
Chapter 4
Learning in a Game of Strategic
Experimentation with Three-Armed
Exponential Bandits

Nicolas Klein

Abstract The present article provides some additional results for the two-player
game of strategic experimentation with three-armed exponential bandits analyzed
in Klein (Games Econ Behav 82:636–657, 2013). Players play replica bandits, with
one safe arm and two risky arms, which are known to be of opposite types. It is
initially unknown, however, which risky arm is good and which is bad. A good
risky arm yields lump sums at exponentially distributed times when pulled. A bad
risky arm never yields any payoff. In this article, I give a necessary and sufficient
condition for the state of the world eventually to be found out with probability 1
in any Markov perfect equilibrium in which at least one player’s value function
is continuously differentiable. Furthermore, I provide closed-form expressions for
the players’ value function in a symmetric Markov perfect equilibrium for low and
intermediate stakes.

4.1 Introduction

Think of a situation in which agents are initially uncertain about some payoff-
relevant aspect of their environment. Yet, they can learn about it over time by
exploring different options. Thus, a farmer may not know the yield of a new crop
before trying it out. Trying it out implies an opportunity cost, however, as using his
field to try the new crop means that he cannot use it to plant a traditional crop, whose
yield he already knows. The trade-off he faces is thus between optimally using the
information he already has (exploitation) and investing resources in order to acquire
new information, which will potentially be useful to him in the future (exploration).
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The so-called multi-armed bandit model has become canonical in economics to
analyze a decision maker’s trade-off between exploration and exploitation.1

But now suppose that our farmer has a neighbor and that he can observe the
kind of crop planted by his neighbor, as well as its yield. Our farmer would of
course prefer that his neighbor experiment with the new crop, as this would allow
him to get some information about it without having to bear the (opportunity) cost
of producing the information himself. Of course, his neighbor faces precisely the
same trade-off, and the informational externality leads to a situation of strategic
interaction. Such strategic bandit problems have been introduced by Bolton and
Harris [2, 3], where players choose between a risky option and a safe one. Here, I
use the exponential-bandits variant introduced by Keller et al. [6], and, in particular,
adopt the three-armed model of Klein [7].

While in [2, 3] and in [6], the risky option was of the same quality for all players,
Klein and Rady [8] introduced negative correlation between players: what was good
news to one player was bad news to the other. In [7], I have introduced a setting in
which two players have access to two risky arms of perfectly negatively correlated
types. The comparison of the results in [8] and [7] in particular thus allow for the
analysis of the impact of delegating project choice to individual agents.

For the case of perfectly positively correlated two-armed bandits, Keller et al.
[6] show that players experiment inefficiently little in equilibrium, as compared
to the cooperative benchmark. Indeed, the information players produce is a public
good; hence they produce too little of it. Indeed, they both give up on finding out
the state of the world too soon (i.e., the amount of experimentation is too low)
and they learn too slowly (i.e., the intensity of experimentation will be inefficiently
low). By contrast, Klein and Rady [8] find that, with perfectly negatively correlated
two-armed bandits, the amount of experimentation is always at the efficient level.
Furthermore, there exists an efficient equilibrium if and only if the stakes at play are
below a certain threshold. By contrast, in [7], I show that, when both agents have
access to two perfectly negatively correlated risky arms, there exists an efficient
equilibrium if and only if the stakes at play exceed a certain threshold. In the
present article, I provide closed-form expressions for the players’ value function in
a symmetric Markov perfect equilibrium for the cases in which there does not exist
an efficient equilibrium. Furthermore, I give a necessary and sufficient condition for
learning to be complete, i.e. for the state of the world to be found out with probability
1, in any Markov perfect equilibrium in which at least one player’s value function
is continuously differentiable.

The rest of this article is organised as follows. Section 4.2 explains the model
setup; Sect. 4.3 analyzes conditions under which complete learning will prevail;
Sect. 4.4 analyzes equilibrium for low and intermediate stakes, while Sect. 4.5
concludes. Formal proofs are collected in Sect. 4.6.

1The multi-armed bandit model was first introduced by Thompson [10] and Robbins [9], and
subsequently analyzed, amongst others, by Bradt et al. [4] and Bellman [1]. Gittins and Jones
[5] provided the famous Gittins-index characterization of an optimal policy.
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4.2 Model Setup

The setup is as in [7]: There are two agents playing a three-armed bandit in
continuous time each. One arm is safe in that it yields a known flow payoff of s > 0
when pulled; the other two arms, A and B, are risky in that they can be either good or
bad. It is known that exactly one of the two risky arms is good and that the same risky
arm is good for both players. Which between arms A and B is good and which is bad
is initially unknown. The good risky arm yields lump sums h > 0 at exponentially
distributed times with parameter λ > 0, when it is pulled. The bad risky arm always
yields 0. The parameters λ, s and h, are common knowledge among the players. I
assume that g := λh > s > 0.

