solution of the characteristic
system for Bellman equation (5.2):

˙̃x = ∂H1(t, x̃, s̃)

∂s̃
, ˙̃s = −∂H1(t, x̃, s̃)

∂x̃
, ˙̃z = 〈∂H1(t, x̃, s̃)

∂s̃
, s̃〉 − H1(t, x̃, s̃)

with a boundary condition

x̃(T , ξ) = ξ, s̃(T , ξ) = Dxσ1(ξ), z̃(T , ξ) = σ1(ξ), ξ ∈ R
n.

It follows from [11, 15] that for any point (t0, x0) ∈ [0, T ] × R
n assumption

A1 guarantees the existence of optimal open-loop control u0(·; t0, x0) satisfying the
relation

max
u(·)∈Ũ

I1(u(·)) = I1(u
0(·; t0, x0)) = c(t0, x0).
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Pontryagin’s Maximum principle implies that the optimal open-loop control
u0(·; t0, x0) of the first player for the initial point (t0, x0) ∈ [0, T ] × R

n is defined
by the rule

u0(t; t0, x0) ∈ arg max
u∈U

[〈s̃(t, ξ0), f (t, x̃(t, ξ0), u)〉+g1(t, x̃(t, ξ0), u)], ∀t ∈ [t0, T ]
(5.6)

Here (x̃(·), s̃(·), z̃(·)) is the solution of the characteristic system for problem (5.2)
for any t ∈ [t0, T ], for any ξ0 ∈ ξ(t0, x0) defining by (5.5).

We determine the set of optimal open-loop controls of the first player

U0(t0, x0) =
{
u(·) : [t0, T ] → Uare measurable functions, satisfying (5.6)

}
.

Remark 5.1 Equivalently the first player’s control can be considered in feedback
strategies [14]. In this case the optimal feedback is given by

u(t, x) ∈ arg max
u∈U

[ dc(t, x)

d(1, f (t, x, u))
+ g1(t, x, u)

]
,

where c is the solution of Cauchy problem (5.2), dc(t,x)
d(1,f (t,x,u))

is the derivative of c at
the point (t, x) in the direction (1, f (t, x, u)).

5.3 The Solution of the System of the Hamilton–Jacobi
Equations

In this section we will focus on solution of system of Hamilton–Jacobi equations
(5.2), (5.3). We begin with definition of a minimax/viscosity solution of Cauchy
problem (5.2).

Definition 5.1 The continuous function c : [0, T ] × R
n → R is said to be

the minimax/viscosity solution if c(T , x) = σ2(x), x ∈ R
n and the following

inequalities hold for any (t, x) ∈ (0, T ) × R
n

α + H1(t, x, β) ≤ 0, (α, β) ∈ D−c(t, x),

α + H1(t, x, β) ≥ 0, (α, β) ∈ D+c(t, x).

Here D−c(t, x) and D+c(t, x) are sub- and superdifferentials of function c at a
point (t, x).

It is known from [13] that under conditions A1–A3 there exists the unique
minimax solution c(·, ·) in problem (5.2).
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We recall the properties of the minimax solution of problem (5.2) under
conditions A1,A2 from [13, 14]:

1. the minimax solution c(·, ·) is a locally Lipschitz function;
2. the superdifferential of the minimax solution D+c(t, x) �= ∅ for any point

(t, x) ∈ [0, T ] × R
n.

We solve the system of Hamilton–Jacobi equations sequentially. The minimax
solution of the first equation (5.2) is a Lipschitz continuous function. Thus the partial
derivative of the minimax solution can be discontinuous w.r.t. x. We substitute the
superdifferential D+

x c(·, ·) of function c for p in the second equation (5.3), therefore
we obtain the multivalued Hamiltonian

H̃ (t, x, q) = H2(t, x,Dxc(t, x), q). (5.7)

Hence, we have the Hamilton–Jacobi equation with the multivalued Hamiltonian:

∂w

∂t
+ H̃ (t, x, q) = 0, w(T , x) = σ2(x). (5.8)

A.I. Subbotin proposed the notion of M-solution for Cauchy problem (5.8) with the
multivalued Hamiltonian relative to x.

