®

Check for
updates

Program Verification for Exception
Handling on Active Objects
Using Futures

Crystal Chang Din'®® | Rudolf Schlatte!, and Tzu-Chun Chen?

! Department of Informatics, University of Oslo, Oslo, Norway
{crystald,rudi}@ifi.uio.no
2 Department of Computer Science, Technische Universitit Darmstadt,
Darmstadt, Germany
tc.chen@dsp.tu-darmstadt.de

Abstract. For implementing correct systems, handling and recovering
from exceptional situations is important but challenging for ensuring
correct interactions among distributed objects which are processing con-
currently. To focus on exploring novel handling constructs for actor-based
programming languages, we study ABS, an actor-based concurrent mod-
eling language with an underlying executable formal semantics. This
paper introduces multi-party session blocks with recovery handlers for
exceptions into ABS. With this novel construct, we verify the correct-
ness of interactions among objects within a session block. Program cor-
rectness is ensured by specifying invariants as pre- and post-conditions,
called session contracts, for such a block, which is more expressive than
the existing class invariant proof system for ABS. We present the exten-
sion of ABS with a try-catch-finally construct and class session recovery
blocks that handle uncaught exceptions.

1 Introduction

Properly handling and recovering from exceptional situations is an important
part of specifying and implementing robust and correct systems, especially for
distributed systems where correctness must take partial failure scenarios into
account [17]. Therefore, modeling languages should include means of specifying
exceptional situations and how to recover from them. This paper presents a
new approach to expressing multi-party exception transmission and recovery for
active object languages [4]. We designed the approach for the modeling language
ABS [13]. This paper adds standard language constructs to specify, raise and
handle exceptional situations, as well as a novel construct, the session block, for
reestablishing object invariants after unhandled exceptions.

Existing class invariant-based proof theories for ABS [7] are restricted in
expressivity, specifically in the area of upholding guarantees of protocols involv-
ing series of message exchanges between multiple participants. The problem is

© Springer International Publishing AG, part of Springer Nature 2018
E. B. Johnsen and I. Schaefer (Eds.): SEFM 2018, LNCS 10886, pp. 73-88, 2018.
https://doi.org/10.1007/978-3-319-92970-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92970-5_5&domain=pdf

74 C. C. Din et al.

that the semantics of ABS process interleaving and scheduling cannot forbid arbi-
trary messages to be processed in-between the expected ones, requiring whole-
program analysis. This paper addresses this problem by introducing the concept
of sessions, which temporarily restrict the scheduling behavior to the parts of a
model participating in the session. In this work, we define session contracts to
express the desired properties of a session based on the new session construct.
A proof system for session contracts is introduced.

The rest of the paper is structured as follows. Section 2 describes the main
characteristics of the ABS language. Section 3 introduces the new language con-
structs. Section4 introduces session contracts and provides a proof system for
verifying session contracts. Section 5 discusses related work. Section 6 discusses
future work and concludes the paper.

2 A Short Introduction to ABS

The ABS language was developed to model distributed, parallel systems. Its
design makes it amenable to both formal analysis and simulation (execution).
The syntax is similar to languages in the C/Java family tree. ABS is an actor-
based active object language, with interface inheritance and code reuse via traits.
Being an active object language means that objects are “heavy-weight”: method
calls create processes on the target object, which are scheduled cooperatively
in each concurrent object group (cog). Process switching occurs only when the
current process terminates or at clearly marked program locations (await state-
ments); this makes models of concurrent and distributed systems amenable to
compositional analysis and proof. Data is modeled via a functional sub-language
consisting of algebraic datatype definitions and side effect-free functions.

2.1 A Brief Example

Figure 1 shows a complete ABS model simulating bank accounts and transac-
tions involving multiple accounts. The Account interface and CAccount class
model a bank account with the usual deposit, withdrawal and balance inspec-
tion methods. Methods of type Unit, e.g., deposit, can omit an explicit return
Unit; statement. The Transaction interface and CTransaction class model the
control flow that models a transaction involving transferring some funds from
one account to another, with a small commission transferred to a third account.
The method transfer of the Transaction class (Line 17) first deducts the given
amount from the sender account, then calculates the commission and deposits
the proper amounts in the receiver and commission accounts.!

ABS object references are typed via interfaces, which describe the set of
messages that an object can process (lines 3, 8). Classes (lines 11, 16) imple-
ment zero or more interfaces and contain method definitions. Method calls (e.g.,
Line 20) are asynchronous, written o!m(), and create a new process in the callee.

! The slightly awkward calculation of profit is used to introduce a runtime error.