More specifically, either player i ∈ {1, 2} can decide in continuous time how
to distribute a unit endowment flow over the three arms of his bandit; i.e., at each
instant t ∈ R+, he chooses (ki,A, ki,B) ∈ {(a, b) ∈ [0, 1]2 : a + b ≤ 1}, where
ki,A(t) (ki,B(t)) denotes the fraction of the unit endowment flow player i devotes to
arm A (B) at instant t .

Players start out from a common prior p0 ∈ (0, 1) that it is their risky arms A
that are good. As everyone’s action choices, as well as the outcomes of these action
choices, are perfectly publicly observable, there is no private information at any
time. Thus, players will share a common posterior belief that it is their risky arms
A that are good at all times t ≥ 0. We shall denoted by pt this belief at instant t .
As only a good risky arm can ever yield a lump-sum payoff, pτ = 1 (pτ = 0) at all
times τ > t if either player has received a lump sum from arm A (B) at time t . If no
such breakthrough has occurred yet by time t , the belief satisfies

pt = p0e
−λ

∫ t
0 (k1,A(τ )+k2,A(τ )) dτ

p0e
−λ

∫ t
0 (k1,A(τ )+k2,A(τ )) dτ + (1 − p0)e

−λ
∫ t

0 (k1,B(τ )+k2,B (τ )) dτ
. (4.1)

Following much of the literature, I focus on Markov perfect equilibria with the
common posterior belief pt as the state variable (which I shall sometimes simply
refer to as equilibrium). A Markov strategy for player i is a time-invariant, piecewise
continuous, function (ki,A, ki,B) : [0, 1] → {(a, b) ∈ [0, 1]2 : a + b ≤ 1}, pt �→
(ki,A, ki,B)(pt ). As in [8], a pair of Markov strategies is said to be admissible if
there exists a solution to the corresponding law of motion of beliefs (derived from
Bayes’ rule) that coincides with the limit of the unique discrete-time solution. An
inadmissible strategy pair is assumed to give both players a payoff of −∞.

Players discount payoffs at the common discount rate r > 0. An admissible
strategy pair ((k1,A, k1,B), (k2,A, k2,B)) induces a payoff function ui for players i ∈
{1, 2}, which is given by

ui(p) = E

[∫ ∞

0
re−rt

{
(ki,A(pt )pt + ki,B(pt )(1 − pt))g

+[1 − ki,A(pt ) − ki,B(pt )]s
}

dt
∣
∣ p0 = p

]
, (4.2)
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where the expectation is taken with respect to the process of beliefs {pt }t∈R+ .
Player i’s objective is to maximize ui . As one can see immediately from player i’s
objective, the other player’s actions impact ui only via the players’ common belief
process {pt }t∈R+; i.e., ours is a game of purely informational externalities.

I say that the stakes are high if g
s

≥ 4(r+λ)
2r+3λ

; they are intermediate if 2r+λ
r+λ

<
g
s

<
4(r+λ)
2r+3λ

; they are low if g
s

≤ 2r+λ
r+λ

, and very low if g
s

<
2(r+λ)
r+2λ

. It is immediate to

verify that the stakes are low if and only if p∗
1 := rs

(r+λ)(g−s)+rs
≥ 1

2 ; they are very

low if and only if p∗
2 := rs

(r+2λ)(g−s)+rs
≥ 1

2 .
Klein [7, Section 4] shows that the utilitarian planner’s solution has a bang-bang

structure.2 If the stakes at play are not very low, the planner would always use the
risky arm that looks momentarily the most promising; he would never use the safe
arm. This means that learning will be complete, i.e. the true state of the world
will be found out with probability 1. If the stakes are very low, by contrast, the
planner would use the safe arm for all beliefs in [1 − p∗

2, p∗
2 ] and the risky arm that

looks momentarily the most promising for all other beliefs. Thus, learning will be
incomplete in this case. A single player acting in isolation would optimally pursue
the same policy, with p∗

1 replacing p∗
2, and “low stakes” replacing “very low stakes,”

in the previous statements.

