
Spread the Work: Multi-threaded Safety
Analysis for Hybrid Systems

Stefan Schupp and Erika Ábrahám(B)

Theory of Hybrid Systems, RWTH Aachen University, Aachen, Germany
{stefan.schupp,abraham}@cs.rwth-aachen.de

Abstract. We consider a method for the bounded safety analysis of
hybrid systems, whose continuous behaviour is intertwined with discrete
execution steps. The method computes a tree of state sets, which together
over-approximate reachability by bounded-length executions. If none of
the state sets intersects with a given set of unsafe states then we have
proven bounded safety. Otherwise, we iteratively repeat parts of the com-
putations with locally refined search parameters, in order to reduce the
over-approximation error.

In this paper we present a parallelization technique for the above
method. We identify independent computations that can be carried out
by different threads/processes concurrently, and examine how to achieve
work-balance between the threads at low communication cost. Further-
more, we discuss how to assure mutually exclusive node access during
refinement computations, without high synchronization costs. We evalu-
ate our proposed solutions experimentally on some benchmarks.

1 Introduction

The massive application of digital controllers for the control of continuous (e.g.
physical) systems raises the need for verification approaches for such hybrid sys-
tems with mixed discrete-continuous behaviour. Though the reachability prob-
lem for hybrid systems is in general undecidable, a variety of incomplete safety
analysis approaches have been developed. Besides verification methods based on
theorem proving, SMT solving or rigorous simulation, these include techniques
based on flowpipe construction, e.g. [1–3].

Starting from a set of initial states, flowpipe-construction-based methods
iteratively over-approximate flowpipes, i.e. the set of states reachable from a
given state set via time evolution according to the system’s continuous dynamics,
and sets of successors via discrete execution steps. Due to non-determinism, these
computations generate a tree with state sets as nodes, where the root includes all
initial states and the children of a node include all discrete successors from the
node’s flowpipe. These computations are usually bounded in the time duration

This work was supported by the German research council (DFG) in the context of
the HyPro project and the DFG Research Training Group 2236 UnRAVeL.

c© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 89–104, 2018.
https://doi.org/10.1007/978-3-319-92970-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_6&domain=pdf


90 S. Schupp and E. Ábrahám

for flowpipes and the number of discrete steps executed (unless a fixedpoint can
be detected).

If none of the flowpipes and discrete successor sets contain unsafe states
then the model is safe. Otherwise, due to over-approximation, no conclusive
information can be derived. Therefore, it is important to provide possibilities to
reduce the over-approximation error by increasing the precision of the com-
putations [4–6]. To avoid complete re-starts of the analysis upon parameter
refinement for increased precision, some approaches use counterexample-guided
refinements [7,8].

For applicability, it is also important to increase the scalability of these meth-
ods. A piece of work in this direction is [9], where the authors propose a scalable
approach to compute the set of all states reachable by fixed-step simulation.
Approaches like [10–12] decompose the state space into lower-dimensional sub-
spaces in which reachability computations can be executed faster (but usually
with less precision). One of the few parallelization approaches is presented in [13];
besides speeding up sequential computations, the authors propose to parallelize
flowpipe computations for the over-approximation of reachability between two
discrete state changes.

In this paper we propose a parallelization approach for a sequential algo-
rithm [8], which applies flowpipe-construction-based reachability analysis in an
iterative counterexample-guided refinement loop for error reduction. In contrast
to [13] we do not parallelize the construction of a single flowpipe, but compute
several flowpipes independently by parallel threads. An extension could addition-
ally apply parallelization according to [13], but it is left for future work. With-
out a refinement loop, different flowpipe computations would be independent
and thus their parallelization would be natural. However, our experience shows
that achieving a work-load balance at low communication costs is challenging.
Furthermore, the refinement loop makes additional synchronization necessary,
which we keep at a minimum to reduce unnecessary synchronization costs. We
implemented our method and provide some experimental results.

The rest of this paper is structured as follows: Sect. 2 contains preliminar-
ies on flowpipe-construction-based reachability analysis and its embedding in a
refinement loop as introduced in [8]. Section 3 presents our parallelization app-
roach, followed by experimental results in Sect. 4. We conclude the paper in
Sect. 5.

2 Preliminaries

2.1 Hybrid Automata

Hybrid automata are a well-established formalism for modeling hybrid systems.

Definition 1 (Hybrid automata: Syntax [14]). A hybrid automaton is a
tuple H = (Loc,Var ,Flow , Inv ,Edge, Init) with the following components:

– Loc is a finite set of locations or control modes.



Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 91

– Var = {x1, . . . , xd} is a finite ordered set of real-valued variables; sometimes
we use the vector notation x = (x1, . . . , xd). The number d is called the dimen-
sion of H. By ˙Var we denote the set {ẋ1, . . . , ẋd} of dotted variables (which
represent first derivatives during continuous evolution), and by Var ′ the set
{x′

1, . . . , x
′
d} of primed variables (which represent values directly after a dis-

crete change). Furthermore, given a variable set X, let PredX denote a set
of predicates with free variables from X.