Program Verification for Exception Handling on Active Objects 75

1 module BankAccount;

2

3 interface Account {

4 Unit deposit (Rat amount);

5 Unit withdraw (Rat amount);

6 Rat getBalance();

7}

8 interface Transaction {

9 Unit transfer (Account f, Account t, Rat amount);

10)

11 class CAccount(Rat balance) implements Account {

12 Unit deposit (Rat amount) { balance = balance + amount; }
13 Unit withdraw (Rat amount) { balance = balance - amount; }
14 Rat getBalance() { return balance; }

15}

16 class CTransaction(Account commission, Rat factor) implements Transaction {
17 Unit transfer (Account sender, Account receiver, Rat amount) {
18 await sender!withdraw(amount);

19 Rat profit = amount / factor;

20 commission'!deposit (profit);

21 receiver!deposit(amount - profit);

22 ¥

23}

24 {

25 Account f = new CAccount(50);

26 Account t = new CAccount(50);

27 Account ¢ = new CAccount(0);

28 Transaction trans = new CTransaction(c, 10);

29 await trans!transfer(f, t, 10);

30 Fut<Rat> fp = c!getBalance();

31 awvait fp?;

32 Rat profit = fp.get;

33 println("Profit: " + toString(profit));

34}

Fig. 1. A motivating example

Execution in the caller continues in parallel with the new process. The value of
a method call is a future (see Line 30), which can be used to synchronize with
the resulting process (Line 31) and to obtain the result (Line 32). Abbreviated
syntax makes it possible to omit an explicit future definition to synchronize with
the callee and, optionally, obtaining the result (see Line 18).

One question is what the behavior of an asynchronous method call is, when
it immediately followed by a fp.get expression, e.g., omitting Line 31 in the
example. In this case, the get expression blocks until fp has a value. Blocking
means that the cog will not schedule another process. There exists abbreviated
syntax for this kind of call: instead of £ = o!m(); v = f.get; one can write v
= 0.m() ;. This notation is used in examples later in this paper.

Finally, the behavior of a model is specified via its main block (Lines 24-34).

2.2 Asynchronous Method Calls, Scheduling Points, and Object
Groups

The concurrency model of ABS merits some more explanation. The unit of con-
currency in ABS is the concurrent object group (cog). Each cog contains a num-
ber of objects and cooperatively schedules the processes running on these objects

76 C. C. Din et al.

such that at most one process per cog is running. As mentioned in Sect. 2.1, each
asynchronous method call results in a process being created at callee-side that
executes the method named in the call. Figure 2 shows the relation of processes,
cogs, and sessions (sessions are introduced in Sect. 3.4). So, the two processes
created by the method calls in Fig. 1, Line 20 and 21 can run in parallel provided
they are not running in the same cog.

session(obj1, obj3)

cogi cog2
scheduler 1 scheduler 2
obj1 obj3
[rlele] prs
obj2 obj4

Fig. 2. Cogs contain objects, which run processes. A session temporarily “captures” its
set of participants. The session names participating objects whose cogs join the session;
other objects in the cog cannot join a different session at the same time.

A cog schedules a process to run when its currently running process reaches
a scheduling point. A scheduling point occurs when a process terminates, either
by executing its return statement or via an unhandled exception, or at the point
of an await or suspend statement. The cog will choose the next process to run
non-deterministically from its set of runnable processes. A process is runnable
after it has been freshly created, after a suspend statement, and after an await
statement if the condition in the await statement is true.

Cogs and cooperative scheduling makes modeling distributed concurrent sys-
tems easy and safe. Processes in different cogs are running in parallel, but do not
have access to shared state. Processes within the same cog, on the other hand,
can share state if they run on the same object, but are running interleaved, with
scheduling points clearly visible at the source code level.

3 Exception Recovery in ABS

This section describes the new constructs added to the ABS language for mod-
eling exceptional situations, handling exceptions and recovering from unhandled
exceptions, and multi-party sessions.

The current ABS language documentation can be found at [1]. A formal
semantics of ABS can be found in [13]. Figures3 and 4 summarize the syntax
of the ABS functional and imperative layer, respectively. Parts highlighted in
yellow mark the elements added in this paper.

Program Verification for Exception Handling on Active Objects 7

Syntactic categories Definitions

T in Ground Type T:=B|I|D|D(T)|E

B in Basic Type B ::=Bool | Int | ---

A in Type A= N|T|D(A)

N in Name Dd ::= data D[(A)] = Cons[| Cons;
FE in Exception Cons ::= Co[(A)]

x in Variable E = exception Co[(A)];

e in Expression F = def A fn[(A)(AZ) = e;

b in Bool Expression enx=0b|x|t|this| Co[(€)] | fn(e) | case e {br}
t in Ground Term t == Co[(?)] | null

br in Branch br = p = e;

p in Pattern pr=_|x|t]| Col)]

Fig.3. Core ABS syntax for the functional level. Terms € and T denote possibly
empty lists over corresponding syntactic categories, square brackets [] denote optional
elements. (Color figure online)

Syntactic categories. Definitions.

s in Stmt P:=1F CL{[T %] s}

e in Expr IF ::= interface I {[Sg|}

b %n BoolExpr CL :=class C [(T 7)) [implements I|[recover {cbr } | { [T T;] M}
g in Guard Sgu=T m ([T)

cbr in Catch branch M:u=Sg {[T 7] s}
su={s}|s;s|skip|x=rhs|if b {s}[else{s}]|while b{s}
| suspend | await g | return e
| try scatch{cbr }[finallys] | throwe
| session(€){s}[recover {cbr}]

rhs :=e | eem(€) | elm(€) | z.get | new [local] C (€)
cbri= p=>s
gu=bl|a?