4.3 Complete Learning

As already mentioned in the introduction, Keller et al. [6] identified two dimensions
of inefficiency in their model: On the one hand, players give up on finding out about
the true state of the world too soon, i.e. the experimentation amount is inefficiently
small. On the other hand, players also learn too slowly, i.e. the experimentation
intensity is inefficiently low. If one were merely to focus on the long-run properties
of learning, only the former effect would be of interest. Keller et al. [6] show that,
because of the informational externalities, all experimentation stops at the single-
agent cutoff belief in any equilibrium; the efficient cutoff belief would be more
pessimistic, though, as it takes into account that the information a player generates
benefits the other players also.3 Furthermore, learning is always incomplete, i.e.

2The utilitarian planner maximizes the sum of the players’ utilities. The solution to this problem is
the policy the players would want to commit to at the outset of the game if they had commitment
power. It thus constitutes a natural efficient benchmark against which to compare our equilibria.
3By contrast, Bolton and Harris [2] identified an encouragement effect in their model. It makes
players experiment at beliefs that are more pessimistic than their single-agent cutoffs. This is
because they will receive good news with some probability, which will make the other players
more optimistic also. This then induces them to provide more experimentation, from which the
first player then benefits in turn. With fully revealing breakthroughs as in [6, 8], or this model,
however, a player could not care less what others might do after a breakthrough, as there will not
be anything left to learn. Therefore, there is no encouragement effect in these models.
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there is a positive probability that the truth will never be found out.4 In [8], however,
the amount of experimentation is always at the efficient level.5 This is because
both players cannot be exceedingly pessimistic at the same time. Indeed, as soon
as players’ single-agent cutoffs overlap, at any possible belief at least one of them
is loath to give up completely, although players may not be experimenting with the
enthusiasm required by efficiency. In particular, learning will be complete in any
equilibrium if and only if efficiency so requires.

This section will show that which of these effects prevails here depends on the
stakes at play: If stakes are so high that the single-agent cutoffs overlap, players
would not be willing ever completely to give up on finding out the true state of the
world even if they were by themselves. Yet, since all a player’s partner is doing is
to provide him some additional information for free, a player should be expected
to do at least as well as if he were by himself. Hence, the Klein and Rady [8]
effect obtains if players’ single-agent cutoffs overlap, and, in any equilibrium (in
which at least one player’s value function is smooth),6 the true state of the world
will eventually be found out with probability 1 (i.e. learning will be complete),
as efficiency requires. In the opposite case, however, the informational externality
identified by Keller et al. [6] carries the day, and, as we will see in the next section,
there exists an equilibrium entailing an inefficiently low amount of experimentation.
For some parameters, this implies incomplete equilibrium learning while efficiency
calls for complete learning.

To state the next lemma, I write u∗
1 for the value function of a single agent

operating a bandit with only a safe arm and a risky arm A, while I denote by u∗
2

the value function of a single agent operating a bandit with only a safe arm and a
risky arm B. It is straightforward to verify that u∗

2(p) = u∗
1(1 − p) for all p and

that7

u∗
1(p) =

⎧
⎨

⎩

s if p ≤ p∗
1 ,

g

[

p + λp∗
1

λp∗
1+r

(1 − p)
(

Ω(p)

Ω(p∗
1 )

) r
λ

]

if p > p∗
1

, (4.3)

4The efficient solution in [6] also implies incomplete learning.
5For perfect negative correlation, this is true in any equilibrium; for general negative correlation,
there always exists an equilibrium with this property.
6The technical requirement that at least one player’s value function be continuously differentiable
is needed on account of complications pertaining to the admissibility of strategies. I use it in the
proof of Lemma 4.1 to establish that the safe payoff s constitutes a lower bound on the player’s
equilibrium value. However, by e.g. insisting on playing (1, 0) at a single belief p̂ while playing
(0, 0) everywhere else in a neighborhood of p̂, a player could e.g. force the other player to play
(0, 1) at p̂ for mere admissibility reasons. Thus, both players’ equilibrium value functions might
be pushed below s at certain beliefs p̂. For the purposes of this section, I rule out such implausible
behavior by restricting attention to equilibria in which at least one player’s value function is
smooth.
7See Prop.3.1 in [6].
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where Ω(p) := 1−p
p

denotes the odds ratio. The following lemma tells us that u∗
1

and u∗
2 are both lower bounds on a player’s value in any equilibrium, provided his

value is smooth.

Lemma 4.1 (Lower Bound on Equilibrium Payoffs) Let u ∈ C1 be a player’s
equilibrium value function. Then, u(p) ≥ max{u∗

1(p), u∗
2(p)} for all p ∈ [0, 1].

The intuition for this result is very straightforward. Indeed, there are only
informational externalities, no payoff externalities, in our model. Thus, intuitively,
a player can only benefit from any information his opponent provides him for free;
therefore, he should be expected to do at least as well as if he were by himself,
forgoing the use of one of his risky arms to boot.

