
Chapter 13
Characteristic Functions in a Linear
Oligopoly TU Game

Artem Sedakov

Abstract We consider a linear oligopoly TU game without transferable technolo-
gies in which the characteristic function is determined from different perspectives.
In so-called γ -, δ-, and ζ -games, we study the properties of characteristic functions
such as monotonicity, superadditivity, and supermodularity.We also show that these
games have nonempty cores of a nested structure when the δ-characteristic function
is supermodular.

13.1 Introduction

In the definition of a TU game, the characteristic function plays an important role as
it measures the worth of any coalition of players, which, in turn, influences players’
cooperative payoffs. When the game is initially formulated as a normal-form game,
the characteristic function of the corresponding TU game has to be determined. The
first study on this problem was done in [12] in which the concepts of so-called
α- and β-characteristic functions were proposed. Later in [1], TU games based
on these characteristic functions were called α- and β-games, respectively. When
transiting from a normal-form game to the corresponding TU game, other studies
devoted to the definition of the characteristic function include the concepts of γ -, δ-,
and ζ -games proposed in [8, 9], and [5], respectively.1 All these definitions of the
corresponding TU games proceed from the assumption that any coalition of players
maximizes the sum of the payoffs of its members.

1Characteristic functions considered in [9] and [8] were called later the γ - and δ-characteristic
functions, in [2] and [10], respectively.
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In this paper, we study the properties of the aforementioned characteristic
functions applicable to linear oligopoly games where a finite number of firms
producing a homogeneous product compete in a market. The literature on this topic
covers two means of determining the cost of a group of firms (coalition): games with
transferable technologies (weak synergy) [6, 13, 14], and gameswithout transferable
technologies [3, 4, 7]. Here, we follow the second approach as it is consistent with
[12] in determining the profit of a coalition.

For the class of oligopoly TU games under consideration, the properties of α- and
β-games have already been studied in [3, 7]. We continue studying the properties
of γ -, δ-, and ζ -games such as monotonicity, superadditivity, and convexity. The
remainder of the paper has the following structure. In Sect. 13.2, we consider a basic
linear oligopoly game for which both noncooperative and cooperative solutions are
presented. Next, Sect. 13.3 provides closed-form expressions for α-, β-, γ -, δ-, and
ζ -characteristic functions, while their properties are examined in Sect. 13.4. The
existence of the cores of linear oligopoly TU games based on the aforementioned
characteristic functions is discussed in Sect. 13.5. Section 13.6 concludes.

13.2 The Model

We consider a market consisting of firms–competitors producing a homogeneous
product. Denote the set of the firms by N = {1, . . . , n} with n � 2. Each firm
decides on its output, i.e., the quantity it must produce, qi ∈ Qi = [0, a] with
a > 0, thus the output is the firm’s strategy. The market price for the product is
determined by the profile of quantities q = (q1, . . . , qn) according to the inverse
demand function P(q) = (

a − ∑
i∈N qi

)
+ = max{0, a − ∑

i∈N qi}. Under the
assumption of linearity of the cost function Ci(qi) = ciqi with ci < a for any firm
i ∈ N , we obtain the following expression of firm i’s profit: πi(q) = (P (q)− ci)qi .
Thus we have a noncooperative normal-form game (N, {Qi}i∈N, {πi}i∈N). We note
that πi is not concave on

∏
j∈N Qj for any i ∈ N .

For any subset S ⊆ N , let IS = {i ∈ N : i = argminj∈S cj }, a firm belonging to
IS be denoted by iS , and cS = ∑

j∈S cj .

13.2.1 Nash Equilibrium

A Nash equilibrium in the game (N, {Qi }i∈N, {πi}i∈N) is the profile q∗ =
(q∗

1 , . . . , q
∗
n) such that πi(q

∗) � πi(qi, q
∗−i ) for any i ∈ N and qi ∈ [0, a], where

q∗−i denotes the profile of outputs of all firms except firm i in q∗. For practical
reasons, we suppose that the price P(q) is positive under the equilibrium. It is well-
known that the Nash equilibrium profile q∗ has the form:

q∗
i = a + cN

n + 1
− ci, i ∈ N. (13.1)
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From the expression of equilibrium outputs, it follows that q∗
i + ci = q∗

j + cj and
therefore q∗

i −q∗
j = cj −ci for any two firms i and j . To meet a positive equilibrium

profile q∗, we additionally require that

(n + 1)ci < a + cN for all i ∈ N. (13.2)

Under the Nash equilibrium profile q∗ we notice the following:
∑

i∈N q∗
i < a, the

profit of firm i ∈ N is positive and it equals πi(q
∗) = (q∗

i )2; the equilibrium price
for the product becomes P(q∗) = a+cN

n+1 what exceeds the unit cost of any firm
owning to inequality (13.2).