Fig. 4. Syntax for the imperative layer of ABS. Notation as in Fig.3 (Color figure
online)

3.1 Exception Modeling in the Functional Layer

Algebraic data structures in ABS are defined with the keyword data, which
defines both a type and a set of constructors. Exceptions are defined with the
keyword exception, which introduces a named constructor for the new excep-
tion. The type of an exception is always ABS.StdLib.Exception, which is pre-
defined in the ABS standard library. Exceptions can be used as data values.
For example, they can be stored in lists and can be used in the case pattern-
matching expression. Additionally, exceptions are used as argument to the throw
statement and are pattern-matched in catch branches (see Sect. 3.2 below).

3.2 Exception Handling in the Imperative Layer

The imperative layer of ABS adds a throw statement for manually raising
exceptions. Additionally, normal code execution can also lead to exceptions,
like attempting to send a message to null or dividing by zero.

78 C. C. Din et al.

For handling exceptions, the imperative layer of ABS adds the familiar try-
catch-finally construct. Exceptions raised in the statement(s) protected by
try are pattern-matched by the branches in the catch block; the statements in
the first matching branch are then executed (“the exception is handled by that
branch”). Finally, all statements in the finally block are executed, regardless of
how the try block was executed. In case no catch branch matches (“the exception
is unhandled”), the £inally block is executed and the exception is (hopefully)
handled by an enclosing try-catch block. The scope of variables declared in the
try block does not extend to the catch and finally blocks since they might
not have been initialized yet when entering these blocks. To ensure progress,
finally blocks cannot contain blocking operations or process suspension.

Unhandled exceptions terminate the current process and are stored in its
future. As in [10], unhandled exceptions propagate across futures. When the
callee process terminated with an exception, that exception will be raised when
the caller tries to obtain the future’s value via a get expression, and will thereby
propagate along the chain of process invocations until it is handled.

Note that a process crash is effectively ignored if no other process tries to
access its return value.

3.3 Recovery in the Object Layer

The compositional proof system of ABS [5,7] relies on class invariants; processes
are responsible to establish these invariants at all of their scheduling points.
Since with exceptions processes can terminate at arbitrary points, we introduce
recovery blocks as a fall-back mechanism to reestablish class invariants.

All unhandled exceptions still lead to process termination, as above in
Sect. 3.2, but additionally the unhandled exception is matched against the recov-
ery block given in the class definition. If a matching branch is found, its state-
ments are executed and the object is kept alive. If no matching branch is found
in the recovery block, the object is killed. A dead object is marked as invalid, all
processes running on it are terminated, and all further messages to that object
result in an exception in the caller. This is not quite as draconian as it sounds,
since models of distributed systems need to model this type of partial failure
anyway.

3.4 Session Blocks

As discussed above, try-catch blocks and class recovery blocks help restore per-
object class invariants in the face of exceptional situations. But they do not help
in a systematic way for recovering invariants that span more than one object. In
general, this requires corrective actions undoing or compensating from messages
sent as part of an incomplete transaction. For example, see Fig. 1: when creating a
CTransaction object with factor= 0, executing the transfer method will lead
to a division by zero on Line 19, after sending a withdraw message to sender but
before the corresponding deposit messages. Hence, the system-wide invariant

Program Verification for Exception Handling on Active Objects 79

(“the amount of money in the system is constant”) is violated. To handle these
cases, we introduce the session block construct.

A session is the analogue of a critical section over a group of cogs. During the
lifetime of a session, the participating cogs will only run processes that “belong”
to the session. Unrelated processes are not scheduled until the session has ended.
Sessions are implemented and modeled via session blocks. The cog running the
process that is executing the session block (the “session initiator”) is a session
participant, as are the cogs of all objects named in the session block parameter
list. In Fiig. 2 we see a session with two participants. For the duration of a session,
all participants will only schedule processes that are created during the session
by a session participant. There can be multiple active sessions in the system,
but no cog can participate in more than one session at a time.