Now, if g
s

> 2r+λ
r+λ

, then p∗
1 < 1

2 < 1 − p∗
1 , so at any belief p, we have

that u∗
1(p) > s or u∗

2(p) > s or both. Thus, there cannot exist a p such that
(k1,A, k1,B)(p) = (k2,A, k2,B)(p) = (0, 0) be mutually best responses as this would
mean u1(p) = u2(p) = s. This proves the following proposition:

Proposition 4.1 (Complete Learning) If g
s

> 2r+λ
r+λ

, learning will be complete
in any Markov perfect equilibrium in which at least one player’s value function is
continuously differentiable.

It is the same threshold 2r+λ
r+λ

above which complete learning is efficient, and
prevails in any equilibrium, in the perfectly negatively correlated two-armed bandit
case.8 In our setting, however, complete learning is efficient for a larger set of
parameters, as we saw in Sect. 4.2. In the following section, I shall proceed to a
more thorough analysis of the strategic problem.

4.4 Equilibrium Payoff Functions

In [7], I have shown that there exists an efficient equilibrium in this model if and
only if the stakes are high. The purpose of this section is to construct a symmetric
equilibrium for those parameter values for which there does not exist an efficient
equilibrium. I define symmetry in keeping with [2] as well as [6]:

Definition 4.1 An equilibrium is said to be symmetric if equilibrium strategies
((k1,A, k1,B), (k2,A, k2,B)) satisfy (k1,A, k1,B)(p) = (k2,A, k2,B)(p) for all p ∈
[0, 1].

As a matter of course, in any symmetric equilibrium, u1(p) = u2(p) for all
p ∈ [0, 1]. I shall denote the players’ common value function by u. By the same
token, I shall write k1,A = k2,A = kA and k1,B = k2,B = kB .

8See Proposition 8 in [8].
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4.4.1 Low Stakes

Recall that the stakes are low if, and only if, the single-agent cutoffs for the two risky
arms do not overlap. It can be shown that in this case there exists an equilibrium
that is essentially two copies of the Keller et al. [6] symmetric equilibrium (see their
Proposition 5.1), mirrored at the p = 1

2 axis.

Proposition 4.2 (Symmetric MPE for Low Stakes) If g
s

≤ 2r+λ
r+λ

, there exists
a symmetric equilibrium where both players exclusively use the safe arm on [1 −
p∗

1, p∗
1 ], the risky arm A above the belief p̂ > p∗

1 , and the risky arm B at beliefs
below 1 − p̂, where p̂ is defined implicitly by

Ω(pm)−1 − Ω(p̂)−1 = r + λ

λ

[
1

1 − p̂
− 1

1 − p∗
1

− Ω(p∗
1)−1 ln

(
Ω(p∗

1)

Ω(p̂)

)]

.

(4.4)

In [p∗
1, p̂], the fraction kA(p) = u(p)−s

cA(p)
is allocated to risky arm A, while 1−kA(p)

is allocated to the safe arm; in [1 − p̂, 1 − p∗
1 ], the fraction kB(p) = u(p)−s

cB(p)
is

allocated to risky arm B, while 1 − kB(p) is allocated to the safe arm.
Let Vh(p) := pg + Ch(1 − p)Ω(p)

r
2λ , and Vl(p) := (1 − p)g + ClpΩ(p)− r

2λ .
Then, the players’ value function is continuously differentiable, and given by u(p) =
W(p) if 1 − p̂ ≤ p ≤ p̂, where W(p) is defined by

W(p) :=

⎧
⎪⎪⎨

⎪⎪⎩

s + r
λ
s
[
Ω(p∗

1)−1
(

1 − p

p∗
1

)
−p ln

(
Ω(p)

Ω(p∗
1 )

)]
if 1 − p̂ < p < 1 − p∗

1

s if 1 − p∗
1 ≤ p ≤ p∗

1

s + r
λ
s
[
Ω(p∗

1)
(

1 − 1−p

1−p∗
1

)
−(1 − p) ln

(
Ω(p∗

1 )

Ω(p)

)]
if p∗

1 < p < p̂

;

(4.5)

u(p) = Vh(p) if p̂ ≤ p, while u(p) = Vl(p) if p ≤ 1 − p̂, where the constants of
integration Ch and Cl are determined by Vh(p̂) = W(p̂) and Vl(1−p̂) = W(1−p̂),
respectively.

