
Chapter 2
Dynamic Voluntary Provision of Public
Goods: The Recursive Nash Bargaining
Solution

Simon Hoof

Abstract Grim trigger strategies can support any set of control paths as a coop-
erative equilibrium, if they yield at least the value of the noncooperative Nash
equilibrium. We introduce the recursive Nash bargaining solution as an equilibrium
selection device and study its properties by means of an analytically tractable n-
person differential game. The idea is that the agents bargain over a tuple of stationary
Markovian strategies, before the game has started. It is shown that under symmetry
the bargaining solution yields efficient controls.

2.1 Introduction

Most noncooperative differential games lack Pareto efficiency. That is, all agents can
increase their individual payoffs if they agree to coordinate controls. However, in
order to attain the socially optimal outcome at least two conditions must be fulfilled:
(1) the agents form the grand coalition to derive the efficient controls and (2) payoffs
must be transferable and distributed in such a way that every agent benefits from
cooperation.1

Here we study a mechanism which implements the Pareto efficient outcome as
a bargaining solution. The crucial difference to the classic cooperative approach is
that agents do not mutually agree to maximize overall payoffs and distribute them
appropriately, but bargain over the controls. In order to support the resulting controls
as an equilibriumwe fix grim trigger strategies. If an agent defects on the agreement,
all agents switch to their noncooperative Nash equilibrium strategies [7].

1See Yeung and Petrosyan [9] for a recent treatment on subgame consistent cooperation in
differential games.
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Sorger [6] proposed the recursive Nash [4] bargaining solution for difference
games. We introduce a continuous time analogon and apply it to the differential
game of public good provision of Fershtman and Nitzan [2]. Considering the
noncooperative equilibrium they showed that the public good is underprovided
with respect to the efficient solution. The result, however, crucially depends on
the linearity of the Markovian strategies. This simplification makes the game
analytically tractable and yields a unique steady state.2

This note contributes to the literature on cooperative agreements in noncooper-
ative differential games. It is well known that grim trigger strategies can support
a set of control paths as equilibria, if they payoff dominate the noncooperative
Nash equilibrium. The Nash bargaining solution can then be used as an equilibrium
selection device. Since bargaining problems are defined in the payoff space we need
to construct a value under agreement. In games with transferable payoffs one can
simply fix the efficient value of the grand coalition and define an imputation. Here,
however, we do not assume that the grand coalition forms and jointly maximizes
payoffs. But we can define the agreement value in terms of a stationary Hamilton-
Jacobi-Bellman equation (HJBe), if the agents stick to the agreement strategies over
the entire time interval. The agreement strategies are then determined by the Nash
bargaining solution.

The remainder of the paper is organized as follows: Sect. 2.2 presents the
problem, Sect. 2.3 the solution concept and Sect. 2.4 concludes.

2.2 Problem Statement

The model is essentially the most rudimentary version of Fershtman and Nitzan
[2].3 Let x(t) ∈ X := [0, 1

2 ] denote the stock of a pure public good at time t ∈ R+.
We could think of x being the total contribution to some joint project carried out by
n agents. Each agent i ∈ N := {1, 2, . . . , n} can partially control the evolution of
the state according to the state equation

ẋ(t) = f (x(t), u(t)) =
∑

i∈N

ui(t) − δx(t) (2.1)

x0 := x(0) ∈ X (2.2)

where u(t) := (ui(t))i∈N ∈ ×i∈NUi =: U ⊂ Rn denotes the investment (control)
vector and δ ∈ (0, 1] is the deprecation rate. In the context of the joint project, ui(t)

then denotes the contribution rate of any agent i ∈ N . We consider quadratic payoffs

2Wirl [8] showed that within the set of nonlinear Markovian strategies the Nash equilibrium is
nonunique and that the efficient steady state is potentially reachable.
3See also Dockner et al. [1, Ch. 9.5] for a textbook treatment.
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of the form

Fi(x(t), ui(t)) = x(t)(1 − x(t)) − 1

2
ui(t)

2 (2.3)

such that the game is linear quadratic and thus possesses a closed form solution [1,
Ch. 7.1]. Note that the instantaneous payoff function is monotonously increasing
in the state ∂Fi(x,ui)

∂x
> 0 for all x ∈ X. The state is thus a pure public good and

each agent benefits by its provision. With costly investment, however, there exists a
trade-off between increasing the stock and minimizing costs. This trade-off defines
a public good game. Each agent wants the others to invest, such that one can free
ride on the effort of the other agents. This behavior results in an inefficiently low
overall investment level. The objective functional for each agent i ∈ N is then given
by the stream of discounted payoffs

Ji(u(s), t) :=
∫ ∞

t

e−r(s−t )Fi(x(s), ui(s))ds (2.4)

where r > 0 denotes the time preference rate.