Figure 4 introduces the syntax of the session block. Figure 5 shows an exam-
ple of this construct, in a revised CTransaction class. Note the use of local
variables start_sender etc. is to record progress through the session and estab-
lish which actions in the CAccount objects can be undone. As with try-catch-
finally, variables declared in the body of the session block go out of scope
before entering the recovery block, since their value and status are uncertain.

The semantics of initiating and terminating a session demands synchroniza-
tion among all participants. When the session initiator starts executing a session
block, the list of participating cogs is calculated from the block’s parameter list.

1 class CTransaction(Account commission, Rat factor) implements Transaction {
2 Unit transfer (Account sender, Account receiver, Rat amount) {

3 Maybe<Rat> start_sender = Nothing;

4 Maybe<Rat> start_receiver = Nothing;

5 Maybe<Rat> start_commission = Nothing;

6 session(sender, receiver, commission) {

7 Rat sb = sender.getBalance(); start_sender = Just(sb);

8 Rat rb = receiver.getBalance(); start_receiver = Just(rb);

9 Rat cb = commission.getBalance(); start_commission = Just(cb);

10 sender .withdraw(amount) ;

11 Rat profit = amount / factor;

12 commission.deposit (profit);

13 receiver.deposit(amount - profit);

14 } recover {

15 _=>{

16 if (isJust(start_sender)) {

17 Rat bal_sender = sender.getBalance();

18 sender.deposit (fromJust (start_sender) - bal_sender);
19 }

20 if (isJust(start_commission)) {

21 Rat bal_commission = commission.getBalance();

22 commission.withdraw(bal_commission - fromJust(start_commission));
23 ¥

24 if (isJust(start_receiver)) {

25 Rat bal_receiver = receiver.getBalance();

26 receiver.withdraw(bal_receiver - fromJust(start_receiver));
27 ¥

28 }

29 }

30 }

31}

Fig. 5. Error recovery in the transaction class via a session block

80 C. C. Din et al.

In Fig.5, Line 6, there are four participants (the cogs of the three Account
objects plus the cog of the Transaction object, which runs the session initia-
tor). Execution of the initiating process blocks until all participants have (a) left
any currently active sessions they might be in, and (b) have reached a scheduling
point. Then, all participants acknowledge entering the session and receive the
list of participants. When the session initiator reaches the end of the session
body, either normally or via an exception, execution blocks until all partici-
pants have finished executing all processes that are part of the session. A final
synchronization point is at the end of the recovery block, in case it is entered.

4 Program Analysis of Session Blocks with Exception
Handlers

A session block, introduced in Sect.3, is used to identify a special group of
interactions in which (i) the states of participants in the interactions shall not
be updated by other processes, and (ii) once an exception occurs but is not
caught by catch block, the recovery block will recover the states of participants.

In this section, we give a session-contract based verification framework. This
verification framework is inspired by the ABS class-invariant based verifica-
tion [5], which, however, is not designed for verifying the preservation of invari-
ants while exceptions are thrown or verifying properties across multiple objects,
such as in the case in Fig. 1.

4.1 Session Contracts

In this section we first briefly explain the class-invariant based verification frame-
work for ABS [7]. Then we will point out why this proof strategy is too strong
for the language setting where exception handling is considered. The verifica-
tion framework in [7] assumes formal specification at the class level, i.e. for each
object implemented in a class C we aim to establish its class invariant Ic. We
need to prove that C’s initialization block establishes I, and I¢ holds before pro-
cess releasing at each await and suspend statements, as well as when a method
on C returns. Thus, class invariants need to hold at each scheduling points but
not necessary in between. Consequently, if an exception is thrown between two
scheduling points, this may lead to a system ending in a state where class invari-
ant does not hold. For instance, we define a specification for the banking example
in Fig. 1.

sender.balance + commission.balance + receiver.balance = v (1)

which says that the summation of balances of the sender’s account, the receiver’s
account and the commission’s account is a constant v. This property cannot be
proven within the verification framework for ABS [7]. One reason is that the
specification language used in [7] cannot express the state of the invoked objects,
and this property does not hold at every suspension point as it should in [7], for

Program Verification for Exception Handling on Active Objects 81

instance, after the balance of the sender has been decreased but the balance of
other accounts have not yet been changed. Besides, if there is any runtime error,
for example division by zero, this property does not hold when an exception is
thrown.

To overcome these restrictions, the concept of session is introduced in this
work. The modified version of the banking example using session is presented
in Fig.5, for which we define Eq. (1) as a session contract. Session contracts
express the state of the session or the communication pattern between objects
in the same session. They are assumed at session entry and should be proven at
session exit. Accordingly, the following statement should be proven upon session
termination in Fig. 5.

v — amount + profit + (amount — profit) = v

In case of uncaught exceptions in the session block, the session contract should
hold after the recovery block. In order to prevent the session state from being
randomly modified at the process release points, we only allow process suspension
outside the session blocks.