Consider the differential inclusion

(ẋ, ż) ∈ E(t, x, q), E(t, x, q) = {(f, g) : f ∈ ∂H2(t, x, p, q)

∂q
, p ∈ D+c(t, x),

〈f, q〉 − g ∈ [H2∗(t, x, q),H ∗
2 (t, x, q)], q ∈ R

n}.
(5.9)

Here ∂H2(t,x,p,q)
∂q

=
(

∂H2(t,x,p,q)
∂q1

, . . . ,
∂H2(t,x,p,q)

∂qn

)
,

H2∗(t, x, q) = lim inf
(τ,ξ)→(t,x)

H̃ (τ, ξ, q),H ∗
2 (t, x, q) = lim sup

(τ,ξ)→(t,x)

H̃ (τ, ξ, q).

(5.10)

It follows from [10] that differential inclusion (5.9) is an admissible characteris-
tical inclusion. Recall some definitions and theorem from the work [9].

Definition 5.2 The closed set W ⊂ [0, T ] × R
n ⇒ R is viable w.r.t. differential

inclusion (5.9), if for any point (t0, x0, z0) ∈ W there exist τ > 0 and a trajectory
(x(·), z(·)) of admissible differential inclusion (5.9) such that (x(0), z(0)) =
(x0, z0), (t, x(t), z(t)) ∈ W for any t ∈ [0, τ ].
Definition 5.3 The closed maximal set W ⊂ [0, T ] × R

n ⇒ R is called the M-
solution of Cauchy problem for Hamilton–Jacobi equation (5.8), if W is viable w.r.t.
admissible differential inclusion (5.9) and satisfies the condition

(T , x, z) ∈ W ⇒ z = σ2(x) ∀ x ∈ R
n.
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Definition 5.4 The closed set W ⊂ [0, T ] × R
n × R is said to be the epi-

solution (hypo-solution) of problem (5.8) if W is viable w.r.t. admissible differential
inclusion (5.9) and satisfies the condition

(T , x, z) ∈ W ⇒ z ≥ σ2(x)((T , x, z) ∈ W ⇒ z ≤ σ2(x)) ∀ x ∈ R
n.

We introduce the definition for a generalized solution of the system of the Hamilton–
Jacobi equations.

Definition 5.5 The multivalued map (c,w), where c(·, ·) : [0, T ] × R
n → R,

w : [0, T ] × R
n ⇒ R is called a generalized solution of Cauchy problem for

the system of Hamilton–Jacobi equations (5.2), (5.3), if the function c(·, ·) is the
minimax solution of problem (5.2), the map w(·, ·) is the M-solution of problem
(5.8).

Theorem 5.1 ([10]) Let w : [0, T ] × R
n → R be a multivalued map and gr w is

closed set. Suppose that w(t, x) is not empty for t ∈ [0, T ], x ∈ R
n and put

w∗(t, x) = min
z∈w(t,x)

z > −∞, w∗(t, x) = max
z∈w(t,x)

z < ∞.

The map w is the M-solution of problem (5.8) iff epi w∗ and hypo w∗ are the M-
solutions of problem (5.8).

Given t ∈ [t0, T ], x ∈ R
n, u ∈ U let

(t, x, u) → Q(t, x, u) = arg max
v∈V

g2(t, x, u, v). (5.11)

be the set of optimal controls of the second player. Consider the map Γ (u(·)) :
Ũ → R given by the following rule

u(·) → σ2(x[T ; t0, x0]) +
T∫

t0

g2(t, x[t; t0, x0], u(t),Q(t, x[t; t0, x0], u(t)))dt,

(5.12)
u(·) ∈ U0(t0, x0), the function x[·; t0, x0] is a solution of the problem

ẋ = f (t, x, u(t)), u(·) ∈ U0(t0, x0), x(t0) = x0. (5.13)

Put

w(t0, x0) =
⋃

u(·)∈U0(t0,x0)

Γ (u) (5.14)

Lemma 5.1 Map (5.14) is compact-valued.



