
Chapter 12
S-strongly Time-Consistency
in Differential Games

Leon A. Petrosyan and Ekaterina V. Gromova

Abstract In the paper the definition of S-strongly time-consistency in differential
games is introduced. The approach of the construction of S-strong time-consistent
subcore of the classical core on the base of characteristic function obtained by
normalization of classical characteristic function is formulated. Its relation to
another characteristic function obtained by an integral extension of the original
characteristic function is studied.

12.1 Introduction

Dynamic games theory has many applications in different areas (see [1, 2, 11, 13]).
Particularly important are cooperative differential games that are widely used for
modeling the situations of joint decision taking by many agents. When considering
such problems, the realizability of cooperative solution in time turns out to be one
of the central issues.

As it was mentioned earlier, [9, 13], an attempt to transfer the optimality princi-
ples (cooperative solution) from the static cooperative game theory to n-persons
differential games leads to dynamically unstable (time inconsistent) optimality
principles that renders meaningless their use in differential games. Hence, the
notion of time consistent cooperative solution and an approach to determining such
cooperative solution was proposed in [9].

A strong time-consistent optimality principle has even more attractive property.
Namely, strong time consistency of the core considered as a cooperative solution
implies that a single deviation from the chosen imputation taken from the core in
favor of another imputation from the core does not lead to non-realizability of the
cooperative agreement (the core) defined for the whole duration of the game, [7].
This implies that the overall payment for players will also be contained in the core.
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In this paper, a cooperative differential game with the set of players N is studied
in general setting on the finite time horizon. The work is of fundamental character,
but may potentially have a big practical impact because it proposes a constructive
approach to the definition of a new cooperative solution which satisfies the condition
of strong time-consistency.

In the paper, we study different approaches to constructing a strongly time-
consistent cooperative solution, which are based on the use of additional procedures
for the imputation distribution on the time interval [t0, T ] (IDP) for classical
cooperative solution, i.e., the core, and on the transformations of the classical
characteristic function V (S, ·), S ⊆ N . Furthermore, we present results illustrating
the relationship between the introduced concepts.

In [7, 8], it was shown that it is possible to define a new type of characteristic
function V̄ (S, ·) on the base of integral transformation of the classical characteristic
function V (S, ·) such that the resulting optimality principles are strongly time-
consistent.

In [10], another approach to the construction of the characteristic function V̂ (S, ·)
on the base of normalizing transformation of V (S, ·) had been suggested and it
was shown that the core constructed on the base of the new V̂ (S, ·) belongs to the
classical core.

In this contribution we track the connection between the optimality principles
constructed on the basis of classical characteristic function and the constructions
resulted from the new types of characteristic function. We study the property of
strong-time consistency for all constructed optimality principles and suggest a
modification of the notion of strong time-consistency as described below.

The notion of S-strong time-consistency can be considered as a weakening of
the strong time-consistency and means the following: after a single deviation from
the chosen imputation from the optimality principle M̂(x0, t0) in favor of another
imputation from the same optimality principle M̂(x∗(t), t) the resulting imputation
will belong to a larger set M(x0, t0) ⊃ M̂(x0, t0) even if the resulting solution does
not belong to the initial set M̂(x0, t0). Note that S-strong time-consistency of the
cooperative solution is considered with respect to another (bigger) set, hence the
prefix S-.

The construction of a S-strongly dynamically stable subcore on the base of all
described approaches is presented.

12.2 List of Key Notations

x trajectory of the system
u control vector u = {u1, . . . , un}
Ki(x, t, u) payoff of the player i in a subgame starting at t from x

N set of players (the grand-coalition)
S subset of players (a coalition), S ⊆ N

V (S, x, t) basic characteristic function (c.f.)
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V̄ (S, x, t) an integral extension of the c.f. V
V̂ (S, x, t) a normalized c.f. V
L(x, t) set of imputations associated with V

L̄(x, t) set of imputations associated with V̄

C(x, t) core associated with V

C̄(x, t) core associated with V̄

Ĉ(x, t) core associated with V̂

12.3 Basic Game

Consider the differential game Γ (x0, t0) starting from the initial position x0 and
evolving on time interval [t0, T ]. The equations of the system’s dynamics have the
form

ẋ = f (x, u1, . . . , un), x(t0) = x0,

ui ∈ Ui ⊂ CompRm, x ∈ Rl, i = 1, . . . , n.