– Flow : Loc → PredVar∪ ˙Var specifies for each location its flow or dynamics.
– Inv : Loc → PredVar assigns to each location an invariant.
– Edge ⊆ Loc×PredVar ×PredVar∪Var ′ ×Loc is a finite set of edges (�1, g, r, �2)

with source location �1, target location �2, guard g, and reset function r.
– Init : Loc → PredVar assigns to each location an initial predicate.

While the presented approach can be generalized, in this work we focus on
linear hybrid automata, where PredVar is the set of all conjunctions of lin-
ear equalities and inequalities over Var , Flow assigns to each location a linear
ordinary differential equation (ODE) system of the form ẋ = Ax with some
A ∈ R

d×d, and where reset functions on discrete transitions are defined by affine
mappings x′ = Ax + b with A ∈ R

d×d and b ∈ R
d.

A state ,= (�, ν) of a hybrid automaton consists of a location � ∈ Loc and
a variable valuation ν : Var → R. We refer to a set of states with a common
location � and valuations from a set V by (�,V) = {(�, ν) | ν ∈ V}.

The state of a hybrid automaton can be changed either by time or by discrete
steps. A time step (�, ν) t→ (�, f(ν, t)) (also called flow) of length t models the
passage of t time units: the control location remains unchanged and the variable
values evolve continuously according to a solution f of the ODE system Flow(�);
the time step is enabled only if the invariant Inv(�) is satisfied during the whole
time step, i.e., by all f(ν, t′) with 0 ≤ t′ ≤ t. A discrete step (�, ν) e→ (�′, ν′)
(also called jump) models a discrete change of the control mode: it follows an
edge e = (�, g, r, �′) ∈ Edge which is enabled (i.e., ν satisfies g and ν′ satisfies
Inv(�′)), where ν′ results from ν by applying the affine mapping specified by r.
Note that hybrid automata are in general non-deterministic, as a time step and
several jumps can be enabled at the same time.

An execution or path π = σ0
t0→ σ′

0
e0→ σ1

t1→ . . . is a (finite or infinite) sequence
of alternating time and discrete steps, starting in an initial state σ0 = (�0, ν0)
such that ν0 satisfies Init(�0). A state is called reachable if there is a finite
path leading to it. Given a hybrid automaton H and subset T of its states, the
reachability problem poses the question whether some state of T is reachable
in H.

2.2 Reachability Analysis Based on Flowpipe Construction

In this work we use a bounded flowpipe-construction-based reachability analysis
method for linear hybrid automata. As the reachability problem for linear hybrid
automata is in general undecidable, this approach computes over-approximations
of bounded reachability (with upper bounds on the number of jumps and on the



92 S. Schupp and E. Ábrahám

Fig. 1. Jump successors can be processed individually (6 sets on the left), clustered (2
sets in the middle) or aggregated (1 set on the right).

length of time steps). The computation starts from a set (�0,V0) of initial states
and over-approximates, alternatingly, time successors within a time horizon T
and jump successors iteratively up to a given jump depth J . As datatypes for
state sets Ω = (�,V), different geometric or symbolic state set representations
(e.g. boxes, convex polyhedra, zonotopes, support functions or Taylor models)
can be used to over-approximate the valuation set V (when interpreted as a
subset of Rd).

To compute bounded time successors from a given set of valuations V in a
location �, the time horizon T is divided into N time segments of size δ = T

N .
For each i = 0, . . . , N − 1 the set of states reachable from V in � within time
[iδ, (i + 1)δ] is over-approximated, intersected with the invariant of � and stored
as a state set in Ωi (called the ith flowpipe segment). The union

⋃N−1
i=0 Ωi of the

flowpipe segments is referred to as the flowpipe and over-approximates the set
of states reachable from V in � within T time. If any of the flowpipe segments
has a non-empty intersection with the set of unsafe states then the algorithm
terminates (with an inconclusive answer due to over-approximation).

Otherwise, for each flowpipe segment Ωi = (�,Vi) and jump e = (�, g, r, �′)
rooted in � we determine an over-approximation Ωe,i of the jump successors from
Ωi along e; this includes the intersection of Vi with g, the affine transformation
of the result according to r, and the intersection with the invariant of �′.

Fig. 2. Valuation set V0 over-
approximated by a box (blue)
and a convex polytope (green)
[8]. (Color figure online)

One possibility is to apply the algorithm
now iteratively to all non-empty jump succes-
sors Ωe,i with i = 0, . . . , N − 1 and e being a
jump leaving �, until the jump depth has been
reached. However, this approach is computation-
ally very expensive. Alternatively, we can group
the jump successors into a fixed number k of
clusters (if there are more than k segments),
over-approximate each cluster by one set, and
continue the computations for each cluster over-
approximation. If k > 1 then we call this proce-
dure clustering, and for k = 1 we call it aggrega-
tion (see Fig. 1).

