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Preface

Game theory is an area of applied mathematics that models the interaction between
agents (called players) to find the optimal behavior that each player has to adopt
to maximize his or her reward when such prize depends not only on the individual
choices of a player (or a group of players) but also on the decisions of all agents
involved in the system.

Nowadays, game theory is an extremely important tool for economic theory
and has contributed to a better understanding of human behavior in the process of
decision-making in situations of conflict. In its beginnings, game theory was a tool
to understand the behavior of economic systems, but currently it is used in many
fields, such as biology, sociology, political science, military strategy, psychology,
philosophy and computer science. In all these areas, game theory is perhaps the most
sophisticated and fertile paradigm that applied mathematics can offer to analyze the
process of making a decision under real-world conditions.

The conflicts between rational beings that distrust each other, or between com-
petitors that interact and influence each other, constitute the object of study of game
theory. Such studies are based on rigorous mathematical analyses; nevertheless,
they arise naturally from the observation of a conflict from a rational point of
view. For the theorists in our field, a “game” is a conflictive situation in which
competing interests of individuals or institutions prevail, and in that context, each
party influences the decisions that the others will make; thus, the result of the conflict
is determined by the decisions taken by all the actors. In the so-called canonical
form, a game takes place when an individual pursues an objective when other
individuals concurrently pursue other (overlapping or conflicting) objectives, and
in the same time these objectives cannot be reached by individual actions of one
decision maker. The problem is to determine each player’s optimal decision (with
respect to some predetermined criterion), how such decisions interact among each
other, and what are the properties of the outcome brought about by these choices.

The contents of this volume are primarily based on selected talks presented at the
11th International Conference “Game Theory and Management” 2017 (GTM2017)
held in Saint Petersburg State University, in Saint Petersburg, Russia, from 28 to 30
June 2017. Each chapter in this volume has passed a rigorous reviewing process,
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vi Preface

as is the case for the journals on applied mathematics. It is worth mentioning
that the predecessors of this conference (GTM2007-GTM2016) were held in Saint
Petersburg State University and were supported by the International Society of
Dynamic Games—Russian Chapter. The conference unites the game theorists of
two schools: the classical school founded by J. V. Neumann and O. Morgenstern,
and the school of differential games first introduced by R. Isaacs. GTM has
succeeded to achieve this goal along the years, and this can be seen by taking a
look at the list of our plenary speakers: R. Aumann, T. Bashar, G. J. Olsder, J.
Nash, R. Selten, F. Kidland, R. Myerson, D. W. K. Yeung, G. Zaccour, E. Maskin,
S. Jorgensen, D. Schmeidler, A. Tarasyev, H. Moulin, D. Novikov, A. Haurie, G.
Owen, A. Newman, P. Bernhard, J. Weibull, B. Monien, S. Zamir, S. Aseev, S. Hart,
M. Breton, R. Laraki, and others (among whom the authors of this preface have the
honor to appear).

The present volume proves that GTM offers an interactive program on a wide
range of the latest developments in game theory and management. It includes recent
advances in topics with high future potential and existing developments in classical
fields.

I wish to thank all of the associate editors and reviewers for their outstanding
contribution. Without them, this book would have not been possible.

St. Petersburg, Russia Leon A. Petrosyan
Petrozavodsk, Russia Vladimir V. Mazalov
St. Petersburg, Russia Nikolay A. Zenkevich
March, 2018
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Chapter 1
Countervailing Power with Large
and Small Retailers

George Geronikolaou and Konstantinos G. Papadopoulos

Abstract When concentration in the retail market increases, retailers gain more
market power towards the suppliers and they hence can achieve better wholesale
prices. In the 1950s, Galbraith introduced the concept of countervailing power
claiming that lower wholesale prices will pass on to consumer as lower retail prices.
Consequently higher concentration may turn out to be beneficial for consumers. In
this model where a monopolistic supplier sells an intermediate good to M large
retailers who are Cournot competitors and a competitive fringe consisting of N
retailers, we show that higher concentration does not decrease retail prices and
results solely to a reallocation of profits between the supplier and large retailers,
thus invalidating Galbraith’s conjecture. The same result carries on when the
exogenously given level of bargaining power of large retailers increases.

1.1 Introduction

In 1952, John Kenneth Galbraith in his book “American Capitalism: The Concept
of Countervailing Power” [8], introduced the concept of countervailing power as
an inherent power in market economies, which works to the benefit of consumers
in oligopolistic markets, i.e. in markets with small number of sellers who have the
ability to manipulate prices.

In every market there are buyers and sellers. According to Galbraith, if one side
of the market (e.g. the seller) enjoys gains of monopoly power then the other side
(the buyer) will defend against the monopolization by developing its own monopoly
power. As a result, the two forces will cancel each other to the benefit of the
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2 G. Geronikolaou and K. G. Papadopoulos

consumer. Big supermarkets like Carrefour in Europe or Wall-Mart in the U.S. are
common examples in the business literature. Because of their size they manage to
offset the power of suppliers, buying cheaper and offering their products at lower
prices to the consumer.

The concept of countervailing power served as an additional argument in favor
of the free market economy, able to perform a role akin to the “invisible hand” of
Adam Smith, despite fierce criticism addressed by the economists in Galbraith’s
time. However, until the 1990s there was no theoretical mathematical model to
confirm or invalidate the beneficial role of countervailing power for consumers.

Over the last 20 years, the consequences of the countervailing power returned to
the research scene, mainly because of the development of Industrial Organization.
There has been a growing research interest both from a theoretical point of
view,1 and from the U.S. and E.U. competition authorities (reports Federal Trade
Commission [6, 7], UK Competition Commission [3, 4], The European Commission
[11]) on the consequences of horizontal mergers or acquisitions among retailers
on consumer prices. It is known that in horizontal mergers retailers increase the
countervailing power towards their suppliers-producers. This increase is reflected
in practice by their ability to achieve better contractual terms towards suppliers, for
example in terms of various discounts, better wholesale prices, better franchising
terms. In the literature, the impact of countervailing power to consumers and the
level of social welfare remains open, mostly because theoretical results are model
specific.

Generally, competition authorities take a sceptic stance against mergers because
they usually lead to higher concentration and more market power for firms to
the detriment of consumers. In the context of vertical industrial relations higher
concentration at the retail level has a double effect. On the one hand it increases
the market power of retailers towards the consumers as sellers of final goods
(oligopolistic power), on the other hand it increases their market power as buyers of
the intermediate good (oligopsonistic/buyer power) against the supplier. The main
research question is whether the reduction in costs for retailers will translate to
lower prices for consumers or higher profits for the downstream firms. The answer
is not obvious because it depends on the market structure (number and size of firms,
production technologies), the degree of competition on the market of final goods (i.e.
among retailers), the market of intermediate goods (among suppliers) and equally
importantly the vertical contractual relations among firms and the type of contracts
they use in their transactions (linear and non-linear contracts).

In this paper, we construct a model which consists of a monopolist of an
intermediate good who sells it to a small number of large retailers M , who are
Cournot competitors, as well as a large number of small retailers N , who are price
takers. Consumers are represented by a demand function for the homogenous final
good.

1See for instance [9] and [10] and the references therein.
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The model is constructed as a three stage game. In the first stage, the supplier
chooses unilaterally a non-linear contract with the competitive firms and in the
second stage it negotiates simultaneously with the large retailers about their
respective contracts. We will assume that the outcome of negotiations is given by
the generalized Nash bargaining program. We also assume that large retailers are
symmetric, that is, they have the same technology. In the third stage large retail
firms will strategically choose their quantities as Cournot players, taking as given
the supply function of a competitive fringe.

As a solution to the above game we will use the concept of subgame perfect Nash
equilibrium. Once we calculate the equilibrium we will do comparative statics with
respect to the number of large retailers (that serves here as a proxy for countervailing
power) and their degree of bargaining power so that we can clarify the effects of
countervailing power on consumer prices and welfare. Our model combines the
dominant firm-competitive fringe model with the Cournot model.

Our work shows that when concentration, as measured by the number of large
retailers, increases, consumer prices stay constant. This result is interesting for
two reasons. First, because it is contrary to the standard Cournot model result
where prices go down when the number of sellers increases and second, because it
provides a theoretical argument against Galbraith’s conjecture about the beneficial
role of countervailing power. In fact we show that, in our context, countervailing
power, represented either as the level of bargaining power or concentration, cannot
benefit consumers, even in the presence of competition in the retail level, i.e. the
price taking competitive fringe. Competition is a prerequisite in the models of Von
Ungern-Sternberg [12], Dobson and Waterson [5] and Chen [1] for countervailing
power to function for the benefit of consumers.

1.2 The Model

A single supplier denoted by s produces and sells an intermediate product to
M + N retailers, M symmetric large retailers and a competitive fringe consisting
of N symmetric retailers.2 The number of firms is exogenous but we assume that
M < N and there is no possibility of entry in the market. Retailers transform
the intermediate good to a final one on a 1–1 basis, suffering some retail cost. We
normalize the supplier’s cost to zero, without loss of generality.

Let m denote a large retailer and n a fringe firm. A large retailer has constant
marginal retailing cost MCm = cm. The retail cost function of a fringe retailer is

2We use capital letters M and N to denote the set, the last element of the set or the cardinality of
the set, depending on the context. We use small letters m and n to denote a typical element or an
index of the set M and N respectively. So we adopt the convention M = {1, . . . , m, . . . ,M} and
N = {1, . . . , n, . . . , N}.
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C(qn) = kq2
n/2 and so the fringe firm faces an increasing marginal cost, MC(qn)

withMC′(qn) > 0 andMC(0) = 0, where qn is the quantity of output produced by
the fringe retailer. The overall marginal cost of a unit, including the input wholesale
price w, is wm + cm for the large retailer and wn +MC(qn) for the fringe retailer.
AC(qn) denotes the average retail cost function of a fringe retailer.

Consumers are represented by the inverse demand function p(Q) = a − bQ,
for a, b > 0. We denote the total quantity purchased by large retailers by QM =∑M
m=1 qm, where qm is the quantity bought by a single retailerm. The total quantity

purchased by the small retailers isQN =∑N
n=1 qn, where qn is the quantity bought

by a single retailer n. Hence the total quantity is denoted byQ = QM +QN .
The timing of the game is the following:
At t = 1, the supplier makes a take-it-or-leave-it offer to each one of the fringe

retailers simultaneously, a pair (Fn,wn) consisting of a fee Fn which is independent
of the quantity purchased and a wholesale price wn for one unit of the intermediate
good. The contract is binding once signed.

At t = 2, the supplier and the large retailers bargain simultaneously over a two-
part tariff (Fm,wm).

At t = 3, large retailers play a Cournot game among themselves, that is they
choose how much to sell taking as given the supply function of the fringe retailers.
Given their quantity choice, total quantityQ is sold at price p. Given p, each fringe
retailer chooses how much input quantity qn to buy at wn and then sell at the final
good price p.

1.3 Equilibrium

The concept of equilibrium that we use is that of subgame perfect Nash equilibrium.
We proceed by backward induction.

At t = 3, each fringe retailer chooses how much to sell to consumers given the
retail price p and the (Fn,wn) contract that is already signed with the supplier. The
fringe retailer’s problem is

max
qn
πn = [p − ACn(qn)−wn]qn − Fn (1.1)

Average cost is kqn/2. Solving the first order condition dπn/dqn = 0, we obtain
p−wn =MC(qn) with d2πn/dqn = −k < 0 and so the supply function of a fringe
firm and the total fringe supply are respectively

q∗n =
p − wn
k

, (1.2)

QN = N p −wn
k

= N a − b(QM +QN)− wn
k

. (1.3)
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Solving forQN we obtain

QN = N a − bQM − wn
k + bN . (1.4)

Let Q−m be the quantity chosen by all M retailers expect m. Then a large
Cournot retailer chooses quantity qm so that

max
qm
πm = [p(qm +Q−m +QN(qm))− cm − wm]qm − Fm, (1.5)

taking as given the choices of the rest of the large retailers Q−m and the total
quantity supplied by the competitive fringe from (1.4). The reaction function of
a large retailer is (see Appendix)

qm(Q−m) = ak − (cm +wm)(k + bN)− bkQ−m + bNwn
2bk

and since the large retailers are symmetric,Q−m = (M − 1)qm we obtain

q∗m(wm,wn) =
ak − (cm +wm)(k + bN)+ bNwn

bk(1+M) (1.6)

which makes the total quantity Q∗M = Mq∗m. Given (1.3), we obtain the consumer
price as a function of the wholesale prices wm and wn.

p(wm,wn) = ak +M(k + bN)(cm +wm)+ bNwn
(1+M)(k + bN) (1.7)

At t = 2 the supplier bargains simultaneously with the set of large retailers over
the (Fm,wm) contract. We assume that the bargaining outcome is represented by the
maximization of the following generalized Nash bargaining program where γm ∈
(0, 1) is the degree of bargaining power of a large retailerm and σ = 1−∑M

m=1 γm

that of the supplier, so that σ +∑M
m=1 γm = 1.

max
(Fm,wm)

M
m=1

[πs(Fm,wm)− π̄s]
(

1−∑M
m−1 γm

) M∏

m=1

[
πm(Fm,wm)− π̄m

]γm (1.8)

where the profit of the supplier is

πs(Fm,wm) = M(Fm +wmqm)+N(Fn +wnqn), (1.9)

and the profit function of a large retailer is

πm(Fm,wm) = [p − cm −wm]qm − Fm, (1.10)



6 G. Geronikolaou and K. G. Papadopoulos

while π̄s and π̄m denote the players’ disagreement payoffs. Since a large retailer
is unable to produce the final good without the provision of the essential input by
the supplier, its disagreement payment is zero, π̄m = 0, whilst the outside option
of the supplier in case negotiations break down is the profit that can be obtained
by supplying only to the fringe retailers, π̄s = N(Fn + wnqc) > 0, where qc =
(a − wn)/(k + bN) is the quantity sold at the market clearing retail price pc =
(ak + bNwn)/(k + bN). The solution to (1.8) is given by (see Appendix)

Fm = [(ak − cm(k + bN)]2(1−M2γ )

4bkM2(k + bN) , (1.11)

wm(wn) = (M − 1)[ak − cm(k + bN)] + 2bMNwn
2M(k + bN) . (1.12)

At the first stage of the game, t = 1, the supplier decides about the take-it-
or-leave-it offer for the fringe retailers, taking as given p(wm,wn), QN(wm,wn),
QM(wm,wn), Fm,wm(wn) from the next stages. The supplier’s problem is

max
wn
πs(wn) = M[Fm +wm(wn)qm(wn)] +N[Fn +wnqn(wn)], (1.13)

s.t. Fn = [p(wn)− ACf (qn(wn))− wn]qn(wn).
or equivalently

max
wn
πs(wn) = M[Fm +wm(wn)qm(wn)] +N[p(wn)− ACf (qn(wn))]qn(wn),

which gives the following optimal contract

w∗n =
1

2

(

a − cm(k + bN)
k + 2bN

)

,

F ∗n =
1

2k

(
cm(k + bN)
k + 2bN

)2

.

Given the optimal contract (F ∗n ,w∗n) at t = 1 we may now calculate the following
values at the subgame perfect Nash equilibrium

w∗m =
1

4

[

cm

(

−3+ 2

M
+ k

k + 2bN

)

+ 2a

(

1− k

M(k + bN)
)]

,

p∗ = 1

4

(

2a + cm + cmk

k + 2bN

)

,

q∗n =
cm(k + bN)
k(k + 2bN)

,

q∗m =
ak − cm(k + bN)

2bkM
,
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Q∗N =
Ncm(k + bN)
k(k + 2bN)

,

Q∗M =
ak − cm(k + bN)

2bk
,

Q∗M +Q∗N =
k(a − cm)+ bN(2a − cm)

2b(k + 2bN)
.

Equilibrium profits, consumer surplusCS, total profits PS, and total surplus T S are

π∗n = 0,

π∗m = γ
[ak − cm(k + bN)]2

4bk(k + bN) ,

π∗s =
1

4bk

(

a2k − 2acmk + c
2
m(k + bN)(k + 3bN)

k + 2bN

−M[ak − cm(k + bN)]
2γ

k + bN
)

,

CS∗ = [cm(k + bN)− a(k + 2bN)]2
8b(k + 2bN)2

,

PS∗ = 1

4bk

(

a2k − 2acmk + c
2
m(k + bN)(k + 3bN)

k + 2bN

)

,

T S∗ = 3a2

8b
− acm(3k + 5bN)

4b(k + 2bN)
+ c

2
m(k + bN)(3k2 + 11bkN + 12b2N2)

8bk(k + 2bN)2

1.4 The Effects of Concentration and Bargaining Power on
Retail Prices

In this model, countervailing power is represented by the degree of bargaining
power γ of each large retailer, as in [1] or [2] and alternatively, by the degree
of downstream concentration, which is given by the number of symmetric large
retailers M , as in [12]. We also consider the effects of the fringe size N on
equilibrium values. We obtain the following propositions.

Proposition 1.1 When the number of large retailers decreases, each large retailer
obtains a lower wholesale price from the supplier and sells a higher quantity of the
final good, while the fringe quantity, total quantity, consumer price, industry profits
and total welfare remain constant.

Proof In order to guarantee positive quantities at equilibrium, we have to assume
that N < k(a − cm)/bcm because q∗m = [ak − cm(k + bN)]/2bkM . Calculating



8 G. Geronikolaou and K. G. Papadopoulos

derivatives at equilibrium we have:

∂w∗m
∂M

= ak − cm(k + bN)
2M2(k + bN) > 0,

∂q∗m
∂M

= −ak + cm(k + bN)
2kbM2 < 0,

∂q∗n
∂M

= ∂Q
∗
M

∂M
= ∂Q

∗
N

∂M
= 0,

∂p∗

∂M
= ∂PS

∗

∂M
= ∂T S

∗

∂M
= 0.

When the number of large retailers decreases, they obtain more bargaining power
towards the supplier, so that they can achieve a lower wholesale price. Nevertheless,
a lower wholesale price does not lead to a lower retail price at equilibrium. There
are two conflicting effects. On the one hand, a lower wholesale price leads to a
higher individual production, while on the other hand, fewer large retailers face
relaxed competition and want to produce less. The first effect dominates so that
large retailers increase individual production up to the level where total production,
and hence retail price, remain constant. Moreover, the profit of a large retailer will
not change, despite of the fact that its per unit profit increases due to the lower
wholesale price. Any higher profit obtained is completely captured by a higher
fixed fee charged by the supplier. However, when large retailers become fewer, the
supplier’s profit increases, because the supplier collects fewer, yet higher fees. These
findings are summarized in the following proposition.

Proposition 1.2 When the number of large retailers changes, the profits of the
supplier and the consolidated profits of the large retailers move to opposite
directions and their change is of the same magnitude.

Proof ∂(Mπ∗m)/∂M = γ [(ak − cm(k + bN)]2/4bk(k + bN) > 0 and ∂π∗s /∂M =
−γ [(ak − cm(k + bN)]2/4bk(k + bN) < 0 so (∂(Mπ∗m)/∂M)(∂π∗s /∂M) < 0 and
∂(Mπ∗m)/∂M + ∂π∗s /∂M = 0.

At equilibrium, the size of the pie is invariant to the number of large retailers.
The effect of a change of the number of retailers results solely in a redistribution of
profits.

Next, we examine the effect of a change of the exogenously given level of
bargaining power of the large retailers. The following proposition summarizes the
neutrality of countervailing power:

Proposition 1.3 When the degree of bargaining power γ of large retailers
increases, they pay a lower fee Fm and their profits increase. They do not obtain
any lower wholesale price and the retail price does not change at equilibrium.

Proof −∂π∗m/∂γ = ∂F ∗m/∂γ = −[(ak − cm(k + bN)]2/4bk(k + bN) <
0, ∂w∗m/∂γ = ∂p∗/∂γ = 0.
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The proposition suggests that a higher level of bargaining power will lead to a
lower fee for the large retailer, not a lower wholesale price. Consequently, the retail
price will not change either. This is due to the fact that the level of wholesale price
is set so as to maximize multilateral profits, hence a change in bargaining power can
only lead to a reallocation of profits.

1.5 Conclusion

In this work we examine a particular retail market structure consisting of a
set of large retailers with power over wholesale and retail prices and a set of
small retailers who are price takers. We use the number of large retailers as a
measure of the degree of concentration in the market. When concentration in
the market increases, equilibrium wholesale prices become lower, nevertheless we
show that equilibrium consumer prices and welfare remain constant. Since higher
concentration is tantamount to higher countervailing power, we prove, contrary to
Galbraith’s argument, that countervailing power is not effective in this model.

Alternatively, we use the degree of bargaining power as a proxy for countervail-
ing power. Keeping the number of larger retailers constant, when large retailers
obtain greater bargaining power exogenously, they achieve a lower fee, not a
lower wholesale price. This is due to the fact that wholesale prices maximize the
multilateral profits of the supplier and the large retailers in the negotiation process.
Consequently, even if there were a positive pass-through rate from wholesale prices
to consumer price, the consumer price cannot fall because the wholesale prices
remain constant. Again, countervailing power is neutral.

Acknowledgements Konstantinos Papadopoulos gratefully acknowledges Research Grant no
87937 from the Aristotle University of Thessaloniki Research Committee.

Appendix

Derivation of the Reaction Function of the Large Retailer
qm(Q−m)

Using (1.4), the profit function of a Cournot retailer as defined in (1.5) can be written
as

πm = [a − b(qm +Q−m +QN(qm))− cm −wm]qm − Fm
=
[

a − b
(

qm +Q−m + N[a − b(Q−m + qm)− wn]
k + bN

)

− cm − wm
]

qm − Fm
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which we differentiate with respect to qm to obtain

qm(Q−m) = ak − (cm +wm)(k + bN)− bkQ−m + bNwn
2bk

.

Derivation of Bargaining Outcome (1.11) and (1.12)

Let π̃s = Mwmqm+N(Fn +wnqn) so that from (1.9) we can write πs(Fm,wm) =
π̃s + MFm. Let π̃m = [p − cm − wm]qm so that from (1.10) we can write
πm(Fm,wm) = π̃m − Fm. Cournot retailers are symmetric so

∑M
m−1 γm = Mγm

and given that π̄m = 0, (1.8) reduces to

max
(Fm,wm)

[
π̃s +MFm − π̄s

](1−Mγm) [π̃m − Fm
]Mγm . (1.14)

The first order condition with respect to Fm is

0 = M (1−Mγm)
[
π̃s +MFm − π̄s

]−Mγm [π̃m − Fm
]Mγm

−Mγm
[
π̃s +MFm − π̄s

](1−Mγm) [
π̃m − Fm

](Mγm−1)

⇒ (1−Mγm) /γm = (π̃s +MFm − π̄s)/(π̃m − Fm)

or

Fm = π̃m − γm (Mπ̃m + π̃s − π̄s) . (1.15)

If we substitute π̃m = [p − cm − wm]qm, π̃s = Mwmqm + N(Fn + wnqn) and
π̄s = N(Fn + wnqc) in (1.15) where qc = (a − wn)/(k + bN) is the quantity sold
at the market clearing retail price pc = (ak + bNwn)/(k + bN) we end up with
(1.11).

In order to find wm that solves (1.14), we introduce (1.15) in the objective
function in (1.14) and we rearrange terms so that

[
π̃s +MFm − π̄s

](1−Mγm) [π̃m − Fm
]Mγm

= [(1−Mγm)(1−Mγm)γMγmm ] (Mπ̃m + π̃s − π̄s ) .

Consequently, the maximization problem can be written as

max
wm
Mπ̃m + π̃s − π̄s (1.16)
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because (1−Mγm)(1−Mγm)γ Mγmm is a constant. Notice also that π̄s does not depend
on wm, so, in fact, wm maximizes the multilateral profits of the supplier with theM
Cournot retailers (efficiency of Nash bargaining solution). So

Mπ̃m + π̃s − π̄s = M(p − cm − wm)qm +Mwmqm +N(Fn +wnqn)
−N(Fn + wnqc)

= M[p − cm]qm +Nwn(qn − qc)
= M [a − b(Mqm(wm)+ Nqn(wm)− cm] qm(wm)

+Nwn(qn − qc)
= NFn + 1

bk(1+M)2(k + bN)Z

whereZ = a2k2M+M(k+bN)2(cm+wm)(cm−Mwm)+bMN(k+bN)[cm(M−
1)+ 2Mwm]wn − bN[k(1 +M)2 + bM2N]w2

n + ak[M(k + bN)((M − 1)wm −
2cm)+ b(1+ 3M)Nwn]. The maximization of (1.16) with respect to wm will give
(1.12).
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Chapter 2
Dynamic Voluntary Provision of Public
Goods: The Recursive Nash Bargaining
Solution

Simon Hoof

Abstract Grim trigger strategies can support any set of control paths as a coop-
erative equilibrium, if they yield at least the value of the noncooperative Nash
equilibrium. We introduce the recursive Nash bargaining solution as an equilibrium
selection device and study its properties by means of an analytically tractable n-
person differential game. The idea is that the agents bargain over a tuple of stationary
Markovian strategies, before the game has started. It is shown that under symmetry
the bargaining solution yields efficient controls.

2.1 Introduction

Most noncooperative differential games lack Pareto efficiency. That is, all agents can
increase their individual payoffs if they agree to coordinate controls. However, in
order to attain the socially optimal outcome at least two conditions must be fulfilled:
(1) the agents form the grand coalition to derive the efficient controls and (2) payoffs
must be transferable and distributed in such a way that every agent benefits from
cooperation.1

Here we study a mechanism which implements the Pareto efficient outcome as
a bargaining solution. The crucial difference to the classic cooperative approach is
that agents do not mutually agree to maximize overall payoffs and distribute them
appropriately, but bargain over the controls. In order to support the resulting controls
as an equilibrium we fix grim trigger strategies. If an agent defects on the agreement,
all agents switch to their noncooperative Nash equilibrium strategies [7].

1See Yeung and Petrosyan [9] for a recent treatment on subgame consistent cooperation in
differential games.
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Sorger [6] proposed the recursive Nash [4] bargaining solution for difference
games. We introduce a continuous time analogon and apply it to the differential
game of public good provision of Fershtman and Nitzan [2]. Considering the
noncooperative equilibrium they showed that the public good is underprovided
with respect to the efficient solution. The result, however, crucially depends on
the linearity of the Markovian strategies. This simplification makes the game
analytically tractable and yields a unique steady state.2

This note contributes to the literature on cooperative agreements in noncooper-
ative differential games. It is well known that grim trigger strategies can support
a set of control paths as equilibria, if they payoff dominate the noncooperative
Nash equilibrium. The Nash bargaining solution can then be used as an equilibrium
selection device. Since bargaining problems are defined in the payoff space we need
to construct a value under agreement. In games with transferable payoffs one can
simply fix the efficient value of the grand coalition and define an imputation. Here,
however, we do not assume that the grand coalition forms and jointly maximizes
payoffs. But we can define the agreement value in terms of a stationary Hamilton-
Jacobi-Bellman equation (HJBe), if the agents stick to the agreement strategies over
the entire time interval. The agreement strategies are then determined by the Nash
bargaining solution.

The remainder of the paper is organized as follows: Sect. 2.2 presents the
problem, Sect. 2.3 the solution concept and Sect. 2.4 concludes.

2.2 Problem Statement

The model is essentially the most rudimentary version of Fershtman and Nitzan
[2].3 Let x(t) ∈ X := [0, 1

2 ] denote the stock of a pure public good at time t ∈ R+.
We could think of x being the total contribution to some joint project carried out by
n agents. Each agent i ∈ N := {1, 2, . . . , n} can partially control the evolution of
the state according to the state equation

ẋ(t) = f (x(t), u(t)) =
∑

i∈N
ui(t)− δx(t) (2.1)

x0 := x(0) ∈ X (2.2)

where u(t) := (ui(t))i∈N ∈ ×i∈NUi =: U ⊂ Rn denotes the investment (control)
vector and δ ∈ (0, 1] is the deprecation rate. In the context of the joint project, ui(t)
then denotes the contribution rate of any agent i ∈ N . We consider quadratic payoffs

2Wirl [8] showed that within the set of nonlinear Markovian strategies the Nash equilibrium is
nonunique and that the efficient steady state is potentially reachable.
3See also Dockner et al. [1, Ch. 9.5] for a textbook treatment.
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of the form

Fi(x(t), ui(t)) = x(t)(1− x(t))− 1

2
ui(t)

2 (2.3)

such that the game is linear quadratic and thus possesses a closed form solution [1,
Ch. 7.1]. Note that the instantaneous payoff function is monotonously increasing
in the state ∂Fi(x,ui)

∂x
> 0 for all x ∈ X. The state is thus a pure public good and

each agent benefits by its provision. With costly investment, however, there exists a
trade-off between increasing the stock and minimizing costs. This trade-off defines
a public good game. Each agent wants the others to invest, such that one can free
ride on the effort of the other agents. This behavior results in an inefficiently low
overall investment level. The objective functional for each agent i ∈ N is then given
by the stream of discounted payoffs

Ji(u(s), t) :=
∫ ∞

t

e−r(s−t )Fi(x(s), ui(s))ds (2.4)

where r > 0 denotes the time preference rate.

2.3 Solution Concepts

In what follows we consider a stationary setup and hence save the time argument
t frequently. First we will derive the efficient collusive solution of joint payoff
maximization. The efficient value is an upper bound on the agreement value. We
then derive the noncooperative Nash equilibrium which serves as the disagreement
value for the bargaining solution. The noncooperative equilibrium value is a lower
bound on the agreement value. Any cooperative agreement lies in the set of
strategies which support payoffs between the noncooperative Nash and efficient
value. The noncooperative equilibrium strategies also serve as threats for deviations
from the agreed upon bargaining solution.

2.3.1 Collusive Solution

Assume all agents agree to cooperate and jointly maximize overall payoffs. The
value function for the efficient solution then reads

C(x(t)) := max
u(s)∈U

∑

i∈N
Ji(u(s), t). (2.5)
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The optimal controls must satisfy the stationary HJBe

rC(x) = max
u∈U

{
∑

i∈N
Fi(x, ui)+ C′(x)f (x, u)

}

. (2.6)

The maximizers of the right hand side of (2.6) are ui = C′(x) for all i ∈ N .
Substituting the maximizers into the HJBe yields

rC(x) = nx(1− x)+ n
2
C′(x)2 − C′(x)δx. (2.7)

Theorem 2.1 If we consider symmetric stationary linear strategies of the form ûi =
αx + β for all i ∈ N where α and β are constants, then there exists a unique
quadratic solution to (2.7)

C(x) = α
2
x2 + βx + γ (2.8)

with

α := 1

2n

(
r + 2δ −

√
(r + 2δ)2 + 8n2

)
, (2.9)

β := n

δ − nα + r , (2.10)

γ := n

2r
β2. (2.11)

Proof Substitute the guess (2.8) and thus C′(x) = αx + β into (2.7)

r
(α

2
x2 + βx + γ

)
= nx(1− x)+ n

2
(αx + β)2 − (αx + β)δx. (2.12)

This optimality condition must hold at any x ∈ X. Evaluate (2.12) at x = 0, which
yields γ

rγ = n
2
β2 ⇐⇒ γ = n

2r
β2. (2.13)

Taking the derivative of (2.12) gives

r(αx + β) = n(1− 2x)+ αn(αx + β)− δ(2αx + β). (2.14)
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Again, at x = 0 we have

rβ = n+ αnβ − δβ ⇐⇒ β = n

δ − αn+ r . (2.15)

Resubstituting β in (2.14) and solving for α yields

α = 1

2n

(
r + 2δ ±

√
(r + 2δ)2 + 8n2

)
. (2.16)

Note that the state dynamics become ẋ(t) = (nα−δ)x(t)+nβ. There exists a unique
and globally asymptotically stable steady state at x = −nβ/(nα − δ) if nα − δ < 0
holds, which is ensured for the negative root of (2.16).

2.3.2 Noncooperative Equilibrium

The collusive solution implies two restrictive assumptions. The grand coalition must
form and payoffs must be transferable in order to split the total payoff.4 Let us
assume that the collusive solution is not feasible. If this is the case we consider a
noncooperative differential game and each agent maximizes his individual payoffs.
The noncooperative Markovian strategies are denoted by φi : X→ Ui and satisfy5

φi(x(s)) ∈ arg max
ui (s)∈Ui

Ji(ui(s), φ−i (x(s)), t). (2.17)

where φ−i := (φj )j∈N\{i}. A noncooperative Nash equilibrium is then defined as
follows.

Definition 2.1 The strategy tuple φ(x(s)) := (φi(x(s)))i∈N ∈ U is a noncoopera-
tive Nash equilibrium if the following holds

Ji(φ(x(s)), t) ≥ Ji(ui(s), φ−i (x(s)), t) ∀ui(s) ∈ Ui, ∀i ∈ N. (2.18)

Denote by

Di(x(t)) := Ji(φ(x(s)), t) (2.19)

the noncooperative disagreement value.

4The latter assumption is not too prohibitive. If payoffs were not transferable the individual
cooperative value is simply given by Ci(xt ) = Ji(û(s), t) where û(s) are the Pareto efficient
controls. It turns out that in the symmetric setup Ci(xt ) = C(xt )

n
which would also be the result

under an equal sharing rule with transferable payoffs.
5See e.g. Dockner et al. [1, Ch. 4] for the theory on noncooperative differential games.
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Theorem 2.2 If we consider symmetric stationary linear strategies of the form
φi(x) = ωx + λ for all i ∈ N where ω and λ are constants, then there exists a
unique quadratic solution to (2.19)

Di(x) = ω
2
x2 + λx + μ (2.20)

with

ω := 1

2(2n− 1)

(
r + 2δ −

√
(r + 2δ)2 + 8(2n− 1)

)
, (2.21)

λ := 1

δ − (2n− 1)ω + r , (2.22)

μ := 2n− 1

2r
λ2. (2.23)

Proof The proof follows the same steps as Theorem 2.1.

The noncooperative equilibrium, however, is generally not efficient. It can be
shown eventually that the collusive solution yields a cooperation dividend such that
the value under cooperation always exceeds the noncooperative value, i.e., C(x) >∑
i∈N Di(x) ∀x ∈ X. The investment levels and thus the provision of the public

good are inefficiently low. This result is standard in public good games and due
to free riding. It is rational to assume that the agents do not want to stick to the
fully noncooperative equilibrium, but increase overall efficiency by exploiting the
cooperation dividend.

2.3.3 Bargaining Solution

It was shown by Tolwinski et al. [7]6 that any control path ũti := (ũi (s))s≥t , i ∈ N
can be supported as an equilibrium if the control profiles are agreeable and defection
from the agreement is punished.7 Let σi : X→ Ui denote a Markovian strategy that
generates ũi . Suppose the agents agree on some strategy profile σ(x) := (σi(x))i∈N
at t < 0 before the game has started. If the agents agree from t onwards, the
agreement value is defined as

Ai(x(t)) = Ji(σ (x(s)), t). (2.24)

6See also Dockner et al. [1, Ch. 6].
7Agreeability is a stronger notion than time consistency. In the former the agreement payoff
dominates the noncooperative play for any state while in the latter only along the cooperative path.
Time consistency was introduced by Petrosjan [5] (originally 1977) and agreeability by Kaitala
and Pohjola [3]. See also Zaccour [10] for a tutorial on cooperative differential games.
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Definition 2.2 A strategy tuple σ(x) is agreeable at t if

Ai(x(t)) ≥ Di(x(t)) ∀t, ∀x(t), ∀i (2.25)

such that every agent benefits the agreement in comparison to the noncooperative
equilibrium.

If this inequality was not about to hold there exists an agent who rather switches
to the noncooperative equilibrium, because it payoff dominates the agreement.
The condition, also refereed to dynamic individual rationality, is necessary but not
sufficient for dynamic stability of an agreement. An agent might deviate from the
agreement if he benefits from it.

Now we construct the history dependent non-Markovian grim trigger strategies
τi : [0,∞) → Ui that support σi(x) as an equilibrium. Given some agreement
strategy profile σ(x) the agents can solve the differential equation (2.1) for the
agreement trajectory of the state

xa(t) := x0 +
∫ t

0
f (x(s), σ (x(s)))ds. (2.26)

Suppose the agents perfectly observe the state and can recall the history of the state
(x(s))s∈[0,t ]. If they observe that an agent deviates in t , they can impose punishment
with delay t + ε. Now the grim strategies read

τ (s) =
{
σ(x(s)) for s ∈ [t, t + ε] if x(l) = xa(l) ∀l ∈ [0, t],
φ(x(s)) for s ∈ [t + ε,∞) if x(t) �= xa(t). (2.27)

That is, if the agents observe that another player deviated at t from the agreement
they implement their noncooperative equilibrium strategies from t + ε onwards. Let
d ∈ N denote a potential defector who deviates from σ(x) at t . In the interval s ∈
[t, t+ε] he maximizes his payoff against the agreement strategies of the opponents.
From t+ε onwards he receives the discounted disagreement payoff. Let Vd(x(t); ε)
denote the value of the defector defined as

Vd(x(t); ε) := max
(ud(s))s∈[t,t+ε]

∫ t+ε

t

e−r(s−t )Fd(x(s), ud(s))ds

+ e−rεDd(x(t + ε))
s.t. ẋ(s) = f (x(s), ud(s), σ−d (x(s))) (s ∈ [t, t + ε]).

(2.28)

The threat is effective if

Ai(x(t)) ≥ Vi(x(t); ε) ∀x(t), ∀i (2.29)
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holds and every agent benefits the agreement over defecting on the agreement. Now
we can always fix an ε ∈ (0, ε] such that (2.29) holds. Suppose punishment can be
implemented instantly ε = 0. Equation (2.29) then becomes

Ai(x(t)) ≥ Vi(x(t); 0) = Di(x(t)) (2.30)

which is true by the definition of individual rational agreements. Let ε denote a
threshold such that (2.29) holds with equality

Ai(x(t)) = Vi(x(t); ε). (2.31)

Then the threat is effective for all ε ∈ (0, ε]. The threat is also credible, because after
defection occurs all agents switch to their noncooperative equilibrium strategies and
thus have no unilateral incentive to deviate from the punishment by the definition
of an equilibrium. The grim trigger strategies and a sufficiently small punishment
delay guarantee that the agents stick to the initial agreement over the entire time
horizon.

Differentiating (2.24) w.r.t. time yields a representation of the agreement value
in terms of the stationary HJBe

A′i (x(t))ẋ(t) = −Fi(x(t), σi(x(t)))+
∫ ∞

t

re−r(s−t )Fi(x(s), σi(x(s)))ds

(2.32)

⇐⇒ rAi(x) = Fi(x, σi(x))+ A′i (x)f (x, σ (x)) (2.33)

This gives us a stationary definition for the agreement value. Next we want to
determine a particular strategy profile σ(x) by the Nash bargaining solution. Fix
the excess demand function as follows

Ei(x, σ (x)) := 1

r
[Fi(x, σi(x))+ A′i (x)f (x, σ (x))] −Di(x). (2.34)

That is, each agent claims an amount which exceeds his disagreement value. Since
each agent will only agree on some bargaining strategy if it gives him at least his
disagreement value, we must restrict the control set. The set of individual rational
strategies is then defined as

Ω(x) := {σ(x) ∈ U | Ei(x, σ (x)) ≥ 0 ∀i ∈ N}. (2.35)

Note that these are all stationary representations. That is, the actual time instance
t is not important, but state x(t). Since the relation holds for all t ∈ R, we saved the
time argument. We are now in the position to state our main result and show how to
solve for the bargaining strategy σ(x).
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Theorem 2.3 For the fully symmetric case the agreement strategies that solve the
Nash bargaining product

σN(x) ∈ arg max
σ(x)∈Ω(x)

∏

i∈N
Ei(x, σ (x)) (2.36)

yield the Pareto optimal controls.

Proof The first order conditions for j ∈ N of (2.36) is given by

0 = ∂
∏
i∈N Ei(x, σ (x))
∂σj (x)

⇐⇒ 0 = 1

r

∑

i∈N

⎡

⎣
∂Ei(x, σ (x))

∂σj (x)

∏

k∈N\{i}
Ek(x, σ (x))

⎤

⎦

⇐⇒ 0 = ∂Ej(x, σ (x))
∂σj (x)

∏

k∈N\{j}
Ek(x, σ (x))

+
∑

i∈N\{j}

⎡

⎣∂Ei(x, σ (x))

∂σj (x)

∏

k∈N\{i}
Ek(x, σ (x))

⎤

⎦

⇐⇒ 0 = (−σj (x)+ A′j (x))
∏

k∈N\{j}
Ek(x, σ (x))

+
∑

i∈N\{j}

⎡

⎣A′i (x)
∏

k∈N\{i}
Ek(x, σ (x))

⎤

⎦.

(2.37)

Under symmetry, we must have Ei(·) =: E(·), A′i (·) =: A
′
(·) and σi(·) =: σ(·) for

all i ∈ N . The first order condition then becomes

(−σ(x)+ nA′(x))E(x, σ (x))n−1 = 0 ⇐⇒ σ (x) = nA′(x). (2.38)

Since E(·) = 0 ⇔ A(·) = D(·) implies that all agents stick to the disagreement
strategy we can neglect this case here. Now substitute the maximizer σ(x) = nA′(x)
into (2.33) which gives

rA(x) = x(1− x)− 1

2
σ(x)2 + σ(x)

n
(nσ(x)− δx)

= x(1− x)+ 1

2
σ(x)2 − δ

n
σ(x)x.

(2.39)
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Take the derivative with respect to x

rA
′
(x)

(2.38)= r

n
σ(x) = 1− 2x + σ(x)σ ′(x)− δ

n
(σ ′(x)x + σ(x)). (2.40)

We claimed that the agreement strategies satisfy the efficient solution and are thus
given by σ(x) = αx + β with σ ′(x) = α. Equation (2.40) becomes

r

n
(αx + β) = 1− 2x + (αx + β)α − δ

n
(2αx + β). (2.41)

This relation must hold at any x ∈ X. At x = 0, the equation simplifies to

r

n
β = 1+ βα − δ

n
β ⇐⇒ β = n

δ − nα + r = (2.10). (2.42)

Now substitute β into (2.41) and solve for α, which then is identical with (2.9). Since
the controls and thus dynamics are identical under the collusive and bargaining
solution, the values must be identical as well.

2.4 Conclusion

We studied the recursive Nash bargaining solution for symmetric differential games.
It was shown by an analytically tractable example that the bargaining solution yields
the Pareto efficient outcome of full cooperation. In an accompanying paper the
author also wants to investigate asymmetric games and compare different solution
concepts (e.g. Kalai-Smorodinsky and Egalitarian solution). Especially for the
case of asymmetric discounting the recursive bargaining solution can be useful,
because then efficient controls are not derivable in the standard way by joint payoff
maximization.

Acknowledgements I thank Mark Schopf and participants of the Doktorandenworkshop der
Fakultät für Wirtschaftswissenschaften for valuable comments. This work was partially supported
by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-
Fly Computing” (SFB 901).

References

1. Dockner, E.J., Jørgensen, S., Long, N.V., Sorger, G.: Differential Games in Economics and
Management Science. Cambridge University Press, Cambridge (2000)

2. Fershtman, C., Nitzan, S.: Dynamic voluntary provision of public goods. Eur. Econ. Rev. 35,
1057–1067 (1991)



2 Recursive Bargaining Solution 23

3. Kaitala, V., Pohjola, M.: Economic development and agreeable redistribution in capitalism:
efficient game equilibria in a two-class neoclassical growth model. Int. Econ. Rev. 31(2), 421–
438 (1990)

4. Nash, J.F., Jr.: The bargaining problem. Econometrica 18(2), 155–162 (1950)
5. Petrosjan, L.A.: Agreeable solutions in differential games. Int. J. Math. Game Theory Algebra

2–3, 165–177 (1997)
6. Sorger, G.: Recursive Nash bargaining over a productive asset. J. Econ. Dyn. Control 30(12),

2637–2659 (2006)
7. Tolwinski, B, Haurie, A., Leitmann, G.: Cooperative equilibria in differential games. J. Math.

Anal. Appl. 119(1–2), 182–202 (1986)
8. Wirl, F.: Dynamic voluntary provision of public goods: extension to nonlinear strategies. Eur.

J. Polit. Econ. 12, 555–560 (1996)
9. Yeung, D.W.K., Petrosyan, L.A.: Subgame Consistent Cooperation. Springer, Singapore

(2016)
10. Zaccour, G.: Time consistency in cooperative differential games: a tutorial. Inf. Syst. Oper.

Res. (INFOR) 46(1), 81–92 (2008)



Chapter 3
Altruistic, Aggressive and Paradoxical
Types of Behavior in a Differential
Two-Person Game

Anatolii Kleimenov

Abstract A non-antagonistic positional (feedback) differential two-person game
is considered in which each of the two players, in addition to the usual normal
(nor) type of behavior oriented toward maximizing own functional, can use other
types of behavior. In particular, it is altruistic (alt), aggressive (agg) and paradoxical
(par) types. It is assumed that in the course of the game players can switch their
behavior from one type to another. In this game, each player simultaneously with
the choice of positional strategy selects the indicator function defined over the whole
time interval of the game and taking values in the set {nor, alt, agg, par}. Player’s
indicator function shows the dynamics for changing the type of behavior that this
player adheres to. The concept of BT -solution for such game is introduced. The
use by players of types of behaviors other than normal can lead to outcomes more
preferable for them than in a game with only normal behavior. An example of a game
with the dynamics of simple motion on a plane and phase constraints illustrates the
procedure for constructing BT -solutions.

3.1 Introduction

In the present paper we consider a non-antagonistic positional (feedback) differen-
tial two-person game (see, for example, [1, 3, 12]), for which emphasis is placed
on the case where each of the two players, in addition to the normal (nor), type
of behavior oriented on maximizing their own functional, can use other types
of behavior introduced in [5, 9], such as altruistic (alt), aggressive (agg) and
paradoxical (par) types. It is assumed that during the game, players can switch
their behavior from one type to another. The idea of using the players to switch their
behavior from one type to another in the course of the game was applied to the game
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with cooperative dynamics in [9] and for the repeated bimatrix 2 × 2 game in [6],
which allowed to obtain new solutions in these games.

It is also assumed that in the game each player chooses the indicator function
determined over the whole time interval of the game and takes values in the
set {nor, alt, agg, par}, simultaneously with the choice of the positional strategy.
Player’s indicator function shows the dynamics for changing the type of behavior
that this player adheres to. Rules for the formation of controls are introduced for
each pair of behaviors of players.

The formalization of positional strategies in the game is based on the formal-
ization and results of the general theory of positional (feedback) differential games
[4, 10, 11]. The concept of the BT -solution is introduced.

The idea to switch players’ behavior from one type to another in the course of the
game is somewhat similar to the idea of using trigger strategies [2]. This is indicated
by the existence of punishment strategies in the structure of decision strategies.
However, there are significant differences. In this paper, we also use more complex
switching, namely, from one type of behavior to another, changing the nature of the
problem of optimization—from non-antagonistic games to zero-sum games or team
problem of control and vice versa.

An example of a game with dynamics of simple motion on a plane and a phase
constraint in two variants is proposed. In the first variant we assume that the first and
second players can exhibit altruism towards their partner for some time periods. In
the second variant, in addition to the assumption of altruism of the players, we also
assume that each player can act aggressively against other player for some periods
of time, and a case of mutual aggression is allowed. In both variants sets of BT -
solutions are described. This paper is a continuation of [6–8].

3.2 Some Results from the Theory of Non-antagonistic
Positional Differential Games (NPDG) of Two Persons

The contents of this section can be found in [4]. In what follows, we use
the abbreviated notation NPDG to denote non-antagonistic positional (feedback)
differential game.

Let the dynamics of the game be described by the equation

ẋ = f (t, x, u, v), t ∈ [t0, ϑ], x(t0) = x0, (3.1)

where x ∈ Rn, u ∈ P ∈ comp(Rp), v ∈ Q ∈ comp(Rq); ϑ is the given moment of
the end of the game.

Player 1 (P1) and Player 2 (P2) choose controls u and v, respectively.
Let G be a compact set in R1 × Rn whose projection on the time axis is equal

to the given interval [t0, ϑ]. We assume, that all the trajectories of system (3.1),
beginning at an arbitrary position (t∗, x∗) ∈ G, remain within G for all t ∈ [t∗, ϑ].
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It is assumed that the function f : G×P×Q �→ Rn is continuous over the set of
arguments, satisfies the Lipschitz condition with respect to x, satisfies the condition
of sublinear growth with respect to x and satisfies the saddle point condition in the
small game [10, 11]

max
u∈P min

v∈Q s
T f (t, x, u, v) = min

v∈Qmax
u∈P s

T f (t, x, u, v) (3.2)

for all (t, x) ∈ G and s ∈ Rn.
Both players have information about the current position of the game (t, x(t)).

The formalization of positional strategies and the motions generated by them is
analogous to the formalization introduced in [10, 11], with the exception of technical
details [4].

Strategy of Player 1 is identified with the pairU = {u(t, x, ε), β1(ε)},where u(·)
is an arbitrary function of position (t, x) and a positive precision parameter ε > 0
and taking values in the set P . The function β1 : (0,∞) �−→ (0,∞) is a continuous
monotonic function satisfying the condition β1(ε)→ 0 if ε → 0. For a fixed ε the
value β1(ε) is the upper bound step of subdivision the segment [t0, ϑ], which Player
1 applies when forming step-by-step motions. Similarly, the strategy of Player 2 is
defined as V = {v(t, x, ε), β2(ε)}.

Motions of two types: approximated (step-by-step) ones and ideal (limit) ones
are considered as motions generated by a pair of strategies of players. Approximated
motion x [·, t0, x0, U, ε1, Δ1, V , ε2, Δ2] is introduced for fixed values of players’
precision parameters ε1 and ε2 and for fixed subdivisions Δ1 = {t(1)i } and Δ2 =
{t(2)j } of the interval [t0, ϑ] chosen by P1 and P2, respectively, under the conditions

δ(Δi)≤ βi(εi), i = 1, 2. Here δ(Δi) = max
k
(t
(i)
k+1 − t(i)k ). A limit motion generated

by the pair of strategies (U, V ) from the initial position (t0, x0) is a continuous
function x[t] = x[t, t0, x0, U, V ] for which there exists a sequence of approximated
motions

{x[t, tk0 , xk0 , U, εk1,Δk1, V , εk2,Δk2]}

uniformly converging to x[t] on [t0, ϑ] as k →∞, εk1 → 0, εk2 → 0, tk0 →
t0, x

k
0 → x0, δ(Δki ) ≤ βi(εki ).

The control laws (U, ε1,Δ1) and (V , ε2,Δ2) are said to be agreed with respect
to the precision parameter if ε1 = ε2. Agreed control laws generate agreed
approximate motions, the sequences of which generate agreed limit motions.

A pair of strategies (U, V ) generates a nonempty compact (in the metric of the
space C[t0, ϑ]) set X(t0, x0, U, V ) consisting of limit motions x[·, t0, x0, U, V ].

Player i chooses his control to maximize the payoff functional

Ii = σi(x(ϑ)), i = 1, 2 (3.3)

where σi : Rn �→ R1 are given continuous functions.
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Thus, an non-antagonistic positional (feedback) differential game (NPDG) is
defined.

Now we introduce the following definitions [4].

Definition 3.1 A pair of strategies (UN, V N) is called a Nash equilibrium solution
(NE–solution) of the game, if for any motion x∗[·] ∈ X(t0, x0, U

N , V N), any
moment τ ∈ [t0, ϑ], and any strategies U and V the following inequalities hold

max
x[·] σ1(x[ϑ, τ, x∗[τ ], U, V N ]) ≤ min

x[·] σ1(x[ϑ, τ, x∗[τ ], UN, V N ]), (3.4)

max
x[·] σ2(x[ϑ, τ, x∗[τ ], UN, V ]) ≤ min

x[·] σ2(x[ϑ, τ, x∗[τ ], UN, V N ]). (3.5)

where the operations min are performed over a set of agreed motions, and the
operationsmax by sets of all motions.

Definition 3.2 An NE-solution (UP , V P ) which is Pareto non-improvable with
respect to the values I1, I2 (3.3) is called a P(NE)-solution.

Now we consider auxiliary zero-sum positional (feedback) differential games Γ1
and Γ2.Dynamics of both games is described by the Eq. (3.1). In the game Γi Player
i maximizes the payoff functional σi(x(ϑ)) (3.3) and Player 3− i opposes him.

It follows from [10, 11] that both games Γ1 and Γ2 have universal saddle points

{u(i)(t, x, ε), v(i)(t, x, ε)}, i = 1, 2 (3.6)

and continuous value functions

γ1(t, x), γ2(t, x) (3.7)

The property of strategies (3.6) to be universal means that they are optimal not
only for the fixed initial position (t0, x0) ∈ G but also for any position (t∗, x∗) ∈ G
assumed as initial one.

It is not difficult to see that the value of γi(t, x) is the guaranteed payoff of the
Player i in the position (t, x) of the game.

In [4] the structure ofNE- and P(NE)-solutions was established. Namely, it was
shown that all NE- and P(NE)-solutions of the game can be found in the class of
pairs of strategies (U, V ) each of which generates a unique limit motion (trajectory).
The decision strategies that make up such a pair generating the trajectory x∗(·) have
the form

U0 = {u0(t, x, ε), β0
1 (ε)}, V 0 = {v0(t, x, ε), β0

2 (ε)}, (3.8)

u0 (t, x, ε) =
{
u∗ (t, ε) , ‖x − x∗(t)‖ < εϕ (t)
u(2)(t, x, ε), ‖x − x∗(t)‖ ≥ εϕ (t) ,

v0 (t, x, ε) =
{
v∗ (t, ε) , ‖x − x∗(t)‖ < εϕ (t)
v(1)(t, x, ε), ‖x − x∗(t)‖ ≥ εϕ (t) ,
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for all t ∈ [t0, ϑ], ε > 0. In (3.8) we denote by u∗(t, ε), v∗(t, ε) families of
program controls generating the limit motion x∗(t). The function ϕ(·) and the
functions β0

1 (·) and β0
2 (·) are chosen in such a way that the approximated motions

generated by the pair (U0, V 0) from the initial position (t0, x0) do not go beyond
the εϕ(t) -neighborhood of the trajectory x∗(t). Functions u(2)(·, ·, ·) and v(1)(·, ·, ·)
are defined in (3.6). They play the role of punishment strategies for exiting this
neighborhood.

Further, for each NE- and P(NE)-trajectories x∗(t) the following property
holds.

Property 3.1 The point t = ϑ is the maximum point of the value function γi(t, x)
(3.7) computed along this trajectory, that is,

γi(t, x
∗(t)) ≤ γi(ϑ, x∗(ϑ)), t0 ≤ t ≤ ϑ, i = 1, 2 (3.9)

3.3 A Non-antagonistic Positional Differential Games with
Behavior Types (NPDGwBT): BT -Solution

Now we assume that in addition to the usual normal (nor) type of behavior aimed at
maximizing own functionals (3.3), players can use other types of behavior, namely,
altruistic, aggressive and paradoxical types [5, 9].

These three types of behavior can be formalized as follows:

Definition 3.3 We say that Player 1 is confined in the current position of the
game by altruistic (alt) type of behavior if his actions in this position are directed
exclusively towards maximizing the functional I2 (3.3) of Player 2.

Definition 3.4 We say that Player 1 is confined in the current position of the game
by aggressive (agg) type of behavior if his actions in this position are directed
exclusively towards minimizing the functional I2 (3.3) of Player 2.

Definition 3.5 We will say that Player 1 is confined in the current position of
the game by paradoxical (par) type of behavior if his actions in this position are
directed exclusively towards minimizing own payoff I1 (3.3).

Similarly, we define the altruistic and aggressive types of Player 2 behavior
towards Player 1, as well as the paradoxical type of behavior for Player 2.

Note that the aggressive type of player behavior is actually used in NPDG in
the form of punishment strategies contained in the structure of the game’s decisions
(see, for example, [4]).

The above definitions characterize the extreme types of behavior of players. In
reality, however, real individuals behave, as a rule, partly normal, partly altruistic,
partly aggressive and partly paradoxical. In other words, mixed types of behavior
seem to be more consistent with reality.
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If each player is confined to “pure” types of behavior, then in the considered game
of two persons with dynamics (3.1) and functionals Ii (3.3) there are 16 possible
pairs of types of behavior: (nor, nor), (nor, alt), (nor, agg), (nor, par), (alt, nor),
(alt, alt), (alt, agg), (alt, par), (agg, nor), (agg, alt), (agg, agg), (agg, par),
(par, nor), (par, alt), (par, agg), (par, par). For the following four pairs
(nor, alt), (alt, nor), (agg, par) and (par, agg) the interests of the players
coincide and they solve a team problem of control. For the following four pairs
(nor, agg), (alt, par), (agg, nor) and (par, alt) players have opposite interests
and, therefore, they play a zero-sum differential game. The remaining eight pairs
define a non-antagonistic differential games.

The idea of using the players to switch their behavior from one type to another
in the course of the game was applied to the game with cooperative dynamics in
[9] and for the repeated bimatrix 2 × 2 game in [6], which allowed to obtain new
solutions in these games.

The extension of this approach to non-antagonistic positional differential games
leads to new formulation of problems. In particular, it is of interest to see how the
player’s gains, obtained on Nash solutions, are transformed. The actual task is to
minimize the time of “abnormal” behavior, provided that the players’ gains are
greater than when the players behave normally.

Thus, we assume that players can switch from one type of behavior to another
in the course of the game. Such a game will be called a non-antagonistic positional
(feedback) differential game with behavior types (NPDGwBT).

In NPDGwBT we assume that simultaneously with the choice of positional
strategy, each player also chooses his indicator function defined on the interval
t ∈ [t0, ϑ] and taking the value in the set {nor, alt, agg, par}. We denote the
indicator function of Player i by the symbol αi : [t0, ϑ] �−→ {nor, alt, agg, par},
i = 1, 2. If the indicator function of some player takes a value, say, alt on some
time interval, then this player acts on this interval as an altruist in relation to his
partner. Note also that if the indicator functions of both players are identically equal
to the value nor on the whole time interval of the game, then we have a classical
NPDG.

Thus, in the game NPDGwBT Player 1 controls the choice of a pair of actions
{position strategy, indicator function} (U, α1(·)), and player 2 controls the choice
of a pair of actions (V , α2(·)).

As mentioned above, for any pair of types of behavior three types of decision
making problems can arise: a team problem, a zero-sum game, and a non-
antagonistic game. We will assume that the players for each of these three problems
are guided by the following Rule 3.1.

Rule 3.1 If on the time interval (τ1, τ2) ⊂ [t0, ϑ] the player’s indicator functions
generate a non-antagonistic game, then on this interval players choose one of
P(NE)-solutions of this game. If a zero-sum game is realized, then as a solution,
players choose the saddle point of this game. Finally, if a team problem of control is
realized, then players choose one of the pairs of controls such that the value function
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γi(t, x) calculated along the generated trajectory is non-decreasing function, where
i is the number of the player whose functional is maximized in team problem.

Generally speaking, the same part of the trajectory can be tracked by several pairs
of players’ types of behavior, and these pairs may differ from each other by the time
of use of abnormal types.

It is natural to introduce the following Rule 3.2.

Rule 3.2 If there are several pairs of types of behavior that track a certain part of
the trajectory, then players choose one of them that minimizes the time of using
abnormal types of behavior.

We now introduce the definition of the solution of the game NPDGwBT. Note
that the set of motions generated by a pair of actions {(U, α1(·)), (V , α2(·))}
coincides with the set of motions generated by the pair (U, V ) in the corresponding
NPDG.

Definition 3.6 The pair {(U0, α0
1(·)), (V 0, α0

2(·))}, consistent with Rule 3.1, forms
a BT -solution of the game NPDGwBT if there exists a trajectory xBT (·) generated
by this pair and there is a P(NE)-solution in the corresponding NPDG game
generating the trajectory xP (·) such that the following inequalities are true

σi(x
BT (ϑ)) ≥ σi(xP (ϑ)), i = 1, 2, (3.10)

where at least one of the inequalities is strict.

Definition 3.7 The BT -solution {(U0, α0
1(·)), (V 0, α0

2(·))}, which is Pareto non-
improvable with respect to the values I1, I2 (3.3), is called P(BT )-solution of the
game NPDGwBT.

Problem 3.1 Find the set of BT -solutions.

Problem 3.2 Find the set of P(BT )-solutions.

In the general case, Problems 3.1 and 3.2 have no solutions. However, it is
quite expected that the use of abnormal behavior types by players in the game
NPDGwBT can in some cases lead to outcomes more preferable for them than in
the corresponding game NPDG only with a normal type of behavior. An example of
this kind is given in the next section.

3.4 Example

Let equations of dynamics be as follows

ẋ = u+ v, x, u, v ∈ R2, ‖u‖ ≤ 1, ‖v‖ ≤ 1, 0 ≤ t ≤ ϑ, x(0) = x0,

(3.11)
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where x is the phase vector; u and v are controls of Players 1 and 2, respectively.
Let payoff functional of Player i be

Ii = σi(x(ϑ)) = 18− ‖x(ϑ)− a(i)‖, i = 1, 2. (3.12)

That is, the goal of Player i is to bring vector x(ϑ) as close as possible to the target
point a(i).

Let the following initial conditions and values of parameters be given: ϑ =
5.0, x0 = (0, 0), a(1) = (10, 8), a(2) = (−10, 8) (Fig. 3.1).

The game has the following phase restrictions. The trajectories of the system
(3.11) are forbidden from entering the interior of the set S, which is obtained by
removing from the quadrilateral Oabc the line segment Oe. The set S consists of
two parts S1 and S2, that is, S = S1 ∪ S2.

Coordinates of the points defining the phase constraints:

a = (−4.5, 3.6), b = (0, 8), c = (6.5, 5.2), O = (0, 0), e = (3.25, 6.6).
(3.13)
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3 Altruism and Aggression in a Differential Two-Person Game 33

It can be verified that the point a lies on the interval Oa(2) , the point c lies on
the interval Oa(1) , and the point e lies on the interval bc. We also have |a(1)b| =
|a(2)b| = 10.

Attainability set of the system (3.11) constructed for the moment ϑ consists of
points of the circle of radius 10 located not higher than the three-link segment aOc
and also bounded by two arcs connecting the large circle with the sides ab and bc
of the quadrilateral. The first arc is an arc of the circle with center at the point a and
radius r1 = 10 − |Oa| = |ad2|. The second (composite) arc consists of an arc of
the circle with center at the point e and radius r2 = 10− |Oe| = |ed1| and an arc of
the circle with center at the point c and radius r3 = 10− |Oc| (Fig. 3.1).

Results of approximate calculations: r1 = 4.2372, r2 = 2.6432, r3 = 1.6759,
d1 = (0.8225, 7.6457), d2 = (−1.4704, 6.5623). In addition, we have: |Oa(1)| =
|Oa(2)| = 12.8062.

In Fig. 3.1 the dashed lines represent arcs of the circle Lwith center at the point b
and radius r4 = |Oa(1)|−|a(1)b| = 12.8062−10 = 2.8062. These arcs intersect the
sides ab and bc at the points p1 = (2.5773, 6.8898) and p2 = (−2.0065, 6.0381),
respectively. By construction, the lengths of the two-links a(1)bp2 and a(2)bp1 are
equal to each other and equal to the lengths of the segmentsOa(1) and Oa(2).

The value functions γ1(t, x) and γ2(t, x), 0 ≤ t ≤ ϑ, x ∈ R2\S , of
the corresponding auxiliary zero-sum games Γ1 and Γ2 in this example will be as
follows

γi (t, x) =
{

18− ‖(x − a(i)‖, xa(i)
⋂
intS = ∅

18− ρS
(
x, a(i)

)
, otherwise

, (3.14)

where i = 1, 2, and ρS
(
x, a(i)

)
denotes the smallest of the two distances from

the point x to the point a(i), one of which is calculated when the set S is bypassed
clockwise and the other counterclockwise.

At first we solve the game NPDG (without abnormal behavior types). One can
check that in the game NPDG the trajectory x(t) ≡ 0, t ∈ [0, 5], (stationary point
O) is a Nash trajectory. Further, the trajectories constructed along the line Oe, are
not Nash ones, since none of them is satisfied condition (3.9). This is also confirmed
by the fact that the circle of radius |a(1)e| with the center at the point a(1) has no
points in common with the circle L (see Fig. 3.1). Obviously, these are not Nash
and all the trajectories that bypass the set S1 on the right. Are not Nash and all
trajectories that bypass the set S2 on the left, since a circle of radius |a(2)a| with the
center at the point a(2) also has no points in common with the circle L. As a result, it
turns out that the mentioned trajectory is the only Nash trajectory, and, consequently,
the only P(NE)-trajectory; the players’ gains on it are I1 = I2 = 5.1938.

Let us now turn to the game NPDGwBT, in which each player during certain
periods of time may exhibit altruism and aggression towards other player, and the
case of mutual aggression is allowed.

We consider two variants of the game.
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Variant I We assume that players 1 and 2 together with a normal type of behavior,
can exhibit altruism towards their partner during some time intervals.

Variant II In addition to the assumption of altruism of the players, we assume that
each player can act aggressively against another player for some periods of time,
and a case of mutual aggression is allowed.

In the attainability set, we find all the points x for which inequalities hold

σi(x) ≥ σi(O), i = 1, 2, σ1(x)+ σ2(x) > σ1(O)+ σ2(O) (3.15)

Such points form two sets D1 and D2 (see Fig. 3.1). The set D1 is bounded by
the segment p1d1, and also by the arcs p1q1 and q1d1 of the circles mentioned
above. The set D2 is bounded by the segment p2d2, and also by the arcs d2q2 and
q2p2 of the circles mentioned. On the arc p1q1, the non-strict inequality (3.15) for
i = 2 becomes an equality, and on the arc q2p2, the non-strict inequality (3.15)
becomes an equality for i = 1. At the remaining points sets D1 and D2 , the non-
strict inequalities (3.15) for i ∈ {1, 2} are strict.

Now within the framework of Variant I we construct a BT -solution leading to
the point d2 ∈ D2. Consider the trajectory Oad2; the players’ gains on it are
I1 = 5.9436, I2 = 9.3501, that is, each player gains more than on single P(NE)-
trajectory. How follows from the foregoing, the trajectory Oad2 is not Nash one.
However, if it is possible to construct indicator functions-programs of players that
provide motion along this trajectory, then a BT -solution will be constructed.

On the side Oa, we find a point g equidistant from the point a(1) if we go
around the set S clockwise, or if we go around S counterclockwise. We obtain
g = (−3.6116, 2.8893). Further, if we move along the trajectory Oad2 with
the maximum velocity for t ∈ [0, 5], then the time to hit the point g will be
t = 2.3125, and for the point a will be t = 2.8814. It can be verified that if we
move along this trajectory on the time interval [0, 2.3125] then the function γ1(t, x)

(3.14) decreases monotonically and the function γ2(t, x) increases monotonically;
for motion on the interval t ∈ [2.3125, 2.8814], both functions γ1(t, x) and
γ2(t, x) increase monotonically; finally, when driving on the remaining interval
t ∈ [2.8814, 5.0], then the function γ1(t, x) increases monotonically, and the
function γ2(t, x) decreases.