2.3 Solution Concepts

In what follows we consider a stationary setup and hence save the time argument
t frequently. First we will derive the efficient collusive solution of joint payoff
maximization. The efficient value is an upper bound on the agreement value. We
then derive the noncooperative Nash equilibrium which serves as the disagreement
value for the bargaining solution. The noncooperative equilibrium value is a lower
bound on the agreement value. Any cooperative agreement lies in the set of
strategies which support payoffs between the noncooperative Nash and efficient
value. The noncooperative equilibrium strategies also serve as threats for deviations
from the agreed upon bargaining solution.

2.3.1 Collusive Solution

Assume all agents agree to cooperate and jointly maximize overall payoffs. The
value function for the efficient solution then reads

C(x(t)) := max
u(s)∈U

∑

i∈N

Ji(u(s), t). (2.5)
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The optimal controls must satisfy the stationary HJBe

rC(x) = max
u∈U

{
∑

i∈N

Fi(x, ui) + C′(x)f (x, u)

}
. (2.6)

The maximizers of the right hand side of (2.6) are ui = C′(x) for all i ∈ N .
Substituting the maximizers into the HJBe yields

rC(x) = nx(1 − x) + n

2
C′(x)2 − C′(x)δx. (2.7)

Theorem 2.1 If we consider symmetric stationary linear strategies of the form ûi =
αx + β for all i ∈ N where α and β are constants, then there exists a unique
quadratic solution to (2.7)

C(x) = α

2
x2 + βx + γ (2.8)

with

α := 1

2n

(
r + 2δ −

√
(r + 2δ)2 + 8n2

)
, (2.9)

β := n

δ − nα + r
, (2.10)

γ := n

2r
β2. (2.11)

Proof Substitute the guess (2.8) and thus C′(x) = αx + β into (2.7)

r
(α

2
x2 + βx + γ

)
= nx(1 − x) + n

2
(αx + β)2 − (αx + β)δx. (2.12)

This optimality condition must hold at any x ∈ X. Evaluate (2.12) at x = 0, which
yields γ

rγ = n

2
β2 ⇐⇒ γ = n

2r
β2. (2.13)

Taking the derivative of (2.12) gives

r(αx + β) = n(1 − 2x) + αn(αx + β) − δ(2αx + β). (2.14)
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Again, at x = 0 we have

rβ = n + αnβ − δβ ⇐⇒ β = n

δ − αn + r
. (2.15)

Resubstituting β in (2.14) and solving for α yields

α = 1

2n

(
r + 2δ ±

√
(r + 2δ)2 + 8n2

)
. (2.16)

Note that the state dynamics become ẋ(t) = (nα−δ)x(t)+nβ. There exists a unique
and globally asymptotically stable steady state at x = −nβ/(nα − δ) if nα − δ < 0
holds, which is ensured for the negative root of (2.16).

2.3.2 Noncooperative Equilibrium

The collusive solution implies two restrictive assumptions. The grand coalition must
form and payoffs must be transferable in order to split the total payoff.4 Let us
assume that the collusive solution is not feasible. If this is the case we consider a
noncooperative differential game and each agent maximizes his individual payoffs.
The noncooperativeMarkovian strategies are denoted by φi : X → Ui and satisfy5

φi(x(s)) ∈ arg max
ui (s)∈Ui

Ji(ui(s), φ−i (x(s)), t). (2.17)

where φ−i := (φj )j∈N\{i}. A noncooperative Nash equilibrium is then defined as
follows.

Definition 2.1 The strategy tuple φ(x(s)) := (φi(x(s)))i∈N ∈ U is a noncoopera-
tive Nash equilibrium if the following holds

Ji(φ(x(s)), t) ≥ Ji(ui(s), φ−i (x(s)), t) ∀ui(s) ∈ Ui, ∀i ∈ N. (2.18)

Denote by

Di(x(t)) := Ji(φ(x(s)), t) (2.19)

the noncooperative disagreement value.

4The latter assumption is not too prohibitive. If payoffs were not transferable the individual
cooperative value is simply given by Ci(xt ) = Ji(û(s), t) where û(s) are the Pareto efficient
controls. It turns out that in the symmetric setup Ci(xt ) = C(xt )

n
which would also be the result

under an equal sharing rule with transferable payoffs.
5See e.g. Dockner et al. [1, Ch. 4] for the theory on noncooperative differential games.
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Theorem 2.2 If we consider symmetric stationary linear strategies of the form
φi(x) = ωx + λ for all i ∈ N where ω and λ are constants, then there exists a
unique quadratic solution to (2.19)

Di(x) = ω

2
x2 + λx + μ (2.20)

with

ω := 1

2(2n − 1)

(
r + 2δ −

√
(r + 2δ)2 + 8(2n − 1)

)
, (2.21)

λ := 1

δ − (2n − 1)ω + r
, (2.22)

μ := 2n − 1

2r
λ2. (2.23)

Proof The proof follows the same steps as Theorem 2.1.