The choices of time segmentation, state set representation and cluster-
ing/aggregation parameters influence the over-approximation error. Usually,
a smaller time step size δ, a more precise state set representation and finer
clustering leads to a smaller error on the cost of increased computation time.



Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 93

For instance, boxes require little computational effort for set operations but in
general introduce more over-approximation error as e.g. convex polytopes do
(see Fig. 2). We refer to [15,16] for further details.

Fig. 3. An example for a search
tree.

During the analysis, we store the state sets
for which flowpipes and jumps successors need
to be computed in a search tree, whose depth is
limited by the jump depth (see Fig. 3). The root
node stores the initial states, whereas each other
node ni stores either the jump successor states
of the flowpipe segment given by the parent, or
a clustering/aggregation of such sets, depending
on the parameter setting. If we label each parent-
child connection with the union of the time inter-
vals of the considered flowpipe segments and the
jump taken, then the path from the root to a node describes a symbolic path
Π = I0, e0, . . . , Ik, ek, which represents all paths Paths(Π) = {σ0

t0→ σ′
0

e0→
σ1 . . . σl+1 | l ≤ k ∧ ∀0 ≤ i ≤ l.ti ∈ Ii}. A path π ∈ Paths(Π) that does not exist
in the hybrid automaton is called spurious.

The structure of the search tree depends not only on the analyzed hybrid
automaton but also on the analysis parameters. Non-determinism naturally
causes a branching in the search tree, but over-approximation might cause not
only larger sets in the nodes but also additional branching.

If the algorithm has terminated due to the detection of an unsafe state then
the symbolic path to one of the nodes represents a counterexample path leading
to an unsafe state. However, due to over-approximation, we do not know whether
this counterexample is spurious or not.

2.3 Counterexample-Guided Parameter Refinement

Most available algorithms terminate at this point; the user needs to restart
the search with adapted parameters to achieve a higher precision. To avoid a
complete restart, in [8] we presented a counterexample-guided approach to repeat
the search with refined parameters along (potentially spurious) counterexample
paths only.

A user-defined collection of parameter settings is stored in an ordered list,
the refinement strategy. We say that we compute at refinement level i when
we use the (i + 1)st setting in the refinement strategy. The refinement levels
might differ e.g. in the state set representation, the time step size or in the
clustering/aggregation settings.

The search starts at refinement level 0, i.e., with the first setting in the
refinement strategy. When a potential counterexample is detected at refinement
level i then we enforce an iterative re-computation of reachability within the
counterexample’s symbolic path Π (called the refinement path) at refinement
level i + 1 (unless i was the last defined level, in which case the algorithm
terminates without any conclusive answer). These re-computations start at the



94 S. Schupp and E. Ábrahám

root node, for which the successors are computed at refinement level i + 1,
however, only its successors along Π will be further processed by the refinement
(i.e. only successors with symbolic path Π ′ for which Paths(Π)∩Paths(Π ′) 	= ∅).

Note that several refinements might be applied to the same symbolic path.
A special case is when a counterexample is detected before the whole previous
counterexample has been refined, i.e., before reaching the end of the previous
counterexample. In this case the counterexample must be spurious, because the
previous over-approximative computations did not detect any unsafe states at
that point; we continue the computations without additional refinement.

The refinements stop if either the counterexample could be shown to be
spurious (path is safe) or we have tried all settings in the strategy but the
potential counterexample could not be excluded. In the first case, the analysis
continues with further successor computations; if the path with the spurious
counterexample had less jumps than the jump depth, then also successors for its
last state set are further processed, however, for these computations we jump
back to refinement level 0.

Due to space restrictions, we cannot explain how we store the refined sets at
all levels in a single search tree, and how we switch back from a higher refinement
level to level 0 after the elimination of a spurious counterexample. Regarding the
aspects of parallelization, it is not necessary to understand these mechanisms in
detail. It is however important to notice that a node in the search tree can store
several state sets, each computed at a different refinement level. Thus a node
and a refinement level uniquely specify a state set stored in the tree.

3 Parallel Reachability Analysis

In the following we propose a parallelization approach for the previously
introduced reachability analysis method with counterexample-guided parameter
refinement for hybrid automata. We first discuss some aspects of a sequential
implementation (Sect. 3.1) before we describe our parallel approach (Sect. 3.2)
and implementation details (Sect. 3.3).

3.1 Sequential Analysis

In this section we recall from [8] some implementation-related concepts for the
sequential analysis with counterexample-guided parameter refinement, as they
will play basic roles for the parallelization.