13.2.2 Cooperative Agreement

Now we shall consider the case when firms aim at maximizing the sum of their
profits without being restricted in forming one alliance. This means that one must
consider the following optimization problem:

max
q

∑

i∈N

πi(q) subject to qi ∈ [0, a], i ∈ N. (13.3)

For practical reasons, we isolate the case when the price P(q) is positive under
the solution. Otherwise, when this price equals zero, the sum to be maximized will
be nonpositive. The optimal solution of problem (13.3) will be denoted by q̄ =
(q̄1, . . . , q̄n) and called the cooperative agreement. The optimization problem (13.3)
may be written in an alternative form:

max
q1,...,qn

∑

i∈N

(a − ci)qi −
(

∑

i∈N

qi

)2

(13.4)

subject to qi ∈ [0, a], i ∈ N.

To analyze both the solution and the value of problem (13.4), we will use the
following statement.

Proposition 13.1 Let z, z1, . . . , zk be real numbers such that z � z1 � . . . � zk >

0. The value of the constrained optimization problem

max
x1,...,xk

k∑

i=1

zixi −
(

k∑

i=1

xi

)2

(13.5)

subject to xi ∈ [0, z], i = 1, . . . , k,

equals z21/4. This value is attained at x = (z1/2, 0, . . . , 0).
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Note that Proposition 13.1 does not list all optimal solutions. For example,
when z1 = z2, the aforementioned optimization problem (13.5) admits any optimal
solution (wz1

2 , (1−w)z1
2 , 0, . . . , 0) where w ∈ [0, 1]. When z1 = . . . = zk0 for some

integer k0 � k, the profile x = (x1, . . . , xk) where

xi =
{ z1

2k0
, if i � k0,

0, if k0 < i � k,

also appears to be the optimal solution of the optimization problem (13.5) as it gives
the same value of z21/4. For the analysis that we carry out below, we are interested
only in the value of the constrained optimization problem, therefore the optimal
solution/solutions are not of much relevance.

The cooperative agreement q̄ = (q̄1, . . . , q̄n) can directly be found from
Proposition 13.1:

q̄i =
⎧
⎨

⎩

a − ciN

2|IN | , if i ∈ IN ,

0, otherwise.
(13.6)

Under the cooperative agreement, only firms with the lowest unit cost produce
positive output. Firm i’s profit under this agreement equals

πi(q̄) =
⎧
⎨

⎩

(a − ciN )2

4|IN | , if i ∈ IN ,

0, otherwise,
(13.7)

and the sum of firms’ profits is
∑

i∈N πi(q̄) = (a − ciN )2/4. The price on the
product will be P(q̄) = (a + ciN )/2. Comparing the equilibrium and cooperative
policies, we conclude that P(q̄) > P(q∗). Moreover since q̄ maximizes the sum of
firms’ profits, it immediately follows that

∑
i∈N πi(q̄) �

∑
i∈N πi(q

∗), yet there
may exist a firm j ∈ N that πj (q̄) < πj (q

∗). At the same time,
∑

i∈N q̄i <∑
i∈N q∗

i . Indeed,

∑

i∈N

q∗
i −

∑

i∈N

q̄i = na − cN

n + 1
− a − ciN

2
= (n − 1)a − 2cN + (n + 1)ciN

2(n + 1)

>
(n + 1)cN\iN − (n − 1)cN − 2cN + (n + 1)ciN

2(n + 1)

= (n + 1)cN − (n − 1)cN − 2cN

2(n + 1)
= 0.

The inequality is true because (n − 1)(a + cN) > (n + 1)cN\iN owning to
(13.2). Summarizing the above, under the cooperative agreement firms produce less
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product, its price is higher, and firms get more profit in total with respect to the Nash
equilibrium agreement.

13.3 Characteristic Functions in a Linear Oligopoly
TU Game

We have observed that under the cooperative agreement, a firm may receive
zero profit, however its profit is always positive under the Nash equilibrium. To
encourage firms to cooperate with each other, the joint profit of

∑
i∈N πi(q̄) should

be allocated in an alternative way, differing from (13.7). For this reason, we first
move from a noncooperative game (N, {Qi}i∈N, {πi}i∈N) to its cooperative version
called a cooperative game or TU game, and then allocate that joint profit with the
use of an appropriate cooperative solution. We denote the cooperative game by
(N, v) where v : 2N �→ R is the characteristic function assigning the worth v(S)

to any subset S ⊆ N called coalition with v(∅) = 0. In this section, we consider
different approaches for determining the characteristic function v. To emphasize
a particular approach, we will use a superscript for v, however for any of the
approaches v(N) = (a − ciN )2/4 will denote the joint profit to be allocated.