The noncooperative equilibrium, however, is generally not efficient. It can be
shown eventually that the collusive solution yields a cooperation dividend such that
the value under cooperation always exceeds the noncooperative value, i.e., C(x) >∑

i∈N Di(x) ∀x ∈ X. The investment levels and thus the provision of the public
good are inefficiently low. This result is standard in public good games and due
to free riding. It is rational to assume that the agents do not want to stick to the
fully noncooperative equilibrium, but increase overall efficiency by exploiting the
cooperation dividend.

2.3.3 Bargaining Solution

It was shown by Tolwinski et al. [7]6 that any control path ũt
i := (ũi (s))s≥t , i ∈ N

can be supported as an equilibrium if the control profiles are agreeable and defection
from the agreement is punished.7 Let σi : X → Ui denote a Markovian strategy that
generates ũi . Suppose the agents agree on some strategy profile σ(x) := (σi(x))i∈N

at t < 0 before the game has started. If the agents agree from t onwards, the
agreement value is defined as

Ai(x(t)) = Ji(σ (x(s)), t). (2.24)

6See also Dockner et al. [1, Ch. 6].
7Agreeability is a stronger notion than time consistency. In the former the agreement payoff
dominates the noncooperative play for any state while in the latter only along the cooperative path.
Time consistency was introduced by Petrosjan [5] (originally 1977) and agreeability by Kaitala
and Pohjola [3]. See also Zaccour [10] for a tutorial on cooperative differential games.
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Definition 2.2 A strategy tuple σ(x) is agreeable at t if

Ai(x(t)) ≥ Di(x(t)) ∀t, ∀x(t), ∀i (2.25)

such that every agent benefits the agreement in comparison to the noncooperative
equilibrium.

If this inequality was not about to hold there exists an agent who rather switches
to the noncooperative equilibrium, because it payoff dominates the agreement.
The condition, also refereed to dynamic individual rationality, is necessary but not
sufficient for dynamic stability of an agreement. An agent might deviate from the
agreement if he benefits from it.

Now we construct the history dependent non-Markovian grim trigger strategies
τi : [0,∞) → Ui that support σi(x) as an equilibrium. Given some agreement
strategy profile σ(x) the agents can solve the differential equation (2.1) for the
agreement trajectory of the state

xa(t) := x0 +
∫ t

0
f (x(s), σ (x(s)))ds. (2.26)

Suppose the agents perfectly observe the state and can recall the history of the state
(x(s))s∈[0,t ]. If they observe that an agent deviates in t , they can impose punishment
with delay t + ε. Now the grim strategies read

τ (s) =
{

σ(x(s)) for s ∈ [t, t + ε] if x(l) = xa(l) ∀l ∈ [0, t],
φ(x(s)) for s ∈ [t + ε,∞) if x(t) �= xa(t).

(2.27)

That is, if the agents observe that another player deviated at t from the agreement
they implement their noncooperative equilibrium strategies from t + ε onwards. Let
d ∈ N denote a potential defector who deviates from σ(x) at t . In the interval s ∈
[t, t +ε] he maximizes his payoff against the agreement strategies of the opponents.
From t +ε onwards he receives the discounted disagreement payoff. Let Vd(x(t); ε)

denote the value of the defector defined as

Vd(x(t); ε) := max
(ud(s))s∈[t,t+ε]

∫ t+ε

t

e−r(s−t )Fd(x(s), ud(s))ds

+ e−rεDd(x(t + ε))

s.t. ẋ(s) = f (x(s), ud(s), σ−d (x(s))) (s ∈ [t, t + ε]).

(2.28)

The threat is effective if

Ai(x(t)) ≥ Vi(x(t); ε) ∀x(t), ∀i (2.29)
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holds and every agent benefits the agreement over defecting on the agreement. Now
we can always fix an ε ∈ (0, ε] such that (2.29) holds. Suppose punishment can be
implemented instantly ε = 0. Equation (2.29) then becomes

Ai(x(t)) ≥ Vi(x(t); 0) = Di(x(t)) (2.30)

which is true by the definition of individual rational agreements. Let ε denote a
threshold such that (2.29) holds with equality

Ai(x(t)) = Vi(x(t); ε). (2.31)

Then the threat is effective for all ε ∈ (0, ε]. The threat is also credible, because after
defection occurs all agents switch to their noncooperative equilibrium strategies and
thus have no unilateral incentive to deviate from the punishment by the definition
of an equilibrium. The grim trigger strategies and a sufficiently small punishment
delay guarantee that the agents stick to the initial agreement over the entire time
horizon.