Task. A task collects all information that is needed to compute flow and jump
successors for a state set stored in a node of the search tree. In a classical
approach without refinement, storing a reference to the search tree node would
be sufficient for this purpose, assuming that all search parameters are globally
accessible. With refinement, tasks are either basic at refinement level 0 or they
are refinement tasks storing the refinement work at a positive refinement level for
a node on a (potentially spurious) counterexample path. In both cases, the task



Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 95

additionally needs to store the current refinement level (specifying the parameter
values for the computations). In the case of refinement, the task also needs to
store the symbolic path of the counterexample, to which also the refinement of
the successors should be restricted.

Fig. 4. HyDRA’s execution structure. Dashed lines denote synchronized access.

Worker. A worker (or in the sequential setting the worker) is responsible for
the execution of tasks. In our setup we employ one type of workers, which
uses a state-of-the-art method for computing flowpipes and jump successors (see
Sect. 2). However, as stated in [17], we could also consider specialized workers
(e.g. applying different successor computation approaches dedicated to certain
types of dynamics). We could even consider the decomposition of the state space
as described in [10] and the invocation of specialized sub-workers on the compo-
nents, but these ideas are not yet implemented.

Task Queue. Once a worker completed a basic task, it adds the corresponding
jump successor state sets as new nodes to the search tree and creates tasks for
them to trigger their processing (unless the jump depth has been reached or a
potential counterexample has been detected). To keep track of the tasks that still
need to be processed, in the sequential setup the worker maintains its own task
queue – we will extend this concept for parallelization. In the implementation
we use priority queues which allow to implement different search heuristics by
modifying the order inside the queue.

Refinement Queue. Whenever a worker detects the potential reachability of some
unsafe states, it triggers a refinement of the symbolic path to the current node
(the refinement path) as presented in [8]. As counterexamples might share a
prefix, when refining a node, the worker first checks whether the node has already
been refined to the required level; if so then there will only be created requests
for processing the children along the refinement path (in the form of new tasks).



96 S. Schupp and E. Ábrahám

For their storage, we want to prioritize refinement tasks over basic tasks.
Instead of changing the ordering of the task queue, we do so by using a separate
refinement queue, as it also allows for separate queue balancing methods (see
Sect. 3.2).

3.2 Parallel Analysis

In this work we develop parallelization based on multi-threading. The tasks are
natural units for parallel processing: multiple threads can implement workers (in
a one-to-one correspondence between threads and workers) processing different
tasks in parallel.

Local and Global Queues. As in the sequential case, each worker has a local task
queue and a local refinement queue. Access to these local queues is restricted
to the owning worker, therefore it does not require any synchronisation and is
thus fast. Additionally, for work balancing, we need a mechanism to distribute
tasks between threads. For this purpose we use a global task queue and a global
refinement queue, which can be accessed by all workers in a synchronized fashion.

Initially there are some initial tasks (for initial state sets) in the global task
queue, and the global refinement queue and all local queues are empty.

When idle, each worker tries first to obtain a task to process from its local
refinement queue or its local task queue, in this order, to keep the synchronization
overhead as small as possible. Only if both of its local queues are empty, the
worker tries to obtain a task from the global refinement or the global task queue,
using synchronized access. If both global queues are also empty, the worker re-
checks the global queues regularly, until they are filled or until also all other local
queues are empty, which leads to a synchronized completion of the algorithm.

If a worker processes a task, resulting new tasks will be added to the worker’s
local queues. I.e., without further balancing, the subtree under the currently
processed node in the search tree will be analyzed by this worker only.

To allow work-balancing, workers can move tasks from their local queues to
the corresponding global queues (from local task queue to global task queue, from
local refinement queue to global refinement queue). We consider three heuristics
for this balancing step, which apply after each completion of a task: (i) the worker
pushes all but one tasks from its local queues to the global queues; (ii) only
when the local queue size is larger than a certain threshold, tasks exceeding that
threshold are moved from the local to the global queues; (iii) push a certain ratio
of tasks from the local queues to the global queues. We expect that approaches
(i) and (iii) will result in balanced work distribution at higher synchronization
costs while approach (ii) should be better suited to limit these costs but lead
to a less balanced execution. Note that the queue balancing happens after the
completion of each task by a worker, i.e. when potential successor tasks have
been added to the thread-local queues.

We also consider a different setting, where only global queues are present. In
this setting, work is automatically distributed but getting work from the queues
and adding new tasks to the queues require synchronization.



Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 97

Node Synchronization. All workers share a single search tree. Without path
refinement, the workers need to synchronize on the access to the global queues,
but not on search tree nodes: each search tree node (below the jump depth
level) will be referred to by exactly one task, which will be processed by exactly
one worker. However, this is not the case for path refinement, as counterexample
paths might share a prefix. To ensure thread-safety during path refinement, each
worker first gets a lock on the tree node it intends to refine, processes the node,
and gives the lock free before starting to process any other node.

3.3 Implementation

We extended our HyDRA tool by the presented approach, based on a previous
implementation of the sequential counterexample-guided parameter refinement
method. HyDRA uses the HyPro [15] C++ library for state set representations,
and it has been developed in a modular fashion to be easily extensible.