4.2 Proof System

In this section we introduce a modular proof system for proving session-based
ABS programs. We first prove that each method satisfies its method contract and
then prove that each session block satisfies its corresponding session contract.

4.2.1 Program Analysis at Method Level

We verify ABS methods against method contracts by applying the proof rules
in Fig. 6, i.e. one rule for each program statement. The program logic is first-
order dynamic logic for ABS (ABSDL) [2,5,7]. For a sequence of executable ABS
statements S and ABSDL formulae P and @, the formula P = [S] @ expresses: If
the execution of S starts in a state where the assertion P holds and the program
terminates normally, then the assertion @) holds in the final state. Gentzen-
style sequent calculus is used to prove ABSDL formulae. In sequent notation,
P = [9Q is written P I [S]Q. A sequent calculus as realized in ABSDL essen-
tially constitutes a symbolic interpreter for ABS. For example, the method rule
in Fig. 6 expresses the proof of method m against its precondition p and post-
condition ¢. In the assign rule, the assignment v = e is an active statement in a
modality [v = e;w], where v is a program variable and e is a pure (side effect-
free) expression. The nonactive prefix 7 consists of an arbitrary sequence of open-
ing braces “{”, i.e. beginnings “m(X){” of method blocks, “try{” of try-catch-
finally blocks, and “session(€){” of session blocks. The remaining program
is represented by w. The assign rule generates a so-called update [2], as {v := e}
shown above, for the assignment statement, which captures state changes and is
placed outside the modality box. Updates can be viewed as explicit substitutions
that accumulate in front of the modality during symbolic program execution. We
use U to represent the accumulated updates up to now. Updates can only be

82 C. C. Din et al.

applied to formulae or terms. Once the program to be verified has been com-
pletely executed and the modality is empty (see the emptyBox rule in Fig. 6), the
accumulated updates are applied to the formula after the modality, resulting in
a pure first-order formula. I" stands for (possibly empty) sets of side formulae,
and ¢ the property required to be proven upon execution termination.

I'-U{v = e}[r w|p i I'-U[r w]¢
I'HUlrv=e;wlop P I' F U[r skip; w]¢
I, cl(o, C) = U(fresh(o) = {v := o}[r w]¢p)

new TF Ul v = new C(2); 0]é method p - [m(X){s}]q

assign

r-ur
I'FUb = [r s1 wlp) I IANbE [s]]
I'FU(=b = [1 s2 w]o) il NI A-bbE 7 wle
I'FU[m if b {s1} else{ss} w|d whte I' F U[m while b { s };w]¢
ICm(x): (p,q) b (U{r:=e}q) NU[T w]¢ Ir'+Ugp

t tyBox ————
return I, C.m(X) : (p,q) F U[r return e;w]¢p emPLYEX T Ul le

I, cl(o,C),Cm(x) : (p,q) F U{this := o}{x :=€}p
I, cl(o,C),Cm(X) : (p, q), bt(fr,o,Cm(e)) F U{fr = fr'}[w]d
I, cl(o,C),Cm(X) : (p,q) FU[fr = o'm(€);w]|p
I, bt(fr,o0,Cm(€)), C.m(X) : (p, q), is Value(fr), fresh(v’) -
(U{this := o}{x :=€e}{r:=v'}q) = U{v := v} w]p
I, bt(fr,o0,Cm(€)), Cm(X) : (p, q), ~isValue(fr), fresh(v’) F U{v := v'}[7 throw v; w]¢
I, bt(fr,Cm(e)),Cn(xX) : (p,q) FU[T v = fr.get;w|p
I Ufresh(fr') FU[r fr' = otm(€);v = fr'.get;w]d
I'FU[r v =o0.m(€); w|p

ifElse

asyncCall

get

syncCall

Fig. 6. Proof rules for statements.

Figure6 also provides rules for other statements. Rules skip, new, return,
and get are for skip statements, object creation, return statements, and get
statements, respectively. In rule new, fresh(o) expresses that there is no object
reference equals o up to now. Object o belongs to class C' is captured by predi-
cate cl(o,C). The rule ifElse is for conditional statements. The rule while proves
that a while loop preserves loop invariant I. In the rule asyncCall we assume
that method contract of the invoked method is provided. We formulate method
contract in the form of C.m(X) : (p, ¢), where (p, ¢) is a pair of pre- and post-
condition of method m(X) in class C. For brevity, we skip the case of multiple
implementations of a given interface but they can be handled in the standard
way using adaptation rule [6]. The asyncCall rule has two premises. The first one
proves that the precondition p of m holds. The update substitutes this with callee
o, and formal parameters X with actual parameters €. In the second premise, a
fresh future fr’ is generated and added into an update clause. The environment
carries information about the callee of fr’, i.e. predicate bt(fr, 0, C.m(€)) expresses
that future fr belongs to method m(€) which is executed on object o of class C.
In rule return, the keyword r captures the return value and the postcondition ¢
is required to be proven. Note that we consider partial correctness, so for the