We check that on the segment Og of the trajectory the pair (alt, nor), which
defines a team problem of control, is the only pair of types of behavior that realizes
motion on this segment in accordance with Rule 3.1; this is the maximum shift in the
direction of the point a(2) . In the next segment ga there will already be four pairs
of “candidates” (nor, nor), (alt, nor), (nor, alt) and (alt, alt)), but according to
Rule 3.2 the last three pairs are discarded; the remaining pair determines a non-
antagonistic game, and the motion on this segment will be generated by P(NE)-
solution of the game. Finally, for the last segment ad2, the only pair of types of
behavior, that generates motion on the segment in accordance with Rule 3.1, there
will be a pair (nor, alt) that defines a team problem of control; the motion represents
the maximum shift in the direction of the point d2.
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Thus, we have constructed the following indicator function-programs of players

α
(1)
1 (t) = {alt, t ∈ [0, 2.3125); nor, t ∈ [2.3125, 5]}, (3.16)

α
(1)
2 (t) = {nor, t ∈ [0, 2.8814); alt, t ∈ [2.8814, 5]}. (3.17)

We denote by (U(1), V (1)) the pair of players’ strategies that generates the limit
motion Oad2 for t ∈ [0, 5] and is consistent with the constructed indicator
functions. Then we obtain the following assertion.

Theorem 3.1 In Variant I, the pair of actions {(U(1), α(1)1 (·)), (V (1), α(1)2 (·))}
(3.16), (3.17) provides the P(BT )-solution.

We turn to the Variant II, in which, in addition to assuming the altruism of the
players, it assumed that players can use an aggressive type of behavior. We construct
a BT -solution, leading to the point d1 ∈ D1.

Let us find the point m equidistant from the point a(2) if we go around the
set S2 clockwise, or if we go around S2 counterclockwise. We also find a point
n equidistant from the point a(1) as if we were go around the set S1 clockwise,
or if we go around S1 counterclockwise. The results of the calculations: m =
(1.7868, 3.6285), n = (0.3190, 0.6478).

Consider the trajectory Oed1; the players’ gains on it are I1 = 8.8156, I2 =
7.1044, that is, the gains of both players on this trajectory are greater than the
gains on the single P(NE)-trajectory. As follows from the above, the trajectory
Oed1 is not Nash one. Therefore, if it is possible to construct indicator functions-
programs of players that provide motion along this trajectory, then a BT -solution
will be constructed.

First of all find that if we move along the trajectory Oed1 with the maximum
velocity for t ∈ [0, 5], the time to hit the point n will be t = 0.3610, the point m
will be t = 2.0223, and the point e will be t = 3.6784. It is easy to verify that
for such a motion along the trajectory Oed1 on the interval t ∈ [0, 0.3610], both
functions γ1(t, x) and γ2(t, x) (3.14) decrease monotonically; for motion on the
interval t ∈ [0.3610, 2.0223], the function γ2(t, x) continues to decrease, and the
function γ1(t, x) increases; for motion on the interval t ∈ [1.9135, 3.9620], both
functions increase; finally, on the remaining interval t ∈ [3.9620, 5], the function
γ2(t, x) continues to increase, and the function γ1(t, x) decreases.

We check that on the segment On of the trajectory, the pair (agg, agg), which
determines the non-antagonistic game, is the only pair of types of behaviors that
realizes motion on the segment in accordance with Rule 3.1; this is the motion
generated by the P(NE)-solution, the best for both players. In the next segment
nm, two pairs of types of behaviors realize motion on the segment according to
Rule 3.1, namely (nor, alt) and (agg, alt); however, according to Rule 3.2, only
the pair (nor, alt) remains; it defines a team problem of control in which the motion
represents the maximum shift in the direction of point m. There are already four
pairs of “candidates” (nor, nor), (alt, nor), (nor, alt) and (alt, alt) on the segment
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me, but according to Rule 3.2 the last three pairs are discarded; the remaining pair
defines a non-antagonistic game and the motion on this segment is generated by
the P(NE)-solution of the game. Finally, for the last segment ed1, the only pair of
types of behaviors is the pair (alt, nor), which defines a team problem of control;
the motion represents the maximum shift in the direction of the point d1.

Thus, we have constructed the following indicator function-programs of players

α
(2)
1 (t) = {agg, t ∈ [0, 0.3610); nor, t ∈ [0.3610, 3.6784); alt, t ∈ [3.6784, 5]},

(3.18)

α
(2)
2 (t) = {agg, t ∈ [0, 0.3610); alt, t ∈ [0.3610, 2.0223); nor, t ∈ [2.0223, 5]}.

(3.19)

We denote by (U(2), V (2)) the pair of players’ strategies that generate the limit
motion Oed1 for t ∈ [0, 5] and is consistent with the constructed indicator
functions. Then we obtain the following assertion.

Theorem 3.2 In Variant II, the pair of actions {(U(2), α(2)1 (·)), (V (2), α(2)2 (·))}
(3.18), (3.19) provides the P(BT )-solution.

Remark 3.1 It is obvious that Theorem 3.1 is also true for Variant II.
Following the scheme of the proofs of Theorems 3.1 and 3.2 (and also taking into

account Remark 3.1), we arrive at the following Theorems.

Theorem 3.3 In Variant I, the set D2 consists of those and only those points that
are endpoints of the trajectories generated by the BT -solutions of the game.

Theorem 3.4 In Variant II, the sets D1 and D2 consist of those and only those
points that are the ends of the trajectories generated by the BT -solutions of the
game.

3.5 Conclusion

Realized idea of using the players to switch their behavior from one type to another
in the course of the game is somewhat similar to the idea of using trigger strategies
[2]. This is indicated by the existence of punishment strategies in the structure (8)
of decision strategies. However, there are significant differences. In this paper, we
also use more complex switching, namely, from one type of behavior to another,
changing the nature of the problem of optimization—from non-antagonistic games
to zero-sum games or team problem of control and vice versa. And these switchings
are carried out according to pre-selected indicator function-programs.

Each player controls the choice of a pair of actions positional strategy, indicator
function. Thus, the possibilities of each player in the general case have expanded
(increased) and it is possible to introduce a new concept of a game solution (P(BT )-
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solution) in which both players increase their payoffs in comparison with the payoffs
in Nash equilibrium in the game without switching types of behavior.

For players, it is advantageous to implement P(BT )-trajectory; so they will
follow the declared indicator function-programs (3.16), (3.17) or (3.18), (3.19).
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Chapter 4
Learning in a Game of Strategic
Experimentation with Three-Armed
Exponential Bandits

Nicolas Klein

Abstract The present article provides some additional results for the two-player
game of strategic experimentation with three-armed exponential bandits analyzed
in Klein (Games Econ Behav 82:636–657, 2013). Players play replica bandits, with
one safe arm and two risky arms, which are known to be of opposite types. It is
initially unknown, however, which risky arm is good and which is bad. A good
risky arm yields lump sums at exponentially distributed times when pulled. A bad
risky arm never yields any payoff. In this article, I give a necessary and sufficient
condition for the state of the world eventually to be found out with probability 1
in any Markov perfect equilibrium in which at least one player’s value function
is continuously differentiable. Furthermore, I provide closed-form expressions for
the players’ value function in a symmetric Markov perfect equilibrium for low and
intermediate stakes.

4.1 Introduction

Think of a situation in which agents are initially uncertain about some payoff-
relevant aspect of their environment. Yet, they can learn about it over time by
exploring different options. Thus, a farmer may not know the yield of a new crop
before trying it out. Trying it out implies an opportunity cost, however, as using his
field to try the new crop means that he cannot use it to plant a traditional crop, whose
yield he already knows. The trade-off he faces is thus between optimally using the
information he already has (exploitation) and investing resources in order to acquire
new information, which will potentially be useful to him in the future (exploration).
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The so-called multi-armed bandit model has become canonical in economics to
analyze a decision maker’s trade-off between exploration and exploitation.1

But now suppose that our farmer has a neighbor and that he can observe the
kind of crop planted by his neighbor, as well as its yield. Our farmer would of
course prefer that his neighbor experiment with the new crop, as this would allow
him to get some information about it without having to bear the (opportunity) cost
of producing the information himself. Of course, his neighbor faces precisely the
same trade-off, and the informational externality leads to a situation of strategic
interaction. Such strategic bandit problems have been introduced by Bolton and
Harris [2, 3], where players choose between a risky option and a safe one. Here, I
use the exponential-bandits variant introduced by Keller et al. [6], and, in particular,
adopt the three-armed model of Klein [7].

While in [2, 3] and in [6], the risky option was of the same quality for all players,
Klein and Rady [8] introduced negative correlation between players: what was good
news to one player was bad news to the other. In [7], I have introduced a setting in
which two players have access to two risky arms of perfectly negatively correlated
types. The comparison of the results in [8] and [7] in particular thus allow for the
analysis of the impact of delegating project choice to individual agents.

For the case of perfectly positively correlated two-armed bandits, Keller et al.
[6] show that players experiment inefficiently little in equilibrium, as compared
to the cooperative benchmark. Indeed, the information players produce is a public
good; hence they produce too little of it. Indeed, they both give up on finding out
the state of the world too soon (i.e., the amount of experimentation is too low)
and they learn too slowly (i.e., the intensity of experimentation will be inefficiently
low). By contrast, Klein and Rady [8] find that, with perfectly negatively correlated
two-armed bandits, the amount of experimentation is always at the efficient level.
Furthermore, there exists an efficient equilibrium if and only if the stakes at play are
below a certain threshold. By contrast, in [7], I show that, when both agents have
access to two perfectly negatively correlated risky arms, there exists an efficient
equilibrium if and only if the stakes at play exceed a certain threshold. In the
present article, I provide closed-form expressions for the players’ value function in
a symmetric Markov perfect equilibrium for the cases in which there does not exist
an efficient equilibrium. Furthermore, I give a necessary and sufficient condition for
learning to be complete, i.e. for the state of the world to be found out with probability
1, in any Markov perfect equilibrium in which at least one player’s value function
is continuously differentiable.

The rest of this article is organised as follows. Section 4.2 explains the model
setup; Sect. 4.3 analyzes conditions under which complete learning will prevail;
Sect. 4.4 analyzes equilibrium for low and intermediate stakes, while Sect. 4.5
concludes. Formal proofs are collected in Sect. 4.6.

1The multi-armed bandit model was first introduced by Thompson [10] and Robbins [9], and
subsequently analyzed, amongst others, by Bradt et al. [4] and Bellman [1]. Gittins and Jones
[5] provided the famous Gittins-index characterization of an optimal policy.
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4.2 Model Setup

The setup is as in [7]: There are two agents playing a three-armed bandit in
continuous time each. One arm is safe in that it yields a known flow payoff of s > 0
when pulled; the other two arms, A and B, are risky in that they can be either good or
bad. It is known that exactly one of the two risky arms is good and that the same risky
arm is good for both players. Which between arms A and B is good and which is bad
is initially unknown. The good risky arm yields lump sums h > 0 at exponentially
distributed times with parameter λ > 0, when it is pulled. The bad risky arm always
yields 0. The parameters λ, s and h, are common knowledge among the players. I
assume that g := λh > s > 0.

More specifically, either player i ∈ {1, 2} can decide in continuous time how
to distribute a unit endowment flow over the three arms of his bandit; i.e., at each
instant t ∈ R+, he chooses (ki,A, ki,B) ∈ {(a, b) ∈ [0, 1]2 : a + b ≤ 1}, where
ki,A(t) (ki,B(t)) denotes the fraction of the unit endowment flow player i devotes to
arm A (B) at instant t .

Players start out from a common prior p0 ∈ (0, 1) that it is their risky arms A
that are good. As everyone’s action choices, as well as the outcomes of these action
choices, are perfectly publicly observable, there is no private information at any
time. Thus, players will share a common posterior belief that it is their risky arms
A that are good at all times t ≥ 0. We shall denoted by pt this belief at instant t .
As only a good risky arm can ever yield a lump-sum payoff, pτ = 1 (pτ = 0) at all
times τ > t if either player has received a lump sum from arm A (B) at time t . If no
such breakthrough has occurred yet by time t , the belief satisfies

pt = p0e
−λ ∫ t0 (k1,A(τ )+k2,A(τ )) dτ

p0e
−λ ∫ t0 (k1,A(τ )+k2,A(τ )) dτ + (1− p0)e

−λ ∫ t0 (k1,B(τ )+k2,B (τ )) dτ
. (4.1)

Following much of the literature, I focus on Markov perfect equilibria with the
common posterior belief pt as the state variable (which I shall sometimes simply
refer to as equilibrium). A Markov strategy for player i is a time-invariant, piecewise
continuous, function (ki,A, ki,B) : [0, 1] → {(a, b) ∈ [0, 1]2 : a + b ≤ 1}, pt �→
(ki,A, ki,B)(pt ). As in [8], a pair of Markov strategies is said to be admissible if
there exists a solution to the corresponding law of motion of beliefs (derived from
Bayes’ rule) that coincides with the limit of the unique discrete-time solution. An
inadmissible strategy pair is assumed to give both players a payoff of −∞.

Players discount payoffs at the common discount rate r > 0. An admissible
strategy pair ((k1,A, k1,B), (k2,A, k2,B)) induces a payoff function ui for players i ∈
{1, 2}, which is given by

ui(p) = E

[∫ ∞

0
re−rt

{
(ki,A(pt )pt + ki,B(pt )(1− pt))g

+[1− ki,A(pt )− ki,B(pt )]s
}
dt
∣
∣p0 = p

]
, (4.2)
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where the expectation is taken with respect to the process of beliefs {pt }t∈R+ .
Player i’s objective is to maximize ui . As one can see immediately from player i’s
objective, the other player’s actions impact ui only via the players’ common belief
process {pt }t∈R+; i.e., ours is a game of purely informational externalities.

I say that the stakes are high if g
s
≥ 4(r+λ)

2r+3λ ; they are intermediate if 2r+λ
r+λ <

g
s
<

4(r+λ)
2r+3λ ; they are low if g

s
≤ 2r+λ

r+λ , and very low if g
s
<

2(r+λ)
r+2λ . It is immediate to

verify that the stakes are low if and only if p∗1 := rs
(r+λ)(g−s)+rs ≥ 1

2 ; they are very

low if and only if p∗2 := rs
(r+2λ)(g−s)+rs ≥ 1

2 .
Klein [7, Section 4] shows that the utilitarian planner’s solution has a bang-bang

structure.2 If the stakes at play are not very low, the planner would always use the
risky arm that looks momentarily the most promising; he would never use the safe
arm. This means that learning will be complete, i.e. the true state of the world
will be found out with probability 1. If the stakes are very low, by contrast, the
planner would use the safe arm for all beliefs in [1− p∗2, p∗2 ] and the risky arm that
looks momentarily the most promising for all other beliefs. Thus, learning will be
incomplete in this case. A single player acting in isolation would optimally pursue
the same policy, with p∗1 replacing p∗2, and “low stakes” replacing “very low stakes,”
in the previous statements.

4.3 Complete Learning

As already mentioned in the introduction, Keller et al. [6] identified two dimensions
of inefficiency in their model: On the one hand, players give up on finding out about
the true state of the world too soon, i.e. the experimentation amount is inefficiently
small. On the other hand, players also learn too slowly, i.e. the experimentation
intensity is inefficiently low. If one were merely to focus on the long-run properties
of learning, only the former effect would be of interest. Keller et al. [6] show that,
because of the informational externalities, all experimentation stops at the single-
agent cutoff belief in any equilibrium; the efficient cutoff belief would be more
pessimistic, though, as it takes into account that the information a player generates
benefits the other players also.3 Furthermore, learning is always incomplete, i.e.

2The utilitarian planner maximizes the sum of the players’ utilities. The solution to this problem is
the policy the players would want to commit to at the outset of the game if they had commitment
power. It thus constitutes a natural efficient benchmark against which to compare our equilibria.
3By contrast, Bolton and Harris [2] identified an encouragement effect in their model. It makes
players experiment at beliefs that are more pessimistic than their single-agent cutoffs. This is
because they will receive good news with some probability, which will make the other players
more optimistic also. This then induces them to provide more experimentation, from which the
first player then benefits in turn. With fully revealing breakthroughs as in [6, 8], or this model,
however, a player could not care less what others might do after a breakthrough, as there will not
be anything left to learn. Therefore, there is no encouragement effect in these models.
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there is a positive probability that the truth will never be found out.4 In [8], however,
the amount of experimentation is always at the efficient level.5 This is because
both players cannot be exceedingly pessimistic at the same time. Indeed, as soon
as players’ single-agent cutoffs overlap, at any possible belief at least one of them
is loath to give up completely, although players may not be experimenting with the
enthusiasm required by efficiency. In particular, learning will be complete in any
equilibrium if and only if efficiency so requires.

This section will show that which of these effects prevails here depends on the
stakes at play: If stakes are so high that the single-agent cutoffs overlap, players
would not be willing ever completely to give up on finding out the true state of the
world even if they were by themselves. Yet, since all a player’s partner is doing is
to provide him some additional information for free, a player should be expected
to do at least as well as if he were by himself. Hence, the Klein and Rady [8]
effect obtains if players’ single-agent cutoffs overlap, and, in any equilibrium (in
which at least one player’s value function is smooth),6 the true state of the world
will eventually be found out with probability 1 (i.e. learning will be complete),
as efficiency requires. In the opposite case, however, the informational externality
identified by Keller et al. [6] carries the day, and, as we will see in the next section,
there exists an equilibrium entailing an inefficiently low amount of experimentation.
For some parameters, this implies incomplete equilibrium learning while efficiency
calls for complete learning.

To state the next lemma, I write u∗1 for the value function of a single agent
operating a bandit with only a safe arm and a risky arm A, while I denote by u∗2
the value function of a single agent operating a bandit with only a safe arm and a
risky arm B. It is straightforward to verify that u∗2(p) = u∗1(1 − p) for all p and
that7

u∗1(p) =
⎧
⎨

⎩

s if p ≤ p∗1 ,
g

[

p + λp∗1
λp∗1+r (1− p)

(
Ω(p)

Ω(p∗1 )

) r
λ

]

if p > p∗1
, (4.3)

4The efficient solution in [6] also implies incomplete learning.
5For perfect negative correlation, this is true in any equilibrium; for general negative correlation,
there always exists an equilibrium with this property.
6The technical requirement that at least one player’s value function be continuously differentiable
is needed on account of complications pertaining to the admissibility of strategies. I use it in the
proof of Lemma 4.1 to establish that the safe payoff s constitutes a lower bound on the player’s
equilibrium value. However, by e.g. insisting on playing (1, 0) at a single belief p̂ while playing
(0, 0) everywhere else in a neighborhood of p̂, a player could e.g. force the other player to play
(0, 1) at p̂ for mere admissibility reasons. Thus, both players’ equilibrium value functions might
be pushed below s at certain beliefs p̂. For the purposes of this section, I rule out such implausible
behavior by restricting attention to equilibria in which at least one player’s value function is
smooth.
7See Prop.3.1 in [6].
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where Ω(p) := 1−p
p

denotes the odds ratio. The following lemma tells us that u∗1
and u∗2 are both lower bounds on a player’s value in any equilibrium, provided his
value is smooth.

Lemma 4.1 (Lower Bound on Equilibrium Payoffs) Let u ∈ C1 be a player’s
equilibrium value function. Then, u(p) ≥ max{u∗1(p), u∗2(p)} for all p ∈ [0, 1].

The intuition for this result is very straightforward. Indeed, there are only
informational externalities, no payoff externalities, in our model. Thus, intuitively,
a player can only benefit from any information his opponent provides him for free;
therefore, he should be expected to do at least as well as if he were by himself,
forgoing the use of one of his risky arms to boot.

Now, if g
s
> 2r+λ

r+λ , then p∗1 <
1
2 < 1 − p∗1 , so at any belief p, we have

that u∗1(p) > s or u∗2(p) > s or both. Thus, there cannot exist a p such that
(k1,A, k1,B)(p) = (k2,A, k2,B)(p) = (0, 0) be mutually best responses as this would
mean u1(p) = u2(p) = s. This proves the following proposition:

Proposition 4.1 (Complete Learning) If g
s
> 2r+λ

r+λ , learning will be complete
in any Markov perfect equilibrium in which at least one player’s value function is
continuously differentiable.

It is the same threshold 2r+λ
r+λ above which complete learning is efficient, and

prevails in any equilibrium, in the perfectly negatively correlated two-armed bandit
case.8 In our setting, however, complete learning is efficient for a larger set of
parameters, as we saw in Sect. 4.2. In the following section, I shall proceed to a
more thorough analysis of the strategic problem.

4.4 Equilibrium Payoff Functions

In [7], I have shown that there exists an efficient equilibrium in this model if and
only if the stakes are high. The purpose of this section is to construct a symmetric
equilibrium for those parameter values for which there does not exist an efficient
equilibrium. I define symmetry in keeping with [2] as well as [6]:

Definition 4.1 An equilibrium is said to be symmetric if equilibrium strategies
((k1,A, k1,B), (k2,A, k2,B)) satisfy (k1,A, k1,B)(p) = (k2,A, k2,B)(p) for all p ∈
[0, 1].

As a matter of course, in any symmetric equilibrium, u1(p) = u2(p) for all
p ∈ [0, 1]. I shall denote the players’ common value function by u. By the same
token, I shall write k1,A = k2,A = kA and k1,B = k2,B = kB .

8See Proposition 8 in [8].
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4.4.1 Low Stakes

Recall that the stakes are low if, and only if, the single-agent cutoffs for the two risky
arms do not overlap. It can be shown that in this case there exists an equilibrium
that is essentially two copies of the Keller et al. [6] symmetric equilibrium (see their
Proposition 5.1), mirrored at the p = 1

2 axis.

Proposition 4.2 (Symmetric MPE for Low Stakes) If g
s
≤ 2r+λ

r+λ , there exists
a symmetric equilibrium where both players exclusively use the safe arm on [1 −
p∗1, p∗1 ], the risky arm A above the belief p̂ > p∗1 , and the risky arm B at beliefs
below 1− p̂, where p̂ is defined implicitly by

Ω(pm)−1 −Ω(p̂)−1 = r + λ
λ

[
1

1− p̂ −
1

1− p∗1
−Ω(p∗1)−1 ln

(
Ω(p∗1)
Ω(p̂)

)]

.

(4.4)

In [p∗1, p̂], the fraction kA(p) = u(p)−s
cA(p)

is allocated to risky arm A, while 1−kA(p)
is allocated to the safe arm; in [1 − p̂, 1 − p∗1 ], the fraction kB(p) = u(p)−s

cB(p)
is

allocated to risky arm B, while 1− kB(p) is allocated to the safe arm.
Let Vh(p) := pg +Ch(1− p)Ω(p) r2λ , and Vl(p) := (1− p)g + ClpΩ(p)− r

2λ .
Then, the players’ value function is continuously differentiable, and given by u(p) =
W(p) if 1− p̂ ≤ p ≤ p̂, whereW(p) is defined by

W(p) :=

⎧
⎪⎪⎨

⎪⎪⎩

s + r
λ
s
[
Ω(p∗1)−1

(
1− p

p∗1

)
−p ln

(
Ω(p)

Ω(p∗1 )

)]
if 1− p̂ < p < 1− p∗1

s if 1− p∗1 ≤ p ≤ p∗1
s + r

λ
s
[
Ω(p∗1)

(
1− 1−p

1−p∗1
)
−(1− p) ln

(
Ω(p∗1 )
Ω(p)

)]
if p∗1 < p < p̂

;

(4.5)

u(p) = Vh(p) if p̂ ≤ p, while u(p) = Vl(p) if p ≤ 1 − p̂, where the constants of
integrationCh andCl are determined by Vh(p̂) = W(p̂) and Vl(1−p̂) = W(1−p̂),
respectively.

Thus, in this equilibrium, even though either player knows that one of his risky
arms is good, whenever the uncertainty is greatest, the safe option is attractive to
the point that he cannot be bothered to find out which one it is. When players are
relatively certain which risky arm is good, they invest all their resources in that arm.
When the uncertainty is of medium intensity, the equilibrium has the flavor of a
mixed-strategy equilibrium, with players devoting a uniquely determined fraction
of their resources to the risky arm they deem more likely to be good, with the rest
being invested in the safe option. As a matter of fact, the experimentation intensity
decreases continuously from kA(p̂) = 1 to kA(p∗1) = 0 (from kB(1 − p̂) = 1
to kB(1 − p∗1) = 0). Intuitively, the situation is very much reminiscent of the
classical Battle of the Sexes game: If one’s partner experiments, one would like
to free-ride on his efforts; if one’s partner plays safe, though, one would rather do
the experimentation oneself than give up on finding out the truth. On the relevant
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range of beliefs it is the case that as players become more optimistic, they have to
raise their experimentation intensities in order to increase free-riding incentives for
their partner. This is necessary to keep their partner indifferent, and hence willing to
mix, over both options.

Having seen that for g
s
≤ 2r+λ

r+λ , there exists an equilibrium with smooth value
functions that implies incomplete learning, we are now in a position to strengthen
our result on the long-run properties of equilibrium learning:

Corollary 4.1 (Complete Learning) Learning will be complete in any Markov
perfect equilibrium in which at least one player’s value function is smooth, if and
only if g

s
> 2r+λ

r+λ .

For perfect negative correlation, Klein and Rady [8] found that with the possible
exception of the knife-edge case g

s
= 2r+λ

r+λ , learning was going to be complete in
any equilibrium if and only if complete learning was efficient. While the proposition
pertains to the exact same parameter set on which complete learning prevails in
[8], we here find by contrast that if 2(r+λ)

r+2λ <
g
s
≤ 2r+λ

r+λ , efficiency uniquely
calls for complete learning, yet there exists an equilibrium entailing incomplete
learning. This is because with three-armed bandits information is more valuable to
the utilitarian planner, as in case of a success he gets the full payoff of a good risky
arm. With negatively correlated two-armed bandits, however, the planner cannot
shift resources between the two types of risky arm; thus, his payoff in case of a
success is just g+s2 .

4.4.2 Intermediate Stakes

For intermediate stakes, the equilibrium I construct is essentially of the same
structure as the previous one: It is symmetric and it requires players to mix on some
interval of beliefs. However, there does not exist an interval where both players play
safe, so that players will always eventually find out the true state of the world, even
though they do so inefficiently slowly.

Proposition 4.3 (Symmetric MPE for Intermediate Stakes) If 2r+λ
r+λ <

g
s
<

4(r+λ)
2r+3λ , there exists a symmetric equilibrium. Let p̌ := λ+r

λ
(2pm− 1), andW (p) be

defined by

W (p) :=
{
s + r+λ

λ
(g − s)− r

λ
ps (2+ ln(Ω(p))) if p ≤ 1

2
s + r+λ

λ
(g − s)− r

λ
(1− p)s (2− ln(Ω(p))) if p ≥ 1

2
(4.6)

Now, let p†
1 >

1
2 and p†

2 >
1
2 be defined by W (p†

1) = λ+r(1−p†
1)

λ+r g and W (p†
2) =

2s − p†
2g, respectively. Then, let p

† := p†
1 if p†

1 ≥ p̌; otherwise, let p† := p†
2 .

In equilibrium, both players will exclusively use their risky arm A in [p†, 1], and
their risky arm B in [0, 1−p†]. In ] 1

2 , p
†], the fraction kA(p) = W (p)−s

cA(p)
is allocated



4 Learning in a Game with Three-Armed Bandits 47

to risky arm A, while 1− kA(p) is allocated to the safe arm; in [p†, 1
2 [, the fraction

kB(p) = W (p)−s
cB(p)

is allocated to risky arm B, while 1 − kB(p) is allocated to the

safe arm. At p = 1
2 , a fraction of kA( 1

2 ) = kB( 1
2 ) = (λ+r)g−(2r+λ)s

λ(2s−g) is allocated to
either risky arm, with the rest being allocated to the safe arm.

Let Vh(p) := pg +Ch(1− p)Ω(p) r2λ , and Vl(p) := (1− p)g + ClpΩ(p)− r
2λ .

Then, the players’ value function is continuously differentiable, and given by u(p) =
W (p) in [1−p†, p†], by u(p) = Vh(p) in [p†, 1], and u(p) = Vl(p) in [0, 1−p†],
with the constants of integration Ch and Cl being determined by Vh(p†) = W (p†)

and Vl(1− p†) = W (1− p†).

Thus, no matter what initial prior belief players start out from, there is a positive
probability that beliefs will end up at p = 1

2 , and hence they will try the risky project
that looked initially less auspicious. Therefore, in contrast to the equilibrium for low
stakes, there is a positive value attached to the option of having access to the second
risky project.

4.5 Conclusion

I have analyzed a game of strategic experimentation with three-armed bandits,
where the two risky arms are perfectly negatively correlated. In [7], I have shown
that there exists an efficient equilibrium if and only if the stakes are high. Here,
we have seen that any equilibrium in which at least one player’s value is smooth
involves complete learning if stakes are not low. If stakes are intermediate in size,
all equilibria are inefficient, though they involve complete learning (provided both
players’ value functions are not kinked), as required by efficiency. If the stakes
are low, all equilibria are inefficient, and there exists an equilibrium implying an
inefficiently low amount of experimentation. In particular, if the stakes are low but
not very low, there exists an equilibrium that involves incomplete learning while
efficiency requires complete learning; if the stakes are very low, the efficient solution
also implies incomplete learning.

From an economic point of view, the reason for the prevalence of free-riding in
Markov perfect equilibrium when the types of the risky arms are perfectly positively
correlated is as follows. If a player deviates by providing less effort than he is
supposed to, the other players will be more optimistic than they should be as a
result, and hence more willing to pick up the deviating player’s slack. This makes
players more inclined to free-ride. However, if players’ risky arms are negatively
correlated as in [8], it is impossible for both of them to be very pessimistic about
their respective projects at the same time, and free-riding only appears if the players’
respective single-agent cut-offs overlap. Otherwise, i.e., if the stakes are low, there
exists an efficient equilibrium. By contrast, in our setting, there exists an efficient
equilibrium if and only if the stakes are high [7], i.e. if and only if both players are
always sufficiently optimistic about one of their projects. Otherwise, the positive
correlation between players makes incentives for free-riding reappear.
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4.6 Proofs

This section collects the proofs of our results. We note that player i’s Bellman
equation is given by (see [7])

ui(p) = s + kj,ABA(p, ui)+ kj,BBB(p, ui)+
max

{(ki,A,ki,B)∈[0,1]2:ki,A+ki,B≤1}
{
ki,A [BA(p, ui)− cA(p)] + ki,B [BB(p, ui)− cB(p)]

}
,

(4.7)

where {j } = {1, 2}\{i},BA(p, u) := λ
r
p[g−u(p)−(1−p)u′(p)] andBB(p, u) :=

λ
r
(1−p)[g− u(p)−pu′(p)] measure the learning benefit from playing arm A and

arm B, respectively, while cA(p) := s − pg and cB(p) := s − (1 − p)g measure
the appertaining myopic opportunity cost of doing so. A myopic player (i.e. a player
whose discount rate r → ∞) would use risky arm A (B) if and only if cA(p) > 0
(cB(p) > 0), i.e., if and only if p > pm := s

g
(p < 1− pm).

Furthermore, we note for future reference (see Appendix A in [7]) that, on any
open interval of beliefs on which ((1, 0), (1, 0)) is played, both players’ value
functions satisfy the ODE

2λp(1− p)u′(p)+ (2λp + r)u(p) = (2λ+ r)pg. (4.8)

On any open interval of beliefs at which a player is indifferent between his safe arm
and his risky arm A, his value function satisfies the ODE

λp(1 − p)u′(p)+ λpu(p) = (λ+ r)pg − rs. (4.9)

4.6.1 Proof of Lemma 4.1

In a first step, I show that s is a lower bound on u. Assume to the contrary that
there exists a belief p† ∈ ]0, 1[ such that u(p†) < s. Then, since u is continuously
differentiable and u(0) = u(1) = g > s, there exists a belief p̃ ∈ ]0, 1[ such
that u(p̃) < s and u′(p̃) = 0. I write BA and BB for BA(p, u) and BB(p, u),
respectively, suppressing arguments whenever this is convenient. Moreover, I define
B̂A(p) := λ

r
p(g − s) > 0 and B̂B(p) := λ

r
(1 − p)(g − s) > 0, while denoting

by (kj,A, kj,B) the other player’s action at p̃ in the equilibrium underlying the value
function u. Now, at p̃, u < s immediately implies BA = λ

r
p̃(g − u) > B̂A and

BB = λ
r
(1− p̃)(g − u) > B̂B , and we have that

u− s ≥ kj,A(BA − B̂A)+ kj,B(BB − B̂B) = (kj,Ap̃ + kj,B(1− p̃))(s − u) ≥ 0,
(4.10)
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a contradiction to u < s.9 Thus, we have already shown that u∗1 bounds u from
below at all beliefs p ≤ p∗1 .

Now, suppose there exists a belief p > p∗1 at which u < u∗1. I now write B∗A :=
λ
r
p[g−u∗1− (1−p)(u∗1)′(p)] = u∗1−pg and B∗B := λ

r
(1−p)[g−u∗1+p(u∗1)′(p)].

Since B∗A + B∗B = λ
r
(g − u∗1), and hence B∗B = λ

r
(g − u∗1) − (u∗1 − pg), we have

that B∗B ≥ 0 if and only if u∗1 ≤ λ+rp
λ+r g =: w1(p). Let p̃ be defined by w1(p̃) = s;

it is straightforward to show that p̃ < p∗1 . Noting furthermore that u∗1(p∗1) = s,
w1(1) = u∗1(1) = g, and that w1 is linear whereas u∗1 is strictly convex in p, we
conclude that u∗1 < w1 and hence B∗B > 0 on [p∗1, 1[ . Moreover, since B∗A ≥ 0 (see
[6]), we have u∗1 = pg + B∗A ≤ pg + kj,BB∗B + (1 + kj,A)B∗A on [p∗, 1], for any
(kj,A, kj,B).

Since s is a lower bound on u, by continuity, u(p) < u∗1(p) implies the existence
of a belief strictly greater than p∗1 where u < u∗1 and u′1 ≤ (u∗1)′. This immediately
yields BA > B∗A > cA, as well as

u− u∗1 ≥ pg + kj,BBB + (1+ kj,A)BA − [pg + (1+ kj,A)B∗A + kj,BB∗B ] (4.11)

= kj,B(BA + BB − B∗A − B∗B)+ (1+ kj,A − kj,B)(BA − B∗A) (4.12)

= kj,B λ
r
(u∗1 − u1)+ (1+ kj,A − kj,B)(BA − B∗A) > 0, (4.13)

a contradiction.10

An analogous argument applies for u∗2. ��

4.6.2 Proof of Proposition 4.2

First, I show that p̂ as defined in the proposition indeed exists and is unique in
]p∗1, 1[. It is immediate to verify that the left-hand side of the defining equation is
decreasing, while the right-hand side is increasing in p̂. Moreover, for p̂ = p∗1, the
left-hand side is strictly positive, while the right-hand side is zero. Now, for p̂ ↑ 1,
the left-hand side tends to−∞, while the right-hand side is positive. The claim thus
follows by continuity.

9Strictly speaking, the first inequality relies on the admissibility of the action (0, 0) at p̃. However,
even if (0, 0) should not be admissible at p̃, my definition of strategies still guarantees the existence
of a neighborhood of p̃ in which (0, 0) is admissible everywhere except at p̃. Hence, by continuous
differentiability of u, there exists a belief ˜̃p in this neighborhood at which the same contradiction
can be derived.
10Again, strictly speaking, the first inequality relies on the admissibility of the action (1, 0) at the
belief in question, and my previous remark applies.
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The proposed policies imply a well-defined law of motion for the posterior belief.
It is immediate to verify that the function u satisfies value matching and smooth
pasting at p∗1 and 1 − p∗1. To show that it is continuously differentiable, it remains
to be shown that smooth pasting is satisfied at p̂ and 1 − p̂. From the appertaining
ODEs, we have that

λp̂(1− p̂)u′(p̂−)+ λp̂u(p̂) = (λ+ r)p̂g − rs (4.14)

and

2λp̂(1− p̂)u′(p̂+)+ (2λp̂ + r)u(p̂) = (2λ+ r)p̂g, (4.15)

where I write u′(p̂−) := limp↑p̂ u′(p) and u′(p̂+) := limp↓p̂ u′(p). Now,
u′(p̂−) = u′(p̂+) if and only if u(p̂) = 2s − p̂g. Now, algebra shows that indeed
W(p̂) = 2s−p̂g. By symmetry, we can thus conclude thatW(1−p̂) = 2s−(1−p̂)g
and that u is continuously differentiable. Furthermore, it is strictly decreasing on
]0, 1 − p∗1 [ and strictly increasing on ]p∗1, 1[. Moreover, u = s + 2BB − cB on
[0, 1− p̂], u = s+ kBBB on [1− p̂, 1−p∗1], u = s on [1−p∗1, p∗1 ], u = s+ kABA
on [p∗1, p̂] and u = s+2BA−cA on [p̂, 1], which shows that u is indeed the players’
payoff function from ((kA, kB), (kA, kB)).

Consider first the interval ]1 − p∗1, p∗1 [. It has to be shown that BA − cA < 0
and BB − cB < 0. On ]1 − p∗1 , p∗1 [, we have that u = s and u′ = 0, and therefore

BA − cA = λ+r
r
pg − λp+r

r
s. This is strictly negative if and only if p < p∗1. By the

same token, BB − cB = λ+r
r
(1 − p)g − λ(1−p)+r

r
s. This is strictly negative if and

only if p > 1− p∗1 .
Now, consider the interval ]p∗1, p̂[. Here, BA = cA by construction, as kA is

determined by the indifference condition and symmetry. It remains to be shown that
BB ≤ cB here. Using the relevant differential equation, I find that BB = λ

r
(g−u)+

pg − s. This is less than cB = s − (1 − p)g if and only if u ≥ λ+r
λ
g − 2r

λ
s. Yet,

λ+r
λ
g − 2r

λ
s ≤ s if and only if g

s
≤ 2r+λ

r+λ , so that the relevant inequality is satisfied.
The interval ]1− p̂, 1 − p∗1 [ is treated in an analogous way.

Finally, consider the interval ]p̂, 1[. Plugging in the relevant differential equation
yields BA − BB = u − pg − λ

r
(g − u). This exceeds cA − cB = (1 − 2p)g if

and only if u ≥ λ+r(1−p)
λ+r g. At p̂, the indifference condition gives us kA(p̂) = 1,

which implies u(p̂) = 2s − p̂g. Since p �→ λ+r(1−p)
λ+r g is decreasing and u is

increasing, it is sufficient for us to show that u(p̂) ≥ λ+r(1−p̂)
λ+r g, which is equivalent

to p̂ ≤ λ+r
λ
(2pm − 1). From the indifference condition for the experimentation

intensity k̃A(p) := u(p)−s
cA(p)

, we see that k̃A is strictly increasing on ]p∗1 , pm[, and

that limp↑pm k̃A(p) = +∞; hence p̂ < pm. Therefore, it is sufficient to show that
pm ≤ λ+r

λ
(2pm − 1), which is equivalent to g

s
≤ 2r+λ

r+λ . ��
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4.6.3 Proof of Proposition 4.3

The proposed policies imply a well-defined law of motion for the posterior belief.
The function u is strictly decreasing on ]0, 1

2 [ and strictly increasing on ] 1
2 , 1[.

Furthermore, as lim
p↑ 1

2
u′(p) = lim

p↓ 1
2
u′(p) = 0, the function u is continuously

differentiable. Moreover, u = s + 2BB − cB on [0, 1 − p†], u = s + kBBB on
[1 − p†, 1

2 ], u = s + kABA on [ 1
2 , p

†] and u = s + 2BA − cA on [p†, 1], which
shows that u is indeed the players’ payoff function from ((kA, kB), (kA, kB)).

To establish existence and uniqueness of p†, note that p �→ λ+r(1−p)
λ+r g and p �→

2s−pg are strictly decreasing in p, whereas W is strictly increasing in p on ] 1
2 , 1[.

Now, W ( 1
2 ) = r+λ

λ
g− 2r

λ
s. This is strictly less than

λ+ r2
λ+r g and 2s− g2 whenever g

s
<

4(r+λ)
2r+3λ . Moreover,W ( 1

2 ) strictly exceeds λ+r(1−p
m)

λ+r g = g− r
r+λs and 2s−pmg = s

whenever g
s
> 2r+λ

r+λ . Thus, I have established uniqueness and existence of p† and

that p† ∈] 1
2 , p

m[.
By construction, u > max{λ+r(1−p)

λ+r g, 2s − pg} in ]p†, 1], which, by Lemma
A.1 in [7], implies that ((1, 0), (1, 0)) are mutually best responses in this region; by
the same token, u > max{λ+rp

λ+r g, 2s − (1− p)g} in [0, 1− p†[, which, by Lemma
A.1 in [7], implies that ((0, 1), (0, 1)) are mutually best responses in that region.

Now, consider the interval ] 1
2 , p

†]. Here, BA = cA by construction, so all that
remains to be shown is BB ≤ cB . By plugging in the indifference condition for u′,
I get BB = λ

r
(g − u)+ pg − s. This is less than cB = s − (1 − p)g if and only if

u ≥ λ+r
λ
g− 2r

λ
s = W ( 1

2 ) = u( 1
2 ), which is satisfied by the monotonicity properties

of u. An analogous argument establishes BA ≤ cA on [1− p†, 1
2 [. ��
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Chapter 5
Solution for a System of Hamilton–Jacobi
Equations of Special Type and a Link
with Nash Equilibrium

Ekaterina A. Kolpakova

Abstract The paper is concerned with systems of Hamilton–Jacobi PDEs of the
special type. This type of systems of Hamilton–Jacobi PDEs is closely related with
a bilevel optimal control problem. The paper aims to construct equilibria in this
bilevel optimal control problem using the generalized solution for the system of the
Hamilton–Jacobi PDEs. We introduce the definition of the solution for the system
of the Hamilton–Jacobi PDEs in a class of multivalued functions. The notion of the
generalized solution is based on the notions of minimax solution and M-solution to
Hamilton–Jacobi equations proposed by Subbotin. We prove the existence theorem
for the solution of the system of the Hamilton–Jacobi PDEs.

5.1 Introduction

The paper deals with a differential game, the dynamics of the game is entirely
defined by the policy of the first player. The payoff functional of the first player
is also determined by the control of the first player and the payoff functional of the
second player depends on control of both players. Actually we investigate a bilevel
optimal control problem. In considerable problem Nash equilibrium coincides with
Stackelberg equilibrium [1, 5]. We restrict our attention to the case when the players
use open-loop strategies and examine this problem applying the solution of the
system of Hamilton–Jacobi equations.

The solution for a strongly coupled system of the Hamilton–Jacobi equations is
open mathematical problem. For the general case there is no existence theorems.
Furthermore the system of Hamilton–Jacobi equations is connected with the system
of the quasilinear first order PDEs. The systems of quasilinear PDEs (the system
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of conservation laws) describe many physical processes. If we differentiate the
system of Hamilton–Jacobi equations w.r.t. phase variable x, then we obtain a
system of quasilinear equations. The existence theorems for a generalized solution
are obtained only for initial values with a small total variation [3, 8]. Using this
link Bressan and Shen [3] constructed Nash strategies in the feedback for some
non-zero sum two players differential game on the line. The authors do not solve
the system of Hamilton–Jacobi equations, but they solve the corresponding strictly
hyperbolic system of quasilinear PDEs. This way can be applied only in the case
of the scalar phase variable and the hyperbolic system of quasilinear equations.
Analogous constructions for a differential game with simple motions were described
in [4].

As we mentioned above the theory of the system of Hamilton–Jacobi equations
is open mathematical problem, at the same time the theory of generalized solution
for the single Hamilton–Jacobi equation is well-developed. Subbotin proposed the
notion of minimax solution, he proved the existence and uniqueness theorems [13].
Crandall et al. introduced the viscosity approach [6]. Moreover Subbotin proved the
equivalence of these approaches.

In the paper we consider the systems of Hamilton–Jacobi equations where the
first equation of the system does not depend on the solution of the second equation,
and the second equation depends on partial derivatives of the solution for the first
equation. This implies that we can solve the equations of the system sequentially.
This system is connected with a bilevel optimal control problem [16]. Using the
minimax/viscosity approach we obtain the solution of the first equation of the
system. Further we substitute the derivative of the minimax/viscosity solution in the
second equation. The second equation is solved in the framework of M-solutions
[9].

Our main result is the following. We show that the solution for the system of
Hamilton–Jacobi equations of special type belongs to a class of multivalued map.
We construct this multivalued solution and connects with a Nash equilibrium in a
bilevel optimal control problem.

5.2 Bilevel Optimal Control Problem

A bilevel optimal control problem is a particle case of two-level differential games.
Let us consider the bilevel optimal control problem with dynamics

ẋ = f (t, x, u), x(t0) = x0, u ∈ U ⊂ R
n. (5.1)
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Here t ∈ [0, T ], x ∈ R
n. The players maximize payoff functionals I1, I2:

I1(u(·)) = σ1(x(T ))+
T∫

t0

g1(t, x(t), u(t))dt,

I2(u(·), v(·)) = σ2(x(T ))+
T∫

t0

g2(t, x(t), u(t), v(t))dt.

Here u and v are controls of the players. Assume that U,V ⊂ Rn are compact sets.
Denote the set of all measurable controls of the first player by Ũ :

Ũ = {u : [t0, T ] → U, u are measurable functions},

and the set of all measurable controls of the second player by Ṽ :

Ṽ = {v : [t0, T ] → V, v are measurable functions}.

From [7, 12] it follows that the payoffs of the players satisfy the system of the
Hamilton–Jacobi equations:

∂c

∂t
+H1(t, x, p) = 0, c(T , x) = σ1(x); (5.2)

∂w

∂t
+H2(t, x, p, q) = 0, w(T , x) = σ2(x), (5.3)

under condition

H1(t, x, p) = max
u∈U 〈f (t, x, u), p〉 + g1(t, x, u)

= 〈f (t, x, u∗(t, x, p)), p〉 + g1(t, x, u
∗(t, x, p)),

H2(t, x, q) = 〈f
(
t, x, u∗

(
t, x,

∂c(t, x)

∂x

))
, q〉

+max
v∈V g2

(
t, x, u∗

(
t, x,

∂c(t, x)

∂x

)
, v
)
.

Here

u∗(t, x, p) ∈ arg max
u∈U 〈f (t, x, u), p〉 + g1(t, x, u), (5.4)
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p = ∂c
∂x

, q = ∂w
∂x

.
Further we shall assume that

A1. the function H1 : [0, T ] × R
n × R

n → R is continuously differentiable, H1
satisfies sublinear condition w.r.t. x, p, the functionH1 is strongly convex w.r.t.
p for any (t, x) ∈ [0, T ] × R

n.
A2. the function σ1 is Lipschitz continuous.
A3. the functionH2 : [0, T ]×Rn×Rn×Rn→ R is continuously differentiable,H2

satisfies sublinear condition w.r.t. x, p, q , the function H2 is strongly convex
w.r.t. q for any (t, x) ∈ [0, T ] × R

n.
A4. the function σ2 is continuously differentiable.

From assumptions A1, A3 we get

g1(t, x, p) = H ∗1
(
t, x,

∂H1(t, x, p)

∂p

)
,

g2(t, x, p, q) = H ∗2
(
t, x,

∂H1

∂p
,
∂H2(t, x, p, q)

∂q

)
.

Here H ∗1 ,H ∗2 are conjugate functions to H1, H2, ∂H1
∂p

=
(
∂H1
∂p1
, . . . , ∂H1

∂pn

)
. Hence

g1, g2 are continuous functions w.r.t all variables. Since condition A1 holds a
measurable function (5.4) u∗ : (t, x, p)→ U is well-defined.

Let us introduce the mapping

(t0, x0)→ ξ(t0, x0) = {ξ ∈ R
n : x̃(t0, ξ) = x0, x̃(T , ξ) = ξ,

s̃(T , ξ) = Dxσ1(ξ), z̃(T , ξ) = σ1(ξ), z̃(t0, ξ) = c(t0, x0)} (5.5)

Here (x̃(·), s̃(·), z̃(·)) is the unique and extendable solution of the characteristic
system for Bellman equation (5.2):

˙̃x = ∂H1(t, x̃, s̃)

∂s̃
, ˙̃s = −∂H1(t, x̃, s̃)

∂x̃
, ˙̃z = 〈∂H1(t, x̃, s̃)

∂s̃
, s̃〉 −H1(t, x̃, s̃)

with a boundary condition

x̃(T , ξ) = ξ, s̃(T , ξ) = Dxσ1(ξ), z̃(T , ξ) = σ1(ξ), ξ ∈ R
n.

It follows from [11, 15] that for any point (t0, x0) ∈ [0, T ] × R
n assumption

A1 guarantees the existence of optimal open-loop control u0(·; t0, x0) satisfying the
relation

max
u(·)∈Ũ

I1(u(·)) = I1(u0(·; t0, x0)) = c(t0, x0).
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Pontryagin’s Maximum principle implies that the optimal open-loop control
u0(·; t0, x0) of the first player for the initial point (t0, x0) ∈ [0, T ] × R

n is defined
by the rule

u0(t; t0, x0) ∈ arg max
u∈U [〈s̃(t, ξ0), f (t, x̃(t, ξ0), u)〉+g1(t, x̃(t, ξ0), u)], ∀t ∈ [t0, T ]

(5.6)

Here (x̃(·), s̃(·), z̃(·)) is the solution of the characteristic system for problem (5.2)
for any t ∈ [t0, T ], for any ξ0 ∈ ξ(t0, x0) defining by (5.5).

We determine the set of optimal open-loop controls of the first player

U0(t0, x0) =
{
u(·) : [t0, T ] → Uare measurable functions, satisfying (5.6)

}
.

Remark 5.1 Equivalently the first player’s control can be considered in feedback
strategies [14]. In this case the optimal feedback is given by

u(t, x) ∈ arg max
u∈U

[ dc(t, x)

d(1, f (t, x, u))
+ g1(t, x, u)

]
,

where c is the solution of Cauchy problem (5.2), dc(t,x)
d(1,f (t,x,u)) is the derivative of c at

the point (t, x) in the direction (1, f (t, x, u)).

5.3 The Solution of the System of the Hamilton–Jacobi
Equations

In this section we will focus on solution of system of Hamilton–Jacobi equations
(5.2), (5.3). We begin with definition of a minimax/viscosity solution of Cauchy
problem (5.2).

Definition 5.1 The continuous function c : [0, T ] × R
n → R is said to be

the minimax/viscosity solution if c(T , x) = σ2(x), x ∈ R
n and the following

inequalities hold for any (t, x) ∈ (0, T )× R
n

α +H1(t, x, β) ≤ 0, (α, β) ∈ D−c(t, x),

α +H1(t, x, β) ≥ 0, (α, β) ∈ D+c(t, x).

Here D−c(t, x) and D+c(t, x) are sub- and superdifferentials of function c at a
point (t, x).

It is known from [13] that under conditions A1–A3 there exists the unique
minimax solution c(·, ·) in problem (5.2).
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We recall the properties of the minimax solution of problem (5.2) under
conditions A1,A2 from [13, 14]:

1. the minimax solution c(·, ·) is a locally Lipschitz function;
2. the superdifferential of the minimax solution D+c(t, x) �= ∅ for any point
(t, x) ∈ [0, T ] × R

n.

We solve the system of Hamilton–Jacobi equations sequentially. The minimax
solution of the first equation (5.2) is a Lipschitz continuous function. Thus the partial
derivative of the minimax solution can be discontinuous w.r.t. x. We substitute the
superdifferentialD+x c(·, ·) of function c for p in the second equation (5.3), therefore
we obtain the multivalued Hamiltonian

H̃ (t, x, q) = H2(t, x,Dxc(t, x), q). (5.7)

Hence, we have the Hamilton–Jacobi equation with the multivalued Hamiltonian:

∂w

∂t
+ H̃ (t, x, q) = 0, w(T , x) = σ2(x). (5.8)

A.I. Subbotin proposed the notion of M-solution for Cauchy problem (5.8) with the
multivalued Hamiltonian relative to x.

Consider the differential inclusion

(ẋ, ż) ∈ E(t, x, q), E(t, x, q) = {(f, g) : f ∈ ∂H2(t, x, p, q)

∂q
, p ∈ D+c(t, x),

〈f, q〉 − g ∈ [H2∗(t, x, q),H ∗2 (t, x, q)], q ∈ R
n}.
(5.9)

Here ∂H2(t,x,p,q)
∂q

=
(
∂H2(t,x,p,q)

∂q1
, . . . ,

∂H2(t,x,p,q)
∂qn

)
,

H2∗(t, x, q) = lim inf
(τ,ξ)→(t,x) H̃ (τ, ξ, q),H

∗
2 (t, x, q) = lim sup

(τ,ξ)→(t,x)
H̃ (τ, ξ, q).

(5.10)

It follows from [10] that differential inclusion (5.9) is an admissible characteris-
tical inclusion. Recall some definitions and theorem from the work [9].

Definition 5.2 The closed set W ⊂ [0, T ] × R
n ⇒ R is viable w.r.t. differential

inclusion (5.9), if for any point (t0, x0, z0) ∈ W there exist τ > 0 and a trajectory
(x(·), z(·)) of admissible differential inclusion (5.9) such that (x(0), z(0)) =
(x0, z0), (t, x(t), z(t)) ∈ W for any t ∈ [0, τ ].
Definition 5.3 The closed maximal set W ⊂ [0, T ] × R

n ⇒ R is called the M-
solution of Cauchy problem for Hamilton–Jacobi equation (5.8), ifW is viable w.r.t.
admissible differential inclusion (5.9) and satisfies the condition

(T , x, z) ∈ W ⇒ z = σ2(x) ∀ x ∈ R
n.
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Definition 5.4 The closed set W ⊂ [0, T ] × R
n × R is said to be the epi-

solution (hypo-solution) of problem (5.8) ifW is viable w.r.t. admissible differential
inclusion (5.9) and satisfies the condition

(T , x, z) ∈ W ⇒ z ≥ σ2(x)((T , x, z) ∈ W ⇒ z ≤ σ2(x)) ∀ x ∈ R
n.

We introduce the definition for a generalized solution of the system of the Hamilton–
Jacobi equations.

Definition 5.5 The multivalued map (c,w), where c(·, ·) : [0, T ] × R
n → R,

w : [0, T ] × R
n ⇒ R is called a generalized solution of Cauchy problem for

the system of Hamilton–Jacobi equations (5.2), (5.3), if the function c(·, ·) is the
minimax solution of problem (5.2), the map w(·, ·) is the M-solution of problem
(5.8).

Theorem 5.1 ([10]) Let w : [0, T ] × R
n → R be a multivalued map and gr w is

closed set. Suppose that w(t, x) is not empty for t ∈ [0, T ], x ∈ R
n and put

w∗(t, x) = min
z∈w(t,x) z > −∞, w

∗(t, x) = max
z∈w(t,x)

z <∞.

The map w is the M-solution of problem (5.8) iff epi w∗ and hypo w∗ are the M-
solutions of problem (5.8).

Given t ∈ [t0, T ], x ∈ R
n, u ∈ U let

(t, x, u)→ Q(t, x, u) = arg max
v∈V g2(t, x, u, v). (5.11)

be the set of optimal controls of the second player. Consider the map Γ (u(·)) :
Ũ → R given by the following rule

u(·)→ σ2(x[T ; t0, x0])+
T∫

t0

g2(t, x[t; t0, x0], u(t),Q(t, x[t; t0, x0], u(t)))dt,

(5.12)
u(·) ∈ U0(t0, x0), the function x[·; t0, x0] is a solution of the problem

ẋ = f (t, x, u(t)), u(·) ∈ U0(t0, x0), x(t0) = x0. (5.13)

Put

w(t0, x0) =
⋃

u(·)∈U0(t0,x0)

Γ (u) (5.14)

Lemma 5.1 Map (5.14) is compact-valued.
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Proof Let us choose wi = Γ (ui(·)) ∈ w(t0, x0). We show that if wi → w0, i →
∞, then w0 ∈ w(t0, x0).

Let us define the set generalized controls

Λ = {μ : [t0, T ] × U → [0,+∞) is measurable ,

∀ [τ1, τ2] ⊂ [0, T ] μ([τ1, τ2] × U) = τ2 − τ1, }. Here λ is Lebesgue measure on
[0, T ]. Hence the trajectory x(·) under control μ has the form

x(t) = x0 +
∫

[t0,t ]×U
f (τ, x(τ ), u)μ(d(τ, u)).

In this case the first player’s outcome is

I1(μ) = σ1(x(T ))+
∫

[t0,t ]×U
g1(τ, x(τ ), u)μ(d(τ, u)).

We consider the set of generalized optimal controls

Mt0 = {μ ∈ Λ : μ maximizes I1(μ)}.

It is known from [15] that the setMt0 is a compact metric set. Now we show the link
between U0(t0, x0) andMt0 . If u(·) ∈ U0(t0, x0) then there exists μu(·) ∈ Mt0 such
that

∀ ϕ ∈ C([0, T ] × U)
∫

[0,T ]×U
ϕ(t, u)μu(·)(d(t, u)) =

T∫

0

ϕ(t, u(t))dt.

Hence from ui ∈ U0(t0, x0) we obtain μi = μui(·) ∈ Mt0 . Consider μi → μ∗ as
i →∞. SinceMt0 is a closed set we get μ∗ ∈ Mt0 . Let us construct u∗ ∈ U0(t0, x0)

such that μ∗ = μu∗(·).
We have

lim
i→∞wi = lim

i→∞Γ (ui(·)) = Γ (u
∗(·)) = w0.

Hence w0 = Γ (u∗(·)) ∈ w(t0, x0). Since Γ (u) is bounded on the set U0(t0, x0) it
follows that w(t, x0) is bounded.

We prove the following theorem.

Theorem 5.2 If conditions A1–A4 hold, then the multivalued map w, defining
(5.14) is the M-solution of problem (5.8).
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Proof Put

w∗(t0, x0) = max
y∈w(t0,x0)

y,

where w is defined by (5.14). Let us show that hypograph w∗ is viable w.r.t.
differential inclusion (5.9).

We fix the position (t0, x0) ∈ [0, T ] × R
n. Choose (t0, x0, z0) ∈ hypo w∗, z0 ≤

w∗(t0, x0). If assumptionsA1–A3 are true, then in the optimal control problem with
payoff functional I1 there exists an optimal open-loop control u∗ in the class of
measurable functions. And control u∗ generates the trajectory ξ :

ξ̇ = f (t, ξ, u∗(t)), ξ(t0) = x0.

The choice of point z0 and Bellman’s optimality principle yield the equality

z0 ≤ w∗(t0, x0) = w∗(t, ξ(t))

+
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ ))dτ.
Further we have

z0 −
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ )))dτ ≤ w∗(t, ξ(t))

for any t ∈ [t0, T ]. Note that

z(t) = z0 −
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ )))dτ,

hence the trajectory (ξ(·), z(·)) satisfies to differential inclusion (5.9). From defini-
tion of the Hamiltonian H2 it follows that

g = ż = −g2(t, ξ(t), u
∗(t),Q(t, ξ(t), u∗(t))), 〈f (t, ξ(t), u∗(t), p〉 − g

= 〈f (t, ξ(t), u∗(t), p〉 + g2(t, ξ(t), u
∗(t),Q(t, ξ(t), u∗(t))) ∈

[H2∗(t, ξ(t), p),H ∗2 (t, ξ(t), p)].

Hence (t, ξ(t), z(t)) ∈ hypo w∗(t, ξ(t)), t ∈ [t0, T ]. Therefore hypo w∗ is a closed
set, satisfying the definition of the hypo-solution.
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Put

w∗(t0, x0) = min
y∈w(t0,x0)

y,

where w is defined by (5.14). We choose a point (t0, x0, z0) ∈ epi w∗, z0 ≥
w∗(t0, x0). Let us consider the optimal trajectory ξ(·) of dynamical system (5.1),
generated by control u∗ and satisfying to initial condition ξ(t0) = x0. Since ξ(·) is
the optimal trajectory we have

w∗(t, ξ(t))+
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ )))dτ

= w∗(t0, x0) ≤ z0. Therefore

w∗(t, ξ(t)) ≤ z0

−
t∫

t0

g2(τ, ξ [τ ; t0, x0], u∗(τ ),Q(τ, ξ [τ ; t0, x0], u∗(τ )))dτ = z(t),

that is the trajectory (ξ(·), z(·)) lies in the epigraph w∗. We show that z(·) is a
solution of differential inclusion (5.9). Really

g = ż = −g2(t, ξ(t), u∗(t),Q(t, ξ(t), u∗(t))), 〈f (t, ξ(t), u∗(t), p〉 − g

= 〈f (t, ξ(t), u∗(t), p〉 + g2(t, ξ(t), u∗(t),Q(t, ξ(t), u∗(t))) ∈

[H2∗(t, ξ(t), p),H ∗2 (t, ξ(t), p)].

Consequently epi w∗ is a closed set, satisfying the definition of the epi-solution.
Using Theorem 5.1 we obtain epi w∗

⋂
hypo w∗ is the M-solution of problem

(5.8). We note that epi w∗(T , x)
⋂

hypo w∗(T , x) = σ2(x), x ∈ R
n.

Remark 5.2 We have proved that multivalued map (5.14) is the M-solution of
problem (5.8). From definition 5.3 the M-solution is maximal-valued. Let us assume
that there exist two M-solutions W and W ′ of problem (5.8). Then we have
inclusionsW ⊆ W ′ andW ′ ⊆ W . HenceW = W ′ and the M-solution is unique.

5.4 Design of Nash Equilibrium

Let us recall the definition of a Nash equilibrium in program strategies.
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Definition 5.6 ([2]) A couple of strategies (ū(·), v̄(·)) is a Nash equilibrium in two
persons differential game if following inequalities hold for any u(·) ∈ Ũ , v(·) ∈ Ṽ

σ1(x̄(T ))+
T∫

t0

g1(t, x̄(t), ū(t))dt ≥ σ1(x
[1](T ))+

T∫

t0

g1(t, x
[1](t), u(t))dt,

σ2(x̄(T ))+
T∫

t0

g2(t, x̄(t), ū(t), v̄(t))dt ≥ σ2(x̄(T ))+
T∫

t0

g2(t, x̄(t), ū(t), v(t))dt,

t ∈ [t0, T ], where

˙̄x(t) = f (t, x̄(t), ū(t)), ẋ[1](t) = f (t, x[1](t), u(t)), x̄(t0) = x[1](t0) = x0.

Let us define the control ū(·) by formula (5.6). The control ū(·) maximizes the
functional I1 for optimal control problem (5.1), and therefore the first inequality
holds in Definition 5.6.

Let v̄(·) be given by

v̄(t) ∈ arg max
v∈V {g2(t, x̄(t), ū(t), v)}, t ∈ [t0, T ], (5.15)

where x̄(·) is a solution of problem ˙̄x(t) = f (t, x̄(t), ū(t)), x̄(t0) = x0. Since
g2 is a continuous function w.r.t. all variables, x̄(·) is a differentiable function and
ū(·) is measurable function we see that g2(·, x̄(·), ū(·), v) is a measurable function
w.r.t. t and multivalued map G(t) = {g2(t, x̄(t), ū(t), v) : v ∈ V }, t ∈ [t0, T ]
is measurable w.r.t. t . The multivalued map Gm(t) = max

v∈V g2(t, x̄(t), ū(t), v) is

upper semicontinuous therefore this map is measurable w.r.t t . Using this fact and
Casteing’s theorem [15], we get the map

arg max
v∈V g2(·, x(·), ū(·), v) : [t0, T ]⇒ V

is measurable. Hence from Neiman–Aumann–Casteing’s theorem [15] the measur-
able multivalued map has a measurable selector v̄(·) : [t0, T ] → R

n.
By the definition v̄ (5.15) the second inequality for integral parts holds in

Definition 5.6.
Hence the couple of strategies (ū, v̄) provides a Nash equilibrium. The first

player solves the optimal control problem and the payoff does not depend on
behavior of the second player. Choosing the control ū(·; t0, x0), the first player will
obtain a payoff c(t0, x0). We shall show how the choice of the control of the first
player influences on the payoff of the second player.

Remark 5.3 Let us fix the point (t0, x0) ∈ [0, T ]×R
n. Let (c,w) be the generalized

solution of problem (5.2), (5.3), α ∈ w(t0, x0), then there exists a couple of Nash
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equilibrium strategies (u∗, v∗):

u∗(t) ∈ arg max
u(·)∈U0(t0,x0)

Γ (u), v∗(t) = Q(t, x[t; t0, x0]), u∗(t)),

Γ is defined by (5.12), x∗[·; t0, x0] satisfies (5.1). From A3 we can use arg max
instead of arg sup. The corresponding payoffs of players at the point (t0, x0) ∈
[0, T ] × R

n equal to (c(t0, x0), α).

5.5 Example

Let us consider the optimal control problem

ẋ = u, x(t0) = x0,

x ∈ R, t ∈ [0, T ], |u| ≤ 1, |v| ≤ 1. Leader maximizes the payoff functional

I1(u(·)) = |x(T )| −
T∫

t0

u2

2
dt → max,

and the follower maximizes payoff functional

I2(u(·), v(·)) = x(T )−
T∫

t0

v2 + uvdt → max .

The system of Hamilton–Jacobi equations has the form

∂c

∂t
+max
u∈U [pu−

u2

2
] = 0, c(T , x) = |x|,

∂w

∂t
+ qu0(t, x, p)+max

v∈V [−v
2 − u0(t, x, p)v] = 0, w(T , x) = x,

x ∈ R, t ∈ [0, T ], p = ∂c
∂x

, q = ∂w
∂x

. Using formula (5.4) we obtain

u0(t, x, p) =

⎧
⎪⎪⎨

⎪⎪⎩

p, if |p| ≤ 1,

1, if p > 1,

−1, if p < −1.
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Lax–Hopf formula yields the solution of the first Hamilton–Jacobi equation

c(t, x) = |x| − 1/2(t − T ).

Now by formula (5.6) the open-loop control of the leader

u0(t; t0, x0) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x0 > 0,

−1, if x0 < 0,

{−1, 1}, if x0 = 0.

Applying (5.11) we construct the mapQ

Q(u) = −u
2
.

Hence the open-loop control of the follower

v0(t; t0, x0) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1

2
, if x0 > 0,

1

2
, if x0 < 0,

[
−1

2
,

1

2

]
, if x0 = 0.

Further we construct M-solution of the second equation

w(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x + 3

4
(t − T ), if x < 0,

x − 5

4
(t − T ), if x > 0,

{
x + 3

4
(t − T ), x − 5

4
(t − T )

}
, if x = 0.