The general data flow of HyDRA is illustrated in Fig. 4. Similarly to the
design principles presented in [17], the reachability analysis core (compute reach-
ability) of HyDRA is built up of separate components dealing with the com-
putation of continuous and discrete successors. Our implementation extends the
existing concepts by distributing the analysis process among multiple threads.

The main thread of the tool is responsible for management operations e.g.
invoking the parser, dispatching workers or plotting the computed reachability
over-approximations, if required. Reachability is computed by a fixed number
of separate worker-threads. After pre-processing and initialization by the main
thread, i.e. parsing and creation of tasks from the initial states, the worker
threads are created. Tasks are shared via globally accessible work queues – as
stated before we maintain separate queues for refinement tasks and regular anal-
ysis tasks. Following the concept of work stealing, an idle worker with empty local
queues obtains its next task to work on from a global work queue and processes
it. Each worker extends the shared search tree by jump successor state sets and
creates the corresponding new tasks for the work queue.

Signaling. Inter-thread communication is necessary to join workers after com-
pletion of the analysis. A worker reports idleness via an event system whenever
there is no task in its local queues and no task available in the global queues.
During idling, the worker repeatedly tries to get a task from the global queues;
if this succeeds, the worker signals the end of its idling period (this signalling
happens inside the synchronized access to the global queues). When all workers
reported idleness i.e. all queues are empty, the main thread signals the worker
threads to terminate. All workers are joined and post-processing of the computed
sets e.g. plotting (in the figure: exit) can be performed. As signaling requires syn-
chronization, the number of signals should be limited as far as possible.

Queue Access. To reduce the overhead introduced by synchronization, we equip
our global queues with synchronized as well as non-synchronized methods for
access. Idle workers can utilize non-synchronized methods for the global queues



98 S. Schupp and E. Ábrahám

to check for emptiness and only use synchronized access methods whenever the
queue is not empty (after a second, synchronized check for emptiness while hold-
ing the lock for the queue). This allows to avoid unnecessary synchronization
in scenarios where there are many idle workers constantly accessing the global
queues which are empty most of the time but at the same time ensures that
dequeuing of tasks is still synchronized.

Thread-Safe Linear Optimization. Despite synchronized access to the task
queues and the single search tree nodes, adjustments to the implemented state set
representations in HyPro have to be considered to make the tool thread safe.
In general this does not require specialized approaches, however adapting an
embedded linear optimization engine required some effort. HyPro allows to use
different linear solving backends with a fallback to glpk which are wrapped into
an optimizer class. It is known that glpk is not thread-safe, however with minor
modifications it is possible to obtain a re-entrant version. This can be achieved
by changing the maintained global glpk-context object to a thread-local con-
text. Now that each thread maintains its own glpk-context, special care has to
be taken to avoid memory-leaks. We extend our optimization wrapper class by
mapping the unique thread id to the corresponding glpk context and its problem
instances. State set representations (e.g. support functions) which hold their own
optimizer class instance now have to make sure the glpk context for this instance
is properly deleted upon joining threads, as for every thread which accesses this
state set the corresponding mapping in the optimizer class is extended. To avoid
this we provide clean-up methods, which should be called before a thread is
joined. Clean-up deletes all glpk-problem instances and removes the thread-
local glpk-context instance (which can only be deleted by its creating thread).
In general creating a glpk-problem instance upon request and deleting it after-
wards would solve this issue as well – however as the same problem instance
usually is used several times we reduce the overhead of creating and deleting
these instances by keeping them as long as possible.

4 Experimental Results

We tested our implementation on several well-known benchmarks with a timeout
(denoted as to) of 10 min on a machine equipped with 48×2.1 GHz AMD Opteron
CPUs and a memory limit (mo) of 8 GB.

Benchmarks. Three benchmarks have been selected for empirical evaluation.
We include two instances of the navigation benchmark [18] – instance 9 (na09,
time horizon T = 3 s, jump depth J = 9) and instance 11 (na11, time horizon
T = 3 s, jump depth J = 8). Both instances model a point mass moving on a
two-dimensional plane subdivided into cells which each model different acceler-
ation affecting the movement of the point mass. Due to the large set of initial
states, these benchmarks usually exhibit strong branching behavior and thus



Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 99

should be well-suited to evaluate the capabilities of our implementation. Fur-
thermore, we include an instance of Fisher’s mutual exclusion protocol bench-
mark (fish, T = 12 s, J = 13) which also was used in [19]. This benchmark
models several processes competing for a shared resource which can be accessed
in a mutually exclusive way. As all processes have the same priority the model is
non-deterministic and we expect to obtain a shallow search tree during analysis.
In our evaluation we did not include benchmarks with little non-deterministic
choices. Our central goals are to investigate on the influence of queue balancing
methods and on the potential speed-up which can be achieved by parallelization.
Additionally, our results show that the overhead caused by synchronization is
small (see below) so we can expect little influence on running times for bench-
marks with little branching.