13.3.1 α-Characteristic Function

The first measure determining the worth of any coalition S ⊂ N and considered in
the game-theoretic literature was the α-characteristic function vα introduced in [12].
The value vα(S) is interpreted as the maximum value that coalition S can get in the
worst-case scenario, i.e., when the complement N \ S acts against S:

vα(S) = max
qi∈[0,a],i∈S

min
qj ∈[0,a],j∈N\S

∑

i∈S

πi(q). (13.8)

From [3] it follows that vα(S) = 0 for any coalition S ⊂ N , and the profile of
outputs that solves (13.8) is of the form:

q
α,S
i =

⎧
⎨

⎩

0, if i ∈ S,
a

|N \ S| , if i ∈ N \ S,
(13.9)

with
∑

i∈N q
α,S
i = a.
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13.3.2 β-Characteristic Function

Another measure determining the worth of coalition S ⊂ N was also considered
in [12]. The value vβ(S) amounts to the smallest value that the complement N \ S

can force S to receive, without knowing its actions, and this value is defined as

vβ(S) = min
qj ∈[0,a],j∈N\S max

qi∈[0,a],i∈S

∑

i∈S

πi(q). (13.10)

In [3] it was shown that vβ(S) = 0 for any coalition S ⊂ N thus vα(S) =
vβ(S) = 0, and the profile of outputs that solves (13.10) is the same: q

β,S
i = q

α,S
i ,

i ∈ N with
∑

i∈N q
β,S
i = a.

13.3.3 γ -Characteristic Function

Considered in [2, 9], the γ -characteristic function vγ for any coalition S ⊂ N

assigns its equilibrium payoff in a noncooperative game played between S acting as
one player and players from N \ S acting as singletons. Hence we get the following
result.

Proposition 13.2 For any coalition S ⊂ N , it holds that

vγ (S) =
⎛

⎝q∗
iS

+ 1

n − s + 2

∑

j∈S\iS
q∗
j

⎞

⎠

2

. (13.11)

Proof According to the definition of the γ -characteristic function, coalition S ⊂ N

aims at maximizing the profit
∑

i∈S πi(q) over qi ∈ [0, a] for all i ∈ S, whereas
each firm j ∈ N \ S seeks to maximize its own profit πj (q) over qj ∈ [0, a].
Maximizing

∑
i∈S πi(q)with respect to the profile of quantities of firms from S, we

get the reaction of S (by Proposition 13.1):

q
γ,S
i =

⎧
⎪⎨

⎪⎩

a − ∑

j∈N\S
qj − ciS

2|IS | , if i ∈ S ∩ IS,

0, if i ∈ S \ IS.

(13.12)

At the same time for any j ∈ N \ S, maximizing πj (q) with respect to the qj , the
first-order conditions imply qj = a − ∑

i∈S qi − ∑
i∈N\S qi − cj . Summing these

equalities over all j ∈ N \ S and substituting expression (13.12) into this sum, we
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obtain that

∑

i∈N\S
q

γ,S
i = (n − s)(a + ciS ) − 2cN\S

n − s + 2
,

where s = |S|. Thus

vγ (S) = 1

4

⎛

⎝a −
∑

i∈N\S
q

γ

i (S) − ciS

⎞

⎠

2

=
(

a − (n − s + 1)ciS + cN\S
n − s + 2

)2

=
⎛

⎝q∗
iS

+ 1

n − s + 2

∑

j∈S\iS
q∗
j

⎞

⎠

2

.

The equilibrium profile of outputs which is used to find the value vγ (S) for S ⊂ N

is of the form:

q
γ,S

i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

|IS |

(

q∗
iS

+ 1

n − s + 2

∑

j∈S\iS
q∗
j

)

, if i ∈ S ∩ IS,

0, if i ∈ S \ IS,

q∗
i + 1

n − s + 2

∑

j∈S\iS
q∗
j , if i ∈ N \ S,

(13.13)

and
∑

i∈N q
γ,S

i �
∑

i∈N q∗
i . 	