Thus, in this equilibrium, even though either player knows that one of his risky
arms is good, whenever the uncertainty is greatest, the safe option is attractive to
the point that he cannot be bothered to find out which one it is. When players are
relatively certain which risky arm is good, they invest all their resources in that arm.
When the uncertainty is of medium intensity, the equilibrium has the flavor of a
mixed-strategy equilibrium, with players devoting a uniquely determined fraction
of their resources to the risky arm they deem more likely to be good, with the rest
being invested in the safe option. As a matter of fact, the experimentation intensity
decreases continuously from kA(p̂) = 1 to kA(p∗

1) = 0 (from kB(1 − p̂) = 1
to kB(1 − p∗

1) = 0). Intuitively, the situation is very much reminiscent of the
classical Battle of the Sexes game: If one’s partner experiments, one would like
to free-ride on his efforts; if one’s partner plays safe, though, one would rather do
the experimentation oneself than give up on finding out the truth. On the relevant
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range of beliefs it is the case that as players become more optimistic, they have to
raise their experimentation intensities in order to increase free-riding incentives for
their partner. This is necessary to keep their partner indifferent, and hence willing to
mix, over both options.

Having seen that for g
s

≤ 2r+λ
r+λ

, there exists an equilibrium with smooth value
functions that implies incomplete learning, we are now in a position to strengthen
our result on the long-run properties of equilibrium learning:

Corollary 4.1 (Complete Learning) Learning will be complete in any Markov
perfect equilibrium in which at least one player’s value function is smooth, if and
only if g

s
> 2r+λ

r+λ
.

For perfect negative correlation, Klein and Rady [8] found that with the possible
exception of the knife-edge case g

s
= 2r+λ

r+λ
, learning was going to be complete in

any equilibrium if and only if complete learning was efficient. While the proposition
pertains to the exact same parameter set on which complete learning prevails in
[8], we here find by contrast that if 2(r+λ)

r+2λ
<

g
s

≤ 2r+λ
r+λ

, efficiency uniquely
calls for complete learning, yet there exists an equilibrium entailing incomplete
learning. This is because with three-armed bandits information is more valuable to
the utilitarian planner, as in case of a success he gets the full payoff of a good risky
arm. With negatively correlated two-armed bandits, however, the planner cannot
shift resources between the two types of risky arm; thus, his payoff in case of a
success is just g+s

2 .

4.4.2 Intermediate Stakes

For intermediate stakes, the equilibrium I construct is essentially of the same
structure as the previous one: It is symmetric and it requires players to mix on some
interval of beliefs. However, there does not exist an interval where both players play
safe, so that players will always eventually find out the true state of the world, even
though they do so inefficiently slowly.

Proposition 4.3 (Symmetric MPE for Intermediate Stakes) If 2r+λ
r+λ

<
g
s

<
4(r+λ)
2r+3λ

, there exists a symmetric equilibrium. Let p̌ := λ+r
λ

(2pm − 1), and W (p) be
defined by

W (p) :=
{

s + r+λ
λ

(g − s) − r
λ
ps (2 + ln(Ω(p))) if p ≤ 1

2
s + r+λ

λ
(g − s) − r

λ
(1 − p)s (2 − ln(Ω(p))) if p ≥ 1

2
(4.6)

Now, let p
†
1 > 1

2 and p
†
2 > 1

2 be defined by W (p
†
1) = λ+r(1−p

†
1)

λ+r
g and W (p

†
2) =

2s − p
†
2g, respectively. Then, let p† := p

†
1 if p

†
1 ≥ p̌; otherwise, let p† := p

†
2 .

In equilibrium, both players will exclusively use their risky arm A in [p†, 1], and
their risky arm B in [0, 1−p†]. In ] 1

2 , p†], the fraction kA(p) = W (p)−s
cA(p)

is allocated
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to risky arm A, while 1 − kA(p) is allocated to the safe arm; in [p†, 1
2 [, the fraction

kB(p) = W (p)−s
cB(p)

is allocated to risky arm B, while 1 − kB(p) is allocated to the

safe arm. At p = 1
2 , a fraction of kA( 1

2 ) = kB( 1
2 ) = (λ+r)g−(2r+λ)s

λ(2s−g)
is allocated to

either risky arm, with the rest being allocated to the safe arm.
Let Vh(p) := pg + Ch(1 − p)Ω(p)

r
2λ , and Vl(p) := (1 − p)g + ClpΩ(p)− r

2λ .
Then, the players’ value function is continuously differentiable, and given by u(p) =
W (p) in [1−p†, p†], by u(p) = Vh(p) in [p†, 1], and u(p) = Vl(p) in [0, 1−p†],
with the constants of integration Ch and Cl being determined by Vh(p

†) = W (p†)

and Vl(1 − p†) = W (1 − p†).