Table 1. Parameter settings: Refinement strategies are lists of configurations, each
configuration specified by a triplet (1) state set representation (box, support functions
(sf)), (2) time step size, (3) aggregation (agg)/clustering in k clusters (cl .k). Addition-
ally, the last column specifies the queue balancing rate.

Name Refinement strategy Work balancing

s0 (box , 0.1, agg), (sf , 0.01, agg), (sf , 0.001, agg) 100%

s1 (sf , 0.1, agg), (sf , 0.01, agg) 100%

s2 (sf , 0.1, agg), (sf , 0.01, cl .5) 100%

s3 (box , 0.1, agg), (box , 0.01, agg) 100%

s4 (box , 0.1, agg), (box , 0.01, cl .3) 100%

s5 (box , 0.1, agg), (box , 0.01, cl .3) 10%

s6 (box , 0.1, agg), (box , 0.01, cl .3) 50%

s7 (box , 0.1, agg), (box , 0.01, cl .3) Global queue only

Settings. For our experiments we consider 8 different settings (see Table 1). Even
though path refinement is not the main focus of our presented approach, all 8
settings support path refinement as this involves synchronization (see Sect. 3).

Each setting specifies a refinement strategy and a work queue balancing
heuristics. A refinement strategy is a sequence of triplets, each triplet specifying
(1) the state set representation used, (2) the time step size for flowpipe construc-
tion and (3) settings for aggregation/clustering. In regard to queue balancing,
we made experiments with pushing all tasks above a threshold from the local
queues to the global queues, but this was far less stable in efficiency than push-
ing a certain percentage of the local queue contents, therefore here we include
only experiments with the latter. In Table 1, the work queue balancing heuristics
specifies which portion of the local queues is moved to the global queues after
the completion of each task (at least one task is always left in non-empty local
queues, i.e., 100% means all but one).



100 S. Schupp and E. Ábrahám

Settings s0–s4 differ in their refinement heuristics, but they are all eager in
pushing all but one task from the local to the global queues after the comple-
tion of each task. Contrary, settings s4–s7 share the same refinement heuristics
but they differ in their work balancing method. Especially, setting s7 completely
avoids thread-local queues: every worker operates on the global queues directly.
The difference is that, while in all other settings the work distribution takes place
at the end of the flowpipe computation in a batch, s7 pushes single successor
tasks to the global queues during its computations such that idle workers poten-
tially could start computation earlier. As the experimental results will show,
this works surprisingly good, even though the increased synchronization effort
is recognizable.

Table 2. Running times [sec.] for settings s0–s7, timeout (to) = 10 min, memout (mo)
= 8GB, † = safety cannot be shown. Running times averaged over 10 runs.

Benchmark Setting #threads

1 2 4 8 16 32 48

na09 s0 21.99 20.32 20.32 20.40 20.34 20.29 20.35

s1 24.87 15.72 11.87 11.70 11.68 11.70 11.72

s2 to to to to mo mo mo

s3 † † † † † † †
s4 263.8 134.9 69.34 36.87 21.68 16.70 15.63

s5 252.8 127.9 64.79 32.85 17.00 10.41 7.51

s6 263.5 132.8 68.70 36.20 20.90 15.53 13.95

s7 78.52 46.60 32.01 29.52 34.21 42.23 45.03

na11 s0 70.49 45.72 45.39 45.42 45.41 45.47 45.44

s1 18.47 9.81 6.15 5.03 4.68 4.49 4.50

s2 to 290.7 146.4 75.53 39.92 22.45 16.50

s3 † † † † † † †
s4 95.73 47.05 24.04 12.21 6.42 3.60 3.13

s5 93.68 45.85 23.28 12.03 6.57 4.02 3.54

s6 92.11 47.16 24.02 12.20 6.62 3.74 3.02

s7 95.92 49.12 25.12 13.03 8.02 6.16 6.49

fish s0 40.66 20.46 10.43 5.49 2.96 1.84 1.61

s1 to to to 393.9 201.5 107.2 79.02

s2 to to to 394.3 201.4 107.4 79.07

s3 40.57 20.44 10.47 5.54 2.97 1.82 1.78

s4 40.56 20.45 10.49 5.55 2.97 1.79 1.83

s5 40.63 20.47 10.87 6.76 4.56 3.92 3.96

s6 40.67 20.42 10.47 5.53 2.96 1.84 1.70

s7 42.73 21.79 11.26 6.06 3.68 3.45 3.93



Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 101

Results. The running times for our experiments are listed in Table 2. In general,
we can observe a speed-up when increasing the number of worker threads – we
could achieve a speedup of up to factor 33 (na09) which in this case results
in ∼70.1% efficiency (efficiency = speedup

#threads ) of the parallelization (na11: max.
factor 30, fish: max. factor 25). Even though a general speed-up when using
more worker threads can be observed, some instances (e.g. na09, s0) stabilize in
their running times. This indicates that either work is not well balanced or there
is a heavy synchronization overhead.