13.3.4 δ-Characteristic Function

Motivated by the computational complexity of α-, β-, and γ -characteristic functions
known for that moment, Petrosjan and Zaccour [8] introduced the δ-characteristic
function vδ which for any coalition S ⊂ N was determined as its best response
against the Nash equilibrium output of singletons from N \ S, i.e.:

vδ(S) = max
qi∈[0,a],i∈S

∑

i∈S

πi(qS, q∗
N\S). (13.14)

Here the equilibrium profile of outputs of firms from coalition N \ S is given by
(13.1).
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Proposition 13.3 For any coalition S ⊂ N , it holds that

vδ(S) =
⎛

⎝q∗
iS

+ 1

2

∑

j∈S\iS
q∗
j

⎞

⎠

2

. (13.15)

Proof By the definition of the δ-characteristic function, the expression of the Nash
equilibrium output (13.1), and the result of Proposition 13.1, we obtain

vδ(S) = max
qi∈[0,a],i∈S

∑

i∈S

⎛

⎝

⎛

⎝a −
∑

j∈S

qj −
∑

j∈N\S
q∗
j

⎞

⎠

+
− ci

⎞

⎠ qi

= max
qi∈[0,a],i∈S

∑

i∈S

⎛

⎝a −
∑

j∈N\S
q∗
j − ci −

∑

j∈S

qj

⎞

⎠ qi

= max
qi∈[0,a],i∈S

∑

i∈S

⎛

⎝a −
∑

j∈N\S
q∗
j − ci

⎞

⎠ qi −
⎛

⎝
∑

j∈S

qj

⎞

⎠

2

= 1

4

⎛

⎝a −
∑

j∈N\S
q∗
j − ciS

⎞

⎠

2

=
(
(s + 1)q∗

iS
− cS + sciS

)2

4
=

⎛

⎝q∗
iS

+ 1

2

∑

j∈S\iS
q∗
j

⎞

⎠

2

.

Here we assumed that the total output does not exceed a, otherwise the maximum
in (13.14) would be negative. Note that one of the profiles of quantities that solves
maximization problem (13.14) is of the form:

q
δ,S
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

|IS |

(

q∗
iS

+ 1

2

∑

j∈S\iS
q∗
j

)

, if i ∈ S ∩ IS,

0, if i ∈ S \ IS,

q∗
i , if i ∈ N \ S,

(13.16)

and
∑

i∈N q
δ,S
i �

∑
i∈N q

γ,S

i , but
∑

i∈S q
δ,S
i >

∑
i∈S q

γ,S

i . Hence the proposition
is proved. 	
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We notice a relationship between the γ - and δ-characteristic functions. For any
S, it holds that

vγ (S) =
(
2
√

vδ(S) + (n − s)
√

vδ(iS)

n − s + 2

)2

,

i.e., vγ (S) is the square of the weighted average of
√

vδ(S) and equilibrium output
q∗
iS
of firm iS having the smallest unit cost in coalition S.

13.3.5 ζ -Characteristic Function

An approach for determining the worth of a coalition by means of the so-called ζ -
characteristic function vζ was presented in [5]. For coalition S ⊂ N , the value vζ (S)

measures the worst profit that S can achieve following the cooperative agreement q̄
given by (13.6). In other words, vζ (S) is the value of the minimization problem

vζ (S) = min
qj ∈[0,a],j∈N\S

∑

i∈S

πi(q̄S, qN\S). (13.17)

Proposition 13.4 For any coalition S ⊂ N , it holds that

vζ (S) = −|S ∩ IN |ciN q̄iN . (13.18)

Proof By the definition of the ζ -characteristic function and the expression of the
cooperative output (13.6), we get

vζ (S) = min
qj∈[0,a],j∈N\S

∑

i∈S

⎛

⎝

⎛

⎝a −
∑

j∈S

q̄j −
∑

j∈N\S
qj

⎞

⎠

+
− ci

⎞

⎠ q̄i

=
∑

i∈S∩IN

⎛

⎝

⎛

⎝−
∑

j∈S

q̄j

⎞

⎠

+
− ci

⎞

⎠ q̄i = −|S ∩ IN |ciN q̄iN .