We see that the solution of the second Hamilton–Jacobi equation is multivalued
under x = 0.

The payoffs of the players at the point (t0, x0) ∈ [0, T ] × R
n equal to (|x0| −

1/2(t0 − T ), α), where α ∈ w(t0, x0).
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Chapter 6
The Impact of Discounted Indices
on Equilibrium Strategies of Players
in Dynamical Bimatrix Games

Nikolay Krasovskii and Alexander Tarasyev

Abstract The paper deals with construction of solutions in dynamical bimatrix
games. It is assumed that integral payoffs are discounted on the infinite time
interval. The dynamics of the game is subject to the system of differential equations
describing the behavior of players. The problem of construction of equilibrium
trajectories is analyzed in the framework of the minimax approach proposed by
N. N. Krasovskii and A. I. Subbotin in the differential games theory. The concept
of dynamical Nash equilibrium developed by A. F. Kleimenov is applied to design
the structure of the game solution. For obtaining constructive control strategies of
players, the maximum principle of L. S. Pontryagin is used in conjunction with the
generalized method of characteristics for Hamilton–Jacobi equations. The impact of
the discount index is indicated for equilibrium strategies of the game.

6.1 Introduction

The dynamical bimatrix game with discounted integral payoff functionals is con-
sidered on the infinite horizon. Usually the discount parameter appears to be very
uncertain value which reflects subjective components in economic and financial
models. In this case models with discounted indices require an implementation of
sensitivity analysis for solutions with respect to changing of the discount parameter.
In the paper we build optimal control strategies based on Krasovskii minimax
approach [10, 11], using constructions of Pontryagin maximum principle [21]
and Subbotin technique of method of characteristics for generalized (minimax)
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solutions of Hamilton-Jacobi equations [22, 23]. Basing on constructed optimal
control strategies we simulate equilibrium trajectories for dynamical bimatrix
game in the framework of Kleimenov approach [8]. It is important to note that
in considered statement we can obtain analytical solutions for control strategies
depending explicitly on uncertain discount parameter. That allows to implement the
sensitivity analysis of equilibrium trajectories with respect to changing of discount
parameter and determine the asymptotical behavior of solutions when the discount
parameter converges to zero. It is shown that control strategies and equilibrium
solutions asymptotically converge to the solution of dynamical bimatrix game with
average integral payoff functional considered in papers by Arnold [1].

It is worth to note that we use dynamical constructions and methods of
evolutionary games analysis proposed in the paper [18]. To explain the dynamics of
players’ interaction we use elements of evolutionary games models [2, 5, 6, 25, 27].
For the analysis of shifting equilibrium trajectories from competitive static Nash
equilibrium to the points of cooperative Pareto maximum we consider ideas and
constructions of cooperative dynamical games [20]. The dynamics of bimatrix game
can be interpreted as a generalization of Kolmogorov’s equations for probabilities
of states [9], which are widely used in Markov processes, stochastic models of
mathematical economics and queuing theory. The generalization is understood in
the sense that parameters of the dynamics are not fixed a priori and appear to be
control parameters and are constructed by the feedback principle in the framework
of control theory and differential games theory.

The solution of dynamical bimatrix games is based on construction of positional
strategies that maximize own payoffs at any behavior of competing players, which
means “guaranteeing” strategies [10, 11, 19]. The construction of solutions on the
infinite horizon is divided into fragments with a finite horizon for which Pontryagin
maximum principle is used [21] in accordance with constructions of positional
differential games theory [11]. More precisely, elements of maximum principle are
considered in the aggregate with the method of characteristics for Hamilton-Jacobi
equations [12, 22, 24, 26]. The optimal trajectory in each time interval is constructed
from pieces of characteristics while switching moments from one characteristic to
another are determined by maximum principle. In this method switching moments
and points generate switching lines in the phase space which determine the synthesis
of optimal positional strategies. Let us note that analogous methods for construction
of positional strategies are used in papers [7, 13–17].

In the framework of proposed approach we consider the model of competition on
financial markets which is described by dynamical bimatrix game. For this game we
construct switching curves for optimal control strategies and synthesize equilibrium
trajectories for various values of the discount parameter. We analyze the qualitative
behavior of equilibrium trajectories and demonstrate that equilibrium trajectories
of dynamical bimatrix game provide better results than static Nash equilibrium.
Results of the sensitivity analysis for obtained solutions are demonstrated. This
analysis shows that switching curves of optimal control strategies for the series of
the discount parameter values have the convergence property by the parameter. We
provide calculations confirming the fact that equilibrium trajectories in the problem
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with discounting converge to the equilibrium trajectory in the problem with average
integral payoff functional.

6.2 Model Dynamics

The system of differential equations which defines the dynamics of behavior for two
players is investigated

ẋ(t) = −x(t)+ u(t), x(t0) = x0,

ẏ(t) = −y(t)+ v(t), y(t0) = y0.
(6.1)

The parameter x = x(t), 0 ≤ x ≤ 1, means the probability that first player holds
to the first strategy (respectively, (1−x) is the probability that he holds to the second
strategy). The parameter y = y(t), 0 ≤ y ≤ 1, is the probability of choosing the first
strategy by the second player (respectively, (1−y) is the probability that he holds to
the second strategy). Control parameters u = u(t) and v = v(t) satisfy conditions
0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and can be interpreted as signals, that recommend change of
strategies by players. For example, value u = 0 (v = 0) corresponds to the signal:
“change the first strategy to the second one”. The value u = 1 (v = 1) corresponds
to the signal: “change the second strategy to the first one”. The value u = x (v = y)
corresponds to the signal: “keep the previous strategy”.

It is worth to note, that the basis for the dynamics (6.1) and its properties were
examined in papers [18, 25]. This dynamics generalizes Kolmogorov’s differential
equations for probabilities of states [9]. Such generalization assumes that coeffi-
cients of incoming and outgoing streams inside coalitions of players are not fixed a
priori and can be constructed as positional strategies in the controlled process.

6.3 Local Payoff Functions

Let us assume that the payoff of the first player is described my the matrix A = aij ,
and the payoff of the second player is described by the matrix B = bij

A =
(
a11 a12

a21 a22

)

, B =
(
b11 b12

b21 b22

)

.

Local payoff functions of the players in the time period t , t ∈ [t0,+∞) are
determined by the mathematical expectation of payoffs, given by corresponding
matrices A and B in the bimatrix game, and can be interpreted as “local” interests
of the players

gA(x(t), y(t)) = CAx(t)y(t)− α1x(t)− α2y(t)+ a22,

gB(x(t), y(t)) = CBx(t)y(t)− β1x(t)− β2y(t)+ b22.
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Here parameters CA, α1, α2 and CB , β1, β2 are determined according to the
classical theory of bimatrix games (see [27])

CA = a11 − a12 − a21 + a22, DA = a11a22 − a12a21,

α1 = a22 − a12, α2 = a22 − a21,

CB = b11 − b12 − b21 + b22, DB = b11b22 − b12b21,

β1 = b22 − b12, β2 = b22 − b21.

6.4 Nash Equilibrium in the Differential Game
with Discounted Functionals

In this section we consider the non-zero sum differential game for two players with
discounted payoff functionals on the infinite horizon

JD∞A = [JD−A, JD+A ], (6.2)

JD−A = JD−A(x(·), y(·)) = lim inf
T→∞

∫ T

t0

e−λ(t−t0)gA(x(t), y(t)) dt,

JD+A = JD+A(x(·), y(·)) = lim sup
T→∞

∫ T

t0

e−λ(t−t0)gA(x(t), y(t)) dt,

defined on the trajectories (x(·), y(·)) of the system (6.1).
Payoff functionals of the second player JD∞B , JD−B , JD+B are determined

analogously by replacement of the function gA(x, y) by the function gB(x, y).
Discounted functionals (6.2) are traditional for the problems of evolutionary

economics and economic growth [6, 12], and are related to the idea of depreciation
of financial funds in time. In the problems of optimal guaranteed control such
functionals were considered in the paper [25]. Unlike payoff functionals optimized
in each period, discounted functionals admit the possibility of loss in some periods
in order to win in other periods and obtain better integral result in all periods. This
fact allows the system to stay longer in favorable domains where values of local
payoffs for the players are strictly better than values of static Nash equilibrium.

Let us introduce the notion of dynamical Nash equilibrium for the evolutionary
game with the dynamics (6.1) and discounted payoff functionals (6.2) in the context
of constructions of non-antagonistic positional differential games [8, 11, 18]. Let
us define the dynamical Nash equilibrium in the class of positional strategies
(feedbacks) U = u(t, x, y, ε), V = v(t, x, y, ε).
Definition 6.1 The dynamical Nash equilibria (U0, V 0), U0 = u0(t, x, y, ε),
V 0 = v0(t, x, y, ε) from the class of controls by the feedback principle U =



6 The Impact of Discounted Indices on Equilibrium Strategies 71

u(t, x, y, ε), V = v(t, x, y, ε) for the given problem is determined by inequalities

JD−A(x0(·), y0(·)) ≥ JD+A(x1(·), y1(·))− ε,
JD−B (x0(·), y0(·)) ≥ JD+B (x2(·), y2(·))− ε,

(x0(·), y0(·)) ∈ X(x0, y0, U
0, V 0), (x1(·), y1(·)) ∈ X(x0, y0, U, V

0),

(x2(·), y2(·)) ∈ X(x0, y0, U
0, V ).

Here symbol X stands for the set of trajectories, starting from initial point and
generated by corresponding postional strategies is the sense of the paper [11].

6.5 Auxiliary Zero-Sum Games

For the construction of desired equilibrium feedbacks U0, V 0 we use the approach
[8]. In accordance with this approach we construct the equilibrium using optimal
feedbacks for differential games ΓA = Γ −A ∪ Γ +A and ΓB = Γ −B ∪ Γ +B with
payoffs JD∞A and JD∞B (6.2). In the gamed ΓA the first player maximizes the
functional JD−A(x(·), y(·))with the guarantee using the feedbackU = u(t, x, y, ε),
and the second player oppositely provides the minimization of the functional
JD+A(x(·), y(·)) using the feedback V = v(t, x, y, ε). Vice versa, in the game ΓB
the second player maximizes the functional JD−B (x(·), y(·))with the guarantee, and
the first player maximizes the functional JD+B (x(·), y(·)).

Let us introduce following notations. By u0
A = u0

A(t, x, y, ε) and v0
B =

v0
B(t, x, y, ε) we denote feedbacks that solve the problem of guaranteed maximiza-

tion for payoff functionals JD−A and JD−B respectively. Let us note, that these
feedbacks represent the guaranteed maximization of players’ payoffs in the long
run and can be named “positive”. By u0

B = u0
B(t, x, y, ε) and v0

A = v0
A(t, x, y, ε)

we denote feedbacks mostly favorable for opposite players, namely, those, that
minimize payoff functionals JD+B , JD+A of the opposite players. Let us call them
“punishing”.

Let us note, that inflexible solutions of selected problems can be obtained in the
framework of the classical bimatrix games theory. Let us propose for definiteness,
(this proposition is given for illustration without loss of generality for the solution),
that the following relations corresponding to the almost antagonistic structure of
bimatrix game hold for the parameters of matrices A and B,

CA > 0, CB < 0,

0 < xA = α2

CA
< 1, 0 < xB = β2

CB
< 1,

0 < yA = α1

CA
< 1, 0 < yB = β1

CB
< 1.

(6.3)

The following proposition is fair.
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Lemma 6.1 Differential games Γ −A , Γ
+
A have equal values

w−A = w+A = wA =
DA

CA
,

and differential games Γ −B , Γ
+
B have equal values

w−B = w+B = wB =
DB

CB

for any initial position (x0, y0) ∈ [0, 1] × [1, 0]. These values, for example, can
be guaranteed by “positive” feedbacks uclA , v

cl
B corresponding to classical solutions

xA, yB

u0
A = uclA = uclA(x, y) =

⎧
⎨

⎩

0, xA < x ≤ 1,
1, 0 ≤ x < xA,
[0, 1] , x = xA.

v0
B = vclB = vclB (x, y) =

⎧
⎨

⎩

0, yB < y ≤ 1,
1, 0 ≤ y < yB,
[0, 1] , y = yB.

“Punishing” feedbacks are determined by formulas

u0
B = uclB = uclB (x, y) =

⎧
⎨

⎩

0, xB < x ≤ 1,
1, 0 ≤ x < xB,
[0, 1] , x = xB,

v0
A = vclA = vclA (x, y) =

⎧
⎨

⎩

0, yA < y ≤ 1,
1, 0 ≤ y < yA,
[0, 1] , y = yA,

and correspond to classical solutions xB, yA (6.3), which generate the static Nash
equilibrium NE = (xB, yA).

The proof of this proposition can me obtained by the direct substitution of shown
strategies to corresponding payoff functionals (6.2).

Remark 6.1 Values of payoff functions gA(x, y), gB(x, y) coincide at points
(xA, yB), (xB, yA)

gA(xA, yB) = gA(xB, yA) = wA, gB(xA, yB) = gB(xB, yA) = wB.



6 The Impact of Discounted Indices on Equilibrium Strategies 73

The point NE = (xB, yA) is the “mutually punishing” Nash equilibrium, and the
point (xA, yB) does not possess equilibrium properties in the corresponding static
game.

6.6 Construction of the Dynamical Nash Equilibrium

Let us construct the pair of feedbacks, which consist the Nash equilibrium. For this
let us combine “positive” feedbacks u0

A, v
0
B and “punishing” feedbacks u0

B, v
0
A.

Let us choose the initial position (x0, y0) ∈ [0, 1]×[0, 1] and accuracy parameter
ε > 0. Let us choose the trajectory (x0(·), y0(·)) ∈ X(x0, y0, U

0
A(·), v0

B(·)),
generated by “positive” u0

A = U0
A(t, x, y, ε) and v0

B = v0
B(t, x, y, ε). Let us choose

Tε > 0 such that

gA(x
0(t), y0(t)) > JD−A(x0(·), y0(·))− ε,

gB(x
0(t), y0(t)) > JD−B (x0(·), y0(·))− ε,

t ∈ [Tε,+∞].

Let us denote by uεA(t): [0, Tε) → [0, 1], vεB(t): [0, Tε) → [0, 1] step-by-
step implementation of strategies u0

A, v
0
B such that the corresponding step-by-step

trajectory (xε(·), yε(·)) satisfies the condition

max
t∈[0,Tε]

‖(x0(t), y0(t))− (xε(t), yε(t))‖ < ε.

From the results of the paper [8] the next proposition follows.

Lemma 6.2 The pair of feedbacks U0 = u0(t, x, y, ε), V 0 = v0(t, x, y, ε),
combines together “positive” feedbacks u0

A, v
0
B and “punishing” feedbacks u0

B , v
0
A

according to relations

U0 = u0(t, x, y, ε) =
{
uεA(t), ‖(x, y)− (xε(t), yε(t))‖ < ε,
u0
B(x, y), otherwise,

V 0 = v0(t, x, y, ε) =
{
vεB(t), ‖(x, y)− (xε(t), yε(t))‖ < ε,
v0
A(x, y), otherwise

is the dynamical ε-Nash equilibrium.

Below we construct flexible “positive” feedbacks that generate trajectories
(xf l(·), yf l(·)), which reduce to “better” positions than the inflexible dynami-
cal equilibrium (xB, yA), (xA, yB) by both criteria JD∞A (xf l(·), yf l(·)) ≥ vA,
JD∞B (xf l(·), yf l(·)) ≥ vB .
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6.7 Two-Step Optimal Control Problems

For the construction of “positive” feedbacks u0
A = u

f l
A (x, y), v

0
B = v

f l
B (x, y)

we consider in this section the auxiliary two-step optimal control problem with
discounted payoff functional for the first player in the situation, when actions of
the second player are most unfavorable. Namely, let us analyze the optimal control
problem for the dynamical system (6.1)

ẋ(t) = −x(t)+ u(t), x(0) = x0,

ẏ(t) = −y(t)+ v(t), y(0) = y0.
(6.4)

with the payoff functional

JD
f

A =
∫ Tf

0
e−λtgA(x(t), y(t)) dt. (6.5)

Here without loss of generality let us consider that t0 = 0, T = Tf , and terminal
moment of time Tf = Tf (x0, y0) we determine later.

Without loss of generality, we assume that the value of the static game equals to
zero

wA = DA
CA

= 0, (6.6)

and next conditions hold

CA > 0, 0 < xA = α2

CA
< 1, 0 < yA = α1

CA
< 1. (6.7)

Let us consider the case when initial conditions (x0, y0) of the system (6.4) satisfy
relations

x0 = xA, y0 > yA. (6.8)

Let us assume that actions of the second player are mostly unfavorable for the first
player. For trajectories of the system (6.4), which start from initial positions (x0, y0)

(6.8), these actions v0
A = vclA (x, y) are determined by the relation

vclA (x, y) ≡ 0.

Optimal actions u0
A = uf lA (x, y) of the first player according to the payoff functional

JD
f
A (6.5) in this situation can be presented as the two-step impulse control: it

equals one from the initial time moment t0 = 0 till the moment of optimal switch s
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and then equals to zero till the final time moment Tf

u0
A(t) = uf lA (x(t), y(t)) =

{
1, if t0 ≤ t < s,
0, if s ≤ t < Tf .

Here the parameter s is the optimization parameter. The final time moment Tf is
determined by the following condition. The trajectory (x(·), y(·)) of the system
(6.4), which starts from the line where x(t0) = xA, returns to this line when
x(Tf ) = xA.

Let us consider two aggregates of characteristics. The first one is described
by the system of differential equations with the value on the control parameter
u = 1

ẋ(t) = −x(t)+ 1,
ẏ(t) = −y(t), (6.9)

solutions of which are determined by the Cauchy formula

x(t) = (x0 − 1)e−t + 1, y(t) = y0e
−t . (6.10)

Here initial positions (x0, y0) satisfy conditions (6.8) and time parameter t satisfies
the inequality 0 ≤ t < s.

The second aggregate of characteristics is given by the system of differential
equations with the value of the control parameter u = 0

ẋ(t) = −x(t),
ẏ(t) = −y(t), (6.11)

solutions of which are determined by the Cauchy formula

x(t) = x1e
−t , y(t) = y1e

−t . (6.12)

Here initial positions (x1, y1) = (x1(s), y1(s)) are determined by relations

x1 = x1(s) = (x0 − 1)e−s + 1, y1 = y1(s) = y0e
−s, (6.13)

and the time parameter t satisfies the inequality 0 ≤ t < p. Here the final time
moment p = p(s) and the final position (x2, y2) = (x2(s), y2(s)) of the whole
trajectory (x(·), y(·)) is given by formulas

x1e
−p = xA, p = p(s) = ln

x1(s)

xA
, x2 = xA, y2 = y1e

−p. (6.14)
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Fig. 6.1 Families of
characteristics and switching
points in the two-step optimal
control problem
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The optimal control problem is to find such moment of time s and the corre-
sponding switching point (x1, y1) = (x1(s), y1(s)) on the trajectory (x(·), y(·)),
where the integral I = I (s) reaches the maximum value

I (s) = I1(s)+ I2(s), (6.15)

I1(s) =
∫ s

0
e−λt (CA((x0 − 1)e−t + 1)y0e

−t − α1((x0 − 1)e−t + 1)

−α2y0e
−t + a22) dt,

I2(s) = e−λs
∫ p(s)

0
e−λt (CAx1(s)y1(s)e

−2t − α1x1(s)e
−t − α2y1(s)e

−t + a22) dt.

On the Fig. 6.1 we depict the initial position IP , chosen on the line x = xA when
y > yA, the characteristic CH , oriented on the vertex (1, 0) of the unit square,
characteristics CH1, CH2, CH3, oriented on the vertex (0, 0) of the unit square,
switching points SP1, SP2, SP3 of the motion along characteristics and final points
of the motion FP1, FP2, FP3, located of the line x = xA.

6.8 The Solution of the Two-Step Optimal Control Problem

We obtain the solution of the two-step optimal control problem (6.9)–(6.15), by
calculating the derivative dI/ds, presenting it as the function of optimal switching
points (x, y) = (x1, y1), equating this derivative to zero dI/ds = 0 and finding
the equation F(x, y) = 0 for the curve, that consist from optimal switching points
(x, y).
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Sufficient maximum conditions in such construction are obtained from the fact
that the integral I (s) has the property of monotonic increase by the variable s in the
initial period, because the integrand gA(x, y) is positive, gA(x, y) > wA = 0, in the
domain x > xA, y > yA. In the finite period the integral I (s) strictly monotonically
decreases by the variable s, because the integrand gA(x, y) is negative, gA(x, y) <
wA = 0, in the domain x > xA, y < yA.

Firstly let us calculate integrals I1, I2

I1 = I1(s) = CA(x0 − 1)y0
(1− e−(λ+2)s)

(λ+ 2)
+ CAy0

(1− e−(λ+1)s)

(λ+ 1)

−α1(x0 − 1)
(1− e−(λ+1)s)

(λ+ 1)
− α1

(1− e−λs)
λ

−α2y0
(1− e−(λ+1)s)

(λ+ 1)
+ a22

(1− e−λs)
λ

.

I2 = I2(s) = e−λsCAx1(s)y1(s)
(1− e−(λ+2)p(s))

(λ+ 2)

−e−λsα1x1(s)
(1− e−(λ+1)p(s))

(λ+ 1)

−e−λsα2y1(s)
(1− e−(λ+1)p(s))

(λ+ 1)

+e−λsa22
(1− e−λp(s))

λ
.

Let us calculate derivatives dI1/ds, dI2/ds and present them as functions of
optimal switching points (x, y) = (x1, y1)

dI1

ds
= CA(x0 − 1)y0e

−2se−λs + CAy0e
−se−λs

−α1(x0 − 1)e−se−λs − α1e
−λs − α2y0e

−se−λs + a22e
−λs

= e−λs(CAxy − α1x − α2y + a22).

While calculating the derivative dI2/ds let us take into the account next expressions
for derivatives dx/ds, dy/ds, dp/ds and the exponent e−p as functions of variables
(x, y):

dx

ds
= 1− x, dy

ds
= −y, dp

ds
= 1− x

x
, e−p = α2

CAx
.



78 N. Krasovskii and A. Tarasyev

Let us introduce the new derivative q = e−p and obtain the expression for dI2/ds

dI2

ds
= e−λs

(
− λCAxy (1− q

(λ+2))

(λ+ 2)
+ CA(1− x)y (1− q

(λ+2))

(λ+ 2)

−CAxy (1− q
(λ+2))

(λ+ 2)
+ CA(1− x)yq(λ+2)

+λα1x
(1− q(λ+1))

(λ+ 1)
− α1(1− x)(1− q

(λ+1))

(λ+ 1)
− α1(1− x)q(λ+1)

+λα2y
(1− q(λ+1))

(λ+ 1)
+ α2y

(1− q(λ+1))

(λ+ 1)
− α2y

(1− x)
x

q(λ+1)

+a22
(1− x)
x

qλ − a22(1− qλ)
)
.

Let us summarize derivatives dI1/ds and dI2/ds, equalize the expression to zero
and express y by x in the following form:

y =
(
α1x − λα1x

(1− q(λ+1))

(λ+ 1)
+ α1(1− x)(1− q

(λ+1))

(λ+ 1)
+ α1(1− x)q(λ+1)

−a22
(1− x)
x

qλ + a22(1− qλ)− a22

)/

(
CAx − λCAx (1− q

(λ+2))

(λ+ 2)
+ CA(1− 2x)

(1− q(λ+2))

(λ+ 2)
+ CA(1− x)q(λ+2)

+λα2
(1− q(λ+1))

(λ+ 1)
+ α2

(1− q(λ+1))

(λ+ 1)
− α2

(1− x)
x

q(λ+1) − α2

)
.

Simplifying the expression we obtain the formula:

y =
(
α1
(1− q(λ+1))

(λ+ 1)
+ α1q

(λ+1) − a22
1

x
qλ
)/

(
CA
(1− q(λ+2))

(λ+ 2)
+ CAq(λ+2) − α2

1

x
q(λ+1)

)
.

Taking into the account the fact that wA = 0 (6.6), we obtain a22 = (α1α2)/CA.
By substitution of this relation and the expression q = α2/(CAx) to previous
formula we obtain:

y =
(
α1

(
1−

( α2

CAx

)(λ+1))
(λ+ 2)

)/(
CA

(
1−

( α2

CAx

)(λ+2))
(λ+ 1)

)
.
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Multiplying both parts on the expression by x(λ+2), we obtain:

y =
(
α1

(
x(λ+1) −

( α2

CA

)(λ+1))
(λ+ 2)x

)/(
CA

(
x(λ+2) −

( α2

CA

)(λ+2))
(λ+ 1)

)
.

Taking into the account relations xA = α2/CA and yA = α1/CA (6.7), we obtain
the final expression for the switching curveM1

A(λ):

y =
(λ+ 2)

(
x(λ+1) − x(λ+1)

A

)
yAx

(λ+ 1)
(
x(λ+2) − x(λ+2)

A

) .

To construct the final switching curveMA(λ) for the optimal strategy of the first
player in the game with the discounted functional in the case CA > 0, we add to the
curveM1

A(λ) the similar curveM2
A(λ) in the domain, where x ≤ yA and y ≤ yA

MA(λ) = M1
A(λ) ∪M2

A(λ), (6.16)

M1
A(λ) =

{

(x, y) ∈ [0, 1] × [0, 1] :

y =
(λ+ 2)

(
x(λ+1) − x(λ+1)

A

)
yAx

(λ+ 1)
(
x(λ+2) − x(λ+2)

A

) , x ≥ xA, y ≥ yA
}

,

M2
A(λ) =

{

(x, y) ∈ [0, 1] × [0, 1] :

y = −
(λ+ 2)

(
(1− x)(λ+1) − (1− xA)(λ+1)

)
(1− yA)(1− x)

(λ+ 1)
(
(1− x)(λ+2) − (1− xA)(λ+2)

) + 1,

x ≤ xA, y ≤ yA
}

.

In the case when CA < 0, curves MA(λ), M1
A(λ) andM2

A(λ) are described by
formulas

MA(λ) = M1
A(λ) ∪M2

A(λ), (6.17)

M1
A(λ) =

{

(x, y) ∈ [0, 1] × [0, 1] :

y =
(λ+ 2)

(
(1− x)(λ+1) − (1− xA)(λ+1)

)
yA(1− x)

(λ+ 1)
(
(1− x)(λ+2) − (1− xA)(λ+2)

) ,

x ≤ xA, y ≥ yA
}

,
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M2
A(λ) =

{

(x, y) ∈ [0, 1] × [0, 1] :

y = −
(λ+ 2)

(
x(λ+1) − x(λ+1)

A

)
(1− yA)x

(λ+ 1)
(
x(λ+2) − x(λ+2)

A

) + 1, x ≥ xA, y ≤ yA
}

.

The curveMA(λ) divides the unit square [0, 1] × [0, 1] into two parts: the upper
part

DuA ⊃ {(x, y) : x = xA, y > yA}

and the lower part

DlA ⊃ {(x, y) : x = xA, y < yA}.

The “positive” feedback uf lA has the following structure

u
f l
A = uf lA (x, y) =

⎧
⎨

⎩

max{0,−sgn(CA)}, if (x, y) ∈ DuA,
max{0, sgn(CA)}, if (x, y) ∈ DlA,
[0, 1], if (x, y) ∈ MA(λ).

(6.18)

On the Fig. 6.2 we show switching curves M1
A(λ), M

2
A(λ) for the first player.

Directions of velocities ẋ are depicted by horizontal (left and right) arrows.

Fig. 6.2 Switching curves
M1
A(λ),M

2
A(λ) for the first

player in the problem with
discounted payoff functionals

NA

M
A
2(λ)

0
0.15

y
A

M
A
1(λ)

0.6

1x
A
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For the second player one can get similar switching curvesMB(λ) for the optimal
control problem with the discounted functional, corresponding to the matrix B.
More precisely, in the case when CB > 0, the switching curve MB(λ) is given
by relations

MB(λ) = M1
B(λ) ∪M2

B(λ), (6.19)

M1
B(λ) =

{

(x, y) ∈ [0, 1] × [0, 1] :

x =
(λ+ 2)

(
y(λ+1) − y(λ+1)

B

)
xBy

(λ+ 1)
(
y(λ+2) − y(λ+2)

B

) , x ≥ xB, y ≥ yB
}

,

M2
B(λ) =

{

(x, y) ∈ [0, 1] × [0, 1] :

x = −
(λ+ 2)

(
(1− y)(λ+1) − (1− yB)(λ+1)

)
(1− xB)(1− y)

(λ+ 1)
(
(1− y)(λ+2) − (1− yB)(λ+2)

) + 1,

x ≤ xB, y ≤ yB
}

.

In the case when the parameter CB is negative CB < 0, curvesMB(λ), M1
B(λ) and

M2
B(λ) are determined by formulas

MB(λ) = M1
B(λ) ∪M2

B(λ), (6.20)

M1
B(λ) =

{

(x, y) ∈ [0, 1] × [0, 1] :

x =
(λ+ 2)

(
(1− y)(λ+1) − (1− yB)(λ+1)

)
xB(1− y)

(λ+ 1)
(
(1− y)(λ+2) − (1− yB)(λ+2)

) ,

x ≥ xB, y ≤ yB
}

,

M2
B(λ) =

{

(x, y) ∈ [0, 1] × [0, 1] :

x = −
(λ+ 2)

(
y(λ+1) − y(λ+1)

B

)
(1− xB)y

(λ+ 1)
(
y(λ+2) − y(λ+2)

B

) + 1, x ≤ xB, y ≥ yB
}

.



82 N. Krasovskii and A. Tarasyev

The curveMB(λ) divide the unit square [0, 1]×[0, 1] into two parts: the left part

DlB ⊃ {(x, y) : x < xB, y = yB}

and the right part

DrB ⊃ {(x, y) : x > xB, y = yB}.

The “positive” feedback vf lB has the following structure

v
f l

B = vf lB (x, y) =
⎧
⎨

⎩

max{0,−sgn(CB)}, if (x, y) ∈ DlB,
max{0, sgn(CB)}, if (x, y) ∈ DrB,
[0, 1], if (x, y) ∈ MB(λ).

(6.21)

Remark 6.2 Let us note that in papers by Arnold [1] average integral payoff
functionals were considered

1

(T − t0)
∫ T

t0

gA(x(t), y(t)) dt. (6.22)

In the paper [16] switching curves for optimal control strategies of players in
the game with average integral functionals were obtained. For example, for the first
player in the case when CA > 0 the switching curve in the domain x ≥ xA, y ≥ yA
is described by relations

y = 2α1x

CAx + α2
. (6.23)

The asymptotical analysis of solutions (6.16) for the game with discounted payoff
functionals shows, that according to L’Hospital’s rule, when the discount parameter
λ tends to zero, the relation for switching curves (6.16) of the control strategy for the
first player converges to switching curves (6.23) in the game with average integral
payoff functionals (6.22).

On the Fig. 6.2. the solid line shows the switching curve of control strategies
for the first player in the game with average integral payoff functionals, which is
asymptotically approximated by solutions of the game with discounted functionals
when λ ↓ 0. The dashed line and the dotted line show switching curves of control
strategies for the first player in the game with discounted payoff functionals with
values of the discount parameter λ = 0.1 and λ = 0.2, respectively.

On the Fig. 6.3 we show switching curvesM1
B(λ), M

2
B(λ) for the second player.

Directions of velocities ẏ are depicted by vertical (up and down) arrows.
It is worth to clarify the asymptotical behavior of switching curves for optimal

control when discount parameters can be infinitely large. In this case, one can check
that switching curve MA(λ) for optimal control in the problem with discounted
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Fig. 6.3 Switching curves
M1
B(λ),M

2
B(λ) for the second

player in the problem with
discounted payoff functionals
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Fig. 6.4 Asymptotical
behavior of switching curve
MA(λ) for the first player in
the problem with discounted
payoff functionals
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integral payoffs describing long-term interests of players converge to the switching
line y = yA generated by the short-run payoff function gA(x, y) when the discount
parameter λ tends to infinity. Such behavior of the switching curveMA(λ) is shown
on the Fig. 6.4.

y =
(λ+ 2)

(
x(λ+1) − x(λ+1)

A

)
yAx

(λ+ 1)
(
x(λ+2) − x(λ+2)

A

)

=
(

1+ 1

(λ+ 1)

)
(

1−
(xA

x

)(λ+1))

(
1−

(xA

x

)(λ+2))yA→ yA, when λ→+∞.
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6.9 Guaranteed Values of Discounted Payoffs

Let us formulate the proposition, which confirms, that the “positive” optimal control
by the feedback principle uf lA (x, y) (6.18) with the switching cure MA, defined by
formulas (6.16), (6.17), guarantee that the value of discounted payoff functionals is
more or equal than the value wA (6.6) of the static matrix game.

Theorem 6.1 For any initial position (x0, y0) ∈ [0, 1] × [0, 1] and for any
trajectory

(xf l(·), yf l(·)) ∈ X(x0, y0, u
f l

A ), xf l(t0) = x0, yf l(t0) = y0, t0 = 0,

generated by the optimal control by the feedback principle uf lA = uf lA (x, y) there
exists the final moment of time t∗ ∈ [0, TA] such that in this moment of time the
trajectory (xf l(·), yf l(·)) reaches the line where x = xA, namely xf l(t∗) = xA.
Then, according to the construction of the optimal control, that maximizes the
integral (6.15) by the feedback principle uf lA , the following estimate holds

∫ T

t∗
e−λ(t−t∗)gA(x(t), y(t)) dt ≥ wA

λ

(
1− e−λ(T−t∗)), ∀T ≥ t∗. (6.24)

In particular, this inequality remains valid when time T tends to infinity

lim inf
T→+∞ λ

∫ T

t∗
e−λ(t−t∗)gA(xf l(t), yf l(t)) dt ≥ wA. (6.25)

Inequalities (6.24), (6.25) mean, that the value of the discounted functional is not
worse, than the value wA (6.6) of the static matrix game.

The analogous result is fair for trajectories, which generated by the optimal
control vf lB (6.21), that corresponds to the switching curveMB (6.19), (6.20).

Proof The result of the theorem follows from the fact that the value of the payoff
functional (6.5) is maximum on the constructed broken line. In particular, it is more
or equal, than the value of this functional on the trajectory which stays on the
segment x = xA (see Fig. 6.1) with the control u(t) = xA. The value of the payoff
functional on such trajectory is following

∫ T

t∗
e−λ(t−t∗)wA dt = wA

λ

(
1− e−λ(T−t∗)).

These arguments imply the required relation (6.24), which in the limit transition
provides the relation (6.25). ��
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Remark 6.3 Let us consider the acceptable trajectory (xf lAB(·), yf lAB(·)), generated

by “positive” feedbacks uf lA (6.18), vf lB (6.21). Then in accordance with the
Theorem 6.1, next inequalities take place

lim inf
T→+∞ λ

∫ T

t∗
e−λ(t−t∗)gA(xf lAB(t), y

f l
AB(t)) dt ≥ wA

lim inf
T→+∞ λ

∫ T

t∗
e−λ(t−t∗)gB(xf lAB(t), y

f l
AB(t)) dt ≥ wB

and, hence, the acceptable trajectory (xf lAB(·), yf lAB(·)) provides the better result for
both players, than trajectories, convergent to points of the static Nash equilibrium,
in which corresponding payoffs are equal to values wA and wB .

6.10 Equilibrium Trajectories in the Game with Discounted
Payoffs

Let us consider payoff matrices of players on the financial market, which reflect
the data of investigated markets of stocks [3] and bonds [4] in USA. The matrix
A corresponds to the behavior of traders, which play on increase of the course and
are called “bulls”. The matrix B corresponds to the behavior of traders, which play
on the depreciation of the course and are called “bears”. Parameters of matrices
represent rate of return for stocks and bonds, expressed in the form of interest rates,

A =
(

10 0
1.75 3

)

, B =
(−5 3

10 0.5

)

. (6.26)

Characteristic parameters of static games are given at the following levels [27]

CA = a11 − a12 − a21 + a22 = 11.25,

α1 = a22 − a12 = 3, α2 = a22 − a21 = 1.25,

xA = α2

CA
= 0.11, yA = α1

CA
= 0.27;

CB = b11 − b12 − b21 + b22 = −17.5,

β1 = b22 − b12 = −2.5, β2 = b22 − b21 = −9.5,

xB = β2

CB
= 0.54, yB = β1

CB
= 0.14.
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On the Fig. 6.5 we present broken lines of players’ best replies, saddle points
NA, NB in static antagonistic games, the point of the Nash equilibrium NE in the
static bimatrix game.

Let us note, that players of the coalition of “bulls” gain in the case of upward
trend of markets, when players of both coalitions invest in the same market. And
players of the coalition of “bears” make profit from investments in the case of
downward trend of markets when players of the coalition of “bulls” move their
investments from one market to another.

For the game of coalitions of “bulls” and “bears” we construct switching curves
MA(λ), MB(λ) and provide calculations of equilibrium trajectories of the market
dynamics with the value of the discount parameter λ = 0.1.

This calculations are presented on the Fig. 6.6. Here we show saddle points NA,
NB in static antagonistic games, the point of the Nash equilibriumNE in the static
bimatrix game, switching lines for players’ controlsMA(λ) = M1

A(λ)
⋃
M2
A(λ) and

MB(λ) = M1
B(λ)

⋃
M2
B(λ) in the dynamical bimatrix game with discounted payoff

functionals for matricesA, B (6.26). The field of velocities of players is depicted by
arrows.

The field of directions generates equilibrium trajectories, one of which is
presented on the Fig. 6.6. This trajectory TR(λ) = (xf lAB(·), yf lAB(·)) starts from the
initial position IP = (0.1, 0.9) and moves along the characteristic in the direction
of the vertex (1, 1) of the unit square [0, 1] × [0, 1] with control signals u = 1,
v = 1. Then it crosses the switching lineMB(λ), and the second coalition switches
the control v from 1 to 0. Then, the trajectory T R(λ) moves in the direction of
the vertex (1, 0) until it reaches the switching line MA(λ). Here players of the first
coalition change the control signal u from 1 to 0. After that the movement of the
trajectory is directed along the characteristic to the vertex (0, 0). Then the trajectory
crosses the lineMB(λ), on which the sliding mode arises, during which the switch
of controls of the second coalition occurs, and the trajectory T R(λ) converge to

Fig. 6.5 Saddle points NA,
NB and the point of the Nash
equilibrium NE
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Fig. 6.6 The equilibrium
trajectory in the game with
discounted payoffs
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the point IM(λ) = MA(λ)⋂MB(λ) of the intersection of switching lines MA(λ),
MB(λ).
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Chapter 7
On Control Reconstruction Problems
for Dynamic Systems Linear in Controls

Evgeniy Krupennikov

Abstract In differential games the a posteriori analysis of motions, namely,
trajectories of the dynamics and the analysis of the players’ controls generating
these trajectories are very important. This paper is devoted to solving problems
of reconstruction of trajectories and controls in differential games using known
history of inaccurate measurements of a realized trajectory. A new method for
solving reconstruction problems is suggested and justified for a class of differential
games with dynamics, linear in controls and non-linear in state coordinates. This
method relies on necessary optimality conditions in auxiliary variational problems.
An illustrating example is exposed.

7.1 Introduction

This paper is devoted to solving inverse problems of reconstruction of players’
trajectories and controls in differential games, using known inaccurate measure-
ments of the realized trajectories. The a posteriori analysis is an important part
of the decision making in the future. Inverse problems may occur in many
areas such as economics, engineering, medicine and many others that involve
the task of reconstruction of the players’ controls by known inaccurate trajectory
measurements.

The inverse problems have been studied by many authors. The approach
suggested by Osipov and Kryazhimskii [6, 7] is one of the closest to the material
of this paper. The method suggested by them reconstructs the controls by using a
regularized (a variation of Tikhonov regularization [12]) procedure of control with

E. Krupennikov (�)
Krasovskii Institute of Mathematics and Mechanics UrB RAS, Yekaterinburg, Russia

Ural Federal University, Yekaterinburg, Russia
e-mail: krupennikov@imm.uran.ru

© Springer International Publishing AG, part of Springer Nature 2018
L. A. Petrosyan et al. (eds.), Frontiers of Dynamic Games,
Static & Dynamic Game Theory: Foundations & Applications,
https://doi.org/10.1007/978-3-319-92988-0_7

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92988-0_7&domain=pdf
mailto:krupennikov@imm.uran.ru
https://doi.org/10.1007/978-3-319-92988-0_7


90 E. Krupennikov

a guide. This procedure allows to reconstruct the controls on-line. It is originated
from the works of Krasovskii’s school on the theory of optimal feedback [3, 4].

Another method for solving dynamic reconstruction problems by known history
of inaccurate measurements has been suggested by Subbotina et al. [10]. It is
based on a method, which use necessary optimality conditions for auxiliary optimal
control problems [9]. This method has been also developed in [5, 8, 10, 11]. A
modification of this approach is presented in this paper. It relies on necessary
optimality conditions in an auxiliary variational problem on extremum for an
integral functional. The functional is a variation of a Tikhonov regularizator.

In this paper the suggested method is justified for a special class of differential
games with dynamics linear in controls and non-linear in state coordinates. Results
of simulation are exposed.

7.2 Dynamics

We consider a differential game with dynamics of the form

ẋ(t) = G(x(t), t)u(t), x(·) : [0, T ] → Rn, u(·) : [0, T ] → Rn, t ∈ [0, T ].
(7.1)

Here G(x, t) is an n × n matrix with elements gij (x, t) : Rn × [0, T ] → R, i =
1, ..., n, j = 1, ..., n that have continuous derivatives

∂gij (x, t)

∂t
,
∂gij (x, t)

∂xk
, i = 1, ..., n, j = 1, ..., n, k = 1, ..., n,

x ∈ Rn, t ∈ [0, T ].

In (7.1) xi(t) is the state of the ith player, while ui(t) is the control of the ith player,
restricted by constraints

|ui(t)| ≤ U <∞, i = 1, . . . , n, t ∈ [0, T ]. (7.2)

We consider piecewise continuous controls with finite number of points of discon-
tinuity.

7.3 Input Data

It is supposed that some base trajectory x∗(·) : [0, T ] → Rn of system (7.1) has
been realized on the interval t ∈ [0, T ]. Let u∗(·) : [0, T ] → Rn be the piecewise
continuous control satisfying constrains (7.2) that generated this trajectory.

We assume that measurements yδ(·, δ) = yδ(·) : [0, T ] → Rn of the base
trajectory x∗(t) are known and they are twice continuously differentiable functions
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that determine x∗(t) with the known accuracy δ > 0, i.e.

|yδi (t)− x∗i (t)| ≤ δ, i = 1, ..., n, t ∈ [0, T ]. (7.3)

7.4 Hypotheses

We introduce two hypotheses on the input data.

Hypothesis 7.1 There exist such compact set Ψ ⊂ Rn, such constant r > 0 and
such constants ω > 0, ω > 0, ω′ > 0 that

Ψ ⊃ {x ∈ Rn : |xi − x∗i (t)| ≤ r ∀t ∈ [0, T ]},
0 < ω2 ≤ |detG(x, t)| ≤ ω2,

∣
∣
∣
∣
∂gij (x, t)

∂t

∣
∣
∣
∣ ≤ ω′,

∣
∣
∣
∣
∂gij (x, t)

∂xk

∣
∣
∣
∣ ≤ ω′,

i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n, x ∈ Ψ, t ∈ [0, T ].
(7.4)

Let’s introduce the following constants

R1 = πω
ω3 , R2 = πω

2

ω4 (ω
2 + ω′), R3 = πnT ω

4ω′

ω2 ,

R4 = T πω
2

2ω4
+ 4
πω2

ω
+ 2
R1πω

2

ω

(

ln
0.5T ω

ω2
+ 1

)

+ R2 + 1,

Rw = max{1+ ω
ω

(R4 + 2R3), (1+ ω)(R4 + 2R3)},

(7.5)

which will be used in Hypothesis 7.2 and Theorem 7.1.

Hypothesis 7.2 There exist such constants δ0 ∈ (0,min{0.5r, 1
Rw
}] and Y > 0 that

for any δ ∈ (0, δ0]

|yδi (t)| ≤ Y , |ẏδi (t)| ≤ Y ,
∣
∣ẋ∗i (t)| ≤ Y , t ∈ [0, T ], i = 1, . . . , n (7.6)

and for any δ ∈ (0, δ0] exists such compact Ωδ ⊂ [0, T ] with measure μΩδ =
βδ

δ→0−→ that

|ÿδi (t)| ≤ Y , T ∈ [0, T ] \Ωδ, max
t∈Ωδ

|ÿδi (t)|βδ ≤ Y , i = 1, . . . , n. (7.7)

Remark 7.1 Conditions (7.6) reflect the fact that the right hand sides of Eq. (7.1)
are restricted.
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Remark 7.2 In Hypothesis 7.2 the constant Y is unified for all inequalities to
simplify the further calculations and explanations.

Remark 7.3 Hypothesis 7.2 allows the functions ẏδ(·) to be able to approximate
piecewise continuous functions ẋ∗(·) = g(x∗(·), ·)u∗(·).

7.5 Problem Statement

Let’s consider the following reconstruction problem: for a given δ ∈ (0, δ0] and
a given measurement function yδ(·) fulfilling estimates (7.3) and Hypothesis 7.2
to find a function u(·, δ) = uδ(·) : [0, T ] → Rn that satisfies the following
conditions:

1. The function uδ(·) belongs to the set of admissible controls, i.e. the set of
piecewise continuous functions with finite number of points of discontinuity
satisfying constraints (7.2);

2. The control uδ(·) generates trajectory x(·, δ) = xδ(·) : [0, T ] → Rn of
system (7.1) with boundary condition xδ(T ) = yδ(T ). In other words, there
exists a unique solution xδ(·) : [0, T ] → Rn of the system

ẋδ(t) = G(xδ(t), t)uδ(t), t ∈ [0, T ]

that satisfy the boundary condition xδ(T ) = yδ(T ).
3. Functions xδ(·) and uδ(·) satisfy conditions

lim
δ→0

‖xδi (·)− x∗i (·)‖C[0,T ] = 0, lim
δ→0

‖uδi (·)− u∗i (·)‖L2,[0,T ] = 0, i = 1, ..., n.

(7.8)

Hereinafter

‖f (·)‖C[0,T ] = max
t∈[0,T ] |f (t)|, f (·) : [0, T ] → R

is the norm in the space of continuous functions C and

‖f (·)‖L2,[0,T ] =

√
√
√
√
√

T∫

0

n∑

i=1

f 2
i (τ )dτ, f (·) : [0, T ] → Rn

is the norm in space L2.
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7.6 A Solution of the Inverse Problem

7.6.1 Auxiliary Problem

To solve the inverse problem in Sect. 7.5, we introduce an auxiliary variational
problem (AVP) for fixed parameters δ ∈ (0, δ0], α > 0 and a given measurement
function yδ(·) satisfying estimates (7.3) and Hypothesis 7.2.

We consider the set of pairs of continuously differentiable functions Fxu =
{{x(·), u(·)} : x(·) : [0, T ] → Rn, u(·) : [0, T ] → Rn} that satisfy differential
equations (7.1) and the following boundary conditions

x(T ) = yδ(T ), u(T ) = G−1(yδ(T ), T )ẏδ(T ). (7.9)

Hereinafter G−1 is the inverse matrix for non degenerate matrix G. Let us remark
that due to Hypothesis 7.1, the inverse matrixG−1(yδ(T ), T ) exists.

AVP is to find a pair of functions x(·, δ, α) = xδ,α(·) : [0, T ] → Rn and
u(·, δ, α) = uδ,α(·) : [0, T ] → Rn such that {xδ,α(·), uδ,α(·)} ∈ Fxu and such
that they provide an extremum for the integral functional

I (x(·), u(·)) =
T∫

0

[

−‖x(t)− y
δ(t)‖2

2
+ α

2‖u(t)‖2

2

]

dt. (7.10)

Here α is a small regularising parameter [12] and ‖f ‖ =
√

n∑

i=1
f 2
i , f ∈ Rn is

Euclidean norm in Rn.

7.6.2 Necessary Optimality Conditions in the AVP

We can write the necessary optimality conditions for the AVP (7.1), (7.10), (7.9) in
Lagrange form [14]. Lagrangian for the AVP has the form

L(x, u, ẋ, λ(t), t) = −‖x − y
δ(t)‖2

2
+ α

2‖u‖2

2
+

n∑

i=1

⎡

⎣λi(t)

n∑

j=1

[
ẋi − gij (x, t)uj

]
⎤

⎦ ,

where λ(t) : [0, T ] → Rn is the Lagrange multipliers vector.
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The 2n corresponding Euler equations are

λ̇i (t)+ (xi(t)− yδi (t))+
n∑

j=1

[

λj (t)

n∑

k=1

uk(t)
∂gjk

∂xi
(x(t), t)

]

= 0,

−α2ui(t)+
n∑

j=1

[
λj (t)gji (x(t), t)

] = 0, i = 1, . . . , n.

(7.11)

The first n equations in (7.11) can be rewritten in vector form:

λ̇i (t)+(xi(t)−yδi (t))+〈λj (t),
∂G

∂xi
(x(t), t)u(t)〉 = −→0 , i = 1, . . . , n. (7.12)

Hereinafter 〈a, b〉 means the scalar product of vectors a ∈ Rn, b ∈ Rn and
∂G

∂xi
(x(t), t) is a matrix with elements

∂gjk

∂xi
(x(t), t), j = 1, ..., n, k = 1, ..., n.

The last n equations in (7.11) define the relations between the controls ui(t) and
the Lagrange multipliers λi(t), i = 1, . . . , n:

u(t) = 1

α2G
T (x(t), t)λ(t). (7.13)

HereinafterGT means transpose of a matrix G.
We can substitute equations (7.13) into (7.12) and (7.1) to rewrite them in the

form of Hamiltonian equations, where the vector s(t) = −λ(t) plays the role of the
adjoint variables vector:

ẋ(t) = −(1/α2)G(x(t), t)GT (x(t), t)s(t),

ṡi (t) = xi(t)− yδi (t)+
1

α2 〈s(t),
∂G

∂xi
(x(t), t)GT (x(t), t)s(t)〉, i = 1, . . . , n.

(7.14)

By substituting (7.13) into (7.9), one can obtain boundary conditions, written for
system (7.14):

x(T ) = yδ(T ), s(T ) = −α2(G(yδ(T ), T )GT (yδ(T ), T )
)−1
ẏδ(T ). (7.15)

Thus, we have got the necessary optimality conditions for the AVP (7.1), (7.10),
(7.9) in Hamiltonian form (7.14), (7.15).

7.6.3 A Solution of the Reconstruction Problem

Let’s introduce the function

uδ,α(·) = −(1/α2)GT (xδ,α(·), ·)sδ,α(·), (7.16)
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where xδ,α(·), sδ,α(·) are the solutions of system (7.14) with boundary condi-
tions (7.15).

We now introduce the cut-off functions

ûδi (t) =

⎧
⎪⎨

⎪⎩

U, u
δ,α
i (t) ≥ U,

u
δ,α
i (t), |uδ,αi (t)| < U,
−U, u

δ,α
i (t) ≤ −U.

i = 1, . . . , n. (7.17)

We consider the functions ûδi (·) as the solutions of the inverse problem described

in Sect. 7.5. We choose α = α(δ) in a such way that α(δ)
δ→0−→ 0.

7.6.4 Convergence of the Solution

In this paper a justification for the suggested method is presented for one sub-class of
considered differential games (7.1), (7.2). Namely, we consider from now dynamics
of form (7.1), where matrixes G(x, t) are diagonal with non-zero elements on the
diagonals. The dynamics in such case have the form

ẋi(t) = gi(x(t), t)ui(t), i = 1, ..., n,

where the functions gi(x, t) = gii (x, t), i = 1, . . . , n are the elements on the
diagonal of the matrixG(x, t).

Condition ω2 ≤ |detG(x, t)| ≤ ω2 in Hypothesis 7.1 in such case is replaced by
equal condition

ω2 ≤ g2
i (x, t) ≤ ω2, i = 1, . . . , n. (7.18)

Necessary optimality conditions (7.14) has now the form

ẋi(t) = −si (t)g
2
i (x(t), t)

α2
,

ṡi(t) = xi(t)− yδi (t)+
1

α2

n∑

j=1

[

s2
j (t)

∂gj (x(t), t)

∂xi(t)
gj (x(t), t))

]

,

i = 1, . . . , n

(7.19)

with boundary conditions

xi(T ) = yδi (T ), si (T ) = −α2ẏδi (T )/g
2
i (y

δ(T ), T ), i = 1, . . . , n. (7.20)

The following lemma is true.



96 E. Krupennikov

Lemma 7.1 For δ ∈ (0, δ0] twice continuously differentiable measurement func-
tions yδi (·), i = 1, . . . , n satisfying estimates (7.3) and Hypothesis 7.2 fulfill the
following relations

lim
δ→0

‖yδi (·)− x∗i (·)‖C[0,T ] = 0, lim
δ→0

‖ ẏδi (·)
gi(yδ(·), ·) − u

∗
i (·)‖L2,[0,T ] = 0, i = 1, ..., n.

(7.21)

Proof The first relation in (7.21) is true due to (7.3). Let’s prove the second one.
Relying upon Luzin’s theorem [2] one can find for the piecewise continuous

function u∗(·) such constant Y
u

that for any δ ∈ (0, δ0] and all i = 1, . . . , n there
exist such twice continuously differentiable functions uδi (·) : [0, T ] → R and such
set Ωδu ⊂ R with measure μΩδu = βδu that

|uδi (t)| ≤ Yu, t ∈ [0, T ], |u̇δi (t)| ≤ Yu, t ∈ [0, T ] \Ωδu,
βδu max
t∈Ωδu

|u̇δi (t)| ≤ Yu,
‖uδi (·)− u∗i (·)‖L2,[0,T ] ≤ δ, i = 1, . . . , n.

(7.22)

Let’s estimate the following expression first (hereinafter in the proof i =
1, . . . , n).

‖ẏδi (·)− uδi (·)gi(yδ(t), t)‖2
L2,[0,T ] =

T∫

0

(
ẏδi (t)− uδi (t)gi(yδ(t), t)

)2
dt. (7.23)

The integral in (7.23) can be calculated by parts.

T∫

0

(
ẏδi (t)− uδi (t)gi(yδ(t), t)

)

︸ ︷︷ ︸
U

(
ẏδi (t)− uδi (t)gi(yδ(t), t)

)
dt

︸ ︷︷ ︸
dV

=
[
(
ẏδi (t)− uδi (t)gi(yδ(t), t)

)

︸ ︷︷ ︸
U

(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)

︸ ︷︷ ︸
V

]∣
∣
∣
∣

T

0

−
T∫

0

(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)

︸ ︷︷ ︸
V

·
(
ÿδi (t)− u̇δi (t)gi(yδ(t), t)− uδi (t)

( n∑

j=1

[g′i,xj (yδi (t), t)ẏδj ] + g′i,t (yδi (t), t)
))

︸ ︷︷ ︸
dU

dt

(7.24)
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To estimate the whole expression (7.24) we first estimate the difference V = yδi (t)−
x∗i (0)−

t∫

0
uδi (τ )gi(y

δ(τ ), τ )dτ . In order to do this, we estimate integral

t∫

0

(
uδi (τ )− u∗i (τ )

)
gi(y

δ(τ ), τ )dτ =
∫

Ωt≥δ

(
uδi (τ )− u∗i (τ )

)
gi(y

δ(τ ), τ )dτ

+
∫

Ωt<δ

(
uδi (τ )− u∗i (τ )

)
gi(y

δ(τ ), τ )dτ,

(7.25)

where set Ωt≥δ = {τ ∈ [0, t] : |uδi (τ ) − u∗i (τ )| ≥ δ} and set Ωt<δ = {τ ∈ [0, t] :
|uδi (τ )− u∗i (τ )| < δ}.

The first term in (7.25)

∣
∣
∣
∣
∣
∣
∣

∫

Ωt<δ

(
uδi (τ )− u∗i (τ )

)
gi(y

δ(τ ), τ )dτ

∣
∣
∣
∣
∣
∣
∣

≤ δμ(Ωt<δ)ω ≤ δT ω. (7.26)

Remark 7.4 Let’s remember that hereinafter when the first argument of functions
gi(x, t), i = 1, . . . , n belongs to compact Ψ from Hypothesis 7.1, relations (7.18)
are true.

Using (7.22), the second term in (7.25)

∣
∣
∣
∣
∣
∣
∣

∫

Ωt<δ

(
uδi (τ )− u∗i (τ )

)
gi(y

δ(τ ), τ )dτ

∣
∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣

∫

Ωt<δ

(
uδi (τ )− u∗i (τ )

)2 gi(y
δ(τ ), τ )

uδi (τ )− u∗i (τ )
dτ

∣
∣
∣
∣
∣
∣
∣

≤ max
τ∈Ωt<δ

∣
∣
∣
∣
∣

gi(y
δ(τ ), τ )

(
uδi (τ )− u∗i (τ )

)

∣
∣
∣
∣
∣

∫

Ωt<δ

(
uδi (τ )− u∗i (τ )

)2
dτ

≤ ω
δ

T∫

0

(
uδi (τ )− u∗i (τ )

)2
dτ ≤ δT ω.

(7.27)
From (7.25), (7.26) and (7.27) follows that

∣
∣
∣
∣
∣
∣

t∫

0

(
uδi (τ )− u∗i (τ )

)
gi(y

δ(τ ), τ )dt

∣
∣
∣
∣
∣
∣
≤ δ2T ω. (7.28)
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We can now estimate function V in (7.24):

∣
∣
∣yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

∣
∣
∣

≤
∣
∣
∣yδi (t)− x∗i (0)−

t∫

0

u∗i (τ )gi(yδ(τ ), τ )dτ
∣
∣
∣

+
∣
∣
∣

t∫

0

(
uδi (τ )− u∗i (τ )

)
gi(y

δ(τ ), τ )dτ

∣
∣
∣

≤
∣
∣
∣yδi (t)− x∗i (0)−

t∫

0

u∗i (τ )gi(x∗(τ ), τ )dτ
∣
∣
∣

+
∣
∣
∣

t∫

0

u∗i (τ )
(
gi(y

δ(τ ), τ )− gi(x∗(τ ), τ )
)
dτ

∣
∣
∣

+δ2ωT ≤
∣
∣
∣yδi (t)− x∗i (t)

∣
∣
∣

+
∣
∣
∣

t∫

0

U
(
n max
θ∈[0,T ], j=1,...,n

∣
∣g′i,xj (y

δ(θ), θ)(x∗j (θ)− yδj (θ))
∣
∣
)
dτ

∣
∣
∣+ δ2T ω ≤

δ(1+ T Unω′ + 2ωT )
def= δRu.

(7.29)
Thus, the term UV|T0 in sum (7.24) can be estimated as

(
ẏδi (t)− uδi (t)gi(yδ(t), t)

)(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)∣∣
∣
∣

T

0

≤ 2δ
(
Y + Yuω)Ru.

(7.30)

Using (7.7), (7.22) and (7.29), the term
T∫

0
VdUdt in (7.24) can be estimated in

the following way

∣
∣
∣

T∫

0

[(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)

·
(
ÿδi (t)− u̇δi (t)gi(yδ(t), t)− uδi (t)

( n∑

j=1

[g′i,xj (yδi (t), t)ẏδj ] + g′i,t (yδi (t), t)
))]
dt

∣
∣
∣
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≤
∣
∣
∣

∫

[0,T ]\Ωδ

(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)
ÿδi (t)dt

∣
∣
∣

+
∣
∣
∣

∫

Ωδ

(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)
ÿδi (t)dt

∣
∣
∣

+
∣
∣
∣

∫

[0,T ]\Ωδu

(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)
u̇
δ

i (t)gi(y
δ(t), t)dt

∣
∣
∣

+
∣
∣
∣

∫

Ωδu

(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)
u̇
δ

i (t)gi(y
δ(t), t)dt

∣
∣
∣

+
∣
∣
∣

T∫

0

(
yδi (t)− x∗i (0)−

t∫

0

uδi (τ )gi(y
δ(τ ), τ )dτ

)

·
( n∑

j=1

[g′i,xj (yδi (t), t)ẏδj ] + g′i,t (yδi (t), t)
)
dt

∣
∣
∣

≤ δT RuY + δRuY + δT RuYuω + δRuYuω + δT Ruω′(nY + 1)
def= δRu.

(7.31)

Combining estimates (7.30) and (7.31), we can now estimate expression (7.24).

T∫

0

(
ẏδi (t)− uδi (t)gi(yδ(t), t)

)2
dt ≤ δ(Ru + 2(Y + Yuω)Ru

)
(7.32)

Finally, we can use the first mean value theorem for definite integrals and
estimate (7.32) to get

∣
∣
∣
∣
∣
∣

T∫

0

(
ẏδ(t)

gi(yδ(t), t)
− uδi (t)

)2

dt

∣
∣
∣
∣
∣
∣

≤ max
t∈[0,T ]

[
1

g2
i (y

δ(t), t)

] T∫

0

(
ẏδi (t)− uδi (t)gi(yδ(t), t)

)2
dt

≤ δ 2
(
Y + Yuω)Ru + Ru

ω2
δ→0−→ 0.

(7.33)
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It follows from (7.33) that

lim
δ→0

∥
∥
∥
∥

ẏδ(·)
gi(yδ(·), ·) − u

δ
i (·)
∥
∥
∥
∥
L2,[0,T ]

= 0.

Remember that we consider such function uδi (·) that lim
δ→0

∥
∥uδi (·)− u∗i (·)

∥
∥
L2,[0,T ] =

0. So, from the triangle inequality ‖f1(·) + f2(·)‖L2,[0,T ] ≤ ‖f1(·)‖L2,[0,T ] +
‖f2(·)‖L2,[0,T ] follows that

lim
δ→0

∥
∥
∥
∥

ẏδ(·)
gi(yδ(·), ·) − u

∗
i (·)
∥
∥
∥
∥
L2,[0,T ]

= 0, i = 1, . . . , n,

which was to be proved. ��
Theorem 7.1 For any fixed δ ∈ (0, δ0] there exists such parameter αδ0 = αδ0(δ)

that the solution xδ,α
δ
0(·), sδ,αδ0(·) of system (7.19) with boundary conditions (7.20)

is extendable and unique on t ∈ [0, T ].
Moreover, lim

δ→0
αδ0(δ) = 0 and

lim
δ→0

‖xδ,αδ0i (·)− x∗i (·)‖C[0,T ] = 0, lim
δ→0

‖uδ,αδ0i (·)− u∗i (·)‖L2,[0,T ] = 0, i = 1, ..., n,

(7.34)

where

u
δ,αδ0
i (·) = −(1/(αδ0)2)gi(xδ,α

δ
0(·), ·)sδ,αδ0i (·), i = 1, . . . , n. (7.35)

Proof Let’s introduce new variables:

zi(t) = xi(t)− yδi (t), wi(t) = si (t)+ α2ẏδi (t)

g2
i (x(t), t)

, i = 1, . . . , n. (7.36)

Their derivatives are

żi (t) = ẋi(t)− ẏδi (t),

ẇi (t) = ṡi (t)+ α2ÿδi (t)

g2
i (x(t), t)

− 2

α2
n∑

j=1

[
gi
′
xj
(x(t), t)ẋj (t)

]

g3
i (x(t), t)

= ṡi (t)+ α2ÿδi (t)

g2
i (x(t), t)

+ 2

n∑

j=1

[
gi
′
xj
(x(t), t)sj (t)g

2
j (x(t), t)

]

g3
i (x(t), t)

, i = 1, . . . , n.

(7.37)
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System (7.19) can be rewritten in this variables as

żi (t) = −wi(t)g
2
i (z(t)+ yδ(t), t)

α2 ,

ẇi (t) = zi(t)+ Fi(z(t), w(t), t), i = 1, . . . , n.
(7.38)

where

Fi(z(t), w(t), t) = α2
(

ÿδi (t)

g2
i (z(t)+ yδ(t), t)

+

n∑

j=1

[

2
g2
j (z(t)+ yδ(t), t)gi ′xj (z(t)+ yδ(t), t)

(
wj (t)

α2 − ẏδj (t)

g2
j (z(t)+yδ(t),t)

)

g3
i (z(t)+ yδ(t), t)

+gj
′
xi
(z(t)+ yδ(t), t)(ẏδj (t))2
g3
j (z(t)+ yδ(t), t)

+ gj (z(t)+ y
δ(t), t)gj

′
xi
(z(t)+ yδ(t), t)w2

j (t)

α4

−2
gj
′
xi
(z(t)+ yδ(t), t)ẏδj (t)wj (t)
α2gj (z(t)+ yδ(t), t)

])

, i = 1, . . . , n.

(7.39)
Boundary conditions (7.20) in new variables take the form

z(T ) = 0, w(T ) = 0. (7.40)

As it follows from Hypothesis 7.1, the right hand side of system (7.38) is
locally Lipschitz on Ψ × [0, T ]—so, by Cauchy theorem there exists such interval
[T0, T ] ⊂ [0, T ] that solutions zδ,α(·) : [T0, T ] → Rn, wδ,α(·) : [T0, T ] → Rn of
system (7.38) with boundary conditions (7.40) exist and are unique on t ∈ [T0, T ].
Moreover, due to continuity of the solutions and zero boundary conditions (7.40),
there exists such interval [t1, T ] ⊂ [T0, T ] that

|zδ,αi (t)| ≤ αδRw, |wδ,αi (t)| ≤ α2δRw, i = 1, . . . , n, t ∈ [t1, T ],

where the constant Rw is defined in (7.5).
Let’s now extend the solution further in reverse time (to the left from t1 on time

axis). As the solution is continuous, we can always extend it up to such moment t0
that either zδ,αi (t0) = 2αδRw, i ∈ {1, . . . , n} orwδ,αi (t0) = 2α2δRw, i ∈ {1, . . . , n}
or extend it up to t = 0. If we are able to extend it up to t = 0 without reaching
values 2αδRw, 2α2δRw (the second case), then

|zδ,αi (t)| ≤ 2αδRw, |wδ,αi (t)| ≤ 2α2δRw, i = 1, . . . , n, t ∈ [0, T ].
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In the first case there exists such moment t0 ∈ [0, T ] that

z
δ,α
i (t) ≤ 2αδRw, w

δ,α
i (t) ≤ 2α2δRw, i = 1, . . . , n, t ∈ [t0, T ]. (7.41)

Let’s consider this case closer.
We introduce a new system of ODEs for functions zi(·), wi(·), i = 1, . . . , n

żi (t) = −wi(t)g
2
i (z

δ,α(t)+ yδ(t), t)
α2

,

ẇi(t) = zi(t)+ Fi(zδ,α(t), wδ,α(t), t),
i = 1, . . . , n, t ∈ [t0, T ]

(7.42)

with boundary conditions

z(T ) = 0, w(T ) = 0, (7.43)

where zδ,αi (t), w
δ,α
i (t) are solutions of system (7.38) with boundary condi-

tions (7.40), constrained by (7.41).
System (7.42) is a heterogeneous linear system of ODEs with time-dependent

coefficients, continuous on t ∈ [t0, T ]. So, the solution of (7.42), (7.43) exists and
is unique on t ∈ [t0, T ].