Thus, no matter what initial prior belief players start out from, there is a positive
probability that beliefs will end up at p = 1

2 , and hence they will try the risky project
that looked initially less auspicious. Therefore, in contrast to the equilibrium for low
stakes, there is a positive value attached to the option of having access to the second
risky project.

4.5 Conclusion

I have analyzed a game of strategic experimentation with three-armed bandits,
where the two risky arms are perfectly negatively correlated. In [7], I have shown
that there exists an efficient equilibrium if and only if the stakes are high. Here,
we have seen that any equilibrium in which at least one player’s value is smooth
involves complete learning if stakes are not low. If stakes are intermediate in size,
all equilibria are inefficient, though they involve complete learning (provided both
players’ value functions are not kinked), as required by efficiency. If the stakes
are low, all equilibria are inefficient, and there exists an equilibrium implying an
inefficiently low amount of experimentation. In particular, if the stakes are low but
not very low, there exists an equilibrium that involves incomplete learning while
efficiency requires complete learning; if the stakes are very low, the efficient solution
also implies incomplete learning.

From an economic point of view, the reason for the prevalence of free-riding in
Markov perfect equilibrium when the types of the risky arms are perfectly positively
correlated is as follows. If a player deviates by providing less effort than he is
supposed to, the other players will be more optimistic than they should be as a
result, and hence more willing to pick up the deviating player’s slack. This makes
players more inclined to free-ride. However, if players’ risky arms are negatively
correlated as in [8], it is impossible for both of them to be very pessimistic about
their respective projects at the same time, and free-riding only appears if the players’
respective single-agent cut-offs overlap. Otherwise, i.e., if the stakes are low, there
exists an efficient equilibrium. By contrast, in our setting, there exists an efficient
equilibrium if and only if the stakes are high [7], i.e. if and only if both players are
always sufficiently optimistic about one of their projects. Otherwise, the positive
correlation between players makes incentives for free-riding reappear.
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4.6 Proofs

This section collects the proofs of our results. We note that player i’s Bellman
equation is given by (see [7])

ui(p) = s + kj,ABA(p, ui) + kj,BBB(p, ui)+
max

{(ki,A,ki,B)∈[0,1]2:ki,A+ki,B≤1}
{
ki,A [BA(p, ui) − cA(p)] + ki,B [BB(p, ui) − cB(p)]

}
,

(4.7)

where {j } = {1, 2}\{i}, BA(p, u) := λ
r
p[g−u(p)−(1−p)u′(p)] and BB(p, u) :=

λ
r
(1 − p)[g − u(p) − pu′(p)] measure the learning benefit from playing arm A and

arm B, respectively, while cA(p) := s − pg and cB(p) := s − (1 − p)g measure
the appertaining myopic opportunity cost of doing so. A myopic player (i.e. a player
whose discount rate r → ∞) would use risky arm A (B) if and only if cA(p) > 0
(cB(p) > 0), i.e., if and only if p > pm := s

g
(p < 1 − pm).

Furthermore, we note for future reference (see Appendix A in [7]) that, on any
open interval of beliefs on which ((1, 0), (1, 0)) is played, both players’ value
functions satisfy the ODE

2λp(1 − p)u′(p) + (2λp + r)u(p) = (2λ + r)pg. (4.8)

On any open interval of beliefs at which a player is indifferent between his safe arm
and his risky arm A, his value function satisfies the ODE

λp(1 − p)u′(p) + λpu(p) = (λ + r)pg − rs. (4.9)

4.6.1 Proof of Lemma 4.1

In a first step, I show that s is a lower bound on u. Assume to the contrary that
there exists a belief p† ∈ ]0, 1[ such that u(p†) < s. Then, since u is continuously
differentiable and u(0) = u(1) = g > s, there exists a belief p̃ ∈ ]0, 1[ such
that u(p̃) < s and u′(p̃) = 0. I write BA and BB for BA(p, u) and BB(p, u),
respectively, suppressing arguments whenever this is convenient. Moreover, I define
B̂A(p) := λ

r
p(g − s) > 0 and B̂B(p) := λ

r
(1 − p)(g − s) > 0, while denoting

by (kj,A, kj,B) the other player’s action at p̃ in the equilibrium underlying the value
function u. Now, at p̃, u < s immediately implies BA = λ

r
p̃(g − u) > B̂A and

BB = λ
r
(1 − p̃)(g − u) > B̂B , and we have that

u − s ≥ kj,A(BA − B̂A) + kj,B(BB − B̂B) = (kj,Ap̃ + kj,B(1 − p̃))(s − u) ≥ 0,

(4.10)
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a contradiction to u < s.9 Thus, we have already shown that u∗
1 bounds u from

below at all beliefs p ≤ p∗
1 .