A profile of firms’ outputs that solves minimization problem (13.17) is given by:

q
ζ,S
i =

⎧
⎨

⎩

q̄i , if i ∈ S,
a

|N \ S| , if i ∈ N \ S,
(13.19)

and
∑

i∈N q
ζ,S
i > a. Thus the statement of the proposition is proved. 	
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13.4 Properties of the Characteristic Functions

In this section, we study properties of the characteristic functions that have
been introduced and the relationships between them. Characteristic function v is
monotonic if v(R) � v(S) for any coalitions R ⊂ S. Characteristic function v is
superadditive if v(S ∪ R) � v(S) + v(R) for any disjoint coalitions S,R ⊆ N .
Characteristic function v is supermodular if v(S ∪R)+v(S ∩R) � v(S)+v(R) for
any coalitions S,R ⊆ N . When v is supermodular, the game (N, v) is convex. The
properties of vα , vβ such as monotonicity, superadditivity, supermodularity were
examined in [3, 7]. Some results for vγ were presented in [6, 9], for example, the
existence of the γ -core for an oligopoly game either with transferable technologies
or without transferable technologies but with n � 4. In the present section we study
the properties of vγ , vδ , and vζ for the linear oligopoly game without transferable
technologies.

Proposition 13.5 Characteristic functions vγ and vδ are monotonic whereas vζ is
not.

Proof Let R ⊂ S ⊆ N with |R| = r and |S| = s. Therefore, ciR � ciS and
q∗
iR

� q∗
iS
. First, prove the monotonicity of vδ . Since vδ is nonnegative, it suffices to

show that
√

vδ is monotonic. Indeed,

√
vδ(S) −

√
vδ(R) = q∗

iS
− q∗

iR
+ 1

2

∑

j∈(S\iS)\(R\iR)

q∗
j > 0.

Second, prove the monotonicity of vγ . Again, since vγ is nonnegative, it suffices
to show that

√
vγ is monotonic. We have:

√
vγ (S) − √

vγ (R) = q∗
iS

+ 1

n − s + 2

∑

j∈S\iS
q∗
j − q∗

iR
− 1

n − r + 2

∑

j∈R\iR
q∗
j

� q∗
iS

− q∗
iR

+
(

1

n − s + 2
− 1

n − r + 2

) ∑

j∈S\iS
q∗
j > 0.

Finally, show that vζ is not monotonic. Indeed, for R ⊂ S ⊂ N , it holds that
vζ (S) − vζ (R) = (|R ∩ IN | − |S ∩ IN |)ciN q̄iN � 0, but vζ (N) − vζ (S) =
(a − ciN )2/4 + |S ∩ IN |ciN q̄iN > 0, and this completes the proof. 	

Proposition 13.6 Characteristic functions vδ and vζ are superadditive whereas vγ

is superadditive only in case of duopoly; i.e., when n = 2.

Proof Let S,R ⊆ N be two disjoint coalitions with |S| = s and |R| = r . Without
loss of generality, we suppose that ciS � ciR , therefore q∗

iS
� q∗

iR
. First, prove the
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superadditivity of vδ . From (13.15), it can be easily verified that

√
vδ(S ∪ R) =

√
vδ(S) +

√
vδ(R) − 1

2

√
vδ(iR). (13.20)

Using (13.20), we obtain:

vδ(S ∪ R) − vδ(S) − vδ(R)

= 1

4
vδ(iR) + 2

√
vδ(S)vδ(R) −

√
vδ(iR)

(√
vδ(S) +

√
vδ(R)

)

= 1

4
vδ(iR) +

√
vδ(S)

(√
vδ(R) −

√
vδ(iR)

)
+

√
vδ(R)

(√
vδ(S) −

√
vδ(iR)

)

� 1

4
vδ(iR) +

√
vδ(S)

(√
vδ(R) −

√
vδ(iR)

)
+

√
vδ(R)

(√
vδ(S) −

√
vδ(iS)

)
> 0.

Second, to prove the superadditivity of vζ , we note that for S ∪ R ⊂ N ,

vζ (S ∪ R) − vζ (S) − vζ (R) = −ciN q̄iN (|(S ∪ R) ∩ IN | − |S ∩ IN | − |R ∩ IN |)
= −ciN q̄iN (|(S ∩ IN) ∪ (R ∩ IN)| − |S ∩ IN | − |R ∩ IN |)
= −ciN q̄iN (|S ∩ IN | + |R ∩ IN |

−|(S ∩ IN ) ∩ (R ∩ IN)| − |S ∩ IN | − |R ∩ IN |)
= ciN q̄iN |(S ∩ IN) ∩ (R ∩ IN )| = 0,

because (S ∩ IN)∩ (R ∩ IN ) = ∅ when S and R are disjoint coalitions. At the same
time, when S∪R = N , we have vζ (S∪R)−vζ (S)−vζ (R) = vζ (N)+ciN q̄iN (|S∩
IN | + |R ∩ IN |) > 0.