Program Verification for Exception Handling on Active Objects 83

get rule we assume it is possible to fetch the data from the future at the get
statements eventually. Since it is not possible to know the exact fetched data
while applying the get rule, we follow the same principle as for the new rule and
assign a fresh value, i.e. v/, to variable v. However, if the environment carries
information about the callee of fr, we can use the post condition ¢ to restrict
the possible values v’. If such information is unavailable, we assume q = true. If
future fr in the get statement does not contain value, i.e. =isValue(fr), but an
exception, an exception will be thrown. This is captured by the second premise.
The rule syncCall is syntactic sugar to an asynchronous call plus a get statement.
Note that we do not present the proof rules for await and suspend statements in
this paper, because we only allow process suspension outside the session blocks.

I''e =t U[r try{s2} catch{} finally{ss} w]¢p
I'e # t = U[m try{throw e; S1} catch{cbr} finally{s3} w]¢
I+ U[r try{throw e; s1} catch{t = 53;cbr} finally{33} w|p

try-catch-finally

I' - U[r 53; throw e w]
I' - U[r try{throw e; 51} catch{} finally{ss} w]¢
I'U[r 5 w]¢p
'+ U[r try{} catch{cbr} finally{5} w]|¢

try-emptyCatch-finally

emptyTry

Fig. 7. Proof rules for try-catch-finally statements.

In Fig.7 we provide proof rules for try-catch-finally statements. Runtime
exceptions are handled in the proof rules (see the example of the get rule in
Fig.6). Errors created during evaluation of expressions, for example division by
zero, are handled in a similar way. The rule try-catch-finally has two premises. If
the thrown exception matches the first case listed in the catch block, statements
so from the catch clause are then executed. Otherwise, the exception is thrown
again and the first case in the catch block is eliminated. Note that the finally
block can be empty, i.e. s3 is an empty list. The rule try-emptyCatch-finally
expresses that the exception cannot be caught by the catch clause so it executes
the finally clause and then throws the exception to the outer scope. Maybe
there will be another try-catch clause around it, i.e. contained in the nonactive
code 7 and the remaining program w. The rule emptyTry says if a try clause is
completely executed without throwing any exceptions, then the finally clause
and the remaining program will be executed.

4.2.2 Proof of the Example at Method Level

In this section, we provide method contracts for the example shown in Sect. 3.4.
The method contract for withdraw is

CAccount.withdraw(Rat amounti): (this.balance = balance’, this.balance = balance’ — amountj)

in which this.balance accesses the field balance, and logical variable balance’
stores the value of balance at the prestate. This contract expresses that if the

84 C. C. Din et al.

value of balance at prestate is balance’, then it updates to balance’ — amount;
upon method termination. The method contract for deposit is:

CAccount.deposit (Rat amounts) : (this.balance = balance’’, this.balance = balance’’ + amounty)

This contract expresses that if the value of balance at prestate is balance”,
then it updates to balance” + amounts upon method termination. Finally, a
method contract for getBalance is given below:

CAccount.getBalance() : (true, r = this.balance)

There is no requirement for the precondition. In the postcondition the value of
balance is assigned to variable r. We can prove these three method contracts
by using rules method, assign, return and emptyBox in Fig. 6.

4.2.3 Program Analysis at Session Level

Session contract must be proven at the end of the session if there is no exception
left unhandled, assuming the session contract holds at the session entry. The
proof rules in Fig.8 together with the ones in Figs.6 and 7 build up a proof
system for verifying session blocks. The rules in Figs. 6 and 7 will be used when
the session block is not empty and the current active statement is not a throw
statement for exception. A session block may contain try-catch-finally clauses
but cannot be nested within another session block.

I''e =t - U[session(€){52} recover{}]¢
I'ye # t - U[session(e){throw e; 57} recover{cbr}]¢

sessionRecover 2
I' U[session(€){throw e; 51} recover{t = S53;cbr}]¢

I' - false
I' - U[session(€){throw e; r} recover{}|¢

emptyRecover

I'-uUe
I' - U[session(€){} recover{s}]¢

emptySession
sessionStart SC, C.m(X) : (p, q), init - [session(€){S7} recover{sz}|SC

Fig. 8. Rules for proving session contracts.