Differentiating (2.24) w.r.t. time yields a representation of the agreement value
in terms of the stationary HJBe

A′
i (x(t))ẋ(t) = −Fi(x(t), σi(x(t))) +

∫ ∞

t

re−r(s−t )Fi(x(s), σi(x(s)))ds

(2.32)

⇐⇒ rAi(x) = Fi(x, σi(x)) + A′
i (x)f (x, σ (x)) (2.33)

This gives us a stationary definition for the agreement value. Next we want to
determine a particular strategy profile σ(x) by the Nash bargaining solution. Fix
the excess demand function as follows

Ei(x, σ (x)) := 1

r
[Fi(x, σi(x)) + A′

i (x)f (x, σ (x))] − Di(x). (2.34)

That is, each agent claims an amount which exceeds his disagreement value. Since
each agent will only agree on some bargaining strategy if it gives him at least his
disagreement value, we must restrict the control set. The set of individual rational
strategies is then defined as

Ω(x) := {σ(x) ∈ U | Ei(x, σ (x)) ≥ 0 ∀i ∈ N}. (2.35)

Note that these are all stationary representations. That is, the actual time instance
t is not important, but state x(t). Since the relation holds for all t ∈ R, we saved the
time argument. We are now in the position to state our main result and show how to
solve for the bargaining strategy σ(x).
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Theorem 2.3 For the fully symmetric case the agreement strategies that solve the
Nash bargaining product

σN(x) ∈ arg max
σ(x)∈Ω(x)

∏

i∈N

Ei(x, σ (x)) (2.36)

yield the Pareto optimal controls.

Proof The first order conditions for j ∈ N of (2.36) is given by

0 = ∂
∏

i∈N Ei(x, σ (x))

∂σj (x)

⇐⇒ 0 = 1

r

∑

i∈N

⎡

⎣∂Ei(x, σ (x))

∂σj (x)

∏

k∈N\{i}
Ek(x, σ (x))

⎤

⎦

⇐⇒ 0 = ∂Ej(x, σ (x))

∂σj (x)

∏

k∈N\{j}
Ek(x, σ (x))

+
∑

i∈N\{j}

⎡

⎣∂Ei(x, σ (x))

∂σj (x)

∏

k∈N\{i}
Ek(x, σ (x))

⎤

⎦

⇐⇒ 0 = (−σj (x) + A′
j (x))

∏

k∈N\{j}
Ek(x, σ (x))

+
∑

i∈N\{j}

⎡

⎣A′
i (x)

∏

k∈N\{i}
Ek(x, σ (x))

⎤

⎦.

(2.37)

Under symmetry, we must have Ei(·) =: E(·), A′
i (·) =: A

′
(·) and σi(·) =: σ(·) for

all i ∈ N . The first order condition then becomes

(−σ(x) + nA
′
(x))E(x, σ (x))n−1 = 0 ⇐⇒ σ (x) = nA

′
(x). (2.38)

Since E(·) = 0 ⇔ A(·) = D(·) implies that all agents stick to the disagreement
strategy we can neglect this case here. Now substitute the maximizer σ(x) = nA

′
(x)

into (2.33) which gives

rA(x) = x(1 − x) − 1

2
σ(x)2 + σ(x)

n
(nσ(x) − δx)

= x(1 − x) + 1

2
σ(x)2 − δ

n
σ(x)x.

(2.39)
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Take the derivative with respect to x

rA
′
(x)

(2.38)= r

n
σ(x) = 1 − 2x + σ(x)σ ′(x) − δ

n
(σ ′(x)x + σ(x)). (2.40)

We claimed that the agreement strategies satisfy the efficient solution and are thus
given by σ(x) = αx + β with σ ′(x) = α. Equation (2.40) becomes

r

n
(αx + β) = 1 − 2x + (αx + β)α − δ

n
(2αx + β). (2.41)

This relation must hold at any x ∈ X. At x = 0, the equation simplifies to

r

n
β = 1 + βα − δ

n
β ⇐⇒ β = n

δ − nα + r
= (2.10). (2.42)

Now substitute β into (2.41) and solve for α, which then is identical with (2.9). Since
the controls and thus dynamics are identical under the collusive and bargaining
solution, the values must be identical as well.

2.4 Conclusion

We studied the recursive Nash bargaining solution for symmetric differential games.
It was shown by an analytically tractable example that the bargaining solution yields
the Pareto efficient outcome of full cooperation. In an accompanying paper the
author also wants to investigate asymmetric games and compare different solution
concepts (e.g. Kalai-Smorodinsky and Egalitarian solution). Especially for the
case of asymmetric discounting the recursive bargaining solution can be useful,
because then efficient controls are not derivable in the standard way by joint payoff
maximization.
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