(12.1)

The players’ payoffs are

Ki(x, t0; u1, . . . , un) =
∫ T

t0

hi(x(t))dt, i = 1, . . . , n, hi(·) ≥ 0,

where x(t) is the solution of system (12.1) with controls u1, . . . , un. The non-
negativeness of the utility function hi(·) is an important assumption of the model.

It is furthermore assumed that the system (12.1) satisfies all the conditions
guaranteeing the existence and uniqueness of solution x(t) on the time interval
[t0, T ] for all admissible measurable open loop controls u1(t), . . . , un(t), t ∈
[t0, T ]. Let there exist a set of controls

u∗(t) = {u∗
1(t), . . . , u

∗
n(t)}, t ∈ [t0, T ]

such that

max
u1,...,un

n∑
i=1

Ki(x0, t0; u1(t), . . . , un(t)) =
n∑

i=1

∫ T

t0

hi(x
∗(t))dt = V (N; x0, t0).

(12.2)

The solution x∗(t) of the system (12.1) corresponding to u∗(t), is called the
cooperative trajectory.

In cooperative game theory, [6], it is assumed that the players initially agree upon
the use of the controls u∗(t) = {u∗

1(t), . . . , u
∗
n(t)} and hence, in the cooperative

formulation the differential game Γ (x0, t0) always develops along the cooperative
trajectory x∗(t).
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Let N = {1, . . . , i, . . . , n} be the set of all players. Let S ⊆ N and denote
by V (S; x0, t0) the characteristic function of the game Γ (x0, t0), [6]. Note that
V (N; x0, t0) is calculated by the formula (12.2). Let V (S; x∗(t), t), S ⊆ N ,
t ∈ [t0, T ] be a (superadditive) characteristic function of the subgame Γ (x0, t0)

constructed by any relevant method [5].
So, we state the following properties for characteristic function:

V (∅; x0, t0) = 0;

V (N; x0, t0) =
n∑

i=1

∫ T

t0

hi(x
∗(τ ))dτ ;

V (S1 ∪ S2; x0, t0) ≥ V (S1; x0, t0) + V (S2; x0, t0). (12.3)

For the sake of definiteness we can assume that the characteristic function
V (S; x0, t0) is constructed as the value of a zero-sum differential game based on
the game Γ (x0, t0) and played between the coalition S (the first maximizing player)
and the coalition N \ S (the second minimizing player), and in each situation the
payoff of coalition S is assumed to be the sum of players’ payoffs from this coalition.

Consider the family of subgames Γ (x∗(t), t) of game Γ (x0, t0) along the
cooperative trajectory x∗(t), i.e. a family of cooperative differential games from the
initial state x∗(t) defined on the interval [t, T ], t ∈ [t0, T ] and the payoff functions

Ki(x
∗(t), t; u1, . . . , un) =

∫ T

t

hi(x(τ ))dτ, i = 1, . . . , n,

where x(τ) is a solution of (12.1) from initial position x∗(t) with controls
u1, . . . , un.

Let V (S; x∗(t), t), S ⊆ N , t ∈ [t0, T ] be the (superadditive) characteristic
function of subgame Γ (x∗(t), t), s.t. the properties (12.3) hold. For V (N; x∗(t), t),
the Bellman optimality condition along x∗(t) holds, i.e.

V (N; x0, t0) =
∫ t

t0

n∑
i=1

hi(x
∗(τ ))dτ + V (N; x∗(t), t).

12.4 Construction of a Core with a New Characteristic
Function

Define the new characteristic function V̄ (S; x0, t0), S ⊆ N , similar to [7, 8], by the
formula

V̄ (S; x0, t0) =
∫ T

t0

V (S; x∗(τ ), τ )

∑n
i=1 hi(x

∗(τ ))

V (N; x∗(τ ), τ )
dτ. (12.4)
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Similarly, we define for t ∈ [t0, T ]

V̄ (S; x∗(t), t) =
∫ T

t

V (S; x∗(τ ), τ )

∑n
i=1 hi(x

∗(τ ))

V (N; x∗(τ ), τ )
dτ. (12.5)

One can readily see that the function V̄ (S; x0, t0) has the all properties (12.3) of
the characteristic function of the game Γ (x0, t0). Indeed,

V̄ (∅; x0, t0) = 0,

V̄ (N; x0, t0) = V (N; x0, t0) =
n∑

i=1

∫ T

t0

hi(x
∗(τ ))dτ,

V̄ (S1 ∪ S2; x0, t0) ≥ V̄ (S1; x0, t0) + V̄ (S2; x0, t0).

for S1, S2 ⊂ N , S1 ∩ S2 = ∅ (here we use the superadditivity of function
V (S; x0, t0)). The similar statement is true also for function V̄ (S; x∗(t), t) which
is defined as the characteristic function of Γ (x∗(t), t).