The rule sessionRecover has two premises. If the thrown exception matches
the first case listed in the recover block, statements s5 from the recover clause
are then executed. Otherwise, the same exception is thrown again and the first
case in the recover block is eliminated. The rule emptyRecover says if none of
the cases in the recover block matches the exception thrown from a session
block, this proof branch cannot be closed. This means the recover block needs
to be re-implemented until the session contract can be successfully proven in
the end of the recover block. The rule emptySession says if a session block is
completely executed without throwing any exceptions, then the session contract
should be proven at this session exit. The rule sessionStart captures the proof
obligation of a session. We use this rule to prove that a session preserves the

Program Verification for Exception Handling on Active Objects 85

session contract SC. Contracts for all the methods in the system are assumed
known from the beginning. The set init are variables defined before session entry
but used in the session block.

4.2.4 Proof of the Example at Session Level

In this section, we explain the proof outline for the example in Fig.5, which
presents the cases when exceptions are thrown in a session. Equation (1) is the
corresponding session contract. Since the session involves method invocations,
the proof requires knowledge of all the invoked methods from the session. This
knowledge is formalized as the method contracts presented in Sect. 4.2.2.

An exception can be thrown at any execution point of the session block. Since
there is an execution barrier between the session body and the recovery block
(see Sect. 3.4), all the processes executed in or related to the session block are
finished before the recovery block can be executed. The recovery block rescues
all the possible failing cases and makes sure the program is back to the state
as if this particular transaction has never been executed. Below we present the
proof outline for the recovery block and show that the session contract holds at
the end of the recovery block.

Session participants, i.e. objects, and their method invocations are known
in a session. According to this knowledge, we instantiate each method contract
of the invoked methods in the session as follows: In the method contract for
the deposit method of the sender object, we instantiate this to sender and
parameter amounts to start_sender — bal_sender. In the method contract for the
withdraw method of the commission object, we instantiate this to commission
and parameter amount; to bal_.commission — start_.commission; In the method
contract for the withdraw method of the receiver object, we instantiate this to
receiver and parameter amount; to bal_receiver — start_receiver.

sender.deposit (start_sender — bal_sender) :
(sender.balance = bal_sender,
sender.balance = bal_sender + (start_sender — bal_sender))

commission.withdraw(bal_-commission — start_.commission) :
(commission.balance = bal_commission,
commission.balance = bal_commission — (bal_.commission — start_.commission))

receiver.withdraw(bal_receiver — start_receiver) :
(commission.balance = bal_receiver,
commission.balance = bal_receiver — (bal_receiver — start_receiver))

Assume in the beginning of the session block the following holds
sender.balance = sb A commission.balance = cb A receiver.balance = rb

where sb, c¢b, rb are logical variables to record the initial balance of the
accounts and sb + ¢b + rb = v. Besides, start_sender = sb when established,
start_commission = ¢b when established, and start_receiver = rb when established.
Depending on which initial balance of the accounts are successfully accessed in
the session block, the conditional branches in the recovery block will be selected

86 C. C. Din et al.

for execution. In the end of the recovery block we show that

sender.balance + commission.balance + receiver.balance
= [sb | bal_sender + (start_sender — bal_sender)]+
[cb | bal_commission — (bal_commission — start_.commission)]+
[rb | bal_receiver — (bal_receiver — start_receiver)]
=sb+cb+rb=v

in which the symbol [a | b] means either a is selected or b is selected. Thus, this
session contract does hold in the end of the recovery block. From these proof
results, we show that the execution of a session will always end in a safe state,
with the session contract reestablished, irregardless of the presence of exceptions.

5 Related Work

The use of futures for transferring both result and exception values goes back
o [15]. A specification of an exception handling system for active objects using
one-way asynchronous communication and interacting via a request/response
protocol was presented in [9]. Future-based communication and verification of
such system were not considered. The first approach for exception recovery based
on object state rollback for unhandled errors in ABS was proposed in [10]. This
approach was implemented but ultimately rejected for inclusion in the main lan-
guage for two reasons: the impact of object rollback on the ABS proof theory
was too high, and the proposed approach did not handle notions of correctness
that need to be expressed over multiple objects. The approach in this paper
addresses both of these shortcomings. Reasoning about exception handling in
Java is supported by PVS [12]. The invariant-based verification framework for
ABS was provided by [5,7], in which formal specification was at the class level.
KeY-ABS [5] is a theorem prover that realized the proof system for ABS. It was
developed based on KeY [2], which supports deductive verification for exception
handling in sequential Java programs. A new rule implemented in KeY to rea-
son about exception handling in loops was introduced by [16]. A modular and
scalable network-on-chip example is proven by KeY-ABS. The proof results are
shown in [8]. In the work of [14], core ABS is extended with sessions and annota-
tions to express scheduling policies based on required communication ordering.
The annotation is statically checked against the session automata derived from
the session types.