Let’s now prove that the solutions of (7.42), (7.43) coincide with the solutions
of (7.38), (7.40). To do this, we introduce residuals

 z(t) = zδ,α(t)− z(t),  w(t) = wδ,α(t)−w(t).

Subtracting Eq. (7.42) from (7.38) (with substituted solutions zδ,α(t), wδ,α(t)), we
get

 zi(t) = −wδ,αi (t)
g2
i (z

δ,α(t)+ yδ(t), t)
α2 +wi(t)g

2
i (z

δ,α(t)+ yδ(t), t)
α2

= − wi(t)g
2
i (z

δ,α(t)+ yδ(t), t)
α2 ,

 wi(t) =  zi(t)+ Fi(zδ,α(t), wδ,α(t), t)− Fi(zδ,α(t), wδ,α(t), t) =  zi(t),
i = 1, . . . , n

(7.44)
with boundary conditions

 z(T ) = 0,  w(T ) = 0. (7.45)

As a homogenous system of linear ODEs with continuous time-dependent coeffi-
cients, system (7.44) with zero boundary conditions has the only trivial solution

 z(t) ≡ 0,  w(t) ≡ 0, t ∈ [t0, T ]. (7.46)
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That means that zδ,α(t) = z(t), wδ,α(t) = w(t), t ∈ [t0, T ].
Now let’s study the properties of the solutions z(t), w(t) of system (7.42) with

boundary conditions (7.43). System (7.42) can be rewritten in vector form

Ż(t) = A(t)Z(t)+ F(t), (7.47)

where

Z(·) = (z1(·), . . . , zn(·),w1(·), . . . , wn(·)),
F (·) = (0, . . . 0

︸ ︷︷ ︸
n

, F1(z
δ,α(·),wδ,α(·), ·), . . . , Fn(zδ,α(·),wδ,α(·), ·)) (7.48)

and the 2n × 2n matrix A(t) can be written in the block form A(t) =(
O GA(x, t)

In O

)

, where In is an identity matrix,O is an n× n zero matrix,

GA(x, t) =

⎛

⎜
⎜
⎝

−g2
1(x

δ,α(t), t) 0 . . . 0
0 −g2

2(x
δ,α(t), t) . . . 0

. . . . . . . . . . . .

0 0 . . . −g2
n(x

δ,α(t), t)

⎞

⎟
⎟
⎠ .

Solutions of system (7.42) can be written in the following form with the help of
Cauchy formula for solutions of a heterogenous system of linear ODEs with time-
dependent coefficients. One can easily check that for boundary conditions, given at
the point t = T (instead of t = 0), it has the form

Z(t) = Φ(t)Φ−1(T )Z(T )−Φ(t)
T∫

t

Φ−1(τ )F (zδ,α(τ ),wδ,α(τ ), τ )dτ, (7.49)

were Φ(·) is an n × n fundamental matrix of solutions for the homogenous part of
system (7.42). This matrix can be chosen as

Φ(t) = exp

⎡

⎣−
T∫

t

A(τ )dτ

⎤

⎦ =
∞∑

k=0

1

k!

⎛

⎝−
T∫

t

A(τ )dτ

⎞

⎠

k

. (7.50)

One can check that after expanding the kth powers in the sum in the latter formula
and folding the sum again, using the Taylor series for sin and cos functions, we can

get that Φ(t) =
(
Φ1(t) Φ2(t)

Φ3(t) Φ1(t)

)

, where Φ1(t), Φ2(t), Φ3(t) are diagonal matrixes
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with ith elements on diagonals

Φ1ii (t) = cos

⎛

⎜
⎝

1

α

√
√
√
√
√(T − t)

T∫

t

g2
i (x

δ,α(τ ), τ )dτ

⎞

⎟
⎠ ,

Φ2ii (t) = 1

α
Φ̃i(t) sin

⎛

⎜
⎝

1

α

√
√
√
√
√(T − t)

T∫

t

g2
i (x

δ,α(τ ), τ )dτ

⎞

⎟
⎠ ,

Φ3ii (t) = −α 1

Φ̃i (t)
sin

⎛

⎜
⎝

1

α

√
√
√
√
√(T − t)

T∫

t

g2
i (x

δ,α(τ ), τ )dτ

⎞

⎟
⎠ ,

(7.51)

where continuous function

Φ̃i (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
T∫

t

g2
i (x

δ,α(τ ), τ )dτ

√
T − t , t ∈ [t0, T ),

gi(x
δ,α(T ), T ), t = T ,

i = 1, . . . , n.

(7.52)

Using (7.18), one can obtain that

ω ≤
∣
∣
∣Φ̃i (t)

∣
∣
∣ ≤ ω, i = 1, . . . , n. (7.53)

Due to simple structure of matrix Φ(t), one can check that inverse matrix

Φ−1(t) =
(
Φ1(t) −Φ2(t)

−Φ3(t) Φ1(t)

)

.

Let’s return to (7.49). Here Z(T ) = −→
0 , so vector Z(t) = −Φ(t)

T∫

t

Φ−1(τ )

F (τ)dτ has the following coordinates

Zi(t) = zi(t) = Φ1,ii (t)
T∫

t

Φ2,ii(τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

−Φ2,ii(t)
T∫

t

Φ1,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ,

Zi+1(t) = wi(t) = Φ3,ii (t)
T∫

t

Φ2,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

−Φ1,ii (t)
T∫

t

Φ1,ii(τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )

]
dτ,

t ∈ [t0, T ], i = 1, . . . , n.

(7.54)
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To estimate these expressions, we consider the following expression

T∫

t0

cos

⎛

⎜
⎝

1

α

√
√
√
√
√(T − τ )

T∫

τ

g2
i (x

δ,α(θ), θ)dθ

⎞

⎟
⎠ f

δ
i (τ )dτ, i = 1, . . . , n (7.55)

where function f δi (·) = f δi (·, δ) : [0, T ] → R depends on δ and is continuous in
the first argument for any δ ∈ (0, δ0].

Let’s introduce functions ϕi(τ ) =
(√

(T − τ )
T∫

τ

g2
i (x

δ,α(θ), θ)dθ

)

, i =
1, . . . , n, which are continuously differentiable in τ .

Note that all following calculations in the proof are true for all i ∈ {1, . . . , n}.
Using Hypothesis 7.1, we can estimate the derivative

ϕ̇i(τ ) =
−
T∫

τ

g2
i (x

δ,α(θ), θ)dθ − (T − τ )g2
i (x

δ,α(τ ), τ )

2

√

(T − τ )
T∫

τ

g2
i (x

δ,α(θ), θ)dθ

≥ − 2ω2(T − τ )
2
√
(T − τ )2ω2

= −ω
2

ω
.

Similarly, ϕ̇i(τ ) ≤ −ω
2

ω
, τ ∈ [t0, T ].

(7.56)

So, ϕi(τ ) is a decreasing function with restricted derivative and ϕi(T ) = 0. This
means that we can construct a finite increasing sequence {τ1 < τ2 < . . . <

τnϕi , nϕi ∈ N} that has the following properties:

ϕi(τ(nϕi−k)) = α(0.5+ k)π, k = 0, . . . , (nϕi − 1);

α
πω

ω2 ≤ (τj+1 − τj ) ≤ απω
ω2 , nϕi ≤

T ω

αω2 , (7.57)

as the derivative ϕ̇(t) is restricted by (7.56).
Let’s add to this sequence elements τ0 = t0 and τ(nϕi+1) = T .
Integral (7.55) can be rewritten as

T∫

t0

cos

(
ϕi(τ )

α

)

f δi (τ )dτ =
nϕi∑

j=0

τj+1∫

τj

cos

(
ϕi(τ )

α

)

f δi (τ )dτ. (7.58)
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Because cos
(
ϕi (τ )
α

)
is sign-definite on τ ∈ [τj , τj+1], j = 0, . . . , nϕi and

f δi (τ ) is continuous, it follows from the first mean value theorem for definite
integrals that for each j = 0, . . . , nϕi there exists such point τ̃j ∈ [τj , τj+1]
that

τj+1∫

τj

cos
(
ϕi (τ )
α

)
f δi (τ )dτ = f δi (τ̃j )

τj+1∫

τj

cos
(
ϕi (τ )
α

)
dτ . Combining the terms

of sum (7.58) by pairs [τj , τj+1], [τj+1, τj+2], we get

τj+2∫

τj

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

= f δi (τ̃j )
τj+1∫

τj

cos

(
ϕi(τ )

α

)

dτ + f δi (τ̃j+1)

τj+2∫

τj+1

cos

(
ϕi(τ )

α

)

dτ.

(7.59)

To estimate expression (7.59), we first make the following estimates:

τj+2∫

τj

cos

(
ϕi(τ )

α

)

dτ =
τj+2∫

τj

α

ϕ̇i(τ )

ϕ̇i(τ )

α
cos

(
ϕi(τ )

α

)

dτ, j = 0, . . . , nϕi − 3,

(7.60)

as (T − τ ) �= 0 for j < nϕi . We can integrate (7.60) by parts.

τj+2∫

τj

α

ϕ̇i(τ )︸ ︷︷ ︸
U

ϕ̇i(τ )

α
cos

(
ϕi(τ )

α

)

dτ

︸ ︷︷ ︸
dV

= α

ϕ̇i(τ )︸ ︷︷ ︸
U

sin

(
ϕi(τ )

α

)

︸ ︷︷ ︸
V

∣
∣
∣
∣

τj+2

τj

−α
τj+2∫

τj

sin

(
ϕi(τ )

α

)

︸ ︷︷ ︸
V

d

dτ

(
1

ϕ̇i(τ )

)

dτ

︸ ︷︷ ︸
dU

, j = 0, . . . , nϕi − 3.

(7.61)

Here
∣
∣
∣
∣
∣

α

ϕ̇i(τ )
sin

(
ϕi(τ )

α

) ∣
∣
∣
∣

τj+2

τj

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

α

ϕ̇i(τ )

∣
∣
∣
∣

τj+2

τj

∣
∣
∣
∣
∣
≤ α sup

t∈[τj ,τj+2]

∣
∣
∣
∣
d

dτ

1

ϕ̇i(τ )

∣
∣
∣
∣ (τj+2 − τj ).
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One can check that the derivative

∣
∣
∣
∣
d

dτ

1

ϕ̇i(τ )

∣
∣
∣
∣ =

∣
∣
∣
∣

1
√

(T − τ )
T∫

τ

g2
i (x

δ,α(θ), θ)dθ

− 2

ϕ̇(τ )

(

− g2
i (x

δ,α(τ ), τ )+ (T − τ )gi(xδ,α(τ ), τ )

·
( n∑

i=1

[
∂gi(x

δ,α(τ ), τ )

∂xi

(

−w
δ,α(τ )g2

i (x
δ,α(τ ), τ )

α2

)]

+ ∂gi(x
δ,α(τ ), τ )

∂t

))∣∣
∣
∣

≤ 1

ω(T − τj+2)
+ 2ω

ω2

(
ω2 + T ω(δnω′ω2Rw + ω′)

)
.

(7.62)

So, the term UV
∣
∣τj+1
τj

in (7.61) can be estimated by using (7.57) and (7.62) as

∣
∣
∣
∣
∣

α

ϕ̇i(τ )
sin

(
ϕi(τ )

α

) ∣
∣
∣
∣

τj+2

τj

∣
∣
∣
∣
∣
≤ α2

(
R1

T − τj+2
+ R2 + δR3Rw

)

, (7.63)

where the constants R1, R2, R3 are defined in (7.5). Let’s emphasize that these
constants don’t depend on δ and α.

Now let’s estimate the term
∫ τj+1
τj

VdU in (7.61).

α

∣
∣
∣
∣
∣
∣
∣

τj+2∫

τj

sin

(
ϕi(τ )

α

)
d

dτ

(
1

ϕ̇i(τ )

)

dτ

∣
∣
∣
∣
∣
∣
∣

≤ α sup
τ∈[τj ,τj+2]

∣
∣
∣
∣sin

(
ϕi(τ )

α

)
d

dτ

(
1

ϕ̇i(τ )

)∣
∣
∣
∣ (τj+2 − τj )

≤ α2
(

R1

T − τj+2
+ R2 + δR3Rw

)

.

(7.64)

Applying estimates (7.63) and (7.64) to (7.60)–(7.61), we get

∣
∣
∣
∣
∣
∣
∣

τj+2∫

τj

cos

(
ϕi(τ )

α

)

dτ

∣
∣
∣
∣
∣
∣
∣

≤ 2α2
(

R1

T − τj+2
+ R2 + δR3Rw

)

. (7.65)
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Now let’s return to expression (7.59). By splitting the last integral term in (7.59)

as
τj+2∫

τj+1

=
τj+2∫

τj

−
τj+1∫

τj

, we get

∣
∣
∣
∣
∣
∣
∣

τj+2∫

τj

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

∣
∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣
∣

τj+1∫

τj

cos

(
ϕi(τ )

α

)

dτ
(
f δi (τ̃j )− f δi (τ̃j+1)

)
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣

f δi (τ̃j+1)

τj+2∫

τj

cos

(
ϕi(τ )

α

)

dτ

∣
∣
∣
∣
∣
∣
∣

.

(7.66)

By Heine–Cantor theorem, every continuous function defined on a closed interval
is uniformly continuous. So, continuous f δi (τ ) is uniformly continuous on [t0, T ].
In other words,

∀δ > 0 ∃αδ1 = αδ1(δ) > 0 : ∀τ1, τ2 ∈ [τj , τj+2]
(|τ1 − τ2| < αδ12

πω

ω2

)⇒ (|f δi (τ1)− f δi (τ2)| < δ
)
.

(7.67)

Remark 7.5 As f δi (τ ) is uniformly continuous on [t0, T ], we are able to choose the
same αδ1 = αδ1(δ) in (7.67) for each j = 0, . . . , (nϕi + 1) as [τj , τj+2] ⊂ [t0, T ].
Combining (7.57), (7.65), (7.66), (7.67), we get

∣
∣
∣
∣
∣
∣
∣

τj+2∫

τj

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

∣
∣
∣
∣
∣
∣
∣

≤ αδπω
ω2

+ 2α2 max
τ∈[τj ,τj+2]

f δi (τ )

(
R1

T − τj+2
+ R2 + δR3Rw

)

.

(7.68)

To be specific, let’s assume that the number nϕi is odd. Then

T∫

t0

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

=
τ1∫

t0

cos

(
ϕi(τ )

α

)

f δi (τ )dτ +
0.5(nϕi−1)−1
∑

j=1

τ2j+1∫

τ2j−1

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

+
τnϕi∫

τnϕi−2

cos

(
ϕi(τ )

α

)

f δi (τ )dτ +
T∫

nϕi

cos

(
ϕi(τ )

α

)

f δi (τ )dτ.

(7.69)
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Using (7.68), let’s first estimate the sum

∣
∣
∣
∣
∣
∣
∣

0.5(nϕi−1)−1
∑

j=1

⎡

⎢
⎣

τ2j+1∫

τ2j−1

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤
0.5(nϕi−1)−1
∑

j=1

[

αδ
πω

ω2 + 2α2f
δ

i

(
R1

T − τ2j+1
+ R2 + δR3Rw

)]

,

(7.70)

where nϕi ≤ T ω
αω2 and f

δ

i = max
τ∈[t0,T ]

f δi (τ ).

The following sum can be estimated by substituting the denominator in the
fraction with it’s minimal possible value (7.57) and reversing the order of terms
in the sum.

0.5(nϕi−1)−1
∑

j=1

α

T − τ2j+1
≤

0.5(nϕi−1)−1
∑

j=1

α

(απω/ω2)j
= ω2

πω

0.5(nϕi−1)−1
∑

j=1

1

j
.

The partial sum
0.5(nϕi−1)−1∑

j=1

1
j

of a harmonic series can be estimated by Euler–

Mascheroni formula
k∑

n=1

1
n
≤ (ln k)+ 1. Thus, continuing estimates (7.70) we get

∣
∣
∣
∣
∣
∣
∣

0.5(nϕi−1)−1
∑

j=1

⎡

⎢
⎣

τ2j+1∫

τ2j−1

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤ δ T πω
2

2ω4 + 2αf
δ

i

(
πω2R1

ω
(ln

0.5Tω

αω2 + 1)+ R2 + δR3Rw

)

.

(7.71)

We have estimated the second term of sum in the right hand side of (7.69).
Using (7.57), one can get the following relations for the first, third and forth terms
in (7.69).

∣
∣
∣
∣

τ1∫

t0

cos

(
ϕi(τ )

α

)

f δi (τ )dτ +
τnϕi∫

τnϕi −2

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

+
T∫

nϕi

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

∣
∣
∣
∣ ≤ 4α

πω2

ω
f
δ

i .

(7.72)
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Remark 7.6 We assumed that the number nϕi is odd. In the case of even nϕi the
calculations are similar, because the only difference is in formula (7.69), where the

lower limit of the integral
τnϕi∫

τnϕi−2

cos
(
ϕi (τ )
α

)
f δi (τ )dτ is exchanged for τnϕi−1.

Finally, applying (7.71) and (7.72) to (7.69), we get

∣
∣
∣
∣

T∫

t0

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

∣
∣
∣
∣ ≤ δ

T πω2

2ω4

+αf δi
(

4
πω2

ω
+ 2
R1πω

2

ω

(

ln
T ω

2ω2 + 1

)

+ R2

)

+ α| ln α|f δi + 2αδf
δ

i R3Rw.

For any given δ ∈ (0, δ0] there exists a constant f
δ

i = f δi (δ) (as f δi (τ ) is
continuous for δ ∈ (0, δ0]). We can always find such parameter αδ2 = αδ2(δ) that

αδ2(δ)| lnαδ2(δ)|f δi (δ) ≤ δ. (7.73)

This is possible because lim
α→0

α| ln α| = 0. Thus, for any

α ≤ α0 = min{αδ1, αδ2, 1}, (where αδ1 is from (7.67), αδ2 is from (7.73)),
(7.74)

we have
∣
∣
∣
∣
∣
∣

T∫

t0

cos

(
ϕi(τ )

α

)

f δi (τ )dτ

∣
∣
∣
∣
∣
∣
≤ δR4 + 2δ2R3Rw, (7.75)

where the constants R3, R4 are defined in (7.5).
We can apply this result to expressions (7.54). First, let’s estimate expression

α2Φ2,ii(t)

T∫

t0

Φ1,ii (τ )
Fi(z

δ,α(τ ),wδ,α(τ ), τ )

α2 dτ, (7.76)

for which f δi (τ ) = Fi(zδ,α(τ ),wδ,α(τ ), τ )/α2 not= f δi,1(τ ) in the sense of (7.55). It
follows from (7.39), (7.41) and Hypotheses 7.2, 7.1 that

f
δ

i = f δi,1 = max
τ∈[t0,T ]

∣
∣Fi(z

δ,α(τ ),wδ,α(τ ), τ )/α2
∣
∣

≤
⎛

⎝
max
τ∈[t0,T ]

ÿδ(τ )

ω2
+ nω

2ω′Y + ω′Y 2

ω3

⎞

⎠+ δnRw
(
ω2ω′

ω3
+ 2
ω′Y
ω

)

+ δ2R2
wωω

′.

(7.77)



7 On Control Reconstruction Problems for Dynamic Systems Linear in Controls 111

For α ≤ α1
0, where α1

0 is defined in the same way as α0 in (7.67), (7.73), (7.74),

but assuming f δi (τ ) = f δi,1(τ ) and f
δ

i (τ ) = f
δ

i,1(τ ), estimates (7.75) and (7.53)
give us

∣
∣
∣
∣
∣
Φ2,ii (t)

T∫

t0

Φ1,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

∣
∣
∣
∣
∣

≤ αω(δR4 + 2δ2R3Rw), t ∈ [t0, T ].
(7.78)

Let’s introduce α2
0 that is defined in the same way as α0 in (7.67), (7.73), (7.74),

but assuming

f δi (τ ) = Φ̃i (τ )Fi(zδ,α(τ ),wδ,α(τ ), τ )/α2 not= f δi,2(τ ), f
δ

i,2 = ωf δi,1.

One can use the scheme of proof (7.55)–(7.78) and (7.51)–(7.53) to obtain that
for α ≤ min{α1

0, α
2
0} the following estimates are true as well

∣
∣
∣
∣
∣
Φ1,ii (t)

T∫

t0

Φ2,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

∣
∣
∣
∣
∣

≤ αω(δR4 + 2δ2R3Rw), t ∈ [t0, T ];
(7.79)

∣
∣
∣
∣
∣
Φ3,ii (t)

T∫

t

Φ2,ii (τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )dτ

∣
∣
∣
∣
∣

≤ α2 1
ω
(δR4 + 2δ2R3Rw), t ∈ [t0, T ];

(7.80)

∣
∣
∣
∣
∣
Φ1,ii(t)

T∫

t

Φ1,ii(τ )Fi(z
δ,α(τ ),wδ,α(τ ), τ )

]
dτ

∣
∣
∣
∣
∣

≤ α2(δR4 + 2δ2R3Rw), t ∈ [t0, T ].
(7.81)

Remark 7.7 Estimates (7.78)–(7.81) are true under combined condition

α ≤ αδ0 def= min{α1
0 , α

2
0}. (7.82)

Combining (7.54) and (7.78)–(7.81), we get

|zi(t)| ≤ αδ(1+ ω)(R4 + 2δR3Rw),

|wi(t)| ≤ α2δ
1+ω
ω
(R4 + 2δR3Rw), t ∈ [t0, T ], i = 1, . . . , n.



112 E. Krupennikov

For δ : 0 < δ ≤ δ0 ≤ 1
Rw

, α ∈ (0, αδ0], as far as zδ,α(t) = z(t), wδ,α(t) = w(t), t ∈
[t0, T ],

|zδ,αi (t)| = |zi(t)| ≤ αδ(1 + ω)(R4 + 2R3) ≤ αδRw,
|wδ,αi (t)| = |wi(t)| ≤ α2δ

1+ω
ω
(R4 + 2R3) ≤ α2δRw,

t ∈ [t0, T ], i = 1, . . . , n.

(7.83)

Remark 7.8 Estimates (7.83) are true for t0 ∈ [0, T ) as long as solutions zδ,α(·),
wδ,α(·) of system (7.38) with boundary conditions (7.40) exist and are unique on
t ∈ [t0, T ] and (7.41) is true.

But (7.83) means that for δ ∈ (0, δ0], α ∈ (0, αδ0] at t = t0 (in particular)

|zδ,αi (t0)| ≤ αδRw, |wδ,αi (t0)| ≤ α2δRw, i = 1, . . . , n,

which is contrary to the assumption that either zδ,αi (t0) = 2αδRw, i ∈ {1, . . . , n} or

w
δ,α
i (t0) = 2α2δRw, i ∈ {1, . . . , n}. That means that such moment t0 does not

exist.
In other words, we have proved that we can extend the solutions zδ,α(·), wδ,α(·)

up to t = 0 and

|zδ,αi (t)| ≤ αδ2Rw,
|wδ,αi (t)| ≤ α2δ2Rw, t ∈ [0, T ], i = 1, . . . , n

(7.84)

for δ ∈ (0, δ0] and α ∈ (0, αδ0].
As far as we can extend solutions zδ,α(·), wδ,α(·) on t ∈ [0, T ], we can return to

variables (7.36)

x
δ,α
i (t) = zδ,αi (t)+ yδi (t), u

δ,α
i (t) = −

gi(x
δ,α(t), t)

α2
w
δ,α
i (t)+

ẏδ(t)

gi(xδ,α(t), t)
.

Applying the result (7.84) (see Remark 7.8), we get that

|xδ,αi (t)− yδi (t)| ≤ αδ2Rw, |uδ,αi (t)−
ẏδi (t)

gi(xδ,α(t), t)
| ≤ δ2Rw,

i = 1, ..., n, t ∈ [0, T ]
(7.85)

for δ ≤ (0, δ0] and α ∈ (0, αδ0].
It follow from (7.85) and Hypothesis 7.2 that

|xδ,αδ0i (t)− x∗i (t)| ≤ |x
δ,αδ0
i (t)− yδi (t)| + |x∗i (t)− yδi (t)|

≤ αδ2Rw + δ δ→0−→ 0, i = 1, ..., n, t ∈ [0, T ],
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which means that

lim
δ→0

‖xδ,αδ0i (·)− x∗i (·)‖C[0,T ] = 0 (7.86)

Let’s now make the following calculations.

∣
∣
∣
∣
∣

ẏδi (t)

gi(xδ,α(t), t)
− ẏδi (t)

gi(yδ(t), t)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

ẏδi (t)
(
gi(y

δ(t), t) − gi(xδ,α(t), t)
)

gi(xδ,α(t), t)gi (yδ(t), t)

∣
∣
∣
∣
∣

≤ Ynω
′2αδRw
ω2 , i = 1, ..., n, t ∈ [0, T ]

(7.87)

for δ ≤ (0, δ0] and α ∈ (0, αδ0].
It follows from (7.87) and (7.85) that

|uδ,αδ0i (t)− ẏδi (t)

gi(yδ(t), t)
| ≤ |uδ,αδ0i (t)− ẏδi (t)

gi(x
δ,αδ0(t), t)

|

+
∣
∣
∣
∣
∣

ẏδi (t)

gi(x
δ,αδ0(t), t)

− ẏδi (t)

gi(yδ(t), t)

∣
∣
∣
∣
∣

≤ δ2Rw + Ynω
′2αδ0δRw
ω2 , i = 1, ..., n, t ∈ [0, T ].

(7.88)

Relation (7.88) and Lemma 1 imply that

‖uδ,αδ0i (·) − u∗i (t)‖2
L2,[0,T ] =

T∫

0

(u
δ,αδ0
i (t)− u∗i (t))2dt =

T∫

0

[
(

u
δ,αδ0
i (t)− ẏδi (t)

gi(yδ(t), t)

)2

+2

(

u
δ,αδ0
i (t)− ẏδi (t)

gi(yδ(t), t)

)(
ẏδi (t)

gi(yδ(t), t)
− u∗i (t)

)

+
(

u∗i (t) −
ẏδi (t)

gi(yδ(t), t)

)2 ]
dt

≤ T
(

δ2Rw + Ynω
′2αδ0δRw
ω2

)2

+ T
(

δ2Rw + Ynω
′2αδ0δRw
ω2

)(
Y

ω
+ U

)

+
∥
∥
∥
∥
∥

ẏδi (t)

gi(yδ(t), t)
− u∗i (t)

∥
∥
∥
∥
∥

2

L2,[0,T ]

δ→0−→ 0,

which was to be proved. ��
Let’s now consider for a fixed δ ∈ (0, δ0] cut-off functions

ûδi (t) =

⎧
⎪⎪⎨

⎪⎪⎩

U, u
δ,αδ0
i (t) ≥ U,

u
δ,αδ0
i (t), |uδ,αδ0i (t)| < U,
−U, u

δ,αδ0
i (t) ≤ −U,

, i = 1, . . . , n, (7.89)
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where the functions u
δ,αδ0
i (·), i = 1, . . . , n are defined in (7.35) and αδ0 is introduced

in Theorem 7.1 in (7.82).
It follows from Theorem 7.1 that

‖uδ,αδ0i (·)− u∗i (·)‖2
L2,[0,T ] = ‖(u

δ,αδ0
i (·)− ûδi (·))+ (ûδi (·)− u∗i (·))‖2

L2,[0,T ]

= ‖uδ,α
δ
0

i (·)− ûδi (·)‖2
L2,[0,T ] + ‖ûδi (·)− u∗i (·)‖2

L2,[0,T ]

+2

T∫

0

(
u
δ,αδ0
i (t)− ûδi (t)

)(
ûδi (t)− u∗i (t)

)
dt

δ→0−→ 0.

(7.90)
Combining (7.89) and constraints (7.2), we get

(
u
δ,αδ0
i (t)− ûδi (t)

)(
ûδi (t)− u∗i (t)

) ≥ 0, t ∈ [0, T ].

Since all terms in the last expression in (7.90) are non-negative, we obtain

‖uδ,αδ0i (·)− ûδi (·)‖2
L2,[0,T ]

δ→0−→ 0, (7.91)

‖ûδi (·)− u∗i (·)‖2
L2,[0,T ]

δ→0−→ 0. (7.92)

Now let’s prove the following lemma

Lemma 7.2 The system of differential equations

ẋi(t) = gi(x(t), t)ûδi (t), xi(T ) = yδi (T ), i = 1, . . . , n, t ∈ [0, T ],
(7.93)

where ûδi (·) is defined in (7.89) for a fixed δ ≤ (0, δ0], have a unique solution

x(·) not= x̂δ(·) : [0, T ] → Rn. Moreover,

lim
δ→0

‖x∗i (·)− x̂δi (·)‖C[0,T ] = 0, i = 1, . . . , n.

Proof Let’s introduce new variables

 xi(t) = xi(t)− xδ,α
δ
0

i (t), i = 1, . . . , n,

where xδ,α
δ
0(t) is the solution of system (7.19) with boundary conditions (7.20).

System (7.93) in this variables has the form

 ̇xi(t) = gi
( x(t)+ xδ,αδ0(t), t)ûδi (t)− gi

(
xδ,α

δ
0(t), t

)
u
δ,αδ0
i (t),

 xi(T ) = 0, i = 1, . . . , n.
(7.94)
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The right-hand sides of this equations

∣
∣
∣gi
( x(t)+ xδ,αδ0(t), t)ûδi (t)− gi

(
xδ,α

δ
0(t), t

)
u
δ,αδ0
i (t)± gi

(
xδ,α

δ
0(t), t

)
ûδi (t)

∣
∣
∣

=
∣
∣
∣ûδi (t)

(
gi
( x(t)+ xδ,αδ0(t), t) − gi

(
xδ,α

δ
0(t), t

))

+gi
(
xδ,α

δ
0(t), t

)(
ûδi (t)− u

δ,αδ0
i (t)

)∣∣
∣

≤ U
n∑

j=1
[ω′| xj (t)|] + ω|ûδi (t)− u

δ,αδ0
i (t)|

≤ Uω′n‖ x(t)‖ + ω|ûδi (t)− u
δ,αδ0
i (t)|.

(7.95)

Since estimates (7.95) are true and the function |ûδi (·)− u
δ,αδ0
i (·)| is continuous, the

solution of system (7.94) is unique and can be extended on [0, T ] [13]. Thus, the

solutions x̂δi (t) =  xi(t)−x
δ,αδ0
i (t), i = 1, . . . , n of system (7.93) can be extended

on t ∈ [0, T ] as well.
From (7.95) it follows that

∣
∣
∣‖ x(t)‖′t

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

n∑

i=1
[ xi(t) ̇xi(t)]
‖ x(t)‖

∣
∣
∣
∣
∣
∣
∣
∣

≤

n∑

i=1
[‖ x(t)‖ · | ̇xi(t)|]

‖ x(t)‖

≤ n(Uω′n‖ x(t)‖ + ω|ûδi (t)− u
δ,αδ0
i (t)|).

Hence,

‖ x(t)‖ ≤ ‖ x(T )‖ +
T∫

t

n
(
Uω′n‖ x(τ)‖ + ω|ûδi (τ )− u

δ,αδ0
i (τ )|)dτ

≤ ‖ x(T )‖ + nω
T∫

t

|ûδi (τ )− uδ,α
δ
0

i (τ )|dτ + n2Uω′
T∫

t

‖ x(τ)‖dτ.

Applying the Grönwall–Bellman inequality, we get

‖ x(t)‖ ≤
(
‖ x(T )‖ + nω

T∫

t

|ûδi (τ )− u
δ,αδ0
i (τ )|dτ

)
exp(n2Uω′T ).
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Here ‖ x(T )‖ ≤ √nδ δ→0−→ 0. Since (7.91),
T∫

t

|ûδi (τ ) − u
δ,αδ0
i (τ )|dτ δ→0−→ 0, t ∈

[0, T ]. So, ‖ x(t)‖ δ→0−→ 0, t ∈ [0, T ]. In other words,

lim
δ→0

‖xδ,αδ0i (·)− x̂δi (·)‖C[0,T ] = 0, i = 1, ..., n.

Combining this result with result of Theorem 7.1 (7.34), we get

lim
δ→0

‖x̂δi (·)− x∗i (·)‖C[0,T ] = 0, i = 1, ..., n,

which was to be proved.

Lemma 7.2, definition (7.89) and formula (7.92) mean that functions (7.89) can
be considered as solution of the inverse problem described in Sect. 7.5.

7.7 Remarks on the Suggested Method

Note that Hypotheses 7.2 and 7.1, Theorem 7.1 and Lemmas 7.1 and 7.2 provide that
in case of diagonal matrix G(x, t) the solution for the inverse problem described in
Sect. 7.5 can be found as

ûδi (t) =
⎧
⎨

⎩

U, uδi (t) ≥ U,
uδi (t), |uδi (t)| < U,
−U, uδi (t) ≤ −U.

where uδi (·) =
ẏδi (·)

gi(yδ(·), ·) , i = 1, . . . , n.

The case of non diagonal non degenerate matrix G(x, t) is more interesting. In
this case the solution can still be found by inversing the matrixG(yδ(t), t)

uδ(·) = G−1(yδ(·), ·)ẏδ(·), (7.96)

but it involves finding the inverse matrix G−1(yδ(t), t) for each t ∈ [0, T ].
One can modify the algorithm suggested in Sect. 7.6 to solve the inverse problem

for the case of non-diagonal matrix G(yδ(t), t) as well. The justification uses the
same scheme of proof, but is more complex due to more complicated form of
system (7.19). It will be published in later works.

Comparing the direct approach (7.96) and the approach suggested in this paper,
one can see that the second one reduces the task of inversing non-constant n × n
matrix G(yδ(t), t) to the task of solving systems of non-linear ODEs. In some
applications numerical integration of ODE systems may be more preferable than
matrix inversing. Accurate comparing of this approaches (including numerical
computations issues) is the matter of the upcoming studies and also will be
published in later works.
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7.8 Example

To illustrate the work of the suggested method let’s consider a model of a
macroeconomic process, which can be described by a differential game with the
dynamics

dx1(t)

dt
= ∂G(x1(t), x2(t))

∂x1
u1(t),

dx2(t)

dt
= ∂G(x1(t), x2(t))

∂x2
u2(t).

(7.97)

Here t ∈ [0, T ], x1 is the product, x2 is the production cost. G(x1, x2) is the profit,
which is described as

G(x1, x2) = x1x2(a0 + a1x1 + a2x2), (7.98)

where a0 = 0.008, a1 = 0.00019, a2 = −0.00046 are parameters of the
macroeconomic model [1]. The functions u1(t), u2(t) are bounded piecewise
continuous controls

|u1| ≤ U, |u2| ≤ U, U = 200, t ∈ [0, T ]. (7.99)

The control u1 has the meaning of the scaled coefficient of the production increase
speed and u2 has the meaning of the scaled coefficient of the speed of the production
cost changing.

This model has been suggested by Albrecht [1].
We assume that some base trajectories x∗1 (t), x∗2 (t) of system (7.97) have been

realized on the time interval t ∈ [0, T ] (time is measured in years). This trajectory
is supposed to be generated by some admissible controls u∗1(·), u∗2(·). We also
assume that we know inaccurate measurements of x∗1 (t), x∗2 (t)—twice continuously
differentiable functions yδ1(t), y

δ
2(t) that fulfill Hypothesis 7.2.

Remark 7.9 To model measurement functions yδ1(t) and yδ2(t) real statistics on Ural
region’s industry during 1970–1985 [1] have been used. They satisfy Hypothe-
sis 7.2.

We consider the inverse problem described in Sect. 7.5 for dynamics (7.97)–
(7.99) and functions x∗1 (t), x∗2 (t), u∗1(·), u∗2(·) and yδ1(t), y

δ
2(t). We assume in

our example that we don’t know the base trajectory and controls, but know the
inaccurate measurements yδ1(t), y

δ
2(t).

The trajectories xα,δ1 (t), x
α,δ
2 (t) and controls ûα,δ1 (t), û

α,δ
2 (t), generating them,

were obtained numerically. The results are presented on Figs. 7.1, 7.2, and 7.3. On
Figs. 7.1 and 7.2 time interval is reduced for better scaling.
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Fig. 7.1 Graphics of xδ,α1 (t), t ∈ [1980, 1985] for various values of approximation parameters

Fig. 7.2 Graphics of uδ,α1 (t), t ∈ [1980, 1985] for various values of approximation parameters
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Fig. 7.3 Graphic of error xδ,α1 (t)− yδ1(t) for α = 10−5, t ∈ [1970, 1985]
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Chapter 8
Evolution of Risk-Statuses in One
Model of Tax Control

Suriya Kumacheva, Elena Gubar, Ekaterina Zhitkova, and Galina Tomilina

Abstract Nowadays information is an important part of social life and economic
environment. One of the principal elements of economics is the system of taxation
and therefore tax audit. However total audit is expensive, hence fiscal system should
choose new instruments to force the tax collections. In current study we consider an
impact of information spreading about future tax audits in a population of taxpayers.
It is supposed that all taxpayers pay taxes in accordance with their income and
individual risk-status. Moreover we assume that each taxpayer selects the best
method of behavior, which depends on the behavior of her social neighbors. Thus
if any agent receives information from her contacts that the probability of audit
is high, then she might react according to her risk-status and true income. Such
behavior forms a group of informed agents which propagate information further
then the structure of population is changed. We formulate an evolutionary model
with network structure which describes the changes in the population of taxpayers
under the impact of information about future tax audit. The series of numerical
simulation shows the initial and final preferences of taxpayers depends on the
received information.

8.1 Introduction

The tax system is one of the most important mechanisms of state regulation.
A significant part of this system is tax control, which provides receiving taxes and
fees in the state budget. For a wide class of models, such as [4, 6, 16, 25], which
describe tax control with static game-theoretical attitude, “the threshold rule” was
formulated. This rule defines the value of auditing probability which is critical for
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the decision of taxpayers to evade taxation or not. However, in real life it is difficult
to implement tax inspections with the threshold probability because this process
requires large investments from the tax authority, while it has substantially limited
budget. Hence, the tax authority needs to find a way to stimulate the population to
pay taxes in accordance with their true level of income.

Previous studies [18, 22] have shown that information dissemination has a
significant impact on the behavior of agents in various environments, such as the
urban population, the social network, labor teams, etc. Taking into account previous
research [1–3], the current paper studies the propagation of information about
upcoming tax inspections as a way to stimulate the population to pay taxes honestly.
This approach allows tax authority to optimize the collection of taxes within the
strong limitation of budget.

Let’s suppose that the population of taxpayers is heterogeneous in its perception
of such information. Additionally to previous research [9, 10] susceptibility of each
agent depends on its risk-status, due to her natural propensity to risk. Economic
environment of each individual also impacts on the perceiving of incoming infor-
mation. In contrast to many different works, where information spreads during
random matches of agents, here we consider only structured population and we
suppose that information can be transferred only between connected agents. Social
connections of each taxpayer can be described mathematically by using networks of
various modifications. We also assume that tax authority injects information about
future audits to the population and thereby the share of Informed agents is formed.
Agents from the Informed group can spread it over their network of contacts and
thereby the structure of population is changed. According to all these reasons we
formulate an evolutionary model on the network which describes the variation of
taxpayers’ behavior. We estimate the initial and final distribution of taxpayers which
prefer to evade taxation in series of numerical simulations. Numerical experiments
include two different approaches that characterize the evolutionary process: special
imitation rule for evolutionary game on the network and Markov’s chain which
define random process on the network.

The paper is organized as follows. Section 8.2 presents the mathematical model
of tax audit in classical formulation. Section 8.3 introduces an idea of risk propensity
of taxpayers. Section 8.4 shows the dynamic model of tax control, which includes
the knowledge about additional information and presents two different approaches
to find a solution. Numerical examples are presented in Sect. 8.5.

8.2 Static Model of Tax Audit

As a basic model we consider a game-theoretical static model of tax control, in
which the players are the tax authority and n taxpayers as a basis for the following
study. Every taxpayer has true income ξ and declares income η after each tax period,
η ≤ ξ .



8 Evolution of Risk-Statuses in One Model of Tax Control 123

As it was studied in the classical works, such as [6, 25], to simplify the model,
we suppose, that the total set of taxpayers is divided into the groups of low level
income agents and high level income agents. Obviously, the number of partitions
can be increased, but it does not effect on the following arguments and conclusions.
In other words, taxpayers’ incomes can take only two values: ξ ∈ {L, H }, where L
is the low level and H is the high level of income (0 ≤ L < H ). Declared income η
also can take values from the mentioned binary set η ∈ {L, H }.

Thus, in this model there are three different groups of taxpayers, depending on
the relation η(ξ) between true and declared incomes:

1. η(ξ) = L(L);
2. η(ξ) = H(H);
3. η(ξ) = L(H).

Obviously that the taxpayers from the first and the second groups declare their
income correspondingly to its true level and they do not try to evade. The third
group is the group of tax evaders. In other words, this group is of interest of the tax
authority.

The tax authority audits those taxpayers, who declared η = L, with the
probability PL every tax period. Let’s suppose that tax audit is absolutely effective,
i.e. it reveals the existing evasion. The proportional case of penalty is considered:
when the tax evasion is revealed, the evader must pay (θ+π)(ξ−η), where constants
θ and π are the tax and the penalty rates correspondingly. For the agents from the
studied groups the payoffs are:

u (L(L)) = (1− θ) · L; (8.1)

u (H(H)) = (1− θ) ·H ; (8.2)

u (L(H)) = H − θL− PL(θ + π)(H − L). (8.3)

The fraction of audited taxpayers is PL. It’s obvious that either the agents from
the first group (who actually have true income ξ = L) or the evaders from the third
group are both in this fraction of audited taxpayers.

The total set of the taxpayers is divided into the next groups: wealthy taxpayers,
who pay taxes honestly (η(ξ) = H(H)), insolvent taxpayers (η(ξ) = L(L)) and
wealthy evaders (η(ξ) = L(H)). The diagram, presented in Fig. 8.1a, illustrates this
distribution.

In Fig. 8.1, cases: b, c, d, the little circle, inscribed in the diagram, corresponds to
the fraction of audited taxpayers. Let’s call it an “audited circle”. Only those, who
declared η = L, are in the interest for auditing. Therefore, the mentioned circle
is inscribed into the sectors, which correspond to the situations η(ξ) = L(H) and
η(ξ) = L(L).
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η(ξ)=H(H)

η(ξ)=L(H)

η(ξ)=L(L)

η(ξ)=H(H)

η(ξ)=L(H)

η(ξ)=L(L)

(a) (b)

(c) (d)

η(ξ)=H(H)

η(ξ)=L(H)

η(ξ)=L(L)

η(ξ)=H(H)

η(ξ)=L(H)

η(ξ)=L(L)

Fig. 8.1 Auditing of the different groups of the taxpayers

On one hand in Fig. 8.1b the case, when either evaders or simply insolvent
taxpayers are audited, is considered. In Fig. 8.1c the “audited circle” is contained in
the area, which satisfies the condition η(ξ) = L(H). This is the optimistic situation,
when every audit reveals the existing tax evasion. On the other hand, the Fig. 8.1d
illustrates the pessimistic case, when none of the audits reveals the evasion, because
only insolvent taxpayers, declared their true income η(ξ) = L(L), are audited.
Certainly, all presented diagrams illustrate only some boundary ideal cases, however
the tax authority’s aim is obviously to lead the real situation closer to the illustration
in Fig. 8.1c.

Hence, the following arguments, related to the searching of possible tax evasions,
apply to the third group of the agents, declared η(ξ) = L(H). Thereby, precisely
this group is expedient to be considered as the studied population, speaking in the
terms of the evolutionary games.

Risk neutral taxpayers’ behaviour supposed to be absolutely rational: their tax
evasion is impossible only if the risk of punishment is so high that the tax evader’s
profit is less or equal to his expected post-audit payments (in the case when his



8 Evolution of Risk-Statuses in One Model of Tax Control 125

evasion is revealed):

PL(θ + π)(H − L) ≥ θ(H − L).

Therefore, the critical value of audit probability PL (due to the taxpayer’s decision
to evade or not) is

P ∗L =
θ

θ + π . (8.4)

For this type of models the optimal solution is usually presented in the form of
the “threshold rule” in various modifications (see, for example, [6] or [25]). In [4]
this rule is formulated so that the optimal value P ∗L of the auditing probability is
defined from (8.4), and for the risk neutral taxpayer the optimal strategy is

η∗(ξ) =
{
H, PL ≥ P ∗L;
L, PL < P

∗
L.

(8.5)

Nevertheless there are some problems which should be fixed to make the static
model described above close to real-life process. The first problem is that the players
are supposed to be risk neutral. However in real life there are also risk averse and
risk loving economic agents. Another problem is that we consider the game with
complete information. It is assumed that the taxpayers know (or can estimate) the
value of the auditing probability, but, by considering the static model, we do not
take into account the method of receiving information. The third problem is that
the auditing with optimal probability (8.4) is excessively expensive and the tax
authority usually has strongly limited budget, thus, the actual value of PL should
be substantially less than P ∗L in real life. By taking into consideration all mentioned
reasons, we formulate an extended model of tax audit which includes an information
component and an evolutionary process of adaptation of taxpayers to the changes in
the economic environment.

8.3 Model with Different Risk-Statuses

Now let’s consider the homogeneous population of n taxpayers, where agents
possess one of three risk-statuses: risk averse, risk neutral and risk loving agents.
Let’s restrict the considered population by the subpopulation of taxpayers with high
level H of income. This restriction is natural because there is no reason and ability
to evade for the taxpayers with low level L of income, independently on their risk-
status.

The size of this subpopulation is nH (nL+ nH = n, where nL is a number of the
taxpayers with income level L). Now let νa be the share of risk averse agents with
income H (νa = na

nH
), νn be the share of risk neutral agents with high-level income
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(νn = nn
nH

) and νl be the share of risk loving agents with income H (νl = nl
nH

)
respectively. Naturally, νa+νn+νl = 1 (or, equivalent equation, na+nn+nl = nH ).

We also assume that each risk-status has its “threshold of sensitivity”. This term
means that each taxpayer with incomeH compares the real and critical values of the
auditing probability PL before to make a decision to evade or to pay taxes honestly.
Based on the results obtained for the static model 8.2 it is obvious that for the risk
neutral agent this threshold value is P ∗L from the Eq. (8.4). Let PL and PL be the
sensitivity thresholds for the risk averse and risk loving agents correspondingly.
These values satisfy the inequality [17]:

0 ≤ PL < PL∗ < PL ≤ 1.

It is natural to suppose that the agents’ behavior depends on their statuses. Here,
risk-status defines the relation between obtained information about future auditing
and agent’s own sensitivity threshold. If the information of tax audit is absent then
we assume that initially the population is sure that the probability of future audits
takes its values from the interval (PL, PL∗).

This value is less than the threshold for the risk neutral agents, therefore,
they evade of taxation, moreover, risk loving taxpayers, which are sure in small
possibility of auditing, also do not pay. The only payers are agents with risk-averse
status form the considered subpopulation. In this situation the total tax revenue is

T T R1 = nLθL+ nH (νaθH + (1− νa) (θ L+ PL (θ + π)(H − L)))− nPL c,
(8.6)

where c is the cost of one audit.

8.4 The Evolutionary Model on the Network

In Sect. 8.2 we have discussed that it is extremely expensive to audit taxpayers
with the optimal probability (8.4). Thus the tax authority needs to find additional
ways to stimulate taxpayers’ fees. One of these ways is the injection of information
about future auditing (which possibly can be false) into the population of taxpayers.
Following [9–11], in current study we discuss that information contains a message
“PL ≥ P ∗L”. We suppose that the dissemination of such information over the
population will impact on the behavior of taxpayers and their risk-statuses. The
cost of unit of information is cinf . We assume that cinf is significantly less than
the auditing casts (cinf $ c). Every taxpayer who receives the information can
use it by choosing the strategy to pay or not to pay taxes due to her true income
level. Additionally, in contrast to the standard approach of evolutionary games
[21, 26], in which it is assumed that meetings between agents occur randomly
in the population, here we will consider only the connected agents. For example,
any taxpayer has a social environment such as family, relatives, friends, neighbors.
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Communicating with them, agents choose opponents at random to transmit infor-
mation, but taking into account the existing connections. Thus, to describe possible
interactions between agents, the population can be represented by a network where
the nodes are taxpayers transmitting information to each other during the process of
communication and links are the connections between them. Earlier such approach
was considered in [9].

Therefore, the taxpayer’s decision about her risk-status (risk averse, risk neutral
or risk loving) depends on two important factors: her own (natural) risk propensity
and the behavior of her neighbors in the population (those with whom she commu-
nicates). As a result of the dissemination of information, the entire population of
agents is divided into two subgroups: those who received and used the information
(the share ninf ), and those who do not intend to use the information (the share
nnoinf ), or, we can say, those who have a propensity to perceive or not to perceive
the received information. Thus, at the initial time moment this population can be
presented as a sum of the mentioned shares:

n = ninf (t0)+ nnoinf (t0),

but at each following moment the ratio of the fractions ninf (t) and nnoinf (t) will
differ from the previous one.

If one taxpayer from a subgroup of those who use information meets another
one from the same subgroup, they will get the payoffs (Uinf , Uinf ). In this case
both of them know the same information and pay, hence their payoff is defined
from the Eq. (8.2). Similarly, if the taxpayer who does not perceive the information
(and therefore wants to evade) meets the same taxpayer, they will get the payoffs
(Uev, Uev), which are defined from the Eq. (8.3).

We denote the taxpayer’s propensity to perceive the information as δ, 0 ≤ δ ≤ 1,
and consider a case when the uninformed taxpayer meets the informed taxpayer. As
a result of such meeting, uninformed taxpayer obtains information and should pay
the payoff (8.2) with probability δ if she believes in this information, or the payoff
(8.3) if she does not believe.

In the current study we use evolutionary game approach to describe the dynamic
nature of such economic process. Thus, we have a well-mixed population of
economic agents (taxpayers), where the instant communications between taxpayers
can be defined by two-players bimatrix game [21]. For the cases, when taxpayers of
different types meet each other, the matrix of payoffs can be written in the form:

A B

A (Uinf , Uinf ) (Uinf , δUinf + (1− δ)Uev)
B (δUinf + (1− δ)Uev, Uinf ) (δUinf + (1− δ)Uev, δUinf + (1− δ)Uev)

whereA is the strategy of taxpayer if she is informed (she perceives the information)
and B is the strategy of taxpayer if she is uninformed.
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Suppose that at a finite time moment T the system reached its stationary state.
Then let’s denote by νinf the share of those who used the received information and

paid taxes according to their true income level (νinf = νinf (T ) = ninf (T )

n
), while

the share of those who evades taxation despite information received is denoted by
νev (νev = νev(T ) = nev(T )

n
).

Hence the total income received from taxation of the entire population is

T T R2 = nLθL+ nH
(
νinf θH + νev (θL+ PL(θ + π)(H − L))

)−
−n(PL c + ν0

inf cinf ),
(8.7)

where ν0
inf = νinf (t0).

The papers [12, 14, 15] have studied the game of a large number of agents and
obtained the results which can be used to give precise quantitative predictions and
proper stability analysis of equilibria.

In this paper we present a comparative analysis of two evolutionary approaches
applied to the model of tax control. The first approach is to define propagation
information as a random process on the network and use the model by De Groot
[7] as a mathematical tool. The second approach is built on the special stochastic
imitation rule for evolutionary dynamics on the network [20, 21]. Now let’s examine
how these ideas can be applied to the modeling of dynamic processes on networks.

8.4.1 The Model Based on the Markov Process on the Network

Now let’s refuse the assumption that agents can estimate the choice of each
strategy absolutely correctly. This refusion allows us to consider a model of random
dissemination of information about the probability of future auditing. One of the first
models describing this problem is the model by De Groot [7], then similar attitude
was also studied in [8] and [5].

Based on the previous research we consider a direct networkG = (N, P ), where
N is the set of economic agents (for the present study N = {1, . . . , n}), and P is
a stochastic matrix of connections between agents: pij is an element of the matrix
P which characterizes the connection between agents i and j . pij > 0 in the case
when there exists a social connection between taxpayers i and j , (i, j ∈ N). The
value of this parameter is close to 1 if the ith agent has a reason to assume that the
agent j has an expert knowledge about the probability of auditing, and otherwise it
is close to 0.

Let’s assume that at the initial time moment each agent has a certain belief, f 0
i

about the value of the auditing probability. Moreover, we suppose that she decides
to evade taxation, comparing f 0

i with the threshold of sensitivity PL∗, in this case
if f 0

i < PL
∗ then the ith agent evades paying taxes, else if the threshold rises, then

she prefers not to risk.
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Interaction of agents leads to the updating of their knowledge on the auditing
probability at each iteration:

f ki =
n∑

j=1

pij f
k−1
j .

The interaction continues infinitely or until the moment when for some k the
condition f ki ≈ f k−1

i holds for every i.
Now, we assume that information centers can be artificially introduced into the

natural population of agents, which is presented as a network. Here, as information
centers (further principals) we set the agents who seek to convince the other agents
that value of the auditing probability is equal to some determined value.

The role of such information center can be performed by any of the agents j . Let
S be the set of agents for which the condition pij > 0, i �= j , (it is clear because this
inequality is formulated for pairs of different agents). We assign the parameter αj ,
which expresses the degree of confidence of the value f 0

j , with this agent j . Then
the updated elements of the j th row of the matrix P will have the following form:

pij =

⎧
⎪⎨

⎪⎩

αj , i = j
1−αj
|S| , i ∈ S

0, i /∈ S, i �= j
(8.8)

Described model can be used, for example, to present a goal of the tax authority
to overstate the value of the auditing probability. In this case, the parameters of the
information center have the following form: f 0

j = 1, αj ≈ 1.

8.4.2 The Model Based on the Proportional Imitation Rule

In the current paragraph we present a different approach to describe the sequence of
changes in the population of taxpayers. LetG = (N,L) denote an indirect network,
where N is a set of economic agents (N = {1, . . . , n} as in Sect. 8.4.1) and L ⊂
N×N is an edge set. Each edge inL represents two-player symmetric game between
connected taxpayers. The taxpayers choose strategies from a binary setX = {A,B}
and receive payoffs according to the matrix of payoffs in Sect. 8.4. Each instant time
moment agents use a single strategy against all opponents and thus the games occurs
simultaneously. We define the strategy state by x(T ) = (x1(t), . . . , xn(t))

T , xi(t) ∈
X. Here xi(t) ∈ X is a strategy of taxpayer i, i = 1, n, at time moment t . Aggregated
payoff of agent i is defined as in [20]:

ui = ωi
∑

j∈Mi
axi(t),xj (t), (8.9)
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where axi(t),xi(t) is a component of payoff matrix, Mi := {j ∈ L : {i, j } ∈ L} is a
set of neighbors for taxpayer i, weighted coefficient ωi = 1 for cumulative payoffs
and ωi = 1

|Mi | for averaged payoffs. Vector of payoffs of the total population is

u(t) = (u1(t), . . . , un(t))
T .

The state of population is changed according to the rule, which is a function of
the strategies and payoffs of neighboring agents:

xi(t + 1) = f ({xj (t), uj (t) : j ∈ Ni ∪ {i}}). (8.10)

Here we suppose that taxpayer changes her behavior if at least one neighbor
has better payoff. As the example of such dynamics we can use the proportional
imitation rule [21, 26], in which each agent chooses a neighbor randomly and if this
neighbor received a higher payoff by using a different strategy, then the agent will
switch with a probability proportional to the payoff difference. The proportional
imitation rule can be presented as:

p (xi(t + 1) = xj (t)) :=
[
λ

|Mi |(uj (t)− ui(t))
]1

0
(8.11)

for each agent i ∈ Lwhere j ∈ Mi is a uniformly randomly chosen neighbor, λ > 0
is an arbitrary rate constant, and the notation [z]10 indicates max(0,min(1, z)).

Below we present two cases of the changing rule [10, 11]:

• Case 1. Initial distribution of agents is nonuniform. When agent i receives
an opportunity to revise her strategy then she considers her neighbors as one
homogeneous player with aggregated payoff function. This payoff function is
equal to the mean value of payoffs of players who form a homogeneous player.
It is assumed that the agent meets any neighbor with uniform probability, then
mixed strategy of such homogeneous player is a distribution vector of pure
strategies of included players. If payoff function of homogeneous player is better,
then player i changes her strategy to the most popular strategy of her neighbors.

• Case 2. Initial distribution of agents is uniform. In this case agent i keeps her
own strategy.

8.5 Numerical Simulations

In this section we present numerical examples to support the approaches described
in Sects. 8.4.1 and 8.4.2. Based on these simulation we analyze the following factors
of influence on the population of taxpayers:

1. the structure of the network: we use grid and random structures of graphs;
2. the way of information dissemination: we consider the processes based on the

Markov processes and the proportional imitation rule;
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Table 8.1 The distribution of income among taxpayers

Group Income interval (rub. per month) Share of population (%)

1 Less 7500 1.8

2 7500.1–10,600 6.1

4 10,600.1–17,000 15.2

6 17,000.1–25,000 19.9

6 25,000.1–50,000 36.1

6 50,000.1–10,0000 16.4

7 100,000.1–250,000 4.0

8 More 250,000 0.5

Table 8.2 Two modeled groups and average income

Group Income interval (rub. per month) Average income Share of population (%)

L Less 25,000 L = 12,500 43

H More 25,000 H = 50,000 57

3. the initial distribution of risk-status in the population, i.e. what part of the
population has a certain propensity to risk;

4. the value of the information injection, i.e. the portion of Informed agents at the
initial time moment.

In all experiments we use the distribution of the income among the population of
Russian Federation in 2017 [23] (see Table 8.1).

According to the model we suppose that only two level of income is accessible
for each taxpayer: low and high (L and H ). After the unification of groups with
different levels of income according to the economic reasons, we calculate the
average levels of income L and H (the mathematical expectations of the uniform
and Pareto distributions—see 8.6) and receive the corresponding shares of the
population (see Table 8.2).

For all experiments we fix the following values of parameters:

• share of risk-averse taxpayers in population is νa = 17% due to the psychological
research [19];

• tax and penalty rates are θ = 0.13 due to the income tax rate in Russia [24],
π = 0.065 (for bigger values of π , we obtain even bigger values of optimal audit
probability PL∗);

• optimal value of the probability of audit is PL∗ = 0.67;
• actual value of the probability of audit is PL = 0.1;
• unit cost of auditing is c = 7455 (minimum wage in St. Petersburg [23]);
• unit cost of information injection is cinf = 10%∗c = 745.5;
• under the implementation of the approximate equality f ki ≈ f k−1

i from the
Sect. 8.4.1 we have that the inequality |f ki − f k−1

i | < 10−3 holds.

As we described in Sect. 8.4, we use the network G to define the structure of
population. The number of considered taxpayers is defined from the Table 8.2. If,
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for example, the size of the total population is n = 30, the size of subpopulation with
income levelH is nH = 0.57 · n = 17.10, when n = 25 we obtain that nH = 14.25
and so on. For the network we use the relation λ

|Mi | = 1 and vary values of other
parameters in different examples.

Let the number of nodes in the population be n = 30. For the initial model,
which does not include the process of information dissemination the value of total
tax revenue (8.6) is T TR1 = 50,935.26. For the network of n = 25 nodes T T R1 =
42,446.05.

For the model which takes into account dissemination of information, we
apply two algorithms: the first is based on the Markov process on the network
(see Sect. 8.4.1), the second is based on the proportional imitation rule (Sect. 8.4.2).

Several results of numerical modeling of the Markov process in the network are
presented in Figs. 8.2, 8.3, 8.4, and 8.5. Blue dots correspond to evaders and yellow

1.0

0.5

0.0

–0.5

–1.0

–1.0 –0.5 0.0 0.5 1.0

Fig. 8.2 Markov process. Agents are considered in pairs. Direct link from one to the other is
formed with a probability of 1/20, n = 25. Initial state is (νinf , νev) = (1, 24)

1.0

0.5

0.0

–0.5

–1.0

–1.0 –0.5 0.0 0.5 1.0

Fig. 8.3 Markov process. Stationary state is (νinf , νev) = (22, 3). Total tax revenue T T R2 =
83,624.94
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Fig. 8.4 Markov process.
Agents are considered in
pairs. Direct link from one to
the other is formed with a
probability of 1/10, n = 25.
Initial state is
(νinf , νev) = (1, 24)
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–1.0

–1.0 –0.5 0.0 0.5 1.0

Fig. 8.5 Markov process.
Stationary state is
(νinf , νev) = (20, 5).
Total tax revenue
T T R2 = 78,901.06
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–0.5

–1.0

–1.0 –0.5 0.0 0.5 1.0

dots correspond to those who pay honestly, respectively. The value of T TR2 exceeds
T T R1 by almost two times, thus the existence of an information center is actual
because the number of evaders has decreased.

For the second algorithm we compute the payoff functions of taxpayers Uinf =
43,500, Uev = 47,643.75.

The results of numerical simulation obtained from the proportional imitation
rule are shown in Figs. 8.6, 8.7, 8.8, 8.9, 8.10, and 8.11. Despite the fact that the
probability of information perception is high (δ = 0.9), the network structure is
such that most agents become evaders, and the total tax revenue is significantly
reduced. From the experiments it follows that the value of T T R2 is significantly
lower than the value of T T R1.

From the series of numerical experiments by using two alternative algorithms for
the model of tax control which takes into account the risk statuses of economical
agents we can summarize the following.

Firstly, the algorithm based on proportional imitation rule (see Sect. 8.4.2) is not
very effective for the considered model. In contrast to the previous study (see. [10]
or [11]), where we considered the average income of each agent, in the current
paper the structure of the network influences on the population of taxpayers such
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Fig. 8.6 Grid. Probability of perception information δ = 0.9, n = 25. Initial state is (νinf , νev) =
(23, 2)
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Fig. 8.7 Grid. Probability of perception information δ = 0.9, n = 25. Stationary state is
(νinf , νev) = (0, 25). Total tax revenue T TR2 = 15,261.31

as the imitation of behavior of nearest neighbor increases the share of evaders, even
with a high probability of information perception and a relatively small number
of the evaders at the initial moment. Therefore, the total revenue of the system
is significantly reduced. Hence we can conclude that if the income of taxpayers
is differentiated than we need to apply an alternative approach to estimate the
effectiveness of the propagated information.

In contrast, the new approach considers the algorithm which is based on the
Markov process (see Sect. 8.4.1). And the second conclusion is that the mentioned
algorithm is effective. In the framework of this attitude only one agent injects
information and hence she can be considered as an information center in the
network. This approach significantly minimizes the costs of spreading information
over the population of taxpayers. Thus the total revenue of the system is increased
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Fig. 8.8 Random.
Probability of perception
information δ = 0.9, n = 30.
Initial state is
(νinf , νev) = (28, 2)
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Fig. 8.9 Random.
Probability of perception
information δ = 0.9, n = 30.
Stationary state is
(νinf , νev) = (3, 27). Total
tax revenue
T T R2 = 25,101.19
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Fig. 8.10 Ring. Probability
of perception information
δ = 0.9, n = 30. Initial state
is (νinf , νev) = (13, 17)
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Fig. 8.11 Ring. Probability
of perception information
δ = 0.9, n = 30. Stationary
state is (νinf , νev) = (0, 30).
Total tax revenue
T T R2 = 29,197.88
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depending on the structure of the population and a number of connections between
the information center and the outer network.

8.6 Conclusion

In the study presented above we have investigated the problem of tax control taking
into account two important factors: the difference between propensity to risk of
the economical agents and the propagation of the information about possible tax
inspections among the population of taxpayers. We used two different approaches
to illustrate the process of propagation of information on network such as Markov
process and stochastic imitation rule for evolutionary dynamics. For the mentioned
models we presented mathematical formulations, analysis of the agents’ behavior
and series of numerical experiments. Numerical simulation demonstrates the dif-
ferences between the initial and final distribution of honest taxpayers and evaders
and estimates the profit of tax authority in the case of using information as a tool to
stimulate tax collection. We also can summarize that if agents behave accordingly
to the proportional imitation rule then numerical simulation has demonstrated that
the injected information in the population of taxpayers and the process of it’s
propagation is not effective. Whereas if the propagation process is described by
Markov process with one authorized center then the described model is valid.

Acknowledgements This work are supported the research grant “Optimal Behavior in Conflict-
Controlled Systems” (17-11-01079) from Russian Science Foundation.
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Appendix

In Appendix we present additional information about probability distribution, used
in this paper. Let’s recall that the density f (x) and function F(x) of the uniform
distribution of the value X on the interval (b − a, b + a) are defined by the next
way [13]:

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

2a
, if |x − b| ≤ a,

0, if |x − b| > a,

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if x < b − a,

1

2a
(x − b + a), if |x − b| ≤ a,

1, if x > b + a,
The mathematical expectationMX of the uniform distribution isMX = b.

The Pareto distribution [13], which is often used in the modeling and prediction
of an income, has the next density

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

aba

xa+1 , if x ≥ b,

0, if x < b,

function

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1−
(
b

x

)a
, if x ≥ b,

0, if x < b,

and the mathematical expectationMX = a

(a − 1)
· b.

The scatter of income levels in the group with the highest income may be
extremely wide. Therefore, as a value of parameter of the distribution we consider
a = 2: higher or lower values significantly postpone or approximate average value
to the lower limit of income.
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Chapter 9
Stationary Nash Equilibria for Average
Stochastic Positional Games

Dmitrii Lozovanu

Abstract An average stochastic positional game is a stochastic game with average
payoffs in which the set of states is divided into several disjoint subsets such that
each subset represents the position set for one of the player and each player controls
the Markov process only in his position set. In such a game each player chooses
actions in his position set in order to maximize his average reward per transition.
We show that an arbitrary average stochastic positional game possesses a stationary
Nash equilibrium. Based on this result we propose an approach for determining the
optimal stationary strategies of the players.

9.1 Introduction

The problem of the existence and determination of stationary Nash equilibria in
average stochastic games is a relevant problem extensively studied in game theory.
However the existence of Nash equilibria in stationary strategies actually is shown
only for special classes of average stochastic games. In [12] the existence of
stationary Nash equilibria has been proven for the games where the probability
transition matrices induced by any stationary strategies of the players are unichain.
Important results concerned with the existence of Nash equilibria have been
obtained for two-player stochastic games in [14]. In general case, for an average
stochastic game with m players (m ≥ 3) a stationary Nash equilibrium may not
exist. This fact has been shown in [5] where an example of 3-player average
stochastic game that has no stationary Nash equilibrium is presented.
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In this paper we prove the existence of stationary Nash equilibria for a class of
average stochastic games that we call average stochastic positional games. This
class of games generalizes the deterministic positional games from [3, 6–9]. We
formulate and study the considered class of games by applying the concept of
positional games to average Markov decision processes with finite state and action
spaces. We assume that a Markov decision process is controlled bym players where
the set of states is divided into m disjoint subsets such that each subset represents
the position set for one of the players and each player controls the Markov process
only in his position set. In the control process each player chooses actions in his
position set in order to maximize his average payoff.