Now, suppose there exists a belief p > p∗
1 at which u < u∗

1. I now write B∗
A :=

λ
r
p[g−u∗

1 − (1−p)(u∗
1)

′(p)] = u∗
1 −pg and B∗

B := λ
r
(1−p)[g−u∗

1 +p(u∗
1)

′(p)].
Since B∗

A + B∗
B = λ

r
(g − u∗

1), and hence B∗
B = λ

r
(g − u∗

1) − (u∗
1 − pg), we have

that B∗
B ≥ 0 if and only if u∗

1 ≤ λ+rp
λ+r

g =: w1(p). Let p̃ be defined by w1(p̃) = s;
it is straightforward to show that p̃ < p∗

1 . Noting furthermore that u∗
1(p

∗
1) = s,

w1(1) = u∗
1(1) = g, and that w1 is linear whereas u∗

1 is strictly convex in p, we
conclude that u∗

1 < w1 and hence B∗
B > 0 on [p∗

1, 1[ . Moreover, since B∗
A ≥ 0 (see

[6]), we have u∗
1 = pg + B∗

A ≤ pg + kj,BB∗
B + (1 + kj,A)B∗

A on [p∗, 1], for any
(kj,A, kj,B).

Since s is a lower bound on u, by continuity, u(p) < u∗
1(p) implies the existence

of a belief strictly greater than p∗
1 where u < u∗

1 and u′
1 ≤ (u∗

1)
′. This immediately

yields BA > B∗
A > cA, as well as

u − u∗
1 ≥ pg + kj,BBB + (1 + kj,A)BA − [pg + (1 + kj,A)B∗

A + kj,BB∗
B ] (4.11)

= kj,B(BA + BB − B∗
A − B∗

B) + (1 + kj,A − kj,B)(BA − B∗
A) (4.12)

= kj,B
λ

r
(u∗

1 − u1) + (1 + kj,A − kj,B)(BA − B∗
A) > 0, (4.13)

a contradiction.10

An analogous argument applies for u∗
2. 
�

4.6.2 Proof of Proposition 4.2

First, I show that p̂ as defined in the proposition indeed exists and is unique in
]p∗

1, 1[. It is immediate to verify that the left-hand side of the defining equation is
decreasing, while the right-hand side is increasing in p̂. Moreover, for p̂ = p∗

1, the
left-hand side is strictly positive, while the right-hand side is zero. Now, for p̂ ↑ 1,
the left-hand side tends to −∞, while the right-hand side is positive. The claim thus
follows by continuity.

9Strictly speaking, the first inequality relies on the admissibility of the action (0, 0) at p̃. However,
even if (0, 0) should not be admissible at p̃, my definition of strategies still guarantees the existence
of a neighborhood of p̃ in which (0, 0) is admissible everywhere except at p̃. Hence, by continuous
differentiability of u, there exists a belief ˜̃p in this neighborhood at which the same contradiction
can be derived.
10Again, strictly speaking, the first inequality relies on the admissibility of the action (1, 0) at the
belief in question, and my previous remark applies.
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The proposed policies imply a well-defined law of motion for the posterior belief.
It is immediate to verify that the function u satisfies value matching and smooth
pasting at p∗

1 and 1 − p∗
1. To show that it is continuously differentiable, it remains

to be shown that smooth pasting is satisfied at p̂ and 1 − p̂. From the appertaining
ODEs, we have that

λp̂(1 − p̂)u′(p̂−) + λp̂u(p̂) = (λ + r)p̂g − rs (4.14)

and

2λp̂(1 − p̂)u′(p̂+) + (2λp̂ + r)u(p̂) = (2λ + r)p̂g, (4.15)

where I write u′(p̂−) := limp↑p̂ u′(p) and u′(p̂+) := limp↓p̂ u′(p). Now,
u′(p̂−) = u′(p̂+) if and only if u(p̂) = 2s − p̂g. Now, algebra shows that indeed
W(p̂) = 2s−p̂g. By symmetry, we can thus conclude that W(1−p̂) = 2s−(1−p̂)g

and that u is continuously differentiable. Furthermore, it is strictly decreasing on
]0, 1 − p∗