And finally, consider vγ . The superadditivity of vγ in case of duopoly is obvious.
Let S = iS and R = iR. Using (13.11), it follows that

vγ (iS ∪ iR) − vγ (iS) − vγ (iR) =
(

q∗
iS

+ q∗
iR

n

)2

− (
q∗
iS

)2 − (
q∗
iR

)2

= q∗
iS

q∗
iR

(
2

n
− q∗

iR

q∗
iS

(
1 − 1

n2

))

,

which becomes negative when n > q∗
iS

/q∗
iR

+
√

1 +
(
q∗
iS

/q∗
iR

)2
� 1+√

2 > 2. The

statement is proved. 	

Proposition 13.7 Characteristic function vζ is supermodular; vγ is supermodular
only in case of duopoly, and vδ is supermodular either when n � 4, or when firms
are symmetrical.
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Proof We first prove the supermodularity of vζ . Using results of Proposition 13.6,
we obtain: vζ (S ∪ R) + vζ (S ∩ R) − vζ (S) − vζ (R) = ciN q̄iN (|(S ∩ IN) ∩ (R ∩
IN)|−|(S∩R)∩IN |) = 0 when S∪R ⊂ N . If S∪R = N , then vζ (S∪R)+vζ (S∩
R) − vζ (S) − vζ (R) = vζ (N) + ciN q̄iN (|S ∩ IN | + |R ∩ IN | − |(S ∩ R) ∩ IN |) > 0
because the expression in the brackets is nonnegative.

Second, supermodularity implies superadditivity, and if vγ is not superadditive,
it cannot also be supermodular. By Proposition 13.6, in case of duopoly, vγ is
superadditive and therefore supermodular.

Finally, consider vδ . Let S,R ⊆ N be two coalitions with |S| = s and |R| = r .
Without loss of generality, we suppose that ciS � ciR � ciS∩R , therefore q∗

iS
� q∗

iR
�

q∗
iS∩R

. It can be verified that

√
vδ(S ∪ R) =

√
vδ(S) +

√
vδ(R) −

√
vδ(S ∩ R) − 1

2

√
vδ(iR) + 1

2

√
vδ(iS∩R),

(13.21)

which is an extension of (13.20) when coalitions S and R are not necessarily
disjoint. Using (13.21) and recalling that

√
vδ(iR) = q∗

iR
and

√
vδ(iS∩R) = q∗

iS∩R
,

we have:

vδ(S ∪ R) + vδ(S ∩ R) − vδ(S) − vδ(R) = 1

4

(
q∗
iR

− q∗
iS∩R

)2

+2
(√

vδ(S) −
√

vδ(S ∩ R)
) (√

vδ(R) −
√

vδ(S ∩ R)
)

− (
q∗
iR

− q∗
iS∩R

) (√
vδ(S) +

√
vδ(R) −

√
vδ(S ∩ R)

)
.

Due to the monotonicity of vδ , the latter expression is positive when q∗
iR

= q∗
iS∩R

,
i.e., the supermodularity condition holds. This is also the case when firms are
symmetrical, hence vδ will be supermodular.

Now we show that vδ is supermodular in a general case for n � 4. In case of
duopoly supermodularity is obvious. Let n = 3, and without loss of generality, we
suppose c1 � c2 � c3, thus here there is only one case of our interest: S = {1, 3},
R = {2, 3}. The case when S = {1, 2}, R = {2, 3} is not of much interest since
q∗
iR

= q∗
iS∩R

and therefore iR = iS∩R = 2. Similarly, when S = {1, 2}, R = {1, 3},
we have q∗

iR
= q∗

iS∩R
and therefore iR = iS∩R = 1. Other cases lead either to the

inequality for superadditivity or to the case when the supermodularity inequality
becomes an equality. Consider the aforementioned case. Let S = {1, 3}, R = {2, 3}.
We obtain: vδ(S ∪ R) + vδ(S ∩ R) − vδ(S) − vδ(R) = 1

4 (−3(q∗
2 )

2 + 3(q∗
3 )

2 +
4q∗

1q
∗
2 − 2q∗

2q
∗
3 ) �

1
4 ((q

∗
2 )

2 + 3(q∗
3 )

2 − 2q∗
2q

∗
3 ) = 1

4 ((q
∗
2 − q∗

3 )2 + 2(q∗
3 )

2) > 0.
Let now n = 4 and c1 � c2 � c3 � c4. There are ten cases when the inequality

guaranteeing supermodularity should be verified (when coalitions S and R intersect,
but q∗

iR

= q∗

iS∩R
): S = {1, 3}, R = {2, 3}; S = {1, 4}, R = {2, 4}; S = {1, 4}, R =

{3, 4}; S = {2, 4}, R = {3, 4}; S = {1, 3}, R = {2, 3, 4}; S = {1, 4}, R = {2, 3, 4};
S = {1, 3, 4}, R = {2, 3}; S = {1, 3, 4}, R = {2, 4}; S = {1, 2, 4}, R = {3, 4}; and