Note that some special classes of average stochastic positional games has been
considered in [8, 9]. In [8] the existence of pure Nash equilibria for the average
stochastic positional games with unichain property is proven and in [9] the existence
of pure Nash equilibria for two-player zero-sum average stochastic games is shown.
In general, a pure Nash equilibrium for a non-zero average positional game with m
players may not exist even for the deterministic case. This fact has been shown in
[6] where an example of a non-zero two-player cyclic game that has no pure Nash
equilibrium is constructed.

In this paper we show that for an arbitrarym-player average stochastic positional
game there exists a Nash equilibrium in mixed stationary strategies. Based on
constructive proof of this result we suggest an approach for determining the optimal
stationary strategies of the players.

The paper is organized as follows. In Sect. 9.2 we formulate the average
stochastic positional game and specify the formulation of the game when players
use pure and mixed stationary strategies. In Sect. 9.3 we present some necessary
preliminary results from [2, 4] concerned with the existence of Nash equilibria in
m-player noncooperative games with quasi-concave and graph-continuous payoffs.
In Sect. 9.4 we show that an average Markov decision problem can be formulated
in the terms of stationary strategies as a nonlinear optimization problem where the
object function is quasi-monotonic (i.e. it is quasi-concave and quasi-convex). In
Sect. 9.5, based on results from Sects. 9.3 and 9.4, we present the proof of the main
result, i.e. we prove the existence of Nash equilibria in mixed stationary strategies
for an average stochastic positional game.

9.2 Formulation of Average Stochastic Positional Games

We first present the framework of a m-person stochastic positional game and then
specify the formulation of stochastic positional games with average payoffs when
the players use pure and mixed stationary strategies.
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9.2.1 The Framework of an Average Stochastic Positional
Game

A stochastic positional game with m players consists of the following elements:

– a state space X (which we assume to be finite);
– a partition X = X1 ∪X2 ∪ · · · ∪Xm where Xi represents the position set of

player i ∈ {1, 2, . . . ,m};
– a finite set A(x) of actions in each state x ∈ X;
– a step reward f i(x, a) with respect to each player i ∈{1, 2, . . . ,m} in each

state x ∈ X and for an arbitrary action a ∈ A(x);
– a transition probability function p : X × ∏

x∈X
A(x)×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary y ∈ X
for a fixed action a ∈ A(x), where

∑

y∈X
pax,y = 1, ∀x ∈ X, a ∈ A(x);

– a starting state x0 ∈ X.

The game starts at the moment of time t = 0 in the state x0 where the player i ∈
{1, 2, . . . ,m} who is the owner of the state position x0 (x0 ∈ Xi) chooses an action
a0 ∈ A(x0) and determines the rewards f 1(x0, a0), f

2(x0, a0), . . . , f
m(x0, a0)

for the corresponding players 1, 2, . . . ,m. After that the game passes to a state
y = x1 ∈ X according to probability distribution {pa0

x0,y}. At the moment of
time t = 1 the player k ∈ {1, 2, . . . ,m} who is the owner of the state position
x1 (x1 ∈ Xk) chooses an action a1 ∈ A(x1) and players 1, 2, . . . ,m receive
the corresponding rewards f 1(x1, a1), f

2(x1, a1), . . . , f
m(x1, a1). Then the game

passes to a state y = x2 ∈ X according to probability distribution {pa1
x1,y}

and so on indefinitely. Such a play of the game produces a sequence of states
and actions x0, a0, x1, a1, . . . , xt , at , . . . that defines a stream of stage rewards
f 1(xt , at ), f

2(xt , at ), . . . , f
m(xt , at ), t = 0, 1, 2, . . . . The average stochastic

positional game is the game with payoffs of the players

ωix0
= lim
t→∞ inf

1

t

t−1∑

τ=0

E(f i(xτ , aτ )), i = 1, 2, . . . ,m

where E is the expectation operator with respect to the probability measure in the
Markov process induced by actions chosen by players in their position sets and
given starting state x0. Each player in this game has the aim to maximize his average
reward per transition. In the case m = 1 this game becomes the average Markov
decision problem with given action sets A(x) for x ∈ X, a transition probability
function p : X × ∏

x∈X
A(x)× X → [0, 1] and step rewards f (x, a) = f 1(x, a)

for x ∈ X and a ∈ A(x).
In the paper we will study the average stochastic positional game when players

use pure and mixed stationary strategies of choosing the actions in the states.
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9.2.2 Pure and Mixed Stationary Strategies of the Players

A strategy of player i ∈ {1, 2, . . . ,m} in a stochastic positional game is a mapping
si that provides for every state xt ∈ Xi a probability distribution over the set of
actionsA(xt ). If these probabilities take only values 0 and 1, then si is called a pure
strategy, otherwise si is called a mixed strategy. If these probabilities depend only
on the state xt = x ∈ Xi (i.e. si do not depend on t), then si is called a stationary
strategy, otherwise si is called a non-stationary strategy.

In the following we can identify a pure stationary strategy si(x) of player i with
the set of boolean variables six,a ∈ {0, 1}, where for a given x ∈ Xi six,a = 1 if
and only if player i fixes the action a ∈ A(x). So, we can represent the set of pure
stationary strategies Si of player i as the set of solutions of the following system:

⎧
⎨

⎩

∑

a∈A(x)
six,a = 1, ∀x ∈ Xi;

six,a ∈ {0, 1}, ∀x ∈ Xi, ∀a ∈ A(x).
(9.1)

Obviously the sets of pure strategies S1, S2, . . . , Sm of players are finite sets. If in
system (9.1) we change the restrictions six,a ∈ {0, 1} for x ∈ Xi, a ∈ A(x) by the
conditions 0 ≤ six,a ≤ 1 then we obtain the set of stationary strategies in the sense
of Shapley [13], where six,a is treated as the probability of the choices of the action
a by player i every time when the state x is reached by any route in the dynamic
stochastic game. Thus, we can identify the set of mixed stationary strategies Si of
player i with the set of solutions of the system

⎧
⎨

⎩

∑

a∈A(x)
six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x)
(9.2)

and for a given profile s = (s1, s2, . . . , sm) ∈ S = S1 × S2 × · · · × Sm of mixed
strategies s1, s2, . . . , sm of the players the probability transition matrix P s = (ps

x,y)

induced by s can be calculated as follows

ps
x,y =

∑

a∈A(x)
six,ap

a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (9.3)

In the sequel we will distinguish stochastic games in pure and mixed stationary
strategies.
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9.2.3 Average Stochastic Games in Pure and Mixed Stationary
Strategies

Let s = (s1, s2, . . . , sm) be a profile of stationary strategies (pure or mixed
strategies) of the players. Then the elements of probability transition matrix P s =
(ps
x,y) in the Markov process induced by s can be calculated according to (9.3).

Therefore if Qs = (qs
x,y) is the limiting probability matrix of P s then the average

payoffs per transition ω1
x0
(s), ω2

x0
(s), . . . , ωmx0

(s) for the players are determined as
follows

ωix0
(s) =

m∑

k=1

∑

y∈Xk
qs
x0,y
f i(y, sk), i = 1, 2, . . . ,m, (9.4)

where

f i(y, sk) =
∑

a∈A(y)
sky,af

i(y, a), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (9.5)

expresses the average reward (step reward) of player i in the state y ∈ Xk when
player k uses the strategy sk .

The functions ω1
x0
(s), ω2

x0
(s), . . . , ωmx0

(s) on S = S1 × S2 × · · · × Sm,
defined according to (9.4), (9.5), determine a game in normal form that we denote
〈{Si}i=1,m, {ωix0

(s)}i=1,m 〉. This game corresponds to the average stochastic
positional game in mixed stationary strategies that in extended form is determined
by the tuple ({Xi}i=1,m, {A(x)}x∈X, {f i(x, a)}i=1,m, p, x0). The functions

ω1
x0
(s), ω2

x0
(s), . . . , ωmx0

(s) on S = S1 × S2 × · · · × Sm, determine the game
〈{Si}i=1,m, {ωix0

(s)}i=1,m 〉 that corresponds to the average stochastic positional
game in pure strategies. In the extended form this game also is determined by the
tuple ({Xi}i=1,m, {A(x)}x∈X, {f i(x, a)}i=1,m, p, x0).

9.2.4 Average Stochastic Positional Games with Random
Starting State

In the paper we will consider also stochastic positional games in which the starting
state is chosen randomly according to a given distribution {θx} on X. So, for
a given stochastic positional game we will assume that the play starts in the state
x ∈ X with probability θx > 0 where

∑

x∈X
θx = 1. If the players use mixed
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stationary strategies then the payoff functions

ψiθ (s) =
∑

x∈X
θxω

i
x(s), i = 1, 2, . . . ,m

on S define a game in normal form 〈{Si}i=1,m, {ψiθ (s)}i=1,m 〉 that in extended form

is determined by ({Xi}i=1,m, {A(x)}x∈X, {f i(x, a)}i=1,m, p, {θx}x∈X). In the case
θx = 0,∀x ∈ X\{x0}, θxo = 1 the considered game becomes a stochastic positional
game with fixed starting state x0.

9.3 Preliminaries

In the paper we shall use some results concerned with the existence of Nash equi-
libria in noncooperative games with quasi-concave and quasi-monotonic payoffs.

A function f : S → R1 on convex set S ⊆ Rn is quasi-concave [1] if
∀s′, s′′ ∈ S and ∀λ ∈ [0, 1] holds f (λs′ + (1 − λ)s′′) ≥ min{f (s′), f (s′′)}. If
∀s′, s′′ ∈ S and ∀λ ∈ [0, 1] holds f (λs′ + (1− λ)s′′) ≤ max{f (s′), f (s′′)} then
the function f : S → R1 is called quasi-convex. A function f : S → R1, S ⊆ Rn,
which is quasi-concave and quasi-convex is called quasi-monotonic. A detailed
characterization of quasi-convex, quasi-concave and quasi-monotonic functions
with an application to linear-fractional programming problems can be found in [1].

Let 〈Si i=1,m, f
i(s)i=1,m〉 be an m-player game in normal form, where

Si ⊆ Rni , i = 1, 2, . . . ,m, represent the corresponding sets of strategies

of the players 1, 2, . . . ,m, and f i :
m∏

j=1
Sj → R1, i = 1, 2, . . . ,m,

represent the corresponding payoffs of these players. Let s = (s1, s2, . . . , sm)

be a profile of strategies of the players, s ∈ S =
m∏

j=1
Sj , and define s−i =

(s1, s2, . . . , si−1, si+1, . . . , sm), S−i =
m∏

j=1(j �=i)
Sj where s−i ∈ S−i . Thus,

for an arbitrary s ∈ S we can write s = (si , s−i ).
Fan [4] extended the well-known equilibrium result of Nash [10] to the games

with quasi-concave payoffs. He proved the following theorem:

Theorem 9.1 Let Si ⊆ Rni , i = 1, 2, . . . ,m, be non-empty, convex and compact

sets. If each payoff f i : S → R1, i ∈ {1, 2, . . . ,m}, is continuous on S =
m∏

j=1
Sj

and quasi-concave with respect to si on Si , then the game 〈Si i=1,m, f
i(s)i=1,m〉

possesses a Nash equilibrium.
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Dasgupta and Maskin [2] considered a class of games with upper semi-
continuous, quasi-concave and graph-continuous payoffs.

Definition 9.1 The payoff f i :
m∏

j=1
Sj → R1 of the game 〈Si i=1,m f

i(s)i=1,m〉 is

upper semi-continuous if for any sequence {sk} ⊆ S =
m∏

j=1
Sj such that {sk} → s

it holds lim sup
k→∞

f i(sk) ≤ f i(s).

Definition 9.2 The payoff f i :
m∏

j=1
Sj → R1 of the game 〈Si i=1,mf

i(s)i=1,m〉 is

graph-continuous if for all s = (si , s−i ) ∈ S =
m∏

j=1
Sj there exists a function

F i : S−i → Si with F i(s−i ) = si such that f i(F i(s−i ), s−i ) is continuous at
s−i = s−i .

Dasgupta and Maskin [2] proved the following theorem.

Theorem 9.2 Let Si ⊆ Rni , i = 1, 2, . . . ,m, be non-empty, convex and compact

sets. If each payoff f i :
m∏

j=1
Sj → R1, i ∈ {1, 2, . . . ,m}, is quasi-concave

with respect to si on Si , upper semi-continuous with respect to s on S =
m∏

j=1
Sj

and graph-continuous, then the game 〈{Si}i=1,m, {f i(s)}i=1,m〉 possesses a Nash
equilibrium.

In the following we shall use this theorem for the case when each payoff
f i(si, s−i ), i ∈ {1, 2, . . . ,m} is quasi-monotonic with respect to si on Si and
graph-continuous. In this case the reaction correspondence of player

φi(s−i ) = {ŝi ∈ Si |f i(ŝi , s−i ) = max
si∈Si

f i (si, s−i )}, i = 1, 2, . . . ,m

are compact and convex valued and therefore the upper semi-continuous condition
for the functions f i(s), i = 1, 2, . . . ,m in Theorem 9.2 can be released. So, in this
case the theorem can be formulated as follows.

Theorem 9.3 Let Si ⊆ Rni , i = 1,m be non-empty, convex and compact sets. If

each payoff f i :
m∏

j=1
Sj → R1, i ∈ {1, 2, . . . , n}, is quasi-monotonic with respect

to si on Si and graph-continuous, then the game 〈{Si}i=1,m, {f i(s)}i=1,m〉
possesses a Nash equilibrium.
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9.4 Some Auxiliary Results

To prove the main result we need to formulate and study the average Markov
decision problem in the terms of stationary strategies. We present such a formulation
for the average Markov decision problem and prove some properties of its optimal
solutions that we shall use in the following for the average stochastic positional
game in mixed stationary strategies

9.4.1 A Linear Programming Approach for an Average
Markov Decision Problem

It is well-known [11] that an optimal stationary strategy for the infinite horizon
average Markov decision problem with finite state and action spaces can be found
by using the following linear programming model:
Maximize

ϕ(α, β) =
∑

x∈X

∑

a∈A(x)
f (x, a)αx,a (9.6)

subject to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

a∈A(y)
αy,a − ∑

x∈X
∑

a∈A(x)
pax,y αx,a = 0, ∀y ∈ X;

∑

a∈A(y)
αy,a + ∑

a∈A(y)
βy,a − ∑

x∈X
∑

a∈A(x)
pax,yβx,a = θy, ∀y ∈ X;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(9.7)

where θy for y ∈ X represent arbitrary positive values that satisfy the condition∑

y∈X
θy = 1, where θy for y ∈ X are treated as the probabilities of choosing the

starting state y ∈ X. In the case θy = 1 for y = x0 and θy = 0 for y ∈ X \ {x0} we
obtain the linear programming model for an average Markov decision problem with
fixed starting state x0.

This linear programming model corresponds to the multichain case of an average
Markov decision problem. If each stationary policy in the decision problem induces
an ergodic Markov chain then restrictions (9.7) can be replaced by restrictions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

a∈A(y)
αy,a − ∑

x∈X
∑

a∈A(x)
pax,y αx,a = 0, ∀y ∈ X;

∑

y∈X
∑

a∈A(y)
αy,a = 1;
αy,a ≥ 0, ∀y ∈ X, a ∈ A(y).

(9.8)
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In the linear programming model (9.6), (9.7) the restrictions

∑

a∈A(y)
αy,a +

∑

a∈A(y)
βy,a −

∑

x∈X

∑

a∈A(x)
pax,yβx,a = θy, ∀y ∈ X

with the condition
∑

y∈X
θy = 1 generalize the constraint

∑

x∈X
∑

a∈A(y)
αy,a = 1 in the

linear programming model (9.6), (9.8) for the ergodic case.
The relationship between feasible solutions of problem (9.6), (9.7) and stationary

strategies in the average Markov decision problem is the following:
Let (α, β) be a feasible solution of the linear programming problem (9.6), (9.7)

and denote by Xα = {x ∈ X| ∑
a∈X

αx,a > 0}. Then (α, β) possesses the properties

that
∑

a∈A(x)
βx,a > 0 for x ∈ X \ Xα and a stationary strategy sx,a that corresponds

to (α, β) is determined as

sx,a =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αx,a
∑

a∈A(x)
αx,a

if x ∈ Xα, a ∈ A(x);

βx,a
∑

a∈A(x)
βx,a

if x ∈ X \Xα, a ∈ A(x),
(9.9)

where sx,a expresses the probability of choosing the actions a ∈ A(x) in the states
x ∈ X. In [11] it is shown that the set of feasible solutions of problem (9.6), (9.7)
generate through (9.17) the set of stationary strategies S that corresponds to the set
of solutions of the following system

⎧
⎨

⎩

∑

a∈A(x)
sx,a = 1, ∀x ∈ X;
sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x).

Remark 9.1 Problem (9.6), (9.7) can be considered also for the case when θx =
0 for some x ∈ X. In particular, if θx = 0, ∀x ∈ X \ {x0} and θx0 = 1
then this problem is transformed into the model with fixed starting state x0. In this
case for a feasible solution (α, β) the subset X \ Xα may contain states for which∑
a∈A(x) βx,a = 0. In such states (9.9) cannot be used for determining sx,a . Formula

(9.9) can be used for determining the strategies sx,a in the states x ∈ X for which
either

∑
a∈A(x) αx,a > 0 or

∑
a∈A(x) βx,a > 0 and these strategies determine the

value of the objective function in the decision problem. In the state x ∈ X0, where

X0 = {x ∈ X|
∑

a∈A(x)
αx,a = 0,

∑

a∈A(x)
βx,a = 0},

the strategies of a selection the actions may be arbitrary because they do not affect
the value of the objective function.
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9.4.2 Average Markov Decision Problem in the Terms of
Stationary Strategies

We show that an average Markov decision problem in the terms of stationary
strategies can be formulated as follows:

Maximize

ψ(s,q,w) =
∑

x∈X

∑

a∈A(x)
f (x, a)sx,aqx (9.10)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qy − ∑

x∈X
∑

a∈A(x)
pax,y sx,aqx = 0, ∀y ∈ X;

qy +wy − ∑

x∈X
∑

a∈A(x)
pax,ysx,awx = θy, ∀y ∈ X;

∑

a∈A(y)
sy,a = 1, ∀y ∈ X;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x); wx ≥ 0, ∀x ∈ X,

(9.11)

where θy are the same values as in problem (9.6), (9.7) and sx,a, qx, wx for x ∈ X,
a ∈ A(x) represent the variables that must be found.

Theorem 9.4 Optimization problem (9.10), (9.11) determines the optimal station-
ary strategies of the multichain average Markov decision problem.

Proof Indeed, if we assume that each action set A(x), x ∈ X contains a single
action a′ then system (9.7) is transformed into the following system of equations

⎧
⎪⎪⎨

⎪⎪⎩

qy − ∑

x∈X
px,yqx = 0, ∀y ∈ X;

qy +wy − ∑

x∈X
px,ywx = θy, ∀y ∈ X

with conditions qy,wy ≥ 0 for y ∈ X, where qy = αy,a′, wy = βy,a′, ∀y ∈ X
and px,y = pa′x,y, ∀x, y ∈ X. This system uniquely determines qx for x ∈ X and
determines wx for x ∈ X up to an additive constant in each recurrent class of P =
(px,y) (see [11]). Here qx represents the limiting probability in the state x when
the system starts in the state y ∈ X with probabilities θy and therefore the condition
qx ≥ 0 for x ∈ X can be released. Note that wx for some states may be negative,
however always the additive constants in the corresponding recurrent classes can be
chosen so thatwx became nonnegative. In general, we can observe that in (9.11) the
conditionwx ≥ 0 for x ∈ X can be released and this does not influence the value of
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objective function of the problem. In the case |A(x)| = 1, ∀x ∈ X the average cost
is determined as ψ = ∑

x∈X
f (x)qx , where f (x) = f (x, a),∀x ∈ X.

If the action sets A(x), x ∈ X may contain more than one action then for a given
stationary strategy s ∈ S of selection of the actions in the states we can find the
average cost ψ(s) in a similar way as above by considering the probability matrix
P s = (ps

x,y), where

ps
x,y =

∑

a∈A(x)
pax,ysx,a (9.12)

expresses the probability transition from a state x ∈ X to a state y ∈ X when the
strategy s of selections of the actions in the states is applied. This means that we
have to solve the following system of equations

⎧
⎪⎨

⎪⎩

qy − ∑

x∈X
psx,yqx = 0, ∀y ∈ X;

qy +wy − ∑

x∈X
psx,ywx = θy, ∀y ∈ X.

If in this system we take into account (9.12) then this system can be written as
follows

⎧
⎪⎪⎨

⎪⎪⎩

qy − ∑

x∈X
∑

a∈A(x)
pax,y sx,aqx = 0, ∀y ∈ X;

qy + wy − ∑

x∈X
∑

a∈A(x)
pax,ysx,awx = θy, ∀y ∈ X.

(9.13)

An arbitrary solution (q,w) of the system of equations (9.13) uniquely determines
qy for y ∈ X that allows us to determine the average cost per transition

ψ(s) =
∑

x∈X

∑

a∈X
f (x, a)sx,aqx (9.14)

when the stationary strategy s is applied. If we are seeking for an optimal stationary
strategy then we should add to (9.13) the conditions

⎧
⎨

⎩

∑

a∈A(x)
sx,a = 1, ∀x ∈ X;
sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x)

(9.15)

and to maximize (9.14) under the constraints (9.13), (9.15). In such a way we obtain
problem (9.10), (9.11) without conditionswx ≥ 0 for x ∈ X. As we have noted the
conditions wx ≥ 0 for x ∈ X do not influence the values of the objective function
(9.10) and therefore we can preserve such conditions that show the relationship of
the problem (9.10), (9.11) with problem (9.6), (9.7). ��
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The relationship between feasible solutions of problem (9.6), (9.7) and feasible
solutions of problem (9.10), (9.11) can be established on the basis of the following
lemma.

Lemma 9.1 Let (s,q,w) be a feasible solution of problem (9.10), (9.11). Then

αx,a = sx,aqx, βx,a = sx,awx, ∀x ∈ X, a ∈ A(x) (9.16)

represent a feasible solution (α, β) of problem (9.6), (9.7) and ψ(s,q,w) =
ϕ(α, β). If (α, β) is a feasible solution of problem (9.6), (9.7) then a feasible solution
(s,q,w) of problem (9.10), (9.11) can be determined as follows:

sx,a =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αx,a
∑

a∈A(x)
αx,a

for x ∈ Xα, a ∈ A(x);

βx,a
∑

a∈A(x)
βx,a

for x ∈ X \Xα, a ∈ A(x);
(9.17)

qx =
∑

a∈A(x)
αx,a, wx =

∑

a∈A(x)
βx,a for x ∈ X.

Proof Assume that (s,q,w) is a feasible solution of problem (9.10), (9.11) and
(α, β) is determined according to (9.16). Then by introducing (9.16) in (9.6), (9.7)
we can observe that (9.7) is transformed in (9.11) and ψ(s,q,w) = ϕ(α, β), i.e.
(α, β) is a feasible solution of problem (9.6), (9.7). The second part of lemma
follows directly from the properties of feasible solutions of problems (9.6), (9.7)
and (9.10), (9.11). ��

Note that a pure stationary strategy s of problem (9.10), (9.11) corresponds to
a basic solution (α, β) of problem (9.6), (9.7) for which (9.17) holds, however
system (9.7) may contain basic solutions for which stationary strategies determined
through (9.17) do not correspond to pure stationary strategies. Moreover, two
different feasible solutions of problem (9.6), (9.7) may generate through (9.17) the
same stationary strategy. Such solutions of system (9.7) are considered equivalent
solutions for the decision problem.

Corollary 9.1 If (αi , βi), i = 1, k, represent the basic solutions of system (9.7)
then the set of solutions

M =
{
(α, β)| (α, β) =

k∑

i=1

λi(αi , βi),

k∑

i=1

λi = 1, λi > 0, i = 1, k
}

determines all feasible stationary strategies of problem (9.10), (9.11) through (9.17).



9 Stationary Nash Equilibria for Average Stochastic Positional Games 151

An arbitrary solution (α, β) of system (9.7) can be represented as follows:
α = ∑k

i=1 λ
iαi, where

∑k
i=1 λ

i = 1; λi ≥ 0, i = 1, k, and β represents a
solution of the system

⎧
⎪⎨

⎪⎩

∑

a∈A(y)
βx,a − ∑

z∈X
∑

a∈A(z)
paz,xβz,a = θx −

∑

a∈A(x)
αx,a, ∀x ∈ X;

βy,a ≥ 0, ∀x ∈ X, a ∈ A(x).

If (α, β) is a feasible solution of problem (9.6), (9.7) and (α, β) �∈ M then there
exists a solution (α′, β ′) ∈ M that is equivalent to (α, β) and ϕ(α, β) = ϕ(α′, β ′).

9.4.3 A Quasi-Monotonic Programming Model in Stationary
Strategies for an Average Markov Decision Problem

Based on results from previous section we show now that an average Markov
decision problem in the terms of stationary strategies can be represented as a quasi-
monotonic programming problem.

Theorem 9.5 Let an average Markov decision problem be given and consider the
function

ψ(s) =
∑

x∈X

∑

a∈A(x)
f (x, a)sx,a qx, (9.18)

where qx for x ∈ X satisfy the condition

⎧
⎪⎪⎨

⎪⎪⎩

qy − ∑

x∈X
∑

a∈A(x)
pax,y sx,aqx = 0, ∀y ∈ X;

qy + wy − ∑

x∈X
∑

a∈A(x)
pax,ysx,awx = θy, ∀y ∈ X.

(9.19)

Then on the set S of solutions of the system

⎧
⎪⎨

⎪⎩

∑

a∈A(x)
sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)
(9.20)

the function ψ(s) depends only on sx,a for x ∈ X, a ∈ A(x) and ψ(s) is
quasi-monotonic on S ( i.e. ψ(s) is quasi-convex and quasi-concave on S).
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Proof For an arbitrary s ∈ S system (9.19) uniquely determines qx for x ∈ X and
determines wx for x ∈ X up to a constant in each recurrent class of P s = (ps

x,y),
where ps

x,y =
∑

a∈A(x)
pax,ysx,a, ∀x, y ∈ X. This means that ψ(s) is determined

uniquely for an arbitrary s ∈ S, i.e. the first part of the theorem holds.
Now let us prove the second part of the theorem.
Assume that θx > 0,∀x ∈ X where

∑
x∈X θx = 1 and consider arbitrary two

strategies s′, s′′ ∈ S for which s′ �= s′′. Then according to Lemma 9.1 there exist
feasible solutions (α′, β ′) and (α′′, β ′′) of linear programming problem (9.6),
(9.7) for which

ψ(s′) = ϕ(α′, β ′), ψ(s′′) = ϕ(α′′, β ′′), (9.21)

where

α′x,a = s′x,aq ′x, α′′x,y = s′′x,aq ′′x , ∀x ∈ X, a ∈ A(x);

β ′x,a = s′x,aw′x, β ′′x,y = s′′x,aq ′′x , ∀x ∈ X, a ∈ A(x);

q ′x =
∑

a∈A(x)
α′x,a w′x,a =

∑

a∈A(x)
β ′x,a, ∀x ∈ X;

q ′′x =
∑

a∈A(x)
α′′x,a w′′x,a =

∑

a∈A(x)
β ′′x,a, ∀x ∈ X.

The function ϕ(α, β) is linear and therefore for an arbitrary feasible solution (α, β)
of problem (9.6), (9.7) holds

ϕ(α, β) = tϕ(α′, β ′)+ (1− t)ϕ(α′′, β ′′) (9.22)

if 0 ≤ t ≤ 1 and (α, β) = t (α′, β ′)+ (1− t)(α′′, β ′′).
Note that (α, β) corresponds to a stationary strategy s for which

ψ(s) = ϕ(α, β), (9.23)

where

sx,a =

⎧
⎪⎪⎨

⎪⎪⎩

αx,a

qx
if x ∈ Xα;

βx,a

wx
if x ∈ X \Xα.

(9.24)



9 Stationary Nash Equilibria for Average Stochastic Positional Games 153

Here Xα = {x ∈ X| ∑

a∈A(x)
αx,a > 0} is the set of recurrent states induced by

P s = (psx,y), where psx,y are calculated according to (9.12) for s = s and

qx = tq ′x + (1− t)q ′′, wx = tw′x + (1− t)w′′x , ∀x ∈ X.

We can see that Xα = Xα′ ∪ Xα′′ , where Xα′ = {x ∈ X| ∑

a∈A(x)
α′x,a > 0} and

Xα′′ = {x ∈ X|
∑

a∈A(x)
α′′x,a > 0}. The value

ψ(s) =
∑

x∈X

∑

a∈A(x)
f (x, a)sx,aqx

is determined by f (x, a), sx,a and qx in recurrent states x ∈ Xα and it is equal to
ϕ(α, β). If we use (9.24) then for x ∈ Xα and a ∈ A(x) we have

sx,a =
tα′x,a + (1− t)α′′x,a
tq ′x + (1− t)q ′′x

= ts
′
x,aq

′
x + (1− t)s′′x,aq ′′x

tq ′x + (1− t)q ′′x
=

= tq ′x
tq ′x + (1− t)q ′′x

s′x,a +
(1− t)q ′′x

tq ′x + (1− t)q ′′x
s′′x,a

and for x ∈ X \Xα and a ∈ A(x) we have

sx,a =
tβ ′x,a + (1− t)β ′′x,a
tw′x + (1− t)w′′x

= ts
′
x,aw

′
x + (1− t)s′′x,aw′′x

tw′x + (1− t)w′′x
=

= tw′x
tw′x + (1− t)w′′x

s′x,a +
(1− t)w′′x

tw′x + (1− t)w′′x
s′′x,a.

So, we obtain

sx,a = txs′x,a + (1− tx)s′′x,a, ∀a ∈ A(x), (9.25)

where

tx =

⎧
⎪⎪⎨

⎪⎪⎩

tq ′x
tq ′x + (1− t)q ′′x

if x ∈ Xα;
tw′x

tw′x + (1− t)w′′x
if x ∈ X \Xα.

(9.26)
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and from (9.21)–(9.23) we have

ψ(s) = tψ(s′)+ (1− t)ψ(s′′). (9.27)

This means that if we consider the set of strategies

S(s′, s′′) = {s| sx,a = txs′x,a + (1− tx)s′′x,a, ∀x ∈ X, a ∈ A(x)}

then for an arbitrary s ∈ S(s′, s′′) it holds

min{ψ(s′), ψ(s′′)} ≤ ψ(s) ≤ max{ψ(s′), ψ(s′′)}, (9.28)

i.e ψ(s) is monotone on S(s′, s′′). Moreover, using (9.25)–(9.28) we obtain that s
possesses the properties

lim
t→1

sx,a = s′x,a, ∀x ∈ X, a ∈ A(x); lim
t→0

sx,a = s′′x,a, ∀x ∈ X, a ∈ A(x)
(9.29)

and respectively

lim
t→1

ψ(s) = ψ(s′); lim
t→0

ψ(s) = ψ(s′′).

In the following we show that the function ψ(s) is quasi-monotonic on S. To
prove this it is sufficient to show that for an arbitrary c ∈ R1 the sublevel set

L−c (ψ) = {s ∈ S| ψ(s) ≤ c}

and the superlevel set

L+c (ψ) = {s ∈ S| ψ(s) ≥ c}

of function ψ(s) are convex. These sets can be obtained respectively from the
sublevel set

L−c (ϕ) = {(α, β)| ϕ(α, β) ≤ c}

and the superlevel set

L+c (ϕ) = {(α, β)| ϕ(α, β) ≥ c}

of function ϕ(α, β) for linear programming problem (9.6), (9.7) using (9.17).
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Denote by (αi , βi), i = 1, k the basic solutions of system (9.7). According to
Corollary 9.1 all feasible strategies of problem (9.6), (9.7) can be obtained trough
(9.17) using the basic solutions (αi , βi), i = 1, k. Each (αi , βi), i = 1, k,
determines a stationary strategy

six,a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αix,a

qix
, for x ∈ Xαi , a ∈ A(x);

βix,a

wix
, for x ∈ X \Xαi , a ∈ A(x)

(9.30)

for which ψ(si ) = ϕ(αi, βi) where

Xαi ={x ∈ X|
∑

a∈A(x)
αix,a > 0}, qix =

∑

a∈A(x)
αix,a, w

i
x =

∑

a∈A(x)
βix,a, ∀x ∈ X.

(9.31)
An arbitrary feasible solution (α, β) of system (9.7) determines a stationary strategy

sx,a =
⎧
⎨

⎩

αx,a
qx
, for x ∈ Xα, a ∈ A(x);

βx,a
wx

, for x ∈ X \Xα, a ∈ A(x),
(9.32)

for which ψ(s) = ϕ(α, β) where

Xα = {x ∈ X|
∑

a∈A(x)
αx,a > 0}, qx =

∑

a∈A(x)
αx,a, wx =

∑

a∈A(x)
βx,a, ∀x ∈ X.

Taking into account that (α, β) can be represented as

(α, β) =
k∑

i=1

λi(αi , βi), where
k∑

i=1

λi = 1, λi ≥ 0, i = 1, k (9.33)

we have ϕ(α, β) =
k∑

i=1
ϕ(αi, βi)λi and we can consider

Xα =
k⋃

i=1

Xαi ; α =
k∑

i=1

λiαi; q =
k∑

i=1

λiqi; w =
k∑

i=1

λiwi . (9.34)
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Using (9.30)–(9.34) we obtain:

sx,a = αx,a
qx

=

k∑

i=1
λiαkx,a

qx
=

k∑

i=1
λisix,aq

i
x

qx
=
k∑

i=1

λiqix

qx
six,a, ∀x ∈ Xα, a ∈ A(x);

sx,a = βx,a
wx

=

k∑

i=1
λiβkx,a

wx
=

k∑

i=1
λisix,aw

i
x

wx
=
k∑

i=1

λiwix

wx
six,a, ∀x∈X \Xα, a∈A(x)

and

qx =
k∑

i=1

λiqix, wx =
k∑

i=1

λiwix for x ∈ X. (9.35)

So,

sx,a =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k∑

i=1

λiqix

qx
six,a if qx > 0;

k∑

i=1

λiwix

wx
six,a if qx = 0,

(9.36)

where qx and wx are determined according to (9.35).
We can see that if λi, si, qi, i = 1, k are given then the strategy s defined

by (9.36) is a feasible strategy because sx,a ≥ 0,∀x ∈ X, a ∈ A(x) and
∑
a∈A(x) sx,a = 1, ∀x ∈ X. Moreover, we can observe that qx =

k∑

i=1
λiqix, wx =

k∑

i=1
λiwix for x ∈ X represent a solution of system (9.19) for the strategy s defined

by (9.36). This can be verified by plugging (9.35) and (9.36) into (9.19); after such
a substitution all equations from (9.19) are transformed into identities. For ψ(s) we
have

ψ(s) =
∑

x∈X

∑

a∈A(x)
f (x, a)sx,aqx =

∑

x∈Xα

∑

a∈A(x)
f (x, a)

k∑

i=1

(
λiqix

qx
six,a

)

qx

=
k∑

i=1

( ∑

x∈X
αi

∑

a∈A(x)
f (x, a)six,aq

i
x

)

λi =
k∑

i=1

ψ(si )λi ,
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i.e.

ψ(s) =
k∑

i=1

ψ(si )λi , (9.37)

where s is the strategy that corresponds to (α, β).
Thus, assuming that the strategies s1, s2, . . . , sk correspond to basic solutions

(α1, β1), (α2, β2), . . . , (αk, βk) of problem (9.6), (9.7) and s ∈ S corresponds
to an arbitrary solution (α, β) of this problem that can be expressed as convex
combination of basic solutions of problem (9.6), (9.7) with the corresponding
coefficients λ1, λ2, . . . , λk , we can express the strategy s and the corresponding
value ψ(s) by (9.35)–(9.37). In general the representation (9.35)–(9.37) of strategy
s and of the valueψ(s) is valid for an arbitrary finite set of strategies from S if (α, β)
can be represented as convex combination of the finite number of feasible solutions
(α1, β1), (α2, β2), . . . , (αk, βk) that correspond to s1, s2, . . . , sk ; in the case k = 2
from (9.35)–(9.37) we obtain (9.25)–(9.27). It is evident that for a feasible strategy
s ∈ S the representation (9.35), (9.36) may be not unique, i.e. two different vectors

Λ = (λ
1
, λ

2
, . . . , λ

k
) and Λ = λ

1
, λ

2
, . . . , λ

k
may determine the same strategy

s via (9.35), (9.36). In the following we will assume that s1, s2, . . . , sk represent
the system of linear independent basic solutions of system (9.20), i.e. each si ∈ S
corresponds to a pure stationary strategy.

Thus, an arbitrary strategy s ∈ S is determined according to (9.35), (9.36) where
λ1, λ2, . . . , λk correspond to a solution of the following system

k∑

i=1

λi = 1; λi ≥ 0, i = 1, k.

Consequently, the sublevel set L−c (ψ) of function ψ(s) represents the set of
strategies s determined by (9.35), (9.36), where λ1, λ2, . . . , λk satisfy the condition

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∑

i=1
ψ(si )λi ≤ c;

k∑

i=1
λi = 1; λi ≥ 0, i = 1, k

(9.38)

and the superlevel set L+c (ψ) of ψ(s) represents the set of strategies s determined
by (9.35), (9.36), where λ1, λ2, . . . , λk satisfy the condition

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∑

i=1
ψ(si)λi ≥ c;

k∑

i=1
λi = 1; λi ≥ 0, i = 1, k.

(9.39)
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Respectively the level set Lc(ψ) = {s ∈ S| ψ(s) = c} of function ψ(s) represents
the set of strategies s determined by (9.35), (9.36), where λ1, λ2, . . . , λk satisfy the
condition

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∑

i=1
ψ(si)λi = c;

k∑

i=1
λi = 1; λi ≥ 0, i = 1, k.

(9.40)

Let us show that L−c (ψ), L+c (ψ), Lc(ψ) are convex sets. We present the proof
of convexity of sublevel set L−c (ψ). The proof of convexity of L+c (ψ) and Lc(ψ) is
similar to the proof of convexity of L−c (ψ).

Denote by Λ the set of solutions (λ1, λ2, . . . , λk) of system (9.38). Then from
(9.35), (9.36), (9.38) we have

L−c (ψ) =
∏

x∈X
Ŝx

where Ŝx represents the set of strategies

sx,a =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑k
i=1 λ

iqixs
i
x,a

∑k
i=1 λ

iqix

if
∑k
i=1 λ

iqix > 0,

∑k
i=1 λ

iwixs
i
x,a

∑k
i=1 λ

iwix

if
∑k
i=1 λ

iqix = 0,

a ∈ A(x)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ.
For an arbitrary x ∈ X the set Λ can be represented as follows Λ = Λ+x ∪Λ0

x,

where

Λ+x = {(λ1, λ2, . . . , λk) ∈ Λ|
k∑

i=1

λiqix > 0},

Λ0
x = {(λ1, λ2, . . . , λk) ∈ Λ|

k∑

i=1

λiqix = 0}

and
∑k
i=1 λ

iwix > 0 if
∑k
i=1 λ

iqix = 0. Therefore Ŝx can be expressed as follows
Ŝx = Ŝ+x ∪ Ŝ0

x , where Ŝ+x represents the set of strategies

sx,a =
∑k
i=1 λ

iqixs
i
x,a

∑k
i=1 λ

iqix

, for a ∈ A(x) (9.41)
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in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ+x and Ŝ0
x represents the set

of strategies

sx,a =
∑k
i=1 λ

iwixs
i
x,a

∑k
i=1 λ

iwix

, for a ∈ A(x) (9.42)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ0
x .

Thus, if we analyze (9.41) then observe that sx,a for a given x ∈ X represents
a linear-fractional function with respect to λ1, λ2, . . . , λk defined on convex set
Λ+x and Ŝ+x is the image of sx,a on Λ+x . Therefore Ŝ+x is a convex set. If we
analyze (9.42) then observe that sx,a for given x ∈ X represents a linear-fractional
function with respect to λ1, λ2, . . . , λk on the convex set Λ0

x and Ŝ0
x is the image of

sx,a on Λ0
x . Therefore Ŝ0

x is a convex set (see [1]). Additionally, we can observe
that Λ+x ∩ Λ0

x = ∅ and in the case Λ+x ,Λ0
x, �= ∅ the set Λ0

x represents the
limit inferior of Λ+x . Using this property and taking into account (9.29) we can
conclude that each strategy sx ∈ Ŝ0

x can be regarded as the limit of a sequence
of strategies {stx} from Ŝ+x . Therefore we obtain that Ŝx = Ŝ+x ∪ Ŝ0

x is a
convex set. This involves the convexity of the sublevel set L−c (ψ). In an analogues
way using (9.39) and (9.40) we can show that the superlevel set L+c (ψ) and
the level set Lc(ψ) are convex sets. This means that the function ψ(s) is quasi-
monotonic on S. So, if θx > 0,∀x ∈ X and

∑
x∈X θx = 1 then the theorem

holds.
If θx = 0 for some x ∈ X then the set X \ Xα may contain

states for which
∑
a∈A(x) αx,a = 0 and

∑
a∈A(x) βx,a = 0 (see

Remark 9.1 and Lemma 9.1). In this case X can be represented as
follows:

X = (X \X0) ∪X0,

where

X0 = {x ∈ X|
∑

a∈A(x)
αx,a = 0;

∑

a∈A(x)
βx,a = 0}.

For x ∈ X \X0 the convexity of Ŝx can be proved in the same way as for the case
θx > 0,∀x ∈ X. If X0 �= ∅ then for x ∈ X0 we have Ŝx = Sx and the convexity
of Ŝx is evident. So, the theorem holds.

��
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9.5 The Main Results

In this section we prove the existence of Nash equilibria in mixed stationary
strategies for an arbitrary average stochastic positional game. To prove this result
we show that such a game in normal form can be formulated as a game with quasi-
monotonic and graph-continuous payoffs of the players.

9.5.1 A Normal Form of an Average Stochastic Positional
Game in Mixed Stationary Strategies

Based on the results from Sect. 9.4 we can now formulate the average stochastic
positional game in the terms of mixed stationary strategies as follows.

Let Si , i ∈ {1, 2, . . .m} be the set of solutions of the system

⎧
⎨

⎩

∑

a∈A(x)
six,a = 1, ∀x ∈ Xi;
six,a ≥ 0, ∀x ∈ Xi, a ∈ A(x)

(9.43)

that determines the set of stationary strategies of player i. Each Si is a convex
compact set and an arbitrary extreme point corresponds to a basic solution si of
system (9.43), where six,a ∈ {0, 1}, ∀x ∈ Xi, a ∈ A(x), i.e. each basic solution of
this system corresponds to a pure stationary strategy of player i.

On the set S = S1 × S2 × · · · × Sm we define m payoff functions

ψiθ (s
1, s2, . . . , sm) =

m∑

k=1

∑

x∈Xk

∑

a∈A(x)
skx,af

i(x, a)qx, i = 1, 2, . . . ,m,

(9.44)
where qx for x ∈ X are determined uniquely from the following system of linear
equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qy −
m∑

k=1

∑

x∈Xk

∑

a∈A(x)
skx,a p

a
x,y qx = 0, ∀y ∈ X;

qy +wy −
m∑

k=1

∑

x∈Xk

∑

a∈A(x)
skx,a p

a
x,y wx = θy, ∀y ∈ X

(9.45)

for an arbitrary fixed profile s = (s1, s2, . . . , sm) ∈ S. The functions
ψiθ (s

1, s2, . . . , sm), i = 1, 2, . . . ,m, represent the payoff functions for the
average stochastic game in normal form 〈{Si}i=1,m, {ψiθ (s)}i=1,m 〉. This game

is determined by the tuple ({Xi}i=1,m, {A(x)}x∈X, {f i(x, a)}i=1,m, p, {θy}y∈X)
where θy for y ∈ X are given nonnegative values such that

∑
y∈X θy = 1.
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If θy = 0, ∀y ∈ X \ {x0} and θx0 = 1, then we obtain an average stochastic
game in normal form 〈{Si}i=1,m, {ωix0

(s)}i=1,m 〉 when the starting state x0 is

fixed, i.e. ψiθ (s
1, s2, . . . , sm) = ωix0

(s1, s2, . . . , sm), i = 1, 2, . . . ,m. So, in this
case the game is determined by ({Xi}i=1,m, {A(x)}x∈X, {f i(x, a)}i=1,m, p, x0).

If θy > 0, ∀y ∈ X and
∑
y∈X θy = 1, then we obtain an average stochastic

game when the play starts in the states y ∈ X with probabilities θy . In this case
for the payoffs of the players in the game in normal form we have

ψiθ (s
1, s2, . . . , sm) =

∑

y∈X
θyω

i
y(s

1, s2, . . . , sm), i = 1, 2, . . . ,m.

9.5.2 Existence of Mixed Stationary Nash Equilibria in
Average Stochastic Positional Games

Let 〈{Si}i=1,m, {ψiθ (s)}i=1,m 〉 be the non-cooperative game in normal form
that corresponds to the average stochastic positional game in stationary strate-
gies determined by ({Xi}i=1,m, {A(x)}x∈X, {f i(x, a)}i=1,m, p, {θy}y∈X). Hence,

Si , i = 1, 2, . . . ,m, and ψiθ (s), i = 1, 2, . . . ,m, are defined according to (9.43)–
(9.45).

Theorem 9.6 The game 〈{Si}i=1,m, {ψiθ (s)}i=1,m〉 possesses a Nash equilib-

rium s∗ = (s1∗, s2∗, . . . , sm∗) ∈ S which is a Nash equilibrium in mixed
stationary strategies for the average stochastic positional game determined by
({Xi}i=1,m, {A(x)}x∈X,
{f i(x, a)}i=1,m, p, {θy}y∈X). If θy > 0, ∀y ∈ X, then s∗= (s1∗, s2∗, . . . , sm∗) is a
Nash equilibrium in mixed stationary strategies for the average stochastic positional
game 〈{Si}i=1,m, {ωiy(s)}i=1,m 〉 with an arbitrary starting state y ∈ X.
Proof To prove the theorem we need to verify that 〈{Si}i=1,m, {ψiθ (s)}i=1,m〉
satisfies the conditions of Theorem 9.3. So, we have to show that each payoff
ψiθ (s

i , s−i ) is quasi-monotonic with respect to si on convex and compact set Si ,
and each payoff function ψiθ (s

i, s−i ) is graph-continuous.
Indeed, if players 1, 2, . . . , i−1, i+1, . . . ,m, fix their strategies ŝk ∈ Sk, k �= i

then we obtain an average Markov decision problem with respect to si ∈ Si in which
it is necessary to maximize the average reward function ϕi(si) = ψiθ (s

i , ŝ−i ).
According to Theorem 9.5 the function ϕi(si) = ψiθ (si, ŝ−i ) possesses the property
that it is quasi-monotonic with respect to si on Si . Additionally we can observe
that if for the payoff ψi(si , s−i ) we consider the function F i : S−i → Si such
that

F i(s−i ) = ŝi ∈ φi(s−i ) for s−i ∈ S−i , i ∈ {1, 2, . . . ,m}
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where

φi(s−i ) = { ŝi ∈ Si | ψiθ (ŝi , s−i )) = max
si∈Si

ψiθ (s
i , s−i )},

then the function ψiθ (F
i(s−i ), s−i ) is continuous at s−i = s−i for

an arbitrary (si, s−i ) ∈ S. So, ψiθ (s) is graph-continuous and according
to Theorem 9.3 the game 〈{Si}i=1,m, {ψiθ (s)}i=1,m〉 possesses a Nash

equilibrium s∗ ∈ S. This Nash equilibrium is a Nash equilibrium in mixed
stationary strategies for the average stochastic positional game determined by
({Xi}i=1,m, {A(x)}x∈X, {f i(x, a}i=1,m, p, {θy}y∈X). ��

Thus, for an arbitrary average stochastic positional game a Nash equilibrium in
mixed stationary strategies exists and the optimal stationary strategies of the players
can be found using the game 〈{Si}i=1,m, {ψiθ (s)}i=1,m〉, where Si and ψiθ (s),
i = 1, 2, . . . ,m, are defined according to (9.43)–(9.45).

9.6 Conclusion

Average stochastic positional games represent an important class of average stochas-
tic games with finite state and action spaces that generalizes deterministic positional
games with mean payoffs from [3, 6, 7]. For this class of games Nash equilibria exist
in the set of mixed stationary strategies and the optimal mixed stationary strategies
of the players can be found using the game model in normal form from Sect. 9.5.

Acknowledgements The author is grateful to the referee for interesting suggestions and remarks
contributing to improve the presentation of the paper.
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Chapter 10
Game Equilibria and Transition
Dynamics in Networks with
Heterogeneous Agents

Vladimir Matveenko, Maria Garmash, and Alexei Korolev

Abstract We study game equilibria in a model of production and externalities
in network with two types of agents who possess different productivities. Each
agent may invest a part of her endowment (for instance, time or money) at the
first stage; consumption at the second period depends on her own investment and
productivity as well as on the investments of her neighbors in the network. Three
ways of agent’s behavior are possible: passive (no investment), active (a part of
endowment is invested) and hyperactive (the whole endowment is invested). We
introduce adjustment dynamics and study consequences of junction of two regular
networks with different productivities of agents. In particular, we study how the
behavior of nonadopters (passive agents) changes when they connect to adopters
(active or hyperactive) agents.

10.1 Introduction

Models of network economics and network games take into account structure of
socio-economic systems, social settings, interactions of agents (see e.g. [1–4, 7–
11, 13]). Such models assume that agents in a network act as rational decision
makers, and the profile of actions of all agents in the network is a game equilibrium.
Decision of each agent is influenced by behavior (or by knowledge) of her
neighbors in the network. Usually, in such models the agents are assumed to be
homogeneous except differences in their positions in the network; a specific problem
is to study how the network structure relates to behavior of agents in the game
equilibrium. However, since diversity and heterogeneity become an important aspect
of contemporary social and economic life (international working teams is a typical
example), an important task is to account for heterogeneity of agents as a factor
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defining differences in their behavior and well-being. This direction of research is
only forming in the literature.

We add agents’ heterogeneity into the two-period consumption-investment game
model (see [16] for a special case of complete network and [14] for a general
network case). In the model, in the first stage each agent in network, at the expense
of diminishing current consumption, makes investment of some resource (such as
money or time). Consumption in the second stage depends not only on her own
investment and productivity but also on her ‘environment’—the sum of investments
of both herself and her neighbors. Total utility of each agent depends on her
consumption in both stages. Such situations are typical for families, communities,
international organizations, innovative industries etc.

The fact that other players influence the payoff only through the environment
makes applicable the concept of ‘Nash equilibrium with externalities’, similar to
the one introduced by Romer [16] and Lucas [12]. Under this concept, the agent is
attached, in some degree, to the equilibrium of the game. Namely, it is assumed
that the agent in the moment of decision-making considers the environment as
exogenously given.

For this model Matveenko et al. [15] assume that there are two types of agents
characterized by different productivities. It is shown that, in dependence on the
type of agent and externality which she receives, three ways of agent’s behavior
are possible: passive (no investment), active (a part of endowment is invested) and
hyperactive (the whole endowment is invested). In other terms, the equilibrium
behavior of agents is defined by their generalized α-centralities which take into
account their productivities. Matveenko et al. [15] confine themselves by studying
the case of complete networks.

In the present paper we consider a more general case of regular (equidegree)
networks with two types of agents. A central question studied in the paper is
consequences of junction of two networks with different productivities of agents.
We introduce a continuous adjustment dynamics and study the process of transition
to a new equilibrium. The dynamics pattern and the nature of the resulting
equilibrium depend on the parameters characterizing the heterogeneous agents. We
find conditions under which the initial equilibrium holds after unification, as well
as conditions under which the equilibrium changes. In particular, we study how the
behavior of nonadopters (passive agents) changes when they connect to adopters
(active or hyperactive) agents. Thus, our paper contributes a new approach to the
literature on diffusion in networks (typical examples are technology adoption and
development of provision of local public goods—see e.g. [5, 6, 17]).

The paper is organized in the following way. The game model is formulated
in Sect. 10.2. Agent’s behavior in equilibrium is characterized in Sect. 10.3. Sec-
tion 10.4 studies equilibria with heterogeneous agents in regular network of a special
class. Section 10.5 introduces and studies the adjustment dynamics which may start
after a small disturbance of initial inner equilibrium or after a junction of networks.
Section 10.6 studies consequences of junction of two regular networks with different
types of agents. Section 10.7 concludes.
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10.2 The Model

There is a network (undirected graph) with n nodes i = 1, 2, ..., n; each node
represents an agent. At the first stage each agent i possesses initial endowment of
good, e (it may be, for instance, time or money) and uses it partially for consumption
at the first stage, ci1, and partially for investment into knowledge, ki :

ci1 + ki = e, i = 1, 2, ..., n.

Investment immediately transforms one-to-one into knowledge which is used in
production of good for consumption at the second stage, ci2.

The consumption of the second period is equal to production: ci2 = F(ki,Ki).
Production in node i is described by production function:

F(ki,Ki) = gikiKi, gi > 0,

which depends on the state of knowledge in ith node, ki , and on environment, Ki .
The environment is the sum of investments by the agent himself and her neighbors:

Ki = ki + K̃i , K̃i =
∑

j∈N(i)
kj

where N(i)—is the set of incident nodes of node i. The sum of investments of
neighbors, K̃i , will be referred as pure externality.

Preferences of agent i are described by the quadratic utility function:

Ui(c
i
1, c

i
2) = ci1(e− aci1)+ dici2,

where di is the value of consumption at the second stage, di > 0; a is a satiation
coefficient. It is assumed that ci1 ∈ [0, e], the utility increases in ci1 and is concave
(the marginal utility decreases) with respect to ci1. A sufficient condition leading to
such shape of the utility is 0 < a < 1/2; we assume that this inequality is satisfied.

We will denote the product digi by bi and assume that a < bi . Since increase of
any of parameters di, gi promotes increase of the second stage consumption, we will
call bi productivity. We will assume that bi �= 2a, i = 1, 2, ..., n. If bi > 2a, we
will say that ith agent is productive, and if bi < 2a—that the agent is unproductive.

Three ways of behavior are possible: agent i is called passive if she makes zero
investment, ki = 0 (i.e. consumes the whole endowment at the first stage); active
if 0 < ki < e; hyperactive if she makes maximally possible investment e (i.e.
consumes nothing on the first stage).

We consider a game in which possible actions (strategies) of player i are the
values of investment ki ∈ [0, e]. The Nash equilibrium with externalities (for
shortness, the equilibrium) is a profile of actions k∗1, k∗2 , ..., k∗n, such that each k∗i
is a solution of the following problem of maximization of ith player’s utility given
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environmentKi :

Ui(c
i
1, c

i
2) −→
ci1,c

i
2

max

⎧
⎪⎪⎨

⎪⎪⎩

ci1 = e − ki,
ci2 = F(ki,Ki),
ci1 ≥ 0, ci2 ≥ 0, ki ≥ 0,

where the environmentKi is defined by the profile k∗1 , k∗2 , ..., k∗n:

Ki = k∗i +
∑

j∈N(i)
k∗j .

Substituting the constraints-equalities into the objective function, we obtain a
new function (payoff function):

Vi(ki,Ki) = Ui(e − ki, Fi(ki,Ki)) = (e− ki)(e− a(e− ki))+ bikiKi
= e2(1− a)− kie(1− 2a)− ak2

i + bikiKi. (10.1)

If all players’ solutions are internal (0 < k∗i < e, i = 1, 2, ..., n), i.e. all players
are active, the equilibrium will be referred to as inner equilibrium. It is clear that,
the inner equilibrium (if it exists for given values of parameters) is defined by the
system

D1Vi(ki,Ki) = 0, i = 1, 2, ..., n, (10.2)

whereD1 is the differentiation operator for the first argument of function. Here

D1Vi(ki,Ki) = e(2a − 1)− 2aki + biKi . (10.3)

The following theorem will serve as a tool for comparison of utilities.

Theorem 10.1 (Theorem 1.2 in [15]) LetW∗ andW∗∗ be networks with the same
endowment e; i, j be, correspondingly, two their nodes; bi, bj be productivities of
the agents at these nodes; k∗i , K∗i , U∗i and k∗∗j , K∗∗j , U∗∗j be equilibrium values of
knowledge, environment and utilities in these two nodes; k∗i ∈ (0, e], k∗∗j ∈ (0, e].
In such case

1. if biK∗i < bjK∗∗j , then U∗i < U∗∗j ;
2. if biK∗i ≤ bjK∗∗j , then U∗i ≤ U∗∗j ;
3. if biK∗i = bjK∗∗j , then U∗i = U∗∗j .

If k∗i = 0, K∗∗j > 0, then U∗i = U(e, 0) < U∗∗j .
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10.3 Indication of Agent’s Ways of Behavior

Definition 10.1 We will denote by k̃Si the root of the equation

D1Vi(ki,Ki) = (bi − 2a)ki + biK̃i − e(1− 2a) = 0.

Thus,

k̃Si =
e(2a − 1)+ biK̃i

2a − bi ,

where K̃i is the pure externality received by the agent.

Remark 10.1 Evidently, if in equilibrium the agent is active, her investment is equal

to k̃Si . In other cases this value has only “informative” role.

Remark 10.2 Lemma 2.1 and Corollary 2.1 in [15] imply that a profile of actions is
an equilibrium only if for every agent i, i = 1, 2, . . . , n:

1) If ki = 0, then K̃i ≤ e(1−2a)
bi

;

2) If 0 < ki < e, then ki = kSi ;

3) If ki = e, then K̃i ≥ e(1−bi)
bi

.

Definition 10.2 A network in which each node has the same degree (number of
neighbors) is referred as regular. A regular network is denoted (n, m), where n is
the number of nodes, and m is degree.

Corollary 10.1 In regular network (n,m) in equilibrium, in which all the agents
make the same investments

1) if bi <
1
m+1 , i = 1, 2, ..., n, then agents are passive;

2) if bi = 1
m+1 , i = 1, 2, ..., n, then agents are passive or hyperactive;

3) if bi > 1
m+1 , i = 1, 2, ..., n, then agents are passive, active or hyperactive.

Proof It follows immediately from Remark 10.2. In fact, the condition of passivity

0 ≤ e(1− 2a)

bi

is already valid. The condition of activity

0 < k̃Si =
e(1− 2a)

(m+ 1)bi
< e
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is equivalent to

bi >
1

m+ 1
.

The condition of hyperactivity

K̃i = me ≥ e(1− bi)
bi

is equivalent to

bi ≥ 1

m+ 1
.

��
Remark 10.3 Evidently, k̃Si can be presented as

k̃Si =
biKi − e(1− 2a)

2a
. (10.4)

Lemma 10.1 (Lemma 2.2 in [15]) In equilibrium ith agent is passive iff

Ki ≤ e(1− 2a)

bi
; (10.5)

ith agent is active iff

e(1− 2a)

bi
< Ki <

e

bi
; (10.6)

ith agent is hyperactive iff

Ki ≥ e

bi
. (10.7)

Remark 10.4 In any network, in which all agents have the same environment,
there cannot be equilibrium in which an agent with a higher productivity is active
while an agent with a lower productivity is hyperactive, or when an agent with a
higher productivity is passive while an agent with a lower productivity is active or
hyperactive.
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10.4 Equilibria in Regular Network with Heterogeneous
Types of Agents

Definition 10.3 Let us consider a regular network consisting of n1 agents with
productivity b1 (agents of type 1) and n2 agents with productivity b2 (agents of
type 2); b1 > b2. Let each agent of type 1 have m1 neighbors of her own type and
m2 + 1 neighbors of type 2; and let each agent of type 2 have m2 neighbors of her
own type andm1+1 neighbors of type 1. Such network will be referred as biregular.

Remark 10.5 A special case of biregular network is a complete network with n1+n2
agents, which is received in result of unification of two complete networks with n1
and n2 agents. In such network mi = ni − 1, i = 1, 2.

Definition 10.4 Equilibrium (or any other situation) is called symmetric, if all
players of the same type choose the same action (make the same investment).

Let a biregular network be in a symmetric equilibrium, in which each 1st type
agent makes investment k1, and each 2nd type agent makes investment k2. Then, for
each agent environment is equal to K = k1(m1 + 1) + k2(m2 + 1). According to
Remark 10.4, only six symmetric equilibria are possible. The following proposition
lists these possible symmetric equilibria and provides conditions of their existence.

Proposition 10.1 In biregular network the following symmetric equilibria are
possible.

1) Equilibrium with all hyperactive agents is possible iff

b1 > b2 ≥ 1

m1 +m2 + 2
. (10.8)

2) Equilibrium in which 1st type agents are hyperactive and 2nd type agents are
active is possible if

0 <
1− 2a − (m1 + 1)b2

(m2 + 1)b2 − 2a
< 1. (10.9)

m1 + 1+ (m2 + 1)
1− 2a − (m1 + 1)b2

(m2 + 1)b2 − 2a
≥ 1

b1
. (10.10)

3) Equilibrium in which 1st type agents are hyperactive and 2nd type agents are
passive is possible iff

b1 ≥ 1

m1 + 1
, b2 ≤ 1− 2a

m1 + 1
. (10.11)
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4) Equilibrium in which 1st type agents are active and 2nd type agents are passive
is possible if

b1 >
1

m1 + 1
, b2 ≤ (m1 + 1)b1 − 2a

m1 + 1
. (10.12)

5) Equilibrium with all passive agents is always possible.
6) Equilibrium in which agents of both types are active is possible if

(m1 + 1)(b1 − b2) < 2a, 2ab1(m1 +m2 + 2) > 2a + (m2 + 1)(b1 − b2).

Proof

1) Follows from Lemma 10.1.
2) This equilibrium is possible if inequality (10.9) is checked. According to (10.7),

the equilibrium is possible under (10.10).
3) Since in this case the environment is K = (m1 + 1), according to (10.5) and

(10.7), the equilibrium is possible iff (10.11) is checked.
4) According to (10.5) and (10.6), the equilibrium is possible if

b1 >
1

m1 + 1
, (m1 + 1)k1 ≤ e(1− 2a)

b2
,

where

ki = e(1− 2a)

(m1 + 1)b1 − 2a
.

5) Follows from Remark 10.2.
6) The system of Eq. (10.2) turns into

{
((m1 + 1)b1 − 2a)k1 + (m2 + 1)b1k2 = e(1− 2a),

(m1 + 1)b2k1 + ((m2 + 1)b2 − 2a)k2 = e(1− 2a).

We solve this system by Kramer method and obtain

kS1 =
e(1− 2a)

(
(m2 + 1)(b2 − b1)− 2a

)

2a
(
2a − (m1 + 1)b1 − (m2 + 1)b2

) ,

kS2 =
e(1− 2a)

(
(m1 + 1)(b1 − b2)− 2a

)

2a
(
2a − (m1 + 1)b1 − (m2 + 1)b2

) .
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It is clear that kS1 > kS2 ; hence, the necessary and sufficient conditions of
existence of the inner equilibrium are

kS2 > 0, kS1 < e,

i.e.

(m1 + 1)(b1 − b2) < 2a, (10.13)

2ab1(m1 +m2 + 2) > 2a + (m2 + 1)(b1 − b2). (10.14)

Under inequalities (10.13), (10.14), the inner equilibrium is

k1 = kS1 , k2 = kS2
��

Remark 10.6 The signs of the following derivatives show how a change in the
types’ productivities b1, b2 influences volumes of investments k1, k2:

(k1)
′
b1
= C1((m2 + 1)b2 − 2a) (where C1 > 0)

(k1)
′
b2
= C2(−(m1 + 1)(m2 + 1)b1 − (m2 + 1)2b1) < 0 (where C2 > 0)

(k2)
′
b1
= C3(−(m1 + 1)(m2 + 1)b2 − (m1 + 1)2b2) < 0 (where C3 > 0)

(k2)
′
b2
= C4((m1 + 1)b1 − 2a) > 0 (where C4 > 0)

Thus, with an increase in productivity of ith type agents, their equilibrium
investments increase, while the equilibrium investments of j th type agents decrease
(j �= i, i = 1, 2).

10.5 Adjustment Dynamics and Dynamic Stability of
Equilibria

Now we introduce adjustment dynamics which may start after a small deviation
from equilibrium or after junction of networks each of which was initially in
equilibrium. We model the adjustment dynamics in the following way.

Definition 10.5 In the adjustment process, each agent maximizes her utility by
choosing a level of her investment; at the moment of decision-making she considers
her environment as exogenously given. Correspondingly, in continuous time if
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ki(t0) = 0, where t0 is an arbitrary moment of time, and D1Vi(ki,Ki)|ki=0 ≤ 0,
then ki(t) = 0 for any t > t0, and if ki(t0) = e and D1Vi(ki,Ki)|ki=e ≥ 0, then
ki(t) = e for any t > t0; in all other cases, ki(t) satisfies the difference equation:

k̇i = bi

2a
K̃i + bi − 2a

2a
ki − e(1− 2a)

2a
.

Definition 10.6 The equilibrium is called dynamically stable if, after a small
deviation of one of the agents from the equilibrium, dynamics starts which returns
the equilibrium back to the initial state. In the opposite case, the equilibrium is called
dynamically unstable.

In biregular network, let in initial time moment each 1st type agent invest k01 and
each 2nd type agent invest k02. Correspondingly, the environment (common for all
agents) in the initial moment is K = k01(m1 + 1)+ k02(m2 + 1).

Assume that either k01 = 0 andD1V1(k1,K)|k1=0 > 0, or k01 = e and
D1V1(k1,K)|k1=e < 0, or k01 ∈ (0, e), and ether k02 = 0 and

D1V2(k2,K)|k2=0 > 0, or k02 = e andD1V2(k2,K)|k2=e < 0, or k02 ∈ (0, e). Then
Definition 10.5 implies that the dynamics is described by the system of differential
equations.

{
k̇1 = (m1+1)b1−2a

2a k1 + (m2+1)b1
2a k2 + e(2a−1)

2a ,

k̇2 = (m1+1)b2
2a k1 + (m2+1)b2−2a

2a k2 + e(2a−1)
2a

(10.15)

with initial conditions

{
k0

1 = k01,

k0
2 = k02.