60 E. A. Kolpakova

Proof Let us choose wi = Γ (ui(·)) ∈ w(t0, x0). We show that if wi → w0, i →
∞, then w0 ∈ w(t0, x0).

Let us define the set generalized controls

Λ = {μ : [t0, T ] × U → [0,+∞) is measurable ,

∀ [τ1, τ2] ⊂ [0, T ] μ([τ1, τ2] × U) = τ2 − τ1, }. Here λ is Lebesgue measure on
[0, T ]. Hence the trajectory x(·) under control μ has the form

x(t) = x0 +
∫

[t0,t ]×U

f (τ, x(τ ), u)μ(d(τ, u)).

In this case the first player’s outcome is

I1(μ) = σ1(x(T )) +
∫

[t0,t ]×U

g1(τ, x(τ ), u)μ(d(τ, u)).

We consider the set of generalized optimal controls

Mt0 = {μ ∈ Λ : μ maximizes I1(μ)}.

It is known from [15] that the set Mt0 is a compact metric set. Now we show the link
between U0(t0, x0) and Mt0 . If u(·) ∈ U0(t0, x0) then there exists μu(·) ∈ Mt0 such
that

∀ ϕ ∈ C([0, T ] × U)

∫

[0,T ]×U

ϕ(t, u)μu(·)(d(t, u)) =
T∫

0

ϕ(t, u(t))dt.

Hence from ui ∈ U0(t0, x0) we obtain μi = μui(·) ∈ Mt0 . Consider μi → μ∗ as
i → ∞. Since Mt0 is a closed set we get μ∗ ∈ Mt0 . Let us construct u∗ ∈ U0(t0, x0)

such that μ∗ = μu∗(·).
We have

lim
i→∞ wi = lim

i→∞ Γ (ui(·)) = Γ (u∗(·)) = w0.

Hence w0 = Γ (u∗(·)) ∈ w(t0, x0). Since Γ (u) is bounded on the set U0(t0, x0) it
follows that w(t, x0) is bounded.

We prove the following theorem.

Theorem 5.2 If conditions A1–A4 hold, then the multivalued map w, defining
(5.14) is the M-solution of problem (5.8).
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Proof Put

w∗(t0, x0) = max
y∈w(t0,x0)

y,

where w is defined by (5.14). Let us show that hypograph w∗ is viable w.r.t.
differential inclusion (5.9).

We fix the position (t0, x0) ∈ [0, T ] × R
n. Choose (t0, x0, z0) ∈ hypo w∗, z0 ≤

w∗(t0, x0). If assumptions A1–A3 are true, then in the optimal control problem with
payoff functional I1 there exists an optimal open-loop control u∗ in the class of
measurable functions. And control u∗ generates the trajectory ξ :

ξ̇ = f (t, ξ, u∗(t)), ξ(t0) = x0.

The choice of point z0 and Bellman’s optimality principle yield the equality

z0 ≤ w∗(t0, x0) = w∗(t, ξ(t))

+
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ ))dτ.

Further we have

z0 −
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ )))dτ ≤ w∗(t, ξ(t))

for any t ∈ [t0, T ]. Note that

z(t) = z0 −
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ )))dτ,

hence the trajectory (ξ(·), z(·)) satisfies to differential inclusion (5.9). From defini-
tion of the Hamiltonian H2 it follows that

g = ż = −g2(t, ξ(t), u∗(t),Q(t, ξ(t), u∗(t))), 〈f (t, ξ(t), u∗(t), p〉 − g

= 〈f (t, ξ(t), u∗(t), p〉 + g2(t, ξ(t), u∗(t),Q(t, ξ(t), u∗(t))) ∈

[H2∗(t, ξ(t), p),H ∗
2 (t, ξ(t), p)].