13 Characteristic Functions in a Linear Oligopoly TU Game 231

S = {1, 3, 4}, R = {2, 3, 4}. Prove for the case when S = {1, 3, 4}, R = {2, 3, 4}.
We have: vδ(S ∪ R) + vδ(S ∩ R) − vδ(S) − vδ(R) = 1

4 (−3(q∗
2 )

2 + 3(q∗
3 )

2 +
4q∗

1q
∗
2 − 2q∗

2q
∗
3 − 2q∗

2q
∗
4 + 2q∗

3q
∗
4 ) � 1

4 ((q
∗
2 − q∗

3 )
2 + 2(q∗

3 )
2 − 2q∗

4 (q
∗
2 − q∗

3 )) =
1
4 ((q

∗
2 − q∗

3 − q∗
4 )

2 + 2(q∗
3 )

2 − (q∗
4 )

2) > 0. All other cases can be examined in a
similar way. Hence the proposition is now proved. 	

Example 13.1 Consider an oligopoly with N = {1, 2, 3, 4, 5} and the following
values of parameters: a = 10, c1 = c2 = 1, c3 = c4 = c5 = 2. From (13.1) we
get: q∗

1 = q∗
2 = 2, q∗

3 = q∗
4 = q∗

5 = 1. Let S = {1, 3, 4, 5} and R = {2, 3, 4, 5},
therefore iS = 1, iR = 2, iS∪R ∈ {1, 2}, and iS∩R ∈ {3, 4, 5}. Using (13.15), we
obtain vδ(S) = vδ(R) = 12.25, vδ(S ∪ R) = 20.25, and vδ(S ∩ R) = 4 which
means that v(S ∪ R) + v(S ∩ R) < v(S) + v(R) and vδ is not supermodular.

Proposition 13.8 For any coalition S ⊂ N , the condition vζ (S) � vα(S) =
vβ(S) � vγ (S) � vδ(S) is satisfied.

Proof The fulfillment of two inequalities vζ (S) � vα(S) and vβ(S) � vγ (S) is
obvious. Prove that vγ (S) � vδ(S). Since values vγ (S) and vδ(S) are positive for
all S, it suffices to show that

√
vγ (S) �

√
vδ(S). We have

√
vδ(S) − √

vγ (S) =
n−s

2(n−s+2)

∑
j∈S\iS q∗

j which is positive. The statement of the proposition is hence
proved. 	


13.5 Cooperative Solutions for a Linear Oligopoly TU Game

An imputation set of cooperative game (N, v) is the set I [v] = {(ξ1, . . . , ξn) :∑
i∈N ξi = v(N); ξi � v({i})}. A cooperative solution is a rule that maps v into

a subset of I [v]. In particular, the core of the game (N, v) is defined as the set
C [v] = {(ξ1, . . . , ξn) ∈ I [v] : ∑

i∈S ξi � v(S), S ⊂ N}. The Shapley value
Φ[v] = (Φ1[v], . . . , Φn[v]) is an imputation whose components are defined as
Φi [v] = ∑

S⊆N
(n−|S|)!(|S|−1)!

n! (v(S) − v(S \ {i})), i ∈ N . The core of the game
(N, vα) will be called the α-core and denoted by C [vα]. Similarly, we determine
β-, γ -, δ-, and ζ -cores and denote them by C [vβ ], C [vγ ], C [vδ], and C [vζ ],
respectively.

The existence of α-, β-cores was shown in [3, 7], thus in view of Proposition 13.8,
the next result directly follows.

Corollary 13.1 Let δ-core be nonempty. Then C [vδ] ⊆ C [vγ ] ⊆ C [vα] =
C [vβ ] ⊆ C [vζ ].