6 Conclusion

This paper shows an extension of the Active Object-based modeling language
ABS with exception specifications, handling and recovery. We introduce several
language constructs including the means to express coordinated multi-party ses-
sions and recovery actions. To guarantee session correctness, we provide session

Program Verification for Exception Handling on Active Objects 87

contracts and an attendant proof system. We show that a system, in which excep-
tions are thrown, can be recovered back to a safe state, where session contract
holds. Soundness proofs for the reasoning system with respect to the opera-
tional semantics are left as future work. Other planned future work includes (1)
building up our type system to describe allowed scheduling during the lifetime
of the session, and (2) tool support for the new language constructs, including
an implementation of the type checking and runtime semantics, and a thor-
ough evaluation of the usability of session contracts in the context of existing
case studies utilizing ABS. Inspired by behavioral types [3,11], our type system
will be designed to regulate the runtime behavior of objects and schedulers, and
reduce the number of exceptions caused by undesired communication behaviour.

Acknowledgement. This work was supported by the research projects CUMULUS:
Semantics-based Analysis for Cloud-Aware Computing, ERC project LiveSoft, and the
SIRIUS Centre for Scalable Data Access.

References

1. The ABS Development Team. ABS Documentation. http://docs.abs-models.org

2. Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book, vol. 10001. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-319-49812-6

3. Chen, T.-C., Viering, M., Bejleri, A., Ziarek, L., Eugster, P.: A type theory for
robust failure handling in distributed systems. In: Albert, E., Lanese, I. (eds.)
FORTE 2016. LNCS, vol. 9688, pp. 96-113. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-39570-8_7

4. de Boer, F.S., Serbanescu, V., Hahnle, R., Henrio, L., Rochas, J., Din, C.C,,
Johnsen, E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., Yang, A.M.:
A survey of active object languages. ACM Comput. Surv. 50(5), 76:1-76:39 (2017)

5. Din, C.C., Bubel, R., Hahnle, R.: KeY-ABS: a deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 517-526. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6-35

6. Din, C.C., Johnsen, E.B., Owe, O., Yu, I.C.: A modular reasoning system using
uninterpreted predicates for code reuse. J. Log. Algebraic Methods Program. 95,
82-102 (2018)

7. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Aspects Comput. 27(3), 551-572 (2015)

8. Din, C.C., Tapia Tarifa, S.L., Hahnle, R., Johnsen, E.B.: History-based specifica-
tion and verification of scalable concurrent and distributed systems. In: Butler, M.,
Conchon, S., Zaidi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 217-233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_14

9. Dony, C., Urtado, C., Vauttier, S.: Exception handling and asynchronous active
objects: issues and proposal. In: Dony, C., Knudsen, J.L., Romanovsky, A., Tri-
pathi, A. (eds.) Advanced Topics in Exception Handling Techniques. LNCS, vol.
4119, pp. 81-100. Springer, Heidelberg (2006). https://doi.org/10.1007,/11818502_5

http://docs.abs-models.org
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-319-39570-8_7
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-25423-4_14
https://doi.org/10.1007/11818502_5

88

10.

11.

12.

13.

14.

15.

16.

17.

C. C. Din et al.

Gori, G., Johnsen, E.B., Schlatte, R., Stolz, V.: Erlang-style error recovery for
concurrent objects with cooperative scheduling. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014. LNCS, vol. 8803, pp. 5-21. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-45231-8_2

Hiittel, H., Lanese, 1., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 31-336 (2016)

Jacobs, B.: A formalisation of Java’s exception mechanism. In: Sands, D. (ed.)
ESOP 2001. LNCS, vol. 2028, pp. 284-301. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45309-1-19

Johnsen, E.B., Hahnle, R., Schéfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142-164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_8

Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for
actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 296-312. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3_19

Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems. In: Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation (PLDI), pp.
260267 (1988)

Steinhofel, D., Wasser, N.: A new invariant rule for the analysis of loops with non-
standard control flows. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS,
vol. 10510, pp. 279-294. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66845-1_18

Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing.
In: Vitek, J., Tschudin, C. (eds.) MOS 1996. LNCS, vol. 1222, pp. 49-64. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62852-5_6

https://doi.org/10.1007/978-3-662-45231-8_2
https://doi.org/10.1007/978-3-662-45231-8_2
https://doi.org/10.1007/3-540-45309-1_19
https://doi.org/10.1007/3-540-45309-1_19
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1007/978-3-319-66845-1_18
https://doi.org/10.1007/3-540-62852-5_6

	Program Verification for Exception Handling on Active Objects Using Futures
	1 Introduction
	2 A Short Introduction to ABS
	2.1 A Brief Example
	2.2 Asynchronous Method Calls, Scheduling Points, and Object Groups

	3 Exception Recovery in ABS
	3.1 Exception Modeling in the Functional Layer
	3.2 Exception Handling in the Imperative Layer
	3.3 Recovery in the Object Layer
	3.4 Session Blocks

	4 Program Analysis of Session Blocks with Exception Handlers
	4.1 Session Contracts
	4.2 Proof System

	5 Related Work
	6 Conclusion
	References