(10.16)

Proposition 10.2 The general solution of the system of differential equations
(10.15) has the form

k(t) = C1 · exp{−t}
(−(m2 + 1)
m1 + 1

)

+ C2 · exp
{( (m1 + 1)b1 + (m2 + 1)b2

2a
− 1

)

t
}(
b1

b2

)

+
(
D1

D2

)

, (10.17)

where (D1,D2)
T is the steady state of (10.15),

D1 = e(1− 2a)
(
(m2 + 1)(b2 − b1)− 2a

)

2a
(
2a − (m1 + 1)b1 − (m2 + 1)b2

) , (10.18)
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D2 = e(1− 2a)
(
(m1 + 1)(b1 − b2)− 2a

)

2a
(
2a − (m1 + 1)b1 − (m2 + 1)b2

) . (10.19)

The solution of the Cauchy differential problem (10.15)–(10.16) has the form

k(t) = b1k
0
2 − b2k

0
1 + b2D1 − b1D2

(m1 + 1)b1 + (m2 + 1)b2
· exp{−t}

(−(m2 + 1)
m1 + 1

)

+ (m1 + 1)k0
1 + (m2 + 1)k0

2 − D̃
(m1 + 1)b1 + (m2 + 1)b2

·exp
{( (m1 + 1)b1 + (m2 + 1)b2

2a
− 1

)

t
}(
b1

b2

)

+
(
D1

D2

)

, (10.20)

where

D̃ = e(1− 2a)(m1 +m2 + 2)

(m1 + 1)b1 + (m2 + 1)b2 − 2a
. (10.21)

Proof The characteristic equation of system (10.15) is

∣
∣
∣
∣
∣

(m1+1)b1
2a − (λ+ 1) (m2+1)b1

2a
(m1+1)b2

2a
(m2+1)b2

2a − (λ+ 1)

∣
∣
∣
∣
∣

= −(λ+ 1)

(
(m1 + 1)b1

2a
+ (m2 + 1)b2

2a

)

+ (λ+ 1)2 = 0.

Thus, the eigenvalues are

λ1 = −1, λ2 = (m1 + 1)b1 + (m2 + 1)b2

2a
− 1.

An eigenvector corresponding λ1 is

e1 =
(−(m2 + 1)
m1 + 1

)

,

while an eigenvector corresponding λ2 can be found as a solution of the system of
equations

{−(m2+1)b2
2a x1 + (m2+1)b1

2a x2 = 0,
(m1+1)b2

2a x1 − (m1+1)b1
2a x2 = 0.
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We find

e2 =
(
b1

b2

)

.

The general solution of the homogeneous system of differential equations
corresponding (10.15) has the form

(k(t))g = C1 · exp{−t}
(−(m2 + 1)
m1 + 1

)

+C2 · exp
{( (m1 + 1)b1 + (m2 + 1)b2

2a
− 1

)

t
}(
b1

b2

)

.

As a partial solution of the system (10.15) we take its steady state, i.e. the solution
of the linear system

{
0 = (m1+1)b1

2a (D1 − 1)+ (m2+1)b1
2a D2 + e(2a−1)

2a ,

0 = (m1+1)b2
2a D1 + (m2+1)b2

2a (D2 − 1)+ e(2a−1)
2a .

The solution is (10.18)–(10.19); hence, the general solution of the system (10.15)
has the form (10.17). In solution of the Cauchy problem (10.15)–(10.16), constants
of integration are defined from the initial conditions:

(
k0

1
k0

2

)

= C1

(−(m2 + 1)
m1 + 1

)

+ C 1

b1 + b2

(
b1

b2

)

+
(
D1

D2

)

. (10.22)

Multiplying by (−b2, b1) we obtain

C1(b2(m2 + 1)+ b1(m1 + 1))+ b1D2 − b2D1 = b1k
0
2 − b2k

0
1.

Thus,

C1 = b1k
0
2 − b2k

0
1 + b2D1 − b1D2

(m1 + 1)b1 + (m2 + 1)b2
.

However, since one of the eigenvalues is zero, we need only constant C to write
the solution. Multiplying by (m1 + 1,m2 + 1) we obtain

(m1+1)k0
1+(m2+1)k0

2 = C2((m1+1)b1+(m2+1)b2)+(m1+1)D1+(m2+1)D2.
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We denote D̃ = (m1+ 1)D1+ (m2+ 1)D2 and derive expression (10.21). Thus,

C2 = (m1 + 1)k0
1 + (m2 + 1)k0

2 − D̃
(m1 + 1)b1 + (m2 + 1)b2

.

Substituting for C1 and C2 into (10.17) we obtain (10.20). ��
Let us find conditions of dynamic stability/instability for the equilibria in

biregular network, which are listed in Proposition 10.1.

Proposition 10.3

1. The equilibrium with all hyperactive agents is stable iff

b1 >
1

m1 +m2 + 2
, b2 >

1

m1 +m2 + 2
. (10.23)

2. The equilibrium, in which agents of 1st type are hyperactive and agents of 2nd
type are active, is stable iff

m1 + 1+ (m2 + 1)
(
1− 2a − (m1 + 1)b2

)

(m2 + 1)b2 − 2a
>

1

b1
, (10.24)

(m2 + 1)b2

2a
< 1.

3. The equilibrium, in which agents of 1st type are hyperactive and agents of 2nd
type are passive, is stable iff

b1 >
1

m1 + 1
, b2 <

1− 2a

m1 + 1
.

4. The equilibrium, in which agents of 1st type are active and agents of 2nd type are
passive, is always unstable.

5. The equilibrium with all passive agents is always stable.
6. The equilibrium with all active agents is always unstable.

Proof

1. According to Definition 10.5 and Eq. (10.3),

D1V1(k1,K)|k1=e = b1(m1 +m2 + 2)e− e,D1V2(k2,K)|k2=e
= b2(m1 +m2 + 2)e− e.

Both derivatives are positive iff (10.23) is checked.
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2. According to Definition 10.5 and Eqs. (10.3), (10.10),

D1V1(k1,K)|k1=e = b1

(

(m1 + 1)e + (m2 + 1)e(1− 2a − (m1 + 1)b2)

(m2 + 1)b2 − 2a

)

e − e

≥ 0.

However, for dynamic stability, the strict inequality is needed. Let (10.24) be
checked and k1 = e. The differential equation describing dynamics of each of
the 2nd group agents is

k̇2 = (m2 + 1)b2 − 2a

2a
k2 + (m1 + 1)eb2

2a
+ e(2a − 1)

2a
. (10.25)

For stability it is necessary and sufficient that (m2+1)b2
2a < 1.

3. According to Definition 10.5 and Eqs. (10.3), (10.11),

D1V1(k1,K)|k1=e = b1e − e ≥ 0,

D1V2(k2,K)|k2=e = e(2a − 1)+ b2(m1 + 1)e ≤ 0.

For stability the strict inequalities are needed.
4. According to Definition 10.5 and Eqs. (10.3), (10.12),

D1V1(k2,K)|k2=0 = e(2a − 1)+ b2
(m1 + 1)e(1− 2a)

(m1 + 1)b1 − 2a

= e(1− 2a)
(
(m1 + 1)(b2 − b1)+ 2a

)

(m1 + 1)b1 − 2a
≤ 0

For stability the strict inequalities are needed. Let the second inequality in
(10.12) be satisfied strictly. The differential equation for any of the 1st group
agents is

k̇1 = (m1 + 1)b1 − 2a

2a
k1 + e(2a − 1)

2a
.

According to the first inequality in (10.12),

(m1 + 1)b1 > 1 > 2a;

hence, the equilibrium is unstable.
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5. According to Definition 10.5 and Eq. (10.3),

D1V1(k1,K)|k1=0 = e(2a − 1) < 0,

D1V2(k2,K)|k2=0 = e(2a − 1) < 0.

6. One of the eigenvalues of the system (10.15) is

λ2 = (m1 + 1)b1 + (m2 + 1)b2

2a
− 1 > 0;

hence, the equilibrium is unstable. ��

10.6 Biregular Junction of Two Similar Networks

Definition 10.7 Two regular networks (n1,m1) and (n2,m2) will be called similar
with similarity coefficient q , if

n1

m1 + 1
= n2

m2 + 1
= q.

Remark 10.7 Since for complete network n = m + 1, any two complete networks
are similar with similarity coefficient q = 1.

Definition 10.8 Let there be two regular networks (n1,m1) and (n2,m2)with same
similarity coefficient q , and let them unify, creating a biregular network. Each agent
of the first network (1st type agent in the unified network) establishes m2 + 1 links
with agents of the second network (2nd type agents in the unified network), while
each agent of the second network establishes m1 + 1 links with agents of the first
network. (In special case of complete networks this means that each agent of the first
network establishes links with each agent of the second network). Such junction of
similar networks will be called biregular.

Thus, after a biregular junction of similar networks, each of n1+n2 agents of the
unified network has degreem1+m2+1, i.e. regular network (n1+n2,m1+m2+1)
is formed. This regular network has the same similarity coefficient q as each of the
initial unified networks: it is easy to check that

n1 + n2

m1 +m2 + 2
= q.

Let all agents of the first of the networks have productivity b1, and all agents
of the second network—productivity b2, and let the networks initially be in a
symmetric equilibrium, in which agents in the networks make investments k01 and
k02, correspondingly. Then, evidently, after junction the symmetry still holds: all
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agents of the same type behave similarly. It follows from the fact that at time
moment t environment of each agent is equal to

k1(t)(m1 + 1)+ k2(t)(m2 + 1),

i.e. environment is the same for all agents.
Will the agents hold their initial behavior? Or, will a transition dynamics start

after the junction?

Proposition 10.4 After biregular junction of similar networks, all agents of the
unified network hold their initial behavior (make the same investments as before
the junction) in the following four cases:

1) if initially agents in both networks are hyperactive;
2) if

b2 ≤ 1− 2a

m1 + 1
,

and initially agents in the 1st network are hyperactive, and agents in the 2nd
network are passive;

3) if

b1 >
1

m1 + 1
, b2 ≤ b1 − 2a

m1 + 1
,

and initially agents in the 1st network are active, and agents in the 2nd network
are passive;

4) if initially agents in both networks are passive.

In all other cases the equilibrium changes.

Proof

1) According to Corollary 10.1,

b1 ≥ 1

m1 + 1
, b2 ≥ 1

m2 + 1
,

Substituting k1 = e and k2 = e into (10.3) we obtain, correspondingly,

D1V1(k1,K)|k1=e = b1(m1 +m2 + 2)e− e ≥ 0,

D2V2(k2,K)|k2=e = b2(m1 +m2 + 2)e− e ≥ 0.
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2) According to Corollary 10.1,

b1 ≥ 1

m1 + 1
.

Substituting k2 = 0 and k1 = e into (10.3) we obtain

D1V1(k1,K)|k1=e = b1(m1 + 1)e− e ≥ 0,

D1V2(k2,K)|k2=0 = b2(m1 + 1)e − e(1− 2a) ≤ 0.

3) Substituting k1 = e(1−2a)
(m1+1)b1−2a and k2 = 0 into (10.3) we obtain

D1V1(k1,K) = e(1− 2a)
(
2a − (m1 + 1)b1 − 2a + (m1 + 1)b1

)

(m1 + 1)b1 − 2a
= 0,

D1V2(k2,K) = e(2a − 1)
(
(m1 + 1)(b1 − b2)− 2a

)

(m1 + 1)b1 − 2a
≤ 0.

4) Substituting k1 = 0, k2 = 0 into (10.3) we obtain

D1V1(k1,K)|k1=0 = D1V2(k2,K)|k2=0 = e(2a − 1) ≤ 0.

In all other cases the initial values of investments of agents will not be
equilibrium in the unified network, and there will be a transition dynamics. ��

Proposition 10.4 shows, in particular, that passive agents (nonadopters), when
connected with adopters, can remain nonadopters only if their productivity, b2, is
relatively low.

A pattern of transition process after the junction depends on initial conditions
and parameters values. If adjustment dynamics of the unified regular network starts,
it is described by the system of difference equations (10.15) with initial conditions
(10.16).

Proposition 10.5 We consider a biregular junction of two similar regular networks.
Let the agents in the 1st network before junction be hyperactive (hence, b1 ≥ 1

m1+1
by Corollary 10.1) and agents in the 2nd network be passive. Then the following
cases are possible.

1. If b2 ≤ 1−2a
m1+1 , then after junction all agents hold their initial behavior, and

there is no transition process in the unified network. The unified network is in
equilibrium with {k1 = e, k2 = 0}.
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2. If b2 >
1−2a
m1+1 and b2 ≥ 2a

m2+1 , then the 1st group agents stay hyperactive;
investments of the 2nd group agents increase, until they also become hyperactive.
The unified network comes to equilibrium {k1 = e, k2 = e}.1

3. If 2a
m2+1 > b2 >

1−2a
m1+1 , then the 1st group agents stay hyperactive; investments

of the 2nd group agents increase. The unified network comes to equilibrium
{
k1 = e, k2 = e

(
(m1+1)b2+2a−1

)

2a−(m2+1)b2

}
if b2 <

1
m1+m2+2 , and to equilibrium

{k1 = e, k2 = e} if b2 ≥ 1
m1+m2+2 .

In cases 2 and 3, utilities of all agents in the unified network increase. In case 1,
the utilities do not change.

Proof

1. Follows from Proposition 10.4, point 2.
2–3. If for agents of the 2nd group

D1V2(k2,K)|k2=0 = b2(m1 + 1)e − e(1− 2a) > 0,

they change their investments according to the differential equation (10.25). The
general solution of Eq. (10.25) is:

k2(t) = C exp
( (m2 + 1)b2 − 2a

2a

)
+D, (10.26)

where

D = e
(
(m1 + 1)b2 + 2a − 1

)

2a − (m2 + 1)b2
, (10.27)

and (m1 + 1)b2 > 1− 2a. The initial conditions imply

C = k0
2 −D = −D.

The partial solution satisfying initial conditions is

k2(t) = D
(

1− exp
( (m2 + 1)b2 − 2a

2a

))

.

1Notice that conditions b2 >
1−2a
m1+1 and b2 ≥ 2a

m2+1 imply b2 >
1

m1+m2
, i.e. condition of existence

of equilibrium {k1 = e, k2 = e}.
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If b2 >
2a
m2+1 , then (m2+1)b2

2a , D < 0, and k2(t) converges to e. After the value e
is achieved, k2(t) = e, since

D1V2(k2,K)|k2=e = b2(m1 +m2 + 2)e− e ≥ (1− 2a + 2a)e− e = 0.

If b2 <
2a
m2+1 , then (m2+1)b2

2a < 1,D > 0, and k2(t) converges toD ifD < e, i.e.

if b2 <
1

m1+m2+2 . In the opposite case, if b2 ≥ 1
m1+m2+2 , k2(t) converges to e.

It is clear that both the equilibria, {k1 = e, k2 = e} and

{

k1 = e, k2 =
e
(
(m1+1)b2+2a−1

)

2a−(m2+1)b2

}

, possible in result of junction, are stable.

In the “resonance” case,

b2 = 2a

m2 + 1
,

we are looking for the solution of differential equation (10.25) in form tD, where

D = e
(
(m1 + 1)b2 + 2a − 1

)

2a
.

Since (m1 + 1)b2 > 1 − 2a, the value of investment k2(t) converges to e and,
since this value is achieved, stays equal to e, because

D1V2(k2,K)|k2=e = b2(m1 ++m2 + 2)e− e ≥ (1− 2a + 2a)e− e = 0.

The last statement (concerning utilities) follows directly from Theorem 10.1. ��
Proposition 10.6 We consider a biregular junction of two similar regular networks.
Let agents of the 1st network before junction be hyperactive (which implies b1 ≥

1
m1+1 by Corollary 10.1), and agents of the 2nd network be active (which implies

b2 >
1

m2+1 ). The unified network moves to the equilibrium with all hyperactive
agents. The utilities of all agents increase.

Proof The 1st group agents stay hyperactive, because, by (10.3),

D1V (k1, b1,K)|k1=e = e(2a − 1)− 2ae+ b1(m1 + 1)e+ b2(m2 + 1)k2 ≥ 0.

For the 2nd group agents we have Eq. (10.25). Its general solution is (10.26),
whereD is defined by (10.26). From the initial conditions we find

C = k0
2−D =

e(1− 2a)

(m2 + 1)b2 − 2a
− e(1− 2a − (m1 + 1)b2)

(m2 + 1)b2 − 2a

(m1 + 1)b2

(m2 + 1)b2 − 2a
> 0.

Hence, k2(t) achieves the value e.
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The statement concerning utilities follows directly from Theorem 10.1. ��
Proposition 10.7 We consider a biregular junction of two similar regular networks.
If before junction agents of both networks are hyperactive (this implies b1 ≥ 1

m1+1 ,

b2 ≥ 1
m2+1 by Corollary 10.1), they stay hyperactive after junction: there is no

transition dynamics, and utilities of all agents do increase.

Proof It follows from Proposition 10.4, item 1. The increase of utilities follows
from Theorem 10.1. ��
Proposition 10.8 We consider a biregular junction of two similar regular networks.
If before junction agents of both networks are passive, they stay passive after
junction: there is no transition dynamics, and agents’ utilities do not change.

Proof It follows from Proposition 10.4, item 4. Utilities do not change according to
Theorem 10.1. ��

The following two propositions show how, depending on the relation between
the heterogeneous productivities, passive agents (nonadopters) may change their
behavior (become adopters).

Proposition 10.9 We consider a biregular junction of two similar regular networks.
Let agents of 1st network before junction be active (which implies b1 >

1
m1+1 by

Corollary 10.1), k0
1 = e(1−2a)

(m1+1)b1−2a , and agents of the 2nd network be passive. Then
the following cases are possible.

1. Under (m1+ 1)b1 ≥ (m1+ 1)b2+ 2a, all agents hold their initial behavior, and
there is no transition process.

2. Let (m1 + 1)b1 < (m1 + 1)b2 + 2a. If b2 ≥ 2a
m2+1 and

e−D1−k0
1

b1
< e−D2

b2
, then

the network moves to the equilibrium with all hyperactive agents. If b2 <
2a
m2+1

and
e−D1−k0

1
b1

< e−D2
b2

, then the network moves to the equilibrium, in which the
1st group agents are hyperactive and the 2nd group agents are active,

k2
e(1− 2a − (m1 + 1)b2)

(m2 + 1)b2 − 2a
.

3. If
e−D1−k0

1
b1

≥ e−D2
b2

, then the network moves to the equilibrium with all
hyperactive agents.

In case 1, utilities of all agents do not change; in case 2, utilities of all agents
increase.
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Proof For the 2nd group agents, initially

D1V (k2, b2,K) = e(2a − 1)+ b2
(m1 + 1)e(1− 2a)

(m1 + 1)b1 − 2a

= e(1− 2a)
(
(m1 + 1)(b2 − b1)+ 2a

)

(m1 + 1)b1 − 2a
.

Thus,D1V (k2, b2,K) ≤ 0 if (m1+1)b1 ≥ (m1+1)b2+2a. In this case the 2nd
group agents stay passive. The 1st group agents also hold their behavior unchanged,
because their environment does not change.

Now, let (m1 + 1)b1 < (m1 + 1)b2 + 2a. The 2nd group agents increase their
investments, and so do agents of the 1st group, because their environment increases.
Conditions (m1+1)b1 < (m1+1)b2+2a and b1 >

1
m1+1 imply b2 >

1−2a
m1+1 . Hence,

by Lemma 10.1, the equilibrium with hyperactive agents of one of the groups and
active agents of another group is always possible, as well as the equilibrium with all
hyperactive agents.

Agents of one of the groups may achieve the investment level e earlier than

the agents of another group. Let it be the 1st group, i.e.
e−D1−k0

1
b1

< e−D2
b2

. The

investment level of the 2nd group agents in this moment is some k̃0
2. After that

investments of the 2nd group agents follow Eq. (10.25). The general solution of
(10.25) is (10.26), where D has the form (10.27). From the initial conditions we

have C = k̃0
2 − D. Thus, if b2 >

2a
m2+1 , then D < 0, which implies C > 0;

hence, investments of the 2nd group agents will achieve level e. If b2 <
2a
m2+1 , then

investments of agents of the 2nd group will become equal to D > 0.
In the “resonance” case, b2 = 2a

m2+1 , as previously, the general solution of
Eq. (10.25) has the form

k2(t) = C + t
(
(m1 + 1)b2 + 2a − 1

)

2a
.

It follows from initial conditions that C = k̃0
2, so the partial solution of (10.25)

satisfying the initial conditions is

k2(t) = k̃0
2 + t

e
(
(m1 + 1)b2 + 2a − 1

)

2a
.

Since (m1 + 1)b2 > 1− 2a, the value of investments of the 2nd group agents in
this case also achieves e.

Suppose now, that the 2nd group agents have received the investment level e first,

i.e.
e−D1−k0

1
b1

> e−D2
b2

, while the investment level of the 1st group agents was equal

to some k̃0
1. It is possible only if b2 > b1. From that moment the investments of the
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1st group agents follow equation

k̇1 = (m1 + 1)b1 − 2a

2a
k1 + (m2 + 1)eb1

2a
+ e(2a − 1)

2a
, (10.28)

whose general solution is

k1(t) = C exp

(
(m1 + 1)b1 − 2a

2a

)n

+D,

where

D = e(1− 2a − (m2 + 1)b1)

(m1 + 1)b1 − 2a
.

From the initial condition we have C = k̃0
1 − D. Moreover, k̃0

1 > k0
1 =

e(1−2a)
(m1+1)b1−2a , which implies

C = k̃0
1 −D >

e(1− 2a)

(m1 + 1)b1 − 2a
− e(1− 2a − (m2 + 1)b1)

(m1 + 1)b1 − 2a

= (m2 + 1)b1

(m1 + 1)b1 − 2a
> 0.

Hence, investments of the 1st group agents achieve e.
In case when agents of both groups achieve investment level e simultaneously,

i.e.
e−D1−k0

1
b1

= e−D2
b2

, the network, evidently, turns to the equilibrium with all
hyperactive agents. ��
Proposition 10.10 We consider a biregular junction of two similar regular net-
works. If before junction agents of both networks are active (this implies b1 >

1
m1+1 ,

b2 >
1

m2+1 by Corollary 10.1), then after junction all agents become hyperactive;
their utilities increase.

Proof The initial conditions are k0
1 = e(1−2a)

(m1+1)b1−2a , k0
2 = e(1−2a)

(m2+1)b2−2a . According
to (10.3),

D1V (k1, b1,K)

= e(2a − 1)+
(
b1(m1 + 1)− 2a

)
e(1− 2a)

(m1 + 1)b1 − 2a
+ b1(m2 + 1)e(1− 2a)

(m2 + 1)b2 − 2a
> 0,
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D1V (k2, b2,K)

= e(2a − 1)+
(
b2(m2 + 1)− 2a

)
e(1− 2a)

(m2 + 1)b2 − 2a
+ b2(m1 + 1)e(1− 2a)

(m1 + 1)b1 − 2a
> 0.

Thus, agents of both groups will increase their investments following Eq. (10.26).
Agents of one of the group will achieve investment level e first. Let it be the 1st

group, and let investments of the 2nd group agents in this moment be k̃0
2. Then

investments of the 2nd group agents follow differential equation (10.25), whose
general solution is (10.26), where D has the form (10.27). The initial conditions

imply C = k̃0
2 −D, but

k̃0
2 > k

0
2 =

e(1− 2a)

(m2 + 1)b2 − 2a
> D,

Hence, C > 0. Thus, investments of the 2nd group agents will also achieve level
e. Absolutely similar argument is for the case when the 2nd group achieves the
investment level e first. ��
Remark 10.8 In all cases considered in Propositions 10.4–10.10, agents’ utilities in
result of junction do increase or, at least, do not decrease. Thus, all the agents have
an incentive to unify, or, at least, have no incentive not to unify.

10.7 Conclusion

Research on the role of heterogeneity of agents in social and economic networks is
rather new in the literature. In our model we assume presence of two types of agents
possessing different productivities. At the first stage each agent in network may
invest some resource (such as money or time) to increase her gain at the second
stage. The gain depends on her own investment and productivity, as well as on
investments of her neighbors in the network. Such situations are typical for various
social, economic, political and organizational systems. In framework of the model,
we consider relations between network structure, incentives, and agents’ behavior
in the game equilibrium state in terms of welfare (utility) of the agents.

We touch some questions of network formation and identify agents potentially
interested in particular ways of enlarging the network. We introduce continuous
adjustment dynamics which may start after a deviation from equilibrium or after a
junction of networks initially being in equilibrium.

Earlier, a special case of complete networks was considered in [15]. Here we
introduce a more general case of regular networks. In particular, we study behavior
of agents with different productivities in two biregular networks after junction.
Specifically, we show that if a network consisting of non-adopters (passive agents)
does unify with a network consisting of adopters (active or hyperactive agents),
and the non-adopters possess a low productivity, then there is no transition process,
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and the non-adopters stay passive. Under somewhat higher productivity, the non-
adopters become adopters (come to active state), and under even higher productivity
they become hyperactive.

Agents, who are initially active in a symmetric equilibrium in regular network
(which implies that their productivities are sufficiently high), also may increase
their level of investment in result of unification with another regular network with
hyperactive or active agents. The unified network comes into equilibrium in which
all agents are hyperactive.

A natural task for future research is to expand the results to broader classes of
networks.
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Chapter 11
Non-cooperative Differential Game
Model of Oil Market with Looking
Forward Approach

Ovanes Petrosian, Maria Nastych, and Dmitrii Volf

Abstract The paper applies Looking Forward Approach to analyze the world oil
market with the framework of a differential game model of quantity competition
oligopoly. Namely Looking Forward Approach is used to take into account dynami-
cally updating information. Under the information we understand the forecast of the
oil demand dynamics. We focus on the period from December 2015 to November
2016 and suppose that during this time interval countries did not cooperate officially
on the amounts of oil to be produced. Therefore, their behavior can be modeled
using the non-cooperative game model. As a solution concept for this conflict-
controlled process we use feedback Nash equilibrium. In order to define the
parameters of model open source data is used, results of numerical simulations and
comparison with the historical data are presented.

11.1 Introduction

The paper is devoted to constructing a game theoretical model for the world oil
market using the Looking Forward Approach. Game models with Looking Forward
Approach allow taking into account the variability of market demand, the adaptation
of participants actions to a changing environment and the actual planning horizons
for demand. That is the intuition to apply the approach to the oil market which has
highly volatile prices.

The object of this paper is to simulate the oil market dynamic during the period
from December 2015 to November 2016. The largest oil exporters reached an
agreement about the reduction of oil production to raise the prices in the aftermath
of November 30, 2016 and the game started to be cooperative. We suppose that
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countries did not cooperate officially on the amounts of oil to be produced before
this date. Therefore their behavior can be simulated using the non-cooperative game
model. As an optimality principal the feedback Nash equilibrium is used. OPEC
countries, which we call player one, and eleven non-OPEC countries, which we
call player two, produce more than 60% of oil in the world together. The model
includes US shale and non-shale oil producing companies as players three and four
respectively as main market rivals. All the other oil exporting countries are united
under player five. To obtain data on the world oil market we used open sources.
Namely, we used International Energy Agency for monthly data on crude oil supply
from January 2015 till November 2016, Finam agency for monthly data on brent
and light oil prices from January 2015 till November 2016, Rystad Energy Ucube
and oil market news for the cost of producing a barrel of oil in 2016.

Following well-established tradition, we use oligopoly quantity setting to model
the oil market. Likewise, Moran in [12] and Krasner in [10] analyze main features
of the oil oligopoly. The authors in [11] give a selective survey of oligopoly models
for energy production. In the paper [20] the author examines cartel formation
in the world oil market under Cournot setting. The authors in [3] also use the
quantity competitive environment to model collisions and proportionate adjustment
of production levels.

Existing differential games often rely on the assumption of time-invariant game
structures for the derivation of equilibrium solutions. However, many events in the
considerably far future are intrinsically unknown. In this paper, information about
the players’ future payoffs will be revealed as the game proceeds. Making use of the
newly obtained information, the players revise their strategies accordingly, and the
process will continue indefinitely. Looking Forward Approach for differential games
provides a more realistic and practical alternative to the study of classical differential
games. Looking Forward Approach enables us to construct game theoretical models
in which the game structure can change or update over time (time-dependent
formulation) and players do not have full information about the change of the game
structure, but they have full information about the game structure on the truncated
time interval. We understand the information about the motion equation and the
payoff functions as information about the game structure. The duration of the period
of this information is known in advance. At defined instants information about the
game structure is being updated. Looking Forward Approach was mainly developed
for cooperative games with transferable utility [7, 15–17], but there are also papers
on non-cooperative differential games [22], dynamic games [23] and games with
non-transferable utility [18].

The concept of the Looking Forward Approach is new in game theory, especially
in differential games, and it gives the foundation for further study of differential
games with dynamic updating. At the moment there were no known attempts of
constructing approaches for modeling conflict-controlled processes where infor-
mation about the process updates in time dynamically. The first time the Looking
Forward Approach was presented in the paper [15], it was applied to the cooperative
differential game with finite-horizon. The paper [17] on the subject is focused
on studying Looking Forward Approach with stochastic forecast and dynamic
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adaptation in the case when information about the conflicting process can change
during the game. In the paper [7] the Looking Forward Approach was applied to
a cooperative differential game of pollution control. The aim of the paper was to
study dependency of the resulting solution upon the value of the informational
horizon; the corresponding optimization problem was formulated and solved. In
the paper [16] the Looking Forward Approach was applied to the cooperative
differential game with infinite-horizon. Papers [22] and [23] are devoted to study
of cooperative differential games and non-cooperative dynamic games with infinite
horizon where information about the process updates dynamically. The focus of
these papers is a profound formulation of Hamilton–Jacobi–Bellman equations for
a different types of forecasts and information structures. Paper [18] is devoted to
studying the Looking Forward Approach for cooperative differential games with
non-transferable utility, and current paper is the continuation of that paper. Here we
try to construct non-cooperative game model and apply it to the real historical data.
Future steps are to construct game model describing the six-month long agreement
which was signed by the OPEC countries and eleven non-OPEC countries about the
reduction of oil production at the summit in Vienna on November 30, 2016.

Looking Forward Approach has the common ground as the Model Predictive
Control theory worked out within the framework of numerical optimal control. We
analyze [5, 8, 19, 21] to get recent results in this area. Model predictive control
is a method of control when the current control action is achieved by solving, at
each sampling instant, a finite horizon open-loop optimal control problem using the
current state of an object as the initial state. This type of control is able to cope
with hard limitations on controls and states, which is definitely its strong point
over the rest of methods. It has got, therefore, a wide application in petro-chemical
and related industries where key operating points are located close to the set of
admissible states and controls. Mathematically, the main problem that the Model
Predictive Control solves is the provision of movement along the target trajectory
under the conditions of random perturbations and unknown dynamical system. At
each time step the optimal control problem is solved for defining controls which
will lead the system to the target trajectory. Looking Forward Approach, on the
other hand, solves the problem of modeling behavior of players when information
about the process updates dynamically. It means that Looking Forward Approach
does not use a target trajectory, but answers the question of composing trajectory
which will be used by the players of the process and allocating a cooperative payoff
along the trajectory.

In the current paper the Looking Forward Approach is applied to the non-
cooperative oligopoly differential model [4] of the oil market with the largest oil
exporters and other oil producing countries. Considered game model is defined by
the set of linear differential equations and the quadratic utility functions, which
means that it is a linear quadratic differential game. These type of game models
are very popular in the literature and a recent exposition of this theory can be found
in [2, 6]. The popularity of these games is caused on the one hand by practical
considerations. To some extent these kinds of differential games are analytically
and numerically solvable. Important references that contributed to this research
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during the last decennium are Basar and Bernhard [2], Basar and Olsder [1]. Non-
cooperative game theory deals with strategic interactions among multiple decision
makers with the objective functions depending on choices of all the players and
suggests solution concepts for a case when players do not cooperate or make
any arrangements about players actions. Players cannot simply optimize their own
objective function independently of the choices of the other players. In 1950 and
1951 in [13, 14] by John Nash such a solution concept was introduced and called
Nash equilibrium. It has a property that if all players but one stay put, then the player
who has the option of moving away from the solution point should not have any
incentive to do so because she cannot improve her payoff. It suggests that none of
the players can improve their payoff by a unilateral move. The Nash equilibrium
solution concept provides a reasonable noncooperative equilibrium solution for
nonzero-sum games when the roles of the players are symmetric, that is to say when
no single player dominates the decision process.

The paper is structured as follows: In Sect. 11.2 we describe the initial game
model. In Sect. 11.3 we define the notion of truncated subgame. In Sect. 11.4 we
define the feedback Nash equilibrium for each truncated subgame. In Sect. 11.5 we
describe the process of information updating, define a notion of a resulting trajectory
and payoffs. In Sect. 11.6 we present the results of numerical simulation of oil price
on the market on the time interval from December 2015 to November 2016.

11.2 Initial Game Model

Consider the differential game model of Cournot oligopoly [4] on the oil market.
An oligopolistic market of n asymmetrical counties (players) belonging to the set
N = {1, . . . , n}, producing oil, and competing for the quantity produced qi under
price stickiness is given by the differential game Γ (p0, T − t0) with prescribed
duration T − t0 and initial state p(t0) = p0 ∈ P ⊂ R.

According to the model market price pi evolves according to the differential
equation:

ṗ(t) = s(p̂(t)− p(t)), p(t0) = p0, (11.1)

where p̂(t) ∈ P ⊂ R is the notional level of price at time t , p(t) is its current level,
and the parameter s : 0 < s < 1, is the speed of adjustment. Thus, prices adjust to
the deference between its notional level and its current level.

Further, we assume that the notional prices at any time t are defined by linear
inverse demand function

p̂(t) = a − d
∑

i∈N
qi(t). (11.2)
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Players i ∈ N choose quantity qi(t) ∈ Ui ⊂ R produced in order to maximize
their profits:

Ki(p0, T − t0; q1, . . . , qn) =
∫ T

t0

e−ρ(t−t0) [qi(t)(p(t) − ci − giqi(t))] dt,

(11.3)

here, 0 ≤ ρ ≤ 1 represents the positive discount rate, which is the same for all
the periods and all the players to simplify the model and to equalize players as
symmetrical participants in the global capital market. Ci(t) = ciqi(t) + giq2

i (t) is
the total cost function for each player i.

11.3 Truncated Subgame

Suppose that the information for players is updated at fixed time instants t = t0 +
jΔt , j = 0, . . . , l, where l = T

Δt
− 1. During the time interval [t0 + jΔt, t0 +

(j + 1)Δt], players have certain information about the dynamics of the game (11.1)
and payoff function (11.5) on the time interval [t0 + jΔt, t0 + jΔt + T ], where
Δt ≤ T ≤ T . At the instant t = t0+ (j +1)Δt information about the game is being
updated and the same procedure repeats for time interval with number j + 1.

To model this kind of behavior we introduce the following definition (Fig. 11.1).
Denote vectors pj,0 = p(t0 + jΔt), pj,1 = p(t0 + (j + 1)Δt).

Definition 11.1 Let j = 0, . . . , l. A truncated subgame Γ̄j (pj,0, t0 + jΔt, t0 +
jΔt+T ) is defined on the time interval [t0+jΔt, t0+jΔt+T ]. The motion equation

Fig. 11.1 Each oval represents random truncated information, which is known to players during
the time interval [t0 + jΔt, t0 + (j + 1)Δt], j = 0, . . . , l
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Fig. 11.2 Behaviour of players in the game with truncated information can be modeled using the
truncated subgames Γ̄j (pj,0, t0 + jΔt), j = 0, . . . , l

and the initial condition of the truncated subgame Γ̄j (pj,0, t0+ jΔt, t0+ jΔt +T )
have the following form:

ṗ(t) = s
(
aj − dj

∑

i∈N
q
j
i (t)− p(t)

)
, p(t0 + jΔt) = pj,0. (11.4)

The payoff function of the player i in truncated subgame j is equal to

K
j
i (pj,0, t0 + jΔt, t0 + jΔt + T ; qj1 , . . . , qjn ) =

=
∫ t0+jΔt+T

t0+jΔt
e−ρ(t−t0)

[
q
j
i (t)(p(t) − ci − giqji (t))

]
dt. (11.5)

The motion equation and the payoff function on the time interval [t0+ jΔt, t0+
jΔt + T ] coincide with that of the game Γ (p0, T − t0) on the same time interval
(Fig. 11.2).

11.4 Non-cooperative Outcome in Truncated Subgame

According to [1, 9] non-cooperative Nash equilibrium solution of the game
Γ̄j (pj,0, t0 + jΔt, t0 + jΔt + T ) can be defined by the Fleming-Bellman-Isaacs
partial differential equations. Consider a family of subgames Γ̄j (p(t), t, t0 +
jΔt + T ) with payoff structure (11.3) and dynamics (11.4), starting at the
time t ∈ [t0 + jΔt, t0 + jΔt + T ] with initial state p(t). Let qNEj (t, p) =
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(q
jNE

1 (t, p), . . . , q
jNE
n (t, p)) for t ∈ [t0 + jΔt, t0 + jΔt + T ] denote a set

of feedback strategies that constitutes a Nash equilibrium solution to the game
Γ̄j (p(t), t, t0 + jΔt + T ) and V ji (τ, p) : [t, T ] × Rn → R denote the value
function of player i ∈ N that satisfy the corresponding Bellman-Isaacs-Fleming
equations [1, 9].

Theorem 11.1 Assume there exists a continuously differential function V ji (t, p) :
[t0 + jΔt, t0 + jΔt + T ] × R→ R satisfying the partial differential equation

V
j,i
t (t, p) = max

q
j
i

{

e−ρ(t−t0)
[
q
j
i (p − ci − giqji )

]
+

+ V j,ip (t, p)s
(
a − d

[
q
j
i (t)+

∑

k �=i
q
jNE
k (t)

]
− p(t)

)}

, i = 1, . . . , n. (11.6)

where V ji (t0 + jΔt + T , p) = 0. Denote by qNEj (t)(t, p) controls which maximize

right hand side of (11.6). Then qNEj (t)(t, p) provides a feedback Nash equilibrium

in the truncated subgame Γ̄j (pj,0, t0 + jΔt, t0 + jΔt + T ).
Since the considered differential game is a LQ differential game, then the feed-

back Nash equilibrium is unique (see [1]).
In this game model Bellman function V ji (t, p) can be obtained in the form:

V
j

i (t, p) = e−ρ(t−t0)
[
A
j

i (t)p
2 + Bji (t)p + Cji (t)

]
, i = 1, n. (11.7)

Substituting (11.7) in (11.6) we can determine Nash equilibrium strategies in the
following:

q
jNE
i (t, p) =

(ci − p)+ ds
[
B
j
i (t)+ 2Aji (t)p

]

2gi
, i = 1, n, (11.8)

where functions Aji (t), B
j

i (t), C
j

i (t), t ∈ [t0 + jΔt, t0 + jΔt + T ] are defined by
the system of differential equations:

Ȧ
j
i (t) = Aji (t) [ρ + 2s]+ (2A

j
i (t)dj s − 1)2

4gi
−
∑

k �=i

A
j
i (t)dj s − 2Aji (t)A

j
k(t)d

2s2

gk

Ḃ
j
i (t) = Bji (t) [ρ + s]− ci

2gi
− 2Aji (t)aj s −

∑

k �=i

A
j
i (t)B

j
k (t)d

2
j s

2

gk
−

−
∑

k∈N

B
j

i (t)dj s − Aji (t)ckdj s − Ajk(t)Bji (t)d2
j s

2

gk
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Ċ
j
i (t) = Cji (t)ρ − Bji (t)aj s +

c2
i + (Bji (t)dj s)2

4gi
+
∑

k �=i

B
j
i (t)B

j
k (t)d

2
j s

2

2gk
+

+
∑

k∈N

B
j

i (t)ckdj s

2gk

with the boundary conditions Aji (t0 + jΔt + T ) = 0, Bji (t0 + jΔt + T ) = 0 and

C
j
i (t0 + jΔt + T ) = 0.

Substituting qNEj (t, p) (11.8) into (11.4) yields the dynamics of Nash equilib-
rium trajectory:

ṗ(t) = s
(
a − d

∑

i∈N
q
jNE
i (t, p)− p(t)

)
, p(t0 + jΔt) = pj,0. (11.9)

Denote by pNEj (t) the solution of system (11.9).

Fig. 11.3 Solid line represents the conditionally non-cooperative trajectory {p̂NE(t)}Tt=t0 . Dashed
lines represent parts of non-cooperative trajectories that are not used in the composition, i.e., each
dashed trajectory is no longer optimal in the current truncated subgame
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11.5 Information Updating

Suppose that each truncate subgame Γ̄j (pj,0, t0+jΔt, t0+jΔt+T ) develops along
pNEj (t) then the whole non-cooperative game with Looking Forward Approach
develops along:

Definition 11.2 Conditionally non-cooperative trajectory {p̂NE(t)}Tt=t0 is a combi-

nation of pNEj (t) for each truncated subgame Γ̄j (pNEj,0 , t0 + jΔt, t0 + jΔt + T )
(Fig. 11.3):

{p̂NE(t)}Tt=t0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pNE0 (t), t ∈ [t0, t0 +Δt),
. . . ,

pNEj (t), t ∈ [t0 + jΔt, t0 + (j + 1)Δt),

. . . ,

pNEl (t), t ∈ [t0 + lΔt, t0 + (l + 1)Δt].

(11.10)

Along the conditionally non-cooperative trajectory players receive payoff
according to the following formula:

Definition 11.3 Resulting non-cooperative outcome for player i = 1, . . . , n in the
game Γ (p0, T − t0) with Looking Forward Approach has the following form:

V̂i (t, p̂NE(t)) =
l∑

m=j+1

[
V mi (t0 +mΔt, pNEm,0)− V mi (t0 + (m+ 1)Δt, pNEm,1)

]
+ (11.11)

+
[
V
j
i (t, p

NE
j (t)) − V ji (t0 + (j + 1)Δt, pNEj,1 )

]
, i ∈ N.

11.6 Numerical Simulation

Game starts from December 2015 and lasts till the summit in Vienna at November
2016. We consider the oil as homogeneous product, we appraise the demand
function with parameters of average world oil price and total world oil supply. We
calculate the average oil prices for each period based just on the two major trading
classifications of brent crude and light crude which are accessible on Finam agency
data source. As an initial price we take the average price in December 2015 which
is equal to p0 = 34.51.
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Total world supply, Brent, Light, Average price,
Date million barrels per day $ for barrel $ for barrel $ for barrel

12.2015 96.411 35.910 33.110 34.510

01.2016 95.875 36.640 33.990 35.315

02.2016 95.420 40.140 37.820 38.980

03.2016 95.294 47.320 45.990 46.655

04.2016 95.400 49.520 48.750 49.135

05.2016 95.187 49.740 48.640 49.190

06.2016 95.954 43.270 41.760 42.515

07.2016 96.891 46.970 45.000 45.985

08.2016 95.894 49.990 48.050 49.020

09.2016 96.001 48.510 46.970 47.740

10.2016 97.362 44.520 43.120 43.820

To estimate a demand function one needs to mine several observations for the
same period. Unfortunately, available petroleum statistics cannot provide data with
such frequency. As a result, we fixed the parameter of a choke price of the demand
function to ensure its linear form and to simplify our work. Being a minimum price
with a zero demand by the definition of a choke price, this quantity must be higher
than the historical maximum of the oil price. The oil price reached its maximum of
$122 for the barrel in May of 2008. It is equal to $282 at the end of October 2016
with adjust for inflation of 10$ as we assumed above. We suppose that fixation the
parameter aj on the level of 300 gives us the approximate choke price. Parameter
dj can be obtained as

dj = (aj − p̂(t − 1))
∑

i∈N
qi(t − 1). (11.12)

The length of each Δt-time interval is 1 month. Players use appraised demand
with parameters aj and dj as the forecast for the next T = 3 periods. We set a
value upon the parameters of cost function by using total cost of producing a barrel
and average volumes of oil production for our players in 2016 and by fixing the
parameter gi on the level 0.7 for each player and each period. Both the parameters
of ci and gi remains unchanged during the game. We assume that the speed of
adjustment s = 0.2 and discount factor r = 10%.
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Fig. 11.4 Conditionally non-cooperative trajectory of the oil price p̂NE(t) (thick solid line) with
Looking Forward Approach, historical oil price trajectory (thick dotted line)

Date a d

12.2015 300 2.717
01.2016 300 2.753
02.2016 300 2.760
03.2016 300 2.735
04.2016 300 2.658
05.2016 300 2.629
06.2016 300 2.634
07.2016 300 2.683
08.2016 300 2.621
09.2016 300 2.617
10.2016 300 2.627

i Producer c g

1 OPEC 3.169 0.7
2 Non-OPEC 17.333 0.7
3 US shale 20.238 0.7
4 US non-shale 18.182 0.7
5 Others 20.867 0.7

On the Fig. 11.4 comparison of conditionally non-cooperative trajectory
{p̂NE(t)}Tt=t0 and historical average oil price dynamics is presented.

On the Fig. 11.5 Nash feedback strategies (11.8) corresponding to the
{p̂NE(t)}Tt=t0 and historical quantities of production of oil are presented for each
group of countries.
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Fig. 11.5 Nash feedback strategies defined with Looking Forward Approach (solid lines), and
corresponding historical quantities of production of oil (dashed lines)
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Fig. 11.6 Payoffs of players corresponding to the Nash equilibrium V̂i (t, p̂NE(t))

According to the Figs. 11.4 and 11.5 we can suggest that parameters from the
table below ci and gi can be used for constructing other models based on this
approach.

On the Fig. 11.6 we can see the payoff of players V̂i(t, p̂NE(t)), i ∈ N

corresponding to the Nash equilibrium strategies along the trajectory p̂NE(t).
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11.7 Conclusion

Differential game model of oil market is considered. Looking Forward Approach
is used for constructing model where information about the process updates
dynamically. An attempt has been made for constructing oil market model for
time period from December 2015 to November 2016. Namely, we assume that
from December 2015 to November 2016 a non-cooperative oligopoly structure
was on the oil market. Therefore, we construct non-cooperative game model and
adapt it to the real oil price data. Thereafter, at the end of November 2016, the
largest oil exporters signed an agreement for reduction of oil extraction to rise
the prices. For this case we will continue our research in future papers. Numerical
results shows high applicability of Looking Forward Approach for modelling and
simulating real life conflict-controlled processes. But there are still a lot of open
questions such as defining appropriate value for information horizon, defining form
of payoff functions and type of forecast for parameters which is used by the players.
Future steps are to construct game model describing the six-month long agreement
which was signed by the OPEC countries and eleven non-OPEC countries about the
reduction of oil production at the summit in Vienna on November 30, 2016.
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Chapter 12
S-strongly Time-Consistency
in Differential Games

Leon A. Petrosyan and Ekaterina V. Gromova

Abstract In the paper the definition of S-strongly time-consistency in differential
games is introduced. The approach of the construction of S-strong time-consistent
subcore of the classical core on the base of characteristic function obtained by
normalization of classical characteristic function is formulated. Its relation to
another characteristic function obtained by an integral extension of the original
characteristic function is studied.

12.1 Introduction

Dynamic games theory has many applications in different areas (see [1, 2, 11, 13]).
Particularly important are cooperative differential games that are widely used for
modeling the situations of joint decision taking by many agents. When considering
such problems, the realizability of cooperative solution in time turns out to be one
of the central issues.

As it was mentioned earlier, [9, 13], an attempt to transfer the optimality princi-
ples (cooperative solution) from the static cooperative game theory to n-persons
differential games leads to dynamically unstable (time inconsistent) optimality
principles that renders meaningless their use in differential games. Hence, the
notion of time consistent cooperative solution and an approach to determining such
cooperative solution was proposed in [9].

A strong time-consistent optimality principle has even more attractive property.
Namely, strong time consistency of the core considered as a cooperative solution
implies that a single deviation from the chosen imputation taken from the core in
favor of another imputation from the core does not lead to non-realizability of the
cooperative agreement (the core) defined for the whole duration of the game, [7].
This implies that the overall payment for players will also be contained in the core.
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In this paper, a cooperative differential game with the set of playersN is studied
in general setting on the finite time horizon. The work is of fundamental character,
but may potentially have a big practical impact because it proposes a constructive
approach to the definition of a new cooperative solution which satisfies the condition
of strong time-consistency.

In the paper, we study different approaches to constructing a strongly time-
consistent cooperative solution, which are based on the use of additional procedures
for the imputation distribution on the time interval [t0, T ] (IDP) for classical
cooperative solution, i.e., the core, and on the transformations of the classical
characteristic function V (S, ·), S ⊆ N . Furthermore, we present results illustrating
the relationship between the introduced concepts.

In [7, 8], it was shown that it is possible to define a new type of characteristic
function V̄ (S, ·) on the base of integral transformation of the classical characteristic
function V (S, ·) such that the resulting optimality principles are strongly time-
consistent.

In [10], another approach to the construction of the characteristic function V̂ (S, ·)
on the base of normalizing transformation of V (S, ·) had been suggested and it
was shown that the core constructed on the base of the new V̂ (S, ·) belongs to the
classical core.

In this contribution we track the connection between the optimality principles
constructed on the basis of classical characteristic function and the constructions
resulted from the new types of characteristic function. We study the property of
strong-time consistency for all constructed optimality principles and suggest a
modification of the notion of strong time-consistency as described below.

The notion of S-strong time-consistency can be considered as a weakening of
the strong time-consistency and means the following: after a single deviation from
the chosen imputation from the optimality principle M̂(x0, t0) in favor of another
imputation from the same optimality principle M̂(x∗(t), t) the resulting imputation
will belong to a larger setM(x0, t0) ⊃ M̂(x0, t0) even if the resulting solution does
not belong to the initial set M̂(x0, t0). Note that S-strong time-consistency of the
cooperative solution is considered with respect to another (bigger) set, hence the
prefix S-.

The construction of a S-strongly dynamically stable subcore on the base of all
described approaches is presented.

12.2 List of Key Notations

x trajectory of the system
u control vector u = {u1, . . . , un}
Ki(x, t, u) payoff of the player i in a subgame starting at t from x
N set of players (the grand-coalition)
S subset of players (a coalition), S ⊆ N
V (S, x, t) basic characteristic function (c.f.)
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V̄ (S, x, t) an integral extension of the c.f. V
V̂ (S, x, t) a normalized c.f. V
L(x, t) set of imputations associated with V
L̄(x, t) set of imputations associated with V̄
C(x, t) core associated with V
C̄(x, t) core associated with V̄
Ĉ(x, t) core associated with V̂

12.3 Basic Game

Consider the differential game Γ (x0, t0) starting from the initial position x0 and
evolving on time interval [t0, T ]. The equations of the system’s dynamics have the
form

ẋ = f (x, u1, . . . , un), x(t0) = x0,

ui ∈ Ui ⊂ CompRm, x ∈ Rl, i = 1, . . . , n.
(12.1)

The players’ payoffs are

Ki(x, t0; u1, . . . , un) =
∫ T

t0

hi(x(t))dt, i = 1, . . . , n, hi(·) ≥ 0,

where x(t) is the solution of system (12.1) with controls u1, . . . , un. The non-
negativeness of the utility function hi(·) is an important assumption of the model.

It is furthermore assumed that the system (12.1) satisfies all the conditions
guaranteeing the existence and uniqueness of solution x(t) on the time interval
[t0, T ] for all admissible measurable open loop controls u1(t), . . . , un(t), t ∈
[t0, T ]. Let there exist a set of controls

u∗(t) = {u∗1(t), . . . , u∗n(t)}, t ∈ [t0, T ]
such that

max
u1,...,un

n∑

i=1

Ki(x0, t0; u1(t), . . . , un(t)) =
n∑

i=1

∫ T

t0

hi(x
∗(t))dt = V (N; x0, t0).

(12.2)

The solution x∗(t) of the system (12.1) corresponding to u∗(t), is called the
cooperative trajectory.

In cooperative game theory, [6], it is assumed that the players initially agree upon
the use of the controls u∗(t) = {u∗1(t), . . . , u∗n(t)} and hence, in the cooperative
formulation the differential game Γ (x0, t0) always develops along the cooperative
trajectory x∗(t).
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Let N = {1, . . . , i, . . . , n} be the set of all players. Let S ⊆ N and denote
by V (S; x0, t0) the characteristic function of the game Γ (x0, t0), [6]. Note that
V (N; x0, t0) is calculated by the formula (12.2). Let V (S; x∗(t), t), S ⊆ N ,
t ∈ [t0, T ] be a (superadditive) characteristic function of the subgame Γ (x0, t0)

constructed by any relevant method [5].
So, we state the following properties for characteristic function:

V (∅; x0, t0) = 0;

V (N; x0, t0) =
n∑

i=1

∫ T

t0

hi(x
∗(τ ))dτ ;

V (S1 ∪ S2; x0, t0) ≥ V (S1; x0, t0)+ V (S2; x0, t0). (12.3)

For the sake of definiteness we can assume that the characteristic function
V (S; x0, t0) is constructed as the value of a zero-sum differential game based on
the game Γ (x0, t0) and played between the coalition S (the first maximizing player)
and the coalition N \ S (the second minimizing player), and in each situation the
payoff of coalition S is assumed to be the sum of players’ payoffs from this coalition.

Consider the family of subgames Γ (x∗(t), t) of game Γ (x0, t0) along the
cooperative trajectory x∗(t), i.e. a family of cooperative differential games from the
initial state x∗(t) defined on the interval [t, T ], t ∈ [t0, T ] and the payoff functions

Ki(x
∗(t), t; u1, . . . , un) =

∫ T

t

hi(x(τ ))dτ, i = 1, . . . , n,

where x(τ) is a solution of (12.1) from initial position x∗(t) with controls
u1, . . . , un.

Let V (S; x∗(t), t), S ⊆ N , t ∈ [t0, T ] be the (superadditive) characteristic
function of subgame Γ (x∗(t), t), s.t. the properties (12.3) hold. For V (N; x∗(t), t),
the Bellman optimality condition along x∗(t) holds, i.e.

V (N; x0, t0) =
∫ t

t0

n∑

i=1

hi(x
∗(τ ))dτ + V (N; x∗(t), t).

12.4 Construction of a Core with a New Characteristic
Function

Define the new characteristic function V̄ (S; x0, t0), S ⊆ N , similar to [7, 8], by the
formula

V̄ (S; x0, t0) =
∫ T

t0

V (S; x∗(τ ), τ )
∑n
i=1 hi(x

∗(τ ))
V (N; x∗(τ ), τ ) dτ. (12.4)
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Similarly, we define for t ∈ [t0, T ]

V̄ (S; x∗(t), t) =
∫ T

t

V (S; x∗(τ ), τ )
∑n
i=1 hi(x

∗(τ ))
V (N; x∗(τ ), τ ) dτ. (12.5)

One can readily see that the function V̄ (S; x0, t0) has the all properties (12.3) of
the characteristic function of the game Γ (x0, t0). Indeed,

V̄ (∅; x0, t0) = 0,

V̄ (N; x0, t0) = V (N; x0, t0) =
n∑

i=1

∫ T

t0

hi(x
∗(τ ))dτ,

V̄ (S1 ∪ S2; x0, t0) ≥ V̄ (S1; x0, t0)+ V̄ (S2; x0, t0).

for S1, S2 ⊂ N , S1 ∩ S2 = ∅ (here we use the superadditivity of function
V (S; x0, t0)). The similar statement is true also for function V̄ (S; x∗(t), t) which
is defined as the characteristic function of Γ (x∗(t), t).

Let L(x0, t0) be the set of imputations in Γ (x0, t0) determined by characteristic
function of V (S; x0, t0), S ⊆ N , i.e.

L(x0, t0) =
{

ξ = {ξi} :
n∑

i=1

ξi = V (N; x0, t0), ξi ≥ V ({i}; x0, t0)

}

. (12.6)

Similarly, we define the set of imputationsL(x∗(t), t), t ∈ [t0, T ] in the subgame
Γ (x∗(t), t):

L(x∗(t), t) = {ξ t = {ξ ti } :
∑n
i=1 ξ

t
i = V (N; x∗(t), t),

ξ ti ≥ V ({i}; x∗(t), t), i ∈ N
}
.

(12.7)

We denote the set of imputations defined by characteristic functions V̄ (S; x0, t0)

and V̄ (S; x∗(t), t) by L̄(x0, t0) and L̄(x∗(t), t), respectively. These imputations are
defined in the same way as (12.6), (12.7).

Let ξ(t) = {ξi(t)} ∈ L(x∗(t), t) be the integrable selector [9], t ∈ [t0, T ], define

ξ̄i =
∫ T

t0

ξi(τ )

∑n
i=1 hi(x

∗(τ ))
V (N; x∗(τ ), τ ) dτ, (12.8)

ξ̄ ti =
∫ T

t

ξi(τ )

∑n
i=1 hi(x

∗(τ ))
V (N; x∗(τ ), τ ) dτ, (12.9)

where t ∈ [t, T ] and i = 1, . . . , n.



208 L. A. Petrosyan and E. V. Gromova

One can see that

n∑

i=1

ξ̄i = V (N; x0, t0),

n∑

i=1

ξ̄ ti = V (N; x∗(t), t).

Moreover, we have

ξ̄i ≥
∫ T

t0

V ({i}; x∗(τ ), τ )

n∑

i=1

hi(x
∗(τ ))

V (N; x∗(τ ), τ )dτ = V̄ ({i}; x0, t0)

and similarly

ξ̄ ti ≥ V̄ ({i}; x∗(t), t), i = 1, . . . , n, t ∈ [t0, T ],

i.e. the vectors ξ̄ = {ξ̄i} and ξ̄ t = {ξ̄ ti } are imputations in the games Γ (x0, t0) and
Γ (x∗(t), t), t ∈ [t0, T ], respectively, if the functions V̄ (S; x0, t0) and V̄ (S; x∗(t), t)
are used as characteristic functions.

We have that ξ̄ ∈ L̄(x0, t0) and ξ̄ t ∈ L̄(x∗(t), t).
Denote by C(x0, t0) ⊂ L(x0, t0), C(x∗(t), t) ⊂ L(x∗(t), t), t ∈ [t0, T ], the core

of the game Γ (x0, t0) and of the subgame Γ (x∗(t), t), respectively (it is assumed
that the sets C(x∗(t), t), t ∈ [t0, T ], are not empty along the cooperative trajectory
x∗(t)). For an application of the core in differential games see also [3].

So, we have

C(x0, t0) = {ξ = {ξi}, s.t .
∑

i∈S
ξi ≥ V (S; x0, t0),

∑

i∈N
ξi = V (N; x0, t0), ∀S ⊂ N}.

Let further C̃(x0, t0) and C̃(x∗(t), t), t ∈ [t0, T ] be the core of the game
Γ (x0, t0) and of Γ (x∗(t), t), constructed using the characteristic function
V̄ (S; x, t0), defined by the formulas (12.4) and (12.5). Thus, C̃(x0, t0) is the set of
imputations {ξ̃i} such that

∑

i∈S
ξ̃i ≥ V̄ (S; x0, t0), ∀S ⊂ N;

∑

i∈N
ξ̃i = V̄ (N; x0, t0) = V (N; x0, t0)

(12.10)

and C̃(x∗(t), t) is the set of imputations {ξ̃ ti }, s.t.

∑

i∈S
ξ̃ ti ≥ V̄ (S; x∗(t), t), ∀S ⊂ N;

∑

i∈N
ξ̃ ti = V̄ (N; x∗(t), t) = V (N; x∗(t), t).
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Let in the formulas (12.8) and (12.9) ξ(t) be an integrable selector, ξ(t) ∈
C(x∗(t), t0), t ∈ [t0, T ]. Define the set

C̄(x0, t0) =
{

ξ̄ : ξ̄ =
∫ T

t0

ξ(τ )

∑n
i=1 hi(x

∗(τ ))
V (N; x∗(τ ), τ ) dτ }, ∀ξ(τ ) ∈ C(x

∗(τ ), τ )
}

.

Similarly, we define

C̄(x∗(t), t) =
{

ξ̄ t : ξ̄ t =
∫ T

t

ξ(τ )

∑n
i=1 hi(x

∗(τ ))
V (N; x∗(τ ), τ ) dτ }, ∀ξ(τ ) ∈ C(x

∗(τ ), τ )
}

.

We have the following lemma.

Lemma 12.1

C̄(x0, t0) ⊆ C̃(x0, t0), C̄(x∗(t), t) ⊆ C̃(x∗(t), t), ∀t ∈ [t0, T ].

Proof To prove this lemma, we use the necessary and sufficient conditions for
imputations from the core (12.10).

We have ∀ξ̄ ∈ C̄(x0):

∑

i∈S
ξ̄i =

∑

i∈S

∫ T

t0

ξi(τ )

∑n
i=1 hi(x

∗(τ ))
V (x∗(τ ), τ,N)

dτ.

For imputations from the (basic) core C(x∗(t), t) we have

∑

i∈S
ξi(t) ≥ V (S, x∗(t), t), ∀S ⊂ N.

Hence,

∑

i∈S
ξ̄i ≥ V̄ (S, x0, t0), ∀S ⊂ N,

and C̄(x0) ⊆ C̃(x0).
The inclusion C̄(x∗(t), t) ⊆ C̃(x∗(t), t), ∀t ∈ [t0, T ] can be proved in a similar

way. ��
Moreover, we also have the converse result.

Lemma 12.2

C̃(x0, t0) ⊆ C̄(x0, t0); C̃(x∗(t), t) ⊆ C̄(x∗(t), t), ∀t ∈ [t0, T ].
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Proof We show that for each imputation ξ̃i ∈ C̃(x0, t0), ξ̃ ti ∈ C̃(x∗(t), t) there
exists an integrable selector ξ(t) ∈ C(x∗(t), t), t ∈ [t0, T ] such that

ξ̃i =
∫ T

t0

ξi(τ )
∑
i∈N hi(x∗(τ ))

V (N; x∗(τ ), τ ) dτ,

ξ̃ ti =
∫ T

t

ξi (τ )
∑
i∈N hi(x∗(τ ))

V (N; x∗(τ ), τ ) dτ,

i = 1, . . . , n.

Since ξ̃ t is an imputation, we have

ξ̃ ti ≥ V̄ ({i}, x∗(t), t) =
∫ T

t

V ({i}; x∗(τ ), τ )
V (N; x∗(τ ), τ )

∑

i∈N
hi(x

∗(τ ))dτ.

Moreover, by summing up we get

V̄ (N; x∗(t), t) =
n∑

i=1

ξ̃ ti .

The non-negativeness of the utility functions hi(·) implies that there exist αi ≥ 0,
i = 1, . . . , n such that

ξ̃ ti =
∫ T

t

αi(τ )+ V ({i}; x∗(τ ), τ ))
V (N; x∗(τ ), τ )

∑

i∈N
hi(x

∗(τ ))dτ,

and
∑n
i=1(αi(τ )+ V ({i}; x∗(τ ), τ ))

V (N; x∗(τ ), τ ) = 1.

Obviously, that ξ(τ ) = {ξi(τ ) = αi(τ ) + V ({i}; x∗(τ ), τ ))} is an imputation in
the game with the characteristic function V (S; x∗(τ ), τ )). But we can also prove
that ξ(τ ) = {ξi(τ ) = αi(τ ) + V ({i}; x∗(τ ), τ ))} belongs to the core C(x∗(τ ), τ ).
For ξ̃ t ∈ C̃(x∗(t), t) we have

∑

i∈S
ξ̃ ti =

∫ T

t

∑
i∈S(αi(τ )+ V ({i}; x∗(τ ), τ )))

V (N; x∗(τ ), τ )
∑

i∈N
hi(x

∗(τ ))dτ

≥ V̄ (S, x∗(t), t) =
∫ T

t

V (S; x∗(τ ), τ )
V (N; x∗(τ ), τ )

∑

i∈N
hi(x

∗(τ ))dτ,
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and hence we get

∑

i∈S
(αi(τ )+ V ({i}; x∗(τ ), τ ))) ≥ V (S; x∗(τ ), τ ).

The lemma is proved. ��
The preceding results imply that

C̃(x∗(t), t) ≡ C̄(x∗(t), t), ∀t ∈ [t0, T ].
It means, that the core C̃(x0, t0) constructed by using characteristic function V̄
coincides with the set of imputations C̄(x0, t0) constructed by formula (12.8) for any
imputation ξ(t) from the initial core C(x∗(t), t). Later on we will use the unified
notation C̄(x0, t0) for both sets.

12.5 Strong Time-Consistency

The property of strong dynamic stability (strong time consistency) coincides with
the property of dynamic stability (time consistency) for scalar-valued principles of
optimality such as the Shapley value [8] or the “proportional solution”. However,
for set-valued principles of optimality it has significant and non-trivial sense, which
is that any optimal behavior in the subgame with the initial conditions along the
cooperative trajectory computed at some intermediate time t ∈ [t0, T ], together
with optimal behavior on the time interval [t, T ] is optimal in the problem with
the initial condition t0. This property is almost never fulfilled for such set-valued
principles of optimality as the core or the NM-solution.

Let us formulate the definition of strong time-consistency for an arbitrary
optimality principle M(x0, t0) based on previous results, [9]. A slightly different
definition was given in [4].

Introduce the subset M(x0, t0) of the imputation set L(x0, t0) as the optimality
principle in the cooperative gameΓ (x0, t0).M(x0, t0) can be a core, aNM-solution,
a Shapley value or another one. Similarly, we define this set for all subgames
Γ (x∗(t), t) along the cooperative trajectory x∗(t).

Definition 12.1 The solution (optimality principle)M(x0, t0) is said to be strongly
time-consistent in the game Γ (x0, t0) if

1. M(x∗(t), t) �= ∅, t ∈ [t0, T ].
2. for any ξ ∈ M(x0, t0) there exists a vector-function β(τ) ≥ 0 such that

M(x0, t0) ⊃
∫ t

t0

β(τ)dτ ⊕M(x∗(t), t),

∀t ∈ [t0, T ],
∫ T
t0
β(t)dt = ξ ∈ M(x0, t0).
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Here symbol⊕ is defined as follows. Let a ∈ Rn, B ⊂ Rn, then

a ⊕ B = {a + b : b ∈ B}.
Let us consider the core C̄(x0, t0) as the set M(x0, t0). Thus we have the

following lemma.

Lemma 12.3 C̄(x0, t0) is a strongly time-consistent optimality principle.

Proof From the definition of the set C̄(x0, t0) we have that any imputation ξ̄ ∈
C̄(x0, t0) has the form (12.8). Then for any ξ̄ ∈ C̄(x0, t0) there exists

β̄i(t) = ξi(t)

∑

i∈N
hi(x

∗(t)

V (N; x∗(t), t) ≥ 0, i = 1, . . . , , t ∈ [t0, T ]

such that ξ̄ = ∫ Tt0 β̄(t)dt ∈ C̄(x0, t0).