Let L(x0, t0) be the set of imputations in Γ (x0, t0) determined by characteristic
function of V (S; x0, t0), S ⊆ N , i.e.

L(x0, t0) =
{

ξ = {ξi} :
n∑

i=1

ξi = V (N; x0, t0), ξi ≥ V ({i}; x0, t0)

}
. (12.6)

Similarly, we define the set of imputationsL(x∗(t), t), t ∈ [t0, T ] in the subgame
Γ (x∗(t), t):

L(x∗(t), t) = {
ξ t = {ξ t

i } : ∑n
i=1 ξ t

i = V (N; x∗(t), t),

ξ t
i ≥ V ({i}; x∗(t), t), i ∈ N

}
.

(12.7)

We denote the set of imputations defined by characteristic functions V̄ (S; x0, t0)

and V̄ (S; x∗(t), t) by L̄(x0, t0) and L̄(x∗(t), t), respectively. These imputations are
defined in the same way as (12.6), (12.7).

Let ξ(t) = {ξi(t)} ∈ L(x∗(t), t) be the integrable selector [9], t ∈ [t0, T ], define

ξ̄i =
∫ T

t0

ξi(τ )

∑n
i=1 hi(x

∗(τ ))

V (N; x∗(τ ), τ )
dτ, (12.8)

ξ̄ t
i =

∫ T

t

ξi(τ )

∑n
i=1 hi(x

∗(τ ))

V (N; x∗(τ ), τ )
dτ, (12.9)

where t ∈ [t, T ] and i = 1, . . . , n.
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One can see that

n∑
i=1

ξ̄i = V (N; x0, t0),

n∑
i=1

ξ̄ t
i = V (N; x∗(t), t).

Moreover, we have

ξ̄i ≥
∫ T

t0

V ({i}; x∗(τ ), τ )

n∑
i=1

hi(x
∗(τ ))

V (N; x∗(τ ), τ )
dτ = V̄ ({i}; x0, t0)

and similarly

ξ̄ t
i ≥ V̄ ({i}; x∗(t), t), i = 1, . . . , n, t ∈ [t0, T ],

i.e. the vectors ξ̄ = {ξ̄i} and ξ̄ t = {ξ̄ t
i } are imputations in the games Γ (x0, t0) and

Γ (x∗(t), t), t ∈ [t0, T ], respectively, if the functions V̄ (S; x0, t0) and V̄ (S; x∗(t), t)
are used as characteristic functions.

We have that ξ̄ ∈ L̄(x0, t0) and ξ̄ t ∈ L̄(x∗(t), t).
Denote by C(x0, t0) ⊂ L(x0, t0), C(x∗(t), t) ⊂ L(x∗(t), t), t ∈ [t0, T ], the core

of the game Γ (x0, t0) and of the subgame Γ (x∗(t), t), respectively (it is assumed
that the sets C(x∗(t), t), t ∈ [t0, T ], are not empty along the cooperative trajectory
x∗(t)). For an application of the core in differential games see also [3].

So, we have

C(x0, t0) = {ξ = {ξi}, s.t .
∑
i∈S

ξi ≥ V (S; x0, t0),
∑
i∈N

ξi = V (N; x0, t0), ∀S ⊂ N}.

Let further C̃(x0, t0) and C̃(x∗(t), t), t ∈ [t0, T ] be the core of the game
Γ (x0, t0) and of Γ (x∗(t), t), constructed using the characteristic function
V̄ (S; x, t0), defined by the formulas (12.4) and (12.5). Thus, C̃(x0, t0) is the set of
imputations {ξ̃i} such that

∑
i∈S

ξ̃i ≥ V̄ (S; x0, t0), ∀S ⊂ N;
∑
i∈N

ξ̃i = V̄ (N; x0, t0) = V (N; x0, t0)

(12.10)

and C̃(x∗(t), t) is the set of imputations {ξ̃ t
i }, s.t.