The above result notes a nested structure of the cores when the δ-core is
nonempty. The existence of γ - and δ-cores can be guaranteed when the number
of firms does not exceed 4 and/or when firms are symmetrical since the δ-game
becomes convex in these cases (see [11]). As to the ζ -core, it always exists, and its
nonemptiness follows from the existence of C [vα].
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Table 13.1 The values of α-,
β-, γ -, δ-, and
ζ -characteristic functions

S vα(S) vβ (S) vγ (S) vδ(S) vζ (S)

{1} 0 0 0.0676 0.0676 −0.25

{2} 0 0 0.0676 0.0676 −0.25

{3} 0 0 0.0256 0.0256 0

{4} 0 0 0.0036 0.0036 0

{1, 2} 0 0 0.1056 0.1521 −0.5

{1, 3} 0 0 0.09 0.1156 −0.25

{1, 4} 0 0 0.0756 0.0841 −0.25

{2, 3} 0 0 0.09 0.1156 −0.25

{2, 4} 0 0 0.0756 0.0841 −0.25

{3, 4} 0 0 0.0306 0.0361 0

{1, 2, 3} 0 0 0.16 0.2209 −0.5

{1, 2, 4} 0 0 0.1344 0.1764 −0.5

{1, 3, 4} 0 0 0.1111 0.1369 −0.25

{2, 3, 4} 0 0 0.1111 0.1369 −0.25

{1, 2, 3, 4} 0.25 0.25 0.25 0.25 0.25

Example 13.2 We consider an oligopoly with N = {1, 2, 3, 4} where a = 2, c1 =
c2 = 1, c3 = 1.1, and c4 = 1.2. Here the set IN = {1, 2}. Table 13.1 summarizes
the values of α-, β-, γ -, δ-, and ζ -characteristic functions. Figure 13.1 demonstrates
ζ -, α-, γ -, and δ-cores where the largest set represents the ζ -core and the smallest
one is the δ-core (recall that the α-core coincides with the β-core). On Fig. 13.2, we
demonstrate the same cooperative set solutions in a more detailed view.2

Example 13.3 (Symmetric Firms) As one of the special cases of oligopoly often
considered in the literature, we examine a symmetric game where unit costs of the
firms are equal, i.e., c1 = . . . = cn = c with c < a. Under these assumptions, the
condition (13.2) holds for any n. We also note that IS = S for any S ⊆ N . The
equilibrium output of firm i ∈ N determined by (13.1), takes the form q∗

i = a−c
n+1 ,

whereas under the cooperative agreement, the output determined by (13.6) becomes

q̄i = a−c
2n . The equilibrium profit of firm i ∈ N equals πi(q

∗) =
(

a−c
n+1

)2
and

the profit of i under the cooperative agreement becomes πi(q̄) = (a−c)2

4n exceeding
πi(q

∗). This fact means that all firms take advantage from cooperation even without
reallocating the total profit of

∑
i∈N πi(q̄) according to a cooperative solution.

We note that this result does not hold in a general case. However if firms come
to a cooperative solution, the characteristic function should be determined. Then
vα(N) = vβ(N) = vγ (N) = vδ(N) = vζ (N) = (a − c)2/4. Further, for any
S ⊂ N , we have vα(S) = vβ(S) = 0 while using (13.11), (13.15), and (13.18), it

2The figures were obtained with the use of TUGlab toolbox for Matlab http://mmiras.webs.uvigo.
es/TUGlab/.

http://mmiras.webs.uvigo.es/TUGlab/
http://mmiras.webs.uvigo.es/TUGlab/
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Fig. 13.1 ζ -, α-, γ -, and δ-cores (from largest to smallest)

Fig. 13.2 γ -core (superset) and δ-core (subset)

follows that vγ (S) =
(

a−c
n−s+2

)2
, vδ(S) =

(
(s+1)(a−c)
2(n+1)

)2
, and vζ (S) = − sc(a−c)

n

where s = |S|.
By Proposition 13.7, where characteristic function vδ is supermodular, the

correspondingTU game (N, vδ) is convex and therefore has a nonempty coreC [vδ].
From [11], the Shapley value Φ[vδ], whose components equal the cooperative
profits πi(q̄), i ∈ N , belongs to C [vδ] being the center of gravity of its extreme
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points. Since firms are symmetrical, Φ[vα] = Φ[vβ ] = Φ[vγ ] = Φ[vδ] = Φ[vζ ].
From Corollary 13.1, it follows that the Shapley value Φ[vδ] belongs to any of the
cores.

13.6 Conclusion

We have examined the properties of γ -, δ-, and ζ -characteristic functions in linear
oligopoly TU games. We found that the γ -characteristic function is monotonic,
however it is superadditive and supermodular only in case of duopoly. The δ-
characteristic function is monotonic, and superadditive, but it is supermodular either
when n � 4, or when firms are symmetrical. As to the ζ -characteristic function, it is
superadditive and supermodular but not monotonic. When δ-characteristic function
is supermodular, we also found that the γ -, δ-, and ζ -games have nonempty cores
with a nested structure that is also expressed in their relationship to the α- and β-
cores.
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