1 [ and strictly increasing on ]p∗
1, 1[. Moreover, u = s + 2BB − cB on

[0, 1 − p̂], u = s + kBBB on [1 − p̂, 1 −p∗
1], u = s on [1 −p∗

1, p∗
1 ], u = s + kABA

on [p∗
1, p̂] and u = s+2BA−cA on [p̂, 1], which shows that u is indeed the players’

payoff function from ((kA, kB), (kA, kB)).
Consider first the interval ]1 − p∗

1, p∗
1 [. It has to be shown that BA − cA < 0

and BB − cB < 0. On ]1 − p∗
1 , p∗

1 [, we have that u = s and u′ = 0, and therefore

BA − cA = λ+r
r

pg − λp+r
r

s. This is strictly negative if and only if p < p∗
1. By the

same token, BB − cB = λ+r
r

(1 − p)g − λ(1−p)+r
r

s. This is strictly negative if and
only if p > 1 − p∗

1 .
Now, consider the interval ]p∗

1, p̂[. Here, BA = cA by construction, as kA is
determined by the indifference condition and symmetry. It remains to be shown that
BB ≤ cB here. Using the relevant differential equation, I find that BB = λ

r
(g −u)+

pg − s. This is less than cB = s − (1 − p)g if and only if u ≥ λ+r
λ

g − 2r
λ

s. Yet,
λ+r
λ

g − 2r
λ

s ≤ s if and only if g
s

≤ 2r+λ
r+λ

, so that the relevant inequality is satisfied.
The interval ]1 − p̂, 1 − p∗

1 [ is treated in an analogous way.
Finally, consider the interval ]p̂, 1[. Plugging in the relevant differential equation

yields BA − BB = u − pg − λ
r
(g − u). This exceeds cA − cB = (1 − 2p)g if

and only if u ≥ λ+r(1−p)
λ+r

g. At p̂, the indifference condition gives us kA(p̂) = 1,

which implies u(p̂) = 2s − p̂g. Since p �→ λ+r(1−p)
λ+r

g is decreasing and u is

increasing, it is sufficient for us to show that u(p̂) ≥ λ+r(1−p̂)
λ+r

g, which is equivalent

to p̂ ≤ λ+r
λ

(2pm − 1). From the indifference condition for the experimentation

intensity k̃A(p) := u(p)−s
cA(p)

, we see that k̃A is strictly increasing on ]p∗
1 , pm[, and

that limp↑pm k̃A(p) = +∞; hence p̂ < pm. Therefore, it is sufficient to show that
pm ≤ λ+r

λ
(2pm − 1), which is equivalent to g

s
≤ 2r+λ

r+λ
. 
�
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4.6.3 Proof of Proposition 4.3

The proposed policies imply a well-defined law of motion for the posterior belief.
The function u is strictly decreasing on ]0, 1

2 [ and strictly increasing on ] 1
2 , 1[.

Furthermore, as lim
p↑ 1

2
u′(p) = lim

p↓ 1
2
u′(p) = 0, the function u is continuously

differentiable. Moreover, u = s + 2BB − cB on [0, 1 − p†], u = s + kBBB on
[1 − p†, 1

2 ], u = s + kABA on [ 1
2 , p†] and u = s + 2BA − cA on [p†, 1], which

shows that u is indeed the players’ payoff function from ((kA, kB), (kA, kB)).
To establish existence and uniqueness of p†, note that p �→ λ+r(1−p)

λ+r
g and p �→

2s −pg are strictly decreasing in p, whereas W is strictly increasing in p on ] 1
2 , 1[.

Now, W ( 1
2 ) = r+λ

λ
g− 2r

λ
s. This is strictly less than

λ+ r
2

λ+r
g and 2s− g

2 whenever g
s

<
4(r+λ)
2r+3λ

. Moreover,W ( 1
2 ) strictly exceeds λ+r(1−pm)

λ+r
g = g− r

r+λ
s and 2s−pmg = s

whenever g
s

> 2r+λ
r+λ

. Thus, I have established uniqueness and existence of p† and

that p† ∈] 1
2 , pm[.

By construction, u > max{λ+r(1−p)
λ+r

g, 2s − pg} in ]p†, 1], which, by Lemma
A.1 in [7], implies that ((1, 0), (1, 0)) are mutually best responses in this region; by
the same token, u > max{λ+rp

λ+r
g, 2s − (1 − p)g} in [0, 1 − p†[, which, by Lemma

A.1 in [7], implies that ((0, 1), (0, 1)) are mutually best responses in that region.
Now, consider the interval ] 1

2 , p†]. Here, BA = cA by construction, so all that
remains to be shown is BB ≤ cB . By plugging in the indifference condition for u′,
I get BB = λ

r
(g − u) + pg − s. This is less than cB = s − (1 − p)g if and only if

u ≥ λ+r
λ

g − 2r
λ

s = W ( 1
2 ) = u( 1

2 ), which is satisfied by the monotonicity properties
of u. An analogous argument establishes BA ≤ cA on [1 − p†, 1

2 [. 
�
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