∑
i∈S

ξ̃ t
i ≥ V̄ (S; x∗(t), t), ∀S ⊂ N;

∑
i∈N

ξ̃ t
i = V̄ (N; x∗(t), t) = V (N; x∗(t), t).
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Let in the formulas (12.8) and (12.9) ξ(t) be an integrable selector, ξ(t) ∈
C(x∗(t), t0), t ∈ [t0, T ]. Define the set

C̄(x0, t0) =
{
ξ̄ : ξ̄ =

∫ T

t0

ξ(τ )

∑n
i=1 hi(x

∗(τ ))

V (N; x∗(τ ), τ )
dτ }, ∀ξ(τ ) ∈ C(x∗(τ ), τ )

}
.

Similarly, we define

C̄(x∗(t), t) =
{
ξ̄ t : ξ̄ t =

∫ T

t

ξ(τ )

∑n
i=1 hi(x

∗(τ ))

V (N; x∗(τ ), τ )
dτ }, ∀ξ(τ ) ∈ C(x∗(τ ), τ )

}
.

We have the following lemma.

Lemma 12.1

C̄(x0, t0) ⊆ C̃(x0, t0), C̄(x∗(t), t) ⊆ C̃(x∗(t), t), ∀t ∈ [t0, T ].

Proof To prove this lemma, we use the necessary and sufficient conditions for
imputations from the core (12.10).

We have ∀ξ̄ ∈ C̄(x0):

∑
i∈S

ξ̄i =
∑
i∈S

∫ T

t0

ξi(τ )

∑n
i=1 hi(x

∗(τ ))

V (x∗(τ ), τ,N)
dτ.

For imputations from the (basic) core C(x∗(t), t) we have
∑
i∈S

ξi(t) ≥ V (S, x∗(t), t), ∀S ⊂ N.

Hence,

∑
i∈S

ξ̄i ≥ V̄ (S, x0, t0), ∀S ⊂ N,

and C̄(x0) ⊆ C̃(x0).
The inclusion C̄(x∗(t), t) ⊆ C̃(x∗(t), t), ∀t ∈ [t0, T ] can be proved in a similar

way. �
Moreover, we also have the converse result.

Lemma 12.2

C̃(x0, t0) ⊆ C̄(x0, t0); C̃(x∗(t), t) ⊆ C̄(x∗(t), t), ∀t ∈ [t0, T ].
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Proof We show that for each imputation ξ̃i ∈ C̃(x0, t0), ξ̃ t
i ∈ C̃(x∗(t), t) there

exists an integrable selector ξ(t) ∈ C(x∗(t), t), t ∈ [t0, T ] such that

ξ̃i =
∫ T

t0

ξi(τ )
∑

i∈N hi(x
∗(τ ))

V (N; x∗(τ ), τ )
dτ,

ξ̃ t
i =

∫ T

t

ξi (τ )
∑

i∈N hi(x
∗(τ ))

V (N; x∗(τ ), τ )
dτ,

i = 1, . . . , n.

Since ξ̃ t is an imputation, we have

ξ̃ t
i ≥ V̄ ({i}, x∗(t), t) =

∫ T

t

V ({i}; x∗(τ ), τ )

V (N; x∗(τ ), τ )

∑
i∈N

hi(x
∗(τ ))dτ.

Moreover, by summing up we get

V̄ (N; x∗(t), t) =
n∑

i=1

ξ̃ t
i .

The non-negativeness of the utility functions hi(·) implies that there exist αi ≥ 0,
i = 1, . . . , n such that

ξ̃ t
i =

∫ T

t

αi(τ ) + V ({i}; x∗(τ ), τ ))

V (N; x∗(τ ), τ )

∑
i∈N

hi(x
∗(τ ))dτ,

and
∑n

i=1(αi(τ ) + V ({i}; x∗(τ ), τ ))

V (N; x∗(τ ), τ )
= 1.

Obviously, that ξ(τ ) = {ξi(τ ) = αi(τ ) + V ({i}; x∗(τ ), τ ))} is an imputation in
the game with the characteristic function V (S; x∗(τ ), τ )). But we can also prove
that ξ(τ ) = {ξi(τ ) = αi(τ ) + V ({i}; x∗(τ ), τ ))} belongs to the core C(x∗(τ ), τ ).
For ξ̃ t ∈ C̃(x∗(t), t) we have

∑
i∈S

ξ̃ t
i =

∫ T

t

∑
i∈S(αi(τ ) + V ({i}; x∗(τ ), τ )))

V (N; x∗(τ ), τ )

∑
i∈N

hi(x
∗(τ ))dτ

≥ V̄ (S, x∗(t), t) =
∫ T

t

V (S; x∗(τ ), τ )

V (N; x∗(τ ), τ )

∑
i∈N

hi(x
∗(τ ))dτ,
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and hence we get

∑
i∈S

(αi(τ ) + V ({i}; x∗(τ ), τ ))) ≥ V (S; x∗(τ ), τ ).