Let us take another imputation ξ̂ t from the core C̄(x∗(t), t). Then according to
the definition of the set C̄(x∗(t), t) we have that there exists a selector ξ̂ (t) from the
initial basic core C(x∗(t), t) , i.e. ξ̂ (t) ∈ C(x∗(t), t) such that

β̂i(t) = ξ̂i (t)
∑
i∈N hi(x∗(t)

V (N; x∗(t), T − t) ≥ 0, i = 1, . . . , N, t ∈ [t0, T ],

such that ξ̂ t = ∫ Tt β̂(t)dt ∈ C̄(x∗(t), t).
Let us consider the vector-function

ξ̌ (τ ) =
{
ξ(τ ) τ ∈ [t0, t],
ξ̂ (τ ), τ ∈ (t, T ], (12.11)

It is obvious that ξ̌ (τ ) ∈ C(x∗(τ ), τ ), ∀τ ∈ [t0, T ]. Then we have a new vector

ξ̌ =
∫ t

t0

β̄(τ )dτ + ξ̂ t =
∫ T

t0

ξ̌ (τ )

∑
i∈N hi(x∗(τ )

V (N; x∗(τ ), τ )dτ,

where ξ̌ (τ ) ∈ C(x∗(τ ), τ ), ∀τ ∈ [t0, T ].
From the definition of the set C̄(x0, t0) we have that new vector ξ̌ ∈ C̄(x0, t0).

The vector ξ̂ t had been taken from the core C̄(x∗(t), t) arbitrarily.
So, we have shown that

C̄(x0, t0) ⊃
∫ T

t0

ξ(t)

∑
i∈N hi(x∗(τ ))

V (N; x∗(τ ), τ ) dτ ⊕ C̄(x
∗(t), t),

t ∈ [t0, T ].
The lemma is proved. ��
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The value

ξi(t)

∑
i∈N hi(x∗(t)

V (N; x∗(t), t) ≥ 0

is interpreted as the rate at which the ith player’s component of the imputation, i.e.,
ξ̄i , is distributed over the time interval [t0, T ].

12.6 S-strongly Time-Consistency

As above we consider the subset M(x0, t0) of the imputation set L(x0, t0) as the
optimality principle in the cooperative game Γ (x0, t0) which can be a core, a
NM-solution, a Shapley value or another one. Similarly, we define this set for all
subgames Γ (x∗(t), t) along the cooperative trajectory x∗(t).

Suppose we have two different optimality principles (cooperative solutions)
M(x0, t0) and M̂(x0, t0) such that

M̂(x0, t0) ⊆M(x0, t0),

M̂(x∗(t), t) ⊆M(x∗(t), t),

∀t ∈ [t0, T ]. Again, we assume that these sets are non-empty during the whole
game.

Definition 12.2 The cooperative solution M̂(x0, t0) is S-strongly time-consistent
(dynamically stable) with respect to the set M(x0, t0) if for any imputation ξ ∈
M̂(x0, t0) there exists β(τ) ≥ 0 such that

M(x0, t0) ⊃
∫ t

t0

β(τ)dτ ⊕ M̂(x∗(t), t),

∀t ∈ [t0, T ],
∫ T
t0
β(t)dt = ξ ∈ M̂(x0, t0).

Here we introduce the definition of strong time-consistency of the optimality
principle with respect to another (bigger) set, hence the prefix S-.

This definition means the following: even if the resulting solution will not belong
to the initial set M̂(x0, t0) it will stay within the set M(x0, t0) which includes
M̂(x0, t0).

From Definition 12.2 we have the following proposition.

Lemma 12.4 Let the optimality principle M(x0, t0) such that M(x∗(t), t) �=
∅, ∀t ∈ [t0, T ] be strongly time-consistent. Then any subset M̂(x0, t0), M̂(x0, t0) ⊆
M(x0, t0) such that M̂(x∗(t), t) �= ∅, M̂(x∗(t), t) ⊆ M(x∗(t), t),∀t ∈ [t0, T ], is
S-strongly time-consistent with respect toM(x0, t0).
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12.7 The Construction of a S-strongly Dynamically Stable
Subcore

In the following we identify a subset Ĉ(x0, t0) of the imputations in the set C̄(x0, t0),
which would belong to the core C(x0, t0), defined on the basis of the classical
characteristic function V (S; x0, t0).

Consider the value

max
t≤τ≤T

V (S; x∗(τ ), τ )
V (N; x∗(τ ), τ ) = λ(S, t0), (12.12)

then the following inequality holds

V̄ (S; x0, t0) ≤ λ(S, t0)
∫ T

t0

∑

i∈N
hi(x

∗(τ ))dτ = λ(S, t0)V (N; x0, t0). (12.13)

We introduce a new characteristic function

V̂ (S; x0, t0) = λ(S, t0)V (N; x0, t0). (12.14)

Similarly, for t ∈ [t0, T ] define the respective characteristic function V̂ (S; x∗(t), t)
as

V̂ (S; x∗(t), t) = λ(S, t)V (N; x∗(t), t), (12.15)

where

λ(S, t) = max
t≤τ≤T

V (S; x∗(τ ), τ )
V (N; x∗(τ ), τ ) . (12.16)

From (12.12), (12.13), (12.15) and (12.16) we get

V̂ (S; x0, t0) ≥ V̄ (S; x0, t0),

V̂ (S; x∗(t), t) ≥ V̄ (S; x∗(t), t).

Notice that

V̄ (N; x0, t0) = V̂ (N; x0, t0),

V̄ (N; x∗(t), t) = V̂ (N; x∗(t), t).

In addition, for all S1, S2, S1 ⊂ S2

V̂ (S1; x∗(t), t) ≤ V̂ (S2; x∗(t), t), t ∈ [t0, T ].
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Unfortunately, the property of superadditivity for the function V̂ (S; x∗(t), t), t ∈
[t0, T ] does not hold in general. One can write

V̂ (S; x∗(t), t) = λ(S, t)V (N; x∗(t), t) =

= max
t≤τ≤T

V (S; x∗(τ ), τ )
V (N; x∗(τ ), τ )V (N; x

∗(t), t) ≥

≥ V (N; x∗(t), t) V (S; x
∗(t), t)

V (N; x∗(t), t) ≥ V (S; x
∗(t), t), S ⊂ N. (12.17)

The preceding inequality leads to the following lemma.

Lemma 12.5 The following inequality holds true:

V (S; x∗(t), t) ≤ V̂ (S; x∗(t), t), ∀t ∈ [t0, T ].

Denote by Ĉ(x0, t0) the set of imputations ξ = (ξ1, . . . ξn) such that

∑

i∈S
ξi ≥ V̂ (S; x0, t0), ∀S ⊂ N,

∑

i∈N
ξi = V̂ (N; x0, t0).

(12.18)

Assume that the set Ĉ(x∗(t), t) is not empty when t ∈ [t0, T ]. It is easy to see
that it is analogous to the core C(x0, t0), if the function V̂ (S; x∗(t), t) is chosen as
the characteristic function.

Thereby we have the statement.

Theorem 12.1 ([10]) The following inclusion takes place:

Ĉ(x∗(τ ), τ ) ⊂ C(x∗(τ ), τ ) ∩ C̄(x∗(τ ), τ ), ∀τ ∈ [t0, T ]. (12.19)

We can also formulate the following Theorem (see Fig. 12.1 for an illustration).

Fig. 12.1 The basic core and
the associated cores
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Theorem 12.2 The subcore Ĉ(x0, t0) ⊂ C(x0, t0) is S-strongly time-consistent
with respect to the set C̄(x0, t0).

Proof From Theorem 12.1 we have that Ĉ(x0, t0) ⊂ C(x0, t0)∩C̄(x0, t0), and hence
Ĉ(x0, t0) ⊂ C̄(x0, t0). Lemma 12.3 implies that C̄(x0, t0) is strong-time consistent
optimality principle.

Finally, the requested result follows from Lemma 12.4. ��
The preceding theorem shows that using the new characteristic function (12.14)

we constructed a subset of the classical core C(x0, t0) (subcore) in the game
Γ (x0, t0) which is S-time-consistent with respect to C̄(x0, t0).

This gives an interesting practical interpretation of the subcore Ĉ(x0, t0).
Selecting the imputation ξ from the subcore as a solution, we guarantee that
if the players—when evolving along the cooperative trajectory in subgames—
change their mind by switching to another imputation within the current subcore
Ĉ(x∗(τ ), τ ), the resulting imputation will not leave the set C̄(x0, t0) which is
also a core in Γ (x0, t0), but with the characteristic function of the form V̄ (S, ·)
(12.3) obtained by an integral transformation of classical characteristic function
V (S, x∗(τ ), τ ) in the games Γ (x∗(τ ), τ ).

From Theorem 12.1 it follows that the imputations of type Ĉ(x∗(t), t) belong
to the classical core of the game Γ (x∗(t), t) for all t ∈ [t0, T ]. In this sense,
Theorem 12.1 establishes a new principle of optimality (cooperative solution).

12.8 Conclusion

In the paper we introduced the definition of S-strong time-consistency in differential
games. The approach to the construction of an S-strong time-consistent subcore of
the classical core is based on the use of normalized initial characteristic function. We
also considered its relation to another characteristic function obtained by an integral
extension of the original characteristic function.

We shown that the computed subset of the classical core can be considered as a
new optimality principle (cooperative solution) in differential games.

In the future we plan to study the relationship of proposed approach with another
constructive approach [12] which allows to identify another subset of the core which
is strongly time-consistent.
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Chapter 13
Characteristic Functions in a Linear
Oligopoly TU Game

Artem Sedakov

Abstract We consider a linear oligopoly TU game without transferable technolo-
gies in which the characteristic function is determined from different perspectives.
In so-called γ -, δ-, and ζ -games, we study the properties of characteristic functions
such as monotonicity, superadditivity, and supermodularity. We also show that these
games have nonempty cores of a nested structure when the δ-characteristic function
is supermodular.

13.1 Introduction

In the definition of a TU game, the characteristic function plays an important role as
it measures the worth of any coalition of players, which, in turn, influences players’
cooperative payoffs. When the game is initially formulated as a normal-form game,
the characteristic function of the corresponding TU game has to be determined. The
first study on this problem was done in [12] in which the concepts of so-called
α- and β-characteristic functions were proposed. Later in [1], TU games based
on these characteristic functions were called α- and β-games, respectively. When
transiting from a normal-form game to the corresponding TU game, other studies
devoted to the definition of the characteristic function include the concepts of γ -, δ-,
and ζ -games proposed in [8, 9], and [5], respectively.1 All these definitions of the
corresponding TU games proceed from the assumption that any coalition of players
maximizes the sum of the payoffs of its members.

1Characteristic functions considered in [9] and [8] were called later the γ - and δ-characteristic
functions, in [2] and [10], respectively.

A. Sedakov (�)
Saint Petersburg State University, Saint Petersburg, Russia
e-mail: a.sedakov@spbu.ru

© Springer International Publishing AG, part of Springer Nature 2018
L. A. Petrosyan et al. (eds.), Frontiers of Dynamic Games,
Static & Dynamic Game Theory: Foundations & Applications,
https://doi.org/10.1007/978-3-319-92988-0_13

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92988-0_13&domain=pdf
mailto:a.sedakov@spbu.ru
https://doi.org/10.1007/978-3-319-92988-0_13


220 A. Sedakov

In this paper, we study the properties of the aforementioned characteristic
functions applicable to linear oligopoly games where a finite number of firms
producing a homogeneous product compete in a market. The literature on this topic
covers two means of determining the cost of a group of firms (coalition): games with
transferable technologies (weak synergy) [6, 13, 14], and games without transferable
technologies [3, 4, 7]. Here, we follow the second approach as it is consistent with
[12] in determining the profit of a coalition.

For the class of oligopoly TU games under consideration, the properties of α- and
β-games have already been studied in [3, 7]. We continue studying the properties
of γ -, δ-, and ζ -games such as monotonicity, superadditivity, and convexity. The
remainder of the paper has the following structure. In Sect. 13.2, we consider a basic
linear oligopoly game for which both noncooperative and cooperative solutions are
presented. Next, Sect. 13.3 provides closed-form expressions for α-, β-, γ -, δ-, and
ζ -characteristic functions, while their properties are examined in Sect. 13.4. The
existence of the cores of linear oligopoly TU games based on the aforementioned
characteristic functions is discussed in Sect. 13.5. Section 13.6 concludes.

13.2 The Model

We consider a market consisting of firms–competitors producing a homogeneous
product. Denote the set of the firms by N = {1, . . . , n} with n � 2. Each firm
decides on its output, i.e., the quantity it must produce, qi ∈ Qi = [0, a] with
a > 0, thus the output is the firm’s strategy. The market price for the product is
determined by the profile of quantities q = (q1, . . . , qn) according to the inverse
demand function P(q) = (

a −∑i∈N qi
)
+ = max{0, a − ∑i∈N qi}. Under the

assumption of linearity of the cost function Ci(qi) = ciqi with ci < a for any firm
i ∈ N , we obtain the following expression of firm i’s profit: πi(q) = (P (q)− ci)qi .
Thus we have a noncooperative normal-form game (N, {Qi}i∈N, {πi}i∈N). We note
that πi is not concave on

∏
j∈N Qj for any i ∈ N .

For any subset S ⊆ N , let IS = {i ∈ N : i = arg minj∈S cj }, a firm belonging to
IS be denoted by iS , and cS =∑j∈S cj .

13.2.1 Nash Equilibrium

A Nash equilibrium in the game (N, {Qi }i∈N, {πi}i∈N) is the profile q∗ =
(q∗1 , . . . , q∗n) such that πi(q∗) � πi(qi, q∗−i ) for any i ∈ N and qi ∈ [0, a], where
q∗−i denotes the profile of outputs of all firms except firm i in q∗. For practical
reasons, we suppose that the price P(q) is positive under the equilibrium. It is well-
known that the Nash equilibrium profile q∗ has the form:

q∗i =
a + cN
n+ 1

− ci, i ∈ N. (13.1)
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From the expression of equilibrium outputs, it follows that q∗i + ci = q∗j + cj and
therefore q∗i −q∗j = cj−ci for any two firms i and j . To meet a positive equilibrium
profile q∗, we additionally require that

(n+ 1)ci < a + cN for all i ∈ N. (13.2)

Under the Nash equilibrium profile q∗ we notice the following:
∑
i∈N q∗i < a, the

profit of firm i ∈ N is positive and it equals πi(q∗) = (q∗i )2; the equilibrium price
for the product becomes P(q∗) = a+cN

n+1 what exceeds the unit cost of any firm
owning to inequality (13.2).

13.2.2 Cooperative Agreement

Now we shall consider the case when firms aim at maximizing the sum of their
profits without being restricted in forming one alliance. This means that one must
consider the following optimization problem:

max
q

∑

i∈N
πi(q) subject to qi ∈ [0, a], i ∈ N. (13.3)

For practical reasons, we isolate the case when the price P(q) is positive under
the solution. Otherwise, when this price equals zero, the sum to be maximized will
be nonpositive. The optimal solution of problem (13.3) will be denoted by q̄ =
(q̄1, . . . , q̄n) and called the cooperative agreement. The optimization problem (13.3)
may be written in an alternative form:

max
q1,...,qn

∑

i∈N
(a − ci)qi −

(
∑

i∈N
qi

)2

(13.4)

subject to qi ∈ [0, a], i ∈ N.

To analyze both the solution and the value of problem (13.4), we will use the
following statement.

Proposition 13.1 Let z, z1, . . . , zk be real numbers such that z � z1 � . . . � zk >
0. The value of the constrained optimization problem

max
x1,...,xk

k∑

i=1

zixi −
(
k∑

i=1

xi

)2

(13.5)

subject to xi ∈ [0, z], i = 1, . . . , k,

equals z2
1/4. This value is attained at x = (z1/2, 0, . . . , 0).
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Note that Proposition 13.1 does not list all optimal solutions. For example,
when z1 = z2, the aforementioned optimization problem (13.5) admits any optimal
solution (wz12 ,

(1−w)z1
2 , 0, . . . , 0) where w ∈ [0, 1]. When z1 = . . . = zk0 for some

integer k0 � k, the profile x = (x1, . . . , xk) where

xi =
{ z1

2k0
, if i � k0,

0, if k0 < i � k,

also appears to be the optimal solution of the optimization problem (13.5) as it gives
the same value of z2

1/4. For the analysis that we carry out below, we are interested
only in the value of the constrained optimization problem, therefore the optimal
solution/solutions are not of much relevance.

The cooperative agreement q̄ = (q̄1, . . . , q̄n) can directly be found from
Proposition 13.1:

q̄i =
⎧
⎨

⎩

a − ciN
2|IN | , if i ∈ IN ,

0, otherwise.
(13.6)

Under the cooperative agreement, only firms with the lowest unit cost produce
positive output. Firm i’s profit under this agreement equals

πi(q̄) =
⎧
⎨

⎩

(a − ciN )2
4|IN | , if i ∈ IN ,

0, otherwise,
(13.7)

and the sum of firms’ profits is
∑
i∈N πi(q̄) = (a − ciN )2/4. The price on the

product will be P(q̄) = (a + ciN )/2. Comparing the equilibrium and cooperative
policies, we conclude that P(q̄) > P(q∗). Moreover since q̄ maximizes the sum of
firms’ profits, it immediately follows that

∑
i∈N πi(q̄) �

∑
i∈N πi(q∗), yet there

may exist a firm j ∈ N that πj (q̄) < πj (q
∗). At the same time,

∑
i∈N q̄i <∑

i∈N q∗i . Indeed,

∑

i∈N
q∗i −

∑

i∈N
q̄i = na − cN

n+ 1
− a − ciN

2
= (n− 1)a − 2cN + (n+ 1)ciN

2(n+ 1)

>
(n+ 1)cN\iN − (n− 1)cN − 2cN + (n+ 1)ciN

2(n+ 1)

= (n+ 1)cN − (n− 1)cN − 2cN
2(n+ 1)

= 0.

The inequality is true because (n − 1)(a + cN) > (n + 1)cN\iN owning to
(13.2). Summarizing the above, under the cooperative agreement firms produce less
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product, its price is higher, and firms get more profit in total with respect to the Nash
equilibrium agreement.

13.3 Characteristic Functions in a Linear Oligopoly
TU Game

We have observed that under the cooperative agreement, a firm may receive
zero profit, however its profit is always positive under the Nash equilibrium. To
encourage firms to cooperate with each other, the joint profit of

∑
i∈N πi(q̄) should

be allocated in an alternative way, differing from (13.7). For this reason, we first
move from a noncooperative game (N, {Qi}i∈N, {πi}i∈N) to its cooperative version
called a cooperative game or TU game, and then allocate that joint profit with the
use of an appropriate cooperative solution. We denote the cooperative game by
(N, v) where v : 2N �→ R is the characteristic function assigning the worth v(S)
to any subset S ⊆ N called coalition with v(∅) = 0. In this section, we consider
different approaches for determining the characteristic function v. To emphasize
a particular approach, we will use a superscript for v, however for any of the
approaches v(N) = (a − ciN )2/4 will denote the joint profit to be allocated.

13.3.1 α-Characteristic Function

The first measure determining the worth of any coalition S ⊂ N and considered in
the game-theoretic literature was the α-characteristic function vα introduced in [12].
The value vα(S) is interpreted as the maximum value that coalition S can get in the
worst-case scenario, i.e., when the complementN \ S acts against S:

vα(S) = max
qi∈[0,a],i∈S

min
qj∈[0,a],j∈N\S

∑

i∈S
πi(q). (13.8)

From [3] it follows that vα(S) = 0 for any coalition S ⊂ N , and the profile of
outputs that solves (13.8) is of the form:

q
α,S
i =

⎧
⎨

⎩

0, if i ∈ S,
a

|N \ S| , if i ∈ N \ S, (13.9)

with
∑
i∈N q

α,S
i = a.
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13.3.2 β-Characteristic Function

Another measure determining the worth of coalition S ⊂ N was also considered
in [12]. The value vβ(S) amounts to the smallest value that the complement N \ S
can force S to receive, without knowing its actions, and this value is defined as

vβ(S) = min
qj∈[0,a],j∈N\S

max
qi∈[0,a],i∈S

∑

i∈S
πi(q). (13.10)

In [3] it was shown that vβ(S) = 0 for any coalition S ⊂ N thus vα(S) =
vβ(S) = 0, and the profile of outputs that solves (13.10) is the same: qβ,Si = qα,Si ,

i ∈ N with
∑
i∈N q

β,S
i = a.

13.3.3 γ -Characteristic Function

Considered in [2, 9], the γ -characteristic function vγ for any coalition S ⊂ N

assigns its equilibrium payoff in a noncooperative game played between S acting as
one player and players from N \ S acting as singletons. Hence we get the following
result.

Proposition 13.2 For any coalition S ⊂ N , it holds that

vγ (S) =
⎛

⎝q∗iS +
1

n− s + 2

∑

j∈S\iS
q∗j

⎞

⎠

2

. (13.11)

Proof According to the definition of the γ -characteristic function, coalition S ⊂ N
aims at maximizing the profit

∑
i∈S πi(q) over qi ∈ [0, a] for all i ∈ S, whereas

each firm j ∈ N \ S seeks to maximize its own profit πj (q) over qj ∈ [0, a].
Maximizing

∑
i∈S πi(q)with respect to the profile of quantities of firms from S, we

get the reaction of S (by Proposition 13.1):

q
γ,S
i =

⎧
⎪⎨

⎪⎩

a − ∑

j∈N\S
qj − ciS

2|IS | , if i ∈ S ∩ IS,
0, if i ∈ S \ IS.

(13.12)

At the same time for any j ∈ N \ S, maximizing πj (q) with respect to the qj , the
first-order conditions imply qj = a −∑i∈S qi −

∑
i∈N\S qi − cj . Summing these

equalities over all j ∈ N \ S and substituting expression (13.12) into this sum, we
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obtain that

∑

i∈N\S
q
γ,S
i = (n− s)(a + ciS )− 2cN\S

n− s + 2
,

where s = |S|. Thus

vγ (S) = 1

4

⎛

⎝a −
∑

i∈N\S
q
γ

i (S)− ciS
⎞

⎠

2

=
(
a − (n− s + 1)ciS + cN\S

n− s + 2

)2

=
⎛

⎝q∗iS +
1

n− s + 2

∑

j∈S\iS
q∗j

⎞

⎠

2

.

The equilibrium profile of outputs which is used to find the value vγ (S) for S ⊂ N
is of the form:

q
γ,S

i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

|IS |

(

q∗iS +
1

n− s + 2

∑

j∈S\iS
q∗j

)

, if i ∈ S ∩ IS,
0, if i ∈ S \ IS,
q∗i +

1

n− s + 2

∑

j∈S\iS
q∗j , if i ∈ N \ S,

(13.13)

and
∑
i∈N q

γ,S

i �
∑
i∈N q∗i . ��

13.3.4 δ-Characteristic Function

Motivated by the computational complexity of α-, β-, and γ -characteristic functions
known for that moment, Petrosjan and Zaccour [8] introduced the δ-characteristic
function vδ which for any coalition S ⊂ N was determined as its best response
against the Nash equilibrium output of singletons from N \ S, i.e.:

vδ(S) = max
qi∈[0,a],i∈S

∑

i∈S
πi(qS, q

∗
N\S). (13.14)

Here the equilibrium profile of outputs of firms from coalition N \ S is given by
(13.1).
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Proposition 13.3 For any coalition S ⊂ N , it holds that

vδ(S) =
⎛

⎝q∗iS +
1

2

∑

j∈S\iS
q∗j

⎞

⎠

2

. (13.15)

Proof By the definition of the δ-characteristic function, the expression of the Nash
equilibrium output (13.1), and the result of Proposition 13.1, we obtain

vδ(S) = max
qi∈[0,a],i∈S

∑

i∈S

⎛

⎝

⎛

⎝a −
∑

j∈S
qj −

∑

j∈N\S
q∗j

⎞

⎠

+
− ci

⎞

⎠ qi

= max
qi∈[0,a],i∈S

∑

i∈S

⎛

⎝a −
∑

j∈N\S
q∗j − ci −

∑

j∈S
qj

⎞

⎠ qi

= max
qi∈[0,a],i∈S

∑

i∈S

⎛

⎝a −
∑

j∈N\S
q∗j − ci

⎞

⎠ qi −
⎛

⎝
∑

j∈S
qj

⎞

⎠

2

= 1

4

⎛

⎝a −
∑

j∈N\S
q∗j − ciS

⎞

⎠

2

=
(
(s + 1)q∗iS − cS + sciS

)2

4
=
⎛

⎝q∗iS +
1

2

∑

j∈S\iS
q∗j

⎞

⎠

2

.

Here we assumed that the total output does not exceed a, otherwise the maximum
in (13.14) would be negative. Note that one of the profiles of quantities that solves
maximization problem (13.14) is of the form:

q
δ,S
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

|IS |

(

q∗iS +
1

2

∑

j∈S\iS
q∗j

)

, if i ∈ S ∩ IS,
0, if i ∈ S \ IS,
q∗i , if i ∈ N \ S,

(13.16)

and
∑
i∈N q

δ,S
i �

∑
i∈N q

γ,S

i , but
∑
i∈S q

δ,S
i >

∑
i∈S q

γ,S

i . Hence the proposition
is proved. ��
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We notice a relationship between the γ - and δ-characteristic functions. For any
S, it holds that

vγ (S) =
(

2
√
vδ(S)+ (n− s)√vδ(iS)

n− s + 2

)2

,

i.e., vγ (S) is the square of the weighted average of
√
vδ(S) and equilibrium output

q∗iS of firm iS having the smallest unit cost in coalition S.

13.3.5 ζ -Characteristic Function

An approach for determining the worth of a coalition by means of the so-called ζ -
characteristic function vζ was presented in [5]. For coalition S ⊂ N , the value vζ (S)
measures the worst profit that S can achieve following the cooperative agreement q̄
given by (13.6). In other words, vζ (S) is the value of the minimization problem

vζ (S) = min
qj∈[0,a],j∈N\S

∑

i∈S
πi(q̄S, qN\S). (13.17)

Proposition 13.4 For any coalition S ⊂ N , it holds that

vζ (S) = −|S ∩ IN |ciN q̄iN . (13.18)

Proof By the definition of the ζ -characteristic function and the expression of the
cooperative output (13.6), we get

vζ (S) = min
qj∈[0,a],j∈N\S

∑

i∈S

⎛

⎝

⎛

⎝a −
∑

j∈S
q̄j −

∑

j∈N\S
qj

⎞

⎠

+
− ci

⎞

⎠ q̄i

=
∑

i∈S∩IN

⎛

⎝

⎛

⎝−
∑

j∈S
q̄j

⎞

⎠

+
− ci

⎞

⎠ q̄i = −|S ∩ IN |ciN q̄iN .

A profile of firms’ outputs that solves minimization problem (13.17) is given by:

q
ζ,S
i =

⎧
⎨

⎩

q̄i , if i ∈ S,
a

|N \ S| , if i ∈ N \ S, (13.19)

and
∑
i∈N q

ζ,S
i > a. Thus the statement of the proposition is proved. ��
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13.4 Properties of the Characteristic Functions

In this section, we study properties of the characteristic functions that have
been introduced and the relationships between them. Characteristic function v is
monotonic if v(R) � v(S) for any coalitions R ⊂ S. Characteristic function v is
superadditive if v(S ∪ R) � v(S) + v(R) for any disjoint coalitions S,R ⊆ N .
Characteristic function v is supermodular if v(S∪R)+v(S∩R) � v(S)+v(R) for
any coalitions S,R ⊆ N . When v is supermodular, the game (N, v) is convex. The
properties of vα , vβ such as monotonicity, superadditivity, supermodularity were
examined in [3, 7]. Some results for vγ were presented in [6, 9], for example, the
existence of the γ -core for an oligopoly game either with transferable technologies
or without transferable technologies but with n � 4. In the present section we study
the properties of vγ , vδ , and vζ for the linear oligopoly game without transferable
technologies.

Proposition 13.5 Characteristic functions vγ and vδ are monotonic whereas vζ is
not.

Proof Let R ⊂ S ⊆ N with |R| = r and |S| = s. Therefore, ciR � ciS and
q∗iR � q∗iS . First, prove the monotonicity of vδ . Since vδ is nonnegative, it suffices to

show that
√
vδ is monotonic. Indeed,

√
vδ(S)−

√
vδ(R) = q∗iS − q∗iR +

1

2

∑

j∈(S\iS)\(R\iR)
q∗j > 0.

Second, prove the monotonicity of vγ . Again, since vγ is nonnegative, it suffices
to show that

√
vγ is monotonic. We have:

√
vγ (S)−√vγ (R) = q∗iS +

1

n− s + 2

∑

j∈S\iS
q∗j − q∗iR −

1

n− r + 2

∑

j∈R\iR
q∗j

� q∗iS − q∗iR +
(

1

n− s + 2
− 1

n− r + 2

) ∑

j∈S\iS
q∗j > 0.

Finally, show that vζ is not monotonic. Indeed, for R ⊂ S ⊂ N , it holds that
vζ (S) − vζ (R) = (|R ∩ IN | − |S ∩ IN |)ciN q̄iN � 0, but vζ (N) − vζ (S) =
(a − ciN )2/4+ |S ∩ IN |ciN q̄iN > 0, and this completes the proof. ��
Proposition 13.6 Characteristic functions vδ and vζ are superadditive whereas vγ

is superadditive only in case of duopoly; i.e., when n = 2.

Proof Let S,R ⊆ N be two disjoint coalitions with |S| = s and |R| = r . Without
loss of generality, we suppose that ciS � ciR , therefore q∗iS � q∗iR . First, prove the
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superadditivity of vδ . From (13.15), it can be easily verified that

√
vδ(S ∪ R) =

√
vδ(S)+

√
vδ(R)− 1

2

√
vδ(iR). (13.20)

Using (13.20), we obtain:

vδ(S ∪ R)− vδ(S)− vδ(R)
= 1

4
vδ(iR)+ 2

√
vδ(S)vδ(R)−

√
vδ(iR)

(√
vδ(S)+

√
vδ(R)

)

= 1

4
vδ(iR)+

√
vδ(S)

(√
vδ(R)−

√
vδ(iR)

)
+
√
vδ(R)

(√
vδ(S)−

√
vδ(iR)

)

� 1

4
vδ(iR)+

√
vδ(S)

(√
vδ(R)−

√
vδ(iR)

)
+
√
vδ(R)

(√
vδ(S)−

√
vδ(iS)

)
> 0.

Second, to prove the superadditivity of vζ , we note that for S ∪ R ⊂ N ,

vζ (S ∪ R)− vζ (S)− vζ (R) = −ciN q̄iN (|(S ∪ R) ∩ IN | − |S ∩ IN | − |R ∩ IN |)
= −ciN q̄iN (|(S ∩ IN) ∪ (R ∩ IN)| − |S ∩ IN | − |R ∩ IN |)
= −ciN q̄iN (|S ∩ IN | + |R ∩ IN |
−|(S ∩ IN ) ∩ (R ∩ IN)| − |S ∩ IN | − |R ∩ IN |)

= ciN q̄iN |(S ∩ IN) ∩ (R ∩ IN )| = 0,

because (S∩ IN)∩ (R∩ IN ) = ∅ when S and R are disjoint coalitions. At the same
time, when S∪R = N , we have vζ (S∪R)−vζ (S)−vζ (R) = vζ (N)+ciN q̄iN (|S∩
IN | + |R ∩ IN |) > 0.

And finally, consider vγ . The superadditivity of vγ in case of duopoly is obvious.
Let S = iS and R = iR. Using (13.11), it follows that

vγ (iS ∪ iR)− vγ (iS)− vγ (iR) =
(

q∗iS +
q∗iR
n

)2

− (q∗iS
)2 − (q∗iR

)2

= q∗iS q∗iR
(

2

n
− q

∗
iR

q∗iS

(

1− 1

n2

))

,

which becomes negative when n > q∗iS /q
∗
iR
+
√

1+
(
q∗iS /q

∗
iR

)2
� 1+√2 > 2. The

statement is proved. ��
Proposition 13.7 Characteristic function vζ is supermodular; vγ is supermodular
only in case of duopoly, and vδ is supermodular either when n � 4, or when firms
are symmetrical.



230 A. Sedakov

Proof We first prove the supermodularity of vζ . Using results of Proposition 13.6,
we obtain: vζ (S ∪ R) + vζ (S ∩ R) − vζ (S) − vζ (R) = ciN q̄iN (|(S ∩ IN) ∩ (R ∩
IN)|−|(S∩R)∩IN |) = 0 when S∪R ⊂ N . If S∪R = N , then vζ (S∪R)+vζ (S∩
R)− vζ (S)− vζ (R) = vζ (N)+ ciN q̄iN (|S ∩ IN | + |R ∩ IN | − |(S ∩R)∩ IN |) > 0
because the expression in the brackets is nonnegative.

Second, supermodularity implies superadditivity, and if vγ is not superadditive,
it cannot also be supermodular. By Proposition 13.6, in case of duopoly, vγ is
superadditive and therefore supermodular.

Finally, consider vδ . Let S,R ⊆ N be two coalitions with |S| = s and |R| = r .
Without loss of generality, we suppose that ciS � ciR � ciS∩R , therefore q∗iS � q

∗
iR

�
q∗iS∩R . It can be verified that

√
vδ(S ∪ R) =

√
vδ(S)+

√
vδ(R)−

√
vδ(S ∩ R)− 1

2

√
vδ(iR)+ 1

2

√
vδ(iS∩R),

(13.21)

which is an extension of (13.20) when coalitions S and R are not necessarily
disjoint. Using (13.21) and recalling that

√
vδ(iR) = q∗iR and

√
vδ(iS∩R) = q∗iS∩R ,

we have:

vδ(S ∪ R)+ vδ(S ∩ R)− vδ(S)− vδ(R) = 1

4

(
q∗iR − q∗iS∩R

)2

+2
(√
vδ(S)−

√
vδ(S ∩ R)

) (√
vδ(R)−

√
vδ(S ∩ R)

)

− (q∗iR − q∗iS∩R
) (√

vδ(S)+
√
vδ(R)−

√
vδ(S ∩ R)

)
.

Due to the monotonicity of vδ , the latter expression is positive when q∗iR = q∗iS∩R ,
i.e., the supermodularity condition holds. This is also the case when firms are
symmetrical, hence vδ will be supermodular.

Now we show that vδ is supermodular in a general case for n � 4. In case of
duopoly supermodularity is obvious. Let n = 3, and without loss of generality, we
suppose c1 � c2 � c3, thus here there is only one case of our interest: S = {1, 3},
R = {2, 3}. The case when S = {1, 2}, R = {2, 3} is not of much interest since
q∗iR = q∗iS∩R and therefore iR = iS∩R = 2. Similarly, when S = {1, 2}, R = {1, 3},
we have q∗iR = q∗iS∩R and therefore iR = iS∩R = 1. Other cases lead either to the
inequality for superadditivity or to the case when the supermodularity inequality
becomes an equality. Consider the aforementioned case. Let S = {1, 3}, R = {2, 3}.
We obtain: vδ(S ∪ R) + vδ(S ∩ R) − vδ(S) − vδ(R) = 1

4 (−3(q∗2 )2 + 3(q∗3 )2 +
4q∗1q∗2 − 2q∗2q∗3 ) �

1
4 ((q

∗
2 )

2 + 3(q∗3 )2 − 2q∗2q∗3 ) = 1
4 ((q

∗
2 − q∗3 )2 + 2(q∗3 )2) > 0.

Let now n = 4 and c1 � c2 � c3 � c4. There are ten cases when the inequality
guaranteeing supermodularity should be verified (when coalitions S and R intersect,
but q∗iR �= q∗iS∩R ): S = {1, 3}, R = {2, 3}; S = {1, 4}, R = {2, 4}; S = {1, 4}, R =
{3, 4}; S = {2, 4}, R = {3, 4}; S = {1, 3}, R = {2, 3, 4}; S = {1, 4}, R = {2, 3, 4};
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S = {1, 3, 4}, R = {2, 3}; S = {1, 3, 4}, R = {2, 4}; S = {1, 2, 4}, R = {3, 4}; and
S = {1, 3, 4}, R = {2, 3, 4}. Prove for the case when S = {1, 3, 4}, R = {2, 3, 4}.
We have: vδ(S ∪ R) + vδ(S ∩ R) − vδ(S) − vδ(R) = 1

4 (−3(q∗2 )2 + 3(q∗3 )2 +
4q∗1q∗2 − 2q∗2q∗3 − 2q∗2q∗4 + 2q∗3q∗4 ) �

1
4 ((q

∗
2 − q∗3 )2 + 2(q∗3 )2 − 2q∗4 (q∗2 − q∗3 )) =

1
4 ((q

∗
2 − q∗3 − q∗4 )2 + 2(q∗3 )2 − (q∗4 )2) > 0. All other cases can be examined in a

similar way. Hence the proposition is now proved. ��
Example 13.1 Consider an oligopoly with N = {1, 2, 3, 4, 5} and the following
values of parameters: a = 10, c1 = c2 = 1, c3 = c4 = c5 = 2. From (13.1) we
get: q∗1 = q∗2 = 2, q∗3 = q∗4 = q∗5 = 1. Let S = {1, 3, 4, 5} and R = {2, 3, 4, 5},
therefore iS = 1, iR = 2, iS∪R ∈ {1, 2}, and iS∩R ∈ {3, 4, 5}. Using (13.15), we
obtain vδ(S) = vδ(R) = 12.25, vδ(S ∪ R) = 20.25, and vδ(S ∩ R) = 4 which
means that v(S ∪ R)+ v(S ∩ R) < v(S)+ v(R) and vδ is not supermodular.

Proposition 13.8 For any coalition S ⊂ N , the condition vζ (S) � vα(S) =
vβ(S) � vγ (S) � vδ(S) is satisfied.
Proof The fulfillment of two inequalities vζ (S) � vα(S) and vβ(S) � vγ (S) is
obvious. Prove that vγ (S) � vδ(S). Since values vγ (S) and vδ(S) are positive for
all S, it suffices to show that

√
vγ (S) �

√
vδ(S). We have

√
vδ(S) − √vγ (S) =

n−s
2(n−s+2)

∑
j∈S\iS q

∗
j which is positive. The statement of the proposition is hence

proved. ��

13.5 Cooperative Solutions for a Linear Oligopoly TU Game

An imputation set of cooperative game (N, v) is the set I [v] = {(ξ1, . . . , ξn) :∑
i∈N ξi = v(N); ξi � v({i})}. A cooperative solution is a rule that maps v into

a subset of I [v]. In particular, the core of the game (N, v) is defined as the set
C [v] = {(ξ1, . . . , ξn) ∈ I [v] : ∑i∈S ξi � v(S), S ⊂ N}. The Shapley value
Φ[v] = (Φ1[v], . . . , Φn[v]) is an imputation whose components are defined as
Φi [v] = ∑

S⊆N
(n−|S|)!(|S|−1)!

n! (v(S) − v(S \ {i})), i ∈ N . The core of the game
(N, vα) will be called the α-core and denoted by C [vα]. Similarly, we determine
β-, γ -, δ-, and ζ -cores and denote them by C [vβ ], C [vγ ], C [vδ], and C [vζ ],
respectively.

The existence of α-, β-cores was shown in [3, 7], thus in view of Proposition 13.8,
the next result directly follows.

Corollary 13.1 Let δ-core be nonempty. Then C [vδ] ⊆ C [vγ ] ⊆ C [vα] =
C [vβ ] ⊆ C [vζ ].

The above result notes a nested structure of the cores when the δ-core is
nonempty. The existence of γ - and δ-cores can be guaranteed when the number
of firms does not exceed 4 and/or when firms are symmetrical since the δ-game
becomes convex in these cases (see [11]). As to the ζ -core, it always exists, and its
nonemptiness follows from the existence of C [vα].
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Table 13.1 The values of α-,
β-, γ -, δ-, and
ζ -characteristic functions

S vα(S) vβ (S) vγ (S) vδ(S) vζ (S)

{1} 0 0 0.0676 0.0676 −0.25

{2} 0 0 0.0676 0.0676 −0.25

{3} 0 0 0.0256 0.0256 0

{4} 0 0 0.0036 0.0036 0

{1, 2} 0 0 0.1056 0.1521 −0.5

{1, 3} 0 0 0.09 0.1156 −0.25

{1, 4} 0 0 0.0756 0.0841 −0.25

{2, 3} 0 0 0.09 0.1156 −0.25

{2, 4} 0 0 0.0756 0.0841 −0.25

{3, 4} 0 0 0.0306 0.0361 0

{1, 2, 3} 0 0 0.16 0.2209 −0.5

{1, 2, 4} 0 0 0.1344 0.1764 −0.5

{1, 3, 4} 0 0 0.1111 0.1369 −0.25

{2, 3, 4} 0 0 0.1111 0.1369 −0.25

{1, 2, 3, 4} 0.25 0.25 0.25 0.25 0.25

Example 13.2 We consider an oligopoly with N = {1, 2, 3, 4} where a = 2, c1 =
c2 = 1, c3 = 1.1, and c4 = 1.2. Here the set IN = {1, 2}. Table 13.1 summarizes
the values of α-, β-, γ -, δ-, and ζ -characteristic functions. Figure 13.1 demonstrates
ζ -, α-, γ -, and δ-cores where the largest set represents the ζ -core and the smallest
one is the δ-core (recall that the α-core coincides with the β-core). On Fig. 13.2, we
demonstrate the same cooperative set solutions in a more detailed view.2

Example 13.3 (Symmetric Firms) As one of the special cases of oligopoly often
considered in the literature, we examine a symmetric game where unit costs of the
firms are equal, i.e., c1 = . . . = cn = c with c < a. Under these assumptions, the
condition (13.2) holds for any n. We also note that IS = S for any S ⊆ N . The
equilibrium output of firm i ∈ N determined by (13.1), takes the form q∗i = a−c

n+1 ,
whereas under the cooperative agreement, the output determined by (13.6) becomes

q̄i = a−c
2n . The equilibrium profit of firm i ∈ N equals πi(q∗) =

(
a−c
n+1

)2
and

the profit of i under the cooperative agreement becomes πi(q̄) = (a−c)2
4n exceeding

πi(q
∗). This fact means that all firms take advantage from cooperation even without

reallocating the total profit of
∑
i∈N πi(q̄) according to a cooperative solution.

We note that this result does not hold in a general case. However if firms come
to a cooperative solution, the characteristic function should be determined. Then
vα(N) = vβ(N) = vγ (N) = vδ(N) = vζ (N) = (a − c)2/4. Further, for any
S ⊂ N , we have vα(S) = vβ(S) = 0 while using (13.11), (13.15), and (13.18), it

2The figures were obtained with the use of TUGlab toolbox for Matlab http://mmiras.webs.uvigo.
es/TUGlab/.

http://mmiras.webs.uvigo.es/TUGlab/
http://mmiras.webs.uvigo.es/TUGlab/
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Fig. 13.1 ζ -, α-, γ -, and δ-cores (from largest to smallest)

Fig. 13.2 γ -core (superset) and δ-core (subset)

follows that vγ (S) =
(
a−c
n−s+2

)2
, vδ(S) =

(
(s+1)(a−c)

2(n+1)

)2
, and vζ (S) = − sc(a−c)

n

where s = |S|.
By Proposition 13.7, where characteristic function vδ is supermodular, the

corresponding TU game (N, vδ) is convex and therefore has a nonempty coreC [vδ].
From [11], the Shapley value Φ[vδ], whose components equal the cooperative
profits πi(q̄), i ∈ N , belongs to C [vδ] being the center of gravity of its extreme
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points. Since firms are symmetrical, Φ[vα] = Φ[vβ ] = Φ[vγ ] = Φ[vδ] = Φ[vζ ].
From Corollary 13.1, it follows that the Shapley value Φ[vδ] belongs to any of the
cores.

13.6 Conclusion

We have examined the properties of γ -, δ-, and ζ -characteristic functions in linear
oligopoly TU games. We found that the γ -characteristic function is monotonic,
however it is superadditive and supermodular only in case of duopoly. The δ-
characteristic function is monotonic, and superadditive, but it is supermodular either
when n � 4, or when firms are symmetrical. As to the ζ -characteristic function, it is
superadditive and supermodular but not monotonic. When δ-characteristic function
is supermodular, we also found that the γ -, δ-, and ζ -games have nonempty cores
with a nested structure that is also expressed in their relationship to the α- and β-
cores.
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Chapter 14
The Position Value and the Myerson
Value for Hypergraph Communication
Situations

Erfang Shan and Guang Zhang

Abstract We characterize the position value and the Myerson value for uniform
hypergraph communication situations by employing the “incidence graph game”
and the “link-hypergraph game” which are induced by the original hypergraph
communication situations. The incidence graph game and link-hypergraph game are
defined on the “incidence graph” and the “link-hypergraph”, respectively, obtained
from the original hypergraph. Using the above tools, we represent the position
value by the Shapley value of the incidence graph game and the Myerson value
of the link-hypergraph game for uniform hypergraph communication situations,
respectively. Also, we represent the Myerson value by the Owen value or the
two-step Shapley value of the incidence graph game with a coalition structure for
hypergraph communication situations.

14.1 Introduction

The study of TU-games with limited cooperation presented by means of a com-
munication graph was initiated by Myerson [10], and an allocation rule for such
games, now called the Myerson value, was also introduced simultaneously. Later
on, various studies in this direction were done in the past nearly 40 years, such as
[3, 6, 9, 13, 18] and [17]. Among them, the rule, named position value [9], is also
widely used for communication situations. Both the Myerson value and the position
value are extensively studied in the literature. On one hand, the two allocation
rules are employed in many communication situations, such as for conference
structures [11], hypergraph communication situations [19] and for union stable
systems [1, 2]. On the other hand, both values have been characterized axiomatically
in several ways (see [4, 15, 16]). Furthermore, the approaches of non-axiomatic
characterization for both the Myerson value and the position value are investigated
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in [5] and [8], respectively. Casajus [5] gave a characterization of the position
value by the Myerson value of a modification of communication situations, called
the link agent form (LAF) on graph communication situations and the hyperlink
agent form (HAF) on hypergraph communication situations. However, the structure
of “HAF” is relatively complex. Kongo [8] provided unified and non-axiomatic
characterizations of the position value and the Myerson value by using the divided
link game and the divided link game with a coalition structure, respectively.

The aim of this paper is to provide non-axiomatic characterizations of the
Myerson value and the position value for hypergraph communication situations.
These characterizations extend results for graph communication situations, due to
[8] and [5], to hypergraph communication situations. For this purpose, we first
introduce a new tool—the incidence graph and the incidence graph game defined
on the link set of the incidence graph, where the incidence graph is induced by the
hypergraph and the incidence graph game is obtained from the original hypergraph
communication situation. It turns out that the Shapley payoffs of the set of links
incident to a player in the incidence graph sum up to the position value payoff
of that player in an original uniform hypergraph communication situation. Similar
in spirit to that of Kongo [8], we further define the incidence graph game with a
coalition structure on the incidence graph and we characterize the Myerson value
for a hypergraph communication situation in terms of the Owen value or the two-
step Shapley value of the incidence graph game with a coalition structure. Based on
the incidence graph, we define the link-hypergraph of the incidence graph. It turns
out that the position value for a hypergraph communication situation is represented
by the Myerson value of the link-hypergraph game, which is defined on the link-
hypergraph and obtained from the original hypergraph communication situation.

As we will see in Sect. 14.3, for graph communication situations as a special
case of hypergraph communication situations, the incidence graph game and the
link-hypergraph game in this paper coincide with the divided link game [8] and
the link agent form (LAF) [5], respectively. But, for a hypergraph communication
situation, the link-hypergraph game differs from the hyperlink agent form (HAF)
[5]. The link-hypergraph is more natural expression for hypergraph communication
situations, since the HAF comprises much more agents than the link-hypergraph
game.

This article is organized as follows. In Sect. 14.2, we introduce basic definitions
and notation. In Sect. 14.3, we first introduce the incidence graph game and the
link-hypergraph game, then we present characterizations of the position value and
the Myerson value for hypergraph communication situations.

14.2 Basic Definitions and Notation

In this section, we recall some definitions and concepts related to TU-games,
allocation rules for TU-games and, the Myerson value and position value for
hypergraph communication situations.
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A cooperative game with transferable utility, or simply a TU-game, is a pair
(N, v) where N = {1, 2, . . . , n} be a finite set of n ≥ 2 players and v : 2N → R
is a characteristic function defined on the power set of N such that v(∅) = 0. For
any S ⊆ N , S is called a coalition and the real number v(S) represents the worth of
coalition S. A subgame of v with a nonempty set T ⊆ N is a game v|T (S) = v(S),
for all S ⊆ T . The unanimity game (N, uR) is the game defined by uR(S) = 1 if
R ⊆ S and uR(S) = 0 otherwise. We denote by |S| the cardinality of S. A game
(N, v) is zero-normalized if for any i ∈ N , v({i}) = 0. Throughout this paper, we
consider only zero-normalized games.

LetΣ(N) be the set of all permutations onN . For some permutation σ onN , the
corresponding marginal vector mσ (N, v) ∈ Rn assigns to every player i a payoff
mσi (N, v) = v(σ i ∪ {i}) − v(σ i ), where σ i = {j ∈ N | σ(j) < σ(i)}, i.e., σ i is
the set of players preceding i in the permutation σ . The best-known single-valued
solution is the Shapley value [14], which assigns to any game v the average of all
marginal vectors. Formally, the Shapley value is defined as follows.

Shi(N, v) = 1

|Σ(N)|
∑

σ∈Σ(N)
mσi (N, v), for each i ∈ N.

Given a player set N , any partition C = {C1, C2, . . . , Ck} of N into k sets is
called a coalition structure ofN . Let IC be the set of all indices of C. A permutation
σ ∈ Σ(N) is consistent with respect to C if players in the same element of the
coalition structure appear successively in σ . In other words, each Ci of C in σ is
regarded as a “big player”. LetΣ(N,C) be a set of all permutations consistent with
respect toC onN . A triple (N, v,C) is a game with a coalition structure. Owen [12]
and Kamijo [7] generalized the Shapley value to games with coalition structures.

The Owen value φ is defined as follows.

φi(N, v,C) = 1

|Σ(N,C)|
∑

σ∈Σ(N,C)
mσi (N, v), for any i ∈ N,

The two-step Shapley value χ is defined as follows.

χi(N, v,C) = Shi(Ch, v|Ch)+
Shh(IC, vC)− v(Ch)

|Ch| ,

for any i ∈ N with i ∈ Ch, h ∈ IC,

where vC(S) = v
(⋃

h∈S Ch
)

for any S ⊆ IC . A pair (IC, vC) is called the
intermediate or quotient game.

The communication possibilities for a TU-game (N, v) can be described by a
(communication) hypergraph H = (N,H) where H is a family of non-singleton
subsets of N , i.e., H ⊆ HN := {e ⊆ N | |e| > 1}. The elements of N are called
the nodes or vertices of the hypergraph, and the elements of H its hyperlinks or
hyperedges. The hypergraphH = (N,H) is called a conference structure of a TU-
game (N, v). Every hyperlink e ∈ H represents a conference, the communication
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is only possible within a conference. The rank r(H ) of H is the maximum
cardinality of a hyperlink in the hypergraph H .

A hypergraph H is called an r-uniform or simply uniform if |e| = r for all
e ∈ H . Clearly, a graph G = (N,L), L ⊆ LN := {e ⊆ N | |e| = 2} ⊆ HN ,
is a 2-uniform hypergraph where every hyperlink contains exactly two players.
Hypergraphs are a natural generalization of graphs in which “edges” may consist
of more than 2 nodes.

LetHi be the set of hyperlinks containing player i in a hypergraphH = (N,H),
i.e., Hi := {e ∈ H | i ∈ e}. The degree of i is defined as |Hi |, denoted by deg(i). A
node i ∈ N is incident to a hyperlink e ∈ H if i ∈ e. Two nodes i and j of N are
adjacent in the hypergraph H if there is a hyperlink e in H such that i, j ∈ e. Two
nodes i and j are connected if there exists a sequence i = i0, i1, . . . , ik = j of nodes
of H = (N,H) in which il−1 is adjacent to il for l = 1, 2, . . . , k. A connected
hypergraph is a hypergraph in which every pair of nodes are connected. Given any
hypergraph H = (N,H), a (connected) component of H is a maximal set of
nodes of N in which every pair of nodes are connected. Let N/H denote the set of
components in H = (N,H) and (N/H)i the component containing i ∈ N . For any
S ⊆ N , letH [S] = {e ∈ H | e ⊆ S}, (S,H [S]) is called the subhypergraph induced
by S. A hypergraph H ′ = (N,H ′) is called a partial hypergraph of H = (N,H)
ifH ′ ⊆ H . The notation S/H [S] (or for short S/H ) andN/H ′ are defined similarly.

A hypergraph communication situation, or simply a hypergraph game, is a triple
(N, v,H) where (N, v) is a zero-normalized TU-game and H the set of hyperlinks
(communication links) in the hypergraph H = (N,H).

The Myerson value μ [10, 11, 19] is defined by

μi(N, v,H) = Shi(N, vH ), for any i ∈ N,

where vH (S) = ∑
T ∈S/H v(T ) for any S ⊆ N . The game (N, vH ) is called the

Myerson restricted game.
The position value [9, 19] is given by

πi(N, v,H) =
∑

e∈Hi

1

|e|She(H, v
N ), for any i ∈ N,

where vN(H ′) = ∑T ∈N/H ′ v(T ) for any H ′ ⊆ H . The game (H, vN ) is called a
hyperlink game.

14.3 Characterizations of the Position Value and Myerson
Value

In this section we first introduce the definition of the incidence graph of an arbitrary
hypergraph. We express the position value for a uniform hypergraph game in
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terms of the Shapley value of a game defined on the link set of the incidence
graph (called the “incidence graph game”), which is obtained from the original
hypergraph game. Based on the incidence graph of a hypergraph, we subsequently
define the link-hypergraph of the incidence graph and express the position value
for a uniform hypergraph game in terms of the Myerson value of a game restricted
on the link-hypergraph (called the “link-hypergraph game”), which is induced by
the original hypergraph game. Continuing to use the tool of the incidence graph,
we further provide characterizations of the Myerson value in terms of the Owen
value or two-step Shapley value of the incidence graph game with a coalition
structure respectively, for an arbitrary hypergraph game.

14.3.1 The Incidence Graphs and Link-Hypergraphs
of Hypergraphs

In this subsection we give the concept of the incidence graph and link-hypergraph of
a hypergraph. By definition of the position value, the Shapley payoff that a hyperlink
receives in the hyperlink game is equally divided among the players that lie in the
hyperlink. This definition reflects the assumption that each hyperlink is composed of
the players’ cooperation in the hyperlink, and the contributions of the players in the
hyperlink toward maintaining the hyperlink are considered to be the same. In light
of the above observation, we introduce the concept of an incidence graph which is
obtained from a given hypergraph H = (N,H) and then, we define a new game
on the link set in the incidence graph.

A graph G = (N,L) is bipartite if its node set N can be partitioned into two
subsets X and Y so that every link has one end in X and one end in Y ; such a
partition (X, Y ) is called a bipartition of the graph, and X and Y its parts.

Let H = (N,H) be a hypergraph, the incidence graph of H is a bipartite graph
I (H ) = (N ∪ H, I (H)) with node set N ∪ H , and where i ∈ N and e ∈ H are
adjacent, i.e., {i, e} ∈ I (H) if and only if i ∈ e. The link-hypergraphL (I (H )) of
the incidence graph I (H ) is the hypergraph with node set I (H) and hyperlink set
L(I (H )), where {i, e}, {i ′, e′} ∈ I (H) are joined as nodes by a link if and only if
i = i ′ and they are adjacent by the hyperlink

{{i, e} | i ∈ e} if and only if e = e′;
that is,

L(I (H )) =
{{{i, e}, {i, e′}} | e, e′ ∈ Hi, i ∈ N

}⋃{{{i, e} | i ∈ e} | e ∈ H
}
.

A hypergraph F1 = (N, F1) and its incidence graph I (F1) = (N ∪ F1, I (F1))

are shown in Fig. 14.1, and the link-hypergraph L (I (F1)) =
(
I (F1), L(I (F1))

)

of I (F1) is shown in Fig. 14.2, where N = {1, 2, . . . , 5} and F1 ={{1, 3}, {2, 4}, {3, 4, 5}}.
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Fig. 14.1 The hypergraph
F1 = (N, F1) and its
incidence graph
I (F1) = (N ∪ F1, I (F1))

Fig. 14.2 The
link-hypergraph L (I (F1))

of the incidence graph I (F1)

In link-hypergraphL (I (H )) of the incidence graph I (H ), let

L̃ =
{{{i, e}, {i, e′}} | e, e′ ∈ Hi, i ∈ N

}

and

H̃ =
{{{i, e} | i ∈ e} | e ∈ H

}
.

Then L̃ and H̃ consist of links and hyperlinks, respectively, andL(I (H )) = L̃∪H̃ .
Comparing with the original hypergraph H = (N,H), clearly |H̃ | = |H |, and
each hyperlink ẽ = {{i, e} | i ∈ e} in H̃ corresponds to exactly the hyperlink e in
H , the links of L̃ are added in L (I (H )). Roughly speaking, the link-hypergraph
L (I (H )) can be directly obtained from H = (N,H) by expanding each node i
in N to deg(i) new nodes and adding all possible links among the deg(i) nodes. By
definition, we have

|L̃| =
n∑

i=1

(
deg(i)

2

)

=
n∑

i=1

(|Hi |
2

)

= 1

2

n∑

i=1

|Hi |(|Hi| − 1).

Given a hypergraph H = (N,H), we divide each hyperlink e =
{i1, i2, . . . , it } ∈ H into t links, as {i1, e}, {i2, e}, . . . , {it , e}. The resulting bipartite
graph is the incidence graph I (H ) = (N ∪ H, I (H)). Each divided link {ij , e}
can be interpreted as a unilateral communication channel of player ij through
the hyperlink e. If player ij is contained in a hyperlinks in H = (N,H), then
it possesses a distinct unilateral communication channels. Clearly, each player ij
possesses exactly deg(ij ) distinct unilateral communication channels. We introduce
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the incidence graph game defined on the incidence graph, it is employed to show
that the position value for a uniform hypergraph game (N, v,H) is represented
by the Shapley value of the incidence graph game. Furthermore, the game with a
coalition structure serves to show that the Myerson value for hypergraph games
(N, v,H) can be represented by either the Owen value or the two-step Shapley
value of the incidence graph game with a coalition structure.

For the hypergraph H = (N,H), we split each player i ∈ N in the original
hypergraph (N,H) into deg(i) separate “agents”, each of which corresponds
to exactly some link {i, e} (a unilateral communication channel) in I (H). All
the agents generated by the same hyperlink e of H still form a conference (or
hyperlink) and we link any two of agents generated by the same player. The resulting
hypergraph is the link-hypergraph L (I (H )) = (I (H),L(I (H )). The link-
hypergraph game defined on the link-hypergraph serves to show that the position
value for a uniform hypergraph game (N, v,H) is represented by the Myerson value
of the link-hypergraph game.

14.3.2 Characterizations of the Position Value

Let (N, v,H) be a hypergraph game. A pair (I (H), u) is called an incidence graph
game induced by the hyperlink game (H, vN) where u : 2I (H)→ R is defined as

u(L′) = vN ({e ∈ H | {i, e} ∈ L′, for all i ∈ e}),

for any L′ ⊆ I (H).
For a uniform hypergraph game (N, v,H), we present the following characteri-

zation of the position value in terms of the incidence graph game (I (H), u).

Theorem 14.1 For any uniform hypergraph game (N, v,H) and any i ∈ N ,

πi(N, v,H) =
∑

l∈I (H)i
Shl
(
I (H), u

)
,

where I (H)i is the set of all links incident to i in I (H), i.e., I (H)i = {{i, e} ∈
I (H) | e ∈ Hi}.
Proof Let f be a mapping from Σ(I (H)) to Σ(H): For any hyperlinks e, e′ ∈ H
and σ ∈ Σ(I (H)), f (σ)(e) < f (σ)(e′) if and only if

max{σ({i, e}) | i ∈ e} < max{σ({i ′, e′}) | i ′ ∈ e′}.

In other words, if all links adjacent to e in I (H) precede any one of links adjacent
to e′ in σ ∈ Σ(I (H)), then the hyperlink e precedes the hyperlink e′ in f (σ).
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For any σ ∈ Σ(I (H)) and any {k, e} ∈ I (H), if σ({i, e})=max{σ({k, e}) | k ∈
e}, then

mσ{i,e}(I (H), u) = mf(σ)e (H, vN).

Otherwise, we have mσ{i,e}(I (H), u) = 0. Hence,

∑

{k,e}∈{{j,e} | j∈e}
mσ{k,e}(I (H), u) = mf(σ)e

(
H, vN

)
.

Note that |Σ(I (H))| = (∑N
i=1 |Hi|

)! and |Σ(H)| = |H |!. For each δ ∈
Σ(H), since (N,H) is uniform, Σ(I (H)) has exactly q = |Σ(I (H))|/|Σ(H)|
permutations σ1, σ2, . . . , σq such that f (σt ) = δ for t = 1, 2, . . . , q . Therefore, we
have

1

|Σ(I (H))|
∑

σ∈Σ(I (H))

( ∑

{i,e}∈{{k,e} | k∈e}
mσ{i,e}(I (H), u)

)

= 1

Σ(H)

∑

δ∈Σ(H)
mδe
(
H, vN

)
,

or, equivalently,

∑

{i,e}∈{{k,e} | k∈e}
Sh{i,e}(I (H), u) = She

(
H, vN

)
. (14.1)

Note that |e| > 1 for each e ∈ H , so there exist at least two nodes i, j ∈ e such that
{i, e}, {j, e} ∈ I (H). By the definition of u, for any L′ ⊆ I (H) \ {{k, e} | k ∈ e}
and any two links {i, e}, {j, e} ∈ {{k, e} | k ∈ e} in I (H), we have u(L′ ∪ {i, e}) =
u(L′)) = u(L′ ∪ {j, e}). So {i, e} and {j, e} are symmetric in (I (H), u). From the
symmetry of the Shapley value, it follows that Sh{i,e}(I (H), u) = Sh{j,e}(I (H), u)
for any two links {i, e}, {j, e} ∈ {{k, e} | k ∈ e}. By Eq. (14.1), for any {i, e} ∈
{{k, e} | k ∈ e}, we have

Sh{i,e}(I (H), u) = 1

|e|She
(
H, vN

)
.

Consequently,

πi(N, v,H) =
∑

e∈Hi

1

|e|She
(
H, vN

) =
∑

{i,e}∈I (H)i
Sh{i,e}(I (H), u)

=
∑

l∈I (H)i
Shl(I (H), u).
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This completes the proof of Theorem 14.1. ��
Remark 14.1 For the communication situations, Kongo [8] introduced the divided
link game u which is defined on the link set of a graph D(L), where D(L) is
obtained from the original graphL by dividing each link e = {i, j } into two directed
links (i.e., unilateral communication channel in [8]), as ij and j i. By definition of
the incidence graph, it is easy to see that the incidence graph I (L) of L coincides
with D(L) by regarding {i, e} and {j, e} in I (L) as the directed links ij and j i
in D(L) respectively. This shows that if we restrict to the graphs L, the incidence
graph game coincides with the divided link game in [8]. Therefore, Theorem 14.1
implies the previous characterization of the position value for a graph game, due to
[8]. Moreover, the following Example 14.1 shows that the scope of Theorem 14.1
cannot be extended to include non-uniform hypergraph communication situations.

By applying the incidence graph, we can define the duplicated hyperlink game
(I (H), ũ) and provide another description of the position value for a uniform
hypergraph game. Specifically, for any hypergraph game (N, v,H), duplicated
hyperlink game ũ is defined as follows.

ũ(L′) = vN ({e ∈ H | there exists a node i ∈ N such that {i, e} ∈ L′}),

for any L′ ⊆ I (H).
In order to realize this characterization, as in Theorem 14.1, we just define

a mapping g : Σ(I (H)) → Σ(H) as follows: for any hyperlinks e, e′ ∈ H
and σ ∈ Σ(I (H)), g(σ)(e) < g(σ)(e′) if and only if min{σ({i, e}) | i ∈
e} <min{σ({i ′, e′}) | i ′ ∈ e′}. The remainder of the proof for this result is almost
the same as that of Theorem 14.1 and is omitted.

Corollary 14.1 For any uniform hypergraph game (N, v,H) and any i ∈ N ,

πi(N, v,H) =
∑

l∈I (H)i
Shl
(
I (H), ũ

)
.

Example 14.1 LetN = {1, 2, . . . , 7} and F2 = (N, F2) be a 3-uniform hypergraph
(see Fig. 14.3), where F2 =

{{1, 2, 5}, {5, 6, 7}, {3, 4, 6}}. Consider the 3-uniform

Fig. 14.3 The 3-uniform
hypergraph F2 and its
incidence graph I (F2)
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hypergraph game (N, v, F2) with v = u{1,3}, where u{1,3} is the unanimity game of
coalition {1, 3}.

The Shapley value associated to the hyperlink game vN is determined by

She1(F2, v
N ) = She2(F2, v

N ) = She3(F2, v
N ) = 1

3
,

and it is easy to see that the Shapley values associated to the incidence graph game u
and the duplicated hyperlink game ũ are Shl(I (F2), u) = Shl(I (F2), ũ) = 1

9 for all
l ∈ I (F2). Therefore, by definition of the Myerson value and two different formula
in Theorem 14.1 and Corollary 14.1, we obtain that the position value is

π(N, v, F2) =
(1

9
,

1

9
,

1

9
,

1

9
,

2

9
,

2

9
,

1

9

)
.

However, Theorem 14.1 and Corollary 14.1 are not true for non-uniform hyper-
graphs. Consider the hypergraph game (N, v, F1) (see Fig. 14.1) with v = u{1,2}.
Clearly, She1(F1, v

N ) = She2(F1, v
N ) = She3(F1, v

N ) = 1
3 , so

π(N, v, F1) =
(1

6
,

1

6
,

5

18
,

5

18
,

1

9

)
.

But, the Shapley value associated to the incidence graph game u is Shl(I (F1), u) =
1
7 for all l ∈ I (F1), and the Shapley value associated to the duplicated hyperlink
game ũ is

Sh{1,e1}(I (F1), ũ) = Sh{3,e1}(I (F1), ũ)

= Sh{2,e2}(I (F1), ũ) = Sh{4,e2}(I (F1), ũ) = 27

140

and

Sh{3,e3}(I (F1), ũ) = Sh{4,e3}(I (F1), ũ) = Sh{5,e3}(I (F1), ũ) = 8

105
.

It is easy to see that formula in Theorem 14.1 and Corollary 14.1 do not hold for
(N, v, F1) and ũ.

Next we turn our attention to the characterization of the position value for a
uniform hypergraph game in terms of the Myerson value of the link-hypergraph
game. The link-hypergraph game is defined on the link-hypergraph L

(
I (H )) =

(I (H),L(I (H ))
)

and is obtained by original game v on a hypergraph H =
(N,H).

In L
(
I (H )) = (I (H),L(I (H ))

)
, let N(V ) = {i ∈ N | I (H)i ∩ V �= ∅} for

all V ⊆ I (H) and let H(V ) = {e ∈ H | {i, e} ∈ V, for all i ∈ e}, where I (H)i =
{{i, e} | e ∈ Hi}. We define v̂(V ) = v(N(V )), and we call

(
I (H), v̂, L(I (H ))

)
the
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link-hypergraph game, where I (H) is the node set of link-hypergraphL (I (H )) =(
I (H),L(I (H ))

)
.