For interpreting the results, it is important to mention that processing each
single task is in general computationally expensive: the time required to com-
pute a flowpipe is usually long in comparison to the time it takes to acquire a
lock for synchronization and move tasks to global queues. Consequently the run-
ning times using one thread in our implementation resemble the running times
of a purely sequential approach. Furthermore, with aggregation/clustering the
number of generated new tasks is often relatively small. For example, for a deter-
ministic system a task might generate just a single successor task, in which case
no work balancing would take place at all. This might lead to insufficient work
balancing and explain why for some benchmarks and some settings involving
more workers does not lead to any additional speedup.

To further investigate upon this we ran the benchmarks with up to 48 threads.
For benchmark instances such as the navigation benchmark in combination with
settings where aggregation was used (s0, s1, s3) we can observe that the running
times already converge for a low number of threads as there are not enough
tasks created during analysis such that most threads idle. The running times
for these settings do not significantly increase when using more threads which
confirms that our implementation successfully minimizes the synchronization
effort required. An exception is setting s7 on benchmark na09, where the running
times increase when using more than 8 threads; as this setting only uses global
queues, the increased need for synchronization is reflected in the running times.

To investigate on the actual work distribution we collected the number of
tasks processed by each worker thread. Table 3 shows the coefficient of varia-
tion (CV) of these results to allow for statements about variance in the work
distribution. The coefficient of variation as a relative measure for variance gives
the influence of the variance of data on the mean in percent. Lower percentages
hereby indicate a lower variance in data.

We can observe the influence of different queue balancing methods for bench-
marks with settings which produce a lot of tasks (s4–s7). With increasing number
of threads the average number of processed tasks per worker decreases. When
using settings which produce too few tasks, many worker threads idle, thus
increasing the variance of processed tasks per worker (see e.g. na09, s0). As
expected the setting using only global queues shows the lowest CV throughout
the experiments as all available tasks are immediately shared.

Settings with local queues where 100% of the created tasks are shared are
expected to exhibit a similar CV as when using global queues only, there are
only two differences: firstly, when using global queues only, tasks are shared



102 S. Schupp and E. Ábrahám

Table 3. Coefficient of variation (left) and idle time (right) in percent for settings
s0–s7, “–” marks failures (timeout, memout). Unsuccessful settings are left out.