The lemma is proved. �
The preceding results imply that

C̃(x∗(t), t) ≡ C̄(x∗(t), t), ∀t ∈ [t0, T ].
It means, that the core C̃(x0, t0) constructed by using characteristic function V̄

coincides with the set of imputations C̄(x0, t0) constructed by formula (12.8) for any
imputation ξ(t) from the initial core C(x∗(t), t). Later on we will use the unified
notation C̄(x0, t0) for both sets.

12.5 Strong Time-Consistency

The property of strong dynamic stability (strong time consistency) coincides with
the property of dynamic stability (time consistency) for scalar-valued principles of
optimality such as the Shapley value [8] or the “proportional solution”. However,
for set-valued principles of optimality it has significant and non-trivial sense, which
is that any optimal behavior in the subgame with the initial conditions along the
cooperative trajectory computed at some intermediate time t ∈ [t0, T ], together
with optimal behavior on the time interval [t, T ] is optimal in the problem with
the initial condition t0. This property is almost never fulfilled for such set-valued
principles of optimality as the core or the NM-solution.

Let us formulate the definition of strong time-consistency for an arbitrary
optimality principle M(x0, t0) based on previous results, [9]. A slightly different
definition was given in [4].

Introduce the subset M(x0, t0) of the imputation set L(x0, t0) as the optimality
principle in the cooperative gameΓ (x0, t0).M(x0, t0) can be a core, aNM-solution,
a Shapley value or another one. Similarly, we define this set for all subgames
Γ (x∗(t), t) along the cooperative trajectory x∗(t).

Definition 12.1 The solution (optimality principle) M(x0, t0) is said to be strongly
time-consistent in the game Γ (x0, t0) if

1. M(x∗(t), t) �= ∅, t ∈ [t0, T ].
2. for any ξ ∈ M(x0, t0) there exists a vector-function β(τ) ≥ 0 such that

M(x0, t0) ⊃
∫ t

t0

β(τ)dτ ⊕ M(x∗(t), t),

∀t ∈ [t0, T ], ∫ T

t0
β(t)dt = ξ ∈ M(x0, t0).
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Here symbol ⊕ is defined as follows. Let a ∈ Rn, B ⊂ Rn, then

a ⊕ B = {a + b : b ∈ B}.
Let us consider the core C̄(x0, t0) as the set M(x0, t0). Thus we have the

following lemma.

Lemma 12.3 C̄(x0, t0) is a strongly time-consistent optimality principle.

Proof From the definition of the set C̄(x0, t0) we have that any imputation ξ̄ ∈
C̄(x0, t0) has the form (12.8). Then for any ξ̄ ∈ C̄(x0, t0) there exists

β̄i(t) = ξi(t)

∑
i∈N

hi(x
∗(t)

V (N; x∗(t), t)
≥ 0, i = 1, . . . , , t ∈ [t0, T ]

such that ξ̄ = ∫ T

t0
β̄(t)dt ∈ C̄(x0, t0).

Let us take another imputation ξ̂ t from the core C̄(x∗(t), t). Then according to
the definition of the set C̄(x∗(t), t) we have that there exists a selector ξ̂ (t) from the
initial basic core C(x∗(t), t) , i.e. ξ̂ (t) ∈ C(x∗(t), t) such that

β̂i(t) = ξ̂i (t)

∑
i∈N hi(x

∗(t)
V (N; x∗(t), T − t)

≥ 0, i = 1, . . . , N, t ∈ [t0, T ],

such that ξ̂ t = ∫ T

t β̂(t)dt ∈ C̄(x∗(t), t).
Let us consider the vector-function

ξ̌ (τ ) =
{

ξ(τ ) τ ∈ [t0, t],
ξ̂ (τ ), τ ∈ (t, T ], (12.11)

It is obvious that ξ̌ (τ ) ∈ C(x∗(τ ), τ ), ∀τ ∈ [t0, T ]. Then we have a new vector

ξ̌ =
∫ t

t0

β̄(τ )dτ + ξ̂ t =
∫ T

t0

ξ̌ (τ )

∑
i∈N hi(x

∗(τ )

V (N; x∗(τ ), τ )
dτ,

where ξ̌ (τ ) ∈ C(x∗(τ ), τ ), ∀τ ∈ [t0, T ].
From the definition of the set C̄(x0, t0) we have that new vector ξ̌ ∈ C̄(x0, t0).