Now we can express the position value for a uniform hypergraph game (N, v,H)
in terms of the Myerson value of the link-hypergraph game

(
I (H), v̂, L(I (H ))

)
.

Theorem 14.2 For any uniform hypergraph game (N, v,H) and any i ∈ N ,

πi(N, v,H) =
∑

{i,e}∈I (H)i
μ{i,e}

(
I (H), v̂, L(I (H ))

)
.

Proof For any V ⊆ I (H) in L (I (H )), by definitions of the Myerson restricted
game and the link-hypergraph game, we have

v̂L(I (H ))(V ) =
∑

Ŝ∈V
/(
L(I (H ))[V ]

)
v̂(Ŝ) =

∑

Ŝ∈V
/(
L(I (H ))[V ]

)
v
(
N(Ŝ)

)

=
∑

S∈N(V )/H(V )
v(S) =

∑

S∈N/H(V )
v(S) = vN (H(V )),

where the forth equality holds since v is zero-normalized; the last equality holds
follows the definition of the hyperlink game. On the other hand, by the definition of
u, we have

u(V ) = vN ({e ∈ H | {i, e} ∈ V, f oralli ∈ e}) = vN(H(V )) = v̂L(I (H ))(V ).

Therefore, by Theorem 14.1, we have

πi(N, v,H) =
∑

l∈I (H)i
Shl
(
I (H), u

) =
∑

{i,e}∈I (H)i
μ{i,e}

(
I (H), v̂, L(I (H))

)
.

This completes the proof of Theorem 14.2. ��
Example 14.2 Consider the 3-uniform hypergraph game (N, v, F2) with v = u{1,3}
described in Example 14.1. We calculate the Myerson value associated to the link-
hypergraph game v̂: μl

(
I (F2), v̂, L(I (F2)) = 1

9 for all l ∈ I (F2) and, therefore,
the position value is π(N, v, F2) =

( 1
9 ,

1
9 ,

1
9 ,

1
9 ,

2
9 ,

2
9 ,

1
9

)
by Theorem 14.2.

Remark 14.2 When we restrict our attention to the uniform hypergraph (including
the graph), it is easy to check that the link-hypergraph game is the same as the link
agent form (LAF) or the hyperlink agent form (HAF) introduced by Casajus [5].
Here the definition of link-hypergraph game gives a clean and concise representation
of the hyperlink agent form. However, by Example 14.1, we see that Theorem 14.2
does not hold for non-uniform hypergraph games.
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14.3.3 Characterizations of the Myerson Value

In this subsection, by continuing to use “the incidence graph”, we consider the
relationships between the Myerson value of hypergraph communication situations
and incidence graph games with coalition structures. By definition of the incidence
graph I (H ) = (N ∪H, I (H)), clearly I = {I (H)1, I (H)2, . . . , I (H)n} forms a
partition of the link set I (H), where n = |N |. This means that the partition can be
regarded as a coalition structure on I (H). We define a triple

(
I (H), u, {I (H)1, I (H)2, . . . , I (H)n}

)

to be an incidence graph game with a coalition structure.
The following results give clear the relationships between the Myerson value of a

hypergraph communication situation and the Owen value and the two-step Shapley
value of the incidence graph game with a coalition structure corresponding to the
original game. Since the proofs are similar to those of Theorems 3 and 4 in [8], we
omit them.

Theorem 14.3 For any hypergraph game (N, v,H) and any i ∈ N ,

μi(N, v,H) =
∑

l∈I (H)i
φl
(
I (H), u, {I (H)1, I (H)2, . . . , I (H)n}

)
,

where I (H)i =
{{i, e} ∈ I (H) | e ∈ Hi

}
.

Theorem 14.4 For any hypergraph game (N, v,H) and any i ∈ N ,

μi(N, v,H) =
∑

l∈I (H)i
χl(I (H), u, {I (H)1, I (H)2, . . . , I (H)n}),

where I (H)i =
{{i, e} ∈ I (H) | e ∈ Hi

}
.

Example 14.3 Consider the hypergraph game (N, v, F1) with v = u{1,2} exhibited
in Fig. 14.1. Then u(L′) = 1 if L′ = I (F1) and u(L′) = 0 otherwise. The Owen
value φ associated to the incidence graph game u is

φ{1,e1} = φ{2,e2} = φ{5,e3} =
1

5
, φ{3,e1} = φ{3,e3} = φ{4,e2} = φ{4,e3} =

1

10
,

where write φ{i,ej } for φ{i,ej }(I (F1), u, {I (F1)1, I (F1)2, . . . , I (F1)5}). The two-

step Shapley value χ to the incidence graph game u is χl = 1
5 for all l ∈ I (F1),

where write χl for χl(I (F1), u, {I (F1)1, I (F1)2, . . . , I (F1)5}). By the formula in
Theorems 14.3 and 14.4, we obtain that the Myerson value is μ(N, v, F1) =
( 1

5 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ).

For the duplicated hyperlink game, it fails to represent the Myerson value for
hypergraph communication situations by the Owen value or the two-step Shapley
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value of the duplicated link game. In other words, Theorems 14.3 and 14.4 are not
true for the duplicated link game ũ. We consider the hypergraph game (N, v, F1)

with v = u{1,3} again. By definitions, it is easily calculated that the Owen value φ
associated to the duplicated link game ũ is

φ{1,e1} = φ{2,e2} =
1

5
, φ{5,e3} =

1

30
, φ{3,e1} = φ{4,e2} =

27

120
, φ{3,e3} = φ{4,e3} =

7

120
,

and

χ{1,e1} = χ{2,e2} =
1

5
, χ{5,e3} =

1

30
, χ{3,e1} = χ{4,e2} =

27

120
, χ{3,e3} = φ{4,e3} =

7

120
.

Obviously, the formula in Theorems 14.3 and 14.4 do not hold for (N, v, F1) and ũ.
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Chapter 15
Bertrand Meets Ford: Benefits
and Losses

Alexander Sidorov, Mathieu Parenti, and Jacques-Francois Thisse

Abstract The paper carries out the detailed comparison of two types of imperfect
competition in a general equilibrium model. The price-taking Bertrand competition
assumes the myopic income-taking behavior of firms, another type of behavior,
price competition under a Ford effect, implies that the firms’ strategic choice takes
into account their impact to consumers’ income. Our findings suggest that firms
under the Ford effect gather more market power (measured by Lerner index), than
“myopic” firms, which is agreed with the folk wisdom “Knowledge is power.”
Another folk wisdom implies that increasing of the firms’ market power leads
to diminishing in consumers’ well-being (measured by indirect utility.) We show
that in general this is not true. We also obtain the sufficient conditions on the
representative consumer preference providing the “intuitive” behavior of the indirect
utility and show that this condition satisfy the classes of utility functions, which are
commonly used as examples (e.g., CES, CARA and HARA.)
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15.1 Introduction

“The elegant fiction of competitive equilibrium” does not dominates now the
frontier of theoretical microeconomics as stated by Marschak and Selten in [11]
in early 1970s, being replaced by also elegant monopolistic competitive Dixit-
Stiglitz “engine”. The idea that firms are price-makers even if their number is
“very large”, e.g., continuum, is a common wisdom. But what if the monopolistic
competitive equilibrium conception, where firms has zero impact to market statistics
and, therefore, treat them as given, is just a brand new elegant fiction? When firms
are sufficiently large, they face demands, which are influenced by the income level,
depending in turn on their profits. As a result, firms must anticipate accurately what
the total income will be. In addition, firms should be aware that they can manipulate
the income level, whence their “true” demands, through their own strategies with
the aim of maximizing profits [8]. This feedback effect is known as the Ford effect.
In popular literature, this idea is usually attributed to Henry Ford, who raised wages
at his auto plants to five dollars a day in January 1914. Ford wrote “our own sales
depend on the wages we pay. If we can distribute high wages, then that money is
going to be spent and it will serve to make... workers in other lines more prosperous
and their prosperity is going to be reflected in our sales”, see [7, p. 124–127]. To
make things clear, we have to mention that the term “Ford effect” may be used in
various specifications. As specified in [5], the Ford effect may have different scopes
of consumers income, which is sum of wage and a share of the distributed profits.
The first (extreme) specification is to take a whole income parametrically. This is
one of solutions proposed by Marschak and Selten [11] and used, for instance,
by Hart [9]. This case may be referred as “No Ford effect”. Another specification
(also proposed by Marschak and Selten [11] and used by d’Aspremont et al. [5])
is to suppose that firms take into account the effects of their decision on the total
wage bill, but not on the distributed profits, which are still treated parametrically.
This case may be referred as “Wage Ford effect” and it is exactly what Henry
Ford meant in above citation. One more intermediate specification of The Ford
effect is an opposite case to the previous one: firms take wage as given, but take
into account the effects of their decisions on distributed profits. This case may be
referred as “Profit Ford effect”. Finally, the second extreme case, Full Ford effect,
assumes that firms take into account total effect of their decisions, both on wages
and on profits. These two cases are studied in newly published paper [4]. In what
follows, we shall assume that wage is determined. This includes the way proposed
by Hart [9], in which the worker fixed the nominal wage through their union. This
assumption implies that only the Profit Ford effect is possible, moreover, firms
maximize their profit anyway, thus being price-makers but not wage-makers, they
have no additional powers at hand in comparison to No Ford case, with except the
purely informational advantage—knowledge on consequences of their decisions.
Nevertheless, as we show in this paper, this advantage allows firms to get more
market power, which vindicate the wisdom “Knowledge is Power”. As for welfare
effect of this Knowledge, we show that it is ambiguous, but typically it is harmful for
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consumes. It should be mentioned also that being close in ideas with paper [4], we
have no intersections in results, because the underlying economy model of this paper
differers from our one, moreover, that research focuses on existence and uniqueness
of equilibria with different specifications of Ford effect and does not concern the
aspects of market power and welfare. We leave out of the scope of our research
all consideration concerning Wage Ford effect, such as Big Push effect1 and High
Wage doctrine of stimulating consumer demand through wages. The idea that the
firm could unilaterally use wages to increase demand for its own product enough
to offset wage cost seems highly unlikely and was criticized by various reasons,
including empirical evidences. For further discussions see [10, 15].

15.2 Model and Equilibrium in Closed Industry

15.2.1 Firms and Consumers

The economy involves one sector supplying a horizontally differentiated good and
one production factor—labor. There is a continuum mass L of identical consumers
endowed with one unit of labor. The labor market is perfectly competitive and labor
is chosen as the numéraire. The differentiated good is made available under the
form of a finite and discrete number n ≥ 2 of varieties. Each variety is produced
by a single firm and each firm produces a single variety. Thus, n is also the number
of firms. To operate every firm needs a fixed requirement f > 0 and a marginal
requirement c > 0 of labor. Without loss of generality we may normalize marginal
requirement c to one. Since wage is also normalized to 1, the cost of producing qi
units of variety i = 1, ..., n is equal to f + 1 · qi .

Consumers share the same additive preferences given by

U(x) =
n∑

i=1

u(xi), (15.1)

where u(x) is thrice continuously differentiable function, strictly increasing, strictly
concave, and such that u(0) = 0. The strict concavity of u means that a consumer
has a love for variety: when the consumer is allowed to consume X units of the
differentiated good, she strictly prefers the consumption profile xi = X/n to any
other profile x = (x1, ..., xn) such that

∑
i xi = X. Because all consumers are

identical, they consume the same quantity xi of variety i = 1, ..., n.

1Suggesting that if firm profits are tied to local consumption, then firms create an externality by
paying high wages: the size of the market for other firms increases with worker wages and wealth,
see [12].
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Following [17], we define the relative love for variety (RLV) as follows:

ru(x) = −xu
′′(x)
u′(x)

, (15.2)

which is strictly positive for all x > 0. Technically RLV coincides with the
Arrow-Pratt’s relative risk-aversion concept, which we avoid to use due to possible
misleading association in terms, because in our model there is no any uncertainty or
risk considerations. Nevertheless, one can find some similarity in meaning of these
concepts as the RLV measures the intensity of consumers’ variety-seeking behavior.
Under the CES, we have u(x) = xρ where ρ is a constant such that 0 < ρ < 1, thus
implying a constant RLV given by 1 − ρ. Another example of additive preferences
is paper [2] where authors consider the CARA utility u(x) = 1 − exp(−αx) with
α > 0 is the absolute love for variety (which is defined pretty much like the absolute
risk aversion measure −u′′(x)/u′(x)); the RLV is now given by αx.

A consumer’s income is equal to her wage plus her share in total profits. Since
we focus on symmetric equilibria, consumers must have the same income, which
means that profits have to be uniformly distributed across consumers. In this case, a
consumer’s income y is given by

y = 1+ 1

L

n∑

i=1

Πi ≥ 1,

where the profit made by the firm selling variety i is given by

Πi = (pi − 1)qi − f, (15.3)

pi being the price of variety i. Evidently, the income level varies with firms’
strategies.

A consumer’s budget constraint is given by

n∑

i=1

pixi = y, (15.4)

where xi stands for the consumption of variety i.
The first-order condition for utility maximization yields

u′(xi) = λpi, (15.5)

where λ is the Lagrange multiplier of budget constraint. Conditions (15.4) and (15.5)
imply that

λ =
∑n
j=1 u

′(xj )xj
y

> 0. (15.6)
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15.2.2 Market Equilibrium

The market equilibrium is defined by the following conditions:

1. each consumer maximizes her utility (15.1) subject to her budget constraint
(15.4),

2. each firm i maximizes its profit (15.3) with respect to pi ,
3. product market clearing: Lxi = qi ∀ i = 1, ..., n,

4. labor market clearing: nf +
n∑

i=1
qi = L.

The last two equilibrium conditions imply that

x̄ ≡ 1

n
− f
L

(15.7)

is the only possible symmetric equilibrium demand, while the symmetric equilib-
rium output q̄ = Lx̄.

15.2.3 When Bertrand Meets Ford

As shown by (15.5) and (15.6), firms face demands, which are influenced by the
income level, depending in turn on their profits. As a result, firms must anticipate
accurately what the total income will be. In addition, firms should be aware that they
can manipulate the income level, whence their “true” demands, through their own
strategies with the aim of maximizing profits [8].

Let p = (p1, ..., pn) be a price profile. In this case, consumers’ demand functions
xi(p) are obtained by solving of consumer’s problem—maximization of utilityU(x)
subject to budget constraint (15.4)—with income y defined as

y(p) = 1+
n∑

j=1

(pj − 1)xj (p).

It follows from (15.6) that the marginal utility of income λ is a market aggregate
that depends on the price profile p. Indeed, the budget constraint

n∑

j=1

pjxj (p) = y(p)

implies that

λ(p) = 1

y(p)

n∑

j=1

xj (p)u′
(
xj (p)

)
,
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while the first-order condition (15.5) may be represented as λ(p)pi = u′(xi(p)).
Since u′(x) is strictly decreasing, the demand function for variety i is thus given by

xi(p) = ξ(λ(p)pi), (15.8)

where ξ is the inverse function to u′(x). Thus, firm i’s profits can be rewritten as

Πi(p) = (pi − 1)xi(p)− f = (pi − 1)ξ(λ(p)pi)− f. (15.9)

Remark 15.1 The definition of ξ implies that the Relative Love for Variety (15.2)
may be equivalently represented as follows

ru(xi(p)) ≡ − ξ(λ(p)pi)
ξ ′(λ(p)pi)λ(p)pi

. (15.10)

Indeed, differentiating ξ as inverse to u′ function, we obtain ξ ′ = 1/u′′, while
xi(p) = ξ(λ(p)pi), u′(xi(p)) = λ(p)pi .
Definition 15.1 For any given n ≥ 2, a Bertrand equilibrium is a vector p∗ =
(p∗1, ..., p∗n) such that p∗i maximizes Πi(pi,p∗−i ) for all i = 1, ..., n. This
equilibrium is symmetric if p∗i = p∗j for all i, j .

Applying the first-order condition to the profit (15.9) maximization problem,
yields that the firm’s i relative markup

mi ≡ pi − 1

pi
= − ξ(λpi)

ξ ′(λpi)λpi ·
(

1+ pi
λ
∂λ
∂pi

) , (15.11)

which involves ∂λ/∂pi because λ depends on p. Unlike what is assumed in partial
equilibrium models of oligopoly, λ is here a function of p, so that the markup
depends on ∂λ/∂pi �= 0. But how does firm i determine ∂λ/∂pi?

Since firm i is aware that λ is endogenous and depends on p, it understands that
the demand functions (15.8) must satisfy the budget constant as an identity. The
consumer budget constraint can be rewritten as follows:

n∑

j=1

pjξ(λ(p)pj ) = 1+
n∑

j=1

(pj − 1)ξ(λ(p)pj ),

which boils down to

n∑

j=1

ξ(λ(p)pj ) = 1. (15.12)
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Differentiating (15.12) with respect to pi yields

ξ ′(λpi)λ+ ∂λ

∂pi

n∑

j=1

pj ξ
′(λpj ) = 0

or, equivalently,

∂λ

∂pi
= − ξ ′(λpi)λ

∑n
j=1 ξ

′(λpj )pj
. (15.13)

Substituting (15.13) into (15.11) and symmetrizing the resulting expression yields
the candidate equilibrium markup:

m̄F = − ξ(λp)

ξ ′(λp) · λp · n− 1

n

= n

n− 1
ru (x̄) , (15.14)

where we use the identity (15.10) and x̄ = 1
n
− f
L

due to (15.7).

Proposition 15.1 Assume that firms account for the Ford effect and that a symmet-
ric equilibrium exists under Bertrand competition. Then, the equilibrium markup is
given by

m̄F = n

n− 1
ru

(
1

n
− f
L

)

.

Note that ru
(

1
n
− f
L

)
must be smaller than 1 for m̄F < 1 to hold. Since 1

n
− f
L

can

take on any positive value in interval (0, 1), it must be

ru(x) < 1 ∀x ∈ (0, 1). (15.15)

This condition means that the elasticity of a monopolist’s inverse demand is smaller
than 1 or, equivalently, the elasticity of the demand exceeds 1. In other words, the
marginal revenue is positive. However, (15.15) is not sufficient for m̄F to be smaller
than 1. Here, a condition somewhat more demanding than (15.15) is required for

the markup to be smaller than 1, that is, ru
(

1
n
− f
L

)
< (n− 1)/n. Otherwise, there

exists no symmetric price equilibrium. For example, in the CES case, ru(x) = 1−ρ
so that

m̄F = n

n− 1
(1− ρ) < 1,
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which means that ρ must be larger than 1/n. This condition is likely to hold because
econometric estimations of the elasticity of substitution σ = 1/(1 − ρ) exceeds 3,
see [1].

15.2.4 Income-Taking Firms

Now assume that, although firms are aware that consumers’ income is endogenous,
firms treat this income as a parameter. In other words, firms behave like income-
takers. This approach is in the spirit of Hart (see [9]), for whom firms should take
into account only some effects of their policy on the whole economy. Note that the
income-taking assumption does not mean that profits have no impact on the market
outcome. It means only that no firm seeks to manipulate its own demand through

the income level. Formally, firms are income-takers when
∂y

∂pi
= 0 for all i. Hence,

the following result holds true. For the proof see Proposition 1 in [13].

Proposition 15.2 Assume that firms are income-takers. If (15.15) holds and if
a symmetric equilibrium exists under Bertrand competition, then the equilibrium
markup is given by

m̄(n) = n

n− 1+ ru
(

1
n
− f
L

) ru

(
1

n
− f
L

)

. (15.16)

Obvious inequality

n

n− 1+ ru
(

1
n
− f
L

) <
n

n− 1

implies the following

Corollary 15.1 Let number of firms n be given, then the income-taking firms charge
the lesser price (or, equivalently, lesser markup) than the “Ford-effecting” firms.

In other words, Ford effect provides to firms more marker power than in case of
their income-taking behavior.

15.3 Free Entry Equilibrium

In equilibrium, profits must be non-negative for firms to operate. Moreover, if profit
is strictly positive, this causes new firms to enter, while in the opposite case, i.e.,
when profit is negative, firms leave industry. The simple calculation shows that
symmetric Zero-profit condition Π = 0 holds if and only if the number of firms
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satisfies

n∗ = L
f
m. (15.17)

Indeed, let L(p − 1)x̄ − f = 0 holds, where the symmetric equilibrium demand x̄
is determined by (15.7). On the other hand, budget constraint (15.4) in symmetric

case boils down to n ·px̄ = 1+
n∑

i=1
Πi = 1 due to Zero-profit condition. Combining

these identities, we obtain (15.17).
Assuming number of firms n is integer, we obtain generically that for two

adjacent numbers, say n and n + 1 the corresponding profits will have the opposite
signs, e.g., Π(n) > 0, Π(n + 1) < 0, and there is no integer number n∗
providing the Zero-Profit condition Π(n∗) = 0. On the other hand, both markup
expressions, (15.14) and (15.16), allow to use the arbitrary positive real values
of n. The only problem is how to interpret the non-integer number of firms.2 To
simplify considerations, we assume that the fractional part 0 < δ < 1 of non-
integer number of firms n∗, is a marginal firm, which entered to industry as the last,
and its production is a linear extrapolation of typical firm, i.e., its fixed labor cost is
equal to δf < f , while the production output is δq . In other words, marginal firm
may be considered as “part-time-working firm”.

Therefore, the equilibrium number of firms increases with the market size and
the degree of firms’ market power, which is measured by the Lerner index, and
decreases with the level of fixed cost. Note also that

x̄ = f (1−m)
Lm

> 0, (15.18)

provided that m satisfies 0 < m < 1. Substituting (15.17) and (15.18) into (15.14)
and (15.16), we obtain that the equilibrium markups under free-entry must solve the
following equations:

m̄F = f
L
+ ru

(
f

L

1− m̄F
m̄F

)

, (15.19)

m̄ = f
L
+
(

1− f
L

)

ru

(
f

L

1− m̄
m̄

)

. (15.20)

Under the CES, m̄F = f/L + 1 − ρ, while m̄ = ρf/L + 1 − ρ < m̄F . It
then follows from (15.17) and (15.18) that the equilibrium masses of firms satisfy
n̄F > n̄, while q̄F < q̄. This result may be expanded to the general case. To prove

2Note that interpretation of non-integer finite number of oligopolies is totally different from the
case of monopolistic competition, where mass of firms is continuum [0, n], thus it does not matter
whether n is integer or not. For further interpretational considerations see [13, subsection 4.3].
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this, we assume additionally that

ru(0) ≡ lim
x→0

ru(x) < 1, ru′(0) ≡ lim
x→0

ru′(x) < 2 (15.21)

Proposition 15.3 Let conditions (15.21) hold and L be sufficiently large, then the
equilibrium markups, outputs, and masses of firms are such that

m̄F (L) > m̄(L), q̄F (L) < q̄(L), n̄F (L) > n̄(L)

Furthermore, we have:

lim
L→∞ m̄

F (L) = lim
L→∞ m̄(L) = ru(0).

Proof Considerations are essentially similar to the proof of Proposition 2 in [13].
Let’s denote ϕ = f/L, then L → ∞ implies ϕ → 0 and condition “sufficiently
large L” is equivalent to “sufficiently small ϕ.”

It is sufficient to verify that function

G(m) ≡ ϕ + ru
(

ϕ
1−m
m

)

−m

is strictly decreasing at any solution of m̂ of equation

m = ϕ + ru
(

ϕ
1−m
m

)

(15.22)

Indeed, direct calculation show that

G′(m) = − 1

m

[
1

1−m
ϕ(1−m)
m

r ′u
(

ϕ
1−m
m

)

+m
]

. (15.23)

Differentiating ru(x) and rearranging terms yields

r ′u(x)x = (1+ ru(x)− ru′(x))ru(x)

for all x > 0. Applying this identity to x̂ = ϕ 1−m̂
m̂

and substituting (15.22) into
(15.23), we obtain

G′(m̂) = − 1

m̂

[
ru(x̂)

(
2− ϕ − ru′

(
x̂
))

1− m̂ + ϕ
]

< 0 (15.24)

for all sufficiently small ϕ = f/L, or, equivalently, for all sufficiently large L.
Moreover, inequality (15.24) implies, that there exists not more than one solution
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of Eq. (15.22), otherwise the sign of derivative G′(m) must alternate for different
roots.

An inequality ru(x) > 0 for all x implies G(0) ≥ ϕ > 0, while G(1) = ϕ +
ru(0) − 1 < 0, provided that ϕ < 1 − ru(0), therefore, for all sufficiently small
ϕ there exists unique solution m̄F (ϕ) ∈ (0, 1) of Eq. (15.22), which determines
the symmetric Bertrand equilibrium under the Ford effect. In particular, inequality
m < m̄F (ϕ) holds if and only if G(m) > 0.

Existence an uniqueness of income-taking Bertrand equilibrium for all suffi-
ciently small ϕ was proved in [13, Proposition 2]. By definition, the equilibrium
markup m̄ satisfies F(m̄(ϕ)) = 0 for

F(m) ≡ ϕ + (1− ϕ)ru
(
ϕ(1−m)
m

)

−m.

It is obvious thatG(m) > F(m) for all m and ϕ, therefore,

G(m̄(ϕ)) > F(m̄(ϕ)) = 0,

which implies m̄F (ϕ) > m̄(ϕ). The other inequalities follow from formulas (15.17)
and (15.18).

The last statement of Proposition easily follows from the fact, that both equations
G(m) = 0 and F(m) = 0 boil down to m = ru(0) when ϕ → 0 (see proof of
Proposition 2 in [13] for technical details.)

Whether the limit of competition is perfect competition (firms price at marginal
cost) or monopolistic competition (firms price above marginal cost) when L is
arbitrarily large depends on the value of ru(0). More precisely, when ru(0) > 0,
a very large number of firms whose size is small relative to the market size is
consistent with a positive markup. This agrees with [3]. On the contrary, when
ru(0) = 0, a growing number of firms always leads to the perfectly competitive
outcome, as maintained by Robinson [14]. To illustrate, consider the CARA utility
given by u(x) = 1 − exp(−αx). In this case, we have ru (0) = 0, and thus the
CARA model of monopolistic competition is not the limit of a large group of firms.
By contrast, under CES preferences, ru(0) = 1− ρ > 0. Therefore, the CES model
of monopolistic competition is the limit of a large group of firms.

15.4 Firms’ Market Power vs. Consumers’ Welfare

Proposition 15.3 also highlights the trade-off between per variety consumption
and product diversity. To be precise, when free entry prevails, competition with
Ford effect leads to a larger number of varieties, but to a lower consumption
level per variety, than income-taking competition. Therefore, the relation between
consumers’ welfare values V̄ F = n̄F ·u(x̄F ) and V̄ = n̄·u(x̄) is a priori ambiguous.
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In what follows we assume that the elemental utility satisfies limx→∞ u′(x) =
0, which is not too restrictive and typically holds for basic examples of utility
functions. Consider the Social Planner’s problem, who manipulates with masses of
firms n trying to maximize consumers’ utility V (n) = n · u(x) subject to the labor
market clearing condition (f +L ·x)n = L, which is equivalent to maximization of

V (n) = n · u
(

1

n
− ϕ

)

, n ∈ (0, ϕ−1),

where ϕ = f/L.
It is easy to see that

V (0) ≡ lim
n→0

n · u
(

1

n
− ϕ

)

= lim
x→∞

u(x)

x + ϕ = lim
x→∞u

′(x) = 0 = V (ϕ−1),

where x ≡ 1/n− ϕ. Moreover,

V ′′(n) = 1

n3 · u′′
(

1

n
− ϕ

)

< 0,

which implies that graph of V (n) is bell-shaped and there exists unique social
optimum n∗ ∈ (0, ϕ−1), and V ′(n) ≤ 0 (resp. V ′(n) ≥ 0) for all n ≥ n∗ (resp.
n ≤ n∗.)

This implies the following statement holds

Proposition 15.4

1. If equilibrium number of the income-taking firms n̄ ≥ n∗, then V̄ F < V̄
2. If equilibrium number of the Ford-effecting firms n̄F ≤ n∗, then V̄ F > V̄
3. In the intermediate case n̄ < n∗ < n̄F the relation between V̄ F and V̄ is

ambiguous.

In what follows, the first case will be referred as the “bad Ford” case, the second
one—as the “good Ford” case.

Let’s determine the nested elasticity of the elementary utility function

Δu(x) ≡ xε
′
u(x)

εu(x)
,

where

εu(x) ≡ xu
′(x)
u(x)

.

The direct calculation shows that this function can be represented in different form

Δu(x) = [1− εu(x)] − ru(x),
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where ru(x) is Relative Love for Variety defined by (15.2), while 1 − εu(x)
is so called social markup. Vives in [16] pointed out that social markup is the
degree of preference for a single variety as it measures the proportion of the
utility gain from adding a variety, holding quantity per firm fixed, and argued
that ‘natural’ consumers’ behavior implies increasing of social markup, or, equiv-
alently, decreasing of elasticity εu(x). In particular, the ‘natural’ behavior implies
Δu(x) ≤ 0.

Lemma 15.1 Let ru(0) < 1 holds, then Δu(0) ≡ lim
x→0

Δu(x) = 0.

Proof Assumptions on utility u(x) imply that function xu′(x) is strictly positive
and

(xu′(x))′ = 2u′(x)+ xu′′(x) = u′(x) · (2− ru′(x)) > 0

for all x > 0, therefore there exists limit λ = limx→0 x · u′(x) ≥ 0. Assume that
λ > 0, this is possible only if u′(0) = +∞, therefore using the L’Hospital rule we
obtain

λ = lim
x→0

x · u′(x) = lim
x→0

x

(u′(x))−1
= lim
x→0

− (u
′(x))2
u′′(x) = lim

x→0

xu′(x)
− xu′′(x)
u′(x)

= λ

ru(0)
> λ

because ru(0) < 1 by (15.21). This contradiction implies that λ = 0. Therefore,
using the L’Hospital rule, we obtain

lim
x→0

(1− εu(x)) = 1− lim
x→0

xu′(x)
u(x)

= 1− lim
x→0

u′(x)+ xu′′(x)
u′(x)

= lim
x→0

ru(x),

which implies Δu(0) = 0.

The CES case is characterized by identityΔu(x) = 0 for all x > 0, while for the
other cases the sign and magnitude of Δu(x) may vary, as well as the directions of
change for terms 1− εu(x) and ru(x) may be arbitrary, see [6] for details.

Let δu ≡ limx→0Δ
′
u(x), which may be finite or infinite. The following theorem

provides the sufficient conditions for both “bad” and “good” Ford cases, while
the obvious gap between (a) and (b) corresponds to the ambiguous third case of
Proposition 15.4.

Theorem 15.1

(a) Let δu < ru(0), then for all sufficiently small ϕ = f/L the ‘bad Ford’ inequality
V̄ > V̄ F holds.

(b) Let δu >
ru(0)

1−ru(0) , then for all sufficiently small ϕ = f/L the ‘good Ford’

inequality V̄ F > V̄ holds.
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Proof See Appendix.

It is obvious that in CES case u(x) = xρ we obtain that δCES = 0 < rCES(0) =
1−ρ, thus CES is “bad For” function. Considering the CARA u(x) = 1−e−αx, α >
0, HARA u(x) = (x + α)ρ − αρ , α > 0, and Quadratic u(x) = αx − x2/2, α > 0,
functions, we obtain ru(0) = 0 for all these functions, while δCARA = −α/2 < 0,
δHARA = −(1 − ρ)/2α < 0 and δQuad = −1/2α < 0. This implies that these
widely used classes of utility functions also belong to the “bad Ford” case.

To illustrate the opposite, “good Ford” case, consider the following function
u(x) = αxρ1 + xρ2 . Without loss of generality we may assume that ρ1 < ρ2,
then

1− εu(x) = α(1 − ρ1)+ (1− ρ2)x
ρ2−ρ1

α + xρ2−ρ1
,

ru(x) = αρ1(1− ρ1)+ ρ2(1− ρ2)x
ρ2−ρ1

αρ1 + ρ2xρ2−ρ1
,

Using the L’Hospital rule we obtain

lim
x→0

Δ′u = lim
x→0

α(ρ2 − ρ1)
2 · x−ρ1−(1−ρ2)

(α + xρ2−ρ1)(αρ1 + ρ2xρ2−ρ1)
= +∞ >

ru(0)

1− ru(0) =
1− ρ1

ρ1
.

Corollary 15.2 Let ε′u(0) < 0, then V̄ > V̄ F .

Proof Using L’Hospital rule we obtain that

δu = lim
x→0

Δ′u(x) = lim
x→0

Δu(x)

x
= lim
x→0

ε′u(x)
εu(x)

= 1

εu(0)
lim
x→0

ε′u(x) < 0 ≤ ru(0),

where εu(0) = 1− ru(0) > 0 due to assumption (15.21).

Remark 15.2 The paper [13] studied comparison of the Cournot and Bertrand
oligopolistic equilibria under assumption of the income-taking behavior of firms.
One of results obtained in this paper is that under Cournot competition firms charge
the larger markup and produce lesser quantity, than under Bertrand competition,
m̄C > m̄B , q̄C < q̄B , while equilibrium masses of firms n̄C > n̄B . This also
implies ambiguity in comparison of the equilibrium indirect utilities V̄ C and V̄ B .
It is easily to see, that all considerations for V̄ F and V̄ may be applied to this case
and Theorem 15.1 (a) provides sufficient conditions for pro-Bertrand result δu <
ru(0)⇒ V̄ B > V̄ C . Moreover, considerations similar to proof of Theorem 15.1 (b)
imply that inequality V̄ C > V̄ B holds, provided that δu > 1.
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15.5 Concluding Remarks

Additive preferences are widely used in theoretical and empirical applications of
monopolistic competition. This is why we have chosen to compare the market
outcomes under two different competitive regimes when consumers are endowed
with such preferences. It is important to stress, that unlike the widely used
comparison of Cournot (quantity) and Bertrand (price) competitions, which are we
compare two similar price competition regimes with “information" difference only:
firms ignore or take into account strategically their impact to consumers’ income.
Moreover, unlike most models of industrial organization which assume the existence
of an outside good, we have used a limited labor constraint. This has allowed us to
highlight the role of the marginal utility of income in firms’ behavior.
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RAS No. I.5.1, Project No. 0314-2016-0018

Appendix

Proof of Theorem 15.1

Combining Zero-profit condition (15.17) m = f
L
n = ϕn with formula for

symmetric equilibrium demand x = n−1 − ϕ ⇐⇒ n = (x + ϕ)−1 we can rewrite
the equilibrium mark-up equation for income-taking firms (15.20) as follows

ϕ

x + ϕ = ϕ + (1− ϕ)ru(x).

Solving this equation with respect to x we obtain the symmetric equilibrium
consumers’ demand x(ϕ), parametrized by ϕ = f/L, which cannot be represented
in closed form for general utility u(x), however, the inverse function ϕ(x) has the
closed-form solution

ϕ = 1− x
2

−
√
(

1− x
2

)2

− xru(x)

1− ru(x) . (15.25)

It was mentioned above that graph of indirect utility V (n) is bell-shaped and
equilibrium masses of firms satisfy n∗ ≤ n̄ ≤ n̄F if and only if V ′(n̄) ≤ 0.
Calculating the first derivative V ′(n) = u(n−1 − ϕ) − n−1 · u′(n−1 − ϕ) and
substituting both n = (x + ϕ)−1 and (15.25) we obtain that

n∗ ≤ n̄ ≤ n̄F ⇐⇒ u(x) ≤
⎛

⎝1+ x
2

−
√
(

1− x
2

)2

− xru(x)

1− ru(x)

⎞

⎠u′(x),
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at x = x̄—the equilibrium consumers demand in case of income-taking firms. The
direct calculation shows that this inequality is equivalent to

Δu(x) ≤ (1− ru(x))1− x
2

[

1−
√

1− 4xru(x)

(1− ru(x))(1− x)2
]

. (15.26)

We shall prove that this inequality holds for all sufficiently small x > 0, provided
that Δ′(0) < ru(0). To do this, consider the following function

Au(x) = x · ru(x)
1− x ,

which satisfies Au(0) = 0 = Δu(0), Δ′u(0) < A′u(0) = ru(0). This implies that
inequalityΔu(x) ≤ Au(x) holds for all sufficiently small x > 0.

Applying the obvious inequality
√

1− z ≤ 1− z/2 to

z = 4xru(x)

(1− ru(x))(1− x)2 ,

we obtain that the right-hand side of inequality (15.26)

(1− ru(x))1− x
2

[

1−
√

1− 4xru(x)

(1− ru(x))(1− x)2
]

≥ Au(x) ≥ Δu(x)

for all sufficiently small x > 0, which completes the proof of statement (a).
Applying the similar considerations to Eq. (15.19), which determines the equi-

librium markup under a Ford effect, we obtain the following formula for inverse
function ϕ(x)

ϕ = 1− ru(x)− x
2

−
√
(

1− ru(x)− x
2

)2

− xru(x)

Using the similar considerations, we obtain that

n̄F ≤ n∗ ⇐⇒ u(x) ≥
⎛

⎝
1− ru(x)+ x

2
−
√
(

1− ru(x)− x
2

)2

− xru(x)
⎞

⎠u′(x)

at x = x̄F—the equilibrium demand under Bertrand competition with Ford effect.
The direct calculation shows that the last inequality is equivalent to

Δu(x) ≥ 1− ru(x)− x
2

[

1−
√

1− 4xru(x)

(1− ru(x)− x)2
]

. (15.27)
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Now assume

δu >
ru(0)

1− ru(0) ,

which implies that

α ≡ ru(0)+ (1− ru(0))δu
2ru(0)

> 1.

Let

Bu(x) ≡ αxru(x)

1− ru(x)− x ,

it is obvious that Δu(0) = Bu(0) = 0, and

B ′u(0) =
αru(0)

1− ru(0) =
ru(0)+ (1− ru(0))δu

2(1− ru(0)) < δu = Δ′u(0),

which implies that inequalityΔu(x) ≥ Bu(x) holds for all sufficiently small x.
On the other hand, the inequality

√
1− z ≥ 1 − αz/2 obviously holds for any

given α > 1 and z ∈
[
0, 4(α−1)

α2

]
. Applying this inequality to

z = 4xru(x)

(1− ru(x)− x)2
, α = ru(0)+ (1− ru(0))δu

2ru(0)
,

we obtain that the right-hand side of (15.27) satisfies

1− ru(x)− x
2

[

1−
√

1− 4xru(x)

(1− ru(x)− x)2
]

≤ Bu(x) (15.28)

for all sufficiently small x > 0, because x → 0 implies z→ 0. This completes the
proof of Theorem 15.1.
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Chapter 16
On Multilateral Hierarchical
Dynamic Decisions

Krzysztof Szajowski

Abstract Many decision problems in economics, information technology and
industry can be transformed to an optimal stopping of adapted random vectors with
some utility function over the set of Markov times with respect to filtration build by
the decision maker’s knowledge. The optimal stopping problem formulation is to
find a stopping time which maximizes the expected value of the accepted (stopped)
random vector’s utility.

There are natural extensions of optimal stopping problem to stopping games-
the problem of stopping random vectors by two or more decision makers. Various
approaches dependent on the information scheme and the aims of the agents in a
considered model. This report unifies a group of non-cooperative stopping game
models with forced cooperation by the role of the agents, their aims and aspirations
(v. Assaf and Samuel-Cahn (1998), Szajowski and Yasuda (1995)) or extensions of
the strategy sets (v. Ramsey and Szajowski (2008)).

16.1 Introduction

The subject of the analysis is the problem of making collective decisions by the
team of agents in which the position (significance) of the members is not equal.
An object that is subject to management generates a signal that changes over time.
Agents deal with capturing signals. Everyone can capture and save one of them, and
its value is relative, determined by the function that takes into account the results
of all decisions. Both the ability to observe signals and their capture determines the
rank of agents who compete in this process. It is also possible that unequalizes of
the decision makers is a consequence of social agreement or policy (v. [10]).
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Earlier studies of such issues (cf. [6, 11, 13, 20, 29, 36]) showed their complexity,
and detailed models of the analyzed cases a way to overcome difficulties in modeling
and setting goals with the help of created models. The basic difficulty, except for
cases when the decision is made by one agent, consists in determining the goals of
the team, which can not always be determined so that the task can be reduced to
the optimization of the objective function as the result of scalarisation. Most often,
individual agents are to achieve an individual goal, but without the destabilization
of the team. When modeling such a case, one should remember about establishing
the rational goal of the agents in connection with the existence of the team (v. [5]).
In the considerations of this study, we use methods of game theory with a finite
number of players. However, the classic model of the antagonistic game is not the
best example of progress. The team has interactions of agents resulting even from
the hierarchy of access to information and the order in which decisions are made.
The proposed overcoming of this difficulty consists in the appropriate construction
of strategy sets and the payment function of players so that, taking into account the
interactions, construct a multi-player game in which players have sets of acceptable
strategies chosen regardless of the decisions of other players. Due to the sequential
nature of the decision-making process, this player’s decision-making independence
is at the time of making it, but it is conditioned by the team’s existing decision-
making process.

Due to the fact that the goal of each agent, aspiration assessment by defining
a withdrawal function, is to accept the most important signal from its point of
view, the result of modeling is the task of repeatedly stopping the sequence of
random vectors. In fact rating aspirations by defining the functions of payment is
the one of the preliminary work on the mathematical modeling of management
problem. Taking this into account, it should be mentioned here that this task was
first put forward by Haggstrom [16], although Dynkin’s [7] considerations can also
be included in this category. Despite the undoubtedly interesting implications of
such a model in applications, the subject has not been explored too much in its most
general formulation, at least it has not been referred to. We will try to point out
considerations that support such implicit modeling.1

In the game models applied to business decisions there are important models
formulated and investigated by economist von Stackelberg [41].2 Formulation of
the game related to the secretary problem by Fushimi [14] with restricted set of
strategies, namely threshold stopping times, opened research on the stopping games
with leader by Szajowski (see papers [31, 35]). Similar games are subject of the
research by Enns and Ferenstein [8], Radzik and Szajowski [28]. The extension of
idea of Stackelberg was assumption that the lider is not fixed but the priority to the
player is assigned randomly. Such version of the stopping game is investigated in

1The stopping games as the special case of the stochastic game has been presented by Jaśkiewicz
and Nowak [17].
2This is his habilitation (see also the dissertation [42]), translated recently to English and published
by Springer [43] (v. [9] for the review of the edition).
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[36–38]. The Nash equilibria are obtained in the set of randomized strategies (cf.
[25, 26]).

Two or multi-person process stopping, originally formulated by Dynkin [7],3

met with more interest and research on multi-player games with stopping moments
as players’ strategies are quite well described in the literature. Both for random
sequences and for certain classes of processes with continuous time. We will use
this achievement in our deliberations.

In the following Sects. 16.2–16.4, we will discuss hierarchical diagrams in multi-
person decision problems and their reduction to an antagonistic game. We will use
the lattice properties of the stopping moments and we will obtain an equilibrium
point in the problems under consideration based on the fixed point theorem for the
game on the complete lattice.

16.2 Decision Makers’ Hierarchy in Multi-Choice Problem

Let us consider N agents multiple-choice decision model on observation of
stochastic sequence. The decision makers (DMs) are trying to choose the most
profitable state based on sequential observation. In the case when more than one
player would like to accept the state there are priority system which choose the
beneficiary and the other players have right to observe further states of the process
trying to get their winning state.

Agents’ goals are defined by their payout functions. The rationality is subject
of arbitrary decision when the mathematical model is formulated and should
emphasize the requirement of the agents. One of the popular way is transformation
of such multilateral problem to a non-zero-sum game. When there are two DMs it
could be also zero-sum stopping game.

16.2.1 Zero-Sum Dynkin’s Game

The originally Dynkin [7] has formulated the following optimization problem. Two
players observe a realization of two real-valued processes (Xn) and (Rn). Player 1
can stop whenever Xn ≥ 0, and player 2 can stop whenever Xn < 0. At the first
stage τ in which one of the players stops, player 2 pays player 1 the amount Rτ and
the process terminates. If no player ever stops, player 2 does not pay anything.

3See also models created by McKean [24] and Kifer [18].



272 K. Szajowski

A strategy of player 1 is a stopping time τ that satisfies {τ = n} ⊂ {Xn ≥ 0}
for every n ≥ 0. A strategy σ of player 2 is defined analogously. The termination
stage is simply ν = min{τ, σ }. For a given pair (τ, σ ) of strategies, denote by
K(τ, σ ) = EI{ν<∞}Rν the expected payoff to player 1.

Dynkin [7] proved that if supn≥0 |Rn| ∈ L1 then this problem has a value v i.e.

v = sup
τ

inf
σ
K(τ, σ ) = inf

σ
sup
τ
K(τ, σ )

16.2.2 Non-zero Sum Stopping Game

Basement process under which the game is formulated can be defined as follows.
Let (Xn,Fn,Px)Tn=0 be a homogeneous Markov process defined on a probability
space (Ω,F ,P) with state space (E,B). At each moment n = 1, 2, ..., T , T ∈
Ñ = N ∪ {∞}, the decision makers (henceforth called players) are able to observe
the consecutive states of Markov process sequentially. There are N players. Each
player has his own utility function gi : EN → (, i = 1, 2, . . . , N , dependent
on his own and others choices of state the Markov process. At moment n each
decides separately whether to accept or reject the realization xn of Xn. We assume
the functions gi are measurable and bounded.

• Let T i be the set of pure strategies for ith player, the stopping times with respect
to the filtration (F i

n)
T
n=1, i = 1, 2, . . . , N . Each player has his own sequence of

σ -fields (F i
n)
T
n=1 (the available information).

• The randomize extension of Ti can be constructed as follows (see [34, 44]). Let
(Ain)

T
n=1, i = 1, 2, . . . , N , be i.i.d.r.v. from the uniform distribution on [0, 1]

and independent of the Markov process (Xn,Fn,Px)Tn=0. Let H i
n be the σ -field

generated by F i
n and {(Ais)ns=1}. A randomized Markov time τ (pi) for strategy

pi = (pin) ∈ PT ,i ⊂ MT
i of the ith player is τ (pi) = inf{T ≥ n ≥ 1 : Ain ≤

pin}.
Clearly, if each pin is either zero or one, then the strategy is pure and τ (pi) is in

fact an {F i
n}-Markov time. In particular an {F i

n}-Markov time τi corresponds to the
strategy pi = (pin) with pin = I{τi=n}, where IA is the indicator function for the set
A.

Two concepts are take into account in this investigation. It can be compared
with real investments and investment on the financial market. In real investment
the choice of state is not reversible and sharable. In the financial market the choice
of state by many players can be split of profit to all of them according some rules.
Here, it is separately considered models of payoffs definition.

The payoff functions should be adequate to the information which players have
and their decision. The player who do not use his information should be penalize.
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• Let the players choose the strategies τi ∈ T i , i = 1, 2, . . . , N . The payoff of the
ith player is Gi(τ1, τ2, . . . , τN ) = gi(Xτ1 ,Xτ2 , . . . , XτN ).

• If the ith player control the ith component of the process, than the func-
tion Gi(i1, i2, . . . , in) = hi(Xi1 ,Xi2 , . . . , Xin) forms the random field. Such
structure of payoffs has been considered by Mamer [22]. Under additional
assumptions concerning monotonicity of incremental benefits of players Mamer
has proved the existence of Nash equilibrium for two player non-zero sum game.

• Let Gn = σ(F 1
n ∪F 2

n ∪ . . . ∪FN
n ) and T be the set of stopping with respect

to (Gn)Tn=1. For a given choice of strategies by players the effective stopping
time ν = ψ(τ1, τ2, . . . , τN ) and Gi(τ1, τ2, . . . , τN ) = gi(Xν). In some models
the process Xn can be multidimensional and the payoff of ith player is the ith
component of the vector Xn.

Definition 16.1 (Nash Equilibrium) The strategies τ !1 , τ
!
2 , . . . , τ

!
N are equilibrium

in stopping game if for every player i

ExGi(τ !1 , τ
!
2 , . . . , τ

!
N ) ≥ ExGi(τ !1 , τ

!
2 , . . . , τi , . . . , τ

!
N ). (16.1)

16.2.3 Rights Assignment Models

However, there are different systems of rights to collect information about under-
lined process and priority in acceptance the states of the process. The various
structures of decision process can have influence the knowledge of the players
about the process which determine the pay-offs of the players. It is assumed that
the priority decide about the investigation of the process and decision of the state
acceptance. The details of the model, which should be precise are listed here.

1. The priority of the players can be defined before the game (in deterministic or
random way) or it is dynamically managed in the play.

2. The priority of the players is decided after the collection of knowledge about the
item by all players.

3. The random assignment of the rights can run before observation of each item and
the accepted observation is not known to players with lowest priority. It makes
that after the first acceptance some players are better informed than the others.

(a) The information about accepted state is known to all players.
(b) The information is hidden to the players who do not accepted the item.

The topics which are analyzed could be pointed out as follows:

1. Dynkin’s game;
2. The fix and dynamic priority of the players: deterministic and random;
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16.3 The Fix and Dynamic Priority of the Players

16.3.1 Deterministic Priority

16.3.1.1 Static

Among various methods of privileges for the players one of the simples is
permutation of players’ indices (rang). Let us propose a model of assignments the
priority (rang) to the players as follows. In non-zero two person Dynkin’s game the
role of an arbiter was given to a random process. The simplest model can assume
that the players are ordered before the play to avoid the conflict in assignment of
presented sequentially states. At each moment the successive state of the process
is presented to the players, they decide to stop and accept the state or continue
observation. The state is given to the players with highest rang (we adopt here the
convention that the player with rang 1 has the highest priority). In this case each
stopping decision reduce the number of players in a game. It leads to recursive
algorithm of construction the game value and in a consequence to determining the
equilibrium (see [27, 33] for review of such models investigation).

The players decision and their priorities define an effective stopping time for
player i in the following way.

• Let P = {1, 2, . . . , N} be the set of players and π a permutation of P . It
determines the priority π(i) of player i.

The considered model can be extended to fix deterministic priority. The effective
stopping time for player i in this case one can get as follows.

• Let (pin)
T
n=1 be the pure stopping strategy. If it is randomized stopping time we

can find pure stopping time with respect to an extended filtration. The effective
stopping strategy of the player i is following:

τi((p)) = inf{k ≥ 1 : pik
N∏

j=1

(1− pjk )I{j :π(j)<π(i)} = 1}, (16.2)

where p = (p1, p2, . . . , pN ) and each pi = (pin)Tn=1 is adapted to the filtration
(F i

n)
T
n=1. The effective stopping time of the player i is the stopping time with

respect to the filtration F̃ i
n = σ {F i

n, {(pjk )nk=1,{j :π(j)<π(i)}}}.
• The above construction of effective stopping time assures that each player will

stop at different moment. It translates the problem of fixed priority optimization
problem to the ordinary stopping game with payoffs Gi(τ1, τ2, . . . , τN ) =
gi(Xτ1 ,Xτ2, . . . , XτN ).
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16.3.1.2 Dynamic

In this case the effective stopping time for player i is obtained from parameters of
the model similarly.

• Let (pin)
T
n=1 be the pure stopping strategy. If it is randomized stopping time we

can find pure stopping time with respect to an extended filtration. The effective
stopping strategy of the player i is following:

τi(p) = inf{k ≥ 1 : pik
N∏

j=1

(1− pjk )I{j :πk(j)<πk(i)} = 1}, (16.3)

where p = (p1, p2, . . . , pN ) and each pi = (pin)Tn=1 is adapted to the filtration
(F i

n)
T
n=1. The effective stopping time of the player i is the stopping time with

respect to the filtration F̃ i
n = σ {F i

n, {(pjk )nk=1,{j :πk(j)<πk(i)}}}.
• The above construction of effective stopping time assures that each player will

stop at different moment. It translates the problem of fixed priority optimization
problem to the ordinary stopping game with payoffs Gi(τ1, τ2, . . . , τN ) =
gi(Xτ1 ,Xτ2, . . . , XτN ).

16.3.2 The Random Priority of the Players

16.3.2.1 Static (Fixed) and Dynamic

The random permutation of the players’ can be model of the random fix priority
when before the play the assignment of priority is based on the random permutation.
The fixed permutation is valid for one turn of the game. The effective stopping time
for player i has the following construction in this case.

• It is still fixed permutation of the player but its choice is random. The drawing of
the permutation Π is done once for each play. Let (pin)

T
n=1 be the pure stopping

strategy. If it is randomized stopping time we can find pure stopping time with
respect to an extended filtration. The effective stopping strategy of the player i is
following:

τi(p) = inf{k ≥ 1 : pik
N∏

j=1

(1− pjk )I{j :Π(j)<Π(i)} = 1}, (16.4)

with rest of denotations the same as in the previous section, i.e. where p =
(p1, p2, . . . , pN) and each pi = (pin)Tn=1 is adapted to the filtration (F i

n)
T
n=1.

The effective stopping time of the player i is the stopping time with respect to
the filtration F̃ i

n = σ {F i
n,Π, {(pjk )nk=1,{j :Π(j)<Π(i)}}}.
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• The above construction of effective stopping time assures that each player will
stop at different moment. It translates the problem of fixed priority optimization
problem to the ordinary stopping game with payoffs Gi(τ1, τ2, . . . , τN ) =
gi(Xτ1 ,Xτ2, . . . , XτN ).

When the priority is changing at each step of the game we have the dynamic
random priority. The question is if the moment of the assignments, before the arrival
of the observation and its presentation to the players or after, has a role. The effective
stopping time for player i proposed here assume that the priority is determined
before arrival of the observation, and the observation is presented according this
order.

• If the priority is dynamic and random it is defined by the sequenceΠ = (Πk)Tk=1.
The effective stopping strategy of the player i is following in this case:

τi(p,Π) = inf{k ≥ 1 : pik
N∏

j=1

(1− pjk )I{j :Πk(j)<Πk(i)} = 1}, (16.5)

It is the stopping time w.r.t. F̃ i
n = σ {F i

n,Πk, {(pjk )nk=1,{j :Πk(j)<Πk(i)}}}.
• Each player stops at different moment. It translates the problem of fixed priority

optimization problem to the ordinary stopping game with payoffs

Gi(τ1(p,Π), τ2(p,Π), . . . , τN (p,Π)) = gi(Xτ1(p,Π),Xτ2(p,Π), . . . , XτN (p,Π)).

16.3.3 Restricted Observations of Lower Priority Players

16.3.3.1 Who Has Accepted the Observation?

In a sequential decision process taken by the players the consecutive acceptance
decision are effectively done by some players. For every stopping time τ i(p,Π)
the representation by the adapted random sequence (δik)

T
k=1, i = 1, 2, . . . , N , is

given. Let us denote γk = inf{1 ≤ i ≤ N : δik = 1}, the player who accepted
the observation at moment k, if any. Similar index can be defined for the fix
deterministic and random priority as for dynamic, deterministic priority as well.

16.3.3.2 Restricted Knowledge

In the class of such games the natural question which appears is the accessibility of
the information. It could be that the accepted observation by the high rang players
are hidden for the lower rang players when has been accepted. However, some
information are acquired taking into account the players’ behavior.
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• As the result of the decision process players collect information about the states
of the process and some of them accept some states. In considered models it was
assumed that players are equally informed about the process. Further it will be
admitted that the player has access to information according the priority assigned
to him. States accepted by others are not fully accessible to the players which
have not seen it before. However, some conjectures are still available assuming
rational behavior of the players and it is given by the function ϕiγk (Xk) for the
player i when its priority is lower than player’s γkth.

• Effective information available for the player i at moment k can be presented as
follows.

X̃ik = XkI{i:i≤γk} + ϕiγk (Xk)I{i:i>γk}.

• The player investigation and interaction with other players gives him filtration
F̄ i
n = σ {F̃ i

n, ϕ
i
γk
(Xk)}.

• Each player stops at different moment. It translates the problem of random
priority optimization problem, with restricted access to observation, to the
ordinary stopping game with payoffs

Gi(τ1(p,Π), τ2(p,Π), . . . , τN (p,Π)) = gi(X̃iτ1(p,Π), X̃iτ2(p,Π), . . . , X̃iτN (p,Π)).

Let us analyze who has accepted the observation? In a sequential decision process
taken by the players the consecutive acceptance decision are effectively done by
some players. For every stopping time τ i(p,Π) the representation by the adapted
random sequence (δik)

T
k=1, i = 1, 2, . . . , N , is given. Let us denote γk = inf{1 ≤

i ≤ N : δik = 1} the player who accepted the observation at moment k if any. Similar
index can be defined for the fix deterministic and random priority as for dynamic,
deterministic priority as well.

16.4 Monotone Stopping Games with Priority

16.4.1 General Assumption

Boundedness assumptions–maximal payoff.

E( sup
1≤ji≤T
i=1,...,N

Gk(j1, j2, . . . , jN )) <∞ (16.6)

∀ 1≤ji≤T
j �=i

E( inf
1≤n≤T Gk(j1, . . . , ji−1, n, ji+1, . . . , jN )) > −∞ (16.7)

where k = 1, 2, . . . , N .
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In order to assure that each player has a best response to any strategy chosen by
other players it is required:

∀ τj ∈T j
j �=i

E[sup
n
Gi(τ1, . . . , τi−1, n, τi+1, . . . , N)|F i

n]+ ≤ ∞ (16.8)

∀ τj ∈T j
j �=i

lim sup
n→T

E
[
Gi(τ1, . . . , τi−1, n, τi+1, . . . , N)|F i

n

]
(16.9)

≤ E(Gi(τ1, . . . , τi−1, T , τi+1, . . . , N)|F i
T ) a.e..

For further analyses the conditional expectation of the payoffs for player i should
be determined. The sequence ηn = E(Gi(τ1, . . . , τi−1, n, τi+1, . . . , τN )|Fn) is the
conditional expected return to player i if he decide to stop after his nth observation
and other players uses the stopping rules of their choice. The sequence ηn is F i

n

adapted and, under the boundedness assumption presented above, the exists an
optimal stopping rule for this sequences for i = 1, 2, . . . , N .

Definition 16.2 (Regular Stopping Time) The stopping time τi ∈ T i is regular
with respect to τ1 ∈ T 1, . . . , τi−1 ∈ T i−1, τi+1 ∈ T i+1, . . . , τN ∈ T N if

E(ητi |F i
n) ≥ E(ηn|F i

n) on {ω : τi > n} for all n. (16.10)

Let −→τ−i = (τ1, . . . , τi−1, τi+1, . . . , τn).

Maximal regular best response will be considered. By the results of [22] and [19]
it can be established:

Lemma 16.1 Under (16.6)–(16.9) each player has a unique, maximal regular best
response τ̂i (

−→τ−i ) to any vector of stopping times −→τ−i chosen by his opponents.
This does not immediately imply the Nash equilibrium existence.

16.4.2 Monotone Structure of Best Responses

The incremental benefit to player should be analyzed. It is assumed that increments
of payoffs have the following properties. Let us consider the following increments
of payoffs.

∀ m<T
1≤k≤T

Δim(k,
−→
j−i ) = Gi(j1, . . . , ji−1,m+ k, ji+1, . . . , jN )

−Gi(j1, . . . , ji−1,m, ji+1, . . . , jN )

ND Let us assume that Δim(k, j−i ) is nondecreasing in
−→
j−i ;

NI Let us assume that Δim(k, j−i ) is nonincreasing in
−→
j−i ;
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Lemma 16.2 If (16.6)–(16.9) and condition ND are fulfilled and σ ∈ T i is regular
with respect of −→τ−i1 ∈ T −i then it is also regular with respect to any −→τ−i2 ∈ T −i
such that−→τ−i1 ) −→τ−i2 a.e. (Under NI −→τ−i2 ) −→τ−i1 a.e.)

Lemma 16.3 Let −→τ−i k ∈ T −i , k = 1, 2, such that −→τ−i1 ) −→τ−i2 a.e. and ND is
fulfilled then the best response σ̂ (−→τ−i1) ) (̂σ )(−→τ−i2) a.e. (Under NI σ̂ (−→τ−i1) *
σ̂ (−→τ−i2) a.e.)

16.4.2.1 Tarski’s Fixed Point Theorem

The fixed point theorem which will be helpful for proving the existence of the
equilibrium is obtained for the complete lattices and an isotone functions. We
consider the partial order of random variables: τ ) σ iff τ ≤ σ a.e. The operations
of supremum of random variables and infimum of random variables are inner
operations in T i . If the essential supremum is considered we have also for every
subset A ⊂ S that ∨A ∈ S and ∧A ∈ S .

Lemma 16.4 (Stopping Set Is a Complete Lattice) The partially ordered sets T i

with order) and operations essential supremum ∨ and essential infimum∧ defined
in it are complete lattices.

Definition 16.3 (Isotone Function) Let S be lattice. f is isotone function from
S into S if for τ, σ ∈ S such that τ ) σ implies f (τ) ≤ f (σ).
Theorem 16.1 ([40]) IfS is a complete lattice and if f is an isotone function from
S intoS , then f has a fixed point.

16.4.3 Main Result

Monotonicity of increments with integrability of payoff functions guarantee exis-
tence of Nash equilibrium in stopping game with various models of priority (rule of
assignments) based on the theorem.

Theorem 16.2 ([22]) Suppose that assumptions (16.6)–(16.9)with ND or NI holds.
Then there is a Nash equilibrium pair of stopping times. There is an vector of

stopping times τ� which forms an equilibrium such that τ !i = σ̂ (
−→
τ !−i ), i =

1, 2, . . . , N .

16.5 Conclusion

Based on the consideration of the paper we know that the various priority approach
model in the multiple choice problem can be transformed to the multiperson antag-
onistic game with the equilibrium point as the rational treatment. The equilibrium
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point in all these problems exist. The construction of them need individual treatment
and it is not solved in general yet.

The presented decision model can be found with a slightly different interpreta-
tion, namely games with the arbitration procedure. Details can be found e.g. in the
works of Sakaguchi [32] and Mazalov et al. [23].4

The close to the models are some multivariate stopping problem with cooperation
[1, 30, 39]. In cooperative stopping games the players have to use the decision
suggested by coordinator of the decision process (cf. [2, 15]).

In [21] the idea of voting stopping rules has been proposed. The game defined
on the sequence of iid random vectors has been defined with the concept of the
Nash equilibrium as the solution. There are generalization of the results obtained by
Szajowski and Yasuda [39]. Conditions for a unique equilibrium among stationary
threshold strategies in such games are given by Ferguson [12].

Acknowledgements The authors’ thanks go to many colleagues taking part in discussion of the
topics presented in the paper.
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In: Stefański, J. (ed.) Bargaining and Arbitration in Conflicts. Control and Cybernetics,
vol. 21(1), pp. 131–149. Systems Research Institute of the Polish Academy of Sci-
ences, Warszawa (1992). http://control.ibspan.waw.pl:3000/contents/export?filename=1992-1-
09_brams_merrill.pdf. ISSN 0324-8569. MR 1218889

4. Chatterjee, K.: Comparison of arbitration procedures: models with complete and incomplete
information. IEEE Trans. Syst. Man Cybern. 11(2), 101–109 (1981). ISSN 0018-9472. https://
doi.org/10.1109/TSMC.1981.4308635. MR 611435

5. Diecidue, E., van de Ven, J.: Aspiration level, probability of success and failure, and expected
utility. Int. Econ. Rev. 49(2), 683–700 (2008). ISSN 0020-6598. https://doi.org/10.1111/j.
1468-2354.2008.00494.x. MR 2404450

6. Dorobantu, D., Mancino, M.E., Pontier, M.: Optimal strategies in a risky debt context. Stochas-
tics 81(3–4), 269–277 (2009). ISSN 1744-2508. https://doi.org/10.1080/17442500902917433.
MR 2549487

7. Dynkin, E.: Game variant of a problem on optimal stopping. Sov. Math. Dokl. 10, 270–274,
(1969). ISSN 0197-6788. Translation from Dokl. Akad. Nauk SSSR 185, 16–19 (1969). Zbl
0186.25304

4See also [3] and [4] for details concerning arbitration procedure.

https://doi.org/10.1016/S0167-7152(97)00158-2
https://doi.org/10.1016/S0167-7152(97)00158-2
https://doi.org/10.1239/jap/1032265217
http://control.ibspan.waw.pl:3000/contents/export?filename=1992-1-09_brams_merrill.pdf
http://control.ibspan.waw.pl:3000/contents/export?filename=1992-1-09_brams_merrill.pdf
https://doi.org/10.1109/TSMC.1981.4308635
https://doi.org/10.1109/TSMC.1981.4308635
https://doi.org/10.1111/j.1468-2354.2008.00494.x
https://doi.org/10.1111/j.1468-2354.2008.00494.x
https://doi.org/10.1080/17442500902917433


16 On Multilateral Hierarchical Dynamic Decisions 281

8. Enns, E.G., Ferenstein, E.Z.: On a multiperson time-sequential game with priorities. Seq.
Anal. 6(3), 239–256 (1987). ISSN 0747-4946. https://doi.org/10.1080/07474948708836129.
MR 918908

9. Etro, F.: Book review of: Heinrich von Stackelberg, Market structure and equilibrium. J. Econ.
109(1), 89–92 (2013). ISSN 0931-8658; 1617-7134/e. https://doi.org/10.1007/s00712-013-
0341-9

10. Feng, Y., Xiao, B.: Revenue management with two market segments and reserved capacity for
priority customers. Adv. Appl. Probab. 32(3), 800–823 (2000). ISSN 0001-8678. https://doi.
org/10.1239/aap/1013540245. MR 1788096

11. Ferenstein, E.Z.: Two-person non-zero-sum sequential games with priorities. In: Strategies
for Sequential Search and Selection in Real Time (Amherst, MA, 1990). Contemporary
Mathematics, vol. 125, pp. 119–133. American Mathematical Society, Providence (1992).
https://doi.org/10.1090/conm/125/1160615. MR 1160615

12. Ferguson, T.S.: Selection by committee. In: Szajowski, K., Nowak, A.S. (eds.) Advances in
Dynamic Games: Applications to Economics, Finance, Optimization, and Stochastic Control.
Annals of the International Society of Dynamic Games, vol. 7, pp. 203–209. Birkhäser, Boston
(2005). Zbl 1123.91003

13. Ferguson, T.S.: The sum-the-odds theorem with application to a stopping game of Sakaguchi.
Math. Appl. (Warsaw) 44(1), 45–61 (2016). ISSN 1730-2668. https://doi.org/10.14708/ma.
v44i1.1192. MR 3557090

14. Fushimi, M.: The secretary problem in a competitive situation. J. Oper. Res. Soc. Jpn. 24,
350–358 (1981). Zbl 0482.90090

15. Glickman, H.: Cooperative stopping rules in multivariate problems. Seq. Anal. 23(3), 427–449
(2004)

16. Haggstrom, G.: Optimal sequential procedures when more then one stop is required. Ann.
Math. Stat. 38, 1618–1626 (1967)
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