Benchmark Setting #threads #threads

2 4 8 16 32 48 2 4 8 16 32 48

na09 s0 87.5 85.4 102.2 133.5 197.2 220.6 18.72 34.96 36.52 33.5 15.28 12.2

s1 32.7 43.6 39.0 44.8 92.5 118.4 10.63 28.78 36.52 28.29 12.76 10.21

s4 0.1 0.7 1.0 1.3 1.7 2.2 0.04 0.18 0.44 0.85 1.09 1.22

s5 0.4 1.1 1.8 2.7 4.0 4.9 0.16 0.46 1.07 2.30 4.33 6.16

s6 0.2 0.4 1.0 1.4 1.8 2.2 0.05 0.18 0.45 0.86 1.33 1.69

s7 0.4 0.6 0.9 1.3 2.2 2.7 0.11 0.23 0.30 0.41 0.38 0.41

na11 s0 45.3 44.3 70.4 130.8 175.1 215.8 7.52 6.05 3.54 2.44 1.36 0.74

s1 24.0 15.3 29.2 45.1 90.5 121.0 4.13 20.95 40.91 47.22 33.84 25.93

s2 0.4 0.9 1.9 3.6 6.0 7.6 0.11 0.51 2.33 5.76 12.10 17.2

s4 0.9 1.7 10.3 11.0 15.7 13.5 0.11 0.44 1.21 3.45 5.79 6.17

s5 2.2 3.2 5.3 8.8 13.6 16.2 0.17 0.64 1.43 3.82 6.62 7.75

s6 1.4 2.1 2.6 17.3 11.9 12.6 0.07 0.46 0.81 3.35 6.35 7.74

s7 2.5 3.0 3.6 3.3 3.9 5.5 0.01 0.30 0.72 1.63 2.67 2.78

fish s0 0.6 3.6 7.6 8.8 11.6 14.3 0.32 1.22 3.32 5.94 10.21 12.33

s1 – – 6.8 8.0 10.0 13.2 – – 0.44 1.09 2.44 3.7

s2 – – 7.6 8.5 10.0 12.7 – – 0.44 1.06 2.65 3.8

s3 0.8 3.3 7.4 9.3 11.8 13.9 0.29 1.43 3.84 5.88 10.45 11.37

s4 0.8 3.4 7.1 8.0 11.3 13.9 0.29 1.19 4.39 6.41 9.90 11.70

s5 0.3 2.6 14.9 24.8 67.6 99.8 0.24 2.00 1.96 7.73 15.30 14.81

s6 0.9 3.4 8.1 8.4 11.6 14.0 0.32 1.29 3.98 6.01 10.42 11.85

s7 0.5 1.2 2.6 2.9 4.1 4.9 0.23 0.67 1.44 2.56 2.83 2.50

immediately after their creation, whereas in the presence of local queues sharing
happens after task completion; secondly, 100% sharing with local queues is not
exactly 100% as one single task is kept for further processing in a local queue.
Strategies where a worker only shares part of its created tasks (s5, s6) show a
larger variance i.e. work is less equally distributed. With regard to the observed
running times we can deduce that sharing work comes at a price – even though
setting s7 has the lowest variance, the running times in comparison to settings
s4–s6, which share the same analysis parameters are worse.

Note that a low CV can also be achieved when many threads are taking
turns in processing a small number of such tasks. Therefore, we also analyzed
the average share of idle time for all threads (see Table 3, right). We can con-
clude that the increased running time for setting s7 indeed can be amounted to
synchronization, as the idle time for the workers is amongst the lowest ones.

5 Conclusion

We have presented a natural approach to parallelize reachability analysis for lin-
ear hybrid systems. Experimental results show a general reduction of the anal-
ysis times. The observed synchronization overhead is minor compared to what



Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems 103

we gain from the parallel execution and thus this approach is usable also for
systems for which the search tree has a low level of branching (e.g. for determin-
istic systems). Naturally, the possibilities of work sharing are restricted to prob-
lem instances with a low level of non-determinism. The used modular approach
allows for several extensions and improvements as future work: (i) combining this
method with the approach presented in [13], and (ii) using specialized workers
which allow for subset-computations which can be performed in parallel.

References

1. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans. Robot. 30(4), 903–918 (2014)

2. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

3. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

4. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

5. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in
space-time. In: Proceedings of HSCC 2013, pp. 203–212. ACM (2013)

6. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support
functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)

7. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podel-
ski, A., Wehrle, M.: Guided search for hybrid systems based on coarse-grained
space abstractions. STTT 18(4), 449–467 (2016)

8. Schupp, S., Ábrahám, E.: Efficient dynamic error reduction for hybrid sys-
tems reachability analysis. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 287–302. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89963-3 17. Accessible for reviewers under
https://ths.rwth-aachen.de/research/publications/

9. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 20

10. Schupp, S., Nellen, J., Ábrahám, E.: Divide and conquer: variable set separation
in hybrid systems reachability analysis. In: Proceedings of QAPL 2017. EPTCS,
vol. 250, pp. 1–14. Open Publishing Association (2017)

11. Bogomolov, S., Forets, M., Frehse, G., Podelski, A., Schilling, C., Viry, F.: Reach
set approximation through decomposition with low-dimensional sets and high-
dimensional matrices. CoRR abs/1801.09526 (2018)

12. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear
systems. In: Proceedings of RTSS 2016, pp. 13–24. IEEE Computer Society Press
(2016)

13. Ray, R., Gurung, A.: Parallel state space exploration of linear systems with inputs
using XSpeed. In: Proceedings of HSCC 2015, pp. 285–286. ACM (2015)

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-319-89963-3_17
https://doi.org/10.1007/978-3-319-89963-3_17
https://ths.rwth-aachen.de/research/publications/
https://doi.org/10.1007/978-3-319-63387-9_20


104 S. Schupp and E. Ábrahám

14. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of LICS 1996,
pp. 278–292. IEEE Computer Society Press (1996)

15. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ library of
state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

16. Schupp, S., Ábrahám, E., Chen, X., Ben Makhlouf, I., Frehse, G., Sankara-
narayanan, S., Kowalewski, S.: Current challenges in the verification of hybrid
systems. In: Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp.
8–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25141-7 2

17. Frehse, G., Ray, R.: Design principles for an extendable verification tool for hybrid
systems. In: Proceedings of ADHS 2009, pp. 244–249. IFAC-PapersOnLine (2009)

18. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24743-2 22

19. Bu, L., Ray, R., Schupp, S.: ARCH-COMP17 category report: bounded model
checking of hybrid systems with piecewise constant dynamics. In: Proceedings of
ARCH 2017. EPiC Series in Computing, vol. 48, pp. 134–142. EasyChair (2017)

https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-25141-7_2
https://doi.org/10.1007/978-3-540-24743-2_22

	Spread the Work: Multi-threaded Safety Analysis for Hybrid Systems
	1 Introduction
	2 Preliminaries
	2.1 Hybrid Automata
	2.2 Reachability Analysis Based on Flowpipe Construction
	2.3 Counterexample-Guided Parameter Refinement

	3 Parallel Reachability Analysis
	3.1 Sequential Analysis
	3.2 Parallel Analysis
	3.3 Implementation

	4 Experimental Results
	5 Conclusion
	References