Hence (t, ξ(t), z(t)) ∈ hypo w∗(t, ξ(t)), t ∈ [t0, T ]. Therefore hypo w∗ is a closed
set, satisfying the definition of the hypo-solution.
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Put

w∗(t0, x0) = min
y∈w(t0,x0)

y,

where w is defined by (5.14). We choose a point (t0, x0, z0) ∈ epi w∗, z0 ≥
w∗(t0, x0). Let us consider the optimal trajectory ξ(·) of dynamical system (5.1),
generated by control u∗ and satisfying to initial condition ξ(t0) = x0. Since ξ(·) is
the optimal trajectory we have

w∗(t, ξ(t)) +
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ )))dτ

= w∗(t0, x0) ≤ z0. Therefore

w∗(t, ξ(t)) ≤ z0

−
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ )))dτ = z(t),

that is the trajectory (ξ(·), z(·)) lies in the epigraph w∗. We show that z(·) is a
solution of differential inclusion (5.9). Really

g = ż = −g2(t, ξ(t), u∗(t),Q(t, ξ(t), u∗(t))), 〈f (t, ξ(t), u∗(t), p〉 − g

= 〈f (t, ξ(t), u∗(t), p〉 + g2(t, ξ(t), u∗(t),Q(t, ξ(t), u∗(t))) ∈

[H2∗(t, ξ(t), p),H ∗
2 (t, ξ(t), p)].

Consequently epi w∗ is a closed set, satisfying the definition of the epi-solution.
Using Theorem 5.1 we obtain epi w∗

⋂
hypo w∗ is the M-solution of problem

(5.8). We note that epi w∗(T , x)
⋂

hypo w∗(T , x) = σ2(x), x ∈ R
n.

Remark 5.2 We have proved that multivalued map (5.14) is the M-solution of
problem (5.8). From definition 5.3 the M-solution is maximal-valued. Let us assume
that there exist two M-solutions W and W ′ of problem (5.8). Then we have
inclusions W ⊆ W ′ and W ′ ⊆ W . Hence W = W ′ and the M-solution is unique.

5.4 Design of Nash Equilibrium

Let us recall the definition of a Nash equilibrium in program strategies.
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Definition 5.6 ([2]) A couple of strategies (ū(·), v̄(·)) is a Nash equilibrium in two
persons differential game if following inequalities hold for any u(·) ∈ Ũ , v(·) ∈ Ṽ

σ1(x̄(T )) +
T∫

t0

g1(t, x̄(t), ū(t))dt ≥ σ1(x
[1](T )) +

T∫

t0

g1(t, x
[1](t), u(t))dt,

σ2(x̄(T )) +
T∫

t0

g2(t, x̄(t), ū(t), v̄(t))dt ≥ σ2(x̄(T )) +
T∫

t0

g2(t, x̄(t), ū(t), v(t))dt,

t ∈ [t0, T ], where

˙̄x(t) = f (t, x̄(t), ū(t)), ẋ[1](t) = f (t, x[1](t), u(t)), x̄(t0) = x[1](t0) = x0.

Let us define the control ū(·) by formula (5.6). The control ū(·) maximizes the
functional I1 for optimal control problem (5.1), and therefore the first inequality
holds in Definition 5.6.