The vector ξ̂ t had been taken from the core C̄(x∗(t), t) arbitrarily.
So, we have shown that

C̄(x0, t0) ⊃
∫ T

t0

ξ(t)

∑
i∈N hi(x

∗(τ ))

V (N; x∗(τ ), τ )
dτ ⊕ C̄(x∗(t), t),

t ∈ [t0, T ].
The lemma is proved. �
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The value

ξi(t)

∑
i∈N hi(x

∗(t)
V (N; x∗(t), t)

≥ 0

is interpreted as the rate at which the ith player’s component of the imputation, i.e.,
ξ̄i , is distributed over the time interval [t0, T ].

12.6 S-strongly Time-Consistency

As above we consider the subset M(x0, t0) of the imputation set L(x0, t0) as the
optimality principle in the cooperative game Γ (x0, t0) which can be a core, a
NM-solution, a Shapley value or another one. Similarly, we define this set for all
subgames Γ (x∗(t), t) along the cooperative trajectory x∗(t).

Suppose we have two different optimality principles (cooperative solutions)
M(x0, t0) and M̂(x0, t0) such that

M̂(x0, t0) ⊆ M(x0, t0),

M̂(x∗(t), t) ⊆ M(x∗(t), t),

∀t ∈ [t0, T ]. Again, we assume that these sets are non-empty during the whole
game.

Definition 12.2 The cooperative solution M̂(x0, t0) is S-strongly time-consistent
(dynamically stable) with respect to the set M(x0, t0) if for any imputation ξ ∈
M̂(x0, t0) there exists β(τ) ≥ 0 such that

M(x0, t0) ⊃
∫ t

t0

β(τ)dτ ⊕ M̂(x∗(t), t),

∀t ∈ [t0, T ], ∫ T

t0
β(t)dt = ξ ∈ M̂(x0, t0).

Here we introduce the definition of strong time-consistency of the optimality
principle with respect to another (bigger) set, hence the prefix S-.

This definition means the following: even if the resulting solution will not belong
to the initial set M̂(x0, t0) it will stay within the set M(x0, t0) which includes
M̂(x0, t0).

From Definition 12.2 we have the following proposition.

Lemma 12.4 Let the optimality principle M(x0, t0) such that M(x∗(t), t) �=
∅, ∀t ∈ [t0, T ] be strongly time-consistent. Then any subset M̂(x0, t0), M̂(x0, t0) ⊆
M(x0, t0) such that M̂(x∗(t), t) �= ∅, M̂(x∗(t), t) ⊆ M(x∗(t), t),∀t ∈ [t0, T ], is
S-strongly time-consistent with respect to M(x0, t0).
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12.7 The Construction of a S-strongly Dynamically Stable
Subcore

In the followingwe identify a subset Ĉ(x0, t0) of the imputations in the set C̄(x0, t0),
which would belong to the core C(x0, t0), defined on the basis of the classical
characteristic function V (S; x0, t0).

Consider the value

max
t≤τ≤T

V (S; x∗(τ ), τ )

V (N; x∗(τ ), τ )
= λ(S, t0), (12.12)

then the following inequality holds

V̄ (S; x0, t0) ≤ λ(S, t0)

∫ T

t0

∑
i∈N

hi(x
∗(τ ))dτ = λ(S, t0)V (N; x0, t0). (12.13)

We introduce a new characteristic function

V̂ (S; x0, t0) = λ(S, t0)V (N; x0, t0). (12.14)

Similarly, for t ∈ [t0, T ] define the respective characteristic function V̂ (S; x∗(t), t)
as

V̂ (S; x∗(t), t) = λ(S, t)V (N; x∗(t), t), (12.15)

where

λ(S, t) = max
t≤τ≤T

V (S; x∗(τ ), τ )

V (N; x∗(τ ), τ )
. (12.16)

From (12.12), (12.13), (12.15) and (12.16) we get

V̂ (S; x0, t0) ≥ V̄ (S; x0, t0),

V̂ (S; x∗(t), t) ≥ V̄ (S; x∗(t), t).

Notice that

V̄ (N; x0, t0) = V̂ (N; x0, t0),

V̄ (N; x∗(t), t) = V̂ (N; x∗(t), t).

In addition, for all S1, S2, S1 ⊂ S2

V̂ (S1; x∗(t), t) ≤ V̂ (S2; x∗(t), t), t ∈ [t0, T ].
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Unfortunately, the property of superadditivity for the function V̂ (S; x∗(t), t), t ∈
[t0, T ] does not hold in general. One can write

V̂ (S; x∗(t), t) = λ(S, t)V (N; x∗(t), t) =

= max
t≤τ≤T

V (S; x∗(τ ), τ )

V (N; x∗(τ ), τ )
V (N; x∗(t), t) ≥

≥ V (N; x∗(t), t) V (S; x∗(t), t)
V (N; x∗(t), t)

≥ V (S; x∗(t), t), S ⊂ N. (12.17)

The preceding inequality leads to the following lemma.

Lemma 12.5 The following inequality holds true:

V (S; x∗(t), t) ≤ V̂ (S; x∗(t), t), ∀t ∈ [t0, T ].

Denote by Ĉ(x0, t0) the set of imputations ξ = (ξ1, . . . ξn) such that

∑
i∈S

ξi ≥ V̂ (S; x0, t0), ∀S ⊂ N,

∑
i∈N

ξi = V̂ (N; x0, t0).

(12.18)

Assume that the set Ĉ(x∗(t), t) is not empty when t ∈ [t0, T ]. It is easy to see
that it is analogous to the core C(x0, t0), if the function V̂ (S; x∗(t), t) is chosen as
the characteristic function.

Thereby we have the statement.

Theorem 12.1 ([10]) The following inclusion takes place:

Ĉ(x∗(τ ), τ ) ⊂ C(x∗(τ ), τ ) ∩ C̄(x∗(τ ), τ ), ∀τ ∈ [t0, T ]. (12.19)

We can also formulate the following Theorem (see Fig. 12.1 for an illustration).

Fig. 12.1 The basic core and
the associated cores
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Theorem 12.2 The subcore Ĉ(x0, t0) ⊂ C(x0, t0) is S-strongly time-consistent
with respect to the set C̄(x0, t0).

Proof From Theorem 12.1we have that Ĉ(x0, t0) ⊂ C(x0, t0)∩C̄(x0, t0), and hence
Ĉ(x0, t0) ⊂ C̄(x0, t0). Lemma 12.3 implies that C̄(x0, t0) is strong-time consistent
optimality principle.

Finally, the requested result follows from Lemma 12.4. �
The preceding theorem shows that using the new characteristic function (12.14)

we constructed a subset of the classical core C(x0, t0) (subcore) in the game
Γ (x0, t0) which is S-time-consistent with respect to C̄(x0, t0).

This gives an interesting practical interpretation of the subcore Ĉ(x0, t0).
Selecting the imputation ξ from the subcore as a solution, we guarantee that
if the players—when evolving along the cooperative trajectory in subgames—
change their mind by switching to another imputation within the current subcore
Ĉ(x∗(τ ), τ ), the resulting imputation will not leave the set C̄(x0, t0) which is
also a core in Γ (x0, t0), but with the characteristic function of the form V̄ (S, ·)
(12.3) obtained by an integral transformation of classical characteristic function
V (S, x∗(τ ), τ ) in the games Γ (x∗(τ ), τ ).

From Theorem 12.1 it follows that the imputations of type Ĉ(x∗(t), t) belong
to the classical core of the game Γ (x∗(t), t) for all t ∈ [t0, T ]. In this sense,
Theorem 12.1 establishes a new principle of optimality (cooperative solution).

12.8 Conclusion

In the paper we introduced the definition of S-strong time-consistency in differential
games. The approach to the construction of an S-strong time-consistent subcore of
the classical core is based on the use of normalized initial characteristic function.We
also considered its relation to another characteristic function obtained by an integral
extension of the original characteristic function.

We shown that the computed subset of the classical core can be considered as a
new optimality principle (cooperative solution) in differential games.

In the future we plan to study the relationship of proposed approach with another
constructive approach [12] which allows to identify another subset of the core which
is strongly time-consistent.
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