Let v̄(·) be given by

v̄(t) ∈ arg max
v∈V

{g2(t, x̄(t), ū(t), v)}, t ∈ [t0, T ], (5.15)

where x̄(·) is a solution of problem ˙̄x(t) = f (t, x̄(t), ū(t)), x̄(t0) = x0. Since
g2 is a continuous function w.r.t. all variables, x̄(·) is a differentiable function and
ū(·) is measurable function we see that g2(·, x̄(·), ū(·), v) is a measurable function
w.r.t. t and multivalued map G(t) = {g2(t, x̄(t), ū(t), v) : v ∈ V }, t ∈ [t0, T ]
is measurable w.r.t. t . The multivalued map Gm(t) = max

v∈V
g2(t, x̄(t), ū(t), v) is

upper semicontinuous therefore this map is measurable w.r.t t . Using this fact and
Casteing’s theorem [15], we get the map

arg max
v∈V

g2(·, x(·), ū(·), v) : [t0, T ] ⇒ V

is measurable. Hence from Neiman–Aumann–Casteing’s theorem [15] the measur-
able multivalued map has a measurable selector v̄(·) : [t0, T ] → R

n.
By the definition v̄ (5.15) the second inequality for integral parts holds in

Definition 5.6.
Hence the couple of strategies (ū, v̄) provides a Nash equilibrium. The first

player solves the optimal control problem and the payoff does not depend on
behavior of the second player. Choosing the control ū(·; t0, x0), the first player will
obtain a payoff c(t0, x0). We shall show how the choice of the control of the first
player influences on the payoff of the second player.

Remark 5.3 Let us fix the point (t0, x0) ∈ [0, T ]×R
n. Let (c,w) be the generalized

solution of problem (5.2), (5.3), α ∈ w(t0, x0), then there exists a couple of Nash
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equilibrium strategies (u∗, v∗):

u∗(t) ∈ arg max
u(·)∈U0(t0,x0)

Γ (u), v∗(t) = Q(t, x[t; t0, x0]), u∗(t)),

Γ is defined by (5.12), x∗[·; t0, x0] satisfies (5.1). From A3 we can use arg max
instead of arg sup. The corresponding payoffs of players at the point (t0, x0) ∈
[0, T ] × R

n equal to (c(t0, x0), α).

5.5 Example

Let us consider the optimal control problem

ẋ = u, x(t0) = x0,

x ∈ R, t ∈ [0, T ], |u| ≤ 1, |v| ≤ 1. Leader maximizes the payoff functional

I1(u(·)) = |x(T )| −
T∫

t0

u2

2
dt → max,

and the follower maximizes payoff functional

I2(u(·), v(·)) = x(T ) −
T∫

t0

v2 + uvdt → max .

The system of Hamilton–Jacobi equations has the form

∂c

∂t
+ max

u∈U
[pu − u2

2
] = 0, c(T , x) = |x|,

∂w

∂t
+ qu0(t, x, p) + max

v∈V
[−v2 − u0(t, x, p)v] = 0, w(T , x) = x,

x ∈ R, t ∈ [0, T ], p = ∂c
∂x

, q = ∂w
∂x

. Using formula (5.4) we obtain

u0(t, x, p) =

⎧⎪⎪⎨
⎪⎪⎩

p, if |p| ≤ 1,

1, if p > 1,

−1, if p < −1.
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Lax–Hopf formula yields the solution of the first Hamilton–Jacobi equation

c(t, x) = |x| − 1/2(t − T ).

Now by formula (5.6) the open-loop control of the leader

u0(t; t0, x0) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x0 > 0,

−1, if x0 < 0,

{−1, 1}, if x0 = 0.

Applying (5.11) we construct the map Q

Q(u) = −u

2
.

Hence the open-loop control of the follower

v0(t; t0, x0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1

2
, if x0 > 0,

1

2
, if x0 < 0,

[
−1

2
,

1

2

]
, if x0 = 0.

Further we construct M-solution of the second equation

w(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x + 3

4
(t − T ), if x < 0,

x − 5

4
(t − T ), if x > 0,

{
x + 3

4
(t − T ), x − 5

4
(t − T )

}
, if x = 0.

We see that the solution of the second Hamilton–Jacobi equation is multivalued
under x = 0.

The payoffs of the players at the point (t0, x0) ∈ [0, T ] × R
n equal to (|x0| −

1/2(t0 − T ), α), where α ∈ w(t0, x0).
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